
ptg

ptg

JavaFX™

From the Library of sam kaplan

ptg

The Java™ Series

Ken Arnold, James Gosling, David Holmes
The Java™ Programming Language, Fourth Edition

Joshua Bloch
Effective Java™ Programming Language Guide

Joshua Bloch
Effective Java™, Second Edition

Stephanie Bodoff, Eric Armstrong, Jennifer Ball,
Debbie Bode Carson, Ian Evans, Dale Green,
Kim Haase, Eric Jendrock
The J2EE™ Tutorial, Second Edition

Mary Campione, Kathy Walrath, Alison Huml
The Java™ Tutorial: A Short Course on the Basics,
Third Edition

Mary Campione, Kathy Walrath, Alison Huml, The
Tutorial Team
The Java™ Tutorial Continued: The Rest of the JDK™

Patrick Chan
The Java™ Developers Almanac 1.4, Volume 1:
Examples and Quick Reference

Patrick Chan
The Java™ Developers Almanac 1.4, Volume 2:
Examples and Quick Reference

Patrick Chan, Rosanna Lee
The Java™ Class Libraries, Second Edition,
Volume 2: java.applet, java.awt, java.beans

Patrick Chan, Rosanna Lee, Doug Kramer
The Java™ Class Libraries, Second Edition,
Volume 1: java.io, java.lang, java.math, java.net,
java.text, java.util

Kirk Chen, Li Gong
Programming Open Service Gateways with Java™
Embedded Server Technology

Zhiqun Chen
Java Card™ Technology for Smart Cards:
Architecture and Programmer’s Guide

Jim Clarke, Jim Connors, Eric Bruno
JavaFX™: Developing Rich Internet Applications

Maydene Fisher, Jon Ellis, Jonathan Bruce
JDBC™ API Tutorial and Reference, Third Edition

Eric Freeman, Susanne Hupfer, Ken Arnold
JavaSpaces™ Principles, Patterns, and Practice

Li Gong, Gary Ellison, Mary Dageforde
Inside Java™ 2 Platform Security: Architecture, API
Design, and Implementation, Second Edition

James Gosling, Bill Joy, Guy Steele, Gilad Bracha
The Java™ Language Specification, Third Edition

Chet Haase, Romain Guy
Filthy Rich Clients: Developing Animated and
Graphical Effects for Desktop Java™ Applications

Mark Hapner, Rich Burridge, Rahul Sharma, Joseph
Fialli, Kim Haase
Java™ Message Service API Tutorial and Reference:
Messaging for the J2EE™ Platform

Eric Jendrock, Jennifer Ball, Debbie Carson, Ian Evans,
Scott Fordin, Kim Haase
The Java™ EE 5 Tutorial, Third Edition

Jonni Kanerva
The Java™ FAQ

Jonathan Knudsen
Kicking Butt with MIDP and MSA: Creating Great
Mobile Applications

Doug Lea
Concurrent Programming in Java™: Design Principles
and Patterns, Second Edition

Rosanna Lee, Scott Seligman
JNDI API Tutorial and Reference: Building Directory-
Enabled Java™ Applications

Sheng Liang
The Java™ Native Interface: Programmer’s Guide and
Specification

Tim Lindholm, Frank Yellin
The Java™ Virtual Machine Specification, Second Edition

Roger Riggs, Antero Taivalsaari, Jim Van Peursem,
Jyri Huopaniemi, Mark Patel, Aleksi Uotila
Programming Wireless Devices with the
Java™ 2 Platform, Micro Edition

Rahul Sharma, Beth Stearns, Tony Ng
J2EE™ Connector Architecture and Enterprise
Application Integration

Inderjeet Singh, Beth Stearns, Mark Johnson,
Enterprise Team
Designing Enterprise Applications with the J2EE™
Platform, Second Edition

Inderjeet Singh, Sean Brydon, Greg Murray, Vijay
Ramachandran, Thierry Violleau, Beth Stearns
Designing Web Services with the J2EE™ 1.4 Platform:
JAX-RPC, SOAP, and XML Technologies

Kathy Walrath, Mary Campione, Alison Huml,
Sharon Zakhour
The JFC Swing Tutorial: A Guide to Constructing GUIs,
Second Edition

Steve Wilson, Jeff Kesselman
Java™ Platform Performance: Strategies and Tactics

Sharon Zakhour, Scott Hommel, Jacob Royal,
Isaac Rabinovitch, Tom Risser, Mark Hoeber
The Java™ Tutorial: A Short Course on the Basics,
Fourth Edition

From the Library of sam kaplan

ptg

JavaFX™

Developing Rich
Internet Applications

Jim Clarke
Jim Connors

Eric Bruno

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

From the Library of sam kaplan

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

Sun Microsystems, Inc. has intellectual property rights relating to implementations of the technology described in this
publication. In particular, and without limitation, these intellectual property rights may include one or more U.S. patents,
foreign patents, or pending applications.

Sun, Sun Microsystems, the Sun logo, J2ME, J2EE, Java Card, and all Sun and Java based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. UNIX is a
registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.
THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD
INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS
OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact: U.S. Corporate and Government Sales,
(800) 382-3419, corpsales@pearsontechgroup.com.

For sales outside the United States please contact: International Sales, international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Clarke, Jim.
JavaFX : developing rich internet applications / Jim Clarke, Jim

Connors, Eric Bruno.
p. cm.

Includes index.
ISBN 978-0-13-701287-9 (pbk. : alk. paper)

1. Java (Computer program language) 2. JavaFX (Electronic resource)
3. Graphical user interfaces (Computer systems) 4. Application
software Development. 5. Internet programming. I. Connors, Jim, 1962–
II. Bruno, Eric J., 1969– III. Title.

QA76.73.J38C525 2009
006.7'6—dc22

2009014387

Copyright © 2009 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054 U.S.A.
All rights reserved.

Printed in the United States of America. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write
to: Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA 02116,
Fax: (617) 671-3447.

ISBN-13: 978-0-13-701287-9
ISBN-10: 0-13-701287-X
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing, May 2009

From the Library of sam kaplan

ptg

For Debbie, Mike, Tim, and Chris for supporting me in this endeavor.
To my parents who sacrificed so much to allow me this opportunity.

—Jim Clarke

To mom and dad for their unwavering commitment to family.
To Cynthia, Terrence, Nicholas, and Gina without whom I am nothing.

—Jim Connors

To my children, Brandon and Ashley.

—Eric Bruno

From the Library of sam kaplan

ptg

This page intentionally left blank

From the Library of sam kaplan

ptg

vii

Contents

Foreword . xiii

Preface . xv

Acknowledgments . xxi

About the Authors . xxiii

Chapter 1 Getting Started . 1
Installing the JavaFX Platform 1
Setting Up NetBeans IDE for JavaFX 1.2 2

Distributing the Application 8
Command Line 9
Eclipse 13
Chapter Summary 18

Chapter 2 JavaFX for the Graphic Designer 19
Graphic Design and JavaFX 19
JavaFX Production Suite 20
Adobe Illustrator CS3 20
Adobe Photoshop CS3 26
Scalable Vector Graphics 30
Chapter Summary 31

Chapter 3 JavaFX Primer . 33
JavaFX Script Basics 33
JavaFX Script Language 34

From the Library of sam kaplan

ptg

viii CONTENTS

Class Declaration 36
Mixin Classes 38
Object Literals 40
Variables 41
Sequences 45

Declaring Sequences 45
Accessing Sequence Elements 47
Modifying Sequences 47
Native Array 48

Functions 49
Strings 50

String Literals 50
Formatting 52
Internationalization 52

Expressions and Operators 55
Block Expression 55
Exception Handling 55
Operators 56
Conditional Expressions 57
Looping Expressions 58
Accessing Command-Line Arguments 61
Built-in Functions and Variables 61

Chapter Summary 64

Chapter 4 Synchronize Data Models—Binding and Triggers . . 65
Binding 65

Binding to Variables 66
Binding to Instance Variables 67
When Can a Variable Be Bound? 68
A Simple Example Using Binding 69
Binding with Arithmetic and Logical Expressions 71
Binding and Conditional Expressions 72
Binding and Block Expressions 73
Binding to Function Calls 74
Binding and For Expressions 75

Bidirectional Binding 77
Advanced Binding Topics 80

Binding and Object Literals 80
Bound Functions 84

Triggers 85
Coming Features 91
Chapter Summary 92

From the Library of sam kaplan

ptg

CONTENTS ix

Chapter 5 Create User Interfaces . 93
User Interfaces 93
The Stage 93
The Scene 96

Style Sheets 99
Nodes 105

Custom Nodes 106
javafx.scene.Group 108

Layout 108
Layout Basics 111
Custom Layout 115

Input Events 121
Mouse Events 121
Key Events 123

Text Display 125
Text 125
TextBox 132
JavaFX 1.2 Controls 135

Custom Controls 136
Shapes 140

Paths 144
Java Swing Extension 145

Custom Swing Component 147
Chapter Summary 150

Chapter 6 Apply Special Effects . 151
Effects 152

Shadowing 153
Lighting 158
Gradients 162
Blurs 167
Reflection 169
Blending 170
PerspectiveTransform 174
Glow and Bloom 176
DisplacementMap 178
Miscellaneous Color Adjustment Effects 179

Chapter Summary 180

Chapter 7 Add Motion with JavaFX Animation 181
Computer Animation 181
Timelines 183

From the Library of sam kaplan

ptg

x CONTENTS

Key Frames 185
Duration 185
Key Values 187
Key Frames 187

Interpolation 189
Tweening 189
Standard Interpolators 190
Writing a Custom Interpolator 193

Path-Based Animation 199
Total Solar Eclipse Examples 205

JavaFX Shapes 206
JavaFX Production Suite 216

Chapter Summary 218

Chapter 8 Include Multimedia . 219
Multimedia 219
Images 219
Media—Audio and Video 225
Chapter Summary 234

Chapter 9 Add JavaFX to Web Pages with Applets 235
JavaFX and Applets 235
Deploying a JavaFX Application as an Applet 235

NetBeans IDE for JavaFX 238
Manual Generation to Support JavaFX Applets 239
Undocking from the Browser 247
JavaFX and JavaScript Interaction 251

Java Web Start 256
Chapter Summary 258

Chapter 10 Create RESTful Applications 259
What Is REST? 259

Representational State Transfer (REST) 260
Building a RESTful System 262

JavaScript Object Notation (JSON) 264
Yahoo! Web Services 265
GeoNames Web Services 266

JavaFX and REST 266
The JavaFX Weather Widget 270
A Mashup Application 273

From the Library of sam kaplan

ptg

CONTENTS xi

JavaFX and XML 277
Chapter Summary 278

Chapter 11 JavaFX and Java Technology 279
Classes 280
Java Objects 281
Function Parameter and Return Mapping 284
Java Scripting 293

Basic Scripting Evaluation 293
Java Scripting API with Global Bindings 295
Java Scripting API with Compilation 296
Java Scripting API with Error Handling 297

JavaFX Reflection 299
Chapter Summary 302

Chapter 12 JavaFX Code Recipes . 303
JavaFX and JavaBeans 303
Server Call Back 307
Node Effects—Fader and Magnifier 311

Fader 311
Magnify 317

Wizard Framework 319
Progress Bar 325
Slider 327
Matrix 330
Chapter Summary 332

Chapter 13 Sudoku Application . 333
How to Access the JavaFX Sudoku Application 334
The Interface 334
Source for the Sudoku Application 336

Packages 336
JavaFX Source Files 336

The Overall Design 338
The Logic 338
The Interface 339

Interfacing with Java Components 342
Chapter Summary 346

Index . 347

From the Library of sam kaplan

ptg

This page intentionally left blank

From the Library of sam kaplan

ptg

xiii

Foreword

It is not often that you get the chance to witness (let alone participate in!) the
birth of a truly disruptive technology. We are now at a juncture where informa-
tion is pervasive—there is a convergence that will allow us to seamlessly move
from one information source to another as we conduct our daily lives. Whether
we are operating our smart phones, watching television, using our laptops, or
interacting with screen-based devices that are yet to be invented, we are con-
stantly connected to the world.

The key to making this vision a reality is the implementation of a common platform
that works across all these screens. The Java platform set the bar for “write once,
run anywhere”; JavaFX raises that bar by allowing us to write rich, immersive
applications that run not only on every platform, but look good on every screen.

JavaFX is more than that, of course. It’s about

• Employing visual effects to make the graphics stand out and appear real

• Adding animation to bring the screen to life

• Engaging the auditory and visual senses to more effectively convey
information

• Combining all of these qualities to create compelling applications that are
also fun to use

Of course, these capabilities are useless if applications cannot be crafted easily
and quickly. Another goal of JavaFX is to make development simpler, easier,
more productive—and more fun. The JavaFX script language was built from the
ground up to support the scene-graph-based programming model, allowing the
code to have a structure similar to the data structures it creates. Instead of looking

From the Library of sam kaplan

ptg

xiv FOREWORD

for an esoteric “main” routine, the primary entry point is a “stage.” The stage has
a “scene,” and “nodes” make up the elements in the scene. The analogy to the
real world should be clear to all.

Second, the language supports, as a first class concept, the notion of binding
between data elements. What used to take many lines of repetitive (and error-
prone) listener code is now represented using a simple bind declaration. As a
result, the display and your data model are automatically kept in sync, without
having to write the many lines of code that would otherwise be required to con-
nect them.

Lastly, the JavaFX platform provides a robust set of framework classes that allow
you to quickly and simply exploit the most advanced features, such as animations,
visual effects, and sophisticated visual transitions. All this adds up to a highly
productive environment that allows you to quickly deploy the most advanced
applications to both desktops and mobile devices in a fraction of the time.

Programmer productivity is only part of the story—rich applications also require
participation from graphic designers and UI designers. JavaFX provides tools to
integrate the graphic design process with the development process. For instance,
the creative folks typically design the application’s look and feel, produce graph-
ical assets, and then hand all of this over to the development team to create the
program logic. The JavaFX Production Suite facilitates this handoff in an effi-
cient way that allows developers and designers to collaborate easily.

When I joined the JavaFX project, I knew that I had embarked on a journey to
create the best Rich Internet Application platform on the planet—a journey that
has only just begun. I invite you to join this journey, with this book as your start-
ing point. It begins with the basics and builds up to deploying a full-fledged
application in JavaFX, covering all the features and capabilities that JavaFX pro-
vides along the way. Once you learn JavaFX, I’m sure you will be just as enthu-
siastic about this technology as I am. I welcome you aboard.

John Burkey
Chief JavaFX architect

From the Library of sam kaplan

ptg

xv

Preface

Welcome to Rich Internet Application development with JavaFX.

This book is about creating more engaging user applications using special effects
and animation. In this book, we will focus on using JavaFX for creating Rich
Internet Applications.

Building upon the widely adopted and popular Java Platform, JavaFX provides a
new level of abstraction that greatly simplifies graphical user interface develop-
ment while at the same time bringing all the flexibility that Java technologies
provide. This creates an elegant, yet powerful, platform for building full feature
and compelling applications.

What Is JavaFX?
JavaFX is actually a family of products developed at Sun Microsystems. There
are initiatives for mobile phones, consumer, television, and desktop devices. The
cornerstone to these projects is JavaFX. JavaFX is a platform that includes a high
performance declarative scripting language for delivering and building a new
generation of Rich Internet Applications.

The primary focus of JavaFX is to make graphical user interface development easy
while embracing more compelling features like visual effects, sound, and anima-
tion. JavaFX includes a ready-made framework to support graphic components
and to easily include multimedia features like pictures, video, audio, and anima-
tion. Using the Java platform at its core, JavaFX works seamlessly with the Java
platform and can easily leverage existing Java code. This also allows JavaFX to
leverage the “write once, run anywhere” capability provided with the Java platform.

From the Library of sam kaplan

ptg

xvi PREFACE

Why JavaFX?
Anyone who has ever written a graphical user interface application can appreci-
ate the complexity of creating such an application. Though the resulting user
interface can produce a powerful user experience, developing a cool application
can be a daunting task. It takes a skilled developer who knows the graphical lan-
guage and framework inside-out to pull off a well-written UI. JavaFX addresses
this complexity.

Furthermore, graphic design and programming are two distinct skills. Graphic
designers focus on the human interaction with the application, and are more
interested in keeping the human’s interest and making the system intuitive. On
the other side, the program developers are typically concerned with implement-
ing business logic and interacting with back-end servers. It is a rare breed that
masters both of these skills. JavaFX’s goal is to bridge these two crafts by allow-
ing the graphic designer to dabble in an easily understood programming lan-
guage, while at the same time allowing the developer the flexibility to implement
the business rules behind the user interface.

JavaFX does this by

• Simplifying the programming language

• Providing ready-built user interface components and frameworks to sup-
port UI creations

• Making it easy to update existing UI applications

• Providing a cross-platform environment that delivers on “Write Once,
Run Anywhere”

Rich Internet Applications
For many years, the programming paradigm has been centered on a client-server
architecture employing a “thin” client. In this architecture, most of the process-
ing was in the server with the client merely displaying the content. In a thin cli-
ent system, data must be transmitted to the server for processing and a response
sent back. This is very true of the HTML screens introduced with the original
Internet browsers. However, by leveraging compute power on the client side, it is
now possible to perform actions on the client, thereby reducing the round-trip
latency to the server.

A Rich Internet Application is an application that allows a good portion of the
application to execute on the user’s local system. Primarily, the client application

From the Library of sam kaplan

ptg

PREFACE xvii

is designed to perform those functions that enhance the user’s experience. Fur-
thermore, communications with the server do not have to be initiated from a user
action, like clicking on a button. Instead, a server itself can update the client with
fresh content asynchronously as needed and without waiting for the end user to
perform some action or by employing other tricks in the client like periodically
polling the server.

So what is old is new again. In a sense this is true, but this really represents an
evolution of the client server paradigm rather than a retrenchment back to the old
days of the monolithic program that did everything. The key to a Rich Internet
Application is striking the proper balance between behavior that should stay on
the client with the behavior that rightfully belongs on the server. JavaFX is a
framework that embraces the Rich Internet Application model.

Why This Book?
JavaFX is a new technology and we set out to help you get started quickly by
exploring key features of JavaFX and how it should be used. We purposely did
not want to do a language reference document as the language itself is fairly sim-
ple. Our main goal is to help you to quickly and productively create cool user
interfaces.

This book’s primary audience is comprised of developers (of all levels) and
graphic designers who need to build Rich Internet Applications. There are differ-
ent types of developers and designers that this book targets:

• Java developers who are currently building Rich Internet Applications
with Java Swing

• Java developers who are interested in learning JavaFX for future projects

• Non-Java application developers who wish to use JavaFX for Rich Inter-
net Application development

• Graphic designers, animators, or motion-graphic designers who wish to
use JavaFX to add special effects, animation, and sound to their creations

How to Use This Book
This book has thirteen chapters. The first four chapters cover the basics of JavaFX,
how to get started, what the graphic designer’s role is, and the basic language.
The next five chapters cover the advanced features you expect in a Rich Internet

From the Library of sam kaplan

ptg

xviii PREFACE

Application. These include basic UI design, special effects, animation, multimedia,
and browser display. Chapter 10 covers using JavaFX in a Web Services archi-
tecture. Chapter 11 describes JavaFX’s interaction with the Java platform and
assumes you are knowledgeable about Java. The last two chapters cover JavaFX
code recipes and a complete Sudoku application.

We have used a building block approach with basic concepts covered first and
more complex features addressed later in the book, so we suggest you read each
chapter in sequential order. If you are a graphic designer, you may be more inter-
ested in Chapter 2. You can safely start there, then jump back to Chapter 1 to dig
deeper into JavaFX. If you are an “über”-coder, you can safely skip Chapter 2,
but we still suggest you eventually read it just to know what the “dark” side is
doing. Chapter 11 assumes you have a good understanding of the Java platform
and APIs. If you do not plan to comingle your Java classes with JavaFX source
in your application, you can safely skip this chapter. The last two chapters show
some code examples based on the foundations laid down in the earlier chapters.

Here’s the book in a nutshell:

• Chapter 1: Getting Started. This chapter gets you set up and shows the
basics of creating and running a JavaFX program.

• Chapter 2: JavaFX for the Graphic Designer. This chapter explains how
a graphic designer would use JavaFX to create JavaFX Graphical Assets.

• Chapter 3: JavaFX Primer. This chapter covers the basic JavaFX Script
syntax.

• Chapter 4: Synchronize Data Models—Binding and Triggers. JavaFX
Script introduces a data binding feature that greatly simplifies the model-
view-controller design pattern. This chapter explains the concepts of data
binding in the JavaFX Script language.

• Chapter 5: Create User Interfaces. The primary focus of JavaFX is to
create rich user interfaces. This chapter explores the visual components

Beyond the Written Page
With the expressive platform that JavaFX provides, it is hard to fully demonstrate all
its capabilities on the written page. To fully appreciate all the features and capabilities
that JavaFX brings, we suggest visiting the book’s Web site http://jfxbook.com.
There, you can see the full color versions of the figures used throughout the book.
Also at the Web site, you can run the demos in full color and experience firsthand
the richness of the animations and multimedia.

From the Library of sam kaplan

http://jfxbook.com

ptg

PREFACE xix

available to create user interfaces and demonstrates how the features of
JavaFX work together to produce a rich user experience.

• Chapter 6: Apply Special Effects. A key to Rich Internet Applications is
applying cool special effects to bring user interfaces alive and make them
appealing to use. This chapter explores the special effects that JavaFX
provides, including lighting, visual, and reflection effects.

• Chapter 7: Add Motion with JavaFX Animation. Animation makes the
user interface vibrant and interesting. This chapter explains the concepts
behind the JavaFX animation framework and provides examples of fade
in/out, color animation, and motion. It also demonstrates an animation
using Graphical Assets generated by the graphic designer.

• Chapter 8: Include Multimedia. This chapter explores how to include
pictures, sound, and videos in your application.

• Chapter 9: Add JavaFX to Web Pages with Applets. (Applets are back
and these are not your father’s applets.) This chapter explores embedding
JavaFX applications within Web pages and shows how to undock the
applet from the Web page and demonstrate interaction with JavaScript.

• Chapter 10: Create RESTful Applications. JavaFX provides frameworks
for working easily with JavaScript Object Notation (JSON) and Extensi-
ble Markup Language (XML). This chapter explores both options.

• Chapter 11: JavaFX and Java Technology. This chapter explores how
JavaFX interacts with the Java platform.

• Chapter 12: JavaFX Code Recipes. Code recipes are general reusable solu-
tions to common situations in programming. This chapter provides an over-
view of some code recipes applicable to programming JavaFX applications.

• Chapter 13: Sudoku Application. This chapter explores creating a
Sudoku game application in JavaFX.

As we introduce topics, we have tried to inject our own experiences to help you
avoid trial and error kinds of mistakes and “gotchas.” Throughout the chapters,
we have sprinkled Developer Notes, Warnings, and Tips to point out things that
might not be obvious. We have also tried to include as many examples and fig-
ures as possible to illustrate JavaFX features and concepts.

This book is intended to cover the general deployment of JavaFX, whether it be
on the desktop, mobile, or eventually the TV profiles. However, there is a bias
toward the desktop version and specific features for JavaFX mobile are not cov-
ered. Still, the basic concepts and features covered in this book will also apply to
these other profiles and to future releases of JavaFX.

From the Library of sam kaplan

ptg

xx PREFACE

Staying Up-to-Date
This book is written to the JavaFX 1.1 Software Development Kit (SDK). As this
book goes to press, JavaFX 1.2 is being finalized. We have tried to include as
many JavaFX 1.2 features as possible; however, not all features were fully
defined in time. Please check out the book’s Web site, http://jfxbook.com, for
updates for the JavaFX 1.2 release.

This book is jam packed with demo and example code. To illustrate some fea-
tures in print, we have abbreviated some of the examples. The complete code
used in this book is available on the book’s Web site at http://jfxbook.com. You
can also check this site for updates, errata, and extra content. There is also a
forum for sharing information about the book and JavaFX.

From the Library of sam kaplan

http://jfxbook.com
http://jfxbook.com

ptg

xxi

Acknowledgments

The authors would first like to thank the staff at Sun Microsystems and Addison-
Wesley for making sure this book saw the light of day. We are particularly appre-
ciative to Vineet Gupta, Craig Ellis, and Scott Stillabower for humoring us while
we still tried to do our day jobs.

It was almost three years ago when Craig Ellis called and asked if we would cre-
ate a demo for JavaONE using a new technology called JavaFX. He instructed us
to contact Chris Oliver to get started. Within a week of looking at Chris’s early
work, we were sold. We would like to thank Chris for his early support and for
putting up with our stupid questions to learn the first incarnations of JavaFX
script. Also, we would like to thank Chris for being the inspiration for the entire
JavaFX platform. It has come a long way since his first single-handed early pro-
totypes to a full-fledged platform.

Writing a book for a new technology is challenging as there is very little existing
documentation. The process required many hours of trial and error testing, email
trails, and source code deciphering to determine how things really work. This
process also required bouncing ideas, concepts, and assumptions off various peo-
ple on the JavaFX team to make sure we were on the right track. We would espe-
cially like to thank Brian Goetz, who kept steering us in the right direction. We
would also like to thank members of the JavaFX engineering team including
Joshua Marinacci, Chris Campbell, Per Bothner, and Martin Brehovsky for
doing technical reviews and keeping us honest.

We also wanted to get the perspective of those who had never seen JavaFX
before so we enlisted and persuaded many of our associates to do reviews. We
are most grateful to Geertjan Wielenga, who spent numerous hours reviewing

From the Library of sam kaplan

ptg

xxii ACKNOWLEDGMENTS

every chapter and providing us with indispensable feedback. We are also thank-
ful for the valuable insights provided by Andy Gilbert, Manuel Tijerino, Gamini
Bulumulle, and Dr. Rainer Eschrich.

Besides writing, there are numerous activities that go on behind the scenes to
bring a book together. Huge thanks go to Greg Doench for keeping us in line
from day one and holding our feet to the fire to meet an ambitious production
schedule. We could not have pulled this off without him. Of course there are
many people behind the scenes, but we want to personally thank our production
editor, Anna Popick, and our copyeditor, Kelli Brooks. We would also like to
thank Myrna Rivera for handling the business side of this project.

On a personal note, Jim Clarke would like to add the following: “Foremost, I
would like to thank the other Jim and Eric for joining me on this mission. It has
been a long time in the making from our original, ‘Hey let’s do a book’ to now. I
also want to personally thank Geertjan Wielenga, who went over and above the
call of duty in reviewing all of the chapters. Above all, I am appreciative to Brian
Goetz for being my sounding board on ideas and complaints. The entire JavaFX
engineering team is applauded for putting out such a fantastic platform. I want to
particularly thank Robert Field, Richard Bair, and Shannon Hickey for answer-
ing my numerous questions.”

Jim Connors would like to add the following: “If they say you can judge a person
by the company he keeps, then I am truly fortunate having Jim Clarke and Eric
Bruno as friends. It has been a privilege to work with Jim and Eric these last few
years; their positive influence has impacted me profoundly and made me a better
person. I would also like to thank my wife, Cynthia, and children, Terrence,
Nicholas, and Gina, for having the patience to put up with me and the strange
hours that writing a book entails. Finally, despite these last few tumultuous
years, Sun Microsystems remains one of the finest companies in the world. I
thank the corporation for instilling a culture that allows individuals to challenge
conventional thought and be the best they can be.”

Eric would like to share the following: “For the past few years, I’ve worked very
closely with Jim Clarke and Jim Connors on a number of projects, and have ben-
efited tremendously as a result. Because of them, I’ve grown as a technologist, a
writer, and as a professional. Therefore, first and foremost, I need to thank them
for moving this project along even as I dragged my feet while I had other com-
mitments. Thanks for your patience and dedication. I also need to thank Craig
Ellis, for getting us started working together with JavaFX, and Greg Doench, for
helping to move the project along from its beginnings almost two years ago.”

From the Library of sam kaplan

ptg

xxiii

About the Authors

Jim Clarke is a principal technologist with Sun Microsystems and has spent the
last twelve years developing with the Java Platform. Prior to that time, Jim special-
ized in distributed object technologies. For the past two years, Jim has been work-
ing directly with JavaFX and participated on the JavaFX compiler team. Jim is a
graduate of the University of Notre Dame and has been in the computer science
field for thirty years. You can catch his blog at http://blogs.sun.com/clarkeman/.

Jim Connors, a longtime member of Sun’s System Engineering community, has
spent the last decade helping customers further utilize Java technology ranging
from Java Card and Java Micro Edition through to Java Enterprise Edition. His
current focus involves providing software solutions to Sun’s embedded market,
including real-time Java, Solaris, and most recently JavaFX. Jim has twenty-five
years’ experience in systems software development including stints as a com-
piler developer for both the C and ADA programming languages. Along with
Jim Clarke and Eric Bruno, Jim developed and demonstrated one of the first
applications utilizing JavaFX Script back at JavaONE 2007. A regular blogger,
you can read his occasional rantings at http://blogs.sun.com/jtc.

Eric Bruno is a systems engineer at Sun, with a focus on Java RTS in the finan-
cial community. He is the author of the books Java Messaging and Real-Time
Java™ Programming and has dozens of technology articles to his name. He is
currently a contributing editor for Dr. Dobb’s Journal and writes their online
Java blog. Prior to Sun, Eric worked at Reuters where he developed real-time
trading systems, order-entry and routing systems, as well as real-time news and
quotes feeds, in both Java and C++.

From the Library of sam kaplan

http://blogs.sun.com/clarkeman/
http://blogs.sun.com/jtc

ptg

This page intentionally left blank

From the Library of sam kaplan

ptg

1

1
Getting Started
“The way to get started is to quit talking and begin doing.”

—Walt Disney

Installing the JavaFX Platform
In this chapter, you will learn how to install the JavaFX Script Software Devel-
opment Kit (SDK) either in a command-line environment or with an Integrated
Development Environment (IDE). You will also develop your first JavaFX Script
application, compile it, and run it.

The JavaFX Script programming language comes in a Software Development
Kit (SDK), based on Java Platform, Standard Edition (Java SE) 1.6. So you will
need the following:

• The latest Java SE Development KIT (JDK) for your operating system
(Java SE 6 Update 10 or later; for Mac, latest Java for Mac OS X 10.5).

• The NetBeans IDE for JavaFX 1.2, Eclipse Plugin for JavaFX, or the JavaFX
Software Development Kit (1.2) for your environment. The NetBeans IDE for
JavaFX 1.2 is available for Microsoft Windows XP, Microsoft Vista, Apple
Mac OS X Leopard, Linux, and OpenSolaris x86 (available late 2009).

• Optionally, the JavaFX Production Suite graphical toolkit for exporting
JavaFX files from Adobe Illustrator CS3, Adobe Photoshop CS3 and con-
verting Scalable Vector Graphics.

For starters, you need to make sure you have the latest Java SE Development Kit
(JDK) installed. If you want to take advantage of the new Applet features that
JavaFX facilitates, you will need Java SE 6 Update 10 or later. If you are running
Windows, Linux, or Solaris, you can download the latest Java Development Kit
from http://java.sun.com./javase/downloads/index.jsp. If you use Mac OS X, download

From the Library of sam kaplan

http://java.sun.com./javase/downloads/index.jsp

ptg

2 CHAPTER 1 GETTING STARTED

the latest Apple release for the Java Platform from http://developer.apple.com/
java. As of writing this chapter, Java for Mac OS X 10.5 Update 3 now supports
Java 6 Update 7. This release from Apple still does not support the Applet drag
feature described in Chapter 9, Add JavaFX to Web Pages with Applets.

To create your first JavaFX Script application, you have several options. First,
you can download the NetBeans IDE for JavaFX 1.2 based on NetBeans IDE 6.5
from http://javafx.com. Or, from the same site, you can download the JavaFX
SDK and use your favorite editor, compile and run the JavaFX application from the
command line. If you choose to use Eclipse, download the JavaFX Plugin for Eclipse
from http://kenai.com/projects/eplugin after downloading the JavaFX SDK.

There is also a set of tools and plug-ins for designers to export graphical assets
into JavaFX applications, the JavaFX Production Suite. These will be discussed
in more detail in Chapter 2, JavaFX for the Graphic Designer, from http://
www.javafx.com.

Setting Up NetBeans IDE for JavaFX 1.2
You can install the NetBeans IDE for JavaFX 1.2 directly from javafx.com.
There are installers for Microsoft Windows XP, Microsoft Vista, Macintosh,
Linux, and Solaris x86. After NetBeans IDE is installed, launch the NetBeans
IDE. There should have been a desktop launcher created during the install pro-
cess. To create your first project, do the following:

1. Launch NetBeans IDE for JavaFX.

2. Start the New Project wizard by choosing File | New Project from the
main menu.

3. In the New Project wizard, select JavaFX Category and JavaFX Script
Application project type.

Figure 1.1 shows what the NetBeans IDE looks like when creating a new
JavaFX Project.

4. In the Name and Location window, type in the Project Name, MyFirst-
JavaFXApplication. Change the location for the project files, if you want,
then press Finish.

Figure 1.2 shows the Name and Location window.

NetBeans IDE then creates the project directory in the specified project folder
and gives it the same name as your project, MyFirstJavaFXApplication. In Fig-
ure 1.3, notice the Main.fx class file below the myfirstjavafxapplication
package in the Source Packages node. This file was created because you left the

From the Library of sam kaplan

http://www.javafx.com
http://www.javafx.com
http://developer.apple.com/java
http://developer.apple.com/java
http://javafx.com
http://kenai.com/projects/eplugin

ptg

SETTING UP NETBEANS IDE FOR JAVAFX 1.2 3

Figure 1.1 New JavaFX Project

Figure 1.2 New JavaFX Project – Name and Location

From the Library of sam kaplan

ptg

4 CHAPTER 1 GETTING STARTED

Create Main File checkbox checked when you created the project. Use this file
to create your simple first application. Figure 1.3 shows the editor window for
the Main.fx source file.

The Main.fx file will have skeleton code that displays a window with some text.
You need to modify this code. Like all good “Getting Started” chapters, let’s do
the proverbial Hello World example. We’ll cover the details later, but the code in
Listing 1.1 will show a window on the desktop, with “Hello World” displayed.

Listing 1.1 Simple Hello World Application

package myfirstjavafxapplication;

import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.text.Text;

Figure 1.3 New JavaFX Project – Main.fx Editor Window

From the Library of sam kaplan

ptg

SETTING UP NETBEANS IDE FOR JAVAFX 1.2 5

import javafx.scene.text.Font;

Stage {
 title: "My first JavaFX Application"
 width: 400
 height: 80
 scene: Scene {
 content: Text {
 font : Font {
 size : 24
 }
 x: 10, y: 30

 content: "Hello World"
 }
 }
}

To view the resulting screen while editing the file, use the JavaFX Preview
mode. To enter the preview mode, click on the Preview icon at the top left of the
Main.fx editor (see Figure 1.4). This opens a new window on top of the Main.fx
editor window and lets you see what the screen will look like as you type in your
changes. Figure 1.4 shows the preview window.

For example, let’s change your application to scale Hello World by a factor of 4.
This is done by using the scaleX and scaleY attributes for the Text element.
These attributes will cause the Text to scale 4 times anchored from its center
point. Figure 1.5 shows the changes instantly in the preview window.

By using Preview mode, you can quickly see the impact of your changes. It
allows you to test new effects out without having to cycle through the edit, com-
pile, run loop for each iteration of changes. As soon as you type the change, the
screen updates with the latest view.

Hello World is kind of boring, so let’s have some fun and spice it up. We’ll add a
gradient background, make the font bigger, and add a reflection effect. Using the
original example for Hello World, you add the code to get your desired effect.
You will learn what each part of this new code does in later chapters, but for now
we want to show you what is possible. Figure 1.6 shows this far more interesting
Hello World example.

Listing 1.2 shows how this was done. It is actually quite simple and concise.
That is the beauty of the JavaFX Platform.

From the Library of sam kaplan

ptg

6 CHAPTER 1 GETTING STARTED

Figure 1.4 JavaFX Preview Mode

Figure 1.5 JavaFX Preview Mode – with Modification

From the Library of sam kaplan

ptg

SETTING UP NETBEANS IDE FOR JAVAFX 1.2 7

Listing 1.2 Cool Hello World Application

package myfirstjavafxapplication;

import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.text.Text;
import javafx.scene.text.Font;
import javafx.scene.shape.Rectangle;
import javafx.scene.paint.Color;
import javafx.scene.paint.LinearGradient;
import javafx.scene.paint.Stop;
import javafx.scene.effect.Reflection;

var stage:Stage = Stage {
 title: "My first JavaFX Application"
 visible: true
 width: 400
 height: 200
 scene: Scene {
 var text:Text;
 content: [
 Rectangle {

 width: bind stage.width
 height: bind stage.height

 fill: LinearGradient {
 endY: 1, endX: 0

 stops: [
 Stop {offset: 0.0

 color: Color.rgb(153, 153, 153);
 },

 Stop {offset: 0.5
 color: Color.WHITE;

 },
 Stop { offset: 1.0

 color: Color.rgb(153, 153, 153);
continues

Figure 1.6 Hello World

From the Library of sam kaplan

ptg

8 CHAPTER 1 GETTING STARTED

 },
]
 }
 },
 text = Text {
 translateX:

 bind (stage.width-
text.boundsInLocal.width)/2

 translateY: bind stage.height /2
 content: "Hello World"

effect: Reflection { fraction: 0.7}
 font: Font {name:"ArialBold", size: 64}
 }
]
 }
}

Distributing the Application
To compile the entire project, click on the Project MyFirstJavaFXApplication in
the Projects tab on the left of the NetBeans IDE screen. When the project is high-
lighted, click with the right mouse button to bring up a menu of options, select
Build Project. This automatically saves all updated source files for the project,
compiles the JavaFX Script and any Java source files, and then places the class
files into a Java Archive (JAR) file underneath the dist directory. Besides gener-
ating the JAR file to run the application locally either from a desktop launcher or
command line, it also generates support files for using the application as a Java
Applet in a browser and for using it with the Java Web Start launcher either within
a browser or from the desktop. These two options will be explained in detail in
Chapter 9. Figure 1.7 shows the project menu with the Build Project item selected.

Figure 1.7 Build JavaFX Project

From the Library of sam kaplan

ptg

COMMAND LINE 9

After your application is completed, built, and ready to be deployed, you can
build an archive file using the entire contents of the dist directory. Common tools
for this are zip and tar. Another option is to include these files in an install tool.

To run the application, make sure the JavaFX SDK is installed, then install the
distribution, and run the following command:

javafx -cp dist/MyFirstJavaFXApplication.jar
myfirstjavafxapplication.Main

Using this command, you can easily create desktop launchers to run your appli-
cation. Or you can use the Java Web Start by launching the dist/MyFirstJavaFX-
Application.jnlp file.

Developer Warning: The -jar option to execute directly from the JAR file
does not currently work with JavaFX; however, this is a known bug and will be
addressed in a future release.

There is also a means for deploying JavaFX applications via the World Wide
Web using Java Applets or the Java Web Start protocol that we will discuss in
Chapter 9. The MyFirstJavaFXApplication.html, MyFirstJavaFXApplication.jnlp,
and MyFirstJavaFXApplication_browser.jnlp provide example files that may be
used for this.

Command Line
If you want to develop without the NetBeans IDE for JavaFX 1.2 development
kit, download the JavaFX SDK from www.javafx.com. There are installers for

Distribution Files
MyFirstJavaFXApplication.jar

MyFirstJavaFXApplication.html

MyFirstJavaFXApplication.jnlp

MyFirstJavaFXApplication_browser.jnlp

lib/

From the Library of sam kaplan

www.javafx.com

ptg

10 CHAPTER 1 GETTING STARTED

Microsoft Windows XP with Service Pack 2 and Vista, Apple Mac OS X 10.5.2,
Linux, and OpenSolaris.

Install the packages, and there will be executable programs for compiling the
JavaFX Script source, running the JavaFX Script application, and for generating
JavaDoc style documentation (see Table 1.1).

To run your first application, these are the basic steps:

1. Use your favorite editor and save the source for your program to a file.

2. Run the JavaFX compiler, javafxc, using this source file to create Java
class files.

3. Run the application using the javafx command.

4. Optionally, create a JavaDoc style documentation for your program.

Duplicating the Hello World example discussed in the NetBeans IDE for JavaFX
1.2 section, create a file using your favorite editor with the following content as
shown in Listing 1.3.

Listing 1.3 Hello World Application – Editor Version

import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.text.Text;

var stage:Stage;
stage = Stage {
 title: "My first JavaFX Application"
 visible: true

Table 1.1 JavaFX SDK Installation

Operating
System Default Install Directory

Compile
Command

Run
Command

JavaDoc
Style

Windows C:\Program Files\JavaFX\
javafx-sdk1.2

javafxc.exe javafx.exe javafxdoc.exe

Mac OS /System/Library/
Frameworks/
JavaFX.framework/
Versions/1.2

javafxc javafx javafxdoc

Linux/
Solaris

Current directory javafxc javafx javafxdoc

From the Library of sam kaplan

ptg

COMMAND LINE 11

 width: 400
 height: 100
 scene: Scene {
 content: Text {
 x: 10
 y: 20

 content: "Hello World"
 }
 }
}

Save this to MyFirstApp.fx, then compile using the javafxc command. (Make
sure the SDK bin directory is in your command path.)

$ javafxc MyFirstApp.fx
$

This produces one or more class files in the current directory. Next, run the first
program by using the javafx command:

$ javafx MyFirstApp

If all goes well, you should see something similar to Figure 1.8.

There you have it: your first JavaFX Script application. You are now ready to
move on to more interesting content.

The javafxc compiler command is very similar to the javac compiler com-
mand. Accordingly, the javafxc command uses the same format and options as
the Java compiler command. The basic format of the javafxc command is

$ javafxc <options> <source files>

Figure 1.8 JavaFX SDK Hello World

From the Library of sam kaplan

ptg

12 CHAPTER 1 GETTING STARTED

The javafx runtime command is actually a wrapper that invokes the standard
java command that includes the JavaFX Script jar files. Because the JavaFX
compiler produces standard Java class files, you can include these class files,
along with any other JavaFX or Java class files, in a Java Archive (JAR) file. To
include these JAR files when running your JavaFX application, you just add
these jar file locations to your classpath when invoking the javafx command.

$ javafx -cp directory/MyJarFile.jar MyFirstApp

Now you have the basics for getting your JavaFX Script application up and run-
ning from the command line. This will suffice for small applications, but as your
application grows in size and complexity, you will quickly find that using the
command-line option becomes more cumbersome and complex. When your project
becomes this large, you may want to consider the NetBeans IDE for JavaFX 1.2,
Eclipse IDE with the JavaFX Plugin, or a build tool such as Apache Ant.

Listing 1.4 Sample Ant Build.xml File

<?xml version="1.0" encoding="UTF-8"?>

<project name="My First JavaFX Application"
 default="compile" basedir="." >
 <property name="javafx.dir"
 value="${user.home}/javafx-sdk" />
 <property name="javafx.lib" value="${javafx.dir}/lib" />
 <property name="javafx.bin" value="${javafx.dir}/bin" />

JavaFXC Ant Task
Apache Ant is a Java-based build tool written with the key advantage of being cross-
platform and OS independent. Ant makes it easy to develop on one platform and
deploy to another; as a result, it has become one of the more popular build tools
today. You can download the latest ant binaries from http://ant.apache.org/. If you
are using the NetBeans IDE for JavaFX 1.2, Ant is already included in the Net-
Beans IDE package.

The JavaFX Software Development Kit provides an Ant task for compiling JavaFX
Script source files. To declare this in an Ant build.xml file, use the taskdef Ant task.

For a simple first application, the build.xml file in Listing 1.4 compiles any .fx files
in the current directory. Ant is smart enough to know when files need to be com-
piled, so after a JavaFX Script file is compiled, it will not be compiled again until
the JavaFX Script source file is updated.

From the Library of sam kaplan

http://ant.apache.org/

ptg

ECLIPSE 13

 <taskdef name="javafxc"

 classname="com.sun.tools.javafx.ant.JavaFxAntTask"

 classpath="${javafx.lib}/javafxc.jar" />

 <target name="compile" >
 <javafxc srcdir="." destdir="."

includes="*.fx" classpath="."
 executable="${javafx.bin}/javafxc"/>
 </target>

</project>

To build the first application, change the directory to the directory where you
saved the MyFirstApp.fx file, copy or save the build.xml file to this directory,
and then execute the ant command:

bash-3.2$ ant
Buildfile: build.xml
compile:
 [javafxc] Compiling 1 source file to /export/home/jclarke/
Documents/Book/FX/code/Chapter1
BUILD SUCCESSFUL
Total time: 1 second
bash-3.2$

Eclipse
If you prefer to use the Eclipse IDE, you need to first download and install the
JavaFX SDK for your environment from http://javafx.com. Next, you need
Eclipse 3.4 or later; Eclipse IDE for Java EE Developers is recommended.
Lastly, you need to download and install the Eclipse plug-in for JavaFX from
http://kenai.com/projects/eplugin. To install the Eclipse plug-in for JavaFX, just
unzip it in the directory where Eclipse is installed. For example, if Eclipse is
installed in C:\Program Files\eclipse, unzip the Eclipse plug-in for JavaFX from
the directory, C:\Program Files.

To create your first JavaFX project, launch Eclipse. From the workbench space
under Project Explorer, right-click and select New | Project. Figure 1.9 shows
the New Project menu selection.

Next, create a Java Project by selecting Java | Java Project from the New
Project wizard. Figure 1.10 shows this window with the selections.

Name the project—for example, MyFirstJavaFXProject. Figure 1.11 shows the
Create a Java Project window with the project name entered.

From the Library of sam kaplan

http://javafx.com
http://kenai.com/projects/eplugin

ptg

14 CHAPTER 1 GETTING STARTED

Figure 1.9 New Eclipse Project

Figure 1.10 New Project Wizard

From the Library of sam kaplan

ptg

ECLIPSE 15

This creates a project with a Java Perspective; next, we have to add a JavaFX
Nature. To do this, right-click on MyFirstJavaFXProject and select JavaFX |
Add JavaFX Nature. Figure 1.12 shows the menu for adding a JavaFX Nature
to the project.

Figure 1.11 Create a Java Project Window

Figure 1.12 Add JavaFX Nature

From the Library of sam kaplan

ptg

16 CHAPTER 1 GETTING STARTED

The first time you add JavaFX Nature to a project, you may be asked to confirm
or set several configuration questions. Most importantly, if you did not install the
JavaFX SDK in the default location, you need to enter the actual location where
it is installed on your system. Also, you need to make sure that the Java environ-
ment is pointing to use Java 6 Update 10 or later.

To create the Hello World JavaFX Script, first create a package by selecting New |
Package. In this example, we named the package myfirstjavafxapplication. Fig-
ure 1.13 shows the menu selection for adding a new package to the project.

The next step is to create an empty JavaFX Script. Do this by right-clicking on
the package name and selecting New | Empty Script. Figure 1.14 shows the
menu selection to add a new script file to the project.

Figure 1.13 Add Package

Figure 1.14 Create Empty JavaFX Script

From the Library of sam kaplan

ptg

ECLIPSE 17

Figure 1.15 shows the new Script wizard for the new script file with the script
name Main entered.

Give the script a name, Main, and click Finish. This creates an empty script file
called Main.fx. Edit the script file with the Hello World example and save it. To
run it, select the Run icon and the application window should appear. Figure 1.16
points out the Run icon from the tool bar, with the running application displayed.

One main difference between NetBeans IDE for JavaFX 1.2 and the JavaFX plug-
in for Eclipse is there is no Preview mode for JavaFX in Eclipse. However, it is
easy to run the application to see what the screens look like while developing.

This section concludes the basics for getting started with Eclipse. For more
detailed information and configuration options, check the documentation that is
available with the Eclipse plug-in for JavaFX. The documents contain detailed
instructions for installing the JavaFX plug-in and configuring Eclipse for the first
time to recognize JavaFX files. After Eclipse is configured for JavaFX, develop-
ment is similar to the NetBeans IDE for JavaFX 1.2.

Figure 1.15 Create JavaFX Script Dialog

From the Library of sam kaplan

ptg

18 CHAPTER 1 GETTING STARTED

Chapter Summary
This chapter has shown you how to get started writing your first JavaFX applica-
tion. It has detailed how to download and install the NetBeans IDE for JavaFX 1.2,
the Eclipse plug-in for JavaFX and the JavaFX SDK, how to write and compile a
simple JavaFX program, both from the command line and using the NetBeans
IDE for JavaFX 1.2, and how to distribute that program to an end user. It has also
provided a small glimpse of what is possible with the JavaFX Platform.

From here, we will explore the JavaFX Platform in greater detail and describe
the major capabilities that you can leverage in your applications. Throughout the
next few chapters, we will cover concepts required to build a straightforward ani-
mation, a total solar eclipse. This allows us to explore animation, graphics, and
special effects. We will also explore a Sudoku application written in JavaFX Script.
This application demonstrates some of the key features of JavaFX Script includ-
ing data binding and triggers. The next chapter starts us off by looking at JavaFX
from a graphic designer’s eyes.

Figure 1.16 Running a Script

From the Library of sam kaplan

ptg

19

2
JavaFX for the

Graphic Designer
“Creativity is allowing yourself to make mistakes.

Art is knowing which ones to keep.”

—Scott Adams

Graphic Design and JavaFX
In a JavaFX environment, the goal for the graphic designer is to use his or her
creativity to forge graphical assets and then export them for JavaFX in the form
of JavaFX Objects. First, the graphic designer helps to design the visual presen-
tation and then often generates his or her designs using various symbols, draw-
ings, texts, images, colors, and special effects. After the graphic designer
generates the graphical assets in the form of JavaFX Objects, it is up to the appli-
cation developer to use those graphical objects in a Rich Internet Application.

Typically, graphic designers use specialized design tools to develop graphical
assets. Of these, Adobe Illustrator CS3 and Adobe Photoshop CS3 are the most
popular. Another common graphical format is Scalable Vector Graphics, or
SVG, and most graphic design programs provide SVG export capabilities.

This chapter discusses the process that the graphic designer will need to follow
to export his artwork to a form that can be used in JavaFX. Specifically, we
describe the procedure to export graphical assets from Adobe Illustrator CS3 and
Adobe Photoshop CS3. In addition, we discuss the SVG to JavaFX Convertor
utility to convert Scalable Vector Graphic files to JavaFX.

The graphical assets described in this chapter will later be used in Chapter 7,
Add Motion with JavaFX Animation. This chapter focuses on the graphic
designer, and what he or she needs to do to generate graphical objects. Chapter 7

From the Library of sam kaplan

ptg

20 CHAPTER 2 JAVAFX FOR THE GRAPHIC DESIGNER

focuses on the JavaFX programmer and what he or she needs to do to use those
objects in an application.

JavaFX Production Suite
The JavaFX Production Suite is a set of tools for converting graphics to a format
that can be used for JavaFX applications. You can download the JavaFX Produc-
tion Suite from the JavaFX Web site (http://www.javafx.com) and it supports
Microsoft Windows XP, Service Pack 2, Microsoft Vista, and Macintosh OS X
10.4+ on Intel. If you already have Adobe Illustrator CS3 or Adobe Photoshop
CS3 installed, simply execute the binary installer for JavaFX Production Suite
and the appropriate Adobe plug-ins will be installed on your system. These plug-
ins allow you to export from the respective Adobe products to a format that can
be processed by JavaFX. Let’s see how this works.

In our example, we want to create an animation of a solar eclipse. In this anima-
tion, there is, of course, the Moon in its orbit; but, also, the Sun goes through
several phase changes as the eclipse approaches totality and subsequently returns
to normal. We will use this example in Chapter 7 when we explain how to imple-
ment animations in JavaFX. However, let’s first look at the graphical assets
required for this.

Adobe Illustrator CS3
Using Adobe Illustrator CS3, we need two backgrounds: one is the blue sky as
normally seen in daylight and the second is a dark sky with stars. As the eclipse
progresses to totality, the blue daylight sky will fade out while the dark sky will
fade in, peaking at totality, before the process reverses itself. To accomplish this,
you need to create a separate layer for each background: one called jfx:bluesky
and the other jfx:darksky. The naming convention jfx:layerName will help later
when we export the layers to JavaFX.

Graphical layers are discreet graphical assets that can be layered on top of each
other to provide a combined visual effect. This is analogous to using a clear film
representing each layer. Each film will contain its graphical components so that
when you lay one film over another you get a combined visual. For animations,
you can take a foreground layer on top of a background layer and then, over
time, move the foreground layer across the background layer.

The jfx:bluesky and jfx:darksky layers are illustrated in Figures 2.1 and 2.2.
These figures are available in full color at our Web site, http://jfxbook.com.

From the Library of sam kaplan

http://www.javafx.com
http://jfxbook.com

ptg

ADOBE ILLUSTRATOR CS3 21

Figure 2.1 BlueSky Layer

Figure 2.2 DarkSky Layer

From the Library of sam kaplan

ptg

22 CHAPTER 2 JAVAFX FOR THE GRAPHIC DESIGNER

Now that the background layers are complete, we then create a layer that merely
holds the darkened moon. This is basically a blurred black circle. Figure 2.3
shows this layer.

For the Sun, there are three layers representing the eclipse phases: the normal
Sun, the moment just before totality where a final burst of light is seen, and total-
ity. The normal Sun is a blurred yellow circle with a white center. The Sun Burst
is a basic ellipse with a white center and a surrounding halo effect, rotated 45
degrees. This particular image will be at the edge of the dark moon, right before
and right after totality and is commonly called the diamond ring effect. Totality
view will be a center white circle with a halo effect. There are some yellow curve
lines added to represent solar flares that only appear during totality. The sun
layer is illustrated in Figure 2.4 and can be seen in color at http://jfxbook.com.

Figure 2.5 shows the Sun Burst layer. This is the layer that is shown in the dia-
mond ring effect immediately before and after totality.

Figure 2.6 shows the Totality layer.

Figure 2.7 shows the combined layers for the moment before totality, commonly
called the diamond ring effect. These include the layers DarkSky, Totality, Sun-

Figure 2.3 Dark Side of the Moon Layer

Figure 2.4 Sun

From the Library of sam kaplan

http://jfxbook.com

ptg

ADOBE ILLUSTRATOR CS3 23

Figure 2.5 Sun Burst

Figure 2.6 Sun Totality

Figure 2.7 Solar Eclipse Diamond Ring Effect

From the Library of sam kaplan

ptg

24 CHAPTER 2 JAVAFX FOR THE GRAPHIC DESIGNER

Burst, and Moon, respectively. When combined on top of each other, these look
like Figure 2.7.

Figure 2.8 shows the view at totality. This includes the layers DarkSky, Sun,
Totality, and Moon.

For this entire solar eclipse animation, there are six exported layers: jfx:Moon,
jfx:Totality, jfx:SunBurst, jfx:Sun, jfx:BlueSky, and jfx:DarkSky. To implement the
animation, the backgrounds will be jfx:BlueSky and jfx:DarkSky. As the Moon starts
to cover the Sun, the BlueSky layer fades out of and the DarkSky layer fades into
view. As the Moon nears total coverage over the Sun, the Sun Burst layer becomes
visible, and then the Totality View replaces the Sun Burst view. This whole process
reverses itself as the Moon moves out of the Sun Disc. The primary objects are
the Moon and the Sun, with the Sun going through three phases. In Adobe Illus-
trator CS3, the combined screen with all layers visible is shown in Figure 2.9.
The full color view of all these layers can be seen at http://jfxbook.com.

To use these layers in JavaFX, you need to export them. By default, only layers
with the prefix jfx: (case does not matter) will be exported. This allows the
graphic designer to specifically identify those layers that should be exported for
use in JavaFX, while allowing the designer the ability to name other layers for
his/her own purposes. This default behavior can be overridden by unchecking the
Preserve “JFX:” IDs Only option when exporting.

Figure 2.8 Total Solar Eclipse View

From the Library of sam kaplan

http://jfxbook.com

ptg

ADOBE ILLUSTRATOR CS3 25

To export the layers, from Adobe Illustrator, choose File | Save for JavaFX; this
brings up the JavaFX Export Options window. Figure 2.10 shows the menu for this.

Figure 2.9 All Layers View

Figure 2.10 Save for JavaFX

From the Library of sam kaplan

ptg

26 CHAPTER 2 JAVAFX FOR THE GRAPHIC DESIGNER

From this window, you have the option to show the preview of the exported
JavaFX file, choose to only export ‘JFX:’ layer IDs (the default) or all IDs, or
choose to embed the fonts in the exported file. To actually save the JavaFX
exported file, depress the Save button, and the plug-in creates a JavaFX archive
files with an .fxz extension. This file contains the exported graphics in an opti-
mized format. Figure 2.11 shows the JavaFX Export Options window.

Figure 2.12 shows the Save for JavaFX dialog.

We will explore this generated code in detail in Chapter 7, but for now simply
know that there is a direct correlation from the Adobe Illustrator layers and
objects created in the JavaFX exported code. For our solar eclipse example, there
will be JavaFX Objects for the Moon, Sun, SunBurst, Totality, BlueSky, and
DarkSky. These objects were exported, because we named them all with a jfx:
prefix when we created the layers in Adobe Illustrator.

Adobe Photoshop CS3
Exporting to JavaFX in Adobe Photoshop is similar to how it is done in Adobe
Illustrator. First, create the images for each layer, then export to JavaFX archive
format. Figure 2.13 shows the layers we created with Adobe Illustrator in the

Figure 2.11 JavaFX Export Options Window

From the Library of sam kaplan

ptg

ADOBE PHOTOSHOP CS3 27

previous section, but now they are loaded in Adobe Photoshop. To do this, save
the Adobe Illustrator graphics to Photoshop format, then load into Photoshop.
You will notice that the same layers for DarkSky, BlueSky, and so on are shown.
Figure 2.13 shows these layers as presented in Photoshop. A full color view is
available at http://jfxbook.com.

To export to JavaFX, select File | Automate | Save for JavaFX, as shown in Fig-
ure 2.14.

This brings up a JavaFX Export Options window as shown in Figure 2.15.

Just like we did for Adobe Illustrator, from this window, you have the option to
show the preview of the exported JavaFX file, choose to only export JFX: layer

Figure 2.12 Save for JavaFX Dialog

From the Library of sam kaplan

http://jfxbook.com

ptg

28 CHAPTER 2 JAVAFX FOR THE GRAPHIC DESIGNER

Figure 2.13 Photoshop Eclipse Layers

Figure 2.14 Save for JavaFX

From the Library of sam kaplan

ptg

ADOBE PHOTOSHOP CS3 29

IDs (the default) or all IDs, or choose to embed the fonts in the exported file. To
actually save the JavaFX exported file, depress the Save button, and the plug-in
creates a JavaFX archive file with an .fxz extension. This file contains the
exported graphics in an optimized format. One major difference from the JavaFX
export produced from Adobe Illustrator is that the graphical objects that the Photo-
Shop JavaFX plug-in produces are rasterized, so PhotoShop generates a larger
JavaFX Archive file. Figure 2.16 shows the dialog for exporting the PhotoShop
layers for JavaFX.

Figure 2.15 JavaFX Export Options Window

Figure 2.16 Save for JavaFX Dialog

From the Library of sam kaplan

ptg

30 CHAPTER 2 JAVAFX FOR THE GRAPHIC DESIGNER

In the File Name field, enter the exported filename. In the Save as Type field,
select JavaFX Content File (.fxz), and click Save to save the file. Later in Chap-
ter 7, the developer will use this file to create an animation for the solar eclipse.

Scalable Vector Graphics
Scalable Vector Graphics (SVG) is an open and free standard language for
describing two-dimensional graphics using The Extensible Markup Language
(XML) developed under the World Wide Web Consortium (W3C) process (http://
www.w3.org/Graphics/SVG/). SVG provides for vector graphic shapes using
paths of either lines or curves, images, and text.

JavaFX Production Suite includes an SVG conversion utility that converts SVG
graphic files to JavaFX Archive File format. To demonstrate, we saved the solar
eclipse images we created previously in the Adobe Illustrator section to an SVG
file, Eclipse.svg. To run the conversion utility in Windows, select Start | All
Programs | JavaFX Production Suite | SVG to JavaFX Converter as shown
in Figure 2.17.

This opens the SVG Converter tool. This tool has an option to only export JFX:
layer IDs (the default) or all IDs. Figure 2.18 shows the SVG to JavaFX Graphics
Converter window.

Figure 2.17 SVG to JavaFX Converter

Figure 2.18 SVG to JavaFX Graphics Converter Window

From the Library of sam kaplan

http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/

ptg

CHAPTER SUMMARY 31

Select the SVG source file, Eclipse.svg, and then enter the output file,
Eclipse.fxz. This creates a similar JavaFX archive file as when we exported to
JavaFX directly from Adobe Illustrator.

Chapter Summary
In this chapter, we learned how to create graphical assets. The JavaFX Production
Suite is a set of tools to assist in creating JavaFX graphical objects created in Adobe
Illustrator, Adobe Photoshop, and Scalable Vector Graphics. Besides the example
demonstrated here, there are many samples available with JavaFX Production
Suite. These are located under the install directory, in the sub-directory named
Samples (Windows: C:\Program Files\sun\JavaFX Production Suite\Samples).

In the next chapter, Chapter 3, JavaFX Primer, we explore the domain of the JavaFX
programmer. This starts with a detailed description of JavaFX language syntax
and some basic features.

From the Library of sam kaplan

ptg

This page intentionally left blank

From the Library of sam kaplan

ptg

33

3
JavaFX Primer

“I’m still at the beginning of my career. It’s all a little new,
and I’m still learning as I go.”

—Orlando Bloom

JavaFX Script Basics
JavaFX is partially a declarative language. Using a declarative language, a devel-
oper describes what needs to be done, then lets the system get it done. Olof Torg-
ersson, Program Director for the Chalmers University of Technology Master’s
program in Interaction Design and Associate Professor at Göteborg University,
has been researching declarative programming for over 10 years. From his anal-
ysis of declarative programming approaches, we find this definition:

“From a programmer’s point of view, the basic property is that program-
ming is lifted to a higher level of abstraction. At this higher level of
abstraction the programmer can concentrate on stating what is to be
computed, not necessarily how it is to be computed”1

JavaFX Script blends declarative programming concepts with object orientation.
This provides a highly productive, yet flexible and robust, foundation for appli-
cations. However, with this flexibility comes responsibility from the developer.
JavaFX Script is a forgiving language and being declarative, it assumes inherent
rules that may obscure a programming fault. The most obvious of these is that
null objects are handled by the runtime engine and seldom cause a Java Null
Pointer exception. As a result, the program will continue when a null is encountered

1. Torgersson, Olof. “A Note on Declarative Programming Paradigms and the Future of Defini-
tional Programming,” Chalmers University of Technology and Göteborg University, Göteborg,
Sweden. http://www.cs.chalmers.se/~oloft/Papers/wm96/wm96.html.

From the Library of sam kaplan

http://www.cs.chalmers.se/~oloft/Papers/wm96/wm96.html

ptg

34 CHAPTER 3 JAVAFX PRIMER

within an expression, and will produce a valid result. However, the result may
not have been what you expected. Therefore, the developer needs to be extra vig-
ilant when writing code and more thorough when testing it. At first, this may
seem alarming; however, this is offset by the ease of use and greater productivity
of JavaFX and by the fact that JavaFX tries to mitigate the user from experienc-
ing a crash.

One of the benefits of JavaFX being a declarative language is that much of the
“plumbing” to make objects interact is already provided within the language.
This allows the developer to be able to concentrate more on what needs to display,
and less on how to do it. The next sections provide an overview of the JavaFX
Script language including syntax, operators, and other features.

JavaFX Script Language
As we already mentioned, JavaFX Script is a declarative scripting language with
object-oriented support. If you are already acquainted with other languages such
as Java, JavaScript, Groovy, Adobe ActionScript, or JRuby, JavaFX Script will
look familiar, but there are significant differences. While supporting traditional
pure scripting, it also supports the encapsulation and reuse capabilities afforded
by object orientation. This allows the developer to use JavaFX to produce and
maintain small- to large-scale applications. Another key feature is that JavaFX
Script seamlessly integrates with Java.

Conceptually, JavaFX Script is broken down into two main levels, script and
class. At the script level, variables and functions may be defined. These may be
shared with other classes defined within the script, or if they have wider access
rights, they may be shared with other scripts and classes. In addition, expressions
called loose expressions may be created. These are all expressions declared out-
side of a class definition. When the script is evaluated, all loose expressions are
evaluated.

A very simple script to display Hello World to the console is

println("Hello World");

Another example, showing how to do a factorial of 3, is shown in Listing 3.1.

Listing 3.1 Factorial of 3

def START = 3;
var result = START;

From the Library of sam kaplan

ptg

JAVAFX SCRIPT LANGUAGE 35

var a = result - 1;
while(a > 0) {
 result *= a;
 a--;
}
println("result = {result}");

Developer Note: If your script has exported members—that is, any external
accessible members such as public, protected, and package, functions or vari-
ables—then all loose expressions must be contained in a run function. For exam-
ple, if we change the result variable in the previous example to add public
visibility, we need to create the run function.

public var result:Number;

function run(args : String[]) : java.lang.Object {

 var num = if(sizeof args > 0) {
 java.lang.Integer.valueOf(args[0]);
 } else {
 10;
 };

 result = num;
 var a = result - 1;
 while(a > 0) {
 result *= a;
 a--;
 }
 println("{num}! = {result}");
}

The run method contains an optional String[] parameter, which is a sequence of
the command-line arguments passed to the script when it runs.

If you do not have exported members, you can still include a run method. How-
ever, the run method, itself, is considered exported, even if you do not include an
access modifier with it. So, once you add a run method, all loose exported expres-
sions must now be contained within it.

Apart from the script level, a class defines instance variables and functions and
must first be instantiated into an object before being used. Class functions or
variables may access script level functions or variables within the same script
file, or from other script files if the appropriate access rights are assigned. On the
other hand, script level functions can only access class variables and functions if
the class is created into an object and then only if the class provides the appropri-
ate access rights. Access rights are defined in more detail later in this chapter.

