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Foreword 

Authored by Professors P. Liu and H. Li, "Fuzzy Neural Network Theory 
and Application," or FNNTA for short, is a highly important work. Essentially, 
FNTTA is a treatise that deals authoritatively and in depth with the basic 
issues and problems that arise in the conception, design and utilization of fuzzy 
neural networks. Much of the theory developed in FNTTA goes considerably 
beyond what can be found in the literature. 

Fuzzy neural networks, or more or less equivalently, neurofuzzy systems, as 
they are frequently called, have a long history. The embryo was a paper on 
fuzzy neurons by my former student, Ed Lee, which was published in 1975. 
Thereafter, there was little activity until 1988, when H. Takagi and I. Hayashi 
obtained a basic patent in Japan, assigned to Matsushita, which described 
systems in which techniques drawn from fuzzy logic and neural networks were 
employed in combination to achieve superior performance. 

The pioneering work of Takagi and Hayashi opened the door to development 
of a wide variety of neurofuzzy systems. Today, there is an extensive literature 
and a broad spectrum of applications, especially in the realm of consumer 
products. 

A question which arises is: Why is there so much interest and activity in 
the realm of neurofuzzy systems? What is it that neurofuzzy systems can do 
that cannot be done equally well by other types of systems? To understand 
the underlying issues, it is helpful to view neurofuzzy systems in a broader 
perspective, namely, in the context of soft computing. 

What is soft computing? In science, as in many other realms of human 
activity, there is a tendency to be nationalistic-to commit oneself to a particular 
methodology and employ it exclusively. A case in point is the well-known 
Hammer Principle: When the only tool you have is a hammer, everything 
looks like a nail. Another version is what I call the Vodka Principle: No matter 
what your problem is, vodka will solve it. 

What is quite obvious is that if A, B, ..., N are complementary methodolo­
gies, then much can be gained by forming a coalition of A, B, ..., N. In this 
perspective, soft computing is a coalition of methodologies which are tolerant 
of imprecision, uncertainty and partial truth, and which collectively provide a 
foundation for conception, design and utilization of intelligent systems. The 
principal numbers of the coalition are: fuzzy logic, neurocomputing, evolution­
ary computing, probabilistic computing, rough set theory, chaotic computing 
and machine learning. A basic credo which underlies soft computing is that, in 
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general, better results can be obtained by employing the constituent method­
ologies of soft computing in combination rather in a stand-alone mode. 

In this broader perspective, neurofuzzy systems may be viewed as the do­
main of a synergistic combination of neurocomputing and fuzzy logic; inherit­
ing from neurocomputing the concepts and techniques related to learning and 
approximation, and inheriting from fuzzy logic the concepts and techniques re­
lated to granulation, linguistic variable, fuzzy if-then rules and rules of inference 
and constraint propagation. 

An important type of neurofuzzy system which was pioneered by Arab-
shahi et al starts with a neuro-based algorithm such as the backpropagation 
algorithm, and improves its performance by employing fuzzy if-then rules for 
adaptive adjustment of parameters. What should be noted is that the basic 
idea underlying this approach is applicable to any type of algorithm in which 
human expertise plays an essential role in choosing parameter-values and con­
trolling their variation as a function of performance. In such applications, fuzzy 
if-then rules are employed as a language for describing human expertise. 

Another important direction which emerged in the early nineties involves 
viewing a Takaga-Sugeno fuzzy inference system as a multilayer network which 
is similar to a multilayer neural network. Parameter adjustment in such systems 
is achieved through the use of gradient techniques which are very similar to 
those associated with backpropagation. A prominent example is the ANFIS 
system developed by Roger Jang, a student of mine who conceived ANFIS as 
a part of his doctoral dissertation at UC Berkeley. The widely used method of 
radical basis functions falls into the same category. 

Still another important direction—a direction initiated by G. Bortolan— 
involves a fuzzification of a multilayer, feedforward neural network, resulting in 
a fuzzy neural network, FNN. It is this direction that is the principal concern 
of the work of Professors Liu and Li. 

Much of the material in FNNTA is original with the authors and reflects 
their extensive experience. The coverage is both broad and deep, extending 
from the basics of FNN and FAM (fuzzy associate memories) to approximation 
theory of fuzzy systems, stochastic fuzzy systems and application to image 
restoration. What is particularly worthy of note is the author's treatment of 
universal approximation of fuzzy-valued functions. 

A basic issue that has a position of centrality in fuzzy neural network 
theory—and is treated as such by the authors— is that of approximation and, 
in particular, universal approximation. Clearly, universal approximation is an 
issue that is of great theoretical interest. A question which arises is: Does the 
theory of universal approximation come to grips with problems which arise in 
the design of fuzzy neural networks in realistic settings? I believe that this 
issue is in need of further exploration. In particular, my feeling is that the 
usual assumption about continuity of the function that is approximated, is too 
weak, and that the problem of approximation of functions which are smooth, 
rather than continuous, with smoothness denned as a fuzzy characteristic, that 
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is, a matter of degree, must be addressed. 
FNNTA is not intended for a casual reader. It is a deep work which ad­

dresses complex issues and aims at definitive answers. It ventures into ter­
ritories which have not been explored, and lays the groundwork for new and 
important applications. Professors Liu and Li, and the publisher, deserve our 
thanks and congratulations for producing a work that is an important contri­
bution not just to the theory of fuzzy neural networks, but, more broadly, to 
the conception and design of intelligent systems. 

Lotfi A. Zadeh 
Professor in the Graduate School, Computer Science Division 
Department of Electrical Engineering and Computer Sciences 
University of California 
Berkeley, CA 94720-1776 
Director, Berkeley Initiative in Soft Computing (BISC) 

March, 2004 
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Preface 

As a hybrid intelligent system of soft computing technique, the fuzzy neu­
ral network (FNN) is an efficient tool to deal with nonlinearly complicated 
systems, in which there are linguistic information and data information, simul­
taneously. In view of two basic problems—learning algorithm and universal 
approximation, FNN's are thoroughly and systematically studied in the book. 
The achievements obtained here are applied successfully to pattern recogni­
tion, system modeling and identification, system forecasting, and digital image 
restoration and so on. Many efficient methods and techniques to treat these 
practical problems are developed. 

As two main research objects, learning algorithms and universal approxi­
mations of FNN's constitute the central part of the book. The basic tools to 
study learning algorithms are the max-min (V — A) functions, the cuts of fuzzy 
sets and interval arithmetic, etc. And the bridges to research universal approx­
imations of fuzzified neural networks and fuzzy inference type networks, such 
as regular FNN's, polygonal FNN's, generalized fuzzy systems and generalized 
fuzzy inference networks and so on are the fuzzy valued Bernstein polynomial, 
the improved type extension principle and the piecewise linear functions. The 
achievements of the book will provide us with the necessary theoretic basis for 
soft computing technique and the applications of FNN's. 

There have been a few of books and monographs on the subject of FNN's 
or neuro-fuzzy systems. There are several distinctive aspects which together 
make this book unique. 

First of all, the book is a thorough summation and deepening of authors' 
works in recent years in the fields related. So the readers can get latest infor­
mation, including latest research surveys and references related to the subjects 
through this book. This book treats FNN models both from mathematical 
perspective with the details of most proofs of the results included: only simple 
and obvious proofs are omitted, and from applied or computational aspects 
with the realization steps of main results shown, also many application exam­
ples included. So it is helpful for readers who are interested in mathematical 
aspects of FNN's, also useful for those who do not concern themselves with the 
details of the proofs but the applied aspects of FNN's. 

Second, the perspective of the book is centered on two typical problems on 
FNN's, they are universal approximation and learning algorithm. The achieve­
ments about universal approximation of FNN's may provide us with the theo­
retic basis for FNN applications in many real fields, such as system modeling 
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and system identification, information processing and system optimization and 
so on. And learning algorithms for FNN's may lead to rational treatments of 
FNN's for their architectures, implementation procedures and all kinds practi­
cal applications, etc. So readers may easily enter through this book the fields 
related by taking the two subjects as leads. Also the book includes many 
well-designed simulation examples for readers' convenience to understand the 
results related. 

Third, the arrangement of contents of the book is novel and there are few 
overlaps with other books related to the field. Many concepts are first in­
troduced for approximation and learning of FNN's. The constructive proofs 
of universal approximations provide us with much convenience in modeling or 
identifying a real system by FNN's. Also they are useful to build some learning 
algorithms to optimize FNN architectures. 

Finally almost all common FNN models are included in the book, and 
as many as possible references related are listed in the end of each chapter. 
So readers may easily find their respective contents that they are interested. 
Moreover, those FNN models and references make this book valuable to people 
interested in various FNN models and applications. 

The specific prerequisites include fuzzy set theory, neural networks, interval 
analysis and image processing. For the fuzzy theory one of the following books 
should be sufficient: Zimmermann H. -J. (1991), Dubois D. and Prade H. 
(1980). For the neural networks one of the following can provide with sufficient 
background: Khanna T. (1990), Haykin S. (1994). For the interval analysis 
it suffices to reference one of following books: Alefeld G. and Herzberger J. 
(1983), Diamond P. and Kloeden P. (1994). And for image processing one of 
the following books is sufficient: Jain A. K. (1989), Astola J. and Kuosmanen 
P. (1997). The details of these books please see references in Chapter I. 

Now let us sketch out the main points of the book, and the details will 
be presented in Chapter I. This book consists of four primary parts: the first 
part focuses mainly on FNN's based on fuzzy operators 'V' and 'A', including 
FNN's for storing and classifying fuzzy patterns, dynamical FNN's taking fuzzy 
Hopfield networks and fuzzy bidirectional associative memory (FBAM) as typ­
ical models. They are dealt with in Chapter II and Chapter III, respectively. 
The second part is mainly contributed to the research of universal approxima­
tions of fuzzified neural networks and their learning algorithms. The fuzzified 
neural networks mean mainly two classes of FNN's, i.e. regular FNN's and 
polygonal FNN's. A series of equivalent conditions that guarantee universal 
approximations are built, and several learning algorithms for fuzzy weights are 
developed. Also implementations and applications of fuzzified neural networks 
are included. The third part focuses on the research of universal approxima­
tions, including ones of generalized fuzzy systems to integrable functions and 
ones of stochastic fuzzy systems to some stochastic processes. Also the learn­
ing algorithms for the stochastic fuzzy systems are studied. The fourth part is 
contributed to the applications of the achievements and methodology on FNN's 
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to digital image restoration. A FNN representation of digital images is built 
for reconstructing images and filtering noises. Based on fuzzy inference net­
works some efficient FNN filters are developed for removing impulse noise and 
restoring images. 

When referring to a theorem, a lemma, a corollary, a definition, etc in 
the same chapter, we utilize the respective numbers as they appear in the 
statements, respectively. For example, Theorem 4.2 means the second theorem 
in Chapter IV, while Definition 2.4 indicates the fourth definition in Chapter 
II, and so on. 

Although we have tried very hard to give references to original papers, 
there are many researchers working on FNN's and we are not always aware 
of contributions by various authors, to which we should give credit. We have 
to say sorry for our omissions. However we think the references that we have 
listed are helpful for readers to find the related works in the literatures. 

We are indebted to Professor Lotfi A. Zadeh of University of California, 
Berkeley who writes the preface of the book in the midst of pressing affairs 
at authors' invitation. We are specially grateful to Professors Guo Guirong 
and He Xingui who read the book carefully and make their many of insightful 
comments. Thanks are also due to Professor Bunke Horst who accepts this book 
in the new book series edited by him. Finally we express our indebtedness to 
Dr. Seldrup Ian the editor of the book and the staff at the World Scientific 
Publishing for displaying a lot of patience in our final cooperation. 

We were supported by several National Natural Science Foundation Grants 
of China (e.g., No.69974041, No.60375023 and No.60174013) during the years 
this book was written. 

Puyin Liu and Hongxing Li 

March 2004 



CHAPTER I 

Introduction 

As information techniques including their theory and applications develop 
further, the studying objects related have become highly nonlinear and com­
plicated systems, in which natural linguistic information and data information 
coexist [40]. In practice, a biological control mechanism can carry out com­
plex tasks without having to develop some mathematical models, and without 
solving any complex integral, differential or any other types of mathematical 
equations. However, it is extremely difficult to make an artificial mobile robot 
to perform the same tasks with vague and imprecise information for the robot 
involves a fusion of most existing control techniques, such as adaptive control, 
knowledge-based engineering, fuzzy logic and neural computation and so on. To 
simulate biological control mechanisms, efficiently and to understand biological 
computational power, thoroughly a few of powerful fields in modern technology 
have recently emerged [30, 61]. Those techniques take their source at Zadeh's 
soft data analysis, fuzzy logic and neural networks together with genetic algo­
rithm and probabilistic reasoning [68-71]. The soft computing techniques can 
provide us with an efficient computation tool to deal with the highly nonlin­
ear and complicated systems [67]. As a collection of methodologies, such as 
fuzzy logic, neural computing, probabilistic reasoning and genetic algorithm 
(GA) and so on, soft computing is to exploit the tolerance for imprecision, 
uncertainty and partly truth to achieve tractability, robustness and low solu­
tion cost. In the partnership of fuzzy logic, neural computing and probabilistic 
reasoning, fuzzy logic is mainly concerned with imprecision and approximate 
reasoning, neural computing with learning and curve fitting, and probabilistic 
reasoning with uncertainty and belief propagation. 

§1.1 Classification of fuzzy neural networks 

As a main ingredient of soft computing, fuzzy neural network (FNN) is a 
hybrid intelligent system that possess the capabilities of adjusting adaptively 
and intelligent information processing. In [36, 37] Lee S. C. and Lee E. T. 
firstly proposed the fuzzy neurons and some systematic results on FNN's were 
developed by softening the McCulloch-Pitts neurons in the middle 1970s when 
the interest in neural networks faltered. So such novel neural systems had not 
attracted any attention until 1987 when Kosko B. developed a fuzzy associa-
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tive memory (FAM) to deal with intelligent information by introducing some 
fuzzy operators in associative memory networks [32]. Since the early 1980s the 
research on neural networks has increased dramatically because of the works 
done by Hopfield J. J. (see [26]). The FNN models have also attracted many 
scholars' attention. A lot of new new concepts, such as innovative architecture 
and training rules and models about FNN's have been developed [30, 32, 61]. 
In practice FNN's have found useful in many application fields, for instance, 
system modelling [16, 24], system reliability analysis [7, 42], pattern recogni­
tion [33, 56], and knowledge engineering and so on. Based on fuzziness involved 
in FNN's developed since the late of 1980s, one may broadly classify all FNN 
models as three main types as shown in Figure 1.1: 

Feedforward neural networks (1980's), 

Feedback neural networks (1990's), 

Regular FNN's (1990's), 

Improved FNN's (1990's), 

Mamdani type (1990's), 

Takagi-Sugeno type (1990's), 

Generalized type (1990's). 

Figure 1.1 Classification of FNN's 

§1.2 Fuzzy neural networks with fuzzy operators 

FNN's based on fuzzy operators are firstly studied by Lee and Lee in 1970s. 
Such FNN's have become one of the foci in neural network research since Kosko 
introduced the fuzzy operators 'V and 'A' in associative memory to define fuzzy 
associative memory (FAM) in 1987. A FAM is a feedforward FNN whose in­
formation flows from input layer to output layer. It possesses the capability of 
storing and recalling fuzzy information or fuzzy patterns [32, 41]. So storage 
capability and fault-tolerance are two main problems we focus on in the re­
search on FAM's. In practice a applicable FAM should possess strong storage 
capability, i.e. as many fuzzy patterns as possible can be stored in a FAM. 
So far many learning algorithms, including the fuzzy Hebbian rule, the fuzzy 
delta rule and the fuzzy back propagation (BP) algorithm and so on have been 
developed to train FAM's and to improve storage capability of a FAM [32]. 
Equally, fault-tolerance, i.e. the capability of a FAM to recall the right fuzzy 
pattern from a distorted input is of real importance, for in practice many fuzzy 
patterns to handle are inherently imprecise and distorted. The research on 
feedforward FAM's, including their topological architecture designs, the selec­
tion of fuzzy operators for defining the internal operations, learning algorithms 
and so on attracts much attention [41]. The achievements related to FAM's 

Based on fuzzy operators < 

„,T,T Fuzzified neural networks • 
FNN < 

Fuzzy inference networks < 
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have found useful in many applied areas, such as pattern recognition [33, 59], 
pattern classification [41, 58], system analysis [38], signal processing [27] and 
so on. 

A main object of the research on FAM's is to improve the storage capability, 
which relates closely to fuzzy relational equation theory. Blanco et al in [4, 5] 
express a fuzzy system as a fuzzy relational equation, thus, the feedforward 
FAM's can identify a fuzzy relation by designing suitable learning algorithm. 
On the other hand, many methods for solving fuzzy relational equations are 
employed to improve the storage capability of FAM's. Li and Ruan in [38] use 
FAM's based on several fuzzy operator pairs including 'V — A', 'V — x', '+ — x ' 
and '+ - A' etc to identify many fuzzy system classes by building a few of novel 
learning algorithms. Moreover, they show the convergence of fuzzy delta type 
iteration algorithms. Liu et al utilize the approaches for solving fuzzy relational 
equations to build a series of equivalent conditions that a given fuzzy pattern 
family can be stored by a FAM [41]. Furthermore, some learning algorithms for 
improving storage capability of FAM's are developed. These constitute one of 
the main parts in Chapter II. Pedrycz in [51] put forward two logic type fuzzy 
neurons based on general fuzzy operators, and such FAM's can be applied to 
realize fuzzy logic relations efficiently. 

Adaptive resonance theory (ART) is an efficient neural model of human 
cognitive information processing. It has since led to an evolving series of real­
time neural network models for unsupervised category learning and pattern 
recognition. The model families include ART1, which can process patterns 
expressed as vectors whose components are either 0 or 1 [8]; ART2 which 
can categorize either analog or binary input patterns [9], and ART3 which 
can carry out parallel search, or hypothesis testing, of distributed recognition 
codes in a multi-level network hierarchy [10]. The fuzzy ART model developed 
by Carpenter et al in [11] generalizes ART1 to be capable of learning stable 
recognition categories in response to both analog and binary input patterns. 
The fuzzy operators 'V' and 'A' are employed to define the operations between 
fuzzy patterns. The research related to fuzzy ART is mainly focused on the 
classification characteristics and applications to pattern recognition in all kinds 
of applied fields, which is presented in Chapter II. 

Another important case of FNN's based on fuzzy operators is one of feed­
back FNN's. It imitates human brain in understanding objective world, which 
is a procedure of self-improving again and again. A feedback neural network 
as a dynamical system finishes information processing by iterating repeatedly 
from an initial input to the equilibrium state. In practice, an equilibrium state 
of a dynamical FNN turns out to be the right fuzzy pattern to recall. So the 
recalling procedure of a dynamical FNN is in nature a process that the FNN 
evolutes to its equilibrium state from an initial fuzzy pattern. In the book we 
focus mainly on two classes of dynamical FNN's, they are fuzzy Hopfield net­
works and fuzzy bidirectional associative memory (FBAM). By the comparison 
between the two dynamical FNN's and the corresponding crisp neural networks 
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we can see 

1. The FNN's do not need the transfer function used in the crisp networks, 
for a main function of the transfer function in artificial neural networks lies in 
controlling output range, which may achieve by the fuzzy operators 'V, 'A', 
and 'A' is a threshold function [4, 5]. 

2. In practice, it is much insufficient to represent fuzzy information by the 
strings only consisting of 0, 1. We should utilize fuzzy patterns whose compo­
nents belong to [0, 1] to describe fuzzy information. So the dynamical FNN's 
may be applied much more widely than the crisp networks may. 

Similarly with crisp dynamical networks, in the research related to the dy­
namical FNN's, the stability analysis, including the global stability of dynam­
ical systems and Lyapounov stability of the equilibrium state (attractor), the 
attractive basins of attractors and the discrimination of attractors and pseudo-
attractors and so on are main subjects to study. Those problems will be studied 
thoroughly in Chapter III. 

§1.3 Fuzzified neural networks 

A fuzzified neural network means such a FNN whose inputs, outputs and 
connection weights are all fuzzy set, which is also viewed as a pure fuzzy system 
[61]. Through the internal relationships among fuzzy sets of a fuzzified neural 
network, a fuzzy input can determines a fuzzy output. One most important 
class of fuzzified neural networks is regular FNN class, each of which is the 
fuzzifications of a crisp feedforward neural network. So for a regular FNN, the 
topological architecture is identical to one of the corresponding crisp neural 
network, and the internal operations are based on Zadeh's extension principle 
[44] and fuzzy arithmetic [20]. Since regular FNN's were put forward by Buckley 
et al [6] and Ishibuchi et al [28] about in 1990s, the systematic achievements 
related have been built by focusing mainly on two basic problem—learning 
algorithm and universal approximation. 

1.3.1 Learning algorithm for regular FNN's 

There are two main approaches to design learning algorithms for regular 
FNN's, they are a—cut learning [28, 41], and the genetic algorithm (GA) for 
fuzzy weights [2]. The main ideas for the a—cut learning algorithm rest with the 
fact that for any a £ [0,1], we utilize the BP algorithm for crisp neural networks 
to determine the two endpoints of a—cut and consequently establish the a—cut 
of a fuzzy weight, and then define the fuzzy weight. Thus, the fuzzy connection 
weights of the regular FNN is trained suitably. However, the a—cut learning 
algorithm loses its effectiveness frequently since for a i , «2 £ [0, 1] : a\ < «2, 

by the BP algorithm we obtain the a—cuts Wai, Wa2>
 a n d if no constraint is 

added, the fact Wa^CWai can not be guaranteed. And therefore the fuzzy set 

W can not be defined. So in order to ensure the effectiveness of the algorithm 
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it is necessary to solve the following optimization problem: 

min{E(Wi,:.,Wn )\Wi,—,Wn are fuzzy sets}, 

s.t. Vai , Q 2 G [0,1] : an < a2 , Vi e {1, . . . ,n}, ( ^ ) Q 2
C ( ^ ) a i ' 

where E(-) is an error function. If no constraint is added, (1.1) is generally 
insolvable. Even if we may find a solution of (1.1) in some special cases the 
corresponding solving procedure will be extremely complicated. Another diffi­
culty to hinder the realization of the a - c u t learning algorithm is to define a 
suitable error function E(-) [41], so that not only its minimization can ensure 
to realize the given input—output (I/O) relationship, approximately, but also 
its derivatives related are easy to calculate. To avoid solve (1.1), a common 
method to define E(-) is to introduce some constraints on the fuzzy connec­
tion weights, for instance, we may choose the fuzzy weights as some common 
fuzzy numbers such as triangular fuzzy numbers, trapezoidal fuzzy numbers 
and Gaussian type fuzzy numbers and so on, which can be determined by a 
few of adjustable parameters. Ishibuchi et al utilize the triangular or, trape­
zoidal fuzzy numbers to develop some a—cut learning algorithms for training 
the fuzzy weights of regular FNN's. And some successful applications of regular 
FNN's in the approximate realization of fuzzy inference rules are demonstrated 
in [28]. Park et al in [50] study the inverse procedure of the learning for a reg­
ular FNN, systematically. That is, using the desired fuzzy outputs of the FNN 
to establish conversely the conditions for the corresponding fuzzy inputs. This 
is a fuzzy version of the corresponding problem for crisp neural networks [39]. 
Solution of such a problem rest in nature with treating the a—cut learning. 

However, no matter how different fuzzy weights and error functions these 
learning algorithms have, two important operations 'V' and 'A' are often in­
volved. An indispensable step to construct the fuzzy BP algorithm is to differ­
entiate V — A operations by using the unit step function, that is, for the given 
real constant a, let 

d(x V a) _ J 1, x > a, d(x A a) _ j 1, x < a, 

dx 1 0, x < a; dx 1 0, x > a. 

Above representations are only valid for special case x ^ a. And if x = a, they 
are no longer valid. Based on these two derivative formulas, the chain rules 
for differentiation of composition functions are only in form, and lack rigorous 
mathematical sense. Apply the results in [73] to analyze the V — A operations 
fully and to develop a rigorous theory for the calculus of V and A operations 
are two subsidiary results in Chapter IV. 

The GA's for fuzzy weights are also developed for such fuzzy sets that 
they can be determined uniquely by a few of adjustable parameters when it is 
possible to code fuzzy weights and to ensure one to one correspondence between 
a code sequence in GA and fuzzy connection weights. For instance, Aliev et 
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al in [2] employ simple GA to train the triangular fuzzy number weights and 
biases of regular FNN's. They encode all fuzzy weights as a binary string 
(chromosome) to complete the search process. The transfer function a related 
is assumed to be an increasing real function. The research in this field is at 
its infancy and many fundamental problems, such as, how to define a suitable 
error function? what more efficient code techniques can be employed and what 
are the more efficient genetic strategies? and so on remain to be solved. 

Regardless of a—cut learning algorithm and GA for the fuzzy weights of 
regular FNN's they are efficient only for a few of special fuzzy numbers, such 
as triangular or trapezoidal fuzzy numbers, Gaussian type fuzzy numbers and 
so on. The applications of the learning algorithms are much restricted. And 
therefore it is meaningful and important to develop the BP type learning algo­
rithms or, GA for fuzzy weights of regular FNN's within a general framework, 
that is, we have to build learning algorithms for general fuzzy weights. The 
subject constitutes one of central parts of Chapter IV. To speed the conver­
gence of the fuzzy BP algorithm we develop a fuzzy conjugate gradient (CG) 
algorithm [18] to train a regular FNN with general fuzzy weights. 

1.3.2 Universal approximation of regular FNN's 

Another basic problem for regular FNN's is the universal approximation, 
which can provide us with the theoretic basis for the FNN applications. The 
universal approximation of crisp feedforward neural networks means such a fact 
that for any compact set U of the input space and any continuous function / 
defined on the input space, / can be represented with arbitrarily given degree 
of accuracy e > 0 by a feedforward crisp neural network. The research related 
has attracted many scholars since the late 1980s. It is shown that a three-layer 
feedforward neural network with a given nonlinear activation function in the 
hidden layer is capable of approximating generic class of functions, including 
continuous and integrable ones [13, 14, 57]. Recently Scarselli and Tsoi [57] 
present a detail survey of recent works on the approximation by feedforward 
neural networks, and obtain some new results by studying the computational 
aspects and training algorithms for the approximation problem. The approxi­
mate representation of a continuous function by a three layer feedforward net­
work can with the approximate sense solve the 13—th Hilbert problem with a 
simple approach [57], and Kolmogorov had to employ a complicated approach 
to solve the problem analytically in 1950s [57]. The achievements related to 
the field have not only solved the approximation representation of some mul­
tivariate functions by the combination of finite compositions of one-variable 
functions, but also found useful in many real fields, such as the approximation 
of structural synthesis [57], system identification [14], pattern classification [25], 
and adaptive filtering [52], etc. 

Since the middle 1990s many authors have begun to paid their attentions 
to the similar approximation problems in fuzzy environment [6, 22, 28, 41]. 
Firstly Buckley et al in [6] study systematically the universal approximation 
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of FNN's and obtain such a fact: Hybrid FNN's can be approximator to fuzzy 
functions while regular FNN's are not capable of approximating continuous 
fuzzy functions to any degree of accuracy on the compact sets of a general 
fuzzy number space. Considering the arbitrariness of a hybrid FNN in its ar­
chitectures and internal operations, we find such a FNN is inconvenient for 
realizations and applications. Corresponding to different practical problems 
the respective hybrid FNN's with different topological architectures and in­
ternal operations have to be constructed [6]. However, regular FNN's, whose 
topological architectures are identical to the corresponding crisp ones, internal 
operations are based on extension principle and fuzzy arithmetic, have found 
convenient and useful in many applications. Thus some important questions 
arise. What are the conditions for continuous fuzzy functions that can be ar­
bitrarily closely approximated by regular FNN's? that is, which function class 
can guarantee universal approximation of regular FNN's to hold? Whether the 
corresponding equivalent conditions can be established? Since the inputs and 
outputs of regular FNN's are fuzzy sets, the common operation laws do not 
hold any more. It is difficult to employ similar approaches for dealing with 
crisp feedforward neural networks to solve above problems for regular FNN's. 

Above problems attract many scholars' attention. At first Buckley and 
Hayashi [6] show a necessary condition for the fuzzy functions that can be ap­
proximated arbitrarily closely by regular FNN's, that is, the fuzzy functions 
are increasing. Then Feuring et al in [22] restrict the inputs of regular FNN's 
as trapezoidal fuzzy numbers, and build the approximate representations of 
a class of trapezoidal fuzzy functions by regular FNN's. Also they employ 
the approximation of the regular FNN's with trapezoidal fuzzy number inputs 
and connection weights to solve the overfitting problem. We establish some 
sufficient conditions for fuzzy valued functions defined on an interval [0, T0] 
that ensure universal approximation of three layer regular FNN's to hold [41]. 
However these results solve only the first problem partly, and do not answer 
the second problem. To solve the universal approximation of regular FNN's 
completely, Chapter IV and Chapter V develop comprehensive and thorough 
discussion to above problems. And some realization algorithms for approxi­
mating procedure are built. 

In practice many I/O relationships whose internal operations are charac­
terized by fuzzy sets are inherently fuzzy and imprecise. For instance, the 
natural inference of human brain, industrial process control, chemical reaction 
and natural evolution process and so on [17, 30]. Regular FNN's have become 
the efficient tools to model these real processes, for example fuzzy regression 
models [28], data fitting models [22], telecommunication networks [42] and so 
on are the successful examples of regular FNN applications. 

§1.4 Fuzzy systems and fuzzy inference networks 

Fuzzified neural networks as a class of pure fuzzy systems can deal with 
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natural linguistic information efficiently. In practice, in addition to linguistic 
information, much more cases relate to data information. From a real fuzzy 
system we can get a collection of data information that characterizes its I/O 
relationship by digital sensor or data surveying instrument, so it is of very real 
importance to develop some systematic tools that are able to utilize linguistic 
and data information, synthetically. Fuzzy systems take an important role in 
the research related. In a fuzzy system we can deal with linguistic information 
by developing a family of fuzzy inference rules such as 'IF...THEN...'. And 
data information constitutes the external conditions that may adjust system 
parameters, including the membership functions of fuzzy sets and denazifica­
tion etc, rationally. Using fuzzy inference networks we may represent a fuzzy 
system as the I/O relationship of a neural system, and therefore fuzzy systems 
also possess the function of self-learning and self-improving. 

Since recent twenty years, fuzzy systems and fuzzy inference networks have 
attracted much attention for they have found useful in many applied fields 
such as pattern recognition [30, 33, 56], system modelling and identification 
[16, 24], automatic control [30, 53, 61], signal processing [12, 35, 60], data 
compression [47] and telecommunication [42] and so on. As in the research of 
neural networks we study the applications of fuzzy systems and fuzzy inference 
networks by taking their universal approximation as a start point. Therefore, 
in the following let us take the research on approximating capability of fuzzy 
systems and fuzzy inference networks as a thread to present a survey to theory 
and application of this two classes of systems. 

input x 
fuzzifier 

fuzzy rule base 

singleton fuzzy inference fuzzy output 

Y 

pure fuzzy system 

crisp output 
defuzzifier 

yo 

Figure 1.2 Fuzzy system archi tec ture 

1.4.1 Fuzzy systems 

In practice there are common three classes of fuzzy systems [30, 61], they 
are pure fuzzy systems, Mamdani fuzzy systems and Takagi-Sugeno (T-S) 
fuzzy systems. Pure fuzzy systems deal mainly with linguistic information 
while the latter two fuzzy systems can handle both linguistic information and 
data information [61]. We can distinguish a Mamdani fuzzy system and a 
T-S fuzzy system by their inference rule consequents. The rule consequent 
forms of a Mamdani fuzzy system are fuzzy sets while ones corresponding to 
a T-S fuzzy system are functions of the system input variables. As shown in 
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Figure 1.2 is the typical architecture of a fuzzy system, which consists of three 
parts: fuzzifizer, pure fuzzy system and defuzzifizer. The internal structures of 
the pure fuzzy system are determined by a sequence of fuzzy inference rules. 
Suppose the fuzzy rule base is composed of N fuzzy rules R\,...,RN- For a 
given input vector x, by fuzzifizer we can get a singleton fuzzy set x . Using 
the fuzzy rule Rj and the implication relation we can establish a fuzzy set Yj 
denned on the output space [30]. By a t-conorm S (generally is chosen as 

S = V) we synthesize Y\, • ••, YN to determine the fuzzy set Y defined on the 
output space: 

Y(y) = S(Yi(y), S(Y2(y),...,S{YN(y))---)). 

We call Y a synthesizing fuzzy set [30]. Finally we utilize the defuzzifizer De 

to establish the crisp output yo = DB(Y)-

As one of main subjects related to fuzzy systems, universal approximation 
has attracted much attention since the early 1990s [61, 62, 65, 72]. we can 
classify the achievements in the field into two classes. One belongs to existential 
results, that is, the existence of the fuzzy systems is shown by the Stone-
Weierstrass Theorem [30, 61]. Such a approach may answer the existence 
problem of fuzzy systems under certain conditions. However its drawbacks 
are obvious, since it can not deal with many importantly practical problems 
such as, how can the approximating procedure of fuzzy systems express the 
given I/O relationship? How is the accuracy related estimated? With the 
given accuracy how can the size of the fuzzy rule base of the corresponding 
fuzzy system be calculated? and so on. Moreover, such a way gives the strong 
restrictions to the antecedent fuzzy sets, the inference composition rules and 
denazification. That is, the fuzzy sets are Gaussian type fuzzy numbers, the 
compositions are based on 'J^ — x ' or 'V — x', and the defuzzifier usually means 
the method of center of gravity. Another is the constructive proving method, 
that is, we may directly build the approximating fuzzy systems related by 
the constructive procedures. Recent years the research related has attracted 
many scholars' attention. Ying et al in [65] employ a general denazification 
[23] to generalize Mamdani fuzzy systems and T-S fuzzy systems, respectively. 
Moreover, the antecedent fuzzy sets and the composition fuzzy operators can 
be general, that is, the fuzzy sets may be chosen as general fuzzy numbers 
with certain ranking order and the composition may be 'V — T", where T is a 
t—norm. And some necessary conditions for fuzzy system approximation and 
their comparison are built. Zeng et al in [72] propose some accuracy analysis 
methods for fuzzy system approximation, and an approximating fuzzy system 
with the given accuracy may be established accordingly. So the constructive 
methods can be more efficient and applicable. 

Up to the present the research on the related problems focuses on the ap­
proximations of the fuzzy systems to the continuous functions and the realiza­
tion of such approximations. Although the related achievements are of much 
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real significance, their application areas are definitely restricted. There are 
many important and fundamental problems in the field remain to be solved. 

First, in addition to continuous functions, how about the universal approxi­
mation of fuzzy systems to other general functions? For instance, in the control 
processes to many nonlinear optimal control models and the pulse circuits, the 
related systems are non-continuous, but integrable. Therefore the research in 
which the fuzzy systems are generalized within a general framework and more 
general functions, including integrable functions are approximately represented 
by the general fuzzy systems with arbitrary degree of accuracy, are very im­
portant both in theory and in practice. 

Another problem is 'Rule explosion' phenomenon that is caused by so called 
'curse of dimensionality', meaning that in a fuzzy system the number of fuzzy 
rules may exponentially increases as the number of the input variables of the 
system increases. Although the fuzzy system research has attracted many 
scholars' attention, and the achievements related have been successfully applied 
to many practical areas, particularly to the fuzzy control, the applications are 
usually limited to systems with very few variables, for example, two or at most 
four input variables [62]. When we increase the input variables, the scale of the 
rule base of the fuzzy system is immediately becoming overmuch, consequently 
the system not implement able. So 'rule explosion' do seriously hinder the 
applications of the fuzzy systems. 