From the Library of sam kaplan

ptg

36 CHAPTER 3 JAVAFX PRIMER

Class Declaration
To declare a class in JavaFX, use the class keyword.

public class Title {
}

Developer Note: By convention, the first letter of class names is capitalized.

The public keyword is called an access modifier and means that this class can
be used by any other class or script, even if that class is declared in another script
file. If the class does not have a modifier, it is only accessible within the script
file where it is declared. For example, the class Point in Listing 3.2 does not
have a visibility modifier, so it is only has script visibility and can only be used
within the ArtWork script.

Listing 3.2 Artwork.fx

class Point {// private class only
 //visible to the ArtWork class
 var x:Number;
 var y:Number;
}

public class ArtWork {
 var location: Point;
}

Developer Note: For each JavaFX script file, there is a class generated using
that script filename, even if one is not explicitly defined. For example, in the previ-
ous example for ArtWork.fx, there is a class ArtWork. This is true even if we had
not included the public class ArtWork declaration.

Also, all other classes defined within the script file have their name prepended with
the script file’s name. For example, in the previous example, class Point is fully quali-
fied as ArtWork.Point. Of course, if ArtWork belongs to a package, the package name
would also be used to qualify the name. For example, com.acme.ArtWork.Point.

To extend a class, use the extends keyword followed by the more generalized
class name. JavaFX classes can extend at most one Java or JavaFX class. If you
extend a Java class, that class must have a default (no-args) constructor.

From the Library of sam kaplan

ptg

CLASS DECLARATION 37

public class Porsche911 extends Porsche {
}

JavaFX may extend multiple JavaFX mixin classes or Java interfaces. Mixin
classes are discussed in the next section.

An application may contain many classes, so it is helpful to organize them in a
coherent way called packages. To declare that your class or script should belong
to a package, include a package declaration at the beginning of the script file.
The following example means that the Title class belongs to the
com.mycompany.components package. The full name of the Title class is now
com.mycompany.components.Title. Whenever the Title class is referenced, it
must be resolved to this full name.

package com.mycompany.components;
public class Title {
}

To make this resolution easier, you can include an import statement at the top of
your source file. For example:

import com.mycompany.components.Title;

var productTitle = Title{};

Now, wherever Title is referenced within that script file, it will resolve to
com.mycompany.components.Title. You can also use a wildcard import declaration:

import com.mycompany.components.*;

With the wildcard form of import, whenever you refer to any class in the
com.mycompany.components package, it will resolve to its full name. The fol-
lowing code example shows how the class names are resolved, showing the fully
qualified class name in comments.

package com.mycompany.myapplication;

import com.mycompany.components.Title;

// com.mycompany.myapplication.MyClass
public class MyClass {
 // com.mycompany.components.Title
 public var title: Title;
}

A class can have package visibility by using the package keyword instead of public.
This means the class can only be accessed from classes within the same package.

From the Library of sam kaplan

ptg

38 CHAPTER 3 JAVAFX PRIMER

package class MyPackageClass {
}

A class may also be declared abstract, meaning that this class cannot be instan-
tiated directly, but can only be instantiated using one of its subclasses. Abstract
classes are not intended to stand on their own, but encapsulate a portion of
shared state and functions that several classes may use. Only a subclass of an
abstract class can be instantiated, and typically the subclass has to fill in those
unique states or behavior not addressed in the abstract class.

public abstract class MyAbstractClass {
}

If a class declares an abstract function, it must be declared abstract.

public abstract class AnotherAbstractClass {
 public abstract function

 setXY(x:Number, y:Number) : Void;
}

Mixin Classes
JavaFX supports a form of inheritance called mixin inheritance. To support this,
JavaFX includes a special type of class called a mixin. A mixin class is a class
that provides certain functionality to be inherited by subclasses. They cannot be
instantiated on their own. A mixin class is different from a Java interface in that
the mixin may provide default implementations for its functions and also may
declare and initialize its own variables.

To declare a mixin class in JavaFX, you need to include the mixin keyword in
the class declaration. The following code shows this.

public mixin class Positioner {

A mixin class may contain any number of function declarations. If the function
declaration has a function body, then this is the default implementation for the
function. For example, the following listing shows a mixin class declaration for
a class that positions one node within another.

public mixin class Positioner {
 protected bound function centerX(

 node: Node, within: Node) : Number {

From the Library of sam kaplan

ptg

MIXIN CLASSES 39

 (within.layoutBounds.width -
 node.layoutBounds.width)/2.0 -

 node.layoutBounds.minX;
 }
 protected bound function centerY(node: Node,

within: Node) : Number {
 (within.layoutBounds.height -

 node.layoutBounds.height)/2.0 -
 node.layoutBounds.minY;

 }
}

Subclasses that want to implement their own version of the mixin function must
use the override keyword when declaring the function. For instance, the follow-
ing code shows a subclass that implements its own version of the centerX()
function from the Positioner mixin class.

public class My Positioner extends Positioner {
 public override bound function centerX(node: Node,

 within: Node) : Number {
 (within.boundsInParent.width -

 node.boundsInParent.width)/2.0;
 }
}

If the mixin function does not have a default implementation, it must be declared
abstract and the subclass must override this function to provide an implementa-
tion. For instance, the following code shows an abstract function added to the
Positioner mixin class.

public abstract function bottomY(node: Node,
 within: Node, padding: Number) : Number;

The subclass must implement this function using the override keyword, as
shown in the following listing.

public class My Positioner extends Positioner {
 public override function bottomY(node: Node,
 within: Node, padding: Number) : Number {
 within.layoutBounds.height - padding -

node.layoutBounds.height;
 }
}

If two mixins have the same function signature or variable name, the system
resolves to the function or variable based on which mixin is declared first in the

From the Library of sam kaplan

ptg

40 CHAPTER 3 JAVAFX PRIMER

extends clause. To specify a specific function or variable, use the mixin class
name with the function or variable name. This is shown in the following code.

public class My Positioner extends Positioner,
 AnotherPositioner {

 var offset = 10.0;
 public override bound function
 centerX(node: Node, within: Node) : Number {
 Positioner.centerX(node, within) + offset;
 }
}

Mixins may also define variables, with or without default values and triggers.
The subclass either inherits these variables or must override the variable declara-
tion. The following listing demonstrates this.

public mixin class Positioner {
 public var offset: Number = 10.0;
}

public class My Positioner extends Positioner {
 public override var offset = 5.0 on replace {
 println("{offset}");
 }
}

If a class extends a JavaFX class and one or more mixins, the JavaFX class takes
precedence over the mixin classes for variable initialization. If the variable is
declared in a superclass, the default value specified in the superclass is used; if
no default value is specified in the superclass, the “default value” for the type of
that variable is used. For the mixin classes, precedence is based on the order they
are defined in the extends clause. If a variable declared in a mixin has a default
value, and the variable is overridden without a default value in the main class, the
initial value specified in the mixin is used.

Mixins may also have init and postinit blocks. Mixin init and postinit blocks
are run after the super class’s init and postinit blocks and before the subclass’s
init and postinit blocks. Init and postinit blocks from the mixin classes
are run in the order they are declared in the extends clause for the subclass.

Object Literals
In JavaFX, objects are instantiated using object literals. This is a declarative syntax
using the name of the class that you want to create, followed by a list of initializ-

From the Library of sam kaplan

ptg

VARIABLES 41

ers and definitions for this specific instance. In Listing 3.3, an object of class
Title is created with the text “JavaFX is cool” at the screen position 10, 50.
When the mouse is clicked, the provided function will be called.

Listing 3.3 Object Literal

var title = Title {
 text: "JavaFX is cool"
 x: 10
 y: 50
 onMouseClicked: function(e:MouseEvent):Void {
 // do something
 }
};

When declaring an object literal, the instance variables may be separated by
commas or whitespace, as well as the semi-colon.

You can also override abstract functions within the object literal declaration. The
following object literal, shown in Listing 3.4, creates an object for the java.awt
.event.ActionListener interface and overrides the abstract java method void
actionPerformed(ActionEvent e) method.

Listing 3.4 Object Literal – Override Abstract Function

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

var listener = ActionListener {
override function

 actionPerformed(e: ActionEvent) : Void {
 println("Action Performed!");
 }
}

Variables
JavaFX supports two kinds of variables: instance and script. Script variables
hold state for the entire script, whereas instance variables hold state for specific
instantiations of a class declared within the script file.

From the Library of sam kaplan

ptg

42 CHAPTER 3 JAVAFX PRIMER

There are basically two flavors of variables: unassignable and changeable.
Unassignable variables are declared using the def keyword and must be assigned
a default value that never changes.

public def PI = 3.14;

These variables cannot be assigned to, overridden, or initialized in object literals.
In a sense, these can be viewed as constants; however, they are not “pure” con-
stants and can participate in binding. (For more information on binding, see
Chapter 4, Synchronize Data Models—Binding and Triggers.)

Consider the following example of defining an unassignable variable that con-
tains an object. The object instance cannot change, but that does not mean the
state of that instance will not.

def centerPoint = Point{x: 100, y:100};
centerPoint.x = 500;

The actual Point object assigned to centerPoint remains unchanged, but the
state of that object instance, the actual x and y values, may change. When used in
binding though, centerPoint is constant; if the state of centerPoint changes,
the bound context will be notified of the change.

Changeable instance variables are declared using the var keyword with an
optional default value. If the default value is omitted, a reasonable default is
used; basically, Numbers default to zero, Boolean defaults to false, Strings
default to the empty string, Sequences default to the Empty Sequence, and
everything else defaults to null.

Script variables are declared outside of any class declaration, whereas instance
variables are declared within a class declaration. If a script variable is declared
with one of the access modifiers—public, protected, or package—it may be
used from outside of the script file, by referring to its fully qualified name. This
fully qualified name is the combination of package name, script name, and the
variable name. The following is the fully qualified name to a public script vari-
able from the javafx.scene.Cursor class for the crosshair cursor.

javafx.scene.Cursor.CROSSHAIR;

Instance variables are declared within a class declaration and come into being
when the object is created. Listing 3.5 illustrates several examples of script and
instance variables.

From the Library of sam kaplan

ptg

VARIABLES 43

Listing 3.5 Script and Instance Variables

import javafx.scene.Cursor;
import javafx.scene.paint.Color;

// import of script variable from javafx.scene.Cursor

import javafx.scene.Cursor.CROSSHAIR;

// Unchangeable script variable

def defaultText = "Replace ME"; // Script accessible only

// Changeable script variable

public var instanceCount: Integer; // Public accessible

public class Title {
// Unchangeable instance variables

 def defStroke = Color.NAVY; // class only access,
 //resolves to javafx.scene.paint.Color.NAVY

// Changeable instance variables

// defaults to the empty String ""

 public var text:String;
 public var width: Number; // defaults to zero (0.0)
 public var height = 100; // Infers Integer type
 public var stroke: Color = defaultStroke;

public var strokeWidth = 1.0; // Infers Number type
 public var cursor = CROSSHAIR;

//resolves to javafx.scene.Cursor.CROSSHAIR

...
}

You may have noticed that some of the declarations contain a type and some
don’t. When a type is not declared, the type is inferred from the first assigned
value. String, Number, Integer, and Boolean are built-in types, everything else
is either a JavaFX or a Java class. (There is a special syntax for easily declaring
Duration and KeyFrame class instances that will be discussed in Chapter 7, Add
Motion with JavaFX Animation.)

Table 3.1 lists the access modifiers for variables and their meaning and restric-
tions. You will notice reference to initialization, which refers to object literal
declarations. Also, you will notice variables being bound. This is a key feature of
JavaFX and is discussed in depth in Chapter 4.

From the Library of sam kaplan

ptg

44 CHAPTER 3 JAVAFX PRIMER

Table 3.1 Access Modifiers

Access Modifier Meaning

var The default access permission is script access, so without access
modifiers, a variable can be initialized, overridden, read, assigned,
or bound from within the script only.

def The default access permission is script access; a definition can be
read from or bound to within the script only.

public var Read and writable by anyone. Also, it can be initialized, overrid-
den, read, assigned, or bound from anywhere.

public def This definition can be read anywhere. A definition cannot be
assigned, initialized (in an object literal), or overridden no matter
what the access permissions. It may be bound from anywhere.

public-read var Readable by anyone, but only writable within the script.

public-init var Can be initialized in object literals, but can only be updated by the
owning script. Only allowed for instance variables.

package var A variable accessible from the package. This variable can be ini-
tialized, overridden, read, assigned, or bound only from a class
within the same package.

package def Define a variable that is readable or bound only from classes
within the same package.

protected var A variable accessible from the package or subclasses. This vari-
able can be initialized, overridden, read, assigned, or bound from
only a subclass or a class within the same package.

protected def Define a variable that is readable or bound only from classes
within the same package or subclasses.

public-read protected var Readable and bound by anyone, but this variable can only be ini-
tialized, overridden, or assigned from only a subclass or a class
within the same package.

public-init protected var Can be initialized in object literals, read and bound by anyone, but
can only be overridden or assigned, from only a subclass or a
class within the same package. Only allowed for instance
variables.

From the Library of sam kaplan

ptg

SEQUENCES 45

You can also declare change triggers on a variable. Change triggers are blocks of
JavaFX script that are called whenever the value of a variable changes. To
declare a change trigger, use the on replace syntax:

public var x:Number = 100 on replace {
 println("New value is {x}");
};
public var width: Number on replace (old) {
 println("Old value is {old}, New value is {x}");
}

Change triggers are discussed in more depth in Chapter 4.

Sequences
Sequences are ordered lists of objects. Because ordered lists are used so often in
programming, JavaFX supports sequence as a first class feature. There is built-in
support in the language for declaring sequences, inserting, deleting, and modify-
ing items in the sequence. There is also powerful support for retrieving items
from the sequence.

Declaring Sequences
To declare a sequence, use square brackets with each item separated by a
comma. For example:

public def monthNames = ["January", "February", "March",
 "April", "May", "June",
 "July", August", "September",
 "October", "November", "December"];

This sequence is a sequence of Strings, because the elements within the brack-
ets are Strings. This could have also been declared as

public def monthNames: String[] = ["January",];

To assign an empty sequence, just use square brackets, []. This is also the
default value for a sequence. For example, the following two statements both
equal the empty sequence.

public var nodes:Node[] = [];

public var nodes:Node[];

From the Library of sam kaplan

ptg

46 CHAPTER 3 JAVAFX PRIMER

When the sequence changes, you can assign a trigger function to process the
change. This is discussed in depth in the next chapter.

A shorthand for declaring a sequence of Integers and Numbers uses a range, a
start integer or number with an end. So, [1..9] is the sequence of the integers
from 1 thru 9, inclusive; the exclusive form is [1..<9]—that is, 1 through 8. You
can also use a step function, so if, for example, you want even positive integers,
use [2..100 step 2]. For numbers, you can use decimal fractions, [0.1..1.0
step 0.1]. Without the step, a step of 1 or 1.0 is implicit.

Ranges may also go in decreasing order. To do this, the first number must be
higher than the second. However, without a negative step function, you always
end up with an empty sequence. This is because the default step is always posi-
tive 1.

var negativeNumbers = [0..-10]; // Empty sequence
var negativeNumbers = [0..-10 step -1]; // 0,-1,-2,...-10
var negativeNumbers = [0..<-10 step -1]; // 0,-1,-2,...,-9

To build sequences that include the elements from other sequences, just include
the source sequences within the square brackets.

var negativePlusEven = [negativeNumbers, evenNumbers];

Also, you can use another sequence to create a sequence by using the Boolean
operator. Another sequence is used as the source, and a Boolean operator is
applied to each element in the source sequence, and the elements from the source
that evaluate to true are returned in the new sequence. In the following example,
n represents each item in the sequence of positive integers and n mod 2 == 0 is
the evaluation.

var evenIntegers = positiveIntegers[n | n mod 2 == 0];

One can also allocate a sequence from a for loop. Each object “returned” from
the iteration of the for loop is added to the sequence:

// creates sequence of Texts
var lineNumbers:Text[] = for(n in [1..100]) {
 Text { content: "{n}" };
};

// creates Integer sequence, using indexof operator
var indexNumbers = for(n in nodes) {
 indexof n;
};

From the Library of sam kaplan

ptg

SEQUENCES 47

To get the current size of a sequence use the sizeof operator.

var numEvenNumbers = sizeof evenNumbers;

Accessing Sequence Elements
To access an individual element, use the numeric index of the element within
square brackets:

var firstMonth = monthNames[0];

You can also take slices of sequence by providing a range. Both of the next two
sequences are equal.

var firstQuarter = monthNames[0..2];

var firstQuarter = monthNames[0..<3];

The following two sequences are also equal. The second example uses a syntax
for range to indicate start at an index and return all elements after that index.

var fourthQuarter = monthNames[9..11];

var fourthQuarter = monthNames[9..];

To iterate over a sequence, use the for loop:

for(month in monthNames) {
 println("{month}");
}

Modifying Sequences
To replace an element in a sequence, just assign a new value to that indexed loca-
tion in the index.

var students = ["joe", "sally", "jim"];
students[0] = "vijay";

Developer Note: As we said at the beginning of this chapter, JavaFX is a forgiv-
ing language, so if you assign to an element index location outside of the existing
size of the sequence, the assignment is silently ignored.

From the Library of sam kaplan

ptg

48 CHAPTER 3 JAVAFX PRIMER

Let’s use the students sequence from the previous example:

students[3] = "john";

The assignment to position 3 would be ignored because the size of students is cur-
rently 3, and the highest valid index is 2. Similarly, assignment to the index -1 is
silently ignored for the same reason; -1 is outside of the sequence range.

Furthermore, if you access an element location outside of the existing range for the
sequence, a default value is returned. For Numbers, this is zero; for Strings, the
empty string; for Objects, this is null.

To insert an element into the sequence, use the insert statement:

// add "vijay" to the end of students

insert "vijay" into students;

// insert "mike" at the front of students

insert "mike" before students[0];

// insert "george" after the second student

insert "george" after students[1];

To delete an element, use the delete statement:

delete students[0]; // remove the first student
delete students[0..1]; // remove the first 2 students
delete students[0..<2]; // remove the first 2 students
delete students[1..]; // remove all but the first student
delete "vijay" from students;
delete students; // remove all students

Native Array
Native array is a feature that allows you to create Java arrays. This feature is
mainly used to handle the transfer of arrays back and forth from JavaFX and
Java. An example of creating a Java int[] array is shown in the following code.

var ints: nativearray of Integer =
 [1,2,3] as nativearray of Integer;

Native arrays are not the same as sequences, though they appear similar. You can-
not use the sequence operators, such as insert and delete, or slices. However, you
can do assignments to the elements of the array as shown in the following code:

ints[2] = 4;

From the Library of sam kaplan

ptg

FUNCTIONS 49

However, if you assign outside of the current bounds of the array, you will get an
ArrayIndexOutOfBounds Exception.

You can also use the for operator to iterate over the elements in the native array.
The following code shows an example of this.

for(i in ints) {
 println(i);
}
for(i in ints where i mod 2 == 0) {
 println(i);
}

Functions
Functions define behavior. They encapsulate statements that operate on inputs,
function arguments, and may produce a result, a returned expression. Like vari-
ables, functions are either script functions or instance functions. Script functions
operate at the script level and have access to variables and other functions
defined at the script level. Instance functions define the behavior of an object and
have access to the other instance variables and functions contained within the
function’s declaring class. Furthermore, an instance function may access any
script-level variables and functions contained within its own script file.

To declare a function, use an optional access modifier, public, protected, or
package, followed by the keyword function and the function name. If no
access modifier is provided, the function is private to the script file. Any function
arguments are contained within parentheses. You may then specify a function
return type. If the return type is omitted, the function return type is inferred from
the last expression in the function expression block. The special return type of
Void may be used to indicate that the function returns nothing.

In the following example, both function declarations are equal. The first function
infers a return type of Glow, because the last expression in the function block is
an object literal for a Glow object. The second function explicitly declares a
return type of Glow, and uses the return keyword.

public function glow(level: Number) {
 // return type Glow inferred

 Glow { level: level };
}

public function glow(): Glow { // explicit return type
return glow(3.0); // explicit return keyword

}

From the Library of sam kaplan

ptg

50 CHAPTER 3 JAVAFX PRIMER

The return keyword is optional when used as the last expression in a function
block. However, if you want to return immediately out of an if/else or loop,
you must use an explicit return.

In JavaFX, functions are objects in and of themselves and may be assigned to
variables. For example, to declare a function variable, assign a function to that
variable, and then invoke the function through the variable.

var glowFunction : function(level:Number):Glow;
glowFunction = glow;
glowFunction(1.0);

Functions definitions can also be anonymous. For example, for a function variable:

var glowFunction:function(level:Number): Glow =
 function(level:Number) {
 Glow { level: level };
 };

Or, within an object literal declaration:

TextBox {
 columns: 20
 action: function() {
 println("TextBox action");
 }
}

Use override to override a function from a superclass.

class MyClass {
 public function print() { println("MyClass"); }
}
class MySubClass extends MyClass {

override function print() { println("MySubClass"); }
}

Strings
String Literals
String literals can be specified using either double (") or single (') quotes. The
main reason to use one over the other is to avoid character escapes within the
string literal—for example, if the string literal actually contains double quotes.

From the Library of sam kaplan

ptg

STRINGS 51

By enclosing the string in single quotes, you do not have to escape the embedded
double quotes. Consider the following two examples, which are both valid:

var quote = "Winston Churchill said:
 \"Never in the field of human conflict was
 so much owed by so many to so few.\""

var quote = 'Winston Churchill said:
 "Never in the field of human conflict was
 so much owed by so many to so few."'

Expressions can be embedded within the string literal by using curly braces:

var name = "Jim";
// prints My name is Jim
println ("My name is {name}");

The embedded expression must be a valid JavaFX or Java expression that returns
an object. This object will be converted to a string using its toString() method.
For instance:

println ("Today is {java.util.Date{}}");

var state ="The state is {
 if(running) "Running" else "Stopped"}";

println(" The state is {getStateStr()}");

println("The state is {
 if(checkRunning()) "Running" else "Stopped"}");

Also, a string literal may be split across lines:

var quote = "Winston Churchill said: "
"\"Never in the field of human conflict was so much owed "
"by so many to so few.\"";

In this example, the strings from both lines are concatenated into one string.
Only the string literals within the quotes are used and any white space outside of
the quotes is ignored.

Unicode characters can be entered within the string literal using \u + the four
digit unicode.

var thanks = "dank\u00eb"; // dankë

From the Library of sam kaplan

ptg

52 CHAPTER 3 JAVAFX PRIMER

Formatting
Embedded expressions within string literals may contain a formatting code that
specifies how the embedded expression should be presented. Consider the
following:

var totalCountMessage = "The total count is {total}";

Now if total is an integer, the resulting string will show the decimal number;
but if total is a Number, the resulting string will show the number formatted
according to the local locale.

var total = 1000.0;

produces:

The total count is 1000.0

To format an expression, you need a format code within the embedded expres-
sion. This is a percent (%) followed by the format codes. The format code is
defined in the java.util.Formatter class. Please refer to its JavaDoc page for
more details (http://java.sun.com/javase/6/docs/api/index.html).

println("Total is {%f total}"); // Total is 1000.000000

println("Total is {%.2f total}"); // Total is 1000.00

println("Total is {%5.0f total}"); // Total is 1000

println("Total is {%+5.0f total}"); // Total is +1000
println("Total is {%,5.0f total}"); // Total is 1,000

Developer Note: To include a percent (%) character in a string, it needs to be
escaped with another percent (%%). For example:

println("%%{percentage}"); // prints %25

Internationalization
To internationalize a string, you must use the “Translate Key” syntax within the
string declaration. To create a translate key, the String assignment starts with ##
(sharp, sharp) combination to indicate that the string is to be translated to the
host locale. The ## combination is before the leading double or single quote.
Optionally, a key may be specified within square brackets ([]). If a key is not

From the Library of sam kaplan

http://java.sun.com/javase/6/docs/api/index.html

ptg

STRINGS 53

specified, the string itself becomes the key into the locale properties file. For
example:

var postalCode = ## "Zip Code: ";
var postalCode = ##[postal]"Zip Code: ";

In the preceding example, using the first form, the key is "Zip Code: ", whereas
for the second form, the key is "postal". So how does this work?

By default, the localizer searches for a property file for each unique script name.
This is the package name plus script filename with a locale and a file type of
.fxproperties. So, if your script name is com.mycompany.MyClass, the localizer
code would look for a property file named com/mycompany/MyClass_xx.
fxproperties on the classpath, where xx is the locale. For example, for English
in the United Kingdom, the properties filename would be com/mycompany/
MyClass_en_GB.fxproperties, whereas French Canadian would be com/mycom-
pany/MyClass_fr_CA.fxproperties. If your default locale is just English, the
properties file would be MyClass_en.fxproperties. The more specific file is
searched first, then the least specific file is consulted. For instance, MyClass_
en_GB.fxproperties is searched for the key and if it is not found, then
MyClass_en.fxproperties would be searched. If the key cannot be found at all,
the string itself is used as the default. Here are some examples:

Example #1:
println(##"Thank you");

French – MyClass_fr.fxproperties:

"Thank you" = "Merci"

German – MyClass_de.fxproperties:

"Thank you" = "Danke"

Japanese – MyClass_ja.fxproperties:

"Thank you" = "Arigato"

From the Library of sam kaplan

ptg

54 CHAPTER 3 JAVAFX PRIMER

Example #2:
println(##[ThankKey] "Thank you");

French – MyClass_fr.fxproperties:

"ThankKey" = "Merci"

German – MyClass_de.fxproperties:

"ThankKey" = "Danke"

Japanese – MyClass_ja.fxproperties:

"ThankKey" = "Arigato"

When you use a string with an embedded expression, the literal key contains a
%s, where the expression is located within the string. For example:

println(##"Hello, my name is {firstname}");

In this case, the key is "Hello, my name is %s". Likewise, if you use more
than one expression, the key contains a "%s" for each expression:

println(##"Hello, my name is {firstname} {lastname}");

Now, the key is "Hello, my name is %s %s".

This parameter substitution is also used in the translated strings. For example:

French – MyClass_fr.fxproperties:

"Hello, my name is %s %s" = "Bonjour, je m'appelle %s %s"

Lastly, you can associate another Properties file to the script. This is done using
the javafx.util.StringLocalizer class. For example:

StringLocalizer.associate("com.mycompany.resources.MyResources",
"com.mycompany");

Now, all translation lookups for scripts in the com.mycompany package will look for
the properties file com/mycompany/resources/MyResources_xx.fxproperties,
instead of using the default that uses the script name. Again, xx is replaced with
the locale abbreviation codes.

From the Library of sam kaplan

ptg

EXPRESSIONS AND OPERATORS 55

Expressions and Operators
Block Expression
A block expression is a list of statements that may include variable declarations
or other expressions within curly braces. If the last statement is an expression,
the value of a block expression is the value of that last expression; otherwise, the
block expression does not represent a value. Listing 3.6 shows two block expres-
sions. The first expression evaluates to a number represented by the subtotal
value. The second block expression does not evaluate to any value as the last
expression is a println() function that is declared as a Void.

Listing 3.6 Block Expressions

// block expression with a value

var total = {
 var subtotal = 0;
 var ndx = 0;
 while(ndx < 100) {
 subtotal += ndx;
 ndx++;
 };

subtotal; // last expression

};

//block expression without a value

{
 var total = 0;
 var ndx = 0;
 while(ndx < 100) {
 total += ndx;
 ndx++;
 };

println("Total is {total}");

}

Exception Handling
The throw statement is the same as Java and can only throw a class that extends
java.lang.Throwable.

The try/catch/finally expression is the same as Java, but uses the JavaFX syntax:

try {
} catch (e:SomeException) {
} finally {
}

From the Library of sam kaplan

ptg

56 CHAPTER 3 JAVAFX PRIMER

Operators
Table 3.2 contains a list of the operators used in JavaFX. The priority column
indicates the operator evaluation precedence, with higher precedence operators
in the first rows. Operators with the same precedence level are evaluated equally.
Assignment operators are evaluated right to left, whereas all others are evaluated
left to right. Parentheses may be used to alter this default evaluation order.

Table 3.2 Operators

Priority Operator Meaning

1 ++/-- (Suffixed) Post-increment/decrement assignment

2 ++/-- (Prefixed) Pre-increment/decrement assignment

- Unary minus

not Logical complement; inverts value of a Boolean

sizeof Size of a sequence

reverse Reverse sequence order

indexof Index of a sequence element

3 /, *, mod Arithmetic operators

4 +, - Arithmetic operators

5 ==, != Comparison operators (Note: all comparisons are similar to
isEquals() in Java)

<, <=, >, >= Numeric comparison operators

6 instanceof, as Type operators

7 and Logical AND

8 or Logical OR

9 +=, -=, *=, /= Compound assignment

10 =>, tween Animation interpolation operators

11 = Assignment

From the Library of sam kaplan

ptg

EXPRESSIONS AND OPERATORS 57

Conditional Expressions
if/else
if is similar to if as defined in other languages. First, a condition is evaluated
and if true, the expression block is evaluated. Otherwise, if an else expression
block is provided, that expression block is evaluated.

if (date == today) {
 println("Date is today");
}else {
 println("Out of date!!!");
}

One important feature of if/else is that each expression block may evaluate to
an expression that may be assigned to a variable:

var outOfDateMessage = if(date==today) "Date is today"
 else "Out of Date";

Also the expression blocks can be more complex than simple expressions. List-
ing 3.7 shows a complex assignment using an if/else statement to assign the
value to outOfDateMessage.

Listing 3.7 Complex Assignment Using if/else Expression

var outOfDateMessage = if(date==today) {
 var total = 0;
 for(item in items) {

 total += items.price;
 }
 totalPrice += total;
 "Date is today";
 } else {
 errorFlag = true;
 "Out of Date";
 };

In the previous example, the last expression in the block, the error message string
literal, is the object that is assigned to the variable. This can be any JavaFX
Object, including numbers.

Because the if/else is an expression block, it can be used with another if/else
statement. For example:

From the Library of sam kaplan

ptg

58 CHAPTER 3 JAVAFX PRIMER

var taxBracket = if(income < 8025.0) 0.10
 else if(income < 32550.0)0.15

else if (income < 78850.0) 0.25
 else if (income < 164550.0) 0.28

else 0.33;

Looping Expressions
For
for loops are used with sequences and allow you to iterate over the members of
a sequence.

var daysOfWeek : String[] =
 ["Sunday", "Monday", "Tuesday"];

for(day in daysOfWeek) {
 println("{indexof day}). {day}");
}

To be similar with traditional for loops that iterate over a count, use an integer
sequence range defined within square brackets.

for(i in [0..100]} {

The for expression can also return a new sequence. For each iteration, if the
expression block executed evaluates to an Object, that Object is inserted into a
new sequence returned by the for expression. For example, in the following for
expression, a new Text node is created with each iteration of the day of the
week. The overall for expression returns a new sequence containing Text graph-
ical elements, one for each day of the week.

var textNodes: Text[] = for(day in daysOfWeek) {
 Text {content: day };
}

Another feature of the for expression is that it can do nested loops. Listing 3.8
shows an example of using nested loops.

Listing 3.8 Nested For Loop

class Course {
 var title: String;
 var students: String[];
}
var courses = [

From the Library of sam kaplan

ptg

EXPRESSIONS AND OPERATORS 59

 Course {
 title: "Geometry I"
 students: ["Clarke, "Connors", "Bruno"]
 },
 Course {
 title: "Geometry II"
 students: ["Clarke, "Connors",]
 },
 Course {
 title: "Algebra I"
 students: ["Connors", "Bruno"]
 },
];

for(course in courses, student in course.students) {

 println("Student: {student} is in course {course}");
}

This prints out:

Student: Clarke is in course Geometry I
Student: Connors is in course Geometry I
Student: Bruno is in course Geometry I
Student: Clarke is in course Geometry II
Student: Connors is in course Geometry II
Student: Connors is in course Algebra I
Student: Bruno is in course Algebra I

There may be zero or more secondary loops and they are separated from the pre-
vious ones by a comma, and may reference any element from the previous loops.

You can also include a where clause on the sequence to limit the iteration to only
those elements where the where clause evaluates to true:

var evenNumbers = for(i in [0..1000] where i mod 2 == 0) i;

while
The while loop works similar to the while loop as seen in other languages:

var ndx = 0;
while (ndx < 100) {
 println("{ndx}");
 ndx++;
}

Note that unlike the JavaFX for loop, the while loop does not return any expres-
sion, so it cannot be used to create a sequence.

From the Library of sam kaplan

ptg

60 CHAPTER 3 JAVAFX PRIMER

Break/Continue
break and continue control loop iterations. break is used to quit the loop altogether.
It causes all the looping to stop from that point. On the other hand, continue just
causes the current iteration to stop, and the loop resumes with the next iteration.
Listing 3.9 demonstrates how these are used.

Listing 3.9 Break/Continue

for(student in students) {
 if(student.name == "Jim") {
 foundStudent = student;

break; // stops the loop altogether,
 //no more students are checked
 }
}

for(book in Books) {
 if(book.publisher == "Addison Wesley") {
 insert book into bookList;

continue; // moves on to check next book.
 }
 insert book into otherBookList;
 otherPrice += book.price;
}

Type Operators
The instanceof operator allows you to test the class type of an object, whereas
the as operator allows you to cast an object to another class. One way this is use-
ful is to cast a generalized object to a more specific class in order to perform a
function from that more specialized class. Of course, the object must inherently
be that kind of class, and that is where the instanceof operator is useful to test
if the object is indeed that kind of class. If you try to cast an object to a class that
that object does not inherit from, you will get an exception.

In the following listing, the printLower() function will translate a string to lower-
case, but for other types of objects, it will just print it as is. First, the generic object
is tested to see if it is a String. If it is, the object is cast to a String using the as oper-
ator, and then the String’s toLowerCase() method is used to convert the output to
all lowercase. Listing 3.10 illustrates the use of the instanceof and as operators.

Listing 3.10 Type Operators

function printLower(object: Object) {
 if(object instanceof String) {

From the Library of sam kaplan

ptg

EXPRESSIONS AND OPERATORS 61

 var str = object as String;
 println(str.toLowerCase());
 }else {
 println(object);
 }

}
printLower("Rich Internet Application");
printLower(3.14);

Accessing Command-Line Arguments
For a pure script that does not declare exported classes, variables, or functions,
the command-line arguments can be retrieved using the javafx.lang.FX
.getArguments():String[] function. This returns a Sequence of Strings that
contains the arguments passed to the script when it started. There is a another
version of this for use in other invocations, such as applets, where the arguments
are passed using name value pairs, javafx.lang.FX.getArguments(key:String)
:String[]. Similarly, there is a function to get system properties, javafx.lang.FX
.getProperty(key:String):String[].

If the script contains any exported classes, variables, or functions, arguments are
obtained by defining a special run function at the script level.

public function run(args:String[]) {
 for(arg in args) {

 println("{arg}");
 }
}

Loose Expressions with Exported Members: Variables, functions, and expres-
sions at the script level (not within a class declaration) are called loose expressions.
When these variables and functions are private to the script, no specific run func-
tion is required if the script is executed from the command line. However, if any of
these expressions are exported outside of the script using public, public-read, pro-
tected, package access, a run function is required if the script is to be executed
directly. This run method encapsulates the exported variables and functions.

Built-in Functions and Variables
There are a set of functions that are automatically available to all JavaFX scripts.
These functions are defined in javafx.lang.Builtins.

From the Library of sam kaplan

ptg

62 CHAPTER 3 JAVAFX PRIMER

You have already seen one of these, println(). Println() takes an object argu-
ment and prints it out to the console, one line at a time. It is similar to the Java
method, System.out.println(). Its companion function is print(). Print()
prints out its argument but without a new line. The argument’s toString()
method is invoked to print out a string.

println("This is printed on a single line");
print("This is printed without a new line");

Another function from javafx.lang.Builtins is isInitialized(). This method
takes a JavaFX object and indicates whether the object has been completely ini-
tialized. It is useful in variable triggers to determine the current state of the
object during initialization. There may be times that you want to execute some
functionality only after the object has passed the initialization stage. For exam-
ple, Listing 3.11 shows the built-in, isInitialized() being used in an on
replace trigger.

Listing 3.11 isInitialized()

public class Test {
 public var status: Number on replace {
 // will not be initialized
 // until status is assigned a value

 if(isInitialized(status)) {

 commenceTest(status);
 }
 }
 public function commenceTest(status:Number) : Void {
 println("commenceTest status = {status}:);
 }
}

In this example, when the class, Test, is first instantiated, the instance variable,
status, first takes on the default value of 0.0, and then the on replace expression
block is evaluated. However, this leaves the status in the uninitialized state.
Only when a value is assigned to status, will the state change to initialized.
Consider the following:

var test = Test{}; // status is uninitialized
test.status = 1; // now status becomes initialized

In this case when Test is created using the object literal, Test{}, status takes on
the default value of 0.0; however, it is not initialized, so commenceTest will

From the Library of sam kaplan

ptg

EXPRESSIONS AND OPERATORS 63

not be invoked during object creation. Now when we assign a value to status,
the state changes to initialized, so commenceTest is now invoked. Please note
that if we had assigned a default value to status, even if that value is 0, then
status immediately is set to initialized. The following example demon-
strates this.

public class Test {
 public var status: Number = 0 on replace {

// will be initialized immediately.

 if(isInitialized(status)) {
 commenceTest(status);

 }
 }

The last built-in function is isSameObject(). isSameObject() indicates if the
two arguments actually are the same instance. This is opposed to the == operator.
In JavaFX, the == operator determines whether two objects are considered equal,
but that does not mean they are the same instance. The == operator is similar to
the Java function isEquals(), whereas JavaFX isSameObject is similar to the
Java == operator. A little confusing if your background is Java!

The built-in variables are __DIR__ and __FILE__. __FILE__ holds the resource
URL string for the containing JavaFX class. __DIR__ holds the resource URL
string for directory that contains the current class. For example,

 println("DIR = {__DIR__}");
 println("FILE = {__FILE__}");
 // to locate an image
 var image = Image { url: "{__DIR__}images/foo.jpeg" };

The following examples show the output from a directory based classpath versus
using a JAR-based class path.

Using a Jar file in classpath

$javafx -cp Misc.jar misc.Test

DIR = jar:file:/export/home/jclarke/Documents/
 Book/FX/code/Chapter3/Misc/dist/Misc.jar!/misc/

FILE = jar:file:/export/home/jclarke/Documents/
 Book/FX/code/Chapter3/Misc/dist/Misc.jar!/misc/Test.class

continues

From the Library of sam kaplan

ptg

64 CHAPTER 3 JAVAFX PRIMER

Using directory classpath

$ javafx -cp . misc.Test

DIR = file:/export/home/jclarke/Documents/Book/
 FX/code/Chapter3/Misc/dist/tmp/misc/

FILE = file:/export/home/jclarke/Documents/Book/
 FX/code/Chapter3/Misc/dist/tmp/misc/Test.class

Notice the Trailing Slash on __DIR__: Because the tailing slash already exists
on __DIR__, do not add an extra trailing slash when using __DIR__ to build a path to
a resource like an image. Image{ url: "{__DIR__}image/foo.jpeg"} is correct.

Image{ url: "{__DIR__}/image/foo.jpeg"} is wrong. If you add the trailing slash
after __DIR__, the image will not be found and you will be scratching your head
trying to figure out why not.

Chapter Summary
This chapter covered key concepts in the JavaFX Scripting language. You were
shown what constitutes a script and what constitutes a class. You were shown
how to declare script and instance variables, how to create and modify
sequences, and how to control logic flow.

You now have a basic understanding of the JavaFX Script language syntax and
operators. Now, it is time to put this to use. In the following chapters, we will
drill down into the key features of JavaFX and show how to leverage the JavaFX
Script language to take advantage of those features. In the next chapter, we start
our exploration of JavaFX by discussing the data synchronization support in the
JavaFX runtime.

From the Library of sam kaplan

ptg

65

4
Synchronize Data
Models—Binding

and Triggers
“Associate reverently and as much as you can,

with your loftiest thoughts.”

—Henry David Thoreau

We’ve discussed how JavaFX lends itself to separating the UI design from
program logic. Ultimately though, you’ll need to establish relationships between
these two worlds if you want to create an application of any significance. So how
is this association achieved in JavaFX? The answer is through binding. In this
chapter, we’ll describe the principle of Java FX binding, explore the semantics of
the bind keyword with various JavaFX expressions, and furnish examples dem-
onstrating how binding can and cannot be used. In addition, as they are in many
ways related, we’ll touch on triggers and how they work within JavaFX too.

Binding
It is no mystery that the skill set required by the traditional programmer is often
times vastly different than the graphic designer. Yet, expertise in both areas is
necessary to create effective Rich Internet Applications. JavaFX encourages a
division of labor along these lines such that the graphic designer and program-
mer could—and arguably should—be different individuals, each with different
areas of expertise, working on distinct parts of a problem set. But somewhere

From the Library of sam kaplan

ptg

66 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

along the line the fruits of their labors must be synchronized. This is where the
concept of binding comes into play.

If, for example, you want the appearance of your user interface to reflect some
state change in your logic, or vice versa, you’ll need a way for those differences
to percolate over to one another. In JavaFX, the bind keyword is introduced to
facilitate this capability. The act of binding a variable associates that variable
with an expression, such that whenever the value of the expression changes, its
bound variable will automatically change too. This simple yet powerful principle
is all that’s needed to connect previously disparate models together.

More formally stated, the bind keyword associates the value of a target variable
with the value of a remote variable. Binding in JavaFX follows this general syntax:

var v = bind expression;

where expression can be as trivial as another variable or can include a range of
legal JavaFX expressions. When the expression on the right hand side of the
bind statement changes, a minimal recalculation takes place. We’ll examine how
binding affects each type of expression and what actually gets calculated on
update.

Binding to Variables
Starting with the simplest case first and working our way toward the more com-
plex, the code that follows demonstrates binding in perhaps its most trivial case,
namely binding of a variable to another variable:

var x : Integer = 10;
var y = bind x;

var z = x; // z is not bound to x
println("x={x}, y={y}, z={z}");
x = 20;
println("x={x}, y={y}, z={z}");

In the preceding example, the variable x is declared as an Integer and assigned
an initial value of 10. A second variable y is declared and bound to variable x.
Because it is bound to x, the type of y is inferred to be Integer without having to
actually declare it as such. When the value of x changes, it forces y to be recalcu-
lated—in this instance, reassigned the new value of x.

The statement binding y to x is an example of unidirectional binding, meaning
that there is a one-way relationship between x and y. When x changes, y changes,
but y on the other hand has no influence on x whatsoever. By default, all binds

From the Library of sam kaplan

ptg

BINDING 67

are unidirectional in nature unless they are specified as bidirectional. This is
achieved by including the with inverse keywords as part of the bind expres-
sion. We’ll discuss bind with inverse later on in this chapter; suffice it to say, it is
traditionally used far less often than the default bind behavior.

In order to contrast between a bound variable and regularly defined variable, a
third variable z is introduced. It too is assigned the value of x, but as it is
unbound, its value will not change as x changes. Compiling and running this
chunk of code produces output as follows:

x=10, y=10, z=10
x=20, y=20, z=10

Binding to Instance Variables
Variables inside classes can also be bound. To demonstrate, let’s make a few
modifications to the preceding example code. Instead of having y and z variables
defined at the script level, this time they’re placed inside a class called myClass.
In this case, an instance of myClass has to be created, where within the object lit-
eral the binding of instance variable y takes place. Line 6 in the following listing
creates the binding.

var x : Integer = 10;
class myClass {
 var y : Integer;
 var z : Integer;
};
var m = myClass { y: bind x, z: x };

println("x={x}, m.y={m.y}, m.z={m.z}");
x = 20;
println("x={x}, m.y={m.y}, m.z={m.z}");

Not unlike the previous example, an additional instance variable, z, is also
defined but unbound to demonstrate that its value does not change as the value of
x does. Compiling and running this code block produces this output:

x=10, m.y=10, m.z=10
x=20, m.y=20, m.z=10

A best effort has been made to assure that the included code blocks contained in
this chapter can be compiled and executed in a standalone fashion. When dealing
with class definitions, more than likely you’ll want to declare them as public.
For our examples, we declare the classes without preceding them with the public

From the Library of sam kaplan

ptg

68 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

keyword. Although not ideal, this will facilitate you being able to cut, paste, and
execute these code blocks into an IDE without having to modify the code.

When Can a Variable Be Bound?
With the default bind behavior, a variable can only be bound when it is being
defined. In JavaFX, this takes place either with a var or def declaration or during
object instantiation via object literals. (The topic of binding and object literals,
being a bit more complicated, will be discussed later on in this chapter.) Endeav-
oring to bind in any other fashion will either result in a compiler or runtime
error. For example, declaring a variable first and then trying to use bind in an
assignment statement like

var x : Integer = 10;
var y : Integer;
y = bind x; // <-- Illegal

produces the following compilation error, shortened for the sake of brevity:

JavaFX compilation
executing commandline: ...
main.fx:3: Sorry, I was trying to understand an
expression but I got confused when I saw 'bind' which is a
 keyword.
y = bind x; // <-- Illegal

Furthermore, after a variable has been bound, by default it cannot be subse-
quently reassigned. Attempting to do so will throw an AssignToBoundException
when the guilty code is actually run. As an example, the following code will
compile successfully:

var x : Integer = 10;
var y = bind x;
println("x={x}, y={y}");
y = 15; // Reassigning a bound variable?
x = 20;
println("x={x}, y={y}");

But upon execution, when the assignment of the previously bound variable is
encountered, a runtime exception is thrown:

x=10, y=10
com.sun.javafx.runtime.AssignToBoundException: Cannot
assign to bound variable

From the Library of sam kaplan

ptg

BINDING 69

 at com.sun.javafx.runtime.location.IntVariable.setAsInt
 (IntVariable.java:115)
 at main.javafxrun(main.fx:4)
 at main.javafxrun(main.fx:4)

One way to avoid the previously noted exception would be to use the def key-
word, rather than var, to define the binding relationship between x and y. If y
were to be defined like

def y = bind x;

the attempt to reassign y would instead be caught by the JavaFX compiler and
flagged as an error at compile time. As an aside, we’ll see later on in this chapter
that the reassignment restrictions mentioned in this section do not apply when
using the bind with inverse clause.

Finally, you cannot bind to an operation that would produce side effects. For
example,

var x = bind y++;

is not permitted.

A Simple Example Using Binding
We have thus far been highlighting bind’s capabilities by examining small
chunks of code. This affords us the ability to focus on the task at hand without
having to worry about additional clutter; however, it does not necessarily provide
the proper context for how bind might be used in a (slightly) more realistic
application. So let’s apply what we’ve learned so far to show how binding can
affect what will actually show up on the screen.

The program in Listing 4.1 always displays an image, the contents of which will
change depending upon where the mouse is currently located. While running,
this program has two states:

1. When the mouse is hovering directly over the image, the image displayed
will include text that suggests that in order to change this image, move
your mouse outside the image.

2. When the mouse is not hovering over the image, the image displayed will
include text which suggests that if you want the current image to change,
run your mouse over it.

From the Library of sam kaplan

ptg

70 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

Listing 4.1 A Sample UI Program Demonstrating the Use of Binding

import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.image.*;
import javafx.scene.input.*;

var image1 = Image {
 url: "{__DIR__}images/mouse-over.png"
}
var image2 = Image {
 url: "{__DIR__}images/mouse-outside.png"
}
var currentImage : Image = image2;

Stage {
 title: "Simple bind"
 scene: Scene{
 height: image1.height * 2
 width: image1.width * 2
 content: [
 ImageView {

image: bind currentImage

 x: image1.width / 2
 y: image1.height / 2

 onMouseEntered: function(e : MouseEvent)
 : Void {

 currentImage = image1;
 }
 onMouseExited: function (e : MouseEvent)
 : Void {

 currentImage = image2;
 }
 }
]
 }
}

Figure 4.1 visually depicts what this program would look like when run, and its
two possible display states. The image changeover is accomplished in this way:

1. The program creates two instances of the JavaFX Image class, image1 and
image2. Their bitmaps are read from a file represented by the url instance
variable.

2. At any point in time, the variable currentImage will either point to image1
or image2. Its value is updated whenever the mouse pointer either enters

From the Library of sam kaplan

ptg

BINDING 71

or exits the image on the display. When the mouse pointer enters the image,
the onMouseEntered handler will be executed setting the currentImage
variable to image1. When the mouse leaves the image, the onMouseExited
handler will execute setting currentImage to image2.

3. The actual display is updated by binding the value of currentImage to
ImageView’s image instance variable. In particular, the line of code repre-
sented by image: bind currentImage makes this happen.

Binding with Arithmetic and Logical Expressions
When binding to arithmetic and logical expressions, a bind recalculation takes
place if any component of the expression appearing to the right of the bind key-
word changes. Let’s run through an example to demonstrate:

var a = 3;
var b = 4;
var c = a * b;
var d = 7;
var total = bind c + d;
println("total={total}");
d = 10;
println("total={total}");
b = 5;
println("total={total}");

prints out:

total=19
total=22
total=22

The definition of the variable total specifies that its value will be recalculated
whenever c or d change. The second line of output (total=22) is the result of a

Figure 4.1 The Two Individual Display States for This Application Depend upon
Where the Mouse Is Located

From the Library of sam kaplan

ptg

72 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

bind recalculation because the value of d changed from 7 to 10. As part of the
recalculation, c does not change. Its value is stored and re-retrieved for the sake
of that recalculation. For the third line of output, even though b changes, the
bound variable total is not recalculated because neither c nor d changed.

In the preceding example, you may have noticed that the variable c is assigned
the product of variables a and b. Yet when either component of c changes it does
not cause total to be recalculated. It’s quite possible that the author really
meant to have total updated whenever a, b, or c change. This can be accom-
plished by replacing c’s declaration from

var c = a * b;

to

var c = bind a * b;

Now whenever a or b change, c will be updated, which in turn causes total to
be recalculated too. This cascading of bound variables is a powerful concept and is
one that you’ll likely encounter often when examining JavaFX code. Re-running
our example with the modified statement yields

total=19
total=22
total=25

Binding and Conditional Expressions
Binding variables to conditional expressions of the form

var v = bind if (conditionalExpression) expr1 else expr2

produces a change in which branch of the if-else statement, expr1 or expr2,
gets evaluated when conditionalExpression changes. Again, resorting to sam-
ple code

var a = 1;
var b = 2;
var max = bind if (a > b) a else b;
println("max = {max}");
a = 3;
println("max = {max}");
b = 4;
println("max = {max}");

From the Library of sam kaplan

ptg

BINDING 73

demonstrates how one could use binding with a conditional expression to, in
effect, compute the maximum value between two variables. In this case, the
bound variable max will always contain the larger of the values of a and b. When-
ever a or b change, the conditional expression (a > b) will be reevaluated poten-
tially resulting in the update of max. The output of the code above yields

max = 2
max = 3
max = 4

Binding and Block Expressions
A block expression in JavaFX is a sequence of zero or more statements with a
terminating expression enclosed in curly braces. Binding to a block expression
takes on this general syntax:

var v = bind { [statement;]* expression }

As will become important when bound functions are discussed later, the termi-
nating expression is the block’s return value. In reality, bound blocks are quite
restricted in functionality in that the statements inside a bound block are limited
to variable declarations only. When trying to use any other type of statement
(i.e., assignment, insert, delete, etc.), a compilation error will result. So let’s
run though a few examples to see what can and can’t be done with bound block
expressions:

class Cell {
 var row : Integer;
 var col : Integer;
}

var r : Integer = 0;
var c : Integer = 0;
var extra : Integer = 0;

var cell1 = bind Cell { row: r, col: c } // legal
var cell2 = bind { Cell {row: r, col: c } } // legal
var cell3 = bind { var a : Integer = 3; // legal

 Cell {row: r*a, col: c }
 }
var cell4 = bind { extra = 1; // ILLEGAL

 Cell {row: r, col: c }
 }

From the Library of sam kaplan

ptg

74 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

Binding to Function Calls
So far, we’ve seen how variables can be bound to arithmetic and logical expres-
sions, and in those cases where the bound expression is a relatively simple one, it
makes perfect sense to use these facilities outright. But what if your binding
expression is a bit more complex? At this point, you could attempt to fabricate a
more complicated binding by combining together any number of arithmetic or
logical expressions. For example, expanding upon a previous example, this time
instead of binding to an expression that finds the maximum of two variables, a
and b, let’s bind a variable to the maximum value of three variables, a, b, and c.
Using if-else expressions, the assignment statement could look something like
this:

var max1 = bind if ((a > b) and (a > c)) a else
 if ((b > a) and (b > c)) b else c;

It’s not exactly the prettiest code, and it won’t win you many friends when the
time comes for a code review. Instead, one preferable substitute might be to del-
egate the computation elsewhere and bind to that result. In essence, it would be a
lot nicer to bind to a function call. Let’s take a look at how this can be done.

First, a getMax() function could be defined, which takes three arguments and
returns the value represented by the largest of the three arguments. Next, a new
variable, called max2, is defined and bound to a call to getMax(). The alternative
to the original messy bind expression now looks like

function getMax(i1: Integer, i2: Integer, i3: Integer)
: Integer {
 if ((i1 > i2) and (i1 > i3)) { return i1; }
 else if ((i2 > i1) and (i2 > i3)) { return i2; }
 else { return i3; }
}

var max2 = bind getMax(a, b, c);

If either a JavaFX function call or a Java method call is preceded by the bind
keyword (in the appropriate context), it will be reevaluated when any of its argu-
ments change. In order to show that the two aforementioned bind statements do
the same thing, we’ll create two bound variables, max1, which is bound to the
compound if-else clause, and max2, which is bound to the getMax() function
call, and see what happens when the values of a, b, and c are changed. So:

var a = 1;
var b = 2;
var c = 3;

From the Library of sam kaplan

ptg

BINDING 75

var max1 = bind if ((a > b) and (a > c)) a else
 if ((b > a) and (b > c)) b else c;

function getMax(i1: Integer, i2: Integer, i3: Integer)
: Integer {
 if ((i1 > i2) and (i1 > i3)) { return i1; }
 else if ((i2 > i1) and (i2 > i3)) { return i2; }
 else { return i3; }
}

var max2 = bind getMax(a, b, c);

println("max1={max1}, max2={max2}");
a = 4;
println("max1={max1}, max2={max2}");
b = 5;
println("max1={max1}, max2={max2}");
c = 2;
println("max1={max1}, max2={max2}");

outputs the same values for each bound variable:

max1=3, max2=3
max1=4, max2=4
max1=5, max2=5
max1=5, max2=5

Binding and For Expressions
You can use the for expression to bind JavaFX sequences. For example, the fol-
lowing lines will create a sequence called seq, of length 5, where the elements
are [0, 1, 2, 3, 4].

var val = 0;
function incrementVal() : Integer {
 return val++;
}
var start = 0;
var end = 4;
var seq = bind for (x in [start..end]) incrementVal();
println(seq);

A change in value for either variable, start or end, will also change the bound
sequence seq too. Next, we’ll step through changes to start and end to see how
that affects what seq looks like. Furthermore, because the incrementVal()
function always returns an element with a value one greater than its previous

From the Library of sam kaplan

ptg

76 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

call, we’ll be able to determine when elements are recalculated. So on to the
changes.

start = 1; println(seq);

This removes the first element of seq, and will not cause any other recalcula-
tions. The contents of seq now look like

[1, 2, 3, 4]

Changing the value of end from 4 to 5:

end = 5; println(seq);

will change the sequence, inserting a new element at index 4. Only the new ele-
ment (value=5) is recalculated. The contents of seq are now

[1, 2, 3, 4, 5]

Finally, let’s set start back to 0.

start = 0; println(seq);

This changes seq once again, this time inserting a new element at index 0. The
new element needs a recalculation, but no other recalculation is required. seq
now looks like:

[6, 1, 2, 3, 4, 5]

One corner case with binding sequences and for expressions involves use of the
indexof operator. Combining all of the preceding code, and modifying just the
bind statement (emboldened below) to include the indexof expression, yields
sequences of the same size, but significantly different contents. In essence, any
time the start variable changes, all elements are recalculated. Here’s what the set
of code looks like now

var val = 0;
function incrementVal() : Integer {
 return val++;
}

var start = 0;
var end = 4;
var seq = bind for (x in [start..end] where indexof x >= 0)

 incrementVal();

From the Library of sam kaplan

ptg

BIDIRECTIONAL BINDING 77

println(seq);
start = 1;
println(seq);
end = 5;
println(seq);
start = 0;
println(seq);

And here’s the output demonstrating how seq changes:

[0, 1, 2, 3, 4]
[5, 6, 7, 8]
[5, 6, 7, 8, 9]
[10, 11, 12, 13, 14, 15]

Bidirectional Binding
JavaFX binding, by default, is unidirectional in nature—that is, a bound variable
is dependent upon its binding expression—whereas conversely, a bound expres-
sion has no dependency at all on the variable it binds to. Early on in this chapter
we demonstrated that after a variable is bound with the default bind behavior,
any attempt to reassign it will result in an AssignToBoundException. The clas-
sic UI example shown in Listing 4.2 brings this point home.

Listing 4.2 A Simple UI Program Highlighting the Limitations of Unidirectional
Binding

import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.ext.swing.SwingTextField;

var str = "Change me";
Stage {
 title: "Unidirectional Binding"
 scene: Scene {
 content: [
 SwingTextField {
 columns: 25
 text: bind str

 editable: true
 }
]
 }
}

From the Library of sam kaplan

ptg

78 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

Upon execution, this program displays an editable TextField containing the text
“Change me”. Unfortunately, if you try and type anything inside that TextField,
an AssignToBoundException will be thrown. Why? Because whenever the text
inside the TextField is changed, its text instance variable changes automatically too.
Because text is bound to str, this activity tries to reassign a bound variable caus-
ing the exception. Initially, the application appears like that shown in Figure 4.2.

Figure 4.3 shows what happens when you click on the TextField and clear the
string.

In situations like this, it would be nice if the binding relationship between str
and text was bidirectional—that is, a change to either variable would automati-
cally update the other. This is possible in JavaFX by using the with inverse
phrase when binding. By replacing

text: bind str

with

text: bind str with inverse

a bidirectional relationship is created. With this modification, you’ll now be able
to modify the TextField without worry. When the program begins, the text
instance variable is assigned the value of str (“Change me”), and when you
change the contents of the TextField, its text instance variable and the str vari-
able will reflect the change. Listing 4.3 contains the new version of the program.

Figure 4.2 Initial Appearance of the TextField

Figure 4.3 Clearing the TextField Throws an Exception

From the Library of sam kaplan

ptg

BIDIRECTIONAL BINDING 79

Listing 4.3 A Simple UI Program Demonstrating Bind with Inverse

import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.ext.swing.SwingTextField;

var str = "Change me";
Stage {
 title: "Bind with inverse"
 scene: Scene {
 content: [
 SwingTextField {
 columns: 25

 text: bind str with inverse
 editable: true

 }
]
 }
}

Not all too different from the first, Figure 4.4 shows what the new program looks
like at startup.

This time, the TextField can be modified with no ill effects, as demonstrated by
Figure 4.5.

One final point worth mentioning about the bind with inverse construct is that it
is limited to variable declarations. Attempting to use any other type of expres-
sion in this context will result in a compile time error.

Figure 4.4 Initial Appearance of UI Using Bind with Inverse

Figure 4.5 Using Bind with Inverse Allows the TextField to Be Modified

From the Library of sam kaplan

ptg

80 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

Advanced Binding Topics
Some of bind options offered in this section are considerably more complex, and
in some cases due to side effects and/or limitations, should be used sparingly.

Binding and Object Literals
In JavaFX, the preferred mechanism for instantiating objects is via the object lit-
eral. Alongside variable declarations, object literals represent the second and
final binding option available for developers. We’ve already seen how to bind
instance variables via object literals. This is normal and expected behavior. But
in addition to binding instance variables, it’s also possible to bind entire objects.
For this section, we’ll first state the three possible ways in which object literals
can be bound, then follow up with concrete examples.

Object literals can be bound as a whole. In this case, a change to any of an
object’s instance variables will result in the creation of a new object instance
with the recalculated values.

Individual instance variables inside object literals can be bound. When
instance variables are bound, recalculations will update the values of bound
variables but will not result in the creation of a new object instance. Again,
this is the expected way in which binding and instance variables will take place.

A combination of individual instance variables or whole objects can be
bound. In this scenario, by default, a change to any instance variable will
result in the creation of a new object except for those instance variables that
are themselves bound.

A few examples here should go a long way in illustrating the various binding
scenarios that are available to object literals and their instance variables.
Included as part of these examples, we’ll demonstrate whether the bind recalcu-
lations result in the creation of a new object.

First, let’s define a simple class that will be used throughout to illustrate object
literal binding.

class EmpRec {
 public var name : String;
 public var id : Integer;
 public var label : String;
 public function print() : Void {
 println(" obj={label}, name={name}, id={id}");
 }
 init {

From the Library of sam kaplan

ptg

ADVANCED BINDING TOPICS 81

 println(" New instance created for {label}");
 }
};

Aside from the definition of the name and id instance variables, a third called
label, is utilized. It will not, per se, be one of the variables we’ll attempt to bind
in the examples that follow, rather it will simply be used to label and differentiate
between object instances of the EmpRec class. As described by the preceding
sidebar, the init block gets executed whenever a new object is instantiated. This
enables us to output exactly when a new EmpRec object is created, and by includ-
ing the label variable in the print statement, we’ll know which object was recre-
ated as the result of a bind recalculation. So let’s start by declaring a few
instances of EmpRec:

var er1 = bind EmpRec {
 label: "er1"
 name: myName
 id: myID
};

The first variable, er1, instantiates EmpRec and is bound to the object as a whole.
A change to any instance variable inside er1 will result in the creation of a new
object. This is accomplished in JavaFX by preceding the EmpRec object literal
instantiation with the bind keyword.

Determining When an Object Has Been Recreated
There may be situations where you’ll want to know when new objects are created,
possibly due to a bind recalculation. So how can you figure out when this takes
place? Unlike the Java programming language, JavaFX does not support constructors;
however, within a JavaFX class definition, you can provide a code block preceded
by the init keyword at the function definition level. The init block is executed
whenever a new object of this type is instantiated. So by defining a class like

 class MyClass {
 public var attr : Integer;
 init {
 println(
 "A new instance of MyClass is born"
);
 }
 };

you’ll be able to see when objects are created because "A new instance of

MyClass is born" will be printed out every time MyClass is instantiated.

From the Library of sam kaplan

ptg

82 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

var er2 = EmpRec {
 label: "er2"
 name: bind myName
 id: myID
};

The second declaration shows how to bind an individual instance variable of an
object literal instead of the whole object. Specifically, name is bound to the exter-
nal variable myName. A change to the value of myName causes a recalculation of
the name variable without recreating the er2 object. As the id variable is
unbound, a change to the myID external variable will not cause any recalculation
at all. Instance variable binding is enabled by placing the bind keyword inside
the object literal on the instance variables of interest.

var er3 = bind EmpRec {
 label: "er3"
 name: bind myName
 id: myID
};

The third declaration combines both whole object and instance variable binding.
In this scenario, variables that aren’t specifically bound will, when a recalcula-
tion takes place, cause a new object to be created. If, on the other hand, an
instance variable is bound, a recalculation will update the variable without caus-
ing the object to be recreated. In effect, the instance variable bind trumps the
overall object literal bind. In the preceding declaration, any update to the myID
external variable will trigger an object recreation, whereas any update to myName
will cause a recalculation without object recreation. So fleshing this out a little
and executing the code snippet

var myName : String = "Jack";
var myID : Integer = 123;
var er1 = bind EmpRec {
 label: "er1"
 name: myName
 id: myID
};
var er2 = EmpRec {
 label: "er2"
 name: bind myName
 id: myID
};
var er3 = bind EmpRec {
 label: "er3"
 name: bind myName
 id: myID
};

From the Library of sam kaplan

ptg

ADVANCED BINDING TOPICS 83

er1.print();
er2.print();
er3.print();

produces this output:

New instance created for er1
New instance created for er2
New instance created for er3
obj=er1, name=Jack, id=123
obj=er2, name=Jack, id=123
obj=er3, name=Jack, id=123

Changing the myName external variable from “Jack” to “Jill” causes a bind recal-
culation on all three EmpRec objects, and in one case an object recreation. Exe-
cuting this code:

myName = "Jill";
er1.print();
er2.print();
er3.print();

yields the following:

New instance created for er1
obj=er1, name=Jill, id=123
obj=er2, name=Jill, id=123
obj=er3, name=Jill, id=123

Finally, changing the myID external variable from 123 to 456 results in a recalcu-
lation and object recreation on er1 and er3. For er2, no changes take place at
all, because er2’s id attribute is unbound. Running this code:

myID = 456;
er1.print();
er2.print();
er3.print();

outputs this:

New instance created for er1
New instance created for er3
obj=er1, name=Jill, id=456
obj=er2, name=Jill, id=123
obj=er3, name=Jill, id=456

From the Library of sam kaplan

ptg

84 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

Bound Functions
Our first brush with bind and JavaFX functions demonstrated how to bind to an
ordinary function. Bound functions and ordinary functions are similar in that
both, when part of a bind expression, will be recalculated if their arguments
change. However, they differ in one key area, namely how to interpret changes
inside the function body. Binding to ordinary functions treats the function body
as a black box. An internal change to the function body will not cause the func-
tion to be re-invoked. A bound function on the other hand will see changes both
at the argument level and inside the function causing it to get re-invoked. So let’s
see how this plays out with a concrete example.

class Cell {
 public var row : Integer;
 public var col : Integer;
}

var translate = 0;

function moveToUnBound(r : Integer, c : Integer) : Cell {
 return Cell {
 row: r + translate;
 col: c + translate;
 }
}

bound function moveToBound(r : Integer, c : Integer)
 : Cell {
 return Cell {
 row: r + translate;
 col: c + translate;
 }
}

var r = 0;
var c = 0;
var cell1 = bind moveToUnBound(r, c);
var cell2 = bind moveToBound(r, c);
println("cell1: row={cell1.row}, col={cell1.col}");
println("cell2: row={cell2.row}, col={cell2.col}");
r = 5; c = 5;
println("cell1: row={cell1.row}, col={cell1.col}");
println("cell2: row={cell2.row}, col={cell2.col}");
translate = 7;
println("cell1: row={cell1.row}, col={cell1.col}");
println("cell2: row={cell2.row}, col={cell2.col}");

From the Library of sam kaplan

ptg

TRIGGERS 85

Here are two nearly identical functions, the only difference being that moveTo-
Bound() is preceded with the bound keyword, whereas moveToUnBound() is not.
This subtle difference does affect how the variables cell1 and cell2 are evalu-
ated. First, a change in the value of the arguments (r and c set to 5) causes both
functions to be re-invoked (twice) resulting in new and updated cell1 and cell2
instances. However, when the value of translate is changed, the behavior of
the bound and unbound functions diverge. The moveToUnBound() function is
unaware of any change to the translate variable and is consequently not re-
invoked, whereas moveToBound() is re-invoked because the bound function can
detect the change in translate. Here’s the output of this script:

cell1: row=0, col=0
cell2: row=0, col=0
cell1: row=5, col=5
cell2: row=5, col=5
cell1: row=5, col=5
cell2: row=12, col=12

An important point regarding bound functions is that the function body is no dif-
ferent than the previously discussed bound block expression (with all of its limi-
tations). The last expression—typically the only expression—inside the function
body is the bound function’s return value. Finally, bound functions may be
invoked outside the context of a bind expression. Calling a bound function in this
way is no different than calling a regular, plain old function.