To overcome above drawbacks, Raju et al defined in [53] a new type of fuzzy 
system, that is the hierarchical fuzzy system. Such a system is constructed by 
a series of lower dimensional fuzzy systems, which are linked in a hierarchical 
fashion. To realize the given fuzzy inferences, the number of fuzzy rules needed 
in the hierarchical system is the linear function of the number of the input vari­
ables. Thus, we may avoid the 'rule explosion'. Naturally we may put forward 
an important problem, that is, how may the representation capability of the 
hierarchical fuzzy systems be analyzed? Kikuchi et al in [31] show that it is 
impossible to give the precise expression of arbitrarily given continuous func­
tion by a hierarchical fuzzy system. So we have to analyze the approximation 
capability of hierarchical fuzzy systems, i.e. whether are hierarchical fuzzy sys­
tems universal approximator or not? If a function is continuously differentiable 
on the whole space, Wang in [62] shows the arbitrarily close approximation of 
the function by hierarchical fuzzy systems; and he also in [63] gave the sensi­
tivity properties of hierarchical fuzzy systems and designed a suitable system 
structure. For each compact set U and the arbitrarily continuous, or integrable 
function / on U, how may we find a hierarchical fuzzy system to approximate 
/ uniformly with arbitrary error bounds el 

The third important problem is the fuzzy system approximations in stochas­
tic environment. Recently the research on the properties of the artificial neural 
networks in the stochastic environment attracts many scholars' attention. The 
approximation capabilities of a class of neural networks to stochastic processes 
and the problem whether the neural networks are able to learn stochastic pro-
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cesses are systematically studied. It is shown that the approximation identity 
neural networks can with mean square sense approximate a class of stochastic 
processes to arbitrary degree of accuracy. The fuzzy systems can simultane­
ously deal with data information and linguistic information. So it is undoubt­
edly very important to study the approximation in the stochastic environment, 
that is, the approximation capabilities of fuzzy systems to stochastic processes. 

The final problem is to estimate the size of the rule base of the approximat­
ing fuzzy system for the given accuracy. The research related is the basis for 
constructing the related fuzzy systems. 

The systematic study on above problems constitutes the central parts of 
Chapter VI and Chapter VII. Also many well-designed simulation examples 
illustrate our results. 

1.4.2 Fuzzy inference networks 

Fuzzy inference system can simulate and realize natural language and logic 
inference mechanic. A fuzzy inference network is a multilayer feedforward net­
work, by which a fuzzy system can be expressed as the I/O relationship of a 
neural system. So a fuzzy system and its corresponding fuzzy inference network 
are functionally equivalent [30]. As a organic fusion of inference system and 
neural network, a fuzzy inference network can realize automobile generation 
and automobile matching of fuzzy rules. Further, it can adaptively adjust to 
adapt itself to the changes of conditions and to self-improve. Since the early 
1990s, many achievements have been achieved and they have found useful in 
many applied areas, such as system modeling [15, 16], system identification 
[46, 56], pattern recognition [58] and system forecasting [45] and so on. More­
over, fuzzy inference networks can deal with all kinds of information including 
linguistic information and data information, efficiently since they possess adap-
tiveness and fault-tolerance. Thus, they can successfully be applied to noise 
image processing, boundary detection for noise images, classification and de­
tection of noise, system modeling in noise environment and so on. 

Theoretically the research on fuzzy inference networks focuses mainly on 
three parts: First, design a feedforward neural network to realize a known fuzzy 
system, so that the network architecture is as simple as possible [30]; Second, 
build some suitable learning algorithms, so that the connection weights are 
adjusted rationally to establish suitable antecedent and consequent fuzzy sets; 
Third, within a general framework study the fuzzy inference networks, which 
is based on some general defuzzifier [54]. Defuzzification constitutes one im­
portant object to study fuzzy inference networks and it attracts many scholars' 
attention. There are mainly four defuzzification methods, they are center of 
gravity (COG) method [33, 54], maximum of mean(MOM) method [61], a— 
cut integral method, and p—mean method [55]. In addition, many novel de-
fuzzifications to the special subjects are put forward in recent years. They 
have respective starting point and applying fields, also they have themselves 
advantages and disadvantages. For example, the COG method synthesizes all 
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actions of points in the support of the synthesizing fuzzy set to establish a crisp 
output while some special functions of some particular points e.g. the points 
with maximum membership, are neglected. The MOM method takes only the 
points with maximum membership under consideration while the other points 
are left out of consideration. The a—cut integral and p—mean methods are two 
other mean summing forms for all points in the support of the synthesizing set. 
The research on how we can define denazifications and fuzzy inference net­
works within a general framework attracts much attention. Up to now many 
general defuzzifiers have been put forward [23, 54, 55, 61]. However, they pos­
sess respective drawbacks: Either the general principles are too many to be 
applied conveniently or, the definitions are too concrete to be generalized to 
general cases. 

To introduce some general principle for defuzzidication and to build a class 
of generalized fuzzy inference network within a general framework constitute a 
preliminary to study FNN application in image processing in Chapter VIII. 

§1.5 Fuzzy techniques in image restorat ion 

The objective of image restoration is to reconstruct the image from degraded 
one resulted from system errors and noises and so on. There are two ways to 
achieve such an objective [3, 52]. One is to model the corrupted image degraded 
by motion, system distortion, and additive noises, whose statistic models are 
known. And the inverse process may be applied to restore the degraded images. 
Another is called image enhancement, that is, constructing digital filters to 
remove noises to restore the corrupted images resulted from noises. Originally, 
image restoration included the subjects related to the first way only. Recently 
many scholars put the second way into the field of image restoration [12, 35, 60]. 
Linear filter theory is an efficient tool to process additive Gaussian noise, but 
it can not deal with non-additive Gaussian noise. So the research on nonlinear 
filters has been attracting many scholars' attention [3, 60, 66]. 

In practice, it is imperative to bring ambiguity and uncertainty in the ac­
quisition or transmission of digital images. One may use human knowledge 
expressed heuristically in natural language to describe such images. But this 
approach is highly nonlinear in nature and can not be characterized by tradi­
tional mathematical modeling. The fuzzy set and fuzzy logic can be efficiently 
incorporated to do that. So it is convenient to employ fuzzy techniques in 
image processing. The related discussions appeared about in 1981 [48, 49], 
but not until 1994 did the systematic results related incurred. Recently fuzzy 
techniques are efficiently applied in the field of image restoration, especially 
in the filtering theory to remove system distortion and impulse noises, smooth 
non-impulse noises and enhance edges or other salient features of the image. 

1.5.1 Crisp nonlinear niters 

Rank selection (RS) filter is a useful nonlinear filtering model whose sim-
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plest form is median filter [52]. The guidance for building all kinds of RS 
type filters is that removing impulsive noise while keeping the fine image struc­
ture. By median filter, impulsive type noise can be suppressed, but it removes 
fine image structures, simultaneously. When the noise probability exceeds 0.5, 
median filter can result in poor filtering performance. To offer improved per­
formance, many generalizations of median filter have been developed. They 
include weighted order statistic filter, center weighted median filter, rank con­
ditioned rank selection (RCRS) filter, permutation filter, and stack filter, etc 
(see [3, 52]). The RCRS filter is built by introducing feature vector and rank 
selection operator. It synthesizes all advantages of RS type filters, also it can 
be generalized as the neural network filter. Moreover, as a signal restoration 
model, the RCRS filter possesses the advantage of utilizing rank condition and 
selection feature of sample set simultaneously. Thus all RS type filters may 
be handled within a general framework [3]. However, although RS type filters 
improve median filter from different aspects, their own shortcomings are not 
overcome, for the outputs of all these filters are the observation samples in the 
operating window of the image. For example a RCRS filter may change the 
fine image structure while removing impulsive noise; when the noise probability 
p > 0.5 it is difficult to get a restoration with good performance; the complex­
ity of the RCRS filter increases exponentially with the order (the length of 
operating window). Such facts have spurred the development of fuzzy filters, 
which improve the performance of RS filters by extending output range, soft 
decision and adaptive structure. 

1.5.2 Fuzzy filters 

The RCRS filter can not overcome the drawbacks of median filter thoroughly 
since its ultimate output is still chosen from the gray levels in the operating 
window. So fuzzy techniques may be used to improve the RS type filters from 
the following parts: extending output range, soft decision and fuzzy inference 
structure. Recent years fuzzy theory as a soft technique has been successfully 
applied in modeling degraded image and building noise filters. 

Extending output range means generalizing crisp filters within a fuzzy 
framework. For example, by fuzzifying the selection function as a fuzzy rank, 
the RCRS filter can be generalized a new version—rank conditioned fuzzy se­
lection (RCFS) filter [12]. It utilize natural language, such as 'Dark' 'Darker' 
'Medium' 'Brighter' 'Bright' and so on to describe gray levels of the image re­
lated. And so the image information may be used more efficiently. Although 
the RCFS filter improves the performance of RCRS filter, as well as the fil­
tering capability, the problems similar to RCRS filter arise still. So in more 
cases, soft decision or fuzzy inference structure are used to improve noise filters. 
Soft decision means that we may use fuzzy set theory to soften the constraint 
conditions for the digital image and to build the image restoration techniques. 
Civanlar et al in [17] firstly establish an efficient image restoration model by 
soft decision, in which the key part is to define suitable membership functions 
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of fuzzy sets related. Yu and Chen in [66] generalize the stack filter as a fuzzy 
stack filter, by which the filtering performance is much improved. One of key 
steps to do that is fuzzifying a positive Boolean function (PBF) as a fuzzy 
PBF, by which we may estimate a PBF from the upper and the lower, re­
spectively. And so the fuzzy stack filter concludes the stack filter as a special 
case. Fuzzy inference structure for image processing means that some fuzzy 
inference rules are built to describe the images to be processed, and then some 
FNN mechanisms are constructed to design noise filters. An obvious advantage 
for such an approach is that the fuzzy rules may be adjusted adaptively. The 
performance of the niters related may be advantageous in processing the high 
probability (p > 0.5) noise images [35, 60]. A central part of Chapter VIII is 
to build some optimal FNN filters by developing suitable fuzzy inference rules 
and fuzzy inference networks. 

Furthermore in [47], the fault-tolerance of fuzzy relational equations is the 
tool for image compression and reconstruction; And the classical vector median 
filter is generalized to the fuzzy one, and so on. Of course, the research of image 
restoration by fuzzy techniques has been in its infancy period, many elementary 
problems related are unsolved. Also to construct the systematic theory in the 
field is a main object for future research related to the subject. 

§1.6 Notations and preliminaries 

In the following let us present the main notations and terminologies used 
in the book, and account for the organization of the book. 

Suppose N is the natural number set, and Z is the integer set. Let M.d be 

d—dimensional Euclidean space, in which || • || means the Euclidean norm. M = 
K1, and K+ is the collection of all nonnegative real numbers. If x G R, Int(x) 
means the maximum integer not exceeding x. 

By A, B, C,... we denote the subsets of R, and A is the closure of A. For 
A, B C Rd, let dH(A, B) be Hausdorff metric between A and B, i.e. 

d„(A,B) = max{\/ A { l l * - y | | } , V A { l | x - y | | } } , (1.3) 
'•xGAyeB yeBxeA ' 

where 'V" means the supremum operator 'sup', and 'A' means the infimum oper­
ator 'inf. For the intervals [a, b], [c, d] C R, define the metric de([a, b], [c, d]) 
as follows: 1 

dE([a,b], [c,d])={(a-c)2 + (b-d)2}\ (1.4) 

Give the intervals [a, b], [c, d] C R, it is easy to show 

dH([a, b], [c, d})< dE([a, b], [c, d])<V2-dH([a, b], [c, d]), (1.5) 

that is, the metrics dE and dH are equivalent. If X is universe, by T(X) we 

denote the collection of all fuzzy sets defined on X. Using A, B,... we denote the 
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fuzzy sets defined on R. And f0(K) means a subset of F(R) with the following 

conditions holding, i.e. for A£ fo(K), we have 

(i) The kernel of A satisfies, Ker(^) = {x G R\A(x) = 1} ^ 0; 

(ii) Va G (0,1], then Aa= [aa, aV\ is a bounded and closed interval; 

(iii) The support of A satisfies, Supp(yl) = {x G R | A(x) > 0} is a bounded 
and closed set of R. 

We denote the support Supp(A) of a fuzzy set A by Ao • If A, SG .Fo(K), 

define the metric between A and B as [19, 20]: 

£>U,B)= V/ {dn(Aa, Ba)}= V {^U«,-B«)}- (1.6) 
a£[0,l] a€[0,l) 

By [19] it follows that (.Fo(R),£)) is a complete metric space. If we generalize 
the condition (ii) as 

(ii)' A is a convex fuzzy set, that is the following fact holds: 

Vxi, x2 G R, Va G [0, 1], A(ax1 + (1 - a)x2)>A(x1)A A(x2). 

Denote the collection of fuzzy sets satisfying (i) (ii)' and (iii) as .FC(R). If A€ 
•Fc(M), then A is called a bounded fuzzy number. Obviously, -̂"o(R) C ^C(R). 
Also it is easy to show, (ii)' is equivalent to the fact that Va G [0, 1], A a C l 
is a interval. Denote 

•F0(R)d = ^o(R) x • • • x j ^ ( R ) . 

d 

And for (Ai, •--, Ad), (Bi, ••••)Bd) € foW r f ) we also denote for simplicity that 
n 

D((Ai,...Ad), (Bi,...,Bd))=^2D(Ai,Bi). (1.7) 

It is easy to show, (Jro(R)d, D) is also a complete metric space. For A£ 

J"o(R), |A| means D(A,{0}), that is 

U l = V {l««|V|««l}(X»= [<£,<£]). 
a6[0,l] 

For a given function / : Rd —> R, we may extend / as / : ^b(R)d —> ^"(R) 
by the extension principle [44]: 

d 

V(Ai,...,Ad)eF0m
d,f(Ai,...,Ad)(y)= V { A ^ ^ ) } } - (1-8) 

f(x1:...,xd)=y i=l 
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For simplicity, we write also / as / . And / is called an extended function. 
C 1 (R) is the collection of all continuously differentiable functions on R; and 

C1([a,&]) is the set of all continuously differentiable functions on the closed 
interval [a, b\. 

Definition 1.1 [14] Suppose g : R —> R, and FN : Rd —>• R is a three 
layer feedforward neural network whose transfer function is g. That is 

p d 

V(x1,...,xd) e R d , Fjvfai,...,£<*) = ^2vj • 9\^2wi:i -Xi+Oj). 
j = l i = l 

If FJV(-) constitute a universal approximator, then g is called a Tauber-Wiener 
function. 

If g is a generalized sigmoidal function a : R —* R, that is, a is bounded, 
and lim a{x) = 1, lim a{x) = 0. Then by [14], it follows that g is a 

x—>+oo x—» — oo 

Tauber-Wiener function. 
We call g : R —> R a continuous sigmoidal function, if g is continuous and 

increasing, moreover, lim a(x) = 1, lim a(x) = 0. Obviously, a continuous 
x—>+oo x—> — oo 

sigmoidal function is a Tauber-Wiener function. 
Let \i be a Lebesgue measure on Rd, and / : Rd —• R be a measurable 

function. Give p S [l,+oo). If / is a p—integrable function on Rd, define the 
Lp(fi)— norm of / as follows: 

\\f\u = {[ \m\pdAkp. 

If A C Kd, and /̂  is Lebesgue measure on A, we let 

n/iu,P = {^i/(x)rd/x}", 
L"(R, B, M) = L„(M) = {/ : Kd — K| | | / I U < +oo}, 

U>{A) = {/ : Rd — R| 11/IU.p < +oo}, 

where 23 is a cr—algebra on R. And Cp is a sub-class of collection of continuous 
fuzzy functions that !Fo(M.)d —• .Fo(R). For n, m € N, by /inXm w e denote 
the collection of all fuzzy matrices with n rows and m columns. For x 1 = 
(x} , . . . , ^ ) , x2 = 0?, . . . , : r2) G [0,1]™, we denote 

x 1 V x 2 = (xlWxl.^xiVxl), 

x1 Ax2 = (x\/\xl,...,xl
nf\x

2
n). 

Other terminologies and notations not being emphasized here, the readers may 
find them in the respective chapters, or sections, in which they are utilized. 
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§1.7 Outline of the topics of the chapters 

The book tries to develop FNN theory through three main types of FNN 
models. They are FNN's based on fuzzy operators which are respectively 
treated in Chapter II and Chapter III; Fuzzified neural networks taking reg­
ular FNN's and polygonal FNN's as main components, which are dealt with 
by Chapter IV and Chapter V, respectively; Fuzzy inference networks being 
able to realize the common fuzzy systems, such as Mamdani fuzzy systems, 
T-S fuzzy systems and stochastic fuzzy systems and so on, which are handled 
in Chapter VI, Chapter VII and Chapter VIII. In each chapter we take some 
simulation examples to illustrate the effectiveness of our results, especially the 
FNN models and the learning algorithms related. 

Chapter II treats two classes of FNN models—feedforward fuzzy associative 
memory (FAM) for storing fuzzy patterns, which can also recall right fuzzy 
patterns stored, and fuzzy adaptive resonance theory (ART) for classifying 
fuzzy patterns. A fuzzy pattern related can be expressed as a vector whose 
components belong to [0, 1]. To improve the storage capability of a FAM, we in 
§2.1 build a novel feedforward FNN—FAM with threshold, that is, introduce 
a threshold to each neural unit in a FAM. Some equivalent conditions that a 
given family of fuzzy pattern pairs can be stored in the FAM completely are 
established. Moreover, an analytic learning algorithm for connection weights 
and thresholds, which guarantees the FAM to store the given fuzzy pattern pair 
family is built. To take advantage of the adaptivity of neural systems we build 
two classes of iteration learning algorithms for the FAM, which are called the 
fuzzy delta algorithm and the fuzzy BP algorithm in §2.2 and §2.3, respectively. 
§2.4 focuses on a fuzzy classifying network—fuzzy ART. After recalling some 
fundamental concepts of ART1 we define a fuzzy version of ART1 through fuzzy 
operators 'V' and 'A'. We characterize the classifying procedure of the fuzzy 
ART and develop some useful properties about how a fuzzy pattern is classified. 
Finally, corresponding a crisp ARTMAP we propose its fuzzy version—fuzzy 
ARTMAP by joining two fuzzy ART's together. Many simulation examples 
are studied in detail to illustrate our conclusions. 

Chapter III deals with another type of FNN's based on fuzzy operators 'V 
and 'A'— feedback FAM's, which are dynamic FNN's. We focus on two classes 
of dynamic FAM's, they are fuzzy Hopfield networks and fuzzy bidirectional as­
sociative memories (FBAM's). §3.1 reports many useful dynamic properties of 
the fuzzy Hopfield networks by studying attractors and attractive basins. And 
based on fault-tolerance we develop an analytic learning algorithm, by which 
some correct fuzzy patterns may be recalled through some imprecise inputs. To 
improve the storage capability and fault-tolerance the fuzzy Hopfield networks 
with threshold are reported in §3.2. It is also shown that the dynamical sys­
tems are uniformly stable and their attractors are Lyapounov stable. In §3.3 
and §3.4 the corresponding problems for FBAM's are analyzed, systematically. 
At first we show the fact that the FBAM's converge their equilibrium stables, 
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i.e. attractors or limit cycles. And then some learning algorithms based on 
fault-tolerance are built. Many simulation examples are shown to illustrate 
our conclusions. The transitive laws of attractors, the discrimination of the 
pseudo-attractors of this two dynamical FNN's are presented in §3.5 and §3.6, 
respectively. The basic tools to do these include connection networks, fuzzy 
row-restricted matrices and elementary memories and so on. 

Chapter IV develops the systematic theory of regular FNN's by focusing 
mainly on two classes of important problems, they are learning algorithms for 
the fuzzy weights of regular FNN's and approximating capability, i.e. universal 
approximation of regular FNN's to fuzzy functions. To this end, we at first 
introduce regular fuzzy neurons, and present their some useful properties. Then 
we define regular FNN's by connecting a group of regular fuzzy neurons. Here 
a regular FNN means mainly a multi-layer feedforward FNN. And give some 
results about the I/O relationships of regular FNN's. Buckley's conjecture 'the 
regular FNN's can be universal approximators of the continuous and increasing 
fuzzy function class' is proved to be false by a counterexample. However it can 
be proven that regular FNN's can approximate the extended function of any 
continuous function with arbitrarily given degree of accuracy on any compact 
set of J-'c(K). In §4.3 we introduce a novel error function related to three layer 
feedforward regular FNN's and develop a fuzzy BP algorithm for the fuzzy 
weights. The basic tools to do that are the V — A function and the polygonal 
fuzzy numbers. Using the fuzzy BP algorithm we can employ a three layer 
regular FNN to realize a family of fuzzy inference rules approximately. To 
speed the convergence of the fuzzy BP algorithm, §4.4 develops a fuzzy CG 
algorithm for the fuzzy weights of the three layer regular FNN's, whose learning 
constant in each iteration is determined by GA. it is also shown in theory 
that the fuzzy CG algorithm is convergent to the minimum point of the error 
function. Simulation examples also demonstrate the fact that the fuzzy CG 
algorithm improves indeed the fuzzy BP algorithm in convergent speed. In 
§4.5 we take the fuzzy Bernstein polynomial as a bride to show that the four 
layer feedforward regular FNN's can be approximators to the continuous fuzzy 
valued function class. The realization steps of the approximating procedure are 
presented and illustrated by a simulation example. Taking these facts as the 
basis we in §4.6 develop some equivalent conditions for the fuzzy function class 
Cp, which can guarantee universal approximation of four layer regular FNN's 
to hold. Moreover, an improved fuzzy BP algorithm is developed to realize 
the approximation with a given accuracy. Thus, the universal approximation 
problem for four layer regular FNN's is solved completely. Finally in the chapter 
we in §4.7 employ a regular FNN to represent integrable bounded fuzzy valued 
functions, approximately with integral norm sense. 

In Chapter V we proceed to analyze universal approximation of regular 
FNN's. The main problem to solve is to simplify the equivalent conditions of 
the fuzzy function class Cp in Chapter IV, which can ensure universal approxi­
mation of four layer regular FNN's. The main contributions are to introduce a 
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novel class of FNN models—polygonal FNN's and to present useful properties 
of the FNN's, such as topological architecture, internal operations, I/O rela­
tionship analysis, approximation capability and learning algorithm and so on. 
To this end we in §5.1 at first develop uniformity analysis for three layer, and 
four layer crisp feedforward neural networks, respectively. For a given function 
family the crisp neural networks can approximate each function uniformly with 
a given accuracy. Also we can construct the approximating neural networks 
directly through the function family. §5.2 reports the topological and analytic 
properties of the polygonal fuzzy number space ^™(R), for instance, the space 
is a completely separable metric space; also it is locally compact; a subset in 
the space is compact if and only if the set is bounded and closed; a bounded 
fuzzy number can be a limit of a sequence of polygonal fuzzy numbers, and 
so on. Moreover, Zadeh's extension principle is improved in J^"(M.), by devel­
oping a novel extension principle and fuzzy arithmetic. Thus, many extended 
operations such as extended multiplication and extended division and so on 
can be simplified strikingly. Based on the novel extension principle §5.3 defines 
the polygonal FNN, which is a three layer feedforward network with polygo­
nal fuzzy number input, output and connection weights. Similarly with §4.3 
a fuzzy BP algorithm for fuzzy weights of the polygonal FNN's is developed 
and it is successfully applied to the approximate realization of fuzzy inference 
rules. §5.4 treats universal approximation of the polygonal FNN's, and shows 
the fact that a fuzzy function class can guarantee universal approximation of 
the polygonal FNN's if and only if each fuzzy function in this class is increas­
ing, which simplifies the corresponding conditions in §4.6, strikingly. So the 
polygonal FNN's are more applicable. 

Chapter VI deals mainly with the approximation capability of generalized 
fuzzy systems with integral norm. The basic tool to do that is the piecewise 
linear function that is one central part in §6.1. Also a few of approximation 
theorems for the piecewise linear functions expressing each Lp(fi)— integrable 
function are established. In §6.2 we define the generalized fuzzy systems which 
include generalized Mamdani fuzzy systems and generalized T-S fuzzy systems 
as special cases. And show the universal approximation of the generalized 
fuzzy systems to Lp(/j,)— integrable functions with integral norm sense; For 
a given accuracy e > 0, a upper bound of the size of fuzzy rule base of a 
corresponding approximating fuzzy system is estimated. One main impediment 
to hinder the application of fuzzy systems is 'rule explosion' problem, that is, 
the size of the fuzzy rule base of a fuzzy system increases exponentially as 
the input space dimensionality increasing. To overcome such an obstacle we 
in §6.3 employ the hierarchy introduced by Raju et al to define hierarchical 
fuzzy systems, by which the 'rule explosion' problem can be solved successfully. 
Moreover, a hierarchical fuzzy system and the corresponding higher dimension 
fuzzy system are equivalent. So the hierarchical fuzzy systems can be universal 
approximators with maximum norm and with integral norm respectively, on 
which we main focus in §6.4. Thus, the fuzzy systems can also applied to the 
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cases of higher dimension complicated system. Many simulation examples are 
presented to illustrate the approximating results in the chapter. 

Some further subjects about approximation of fuzzy systems are studied in 
Chapter VII, that is, we discuss the approximation capability of fuzzy systems 
in stochastic environment. To this end we in §7.1 recall some basic concepts 
about stochastic analysis, for instance, stochastic integral, stochastic measure 
and canonical representation of a stochastic process and so on. §7.2 introduces 
two class of stochastic fuzzy systems, they are stochastic Mamdani fuzzy sys­
tems and stochastic T-S fuzzy systems, which possess many useful properties. 
For example, their stochastic integrals with respect to an orthogonal incremen­
tal process exist, and the stochastic integrals can expressed approximately as an 
algebra summation of a sequence of random variables. Using the fundamental 
results in §6.2 the systematic analysis of approximating capability of stochastic 
fuzzy systems including stochastic Mamdani fuzzy systems and stochastic T-S 
fuzzy systems with mean square sense is presented, which is central part in 
§7.3 and §7.4, respectively. Learning algorithms for stochastic Mamdani fuzzy 
systems and stochastic T-S fuzzy systems are also developed, and approxi­
mating realization procedure of some stochastic processes including a class of 
non-stationary processes by stochastic fuzzy systems are demonstrated by some 
simulation examples. 

Chapter VIII focuses mainly on the application of FNN's in image restora­
tion. At first we treat fuzzy inference networks within a general framework, and 
so §8.1 introduces a general fuzzy inference network model by define generalized 
defuzzifier, in which includes the common fuzzy inference networks as special 
cases. In theory the generalized fuzzy inference networks can be universal ap­
proximators, which provides us with the theoretic basis for the applications of 
generalized fuzzy inference networks. In dynamical system identification we 
demonstrate by some real examples that the performance resulting from gen­
eralized fuzzy inference networks is much better than that from crisp neural 
networks or fuzzy systems with the Gaussian type antecedent fuzzy sets. In 
§8.2 we propose the FNN representations of a 2-D digital image by define the 
deviation fuzzy sets and coding the image as the connection weights of a fuzzy 
inference network. Such a representation is accurate when the image is un-
corrupted, and the image can be completely reconstructed; when the image is 
corrupted, the representation may smooth noises and serve as a filter. Based 
on the minimum absolute error (MAE) criterion we design an optimal filter 
FR, whose filtering performance is much better than that of median filter. FR 
can preserve the uncorrupted structure of the image and remove impulse noise, 
simultaneously. However, when the noise probability exceeds 0.5, i.e. p > 0.5 
FR may result in bad filtering performance. In order to improve FR in high 
probability noise, §8.3 develops a novel FNN—selection type FNN, which can 
be a universal approximator and is suitable for the design of noise filters. Also 
based on MAE criterion, the antecedent fuzzy sets of the selection type FNN 
are adjusted rationally, and an optimal FNN filter is built. It preserves the 



Chapter I Introduction 21 

uncorrupted structures of the image as many as possible, and also to a greatest 
extend it removes impulse noise. So by the FNN filter the restoration image 
with high quality may be built from the corrupted image degraded by high 
or low probabilities impulse noises. Further, the FNN filter also can suppress 
some hybrid type noises. By many real examples we demonstrate tha t the 
restoration images with good performances can be obtained through the filter 
FR, or the FNN filter. Especially the filtering performances of FNN filters to 
restore high probability (p > 0.5) noise images may be much bet ter than tha t 
of RS type filters, including RCRS filter. 
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CHAPTER II 

Fuzzy Neural Networks for Storing 
and Classifying 

If the fuzzy information handled by a FNN flows in one direction, from 
input to output, such a FNN is called a feedforward FNN. In this chapter, we 
focus mainly on such feedforward FNN's whose internal operations are based 
on the fuzzy operator pair 'V — A', which is called fuzzy associative memories 
(FAM's). A FAM constitutes a fuzzy perceptron, which was firstly proposed 
by Kosko B. about in 1987. It is developed based on a crisp feedforward neural 
network by introducing the fuzzy operators 'V' and 'A'. The fuzzy information 
can be described by vectors in [0, 1]". An important subject related to FAM's 
is the storage capacity of the network [9, 10, 20, 23, 48], since the hardware 
and computation requirements for implementing a FAM with good storage 
capacity can be reduced, significantly. So there exist a lot of researches about 
the storage capacity of FAM in recent years. At first Kosko [25] develops a 
fuzzy Hebbian rule for FAM's, but it suffers from very poor storage capacity. 
To make up the defects of the fuzzy Hebbian rule, Fan et al improve Kosko's 
methods with maximum solution matrix in [12] to develop some equivalent 
conditions, under which a family of fuzzy pattern pairs can be stored in a 
FAM, completely. Recent years FAM's have been applied widely in many real 
fields, such as fuzzy relational structure modeling [18, 21, 39], signal processing 
[42], pattern classification [43, 45-47] and so on. 

The classifying capability is another important subject related to the storage 
capacity of a FNN. The stronger the classifying ability of a FNN is, the more 
the FNN can store fuzzy patterns. By introducing the fuzzy operators 'V' and 
'A' the crisp adaptive resonance theory (ART) can be generalized as a FNN 
model—fuzzy ART, which can provide us with much easier classification for a 
given fuzzy pattern family [7]. 

In the chapter we present further researches about FAM's in storage ca­
pacity, learning algorithm for the connection weight matrices, associative space 
and so on. Some optimal connecting fashions of the neurons in a FAM, and 
some learning algorithms are developed based on storage capacity of the FAM. 
Finally we propose some systematic approaches to deal with the fuzzy ART, 
and its many classifying characteristics are developed. Some real examples 
show stronger classifying capability of the fuzzy ART. 
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§2.1 Two layer max—min fuzzy associative memory 

Since the fuzzy operators 'V' and 'A' can adapt the outputs to prefix range, 
such as [0, 1], also the operation 'A' is a threshold function [2, 3], no transfer 
function in FAM's is considered in the following. Suppose the input signal 
x G [0, 1]", and the output signal y G [0, l ] m . Thus the input—output (I/O) 
relationship of a two layer FAM can be expressed as: y = xoW, where 'o' means 
'V —A' composition operation, W = (wij)nxm G [inxm is the connection weight 
matrix, that is, if let x = (xi, ...,xn), y = (yi, ...,ym), then 

n 

Vj = \/{xlAwij} (j = l,...,m). (2.1) 

Give a fuzzy pattern pair family as (X, y) = {(x^, y^)IA; G P } , where x^ = 
{x'{,...,x^), yk = (2/1, . . . ,^) , and P = {l,...,p} (p G N). One of the main 
objects for studying (2.1) is to develop some learning algorithms for W, so that 
each pattern pair in (X, y) can be stored in (2.1). Next let us present the 
topological architecture corresponding to (2.1), as shown in Figure 2.1. 

Input layer Output layer 

Figure 2.1 Topological architecture of two layer max-min FAM 

For the fuzzy pattern pair family (X, y)= {(xfc, yjfe)|A; G P } , Kosko in [25] 
develops a fuzzy Hebbian learning algorithm for W, that is by the following 
formula W can be established: 

W=\f{xJoyk}, (2.2) 
feeP 

where x j means the transpose of Xfc. The analytic learning algorithm (2.2) 
can not ensure each pattern pair (xfc, y^) (k G P) to be stored in (2.1). To 
guarantee more pattern pairs in (<¥, y) to be stored in (2.1), we improve the 
algorithm (2.2) in the following. Denote M = {1, .. . ,ra}, N = {1, . . . ,n}, and 

Gij(X, y)= {k G P|x<= > yk
3}, Eij(X, y)= {k G P|x* = $ } , 

GEaix, y)= Gtj(x, y)uEij{x, y), 
U3{x, y)= {k G P | 4 < y*}, LE^X, y)= Ltj(x, y)uEtj(x, y). 
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By the following analytic learning algorithm we can re-establish the connection 
weight matrix W = W0 = (w^Onxm in (2.1): 

4 = J keGtj(x,y) (2.3) 

I 1, G y ( * , j ; ) = 0 

For i G N, j € M, define the sets S^(W0,y) and M™ respectively as follows: 

sg(w0,y)= {k e GE„(*, y)|y* < «;?.}; 
AT" = {W G Mnxml Vfc G P, xfe o W = yfe}. 

Theorem 2.1 For i/ie given fuzzy pattern pair family {(xfe, y/c)|fc G P} , 
and Wo = (wy)nXTO, we have 

(i) Vfc G P, x/c o Wo C yfe, and if the fuzzy matrix W satisfies: Vfc G 
P, Xfe o W C yfe, t/ien W c W0; 

(ii) If Mw ^ 0, it /oHows tfiai, Wo G Mw, and VW = (wy)„ x m G 
M " , W C W0, i.e. Vi G N, j G M, wy < w%; 

(in) The set Mw ^ 0 if and only ifMj G M, |J S?AW0, y) = P. 

Proof, (i) By the definition of Wo, Vfc € P, Vj G M, easily we can show, 
k G Gij(X, y), => w% < y). Moreover 

VK-A*?}=( V KAxf})v( \/ «-A*?})<i£. 
i e N iifceGy (AT, y) iife^Gy^.y) 

Therefore, Vfc G P, xfe o W0 C yfe. Also if W G fnxm satisfies the given condi­
tions, then we can conclude that 

V K A &„}< y), = * Vi G N, Wy A xf < y*, ^ Vfc G Gy (*, ? ) , wy < j£. 

So if Gy(.Y, y ) ^ 0, wi:j < A {y?}, by (2.3) we have, Vi G N, j G M, Wij < 
fceP 

wfj, that is, W c W°. So (i) is true. 
(ii) By the assumption we suppose W = (u>ij)nxm G Mw. For any fc G 

P, j G M, we can conclude that 

V {a£ A Wy } = y), => Vi G N, m y A a:,* < y£, = » Vfc G Gy (A", y), Wij < y). 

Similarly with (i) we can show, W C W°. Also for any k G P, j G M, it is easy 
to show the following fact: 

Vi G N, «,° A x\ < y%, ̂ y)>\l {*? A w%}> \ / {x* A «;y }= y*. 
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Thus, V K f c A «;?•}= yk, =*• W0 G Mw. (ii) is proved. 