Triggers
JavaFX includes a mechanism that facilitates the catching and handling of data
modification events. By adding a trigger to a variable, you associate a block of code
that will be executed every time the variable is modified. A trigger is formally intro-
duced to a variable declaration by appending a phrase starting with the keywords on
replace. Although strongly discouraged, a trigger, in its most rudimentary form,
can be used to mimic the behavior of bind. For example, the following statements:

var x : String;
var y = bind x;

can be re-written using triggers in a nearly equivalent manner:

var x : String on replace {
 y = x;
}
var y : String;

From the Library of sam kaplan

ptg

86 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

Every time that x is modified, it will run the block of code specified by the on
replace phrase, essentially keeping y in lock step with x. However, there is one
fundamental difference between the two solutions. Recall that earlier in this chap-
ter it was shown that it is illegal to reassign bound variables by default, and with
our trigger example, for better or worse, that restriction is removed. For example:

class Lyric {
 public var phrase : String on replace {
 s = phrase;
 }
}
var l = Lyric { phrase: "so long" };
var s : String;
println("phrase={l.phrase}, s={s}");
l.phrase = "farewell";
println("phrase={l.phrase}, s={s}");
// would be illegal if s = bind l.phrase
s = "auf Wiedersehen";
println("phrase={l.phrase}, s={s}");
l.phrase = "farewell";
println("phrase={l.phrase}, s={s}");
l.phrase = "good night";
println("phrase={l.phrase}, s={s}");

prints out:

phrase=so long, s=
phrase=farewell, s=farewell
phrase=farewell, s=auf Wiedersehen
phrase=farewell, s=auf Wiedersehen
phrase=good night, s=good night

Among others, a few important things to point out here are

1. Even though the variable s is reassigned every time l.phrase changes,
the first line of output shows that they are different. Why? Because l is
declared and instantiated first. At the time of instantiation, l is modified,
but the trigger can’t update s, because s hasn’t been defined yet.

2. The variable s can be reassigned, temporarily un-synchronizing it from
l.phrase.

3. The on replace block will not be executed until the value of the phrase
instance variable changes, regardless of whether it subsequently appears
on the left hand side of an assignment statement. This is evidenced by the
fact that the second assignment of l.phrase="farewell" does not cause
s to be resynchronized with l.phrase.

From the Library of sam kaplan

ptg

TRIGGERS 87

Given a choice between bind or on replace, you’ll almost always want to
choose bind. In addition to being more efficient, you’ll have the added benefit of
avoiding the unsynchronized condition identified in the preceding example. In
general, on replace should only be used when there is no alternative. Triggers are
appropriate, for example, when state needs to be synchronized between JavaFX
and Java, or when there are ancillary effects that need to be dealt with resulting
from a change in the value of a variable. For example, if you need to run an ani-
mation sequence, your trigger might look like

var image: ImageView = bind ImageView {

 image: currentImage

} on replace {
 imageAnimation.play();
}

For the next example, we’ll expand on trigger usage by introducing two addi-
tional capabilities. First, just like plain variables, triggers can also operate on
sequences. Second, the on replace phrase can be enhanced so that while exe-
cuting the trigger code block, you can access the old value of the variable being
replaced. In the example that follows, oldRainbow is an arbitrarily named vari-
able of the same type as rainbow. It appears directly after on replace, and upon
execution of the code block, it contains the value of rainbow before it is replaced.

Determining If a Variable or Instance Variable
Has Been Updated
As explained in an earlier sidebar, there may be times when you want to know
when an object has been recreated. Alongside that information, you may also want
to know when a variable or instance variable has been updated, possibly due to a
bind recalculation. In JavaFX, you can append a trigger with an associated block of
code onto a variable declaration such that whenever its value changes that code
will be executed. By defining an instance variable to look like

class MyClass {
 public var attr : String on replace {
 println("attr updated to {attr}");
 }
}

you’ll be able to know when attr changes because “attr updated to …” will be
printed out every time attr is modified.

From the Library of sam kaplan

ptg

88 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

var rainbow : String[] = [
 "red", "orange", "yellow", "green", "blue", "violet"
] on replace oldRainbow
{
 print("old rainbow: "); println(oldRainbow);
 print("new rainbow: "); println(rainbow);
};
insert "indigo" after rainbow[4];
delete "violet" from rainbow;
insert "purple" into rainbow;

The output of this code is as follows:

old rainbow: []
new rainbow: [red, orange, yellow, green, blue, violet]
old rainbow: [red, orange, yellow, green, blue, violet]
new rainbow: [red, orange, yellow, green, blue, indigo,
 violet]
old rainbow: [red, orange, yellow, green, blue, indigo,
 violet]
new rainbow: [red, orange, yellow, green, blue, indigo]
old rainbow: [red, orange, yellow, green, blue, indigo]
new rainbow: [red, orange, yellow, green, blue, indigo,
 purple]

Be Careful When Using Bind/Triggers on Local
Variables
When using bind/triggers on local variables, you may come across a situation
where the variable is out of scope, yet the trigger still exists. To demonstrate, let’s
look at the following pseudo code:

function doit() {
 var result = SomeAsynchronousFunction { ... };
 var myInput = bind result.data on replace {
 …
 };
}

A call to the SomeAsynchronousFunction() will set the result object’s data
instance variable. Because, as its name implies, the function is asynchronous,
there’s a good chance that by the time SomeAsynchronousFunction() returns, the
local variable myInput will be out of scope. So what happens here? Theoretically,
the bind and trigger should cease to exist after the variable is out of scope. In real-
ity, however, the trigger keeps on working until the variable has been garbage col-
lected. Quite a few already have been bitten by this problem, which is difficult to
debug. If at all possible, avoid such a construct.

From the Library of sam kaplan

ptg

TRIGGERS 89

Our final example demonstrates the full power of triggers as it deals with an
assignment of a sequence slice:

var s1 : Integer[] = [2,4,6,8,10] on replace

s1Orig[begin..end]=n
{
 s2[begin..end] = s1[begin..end];
}
var s2 : Integer[];
print("s1: "); println(s1);
print("s2: "); println(s2);
s1[0..2] = [3,6,9];
print("s1: "); println(s1);
print("s2: "); println(s2);
delete s1[0..2];
print("s1: "); println(s1);
print("s2: "); println(s2);

The trigger contains five arbitrarily named variables, and in the context of this
example, they have the following meanings:

s1 is the sequence after all the changes have been applied.

s1Orig represents the previous value of the s1 sequence. As such, it is the
same type as s1.

begin is the first index of the sequence slice that has been updated.

end is the last index of the sequence slice that has been updated. Both begin
and end are Integer types.

n represents the sequence of values that will be replacing the slice of
s1Orig[begin..end].

The output of this code looks like this:

s1: [2, 4, 6, 8, 10]
s2: []
s1: [3, 6, 9, 8, 10]
s2: [3, 6, 9]
s1: [8, 10]
s2: [8, 10]

For our final example, we’ll contrast how bind and on replace behave when
instance variables are inherited and overridden from a superclass. The code
block that follows contains two classes, the first of which, called MyClass, con-
tains a public name variable that is both bound and has a trigger. The second

From the Library of sam kaplan

ptg

90 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

class, called MyClassExtended, extends MyClass and overrides name with a bind
and a trigger too.

class MyClass {
public var foo:String = "Jim";
 public var name: String = bind foo on replace {
 println("MyClass: name={name}");
 };
}

class MyClassExtended extends MyClass {
 public var bar:String = "Eric";
 override var name = bind bar on replace {
 println("MyClassExtended: name={name}");
 };
}

var m2 = MyClassExtended {};
m2.bar = "Joe";

This is the output when the block is executed:

MyClass: name=
MyClassExtended: name=
MyClass: name=Eric
MyClassExtended: name=Eric
MyClass: name=Joe
MyClassExtended: name=Joe

From this example, we can glean that triggers and bound variables, when over-
ridden, behave quite differently. To sum it up:

Overridden triggers are cumulative. When an instance variable with a
trigger is overridden by a superclass with another trigger, the original trigger
is not hidden. It also gets executed along with the overridden trigger. Based
on the output, the base class trigger will be executed first, followed by the
superclass trigger(s).

Overridden bound variables are hidden. A bound instance variable in a
superclass will be re-evaluated by the overridden subclass instance variable.
In our example, when MyClassExtended is instantiated, the value of its name
instance variable is the same for both the MyClassExtended subclass object
and the MyClass base object.

From the Library of sam kaplan

ptg

COMING FEATURES 91

Coming Features
If you had a chance to try pre-release versions of JavaFX, you may have encoun-
tered a feature known as lazy binding. With the formal release of JavaFX 1.1,
references to this aspect of the language have been removed because it was only
partially implemented. Specifically, work has yet to be done for sequences. Plans
call for full support by the next JavaFX release. In the interim, you can experi-
ment with some of the capabilities of lazy binding, keeping in mind that it is cur-
rently not supported.

The primary difference between regular binding and lazy binding lies in how and
when updates occur. With lazy binding, an update or bind recalculation only
takes place when the variable being bound to is being accessed. Whereas with
regular binding, any change to the bound expression automatically forces an
update. The performance impact of limiting the number of bind calculations can
be important. We’ll touch more on this in a moment.

Listing 4.4 highlights how these two forms of binding differ.

Listing 4.4 Comparing Lazy Binding to Regular Binding

var x : Integer = 1 on replace oldValue {
 println("x: {oldValue} -> {x}")
};
var y : Integer = bind x + 1 on replace oldValue
{
 println("y: {oldValue} -> {y}")
};
var z : Integer = bind lazy y + 1 on replace oldValue
{
 println("z: {oldValue} -> {z}")
};

println("Starting");
println("Reading z"); println("z: {z}");
println("Modify x");
x = 2;
println("Reading z"); println("z: {z}");

The listing includes three variables. The first two, x and y, use traditional bind-
ing, whereas the third, z, uses lazy binding as specified by the bind lazy key-
word sequence. Each variable has a trigger associated with it such that whenever
its value changes, it will be printed. When this code is executed, the output vali-
dates that z, which is bound lazily, is only updated when it is being accessed via

From the Library of sam kaplan

ptg

92 CHAPTER 4 SYNCHRONIZE DATA MODELS—BINDING AND TRIGGERS

the println("z: {z}"); statement, while any change to x and y results in an
unconditional update.

x: 0 -> 1

y: 0 -> 2
Starting
Reading z
z: 0 -> 3
z: 3
Modify x
y: 2 -> 3
x: 1 -> 2
Reading z
z: 3 -> 4
z: 4

The performance ramifications of using lazy binding can be significant. Con-
sider the following code that includes a loop that is iterated over 10,000 times.

var v1 = 0;
var v2 = bind v1;
for(i in [1..10000]) {
 v1 = i;
}
println(v2);

Because v2 is bound to v1, it will be automatically updated for each of the
10,000 loop iterations. Because v2 is not referenced at all within the loop, those
recalculations represent a waste of CPU cycles. The developer might have been
better served using lazy binding and avoiding all those unnecessary updates.

With the advent of lazy binding, one might ask, why not just have all bindings be
lazy? The answer is that there will be occasions where you’ll want to know about
a change in value when it actually happens. With lazy binding, as updates only
occur when the bound variable in question is accessed, this is not possible.

Chapter Summary
In this chapter, we looked at how binding can be used in JavaFX to associate
unrelated entities such that changes in one can be reflected in the other. To
achieve more clarity, this chapter deliberately focuses more on the language syn-
tax and deals less with the user interface aspects of the platform. Don’t worry. As
we progress forward, you’ll be able to apply what you’ve learned to solve more
realistic problems.

From the Library of sam kaplan

ptg

93

5
Create User

Interfaces
“One difference between poetry and lyrics is that lyrics sort of fade into the

background. They fade on the page and live on the stage when set to music.”

—Stephen Sondheim

User Interfaces
The primary focus of JavaFX is to provide a platform to easily and quickly
develop cool user interfaces. The goal is to create appealing user interaction that
engages the user’s full senses and leaves the user with a positive impression. At
the core of this is JavaFX’s user interface classes.

JavaFX employs a theater metaphor within the JavaFX user interface framework.
There is a stage that provides space for the action and presents a focal point for
the user. A scene represents a slice of the action or discrete unit of the applica-
tion. A layout positions the individual components within a scene.

In this chapter, we will cover the key elements required to build a user interface
in JavaFX. This chapter covers the basic user interface components, whereas
subsequent chapters will discuss animations, special effects, and multimedia fea-
tures. To begin, you must first define your stage.

The Stage
The javafx.stage.Stage class is the topmost container for a JavaFX display. It
insulates the underlying implementation from the JavaFX developer so it can be

From the Library of sam kaplan

ptg

94 CHAPTER 5 CREATE USER INTERFACES

readily reused on multiple platforms such as desktop, mobile phone, or a televi-
sion set top box. In a desktop environment, the Stage parallels a window in the
windowing system.

A stage has a title and geometry, may or may not have decorations (the window
border, etc.), and may be resizable. The code in Listing 5.1 creates an empty
stage that is shown in Figure 5.1.

Listing 5.1 Empty Stage

import javafx.stage.Stage;

Stage {
 title: "An empty stage"
 width: 250
 height: 80
}

Let’s modify this empty stage to place it at position 150,150, change the title,
and set resizable to false, so that the stage cannot be resized by the user. Notice
that we set visible to true, which is already the default value, but if we did not
want to display this stage at a specific instant, we could have set this to false.
This is shown in Listing 5.2.

Listing 5.2 Unsizable Stage

Stage {
 title: "An empty unsizable stage"
 x: 150
 y: 150
 width: 400
 height: 80
 resizable: false // default is true
 visible: true // default is true
}

Figure 5.1 Empty Stage

From the Library of sam kaplan

ptg

THE STAGE 95

There are also options to set the stage style to DECORATED, UNDECORATED, or
TRANSPARENT. DECORATED is the default, and defines a stage with a solid back-
ground with platform-specific decorations. On a desktop, this would be the win-
dow border and title and the maximize, minimize, and close controls.
UNDECORATED is a solid white background with no platform specific decorations.
TRANSPARENT defines a stage with a transparent background with no decorations.

Stage {
 style: StageStyle.UNDECORATED
 ...
}

We have already seen a DECORATED style in Figure 5.1. By setting the style to
UNDECORATED, the surrounding decoration, the border, the controls for minimize,
maximize, and close, and the title are no longer shown (see Figure 5.2). Just a
rectangular area with a white background color appears. In this example, we
added the text “JavaFX – Developing Rich Internet Applications”.

The TRANSPARENT style sets the window into a transparent mode without any
decorations.

Stage {
 style: StageStype.TRANSPARENT
 ...
}

Here, there is no visible background region. Figure 5.3 shows this.

Figure 5.2 Undecorated Stage on Desktop

Figure 5.3 Transparent Stage on Desktop

From the Library of sam kaplan

ptg

96 CHAPTER 5 CREATE USER INTERFACES

Only the text “JavaFX – Developing Rich Internet Applications” is displayed on
the desktop. To achieve this, there was one more thing we had to do. We had to
also set the fill for the Scene to null. We will cover this in the next section on the
Scene class.

Developer Warning: TRANSPARENT may not be supported on all platforms. If it
is not supported, it will show the same as UNDECORATED.

It is possible to have multiple stages defined for an application. Some may be
visible, some not. A stage may acquire the focus and become active. Actions,
like mouse presses, may cause a stage to appear or close. If the platform supports
it, the stage may fade in or fade out by changing its opacity. The contents of a
stage can change during the life of the application. Of course, an empty stage is
the same as a dark theater. There is no reason to go there; we need a scene.

The Scene
The Scene, javafx.scene.Scene, is the top-level node within a scene graph.
Representing the entire visual scene, a scene graph is a collection of nodes in a
hierarchal tree graph. The scene has geometry, a fill paint for the background, a
mouse cursor setting, and optionally a set of cascading style sheets (CSS) that
may be used by the scene’s components.

The scene’s geometry represents the area within the stage’s region that is avail-
able for displaying components. If the stage is resized, the scene will be resized
accordingly. Using the scene’s geometry, you can position components within
the scene to make sure they are fully visible.

Listing 5.3 displays the stage’s and scene’s geometry, side by side, for compari-
son (see Figure 5.4). This information is displayed using a Text node that is hor-
izontally centered. As the stage is resized, the display automatically updates with
the new geometry for both the stage and scene and repositions the text in the hor-
izontal middle.

Listing 5.3 Stage and Scene Geometry

import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.text.Text;
import javafx.scene.text.TextOrigin;
import javafx.scene.text.Font;
import javafx.scene.paint.Color;

From the Library of sam kaplan

ptg

THE SCENE 97

var scene:Scene;
var text:Text;
var stage:Stage = Stage {
 title: "Stage and Scene Geometry"
 x: 250
 y: 150
 width: 800
 height: 100
 scene: scene = Scene{
 fill: Color.NAVY
 content: text = Text {
 translateX: bind

(scene.width-text.layoutBounds.width) / 2 -

 text.layoutBounds.minX

 translateY: 24
 fill: Color.YELLOW
textOrigin: TextOrigin.TOP

 font: Font { size: 24 }
content: bind

"Stage: [{stage.x},{stage.y}] , "

 "[{stage.width}, {stage.height}]"

 "Scene: [{scene.x},{scene.y}] , "

 "[{scene.width}, {scene.height}]"

 }
 }
}

To accomplish the repositioning, we first assigned the Scene instance to the
script variable scene. Then we used the instance variable, scene.width, to cal-
culate the start position for the Text. We had to use a bind, because the scene’s
geometry will change, at least initially, from zero width and height to the width
and height based on the stage’s geometry.

Notice that the stage’s position, [250,150], is relative to the desktop coordinate
space, whereas the scene’s position, [5, 23], is relative to the stage’s coordinate
space. Also, the scene’s width, (790), and height, (72), is less than the stage’s
width, (800), and height, (100). This takes into account the border space taken up
by the stage that is not available to the scene for rendering graphical nodes.

Figure 5.4 Stage and Scene Geometry

From the Library of sam kaplan

ptg

98 CHAPTER 5 CREATE USER INTERFACES

When the stage is resized, the scene’s width and height will also be automati-
cally recalculated and through binding, we quickly see the new geometry and the
recalculated text position, to keep it centered (see Figure 5.5).

In the preceding example, also notice that we set the stage’s fill to navy blue, so
the entire background is painted with this color. This is shown as a black back-
ground in Figures 5.4 and 5.5. For a full color view of these figures, please check
out the book’s Web site at http://jfxbook.com. The default color is white. You
can also set the fill to null or transparent by using Color.TRANSPARENT. The
color displayed when setting it to one of these two values is platform dependent.
When we used the StageStype.TRANSPARENT option as shown in Figure 5.3, we
also had to set the scene’s fill to null so that the default fill of white would not fill
the rectangular area represented by the scene. Listing 5.4 shows a TRANSPARENT
stage with an invisible background.

Listing 5.4 Transparent Stage

Stage {
 title: "TRANSPARENT Stage"
 x: 250
 y: 150
 width: 800
 height: 100

style: StageStyle.TRANSPARENT

 scene: Scene{
fill: null

 content: Text {
 fill: Color.YELLOW
textOrigin: TextOrigin.TOP

 font: Font { size: 36 }
 content:
 "JavaFX - Developing Rich Internet Applications"
 }
 }
}

Figure 5.5 Stage and Scene Geometry – Stage Resized

From the Library of sam kaplan

http://jfxbook.com

ptg

THE SCENE 99

The choice for null or Color.TRANSPARENT does not matter for a Scene; how-
ever, it does matter later on with Nodes. The main difference is that mouse events
will not be delivered to a node with a null fill when the mouse is over the invisi-
ble part of the node. On the other hand, if the fill is Color.TRANSPARENT, mouse
events will be delivered to the node, even if the mouse is over the invisible part.
This is because Color.TRANSPARENT is actually a valid color being black with
opacity of zero—therefore, it is a color that appears invisible.

In addition to the fill paint, the scene also allows you to set the Cursor style for
the entire scene. The default is null indicating that the System default cursor will
be used. The options from the javafx.scene.Cursor class are default, wait,
crosshair, hand, move, and text. There is also a set for the resize cursors based
on compass direction: east, north, northeast, northwest, west, southwest,
south, and southeast, and vertical and horizontal. Of course, there is also
an option for no cursor at all.

Style Sheets
Cascading style sheets (CSS) are commonly used on the Web to partition content
from presentation. This provides flexibility to easily change the presentation
qualities without modifying the code that provides the basic content and behav-
ior. A style sheet is a set of rules that control how to display elements. Each rule
is made up of a selector that matches an element and a set of properties with val-
ues that define the presentation settings for the selected element. JavaFX
includes support for style sheets, but there are some minor differences from their
HTML cousins.

The most obvious difference is that instead of using HTML or XML elements for
the selector, JavaFX uses the JavaFX class names. These can be fully qualified
class names enclosed in double quotes, or for the standard JavaFX user interface
classes, you can just use the base class name. For example, javafx.scene
.shape.Rectangle or Rectangle will resolve equally.

For CSS ID selectors, instead of using the XML id attribute, JavaFX uses the
Node’s id variable. CSS class selectors are similar to the way they are used in
HTML. CSS pseudo-classes are defined on certain Boolean instance variables
within the JavaFX Control and Skin classes. To use a style sheet, include its
URL in the Scene's stylesheet instance variable. There may be zero or more
style sheet URL strings.

There are several ways to use a style on a display node. First, you can set the node’s
id attribute to match the CSS ID selector. Secondly, you can include the style in

From the Library of sam kaplan

ptg

100 CHAPTER 5 CREATE USER INTERFACES

the node’s style variable. Lastly, you can include the CSS class in the node’s
styleclass variable. Listing 5.5 shows a style sheet that uses a CSS ID selector.

Listing 5.5 Style Sheet CSS ID Selector

/* MyStyle.css *./
"javafx.scene.text.Text"#MainText {
 fill: navy;
 font:bold italic 35pt "sans-serif";
}

This creates a CSS ID selector for the JavaFX Text class, named MainText. The
fill is navy blue with a bold italic sans serif font. To use this in JavaFX, include
the style sheet URL in the Scene object literal and add an ID to the Text display
node to match the ID declaration. Listing 5.6 demonstrates how this is done.

Listing 5.6 JavaFX Class Using Node ID to Match the CSS ID in the Style Sheet

/* Main.fx */
Stage {
 title: "Style Sheet Demo"
 width: 500
 height: 80
 scene: Scene {

stylesheets: ["{__DIR__}MyStyle.css"]

 content: Text {
id: "MainText"

 x: 10, y: 30
 content: "This shows my style"
 }
 }
}

This Text node is created with an ID to match the style sheet’s ID selector,
"MainText". When run, this displays the text in bold italic sans serif font with a
size of 35 points (see Figure 5.6).

Figure 5.6 Using Style Sheets

From the Library of sam kaplan

ptg

THE SCENE 101

In the style sheet file, besides using the fully qualified class name for javafx
.scene.text.Text, you can also just use the basic class name Text. This is true
for all the standard JavaFX user interface classes. Notice that when you use the
fully qualified class name, it needs to be enclosed in double quotes. This is so the
CSS parser can distinguish it from a CSS class selector. The alternative style for
our text example is shown in Listing 5.7.

Listing 5.7 Style Sheet – Short Class Name for JavaFX Standard Classes

/* MyStyle.css *./
Text#MainText {
 fill: navy;
 font:bold italic 35pt "sans-serif";
}

Another way to define styles is to use CSS class selectors. You do this by defin-
ing a CSS class selector, then by using it with the styleClass instance variable
of the display node. Listing 5.8 shows how to create a CSS class of PrimaryText
on the Text class.

Listing 5.8 Style Sheet CSS Class Selector

/* MyStyle.css *./
Text.PrimaryText {
 fill: navy;
 font:bold italic 35pt "sans-serif";
}

This is then used in the object literal for the text by initializing the styleClass
instance variable with the name of the CSS class. Listing 5.9 shows how to use
this in a JavaFX object literal.

Listing 5.9 JavaFX styleClass for CSS Class Selector

/* Main.fx */
...
...
Text {

styleClass: "PrimaryText"

 x: 10, y: 30
 content: "This shows my style"
}
...

From the Library of sam kaplan

ptg

102 CHAPTER 5 CREATE USER INTERFACES

A third alternative is to use an in-line string with the style settings. This is done
using the style instance variable in the display node’s object literal. For
instance, Listing 5.10 shows using a style with a Text node.

Listing 5.10 Node Style Instance Variable

/* Main.fx */
...
...
Text {

style: "fill: navy; "

 "font:bold italic 35pt sans-serif;"

 x: 10, y: 30
 content: "This shows my style"
}
...

When using the node’s style variable, the style is applied to all the nodes in the
scene graph starting with the node that contains the style declaration. For exam-
ple, if the node is a Group, the style is applied to the group node and all the nodes
defined as children contained in the group’s content sequence. So, if you have a
group that contains many text objects, setting the fill style would apply to all
the text instances. If you need finer control over this, use either a styleClass or
ID selector defined in a style sheet.

CSS Pseudo Class
Pseudo classes are supported for classes that extend javafx.scene.control
.Control and javafx.scene.control.Skin. The currently supported pseudo
classes are :hover, :focused, :disabled, and :pressed. The pseudo class :hover
indicates that the style is active when the mouse if over the control; :focused is
active when the control has the keyboard focus; :pressed is active when the
mouse is pressed while over the control; and :disabled is active when the node is
marked as disabled.

Listing 5.11 shows examples of using these CSS pseudo classes with javafx
.scene.control.TextBox.

Listing 5.11 Style Sheet – JavaFX Supported Pseudo Classes

TextBox:hover {
 background-fill: red;
 text-fill: yellow;
}

From the Library of sam kaplan

ptg

THE SCENE 103

TextBox:pressed {
 background-fill: navy;
 text-fill: white;
}
TextBox:focused {
 background-fill: purple;
 text-fill: yellow;
}

When the TextBox has the focus, it will have a purple background with yellow
text. When the mouse moves over the TextBox, the background changes to red,
and the text changes to yellow. When the mouse is pressed in the TextBox, the
background changes to navy blue and the text to white. (Who chose these colors?)

To implement these pseudo classes in custom controls and skins, the custom
code must set the value for the corresponding properties. An example is provided
in the section Custom Controls, later in this chapter.

CSS Properties
In the StyleSheet file, the properties map directly to instance variables within the
specified JavaFX class. In the preceding example, the CSS properties (fill and
font) map directly to the instance variables fill and font in the javafx.scene
.text.Text class. CSS type properties like background-fill would map to a
JavaFX instance variable backgroundFill. The hyphen is removed and the sec-
ond word is capitalized.

The allowed property values are decimal number, integer, string, color, paint, or
font. Strings are enclosed in quotes.

Colors
Colors may be represented with a color name, (e.g., gray, red, or black), a hexa-
decimal triplet beginning with a sharp (#) sign, #808080, or using a function-like
syntax, rgb (red, green, blue)—for example, rgb(128, 128, 128).

Paint
Paint may either be linear or radial.

linear maps to the javafx.scene.paint.LinearGradient class.

linear (startX, startY) to (endX, endY) stops
 (offset, color), (offset, color), ... [reflect|repeat]

From the Library of sam kaplan

ptg

104 CHAPTER 5 CREATE USER INTERFACES

For example, the following style sheet entry would create a linear gradient start-
ing with sky blue from the upper-left migrating to white in the lower-right part of
the paint area.

fill: linear (0%, 0%) to (100%, 100%) stops
 (0.0, skyblue), (1.0, white)

For linear, the startX/startY and endX/endY may be expressed as an absolute
value or a percent. The only restriction is that all values must be in the same units.
reflect and repeat are optional and map to the javafx.scene.paint.Cycle-
Methods of REFLECT and REPEAT, respectively. Reflect means the gradient is
reflected to fill remaining space. When reflect is used, the gradient colors are
painted start to end, then painted end to start, and so on to fill in extra space.
Repeat means the start and end colors are repeated to fill in extra space.

radial maps to the javafx.scene.paint.RadialGradient class.

radial (startX, startY),100% focus(focusX, focusY) stops
 (offset, color), (offset, color), ... [reflect|repeat]

For example, to create a RadialGradient starting at position 0,0 with a focus a
quarter of the way across and down migrating from red to blue, you use a style
sheet entry using the following syntax:

fill: radial (0%,0%),100% focus(25%,25%)
 stops (0.00,red),(1.00, blue);

For radial, the startX/startY and focusX/focusY may be expressed as an
absolute value or a percent. The only restriction is that all values must be in the
same units. reflect and repeat are optional and map to the javafx.scene
.paint.CycleMethods of REFLECT and REPEAT, respectively. Reflect means the
gradient is reflected to fill remaining space. When reflect is used, the gradient
colors are painted start to end, then painted end to start, and so on to fill in extra
space. Repeat means the start and end colors are repeated to fill in extra space.

Font
Fonts are defined as having optional font weight, a font size, and a font name.
Font weight may be bold, italic, or both. Size is a number, either decimal or inte-
ger, with units of either pt (point), mm (millimeters), cm (centimeters), pc (pica),
or in (inch).

font: bold italic 35pt "sans-serif";

From the Library of sam kaplan

ptg

NODES 105

Image
There is a special url syntax for defining images.

background-image: url(http://jfxbook.com/NASA/nasa.jpg);

This actually creates a java.awt.image.BufferedImage object that can then be
used to create a javafx.scene.Image. A JavaFX example to handle this is
shown in Listing 5.12.

Listing 5.12 JavaFX Example for Creating Image from BufferedImage

var image: Image;
public var backgroundImage:
 java.awt.image.BufferedImage on replace {
 if(backgroundImage != null) {
 image = Image{}.

 fromBufferedImage(backgroundImage);

 }
}

Nodes
As we already mentioned, a scene graph is a representation of a display scene. It is
represented as a tree data structure with a set of linked nodes. Nodes may be either
inner nodes, sometimes called branch nodes or leaf nodes that have no children.
The javafx.scene.Node class is the base class for all the scene graph nodes.

In JavaFX, the Scene is the root node and contains a set of direct child nodes;
inner nodes are either a javafx.scene.Group or javafx.scene.CustomNode.
The leaf nodes are all the other nodes like shapes, controls, text, and the Swing
Extension nodes.

Each node may be given an ID represented as a string. A lookup function is pro-
vided to find a node with a specific ID. Already, we saw ID used in conjunction
with style sheets and the developer should take care to assign unique IDs when
they are used.

Nodes have a set of instance variables of function type that can be assigned and
are called when certain input events occur. These include the onKeyXXXX and
onMouseXXXX instance variables that hold functions to handle key or mouse events,
where XXXX represents the specific type of event. The blocksMouse instance
variable indicates whether mouse events should be delivered to the parent. These
will be discussed in more depth in the section Input Events, later in this chapter.

From the Library of sam kaplan

ptg

106 CHAPTER 5 CREATE USER INTERFACES

Nodes may also have a set of transforms applied, including translate, scale,
rotate, and shear. Transforms may be provided as one sequence of transforms,
each being applied in the order they are presented in the transforms sequence.
Alternatively, the instance variables, translateX, translateY, scaleX, scaleY,
and rotate may be used. When using these instance variables, there is certain
default behavior. For example, scaleX/scaleY and rotate use the center point
as the anchor. If you need finer control over these kinds of transforms, use the
transforms sequence.

The geometry of nodes is contained in four instance variables: boundsInLocal,
boundsInParent, boundsInScene, and layoutBounds. boundsInLocal is the
rectangular area defined for the node without considering any transformations.
boundsInParent is the rectangular area defined for the node after all the trans-
formations have been applied and is in the coordinate space of the node’s parent.
boundsInScene is the rectangular area defined for the node after all the transfor-
mations have been applied and is in the coordinate space of the node’s scene or
root node if the node is not connected to a scene. layoutBounds is the geometry
that should be used in all calculations for node layout and includes all the trans-
formations defined in the nodes transforms sequence.

There are several indicators available with a node: hover, pressed, and focused.
The indicator hover indicates that the mouse is over the node. pressed indicates
that the mouse is over the node and the mouse button is pressed, focused indi-
cates that the node has the input focus. To programmatically gain the input focus,
call the node function requestFocus().

To control the appearance of a node, there are instance variables for opacity and
visible. Also, there are functions to move the node forward (in front of other
nodes), toFront(), or backward (behind other nodes), toBack(). You can assign a
special effect using the effect variable. This will be discussed in depth in Chap-
ter 6, Apply Special Effects. We have already discussed the style and styleClass
variables when we discussed style sheets, earlier in this chapter.

Lastly, you can use another node to define a clip region for this node, using the
clip attribute. When doing this, only the portion of the node that is contained
within the region of the other node is visible.

Custom Nodes
To create a custom node, just extend javafx.scene.CustomNode and implement
the abstract function, create(), which returns a node. The following Title
class is a CustomNode.

From the Library of sam kaplan

ptg

NODES 107

To implement this, Title first extends CustomNode then implements the create()
function. In the create function, it creates a rectangle that fills the background, a
circle, and a text object to display “JavaFX is Cool”. This is shown in Figure 5.7
and Listing 5.13.

Listing 5.13 “JavaFX is Cool” – CustomNode

public class Title extends CustomNode {
 public var text:String = "JavaFX is Cool";
 public var width:Number = 200;
 public var height: Number = 100;

override function create(): Node {

 Group {
 content: [
 Rectangle {

 width: bind width
 height: bind height
 fill: LinearGradient {
 startX: 0 startY: 0
 endX: 0 endY: 1

 stops: [
Stop { offset: 0.0

color: Color.DODGERBLUE },
Stop { offset: 1.0

 color: Color.WHITE }
]
 }
 },
 Circle {

 centerX: bind width / 4 * 3;
 centerY: bind height / 2

 radius: bind height / 3
 fill: Color.CORAL

 },
 Text {

 translateX: 5
 translateY: bind height / 2 + 10

continues

Figure 5.7 Title Object Display

From the Library of sam kaplan

ptg

108 CHAPTER 5 CREATE USER INTERFACES

 content: bind text
font: Font{ name: "Times-Roman Bold" ,

 size:25}
 stroke: Color.NAVY

 }
]
 }
 }
}

This custom node is comprised of a group containing a rectangle that fills the
entire background with a linear gradient paint, a circle, and a text. The create()
function returns the group, which is a node. This is the most common way to cre-
ate a custom node, but this is not the only way. The only requirement is that the
returned object extend javafx.scene.Node.

javafx.scene.Group
The Group (javafx.scene.Group) node contains a sequence of child nodes that
are displayed in the order reflected in the sequence. It merely displays the nodes
as they are defined and will take on the geometric bounds that encapsulate all its
children. It does not do any layout for the children and each child node must
position itself. Its main purpose is to group together a set of nodes and allow
those nodes to be manipulated as a group. For example, you can apply trans-
forms to the group, change its visibility or opacity, and so on.

The order of the nodes in the Group’s content sequence dictates which nodes are
drawn first and which are drawn last. If there is overlap on the display, nodes at
the beginning of the content sequence will be underneath nodes later in the
sequence. Actually, the Node’s method toFront() moves the affected node to
the end of the containing Group’s content sequence. Likewise, toBack() merely
moves the affected node to the beginning. Of course, you can always change the
order of the nodes assigned to content to achieve the desired layering.

Layout
JavaFX has two layout controls: javafx.scene.layout.HBox and javafx
.scene.layout.VBox. HBox lays out its nodes horizontally, whereas VBox does it
vertically.

Listing 5.14 illustrates an example using the horizontal box (HBox) layout.

From the Library of sam kaplan

ptg

LAYOUT 109

Listing 5.14 Horizontal Box Layout

scene: Scene {
 content: HBox {

spacing: 10

content: [
 Rectangle {
 width: 50
 height: 20

 fill: Color.NAVY
 stroke: Color.YELLOW

 },
 Rectangle {
 width: 40
 height: 10

 fill: Color.CORAL
 stroke: Color.BLACK

 },
 Rectangle {
 width: 30
 height: 20

 fill: Color.YELLOW
 stroke: Color.BLACK

 },
 Rectangle {
 width: 30
 height: 20

 fill: Color.RED
 stroke: Color.YELLOW

 },
]

This produces various rectangles horizontal to each other, as shown in Figure 5.8.

Similarly, the Vertical Box (VBox) code is shown in Listing 5.15.

Listing 5.15 Vertical Box Layout

scene: Scene {
 content: VBox {
 spacing: 10

continues

Figure 5.8 HBox Layout

From the Library of sam kaplan

ptg

110 CHAPTER 5 CREATE USER INTERFACES

 content: [
 Rectangle {
 width: 50
 height: 20

 fill: Color.NAVY
 stroke: Color.YELLOW

 },
 ...
 ...

VBox is shown in Figure 5.9.

Notice that these two layouts are quite simple. Other than specifying the spacing
between the nodes, there is not much else you can do with these layouts. Also
notice that the HBox layout justifies the nodes at the top, or North position,
whereas VBox aligns the nodes on the left position. You have no control over this.

To get a little more interesting, let’s combine the two layouts. First, we create a
VBox that contains a set of HBoxes, each using the same set of colored rectangles.
This is presented in Listing 5.16.

Listing 5.16 Combined Box Layouts

scene: Scene {
 content: VBox {
 spacing: 10
 content: [

HBox {
 spacing: 20
 content: [

 Rectangle {
 width: 50
 height: 20
 fill: Color.NAVY
 stroke: Color.YELLOW

 },

Figure 5.9 VBox Layout

From the Library of sam kaplan

ptg

LAYOUT 111

 ...
 ...
 },

HBox {
 spacing: 20
 content: [

 Rectangle {
 width: 50
 height: 20
 fill: Color.NAVY
 stroke: Color.YELLOW

 },
 ...
 ...

This lays out the components horizontally in two rows, as shown in Figure 5.10.

Layout Basics
In JavaFX, layout can be achieved by positioning individual nodes using either
their x and y or translateX and translateY variables directly. The other way is
to use a layout container that positions nodes in a special way. In the previous
sections, we looked at the built-in layout containers for horizontal, HBox, and
vertical layout, VBox. In the next section, we will explore custom layout using a
grid. But what internal geometry is used in doing layouts?

In JavaFX, rectangular bounds are represented by the javafx.geometry
.Rectangle2D class. This class contains variables for minX, minY, maxX, maxY,
width, and height. However, there are several geometric properties on each
node that represent different geometries. These are boundsInLocal, boundsIn-
Parent, boundsInScene, and layoutbounds. How are these related?

Bounds may change depending on a number of variables, including clips, effects,
and transformation. So the different bounding rectangles represent the bounds
for a node depending on whether some of these effects have been applied yet.

Figure 5.10 VBox Layout of HBoxes

From the Library of sam kaplan

ptg

112 CHAPTER 5 CREATE USER INTERFACES

BoundsInLocal defines the bounds before any transformations have been
applied. However, boundsInLocal does take into effect any changes required by
clipping and special effects. For shapes, this bounded area also includes any non-
zero strokes that may fall outside of the shape’s geometry. For special effects,
added space may be included to achieve the effect. For example, DropShadow
includes a radius variable (default is 10.0) that is added to the overall dimensions
for the node.

LayoutBounds defines the rectangular bounds after applying any transforms to the
node. By design, the transformations specified by translateX and translateY
are not included in this calculation. This is because if you are trying to position a
node binding translateX and translateY based on the layoutBounds, you
would enter into a circular change condition that would create an endless loop.
LayoutBounds should be used when laying out nodes in an area.

BoundsInParent defines the rectangular area after applying all transformations
to the node. This bounding rectangle is in the parent’s coordinate space. How-
ever, it is still calculated if there is no parent.

BoundsInScene defines the rectangular area of the node after all its ancestor
node’s transformations have been applied. If the node is attached to a Scene, this
would be in the Scene’s coordinate space. Otherwise, it is in the coordinate space
or the topmost node in the scene graph.

To illustrate the differences in these, let’s look at an example. This example uses
a rectangle that is originally 50 by 50 in size. It has a DropShadow effect, and is
scaled on the x axis by a factor of 1.2. The rectangle is positioned horizontally in
the center of the scene and down 50 along the y axis. The rectangle belongs to a
group that is rotated 45 degrees, and this group belongs to a scene. Listing 5.17
shows the code required for this.

Listing 5.17 Layout Geometry

scene: scene = Scene {
 content: [
 Group {

rotate: 45

 content: [
 rect = Rectangle {

 translateX: bind (scene.width -
 rect.layoutBounds.width)/2.0 -
 rect.layoutBounds.minX;

 translateY: 50
transforms: Transform.scale(1.2,1.0)

width: 50

From the Library of sam kaplan

ptg

LAYOUT 113

height: 50

 fill: Color.DODGERBLUE
effect: DropShadow{}

 }
]
 },

We have added text objects to display the various layouts and the output for this
is shown in Figure 5.11.

As you can see, all the bounds are different. So let’s examine them and determine
why they are the way they are. First, the basic rectangle is a 50 by 50 square, but
we added a DropShadow effect, which added a margin area of 10 width around
the square. So, boundsInLocal shows a 70 by 70 square starting at position -10,
-10. Notice that we are still dealing with a square and not a rectangle. This is
because boundsInLocal ignores the scaling transform. Now let’s examine the
layoutBounds.

In the layoutBounds, the scale transform has been applied and the square has been
transformed into an 84 by 70 rectangle. Notice that we had to use the transforms[]
sequence as layoutBounds ignores the scaleX and scaleY variables. Also, the
other transform variables, rotate, translateX, and translateY are ignored by
the layoutBounds. LayoutBounds are different than the other bounds in that the
other bounds are read only, whereas layoutBounds can be set programmatically
when the node is first created. So, you can force the layout geometry, if desired.
Otherwise, it is calculated automatically based on the boundsInLocal augmented
with the transforms contained in the transforms sequence variable.

Figure 5.11 Layout Bounds

From the Library of sam kaplan

ptg

114 CHAPTER 5 CREATE USER INTERFACES

The boundsInParent reflects the Group’s coordinate system and also reflects
the translateX and translateY transform from the Rectangle node. Notice
the dimensions are still 84 by 70 but the minX and minY and maxX and maxY val-
ues have changed to reflect the translateX and translateY transformation.

The boundsInScene reflects the Group’s rotation, and now the bounding area is
a square that encloses the rotated rectangle. This reflects the Group’s rotation.

Table 5.1 summarizes the differences between these four bounds.

To position a node, you need to use the Nodes layoutBounds to determine its
basic size. If you need to incorporate transformations into this calculation, you
should use the transforms[] sequence rather than the standalone transform
instance variables, translateX/Y, scaleX/Y, and rotate. Listing 5.18 provides
an example to center a node in a scene.

Listing 5.18 Centering a Node in a Scene

var rect:Rectangle;
Stage {
 var scene:Scene;
 width: 200
 height: 200
 scene: scene = Scene {
 content: rect = Rectangle {
 translateX: bind (scene.width –

 rect.layoutBounds.width)/2.0 -

 rect.layoutBounds.minX

Table 5.1 Bounds

Bounds Contribution
Coordinate
Space

boundsInLocal Untransformed local coordinates, including shape
stroke, clip, and effect

Node

layoutBounds BoundsInLocal plus transforms[] sequence Node

boundsInParent LayoutBounds plus translateX/translateY,
scaleX/scaleY, rotate

Parent

boundsInScene BoundsInParent plus accumulated transforms of all
ancestor nodes

Scene

From the Library of sam kaplan

ptg

LAYOUT 115

 translateY: bind (scene.height –

 rect.layoutBounds.height)/2,0 -

 rect.layoutBounds.minY

 ...
 }
 }
}

Notice that we need to assign local variables to both the Scene and the Rectangle,
and then use those variables within a bind to set the translateX and translateY
variables. Also, notice that we need to include the minX/minY for each, as this
would include any offset due to shape drawing, effects, and clipping.

Custom Layout
If you need more control over layouts, you need to create a custom layout using
the javafx.scene.layout.Container class. To illustrate this, we will walk
through a GridLayout class. The GridLayout class lays out its nodes in a series
of rows and columns. Instead of using a fixed width and height for the rows and
columns, this layout class calculates the width of each column to be wide enough
to handle the widest node within the column. Likewise, the height for each row is
calculated to handle the maximum height to accommodate each node in that row.
Therefore, the column widths and row heights vary depending on the nodes con-
tained in each.

Because some nodes will have extra horizontal or vertical space within a row or
column, you can specify the alignment of those nodes within the row or column.
Either align left, right, or center for columns, and align top, center, or bottom
within rows. The actual alignment values are directional with values for North,
NorthEast, East, and so on.

To begin, we create the GridLayout class extending javafx.scene.layout
.Container.

public class GridLayout extends Container {

javafx.scene.layout.Container extends javafx.scene.Group, so from there
we have access to the content[] sequence of Nodes. Also, Container extends
javafx.scene.layout.Resizable, and from there we have access to width,
height, minimum width/height, maximum width/height, and preferred width/
height. There are also some helper functions defined in Resizable; we will use
getNodePreferredWidth/Height().

From the Library of sam kaplan

ptg

116 CHAPTER 5 CREATE USER INTERFACES

Next, let’s add some instance variables as shown in Listing 5.19.

Listing 5.19 Grid Layout Variables

 /** Specifies the default alignment to use */
 public var defaultAlignment = Alignment.CENTER;

 /** indicates the number of columns to use,
 * if this is zero or less and rows is greater than 0,
 * then the number of columns will be calculated
 * based on the number of nodes and the number of rows
 */
 public var cols: Integer = 1;

 /** indicates the number of rows to use,
 * if this is zero or less and cols is greater than 0,
 * then the number of rows will be calculated
 * based on the number
 * of nodes and the number of columns
 */
 public var rows: Integer;

 // spacing from left and right margin
 public var horizontalMargin = 0.0;

 // spacing from top and bottom margin
 public var verticalMargin = 0.0;

 /** spacing between columns */
 public var horizontalSpacing = 2.0 ;

 /** spacing between rows */
 public var verticalSpacing = 2.0;

 /** the horizontal alignments, one for each column,
 * if the size of this sequence
 * is less than the number of columns,
 * then the default alignment will be used
 * for the remaining columns
 */
 public var horizontalAlignments : Alignment[];

 /** the vertical alignments, one for each row,
 * if the size of this sequence
 * is less than the number of rows,
 * then the default alignment
 * will be used for the remaining rows
 */
 public var verticalAlignments : Alignment[];

From the Library of sam kaplan

ptg

LAYOUT 117

Next, we add some functions. First, we need a function to walk through all the
nodes and calculate the maximum width for each column and the maximum
height for each row. We also use this function to calculate the overall dimensions
for the GridLayout object. This function is shown in Listing 5.20.

Listing 5.20 Grid Layout Functions – calcDimensions()

function calcDimensions(): Void {
// calculate either rows or cols

 if(cols <= 0) {
 cols = (sizeof content + rows -1)/rows;
 }else {
 rows = (sizeof content + cols - 1)/cols;
 }

// calculate the colWidths and rowHeights

 var index = 0;
 colWidths = for(i in [0..<cols]) 0.0;
 rowHeights = for(i in [0..<rows]) 0.0;
 for(node in content) {
 if(node.visible) {
 var w = getNodePreferredWidth(node);
 var h = getNodePreferredHeight(node);

 var row = index / cols;
var col = index mod cols;

 if(colWidths[col] < w) colWidths[col] = w;
 if(rowHeights[row] < h) rowHeights[row] = h;
 index++;
 }
 }

// merge the provided alignments with the default

 delete _hAlignments;
 insert horizontalAlignments into _hAlignments;
 while(sizeof _hAlignments < cols) {
 insert defaultAlignment into _hAlignments;
 }
 delete _vAlignments;
 insert verticalAlignments into _vAlignments;
 while(sizeof _vAlignments < rows) {
 insert defaultAlignment into _vAlignments;
 }
 //calculate total width for container

 preferredWidth = horizontalMargin;

 for(i in [0..<cols]) {

 if(i > 0) preferredWidth += horizontalSpacing;

 insert preferredWidth into colOffsets;

 preferredWidth += colWidths[i];

 }

continues

From the Library of sam kaplan

ptg

118 CHAPTER 5 CREATE USER INTERFACES

 preferredWidth += horizontalMargin;
 //calculate total height for container

 preferredHeight = verticalMargin;

 for(i in [0..<rows]) {

 if(i > 0) preferredHeight += verticalSpacing;

 insert preferredHeight into rowOffsets;

 preferredHeight += rowHeights[i];

 }

 preferredHeight += verticalMargin;

 maximumWidth = minimumWidth = preferredWidth;

 maximumHeight = minimumHeight = preferredHeight;

 }

Next, we need a function to actually position each node within the Grid. The
layout() function is shown in Listing 5.21.

Listing 5.21 Grid Layout Functions – layout()

function layout() {
 inCalc = true; //do not call layout from layout
 calcDimensions();
 var index = 0;
 for(node in content) {
 if(node.visible) { // only layout visible nodes
 var w = getNodePreferredWidth(node);
 var h = getNodePreferredHeight(node);

 var row = index / cols;
var col = index mod cols;
 var x = colOffsets[col];
 var y = rowOffsets[row];

 // adjust based on Alignment
 x += alignX(node, col);

 // adjust based on Alignment
 y += alignY(node, row);

 node.translateX = x;
 node.translateY = y;

 index++;
 }
 }
 inCalc = false;
}

alignX and alignY adjust the nodes position depending on the alignment value
for that column and row, respectively. The Alignment class is just a Java Enum
type. These two functions are presented in Listing 5.22.

From the Library of sam kaplan

ptg

LAYOUT 119

Listing 5.22 Grid Layout Functions – alignX()/alignY()

function alignX(node:Node, col:Integer): Number {
 var alignment = _hAlignments[col];
 if(alignment == Alignment.NORTHEAST or
 alignment == Alignment.EAST or
 alignment == Alignment.SOUTHEAST) {
 return 0.0;
 } else if(alignment == Alignment.NORTHWEST or
 alignment == Alignment.WEST or
 alignment == Alignment.SOUTHWEST) {
 return colWidths[col] -

getNodePreferredWidth(node);
 } else { // CENTER
 return (colWidths[col] -

getNodePreferredWidth(node))/2;
 }
}
function alignY(node:Node, row:Integer): Number {
 var alignment = _vAlignments[row];
 if(alignment == Alignment.NORTHEAST or
 alignment == Alignment.NORTH or
 alignment == Alignment.NORTHWEST) {
 return 0.0;
 } else if(alignment == Alignment.SOUTHEAST or
 alignment == Alignment.SOUTH or
 alignment == Alignment.SOUTHWEST) {
 return rowHeights[row] -

 getNodePreferredHeight(node);
 } else { // CENTER
 return (rowHeights[row] -

 getNodePreferredHeight(node))/2;
 }
}

To kick start the layout, we add a postinit block to do the layout. This does the
layout after all the instance variables in the class have been through the initializa-
tion process. We added a Boolean variable postInitted to indicate that this step
has completed.

postinit {
 layout();
 postInitted = true;
 }

Now, we have to do one more thing. Whenever any of the public instance vari-
ables change, we need to recalculate the layout. We do this by adding on replace
triggers to these variable declarations. For example:

From the Library of sam kaplan

ptg

120 CHAPTER 5 CREATE USER INTERFACES

 public var cols:Integer = 1 on replace {
 if(postInitted and not inCalc) {

 layout();

 }

 };

To do a layout on the Group’s content instance variable, we need to add an
override declaration.

override var content

 on replace oldValues [lo..hi] = newValues {
 if(postInitted and not inCalc) {
 layout();
 }
 }

The following is an example of how to create a GridLayout object literal with
some example nodes, using the default CENTER alignment. Listing 5.23 shows
how to use the GridLayout class.

Listing 5.23 Grid Layout – Object Literal

scene: Scene {
 width: 200
 height: 200
 content: GridLayout {

cols: 3
content: [

 Rectangle {
 width: 50
 height: 20
 fill: Color.NAVY
 stroke: Color.YELLOW

 },
 ...

When we run this, we see the display as shown in Figure 5.12.

Figure 5.12 Custom Container for Grid Layout

From the Library of sam kaplan

ptg

INPUT EVENTS 121

There is a trick that this lets us do for empty cells. Notice the empty space in col-
umn 2, row 3, right below the “JavaFX” text. To achieve this, all we had to do
was assign an empty Group, Group{}, node to this position. Because the column
width and row height will be sized to hold the maximum width and height for the
column and row, respectively, then this row and column appears to be empty.
This is because an empty Group is essentially dimensionless.

The full listing is on the book’s Web site at http://www.jfxbook.com.

Input Events
JavaFX supports two types of input events: javafx.scene.input.MouseEvent
and javafx.scene.input.KeyEvent. Mouse events are generated by actions
with the mouse and include mouse button actions like clicked, pressed, and
released. Also, events are generated for mouse movement like moved, dragged,
enter, and exit and for mouse wheel move events.

Key events are generated when the user presses, releases, and “types” keys from
the keyboard. Key type events are at a higher level than press and release events
and multiple key pressed/released events may map to one typed event.

There is an important attribute in javafx.scene.Node, blocksMouse, that con-
trols delivery of mouse events. Normally, when a mouse event is generated, the
runtime system delivers the event to all the nodes that intersect with the mouse
coordinate. If you set blocksMouse to true on a node, that node will consume the
mouse event and it will no longer propagate up the scene graph tree. If you do
not want mouse events sent to other nodes that are visually blocked by a node,
set blocksMouse to true on that node.

Mouse Events
javafx.scene.Node defines eight mouse event actions; these are

Mouse Actions

onMouseClicked: function(e:MouseEvent): Void

onMousePressed: function(e:MouseEvent): Void

onMouseReleased function(e:MouseEvent): Void

onMouseEntered: function(e:MouseEvent): Void

onMouseExited: function(e:MouseEvent): Void

onMouseMoved: function(e:MouseEvent): Void

onMouseDragged: function(e:MouseEvent): Void

onMouseWheelMoved: function(e: MouseEvent): Void

From the Library of sam kaplan

http://www.jfxbook.com

ptg

122 CHAPTER 5 CREATE USER INTERFACES

Listing 5.24 shows an example of defining a mouse clicked action.

Listing 5.24 Using onMouseClicked

Rectangle {
 width: 50
 height: 20
 fill: Color.NAVY
 stroke: Color.YELLOW

onMouseClicked: function(e:MouseEvent) : Void {

 println("clicked at {e.x}, {e.y}");
 }
}

To properly implement a drag action, you need to capture and save the drag
node’s initial x and y coordinate when the mouse drag is started and use it later to
calculate the ending coordinates. Then when the mouse is dragged or released,
you use the MouseEvent’s dragX and dragY variables as a delta to the original
position to calculate the new position for the node. The MouseEvent’s dragX and
dragY variables hold a relative value to when the most recent drag event started.
Therefore, it can be used to do a relative change to the original position of a
node. Listing 5.25 is an example for a circle that is to be dragged.

Listing 5.25 Mouse Drag

var origCX: Number; // hold the original centerX
var origCY: Number; // hold the original centerY
var x: Number; // center x for circle
var y: Number; // center y for circle

circle1 = Circle {

 centerX: bind x
 centerY: bind y
 radius: 5

 fill: Color.DODGERBLUE

 blocksMouse: true

 // save the position at the start of a drag
onMousePressed: function(e:MouseEvent):Void {

origCX = circle1.centerX;
origCY = circle1.centerY;

 }

From the Library of sam kaplan

ptg

INPUT EVENTS 123

onMouseReleased: function(e:MouseEvent):Void {
x = e.dragX + origCX;

 y = e.dragY + origCY;

 }

onMouseDragged: function(e:MouseEvent):Void {
x = e.dragX + origCX;

 y = e.dragY + origCY;

 }

}

When the mouse is pressed, we save the original coordinates of the center of the
circle in the origCX and origCY variables. When a drag event is delivered, we
adjust the center of the circle by setting the bound variables x and y based on the
delta change in the mouse position. This shows the circle being moved while
dragging. Finally, we do the same thing on release so that the circle is moved to
its final position.

Key Events
Key events are generated from the keyboard, when a key is pressed and released,
and when a typed key is recognized. A typed key may be the result of multiple
key press and release events. The key actions defined are

Key Actions

onKeyPressed: function(e:KeyEvent): Void

onKeyReleased: function(e:KeyEvent): Void

onKeyTyped: function(e:KeyEvent): Void

In Listing 5.26, the example displays a Text item in the center of the scene. As
you type characters, the text is updated by appending the typed character. A
backspace key erases the last character typed. Notice that the backspace is han-
dled in the onKeyReleased function. This is because the key code is always
VK_UNDEFINED in a key typed event.

Listing 5.26 Key Events

var text: Text;
var scene:Scene;

Stage {
 title: "Key Event Example"

continues

From the Library of sam kaplan

ptg

124 CHAPTER 5 CREATE USER INTERFACES

 width: 250
 height: 80
 scene: scene = Scene {
 content: Group {
 content: [
 Rectangle {

 width: bind scene.width
height: bind scene.height
 fill: Color.LIGHTBLUE
onKeyTyped: function(e:KeyEvent):Void {

if(java.lang.Character.isLetterOrDigit(
 e.char.charAt(0)) or

 java.lang.Character.isWhitespace(
 e.char.charAt(0))) {
 text.content = "{text.content}{e.char}";

 }
 }

onKeyReleased: function(e:KeyEvent):Void {

 if(e.code == KeyCode.VK_BACK_SPACE) {
text.content = text.content.substring(
 0, text.content.length()-1);

 }
 }
 },
 text = Text {

// center text in scene
 translateX: bind

 (scene.width – text.layoutBounds.width)/2 -
 text.layoutBounds.minX;

 translateY: bind
 (scene.height - text.layoutBounds.height)/2 -

 text.layoutBounds.minY;
font : Font {size : 24}
 textOrigin: TextOrigin.TOP

 fill: Color.NAVY
 }
]
 }
 }
}

Another way to handle the backspace key is to look at the key event char directly.

if(java.lang.Character.isLetterOrDigit(
 e.char.charAt(0)) or

 java.lang.Character.isWhitespace(
 e.char.charAt(0))) {

From the Library of sam kaplan

ptg

TEXT DISPLAY 125

 text.content = "{text.content}{e.char}";
}else if(e.char == "\b") {
 text.content = text.content.substring(0,

 text.content.length()-1);
}

However, this may not be portable across different locales and languages.

Text Display
There are two ways to handle text display in JavaFX. First, to merely display text
to the screen, use the javafx.scene.text.Text class. However, if you need
user editable text, it is easiest to use the javafx.scene.control.TextBox class.

Text
A Text is a shape that displays a string. A text has a font, geometry with a Text
Origin setting, and instance variables to control line wrapping. Newline charac-
ters within the string cause the line to wrap; otherwise, wrapping is governed by
the wrappingWidth variable.

A bare bones Text uses the default font and size and is black (see Figure 5.13). It
is declared as

Text {
 translateX: 10, translateY: 30
 content: "This is my Text"
}

It is necessary to move the text to see it, and this will be explained in the section
on TextOrigin a little later in this chapter.

To make this more interesting, let’s adjust the font size, and instead of using the
default fill of black, let’s set the fill to transparent and the stroke to black (see
Figure 5.14).

Figure 5.13 Bare Bones Text

From the Library of sam kaplan

ptg

126 CHAPTER 5 CREATE USER INTERFACES

Text {
 translateX: 10, translateY: 30
 content: "This is my Text"
 font: Font { size: 36 }
 fill: Color.TRANSPARENT
 stroke: Color.BLACK
}

Now let’s rotate it 45 degrees (see Figure 5.15).

Text {
 translateX: 10, translateY: 30
 content: "This is my Text"
 font: Font { size: 36 }
 fill: Color.TRANSPARENT
 stroke: Color.BLACK
 rotate: 45
}

What happened? When we use the rotate variable, the rotation is anchored on the
center point. This is also true if we had used the scaleX and scaleY variables;
the scaling would have been from the center point, which is not always desired.
If we want to rotate at the origin point, 0,0, we need to use a Rotate transform,
javafx.scene.transform.Rotate (see Figure 5.16).

Text {
 translateX: 10, translateY: 30
 content: "This is my Text"

Figure 5.14 Outline Text

Figure 5.15 Rotated 45 Degrees

From the Library of sam kaplan

ptg

TEXT DISPLAY 127

 font: Font { size: 36 }
 fill: Color.TRANSPARENT
 stroke: Color.BLACK
 transforms: Rotate {

 angle: 45

 pivotX: 0 // default is 0

 pivotY: 0 // default is 0

 }

}

Adding the pivotX/pivotY is not absolutely necessary because their default values
are zero anyway, but this does show you that you can control the pivot point when
using a javafx.scene.transform.Rotate transform. javafx.scene.transform
.Scale also has pivotX/pivotY variables to anchor the scaling at a particular
point.

TextOrigin
If you were paying close attention, you may have noticed something a little dif-
ferent with this last rotation, which brings us to the next topic, text origin. Text
origin is the origin point, where the text is placed. There are three options for the
text origin: baseline, top, and bottom.

Baseline is the line on which the font places its characters. Some characters may
descend this line, like j, p, and y. Top means the origin is at the top of the font,
and bottom means the origin is at the bottom.

Figure 5.17 shows the three options. Each text is outlined to show its bounding
region, and the dot indicates the origin point (0,0) with a horizontal line. Notice

Figure 5.16 Rotated 45 Degrees from Origin

From the Library of sam kaplan

ptg

128 CHAPTER 5 CREATE USER INTERFACES

that the baseline option shows the origin at the baseline, the top option shows the
origin at the top, and the bottom at the bottom. Also, notice that each dot repre-
senting the origin is equidistant from each other; however, the placement of the
text is quite different.

The only difference between the three text nodes is the textOrigin variable.
The first one uses the default, which is TextOrigin.BASELINE, the second,
TextOrigin.TOP, and the third, TextOrigin.BOTTOM. When placing text on the
display, it is important to consider these settings.

The code for this example is shown in Listing 5.27.

Listing 5.27 Text Placement

var t1: Text;
var t2: Text;
var t3: Text;
 ...
 ...
 scene: Scene {

fill: Color.LIGHTGRAY
 content: VBox {
 translateX: 50
 translateY: 50
 spacing: 30
 content: [
 Group {

 content: [
 Line {

 endX: bind t1.boundsInParent.width
 stroke: Color.RED

 },

Figure 5.17 Text Origin Options

From the Library of sam kaplan

ptg

TEXT DISPLAY 129

 Rectangle {
 x: bind t1.boundsInParent.minX
 y: bind t1.boundsInParent.minY

 width:
 bind t1.boundsInParent.width

 height:
 bind t1.boundsInParent.height

stroke: Color.NAVY
 fill: Color.TRANSPARENT

 },
 Circle {
 radius: 4
 fill: Color.BLUE

 }
t1 = Text {

 font : Font {size : 24}

 content: "physics - Baseline"

 }

]
 },
 Group {

 content: [
 Line {
 ...

 },
 Rectangle {
 ...

 },
 Circle {
 ...

 }
 t2 = Text {

 font : Font {size : 24}

 textOrigin: TextOrigin.TOP

 content: "physics - Top"

 }

]
 },
 Group {

 content: [
 Line {
 ...

 },
 Rectangle {
 ...

 },
 Circle {
 ...

 }
continues

From the Library of sam kaplan

ptg

130 CHAPTER 5 CREATE USER INTERFACES

 t3 = Text {

 font : Font {size : 24}

 textOrigin: TextOrigin.BOTTOM

 content: "physics - Bottom"

 }

]
 },
]
 }
 }

Text Wrapping
There are several settings to control text wrapping. First, if we insert newline
characters into the content string, the display will present each line separately
(see Figure 5.18).

 Text {
 font: Font { size: 24 }

 x: 10,
 y: 30
 content: "Hello\nWorld"
 }

The next option is to set the wrapping width to justify the text between the mar-
gins as defined by the wrappingWidth variable (see Figure 5.19).