(iii) Let Mw £ 0, and W = (Wlj)nxm G AT". Then by (i), W0 = ( tc? . ) B X m G 

r , W c W0. If there is j 0 G M, satisfying | J 5 g ( W 0 ) y ) ^ P , then there 
i6N 

exists k0 G P , but Vi G N, fc0 £ ^ ( W o , ^ ) , and hence, either xh° < yk° or, 

yf0 > w%0 > Wij. Therefore, wijo A xk° < j /*°. So V K ° A wijo}< y*°, which 
i6N 

is a contradiction since I f e M™. So Vj € M, y ^ ( W Q , ? ) = P . On the other 
ieN 

hand, let | J S?(W0,y)= P (j G M). For any j G M, fc G P , there is i 0 G N, 
ieN 

so t ha t A; G 5 i 0 j . Thus 

ieN 

By the definition (2.3) for iu°-, it is easy to show 

Vi G N, j G M, fc G P , x? A «;° < yk, = J - \ / {a:* A «;° } < j , ; 

ieN 

Synthesizing (2.4) we get, W0 G Mw, =4> M™ ^ 0. (iii) is t rue. D 

(2.4) 

Input layer Hidden layer Output layer 

Figure 2.2 Topological architecture of three layer FAM 

In the network (2.1), for the given connection weight matr ix W G / i „ x m , 
define 

P%{W) = {(x, y ) G [0, l ] n x [0, l p | x o W = y } , 

The set P£(W) is called the associative space of (2.1). In practice, a main 
problem to study FAM is how to design the network (2.1) so tha t it can store 
as many fuzzy pat tern pairs as possible, which can be viewed as such a problem 
tha t enlarging the associative space of (2.1). For the FAM's based on the fuzzy 
operator pair 'V — A', it is impossible to t reat the problem by increasing unit 
or, node layers of FAM's. To account for the fact, we propose a three layer 
FAM, as shown in Figure 2.2. 
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Suppose the output of the hidden unit k in Figure 2.2 is Ofc, then the cor­
responding I / O relationship can be expressed as follows: 

n , 
ofc = V {xi Awik] (k = i , - > 0 > 

'71
 2 (2-5) 

Vj = V {ok A wj j j} 0' = 1. - , " » ) • 
fe=i 

(2.5) s tands for a three layer FAM. Next let us prove tha t the storage capacities 
of (2.1) and (2.5) are identical. 

T h e o r e m 2.2 Let W1 = (w^)n><l, W2 = ( ^ ' ) , x m , and P3
0(Wi, W2) is 

the associative space of the three layer FAM (2.5), i.e. 

PSiWuWi) = {(x, y)\x=(Xl,...,xn), y = ( j / i , . . . ,y m ) satisfy (2.5) }. 

Then we can conclude that 
(i) For given Wx,W2, there is W E nnxm, so that P3

a(Wi, W2) C P2{W)\ 
(ii) If l > m An, then for given W G / J „ X m , there are W\ G / i n X j , W2 G 

Mjxm, so «ia< P2{W) c P3
a(Wi, Wb). 

Proo/. (i) For any ( x , y ) G P 3
a ( W i , W 2 ) : x = (x 1 ; . . . ,£„) , y = (yi, . . . , y m ) , 

by the assumption we get 

yj = V{(V(^AWW}Wy}= V J V ^ A ^ A ^ } } 
fe=l"- \ = 1 ' > fc=l < - i = l J 

= V{V{ *«A« ,WAt«g>} }= V{»«A(V{ t i ,WA W g>} ) } , 

(2.6) 
where, j G M. Define the connection weight matr ix of (2.1), W = (wij)nxm as 
follows: 

*"« = V iwik A wfci} (* e N, j G M). 
fe=i 

Then by (2.6) it follows tha t , V(x ,y) G P 3
a (Wi ,W 2 ) : x = (xu ...,xn),y = 

{yi,-,ym), we have 
n 

V j G M , %- = ^ { x i A W i j } , 
i=i 

i.e. x o f = y , = > ( x , y ) e P 2
a (W). Therefore, P 3

0 (Wi ,W 2 ) C P$(W). (i) is 
proved. 

(ii) Let I > TO. For any (x, y ) G P$(W) : x = (a*, ...,£„)> y = (Vl, ...,ym), 
n 

then for j G M, %• = V {^i A w»j}. For i e N, j G M and fc = 1,... , I, define 
»=i 

( 1 ) j wik, k<m, (2) \ 1, k<m, k=j 
ik = \ wki = { 

1 0 , TO < k < I; I 0, otherwise. 
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Then for k = 1,..., I, by (2.5) easily we can get 

J1, (1) J \J {xt Afflji;}, k < m, 

m < k < I. 

Thus, we may conclude that 

i 

Vj G M, \f {ok A w$}= OJ = \J{xi A Wlj} = %• 
fc=i 

,(2)1 So if let W1 = {w^)nxl, W2 = H y ) f c x m , then (x,y) e P3
a(Wi, WO- There­

fore, P%(W) C P3°(Wi, W2). (h) is proved. D 

By Theorem 2.2, increasing unit layer of a FAM based on 'V — A' can not 
improve the storage capacity. To improve FAM's in their storage capacity or 
associative space, let us now aim at the optimization of the connecting fashions 
among the units. 

2.1.1 FAM with threshold 

In the FAM's as shown in Figure 2.1, we introduce thresholds Cj, dj to the 
input unit i and output unit j , respectively, where i £ N, j G M. Then the 
corresponding I/O relationship can be expressed as 

Vi = 
n n 

(\f{(xi V a) A Wijfydj = \J{(xiVCiV dj) A (Wij V dj)}, (2.7) 

(2.7) is called a FAM with threshold. Using the fuzzy matrix W = (wij)nxm 

and the fuzzy vector c = (c\,..., cn), d = (dj,..., dm) we re-write (2.7) as 

y = ( ( x V c ) o l f ) v d . (2.8) 

For j G M, we introduce the following set: 

Ji(x, y)= {j e M\LEij(x, y)± 0}. 

By the following (2.9) (2.10) we establish the connection weight matrix WQ = 
(w°j)nxm and the threshold vectors c° = (c\, ...,c°), d° = (dj, ...,d^) : 

A {ykj}, Gafry^Q, 
keGtj(x,y) (2.9) 

Gij(X,y)=9; 

keLEij(x,y)jeJi(x,y) (2.10) 

{ 0, Ji(X,y)=9. 

wi3 = < 

v 1, 
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And d° = A {Vj}- F o r « £ N, j 6 M, define the sets 
fcep 

TGij((X,c0);d0,y)= {k G P\x* Vc° Vd? > j / * } , 

T£7y ((Ar,c0);do,y)= {fc G P|xf Vc»V dj = $ } , 

r L y ( ( * , c 0 ) ; d o , ; y ) = { f c e P | ^ V c ? V < $ < $ } , 

TG JE i j((<Y,co);d0 ,y)=TGu((A' ,c0) ;do,y)uT JB i i((A' ,co);do,3 ;) , 

T S g ( ( W 0 , d 0 ) ; y ) = {k G TGE y ( (^ , co) ;do ,y ) | l / ^ < < Vd°}. 

Since Vi G N, j € M, TG£7y ((Ar,c0);do,y)D GE^X, y), and d° < u;9. are 
obviously true, we have 

TS%((W0,d0y,y)= {k G TGEtJ((X,co);d0,y)\y* < «;?•}, 

r 5 g ( ( W 0 , d o ) ; y ) D 5 g ( W o , y ) . 

In (2.8) we give the connection weight matrix W G fJ,nxm, and the threshold 
vectors c, d. Define the set 

TPa(W, c, d ) = {(x, y) G [0,1]" x [0, i r | ((x V c ) o W ) v d = y } . 

We call TPa(W, c, d) the associative space of the FAM with threshold. Let 
{(xfe, yfe)|fc G P} be a given fuzzy pattern pair family, define 

Mwcd = ^ c d ) | v f c e P ) ((xfc V c) o W)vd = y f c}. 

Theorem 2.3 Let W = {wij)nxm^ Vnxm, c = (ci,...,cn) G [0, l]n, and 
d = {dl,...,dm) G [0,l]m , (W, c, d)e M ,ucd. Then Vi G N, j G M, toy < 
< • , d,- < d°. 

Proof. Let a, 6 e [0, 1], define '(f)' as follows: 

„ , f 1, a < 6, 
w [ &, a > 5 . 

Then we can show, Va, 6, c G [0, 1], a (S) (a A b) > b. And b > c, = > a (s) 6 > 
a © c . Since (W, c, d) G M™^, it follows that Vj G M, dj < /\ {y^} = d°. 

keP 
So next it suffices to prove Wij < w%. If Gi:j (X, y)= 0, then w% = 1 > Wij. If 
Gij(X, y)^ 0, there is k0 G Gi:j(X, y), so that 

vf= A 0/*}>^< = A {»*} = y*°<^°-
keGij{x,y) keGi:i(x,y) 
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Using the definition of '(§)' and the assumptions easily we can show 

w% = y*°=x*°®y*°=x*°®(y^{(xl;?Vci,VdJ)A(wl,JVdJ)}) 

> xk°®)(xko Aw^^Wij. 

The theorem is therefore proved. • 

By Theorem 2.3, c° , WQ defined by (2.9) possess a maximality with the 
sense of storing fuzzy pat terns . 

T h e o r e m 2.4 Let (W, c, d) G Mwcd. Then there is a threshold vector 
ci = (c{, •••,c1

n), so that Vi G N, c\ < c°, and (W, Ci, d 0 ) G Mwcd. 

Proof. For any i G N, define cj as follows: 

c l _ J tePj'EM 

I o, Ji(^,y)=0. 
If J ^ * , y)= 0, then 4 = 0 < c°, and VA: € P , j G M, a^ > t/£. Then by (2.9) 

and Theorem 2.3 it follows tha t xk > wfj V d° > ?% V dj. Therefore 

Ji{X, y)= 0, = > (x,fc V Q V dj) A (wy V dj) = Wij V d^ 

< (xf V c\ V d°) A (toy yd^)<ykj. 
(2.11) 

If Ji(<Y, y ) ^ 0, define the set KJfay) = {(k,j) G P x M|C i > $}. If 

X J i ( c , y ) = 0, then we get 

V j G M , keP,Cl<yk, Ci< f\ {ykj} = c\. 
fceP,j6M 

Therefore Vj G M, k G P , by KJi(c,y) = 0, we imply 

(a£ V c» V dj) A (ioy V d,-) < (xk V cj V d°) A (u^- V d°) < y). (2.12) 

If KJi(c, y) ^ 0, then we can conclude tha t 

(k,j) G KJi(c,y),^Wij < yk,=^wij < /\ {yk}. 

Also it is easy to show the following facts: 

A {y"}< A {*?}; ««<A{tf}-
(kj)eKJi(c,y) (k,j)<£KJi(c,y) feeP 

Tha t is, when KJi(c,y) ± 0 (2.12) holds also. So 

J < ( # , y)^ 0, = * (arf V Q V d,-) A (iwy V d,-) = Wy V d^ 

< (a;,* V cj V d°) A (wij V d°) < j / * . 
(2.13) 
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Thus, by (2.11) (2.13) and (W, c, d) G Mwcd, we get 

V {{x* V a V dj) A {wij V dj)} Vki 
«GN 

< 

( V { ( ^ V c . V ^ A K V r f ^ V 
i\ji(x,y)=<b 

v( V {fa? v ci v dj) A (ŵ - v dj)}) 
i\Ji(x,y)jtiD 

( V {(^VcJv^AKV^jjv 
i | J i (Af ,y)=0 

v ( V { ( ^ V c J V d P ) A K - V d ? ) } ) 

= V {Kfc V 4 V d°) A («,y V d°)}< y). 

Hence Vj G M, k € P, V {(xi v 4 v d°) A (wij v rf°)} = 2/j- T h a t is> Y = 
i6N 

((x V ci) o W)\/d0. Consequently, (W, c±, d0) G Mwcd. U 

Lemma 2.1 Suppose j G M, fc G P. TTien i/ie following facts hold: 

V) = V {(^Vc?Vd»)A(« ,? .VdJ)} 
i | fceTS°((Wo,d0);y) 

> V { (^Vc?Vd?)A(« ;? .Vd° )} . 
»|fe^TSg((W0,do);y) 

Proo/. If fc ̂  TSg ((Wo, d0); 3>), then 

either rrf V c° V d° < y) or, x* V c? V d] > y) > w°- V d°j, 

which can implies, (xf V c° V d°) A (w -̂ V d°) < yj\ Therefore 

V { ( x , f c V c ° V d ° ) A ( < V d ° ) } < ^ . 

»|fe0TSG((Wo>do);y) 

If fc G TSg ((Wo, d0); y), then we have 

either x\ V c° V d° = ^fe < UJ^ V d? or, a;̂  V c° V d° > y*\ 

And y1? < w^ V d°. Also by the definitions of w^ and d°, it follows that 
w^ Vd° < yky Hence 

< • V d° = y), {x\ V c° V d°) A {w% V d°) = y). 
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That is, the following equality holds: 

V {(:r*Vc?Vd?)A«.Vd?)}=$. 
i|feeTSg((Wo,do)iy) 

And hence the lemma is proved. D 

Theorem 2.5 For the given fuzzy pattern pair family {(x^, yjt)|fc G P}, 
the set Mwcd ± 0 if and only iflj G M, (J TS§((W0, do); y) = P. 

ieN 

Proof Necessity: Let W = {wij)nXm G Hnxm, c = (ci, ...,c„) G [0, l ] n , 
d = (di,. . . ,dm) G [0,1]"\ so that (W,c,d) G Mwcd. If the conclusion is 
false, there is j 0 G M, satisfying \J TS!?jo((Wo,d0);y)=£ P. Thus, there is 

i€N 

it € P, so that Vi 6 N, ̂  TS?jo((W0,d0);y). Therefore, Vi G N, either 
A; G TLijo((X,co);do,y) or, fc G TG£ i i o ((<Y,c0);do,3>), y% > w°ijo Vd°. So 

V{(4vc°V^)A(« ; ° ,Vd°)} 

= ( V {(x*VC°Vd°)A(™°. Vd°)})v 
i\keTGEiJ0 ({W0,c0);do,y) 

(2.14) 
V ( V {(a? V c? V d?) A («;«• V d°)}) < j , * . 

i\keTLiJO((Wo,c0);do,y) 

By the assumption and Theorem 2.4, there is a fuzzy vector Ci = (c{, ••••,c]l) : 
Vi G N, c\ < c°, so that (W, cly d0) G M™cd. So by (2.14) and Theorem 2.3 it 
follows that 

y)Q = V {Kfe vc, vd,) A (Wij vd,-)}= V {(*? v 4 vd°) A (Wij vd°)} 
ieN i€N 

< V {(*? V c? V d?) A («,?.V <$)}<*,£, 
i6N 

Which is a contradiction. The necessity is proved. 
Sufficiency: Vj G M, k G P, there is i G N, so that fc G TS ,g((Wo,d0);y). 

Hence if let Wij = wf,, ci = c°, dj = d̂  then Lemma 2.1 implies that 

V {{x\ V a V dj) A (wi;/ V dj)} 
ieN 

= ( V { (**Vc°Vd°)AK> Vd°)})v 
i |fe6TSg((Wo,d0) ;y) 

v ( V {(a;?Vc?VdQ)A(«;P.VdP)}) 
»l*^Sg((Wo,do)iy) 

V {(s?Vc°Vd?)A(u,? .Vd?)}=y*. 
i|fceT5g((Wo,d0);y) 
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Then put W0 = (w°), c0 = (c?,...,c°), d0 = « . . . , ( # , ) . Thus, (W0,c0,d0) G 
Mwcd. That is, M w < ! ^ 0. • 

Theorem 2.6 -For a given fuzzy pattern family {(xjt, yjfc)|fc € P}, ief M™ ^ 
0, i.e. there is W G /i„Xm, so f/iaf Vfc € P, xfc o W = yfc. Le£ W0 = (w^), c0 = 
(c?,...,c°), d0 = « . . . , < & ) . T/iCTl (Wb, co, d0) G M-C d . 

Proof. By Theorem 2.1 we get, 

VjGM, U 5 g ( W 0 , y ) = P . 

Since 5g(W 0 ) y) C TSg((Wo,do);y) , it follows that U TS?((W0,d0);y) = 

P. Theorem 2.4 implies, Mwcd ^ 0, and (W0 ,c0 ,d0) G M - . D 

2.1.2 Simulation example 

In the subsection we demonstrate that FAM (2.8) with threshold possesses 
good storage capacity by a simulation example. Let N = {1, 2, 3, 4, 5}, M = 
{1, 2, 3}, and P = {1,. . . , 8}. By Table 2.1 we give a fuzzy pattern pair family as 
{(xfc, yfc)|fc G P}. Using the following steps we can realize the algorithm (2.9). 

Table 2.1 Fuzzy pattern pair family 

k xfc yk 

(0.5,0.5,0.4,0.4,0.3) 

(0.1,0.3,0.3,0.4,0.4) 

(0.8,0.4,0.6,0.7,0.4) 

(0.3,0.4,0.4,0.3,0.4) 

(0.6,0.4,0.7,0.7,0.5) 

(0.1,0.1,0.2,0.2,0.1) 

(0.7,0.2,0.4,0.3,0.2) 

(0.8,0.4,0.3,0.4,0.2) 

(0.5,0.6,0.3) 

(0.5,0.6,0.4) 

(0.6,0.8,0.4) 

(0.5,0.6,0.4) 

(0.7,0.7,0.5) 

(0.5,0.6,0.3) 

(0.5,0.7,0.3) 

(0.5,0.8,0.3) 

Step 1. For any i e N, j G M, calculate the sets Gij(X, y), LEi:j(X, y), 
and establish «;?•, c°, o!°; 

Step 2. For i G N, j € M, calculate and determine the following sets: 

TGij((X,co);d0,y), T£^( (* ,co) ;do , ;y ) , 

TGE^((X,c0);d0,y), TSg((W0 , do) ;?) ; 

S'iep 5. For any j G M, discriminate the following equality: 

U T S g ( ( W 0 ) d 0 ) ; y ) = P ? 
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if yes go to the following step, otherwise go to Step 5; 
Step 4. Put Wo = K ) , c0 = (c°, ...,c°), d0 = (d°, . . . , < ) ; 
Step 5. Stop. 
By above steps we get, c0 = (0.3,0.3,0.3,0.3,0.3), d0 = (0.5,0.6,0.3), the 

threshold vectors of input units and output units, respectively, the connection 
weight matrix WQ as follows: 

Wtf 
0.5 

1.0 

0.3 

1.0 

1.0 

0.3 

1.0 

1.0 

0.3 

0.6 

1.0 

0.3 

1.0 \ 

1.0 

1.0 j 

we may easily show that the given fuzzy pattern pair family {(xj,, yk)\k G 
P} satisfies the conditions that for each j € M, [j TS^((W0,d0);y) = P. So 

i€N 
by Theorem 2.5, all fuzzy pattern pairs in Table 2.1 can be stored in FAM (2.8). 
If we use the Hebbian learning rule, easily we may imply that only (X5, y$) 
can be stored in FAM (2.1) [38]. Therefore, we can improve a FAM in storage 
capacity by introducing suitable thresholds and learning algorithms. 

§2.2 Fuzzy 5—learning algorithm 

Introducing threshold to units and designing analytic learning algorithm 
can improve a FAM as (2.1) in its storage capacity. However, analytic learning 
algorithm can not show the adaptivity and self-adjustability of FAM's. To 
overcome such defects we in this section develop a dynamic learning scheme, 
the fuzzy 5—learning algorithm, and present its convergence. 

2.2.1 FAM's based on 'V - A' 

Give a fuzzy pattern pair family {(x^, yfc)|fc G P}, and by the matrices 
X, Y we denote X = (xi, . . . ,x p )T , Y = (yi, •••,yP)T, that is 

X 

I x\ 

x\ 

\ x \ 

x2 

x2 

•• x\ \ 
•• X2 

•• < J 

; Y = 

( v\ 
v\ 

\vl 

y\ • 

y l • 

y l • 

•• y \ n \ 

•• 2 /m 

•• yp
m J 

Then all (xi, yi) , . . . , (xp, yp) can be stored in FAM (2.1) if and only if there is 
a fuzzy matrix W = {wij)nXm, satisfying 

X o W = Y. (2.15) 

(2.15) is a fuzzy relational equation based on 'V — A' composition [27-29, 41, 
42]. All (xi, yi) , . . . , (xp, yp) are memory patterns of FAM (2.1) if and only 
if the solutions of (2.15) exist. Moreover, using the following algorithm we 
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can demonstrate the learning procedure for the connection weight matrix W 
of FAM (2.1), and establish a solution of (2.15). 

Algorithm 2.1 Fuzzy 5—learning algorithm. With the following steps we 
can realize the iteration of Wij for i G N, j G M : 

Step 1. Initialization: Vi G N, j e M, put i«ij(0) = 1 and i = 0; 
Step 2. let W(t) = {Wij(t))nxm; 
Step 3. Calculate the real output: Y{t) = X o W(£), that is 

n 

Vfc G P, Vj G M, y*(i) = \ / {a:? A t ^ ( i ) } . 
i = i 

Step ^. Adjust the connection weights: Let rj G (0, 1] be a learning constant, 
denote 

Wij(t+ 1) 
Wij (t)~V (Vj (*) " Z/j), wy (*) A x\ > y), 

u>ij(t), otherwise. 
(2.16) 

Step 5. Vi G N, j G M, discriminate Wij(t + 1) = Wij(t)l if yes stop; 
otherwise let i = i + 1, go to Step 2. 

Preceding to analyze the convergence of the fuzzy 5—learning algorithm 2.1, 
we present an example to demonstrate the realizing procedure of the algorithm. 
To this end let P = N = {1, 2, 3, 4}, and M = {1, 2, 3}. Give the fuzzy pattern 
pair family {(x^, yfc)|fc G P} for training as follows: 

xi = (0.3,0.4,0.5,0.6), yi = (0.6,0.4,0.5), 

x2 - (0.7,0.2,1.0,0.1), y2 = (0.7,0.7,0.7), 

x 3 = (0.4,0.3,0.9,0.8), y 3 = (0.8,0.4,0.5), 

x4 = (0.2,0.1,0.2,0.3), y4 = (0.3,0.3,0.3). 

Then we can establish the fuzzy matrices X, Y in (2.15) as 

X = 

I 0.3 0.4 0.5 0.6 \ 

0.7 0.2 1.0 0.1 

0.4 0.3 0.9 0.8 

\ 0.2 0.1 0.2 0.3 / 

Y = 

/ 0.6 0.4 0.5 \ 

0.7 0.7 0.7 

0.8 0.4 0.5 

\ 0.3 0.3 0.3 J 

Choose 7} = 0.8, and with 40 iterations, the sequence of connection weight 
matrices {W^i)} converges to the matrix W: 

1.000000 1.000000 0.700000 1.000000 

W'c = I 1.000000 1.000000 0.400000 0.400000 

1.000000 1.000000 0.500000 0.500000 

Obviously (2.15) is true for W. 
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T h e o r e m 2.7 Suppose the fuzzy matrix sequence {W(t)\t = 1,2...} is 
obtained by Algorithm, 2.1. Then 

(i) {W{t)\t = 1, 2, . . . } is a non-increasing sequence of fuzzy matrices; 
(ii) {W{t)\t = 1, 2, . . . } converges. 

Proof, (i) Let t mean the iteration step. For any i g N , j G M, fc G P , by 
(2.16), if x\ A Wij(t) > y), we get, y)(t) > x\ A Wij(t) > y). Then Wij(t + 1) = 
Wij(t) - v(Vj(t) ~ Vj) < Wij(t). If x\ A Wij(t) < y), then w^t + 1) = w ^ ( i ) . 
Therefore, for i € N, j € M, w ^ i + 1) < Wjj(i), = > W ( i + 1) C W(t). Tha t 
is, { ^ ( t ) ^ = 1, 2 , . . . } is a non-increasing fuzzy matr ix sequence. 

(ii) Since V* = 1, 2, . . . , Wij(t) G [0, 1], we have, Vi G N, j G M, the limit 
lim Wijit) exists, t ha t is, the matr ix sequence {W(£)|£ = 1, 2, . . . } converges. 

t—>+oo 

• 
Theorem 2.7 can guarantee the convergence of Algorithm 2.1. If the solution 

set of (2.15) is non-empty, we in the following prove the limit matr ix of the 
matrix sequence in Algorithm 2.1 is the maximum solution of (2.15). 

T h e o r e m 2.8 For a given fuzzy pattern pair family {(x/-, yk)\k G P } , 
the fuzzy matrix sequence {W(t)\t = 1,2,. . .} defined by (2.16) converges to 
WQ = {w°j)nxm, where io°- can be defined by (2.9). Moreover, if Mw ^ 0, 
then WQ G Mw is the maximum element of Mw; if Mw = 0, then WQ is the 
maximum element of the set {W\X oW C y } . 

Proof. For any i G N, j € M, if Gij(X, y) = 0, then Vfc G P , x\ < y). 

In Algorithm 2.1, for any iteration step t, we have, Wij(t) A i f ^Uj- Then by 
(2.16) it follows tha t 

Gtj(X, y)=9,=> Wij(t + 1) = Wij{t) = ••• = wi5{l) = Wij(0) = 1. (2.17) 

If Gij {X,y)j^ 0, there is k0 G Gtj (X,y), so tha t yf = f\ {y*}. Then 

keGi:i(x,y) 

Wij(0) A x'l0 = x*0 > yk°. Next let us use (2.16) to show tha t 

V i G { l , 2 , . . . } , Wij{t)>yf. (2.18) 

In fact, if t = 1, considering 1 > x\° > y^° and (2.16) we get, Wjj(l) = 

Wij{0) - V • (l/*°(0) -Vj°)=l-V (xio ~ yj°)> Vj°' w h e r e *o e N satisfies the 
following condition: 

2/,fe0 = V Ki(°) A4°}= V {4°}= <°-
i'GN i 'eN 

If (2.18) is false, there is t' G N, so tha t Wij(t') < yf. Let t0 G N : i 0 = 

max{t € N K j ( t ) > yf}. Then we get, t0 > 1, and ^ ( i o + 1) < j /*°. So by 

(2.16) it follows tha t x\Q A wi:j(t0 + 1) < y * ° , = ^ u>ij(t0 + 2) = 1 > ^fc° > 
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Wij(to + 1), which is a contradiction, since by (i) of Theorem 2.7, the fuzzy 
matrix sequence {W(t)|i = 1,2,...} is non-increasing. Hence (2.18) is true. 

Therefore, lim WiAt) > yk°. If lim wu{t) = kj > y^°, then 

Vfit)= \/ {x*? hwVj{t)},=* ^yfif)- V K ° A % } > ^ ° . (2.19) 
i'eN i'eTS 

Also by (2.16), wi:j(t + 1) = wtj{t) - r] • {yf{t) - yf). Therefore, kj = ltj -

n • ( lim y^U) - yk-°), and lim y^°(t) = yk-°, which contradicts (2.19). So 

Gy ( # , y ) ^ 0, = > lim Wij (t) = yf. Considering (2.17) we can conclude that 
' f.—y-l-no -* 

lim Wij(t) 
t—>+oo 

fceGy ( * , :v) 

i, Gij(x,y)=9, , 
< • 

So the first part of the theorem holds. And the other part of the theorem is a 
direct result of Theorem 2.1. D 

In Algorithm 2.1 if we choose the learning constant rj as an adjustable value 
changing with the iteration step t, that is 17(f), then the convergence speed of 
the algorithm can speed up, strikingly. We choose 

V ~V{)- V§{t)-y* • 

Then (2.16) is transformed into the following iteration scheme: 

(wi j -WAyJ , Wij(t)Ax$>y!j, 
Wij(t + i) = < (2.20) 

[ Wij(t), otherwise. 

By Theorem 2.8 the following theorem is trivial. 

Theorem 2.9 Let {(xjt, yfc)|fc G P} be a fuzzy pattern pair family, and 
W(t) = (wij(t))nxm be a fuzzy matrix defined by (2.20). Then the sequence 
{W(t)\t = 1,2,...} converges to WQ = (wfj)nXm as t —> +00, where wf, is 
defined by (2.9). Moreover, if Mw ^ 0, then WQ G MW is a maximum element 
of Mw; if Mw = 0, then W0 is a maximum element of the {W\X oW CY}. 

2.2.2 FAM's based on 'V - *' 

Since the fuzzy operator pair 'V — A' can not treat many real problems, it 
is necessary to study the FAM's based on other fuzzy operator pairs. To this 
end we at first present the following definition [18, 35, 42, 52]. 

Definition 2.1 We call the mapping T : [0, l ] 2 —• [0,1] a fuzzy operator, 
if the following conditions hold: 
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(1)T(0,0) = 0, T ( l , l ) = l; 
(2) If a, b,c,de [0,1], then a < c, b < d, =4> T{a, b) < T(c, d)\ 
(3) Va, b e [0,1], T(a, b) = T(b, a); 
(4) Va, 6, c G [0,1], T(T(o, 6), c) = T(o, T(6, c)). 
If T is a fuzzy operator, and Va G [0,1], T(a, 1) = a, we call T a t -norm; If 

the fuzzy operator T satisfies: Va G [0,1], T(0,a) = a, we call T a t-conorm. 
From now on, we denote T(a,b) = aTb, and write the t—norm T as '*'. 

For a, b G [0,1], define oa»& G [0,1] : aa*b = sup{a; G [0, l ] | aTx < b}. 
Let us now present some useful properties of the operator 'a*', the further 
discussions can see [18, 40, 52]. 

Lemma 2.2 Let a, b, a\, b\ G [0,1], and T be a t—norm. Then 
(i) a * (a a* b) < b, a a* (a * b) > b, (a a* b) a* b > a; 
(ii) a < ai , =>• a a» 5 > ai a , b; 
(hi) b < bi, ==>• a a* 6 < a a* 6i; 

Proof, (i) By the definition of the operator 'a*' it follows that a*(aa , fe) < 
6. Since a * b < a * b, also using the definition of 'a*' we get, a a , ( a * b ) > b. 
Moreover, considering that a* (aa*b) < b, => (a a* b) * a < b, we can conclude 
that, (aa* b) a* b > a. (i) is true. As for (ii) (iii), they are also the direct results 
of the definition of ' a , ' . • 

In (2.1) we substitute the t—norm V for 'A', and get a FAM based on the 
fuzzy operator pair 'V — *': 

yj=\/{xi*wij}(jGM). (2.21) 

If choose '©' as the 'V — *' composition operation, then (2.21) becomes as 
y = x © W. Similar with (2.1), we can in (2.21) develop some analytic learning 
algorithms and iterative learning algorithms for the connection weight matrix 
W. For a given fuzzy pattern pair family {(x^, yfc)|fc G P}, we can obtain a 
conclusion for the FAM (2.21) being similar with Theorem 2.1. To this end we 
at first design an analytic learning algorithm for W. Define W* = {w*Anxm G 
/ i n x m as follows: 

< • = A K a* y)} (* G N, j G M). (2.22) 
keP 

Recalling Sfj(W0,y) and Mw we may introduce the sets S;f(W*,X,y) (i G 
N, j G M) and M™ respectively as follows: 

s;f(w.,x,y)= {k G p\xf * w*tj > y*}, 

M? = {We MnxmlVA; G P, xfe © W = yfc}. 

Theorem 2.10 Given a fuzzy pattern pair family (X, y){(xk, yk)\k G P}, 
and W* = (w^nxrn is defined by (2.22). Then 
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(i) Vfc G P , Xfc © W* C y*;, and if the fuzzy matrix W satisfies: Vfc G 
P , xfc © W C yfc, we have, W C W*; 

(ii,) 7 / M f 7̂  0, it follows thatW* G M?, andVW = (wi:j)nxm G M f , W C 
W*, i.e. Vi G N, j € M, w^ < w*^ 

(Hi) The set M? ^ 0 if and only if Vj € M, U S*G(Wt,X,y)=P. 
ieN 

Proof, (i) For any fc G P , and j G M, by Lemma 2.2 and (2.22) it follows 
t ha t the following inequalities hold: 

VK * <)= VH * (A {*?'«• tf'})}< VK * (*?°.tf)}<tf, 
ieN i6N fc'eP ieN 

tha t is, xfe © W* C yfc. And if W = (wij)nXm G \inxm satisfies: xfc © W C 
yfc (fc G P ) , for any fc G P , j G M, we can conclude t ha t 

\ / {zf * wi:j}< yk,=^ xk * Wij <yk,=* Wij < xk a* y). 
ieN 

Therefore, w^ < /\ {xk a^y'f } = w*3. So W C W*. Thus, (i) is t rue, 
fcgp 

(ii) Let W = ( i ^ n x m G M™. Then Vfc G P , xfc © W = yfe. Similarly with 
(i) we can show, W C W*. And for any j G M, fc G P , the following fact holds: 

VK f e * U ,*J}= $> = * V Kfc * O ^ ^fc-
ieN ieN 

Lemma 2.2 and (2.22) can imply the following conclusion: 

x* * <j < *\ * {xki a*yk) < yk, = • V i x i * KH yki-

Therefore, V {xk * w*j}= yk. Tha t is, W* G M™. (ii) is proved. 

(hi) At first assume M? ^ 0, and W = (wij)nxm G M™. By (i) we 
have, W* = (w*j)nxm G M™, moreover V7 C W*. Then suppose there is 

jo G M, satisfying | J ^ ( W , , ^ , ^ ) ^ P . So there is fc0 G P , so tha t Vi G 
ieN 

N, fc0 e" S??(W*,X,y). Then we can imply the following facts: wijo * xk° < 

yk°; \/ {xk° * wijo}< yk°, which is a contradiction since W G Mw. Thus, 
ieN 

Vj G M, U S * p ( W * , * , y ) = P . Conversely, let (J ^ G ( W * , X,y)= P ( j G 
iGN i£N 

M). For any j G M, fc G P , there exists i 0 G N, satisfying fc G ^ ( W * , Af ,y) . 

And so xk
o * io,*oi > j # , = > V { 4 * < j } > »*• By the definition of w*p (2.22) 

and Lemma 2.2 it is easy to show, Vi G N, j G M, fc G P , we have a^ * w*- = 

x\ * ( A { a f a * y f } ) < i * * K f c a , ^ ) < y). Thus, V K A < , , } < yk. 
fc'eP ieN 

Therefore, W0 G M?, => M™ ^ 0. (iii) is t rue. D 
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Next let us illustrate the application of Theorem 2.10 by a simulation ex­
ample. Using the analytic learning algorithm (2.22) to establish the connection 
weight matrix W*. Let P = N = {1, 2, 3, 4}, M = {1, 2, 3}, and the t -norm * 
is defined as follows: Vo, b G [0,1], a * b = max{a + b — 1, 0}. Give the fuzzy 
pattern pair family {(xfc, y k ) | f c e P } : 

X! = (0.6,0.5,0.4,0.3), yj. = (0.3,0.6,0.1) 

x2 = (0.5,0.7,0.8,0.6), y2 = (0.6,0.5,0.4) 

x 3 = (0.4,0.7,0.6,0.4), y 3 = (0.4,0.5,0.2) 

x4 = (0.8,0.9,0.7,0.3), y4 = (0.5,0.8,0.4). 

For i G N, j G M, k € P, by the definition of '*' it is easy to show 

xi a* Uj = supja; G [0, l]|xf * x < y1*} 

= sup{z G [0, l]|x* + a; - 1 < y^} = min{l + y* - xf, 1}. 

Therefore, by (2.22), it;?. = A { 4 « * V j } = A {min{l + y) - x\, 1}}. So we 
feep /CGP 

get W* = « j ) 4 X 3 : 

0.7 0.6 0.8 1.0 

W? = I 1.0 0.8 0.7 0.9 

0.5 0.5 0.6 0.8 

Moreover, for i G N, j G M, 5 ^ ( 1 ^ * , A , , ^ )= {k G P\x* * w*, > y*}. Easily 
we have, Vj G M, |J ^ ( W 7 * , X ,y) = P. Therefore, by Theorem 2.10, Each 

i6N 
pattern pair in {(x^, yk)\k G P} can be stored in the FAM (2.21), and the 
corresponding connection weight matrix is W*. 