 Text {
 font: Font { size: 24 }

 x: 10,
 y: 30

 wrappingWidth: 150
 textAlignment: TextAlignment.JUSTIFY

 content:
 "Goodbye cruel World now is the time to leave thee"
 }

Figure 5.18 Wrapping with Newline Character

From the Library of sam kaplan

ptg

TEXT DISPLAY 131

Also, if we change the alignment to left, we get what is shown in Figure 5.20.

textAlignment: TextAlignment.LEFT

Using RIGHT alignment, we get what is shown in Figure 5.21.

textAlignment: TextAlignment.RIGHT

Figure 5.19 Wrapping Width with Justify Alignment

Figure 5.20 Wrapping Width with Left Alignment

Figure 5.21 Wrapping Width with Right Alignment

From the Library of sam kaplan

ptg

132 CHAPTER 5 CREATE USER INTERFACES

Font
One final topic is font. The easiest way to create a font is to use a javafx.scene
.text.Font object literal giving it a size and a font name.

var font = Font { name: "Lucida Grande Bold" size: 36 };
 font: Font { name: "Arial" size: 24 }
 font: Font { name: "Arial Bold" size: 12 }
 font: Font { name: "Book Antiqua Bold Italic" size: 14}
var defaultFont = Font {};

The font names vary per platform and the function Font.getFontNames()
retrieves the set of available names in the form of a sequence of string.

Programmer Tip: With JDK 1.6, it is possible to programmatically install your
own font. However, for JavaFX to know about these fonts, you need to register them
with Java before the first JavaFX font is created. Here is an example code fragment:

var fontResource = "{__DIR__)myFont.ttf";

var fontDef = fontRes.getClass().getResourceAsStream(fontRes);

var awtFont: java.awt.Font = if(fontDef != null) {
 java.awt.Font.creatFont(
 java.awt.Font.TRUETYPE_FONT, fontDef
);
 } else {
 null;
 };
if(awtFont != null) {
 // this requires JRE 1.6

 GraphicsEnvironment.getLocalGraphicsEnvironment().
 registerFont(awtFont);

}

This only works with True Type Fonts and only works with JDK 1.6. The other
option is to install the font into the JRE lib/fonts directory.

TextBox
The javafx.scene.control.TextBox class provides a means for user text input
and editing. An example of a TextBox is shown in Figure 5.22.

A TextBox can be editable or not using the editable Boolean variable and you
can specify the number of columns with the columns variable. Also, you can

From the Library of sam kaplan

ptg

TEXT DISPLAY 133

indicate that the entire text will be selected when the TextBox gains the focus,
using the selectOnFocus Boolean variable. In addition, you can specify an
action function that is invoked when an action is fired on the TextBox. Typi-
cally, this is done when the user presses the Enter key.

There are two variables that hold the text, text and value. On supported plat-
forms, the variable text is updated as the user types. The variable value is
updated when the user commits the changed text on the TextBox. Typically, this
is when the user presses the Enter key or changes focus.

The TextBox skin implements the visual appearance for the TextBox and Table 5.2
defines the CSS attributes that are supported by the TextBox skin. The only way
to change these from the default is to use one of the CSS style sheet mechanisms
previously discussed. You can either use a style sheet and give its URL location
to the Scene object, or include a style string using the TextBox’s style variable.

Figure 5.22 TextBox

Table 5.2 TextBox CSS Attributes

CSS Attribute JavaFX Attribute Type Default Value

padding-left paddingLeft Number 4

padding-top paddingTop Number 4

padding-bottom paddingBottom Number 4

padding-right paddingRight Number 4

border-radius borderRadius Number 0

border-width borderWidth Number 1

continues

From the Library of sam kaplan

ptg

134 CHAPTER 5 CREATE USER INTERFACES

The pseudo classes :hover, :pressed, :disabled, and :focused are supported for the
TextBox control.

Listing 5.28 shows how to create a TextBox.

Listing 5.28 javafx.scene.control.TextBox

Stage {
 title: "Text Box Example"
 scene: Scene {
 width: 200
 height: 200
 content: [
 TextBox {
 translateX: 50
 translateY: 50

 text: "Change Me"
 columns: 12

border-fill borderFill paint linear (0, 0) to (0, 4)
stops (0.0, #8d8e8f),
(0.75, #b3b3b),
(1.0, #b8b8b9);

background-fill backgroundFill paint linear (0, 1) to (0, 4)
stops (0.0, #cbcbcc),
(0.66, #f8f8f8),
(1.0, white);

text-fill textFill paint #0b1621;

selected-text-fill selectedTextFill paint #0b1621;

font font font 12pt Dialog;

focus-fill focusFill paint #73a4d1;

focus-size focusSize paint 1.4

caret-fill caretFill paint black

caret-stroke caretStroke paint black

highlight-fill highlightFill paint null;

Table 5.2 TextBox CSS Attributes (Continued)

CSS Attribute JavaFX Attribute Type Default Value

From the Library of sam kaplan

ptg

TEXT DISPLAY 135

 selectOnFocus: true
 style: "padding-left: 5; padding-right: 5; "

 "text-fill: navy; "
 "background-fill: skyblue; "
 "font: bold 14pt arial;"

 }
]
 }
}

In this example, we used the TextBox’s style variable to specify the visual
aspects for the TextBox.

JavaFX 1.2 Controls
With the release of JavaFX 1.2, many new controls have been added to the JavaFX
platform. Table 5.3 lists these. Because these new controls are just being finalized as
the book is going to press, please visit the book’s Web site, http://jfxbook.com,
for more detailed information.

Table 5.3 JavaFX Controls

Control Purpose

Button A simple push button.

CheckBox A tri-state selection control typically shown with a check mark.

ComboBox A control that allows one to pick from a list of pre-defined strings or
optionally enter a custom string.

Hyperlink An HTML-like text label that responds to rollovers and clicks.

Label A control useful for displaying text that is required to fit within a
specific space.

ListView A control to show a list of items that is scrollable.

ProgressBar A control to show progress.

ProgressIndicator An indicator to show the user that an operation is in progress.

RadioButton A ToggleButton that belongs to a group.

Slider A control that allows a user to adjust values within a range.

continues

From the Library of sam kaplan

http://jfxbook.com

ptg

136 CHAPTER 5 CREATE USER INTERFACES

Custom Controls
TextBox is a control—that is, it extends javafx.scene.control.Control and
has a companion class that is a Skin, javafx.scene.control.Skin. The advan-
tage of controls is that the Skin, or display characteristics, are separated from the
actual control. The other main advantage is that controls implement full style
sheet support including the pseudo classes :hover, :pressed, and :focused. Creat-
ing a custom control is easy.

First, create the Control by extending javafx.scene.control.Control. Within
this control, you need to assign a Skin to the skin variable inherited from
javafx.scene.control.Control. Let’s look at an example that creates a con-
trol for hypertext. HyperText is a Text-like object that displays text; when you
click it, some action is taken on a URL. This is similar to links in a Web page. If
the link has not been visited, the text is displayed in one color, and after it has
been visited, it is displayed in another color. Also, typically these links are
underlined. The beauty of using a Control is that all these appearance attributes
can be set using a style sheet.

The HyperText object extends Control and assigns a HyperTextSkin object to
its skin variable. This is detailed in Listing 5.29.

Listing 5.29 Custom Control

public class HyperText extends Control {
 public var url:String;
 public var content: String;
 public var action: function(url:String):Void;
 public var textOrigin: TextOrigin =

HyperTextSkin.defaultText.textOrigin;
 public var textAlignment: TextAlignment =

HyperTextSkin.defaultText.textAlignment;

 init {
 skin = HyperTextSkin{};
 }
}

ScrollBar A control that allows the user to control scrolling.

ToggleButton A control with a Boolean indicating whether it has been selected.

Table 5.3 JavaFX Controls (Continued)

Control Purpose

From the Library of sam kaplan

ptg

CUSTOM CONTROLS 137

The variable, url, holds the URL, content holds the displayed text, and action
is called when the user clicks on the text. The variables textOrigin and
textAlignment are used for the underlying Text object defined in HyperTextSkin.

The skin variable can either be assigned in the init block, or using an override
declaration on skin.

protected override var skin = HyperTextSkin {};

The only caution in using the override approach is that the Control may not
have been fully initialized when the Skin is created, thus certain values may not
be available to the Skin when it is first created.

The HyperTextSkin object has the bulk of the logic as shown in Listing 5.30.

Listing 5.30 Custom Skin

// used to get default values
package def defaultText = Text{};

public class HyperTextSkin extends Skin {
var hypertext : HyperText = bind control as HyperText;

 // Stylesheet settings
 public var wrappingWidth: Number =

 defaultText.wrappingWidth;
 public var underline: Boolean = true;
 public var overline: Boolean = defaultText.overline;
 public var strikethrough: Boolean =

 defaultText.strikethrough;
 public var unvisitedFill: Paint = Color.BLUE;
 public var visitedFill: Paint = Color.PURPLE;
 public var font = Font {};

 // local variables
 var text: Text;
 package var visited: Boolean = false;
 ...
 ...

The first item in the Skin is to declare a local variable that casts the control to the
specific type. This is just a convenience for later when we have to access vari-
ables from the HyperText control. The bind is necessary as the control may not
be set when this local variable is declared.

Second, there is a set of variables that can be set from the style sheet. These must
all be public and remember that a word with a capital letter within the variable

From the Library of sam kaplan

ptg

138 CHAPTER 5 CREATE USER INTERFACES

name is translated on the style sheet. For example, unvisitedFill is unvisited-fill
in the style sheet. Table 5.4 shows the available CSS properties for this control.

The last part of the Skin source is the actual creation of the node that will be dis-
played. This is similar to the CustomNode example; however, instead of returning
a node in the create() function, you actually have to assign the node to the
scene variable inherited from javafx.scene.control.Skin. Notice the mouse
handling for the enclosing rectangle. When the user does a mouse action over the
hypertext, this sets the corresponding variables on the Skin so that the CSS
pseudo variables, :focused, :hover, and :pressed, are operational. This is shown
in Listing 5.31.

Listing 5.31 Custom Skin – Node Creation

var enclosingRect: Rectangle;

protected override function requestFocus():Void {

 enclosingRect.requestFocus();

}

var _focus = bind enclosingRect.focused on replace {

 focused = _focus;

}

Table 5.4 HyperText CSS Attributes

CSS Attribute JavaFX Attribute Type

wrapping-width wrappingWidth Number

underline underline Boolean

overline overline Boolean

strikethrough strikethrough Boolean

unvisited-fill unvisitedFill paint

visited-fill visitedFill paint

font font font

:hover Boolean

:pressed Boolean

:focused Boolean

From the Library of sam kaplan

ptg

CUSTOM CONTROLS 139

init {
scene = Group {

 content: [
enclosingRect = Rectangle {

 translateX: bind text.layoutBounds.minX
 translateY:

 bind text.boundsInLocal.minY;
 width: bind text.layoutBounds.width
height: bind text.layoutBounds.height

 fill: Color.TRANSPARENT
 onMouseClicked: function(e) {

 visited = true;
 hypertext.action(hypertext.url);

 }
 onMouseEntered: function(e) {

 hover = true;
 }

 onMouseExited: function(e) {
 hover = false;

 }
 onMousePressed: function(e) {

 pressed = true;
 if(not control.focused and

 control.focusable)
 then control.requestFocus();

 }
 onMouseReleased: function(e) {

 pressed = false;
 }
 },
 text = Text {

 content: bind hypertext.content
 fill: bind if(visited)

 visitedFill else unvisitedFill
 wrappingWidth: bind wrappingWidth
 underline: bind underline

 overline: bind overline
 strikethrough: bind strikethrough
 content: bind hypertext.content

 textOrigin: bind
 if(hypertext.textOrigin != null)

hypertext.textOrigin
 else defaultText.textOrigin

 textAlignment: bind if
 (hypertext.textAlignment != null)

 hypertext.textAlignment
 else defaultText.textAlignment

 font: bind font
 }
]
 };
}

From the Library of sam kaplan

ptg

140 CHAPTER 5 CREATE USER INTERFACES

Developer Tip: The Rectangle shape encapsulates the Text object and allows
for the user to have a larger area to click the mouse. This area is the full width and
height of the entire text. If this Rectangle were not present, then the user would
have been restricted to clicking the mouse right over the painted parts of the indi-
vidual letters of the Text. For example, clicking inside the letter O would not
work; you would have to click on the black part of the letter O. Otherwise, the
mouse events would not be delivered to the HyperText object.

Shapes
The javafx.scene.shapes package contains numerous shape types. We have
already seen Rectangle and Circle in action in some of the previous examples.
The other shapes are Line, Arc, Ellipse, Polygon, CubicCurve, and QuadCurve.

Polygon
An example of a triangle using a polygon centered within the scene is shown in
the following code and in Figure 5.23.

Polygon {
 translateX: bind scene.width/2
 translateY: bind scene.height/2
 scaleX: 4
 scaleY: 4
 rotate: 45
 points: [0, -10, 10, 10, -10, 10, 0, -10]
 fill: Color.RED
}

Line
A line draws a line between two points (see Figure 5.24).

Figure 5.23 Triangle – Scaled 4 , Rotated 45 Degrees

From the Library of sam kaplan

ptg

SHAPES 141

Line {
 startX: 10 startY: 10
 endX: 100 endY: 100
 stroke: Color.RED
 strokeWidth: 2
}

Arc
An Arc draws a curved area between two points based on a radius, starting angle,
and length in degrees. The Arc type may be open, meaning the two end points
are not closed (see Figure 5.25); chord, meaning the end points are closed by
drawing a straight line between the two end points (see Figure 5.26); and round,
meaning the arc is closed by drawing straight lines to the center point of the
ellipse that contains the arc (see Figure 5.27).

Arc {
 centerX: 100 centerY: 100
 radiusX: 50 radiusY: 50
 startAngle: -45 length: 180
 type: ArcType.OPEN
 stroke: Color.RED
 strokeWidth: 2
 fill: null
}

Figure 5.24 Line

Figure 5.25 Arc – OPEN

From the Library of sam kaplan

ptg

142 CHAPTER 5 CREATE USER INTERFACES

Ellipse
An Ellipse shape is defined using a center point with radii for both the x and y
axis. The following listing shows how to create an ellipse centered at point 100,
50 with an x axis radius of 50 and a y axis radius of 10. This example creates an
outlined ellipse as shown in Figure 5.28. If you need to create a filled ellipse, you
can set the fill variable to a color or gradient.

Ellipse {
 centerX: 100 centerY: 50
 radiusX: 50 radiusY: 25
 stroke: Color.RED
 strokeWidth: 2
 fill: null
}

Figure 5.26 Arc – CHORD

Figure 5.27 Arc – ROUND

Figure 5.28 Ellipse

From the Library of sam kaplan

ptg

SHAPES 143

CubicCurve
A CubicCurve defines a cubic Bézier parametric curve segment used to model
smooth curves. The startX, startY, endX, and endY points mark the ends of the
curve. The variables controlX1, controlY1, controlX2, and controlY2 specify
the Bézier controls points that shape the curve. The following listing shows how
to create a curved line as shown in Figure 5.29. If you want a filled shape, set the
fill variable to a color or gradient.

CubicCurve {
 startX: 10 startY: 10
 endX: 100 endY: 100
 controlX1: 20 controlY1: 0
 controlX2: 80 controlY1: 110
 stroke: Color.RED
 strokeWidth: 2
 fill: null
}

QuadCurve
A QuadCurve defines a quadratic Bézier parametric curve segment. It is similar
to the CubicCurve, but it only uses one control point. The following listing shows
how to create a QuadCurve starting at point 10,20 and ending at point 100,100.
The control point is 75,0. The output for this curve is shown in Figure 5.30.

QuadCurve {
 startX: 10 startY: 20
 endX: 100 endY: 100
 controlX: 75 controlY: 0
 stroke: Color.RED
 strokeWidth: 2
 fill: null
}

Figure 5.29 CubicCurve

From the Library of sam kaplan

ptg

144 CHAPTER 5 CREATE USER INTERFACES

Paths
Paths let you draw arbitrarily complex shapes. There are two path shapes: Path
and SVGPath. Paths take a set of elements that draw the outline of a shape. The
Path may be either open or closed. The class javafx.scene.shape.Path takes a
set of PathElements, whereas SVGPath is built using a standard SVG Path encoded
string as defined at http://www.w3.org/TR/SVG/paths.html. The following exam-
ple shows a triangular shape with a circular chunk taken out of it (see Figure 5.31).

Path {
 translateX: 50
 translateY: 50
 fill: Color.RED
 elements: [
 MoveTo { x: 0 y: 0},
 LineTo { x: 100 y: 0 },
 ArcTo { x: 200 y: 0 radiusX: 25 radiusY: 20 },
 LineTo { x: 300 y: 0 },
 LineTo { x: 150 y: 100 },
 ClosePath{}
]
}

Figure 5.30 QuadCurve

Figure 5.31 Path Example

From the Library of sam kaplan

http://www.w3.org/TR/SVG/paths.html

ptg

JAVA SWING EXTENSION 145

Here is the same shape using an SVGPath, using a stroke color instead of a fill
(see Figure 5.32).

SVGPath {
 translateX: 50
 translateY: 50
 fill: Color.TRANSPARENT
 stroke: Color.RED
 content:
 "M0,0 L100,0 A25,20 0 0,0 200,0 L300,0 150,100z"
}

Programmer Tip: Remember when we discussed using a scene fill of either
null or Color.TRANSPARENT? Let’s reexamine this using the preceding shape.
Because the fill is Color.TRANSPARENT, when you click anywhere inside the shape,
the onMouseClicked function will be called if defined for the shape. However, if
you change the fill to null, now when you click inside the shape, there is no mouse
event generated for the shape. You have to click on the outlined stroke to generate
the event. Though both shapes look the same, there is a big difference when pro-
cessing mouse events. Either way is valid; it all depends on what you are trying to
do with mouse events for the shape.

Java Swing Extension
The javafx.ext.swing package contains numerous JavaFX classes that support
Java Swing components. It is important to note that the Swing extension is not
supported on all platforms, so if you use Swing extensions your application may
not run on a platform like JavaFX Mobile or JavaFX TV.

The Swing components supported are listed in Table 5.5.

Figure 5.32 SVG Path Example

From the Library of sam kaplan

ptg

146 CHAPTER 5 CREATE USER INTERFACES

All the JavaFX Swing classes also extend javafx.scene.Node, so they can be
added to a scene or other node container such as javafx.scene.Group. The
scene graph can freely intermix these nodes with non-Swing nodes.

All the JavaFX Swing classes extend javafx.scene.SwingComponent. This class
has an abstract function, createJComponent(): JComponent, that the subclass
uses to actually instantiate the corresponding Java Swing class. In addition, the
SwingComponent class has a function, getJComponent(): JComponent, that returns
the underlying javax.swing.JComponent object. This object can then be cast to
the specific Java Swing class. For example, when using a SwingTextField
object stored in the variable jtextfield:

var jtextfield = textfield.getJComponent() as JTextField;

Most of the JavaFX Swing classes implement a function that does this conver-
sion. For example, in SwingTextField there is a function, getJTextField():
JTextField, that does this.

If you have a Java class that extends JComponent, you can use that class in JavaFX
by wrapping it via the SwingComponent.wrap() function. For example,

Table 5.5 javafx.ext.swing to javax.swing class Mapping

javafx.ext.swing class javax.swing class

SwingButton javax.swing.JButton

SwingCheckBox javax.swing.JCheckBox

SwingComboBox javax.swing.JComboBox

SwingIcon javax.swing.Icon

SwingLabel javax.swing.JLabel

SwingList javax.swing.JList

SwingRadioButton javax.swing.JRadioButton

SwingScrollPane javax.swing.JScrollPane

SwingSlider javax.swing.JSlider

SwingTextField javax.swing.JTextField

SwingToggleButton javax.swing.JToggleButton

From the Library of sam kaplan

ptg

JAVA SWING EXTENSION 147

var myFXcomponent = SwingComponent.wrap(myJavaJComponent);

This merely allows the Swing component to participate in the JavaFX scene
graph, but does not provide any other functionality. For instance, you do not have
any mapping of your JComponent’s attributes with corresponding JavaFX vari-
ables, so you do not realize any benefits from binding. If you wish to go one step
further, you need to implement a Custom Swing Component.

Custom Swing Component
As we mentioned, all JavaFX Swing classes extend javafx.ext.swing.Swing-
Component. These classes then must implement the function, createJComponent()
: javax.swing.JComponent. This is easy enough, but what we really want to do
is connect the Java Swing class’s attributes to a JavaFX instance variable. Let’s
work through an example using the JTextArea class.

First, our class extends SwingComponent and implements the createJComponent()
method to create the Swing component object.

public class TextArea extends SwingComponent {
 override function createJComponent() : JComponent {
 new JTextArea();
 }
}

Next, add the helper function to cast the component returned by SwingComponent’s
getJComponent() function to a JTextArea.

public function getJTextArea() : JTextArea {
 getJComponent() as JTextArea;
}

Now, we are ready to add some attribute support. Let’s start with JTextArea’s
text attribute, which is of course the text that is displayed on the screen.

public var text:String;

This is not enough though. What happens if the user types into the JTextArea?
How does this field update? What if the program sets this value; how does the
JTextArea update? We need two more things. One is an on replace trigger so
that when the JavaFX text instance variable changes, a corresponding change is
made to the JTextArea. We will add an initialization to get the default value
from the JTextArea.

From the Library of sam kaplan

ptg

148 CHAPTER 5 CREATE USER INTERFACES

public var text:String = getJTextArea().getText() on replace {
 getJTextArea().setText(text);
};

Next, to update the JavaFX text variable, when the JTextArea text attribute
changes, we need to install a JavaBeans property change listener on the JTextArea.

init {
 var textArea = getJTextArea();
 textArea.addPropertyChangeListener(

 PropertyChangeListener {
 public override function propertyChange(

 ev: PropertyChangeEvent) : Void {
 var property = ev.getPropertyName();

if(property == "text") {
 text = textArea.getText();

 }
 ...

Now, whenever the JTextArea text changes, a JavaBeans property change
event will be fired, and the JavaFX corresponding instance variable can be set.

However, we have a problem. If the JavaFX program changes the JavaFX text
instance variable, it will in turn call the JTextArea.setText() method, which
causes the JavaBeans property change event to fire, which in turn sets the JavaFX
text instance variable. We are stuck in an infinite circle and eventually our pro-
gram will crash.

To overcome this, we need to add a flag indicating this condition to our JavaFX
class. This indicates that the JavaFX text variable change caused the property
change event to fire, so there is no need for the JavaBeans property change lis-
tener to update the companion JavaFX variable. We added the private Boolean
variable, inChange.

var inChange = false;

public var text:String = getJTextArea().getText()
 on replace {
 if(not text.equals(getJTextArea().getText())){

try {

 inChange = true;

getJTextArea().setText(text);

 }finally {

 inChange = false;

 }

 }
};
...

From the Library of sam kaplan

ptg

JAVA SWING EXTENSION 149

...
 textArea.addPropertyChangeListener(

 PropertyChangeListener {
 public override function propertyChange(

 rev:PropertyChangeEvent) : Void {
if(inChange) {

 return;

 }

 var property = ev.getPropertyName();
 if(property == "text") {
 text = textArea.getText();

...

...

This pattern can be repeated for any other Java attributes to JavaFX instance vari-
able mappings.

In Chapter 12, JavaFX Code Recipes, we will discuss this pattern in more detail.

You may have realized that a JTextField is usually shown in a JScrollPane
because the number of rows and columns may be more than the screen can accom-
modate; so we add one last tweak to our example. Instead of directly extending
javafx.ext.swing.SwingComponent, we extend javafx.ext.swing.Swing-
ScrollableComponent.

public class TextArea extends SwingScrollableComponent {

That’s it! Now, we have scroll bar support.

To use our text area class, just use an object literal just like any other JavaFX
node.

Stage {
 title: "TextArea custom component"
 width: 475
 height: 425
 scene: Scene {
 content: TextArea {

 text: "Enter data here!"
 columns: 40
 rows: 24
 lineWrap: true
 wrapStyleWord: true
 }
 }
}

The full example is on the book’s Web site, http://www.jfxbook.com.

From the Library of sam kaplan

http://www.jfxbook.com

ptg

150 CHAPTER 5 CREATE USER INTERFACES

Chapter Summary
JavaFX makes developing user interfaces straightforward and easy. By laying
out the scene graph nodes using JavaFX object literals, the JavaFX language sup-
ports a top-down view of the scene graph. This is more intuitive to the developer.
JavaFX also provides a robust set of user interface nodes and controls that facili-
tate developer productivity.

In this chapter, we discussed the stage, the scene, style sheets, JavaFX nodes,
creating custom nodes, layout options, and using Java Swing Components. This
all provides the foundation for creating rich user interfaces. Now we are ready to
delve into some really cool stuff. The next set of chapters cover topics from special
effects, animation, multimedia presentation, and creating RESTful applications.

From the Library of sam kaplan

ptg

151

6
Apply Special Effects

“You know, my dear
 My father used to say to me
 Nando, don’t be a schnook

 It’s not how you feel
 It’s how you look”

—Billy Crystal

Sometimes, the task of constructing modern Rich Internet Applications ends up
being more an exercise in integration and less a focus on what’s really important:
namely, creating interfaces that are intuitive and visually appealing. As part of an
ongoing project, development teams will need to enlist the talents of graphic
designers along with one or more graphics editing software packages. Addition-
ally, they may require experts intimate with the intricacies of 2D and 3D graph-
ics. Furthermore, someone well versed in a specific windowing platform (e.g.,
Java Swing) may be desired too.

One of the goals of the JavaFX platform is to increase the efficiency and ease by
which a certain class of images and effects can be introduced into an application.
Graphic designers will continue to perform the complex and interesting work
with their image editing software. But why not incorporate many of the more
common effects available in their toolbox right into the application platform? It
could ease the designer’s burden, and be a boon to developer productivity.

JavaFX offers, as an integral part of the platform, a wealth of effects, enabling
developers in many instances to duplicate in a few lines of JavaFX script, what
may have taken more effort with one of the popular graphics editing software
packages. These effects also serve as the same classes used by the JavaFX Pro-
duction Suite (i.e., Adobe Photoshop and Adobe Illustrator plug-ins) to import
graphics into a JavaFX application. This chapter will cover many of the built-in

From the Library of sam kaplan

ptg

152 CHAPTER 6 APPLY SPECIAL EFFECTS

effects that are available, and how they can be applied to your application to
make a more compelling visual experience. They include

• Shadowing including DropShadow, InnerShadow, and Shadow.

• Lighting including DistantLight, PointLight, and SpotLight.

• Gradients including LinearGradient and RadialGradient. Technically,
these do not belong to the effects package, but are used in a similar fash-
ion and are thus grouped with this chapter.

• Blurs including GaussianBlur and MotionBlur.

• Reflection.

• Blending including Blend and BlendMode.

• PerspectiveTransform.

• Glow.

• Bloom.

• DisplacementMap.

• Color Adjustment Effects including SepiaTone and ColorAdjust.

Effects
In the JavaFX node-centric approach, the library classes that are used to create
content (e.g., Text, Rectangle, ImageView, CustomNode, etc.) are all ultimately
derived from the javafx.scene.Node class. As a result, they all share a set of
common instance variables defined by Node, one of the most important being a
variable called effect. By assigning a value to an instance’s effect variable,
you, in essence, apply an effect to that object.

The JavaFX runtime, by default, contains packages and classes under the
javafx.scene.effect hierarchy, which represent the range of available effects that
can be applied. They include, among others, classes for 2D and 3D lighting,
blurring, shadowing, color adjusting, blending, glowing, toning, inverting,
reflecting, blooming, and flooding operations. They are suitable for those of us
who are not artistically inclined and offer an alternative in many cases to utiliz-
ing sophisticated image manipulation software.

In an effort to expose you to as many of the classes as possible, we’ll spend a
good part of this chapter applying individual effects first to simple shapes and
later on to images and see how their appearance changes. It should, at minimum,
serve as a reference for how to use a particular effect. Of course in the real world,
you’ll likely want to combine a host of effects together. So let’s get started.

From the Library of sam kaplan

ptg

EFFECTS 153

Shadowing
Adding a shadow to content is likely one of the things that you’ll want to per-
form regularly. To help make the task of showing straightforward, JavaFX has
seen fit to include the Shadow, DropShadow, and InnerShadow effects. To demon-
strate their usage, we’ll first display some simple text as a baseline and see what
happens as various permutations of the effects are applied. Figure 6.1 displays a
simple Text node.

It is represented by the following code:

import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.paint.*;
import javafx.scene.text.*;

Stage {
 width: 250
 height: 100
 scene: Scene {
 content: [
 Text {
 font: Font {
 size: 32
 }
 x: 15, y: 40

 fill: Color.DARKRED
 content: "JavaFX effects"

 }
]
 }
}

DropShadow
The first effect we’ll investigate is DropShadow, which enables you to render a
shadow behind your content. Most effects provide one or more instance variables
that allow you to control the visual appearance of the effect. For example, the
DropShadow class provides five such variables, as described in Table 6.1.

Figure 6.1 Initial Baseline Text

From the Library of sam kaplan

ptg

154 CHAPTER 6 APPLY SPECIAL EFFECTS

It is not necessary to define all of these variables each time you want to use
DropShadow, as they default to values that you may find acceptable. As we run
through examples of other effects, explaining each of the instance variables in
detail would result in a very lengthy and cumbersome chapter. Instead, we’ll
stick to easy-to-understand sample usages and suggest that for additional detail,
you consult the JavaFX API documentation.

So let’s apply a DropShadow effect to our sample code. To do so, only two easy
insertions are required. The first involves letting the compiler know that the JavaFX
effects classes will be brought into play. This is done by including the following
import statement alongside your other imports:

import javafx.scene.effect.*;

Next, comes the more interesting modification of setting the Text node’s effect
instance variable. So, for example, if you want to add a DropShadow effect to the
Text node referenced earlier, the effect instance variable could look something
like

effect: DropShadow { offsetX: 3, offsetY: 3 }

Listing 6.1 shows the code for the original Text node enhanced to include a
DropShadow effect, where the shadow offset is 3 pixels in the x and y direction.
The remaining unreferenced instance variables of the DropShadow effect are
assigned their default value.

Table 6.1 Instance Variables for DropShadow

Variable Description
Default
Value

Min
Value

Max
Value

color The color of the shadow BLACK n/a n/a

offsetX The offset (in pixels) in the x direction 0.0 n/a n/a

offsetY The shadow offset (in pixels) in the y
direction

0.0 n/a n/a

radius The radius of the shadow blur in pixels 10.0 1.0 63.0

spread The spread of the shadow 0.0 0.0 1.0

From the Library of sam kaplan

ptg

EFFECTS 155

Listing 6.1 Adding a DropShadow to a Text Node

import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.paint.*;
import javafx.scene.text.*;
import javafx.scene.effect.*;

Stage {
 title: "DropShadow"
 width: 250
 height: 100
 scene: Scene {
 content: [
 Text {
 font: Font {
 size: 32
 }
 x: 15, y: 40

 fill: Color.DARKRED
 content: "JavaFX effects"

effect: DropShadow {

 offsetX: 3

 offsetY: 3

 }

 }
]
 }
}

Figure 6.2 depicts what would be displayed if the code in Listing 6.1 were to be
compiled and executed.

Figure 6.3 demonstrates how, by changing the values of the instance variables of
DropShadow, you can achieve different shadow effects.

Figure 6.2 Text with DropShadow

From the Library of sam kaplan

ptg

156 CHAPTER 6 APPLY SPECIAL EFFECTS

InnerShadow
Similar to DropShadow, InnerShadow instead renders a shadow inside, rather
than behind the content. It has the same instance variables as DropShadow, and
introduces one other called choke, which gives additional control over the
shadow effect. This time, we’ll do our rendering on a Rectangle node to demon-
strate how InnerShadow might be used. The following chunk of code demonstrates
how a Rectangle instance might use InnerShadow.

Rectangle {
 x: 10, y: 10
 width: 200, height: 100
 arcWidth: 20, arcHeight: 20
 fill: Color.GRAY

effect: InnerShadow { offsetX: 3, offsetY: 3 }

}

Figure 6.4 displays what the content would look like.

Shadow
The last of the built-in shadow effects is Shadow, which can be used to create a
shadowy version of the original content. For example, if we replace the Drop-
Shadow effect found in Listing 6.1 with

effect: DropShadow { effect: DropShadow {
 offsetX: 3 offsetX: 5
 offsetY: 15 offsetY: 20
 } radius: 3

 }

Figure 6.3 Two Different DropShadow Instances

Figure 6.4 An Example Applying the InnerShadow Effect on a Rectangle Node

From the Library of sam kaplan

ptg

EFFECTS 157

effect: Shadow { radius: 10 }

the resulting output would look like Figure 6.5.

Here, we see that the content becomes the shadow without including the original
pre-effect text. Using Shadow, we could mimic the DropShadow effect seen in
Figure 6.2 by including two Text nodes, one using the Shadow effect with the x
and y coordinates offset by 3 pixels, the other node just displaying the text at the
original coordinates. Nodes are displayed in the order they appear in the code, so
the node with the Shadow effect must appear before the plain Text node. Here’s
how the JavaFX code segment would look:

Stage {
width: 250
 height: 100
 scene: Scene {
 var xStart = 15;
 var yStart = 40;
 content: [

Text {

 font: Font {

 size: 32

 }

 x: xStart+3, y: yStart+3

 content: "JavaFX effects"

 effect: Shadow { radius: 10 }

 }

 Text {

 font: Font {

 size: 32

 }

 x: xStart, y: yStart

 fill: Color.DARKRED

 content: "JavaFX effects"

 }

]
 }
}

Figure 6.5 An Example of the Shadow Effect on Text

From the Library of sam kaplan

ptg

158 CHAPTER 6 APPLY SPECIAL EFFECTS

Lighting
The shadowing effects mentioned in the previous section represent one of many
options available that can be used to give ordinary two-dimensional objects a
three-dimensional look and feel. Another technique found in the JavaFX toolbox
is lighting. The Lighting effect introduces a configurable light source that can
be shone onto your content to produce a sense of depth. To use lighting, you
must assign your content’s effect variable with an instance of the javafx
.scene.effect.Lighting class. Let’s elaborate by offering up a straightfor-
ward example. The code snippet that follows shows how a Lighting effect can
be added to a Rectangle.

Rectangle {
 width: 150,
 height: 100
 fill: Color.WHITE

effect: Lighting {

 light: PointLight {

 x: 0, y: 200, z: 35

 }

 }

}

To be of any real use, the Lighting object literal needs to, at minimum, define
its light instance variable. Derived from the base javafx.scene.effect
.light.Light class, JavaFX provides three lighting effects, out of the box, for
this purpose. Table 6.2 describes these lighting effects.

Like many of its relatives, the lighting effects come along with a good deal of
configurable parameters. Instead of regurgitating verbatim what is already in the

Table 6.2 Lighting Effects

Lighting Effect Description

DistantLight Represents a distant light source by defining an azimuth and elevation in
degrees relative to the content.

PointLight Demonstrated above, defines a light source in 3D space with x, y, and z
coordinates.

SpotLight A subclass of PointLight, in addition to defining a light source in 3D
space, SpotLight allows for configuration of the light source’s direc-
tion and focus.

From the Library of sam kaplan

ptg

EFFECTS 159

JavaFX API documentation, we’ll show a few example usages and suggest again
that the API documentation is the definitive source for further details. It turns out
that using text, with all its nooks and crannies, shows off the capabilities of light-
ing quite nicely. For example, Listing 6.2 is a complete code listing for display-
ing text with a DistantLight effect.

Listing 6.2 Displaying Text with a DistantLight Effect

import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.effect.*;
import javafx.scene.effect.light.*;
import javafx.scene.paint.*;
import javafx.scene.shape.*;
import javafx.scene.text.*;

function run() : Void {
 Stage {
 scene: Scene {
 var text:Text;
 content: [
 Rectangle {
 width: bind

 text.layoutBounds.width + 30
 height: bind

 text.layoutBounds.height + 20
 fill: Color.BLACK

 },
 text = Text {

x: 10, y: 10, textOrigin: TextOrigin.TOP
 content: "DistantLight"
 fill: Color.YELLOW
 font: Font {
 size: 72

 }
effect: Lighting {

 light: DistantLight {

 azimuth: 90

 elevation: 45

 }

 }

 }
]
 }
 }
}

From the Library of sam kaplan

ptg

160 CHAPTER 6 APPLY SPECIAL EFFECTS

In addition to specifying a Text node with a DistantLight effect, Listing 6.2
also includes a black Rectangle node, which serves as a background to better
contrast the lighting effect. By wrapping the content inside a run() function as
defined in the preceding code, you can use the Design Preview feature of Net-
Beans to make changes to your code and interactively see how those changes
affect your display.

Figure 6.6 shows what is produced when the code in Listing 6.2 is compiled and
executed.

For our next two lighting examples, we’ll use the same basic content, a Text
node inside a black Rectangle; this time changing the text string and the light-
ing effect to see how the rendering of the image is affected. Figure 6.7 illustrates
an instance of PointLight being applied to text. The light source for
PointLight has an (x,y,z) coordinate of (0, -500, 100).

As part of the demonstration, an additional instance variable that can be utilized
with PointLight, called surfaceScale, is assigned a value of 5. The range of

Adding a run() Function to Your Source Files
It is not uncommon for Java programmers to add main() methods inside their class
definitions. Even though many individual classes are never meant to be run by
themselves, including a main() method gives the developer an opportunity to test
and debug a class separate from the whole application. JavaFX has a somewhat
analogous capability with the run() function. By placing a run() function at the
script level in your source, which follows this form:

function run() : Void {
 //Put your code here
}

you’ll have the ability to quickly modify and visualize whatever content appears
inside the body of the function by using the Design Preview capability within Net-
Beans. Listing 6.2 contains a sample run() function.

Figure 6.6 Demonstrating a Text Node with a DistantLight Lighting Effect

From the Library of sam kaplan

ptg

EFFECTS 161

acceptable values for this variable is from 0 to 10, the default value being 1.5.
The PointLight effect for Figure 6.7 looks like this in JavaFX:

effect: Lighting {
 light: PointLight {
 x: 0 y: -500 z: 100
 }
 surfaceScale: 5
}

Finally, as SpotLight extends PointLight, it takes in the same instance vari-
ables as its parent and adds a few extras including the ability to define a vector—
a light source direction—in 3D space. SpotLight also lets you set the value of a
variable called specularExponent, which controls the focus of the light source and
accepts a value from 0 to 4. Figure 6.8 shows one example of how a SpotLight
effect can be applied to text.

In this case, the light source has been directed toward the end of the text, by vir-
tue of assigning the pointsAtX, pointsAtY, and pointsAtZ instance variables to
(400, 0, 0). This causes the dim letters at the beginning of the text. The preceding
effect is represented in JavaFX as follows:

effect: Lighting {
 light: SpotLight {
 x: 0 y: 150 z: 40
 pointsAtX: 400 pointsAtY: 0 pointsAtZ: 0
 specularExponent: 4
 }
 surfaceScale: 5
}

Figure 6.7 Demonstrating a Text Node with a PointLight Lighting Effect

Figure 6.8 Demonstrating a Text Node with a SpotLight Lighting Effect

From the Library of sam kaplan

ptg

162 CHAPTER 6 APPLY SPECIAL EFFECTS

Gradients
Gradients, as defined by the W3C Scalable Vector Graphics Specification, “con-
sist of continuously smooth color transitions along a vector from one color to
another” (http://www.w3.org/TR/SVG/pservers.html). Once defined, a gradient
can be used as a fill pattern for graphical content. It could be a simple transition
from one color to another, or it may involve multiple transitions and multiple
colors. JavaFX mimics the functionality stated in the SVG spec by implementing
classes that represent the two types of SVG gradients: LinearGradient and
RadialGradient.

Technically, gradients do not belong to the built-in effects subclasses. It just so
happens though that they are oftentimes used to produce effects similar to those
discussed throughout this chapter. For this reason we include gradients here. Our
samples that follow demonstrate, for example, how gradients can be used to
make shapes look more three dimensional.

In keeping with our policy, we’ll explain by example. Let’s say you want to ren-
der a rectangle where the fill pattern starts out as white on the left side and tran-
sitions to black on the right. The rectangle might look something similar to what
is seen in Figure 6.9.

Isolating the JavaFX script code, which describes the rectangle and this particu-
lar fill pattern, would look like this:

Rectangle {
 x: 10, y: 10
 width: 250, height: 50
 stroke: Color.BLACK

fill: LinearGradient {

 proportional: true

 startX: 0.0, startY: 0.0, endX: 1.0, endY: 0.0

 stops: [

 Stop {offset: 0.0 color: Color.WHITE},

 Stop {offset: 1.0 color: Color.BLACK}

]

 }

}

Figure 6.9 A Rectangle Filled with a LinearGradient

From the Library of sam kaplan

http://www.w3.org/TR/SVG/pservers.html

ptg

EFFECTS 163

Let’s dissect what’s taking place here. First, gradients do not operate on the
effect instance variable. Rather, they are assigned to the content’s fill
instance variable. As mentioned, gradients are not part of the javafx.scene.effect
package, but instead they belong to javafx.scene.paint.

The stops variable is a sequence used for defining the overall gradient effect.
Within the sequence, a series of Stop instances are used to describe individual
transitions. Its offset variable, ranging in value from 0 to 1, describes where,
within the content, this gradient should be placed, 0.0 being the beginning of the
content, 1.0 being the end, 0.33 being approximately a third of the way in, and so
on. Alongside the offset variable, a Stop instance should also specify the
color too. In our preceding example, we, in effect, define the simplest of transi-
tions, a beginning Stop (offset is set to 0.0) with a white color, and an end Stop
(offset 1.0) set to black. With this information, the JavaFX runtime will fill in the
content interpolating all of the colors in between the stops.

Lastly, in our example, the gradient was defined with the proportional variable
set to true. By doing so, the start and end coordinates are defined relative to the
shape where, again, 0.0 specifies the beginning of the shape, 1.0 specifies the
end. By setting proportional to false instead, the start and end points would
have to be defined in absolute pixels.

LinearGradient
Sticking with our 3D theme, gradients, among many other uses, could be
employed to add perspective to content. Let’s see how a LinearGradient can be
applied to an ordinary shape to make it look more realistic. First, we’ll combine
two simple shapes together, a triangle and an ellipse, to create a cone. Figure
6.10 displays the particulars; later on we’ll supply the complete code.

The resulting cone uses a class called ShapeIntersect, which is part of the
javafx.scene.shape package, to construct one logical shape from a number of
previously independent ones. The ShapeIntersect a[] instance variable forms
a union of the shapes included in the sequence—in this case a triangle and an
ellipse—while the b[] sequence (not used in this example) could be used to add
additional shapes that are intersected with a[] to form yet a more complex shape.
The big advantage of using ShapeIntersect here is that you can apply an effect
to the entire object, rather than having to do so on each individual component.

From the Library of sam kaplan

ptg

164 CHAPTER 6 APPLY SPECIAL EFFECTS

Let’s add a LinearGradient to the entire cone. The code describing our desired
fill pattern looks like this:

fill: LinearGradient {
 startX: 30, startY: 190
 endX: 190, endY: 170
 proportional: false
 stops: [
 Stop { offset: 0.0 color: Color.PURPLE },
 Stop { offset: 0.5 color: Color.WHITE },
 Stop { offset: 1.0 color: Color.PURPLE },
]
}

This time, we set the proportional instance variable to false and use pixel coor-
dinates to specify the start and stop locations. To give a realistic perspective to
the cone, the LinearGradient is centered slightly to the right of the cone tip,

Polygon { Ellipse { ShapeIntersect {
 points : [centerX: 85 fill: Color.PURPLE
 10, 190 centerY: 190 a: [
 80, 10 radiusX: 75 Polygon {
 160, 190 radius: 20 points: [
] fill: Color.PURPLE 10, 190
 fill: Color.PURPLE } 85, 10
} 160, 190

]
 }
 Ellipse {
 centerX: 85
 centerY: 190
 radiusX: 75
 radiusY: 20
 }
]

Figure 6.10 Combining Two Basic Shapes Together to Form a Cone

From the Library of sam kaplan

ptg

EFFECTS 165

and its angle is not vertical, but to some extent diagonal. A third Stop is included
in the stops sequence, to add gradient transitions from purple to white back to
purple again. Figure 6.11 shows the rendered cone.

Combining all of the snippets together, Listing 6.3 contains the complete set of
code required to generate the image found in Figure 6.11.

Listing 6.3 A Cone with a LinearGradient

import javafx.stage.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.paint.*;
import javafx.scene.shape.*;

function run(args : String[]) : Void {
 Stage {
 scene: Scene {
 width: 170
 height: 220

content: ShapeIntersect {
 fill: LinearGradient {

 startX: 30, startY: 190
 endX: 190, endY: 170

 proportional: false
 stops: [

 Stop {
 offset: 0.0

 color: Color.PURPLE
 },

continues

Figure 6.11 Adding a LinearGradient to a Compound Shape

From the Library of sam kaplan

ptg

166 CHAPTER 6 APPLY SPECIAL EFFECTS

 Stop {
 offset: 0.5

 color: Color.WHITE
 },

 Stop {
 offset: 1.0

 color: Color.PURPLE
 },
]
 }
 a: [

 Polygon {
 points: [
 10, 190,
 85, 10,
 160, 190

]
 }

 Ellipse {
 centerX: 85, centerY: 190
 radiusX: 75, radiusY: 20

 }
]
 }
 }
 }
}

RadialGradient
A LinearGradient can be employed to augment the appearance of a shape,
making it look more 3D-like. However, it is only effective for a certain class of
objects. For example, if you want to add some perspective to a circle to make it
look more sphere-like, using LinearGradient would likely not result in a very
realistic image. You could make use of the RadialGradient class. Rather than
filling shapes with linear patterns, a RadialGradient gives you a way to fill con-
tent with circular or radial patterns. Here’s a segment of code demonstrating the
use of RadialGradient with a Circle node.

Circle {
 centerX: 100, centerY: 60
 radius: 50
 fill: RadialGradient {
 centerX: 125, centerY: 45,
 radius: 50
 proportional: false

From the Library of sam kaplan

ptg

EFFECTS 167

 stops: [
 Stop {offset: 0.0 color: Color.WHITE},
 Stop {offset: 1.0 color: Color.DARKORANGE},
]
 }
}

A RadialGradient is typically instantiated by defining a center (x,y) point and a
radius size. Like its LinearGradient cousin, a RadialGradient gives the devel-
oper the choice of either using absolute or relative coordinates as defined by the
proportional instance variable. In the preceding case, absolute coordinates are
used where the center of the gradient appears in the upper-right quadrant of the
circle, giving the illusion of a light source shining down on the upper-right part
of a sphere. Executing the preceding code within an appropriate stage and scene
results in an image depicted in Figure 6.12.

Blurs
The ability to blur your content is available in JavaFX via the GaussianBlur and
MotionBlur effects.

GaussianBlur
The GaussianBlur effect defines one primary instance variable, radius, which
is used to specify the extent of the blur in pixels. Of its many possible uses,
GaussianBlur could serve as yet another mechanism for shadowing. Let’s see
how we might use it to add a shadow to our cone image. First, create a simple tri-
angle, which is shown in Figure 6.13.

Figure 6.12 Adding a RadialGradient to a Circle to Make It Look Like a Sphere

Figure 6.13 A Simple Triangle

From the Library of sam kaplan

ptg

168 CHAPTER 6 APPLY SPECIAL EFFECTS

Then, apply a GaussianBlur effect to the triangle as demonstrated in Figure 6.14.

Here’s the JavaFX code snippet.

Polygon {
 points : [
 10, 190,
 10, 110
 150, 190
]
 fill: Color.BLACK
 effect: GaussianBlur { radius: 15 }
}

Finally, let’s add this shape to our cone found in Figure 6.11 to produce the
image displayed in Figure 6.15.

MotionBlur
MotionBlur allows you to employ a blur effect in a particular direction, in
essence, simulating motion. This can be brought about by adding an instance
variable, called angle, which is stated in degrees, to control the direction of the
blur. The following block of code defines a series of chevron shapes in succes-

Figure 6.14 GaussianBlur Applied to Triangle

Figure 6.15 Cone with GaussianBlur Shadow

From the Library of sam kaplan

ptg

EFFECTS 169

sion, and applies a MotionBlur effect giving the appearance that the chevrons
are moving quickly to the right.

Scene {
 var numChevrons = 8;
 height: 50
 width: (numChevrons+2)*20
 content: [
 Group {

effect: MotionBlur { radius: 12 angle: 0 }

 content: for (i in [0..numChevrons]) {
 Polyline {

 points: [10+i*20, 10,
 25+i*20, 25,
 10+i*20, 40]

 strokeWidth: 4
 stroke: Color.RED

 }
 }
 }
]
}

Figure 6.16 portrays what our chevron shapes look like before and after the
MotionBlur effect, which is in bold in the preceding code, is applied to them.

Reflection
JavaFX comes equipped with an effect called Reflection, which, as its name
implies, renders a mirror image of your content below the original image. So, if
you want to add a reflection effect to the sphere represented by Figure 6.12, you
could do so with this single line of JavaFX code:

 effect: Reflection { fraction: .75, topOffset: 3 }

This object literal defines two of Reflection’s instance variables. The fraction
variable represents what percentage of the original image is reflected below the
original image, in our case, 75%. The second variable, topOffset, defines
where, in numbers of pixels, the reflection effect should begin below the content.
Figure 6.17 shows what happens to our sphere when the effect is added to it.

Figure 6.16 Chevron PolyLine Shapes Before and After a MotionBlur Effect Is Applied

From the Library of sam kaplan

ptg

170 CHAPTER 6 APPLY SPECIAL EFFECTS

Blending
Blending enables you to combine two inputs together to form a composite output
by selecting one of the predefined BlendModes. The JavaFX API spells out
approximately 20 of these; we’ll demonstrate a few with straightforward exam-
ples so that you get a feel for how blending can be used in practice.

For our first sample, we’ll compare and contrast the ADD and MULTIPLY BlendModes
by intersecting a magenta-filled rectangle with some green-colored text. The
rationale for choosing these two colors will become apparent as we differentiate
between ADD and MULTIPLY, which are described in Table 6.3.

Listing 6.4 demonstrates how to blend two inputs together using the ADD BlendMode.

Listing 6.4 Demonstrating BlendMode.ADD

import javafx.scene.shape.*;
import javafx.scene.paint.*;

Figure 6.17 Sphere with Reflection Effect

Table 6.3 ADD and MULTIPLY BlendModes

BlendMode Description

ADD The individual color components (R, G, B) and alpha value (transparency)
are added together to form new component values. In the case where the
sum of any component exceeds the maximum component value, it is capped
to the maximum value.

MULTIPLY The individual color components (R, G, B) and alpha value (transparency)
are multiplied together to form new component values. In the case where the
product of any component exceeds the maximum component value, it is
capped to the maximum value.

From the Library of sam kaplan

ptg

EFFECTS 171

import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.effect.*;
import javafx.scene.text.*;

Stage {
 scene: Scene {
 width: 150
 height: 150
 content: [
 Group {

blendMode: BlendMode.ADD

 content: [
 Rectangle {
 x: 35 y: 50
 width: 75 height: 50
 fill: Color.rgb(255, 0, 255, 1)

 }
 Text {

 font: Font {
 size: 52

 }
 x: 5, y: 95
 content: "Blend"

 fill: Color.rgb(0, 255, 0 , 1)
 }
]
 }
]
 }
}

Figure 6.18 displays the resulting output.

Figure 6.18 BlendMode.ADD Effect

From the Library of sam kaplan

ptg

172 CHAPTER 6 APPLY SPECIAL EFFECTS

The resulting image shows, even in grayscale, that the text appearing inside the
rectangle is white. This happens because the rectangle color, specified in (R, G, B),
is (255, 0, 255), whereas the text has a color of (0, 255, 0). If we add each of the
individual components up, we get a resulting color of (255, 255, 255).

For our next example, we’ll make one small code change to Listing 6.4 to dem-
onstrate a different BlendMode effect. Replace the BlendMode.ADD occurrence
with BlendMode.MULTIPLY as follows:

blendMode: BlendMode.MULTIPLY

Figure 6.19 shows the result.

This time, the text enclosed within the rectangle is black. Why? Because the
individual color components are multiplied with one another rather than added.
The resulting (R, G, B) color is now (0, 0, 0).

For our next example, we’ll utilize the Blend effect to demonstrate two addi-
tional BlendModes. Blend includes, among others, two instance variables called
topInput and bottomInput which, as their names imply, let you identify both
top and bottom inputs, respectively, for blending. We’ll specify the topInput
variable to show how the SRC_OUT and SRC_IN BlendModes can be used and how
they differ.

Our code for this segment furthermore introduces a new effect called Flood,
which “floods” a rectangular region with an effect denoted by its paint instance
variable (in this case, a LinearGradient instance). This could be used as a poten-
tially more efficient alternative to rendering a Rectangle. Before showing the
listing and the resulting output, Table 6.4 describes the available SRC BlendModes.

Just in case you’re a little confused by the descriptions, let’s show how an exam-
ple usage of SRC_OUT might be coded. Listing 6.5 has the specifics.

Figure 6.19 BlendMode.MULTIPLY Effect

From the Library of sam kaplan

ptg

EFFECTS 173

Listing 6.5 Demonstrating SRC_OUT BlendMode

import javafx.scene.shape.*;
import javafx.scene.paint.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.effect.*;
import javafx.scene.text.*;

Stage {
 scene: Scene {
 width: 160 height: 80
 content: [
 Text {

 effect: Blend {
 mode: BlendMode.SRC_OUT
 topInput: Flood {

 paint: LinearGradient {
 proportional: true
 startX: 0.0, startY: 0.0
 endX: 1.0, endY: 0.0

 stops: [
 Stop {
 offset: 0.0

 color: Color.WHITE
 },
 Stop {
 offset: 1.0

 color: Color.BLACK
 }

]
 }

continues

Table 6.4 SRC BlendModes

BlendMode Description

SRC_ATOP The part of the top input that is lying inside the bottom input is blended
with the bottom input

SRC_IN The part of the top input that is lying inside the bottom input is kept inside
the resulting image

SRC_OUT The part of the top input that is lying outside the bottom input is kept
inside the resulting image

SRC_OVER The top input is blended over the bottom input

From the Library of sam kaplan

ptg

174 CHAPTER 6 APPLY SPECIAL EFFECTS

 width: 100 height: 25
 x: 30 y: 25

 }
 }
 x: 10 y: 55

 content: "Blend"
font: Font.font(null, FontWeight.BOLD,

FontPosture.REGULAR, 48);
 }
]
 }
}

Figure 6.20 displays the output generated by executing the code found in Listing 6.5.

Figure 6.21 shows what happens when the SRC_OUT BlendMode found in Listing
6.5 is replaced with SRC_IN as represented by the following line of code:

mode: BlendMode.SRC_IN

PerspectiveTransform
Thus far, the effects examples in this chapter revolved around basic shapes,
neglecting a whole universe of content available to JavaFX in the form of
images. For the remainder of this chapter, we’ll switch gears and use images
rather than shapes to demonstrate that effects can be applied to this type of con-
tent in the same fashion.

Figure 6.20 BlendMode.SRC_OUT Effect

Figure 6.21 BlendMode.SRC_IN Effect

From the Library of sam kaplan

ptg

EFFECTS 175

The first of these effects, PerspectiveTransform, gives us a mechanism to ren-
der an artificial 3D effect to content that is otherwise two-dimensional. It is
accomplished by mapping the original content to an arbitrary four-sided polygon
to provide perspective. The instance variables that must be defined represent the
(x,y) coordinates of the new polygon, namely the upper-left (ulx, uly), upper-
right (urx, ury), lower-left (llx, lly), and lower-right (lrx, lry) corners. Let’s
begin with an image as shown in Figure 6.22.

Let’s apply a PerspectiveTransform on it, using this code:

ImageView {
 image: Image {
 url: "{__DIR__}liberty.jpg"
 }

effect: PerspectiveTransform {

 ulx: 10 uly: 50

 urx: 200 ury: 10

 llx: 10 lly: 100

 lrx: 200 lry: 160

 }

}

The resulting image is transformed into the output displayed by Figure 6.23.

Figure 6.22 Base Image Before PerspectiveTransform

Figure 6.23 Base Image After PerspectiveTransform Has Been Applied

From the Library of sam kaplan

ptg

176 CHAPTER 6 APPLY SPECIAL EFFECTS

Glow and Bloom
The Glow and Bloom effects are comparable in function and usage. In this sec-
tion, we’ll supply examples of both, ultimately contrasting the subtle differences
that Glow and Bloom provide for the JavaFX developer.

Glow
To show the Glow effect, we’ll borrow an idea from our sample Sudoku applica-
tion. While playing the Sudoku game, when you click on a space on the board,
the number inside that space will glow for the duration of the mouse click. So
applying a Glow effect to one of the numbers, which are represented as images, is
as easy as this:

ImageView {
effect: Glow { level: .9 }

 image: Image {
 url: "{__DIR__}8-bold.png"
 }
}

The level instance variable that is part of Glow is responsible for setting the
intensity of the glow effect. It takes a number ranging in value from 0 to 1. Fig-
ure 6.24 shows what the number image looks like under normal conditions and
how it appears when a Glow effect with intensity level .9 is applied.

To provide slightly more context within the Sudoku application, the Glow effect
is achieved by catching and handling the mouse events that occur on the node
represented by the board space. When the mouse is pressed on a space, a Glow
effect is assigned to the image occupying that space. When the mouse is
released, the effect is taken away. The onMousePressed and onMouseReleased
handlers of the Sudoku SpaceNode look as follows:

override var onMousePressed = function(me : MouseEvent)

: Void {
me.node.effect = Glow { level: 0.9 };

}

Figure 6.24 Before and After a Glow Effect Has Been Applied

From the Library of sam kaplan

ptg

EFFECTS 177

override var onMouseReleased = function(me : MouseEvent)
: Void {

me.node.effect = null;

}

Bloom
Very similar to Glow, instead of operating on the entire image, the Bloom effect
focuses on the brighter aspects of an image and makes them appear to glow. The
primary instance variable associated with Bloom is called threshold and can be
assigned a value between 0 and 1. Here’s how it might be applied to a sample
image with embedded text:

Group {
effect: Bloom { threshold: .9 }

 content: [
 ImageView {
 image: Image {

 width: 250, height: 166
 url: "{__DIR__}flower.jpg"

 }
 },
 Text {
 font: Font {
 size: 28

 embolden: true
 }
 x: 70, y: 22

 content: "Bloom .9"
 fill: Color.WHITE

 }
]
}

Figure 6.25 depicts three separate images and the subtle differences that result as
the Glow and Bloom effects are utilized. The first image is rendered with no effects;
the second includes a Glow effect and the third a Bloom effect. Again, the original
images are in color. Rendering them in grayscale here may further reduce the details.

Figure 6.25 Applying Glow and Bloom Effects to an Image

From the Library of sam kaplan

ptg

178 CHAPTER 6 APPLY SPECIAL EFFECTS

DisplacementMap
One of the more sophisticated effects, you can use a DisplacementMap to
change the appearance of your content in some very unique ways. For each pixel,
a corresponding user-supplied FloatMap entry is retrieved, and along with
optional scale and offset instance variables, applied to the content to produce
a new output.

For this effect, we’ll lean heavily on the JavaFX API documentation. As
explained there, each individual FloatMap entry contains per-pixel offset infor-
mation in the x and y direction. Filling FloatMap entries with values of (0, 0)
would signify no offset change, whereas a FloatMap full with values of (0.5, 0.5)
would yield an offset half the original source size.

Taken in good part from the API documentation, the next example fills a FloatMap
with data produced by a mathematical function (a sine wave). The result of using
it inside a DisplacementMap produces a wavy effect on your content. The API
example uses shapes and text as input. If instead we use the image of, for exam-
ple, a flag, the DisplacementMap effect could be construed to produce an image
of a flag flapping in the wind. Listing 6.6 has the details.

Listing 6.6 An Example Usage of DisplacementMap

import java.lang.Math;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.effect.*;
import javafx.scene.image.*;

function run (args : String[]) : Void {
 var w = 200;
 var h = 140;
 var map = FloatMap { width: w height: h }
 for (i:Integer in [0..<w]) {
 var v = (Math.sin(i/35.0*Math.PI)-0.5)/30.0;
 for (j:Integer in [0..<h]) {

map.setSamples(i, j, 0.0, v);
 }
 }
 Stage {
 scene: Scene {
 content: [
 ImageView {

 effect: DisplacementMap { mapData: map }
 image: Image {

 url: "{__DIR__}brazilflag.jpg"
 }

From the Library of sam kaplan

ptg

EFFECTS 179

 }
]
 }
 }
}

Figure 6.26 shows the before and after effect on an image representing the flag
of Brazil.

Miscellaneous Color Adjustment Effects
The final two effects described in this chapter revolve primarily around the
manipulation of color. Because the publishing process converts images to gray-
scale, effectively defeating the intended outcome of these effects, we’ll forego
furnishing sample images for this section.

SepiaTone
One such effect, called SepiaTone, can be used to simulate the look of a faded
antique photo. It includes a level instance variable that takes a value ranging
from 0 to 1 controlling the intensity of the effect. Using our original Statue of
Liberty image and applying a SepiaTone to it can be described as follows:

ImageView {
 image: Image {
 url: "{__DIR__}liberty.jpg"
 }

effect: SepiaTone { level: .7 }

}

We suggest you create a simple example or two to get a feel for how this effect
might be used.

Figure 6.26 Before and After Effects of Applying a DisplacementMap on an Image

From the Library of sam kaplan

ptg

180 CHAPTER 6 APPLY SPECIAL EFFECTS

ColorAdjust
JavaFX provides the ability to adjust the contrast, hue, saturation, and brightness
of your content via the ColorAdjust effect. Table 6.5 describes the available
instance variables.

Chapter Summary
For this chapter, we’ve touched on the effects that come as part of the JavaFX
platform, and included straightforward examples of how these can be utilized,
stressing simplicity. This should serve as a quick reference as you delve into
making your content more eye-catching.

Table 6.5 ColorAdjust Instance Variables

Variable Description

contrast The contrast adjustment value, ranging from (0.25 – 4). The default value is 1.

hue The hue adjustment value, ranging from (-1 – 1). The default value is 0.

saturation The saturation adjustment value, ranging from (-1 – 1). The default value is 0.

brightness The brightness adjustment value, ranging from (-1 – 1). The default value is 0.

From the Library of sam kaplan

ptg

181

7
Add Motion with

JavaFX Animation
“Animation is not the art of drawings that move

but the art of movements that are drawn.”

—Norman McLaren

Computer Animation
In traditional hand-drawn animation, a lead animator draws key drawings in a
scene. These are the most important actions and represent the extremes of the
action. The idea is to provide enough detail to present the main elements of
movement. Next, the animator decides how long each action should last on the
screen. After this is done, these key drawings are passed to assistant animators
who draw the inbetween frames to achieve smooth movement. The action dura-
tion dictates how many inbetween frames are needed. This process is called
tweening, which is short for inbetweening.

Borrowing from the traditional animation process, computer animation is a time
period sliced with key frames. However, instead of using assistant animators, the
computer does the tweening process by applying mathematical formulas to
adjust the position, opacity, color, or other aspects required for the action. The
computer decides how many inbetween frames are required based on the timing
constraints placed between two key frames.

The primary property of animation is time, so JavaFX supports the time period
of an animation sequence with a timeline. The JavaFX class that represents ani-
mation actions spread across a time duration is javafx.animation.Timeline.
Key frames, javafx.animation.KeyFrame, are interspersed across the timeline

From the Library of sam kaplan

ptg

182 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

at specified intervals, represented by time durations, javafx.lang.Duration.
These key frames may contain key values, javafx.animation.KeyValue, that
represent the end state of the specified application values such as position, opacity,
and color, and may also include actions that execute when the key time occurs.
Key values also contain a declaration of which mathematical formula, or interpo-
lator, javafx.animation.Interpolator, should be used in the tweening process.

Figure 7.1 demonstrates the key frames within a timeline that mimics the rise
and setting of the sun or moon. Each disc is at a specific location at the respec-
tive key frame time. At the start, 0 seconds, the disc is on the left hand side at its
lowest position. At 200 seconds, the next key position is a little further right and
higher. At 500 seconds, the disc shape is at its zenith. At 800 seconds, the disc is
lower and to the right, then at 1,000 seconds, it is setting off the horizon. In the
actual animation, the disc smoothly moves in an arc from left to right, over 1,000
seconds.

The timeline represents the animation sequence, and can be started, paused,
resumed, and stopped. It is also possible to choose the point in time to start or
resume the animation, which enables an application to implement features found
in a Videocassette Recorder (VCR) or Digital Video Recorder (DVR) such as
play, pause, stop, rewind, and fast forward.

Figure 7.1 Timeline Showing KeyFrame Positions of a Moving Disc Shape

From the Library of sam kaplan

ptg

TIMELINES 183

The next few sections cover these animation classes and demonstrate their use.
After that, we will revisit our Eclipse animation example based on the graphical
objects we created with the JavaFX Production Suite in Chapter 2, JavaFX for
the Graphic Designer.

Timelines
A timeline provides the ability to update animation associated properties over a
period of time. A timeline is defined by one or more sequential key frames
ordered by their respective time within the timeline. The animation properties are
then changed over the time period using a mathematical formula to a new target
value.

A timeline may move either forward or backward in time. Also, it may play its
cycle one or more times, or even indefinitely. You can specify that it alternates
direction for each cycle so that it plays forward then backwards. You can also
speed up or slow down the rate of play. Timelines can also be paused, resumed,
or stopped. In addition, you can set when to start or restart, either at the begin-
ning or at some intermediate point within the timeline.

A sample Timeline object literal is shown in Listing 7.1 with the key points
highlighted. The KeyFrame syntax will be covered in the next section.

Listing 7.1 Timeline Object Literal

import javafx.animation.*;

// point on screen
var x: Integer;
var y: Integer;

var timeline = Timeline {
// go forward, then backward on alternating cycle

autoReverse: true
repeatCount: Timeline.INDEFINITE // run until stopped

 // normal time, 2x would be 2.0, half speed is 0.5

rate: 1.0
keyFrames: [

// at 0 milli seconds, set x/y to initial value

 at(0ms) {
 x => 0;
 y => 0;
 },

continues

From the Library of sam kaplan

ptg

184 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

// at 10 seconds, set x/y to target value

 at(10s) {
 x => 1000 tween Interpolator.LINEAR;
 y => 1000 tween Interpolator.LINEAR;
 }
]

};

// play from current position, which at start is 0

timeline.play();
timeline.pause(); // pause

timeline.play(); // resume at pause point

timeline.pause();
timeline.time = 1s; // set the current time to 1 second

timeline.play(); // resume play at 1 second

// stop and reset start time to the Start Time

timeline.stop();

When the timeline plays, it starts, by default, at time zero; then, while it progresses
to the next specified time (10 seconds in the preceding example), the interpola-
tors for each target value are repeatedly invoked so that the animation can provide
a smooth transition from the original value to the final target value. The runtime
system decides how to break up the interval between key frames in order to have
smooth movement; however, this can be influenced by load and capabilities of
the client’s machine. Insufficient compute power may result in jerky animations.