Similarly with Algorithm 2.1, we can develop an iteration scheme for learn­
ing the connection weight matrix W of the FAM (2.21), that is 

Algorithm 2.2 Fuzzy 5—learning algorithm based on t—norm. With the 
following steps we can establish the connection weights of FAM (2.21): 

Step 1. Initialization: put t = 0, and Wij{t) — 1; 
Step 2. Let W(t) = K - ( t ) ) n X m ; 
Step 3. Calculate the real output: yk(t) = x/.® W(t), i.e. 

y)(t) = \ / {x\ * Wij(t)} (j G M, k G P). 

Step 4- Iteration scheme: The connection weights iterate with the following 
scheme (where r/ G (0,1] is a learning constant): 

| «,„(*) - v • m - y% «,«(*) * ^ > ft (2.23) 
1 Wij(t), otherwise. 
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Step 5. Discriminate W(t + 1) = W{t)l if yes, stop; otherwise let t = t + 1 
go to Step 2. 

Similarly with the equation (2.15), the FAM (2.21) can store each fuzzy 
pattern pair in {(xfc, yk)\k G P} if and only if the following equalities hold: 

lx\ < \ /Wu W12 

W21 W22 W2r, 

\ (y\ 
0 

y\ 

Xxl x\ ••• xl) \wnl w„2--- wnm) \y{ yp
2 ••• yv

mj 
(2.24) 

that is, X®W = Y. By Theorem 2.8 and Theorem 2.9, we can get the following 
result. 

Theorem 2.11 Let {(xfc,yfc)|fc G P} be a given fuzzy pattern pair family, 
and {W(t)\t = 1,2,...} be a sequence of fuzzy matrices obtained by Algorithm 
2.2. The t—norm '*' is continuous as a two-variate function. Then 

(i)\/t = 1,2,..., W(t + 1) C W(t), and so {W(t)\t = 1,2,...} converges; 
(ii) If there isW € ^nxm, so that (2.24) holds, then {W(t)\t = 1,2,... } con­

verges to the maximum solution of (2.24), *.e. lim Wit) = W* = (w*:)„xm; 

(Hi) If WW € Hnxm, (2.24) is false, then {W(t)\t = 1,2,...} converges to 
the maximum solution of X ®W <ZY as t —> +oo. 

Proof, it suffices to prove (ii), since the proofs of (i) (iii) are similar with 
ones of Theorem 2.8 by Theorem 2.10. 

There is k0 G G y ( # , y), satisfying re*0 a* yf = /\ {xfa.y^}. If xf° < 

y • °, then we can conclude that 

Vi = l , 2 , . . . , x*l° *wij{t)<y wi:j(l) = Wi 

keP 

(2) (2.25) 

if Xi° > y1*0, by the continuity of the t -norm '*', x(°° a* yk° < 1. Similarly with 
(2.18), let us next to prove by (2.16) that 

V* G {0,1,2,... }, wij{t) >x«°a* ,.ko (2.26) 

In fact, if t = 0, then wi:j(0) = 1 > x\a a* y1*0. And if there is tx G N, so that 

Wij(ti) < %i0 <**yf, let t0 = max{i G {0,1,. . . }Kj ( t ) < x^0 a*yf}. Then 

t0 > 0, and Wij(to + 1) < x^ a* y^°. By Lemma 2.2 we get, w,j(t0 + 1) * < 

x«° * {xl0 a . y f ) <yf. So (2.23) may imply, Wij(t0 + 2) = 1 > Wij(tQ + 1), 
{W(t)|t = 0, 1,...} is non-increasing. Therefore 

„fco ... f„k0 „,ko\ ^ „.fo 
li " * yj 

which contradicts (i), i.e 
(2.26) is true. Thus, lim WiAt) > x*0 a , yj° = <,-. If lim wtAt) = Zi?- > 

>Vi0,ao 

A 

- feo yf w*j, then by the definition of 'a*', xt° * Hj 

y-°(t) = V ( 4 ° * «*,•(*)},=» tij^^W = V (4° * k>j}> yf. (2.27) 
j ' e N » '€N 
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And by (2.23) (2.26) and the definition of W it follows that 

wij(t + l) = wij(t)-T,-(y*°(t)-yf>), 

*? hi - v i lim yf (t) - s£°), = > lim yf (t) = yf, 

which contradicts (2.27). Thus, xf > y f , = > lim w i?(t) = zf" a» y?°. 

Hence by (2.25), lim wxj{t) = x\a a* y*0 = < , . D 

Next we discuss an application of Algorithm 2.2. Define the t—norm * as 
follows [27-29]: 

a*b = max{0, a + b - 1} (a, b e [0, 1]). 

And P = {1, 2, 3}, N = {1, 2, 3}, M = {1}. Let 

/ X l \ / 0.8 0.0 0.4 \ / y i 

X = x2 = 0.5 0.1 0.3 ; Y = y2 

V x3 / V 1.0 0.2 0.1 / \ y3 

By Theorem 2.10, the fuzzy pattern pair family {(x^, yfc)|fc = 1,2,3} can be 
stored in the FAM (2.21). So the maximum solution of X® W = Y exists, that 
is W* = (0.7,1.0,0.9)T. Table 2.2 shows the iteration step number of Algorithm 
2.2 with different learning constants rj's and the ultimate connection weight 
matrix W : 

Table 2.2 Simulation results of Algorithm 2.2 

No. learning constant (77) iteration (t) converged matrix (W) 

(0.64000,1.00000,0.90000)T 

(0.68000,1.00000,0.90000)T 

(0.69531,1.00000,0.90000)T 

(0.69948,1.00000,0.90000)T 

(0.69999,1.00000,0.90000)T 

(0.70000,1.00000,0.90000)T 

By Table 2.2 we may see, the larger the learning constant rj is , the quicker 
the convergent speed of the matrix sequence {W(t)|£ = 1, 2,... } is. The limit 
value W and the maximum solution W* of (2.20) are not completely identical, 
for example, when 77 = 0.9 and r\ = 0.8, the difference between W and W* 
is obvious. As 77 becomes smaller and smaller, W is close to W*, gradually. 
When 77 = 0.01, we get W = W*. Therefore, a meaningful problem related 
to Algorithm 2.2 is how to determine 77 so that the convergent speed and the 
sufficient closeness between W and W* can be guaranteed, simultaneously. 

1 

2 

3 

4 

5 

6 

0.90000 

0.80000 

0.50000 

0.30000 

0.10000 

0.01000 

5 

7 

16 

30 

86 

594 



Chapter II Fuzzy Neural Networks for Storing and Classifying 45 

§2.3 B P learning algorithm of FAM's 

In the section we present the back propagation (BP) algorithm for the 
connection weight matrix W of the FAM (2.1). Since for a given a G [0, 1], the 
functions aVx and aAx are not differentiable on [0, 1] (see [51]), as a preliminary 
for the BP algorithm of FAM's we at first define the differentiable functions 
'La' and 'Sm\ by which the fuzzy operators 'V and 'A' can be approximated, 
respectively and the derivatives in the BP algorithm can be calculated. 

2.3.1 Two analytic functions 

Next we build the approximately analytic representations of the fuzzy op­
erators 'V and 'A', respectively, and establish the partial derivatives related. 
Define d—variate functions La, Sm : M+ x [0, l ] d —> [0,1] as 

d d 

J2 Xi • exp{sxi} J2 xt • e x p { - s x j 
La(s;x1,...,xd) = '-—_ ; Sm{s;xi,...,xd) = l-=^ . 

J2 e x p j s x j Yl exp{-sxj} 
i=l i=l 

(2.28) 
By (2.28) it is easy to show, Vxi, ...,xd G [0,1], the following facts hold: 

Vs > 0, La(s\ xi,..., xd), Sm(s; x\,..., xd) G' [x\ A • • • A xd, x\ V • • • V xd]. 

For Xi,...,xd G [0,1], denote xmin = x\ A- • -Axd, xm a x = Xi V- • -\/xd. Moreover 

{ m a x i i G {xi, ...,xd}\x < x m a x } , this set nonempty, 

xm a x , this set empty; 

{ min{x G {xi, ...,Xd}|x > x m i n } , this set nonempty, 

xmin, this set empty; 

Lemma 2.3 Suppose d > 1, s > o, and Xi,...,xd G [0,1]. Then we have 
the following estimations: 

d 

V {%i} -La(s;xi,...,xd) < (d - 1) -exp{-s(x m a x - xs)}; 
! = 1 

d I 
/\{xi} -Sm(s;xi,...,xd)\< (d - 1) -exp{-s(x p - x m i n ) } . 

Therefore, lim La(s;xi,...,xd) = \J {x,}, lim Sm(s; x\, ...,xd) = A {xj}. 

Proof. At first let x m a x > xmin, and Then Vi G 
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{q + 1,..., d}, Xi < xm a x . Thus, when s > 0, we can conclude that 

V {xi} -La{s;xi,...,xd) 
i=i 

E Xi ex.p{sxi} 

E exp{sxi} 

E (Xi ~ ^max) e x p { s x , } 

E ex.p{sxi} 
< 

i=l 

E \xi -^maxlexpjsa;,} 
1 = 1 

d 
E expjsxi} 
1 = 1 

d d 

Eki- : E m a x |exp{s(a ; i -x m a x )} E \xi - xmax| exp{s(xi-a;max)} 
i=\ i=q+l 

E exp{s(xi - zm a x )} 
»=1 

a 

X)exp{s(xi - x m a x ) } 
i = i 

2—9+1 |*^max ^ m i n | 

9 + E exp{s(x, - x m a x ) } 
i=g+l 

y^exp{a(x»-xm a x)} 
=9+1 

< - ^2 exp{-s • (xmax - xs)} < exp{-s • (xr 
q i=q+l q 

xs)} 

< (d-q) • exp{-s • (:rmax - xs)} < (d - 1) • exp{-s • (xmax - xs)}. 

So if xm a x > xmin, then we can obtain the following limit: 

lim 
s—>+oo 

d 

La(s;xi,...,xd)-\J{xi}\< lim (d - 1) • exp{-s • (xm a x - xs)} = 0 
v I s—>+oo 

when xm a x > xg. And therefore, lim La(s;xi, ...,xd) = \J {xi}; If £m a x = 

d 

£min, then X\ = • • • = Xd,=> La(s;xi, ...,Xd) = X\ = V {xi}. Hence the limit 

d 

of La(s;xi,...,Xd) as s —> +oo exists, and lim La(s;xi,...,Xd) = V ixi}-

The first part of the theorem is proved. Similarly we can prove the other 
conclusions. • 

Lemma 2.4 The functions La(s;xi,...,Xd) and Sm(s;xi,...,Xd) are con­
tinuously differentiate on [0, l]d. Moreover, for j E {l,...,d}, we have 
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,.> dLa(s;xi,...,Xd) 
W dx~i 

-exp(sxj) 

(f>xp(sx;)) i=l 

a 

l^2(sxi - SXJ - l )exp(sxj) | ; 

(ii) dSm(*-£>•••>**) = dexP(-^) 2{pSXi_SXj + 1)eM_SXi)y 

v i = l y 

Proof. It suffices to show (i) since the proof of (ii) is similar. By the 
definition of La(s;x\, ...,Xd) we can prove 

dLa(s;xi,...,xd) 
dxj = £ d I Xi • exp(sxi) \ d I Xj • exp(sXj) 

dxi \ JL , , I dxj \ * , 
i.i^j V Y, exp(sxi) ' v E exp(sxi) 

— \SXJ exp(sxj) + \ J sxi exp(sxi)~ (1+SXJ) y^exp(sxj)f 

r exofsx,-H ^ *=I.»#J i = i J 

a 

< YJ(sxi — SXJ — 1) exp(sxj) !•. 

J2 exp(sxi)) 
i = l y 

— exp(sxj) 

(f^exp(sxi)) i = i 
v i = l ' 

So (i) is true. D 

By Lemma 2.4, we may conclude that the following facts hold for the con­
stant a £ [0,1] : 

1 dLa(s;x,a) 
dx (1 + exp(s(a — a;)))2 

dSm(s; x, a) 1 

dx (1 + exp(—s(a — x)))2 

{l — (sa — sx — l)exp(s(a — x))}; 

{l + (sa — sx + l)exp(—s(a — x))}. 

(2.29) 
Therefore, x > a,^=> lim (dLa(s;x,a)/dx)= 1, lim (dSm(s;x,a)/dx) = 

s—>+oo ' s—>+oov 

0; and a; < a, = > lim (dLa(s;x,a)/dx)= 0; lim (dSV?i(s;x,a)/dx)= 1. So 
S—t + OO V ' S—» + 00 V ' 

for a given constant a G [0, 1], it follows that 

dLa(s;x,a) 
( d ( a V i ) 

lim 
s^+oo da; 

dx 
1 

I 2 ' 

lim 
dS ,m(s;x,a) 

d(a A x) 
dx 

x ^ a, 

x — a; 

s^+oo d x 

(2.30) 

(2.31) 
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2.3.2 B P learning algorithm 

To develop the BP learning algorithm for the connection weight matrix W 
of (2.1), firstly we define a suitable error function. Suppose {(xfe, yfe)|fc G P} is 
a fuzzy pattern pair family for training. And for the input pattern xfc of (2.1), 
let the corresponding real output pattern be o^ = (o*, ...,oJ^) : Ofc = xj. o W, 
that is 

o) = \J{x^AWlj}(keP,j&M). 

Define the error function E(W) as follows: 

E{W) = \ Y: IK - yk\\
2 = \ £ £(«* - y>)2- (2-32) 

fe=i fc=ij=i 

Since E(W) is non-differentiable with respect to Wij, we can not design the 
BP algorithm directly using EiW). So we utilize the functions La and Sm to 
replace the fuzzy operators V and A, respectively. By Lemma 2.3, when s is 
sufficiently large, we have 

-, P m 

E{W)x*e{W) = - ^ ^ ( L a f s i H ; ! * , ^ ) , . . . , ^ ^ ^ , , ) ) ^ ) 2 . 
fc=ij=i 

(2.33) 
e(W) is a differentiate function, so we can employ the partial derivative 
de(W)j'dwij to develop a BP algorithm of (2.1). 

Theorem 2.12 Give the fuzzy pattern pair family {(xfc, yfc)|fc G P} . Then 
e(W) is continuously differentiable with respect to Wij for i G N, j £ M. And 

de(W) _y^ -exp(s-A(i , fc) ) r (s ) l + (sxk-sWij + l)exp{-s(x*;-w^)) 

* " « " ^ ( E e x P ( s . A ( P , f c ) ) ) 2 (l + exp(-*(a*-« ,«) ) ) ' 
P=I 

d 
where T(s) = ]T {s -exp(s • A(p, ft)) — exp(s • A(i,fc))—l}exp(s • A(p, ft)), and 

P = i 

A(i, ft) = Sm(s;x^,Wij). 

Proof. By Lemma 2.4, considering A(i, ft) = Sm(s; i*, ?%•) for i € N, j G 
M, we have 

9I<a(s;Sm(s;Xi,wij)i •••, 5'™(s;^n)u'nj)) — exp(s • A(i,fc))-r(s) 

( £ e x p ( s - A(p,fc))) 
P = i 

And by (2.29) easily we can show 

dSm(s\Xi,Wij) _ 1 + (sxf - SWJJ + 1) exp(—s(Xj—Wjj)) 

9wij (l + exp(-s(x* :-w;i j)))2 
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By de(W)/dwij = £ {de(W)/dSm(s;x^wij))-(dSm(s;xf,wij)/dwij), it 
fc=i 

follows that 

de(W) J^ -exp(s-A(i,k))r(s) l + jsx*-sWij + l) exp(-s(x^-Wij)) 

13 k=i(J2exp(s-A(p,k))Y 
dwn r ^ / y r „ _ / ' „ A / „ i^w2 ( l + e x p ( - s ( 4 - w i j ) ) ) 2 

P=I 

Therefore, e(W) is continuously differentiable with respect to Wij. D 

Using the partial derivatives in Theorem 2.12 we can design a BP algorithm 
for W of (2.1). 

Algorithm 2.3 BP learning algorithm of FAM's. 
Step 1. Initialization. Put w îj(O) = 0, and let W(0) = (wij(0))nXm, set 

t = 1. 
Step 2. Denote W{t) = (wij(t))nxm. 
Step 3. Iteration scheme. W(t) iterates with the following law: 

n = Wij(t) - S • df^}^y + a • AtUjj-W, Wij(t + 1) = (fl V 0) A 1. 

Step 4- Stop condition. Discriminate |e(W(i + 1))| < el If yes, output 
Wij(t + 1); otherwise, let t = t + 1 go to Step 2. 

In the following we illustrate Algorithm 2.3 by a simulation to train FAM 
(2.1). To this end, Give a fuzzy pattern pair family as shown in Table 2.3. 

Table 2.3 Fuzzy pattern pair family for training 

No. Input pattern Desired output Real pattern 

1 (0.64,0.50,0.70,0.60) (0.64,0.70) (0.6400,0.7000) 

2 (0.40,0.45,0.80,0.65) (0.65,0.80) (0.6500,0.7867) 

3 (0.75,0.70,0.35,0.25) (0.75,0.50) (0.7250,0.5325) 

4 (0.33,0.67,0.35,0.50) (0.67,0.50) (0.6700,0.5000) 

5 (0.65,0.70,0.90,0.75) (0.75,0.80) (0.7500,0.7867) 

6 (0.95,0.30,0.45,0.60) (0.80,0.60) (0.7250,0.6000) 

7 (0.80,1.00,0.85,0.70) (0.80,0.80) (0.7864,0.7867) 

8 (0.10,0.50,0.70,0.65) (0.65,0.70) (0.6500,0.7000) 

9 (0.70,0.70,0.25,0.56) (0.70,0.56) (0.7000,0.5600) 

Choose a = 0.05, ry = 0.3. Let s = 100. With 1000 iterations, by Algorithm 
2.3 we can establish the real output of (2.1), as shown Table 2.3. By compar­
ison we know, Algorithm 2.3 possesses a quicker convergent speed and higher 
convergent accuracy. 
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The further subjects for FAM's include designing the learning algorithms 
related based on GA [5, 49], analysis on fault-tolerance of systems [22, 33-35, 
37, 38], and applying the results obtained to many real fields, such as, signal 
processing [42], system modeling and identification [21, 44, 50], system control 
[31, 32] and so on. These researches are at their infancy, and so they have a 
great prospect for the future research. 