The function play()starts the timeline from its current position. There is also a
playFromStart() function that always starts at the initial position. The func-
tion, pause(), stops the play at the current position, and a subsequent play()
resumes the timeline from that position. Finally, the stop() function stops the
play and resets the timeline to the initial position.

By default, autoReverse is turned off, so the timeline only progresses forward,
repeatCount is 1.0, so that the timeline only cycles once, and the rate is 1.0, so
the animation runs at normal speed.

You can examine several instance variables to determine the current state of the
timeline. First, the instance variable, running, indicates whether the timeline has
been started or stopped. Notice that a paused timeline is still in the running state,
but the paused instance variable is true. To detect that the timeline is playing, it
is necessary to check running for true and paused for false.

The currentRate instance variable indicates the current speed and direction of play.
A negative currentRate indicates the timeline is playing backwards. Therefore, if

From the Library of sam kaplan

ptg

KEY FRAMES 185

autoReverse is set to true, you can determine whether the timeline is currently
playing forward or backward from the currentRate value. To set the play rate,
use the rate instance variable. Again, if the rate is negative, the timeline will
play in reverse.

You can tell the current instant of playback using the time instance variable.
Also use this instance variable to set the specific time to resume play. If you want
to resume play halfway through the time sequence, then you can set the time
value to one half the total duration. Then when you instruct the timeline to play,
it will play from that point. Another way to use the time variable is to increment
the time to jump forward or decrement it to jump backward in the animation. For
example, if you define a button to skip forward 10 seconds, you can increment
the time by 10 seconds or actually by 10,000 milliseconds. To set the timeline to
the beginning, you can set the time variable to zero (0). To set it to the end, set
the time variable to the end duration for the timeline. This is useful if you want
to play the timeline in reverse from the end.

The instance variable, interpolate, is by default set to true and means that
when the timeline plays, the system will split up the interval between time
frames and invoke the key target value interpolators. If the timeline is not using
interpolations, but perhaps only uses actions, there may be a performance
improvement to set interpolate to false. This is because when interpolate is
false, the timeline does not have to do the tweening steps between key frames.

Key Frames
A key frame defines a pivotal timing event with values that are tweened, or inter-
polated, along the timeline. The key frame contains a time value within the time-
line, along with optional items. These items are associated target values called
key values, an action that is executed when the time is reached within a play, or a
sub timeline that starts when the key frame’s time within the timeline is reached.
There is also an indicator identifying whether the action function can be skipped
if the timeline is running behind schedule.

A KeyFrame may be defined using the object literal syntax for creating any JavaFX
object, or may use a special short-cut syntax. First, let us cover a few basics.

Duration
A javafx.lang.Duration is an object that defines a time interval. To simplify
creating durations, JavaFX supports time literals. In the previous timeline example,

From the Library of sam kaplan

ptg

186 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

there were two time literals, 0ms, zero milliseconds, and 10s, for ten seconds. To
declare a time literal, use a number followed by a time unit. The possible units of
time are ms for milliseconds, s for seconds, m for minutes, and h for hours. The
number may be either an integer or a decimal number. For example, 1500ms is
equal to 1.5s.

You can also do arithmetic functions on time literals. For example:

println(2h + 30m + 3s + 10ms); // 9003010.0ms
println(1m – 30s); // 30000.0ms

println(10ms * 2); // 20.0ms

println(10ms / 2); // 5.0ms

Duration objects are immutable, so they cannot be changed once created. In the
preceding examples, each time literal argument within the arithmetic expression
represents a distinct Duration instance and another distinct instance represents
the result.

Besides using the time literals as shown here, you can also create Duration
objects using the function valueOf(), passing in milliseconds as the parameter.
The following all equal a duration of 10 seconds:

var duration = Duration.valueOf(10000);
var duration = 10000ms;
var duration = 10s;
var duration = 0.166666m; // approximates 10 seconds

Sometimes, it is useful to declare a Duration object that can later be bound
within an expression. This is useful if you want to dynamically change the time
of the timeline. Perhaps you want to allow the user to change the animation from
5 seconds to 15 seconds. When doing this within a timeline, this duration object
is automatically bound. This is illustrated in Listing 7.2.

Listing 7.2 Duration Variable

public var duration = 10s;
var x:Number;
var y:Number;
var timeline = Timeline {

keyFrames: [
// at 0 milli seconds, set x/y to initial value

 at(0ms) {
 x => 0;
 y => 0;
 },

From the Library of sam kaplan

ptg

KEY FRAMES 187

 KeyFrame {
 time: duration
 values: [
 x => 1000 tween Interpolator.LINEAR,
 y => 1000 tween Interpolator.LINEAR,
]
 }
]
}

Now, if the application needs to change the duration of the timeline, one merely
has to change the duration variable to a new duration. Please note that it is
important to declare the duration variable before the timeline is declared.

Key Values
Key values are declared using a special syntax:

target => value tween interpolator

Target is the target variable that will be changed, value is the target value that
the target variable assumes when the key frame time arrives, and interpolator
is the Interpolator to use. So in the preceding example, the x variable is zero at
0 seconds, and then 1000 at 10 seconds. This value uses a linear, or constant rate
of change, interpolator over the 10-second interval. The => operator indicates
that the variable will transition to the value during the time slice. The tween key-
word identifies the Interpolator to use during tweening. If no tween and
interpolator is given, a discrete interpolator is the default. This means the
value instantly changes from 0 to 1000 when the key frame’s time is reached.

Key Frames
The class, javafx.animation.KeyFrame, represents a key frame within the
timeline. Each key frame has a time in the form of a duration, zero or more key
values, an optional action function that is executed when the play arrives at the
key frame’s time, and zero or more sub timelines that start to play when the key
frame’s time is reached.

As previously mentioned, there are two ways to declare a key frame. One way is
to use the normal JavaFX object literal syntax for the KeyFrame object.

From the Library of sam kaplan

ptg

188 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

KeyFrame {
time: 10s
values: [

 x => 1000 tween Interpolator.LINEAR,
 y => 1000 tween Interpolator.LINEAR,
]

action: function():Void {
 println("Key frame @10 seconds");
 }

timelines: [
 subTimeline1,
 subTimeline2
]
}

The time instance variable contains the duration within the timeline that the key
frame represents. Next, there are the set of zero or more key values, followed by
an optional action function. Lastly, there is an optional sequence of sub time-
lines represented by the timelines instance variable. By default, time is set to 0
seconds, values and timelines are empty, and the action instance variable is
null. There is another instance variable, canSkip, that indicates that the timeline
can skip the defined action if it is running behind schedule.

Sub timelines allow you to nest timelines within other timelines and allow you to
break up complex animations into smaller, more manageable parts. Each sub time-
line’s starting point is relative to the parent timeline’s key frame time. Sub timelines
are useful if you have several discrete animations controlled by a master anima-
tion. Also, sub timelines are useful if you want more than one animation to start at
exactly the same time—for example, if you want to animate two motions at once.

The second form for declaring a KeyFrame is a shortcut version of the object lit-
eral syntax. This takes the form of using the at keyword with a time literal
within parenthesis. The key values are contained within the following curly
braces. Notice the semicolon rather than a comma after the key value statements.

at(10s) {
 x => 1000 tween Interpolator.LINEAR;
 y => 1000 tween Interpolator.LINEAR;
}

This is a concise way for declaring the majority of KeyFrames. However, there
are limitations. First, when using this syntax, there is no way to include an
action function nor include sub timelines. Second, the syntax only allows time
literals, so another duration variable cannot be used for specifying the time.
Nonetheless, when creating timelines, you can intersperse this concise syntax

From the Library of sam kaplan

ptg

INTERPOLATION 189

with the full object literal syntax for those key frames requiring the extra fea-
tures. The following code snippet shows this.

var timeline = Timeline {
keyFrames: [

at(0ms) {
 x => 0;
 y => 0;
 },

KeyFrame {
 time: duration

 values: [
 x => 1000 tween Interpolator.LINEAR,
 y => 1000 tween Interpolator.LINEAR,

]
 action: function():Void {

 println("Key frame @10 seconds");
 }
 }
]
}

Interpolation
Interpolation is the process of estimating values between two known values. This
section describes how interpolation is applied to animation and discusses how
interpolation is supported in JavaFX. Let’s start by examining the “tweening”
process and how it is applied to computer animation.

Tweening
As we already mentioned, tweening is the process of filling in the “inbetween”
frames between two key frames. In JavaFX, the runtime system takes the time
interval between two key frames and breaks it up into smaller periods so that the
animation appears smooth. Each of these smaller chunks of time is represented
as a percentage of the overall time period using the value range 0.0 to 1.0. Inter-
polation is based on calling a mathematical function for each of these discrete
time chunks, increasing the percentage of elapse time with each invocation.

When the runtime system invokes the interpolation function, it passes the
starting value for the variable being interpolated, the ending value, and the frac-
tional time percentage. Based on these input values, the interpolator calculates
the value that the variable should contain at that instant.

From the Library of sam kaplan

ptg

190 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

A common way to interpolate is to provide a mathematical function that repre-
sents a drawn curve between 0.0 and 1.0 for the time, and 0.0 and 1.0 for the value.
The output of this function represents the fractional change in the value between
the start value and the end value for the target variable. This pattern of interpola-
tion is quite common; to facilitate it, JavaFX provides the javafx.animation
.SimpleInterpolator abstract class. All the standard interpolators extend Simple-
Interpolator, and later in this chapter we will show an example of creating a
custom interpolator based on it.

Standard Interpolators
The JavaFX platform provides a set of standard interpolators that handles most
types of animation. The standard interpolators are defined in javafx.animation
.Interpolator. They are

Interpolator.DISCRETE

Interpolator.LINEAR

Interpolator.EASEIN

Interpolator.EASEOUT

Interpolator.EASEBOTH

Interpolator.SPLINE

The next few sections discuss each of these interpolators.

Discrete
A DISCRETE interpolator jumps instantaneously from one value to the next. The
target variable instantly assumes the target value when the key frame’s time is
reached. This is the default interpolator if none is provided.

x => 1000 tween Interpolator.DISCRETE

Linear
A LINEAR interpolator changes the variable from the start value to the target
value at a constant rate of change over the time period. Using a vehicle’s velocity
as an analogy, this would be the same as the vehicle traveling at a constant speed
over the time frame.

x => 1000 tween Interpolator.LINEAR

From the Library of sam kaplan

ptg

INTERPOLATION 191

Ease In
An EASE IN interpolator initially accelerates the rate of change in the target
value until a constant rate is achieved, then maintains that constant rate of
change. This is analogous to a vehicle accelerating after stopping at a traffic sig-
nal and then reaching the speed limit; then, it maintains the speed limit.

x => 1000 tween Interpolator.EASEIN

In the JavaFX implementation, the acceleration phase is during the first 20 per-
cent of the time period.

Ease Out
An EASE OUT interpolator is the opposite of the ease in interpolator. It initially
starts with a constant rate of change; then, toward the end of the time period, it
decelerates. This is analogous to a vehicle operating at the speed limit, then
applying the brakes as it comes to a traffic light.

x => 1000 tween Interpolator.EASEOUT

In the JavaFX implementation, the deceleration phase is during the last 20 per-
cent of the time period.

Ease Both
An EASE BOTH interpolator is the combination of ease in and ease out. The rate
of change increases until a constant rate of change is achieved, then near the end
of the time period, the rate of change decelerates. This is similar to a vehicle
accelerating from one traffic signal to the speed limit, travelling at a constant
speed, then braking and decelerating as it approaches the next traffic signal.

x => 1000 tween Interpolator.LINEAR

In the JavaFX implementation, the acceleration phase is the first 20 percent of
the time period and the deceleration phase is during the last 20 percent of the
time period.

Spline
A SPLINE interpolator uses a cubic spline shape to dictate the acceleration and
deceleration phases over the time period. SPLINE() returns an interpolator based
on the control points that are specified as parameters to the SPLINE function. The
anchor points are statically defined as (0.0, 0.0) and (1.0, 1.0). The control points
range in value from 0.0 to 1.0.

From the Library of sam kaplan

ptg

192 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

x => 1000 tween Interpolator.SPLINE(x1, y1, x2, y2)

When the cubic spline is plotted, the slope of the plot defines the acceleration at
that point. As the slope approaches vertical, the acceleration increases; when the
slope of the plot approaches horizontal, the motion decelerates. If the slope of
the line at a point is 1.0, the interpolation is moving at a constant rate of change.

Figure 7.2 shows the spline plot equivalent to the LINEAR built-in interpolator.
This reflects a constant rate of change, as the slope for the entire line is 1.0.

The control points for the spline are (0.25, 0.25) and (0.75, 0.75), which results
in a straight line with a slope of 1. This represents a constant speed from the start
of the time period to the end.

x => 1000 tween Interpolator.SPLINE(0.25, 0.25, 0.75, 0.75)

Figure 7.3 represents the plot for an ease both interpolation. Here the control
points are (0.2, 0.0) and (0.8, 1.0).

x => 1000 tween Interpolator.SPLINE(0.2, 0.0, 0.8, 1.0)

Notice that the slope is flat near the beginning and end of the plot. So the motion
will start slow and accelerate for the first 20% of the time period, stay at a con-
stant speed until the last 20% of the time period, when it will decelerate.

By using the Interpolator SPLINE() function, you can easily create unique inter-
polation behavior. However, for performance reasons, stick to the predefined
interpolators if that is what you want.

Figure 7.2 Linear – Cubic Spline for Linear Interpolation

Linear

Time

Va
lu

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

From the Library of sam kaplan

ptg

INTERPOLATION 193

As part of the software available on the book’s Web site (http://jfxbook.com),
there is a SplineDemo.fx file that lets you play with the spline parameters and
immediately see the resulting impact on the animation.

While using a cubic spline affords much flexibility, there are times where even
that does not satisfy the animation requirements. This is when a custom interpo-
lator comes into play.

Writing a Custom Interpolator
Besides providing support for the built-in interpolators and the cubic spline inter-
polator, if you need custom interpolation, you can either extend javafx.anima-
tion.SimpleInterpolator or javafx.animation.Interpolator.

SimpleInterpolator
SimpleInterpolator does more of the internal pluming for you. All you have to
do is implement the curve function. The implementation of curve returns a frac-
tion of the amount to change the start value as it migrates to the target value.

public function curve(t:Number) : Number

The parameter, t, represents the fraction of time that has elapsed in the current
interval, where 0.0 is the start of the interval and 1.0 is the end of the interval.
This result centers around the range, [0.0..1.0]. Nonetheless, this number is not
constrained by this range—for example, the curve function could return -0.1 or
1.1 if the interval movement fluctuates beyond the original start and end values.

Figure 7.3 Ease Both (%20) – Cubic Spline

Spline

Time

Va
lu

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

From the Library of sam kaplan

http://jfxbook.com

ptg

194 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

To demonstrate this, we will go through an Elastic Interpolator based on the elas-
tic interpolator defined in the The Yahoo! User Interface Library (YUI) (http://
developer.yahoo.com/yui/docs/Easing.js.html). The main difference between the
two implementations is that the Yahoo JavaScript version translates directly to
the actual values based on the elapsed time, whereas the JavaFX version deals
with the percentage of elapsed time, and therefore returns a percentage change
for the target value.

The actual implementation is shown in Listing 7.3.

Listing 7.3 Elastic Interpolator

package animation;

import javafx.animation.SimpleInterpolator;
import java.lang.Math;

// Elastic period is at start of animation
public def IN = 0;
// Elastic period is at end of animation
public def OUT = 1;
// Elastic period is at start and end of animation
public def BOTH = 3;

public class Elastic extends SimpleInterpolator {
 public-init var type = BOTH;
 public-init var amplitude = 1.0;
 public-init var period = if(type == BOTH)

 {0.3*1.5} else { 0.3}
 on replace {
 if(amplitude < Math.abs(period)) {

 amplitude = period;
 s = period/4.0;

 }
 };

 var s: Number;

 init {
 if(s == 0.0) {

 s = period/(2*Math.PI) *
 Math.asin (1.0/amplitude);

 }
 }

From the Library of sam kaplan

http://developer.yahoo.com/yui/docs/Easing.js.html
http://developer.yahoo.com/yui/docs/Easing.js.html

ptg

INTERPOLATION 195

public override function curve(t: Number) : Number {
 if(t == 0.0 or t == 1.0) {
 return t;
 }
 if(type == IN) {
 var xt = t - 1;
 return -(amplitude*Math.pow(2,10*xt) *

Math.sin((xt-s)*(2*Math.PI)/period));
 } else if(type == OUT) {
 var xt = t;
 return amplitude*Math.pow(2,-10*xt) *

Math.sin((xt-s)*(2*Math.PI)/period)
 + 1.0;

 } else { // type == BOTH
 var dt = t * 2.0;
 if(dt < 1.0) {

 var xt = dt -1;
 return -.5 * amplitude*Math.pow(2,10*(xt)) *

 Math.sin((xt-s)*(2*Math.PI)/
 period);

 } else {
 var xt = dt-1;
 return (0.5 * amplitude*
 Math.pow(2,-10*(xt)) *

 Math.sin(
 (xt-s)*(2*Math.PI)/period)) + 1.0;

 }
 }
 }
}

Elastic is similar to bounce or spring effects, but gives a snap out/in effect. There
are three flavors for Elastic: IN focuses the elastic movement at the start of the
animation, OUT focuses on the end of the animation, and BOTH focuses on both
ends of the animation.

The elastic graphs are shown in the following three figures. Figure 7.4 shows the
Elastic IN graph where the animated movement snaps into its final location.

Figure 7.5 shows the Elastic OUT graph where the movement jumps out of its
original position then smoothly moves to its final location.

Figure 7.6 shows the Elastic BOTH graph where the movement jumps out of its
original position and then snaps into its final position.

From the Library of sam kaplan

ptg

196 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

Figure 7.4 Elastic IN

Figure 7.5 Elastic OUT

Figure 7.6 Elastic BOTH

Elastic IN

Time

Va
lu

e

0 25 50 75 100 125 150 175 200 225 250

0.0

−0.1

−0.2

−0.3

−0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Elastic OUT

Time

Va
lu

e

0 25 50 75 100 125 150 175 200 225 250
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Elastic Both

Time

Va
lu

e

0 25 50 75 100 125 150 175 200 225 250

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.1

1.0

−0.1

From the Library of sam kaplan

ptg

INTERPOLATION 197

Interpolator
One of the constraints of the SimpleInterpolator is that target and start values
need to differ by a certain amount to actually see any movement. This is because
the curve() value is fractional from 0.0 to 1.0 and is multiplied by this differ-
ence to obtain the actual change in value. Obviously, if the start value is the same
as the target value, the fractional result would always be multiplied by the zero
difference, so there would be no movement at all.

What if you want a shaking effect, without the object actually ending at a new
location? In this case, the start values and end values are the same, but during the
time interval, the object shakes back and forth. This is exactly what happens with
the eQuake Alert plug-in to the Firefox browser. With eQuake Alert, when an
earthquake of a certain magnitude occurs, the entire Firefox browser shakes with
an amplitude based on the magnitude of the earthquake. You cannot use Simple-
Interpolator for this kind of animation. You must create a custom interpolator
that extends javafx.animation.Interpolator and implements the function
interpolate().

public function interpolate(startValue:Object,
 endValue:Object, fraction:Number):Object

The parameter startValue is the starting value for the target variable at the
beginning of the time slice represented by the KeyFrame, endValue is the ending
value, and fraction is a number from 0.0 to 1.0, which represents the fraction
of time within the time period. This function returns the interpolated value for
that instant. Actually, SimpleInterpolator, itself, extends Interpolator and
implements its own version of interpolate() that ends up calling the abstract
curve() function. Let’s examine an example for shaking.

A perfect mathematical formula for doing a shake is a Bessel function. Figure
7.7 shows the graph of the Bessel function, where the shaking effect is greatest
at the beginning of the animation and calms down as the animation progresses.

Basically, we need to call the Bessel function when the animation runtime calls
the interpolate() method. However, it is not that straightforward, and there is a
little plumbing that needs to be created. The following code snippet in Listing 7.4
illustrates this. (The full listing is on the book’s Web site, http://jfxbook.com.)

From the Library of sam kaplan

http://jfxbook.com

ptg

198 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

Listing 7.4 Bessel Interpolator

package animation;

import javafx.animation.Interpolator;
import javafx.animation.Interpolatable;
import java.lang.Math;

public class Bessel extends Interpolator {
 // Bessel integer order
 public-init var order:Integer = 0;
 // Amplitude of resulting wave
 public-init var amplitude = 40.0;
 // frequency of resulting wave
 public-init var frequency = 600;

public override function interpolate(startValue:Object,

 endValue:Object, fraction:Number):Object {
 if(fraction == 1.0) {
 return endValue;
 }
 if(startValue instanceof java.lang.Number and
 endValue instanceof java.lang.Number) {
 var start : Number = startValue as Number;
 var end: Number = startValue as Number;

 var val = start + j(frequency * fraction) *
 amplitude;

 if(startValue instanceof java.lang.Integer and
 endValue instanceof java.lang.Integer) {

 (val + 0.5).intValue();
 }else {

Figure 7.7 Bessel Function

Bessel

Time

Va
lu

e

0 25 50 75 100 125 150 175 200 225 250

80

75

70

65

60

55

50

45

40

35

30

25

20

From the Library of sam kaplan

ptg

PATH-BASED ANIMATION 199

 val;
 }
 } else if(startValue instanceof Interpolatable) {
 (startValue as Interpolatable).ofTheWay(

 (endValue as Interpolatable),
j(frequency * fraction) * amplitude);

 } else {
 // discrete
 if (fraction == 1.0) endValue else startValue;
 }
 }

The function, j(), is the Bessel function.

Interpolatable
You may have noticed that we checked for the start and end value types and if
they were not numeric, we checked to see if they implemented Interpolatable.
The abstract class javafx.animation.Interpolatable allows a class to partic-
ipate in Interpolation even if that class is not inherently numerical. To do this,
the class must implement the function

ofTheWay(endVal:Object, t:Number) : Object

The classes javafx.scene.paint.Color and javafx.scene.shape.Shape are
two examples of JavaFX classes that implement Interpolatable. Color allows
the color to morph from the starting color to the end color by changing its red,
green, blue, and opacity a fractional amount toward the end color. Shape allows
the beginning shape to morph into the end shape.

Path-Based Animation
Path-based animation is the concept of a graphical asset traveling along a path.
An example is a race car traveling along a race track, or a car driving within a
city.

Conceptually, path-based animation has two components: a graphical asset that
will travel the path, represented by a javafx.scene.Node class, and a route, rep-
resented by a Path, javafx.scene.shape.Path or javafx.scene.shape.SVGPath.
To create the actual animation, use the javafx.animation.transistion.Path-
Transition class. To illustrate this, let’s use an example of an automobile travel-
ling the streets of midtown Manhattan in New York City.

From the Library of sam kaplan

ptg

200 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

First, locate an image for the map of midtown Manhattan, the image in the
example is from the United States Census Bureau and is located from http://
www.census.gov/geo/www/tiger/tigermap.html. Next, calculate a route on the
map for the animation. One way to do this is to display the map using JavaFX,
and then add an onMouseClicked function to print the coordinates where the
mouse is clicked. Then, mark the route by clicking at major transition points
along the route. Include these points either in a javafx.scene.shape.Path or
javafx.scene.shape.SVGPath. The example uses an SVGPath.

var route = SVGPath {
 fill: Color.TRANSPARENT
 stroke: Color.TRANSPARENT
 content: "M21.5,330.0 L186.5,421.0 235.5,335.0 "
 "293.5,368.0 407.5,167.0 287.5,103.0 "

"181.5,302.0 68.5,244.0 z"
};

In an SVGPath, the code letter M means moveto, L means lineto, and z means
closepath. After a lineto code is entered, it automatically applies to adjacent
uncoded point coordinate pairs. In this example, the route is made invisible with
the TRANSPARENT fill and stroke instance variables. If desired, you can use the
stroke to visibly show a route. For example, to demonstrate a yellow highlighter, use

var route = SVGPath {
 fill: Color.TRANSPARENT
 stroke: Color.rgb(255,255,0, .5)
 strokeWidth: 15
...
...

Next, we need a graphical asset that will move along the path, and this is defined
generically as a javafx.scene.Node. In the example, we used an image of an
automobile.

var racecar = ImageView {
 scaleX: 0.5
 scaleY: 0.5
 image: Image{ url: "{__DIR__}images/racecar.gif" }
}

Lastly, we need to define a path animation using javafx.animation.transition
.PathTransition.

From the Library of sam kaplan

http://www.census.gov/geo/www/tiger/tigermap.html
http://www.census.gov/geo/www/tiger/tigermap.html

ptg

PATH-BASED ANIMATION 201

def animation = PathTransition {
node: racear

path: AnimationPath.createFromPath(route)

orientation: OrientationType.ORTHOGONAL_TO_TANGENT

 interpolate: Interpolator.LINEAR
 duration: duration
 repeatCount: Timeline.INDEFINITE
};

Notice the orientation instance variable. By setting this to ORTHOGONAL_TO_
TANGENT, the race car image rotates to match the path while traversing the route.
The other option is to set this to NONE, the default. When orientation is set to
NONE, the race car will not rotate at all. Obviously, for an object like a race car
that has inherent direction, this is probably not desirable. However, if you have a
node that does not imply direction, like a Circle, then setting it to NONE would
be sufficient.

The last step is to create the presentation showing the map of midtown Manhattan,
and adding the race car image and the route.

Group {
 translateX: bind (scene.width - image.width)/2
 content: [
 ImageView{
 image: image
 },
 route, racear
]
},

Using the animation variable, you can control the play of the animation similar
to regular types of timelines. Figure 7.8 shows the map of midtown Manhattan,
New York City, with a car image on the street. In this animation, the car travels
along a route on the map.

Listing 7.5 shows the main code for traversing the map. The full example, Path-
Animation, can be downloaded from http://jfxbook.com.

From the Library of sam kaplan

http://jfxbook.com

ptg

202 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

Listing 7.5 Path Animation

import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.Group;
import javafx.scene.layout.*;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.input.MouseEvent;
import javafx.scene.input.MouseButton;
import javafx.scene.shape.SVGPath;
import javafx.scene.shape.Rectangle;
import javafx.scene.paint.*;
import javafx.animation.transition.*;
import javafx.animation.*;
import javafx.scene.text.Text;

Figure 7.8 Path Animation on Map of Midtown Manhattan

From the Library of sam kaplan

ptg

PATH-BASED ANIMATION 203

import jfxbook.shared.PathAnimationControl;
import jfxbook.shared.ProgressSlider;

// The defualt route using SVG path

var routePathStr =
 "M21.5,330.0 L186.5,421.0 235.5,335.0 293.5,368.0 "
 "407.5,167.0 287.5,103.0 181.5,302.0 68.5,244.0 z";
var buildPathStr:String;
var route = bind SVGPath {
 fill: Color.TRANSPARENT
 stroke: Color.TRANSPARENT
 strokeWidth: 15
 content: routePathStr
};

var racear = ImageView {
 scaleX: 0.5
 scaleY: 0.5
 image: Image{ url: "{__DIR__}images/racecar.gif" }
}

var duration = 60s;

def animation = PathTransition {
 node: racear
 path: bind AnimationPath.createFromPath(route)
 orientation: OrientationType.ORTHOGONAL_TO_TANGENT
 interpolate: Interpolator.LINEAR
 duration: duration
 repeatCount: Timeline.INDEFINITE
};

def image = Image {
 url: "{__DIR__}images/RockefellerCenter.tif"};

var scene: Scene;
var moveto = true;
Stage {
 title: "Path Animation - Midtown Manhattan"
 scene: scene = Scene {
 width: 700
 height: 650
 content: VBox {
 content: [
 Group {

 translateX: bind
 (scene.width - image.width)/2

continues

From the Library of sam kaplan

ptg

204 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

 content: [
 ImageView{
 image: image

 // mouse button lets you mark a
 //route on the map.
 OnMouseClicked:

 function(e:MouseEvent):Void {
 // reset route
 if(e.button ==

 MouseButton.SECONDARY)
 {

 buildPathStr =
 "{buildPathStr}z";

 routePathStr =
 buildPathStr;

 moveto = true;
 }else {

 // build up the path with each
 // click. Click at the turns

 // of the route
 if(moveto) {

 buildPathStr =
 "M{e.x},{e.y}L";

 moveto = false;
 }else {

 buildPathStr =
 "{buildPathStr} {e.x},{e.y}";
 }

 }
 }

 },
 route, racear

]
 },
 HBox {

 content: [
 PathAnimationControl {

 transition: bind animation
 },

 ProgressSlider {
 label: Text {

content: "Progress: " },
 width: 150
 minimum: 0
 maximum: bind

 duration.toSeconds()
 value: bind

animation.time.toSeconds();

From the Library of sam kaplan

ptg

TOTAL SOLAR ECLIPSE EXAMPLES 205

 action:
 function(value:Number):Void {
 println("Change: {value}");

 var inProgress =
 animation.running and
 not animation.paused;

 if(inProgress) {
 animation.pause();

 }
 animation.time =
 Duration.valueOf(

 value * 1000);
 if(inProgress) {
 animation.play();

 }
 }

 },
 ProgressSlider {
 label: Text {

 content: "Rate: " }
 width: 200
 minimum: -5.0
 maximum: 5.0

 value: bind animation.currentRate
 action: function(value:Number) {

animation.rate = value;
 }

 }
]
 }
]
 }
 }
}

Total Solar Eclipse Examples
The total solar eclipse provides a good example of animating movement along
with visual changes. During a total solar eclipse, the moon moves across the sun
causing a period of darkness during daytime. There are also effects on the sun,
with a sun burst visible right before and right after totality. Presented here are
two examples of basically the same animation. The first one is based totally on
JavaFX shapes, whereas the second example uses the graphical objects generated
using JavaFX Production Suite we covered in Chapter 2, JavaFX for the Graphic

From the Library of sam kaplan

ptg

206 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

Designer. From Chapter 2, there were five main graphical objects: BlueSky,
DarkSky, Moon, Sun, SunBurst, and Totality. These are used in both anima-
tions, but with different implementations.

JavaFX Shapes
This example implements the total eclipse only using JavaFX shapes and effects.
The first task is to create custom nodes for each of the main graphical objects:
BlueSky, DarkSky, Moon, Sun, SunBurst, and Totality. Each of these objects
extends javafx.scene.CustomNode and implements the abstract function create()
from CustomNode.

BlueSky and DarkSky are both rectangular shapes. BlueSky has a LinearGradient
fill pattern from light skyblue to white. DarkSky has a black fill pattern with ran-
dom pattern of circles that represent stars. Listing 7.6 shows the implementation
for BlueSky.

Listing 7.6 BlueSky

public class BlueSky extends CustomNode {
 public var width:Number = 600;
 public var height: Number = 600;

public override function create(): Node {

 Rectangle {
 width: bind width
 height: bind height
 fill: LinearGradient {

 endY: 1.0
 endX: 0.0
 stops: [
 Stop {

 offset: 0.0
 color: Color.LIGHTSKYBLUE

 },
 Stop {

 offset: 1.0
 color: Color.WHITE

 },
]
 }
 }
 }
}

DarkSky is shown in Listing 7.7.

From the Library of sam kaplan

ptg

TOTAL SOLAR ECLIPSE EXAMPLES 207

Listing 7.7 DarkSky

public class DarkSky extends CustomNode {
 public var width:Number = 600;
 public var height: Number = 600;
 def random = Random{};

public override function create(): Node {
 return Group {

 content: bind [
 Rectangle { // Black sky

 width: width
 height: height
 fill: RadialGradient {
 centerX: 0.5
 centerY: 0.5
 stops: [

Stop { offset: 0.0
 color:

 Color.rgb(128,128,128) },
Stop { offset: 1.0

 color: Color.rgb(20,20,20) },
]

}
 },

 for(i in [0..100]) { // Stars
 Circle {

 centerX: random.nextInt(
 if(width <= 0) 1 else width);

 centerY: random.nextInt(
 if(height <= 0) 1 else height);

 radius: random.nextInt(5);
 fill: Color.WHITESMOKE

 }
}

]
 };
 }
}

The Sun is composed of three concentric circles. In the center of the Sun is a pure
white circle. Next, there is a circle with a RadialGradient using a center color
of white transposing to yellow. Both of these circles use a GaussianBlur effect
to blend and smooth the color’s edges. The most outer circle is a translucent yel-
low to represent a glare effect around the Sun. Listing 7.8 presents an implemen-
tation for the Sun.

From the Library of sam kaplan

ptg

208 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

Listing 7.8 Sun

public class Sun extends CustomNode {
 public var centerX:Number;
 public var centerY:Number;
 public override function create(): Node {
 return Group {
 content: [

 Circle { // Glare circle
 centerX: bind centerX
 centerY: bind centerY

 radius: 70
 opacity: 0.2
 fill: Color.YELLOW

 effect: GaussianBlur { radius: 10}
 },

 Circle { // Main Sun disc
 centerX: bind centerX
 centerY: bind centerY

 radius: 52
 fill: RadialGradient {
 radius: 2
 centerX: 0.5
 centerY: 0.5
 stops: [
 Stop {
 offset: 0.0

 color: Color.WHITE
 },
 Stop {
 offset: 0.3

 color: Color.YELLOW
 },

]
 }

 effect: GaussianBlur { radius: 10}
 },

 Circle { // Sun WHITE Center
 centerX: bind centerX
 centerY: bind centerY

 radius: 15
 fill: Color.WHITE

 effect: GaussianBlur { radius: 10 }
 },

]
 };
 }
}

From the Library of sam kaplan

ptg

TOTAL SOLAR ECLIPSE EXAMPLES 209

The Moon is merely a black circle with a GaussianBlur effect to blend and
smooth the edges, as implemented in Listing 7.9.

Listing 7.9 Moon

public class Moon extends CustomNode {
 public var centerX:Number;
 public var centerY:Number;
 public override function create(): Node {
 Circle {

 centerX: bind centerX
 centerY: bind centerY

 radius: 50
 fill: Color.BLACK

 effect: GaussianBlur { radius: 10 }
 }
 }
}

The SunBurst is an ellipse with a white fill, again using a GaussianBlur effect
to diffuse the color. This is illustrated in Listing 7.10.

Listing 7.10 SunBurst

public class SunBurst extends CustomNode {
 public var centerX:Number;
 public var centerY:Number;
 public override function create(): Node {
 Ellipse {

 centerX: bind centerX
 centerY: bind centerY

 radiusX: 50
 radiusY: 30

 fill: Color.WHITE
 effect: GaussianBlur{ radius: 30 }
 rotate: 45
 }
 }
}

Totality is a set of solar flares rotating around the center point of the Sun out-
side of its main diameter. The SolarFlare is an Arc with a GaussianBlur effect
to diffuse the yellow color. Listing 7.11 shows the SolarFlare class.

From the Library of sam kaplan

ptg

210 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

Listing 7.11 SolarFlare

class SolarFlare extends CustomNode {
 public var centerX:Number;
 public var centerY:Number;
 public var angle: Number;
 public var radiusX:Number = 6;
 public var radiusY:Number = 10;
 public override function create(): Node {
 Group {

 rotate: bind angle
 content: [
 Circle {

 centerX: bind centerX
 centerY: bind centerY

 radius: 75
 stroke: Color.TRANSPARENT
 fill: Color.TRANSPARENT

 },
 Arc {

 centerX: bind centerX - radius;
 centerY: bind centerY;
 radiusX: bind radiusX
 radiusY: bind radiusY

 startAngle: 90
 length: 180
 type: ArcType.OPEN
 effect: GaussianBlur { radius: 6}

 stroke: Color.YELLOW
 fill: Color.TRANSPARENT

 strokeWidth: 3
 }
]
 };
 }
}

The next listing, Listing 7.12, shows the Totality class that contains six
SolarFlares of various sizes rotated around the core disc of the Sun.

Listing 7.12 Totality

public class Totality extends CustomNode {
 public var centerX:Number;
 public var centerY:Number;
 var radius:Number = 52;

From the Library of sam kaplan

ptg

TOTAL SOLAR ECLIPSE EXAMPLES 211

 var x1 = bind centerX - radius;
 var y1 = bind centerY;

 public override function create(): Node {
 return Group {
 content: [
 SolarFlare {

 centerX: bind centerX
 centerY: bind centerY

 },
 SolarFlare {

 centerX: bind centerX
 centerY: bind centerY

 rotate: 50
 radiusX: 10
 radiusY: 5

 },
 SolarFlare {

 centerX: bind centerX
 centerY: bind centerY

 rotate: 94
 radiusX: 15
 radiusY: 5

 },
 SolarFlare {

 centerX: bind centerX
 centerY: bind centerY

 rotate: 185
 radiusX: 15
 radiusY: 5

 },
 SolarFlare {

 centerX: bind centerX
 centerY: bind centerY

 rotate: 225
 radiusX: 10
 radiusY: 3

 },
 SolarFlare {

 centerX: bind centerX
 centerY: bind centerY

 rotate: 275
 radiusX: 5
 radiusY: 3

 },

]

 };
 }
}

From the Library of sam kaplan

ptg

212 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

To start the animation, the Sun, Moon, and BlueSky are visible with the Moon left
and lower from the Sun. The Moon starts moving along a linear path that intersects
with the Sun. Figure 7.9 shows the Moon partially covering the Sun. The Moon’s
movement is done by transitioning the Moon’s translateX and translateY
instance variables along a linear path.

As the Moon nears totality, the DarkSky with stars begins to appear along with a
SunBurst at the upper right, the so-called diamond ring effect. This is done by
transitioning the opacity for the BlueSky to zero, while transitioning the opacity
for the DarkSky and SunBurst to 1.0. This is shown in Figure 7.10.

Figure 7.9 Solar Eclipse, Moon Intersecting with Sun

From the Library of sam kaplan

ptg

TOTAL SOLAR ECLIPSE EXAMPLES 213

At totality, the Moon completely covers the Sun. The SunBurst disappears and
Totality becomes totally visible along with the DarkSky. Figure 7.11 displays
the animation at Totality.

After totality, the SunBurst moves from the upper right of the Sun to the lower
left, and the animation starts to fade out the DarkSky while fading in the
BlueSky. Finally, the Sun is in full view and the Moon has moved off the Sun’s
disc.

The timeline for this is shown in Listing 7.13.

Figure 7.10 Solar Eclipse, Partial with Diamond Ring Effect

From the Library of sam kaplan

ptg

214 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

Listing 7.13 Solar Eclipse Timeline

eclipse = Timeline {
 keyFrames: [
 KeyFrame { // initial values
 time: 0s
 values: [

 moon.translateX => -138,
 moon.translateY => 50,
 darkSky.opacity => 0.0,
 blueSky.opacity => 1.0,
 sunBurst.opacity => 0.0,
 sunBurst.translateX => 40.0,
 sunBurst.translateY => -25.0
 totality.opacity => 0.0

]
 },

Figure 7.11 Solar Eclipse, Totality with Solar Flares

From the Library of sam kaplan

ptg

TOTAL SOLAR ECLIPSE EXAMPLES 215

 KeyFrame { // darkness commences
 time: duration.mul(0.41)

 values: [
 darkSky.opacity => 0.0,
 blueSky.opacity => 1.0,
 sunBurst.opacity => 0.0

]

 },
 KeyFrame { // Upper right SunBurst

 time: duration.mul(0.44)
 values: [

 sunBurst.opacity => 1.0
 tween Interpolator.EASEIN,

 totality.opacity => 0.0
]
 },
 KeyFrame { // Totality

 time: duration.mul(0.50)
 values: [

 darkSky.opacity => 1.0
 tween Interpolator.EASEIN,

 blueSky.opacity => 0.0
 tween Interpolator.EASEOUT,

 sunBurst.opacity => 0.0
 tween Interpolator.EASEIN,

 sunBurst.translateX => -40
 tween Interpolator.DISCRETE,

 sunBurst.translateY => 25
 tween Interpolator.DISCRETE,

 totality.opacity => 1.0
 tween Interpolator.EASEIN,

]
 },
 KeyFrame { // lower left Sunburst

 time: duration.mul(0.55)
 values: [

 sunBurst.opacity => 1.0
 tween Interpolator.EASEIN

 totality.opacity => 0.0
 tween Interpolator.EASEOUT,

]
 },
 KeyFrame { // Daylight returns

 time: duration.mul(0.61)
 values: [

 darkSky.opacity => 0.0
 tween Interpolator.LINEAR,

continues

From the Library of sam kaplan

ptg

216 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

 blueSky.opacity => 1.0
 tween Interpolator.LINEAR,

 sunBurst.opacity => 0.0
 tween Interpolator.EASEOUT

]
 },
 KeyFrame {
 time: duration
 values: [

 moon.translateX => 138
 tween Interpolator.LINEAR,

 moon.translateY => -50
 tween Interpolator.LINEAR

]
 }
]
};

JavaFX Production Suite
Using the output from the JavaFX Production Suite example from Chapter 2, the
animation is very similar. However, instead of creating custom nodes for the Sun,
Moon, and so on, we use the graphical assets generated from Adobe Illustrator.

First, you need to generate the UI Stub from the Eclipse JavaFX archive file that
we produced in Chapter 2. To do this, copy the JavaFX archive file to a NetBeans
IDE Project. Then, right-click on the JavaFX Archive File and select Generate
UI Stub. Figure 7.12 shows the menu selection to generate the UI Stub files.

If necessary, edit the UI Stub’s location and package, and then press OK to gen-
erate the Stub. This is shown in Figure 7.13.

Figure 7.12 Generate UI Stub

From the Library of sam kaplan

ptg

TOTAL SOLAR ECLIPSE EXAMPLES 217

The key parts of the UI Stub JavaFX file are

public class EclipseUI extends UiStub {

 override public var url = "{__DIR__}Eclipse.fxz";
 public var BlueSky: Node;
 public var DarkSky: Node;
 public var Moon: Node;
 public var Sun: Node;
 public var SunBurst: Node;
 public var Totality: Node;
...
...

Notice that there are instance variables created for each of the graphical assets to
be used in the animation. To use these assets, merely instantiate an instance of
EclipseUI, and then access each of the assets as required. For example, to ini-
tialize EclipseUI and then set initial state for each of the graphical assets:

var ui = EclipseUI{};

ui.BlueSky.visible=true;
ui.BlueSky.cache = true;

ui.Sun.visible = true;
ui.Sun.cache = true;

ui.DarkSky.visible = true;
ui.DarkSky.cache = true;
ui.Moon.visible = true;
ui.Moon.cache = true;

ui.SunBurst.visible = true;
ui.SunBurst.cache = true;
ui.Totalality.visible = true;
ui.Totalality.cache = true;

Figure 7.13 Generate UI Stub Dialog

From the Library of sam kaplan

ptg

218 CHAPTER 7 ADD MOTION WITH JAVAFX ANIMATION

Notice that the cache instance variable was set to true on each of the assets. This
indicates to the JavaFX runtime system that the image produced by the node can
be internally kept as a bitmap and may result in a performance improvement
when displaying on the screen. This improvement may be quite noticeable when
moving or otherwise manipulating objects in an animation. However, any
improvement may be dependent on the underlying graphics processing unit
(GPU) and its capabilities. You may want to experiment with both settings to see
what works best.

The animation is exactly the same as in the JavaFX shape implementation
described previously. The only difference is instead of using the object directly,
you access the graphical node through the EclipseUI instance. For example:

var eclipse: Timeline = Timeline {
 keyFrames: [
 KeyFrame {
 time: 0s
 values: [

ui.Moon.translateX => -138,
ui.Moon.translateY => 50,
ui.DarkSky.opacity => 0.0,

Chapter Summary
This chapter discussed the basics of animation in JavaFX. We covered the
classes used to define animation and discussed how to use the standard interpola-
tors. We also described how to create a custom interpolator. Next, we walked
through an example of path animation by demonstrating a race car travelling the
streets of midtown Manhattan in New York City. Lastly, we walked through a
complex animation of a total eclipse using both JavaFX shapes and graphical
assets produced from Adobe Illustrator using JavaFX Production Suite.

In the next chapter, we cover more “cool” multimedia features, including
images, sound, and videos.

From the Library of sam kaplan

ptg

219

8
Include Multimedia

“But theater, because of its nature, both text, images, multimedia effects, has a
wider base of communication with an audience. That’s why I call it the most

social of the various art forms.”

—Wole Soyinka

Multimedia
Multimedia is the application of multiple means to present content. Convention-
ally, the media components include text, interactive controls, special effects, pic-
tures, animation, audio, and video. We have already covered text and interactive
controls in Chapter 5, Create User Interfaces; special effects in Chapter 6, Apply
Special Effects; and animation in Chapter 7, Add Motion with JavaFX Anima-
tion. In this chapter, we will focus on images, sound, and video.

Images
Loading and displaying images in JavaFX is quite simple. First, you create an
Image object, javafx.scene.image.Image, and then you create an ImageView,
javafx.scene.image.ImageView, to show the image on the display.

Minimally, you can create an Image object by just supplying a URL to the loca-
tion of the image. The URL may be local, beginning with a file: protocol, or
remote, using an Internet protocol like http:. For example, to load an image
from the directory of the current script file, in the figures subdirectory, you
would use the built-in __DIR__ variable.

var image = Image {
 url: "{__DIR__}figures/myImage.gif"
}

From the Library of sam kaplan

ptg

220 CHAPTER 8 INCLUDE MULTIMEDIA

If you want to size the Image, you can specify the desired width and height, and
also specify whether the aspect ratio of the image should be preserved. The
smooth variable indicates whether to use a better quality scaling algorithm or a
faster one. When smooth is set to true, its default value, the scaling will be of
higher quality; when set to false, scaling occurs faster, but with lesser quality.
This is demonstrated in Listing 8.1.

Listing 8.1 Image Sizing

var image = Image {
 url: "http://www.nasa.gov/figures/content/"
 "300763main_image_1258_1600-1200.jpg"

 width: 500

 height: 500

 preserveRatio: true

 smooth: true

}

Similar geometry variables, fitWidth and fitHeight, are also available on the
ImageView, and these will be discussed a little later in this chapter. This is an
alternative way to scale the image.

Because the image may be located on a remote system—maybe it is just large or
maybe there are a lot of images to load—it may take some time to load the
image. If you do not want to wait for the image to load when you create it, you
can set the flag, backgroundLoading. When you use this option, you can also
specify a placeholder image that will be shown while the main image is down-
loading. Presumably, this placeholder image will have already been loaded and
will be ready before the primary image is loaded. This is shown in Listing 8.2.

Listing 8.2 Background Loading

var image = Image {
 url: "http://www.nasa.gov/figures/content/"
 "300763main_image_1258_1600-1200.jpg"

backgroundLoading: true

 placeholder: Image {

 url: "{__DIR__}figures/Smiley.gif"

 }

}

From the Library of sam kaplan

ptg

IMAGES 221

While the image is loading, the Image has a property, progress, that holds the
percentage progress of the loading operation. This number is expressed as a num-
ber from 0.0 to 100.0. You can use this, for example, to bind to a ProgressBar
node to display the progress.

var progressBar= ProgressBar {
 height: 20
 width: bind scene.width
 percent: bind image.progress

}

Supported image formats vary by platform; however, on a desktop, the minimum
supported formats are listed in Table 8.1 as defined in the javax.imageio package.

Developer Tip: With Java 1.6, the javax.image.ImageIO class has three methods
that list the supported image types on a given platform. ImageIO.getReaderFormat-
Names() returns the list of supported format names, ImageIO.getReaderFileSuf-
fixes() returns the registered image file extensions, and ImageIO.getReaderMIME-
Types() returns the mime types.

If an error is detected during the image loading process, the error variable will
be set to true. This lets you know that an error has occurred, but it does not let
you know why the error happened. From personal experience, the most common
error is an invalid url, so the runtime system cannot locate the image data.

Developer Warning: One common error is inserting a spurious slash (/) char-
acter after the __DIR__ built-in variable. For example, instead of the correct

url: "{__DIR__}figures/myImage.gif" // CORRECT

Table 8.1 Java Desktop Standard Image Formats

Format Mime Type File Extension

JPEG image/jpeg .jpg, .jpeg

PNG image/png .png

BMP image/bmp .bmp

WBMP image/vnd.wap.wbmp .wbmp

GIF image/gif .gif

From the Library of sam kaplan

ptg

222 CHAPTER 8 INCLUDE MULTIMEDIA

you type the spurious slash as in

url: "{__DIR__}/figures/myImage.gif" // INCORRECT

As a result, the runtime system cannot locate the image file because __DIR__
already ends in a slash (/) character, and you end up with double slashes (//). This
issue has been raised on the JavaFX forums, and hopefully a fix will be imple-
mented to handle this automatically, but in the meantime be careful with this.

Now that we have an Image object, to view the image on the display, we need to
create a javafx.scene.image.ImageView. An ImageView is a scene graph node
that displays an image. Of course, one of its instance variables is image. Using
the image object we just created, we create an ImageView.

imageView = ImageView {
image: image = bind image

};

This creates a view that takes on the size of the underlying image. If the underlying
image is 100 100 pixels, the view will be sized accordingly. If you want to have
the image display with another size, you need to use the fitWidth and fitHeight
instance variables. Also, if you want to preserve the original aspect ratio for the
image, set preserveRatio to true. Just like the smooth variable in the Image object,
ImageView has a smooth variable. When smooth is set to true, scaling will favor
image quality over performance. On the other hand, when smooth is false, scaling
favors performance over quality. An example of doing this is shown in Listing 8.3.

Listing 8.3 ImageView Sizing

imageView = ImageView {
 fitWidth: bind scene.width

 fitHeight: bind scene.height - 25

 preserveRatio: true
 smooth: true

 image: image = bind image
};

To improve performance, the ImageView can be cached in memory as a bitmap.
Do this by setting the variable cache to true. Caching improves performance at
the expense of memory. However, on some platforms with graphical processing
units (GPU), caching may not provide any benefit to performance at all. We sug-
gest that you try it either way and see if it helps.

Putting this all together in an example, SimpleImage, that is available on the book’s
Web site, we produce the displays in the figures that follow. In SimpleImage, we
used an image from the US National Aeronautics and Space Administration

From the Library of sam kaplan

ptg

IMAGES 223

(NASA) Web site. At first, we see the Smiley face image and the progress bar
shows partial progress. Figure 8.1 shows the Smiley Face image and the progress
bar while the main image from NASA is loading.

After the NASA image has loaded, the picture is shown and the progress bar
shows full completion, as shown in Figure 8.2.

Figure 8.1 Placeholder Display While Loading NASA Image

Figure 8.2 NASA Image Display

From the Library of sam kaplan

ptg

224 CHAPTER 8 INCLUDE MULTIMEDIA

If you want to only display part of the image, you can create a viewport. A
viewport is a rectangular area within the image’s coordinate system prior to any
transformations like scaling. You specify the viewport by using the javafx
.geometry.Rectangle2D class. This is illustrated in Listing 8.4.

Listing 8.4 Viewport

imageView = ImageView {
 fitWidth: bind scene.width
 fitHeight: bind scene.height - 25
 preserveRatio: true
 smooth: true
 image: image = bind image
 viewport: Rectangle2D {

 minX: 200

 minY: 200

 width: 800

 height: 500

 }

};

This produces a view of only a portion of the original image, as depicted in Fig-
ure 8.3.

Figure 8.3 NASA Image Display Using Viewport

From the Library of sam kaplan

ptg

MEDIA—AUDIO AND VIDEO 225

Media—Audio and Video
In JavaFX, there is really no distinction between audio and video. They are both
considered playable media, and the same JavaFX classes are used for both types.

In line with this, there is one media class, javafx.scene.media.Media, that
points to the audio or video location. This class also provides meta-data about
the media, like duration, possible width and height resolution, and possible infor-
mation like artist, title, and so on. The amount of meta-data varies based on the
underlying media format.

There is a player, javafx.scene.media.MediaPlayer, that controls the play of
the media. Do not confuse this with the conventional view of a Media Player
application with skins and such that runs on your computer. The javafx
.scene.media.MediaPlayer is just a class that allows a program to do control
actions, like play, pause, resume play, and so on. Your job is to use these classes
and the rest of JavaFX to create your own cool Media Player application.

For video, there is a viewer class, javafx.scene.media.MediaView. This is a node
that you can place in your scene along with other nodes to actually view the video.

To support audio and video playback, JavaFX uses three underlying frameworks.
For cross-platform support, including mobile phones, JavaFX uses the On2
VideoVP6 framework from On2 Technologies. For Windows, JavaFX uses the
DirectShow framework from Microsoft; for Mac OS, JavaFX uses the Core Video
by Apple. Table 8.2 shows the audio/visual formats supported on each platform.

Table 8.2 Supported Media Formats

Format
Windows

XP
Windows

Vista
MacOS
10.4+

Linux/
Solaris

MPEG-3(.mp3) X X X X

Flash Video (.flv) X X X X

Adobe Film Strip .fxm (Sun defined
FLV subset)

X X X X

3GPP and 3GPP2 X

Audio Video Interleave (.avi) X X X

QuickTime (.mov) X

continues

From the Library of sam kaplan

ptg

226 CHAPTER 8 INCLUDE MULTIMEDIA

Table 8.3 shows the Audio codecs supported on each platform.

Table 8.4 shows the Video codecs supported on each platform.

MPEG-4 (.mp4) X

Waveform Audio Format – WAV (.wav) X

Windows Media Video (.wmv) X

Advanced Systems Format (.asf) X

Table 8.3 Supported Audio Codecs

Codec
Windows

XP
Windows

Vista
MacOS
10.4+

Linux/
Solaris

MP3 X X X X

MPEG-4 AAC Audio X

MPEG-1 X X

Windows Media Audio X X

MIDI (.mid) X X X

Waveform Audio Format X X X

AIFF X

Table 8.4 Supported Video Codecs

Codec
Windows

XP
Windows

Vista
MacOS
10.4+

Linux/
Solaris

On2 VP6 X X X X

Windows Media Video X X X

Table 8.2 Supported Media Formats (Continued)

Format
Windows

XP
Windows

Vista
MacOS
10.4+

Linux/
Solaris

From the Library of sam kaplan

ptg

MEDIA—AUDIO AND VIDEO 227

To develop a media application, you must first create a javafx.scene.media
.Media object with the URL source that points to the location of the audio or
video data. The onError function is called if a media error is encountered. These
errors might include media that cannot be located or the media format is unsup-
ported on the platform.

var media = Media {
onError: function(e:MediaError) {

 println("got a media error {e}");
 }
 source:
 "http://www.nps.gov/cany/planyourvisit/upload/ClipOne.wmv"

};

After the media object is created, you can query it for certain information. The
duration specifies the total time for playing the media. The height and width
may tell you the resolution of video media unless it cannot be determined, for
example if it is a streaming source or is only audio. The variable metadata holds
any information about the media, such as title and artist. The actual information
varies depending on the media handler.

Next, you need to create a javafx.scene.media.MediaPlayer object. Note that
the MediaPlayer has no visual capability, and you need other scene graph nodes
for the user to control the play. Listing 8.5 shows how to create a MediaPlayer.

H264 X X X

H.261, H.263 X

MPEG-1 X

MPEG-2 X

MPEG-4 X

Sorenson Video 2 and 3 X

Table 8.4 Supported Video Codecs (Continued)

Codec
Windows

XP
Windows

Vista
MacOS
10.4+

Linux/
Solaris

From the Library of sam kaplan

ptg

228 CHAPTER 8 INCLUDE MULTIMEDIA

Listing 8.5 MediaPlayer

var mediaPlayer:MediaPlayer = MediaPlayer {
 volume: 0.5
 autoPlay: false
 onError: function(e:MediaError) {
 println("got a MediaPlayer error : {e.cause} {e}");
 mediaPlayer.stop();
 mediaPlayer.media = null;

 }
 onEndOfMedia: function() {
 println("reached end of media");
 mediaPlayer.play();
 mediaPlayer.stop();
 mediaPlayer.media = null;
 }
};

This merely creates the player; to use it, you have to set the media variable to a
Media object that points to a source, then invoke the play(), pause(), or stop()
functions to control play. There are several instance variables that you may set on
the MediaPlayer. If autoPlay is true, playing will start right away. The variables
balance, fader, and volume control the left-to-right setting for the audio, the
front-to-back audio setting, and the sound volume. The mute variable toggles the
sound off or on. The onError and onEndOfMedia functions are invoked when an
error occurs or the end of the media is reached. The rate specifies the play
speed, 1.0 being normal speed. There are also functions and variables to report
status, buffering state, and start, stop, and current time settings.

For audio playback, this is all you need to use audio in your application. How-
ever, for video playback, you need a view node, the javafx.scene.media
.MediaView. Listing 8.6 shows how to create a MediaView that can display the
video.

Listing 8.6 MediaView

mv = MediaView {
 translateX: bind (scene.width – mv.layoutBounds.width)/2
 translateY: bind (scene.height -
 mv.layoutBounds.height - bottomBorder)/2
 mediaPlayer: bind mediaPlayer
 preserveRatio: true
 fitWidth: bind scene.width - 4 * borderWidth
 fitHeight: bind scene.height - 4 * borderWidth -

 bottomBorder

From the Library of sam kaplan

ptg

MEDIA—AUDIO AND VIDEO 229

 onError: function(e:MediaError) {
 println("got a media error {e}");
 }
}

The MediaView provides a place for the video part of the media to be displayed,
similar to what we did for images, and you can set the view’s fitWidth and
fitHeight, smooth, viewport, and preserveRatio properties. If you do not set
these, the window will assume the geometry suggested by the underlying media
stream. There are also several properties that can be examined that indicate
whether the media view can be rotated or sheared.

The MediaView is a scene graph node that may be placed into the scene graph
tree along with other nodes. The example application, Media, on the book’s Web site
shows a complete player that allows you to view a video from the US National
Park Service. When displayed, this application has a viewport in the upper part
of the display, showing people rafting down a river. This is shown in Figure 8.4.

Figure 8.4 US National Park Service Video

From the Library of sam kaplan

ptg

230 CHAPTER 8 INCLUDE MULTIMEDIA

Let’s examine the interaction of the progress bar immediately below the video as
shown in Figure 8.5.

This progress bar shows the elapsed percent of the video playback. This is done
by binding the media player’s current time to the ProgressBar as illustrated in
Listing 8.7. The percent elapsed time is calculated by dividing the media player’s
currentTime by the total duration of the media.

Listing 8.7 MediaPlayer – ProgressBar

content: ProgressBar {
 height: 10
 width: bind scene.width

percent: bind if (mediaPlayer.media != null and
 mediaPlayer.media.duration != null and
 mediaPlayer.media.duration.toMillis() > 0 and
 mediaPlayer.currentTime.toMillis() > 0)
 {

mediaPlayer.currentTime.toMillis() /

 mediaPlayer.media.duration.toMillis()

 } else {
 0.0
 };
...
...

The left part of the ProgressBar has a button that rewinds the media by 10 sec-
onds each time it is pressed. This is an action of the ProgressBar called rewind.
Notice that the player must be paused, the currentTime is then set, and play is
resumed. Listing 8.8 is an example of how to implement this.

Listing 8.8 MediaPlayer – Rewind

rewind: function() {
 mediaPlayer.pause();
 mediaPlayer.rate = 1.0;

mediaPlayer.currentTime =
if(mediaPlayer.currentTime.lt(10s)) {

 0s

Figure 8.5 Video Play and Progress Bar Interaction

From the Library of sam kaplan

ptg

MEDIA—AUDIO AND VIDEO 231

 } else {
 mediaPlayer.currentTime.sub(10s);

 }
 mediaPlayer.play();
}

The button to the right of the ProgessBar causes the rate of play to be increased
by 0.5 each time it is pressed. If the play is running at normal speed, the rate is
1.0. After pressing the right button once, the new rate will be 1.5. Pressing it
again, the new rate will be 2.0, or 2 times the normal rate. This is done up to a
maximum of 3x, when it is then reset to 1.0. Listing 8.9 shows how this may be
done. Again, notice that the player must be paused while changing the rate.

Listing 8.9 MediaPlayer – Fast Play

fastPlay: function() {
 mediaPlayer.pause();

mediaPlayer.rate = if(mediaPlayer.rate == 3.0)

 1.0 else mediaPlayer.rate + 0.5;

 mediaPlayer.play();
}

There is a knob at the head end of the progress part of the progress bar. Progress
is noted as a darker color to the left of the knob. The user can drag this knob back
and forth to reset the play backward or forward to another position, and play will
resume from there. The code that handles this is in Listing 8.10.

Listing 8.10 MediaPlayer – Seek

seek: function(per:Number) {
 mediaPlayer.rate = 1.0;
 mediaPlayer.pause();

mediaPlayer.currentTime =

mediaPlayer.media.duration.mul(per);

 mediaPlayer.play();
}

When the knob is dragged, the ProgressBar calculates the new percentage and the
seek function multiplies this by the total media duration to set a new currentTime
for the player.

Now let’s examine the bottom controls, as shown in Figure 8.6.

From the Library of sam kaplan

ptg

232 CHAPTER 8 INCLUDE MULTIMEDIA

The left button toggles the play of the media. If the player is stopped or paused,
play begins. If the player is running, play is paused. The next button stops the
play and resets the media back to the beginning. The third control mutes the
sound. These are followed with the volume, balance, and fade controls.

The first three controls are rather simple to implement. For the first one, if the
player is stopped or paused, invoke the play function on the media player. Other-
wise, invoke the pause function. The next button merely invokes the stop func-
tion. The third control just toggles the media player’s mute variable. Listing 8.11
contains the code snippet with only the media player interaction shown.

Listing 8.11 Media Control

var playing =
 bind mediaControl.player.status == MediaPlayer.PLAYING

 on replace {
 currentPlayShape = if(playing) parallelBars

 else rightArrow;
 };

ControlButton {
 id: "play"
 centerShape: bind currentPlayShape
 action: function () {
 if(playing) {

mediaControl.player.pause();

 }else {

 mediaControl.player.play();

 }

 }
},
ControlButton {
 id: "stop"
 action: function () {

mediaControl.player.stop();

 }
},
ControlButton {
 id: "mute"
 action: function () {

mediaControl.player.mute =

 not mediaControl.player.mute;

Figure 8.6 Video Play and Player Controls

From the Library of sam kaplan

ptg

MEDIA—AUDIO AND VIDEO 233

currentMuteShape = if(mediaControl.player.mute) {

 mutedSpeaker;

 } else {

 speaker

 };

 }
},

The play button changes its internal symbol depending on whether the media
player is playing. A triangle is shown if the player is stopped and parallel bars
are used when the player is playing. The mute button toggles its symbol based on
the player’s mute variable.

The volume control binds to the player’s volume instance variable and when the
user drags the knob, the volume is adjusted from quietest at 0.0 to loudest at 1.0.
Similarly, the balance and fader controls adjust their values from -1.0 to 1.0, with
0.0 being equal left and right or front to back settings. Listing 8.12 contains the
code snippet for this.

Listing 8.12 Volume Control

VolumeControl {
 id: "volume"

player: bind mediaControl.player

},
Balancer {
 id: "balance"
 player: bind mediaControl.player

value: bind mediaControl.player.balance

 update: function(n:Number) : Void {
mediaControl.player.balance = n;

 }
},
Balancer {
 id: "theFader"
 player: bind mediaControl.player

value: bind mediaControl.player.fader

 update: function(n:Number) : Void {
mediaControl.player.fader = n;

 }
}

This example is focused on showing interaction with the MediaPlayer using a
MediaView to see the video portion. You can also use this player with audio files,

From the Library of sam kaplan

ptg

234 CHAPTER 8 INCLUDE MULTIMEDIA

such as your favorite MP3 song. The only difference is the viewer part will
appear black because, of course, an audio media will have nothing to see.

The purpose of this example was to demonstrate the interaction of other UI com-
ponents and the MediaPlayer; as a result, this example is limited. For instance,
this example program allows only one hard-coded source URL for the media. A
more robust application would load a list of media from a data source or would
allow one to enter the URL. Concepts like playlists and sequential play could
also be supported.

Chapter Summary
In this chapter, we covered how to include images and sound and video in your
applications. For images, we examined the javafx.scene.image.Image and
javafx.scene.image.ImageView classes. For sound and video, we discussed
the Media and MediaPlayer classes in the javafx.scene.media package.
Lastly, for videos, we showed how to use the MediaView class to present the
video within a display. We also demonstrated how to use these classes in an
application.

We have now covered all the basic components to make a JavaFX application.
Next, we will start putting this to use. First, we will examine how to use JavaFX
applications on Web pages followed by a discussion of using JavaFX in RESTful
applications.

From the Library of sam kaplan

ptg

235

9
Add JavaFX to Web
Pages with Applets

“Civilization advances by extending the number of important
operations which we can perform without thinking of them.”

—Alfred North Whitehead

JavaFX and Applets
JavaFX makes applet development and deployment easy!! I know what you are
thinking: “Applets, aren’t they those things we heard about 10 years ago when
Java was brand new? Aren’t they slow and unreliable?” Well not anymore. Since
the release of Java 6 update 10, the entire applet framework has been redone and
JavaFX leverages this to make it possible to run any JavaFX application as an
applet without code changes. To start with, let’s see how easy it is to deploy a
JavaFX application as an applet within an HTML page. Next, we will explore a
new feature that allows you to drag the applet off the HTML page and onto your
desktop. Then we will cover interaction between JavaFX and JavaScript. We will
also cover Java Web Start, which is another way to easily install a JavaFX appli-
cation from an HTML page directly to the desktop.

Deploying a JavaFX Application
as an Applet

The first step is to write your JavaFX application. For now, there is nothing out
of the ordinary you have to do. Furthermore, you can run and test your JavaFX

From the Library of sam kaplan

ptg

236 CHAPTER 9 ADD JAVAFX TO WEB PAGES WITH APPLETS

application just like any other JavaFX application. After you are satisfied that
your application is working as desired, you can deploy it to a Web page.

The example we are going to use is the NASA Image Browser application that
can be found on the book’s Web site. This application fetches the RSS feed of the
“images of the day” from the US National Aeronautics and Space Administra-
tion (NASA) Web site and builds a thumbnail view of all the images; as you
select a thumbnail, a higher resolution image is then fetched and displayed from
the NASA Web site. When this JavaFX application is run as a standalone appli-
cation, it looks like a normal JavaFX application, as shown in Figure 9.1.

To deploy this as an applet in an HTML page, there are three steps:

1. Sign the application JAR file.

2. Create the JNLP (Java Network Launch Protocol) descriptor file.

3. Add JavaScript code to the HTML source.

Figure 9.1 NASA Image Browser – Standalone Application

From the Library of sam kaplan

ptg

DEPLOYING A JAVAFX APPLICATION AS AN APPLET 237

After this is done and when the HTML page is displayed in the browser,
the JavaFX application will start and display within the browser page.
Figure 9.2 shows the same application running within an HTML page
using the Firefox browser.

There are basically two ways to do these three steps. Use NetBeans IDE for JavaFX
or do the steps manually, either from the command line or implement them in an
Ant build file.

Figure 9.2 NASA Image Browser – Applet in Firefox

From the Library of sam kaplan

ptg

238 CHAPTER 9 ADD JAVAFX TO WEB PAGES WITH APPLETS

NetBeans IDE for JavaFX
The easiest way to do all this is to use NetBeans IDE for JavaFX. When you
build the JavaFX project with NetBeans IDE for JavaFX, these steps are done
automatically. The JAR is signed, the JNLP file is generated, and a sample
HTML page is produced that can be copied into any HTML source file.

There are some parameters to assist in this. Right-click on the NetBeans Project
and select Properties. Then click on Application. Figure 9.3 shows the NetBeans
properties window for defining applet properties.

The Name field defaults to the Project Name; you can set your company as the
Vendor, set the applet’s Width and Height, mark it as Draggable, do a Self
Signed Jar file, and indicate that you want to support Pack200 Compression.
Draggable is a new applet feature that we will discuss a little later in this chapter.
Pack200 Compression allows the JAR file to be compressed to a smaller size to
minimize download time when starting the applet.

As a part of the applet security model, we need to sign the JAR file in order to
have broader permissions to run the application on the user’s platform. When the
applet is first loaded, the Java Plug-in module will identify the provider of the
applet, verify the JAR file has not been tampered with, and ask the user if he
grants permission to run the applet on his platform. The JNLP deployment file
also has a security section that helps govern security permissions. The NetBeans
IDE sets this to “all-permissions.” There is more on security later in this chapter.

Figure 9.3 Applet Generation Parameters

From the Library of sam kaplan

ptg

DEPLOYING A JAVAFX APPLICATION AS AN APPLET 239

When the project is built, besides generating the JAR file, two JNLP deployment
files will be generated, one used for applet deployment, and the other used for
Java Web Start deployment. Java Web Start uses the same protocol as applets,
but allows the user the ability to start the application from his desktop without
using the browser, even though the application itself is downloaded. These will
be explained in detail in the next sections. Besides the JNLP deployment files, a
sample HTML file is produced with the appropriate JavaScript code to launch
the applet. This file can be used for testing, and the JavaScript launcher code can
be copied into any HTML source file.

For our NasaImageBrowser application, the following files are generated:

• NasaImageBrowser.jar

• NasaImageBrowser.jar.pack.gz

• NasaImageBrowser.html

• NasaImageBrowser_browser.jnlp

• NasaImageBrowser.jnlp

Upon opening the NasaImageBrowser.html page in a browser, the appropriate
JAR’s files for the application and JavaFX will be downloaded and cached on the
user’s machine. Then the application will run in the HTML page as shown in
Figure 9.2. One of the enhancements that the new applet framework provides is
this local caching mechanism. As long as the version for a JAR file does not
change, it does not need to be downloaded each time, thereby improving the
user’s experience with quicker startup times. Also, if the user does not have the
correct version of Java installed on her machine, she is prompted to download
the correct Java JRE version.

Manual Generation to Support JavaFX Applets
If you are not using NetBeans IDE for Java, you will need to sign the JAR file
manually and create the JNLP deployment and HTML files by hand. Let’s look
at the signing steps.

Signed JAR
To sign the JAR file, first you need to create a new public/private key pair stored
in a new keystore using the Java command keytool. For example, you may cre-
ate a keystore in the current directory, named myKeystore, with a store password
and a key password of password. The store password is the password that pro-
tects the integrity of the keystore. The key password protects the private key. The
alias myKey identifies this new entry in the keystore. The dname entry is the
X500 Distinguished Name and identifies the entity that is signing the applet.

From the Library of sam kaplan

ptg

240 CHAPTER 9 ADD JAVAFX TO WEB PAGES WITH APPLETS

Typically, when the user attempts to start the JavaFX applet, this name is pre-
sented to the user and the user must accept it before the applet will actually start.
For more information, consult the Java documentation for the keytool command.

keytool -genkey -keystore ./myKeystore -storepass password
 -alias myKey -keypass password

 -dname CN=JFXBOOK

After the key is generated, you need to create a self-signed certificate, again
using the Java keytool command.

keytool -selfcert -alias myKey -keystore ./myKeystore
 -storepass password

Lastly, you need to sign the JAR file with a self-signed or a trusted certificate by
using the Java jarsigner command.

jarsigner -keystore ./myKeystore -storepass password
 NasaImageBrowser.jar myKey

All these examples assume you are in the same directory as the directory con-
taining the NasaImageBrowser.jar file.

JNLP File
The new applet browser plug-in software leverages the Java Network Launching
Protocol (JNLP) first introduced with Java Web Start. Java Web Start allows you
to start an Internet Java application outside of the browser. This capability is now
being applied to applets themselves, so that applets no longer run within the
browser application, but rather run in a background Java process with a window
on the browser page. Using JNLP makes dealing with issues like security and
runtime settings easier to maintain in a downloadable form.

Using a Verified Certificate
Using a self-signed certificate is useful for testing, but when your application goes
into production, you should sign the JAR files with a valid certificate. A valid certifi-
cate can be obtained from a Certificate Authority such as Verisign (http://www.veri-
sign.com/) or Thawte (http://www.thawte.com/). Consult the Java documentation
on how to obtain a valid certificate and then how to import that certificate into the
keystore. A good source detailing this entire procedure can be found at http://
java.sun.com/docs/books/tutorial/security/sigcert/index.html.

From the Library of sam kaplan

http://www.verisign.com/
http://www.verisign.com/
http://www.thawte.com/
http://java.sun.com/docs/books/tutorial/security/sigcert/index.html
http://java.sun.com/docs/books/tutorial/security/sigcert/index.html

ptg

DEPLOYING A JAVAFX APPLICATION AS AN APPLET 241

To run a JavaFX applet, it is necessary to create a JNLP XML file that defines
the required resources, security settings, and applet configuration properties for
deployment. By default, the javafx() JavaScript function, defined in the next
section, defines this filename for this JNLP deployment file to be the concatena-
tion of the applet name with _browser.jnlp. For the NASA Image Browser
application, this is NasaImageBrowser_browser.jnlp. This can be changed to
point to another name by including a "jnlp_href" launch parameter in the Java-
Script function, javafx(). This is described in the next section, JavaFX Applet
Launch JavaScript.

There are four main sections to the JNLP XML, <information>, <security>,
<resources>, and <applet-desc>. These are shown in Listing 9.1.

Listing 9.1 JNLP XML File

<?xml version="1.0" encoding="UTF-8"?>
<jnlp spec="1.0+"
href="NasaImageBrowser_browser.jnlp">

<information>

 <title>NasaImageBrowser</title>
 <vendor>jfxbook</vendor>
 <homepage href="http://www.jfxbook.com"/>
 <description>NasaImageBrowser</description>

continues

Ant Tasks
There are two Ant tasks that assist in signing JARs. First, there is the genkey task
that generates the key. Second, there is the signjar task that facilitates signing
JAR files. The following is an example build.xml that uses these tasks to sign the
NasaImageBrowser JAR file.

<?xml version="1.0" encoding="UTF-8"?>
<project name="NasaImageBrowser" default="default"

 basedir="." >
 <target name="default" >
 <genkey alias="myKey" storepass="password"

 dname="CN=JFXBOOK"
 keystore="./myKeystore" />
 <signjar alias="myKey"

storepass="password"
keystore="./myKeystore"

 jar="NasaImageBrowser.jar" />
 </target>
</project>

From the Library of sam kaplan

ptg

242 CHAPTER 9 ADD JAVAFX TO WEB PAGES WITH APPLETS

 <offline-allowed/>
 <shortcut>
 <desktop/>
 </shortcut>
 </information>

<security>

 <all-permissions/>
 </security>

<resources>

<j2se version="1.5+"/>
 <property name="jnlp.packEnabled" value="true"/>
 <property name="jnlp.versionEnabled" value="true"/>
 <extension name="JavaFX Runtime"
 href="http://dl.javafx.com/javafx-rt.jnlp"/>
 <jar href="NasaImageBrowser.jar" main="true"/>
 </resources>

<applet-desc name="NasaImageBrowser"
 main-class="com.sun.javafx.runtime.adapter.Applet"
 width="500" height="500">
 <param name="MainJavaFXScript"

 value="nasaimagebrowser.Main">
 </applet-desc>

</jnlp>

<jnlp> codebase Property: In the main <jnlp> tag, codebase is an optional
property that tells the system to locate any resources defined in the JNLP file. If the
codebase property is not specified, the JNLP file inherits the codebase from the
HMTL document. The recommendation for the codebase property when a JNLP is
used with an applet is either to not specify one in the JNLP file so that the code-
base is inherited from the HTML file or to specify an absolute codebase. By not
specifying a codebase, the JNLP file is more portable when moving it from one
server location to the next. The NetBeans IDE for JavaFX generates an absolute
codebase property within the <jnlp> tag, so when placing the files into produc-
tion, it either has to be changed or removed.

<information>
The <information> element identifies the application and its source. The key
element under <information> is <offline-allowed>. If this is set, the applet
can be run when the system is off the network. When the system is connected to
the network, the applet framework will automatically check for updates. If

From the Library of sam kaplan

ptg

DEPLOYING A JAVAFX APPLICATION AS AN APPLET 243

<offline-allowed> is not specified, the application can only be run when the
system is connected back to the applet’s source location.

<security>
The <security> element defines the security permissions the applet is allowed
to have. Each applet, by default, is run in a security-restricted environment. If
<all-permissions> is defined, the applet will have full access to the user’s
machine. In this case, the JAR files must be digitally signed and the user is asked
whether to grant this permission prior to the applet running.

<resources>
The <resources> element identifies the resources needed for running the applet.
This includes specifying which versions of Java are required to run the applet.
This section also identifies all the archive files needed by the applet.

<applet-desc>
The <applet-desc> element defines the properties for the applet. There is some
overlap with these settings and the settings set from the HTML page using the
JavaScript code defined in the next section. The overlap is resolved as defined in
Table 9.1.

* When using JNLP applets, applet properties code,archive,java_arguments, and java_
version are unnecessary as these are defined in the JNLP file. Applet parameters are
merged with the settings defined in the JNLP file. If the same parameters are specified in
both, the applet’s settings take precedence except for java_arguments and
java_version.

Table 9.1 Precedence Rules for <applet> HTML Tag and JNLP Settings

Property Precedence

width HTML

height HTML

codebase JNLP (If absolute)

code* JNLP

archive* JNLP

java_arguments* JNLP

java_version* JNLP

From the Library of sam kaplan

ptg

244 CHAPTER 9 ADD JAVAFX TO WEB PAGES WITH APPLETS

For more information on the JNLP XML and how it applies to applets, go to http://
java.sun.com/javase/6/docs/technotes/guides/jweb/applet/applet_deployment.html#
jnlp_href. For a detailed description on the JNLP XML, go to http://java.sun.com/
javase/6/docs/technotes/guides/javaws/developersguide/syntax.html.

JavaFX Applet Launch JavaScript
To make JavaFX applet deployment easier and portable across browsers, Sun has
developed a JavaScript function for launching JavaFX applets. This JavaScript
function is defined as javafx(launchParams, appletParams). The second param-
eter, appletParams, is optional. To include this JavaScript code into your HTML
page, you must first reference it. The standardized location for this JavaScript
code is http://dl.javafx.com/dtfx.js. An example of using this in an HTML page is

<script src="http://dl.javafx.com/dtfx.js"></script>

Including this script provides JavaScript functions for automatic checking for the
correct Java version and defines the JavaScript function for loading the appropri-
ate JavaFX runtime archive files.

To use the JavaFX launch function, javafx(), in an HTML page, include it
within a JavaScript section as shown in Listing 9.2.

Listing 9.2 JavaScript for Launching JavaFX Applet in a Browser

<script>

 javafx(

 {

 archive: "NasaImageBrowser.jar",

 width: 500,

 height: 500,

 code: "nasaimagebrowser.Main",

 name: "NasaImageBrowser"

 }

);

</script>

Listing 9.3 shows using the JavaFX Applet launcher function in an HTML page.
The JavaScript code for the applet is shown in bold and includes two script sections.

Listing 9.3 JavaFX Launcher Script in HTML Page

<html>
 <head>
 <title>Nasa Image Browser</title>
 </head>

From the Library of sam kaplan

http://java.sun.com/javase/6/docs/technotes/guides/jweb/applet/applet_deployment.html#jnlp_href
http://java.sun.com/javase/6/docs/technotes/guides/jweb/applet/applet_deployment.html#jnlp_href
http://java.sun.com/javase/6/docs/technotes/guides/jweb/applet/applet_deployment.html#jnlp_href
http://java.sun.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html
http://java.sun.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html
http://dl.javafx.com/dtfx.js

ptg

DEPLOYING A JAVAFX APPLICATION AS AN APPLET 245

 <body>
 <h1>Nasa Image Browser</h1>
 <script src="http://dl.javafx.com/dtfx.js"></script>

 <script>

 javafx(

 {

 archive: "NasaImageBrowser.jar",

 width: 500,

 height: 500,

 code: "nasaimagebrowser.Main",

name: "NasaImageBrowser"

 }

);

 </script>

</body>

The second <script> tag invokes the javafx deployment function defined in the
JavaFX deployment script file. This deployment function may have two argu-
ments. The first contains the launch properties for the applet, and the second
parameter set contains any parameters available to the application. In this exam-
ple, only the launch properties are used. By default, this launcher will use a
"jnlp_href" of "NasaImageBrowser_browser.jnlp".

Table 9.2 lists the possible launch properties.

Table 9.2 JavaFX Applet Launch Properties

Property Meaning Type

archive One or more archives separated by comma. String

code JavaFX class to run. String

name Name of the applet. String

width Width of the display area. Number

height Height of the display area. Number

codebase The base URL of the applet; default is the location containing the
HTML page.

String

alt Any text that should be displayed if the applet cannot run. String

align Specifies the alignment of the applet. Possible values: left, right, top,
texttop, middle, absmiddle, baseline, bottom, absbottom.

String

continues

From the Library of sam kaplan

ptg

246 CHAPTER 9 ADD JAVAFX TO WEB PAGES WITH APPLETS

Developer Tip: There is a special launch property, display_html, used for debug-
ging your settings. When this is set to true, instead of launching the applet, the gen-
erated HTML code is displayed in the browser. This is useful to determine exactly
what is being sent to the browser and to figure out if any settings are wrong.

Listing 9.4 shows an example that adds an applet parameter, isApplet, that will
be used by the NasaImageBrowser application to determine whether it has been
launched as an applet or as a standalone application. We will see how this is used
later in this chapter when we discuss dragging the applet off the browser to the
desktop. There is also a launch property to indicate the applet is draggable.

Listing 9.4 Draggable Applet

<script src="http://dl.javafx.com/dtfx.js"></script>
<script>
 javafx(
 {
 archive: "NasaImageBrowser.jar",

width: 500,
height: 500,
code: "nasaimagebrowser.Main",
name: "NasaImageBrowser",
draggable: true

 },
 {
 isApplet: true

 }
);
</script>

vspace Space above and below the applet. Number

hspace Space left and right of the applet. Number

version Specifies the JavaFX version to use. String

jnlp_href The file containing information that the plug-in should use to launch
the applet using Java Web Start.

String

draggable Indicates whether the applet is allowed to be dragged out of the HTML
page to the desktop (true or false).

Boolean

Table 9.2 JavaFX Applet Launch Properties (Continued)

Property Meaning Type

From the Library of sam kaplan

ptg

DEPLOYING A JAVAFX APPLICATION AS AN APPLET 247

The next section will explore how to take advantage of a new feature that lets
you “undock” the applet and move it off the browser onto the desktop. We have
just shown that we need to set the launch attribute, draggable, in the preceding
example. We also added an applet parameter, isApplet, that will be used by the
NASA Image Browser application to determine whether it was started as a stand-
alone application or as an applet in a browser.

Undocking from the Browser
You might be asking, “What is this Undocking feature?” Basically, it allows you
to click on the application and drag it off the browser to anywhere on your desk-
top. Figure 9.4 shows the NASA Image Browser after it has been dragged off the
Firefox browser. It is now undocked from the browser and will continue to run
even if the user exits the browser.

Figure 9.4 Undocked NASA Image Browser Applet

From the Library of sam kaplan

ptg

248 CHAPTER 9 ADD JAVAFX TO WEB PAGES WITH APPLETS

To allow this feature, we have to make some code changes to our application.
First, we have to add a javafx.stage.AppletStageExtension object to the
stage for the viewer. The most important variable in AppletStageExtension to
enable dragging the applet off the browser is to define a function for should-
DragStart. When this function is invoked, it returns true if an undocking drag is
allowed. In our case, we first check to see if the "isBrowser" script variable is
true. "isBrowser" is set if the Applet Parameter "isApplet" is set in the HTML
JavaFX launcher function. From JavaFX, you set this using the javafx.lang.FX
getArgument function.

var isBrowser:Boolean =
 (FX.getArgument("isApplet") as String).equals("true");

Next, you check to see if the primary mouse button is down. Lastly, because the
user can use the mouse in the application to select images to view, you restrict
this drag operation to the “bar” area at the top of the display. You could have
done this differently by just changing the logic defined in the shouldDragStart
function. For example, you could have used the secondary mouse button and
changed the area to the entire application. This is demonstrated in Listing 9.5.

Listing 9.5 Draggable Applet – JavaFX Code

var stage:Stage = Stage {
 title: "NASA Image Viewer"
 width: 1000
 height: 1000
 extensions: [

AppletStageExtension {
shouldDragStart: function(e): Boolean {

 return isBrowser and e.primaryButtonDown
 and dragArea.hover;

 }
onDragStarted: function() {

 isBrowser = false;
 }

onAppletRestored: function() {
 isBrowser = true;

 }
useDefaultClose: false

 }
]
 ...
 ...

From the Library of sam kaplan

ptg

DEPLOYING A JAVAFX APPLICATION AS AN APPLET 249

The useDefaultClose variable indicates whether to use a default close mecha-
nism or whether the close should be under the control of the developer. We have
chosen to implement our own close button so we will set this to false. The
default is true. When the application is “closed,” it actually docks back into the
browser page, if the page is still visible.

In our application, we use a ControlButton to close the application. There are
two important concepts here. One is that the ControlButton is only visible when
the application is not docked to the browser. Figure 9.5 shows the close button.

Listing 9.6 shows the implementation of the close button.

Listing 9.6 Close Button

ControlButton {
 translateY: bind gap/2
 translateX: bind scene.width - 2 * gap

visible: bind not isBrowser

 width: bind gap-6
 height: bind gap-6
 centerShape: Circle {
 radius: bind (gap-8)/2;
 fill: RadialGradient {
 stops: [
 Stop {

 offset: 0.0
 color: Color.WHITE

 },
 Stop {

 offset: 1.0
continues

Figure 9.5 Close Button

From the Library of sam kaplan

ptg

250 CHAPTER 9 ADD JAVAFX TO WEB PAGES WITH APPLETS

 color: Color.rgb(100,100,100)
 },
]
 }
 }

action: function() {

 stage.close();

 }

}

The second concept is that when the button is clicked, the action calls the stage’s
close() function. The stage.close() function then causes the application to be
again docked to the browser page, if that page is still visible. Figure 9.6 shows the
application redocked. Notice the close button does not show when it is docked.

Figure 9.6 Docked Applet

From the Library of sam kaplan

ptg

DEPLOYING A JAVAFX APPLICATION AS AN APPLET 251

JavaFX and JavaScript Interaction
Interaction between a JavaFX applet and JavaScript on the HTML page is fairly
simple and two-way interaction is supported. From the JavaFX applet, you can
invoke arbitrary JavaScript on the Web page. On the other hand, from JavaScript
on the Web page, you can get and set variables and invoke functions on the
JavaFX applet.

JavaFX to JavaScript
First, let’s discuss the JavaFX to JavaScript interaction. The javafx.stage
.AppletStageExtension class that we used in our “undocking” exercise earlier
also contains a function, eval(), that takes a string argument of JavaScript code.
This is executed in the HTML document that hosts the JavaFX applet. If the Java-
Script code returns an object, eval() returns it. Let’s look at an example using
the NASAImageBrowser applet.

First, let’s add a read-only text field to the HTML page, identified as "numPics".
This field will hold the total number of pictures that the NasaImageBrowser
applet currently has. The HTML code is in Listing 9.7.

Listing 9.7 HTML – Input Type “id”

<p>Number of pictures:
<input type="text" name="numPics" readonly="readonly"

 id="numPics" value="0" size="10" >

To update this field from the JavaFX code, we bind a variable to the size of the
image list. When the image list size is updated, we invoke a JavaScript function
that sets the value of the read-only field, "numPics". The JavaFX code is in List-
ing 9.8.

Listing 9.8 JavaFX Script – Locate JavaScript Item by ID

var applet: AppletStageExtension;

public var totalImageCount =
 bind sizeof imageList.images on replace {

applet.eval("document.getElementById('numPics').value =

 {totalImageCount}");

};

The applet variable is assigned to the AppletStageExtension when we created
the stage, as shown in Listing 9.9.

From the Library of sam kaplan

ptg

252 CHAPTER 9 ADD JAVAFX TO WEB PAGES WITH APPLETS

Listing 9.9 JavaFX Script – AppletStageExtension

var stage:Stage = Stage {
 title: "NASA Image Viewer"
 width: 1000
 height: 1000
 extensions: [

applet = AppletStageExtension {
 ...
 ...

When the HTML page is first loaded and the JavaFX applet starts, this number
rapidly updates as the applet processes the returned XML from the NASA site.

Let’s add another HTML input field that displays the current picture index.
Besides showing the current picture index as set by the JavaFX applet, this field
also allows the user to enter an arbitrary index and then click the Set Current but-
ton to send the index to the JavaFX applet. We will be discussing this feature
when we talk about JavaScript communicating with JavaFX.

The HTML code is in Listing 9.10.

Listing 9.10 HTML – currentIndex Input Field

<p>Current Picture Index:
<input type="text" name="currentIndex"

 id="currentIndex" value="0" size="10">

The JavaFX applet code is in Listing 9.11.

Listing 9.11 JavaFX Script – Access HTML Field currentIndex

public var currentIndex: Integer = bind imageList.currentIndex on
replace {
 thumbnailViewer.currentIndex = currentIndex;
 // tell the web page
 applet.eval(
 "document.getElementById('currentIndex').value =
 {currentIndex}");
};

Figure 9.7 shows the new HTML page, with the two fields numPics and
currentIndex. The JavaFX applet has already updated the Number of Pictures
and the Current Picture Index.

From the Library of sam kaplan

ptg

DEPLOYING A JAVAFX APPLICATION AS AN APPLET 253

As you can see, calling JavaScript from JavaFX is fairly simple to implement.
Now let’s explore the other way, JavaScript to JavaFX.

JavaScript to JavaFX
Calling JavaFX from JavaScript is fairly straightforward, but there are some
rules that you need to follow.

First, you need to add an id launch parameter to the javafx launch function. We
will use "app" as the id, and this lets us refer to the applet in our JavaScript code as
"document.app". If we had chosen a different ID, let’s say "myApplet", access

Figure 9.7 JavaFX – JavaScript HTML Page

From the Library of sam kaplan

ptg

254 CHAPTER 9 ADD JAVAFX TO WEB PAGES WITH APPLETS

to the JavaFX applet would be with that code, as in "document.myApplet". The
HTML for this is shown in Listing 9.12.

Listing 9.12 HTML – Define Applet “id”

<script>
 javafx(
 {
 codebase: "./dist",
 archive: "NasaImageBrowser.jar",
 draggable: true,
 width: 500,
 height: 500,
 name: "app",

id: "app",

 title: "Nasa Image Browser - JavaScript - JavaFX"
 }, {
 isApplet: "true"
 });
</script>

Next, we will define a JavaScript function, setIndex(), to set the current index
from the currentIndex <input> field that we previously defined in the HTML
page. This function calls a script function on the JavaFX applet, passing in the
value taken from the currentIndex <input> field. The JavaFX function then takes
this value and sets the current index, and the display updates. The public script
variables and functions are then accessed using the script keyword "document
.app.script". The JavaScript code for this is in Listing 9.13.

Listing 9.13 HTML – JavaScript

<script>
function setIndex() {

document.app.script.setCurrentPic(
 document.Form1.currentIndex.value);
}
</script>

The JavaFX code for the setCurrentPic function is in Listing 9.14. Notice that
it is necessary to use the javafx.lang.FX.defAction() function. This makes sure
that the changes to the JavaFX classes are done on the JavaFX Main processing
thread. Without this, you can expect erratic behavior and possibly exceptions.

From the Library of sam kaplan

ptg

DEPLOYING A JAVAFX APPLICATION AS AN APPLET 255

Listing 9.14 JavaFX – deferAction()

// The applet uses this to set the current Image shown
public function setCurrentPic(ndx:Integer) : Void {

FX.deferAction(function(): Void {
 try {

 imageList.setIndex(ndx);
 } catch(ex: java.lang.Exception) {

applet.eval("alert('{ex}')");
 }
 });
}

You can also set and get any public script variables defined in the JavaFX applet.
In the next example, we want to change the fill script variable in the NASAImage-
Browser applet to silver. The JavaScript code in Listing 9.15 shows how to do this.

Listing 9.15 HTML-JavaScript Access Public JavaFX Variables

<script>
document.app.script.fill =

 document.app.Packages.javafx.scene.paint.Color.SILVER;

....
</script>

The Packages per-Applet keyword provides JavaScript access to the JavaFX and
Java packages visible to the JavaFX applet. In the preceding example, we accessed
the script variable, SILVER, from the javafx.scene.paint.Color class.

You can also use the Packages keyword to instantiate new Java objects in the
JavaScript code. Instantiating JavaFX objects within JavaScript is not currently
supported. Listing 9.16 shows how to do this.

Listing 9.16 HTML-JavaScript – Instantiate Java Objects

var point = new document.app.Packages.java.awt.Point();
point.x = 100;
point.y = 150;

The main restriction when accessing JavaFX applets from JavaScript is that you
can only directly access the public script variables and functions defined for the
JavaFX applet. If you need to access instance variables or functions, you need to
create a script level variable or function that lets you get to the instance. For
example, the JavaFX code could be structured as shown in Listing 9.17.

From the Library of sam kaplan

ptg

256 CHAPTER 9 ADD JAVAFX TO WEB PAGES WITH APPLETS

Listing 9.17 JavaFX – Accessing Instance Variables via Script Variables

public var myInstance: MyApplet;
public class MyApplet {
...
}
function run(args: String[]) : Void {
 myInstance = MyApplet{};
}

JavaScript can then access the instance via the myInstance script variable. For
example, the JavaScript code could be

var theAppletInstance = document.app.myInstance;

This JavaScript variable, AppletInstance, could then be used to access the
instance variables and functions contained in the JavaFX MyApplet class.

Java Web Start
Java Web Start is a technology that allows you to start a networked application
from an HTML Web page or directly from the desktop. This is an alternative way
to distribute your applications without having to go through a specific install pro-
cess. The first time you launch a Java Web Start application, all the necessary
files are downloaded off the network and cached locally on your computer. If
there are updates, Java Web Start automatically pulls down the updated files. As
a result, you do not have to worry about distributing updates to your customers.
When they run the application, the Java Web Start will make sure they have the
most up-to-date version.

The applet framework we just covered is based on Java Web Start, so there will
be a lot of commonality between the two. The first step is to create your applica-
tion, test it, then create signed JAR files for the application. These steps are the
same as those we covered in the section for JavaFX applets. For creating signed
JAR files, see the section under Java Applets, Manual Generation, Signed Jars.
Of course, if you build your distribution with NetBeans IDE for JavaFX, the IDE
does this automatically for you.

The next step is to create a Java Network Launch Protocol (JNLP) deployment file.
This is similar to the way we created a JNLP file for JavaFX Applets that we dis-
cussed previously in the Deploying a JavaFX Application as an Applet section of this
chapter. However, there is a difference in one area. Instead of having an <applet-
desc> section under the <jnlp> tag, there is an <application-desc> section.

From the Library of sam kaplan

ptg

JAVA WEB START 257

The <application-desc> contains a main-class attribute that points to the main
JavaFX class, and may have zero or more <argument> elements for passing the
equivalent of command-line arguments to the JavaFX application. Listing 9.18
shows an example <application-desc> section.

Listing 9.18 JNLP – <application-desc>

<application-desc main-class="nasaimagebrowser.Main">
 <argument>arg1</argument>
</application-desc>

Except for swapping out the <applet-desc> section for the <application-
desc> section, the JNLP deployment file for applets is identical to the one for
applications. Using the NASABrowserImage application, the Java Web Start JNLP
file is shown in Listing 9.19.

Listing 9.19 JNLP Deployment File for Java Web Start Application

<?xml version="1.0" encoding="UTF-8"?>
<jnlp spec="1.0+" href="NasaImageBrowser_browser.jnlp">

<information>

 <title>NasaImageBrowser</title>
 <vendor>jclarke</vendor>
 <homepage href="http://www.jfxbook.com"/>
 <description>NasaImageBrowser</description>
 <offline-allowed/>
 <shortcut>
 <desktop/>
 </shortcut>
 </information>

<security>

 <all-permissions/>
 </security>

<resources>

<j2se version="1.5+"/>
 <property name="jnlp.packEnabled" value="true"/>
 <property name="jnlp.versionEnabled" value="true"/>
 <extension name="JavaFX Runtime"
 href="http://dl.javafx.com/javafx-rt.jnlp"/>
 <jar href="NasaImageBrowser.jar" main="true"/>
 </resources>

<application-desc main-class="nasaimagebrowser.Main"/>

</jnlp>

From the Library of sam kaplan

ptg

258 CHAPTER 9 ADD JAVAFX TO WEB PAGES WITH APPLETS

Using Java Web Start, there are three ways to launch the application. First is to
embed a link to the JNLP deployment file in a Web page, which could look like this:

Launch with Java Web
Start

The second way is to associate the Java Web Start mime type, application/x-
java-jnlp-file, to the JNLP file type (.jnlp) in your operating system. Then,
when the user clicks on the JNLP file, the application will automatically start.
This association should have been set up when Java was installed on the platform.

The third way is to create a desktop launcher. If you include the <shortcut> hint
in the <information> section of the JNLP file, the Java Web Start system cre-
ates a desktop launcher. Depending on configuration settings for Java Web Start,
it probably will ask the user’s permission to do this first. For more information
on all the capabilities for Java Web Start, go to http://java.sun.com/javase/6/docs/
technotes/guides/javaws/index.html.

Chapter Summary
In this chapter, we covered the steps to create a JavaFX applet and Java Web
Start JavaFX application. We also covered how to interact with the Web page
using the JavaScript to JavaFX bridge. The essence of this is that the JavaFX
applet model has been totally rewritten to be based on Java Web Start. This
allows applets to now take advantage of the caching mechanisms inherent in Java
Web Start, and thus speed up applet startup time. This framework also has built-
in automatic version and update support, so the user always has a current and
consistent set of libraries to ensure reliability. Also, this new framework removes
dependencies on the underlying browser, so now applications can be consistent
across different browser types. Many of the shortcomings of the old applet model
have been fixed.

JavaFX helps abstract out interactions with the underlying framework, so now
applet and Java Web Start deployments are relatively simple and easy. Also,
because both frameworks are based on the same underpinnings, the same JavaFX
code can run, untouched, as a standalone application, a Java Web Start applica-
tion, or a JavaFX applet.

In the next chapter, we will explore an architectural pattern for Web Services,
called Representational State Transfer, commonly known as REST. This will
allow us to take what we have just learned for JavaFX applets and Java Web
Start, and employ them in a full Web Services architecture.

From the Library of sam kaplan

http://java.sun.com/javase/6/docs/technotes/guides/javaws/index.html
http://java.sun.com/javase/6/docs/technotes/guides/javaws/index.html

ptg

259

10
Create RESTful

Applications
“Rest, the sweet sauce of labor.”

—Plutarch

What Is REST?
Service-oriented architecture (SOA) and development is a paradigm where soft-
ware components are created with concise interfaces, whereby each component
performs a discrete set of related functions. Each component, with its well-
defined interface and contract for usage, can be described as providing a service
to other software components. This is analogous to an accountant who provides a
service to a business, even though that service consists of many related functions
(i.e., bookkeeping, tax filing, investment management, and so on).

With SOA, there are no technology requirements or restrictions. You can build a
service in any language with standards such as CORBA, platform-specific
remote procedure calls (RPC), or the more universally accepted XML. Although
SOA has been around as a concept for many years, its vague definition makes it
difficult to identify or standardize upon. The client/server development model of
the early 90s was a simple example of an SOA-based approach to software
development.

A Web service is an example of an SOA with a well-defined set of implementa-
tion choices. In general, the technology choices are the Simple Object Access
Protocol (SOAP) and the Web Service Definition Language (WSDL), both
XML-based. WSDL describes the interface (also called the contract), whereas
SOAP describes the data that is transferred. Because of the platform-neutral

From the Library of sam kaplan

ptg

260 CHAPTER 10 CREATE RESTFUL APPLICATIONS

nature of XML, SOAP, and WSDL, Java tends to be a popular choice for Web
service implementation due to its OS-neutrality.

Web service systems are an improvement of client/server systems, and other pro-
prietary object models such as CORBA or COM, because they’re built to stan-
dards and are free of many platform constraints. Additionally, the standards,
languages, and protocols typically used to implement Web services helps sys-
tems built around them to scale better.

Representational State Transfer (REST)
However, there exists an even less restrictive form of SOA than a Web service.
This style of architecture is called representational state transfer (REST), as
labeled by Dr. Roy Fielding in his doctoral dissertation. REST is a collection of
principles that are technology independent, except for the requirement that it be
based on HTTP, the protocol of the World Wide Web. In short, a system that con-
forms to the following set of principles is said to be RESTful:

• All components of the system communicate through interfaces with
clearly defined methods and dynamic, mobile, code

• Each component is uniquely identified through a hypermedia link (i.e.,
URL)

• A client/server architecture is followed (i.e., Web browser and Web server)

• All communication is stateless

• The architecture is tiered, and data can be cached at any layer

These principles map directly to those used in the development of the Web and,
according to Dr. Fielding, account for much of the Web’s success. The HTTP
protocol, its interface of methods (GET, POST, HEAD, and so on), the use of
URLs, HTML, and JavaScript, as well as the clear distinction between what is a
Web server and a Web browser, all map directly to the first four principles. The
final principle, regarding tiers, allows for the common network technology found
in most Web site implementations: load balancers, in-memory caches, firewalls,
routers, and so on. These devices are acceptable because they don’t affect the
interfaces between the components; they merely enhance their performance and
communication.

The Web is the premier example of a RESTful system, which makes sense since
much of the Web’s architecture preceded the definition of REST. What the Web
makes clear, however, is that complex remote procedure call protocols are not
needed to create a successful, scalable, understandable, and reliable distributed
software system. Instead, the principles of REST are all that you truly need.

From the Library of sam kaplan

ptg

WHAT IS REST? 261

Overall, REST can be described as a technology and platform-independent
architecture, where loosely coupled components communicate via interfaces
over standard Web protocols. Software, hardware, and data-centric designs are
employed to maximize system efficiency, scalability, and network throughput.
The underlying principle, although never explicitly mentioned in any REST
description, is simplicity.

REST differs from other software architecture in that it marries the concepts
common to software architecture (interfaces, components, connectors, patterns,
and so on) with those of network architecture (portability, bandwidth manage-
ment, throughput measurement, protocol latencies, and so on). This combination
makes REST ideal for distributed software systems where scalability in terms of
both processing power and communication efficiency are critical.

Figure 10.1 illustrates the REST architecture in one comprehensive diagram that
combines logical software architecture with physical network elements. For
instance, it demonstrates the following REST principles:

• Communication is performed over HTTP.

• Clients contain optional server caches for efficiency.

• Services can employ caches to back-end systems.

• There are no restrictions on the number of clients per service, or the num-
ber of services per client.

• Services can call services.

Figure 10.1 Overview of REST Components

DNS

Client A

Client B

Client C

cache

cache

data

cache

HTTP

HTTP HTTP

HTTP

HTTP

REST Service A

Physical Server 1

Physical Server 2
L

Fi
re

w
a

ll

REST Service B

REST Service CFi
re

w
a

ll

From the Library of sam kaplan

ptg

262 CHAPTER 10 CREATE RESTFUL APPLICATIONS

• Load-balancing hardware is used for scalability.

• Firewalls can be used for security.

In this diagram, the physical components have been shaded for clarification.

There are some interesting points on data caching that need to be made. First,
data must be marked, either implicitly or explicitly, as cacheable or non-cacheable.
Second, although specialized caches may be used (custom, in-memory data
structures), general-purpose caches, such as Web browser caches, or third-party
Web caches (such as Akamai) may also be used.

Building a RESTful System
If you eliminate typical Web service protocols (XML-RPC SOAP, WSDL, and
so on), how do you build an SOA-based RESTful system? With REST, you use
the same mechanism used to request a Web page: the HTTP query URL. For
instance, take a look at the sample SOAP call in Listing 10.1. Here, a request is
made for an employee’s benefits information from a human resources Web service.

Listing 10.1 Sample SOAP Call

<SOAP-ENV:Envelope xmlns:SOAP
 ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>

some data here…
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <GetBenefits>
 <user>123-45-6789</user>
 <type>full_time_employee</type>
 </GetBenefits>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

With REST, you can replace a SOAP call, such as that shown in Listing 10.1,
with the following URL:

http://humanresources.com/benefits?
 user=<USER_SSID>&type=full_time_employee

The HTTP query URL definition is all you need to know and use to make calls to
a RESTful service. The response can be HTML, comma-delimited data, XML,
JavaScript Object Notation (JSON)—which we’ll explore in the next section—or
a more sophisticated document type such as a spreadsheet.

From the Library of sam kaplan

ptg

WHAT IS REST? 263

REST Response Types: Some feel that the return of anything but hypermedia-
based content is not truly RESTful. However, in our opinion, as long as the system
stays true to the REST principles for the request and the communication protocol,
the response type is unimportant.

When you build a Web application with a Java Servlet, for example, it’s straight-
forward to read the data passed through URL query parameters, and to return any
text-based response to the caller. The Java Servlet doPost method implementa-
tion in Listing 10.2 illustrates this. Here, the parameters used in the HTTP query
URL above are read and used to retrieve a user’s employee benefits. The results
are encoded as human-readable text. Because this is an example of a RESTful
service, the request can be initiated—and the response viewed—by a Web
browser, or any component in a distributed application.

Listing 10.2 Java Servlet doPost

protected void doPost(HttpServletRequest req,
 HttpServletResponse resp)

 throws ServletException, IOException
{
 ServletOutputStream out = resp.getOutputStream();
 String response;

 String userSSID = req.getParameter("user");
 String userType = req.getParameter("type");
 if (userType.equals("full_time_employee")) {
 Employee emp = lookupUser(userSSID);
 String medPlan = emp.getMedicalPlan();
 String dntPlan = emp.getDentalPlan();
 String retPlan = emp.getRetirementPlan();
 Response = "User " + emp.getFullName() +

 " has medical plan: " + medPlan +
 ", and dental plan: " + dntPlan +
 ", and retirement plan: " + retPlan;

 }
 else {
 // ...
 }

 // Output the response from the worker
 out.println(response);
}

For the remainder of this chapter, we’re going to focus on consuming RESTful
services from a JavaFX application. In particular, we’re going to examine just

From the Library of sam kaplan

ptg

264 CHAPTER 10 CREATE RESTFUL APPLICATIONS

how straightforward it is to request and consume Web service data in both JSON
and XML formats. First, let’s take a closer look at the details of JSON.

JavaScript Object Notation (JSON)
With the emergence of dynamic Web-based applications based on Asynchronous
JavaScript and XML (Ajax) technology, JavaScript Object Notation (JSON)
became a popular alternative to XML. This is mainly because JSON tends to be
smaller and more readable than XML, making it both more efficient to send over
the Internet uncompressed, and more convenient to work with. Although it’s
closely associated with JavaScript—in fact it’s a subset—in practice it’s lan-
guage independent.

There are JSON parsers available for most of the popular languages, including
C++, Java, Perl, Python, and now JavaFX. JSON’s basic object types, which map
very well to both Java and JavaFX types, are

String. A Unicode text string of characters enclosed in double quotes, with
backslash escaping.

Number. An integer, real, or floating-point numeric value.

Boolean. A flag that contains a true or false value.

Object. A collection of associated data, represented as key:value pairs, sepa-
rated by commas, and grouped together with curly braces. For example:

"author": {
 "last": "Bruno",
 "first": "Eric",
 "book": "JavaFX: Developing Rich Internet Applications",
 "ISBN": 013701287X,
 "yearPublished": 2009,
 "publisher": "Pearson"
}

Array. An ordered pair of comma-separated values grouped together with
square braces. For example:

"authors": [
 "Clarke",
 "Connors",
 "Bruno"
]

From the Library of sam kaplan

ptg

JAVASCRIPT OBJECT NOTATION (JSON) 265

The value null is also valid. These types and structures were chosen because
modern programming languages support them natively. For instance, Listing
10.3 shows a sample JSON object structure, named Image, as returned from
Yahoo! Web Services.

Listing 10.3 Sample JSON Object

{
 "Image": {
 "Width":123,
 "Height":145,
 "Title":"Java Duke Guitar",
 "Thumbnail": {
 "Url":
"http:\/\/sk1.yt-thm-a01.yimg.com\/image\/b6ece07210e09816",
 "Height": 20,
 "Width": 25
 },
 "IDs":[116, 943, 234, 38793]
 }
}

This JSON data defines an Object (named Image) that contains two Number
fields (named Width and Height), a String field (named Title), another
Object (named Thumbnail), and an array (named IDs). The Thumbnail object
contains its own String and Number fields, and the IDs array contains a series of
Number values.

Let’s take a closer look at some Web services that are available publicly for you
to use in your applications. The two we’ll discuss in this chapter, Yahoo! and
GeoNames, both support JSON for many of their services. In the next section,
we’ll build an application that combines these two Web services to form a
mashup JavaFX application.

Yahoo! Web Services
Yahoo! offers a large number of Web service APIs that you can use to create
your own applications; you can explore these Web services at http://developer
.yahoo.com/everything.html. Although the APIs all support XML as a return
type, a good number of them also provide JSON as an alternative (see http://
developer.yahoo.com/common/json.html). By adding the output= parameter
onto the request URL, you can specify XML or JSON as the response data type.

From the Library of sam kaplan

http://developer.yahoo.com/everything.html
http://developer.yahoo.com/everything.html
http://developer.yahoo.com/common/json.html
http://developer.yahoo.com/common/json.html

ptg

266 CHAPTER 10 CREATE RESTFUL APPLICATIONS

For instance, one Yahoo! service allows you to do image searches from your
application. To make a request for, say, images from JavaOne with the results in
JSON form, you can use the following URL:

http://search.yahooapis.com/ImageSearchService/V1/
imageSearch?appid=YahooDemo&query=JavaOne&results=
2&output=json

Here, we’ve specified the ImageSearchService, with the text JavaOne as the
search query, and the output set to JSON. Another service that Yahoo! provides is
called the LocalSearchService, which allows you to search for anything in a
particular location. We’ll use this service in the sample JavaFX mashup applica-
tion, discussed in the next section. However, let’s first take a quick look at the
GeoNames Web service.

GeoNames Web Services
GeoNames provides a number of Web service APIs that return interesting data
relevant to specific locations. For instance, there are services that provide weather
data, Wikipedia data, earthquake data, and so on, for locations you specify. You
can explore the full set of Web service APIs at http://www.geonames.org/export/
ws-overview.html. Most of the GeoNames services support both XML and
JSON as output.

For instance, you can look up weather by airport code (using an airport close to
the location you want the current weather for) with the following URL:

http://ws.geonames.org/weatherIcaoJSON?ICAO=KJFK

Here, we’ve requested the JSON weather service specifically, and have provided
the airport code JFK with a K as a prefix, per the service contract. Alternatively,
you can request weather data for a specific location supplied as longitude and
latitude data. We’re going to use this form of the weather service in the sample
JavaFX mashup application. Let’s take a look at how to use JavaFX to call exter-
nal Web services, and then parse the output.

JavaFX and REST
As of version 1.0, JavaFX includes two classes that allow you to easily build REST
clients. These classes are javafx.async.RemoteTextDocument and javafx.data
.pull.PullParser. With RemoteTextDocument (see Figure 10.2), you can asyn-

From the Library of sam kaplan

http://www.geonames.org/export/ws-overview.html
http://www.geonames.org/export/ws-overview.html
http://search.yahooapis.com/ImageSearchService/V1/imageSearch?appid=YahooDemo&query=JavaOne&results=2&output=json
http://search.yahooapis.com/ImageSearchService/V1/imageSearch?appid=YahooDemo&query=JavaOne&results=2&output=json
http://search.yahooapis.com/ImageSearchService/V1/imageSearch?appid=YahooDemo&query=JavaOne&results=2&output=json
http://ws.geonames.org/weatherIcaoJSON?ICAO=KJFK

ptg

JAVAFX AND REST 267

chronously make an HTTP request to a URL that you provide. When the return
document has been received, the onDone function, which you implement, is
called with an indication of success or failure. Next, you can access the returned
document through the RemoteTextDocument.document member variable. List-
ing 10.4 shows an example of these steps in action.

Listing 10.4 Using RemoteTextDocument

var rtd: RemoteTextDocument = null;
var bis: InputStream = null;
var serverURL = "http://...";
// ...

function requestData() : Void {
 // Request data from remote server
 rtd = RemoteTextDocument {
 url: bind serverURL
 onDone: function(success:Boolean):Void {
 if(success) {

 var doc = rtd.document;
 bis= new ByteArrayInputStream(doc.getBytes());

 parser.parse();

continues

Figure 10.2 The RemoteTextDocument Class

javafx.asynch.RemoteTextDocument

+document
+method
+url

+canceled
+done

+failed
+failureText
+listener
+onDone

+progressCur
+progressMax

+cancel()
+onCompletion(Object)

+start()
+seek(object)

+seek(object,integer)
+toString()

From the Library of sam kaplan

ptg

268 CHAPTER 10 CREATE RESTFUL APPLICATIONS

 bis.close();
 }
 else {

println("failure = {rtd.failureText}");
 }
 rtd = null;
 }
 };
}

When the requestData function is called, the act of creating a new RemoteText-
Document instance with a valid URL starts the request process. When a document
has been received successfully, the data is read in as a ByteArrayInputStream
as it would with Java, and this step is complete. At this point, it doesn’t matter
what the response type is; the job of the RemoteTextDocument class is to get the
document to you.

However, if the returned document is XML or JSON, you’ll need to parse it to
make use of it. This is where the PullParser class (see Figure 10.3) comes in,
which is called in Listing 10.4, highlighted in bold type. There’s some more code
behind this that you need to provide, such as the code in Listing 10.5. It begins
with a custom class, Location, since this code illustrates parsing location data as
received from Yahoo! Web Services.

The real work begins with the object, parser, which is an instance of the Pull-
Parser class. It begins parsing as soon as its input object is set and the parse
method is called. Because it’s bound to the ByteInputStream object bis from
Listing 10.4, it has access to the data as soon as the RemoteTextData object pop-
ulates it. It’s this bound variable that allows the code in Listing 10.4 (which
requests data from a remote server) to cooperate with the code in Listing 10.5
(which parses the received JSON document).

Figure 10.3 The PullParser Class

javafx.data.pull.PullParser

+forward()
+forward(integer)

+parse()
+seek(object)

+seek(object,integer)
+toString()

From the Library of sam kaplan

ptg

JAVAFX AND REST 269

Listing 10.5 Using PullParser

class Location {
 public var city: String;
 public var state: String;
 public var lat: String;
 public var long: String;
}
var location: Location = Location{};
// ...

var parser = PullParser {
 documentType: PullParser.JSON;
 input: bind bis
 onEvent: function(event: Event) {
 // parse the JSON data and populate object
 if(event.type == PullParser.END_VALUE) {
 if(event.name == "City") {

 location.city = event.text;
 }
 else if (event.name == "Latitude") {

 location.lat = event.text;
 }
 else if (event.name == "Longitude") {

 location.long = event.text;
 }
 else if (event.name == "State") {

 location.state = event.text;
 }
 }
 }
}

As PullParser progresses through the document, it fires a series of events (see
Table 10.1) that are handled by your code in the onEvent function.

As shown in Listing 10.5, each time a value is completely parsed, the onEvent
function compares the name to those that we’re interested in. If there’s a match,
the value is simply stored. In this case, as location specific data is received, the
code populates the Location object. With further use of object binding (which
was discussed in Chapter 4, Synchronize Data Models—Binding and Triggers),
it’s easy to envision how individual UI elements will be updated to display the
location data—such as the city name—as the data is parsed in this code. In fact,
the sample JavaFX application we’re going to explore in this section does just
that. Let’s examine the complete sample application now, which shows the cur-
rent weather conditions for any valid ZIP code entered.

From the Library of sam kaplan

ptg

270 CHAPTER 10 CREATE RESTFUL APPLICATIONS

The JavaFX Weather Widget
As an example of how to make use of RESTful services from a JavaFX applica-
tion, we’re going to build a simple weather widget (shown in Figure 10.4). The
widget accepts a ZIP code as input, and in turn displays detailed current weather
conditions for the applicable region. This includes cloud conditions, wind speed
and direction, temperature, humidity, and air pressure at sea level.

Table 10.1 PullParser Events to Process

Event Description

ERROR A syntax error in the XML or JSON document structure

CDATA A value containing an XML CDATA structure

INTEGER A JSON integer value

NUMBER A JSON floating-point value

TEXT A text value (in XML or JSON)

START_DOCUMENT The start of an XML or JSON document

END_DOCUMENT The end of an XML or JSON document

START_ELEMENT The start of an XML or JSON object

END_ELEMENT The end of an XML or JSON object

START_VALUE The start of a JSON object’s value

END_VALUE The end of a JSON object’s value

START_ARRAY The start of a JSON array

END_ARRAY The end of a JSON array

START_ARRAY_ELEMENT The start of a JSON array element

END_ARRAY_ELEMENT The end of a JSON array element

FALSE A JSON true Boolean value

TRUE A JSON false Boolean value

NULL A JSON null value

From the Library of sam kaplan

ptg

JAVAFX AND REST 271

The widget’s GUI is a JavaFX scene that contains a group of three main compo-
nents: title text, a progress bar, and a vertical box that contains the individual
weather text components. Some of the code for this is shown in Listing 10.6. The
progress bar remains hidden until a request is made to a REST service, at which
point it’s made visible and is activated. When all of the requested data is
received, it’s hidden again.

Listing 10.6 The Weather Widget Scene Structure

var app: VBox;
// ...

var scene: Scene = Scene {
 content: Group {
 content: bind [
 // Widget title text
 Text {
 content: bind "Current Weather for {location.city}"
 font: Font { size: 20 }
 textOrigin: TextOrigin.TOP
 translateX:
 bind (stage.width-titleText.layoutBounds.width)

 / 2.0 + titleText.layoutBounds.minX
 y: 5
 }

 // Progress bar
 bar = IndeterminateProgressBar {
 translateY: bind stage.height - 20;

continues

Figure 10.4 The JavaFX Weather Widget

From the Library of sam kaplan

ptg

272 CHAPTER 10 CREATE RESTFUL APPLICATIONS

 visible: false
 width: bind stage.width

 height: 15
 text: "Loading..."

 },

 // Weather data fields
 app=VBox {
 translateX: 50
 translateY: 30
 spacing: 10
 content: [
 HBox { content: [
 Text {
 translateY:

 bind input.boundsInLocal.height/2;
 content: "ZIP Code:"

 },
 input = TextBox {
 columns: 6
 value: bind zipCode with inverse

 selectOnFocus: true
 action: function(): Void {

 requestCoordinatesAndWeather();

 }

 }]
 },
 HBox { content: [
 Text {

 textOrigin: TextOrigin.TOP
 content: "City:"

 },
 Text {

 textOrigin: TextOrigin.TOP
 content:

bind "{location.city}, {location.state}"
 fill: Color.BLUE

 }]
 },
 // ...
]
 }
 // ...
}

Each weather text field, which actually consists of two JavaFX Text fields—a
label and value both arranged horizontally—are bound to variables that are

From the Library of sam kaplan

ptg

JAVAFX AND REST 273

updated with the latest weather data received from the GeoNames weather ser-
vice. We’ll examine the data structure and request process later in the chapter.
The entire weather request sequence is started when you enter a valid ZIP code
and press the Return key. The weather widget can be considered a mashup appli-
cation, as it uses data from both Yahoo! and GeoNames. Let’s take a closer look
at this process now.

A Mashup Application
The weather widget first requests location data from Yahoo! Web Services with the
ZIP code provided, then it makes a request to the GeoNames weather service with
the returned location data. This four-step process is illustrated in Figure 10.5.

As data is received, and the bound data structure values are updated, the widget’s
GUI is automatically updated to reflect the new data.

Using Yahoo! Web Services
Because the GeoNames service requires location data in terms of longitude and
latitude to return local weather conditions, we use Yahoo!’s city search feature to
get this data. The request is made, including the ZIP code entered, with the fol-
lowing URL in the JavaFX code:

Figure 10.5 The Mashup Data Flow

Yahoo!
Web Services

GeoNames
Web Services

Weather
Widget

1

Send City
Search with

ZIP code

2

JSON location
results including:

CITY, STATE,
LONGITUDE,

and LATITUDE

3

Request weather
by location
(LNG & LAT) 4

JSON
weather results

From the Library of sam kaplan

ptg

274 CHAPTER 10 CREATE RESTFUL APPLICATIONS

var locationURL = bind
 "http://local.yahooapis.com/"
 "LocalSearchService/V3/localSearch?"
 "appid=YahooDemo&query=city&zip={zipCode}&"
 "results=1&output=json";

Being bound to the zipCode field, which is entered by the user, the string is
updated automatically with its value when changed. This request returns location
data for the ZIP code, as well as local search results that are limited to one result
as specified in the URL. The only data we’re interested in, however, are the fields
of the Location class, shown in Listing 10.7.

Listing 10.7 The Location Data Structure

class Location {
 public var city: String;
 public var state: String;
 public var lat: String;
 public var long: String;
}

These fields are updated when the JSON names that match are located within the
JSON text, as read by the PullParser class, locationParser (see Listing 10.8).
Although many other fields and values are encountered while parsing the loca-
tion data, only the four Location class values are stored.

Listing 10.8 The Location JSON Data Parser

var locationInput: InputStream;
var locationParser = PullParser {
 documentType: PullParser.JSON;
 input: bind locationInput
 onEvent: function(event: Event) {
 // parse the JSON Yahoo data and
 //populate the location object
 if(event.type == PullParser.END_VALUE) {

 //println("{event}");
 if(event.name == "City") {

 location.city = event.text;
 }else if (event.name == "Latitude") {

 location.lat = event.text;
 }else if (event.name == "Longitude") {

 location.long = event.text;
 }else if (event.name == "State") {

 location.state = event.text;
 }

From the Library of sam kaplan

ptg

JAVAFX AND REST 275

 }
 }
}

Being that the PullParser’s member variable, input, is bound to the location-
Input variable, this code is invoked whenever the input stream is updated and
the parse method is called. This occurs when the user enters a ZIP code and
presses Return, as processed in the action function highlighted in bold typeface
in Listing 10.6. After the location data is processed, the results are used in the
request to the GeoNames service to receive the current weather conditions. Let’s
take a look at this process now.

Using GeoNames Web Services
As mentioned earlier, the GeoNames service returns the current weather condi-
tions by either a supplied airport code or location (longitude and latitude). For
the weather widget, we want to make the request by location. The location data is
used with the following JavaFX URL string to form the request:

var coordURL = bind "http://ws.geonames.org/
findNearByWeatherJSON?lat={location.lat}&lng={location.long}";

Being bound to both the Location.lat and Location.lng variables, the text is
automatically updated with these values when they’re changed. The request
returns detailed weather conditions that are stored in the fields of the Weather
class, shown in Listing 10.9.

Listing 10.9 The Weather Data Structure

class Weather {
 public var station: String;
 public var clouds: String;
 public var windDirection: Integer;
 public var windSpeed: Number;
 public var temperature: Number;
 public var dewPoint: Number;
 public var humidity: Integer;
 public var seaLevelPressure: Number;
 public var observation: String;
}

These fields are updated when the JSON names that match are located within the
JSON text, as read by the PullParser class, weatherParser (see Listing 10.10).

From the Library of sam kaplan

ptg

276 CHAPTER 10 CREATE RESTFUL APPLICATIONS

Note that because some fields differ in their value types (i.e., String, Number,
and Integer), Java classes such as Double and Integer are used to get the
proper values from the JSON text.

Listing 10.10 The Weather JSON Data Parser

var weatherInput: InputStream;
var weatherParser = PullParser {
 documentType: PullParser.JSON;
 input: bind weatherInput
 onEvent: function(event: Event) {
 // Parse the JSON Weather data and
 // populate the Weather object
 if(event.type == PullParser.END_VALUE) {
 if(event.name == "clouds") {
 weather.clouds = event.text;
 }else if (event.name == "stationName") {
 weather.station = event.text;
 }else if (event.name == "windDirection") {
 weather.windDirection = event.integerValue;
 }else if (event.name == "windSpeed") {
 weather.windSpeed = Double.valueOf(event.text);
 }else if (event.name == "temperature") {
 weather.temperature = Double.valueOf(event.text);
 }else if (event.name == "dewPoint") {
 weather.dewPoint = Double.valueOf(event.text);
 }else if (event.name == "humidity") {
 weather.humidity = event.integerValue;
 }else if (event.name == "seaLevelPressure") {
 weather.seaLevelPressure = event.numberValue;
 } else if (event.name == "observation") {
 weather.observation = event.text;
 }
 }
 }
}

As with the request to Yahoo! for the location data, since weatherParser’s
member variable, input, is bound to the weatherInput variable, this code is
invoked when the input stream is updated and parse is called. This is triggered
when the location data is completely received. When all of the weather data is
received, and the Weather class’ member variables have been set, the JavaFX
Text components that are bound to them are automatically updated. This completes
the weather widget’s request, update, and display processes. When compared to
implementing the same functionality with plain Java code, the power of JavaFX
object binding greatly simplifies the entire process.

From the Library of sam kaplan

ptg

JAVAFX AND XML 277

JavaFX and XML
The weather widget application is a simple example of how to process JSON
Web services, but what about XML? Consuming XML-based REST services is
completely supported, and the code only changes slightly. The two main differ-
ences are

• Document type: Set to PullParser.XML (instead of PullParser.JSON).

• Use of javafx.data.xml.QName: XML node names arrive via this object,
with namespace information, referenced from the Event object.

For instance, the code to parse the Yahoo! location data in XML form is shown
in Listing 10.11. The two differences listed in the preceding are highlighted in
the code in bold type.

Listing 10.11 Parsing XML

var locationInput: InputStream;
var locationParser = PullParser {
 documentType: PullParser.XML;
 input: bind locationInput
 onEvent: function(event: Event) {
 // parse the XML Yahoo data and
 // populate the location object
 if (event.type == PullParser.END_ELEMENT) {
 if(event.qname.name == "City") {

 location.city = event.text;
 }else if (event.qname.name == "Latitude") {

 location.lat = event.text;
 }else if (event.qname.name == "Longitude") {

 location.long = event.text;
 }else if (event.qname.name == "State") {

 location.state = event.text;
 }
 }
 }
}

The QName class is part of the javafx.data.xml package that also contains the
XMLConstants class. This class contains the following standard XML constant
strings:

XMLNS_ATTRIBUTE. Example: “xmlns”

XMLNS_ATTRIBUTE_NS_URI. Example: “http://www.w3.org/2000/xmlns/”

From the Library of sam kaplan

ptg

278 CHAPTER 10 CREATE RESTFUL APPLICATIONS

XML_NS_PREFIX. Example: “xml”

XML_NS_URL. Example: “http://www.w3.org/XML/1998/namespace”

XML_VERSION. Example: “1.0”

The remainder of the application code remains the same as the JSON version,
presented earlier in this chapter. This makes parsing XML and JSON documents
quite straightforward, with very little work to switch between the two.

Chapter Summary
This chapter illustrated how the JavaFX classes, RemoteTextDocument and
PullParser, combined with the power of object binding make JavaFX applica-
tions ideal REST clients. In this chapter, we explored the creating of a widget
that displays current weather conditions from the combination of JSON (or
XML) data received from Yahoo! and GeoNames Web services. Thanks to the
power of JavaFX, simple data structures bound to JavaFX GUI components and
updated by classes provided by the JavaFX framework are all that’s required to
create a working Web 2.0 mashup.

From the Library of sam kaplan

ptg

279

11
JavaFX and Java

Technology
“In art there are only fast or slow developments.

Essentially it is a matter of evolution, not revolution.”

—Bela Bartok

A real advantage of JavaFX is that the entire platform is extended by the full
power and capabilities of the Java platform. This allows existing Java frame-
works and custom libraries to fully participate in a JavaFX application.

At its core, JavaFX classes are compiled into Java bytecode, so JavaFX, at the
runtime level, is tightly integrated with the Java platform. However, the JavaFX
language is a declarative language with an object-oriented flavor, whereas Java is
an object-oriented imperative language. The main difference is that in JavaFX you
tell the system what needs to be done and the runtime determines how to do it; in
Java, you explicitly program what is to be done. When crossing the JavaFX/Java
boundary, you must keep this difference in mind.

Basically, the JavaFX runtime is always in the background, so you need to be
careful how you interact with JavaFX from Java. Nonetheless, it is still possible
to leverage Java classes from JavaFX, and with a little effort, you can leverage
JavaFX scripts within your Java code. This chapter describes some of the basic
rules that must be obeyed when crossing the JavaFX/Java boundary.

The first part of this chapter discusses the rules for using Java objects and classes
within JavaFX and you should be familiar with this to write JavaFX scripts.
However, the last two sections, Java Scripting and JavaFX Reflection, discuss

From the Library of sam kaplan

ptg

280 CHAPTER 11 JAVAFX AND JAVA TECHNOLOGY

accessing JavaFX from Java. This is more important to people doing intense
development with Java and JavaFX and by its nature requires a more in-depth
knowledge of Java. If you are not interested in accessing JavaFX from Java, you
may skip these last two sections.

Classes
As we mentioned in Chapter 3, JavaFX Primer, JavaFX classes can extend multi-
ple Java interfaces, but can only extend at most one Java class, and that Java class
must have a default (no args) constructor.

public class MyJavaFXClass extends java.awt.Point {

When extending a Java class, all the accessible methods and attributes of that
class are available to the JavaFX class. However, none of the Java class attributes
or functions may participate in JavaFX binding. Remember from Chapter 3 that
JavaFX Script is a declarative language with object orientation and is a forgiving
environment. Even if you try to bind to a Java object’s attribute, the runtime sys-
tem will silently ignore the updates. To illustrate this

 class FooBar1 extends java.awt.Point {
 public var fxPointX = bind x;
}

var f = FooBar1{};
println("f.x = {f.x} f.fxPointX = {f.fxPointX}");
f.x = 100;
println("f.x = {f.x} f.fxPointX = {f.fxPointX}");

When this is run, f.x is updated, but f.fxPointX is not updated, and there is no
error or warning message.

f.x = 0 f.fxPointX = 0
f.x = 100 f.fxPointX = 0

The main message here is you can extend Java classes, but the attributes and
methods from those classes have no inherent connection to some of the advanced
binding and trigger features found in JavaFX. For more detailed information on
binding and triggers, check out Chapter 4, Synchronize Data Models—Binding
and Triggers.

From the Library of sam kaplan

ptg

JAVA OBJECTS 281

JavaBeans: Please note that JavaFX triggers and JavaBeans have no built-in
connection. If you update a bean property, it will not automatically update a bound
JavaFX variable. The inverse is true too: if you update a JavaFX variable, it does
not automatically update a JavaBean property. In Chapter 12, JavaFX Code Reci-
pes, we present a way to do this, using Java property change listeners and JavaFX
on replace triggers.

When extending Java interfaces or Java abstract classes, the JavaFX class must
implement all the abstract methods contained within the interface or abstract
class or be declared abstract itself. These function signatures must be able to
map to the Java methods being implemented. For example, when extending the
java.awt.event.ActionListener interface, the Java method

public void actionPerformed(ActionEvent);

needs to be converted to a JavaFX function:

public override function
 actionPerformed(e: ActionEvent) : Void { }

The override keyword is required, as this instructs the system that this method
overrides a method defined in the super class. The full example is

class MyActionListener extends
 java.awt.event.ActionListener {

public override function

 actionPerformed(e:java.awt.event.ActionEvent) :

 Void {
 // do something
 }
}

Java Objects
You can instantiate Java objects from JavaFX using one of two methods. First, if
the Java object has a default (no args) constructor, you can use the JavaFX object
literal syntax. However, you cannot initialize any of the Java object’s attributes
this way.

Developer Warning: The JavaFX compiler and runtime will allow you to enter
initializers for Java object attributes, but the compiler and runtime will just silently
ignore them. For example:

From the Library of sam kaplan

ptg

282 CHAPTER 11 JAVAFX AND JAVA TECHNOLOGY

var dim = java.awt.Dimension {
 width: 500
 height: 600
};
println(dim);
prints: java.awt.Dimension[width=0,height=0]

To create a JavaFX instance from a Java object, use the object literal syntax with
open and close curly braces. For example, the following script will print the date
24 hours from now.

var millis = java.lang.System.currentTimeMillis() +
 24 * 60 * 60 * 1000;

var date = java.util.Date { };
date.setTime(millis);
println(date);

Although you cannot initialize the Java object attributes, it is possible to define
abstract function implementations within an object literal. The first example
shows how to override the methods in a Java interface with JavaFX functions.
For example, the Comparator interface’s Java functions are

public int compare(Object o1, Object o2);

public boolean equals(Object obj);

In JavaFX, these can be implemented within the object literal syntax:

var comp = java.util.Comparator {

override function compare(o1:Object, o2:Object) :

 Integer {
 if(o1 instanceof java.lang.Comparable and
 o2 instanceof java.lang.Comparable) {
 (o1 as java.lang.Comparable).compareTo(

 o2 as java.lang.Comparable);
 }else { -1; }
 }

override function equals(obj:Object) : Boolean {

 this == obj;
 }
};

This next example shows how to override a method in a Java class. This over-
rides the Java method:

From the Library of sam kaplan

ptg

JAVA OBJECTS 283

public String toString() {}

The object literal declaration for this is

var rand = java.util.Random {
override function toString(): String {

 return "[{nextDouble()}]";
 }
};
println(rand);

When declaring Java methods in JavaFX, the JavaFX syntax must be used, and the
parameters declared using the mapped JavaFX type. For example, the Java method

public double getWidth()

is represented in JavaFX as

public override function getWidth() : Double

Likewise, the Java method

public void setSize(double width, double height)

is represented as a JavaFX function:

public override function setSize(width:Double, height:Double)
: Void

The second way to instantiate a Java object from JavaFX is to use the new operator
similar to the way it is used in Java, passing any required constructor arguments.
Here is another way to create a Date object that contains the time 24 hours from
now. The variable, millis, is passed to the constructor for Date.

var millis = java.lang.System.currentTimeMillis() +
 24 * 60 * 60 * 1000;

var date = new java.util.Date (millis);
println(date);

Notice the parentheses rather than the curly braces. Arguments are converted
according to the rules outlined in the next section, Function Parameter and
Return Mapping. Also, when using the new operator, it is not possible to override
any of the Java object’s methods. Of course, if the Java class is an interface or
abstract class, it cannot be instantiated this way. It needs a subclass to implement
the abstract methods.

From the Library of sam kaplan

ptg

284 CHAPTER 11 JAVAFX AND JAVA TECHNOLOGY

Function Parameter and Return
Mapping

JavaFX has ten basic types: Number, Double, Float, Long, Integer, Short,
Byte, Character, Boolean, and String. The preferred types for normal use are
Number, Integer, Boolean, and String. Unless you have a specific need for the
other types, stick with the preferred types. All these types are represented by cor-
responding Java classes and therefore have access to the corresponding Java
methods available to them. For example, the following illustrates use of the
Character class method, isWhiteSpace(), and the Integer class compareTo()
method.

var aCharacter:Character = 0x20;
println(aCharacter.isWhitespace(aCharacter));

var aInteger:Integer = 1000;
println(aInteger.compareTo(25));

Table 11.1 maps the JavaFX type to its corresponding Java type.

Table 11.1 JavaFX Types – Classes

JavaFX Type Java Class

Double java.lang.Double

Number java.lang.Number

Float java.lang.Float

Long java.lang.Long

Integer java.lang.Integer

Short java.lang.Short

Byte java.lang.Byte

Character java.lang.Character

Boolean java.lang.Boolean

String java.lang.String

From the Library of sam kaplan

ptg

FUNCTION PARAMETER AND RETURN MAPPING 285

JavaFX literals are also JavaFX objects, so it is possible to access their class’s
respective methods directly from the literal. For example, the number literal 3.14
can be converted to an integer by calling its intValue() method inherited from
java.lang.Number.

var i:Integer = 3.14.intValue();
println(i);

Likewise, the integer literal 4 can be used to get its bit count by invoking the
bitCount() method inherited from java.lang.Integer.

println(4.bitCount(1));
println("Now is the time".substring(0,3));

When the basic JavaFX types are passed as parameters to Java methods or a Java
type is being assigned to one of the JavaFX basic types, an attempt is made to
convert between the two. The following eight tables, Tables 11.2 through 11.9,
illustrate the conversion rules for each of the JavaFX basic types, including
sequences. The first column is the JavaFX type, the second column is the Java
type, the third column is the rule when the JavaFX type is passed as a parameter
to a Java method call. The last column is the rule when a Java type is being
assigned to a JavaFX type, either directly or as a result of a return type from a
function or Java method.

For parameter conversion, if an automatic conversion is not supported, an alter-
native is presented in the Parameter Conversion column. Usually, the type needs
to be converted to the Java Type using one of the xxxValue() methods on the
JavaFX object. For example, if the JavaFX type is a Number, when trying to con-
vert to the Java java.lang.Double class in the Java method parameter, you need
to invoke the doubleValue() function on the JavaFX Number class. This listing
illustrates this.

var aNumber = 3.14;
aJavaObject.callDoubleMethod(aNumber.doubleValue());

In the Assignment column, the message, “possible loss of precision” means the
compiler will issue a warning message that the conversion will lose some accu-
racy. If you want to avoid this warning message, the return type should be nar-
rowed to the JavaFX type. For example, when converting a Java double to a
JavaFX Long, use the longValue() function on the returned type. For example:

var aLong : Long =
javaObject.callJavaMethodReturn_double().longValue();

From the Library of sam kaplan

ptg

286 CHAPTER 11 JAVAFX AND JAVA TECHNOLOGY

Table 11.2 JavaFX – Java Type Conversion Mappings – Number/Float

JavaFX Type Java Type
Parameter
Conversion Assignment

Number/Float double YES YES

java.lang.Double n.doubleValue() YES

float YES YES

java.lang.Float YES YES

long YES YES

java.lang.Long n.longValue() YES

int YES YES

java.lang.Integer n.intValue() YES

short YES YES

java.lang.Short n.shortValue() YES

byte YES YES

java.lang.Byte n.byteValue() YES

char NO YES

java.lang.Character NO YES

Table 11.3 JavaFX – Java Type Conversion Mappings – Double

JavaFX Type Java Type
Parameter
Conversion Assignment

Double double YES YES

java.lang.Double YES YES

float YES YES

java.lang.Float d.floatValue() YES

long YES YES

continues

From the Library of sam kaplan

ptg

FUNCTION PARAMETER AND RETURN MAPPING 287

Double java.lang.Long d.longValue() YES

int YES YES

java.lang.Integer d.intValue() YES

short YES YES

java.lang.Short d.shortValue() YES

byte YES YES

java.lang.Byte d.byteValue() YES

char NO YES

java.lang.Character NO YES

Table 11.4 JavaFX – Java Type Conversion Mappings – Long

JavaFX Type Java Type
Parameter
Conversion Assignment

Long double YES Possible loss of
precision

java.lang.Double l.doubleValue() Possible loss of
precision

float YES Possible loss of
precision

java.lang.Float l.floatValue() Possible loss of
precision

long YES YES

java.lang.Long YES YES

int YES YES

java.lang.Integer l.intValue() YES

continues

Table 11.3 JavaFX – Java Type Conversion Mappings – Double (Continued)

JavaFX Type Java Type
Parameter
Conversion Assignment

From the Library of sam kaplan

ptg

288 CHAPTER 11 JAVAFX AND JAVA TECHNOLOGY

Long short YES YES

java.lang.Short l.shortValue() YES

byte YES YES

java.lang.Byte l.byteValue() YES

char NO YES

java.lang.Character NO YES

Table 11.5 JavaFX – Java Type Conversion Mappings – Integer

JavaFX Type Java Type
Parameter
Conversion Assignment

Integer double YES Possible loss of
precision

java.lang.Double i.doubleValue() Possible loss of
precision

float YES Possible loss of
precision

java.lang.Float i.floatValue() Possible loss of
precision

long YES YES

java.lang.Long i.longValue() YES

int YES YES

java.lang.Integer YES YES

short YES YES

java.lang.Short i.shortValue() YES

byte YES YES

Table 11.4 JavaFX – Java Type Conversion Mappings – Long (Continued)

JavaFX Type Java Type
Parameter
Conversion Assignment

From the Library of sam kaplan

ptg

FUNCTION PARAMETER AND RETURN MAPPING 289

Integer java.lang.Byte i.byteValue() YES

char NO YES

java.lang.Character NO YES

Table 11.6 JavaFX – Java Type Conversion Mappings – Short

JavaFX Type Java Type
Parameter
Conversion Assignment

Short double YES Possible loss of
precision

java.lang.Double s.doubleValue() Possible loss of
precision

float YES Possible loss of
precision

java.lang.Float s.floatValue() Possible loss of
precision

long YES YES

java.lang.Long s.longValue() YES

int YES YES

java.lang.Integer s.intValue() YES

short YES YES

java.lang.Short YES YES

byte YES YES

java.lang.Byte s.byteValue() YES

char NO Possible loss of
precision

java.lang.Character NO NO

Table 11.5 JavaFX – Java Type Conversion Mappings – Integer (Continued)

JavaFX Type Java Type
Parameter
Conversion Assignment

From the Library of sam kaplan

ptg

290 CHAPTER 11 JAVAFX AND JAVA TECHNOLOGY

Table 11.7 JavaFX – Java Type Conversion Mappings – Byte

JavaFX Type Java Type
Parameter
Conversion Assignment

Byte double YES Possible loss of
precision

java.lang.Double b.doubleValue() Possible loss of
precision

float YES Possible loss of
precision

java.lang.Float b.floatValue() Possible loss of
precision

long YES YES

java.lang.Long b.longValue() YES

int YES YES

java.lang.Integer b.intValue() YES

short YES YES

java.lang.Short b.shortValue() YES

byte YES YES

java.lang.Byte YES YES

char NO Possible loss of
precision

java.lang.Character NO NO

Table 11.8 JavaFX – Java Type Conversion Mappings – Character

JavaFX Type Java Type
Parameter
Conversion Assignment

Character double YES Possible loss of
precision

java.lang.Double NO NO

From the Library of sam kaplan

ptg

FUNCTION PARAMETER AND RETURN MAPPING 291

Character float YES Possible loss of
precision

java.lang.Float NO NO

long YES Possible loss of
precision

java.lang.Long NO NO

int YES Possible loss of
precision

java.lang.Integer NO NO

short NO Possible loss of
precision

java.lang.Short NO NO

byte NO Possible loss of
precision

java.lang.Byte NO NO

char YES YES

java.lang.Character YES YES

Table 11.9 JavaFX – Java Type Conversion Mappings – Boolean, String Sequence

JavaFX Type Java Type
Parameter
Conversion Assignment

Boolean boolean YES YES

java.lang.Boolean YES YES

String java.lang.String YES YES

Sequence type[] YES YES

Table 11.8 JavaFX – Java Type Conversion Mappings – Character (Continued)

JavaFX Type Java Type
Parameter
Conversion Assignment

From the Library of sam kaplan

ptg

292 CHAPTER 11 JAVAFX AND JAVA TECHNOLOGY

Sequences are converted to an array of the Java type—for example, the String
sequence

var authors = ["Clarke", "Connors", "Bruno"];

is passed as a Java String[] array because authors is a sequence of String.
Likewise, the integer sequence

var numbers = [2, 4, 6, 8, 10];

can be applied to Java type, int [] or Integer[]. However, there is no auto-
matic conversion from a sequence of integer to other types, like double[],
float[], long[], and so on. To convert from one number type to the other, use a
for loop to convert to the desired type, and then use that result. For example, the
numbers integer sequence is converted to a sequence of type Double using a for
loop, as shown in the following example.

// returns Seq of Integer
var numbers = aJavaObject.callIntegerArray();
// convert to Sequence of Double
var dumbers = for(i in numbers) i.doubleValue();
anotherJavaObject.callDoubleArray(dumbers);

All other JavaFX object types not listed in the Tables 11.2 through 11.9 are
passed, unchanged, to and from the Java methods. For example, if you pass a
javafx.geometry.Point2D object to a Java method, it will still be a javafx
.geometry.Point2D object within the Java method. If the Java method returns a
Java object, like java.util.HashMap, it will still be a java.util.HashMap in
JavaFX.

Developers Warning: If you are passing a JavaFX object to Java that is not
automatically converted to a Java type as outlined in the preceding, it is important
that the Java code not manipulate it without using the JavaFX Reflection API.

Never manipulate a JavaFX object in any thread other than the main JavaFX
thread. Manipulating JavaFX objects outside of the main processing thread is not
safe. A way to make sure JavaFX object changes are executed on the main JavaFX
thread is presented at the end of this chapter.

When passing JavaFX objects to Java methods, interactions to those objects
should be made via the javafx.reflect package or via a JavaFX function.
Direct manipulation of the JavaFX variables within a JavaFX object must be
done via the JavaFX reflection framework. Another instance when the JavaFX

From the Library of sam kaplan

ptg

JAVA SCRIPTING 293

reflection framework is required is when the Java code needs to create a JavaFX
object. The javafx.reflect package is actually written directly in Java and is
safe to use from Java code assuming you are in the main JavaFX thread. The
package javafx.reflect is covered in more detail later in this chapter.

Java Scripting
If you want to run JavaFX script source from your Java program, you need to use
the Java Scripting API. The Java Scripting API, JSR-223, is a standard frame-
work for running a script from Java code. Any scripting language can be used as
long as it is JSR-223 compliant. Some examples of these supported languages
are JavaScript, Groovy, Python, Ruby, and of course JavaFX script.

Basic Scripting Evaluation
The simplest way to accomplish this is to use the javafx.util.FXEvaluator
class. This class is actually a Java class and can be safely used in a Java program.
FXEvaluator has a static method Object eval(String script) that takes a
JavaFX script as a string and returns the JavaFX object created within that script,
if any. To run your application when using scripting, you must include the JavaFX
compiler JAR, javafxc.jar, in your classpath.

Let’s start with a simple Hello World example:

import javafx.util.FXEvaluator;

public class Main {
 public static void main(String[] args) {
 Object fxObj = FXEvaluator.eval(

 "println('hello world');");
 System.out.println("JavaFX Object = " + fxObj);
 }
}

When run, this program produces the following output:

hello world
JavaFX Object = null

The script is just "println('hello world');" and this merely prints to the
console. Because println does not return anything, the returned object is null.
So, let’s modify it a bit:

From the Library of sam kaplan

ptg

294 CHAPTER 11 JAVAFX AND JAVA TECHNOLOGY

 Object fxObj = FXEvaluator.eval(
 "println('hello world'); 'hello world';");
 System.out.println("JavaFX Object = " + fxObj);
 if(fxObj != null) {
 System.out.println("JavaFX Class = " +

 fxObj.getClass());
 }

This now produces

hello world
JavaFX Object = hello world
JavaFX Class = class java.lang.String

Now let’s do something a bit more complicated, as depicted in Listing 11.1.

Listing 11.1 Java Scripting for JavaFX

import javafx.util.FXEvaluator;

public class Complex {
 public static void main(String[] args) {
 String script =

 "public class Student {" +
 " public var name:String;" +
 " public var age:Integer;" +
 "}" +
 " function run(args: String[]):Void { " +
 " Student { name: 'Jim' age: 29 };" +
 "}";
 Object fxObj = FXEvaluator.eval(script);
 System.out.println("JavaFX Object = " + fxObj);
 if(fxObj != null) {
 System.out.println("JavaFX Class = " +

 fxObj.getClass());
 }
 }
}

This produces a returned object for Student:

JavaFX Object = ___FX_SCRIPT___$Student@c8769b
JavaFX Class = class ___FX_SCRIPT___$Student

FXEvaluator is a way to simply execute a JavaFX script and get a resulting
object back. However, instead of hard coding “jim”, age 29, in the script, what if

From the Library of sam kaplan

ptg

JAVA SCRIPTING 295

you want to pass in arguments to the script? FXEvaluator does not provide a
means for this. To add this kind of functionality, you need to directly work with
the Java Scripting API.

Java Scripting API with Global Bindings
To add bindings to a script, first, get the JavaFX script engine by creating a
ScriptEngineManager and using it to get the JavaFX script engine by either name,
getEngineByName(), or extension getEngineByExtension(). In either case, the
argument can be "javafx" or "fx". This needs to be cast to a JavaFXScripEngine.

Next, any global bindings may be bound to the script using the engine.put()
methods. In this example, we are adding name and age global bindings. The
script has been modified to use these global bindings when the Student class is
instantiated and is shown in Listing 11.2.

Listing 11.2 Java Scripting for JavaFX – Global Bindings

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

import com.sun.javafx.api.JavaFXScriptEngine;

public class FXScripting {

 public static void main(String[] args) {
 String script =

"public class Student {\n" +
 " public var name:String;\n" +
 " public var age:Integer;\n" +
 "}\n" +
 " function run(args: String[]):Void { \n" +
 " var m = Student { name: name as String

 age: age as Integer};\n" +
 " println('Name = {m.name}, " +

 "age = {m.age}');\n" +
 " m;\n"+
 "}";

 ScriptEngineManager manager =
new ScriptEngineManager();

 ScriptEngine scrEng =
 manager.getEngineByExtension("javafx");

JavaFXScriptEngine engine =

(JavaFXScriptEngine)scrEng;

continues

From the Library of sam kaplan

ptg

296 CHAPTER 11 JAVAFX AND JAVA TECHNOLOGY

 if (engine == null) {
 System.out.println(

 "no scripting engine available");
 }else {

engine.put("name", "Eric");

 engine.put("age", 25);

 Object fxObj = null;
 try {

 fxObj = engine.eval(script);
 } catch (ScriptException ex) {

 ex.printStackTrace();
 }
 System.out.println("JavaFX Object = " + fxObj);

 if(fxObj != null) {
System.out.println("JavaFX Class = "+

 fxObj.getClass());
 }
 }
 }
}

The result of running this program produces the Student with the values for
name and age of “Eric” and 25, respectively.

Name = Eric, age = 25
JavaFX Object = ___FX_SCRIPT___$Student@1083717
JavaFX Class = class ___FX_SCRIPT___$Student

Java Scripting API with Compilation
Let’s say we want to reuse the Student object and invoke methods on it. You do
this by first compiling the object, setting the bindings, then creating an instance
of the object. After we have the object instance, we can invoke methods on the
Student object.

First, let’s modify the script to add an instance function, getName(), as shown in
Listing 11.3.

Listing 11.3 Java Code – Sample JavaFX Script for Java Scripting API

String script =
 "public class Student {\n" +
 " public var name:String;\n" +
 " public var age:Integer;\n" +
 " public function getName():String { \n" +

From the Library of sam kaplan

ptg

JAVA SCRIPTING 297

 " this.name;\n" +
 " }\n" +
 "}\n"+
 "function run(args:String[]):Void {\n" +
 " Student { name: name as String \n" +
 " age: age as Integer};\n" +
 "}\n";

Notice that since we will be using Bindings (SimpleBindings) rather than the
engine.put() methods for adding bindings, we need to cast name to String and
age to Integer within the script.

Next, the Java code compiles the JavaFX script string into a CompiledScript
object. Then we get the Student object by calling eval() with the bindings on
the CompiledScript. Lastly, we use the resulting Student object to invoke the
getName() function. This is shown in Listing 11.4.

Listing 11.4 Java Code – Java Scripting API Invoking JavaFX Function

CompiledScript compiled = engine.compile(script);

Bindings bindings = new SimpleBindings();
bindings.put("name", "Eric");
bindings.put("age", 25);
Object fxObject = compiled.eval(bindings);
Object result = engine.invokeMethod(fxObject,

 "getName");

System.out.println("Result = " + result);

This prints out to the console:

Result = Eric

The ScriptEngine method, invokeMethod, can also be used to call functions with
arguments and provides a flexible way to manipulate the state of a JavaFX
object. However, it is not possible to directly manipulate JavaFX instance vari-
ables through the Java Scripting API framework.

Java Scripting API with Error Handling
If you played around with the previous examples, you may have noticed that
some JavaFX compilation errors print out to the console, and some do not. To
overcome this, you need to add a diagnostic handler to collect the errors and then

From the Library of sam kaplan

ptg

298 CHAPTER 11 JAVAFX AND JAVA TECHNOLOGY

show them if a ScriptException is encountered. The javax.tools.Diagnostic-
Collector class provides a means to do this.

First, create an instance of DiagnosticCollector, then pass this to either the
compile() or eval() methods on the JavaFXScriptEngine instance.

DiagnosticCollector diags =
 new DiagnosticCollector();

try {
 CompiledScript compiled =

 engine.compile(script, diags);
...

Now, when a ScriptException is thrown, detailed error messages are contained
in the DiagnosticCollector object. Listing 11.5 shows how to list all the error
messages.

Listing 11.5 Java Code – Java Scripting API Error Handling

} catch (ScriptException ex) {
 List<Diagnostic> errorList =

 diags.getDiagnostics();
 Iterator<Diagnostic> iter =

 errorList.iterator();
 while (iter.hasNext()) {
 Diagnostic d = iter.next();
 System.out.println(
 d.getKind().toString() + ": Line:" +
 d.getLineNumber() + " Col:" +
 d.getColumnNumber() + "\n'" +
 d.getMessage(null) + "'");
 }
}

To illustrate this, if we take the Student script and change the getName() function
to return the erroneous instance variable nameBogus. Without diagnostic han-
dling, we get the following fairly useless error message from ScriptException.

javax.script.ScriptException: compilation failed
 at com.sun.tools.javafx.script.JavaFXScriptEngineImpl.
 parse(JavaFXScriptEngineImpl.java:260)
 at com.sun.tools.javafx.script.JavaFXScriptEngineImpl.
 compile(JavaFXScriptEngineImpl.java:119)
 at com.sun.tools.javafx.script.JavaFXScriptEngineImpl.
 compile(JavaFXScriptEngineImpl.java:110)
 at FXCompile.main(FXCompile.java:45)

From the Library of sam kaplan

ptg

JAVAFX REFLECTION 299

However, with diagnostic handling, we get the far more informative message:

ERROR: Line:5 Col:13
'cannot find symbol
symbol : variable nameBogus
location: class ___FX_SCRIPT___.Student'

Java Scripting for JavaFX provides a powerful tool for running JavaFX Script
from Java code. It allows you to evaluate scripts and get returned objects so that
later you can invoke functions on them. It is limited in that you cannot directly
manipulate instance variables. However, if used in conjunction with the JavaFX
Reflection API, even this limitation can be overcome.

JavaFX Reflection
The JavaFX Reflection package, javafx.reflect, allows complete access to
JavaFX objects from both Java and JavaFX code. The classes in javafx.reflect
are actually Java classes and can safely be used from Java programs. Nonethe-
less, you need to have the appropriate JavaFX SDK libraries in your classpath.

The first task to use the JavaFX Reflection is to find an object’s class. You do
this by getting the javafx.reflect.FXContext, then using that to find the class
reference. We are using javafx.reflect.FXLocal.Context that implements
FXContext, because this class allows us to additionally mirror JavaFX objects,
whereas FXContext only allows mirroring of the JavaFX basic types. Mirroring
provides a proxy (a level of indirection) so that the same API could potentially
work with remote objects in a separate JVM. However, for now, the only imple-
mentation is on a local VM, hence the FXLocal implementation.

FXContext and the other javafx.reflect.FXxxxxx classes, like javafx.reflect
.FXClassType and javafx.reflect.FXValue, are abstract APIs, whereas
FXLocal.Context and other FXLocal.Xxxxxx classes, like javafx.reflect
.FXLocal.ClassType and javafx.reflect.FXLocal.Value, are concrete imple-
mentations of the JavaFX Reflection API. These FXLocal classes sit on top of Java
reflection, and thus require the mirrored values and types to be in the same VM.

FXLocal.Context context = FXLocal.getContext();
FXClassType classRef =

context.findClass("javafx.geometry.Point2D");

After you obtain the classRef, you can either create an instance of the class or
use an existing object of that type to manipulate the object’s state. To create a
new instance, call newInstance() on the classRef.

From the Library of sam kaplan

ptg

300 CHAPTER 11 JAVAFX AND JAVA TECHNOLOGY

FXLocal.ObjectValue obj =
 (ObjectValue)classRef.newInstance();

Or, if you need to initialize some of the objects instance variables:

FXLocal.ObjectValue obj =
(ObjectValue) classRef.allocate();

obj.initVar("x", context.mirrorOf(-1.0));
obj.initVar("y", context.mirrorOf(-1.0));
obj.initialize();

After the object instance is created, you can get instance variables via the
FXClassType getVariable() methods and access the class functions via the get-
Function() methods. To set the x and y instance variables in javafx.geometry
.Point2D, you must first get the FXVarMember for the x and y instance variables,
and then set their respective values:

FXVarMember xVar = classRef.getVariable("x");
FXVarMember yVar = classRef.getVariable("y");
xVar.setValue(obj, context.mirrorOf(25.0));

yVar.setValue(obj, context.mirrorOf(50.0));

The context.mirrorOf() function wrappers the value with a proxy that uses
the local VM to handle the reflection.

If you have a Java method parameter that is a JavaFX object, you convert that to
a FXLocal.ObjectValue using context.mirrorOf as shown in Listing 11.6.

Listing 11.6 JavaFX Reflection

public static void manipulate(
 javafx.geometry.Point2D point) {

 FXLocal.Context context = FXLocal.getContext();
 FXClassType classRef =
 context.findClass(point.getClass().getName());
 FXObjectValue obj = context.mirrorOf(point);
 FXVarMember xVar = classRef.getVariable("x");
 FXVarMember yVar = classRef.getVariable("y");
 xVar.setValue(obj, context.mirrorOf(55.0));
 yVar.setValue(obj, context.mirrorOf(777.0));

To invoke functions, get the FXFunctionMember object for the function, then
invoke it using the instance obj as shown in Listing 11.7.

From the Library of sam kaplan

ptg

JAVAFX REFLECTION 301

Listing 11.7 JavaFX Reflection – Function Invocation

// call Point2D.toString():String;
FXFunctionMember func =

 classRef.getFunction("toString");
FXValue val = func.invoke(obj);
System.out.println(val.getValueString());

For parameterized functions, locate the function using the function name and
parameter types. When invoking this kind of function, pass in the object as the
first argument followed by the parameter objects wrapped in mirrors. This is
shown in Listing 11.8.

JavaFX and Java Threads
JavaFX is not thread safe and all JavaFX manipulation should be run on the JavaFX
processing thread. To ensure that interactions from Java code to JavaFX objects are
safe, you need to run the Java code that manipulates JavaFX objects on the main
JavaFX thread. If JavaFX is invoking the Java method, you probably are already on
the main processing thread. However, for other conditions, like remote procedure
callbacks, this may not be true. In the next chapter, JavaFX Code Recipes, we
present an example of how to do this using the Java Message Service (JMS) API.

If you are not on the main processing thread, with JavaFX 1.2, you need to use the
com.sun.javafx.runtime.Entry.deferAction() method. However, the way to
do this is expected to change in future releases to use a public API. Still, the new
way will be similarly designed to use a Runnable. For example:

import com.sun.javafx.runtime.Entry;

Entry.deferAction(new Runnable() {
 public void run() {

manipulateJavaFX();
 }
});

private void manipulateJavaFX() {
 ...
}

If you are a Swing programmer, this is similar to using the SwingUtilities
.invokeLater() method. However, the JavaFX main thread is not necessarily the
EventDispatchThread that is used in Swing. This is especially true for devices that
do not use Swing, like JavaFX mobile and JavaFX TV. Therefore, use the Entry
.deferAction() method for moving tasks onto the JavaFX main thread and do not
use the SwingUtilities methods.

From the Library of sam kaplan

ptg

302 CHAPTER 11 JAVAFX AND JAVA TECHNOLOGY

Listing 11.8 JavaFX Reflection – Function Invocation with Parameters

// call Point2D.distance(x:Number, y:Number): Number;
FXFunctionMember func = classRef.getFunction(
 "distance",

 context.getNumberType(),

 context.getNumberType());
FXValue val = func.invoke(obj,

 context.mirrorOf(3.0),

 context.mirrorOf(3.0));

System.out.println(val.getValueString());

Because the JavaFX Reflection API is written in Java, you can easily use the
same classes from within a JavaFX script. Just change the format to JavaFX.
Listing 11.9 shows an example of using the JavaFX Reflection API from JavaFX.

Listing 11.9 JavaFX Reflection – from JavaFX

def context:FXLocal.Context = FXLocal.getContext();
def classRef = context.findClass(

 point.getClass().getName()));
var obj = context.mirrorOf(point);
var xVar = classRef.getVariable("x");
xVar.setValue(obj, context.mirrorOf(55.0));

Chapter Summary
It is easy to incorporate Java classes into JavaFX script. However, it helps to
understand some of the basic rules for doing this. This chapter has provided you
with the basics for interacting between the two environments. First, we discussed
the inclusion of Java object within JavaFX script, then we discussed the Java
Script API for JavaFX, and lastly we covered the JavaFX Reflection API.

Now you have the basics. In the next chapter, we cover JavaFX code recipes.
After that, we are going to bring it all together in a JavaFX Sudoku application.
Even the Sudoku application uses Java by incorporating an open source Java
library from SourceForge to generate and solve the Sudoku puzzle.

From the Library of sam kaplan

ptg

303

12
JavaFX Code

Recipes
“As everybody knows, there is only one infallible

recipe for the perfect omelette: your own.”

—Elizabeth David

JavaFX code recipes are simple pieces of code that show how to tackle a
unique coding problem. There are probably a million such recipes, we have chosen
a few to detail in this chapter that are somewhat unique to the JavaFX environ-
ment.

The first section, JavaFX and JavaBeans, shows a way to bridge the JavaFX and
JavaBeans frameworks. Next, the section on Server Call Back details how to deal
with asynchronous call backs from a server. The Node Effects—Fader and Mag-
nifier section demonstrates how to use generic classes for two common effects.
Wizard shows how to implement the Wizard pattern for breaking a complex pro-
cess into smaller tasks. Progress Bar and Slider lay out how to implement two
common components. Finally, Matrix details how to implement a two-dimen-
sional array in JavaFX.

On the book’s Web site at http://jfxbook.com, you can find the full listing for all
these recipes.

JavaFX and JavaBeans
JavaBeans technology is a component architecture with the Java platform that
supports component reuse. It has been around since the early days of Java, and

From the Library of sam kaplan

http://jfxbook.com

ptg

304 CHAPTER 12 JAVAFX CODE RECIPES

most of the Java GUI components are built using it. One of the primary concepts
behind JavaBeans is the concept of properties, or named attributes. JavaBean
components have a set of properties accessed through get and set methods called
getters and setters. Another core feature is events. Events provide a standardized
mechanism for a JavaBean to notify an interested object that its state has
changed.

Though there is no built-in link between JavaFX and JavaBean components, it is
easy to write some glue code to bridge these two. To demonstrate this, we will
implement a number spinner in JavaFX based on the Java Swing class JSpinner.
A number spinner lets the user select an integer by sequencing through the num-
bers one at a time in either direction, but using mouse clicks. This is shown in
Figure 12.1.

To implement the SpinnerNumber class, we must first create a custom Swing
component, by extending the javafx.ext.swing.SwingComponent class.

public class SwingNumberSpinner extends SwingComponent {

Next, we need to implement the createJComponent() method from SwingCom-
ponent. This is where we instantiate the javax.swing.JSpinner object. The
default constructor for JSpinner automatically installs an integer data model,
javax.swing.SpinnerNumberModel, to support the JSpinner.

protected override function createJComponent(): JComponent {
 new JSpinner();
}

For this particular example, the properties that we are really interested in are
found in the SpinnerNumberModel. These are the maximum and minimum value
for the spinner, the step size that tells the spinner how much to step when the
user selects up or down, and of course the value of the number. In JavaFX, we
will create instance variables for each of these.

public var value:Integer;
public var minimum:Integer;
public var maximum:Integer;
public var stepSize:Integer;

Figure 12.1 Swing Number Spinner

From the Library of sam kaplan

ptg

JAVAFX AND JAVABEANS 305

This provides the basic JavaFX code, but these instance values are still not con-
nected at all to the JSpinner object. To start connecting these instance variables
to JavaBeans properties, you assign a default value from the SpinnerModel and
then when the instance variable changes, you set that value in the JSpinner
object. Here is how value is now set.

public var value:Integer =
 getModel().getNumber().intValue() on replace {
 getModel().setValue(value);
};

There are a couple of things to point out with this. First, getModel() is a conve-
nience function that just gets the SpinnerNumberModel object from the JSpinner.

function getModel() : SpinnerNumberModel {
 getJSpinner().getModel() as SpinnerNumberModel;
}

Second, it is necessary to narrow the model’s getNumber() result. The getNumber()
method returns a java.lang.Number and this needs to be coerced to an integer
by calling its intValue() method. The rest of the variables work similarly; how-
ever, the variables minimum and maximum have a little twist.

In the SpinnerNumberModel, the minimum and maximum properties return an
object that may be null. When they are null, there is no minimum or maximum
integer, in effect they are infinite. The issue with this is that currently, Number
and Integer in JavaFX cannot be null, so we have to deal with this. There are sev-
eral options for handling this. One is to create a flag, one for each of the two
instance variables, to indicate that they are infinite. The other is to convert the
null to a very low minimum or a very high maximum, respectively. We decided
to do the latter. For the minimum variable, we created the getMinimum() function
as shown in the following listing.

function getMinimum() : Integer {
 if(getModel().getMinimum() == null) {

java.lang.Integer.MIN_VALUE;

 }else {
 (getModel().getMinimum() as java.lang.Number).

 intValue();
 }
}

If the SpinnerNumberModel minimum property is null, this function returns
java.lang.Integer.MIN_VALUE. Next, we modify the minimum instance vari-
able to be initialized using this function.

From the Library of sam kaplan

ptg

306 CHAPTER 12 JAVAFX CODE RECIPES

public var minimum:Integer = getMinimum() on replace {

 getModel().setMinimum(minimum);
};

The maximum variable is handled in a similar way with the getMaximum() returning
java.lang.Integer.MAX_VALUE if the SpinnerNumberModel maximum property
is null.

Now, all the JavaFX instance variables are connected to the JavaBean properties,
but only in one direction. Whenever the JavaFX instance variable changes, the
corresponding property in the JavaBean class will also be updated. For example,
if the JavaFX variable, value, is set to 50, the SpinnerNumberModel value
property will also be set to 50 and the JSpinner’s view will accordingly be
updated to show 50. To finish the connection, though, we need to know when the
JSpinner changes its properties. These kinds of changes can originate from the
user typing in a number in the JSpinner’s entry box or using the up or down but-
tons to sequence through the numbers.

To connect changes originating from the JavaBean, we need to install event lis-
teners on the JavaBean object. The type of event listener to install varies depend-
ing on what the JavaBean object supports. Many of the Java GUI classes support
the java.beans.PropertyChangeListener interface to notify other objects of
change to one of its properties. However, in this example, we are more interested
in the properties contained in the SpinnerNumberModel object that is installed in
the JSpinner component. JSpinner supports the javax.swing.event.Change-
Listener interface that handles ChangeEvents. Change events are fired when
the source object wants to notify interested listeners that some state has changed
within the object. We need to register a ChangeListener on the JSpinner object
so that our JavaFX object is notified that the JSpinner has changed its state.

To do this, we need to add code to the init block for the JavaFX SwingNumber-
Spinner class.

init {
 var sp = getJSpinner();

sp.addChangeListener(ChangeListener {

 override function stateChanged(e:ChangeEvent)

 : Void {

if(not inChange) {

value = getModel().getNumber().
 intValue();

 minimum = getMinimum();
 maximum = getMaximum();
stepSize = getModel().getStepSize().

 intValue();

From the Library of sam kaplan

ptg

SERVER CALL BACK 307

 }
 }
 });
}

Now whenever the JSpinner changes state, we are notified, and then we can
update the instance variables in JavaFX SwingNumberSpinner. Unfortunately,
the ChangeEvent does not tell us which value changed, so we have to update
them all. However, the JavaFX runtime knows if the value is actually changing
so any triggers or bind actions will only occur if there is a real change in value.

You may have noticed that we slipped in a Boolean variable, inChange, in the
preceding example. This is necessary, because if the change initiates from the
JavaFX code by changing one of the instance variables, the corresponding
JSpinner property will also be updated. This will cause the JSpinner object to
fire a change event, which in turn tries to change the instance variable. So we end up
in an unending loop. To avoid this, we introduce the Boolean variable, inChange.
When the change originates with a change to the JavaFX variable, inChange is
set to true so that the state changed handler will not then update the same
instance variable. The following listing shows how this is done with the JavaFX
instance variables.

var inChange = false;

public var value:Integer =
 getModel().getNumber().intValue() on replace {
 try {

inChange = true;

 getModel().setValue(value);
 } finally {

inChange = false;

 }
};

Now we have full bidirectional coordination from the JavaFX object to the Java-
Beans component. Whenever the JavaFX object’s state changes, the JavaBeans
object will immediately be updated to stay in synch. On the other side, whenever the
JavaBeans object changes state, the JavaFX object state will likewise be updated.

Server Call Back
Servers can asynchronously send messages to a JavaFX application using a vari-
ety of frameworks such as Message Oriented Middleware (MOM). To receive

From the Library of sam kaplan

ptg

308 CHAPTER 12 JAVAFX CODE RECIPES

asynchronous messages, the first step is to register some form of call back
address with the server. Then, whenever the server decides that a message should
be sent, it is sent to this call back location using an agreed upon protocol. Differ-
ent frameworks may use different message formats and protocols and varying
transport, but conceptually they work the same.

Typically, when the client receives an asynchronous message, the receiver frame-
work is running in its own thread and dispatches messages either from that
thread or via a thread from a thread pool. If you recall, JavaFX runs in its own
main thread and all updates to JavaFX objects must occur on that main thread.
This requires that the message be pushed onto the main JavaFX thread before
any JavaFX objects are modified. The main objective of this code recipe is to
show how to receive an asynchronous message from the server, and then move it
into the JavaFX main thread for processing.

To illustrate this, we will use an example based on the Java Messaging Service
(JMS) API. In this example, the server process publishes to a JMS Topic; the
JavaFX client subscribes to the JMS Topic and receives the messages. This is the
classical Pub/Sub paradigm.

For our simple example, the server, written in Java, periodically updates the
time. This kind of service is useful if the client application needs to synchronize
its notion of time with the server platform. Every second, the server sends a
JSON message to the JMS topic named “clock”. The message includes the milli-
seconds obtained from the Java call, System.currentTimeMillis(). The fol-
lowing is an example of this JSON message.

{ "clock": "1232822581540" }

The client receives this message and displays the time represented by the clock
millisecond value in a JavaFX Text object as shown in Figure 12.2. This is
updated roughly every second.

To implement this in the JavaFX client, first create a Java class, called Sub-
scriber. This class connects to the JMS broker, subscribes to the “clock” topic,
then starts listening for messages. The Subscriber class implements the

Figure 12.2 JavaFX Call Back – Clock

From the Library of sam kaplan

ptg

SERVER CALL BACK 309

javax.jms.MessageListener interface and registers itself with the JMS client
framework to be notified whenever a new message arrives. The MessageListener
defines a method that Subscriber must implement, public void onMessage(
Message msg). When a message is received by the JMS client, it in turn calls the
onMessage() method in Subscriber.

ClockUpdater is a JavaFX class and it also extends javax.jms.MessageListener
and implements its own onMessage() function. The reason we cannot use this
directly with the JMS client framework is that the JMS client framework would
call this function using one of its threads, not the main JavaFX thread. Modifying
JavaFX objects on any other thread than the main JavaFX thread is not supported
and likely will cause a serious exception.

When the JMS client calls the Java Subscriber.onMessage() method, it will not
be on the JavaFX main thread. We need to move the message over to the JavaFX
main thread, and then push that message over to the JavaFX object. To do this,
we need to use the com.sun.javafx.runtime.Entry.deferAction() method
to invoke the JavaFX function on the main JavaFX thread.

The constructor for Subscriber takes two arguments: the first identifies the JMS
topic, and the second is the JavaFX class to notify when a message is detected from
JMS. Because the JavaFX class extends the Java interface MessageListener, we
can refer to this class directly. This is shown as Java code in Listing 12.1.

Listing 12.1 Subscriber.java

...

...
private MessageListener fxListener;

 public Subscriber(String topicName,
 MessageListener fxListener) throws JMSException {

this.fxListener = fxListener;
...
...

When the JMS client calls the Subscriber.onMessage(Message msg) Java
method, we then use the Entry.deferAction() method to call the JavaFX
onMessage(msg:Message) function from the JavaFX main thread. Notice that
we need to change the message parameter to the Java onMessage() method to
final. This is so that it can be visible when the deferAction Runnable is
invoked. Listing 12.2 shows the Java onMessage(Message msg) implementation.

From the Library of sam kaplan

ptg

310 CHAPTER 12 JAVAFX CODE RECIPES

Listing 12.2 Subscriber.java – onMessage()

public void onMessage(final Message msg) {
 try {
 // must run this on the JavaFX Main thread
 // If you don't you will eventually get
 // exceptions in the JavaFX code.

Entry.deferAction(new Runnable() {

 @Override

 public void run() {

 fxListener.onMessage(msg);

 }

 });

 } catch (Exception ex) {
 Logger.getLogger(Subscriber.class.getName()).

 log(Level.SEVERE, null, ex);
 }
}

On the JavaFX side in ClockUpdater.fx, the implementation is normal JavaFX.
The message is checked to make sure it is a javax.jms.TextMessage, and then
the JSON string is set and parsed. Listing 12.3 shows how this is done.

Listing 12.3 ClockUpdater.fx

public class ClockUpdater extends MessageListener {
 public var millis: Number;
 ...
 ...
 // this is called from the Java class Subscriber
 public override function onMessage(msg: Message):Void {
 if(msg instanceof TextMessage) {
 var jsonStr = (msg as TextMessage).getText();
 var input =
 new ByteArrayInputStream(jsonStr.getBytes());
 try {

 parser.input = input;
 parser.parse();

 } finally {
 input.close();

 }
 }
 }

From the Library of sam kaplan

ptg

NODE EFFECTS—FADER AND MAGNIFIER 311

This JavaFX code then gets the JSON string from the TextMessage object and
parses it using a javafx.data.pull.PullParser. For detailed information on
using the PullParser class, consult Chapter 10, Create RESTful Applications.
Listing 12.4 shows the simple implementation to process the clock JSON message.

Listing 12.4 JSON Clock Message

public var millis: Number;

var parser = PullParser {
 documentType: PullParser.JSON
 onEvent: function(e: Event) : Void {
 if(e.type == PullParser.END_VALUE and

e.name == "clock") {
 var milliStr = e.text;

 millis = java.lang.Long.valueOf(milliStr);
 }
 }
};

The instance variable, millis, needs to be a Number rather than an Integer,
because the actual value of the System time is larger than an Integer can hold.
Another way to declare millis is with a Long.

Node Effects—Fader and Magnifier
A common effect is for a node to fade in to out as a transition between views. A
transition effect allows a smoother change from one view to another. Another
common effect is to magnify a node when the mouse hovers over it. The follow-
ing code recipes show a way to implement these effects using reusable classes.

Fader
The Fader class supports the visual fade in or out of a node. If fade in is desired,
when a node is shown, it will transition from invisible to visible over a period of
time. If fade out is chosen, it will change from visible to invisible. There is also a
setting for scaling while these transitions occur. Using scaling, the node can
grow from small to normal size as it transitions to visible. On the reverse side,
while fading out, the node can shrink from its normal size.

From the Library of sam kaplan

ptg

312 CHAPTER 12 JAVAFX CODE RECIPES

The Fade type can be IN, OUT, or BOTH, and these are defined in the Java enumer-
ation FadeType. If the fade type is IN, when the node is shown, its opacity
changes from zero, or invisible, to 1.0, totally visible. Also, its scaling transitions
from a minimum to a maximum scale, with the default set to 0.0 and 1.0, respec-
tively. It the fade type is OUT, when the node is changing to not shown, the node’s
opacity and scaling will reverse direction, with opacity changing to 0.0 and scal-
ing to the minimum. Of course, the BOTH type does this when the node is chang-
ing from not shown to shown and again when the node is changing from shown
to not shown. The duration of the transition is set using an instance variable,
duration. Listing 12.5 shows the JavaFX code for these attributes in the Fader
class.

Listing 12.5 Fader.fx

public class Fader extends CustomNode {
 // holds the node that will be faded.
 public var node:Node;

 public var type = FadeType.IN on replace {
 if(type != null)
 fade();
 };

 public var duration:Duration = 2s;
 public var startScale: Number = 0.0;
 public var endScale: Number = 1.0;

To control the transitions, we added an instance variable, show. When show is set
to true, the node is made visible, and then the transition starts. When show
changes to false, the reverse transition is started, and the node’s visible variable
is set to false. The actual fade transitions are controlled with a Timeline that is
started in the function fade(). This is demonstrated in Listing 12.6.

Listing 12.6 Fader.fx – show()

public var interpolator = Interpolator.LINEAR;
var scale = 0.0;

public var show: Boolean on replace {
 if(show) {
 visible = true;
 fade();
 }else if(visible) {
 if (type == FadeType.OUT or

From the Library of sam kaplan

ptg

NODE EFFECTS—FADER AND MAGNIFIER 313

 type == FadeType.BOTH) {
 fade();
 } else {

 visible = false;
 }
 }
}

You may be wondering why we did not just use the visible variable and add a
trigger to it to commence the animations. Normally, a node becomes visible
when the visible instance variable is set to true and invisible when it is set to
false. We could have done an override on the visible variable and added an on
replace trigger to start the fade animation, similar to Listing 12.7.

Listing 12.7 Fader.fx – visible

public override var visible on replace {
 if(visible) {
 fade();
 } else if (type == FadeType.OUT or

 type == FadeType.BOTH) {
 fade(); // WILL NOT SHOW BECAUSE

 // NODE IS ALREADY MADE INVISIBLE

 }
}

This does work when the visible variable is set to true. However, when the
visible variable is set to false, the JavaFX framework immediately sets the
node to invisible, so any subsequent animations do not have any visual effect.
Because of this, we introduced the show instance variable. When show is set to
true, visible is set to true and the fade animation starts. When show is set to false,
the fade animation starts and the end result of the animation is to set the node’s
visible variable to false.

The strategy is to use one Timeline. For fade in, the Timeline progresses for-
ward and the opacity transitions from transparent (0.0) to fully opaque (1.0),
while the scale transitions to endScale. For fade out, the Timeline plays in
reverse from the end to the beginning, so that opacity transitions to transparent
(0.0), and the scale transitions back to startScale. In this reverse direction,
when the timeline reaches the beginning or 0 instant, then the visible variable
is set to false. The timeline is shown in Listing 12.8.

From the Library of sam kaplan

ptg

314 CHAPTER 12 JAVAFX CODE RECIPES

Listing 12.8 Fader.fx – timeline

var timeline = Timeline {
 keyFrames: [
 KeyFrame {
 time: 0s
 values: [
 opacity => 0,

 scale => startScale,
]

 action: function() {
if(not show) { visible = false; }

 }
 },
 KeyFrame {
 time: duration
 values: [

opacity => 1.0 tween interpolator,
scale => endScale tween interpolator,

]
 },
]
};

The fade function merely controls the playing of the timeline based on the
options chosen. If the fade type is either IN or BOTH and show is set to true, then
the timeline will play forward from the start. On the other hand, if the fade type
is OUT or BOTH and show is set to false, the timeline will play in reverse from the
end. Listing 12.9 illustrates how to control the fade animation.

Listing 12.9 Fader.fx – fade

function fade() {
 if(show and (type == FadeType.IN or

 type == FadeType.BOTH)) {
 timeline.rate = 1.0; // play forward
 // start from beginning
 timeline.playFromStart();
 }else if(not show and (type == FadeType.OUT or

 type == FadeType.BOTH)) {
 timeline.rate = -1.0; // play in reverse
 timeline.time = duration; // start at end
 timeline.play();
 }
}

From the Library of sam kaplan

ptg

NODE EFFECTS—FADER AND MAGNIFIER 315

The actual CustomNode is a Group that holds the node with a Scale transforma-
tion that is bound to the scale instance variable that changes in the timeline.
This is shown in Listing 12.10.

Listing 12.10 Fader.fx – create()

public override function create(): Node {
 return Group {
 transforms: Scale {
 x: bind scale
 y: bind scale
 }
 content: bind node
 };

An example of using this class is in the following listing. Listing 12.11 is an
excerpt of the sample application that is available on the book’s Web site.

Listing 12.11 Fader Usage

var node = Group {...};
Stage {

 title: "Fader"
 width: 500
 height: 500
 scene: scene = Scene {
 content: fader = Fader {

 // center on scene
 translateX: bind (scene.width -
 fader.layoutBounds.width)/2.0

 translateY: bind (scene.height -
 fader.layoutBounds.height)/2.0

 show: false
 type: FadeType.BOTH

 node: bind node
 }
 }
}

Figure 12.3 shows the Group node as it is growing and becoming more visible on
to the scene. Figure 12.4 shows the node fully visible and at its normal size. By
depressing the Hide button, the process reverses and the node shrinks and
becomes invisible. After the node is again hidden, the button name changes to
Show so that you can repeat the process.

From the Library of sam kaplan

ptg

316 CHAPTER 12 JAVAFX CODE RECIPES

Figure 12.3 Fader – Initial Fade In

Figure 12.4 Fader – Fully Shown

From the Library of sam kaplan

ptg

NODE EFFECTS—FADER AND MAGNIFIER 317

Magnify
The Magnify class allows the node to grow when the mouse hovers over it.
When the mouse is moved off the node, it returns to its normal size. This class is
similar to the Fader class in that an animation plays when the mouse moves over
the node, and plays in reverse when the mouse moves off the node.

This is done by adding an on replace trigger to the hover instance variable
inherited from javafx.scene.Node. The following code in Listing 12.12 dem-
onstrates this.

Listing 12.12 Magnify – hover

override var hover on replace {
 if(hover) {
 timeline.rate = 1.0; // play forward
 timeline.playFromStart(); // from the beginning
 }else {
 timeline.rate = -1.0; // play backward
 timeline.time = duration; // from the end
 timeline.play();
 }
}

The timeline modifies the scale from its start setting to its end setting, 1x and
1.5x, respectively, by default. The default is to use a linear interpolator. Listing
12.13 shows how this is done.

Listing 12.13 Magnify – timeline

var scale = 1.0;
var timeline = Timeline {
 keyFrames: [
 KeyFrame {
 time: 0s
 values: [

 scale => startScale,
]
 },
 KeyFrame {
 time: duration
 values: [

scale => endScale tween interpolator,
]
 },
]
};

From the Library of sam kaplan

ptg

318 CHAPTER 12 JAVAFX CODE RECIPES

The CustomNode uses the same structure as used in Fader. The node is included
in a Group that has a Scale transform that is bound to the scale instance vari-
able that is used in the timeline. Listing 12.14 depicts how this is accomplished.

Listing 12.14 Magnify – create()

public override function create(): Node {
 var group: Group;
 return group = Group {
 transforms: Scale {
 x: bind scale
 y: bind scale
 }
 content: bind node
 };
}

To use this class in a stage, just instantiate it with a node and include it in the
scene’s contents. Listing 12.15 shows a way to do this.

Listing 12.15 Magnify – Usage

var scene: Scene;
var magnify: Node;
Stage {
 title: "Magnify"
 width: 500
 height: 500
 scene: scene = Scene {
 content: magnify = Magnify {

 // Center in scene
 translateX: bind (scene.width -

 magnify.layoutBounds.width)/2.0
 translateY: bind (scene.height -

 magnify.layoutBounds.height)/2.0
 node: node
 }
 }
}

When this is run, the node is centered in the scene at normal size. This is shown
in Figure 12.5.

When the mouse is moved over the node, it grows to 1.5 times its normal size.
This is demonstrated in Figure 12.6.

From the Library of sam kaplan

ptg

WIZARD FRAMEWORK 319

When the mouse is moved off the node, it returns to normal size.

Wizard Framework
When a user needs to process a lot of information, breaking this process into a
series of discrete steps allows the whole process to be simplified. In essence, this
allows the user to see a clear path to the end goal, while making each subtask
smaller and more comprehensible. Typically, wizards are used for assignments
that are long or complicated or in cases where the process is novel to the user.
Examples of when wizards should be used include first-time customer registra-
tion or order processing for the casual user.

A simple wizard pattern is just a series of sequential displays presented to the
user, so that the user can complete each task. Users are often presented with but-
tons to move to the next task or move backward to the previous task. A Cancel
button is provided so that the user can cancel the entire operation. After all the
tasks are completed, the computer program can do the necessary processes for
completing the operation. A more complex wizard could move on to alternative
tasks depending on how the user responds to previous tasks. Usually, the user is

Figure 12.5 Magnifier – Normal Size

Figure 12.6 Magnifier – Mouse Hover – Magnified

From the Library of sam kaplan

ptg

320 CHAPTER 12 JAVAFX CODE RECIPES

kept abreast of the progress through the entire process, showing which tasks have
been completed and which are pending.

Figure 12.7 shows a typical wizard display. At the top is a progress indicator; the
current task is highlighted and the remaining tasks appear to the right in sequen-
tial order. In the middle of the display is the user input area. At the bottom are
areas for three buttons: Back, Next, and Cancel. In Figure12.7, the Back button
is not shown as the wizard is on the first task and there is no previous task.

To implement the wizard pattern in JavaFX, we have created a Wizard class that
controls the display of all the tasks defined for the wizard. This class uses the
WizardItem class that defines the individual displays used by each task. The
Wizard class contains an instance variable, currentItem, that defines the dis-
played item represented by a WizardItem object. The instance variable, tasks,
is a sequence of the task names that are displayed in the progress indicator at the
top of the window. Each WizardItem contains an instance variable, taskId, that

Figure 12.7 Wizard – First Task

From the Library of sam kaplan

ptg

WIZARD FRAMEWORK 321

indexes into the wizard tasks sequence and maps the WizardItem to a task
name. When the user finishes all the tasks, the WizardItem’s instance variable,
complete, function is invoked. If the user selects the Cancel button, the Wizard-
Item’s instance variable, cancel, function is called. An example of creating a
wizard is shown in Listing 12.16.

Listing 12.16 Wizard Object Literal

Wizard {
currentItem: root
tasks: ["Customer", "Ship To", "Contact", "Delivery"]

cancel: function() {
 ...
 }

complete: function() {
 ...
 }
}

Notice that the currentItem is set to the starting WizardItem named root in this
example. Each WizardItem contains a node that holds a generic javafx.scene
.Node object that is displayed in the middle of the Wizard window when the
WizardItem is selected. Each WizardItem also contains a taskId integer vari-
able that maps the item to a task defined in the wizard. When the WizardItem is
selected, this causes the appropriate node on the progress indicator to be high-
lighted. In addition, the WizardItem may contain a message that will be dis-
played above the wizard buttons.

The WizardItem has an instance variable, next, that holds a function for deter-
mining the next wizard item when the user selects the Next button. In conjunc-
tion with this, the variable nextItems holds a sequence of the possible next
WizardItems. In a simple case, this will only contain one WizardItem. In a com-
plex case, this may contain multiple items and represent alternative paths that
may be chosen based on user input. By default, next is set to a function that
returns the first item from the nextItems sequence. This covers the simple case
of one item sequentially after another. If there are alternative paths or if special
processing is required before advancing to the next item, a custom next function
may be defined to determine the next WizardItem.

An example WizardItem object literal is shown in Listing 12.17. In this example,
the node is a CustomerAddressControl that extends javafx.scene.control
.Control. This item maps to the first task in Wizard, “Customer” by using the

From the Library of sam kaplan

ptg

322 CHAPTER 12 JAVAFX CODE RECIPES

taskId of 0. The next function copies data from the current item’s node to the
next item’s node, then returns the first “next” item.

Listing 12.17 WizardItem Object Literal

var root:WizardItem = WizardItem {
node: CustomerAddressControl{}
message: "Enter Address [Step 1 of 4]"
taskId: 0
wizard: bind wizard
next: function(): WizardItem {

 var ca = root.node as CustomerAddressControl;
 var ship = root.nextItems[0].node as ShipToControl;
 if(ship.shipToAddress.name == "") {

 ship.shipToAddress.name =
 ca.customerAddress.name;

 ship.shipToAddress.addressLine1 =
 ca.customerAddress.addressLine1;

 ...
 }
 root.nextItems[0];
 }

nextItems: WizardItem {
wizardParent: bind root

 }
}

The individual wizard items are linked using the nextItems sequence. As
WizardItems are added to the nextItems sequence, each of their wizardParent
variables are set to the containing WizardItem. By setting the parent, this allows
the user to select the Back button to make the wizardParent the current item, in
effect moving backward in the task chain.

In the sequential example depicted in Figure 12.7, the WizardItem task tree is
laid out so that the user first enters the customer address, followed by the ship-
ping address, then the contact information, and finally the shipping date. The
root’s nextItems contains the WizardItem for customer address. The customer
address’s nextItems contains the WizardItem for the ship to address task, and
so on. This is depicted logically in the following pseudo code listing.

root:"CustomerAddress" ==> nextItems[0]
 "Ship To Address" ==> nextItems[0]
 "Contact Information" ==> nextItems[0]
 "Shipping Date"

From the Library of sam kaplan

ptg

WIZARD FRAMEWORK 323

When there are no more nextItems, the Next button name changes to Finish.
When the user selects the Finish button, the wizard’s complete variable’s func-
tion is called. Figure 12.8 shows the display when the last item has been reached.

Listing 12.18 shows the definition for the Wizard class. Because this is a Con-
trol, the WizardSkin class defines the presentation, and can utilize CSS style
sheets to change the display attributes like text-fill and font. JavaFX’s use of
style sheets and custom controls are discussed in depth in Chapter 5, Create User
Interfaces.

Listing 12.18 Wizard Control

public class Wizard extends Control {
 public var currentItem: WizardItem on replace {
 currentTask= currentItem.taskId;
 };

continues

Figure 12.8 Wizard – Last Task

From the Library of sam kaplan

ptg

324 CHAPTER 12 JAVAFX CODE RECIPES

 public var cancel : function(): Void;
 public var complete : function(): Void;
 public var tasks: String[];
 public var currentTask: Integer;

 init {
 skin = WizardSkin {};
 }
}

Listing 12.19 shows the definition for the WizardItem class. WizardItem
extends CustomNode and provides control functionality to support the wizard
framework. The WizardItem itself merely encapsulates the node in a Group.

Listing 12.19 WizardItem

public class WizardItem extends CustomNode {
 public var node: Node;
 public var wizardParent: WizardItem;
 public var wizard:Wizard;
 public var taskId:Integer;
 public var nextItems: WizardItem[]
 on replace oldValues [lo..hi] = newValues {
 for(old in oldValues) {

 old.wizardParent = null;
 }
 for(item in newValues) {

item.wizardParent = this;
 }
 }
 public var next: function(): WizardItem = function() {
 nextItems[0];
 };
 public var message: String;

 public override function create(): Node {
 return Group {

 content: bind node
 };
 }
}

From the Library of sam kaplan

ptg

PROGRESS BAR 325

Progress Bar
A progress bar is fairly simple to implement. There are two classes, the Progress-
Bar that is a control and the ProgressBarSkin that is the ProgressBar’s skin
class. ProgressBar contains a percent variable that holds the fraction repre-
senting the percent complete and an optional message variable that is centered in
the display. If this message is not defined, the actual percent will be displayed as
a percentage. Listing 12.20 shows the ProgressBar class.

Listing 12.20 ProgressBar

public class ProgressBar extends Control {
 public var percent: Number;
 public var message:String;
 package var useMessage:Boolean = bind (message != "");
 protected override var skin = ProgressBarSkin{};
}

ProgressBarSkin defines a rectangle for the entire background area, and another
rectangle that grows in width based on the percent complete. This second rectan-
gle graphically depicts the percent complete. Each of these two rectangles has its
own fill color.

What is interesting about this implementation is that the message is displayed in
a different color when the progress bar is over it. If you look carefully at Figure
12.9, you will notice the letters P, r, o, g are painted in a different color from the
remaining characters that fall outside of the progress bar.

To accomplish this, the ProgressBarSkin class uses two text shapes for the
same string and font located in identical positions centered in the ProgressBar
space on top of each other. The first Text object uses one color, whereas the sec-
ond Text class uses another color. By using the progress rectangle as a clipping
region, we can control when and what part of this second text is displayed. List-
ing 12.21 shows how this is done.

Figure 12.9 Progress Bar

From the Library of sam kaplan

ptg

326 CHAPTER 12 JAVAFX CODE RECIPES

Listing 12.21 ProgressBarSkin – Text Elements

text = Text {
translateX: bind (progressBar.width -

 text.layoutBounds.width)/2.0 - text.layoutBounds.minX
translateY: bind (progressBar.height -

 text.layoutBounds.height)/2.0- text.layoutBounds.minY
 content: bind msg
 font: bind font
 textOrigin: TextOrigin.TOP
 fill: bind textFill
},
Text {

x: bind (progressBar.width -
 text.layoutBounds.width)/2.0 - text.layoutBounds.minX

y: bind (progressBar.height -
 text.layoutBounds.height)/2.0- text.layoutBounds.minY
 content: bind msg
 font: bind font
 textOrigin: TextOrigin.TOP
 fill: bind textHighlightFill

clip: bind progressRect

},

There are a couple of things to note here. First, the second Text object needs to
be located using its x and y variables rather than using its translateX and
translateY variables. This is because the clipping region is based on the geom-
etry of the progressRect before the transformations take effect. If we had used
translateX and translateY, the clipping action would actually be shifted to the
left and the text would show in the alternate color too soon.

The other issue is that in calculating the center position for the second text
object, we could not use the layoutBounds for the second text, but had to use the
layout bounds from the first text. This is because the layoutBounds for the sec-
ond text change as the clip region changes. Remember, both Text objects are
identical except for color, so the first Text’s dimensions stay constant and still
represent the dimensions of the second Text object.

The last important point to this is the second text must appear on top of the first
text. This is dictated by the order that the Texts are added to the overall Group’s
content sequence. Nodes added at the end of the content sequence will paint on
top of nodes added earlier into the Group’s content sequence. Normally, the sec-
ond text would obscure the first text, but because we are using a clipping region
on the second Text object, the first node is not obscured until the progress rect-
angle crosses over it.

From the Library of sam kaplan

ptg

SLIDER 327

Slider
A slider is a visual component that has a knob that can be moved to change a
value between a minimum and a maximum. The user drags the knob to a new
value or just clicks on any point on the slider bar to immediately move the knob
to this position and set the value accordingly.

We implement this slider as a control with a corresponding skin. The main
Slider class contains variables to hold the value, along with minimum and max-
imum values. There are also two Boolean variables, showLabels and showTicks,
to control whether to show the minimum, current value, and maximum labels,
and whether to show the tick lines. Lastly, there is a variable, snapTo, that deter-
mines the rounding precision for the value. When the value is dragged or other-
wise set clicking on the slider bar, the value will be rounded to this precision.
The Slider class is shown in Listing 12.22.

Listing 12.22 Slider – Control

public class Slider extends Control {
 public var value: Number;
 public var minimum: Number = 0;
 public var maximum: Number = 100;
 public var showTicks: Boolean;
 public var showLabels: Boolean;
 public var snapTo: Number = 0.0;

 init {
 skin = SliderSkin{};
 }
}

The SliderSkin class contains a rounded rectangle for the slider bar, a rectangle
for the knob, some lines for the tick marks, and some Text objects for the labels.
What is most interesting is how the drag operation works.

To make the drag work on the knob rectangle, you need to add functions for
mouse pressed, released, and dragged events. First, when the mouse is pressed,
we need to save the current horizontal location of the knob into the saveX vari-
able as a starting reference point for the drag. Another variable, controlX,
defines the current horizontal location of the knob, this is changed based on the
value instance variable as a percentage of the value to the total value range.

From the Library of sam kaplan

ptg

328 CHAPTER 12 JAVAFX CODE RECIPES

var controlX: Number =
 bind (slider.value-slider.minimum)/
 range * slider.width;
...
...

onMousePressed: function(e: MouseEvent) : Void {
 saveX = controlX;
 }

As the mouse is dragged and finally released, we calculate the percentage of the
mouse horizontal position to the total width of the Slider and use that percent-
age to adjust the value. The mouse event dragX variable actually represents a
delta since the drag started, so we must add this to the saved location for the
knob to get a new location for the knob. We do not change the knob location
directly because the knob’s location, held in the controlX variable, is bound to
the slider’s value. Instead, we merely set the value based on the percentage of
the total slider width. This, in turn, results in the knob moving to the new loca-
tion. Notice, we have to limit the percentage derived from the mouse position to
between 0.0 and 1.0, inclusive. This is because the mouse may be dragged
beyond the boundaries of the Slider.

onMouseReleased: function(e: MouseEvent) : Void {
 if(inDrag) {
 var newX = saveX + e.dragX;
 var per = newX / slider.width;
 per = if(per < 0) 0.0 else

if (per > 1.0) 1.0 else per;
 slider.value = calcValue(per);
 inDrag = false;
 }
}
onMouseDragged: function(e: MouseEvent) : Void {
 inDrag = true;
 var newX = saveX + e.dragX;
 var per = newX / slider.width;
 per = if(per < 0) 0.0 else

if (per > 1.0) 1.0 else per;
 slider.value = calcValue(per);
}

The private function, calcValue(), takes the width percentage and applies it to
the value range to determine the new slider value. This function also rounds the
actual value based on the Slider’s snapTo variable. For example, if snapTo is
1.0, the value will be rounded to the nearest whole number. If snapTo is 0.5, the
resulting value is rounded to the nearest half. For instance, a value of 50.37
becomes 50.5, whereas 50.21 becomes 50.0. Listing 12.23 shows how this is done.

From the Library of sam kaplan

ptg

SLIDER 329

Listing 12.23 SliderSkin – calcValue()

function calcValue(per:Number) : Number {
 var val = per * range + slider.minimum;
 if(slider.snapTo != 0.0) {
 val += slider.snapTo/2.0;
 var rem =
 Math.IEEEremainder(val, slider.snapTo);
 val = val-rem;
 }
 val;
}

An example of using a slider is in Listing 12.24. The value is bound to a local
variable called lvalue. This must be bound with inverse as a change to lvalue
will be reflected on the slider, and if the user changes the slider value, this will
in turn be reflected in lvalue. Failure to use the with inverse bind will result
in an exception.

Listing 12.24 Slider Usage

var scene:Scene;
var lvalue:Number = 50 on replace {
 println(value);
};
Stage {
 title: "Slider"
 width: 300
 height: 80
 scene: scene = Scene {
 content: Slider {
 translateY: 10
 translateX: 10
 height: 50
 snapTo: 0.5
 value: bind lvalue with inverse

width: bind scene.width-20
 }
 }
}

Figure 12.10 shows what the Slider looks like. Also, remember that because
Slider is a control, you can use cascading style sheets to control its appearance.
This includes the colors, knob size, and fonts. For more information on using
cascading style sheets, see Chapter 5.

From the Library of sam kaplan

ptg

330 CHAPTER 12 JAVAFX CODE RECIPES

Matrix
In JavaFX, sequences are one dimensional and you cannot create a sequence of a
sequence. There is no notion of a two-dimensional array, like Object[][]. Even
if you attempt to create a matrix by assigning another sequence to one item, the
original sequence actually inserts the assigned sequence into itself. To get around
this, we have created a matrix class that uses a JavaFX sequence as a backing
store, but allows manipulation of the individual items using a row, column
approach.

The Matrix class contains a variable, sequence, that holds the backing
sequence. In addition, the columns variable holds the number of columns,
whereas rows holds the number or rows in the matrix. Notice that rows is read
only and is calculated based on the number of columns and the size of the
sequence. Matrix is defined as illustrated in Listing 12.25.

Listing 12.25 Matrix

public class Matrix {
 /** number of columns in Matrix */
 public var columns: Integer = 1;

 /** backing sequence for Matrix */
 public var sequence: Object[];

 /** number of rows in Matrix */
 public-read var rows: Integer = bind
 if(sizeof sequence mod columns > 0)

sizeof sequence / columns + 1
 else

 sizeof sequence / columns;

There are also get and set functions that use the row, column addressing
scheme to manipulate cell contents. These use the function getIndex() to calcu-
late the offset into the backing sequence by multiplying the row by the number of
columns and adding the column parameter to this.

Figure 12.10 Slider

From the Library of sam kaplan

ptg

MATRIX 331

/** set the value of a cell in the Matrix */
public function set(row:Integer, col:Integer,

 value: Object):Void{
 sequence[getIndex(row,col)] = value;
}

/** get the value of a cell from the Matrix */
public function get(row:Integer, col:Integer) : Object {
 sequence[getIndex(row,col)];
}

There are three functions that retrieve sets of values out of the Matrix. The function
getRow() returns a sequence of all the values in a row, whereas getColumn()
returns all the values in a given column. The function subMatrix() retrieves a
rectangular subset from the matrix based on starting row and column and ending
row and column. It returns a new Matrix. These functions are implemented in
Listing 12.26.

Listing 12.26 Matrix – getRow(), getColumn(), subMatrix()

/** get a row from the matrix */
public function getRow(row:Integer):Object[] {
 var ndx = getIndex(row, 0);
 sequence[ndx..<ndx+columns];
}

/** get a column from the matrix */
public function getColumn(col:Integer): Object[] {
 var ndx = getIndex(0, col);
 for(i in [ndx..<sizeof sequence step columns]) {
 sequence[i];
 }
}

/** get a sub matrix from this matrix */
public function subMatrix(startRow: Integer,
 startColumn: Integer,
 endRow:Integer,
 endColumn:Integer): Matrix {
 var ncols = endColumn - startColumn + 1;
 var ndx = getIndex(startRow, startColumn);
 var sub = for(row in [startRow..endRow]) {
 var ndx1 = ndx;
 ndx += columns;
 sequence[ndx1..<ndx1+ncols];
 };

continues

From the Library of sam kaplan

ptg

332 CHAPTER 12 JAVAFX CODE RECIPES

 Matrix {
 columns: ncols
 sequence: sub
 };
}

An example of using a Matrix is shown in the following listing. This uses a 9 9
matrix similar to the Sudoku pattern. The getRow(3) and getColumn(5) func-
tions return a sequence of Integers, whereas the subMatrix(3,3, 5,5) function
returns a new 3 3 matrix.

var sudoku = Matrix {
 columns: 9
 sequence: [
 1,2,3,1,2,3,1,2,3,
 4,5,6,4,5,6,4,5,6,
 7,8,9,7,8,9,7,8,9,
 1,2,3,1,2,3,1,2,3,
 4,5,6,4,5,6,4,5,6,
 7,8,9,7,8,9,7,8,9,
 1,2,3,1,2,3,1,2,3,
 4,5,6,4,5,6,4,5,6,
 7,8,9,7,8,9,7,8,9,
]
}

var row = sudoku.getRow(3);
var col = sudoku.getColumn(5);
var box = sudoku.subMatrix(3,3, 5,5);

Chapter Summary
These are just a few code recipes that may help you develop your applications in
JavaFX. There are probably many more, but we wanted to cover a few classes
that contained interesting aspects. We hope these recipes help you to better
understand some of the finer points that we have experienced while preparing
this book.

We have covered all of the basic concepts of JavaFX including the JavaFX lan-
guage, features, and framework classes. Now it is time to put all this together in
an application. We have elected to do a Sudoku game. This application demon-
strates most of the concepts we have discussed in this book and we feel it will
help you to see how it all comes together.

From the Library of sam kaplan

ptg

333

13
Sudoku Application

“The attempt to combine wisdom and power has only rarely
been successful and then only for a short while.”

—Albert Einstein

Until now, most of the concepts discussed throughout the course of this book
were either described abstractly or, for the sake of simplicity, demonstrated with
small blocks of code or trivial programs. For this final chapter, we’ll apply what
we’ve learned to create something with a bit more substance. Our sample appli-
cation utilizes and combines many more of the techniques and mechanisms elab-
orated upon, more closely resembling how JavaFX might be employed in the real
world.

The application we’ve chosen to implement is the game of Sudoku. As Sudoku
has gained considerable worldwide popularity recently, it is likely to have been
encountered by many reading this book. To the uninitiated, you’ll find that
Sudoku is easy to learn, and furthermore easy to become addicted to playing.
From a JavaFX perspective, Sudoku represents a reasonable example of how the
logic required for the rules of the game and the presentation of that game can be
nicely delineated.

For those unfamiliar with the game, a standard Sudoku board has nine rows and
nine columns of spaces. The board is also grouped into nine boxes or regions. To
solve a Sudoku puzzle, the numbers 1 through 9 must appear in each row, col-
umn, and box—but only once—and not in any particular order. New Sudoku
puzzles start out with a certain number of spaces already filled in. In general, the
fewer the number of pre-defined spaces, the more difficult the puzzle. The job of
the person playing the game is to use logic to fill in the rest of the spaces.

From the Library of sam kaplan

ptg

334 CHAPTER 13 SUDOKU APPLICATION

How to Access the JavaFX Sudoku
Application

The Sudoku application is available online and can be accessed by pointing your
browser to the following URL:

http://jfxbook.com/Sudoku/

Upon reaching this page, you have the option of running Java FX Sudoku in one
of two ways:

• As a standalone application. This option utilizes Java Web Start technol-
ogy to start the JavaFX Sudoku application as a separate process, inde-
pendent from the browser.

• As an applet. This option allows you to run JavaFX Sudoku inside the
browser as a traditional applet. Depending upon your system configura-
tion (operating system, Java Runtime Environment, browser, etc.), you
may be able to take advantage of the draggable applet feature, in effect
giving you the ability to undock the applet from the browser.

The Interface
Figure 13.1 depicts and describes the onscreen interface of the Sudoku program.
Logically, the interface can be divided into three areas:

• The top section of the interface serves as a window frame. If you drag
your mouse within this area, you’ll be able to reposition the Sudoku appli-
cation on the screen. If you are running Sudoku as an applet within a
browser, dragging your mouse in this area will enable you to undock the
applet from the browser if your overall environment supports the dragga-
ble applet feature.

• The middle section, which encompasses a majority of the interface, con-
tains the Sudoku board. By hovering your mouse over a space on the
board, you can modify its contents by either clicking the mouse to enter in
a new number or by typing a number from 1 to 9. If you want to clear a
space, you can type either 0 or <space>. When a new puzzle is generated,
a certain number of spaces will be filled in for you to aid in solving the
puzzle. These spaces cannot be modified.

From the Library of sam kaplan

http://jfxbook.com/Sudoku/

ptg

THE INTERFACE 335

• The bottom section of the interface contains menu buttons needed to
interact with the application. They include buttons to create a new game,
instruct the user as to how to play, set the level of difficulty of the puzzle,
reset the game to its original state, solve the puzzle, and quit the game.

Figure 13.1 The Sudoku Application Interface

empty space

drag your mouse in this area to detach the
Sudoku applet from the browser and/or

move the application around the screen

completed
column

completed
row

editable space
(white) filled in
by the player

space filled
with non-editable
number (black)

provided by
the puzzle

quit
button

solve puzzle
button

reset game
button

set level of
difficulty button

how to play
button

new game
button

uncompleted box
(or region)

From the Library of sam kaplan

ptg

336 CHAPTER 13 SUDOKU APPLICATION

Source for the Sudoku Application
The source code for JavaFX Sudoku can also be found at http://jfxbook.com/
Sudoku/. Developed with the NetBeans Integrated Development Environment,
the source comes bundled with project metadata to facilitate seamless integration
into NetBeans.

Packages
Table 13.1 lists and briefly describes the packages that make up the JavaFX
Sudoku application. It incorporates both JavaFX and Java source, plus images
that are used as part of the overall presentation.

JavaFX Source Files
The JavaFX source files that comprise the sudoku package (referenced in Table
13.1) are, in general, divided into two types of files. Those directly involved with
the application interface have public classes that extend the CustomNode class
and are suffixed with Node (e.g., BoardNode.fx, IconButtonNode.fx). Source
files without the Node suffix do not extend the CustomNode class and are
involved more with the logic behind running the Sudoku application. Table 13.2
lists and describes the sudoku package files.

Table 13.1 Packages in the Sudoku Application

Package Description

sudoku.* All JavaFX source files reside under this package. For
a description of each of the files contained within,
consult Table 13.2.

sudoku.images.* As part of the overall presentation, the Sudoku appli-
cation is responsible for displaying a large number of
images at any point in time during execution. All
images are located in this directory and include things
like icons, backgrounds, numbers, and spaces.

net.sourceforge.playsudoku.* This package is public domain software from source-
forge.net and is written in Java. It is used to generate
and solve new Sudoku puzzles. It demonstrates soft-
ware reuse and the easy integration of Java compo-
nents into a JavaFX application.

From the Library of sam kaplan

http://jfxbook.com/Sudoku/
http://jfxbook.com/Sudoku/

ptg

SOURCE FOR THE SUDOKU APPLICATION 337

Table 13.2 JavaFX Source Files in the sudoku Package

JavaFX Source File Description

Board.fx This class contains a logical representation of a Sudoku board,
including the code necessary to play the game.

BoardNode.fx This class is primarily responsible for the layout of the Sudoku
interface.

Space.fx A Sudoku Board is comprised of 81 Spaces. Among other
instance variables, each Space instance has a number instance
variable, whose value is used to interpret the state of the Space.

SpaceNode.fx For each Space instance, there is a related SpaceNode instance
responsible for receiving user input for a space and displaying the
contents of that space on the board.

HowToPlayNode.fx Component representing a pop-up window that appears when the
How to Play icon button is pressed.

SliderNode.fx Slider component that appears when the user clicks on the Skill
Level icon button. By repositioning the slider, the user can either
increase or decrease the difficulty of the next puzzle to be generated.

ChooseNumberNode.fx Component that appears over an editable space on the board when
the mouse is clicked, giving the user a choice of which number to
insert into that space.

IconButtonNode.fx Component representing the icons appearing near the bottom of
the Sudoku interface. These icons are animated such that when a
mouse hovers over them they increase in size.

CloseButtonNode.fx Common component used in both SliderNode and
HowToPlayNode classes.

Grouping.fx This class is created primarily due to the fact that JavaFX cur-
rently does not support multi-dimensional sequences. A Board, in
addition to containing a sequence of 81 (9 9) Spaces, also
includes nine Groupings representing the nine rows, columns,
and regions that make up a board.

Main.fx Responsible for starting up the Sudoku application. This file also
contains code to support the dragable applet feature.

From the Library of sam kaplan

ptg

338 CHAPTER 13 SUDOKU APPLICATION

The Overall Design
Briefly mentioned earlier, the application has been architected such that the over-
all game logic and the user interface have been cleanly separated in a relatively
straightforward fashion. As a rule of thumb, source files suffixed with Node are
presentation or interface files, whereas those without the Node moniker are dedi-
cated to providing the logic necessary to play the Sudoku game.

The Logic
The game logic for the Sudoku application is primarily supplied by two JavaFX
classes: Board and Space. The Board class represents a Sudoku board. It has
code to interpret the rules of the game and is ultimately responsible for starting a
new game, determining if an individual move is valid, maintaining the state of
the game, and providing a solution to the puzzle.

The Board class includes a sequence of 81 Spaces representing the 9 9 grid of
spaces that make up a standard Sudoku puzzle. At initialization, the Board class
identifies which row, column, and region (or box) each of the 81 Spaces belong
to and groups them accordingly. Each Space has instance variables that identify
its row/column/region, and most importantly, a number variable holding the
value that is currently assigned to this space. The value of number is used to
interpret the current state of the Space. Externally, Sudoku spaces can only have
a numeric value ranging from 1–9, or be blank. Internally, the number value for a
Space instance has a larger range. Table 13.3 explains the possible values that
can be assigned to a Space’s number instance variable, and how they affect what
is ultimately displayed to the user.

Table 13.3 Range of Internal Values a number Instance Variable Can Be Assigned and How
They Are Ultimately Displayed Externally

‘number’
value Description Appearance

0 Indicates that the space is editable and is
currently blank.

The space will be blank.

1–9 Indicates that the space is editable, and
that during play the user has entered a
valid number into the space represented
by the value.

The space will be filled in with a white
number represented by the value.

From the Library of sam kaplan

ptg

THE OVERALL DESIGN 339

The Interface
The Board and Space classes have interface counterparts, named BoardNode and
SpaceNode respectively, which handle the task of presenting the Sudoku game to
the user. The BoardNode class is responsible for the overall layout of the applica-
tion; for each Space, there is a corresponding SpaceNode, which manages the
input and display of that space on the puzzle. When the BoardNode instance is
initialized, it includes an instance variable called board, which is a reference to
the Board instance. Likewise, each SpaceNode instance contains an instance
variable called space, which points to its Space counterpart. Figure 13.2 shows
the relationship between Board/Space and BoardNode/SpaceNode.

With these classes in place, you might be asking the question, how is the internal
state of the Spaces picked up by the corresponding SpaceNodes and displayed on
the interface? The short answer is through binding. Let’s run through how this
takes place.

11–19 Indicates that the space contains a num-
ber that cannot be modified because it
was provided by the puzzle generator as a
hint.

The space will be filled in with a black
emboldened number that is computed by
performing a ‘mod 10’ on the value.

21–29 Indicates that the space is editable, and
that during play the user has entered a
number into the space. In addition, the
space’s number value currently has the
same value as (conflicts with) one or
more spaces in its row/column/box.

The space will be filled in with a red
number that is computed by performing a
‘mod 10’ on the value.

31–39 Indicates that the space contains a number
that cannot be modified because it was
provided by the puzzle generator as a hint.
Furthermore, the space’s number value
currently has the same value as (conflicts
with) one or more spaces in its row/col-
umn/box, because the user has entered at
least one conflicting number elsewhere.

The space will be filled in with a red
emboldened number that is computed by
performing a ‘mod10’ on the value.

<0, 10, 20,
30, >39

Undefined. A space should never be
assigned any of these values.

n/a

Table 13.3 Range of Internal Values a number Instance Variable Can Be Assigned and How
They Are Ultimately Displayed Externally (Continued)

‘number’
value Description Appearance

From the Library of sam kaplan

ptg

340 CHAPTER 13 SUDOKU APPLICATION

At startup, a series of URLs (filenames) are statically loaded into a String
sequence called imageFiles. The initialization of imageFiles looks like this:

var imageFiles = [
// 0-9 represents editable spaces, 0 being a blank space
 "{__DIR__}images/blank.png",
 "{__DIR__}images/1-white.png",
 "{__DIR__}images/2-white.png",
 ...
 "{__DIR__}images/9-white.png",
// 10: Should never get here
 "{__DIR__}images/blank.png",
// 11-19 represents non-editable (bold) spaces
 "{__DIR__}images/1-bold.png",
 "{__DIR__}images/2-bold.png",
 ...
 "{__DIR__}images/9-bold.png",

Figure 13.2 Relationship Between Board/Spaces and BoardNode/SpaceNodes

From the Library of sam kaplan

ptg

THE OVERALL DESIGN 341

// 20: Should never get here
 "{__DIR__}images/blank.png",
// 21-29 represents editable spaces in conflict
 "{__DIR__}images/1-red.png",
 "{__DIR__}images/2-red.png",
 ...
 "{__DIR__}images/9-red.png",
// 30: Should never get here
 "{__DIR__}images/blank.png",
// 31-39 represents non-editable spaces in conflict
 "{__DIR__}images/1-red-bold.png",
 "{__DIR__}images/2-red-bold.png",
 ...
 "{__DIR__}images/9-red-bold.png"
];

As you may have surmised, the image files coincide with the layout of a Space’s
number instance variable as described in Table 13.3. For example, imageFiles[0]
contains the URL "{__DIR__}images/blank.png"—a blank space—whereas
imageFiles[19] points to "{__DIR__}images/9-bold.png"—an image of the
number 9 in bold, representing a non-editable space. The imageFiles sequence,
however, only contains strings that refer to URLs. What we actually need here is
a sequence of type Image to serve as an Image cache. This is achieved by using
imageFiles with the following code:

// Cached copies of Number Images
var images = for(url in imageFiles) {
 Image {
 url: url
 backgroundLoading: true
 }
}

Next, each SpaceNode defines two instance variables, one called spaceImage,
which holds the current image displayed for each instance, and number, which
contains the value of the corresponding Space’s number instance variable. Using
a combination of binding and triggers, we can achieve the effect of updating a
SpaceNode’s current image whenever its corresponding Space has a change in its
number variable. This is accomplished with the following code:

protected var spaceImage:Image;

public var number:Integer = bind space.number on replace {
 spaceImage = images[number];
};

From the Library of sam kaplan

ptg

342 CHAPTER 13 SUDOKU APPLICATION

The definition of the preceding number variable performs two things:

1. It binds number to space.number. Whenever the value of space.number
changes, number will automatically change accordingly.

2. The number variable uses a trigger to force an update to the value of space-
Image whenever number changes too. In this case, spaceImage points to a
sequence (a cache) of Images indexed by the value of number.

Finally, each SpaceNode defines an instance of ImageView, which is ultimately
how the image is displayed. It looks something like this:

ImageView {
 ...
 image: bind spaceImage
 ...
}

Now, the image for a SpaceNode will dynamically change whenever space.number
changes. Here’s the chain of events:

• The user enters a number into an editable space.

• The space.number instance variable is assigned a new value.

• The corresponding SpaceNode has a number instance variable that is
bound to space.number. Whenever space.number changes, so does this
number variable.

• There is a trigger associated with the number instance variable such that
whenever it is modified, it causes the spaceImage variable to be recalcu-
lated. In this case, spaceImage uses number as an index into a sequence of
cached Images.

• Each SpaceNode instantiates ImageView. Its image instance variable is
bound to spaceImage. Whenever spaceImage changes, the image will
change too.

This all comes about because of the capabilities of binding and triggers.

Interfacing with Java Components
So far, we’ve covered the logic and presentation of our Sudoku application, and
how these two worlds relate to one another. The components comprising this
portion of our application were written in JavaFX and represent the main effort
in creating JavaFX Sudoku. There is a third element, however, which needs to be

From the Library of sam kaplan

ptg

INTERFACING WITH JAVA COMPONENTS 343

implemented to complete the Sudoku game. It revolves around the ability to ran-
domly create new Sudoku puzzles and to provide solutions for them.

In conjunction with the popularity of Sudoku, many have put forth algorithms
for creating and solving Sudoku puzzles. With this in mind, we had the option of
either reinventing the wheel or leveraging the work that’s been done already in
puzzle generation. In all honesty, there’s no real advantage to writing a Sudoku
puzzle generator in JavaFX. It could have just as easily and effectively been writ-
ten in any of the myriad of available high-level programming languages. So why
not find what’s out there, and see how easily it could be integrated into our appli-
cation? Code reuse and, in particular, integration with Java, arguably the largest
development community on the planet, are key design characteristics of JavaFX.

Sourceforge.net is a well-known centralized repository for open source software
projects. At that location, we found a Sudoku application located under the fol-
lowing URL:

 http://sourceforge.net/projects/playsudoku/

This project is a complete program written in Java, including a Swing-based user
interface. Our interest was solely in its capability to create new Sudoku puzzles,
so we took a subset of the source code, specifically the classes found under the
net.sourceforge.playsudoku package, and integrated them into our application.

The integration effort was straightforward and involved two primary tasks:

1. Figuring out what methods need to be called to generate a new Sudoku
puzzle.

2. Determining if the data structures used by the Java application can be
directly used with JavaFX.

We’ll handle the second task first and use our solution there as part of the overall
process needed to generate a new puzzle.

Delving into the net.sourceforge.playsudoku package, you’ll find that the
contents of the puzzle are maintained in a multi-dimensional array called grid.
The Java declaration for this array is found in the SudokuGrid.java file and
looks like this:

 private int[][] grid;

Unfortunately, JavaFX currently has no support for multi-dimensional arrays. So,
the first order of business is to convert grid into something JavaFX understands.
Listing 13.1 shows an additional Java method, called returnGridSequence(),

From the Library of sam kaplan

http://sourceforge.net/projects/playsudoku/

ptg

344 CHAPTER 13 SUDOKU APPLICATION

that was added to the SudokuGrid.java source file. The purpose of this method
is to convert the two-dimensional grid array into a one-dimensional array of
type int. This then maps directly to a JavaFX Integer[] sequence.

Listing 13.1 Java Method to Convert a Two-Dimensional Array into a
One-Dimensional JavaFX Sequence

/*
 * Method to move generated Sudoku game to JavaFX.
 * Internally, the Sudoku grid generated by this
 * program is represented as a 2-dimensional array
 * in Java. JavaFX 1.1 has no notion of
 * multi-dimensional sequences (arrays), so flatten
 * the grid out to a one-dimensional array of size
 * 81 of type int. This should map to a JavaFX
 * sequence of type Integer.
 */
public int[] returnGridSequence() {
 int[] gridSequence = new int[81];
 int index = 0;
 for(int i = 0; i < 9; i++) {
 for(int j = 0; j < 9; j++) {
 gridSequence[index++] = grid[i][j];
 }
 }
 return gridSequence;
}

Using this method, we can now tackle the first task, constructing the necessary
JavaFX code to generate a new JavaFX puzzle using the net.sourceforge
.playsudoku package. Listing 13.2 shows the complete newPuzzle() function,
which is contained within the Board.fx source file. Let’s first take a look at a few
of the parts of this function to see what’s going on. The first lines of newPuzzle()
call the necessary Java methods inside net.sourceforge.playsudoku to gener-
ate a new puzzle:

/*
 * Call SudokuGenerator Java code to generate new puzzle.
 */
var sudokuGenerator : SudokuGenerator =
 new SudokuGenerator();
sudokuGenerator.generatePuzzle(numHints,
 GV.NumDistributuon.random);
var sudokuGrid : SudokuGrid = sudokuGenerator.getGrid();

From the Library of sam kaplan

ptg

INTERFACING WITH JAVA COMPONENTS 345

Next comes the call to the returnGridSequence() function, which converts the
grid into a JavaFX Integer sequence:

/*
 * convert results to a format suitable for JavaFX
 */
var puzzle : Integer[] = sudokuGrid.returnGridSequence();

The rest of the function contains code necessary to translate the contents of each
cell. Inside grid, the way in which state is stored is fairly similar to the way it’s
done with JavaFX Sudoku. Instead of using number values that are multiples of
10, the author(s) used bitmasks to store multiple values in each cell. Listing 13.2
shows the newPuzzle() function.

Listing 13.2 The newPuzzle() Function

/*
 * Use the SudokuGenerator code found at
 * sourceforge.net to create a new Puzzle. Written
 * in Java, the SudokuGenerator requires a small
 * amount of translation code to move the data
 * structure over to a suitable JavaFX form.
 * The sudokuGrid.returnGridSequence() method performs
 * that task.
 *
 * Arguments:
 * numHints: Determines the Number of initial spaces
 * (hints) that will be displayed at
 * startup. The larger this number is,
 * the easier the puzzle is to solve.
 */
public function newPuzzle(numHints : Integer) : Void {
 /*
 * Call SudokuGenerator Java code to generate
 * a new puzzle.
 */
 var sudokuGenerator : SudokuGenerator =
 new SudokuGenerator();
 sudokuGenerator.generatePuzzle(numHints,
 GV.NumDistributuon.random);
 var sudokuGrid : SudokuGrid =
 sudokuGenerator.getGrid();
 /*
 * convert results to a format suitable for JavaFX
 */
 var puzzle : Integer[] =
 sudokuGrid.returnGridSequence();

continues

From the Library of sam kaplan

ptg

346 CHAPTER 13 SUDOKU APPLICATION

 if (sizeof puzzle != sizeof spaces) {
 throw new Exception(
 "SudokuGenerator puzzle incompatible");
 }
 /*
 * Populate our spaces with the Integer sequence
 * returned by the
 * sudokuGrid.returnGridSequence() glue.
 */
 clearPuzzle();
 for (i in [0..<sizeof puzzle]) {
 if ((spaces[i].row !=

sudokuGrid.getX(puzzle[i])) or
 (spaces[i].column !=

sudokuGrid.getY(puzzle[i]))) {
 throw new Exception(

 "Bad data returned by SudokuGenerator");
 }
 spaces[i].setSolvedNumber(
 sudokuGrid.getGridVal(puzzle[i]));
 if (sudokuGrid.isDefault(puzzle[i])) {

spaces[i].setNumberUnEditable(
 sudokuGrid.getGridVal(puzzle[i]));

 }
 else {

spaces[i].setNumberEditable(0);
 }
 }
}

Chapter Summary
We’ve spent some time dissecting our sample Sudoku application including
describing the user interface, the organization of the source, the overall architec-
ture, and the interaction with components written elsewhere in Java. Feel free to
take a look at the source and utilize it in any fashion you wish.

From the Library of sam kaplan

ptg

347

Index
(sharp, sharp), 52–53
% (percent), 52
/ (slash), 221–222
[] (square brackets)

sequence declaration, 45
string translation, 52–53

=> operator, 187
== (equals) operator, 63
3D effects

gradients, 162–167
lighting, 158–161
PerspectiveTransform, 174–175
shadowing, 153–157

abstract classes, 38
abstract functions, 41
access

command-line arguments, 61
JavaScript to JavaFX, 255–256
rights, 35
sequence element, 47
Sodoku application, 334

access modifiers
defined, 36
function declaration, 49
variables and, 42–44

actions
key events, 123
key frames, 185
mouse events, 121–123

ADD BlendMode, 170–172
Adobe Illustrator

graphic design with, 20–26
total solar eclipse animation, 216–218

Adobe Photoshop, 26–30
alignment

GridLayout, 115–121
text wrapping, 130–131

animation
custom interpolation, 193–199
interpolation, 189–193
key frames, 185–189
layer, 20–26
Magnify effect, 317–319
overview, 181–183
path-based, 199–205
solar eclipse example, 205–206
solar eclipse using JavaFX Production Suite, 216–218
solar eclipse using JavaFX shapes, 206–216
summary, 218
timelines, 183–185

anonymous function declaration, 50
Apache Ant

Builds, 12–13
defined, 12
signing JARs, 241

APIs (application programming interfaces)
Java Scripting, 293–299
JMS, 308–311
Yahoo! Web services, 265–266

<applet-desc>, 242–243
applets

deploying JavaFX as, 235–237
Java Web Start, 256–258
JavaFX and, 235
JavaFX and JavaScript interaction, 251–256
manual generation to support JavaFX, 239–247
NetBeans IDE for JavaFX, 238–239
running Sodoku application as, 334
summary, 258
undocking from browser, 247–250

<application-desc>, 256–258
application programming interfaces (APIs)

Java Scripting, 293–299
JMS, 308–311
Yahoo! Web services, 265–266

From the Library of sam kaplan

ptg

348 INDEX

applications
adding multimedia. See multimedia
creating new, 2–8
deploying as applets, 235–237
distribution, 8–9
mashup, 273–276
RESTful. See REST (representational state transfer)
Sodoku. See Sodoku application

Arc, 141–142
architecture

REST, 260–262
Rich Internet Applications, xvi–xvii
service-oriented, 259–260

arguments
accessing command-line, 61
bound functions, 84–85
Java Web Start, 257

arithmetic expressions
binding with, 71–72
in time literals, 186

Array Index Out Of Bounds Exception, 49
arrays

converting to JavaFX sequence, 343–344
JSON, 264–265
native, 48–49

AssignToBoundException, 77
asynchronous messages, 307–311
at, 188–189
attr, 87
attributes

Fader, 312
HyperText, 138
Java class extension, 280–282
Java object, 281–282
TextBox, 133–134

audio multimedia, 225–234
autoReverse, 184–185

background image loading, 220
backgrounds in Illustrator, 20–22
backspace key handling, 123–124
Bair, Richard, xxii
baseline TextOrigin, 127–130
Bessel, 197–199
bidirectional binding, 77–79
bind with inverse

defined, 67
overview, 77–79

binding
advanced, 80–85
with arithmetic and logical expressions, 71–72
bidirectional, 77–79
block expressions and, 73
coming features, 91–92

conditional expressions and, 72–73
defined, 65–66
Duration, 186
example, 69–71
for expressions and, 75–77
to function calls, 74–75
to instance variables, 67–68
Java class extension, 280–281
Java Scripting API with global, 295–296
Sodoku application interface, 339–342
summary, 92
triggers and, 85–90
to variables, 66–67
when variables can, 68–69

blending effects, 170–174
block expressions

binding, 73
bound functions and, 85
defined, 55
mixin class, 40

blocksMouse, 121
Bloom effect, 176–177
BlueSky object

creating in Illustrator, 20–26
total solar eclipse animation, 206–216

blur effects, 167–169
Board, 338
BoardNode, 339–342
Boolean operators, 46
Boolean types

Java type conversion mappings, 291
JSON, 264–265
mapping JavaFX to Java, 284

Bothner, Per, xxi
bottom Text Origin, 127–130
bound functions, 84–85
boundsInLocal, 111–115
boundsInParent, 111–115
boundsInScene, 111–115
break loops, 60
Brehovsky, Martin, xxi
brightness, 180
Brooks, Kelli, xxii
browsers

eQuake Alert, 197
JavaScript for launching JavaFX applets, 244–247
undocking from, 247–250

Bruno, Eric
about, xxiii
thanks, xxii

Build Project, 8
build tools, 12
built-in functions and variables, 61–64
Bulumulle, Gamini, xxii

From the Library of sam kaplan

ptg

INDEX 349

Button, 135
Byte types

Java type conversion mappings, 290
mapping JavaFX to Java, 284

caching, 262
call back, server, 307–311
Campbell, Chris, xxi
Cascading Style Sheets (CSS)

custom controls, 136–139
defined, 99–105
TextBox attributes, 133–134

Certificate Authority, 240
certificates, verified, 240
change triggers, 45
changeable variables, 42–43
changeovers, image, 69–71
Character types

Java type conversion mappings, 290–291
mapping JavaFX to Java, 284

CheckBox, 135
choke, 156
chord Arc, 141–142
circles, 166–167
Clarke, Jim

about, xxiii
thanks, xxii

classes
binding instance variables, 67–68
CSS selectors, 101
declaration, 36–38
effect. See special effects
Fader, 311–316
Java, 280–281
JavaFX and XML, 277–278
JavaFX animation. See animation
JavaFX for building REST clients, 266–269
JavaFX Reflection, 299–302
in JavaFX script, 34–35
Magnify, 317–319
mapping JavaFX types to Java, 284
Matrix, 330–332
mixin, 38–40
multimedia. See multimedia
progress bar, 325–326
server call back, 308–311
slider, 327–330
Sodoku application design, 338–342
Sodoku application source files, 336–337
triggers and inheritance, 89–90
user interface. See user interfaces
Wizard, 320–324

client applications, xvi–xvii
ClockUpdater, 309–310
closing undocked applications, 249–250

code for Sodoku application, 336–337
code recipes

Fader effect, 311–316
introduction, 303
JavaFX and JavaBeans, 303–307
Magnify effect, 317–319
matrix, 330–332
progress bar, 325–326
server call back, 307–311
slider, 327–330
summary, 332
wizard framework, 319–324

codebase, 242
codes, format, 52
ColorAdjust, 180
colors

CSS, 103
scene, 98–99
special effects, 179–180

columns in GridLayout, 115–121
ComboBox, 135
command line

accessing arguments, 61
setting up, 9–13

commands
JavaFX installation, 10–12
manual generation to support JavaFX applets, 239–247
NetBeans IDE, 9

communication with REST, 261
compilation exceptions

binding variables and, 68–69
Java Scripting API with handling, 297–299

compilers
command line, 10–12
Java Scripting API with, 296–297

computer animation. See animation
concatenation, string, 51
conditional expressions

binding, 72–73
defined, 57–58

cones, 163–166
Connors, Jim

about, xxiii
thanks, xxii

consuming RESTful services, 263–264
continue loops, 60
contrast, 180
controls

custom, 136–140
JavaFX 1.2, 135–136
layout, 108–111
MediaPlayer, 230–234
pseudo classes, 102–103
slider, 327–330
TextBox, 132–135

From the Library of sam kaplan

ptg

350 INDEX

conversion
Java to JavaFX, 285–293
SVG, 30–31

Core Video, 225–227
cross-platform multimedia support, 225–227
CSS (Cascading Style Sheets)

custom controls, 136–139
defined, 99–105
TextBox attributes, 133–134

cubic spline, 191–193
CubicCurve, 143
currentRate, 184–185
cursors, scene, 99
curve, 193–195
custom controls, 136–140
custom interpolation, 193–199
custom layouts, 115–121
custom nodes, 206–216
custom Swing components, 147–149

DarkSky object
creating in Illustrator, 20–26
total solar eclipse animation, 206–216

data caching, 262
data model synchronization with binding. See binding
debugging

classes, 160
JavaFX applet launch, 246

declaration
class, 36–38
function, 49–50
key frame, 187–189
key value, 187
mixin class, 38–40
object literal, 40–41
sequence, 45–47

declarative languages, 33–34
DECORATED, 95
def

binding variables, 68–69
defined, 44

deleting sequence elements, 48
deploying JavaFX as applets. See applets
design, Sodoku application, 338–342
desktop launching, 258
DiagnosticCollector, 298
__DIR__

defined, 63–64
image loading error, 221–222

DirectShow, 225–227
disabled, 102
DISCRETE, 190
DisplacementMap, 178–179
display

image, 219–224

Sodoku application design, 342
user interface. See user interfaces
wizard, 323

dist directory, 8–9
DistantLight, 158–161
distribution files, 8–9
docked applets, 250
Doench, Greg, xxii
double quotes ("), 50–51
Double types

Java conversion mappings, 286–287
mapping JavaFX to Java, 284

draggable applets
running Sodoku application as, 334
undocking feature, 248
working with, 246–247

DropShadow, 153–156
duration

audio and video media, 230
timeline, 185–187

earthquake effects, 197–199
EASE BOTH, 191
EASE IN, 191
EASE OUT, 191
eclipse animation. See solar eclipse
Eclipse IDE

getting started, 1–2
setting up, 13–18

editing text, 132–135
effects. See special effects
Elastic Interpolator, 194–196
elements

accessing sequence, 47
JNLP applet, 241–243
modifying sequence, 47–48

Ellipse, 142
Ellis, Craig, xxi–xxii
embedding in strings, 51–52
empty sequences, 45
empty stage, 94
eQuake Alert, 197
errors. See exceptions
Eschrich, Dr. Rainer, xxii
evaluating Java Scripting, 293–295
events

input, 121
key, 123–125
listeners, 306–307
mouse, 121–123
PullParser, 270
triggers, 85–90

exceptions
Array Index Out Of Bounds, 49
AssignToBoundException, 77–78

From the Library of sam kaplan

ptg

INDEX 351

binding variables and, 68–69
handling, 55
image loading, 221–222
Java Null Pointer, 33–34
Java Scripting API with handling, 297–299
media, 227

exported members, 35, 61
exporting

layers from Illustrator, 25–26
from Photoshop, 26–30
from SVG, 30–31

expressions
binding. See binding
JavaFX script, 55–64
loose, 34–35

Extensible Markup Language (XML). See XML (Exten-
sible Markup Language)

extensions
class, 36–37
GridLayout, 115–121
image formats, 221
interpolators, 193–199
Java class, 280–282
Java Swing, 145–149
mixin class, 40
undocking feature, 248

Fader effect, 311–316
fast play, 231
Field, Robert, xxii
Fielding, Dr. Roy, 260
__FILE__, 63–64
files, JAR. See JAR (Java Archive) files
files, JNLP. See JNLP (Java Network Launching

Protocol) files
Firefox eQuake Alert, 197
FloatMap, 178–179
Flood, 172
focused

defined, 102–103
node indicators, 106

fonts
CSS, 104
text, 132

for loops
binding, 75–77
defined, 58–59
sequence declaration, 46
using to convert Java types, 292

formats
image, 221
multimedia, 225–227
strings, 52

frameworks
Java. See JavaFX and Java technology

multimedia, 225–227
user interface. See user interfaces
wizard, 319–324

functions
adding run () to source files, 160
adding to GridLayout, 117–119
animation. See animation
binding to calls, 74–75
bound, 84–85
built-in, 61–64
class, 35
creating new Sodoku puzzles, 343–346
invoking with Reflection, 300–302
Java class extension, 280–281
Java object instantiation, 281–283
JavaFX and JavaBeans, 304–305
JavaFX and JavaScript interaction, 251–256
JavaFX for building REST clients, 266–270
JavaFX script, 49–50
JavaScript for launching JavaFX applets,

244–247
mapping JavaFX to Java, 284–293
in Matrix, 330–332
mixin, 38–40
slider, 328–329

FXEvaluator, 293–295

GaussianBlur, 167–168
genkey, 241
geometry

image, 220
layout, 111–115
node, 106
scene, 96–98
stage, 94
TextOrigin, 127–130

GeoNames
defined, 266
mashup application, 273, 275–276

Gilbert, Andy, xxii
global binding, 295–296
Glow effects, 176–177
Goetz, Brian, xxi–xxii
gradient effects, 162–167
graphic design

Adobe Illustrator CS3, 20–26
Adobe Photoshop CS3, 26–30
JavaFX Production Suite, 20
overview, 19–20
vs. programming, xvi
special effects. See special effects
summary, 31
SVG, 30–31

graphs, scene, 96
GridLayout, 115–121

From the Library of sam kaplan

ptg

352 INDEX

Groups
creating custom layouts, 121
node, 108

Gupta, Vineet, xxi

handling
backspace key, 123–124
Java Scripting API with, 297–299

HBox (Horizontal Box) layout, 108–111
Hickey, Shannon, xxii
Horizontal Box (HBox) layout, 108–111
hover

adding to Magnify, 317–319
defined, 102
node indicators, 106

HTML pages
deploying JavaFX as applets, 235–237
Java Web Start, 256–258
JavaFX and applets, 235
JavaFX and JavaScript interaction, 251–256
manual generation to support JavaFX, 239–247
NetBeans IDE for JavaFX, 238–239
running Sodoku application as applet, 334

HTTP query URLs, 262–263
hue, 180
Hyperlink, 135
HyperText, 136–139

IDs
CSS, 99–100
JavaScript to JavaFX, 253–254
node, 105

if/else expressions
binding and, 72–73
defined, 57–58

Illustrator
graphic design with, 20–26
total solar eclipse animation, 216–218

images
changeovers, 69–71
CSS, 105
multimedia, 219–224
path-based animation, 200–205
Sodoku, 336
Sodoku application design, 340–342

indexof, 76–77
indicators, node, 106
<information>, 241–243
inheritance

mixin classes, 38–40
triggers and, 89–90

init blocks
binding object literals, 80
mixin classes and, 40

InnerShadow, 156

inputs
blending, 170–174
defined, 121
key events, 123–125
mouse events, 121–123
with TextBox, 132–135

inserting elements into sequences, 48
installation

command line, 9–13
Eclipse IDE, 13–18
Java Web Start, 256
JavaFX, 1–2
NetBeans IDE, 2–8

instance functions, 49–50
instance variables

adding to GridLayout, 116
binding object literals, 80–83
binding to, 67–68
blurs, 167–169
color effects, 179–180
connecting to JavaBean properties, 304–307
custom Swing components, 147–149
defined, 41–45
determining update status, 87
DisplacementMap, 178–179
DropShadow, 154–156
Fader, 311–316
Glow and Bloom, 176–177
gradient, 162–167
JavaFX and JavaScript interaction, 251–256
JavaFX Reflection, 300
key frame, 187–189
lighting, 158–161
Magnify, 317–319
node, 105–106
path-based animation, 199–205
PerspectiveTransform, 174–175
reflection, 169–170
Sodoku application design, 338–342
Timeline, 184–185
total solar eclipse animation, 217–218
wizard framework, 320–324

instanceof, 60–61
instantiation

class, 38
Java object, 281–283

Integer types
Java conversion mappings, 288–289
mapping JavaFX to Java, 284
sequence declaration, 46

interfaces
API. See APIs (application programming interfaces)
Sodoku application, 334–335
Sodoku application design, 339–342
user. See user interfaces

From the Library of sam kaplan

ptg

INDEX 353

internationalization, string, 52–54
Interpolatable, 199
interpolation

animation, 189–193
creating custom, 193–199
defined, 182
key values, 187
timeline, 185

Interpolator, 197–199
isEquals(), 63
isInitialized(), 62–63
isSameObject(), 63

-jar, 9
JAR (Java Archive) files

defined, 8–9
NetBeans IDE for JavaFX, 238–239
signed, 239–240

Java
Scripting, 293–299
SE Development KIT (JDK), 1–2
Sodoku application interface with, 342–346
Swing extension, 145–149
Web Start, 256–258

Java Archive (JAR) files
defined, 8–9
NetBeans IDE for JavaFX, 238–239
signed, 239–240

Java Messaging Service (JMS) API, 308–311
Java Network Launching Protocol (JNLP) files

creating with Web Start, 256–258
manual generation to support JavaFX applets,

240–244
NetBeans IDE for JavaFX, 238–239

Java Null Pointer exception, 33–34
JavaBeans

code recipes, 303–307
custom Swing components, 148
JavaFX triggers and, 281

JavaFX
1.2 controls, 135–136
animation. See animation
applets. See applets
application distribution, 8–9
code recipes. See code recipes
coming binding features, 91–92
command line setup, 9–13
CSS support, 99
defined, xv
Eclipse IDE setup, 13–18
graphic design and. See graphic design
HyperText attributes, 138
installation, 1–2
JavaBeans and, 303–307
NetBeans IDE setup, 2–8

Reflection, 299–302
REST and, 266–270
summary, 18
TextBox attributes, 133–134
total solar eclipse using shapes, 206–216
why, xvi
XML and, 277–278

JavaFX and Java technology
classes, 280–281
function parameter and return mapping, 284–293
Java Scripting, 293–299
JavaFX Reflection, 299–302
objects, 281–283
overview, 279–280
summary, 302

JavaFX Production Suite
graphic design with, 20
total solar eclipse using, 216–218

JavaFX script
basics, 33–34
class declaration, 36–38
expressions and operators, 55–64
functions, 49–50
language, 34–35
mixin classes, 38–40
object literals, 40–41
sequences, 45–49
strings, 50–54
summary, 64
variables, 41–45

JavaScript
JavaFX interaction, 251–256
JavaFX launching, 244–247

JavaScript Object Notation (JSON)
defined, 264–266
mashup application, 273–276

JMS (Java Messaging Service) API, 308–311
<jnlp>, 242
JNLP (Java Network Launching Protocol) files

creating with Web Start, 256–258
manual generation to support JavaFX applets,

240–244
NetBeans IDE for JavaFX, 238–239

JSON (JavaScript Object Notation)
defined, 264–266
mashup application, 273–276

JSpinner, 304–307
JSR-223, 293
JTextField, 147–149

key events, 121, 123–125
key frames, 181, 185–189
key pairs, 239–240
key values, 187
keys, 52–54

From the Library of sam kaplan

ptg

354 INDEX

Label, 135
languages

JavaFX script, 34–35
JavaScript. See JavaScript
JSON, 264–266
string translation, 52–54

launching
with Java Web Start, 258
JavaFX applets, 244–247
JNLP files. See JNLP (Java Network Launching

Protocol) files
layers

Illustrator, 20–26
Photoshop, 26–30

layout
basics, 111–115
custom, 115–121
defined, 93
user interface, 108–111

layoutbounds, 111–115
lazy binding, 91–92
lighting effects, 158–161
Line, 140–141
LINEAR, 190
linear paint, 103–104
LinearGradient, 162–166
Linux

JavaFX installation, 10
multimedia frameworks and formats, 225–227

listeners
event, 306–307
message, 308–310

ListView, 135
literals, object. See object literals
literals, string, 50–51
loading images, 219–224
local variables, 88
logic of Sodoku, 338–339
logical expression binding, 71–72
Long types

Java type conversion mappings, 287–288
mapping JavaFX to Java, 284

looping expressions, 58–61. See also for loops
loose expressions

defined, 34–35
exported members and, 61

Mac OS
JavaFX installation, 10
multimedia frameworks and formats, 225–227

Magnify effect, 317–319
mapping JavaFX to Java, 284–293
Marinacci, Joshua, xxi
mashup applications, 273–276
matrix code recipes, 330–332

media
audio and video, 225–234
images, 219–224
overview, 219
summary, 234

MediaPlayer, 228–234
Message Oriented Middleware (MOM), 307
messages, asynchronous, 307–311
methods. See functions
mirroring

JavaFX Reflection, 299–302
reflection effect, 169–170

mixin classes, 38–40
model synchronization with binding. See binding
modification

sequence, 47–48
triggers and, 85–90

modifiers, access. See access modifiers
MOM (Message Oriented Middleware), 307
Moon object

creating in Illustrator, 22–26
total solar eclipse animation, 206–216

motion animation. See animation
MotionBlur, 168–169
mouse events

defined, 121–123
image changeovers, 69–71
Magnify, 318–319
sliders and, 328

multimedia
audio and video, 225–234
images, 219–224
overview, 219
summary, 234

MULTIPLY BlendMode, 170–172
muting, 232–233

naming
class declaration, 36–37
Illustrator layers, 20

NASA (National Aeronautics and Space Administra-
tion), 222–224

National Aeronautics and Space Administration
(NASA), 222–224

native arrays, 48–49
Natures, 15–16
nested for loops, 58–59
NetBeans IDE

defined, 1–2
vs. Java FX Eclipse plug-in, 17
for JavaFX applets, 238–239
setting up, 2–8
Sodoku application, 336
total solar eclipse animation, 216–218

new operator, 282–283

From the Library of sam kaplan

ptg

INDEX 355

newline characters, 130
node effects

defined, 152
Fader, 311–316
Magnify, 317–319

nodes
adding CSS, 99–105
layout. See layout
total solar eclipse animation, 206–216
user interface, 105–108

null objects, 33–34
number spinner, 304–307
Number types

Java type conversion mappings, 286
JSON, 264–265
mapping JavaFX to Java, 284
sequence declaration, 46

object literals
binding, 80–83
for CSS class selectors, 101
defined, 40–41
functions and, 50
GridLayout, 120
Java objects and, 282–283
key frames, 187–189
mapping JavaFX types to Java, 284–285
Timeline, 183–184
wizard framework, 322

objects
coordinating JavaFX with JavaBeans, 303–307
creating in Illustrator, 20–26
creating media, 227–228
images, 219–224
Java, 281–283
JavaFX, 19
JavaFX script, 33–34
JSON, 264–266
sequences, 45–49
working with in Photoshop, 26–30

Oliver, Chris, xxi
on replace

adding to Magnify, 317
defined, 85–90

On2VideoVP6, 225–227
opacity, 106
open Arc, 141
operating systems, 10
operators

declaring key values, 187
instantiating Java objects, 282–283
JavaFX script, 55–64
native array, 48–49
sequence declaration, 46

ordered lists, 45–49

orientation, path, 201
overridden triggers, 90
override, 50

package def, 44
package var, 44
packages

creating new, 16
defined, 37
JavaScript to JavaFX, 255
Sodoku application, 336

paints, 103–104
parameters

mapping JavaFX to Java, 284–293
Reflection function invocation, 301–302

parsers
JavaFX and REST, 266–270
JavaFX and XML, 277–278
JSON, 264
in mashup application, 274, 276

passwords, 239–240
path-based animation, 199–205
paths, 144–145
performance

improving image viewing, 222
lazy binding and, 92

perspective
with LinearGradient, 163–166
PerspectiveTransform, 174–175
with RadialGradient, 166–167

Photoshop, 26–30
platforms, JavaFX and Java. See JavaFX and Java

technology
playback

audio and video media, 228–234
timeline, 183–185

plug-ins
eQuake Alert, 197
JavaFX Production Suite, 20
running JavaFX on Eclipse, 13–18

PointLight, 158–161
Polygon, 140
Popick, Anna, xxii
postinit blocks

creating custom layouts, 119
mixin classes and, 40

precedence rules, 243
pressed

defined, 102–103
node indicators, 106

Preview Mode, 5–7
print(), 62
println(), 62
Production Suite

getting started, 1–2

From the Library of sam kaplan

ptg

356 INDEX

Production Suite (continued)
graphic design with, 20
SVG Converter tool, 30–31
total solar eclipse using, 216–218

programming vs. graphic design, xvi
progress bars

audio and video media, 230–232
code recipes, 325–326
image loading, 221

ProgressBar, 135
ProgressIndicator, 135
projects

creating new with Eclipse, 13–16
creating new with NetBeans, 2–8
NetBeans IDE for JavaFX, 238–239

properties
in animation timeline, 183–185
codebase, 242
CSS, 103
custom Swing components, 147–149
JavaBean, 281
JavaBeans, 304–307
JavaFX applet launch, 245–246
JNLP applet, 243
layout, 111–115
NetBeans IDE for JavaFX, 238–239

protected def, 44
protected var, 44
pseudo classes

CSS, 102–103
custom control support, 136, 138
TextBox controls and, 134

Pub/Sub paradigm, 308
public classes, 67–68
public def, 44
public-init protected var, 44
public-init var, 44
public-read protected var, 44
public-read var, 44
public var, 44
public variables, 254–255
PullParser

defined, 268–270
JavaFX and XML, 277–278

QName, 277–278
QuadCurve, 143–144

radial paint, 103–104
RadialGradient, 162, 166–167
RadioButton, 135
ranges, 46
recalculation, bind

defined, 71–72
object literals and, 80–83

recipes, code. See code recipes

recreating objects with binding, 80–83
redocking, 250
Reflection

defined, 299–302
effects, 169–170
using to convert Java types, 292–293

registering fonts, 132
RemoteTextDocument, 266–268
representational state transfer (REST). See REST

(representational state transfer)
resizing

scene, 96–98
stage, 94

<resources>, 242–243
response-types, REST, 263
REST (representational state transfer)

building system, 262–264
defined, 259–262
JavaFX and, 266–270
JavaFX and XML, 277–278
JSON and, 264–266
mashup application, 273–276
summary, 278
weather widget, 270–273

return, 50
rewinding, 230–231
Rich Internet Applications, xvi–xvii
rights, access, 35
Rivera, Myrna, xxii
rotating text, 126–127
round Arc, 141–142
rows, GridLayout, 115–121
run functions

adding to source files, 160
loose expressions and, 35, 61

running, 184
runtime exceptions, 68–69

saturation, 180
saving

Illustrator files, 26
Photoshop files, 29–30

Scalable Vector Graphics (SVG)
gradients, 162–167
graphic design with, 30–31
path-based animation, 199–205

scene
CSS, 99–105
defined, 93
input events, 121
user interface, 96–99
weather widget structure, 271–272

ScriptException, 298–299
scripts

creating new with Eclipse, 16–18
functions, 49–50

From the Library of sam kaplan

ptg

INDEX 357

Java Scripting, 293–299
JavaFX. See JavaFX script
JavaScript. See JavaScript
variables, 41–45
visibility, 36

ScrollBar, 136
SDK (Software Development Kit), 1–2
security, 238
<security>, 242–243
seek, 231
SepiaTone, 179
sequences

binding, 75–77
converting to array to, 343–344
Java type conversion mappings, 291–292
JavaFX script, 45–49
for loops and, 58–59
matrices and, 330–332
synchronization with triggers, 87–89
wizard framework, 320–324

server call back, 307–311
service-oriented architecture (SOA), 259–260
shadowing effects, 153–157
shaking effects, 197–199
ShapeIntersect, 163–164
shapes

defined, 140–144
paths, 144–145
text, 125–132
total solar eclipse using, 206–216

Short types
Java type conversion mappings, 289
mapping JavaFX to Java, 284

signed JAR, 239–241
Simple Object Access Protocol (SOAP), 259–260
SimpleInterpolator, 193–196
single quotes ('), 50–51
sizing

CSS font, 104
images, 220
stage, 94

Skins
creating custom, 136–139
progress bar, 325–326
slider, 327–330

sliders
code recipes, 327–330
defined, 135

smooth, 222
SOA (service-oriented architecture), 259–260
SOAP (Simple Object Access Protocol), 259–260
Sodoku application

access, 334
design, 338–342
interface, 334–335
interfacing with Java components, 342–346

overview, 333
source code, 336–337
summary, 346

Software Development Kit (SDK), 1–2
solar eclipse

animation, 205–206
creating in Illustrator, 206–216
using JavaFX Production Suite, 216–218
using JavaFX shapes, 206–216

Solaris, 10
source code for Sodoku application, 336–337
source files

adding run () to, 160
Sodoku application, 336–337

Sourceforge.net, 343
Space, 338
SpaceNode, 339–342
special effects

blending, 170–174
blurs, 167–169
color adjustment, 179–180
DisplacementMap, 178–179
Fader, 311–316
Glow and Bloom, 176–177
gradients, 162–167
lighting, 158–161
Magnify, 317–319
overview, 151–152
PerspectiveTransform, 174–175
reflection, 169–170
shadowing, 153–157
summary, 180

SPLINE, 191–193
SpotLight, 158–161
square brackets ([])

sequence declaration, 45
string translation, 52–53

SRC BlendModes, 173–174
stage, 93–96
standard interpolators, 190–193
states

coordinating JavaFX with JavaBeans, 303–307
synchronization with triggers, 87
transfer. See REST (representational state transfer)

Stillabower, Scott, xxi
String types

CSS, 102
Java type conversion mappings, 291
JavaFX script, 50–54
JSON, 264–265
mapping JavaFX to Java, 284

styles
CSS, 99–105
scene, 98–99
setting stage, 95–96

sub timelines, 188

From the Library of sam kaplan

ptg

358 INDEX

subclasses, 39–40
Subscriber, 308–311
subtotal values, 55
Sun Burst object

creating in Illustrator, 22–26
total solar eclipse animation, 206–216

support
custom control, 136
image formats, 221
JavaFX for CSS, 99
media format, 225–227
Production Suite, 20
Web services for JSON, 265–266

SVG (Scalable Vector Graphics)
gradients, 162–167
graphic design with, 30–31
path-based animation, 199–205
SVGPath, 144–145

Swing extension
defined, 145–149
number spinner, 304–307

synchronization
with binding. See binding
coordinating JavaFX with JavaBeans, 303–307
with triggers, 85–90

systems, RESTful, 262–264

tags, 241–243
tar, 9
technology, Java FX and Java. See JavaFX and Java

technology
text

in progress bar, 325–326
user interface, 125–132

TextBox, 132–135
TextOrigin, 127–130
"thin" client systems, xvi
threads

asynchronous messages, 308
JavaFX and Java, 301

three-dimensional effects. See 3D effects
throw, 55
Tijerino, Manuel, xxii
time literals, 185–187
timelines

animation, 183–185
defined, 181–182
Fader effect, 313–314
Magnify, 317
solar eclipse, 214–216

ToggleButton, 136
tools

animation. See animation
distribution files, 9

getting started, 1–2
graphic design. See graphic design

top TextOrigin, 127–130
Torgersson, Olof, 33
total solar eclipse. See solar eclipse
Totality types

creating in Illustrator, 22–26
total solar eclipse animation, 206–216

trailing slashes, 64
transfer, state. See REST (representational state transfer)
transforms

layout bound, 112
node, 106
PerspectiveTransform, 174–175

transitions, Fader, 311–316
TRANSPARENT, 95–96
traveling animation, 199–205
tree structure

nodes, 105
scene, 96

triggers
adding to Magnify, 317
change, 45
Java class extension, 280–281
overview, 85–90
sequence declaration, 46

try/catch/finally expression, 55
tweening

defined, 181, 189–190
key values, 187

two-dimensional arrays, 343–344
types

Fade, 312
JSON, 264–265
mapping JavaFX to Java, 284–293
operators, 60–61
variable, 42–43

unassignable variables, 42–43
unchangeable variables, 42–43
UNDECORATED, 95–96
undocking feature, 247–250
unicode characters, 51
unidirectional binding

vs. bidirectional binding, 77–78
defined, 66–67

updating variables, 87
URLs, 262–263
user interfaces

custom controls, 136–140
custom layout, 115–121
defined, 93
input events, 121
Java Swing extension, 145–149

From the Library of sam kaplan

ptg

INDEX 359

JavaFX 1.2 controls, 135–136
key events, 123–125
layout, 108–111
layout basics, 111–115
mouse events, 121–123
nodes, 105–108
paths, 144–145
scene, 96–99
shapes, 140–144
stage, 93–96
style sheets, 99–105
summary, 150
text, 125–132
TextBox, 132–135

values, key, 187
var

binding variables, 68–69
defined, 44

variables
adding triggers, 85–90
audio and video media, 227–234
bind with inverse, 77–79
binding to, 66–67
binding to instance, 67–68
built-in, 61–64
class, 35
creating custom controls, 136–139
CSS, 99–105
custom interpolation, 193–199
Duration, 185–187
image, 220–224
interpolation, 189–193
JavaFX script, 41–45
Matrix, 330–332
mixin inheritance and, 39–40
slider, 327–330
TextBox, 133
when they cam be bound, 68–69

VBox (Vertical Box) layout, 108–111
verified certificates, 240
versions, JavaFX, xx
Vertical Box (VBox) layout, 108–111
video, 225–234
viewing

images, 222–224
multimedia, 228–234
Sodoku application design, 342

viewports, 224
visible

defining nodes, 106
Fader, 312–313

volume, 233

W3C (World Wide Web Consortium)
on gradients, 162
SVG and, 30

weather widget
building, 270–273
as mashup application, 273–276

Web pages
adding JavaFX with applets. See applets
deploying JavaFX as applets, 235–237
Java Web Start, 256–258
JavaFX and applets, 235
JavaFX and JavaScript interaction, 251–256
manual generation to support JavaFX, 239–247
NetBeans IDE for JavaFX, 238–239
running Sodoku application as applet, 334

Web Service Definition Language (WSDL), 259–260
Web services

defined, 259–260
GeoNames, 266
mashup application, 273–276
REST and, 260–262
Yahoo!, 265–266

Web Start, 256–258
while loops, 59
whole object binding, 80–83
widgets, weather

JavaFX, 270–273
as mashup application, 273–276

Wielenga, Geertjan, xxi–xxii
Windows

JavaFX installation, 10
multimedia frameworks and formats, 225–227

wizards
code recipe, 319–324
JavaFX installation, 17

World Wide Web Consortium (W3C)
on gradients, 162
SVG and, 30

wrapping text, 130–131
WSDL (Web Service Definition Language), 259–260

XML (Extensible Markup Language)
JavaFX and, 277–278
JNLP file generation, 241–244
SOA and, 259–260
SVG and, 30

The Yahoo! User Interface Library (YUI), 194
Yahoo! Web services

defined, 265–266
mashup application, 273–275

zip, 9

From the Library of sam kaplan

ptg

Your purchase of JavaFX™: Developing Rich Internet Applications includes access to
a free online edition for 45 days through the Safari Books Online subscription service.
Nearly every Addison-Wesley Professional book is available online through Safari Books
Online, along with more than 5,000 other technical books and videos from publishers
such as Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: VXDKWWA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

From the Library of sam kaplan

www.informit.com/safarifree

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 1 Getting Started
	Installing the JavaFX Platform
	Setting Up NetBeans IDE for JavaFX 1.2
	Distributing the Application

	Command Line
	Eclipse
	Chapter Summary

	Chapter 2 JavaFX for the Graphic Designer
	Graphic Design and JavaFX
	JavaFX Production Suite
	Adobe Illustrator CS3
	Adobe Photoshop CS3
	Scalable Vector Graphics
	Chapter Summary

	Chapter 3 JavaFX Primer
	JavaFX Script Basics
	JavaFX Script Language
	Class Declaration
	Mixin Classes
	Object Literals
	Variables
	Sequences
	Declaring Sequences
	Accessing Sequence Elements
	Modifying Sequences
	Native Array

	Functions
	Strings
	String Literals
	Formatting
	Internationalization

	Expressions and Operators
	Block Expression
	Exception Handling
	Operators
	Conditional Expressions
	Looping Expressions
	Accessing Command-Line Arguments
	Built-in Functions and Variables

	Chapter Summary

	Chapter 4 Synchronize Data Models—Binding and Triggers
	Binding
	Binding to Variables
	Binding to Instance Variables
	When Can a Variable Be Bound?
	A Simple Example Using Binding
	Binding with Arithmetic and Logical Expressions
	Binding and Conditional Expressions
	Binding and Block Expressions
	Binding to Function Calls
	Binding and For Expressions

	Bidirectional Binding
	Advanced Binding Topics
	Binding and Object Literals
	Bound Functions

	Triggers
	Coming Features
	Chapter Summary

	Chapter 5 Create User Interfaces
	User Interfaces
	The Stage
	The Scene
	Style Sheets

	Nodes
	Custom Nodes
	javafx.scene.Group

	Layout
	Layout Basics
	Custom Layout

	Input Events
	Mouse Events
	Key Events

	Text Display
	Text
	TextBox
	JavaFX 1.2 Controls

	Custom Controls
	Shapes
	Paths

	Java Swing Extension
	Custom Swing Component

	Chapter Summary

	Chapter 6 Apply Special Effects
	Effects
	Shadowing
	Lighting
	Gradients
	Blurs
	Reflection
	Blending
	PerspectiveTransform
	Glow and Bloom
	DisplacementMap
	Miscellaneous Color Adjustment Effects

	Chapter Summary

	Chapter 7 Add Motion with JavaFX Animation
	Computer Animation
	Timelines
	Key Frames
	Duration
	Key Values
	Key Frames

	Interpolation
	Tweening
	Standard Interpolators
	Writing a Custom Interpolator

	Path-Based Animation
	Total Solar Eclipse Examples
	JavaFX Shapes
	JavaFX Production Suite

	Chapter Summary

	Chapter 8 Include Multimedia
	Multimedia
	Images
	Media—Audio and Video
	Chapter Summary

	Chapter 9 Add JavaFX to Web Pages with Applets
	JavaFX and Applets
	Deploying a JavaFX Application as an Applet
	NetBeans IDE for JavaFX
	Manual Generation to Support JavaFX Applets
	Undocking from the Browser
	JavaFX and JavaScript Interaction

	Java Web Start
	Chapter Summary

	Chapter 10 Create RESTful Applications
	What Is REST?
	Representational State Transfer (REST)
	Building a RESTful System

	JavaScript Object Notation (JSON)
	Yahoo! Web Services
	GeoNames Web Services

	JavaFX and REST
	The JavaFX Weather Widget
	A Mashup Application

	JavaFX and XML
	Chapter Summary

	Chapter 11 JavaFX and Java Technology
	Classes
	Java Objects
	Function Parameter and Return Mapping
	Java Scripting
	Basic Scripting Evaluation
	Java Scripting API with Global Bindings
	Java Scripting API with Compilation
	Java Scripting API with Error Handling

	JavaFX Reflection
	Chapter Summary

	Chapter 12 JavaFX Code Recipes
	JavaFX and JavaBeans
	Server Call Back
	Node Effects—Fader and Magnifier
	Fader
	Magnify

	Wizard Framework
	Progress Bar
	Slider
	Matrix
	Chapter Summary

	Chapter 13 Sudoku Application
	How to Access the JavaFX Sudoku Application
	The Interface
	Source for the Sudoku Application
	Packages
	JavaFX Source Files

	The Overall Design
	The Logic
	The Interface

	Interfacing with Java Components
	Chapter Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