§2.4 Fuzzy ART and fuzzy A R T M A P 

Through the learning of a FAM, a given family of fuzzy pa t te rns may be 
stored in the FAM, and the connection weight matr ix W is established. If a new 
fuzzy pa t te rn is presented to the FAM and asked to be stored in W, the FAM 
has to be trained to violate the original W. Thus, FAM's as competitive net­
works do not have stable learning in response to arbitrary input pat terns . The 
learning instability occurs because of the network's adaptivity, which causes 
prior learning to be eroded by more recent learning. How can a system be 
receptive to significant new pat terns and yet remain stable in response to irrel­
evant pat terns? Adaptive resonance theory (ART) developed by Carpenter et 
al addresses such a dilemma [6]. As each input pa t te rn is presented to ART, 
it is compared with the prototype vector t ha t it most closely matches. If the 
match between the prototype and the input vector is no adequate, a prototype 
is selected. In this way previously learned memories are nor eroded by new 
learning. ART1 can process pa t te rns expressed as vectors whose components 
are either 0 or 1. Fuzzy ART is a fuzzy version of ART1 [7], so let us now recall 
ART1 and its architecture. 

2 .4 .1 A R T 1 arch i t ec ture 

An ART1 network consists of five par ts , two subsystems which are called 
the attentional subsystem C (comparing layer) and the orienting subsystem 
R (recognition layer), respectively, and three controllers, two gain controllers 
Gi and G2, which generate the controlling signals G\, G2, respectively, and 
reset controller 'Reset ' . The five components act together to form an efficient 
pa t te rn classifying model. The ART1 has an architecture as shown in Figure 
2.3. 

R 

C _̂  Reset • 
threshold 

Figure 2.3 Architecture of ART1 Figure 2.4 Attentional subsystem 
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Let us now describe the respective functions of five par ts of ART1 in Figure 
2.3. When an input x = (xi,...,xn) G {0,1}™ is presented the network, the 
gain controller G2 tests whether it is 0, and the corresponding controlling signal 
G2 = xi V • • • V xn, t ha t is, Vi e { l , . . . , n } , x» = 0, ==> G2 = 0, otherwise 
G2 = 1. Suppose the output of the recognition layer R is r = (r\, ...,rm), and 
R0 = n V - • • V r m . Then the controlling signal G\ of the gain controller Gi is the 
product of G2 and the complementary of i?o, tha t is, Gi = ( ^ - ( l — R Q ) = G2-RQ-
Therefore, r = 0, x ^ 0, = > G\ = 1; otherwise G\ = 0. The reset controller 
'Reset ' makes the wining neuron in competition in layer R lose efficacy. 

Layer C 

Figure 2.5 Orienting subsystem 

There exist n units (nodes) in the comparing layer C, which are connected 
respectively with each node in the recognition layer, as shown in Figure 2.4. 
Each node in C accepts three signals, the input Xi, gain controlling signal 
G\ and the feedback signal of the wining node in the recognition R, t^-. G 
{0 ,1} . Outputs Cj's of the nodes in C are determined by the 2 /3 criterion, i.e. 
the majority criterion: The value of c» is identical to the common one of the 
majority in d , Uj*, xt. 

There exist m nodes in the recognition layer R, each of which is connected 
with the nodes in C to form a feedforward competing network, as shown in 
Figure 2.5. m means the number of classified fuzzy pat terns . By R the new 
fuzzy pat terns can be added to the set of the pat terns classified, dynamically. 
Suppose the connection weight between the i—th node in C and the j—th node 
in R is b^. And the output vector of C is c = ( c i , . . . , c n ) , which propagates 
forwardly to R, and the nodes in R compete to generate a wining node j * . All 
the components of the output vector r = ( r i , . . . , rm) of R are zero but Tj- = 1. 
In the following we will explain how an ART1 works. 

First s t e p — m a t c h i n g . When there is no input signal the network is in 
a waiting state, and let x = 0. Thus G2 = RQ = 0, and there is no competition 
in the recognition layer R, and consequently Uj = 0; When the signal x =̂  0 is 
presented to the network, G 2 = 1, RQ = 0, =£• Gi = G2 • RQ = 1, and so by the 
2 /3 criterion, c = x . And we get the input of the j — t h node in R as follows: 

n 

Pj = ^2hj -Xi(j = l , . . . , m ) , 

We call Pj the matching degree between x and hj = (by , ...,bnj). Choose such 
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a node j * , whose matching degree is maximum, that is, Pj* = \J {Pj}- The 
l < j < m 

node is called a wining node, and so fj* = 1, Tj = 0 (j' ^ j * ) . 
Second step—comparing. The output vector r = (r\,..., rm) of R return 

to C through the connection weight matrix T = (Uj)nXm- The fact that Tj* = 1 
results in the weight vector t j . = ( t y , ...,t„j.) being active, and others being 
inactive. Thus, R0 = 1, ==> G\ = G2 • i?§ = 0- The output c = (ci,..., cn) of C 
characterizes the matching degree Mo between tj* and the input x : 

n n 

Mo = (x, tj»)= ^kj, •xi=^2,ci. 
i = i i = i 

Since x» € {0,1}, Mo is the number of overlapping nonzero components 
between t j . and x. Suppose there exist Mi nonzero components in x, i.e. 
Mi = x\ + • • • + xn. Mo/Mi also reflect the similarity between x and t j* . 
Give p G [0, 1] as a minimum similarity vigilance of the input pattern x and 
the template t j corresponding to a wining node. If Mo/Mi < p, then x and 
t j can not satisfy the similarity condition, and through the reset signal 'Reset' 
let the match finished in the first step lose its efficacy, and the wining node 
become invalid. Go to third step, searching; If Mo/Mi > p, then x and tj are 
close enough, and the 'resonance' between x and tj takes place, the match in 
the first step is effective. Go to fourth step, learning. 

Third step—searching. Reset signal makes the wining node established 
by the first step keep restrained, and the restraining state is kept until the 
ART1 network receives a new pattern. And we have, RQ = 0, Gi = 1. The 
network returns the matching state in the first step, and go to first step. If 
the circulating procedure does not stop until all patterns in R are used, then 
(m + 1)— th node have to be added to store the current pattern as a new 
template, and let t^m+i) = 1, &i(m+i) =xt{i = 1, ...,n). 

Fourth step—learning. btj and Uj iterate according to the following 
Algorithm 2.4, so that the stronger 'resonance' between x and tj* takes places. 

Algorithm 2.4 The connection weight matrices B = (bij)nXm, T = 
(Uj)nxm iterate with the following steps: 

Step 1. Initialization: let t = 0, and choose the initial values of 6;J and t^ : 

M°) = ^ T [ ! M°) = 1 (*= h-,n;j = l,...,m). 

Step 2. Receive an input: Give the input pattern x = (xi, ...,xn) £ {0, l } n . 
Step 3. Determine the wining node j * : Calculate the matching degree Pj, 

m 
and compute j * : Pj* = V {Pj}. 

n n 
Step 4- Compute the similarity degree. By M0 = J2 xi ' tij* = X) c* w e 

i = i i= i 
may establish the similarity degree between the vector tj* = (tij*,...,tnj*), 
corresponding to the wining node and the input pattern x. 
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Step 5. Vigilance test. Calculate Mx = Y,xi-If Mo/M1 < p, let the wining 

node j * invalid, and put rr = 0. Go to Step 6; if M0/Mi > p, we classify x 
into the pattern class that includes tj«, and go to Step 7. 

Step 6. Search pattern class. If the wining node number is less than m, go 
to Step 3; If the invalid node number equals to m, then in R add the (m+1)— th 
node, and let b^m+i) = £,, t^m+1) = 1 (i = 1, ...,n). Put m = m + 1, go to 
Step 2. 

Step 7. Adjust connection weights. For i = 1,..., n, £»_,-. and &„•• are adjusted 
with the following scheme: 

tij,(t+l) =Uj* -Xi, 

« . /. , n _ Uj.{t)-Xi _ tir(t + l) 
°ij* \ z "•" -1-/ — n — n 

0.5 + J2 U>j' (t) • x^ 0.5 + Y. ti'r (* + !) 
i' = l i ' = l 

Set t = t + 1, go to Step 2. 

Algorithm 2.4 for the ART1 network is a on-line learning. In the ART1 
network, the nodes stand for the classified pattern classes respectively, each 
of which includes some similar patterns. By the vigilance p we can establish 
the number of the patterns classified. The larger p is, the more the classified 
patterns are. 

2.4.2 Fuzzy ART 

Like an ART1 network, a fuzzy ART consist also of two subsystems [7, 13, 
14], one is the attentional subsystem, and another is the orienting subsystem, 
as shown in Figure 2.6. The attentional subsystem is a two-layer network 
architecture, in which Ff is the input layer, accepting the input fuzzy patterns, 
and F% is a pattern expressing layer. All fuzzy patterns in F£ constitute a 
classification of the input patterns. Orienting subsystem consists of a reset 
node 'Reset', which accepts all information coming from Ff layer, Ff layer 
and FQ layer using for transforming the input patterns. 

By FQ layer we can also complete the complement code of the input fuzzy 
pattern x, that is, the output I of F* is determined as follows: 

1 yX-^ X J ( ^ 1 , ••., Xni %li •••> %n) = 1*^1? •••? ^ n i J- ^ 1 , •••; J- ^ n j , 

where x» G [0, 1] (i = l , . . . ,n) . From now on, we take the pattern I as an 
input of a fuzzy ART. Thus, Ff includes In nodes, and suppose F * includes 
m nodes. Let the connection weight between the node i in Ff and the node 
j in Ff be W*, and the connection weight between the node j in .Ff and the 
node i in F* be wjt. Denote 

W* = (W^,...,W^2n)j), w* = («£,.. . ,«&„)), 
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+ 2/ 

Attentional subsystem 

Figure 2.6 Fuzzy ART architecture Figure 2.7 Geometry form of pattern w* 

We call w* a template, where j = 1,..., m. Suppose the initial values of the 
connection weights W* and w^ are W£(0), wjt(0), respectively: 

W?A0) = 
1 

ax + Mx 
> < i ( ° ) = 1 (« = l , - , 2 n ; j = l,...,m), 

where a x , Mx are parameters of the fuzzy ART, ax G (0, +oo) is a selection 
parameter, and Mx e [2n, +oo) is a uncommitted node parameter [14]. De-
note W*(0) = (W5(0), . . . ,W^n ) j(0)) , w*(0) = ( ^ ( 0 ) , . . . , ^ ( 0 ) ) . Then 
W^(0), w*(0) correspond, respectively to the j—th connection weight vectors 
before the input fuzzy pattern x is expressed in F£. 

Before discussing the I/O relationship of the fuzzy ART, we introduce some 
2n 

notations. Suppose yq = (y\, . . . ,yf j G [0, l]2n (q = 1,2), denote |y J | = Y,vh 

2n 

and we call dis(yi,y2) = YI \v\~Vi\ t n e metric between the fuzzy patterns yi 

and y2- Denote 

yi V y2 = (yj V yl,..., ^ n V y^J ; yi A y2 = {y\ A |/J,..., y\n A y f j . 

We call the node j a uncommitted node in F*, if w* = w*(0) = (1,...,1), 
otherwise the node j is called a committed node. For j G {1, ...,m}, define 

W x . ° l d 

Wx>new 

W*, I is not classified intoF*, 

= W ? I is classified into F£; 

x,old x 

W • = W • 
I is not classified intoF*, 

w*'new = w*, I is classified into F2
X. 

file:///v/~Vi/
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For the input I of F x , by the upward connection weig ht matrix (WX , . . . ,WX„) 
we can establish an input of F x layer as t(I) = (£i(I), ...,im(I)) : 

HI 

*,-(!) 
ax + Mx 

|I A w x x.oldi 

i l x.oldi 

+ hV | 

node j is an uncommitted node, 

node j is a committed node, 

(2.34) 

where j G {l , . . . ,m}. Let j * G {!,...,m} : i/.(I) = V {^QO}- A n d i n F2 

only the node j * is active, and others are inactive, wx , may be taken as a 
candidacy of a standard pattern class, into which the input pattern I will be 
classified. The matching degree between wx„ and I is Ax = (|I A wx»° | ) / | I | . 
For a given vigilance p G [0,1], if Ax > p, then I is classified into wx». Similarly 
with Algorithm 2.4, the connection weight vectors can be trained as follows: 

x,new T A x,old 

I A w xJ o l d w x ^ n e w 

wx,new _ XM wr _ wr i* „. , IT A „.x,old| n 4 - l w x ' n e w l 
j * 

| lAw x f l d | a x + |w;, 

If Ax < p, then the reset node 'Reset' in the orienting subsystem generates 
a signal to enable the node j * inhibitory. And we choose a second-maximum 
tj(T) as the new active node j * . Repeat this procedure. If one by one each 
j G {1, ...,m} is taken as j * , and it can not ensure Ax > p, then I is stored in 
F£ as a representative of a new fuzzy pattern class, and in F-f we add a new 
node according to I. 

Next let us show the geometry sense of fuzzy pattern in the fuzzy ART 
[14]. For j G M, the weight vector w x can be expressed by two n dimensional 
vectors u x and v x : 

where u x < v x . If let n = 2, then w x can be established by two vertices 
u x v x of the rectangle i?x , as shown in Figure 2.7. Give an input pattern 
I x = (x, xc), at first it is not classified by the fuzzy ART. The rectangle i?x 'o ld 

is a geometry representation of the template vector wx '° . If I x G i?x'° , then 
ux '° < x < vx '° , and the the template vector keeps unchanged, that is 

x,new x,old . TX / x,old . r x.old . , ~\ c\ x.old 
Wj' = w j A l = {uj A x > i v j V x } c J = w i ' . 

If I x 0 i?x'° , then easily we can show, w x , n e w ^ w ? ' ° • And the weight 
vectors change, and the number of the rectangles increases, correspondingly. 
Its maximum value is determined by the vigilance p. For the input fuzzy pattern 
I x , if |IX | = M, and 

| l x A w x ' o l d | > M - p , (2.35) 
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then in F * layer, I x can be classified into a pattern class that includes the 
weight vector wx '° . By computation we can see 

|IX A wx 'o l d | = | (ux 'old A x, {vx 'old V x}c) | 

= E ( ^ A ^ o l d ) + f : ( a l V ^ ° I d ) c (2.36) 

n (x V vx 'o l d) - (x A ux 'o l d) I = n - |Rf 

So by (2.35) (2.36) it follows that \R*'new\< n( l - p). Therefore, if p is very 
small, i.e. p « 0, then the input space is filled with small rectangles; If p « 1, 
then there are only a few of rectangles. 

Now we present the classifying order of the input pattern I = (x, x°) by 
the fuzzy ART when choosing the parameter ax as 'very small' 'medium' and 
'very large', respectively. To this end we at first give three lemmas. 

Lemma 2.5 Let I = (x, xc) be an input fuzzy pattern of the fuzzy ART, 

and I G i?x'° (~l i?x'° , i?x'° < \R?'° • Then the rectangle R*'° is chosen 

precede R*'° , that is, iJ:L(I) > tj2(T). 

Proof, By the assumption we have, j i , j'2 are committed nodes in F x layer. 
So by (2.34) it follows that 

tjAl) JlAwx '° ld| |wx-old| n-\R*;M\ 
31 ^ ' i I x.old i . i x.old i . i 7->x,old i 

«x + |wjx' | a x + Iw^' | a x + n - \R^ \ 

t (l) i i A w r l d i iwr l d i _. ^-i^-o l d i 
3 a x + |wx;old | a x + |wx 'o l d | a x + n - | i $ o l d | 

(2.37) 

Using the assumption we get, n — \R^° \> n — \R^° |- Hence (2.37) implies 
that tj1 (I) > tj2 (I). Thus, by the classifying rule of the fuzzy ART, the rectangle 
R*f is chosen precede R^° . D 

Lemma 2.6 Suppose an input fuzzy pattern I = (x, xc) is presented to the 
fuzzy ART, and I £ R^° \ R^° . Then the rectangle i?x'° is chosen precede 

-Rx'° if and only if 

dis(l, 1 
1 r>x,old i i 7-»x,old i 

t- )^(n\ax \Kh |j> iDx.oid, . iDX,oid, 
"- ax + n - \Rjl \ ax + n- \R^ \ 

Proof. By the assumption and (2.34) easily we can show 

< 

\ . (I) | i A < , o l d | |wx;new | n - | i ? x ; n e w | 
n [ ) a x + |wx

i'
old| a x + |wx 'o l d | a x + n - | i ? x < ° T 

IT A x.oldi t x.oldi i7->x,oldi 

32 \ / | x.oldi , i x.oldi , i7->x,oldi" 

"x + lw-; | ax + |wj2' | ax + n-\R^ \ 

}• 
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Then 

I r>x,newi „ I r>x i°ldi 

tn(I) > tn{l) <=• >\ ' > 2 ' • (2.38) 
a x + ra - \R^ | a x + n - \R^ \ 

But |JR*'new| = |.R*'old|+dis(l, i?*'°ld), which is replace into (2.38) we get, 
1^(1) > tj2(T) if and only if the following fact holds: 

j . I-. D x , o l d \ . / . | D x , o l d | \ f n ~ \Uji I n~\Uh I 1 

dis(I, it„•' )< n + Q!x — it,-' < u nr ?i 
*• a x + n - \Rjl \ ax + n- \R£ \} 

which implies the lemma. D 

Lemma 2.7 Suppose I = (x, xc) is an input pattern presented to the fuzzy 
ART, and I e R%'° ni?*'° . Then the rectangle R*'° is chosen precede R*'° 
if and only if 

„ i i7~>x,oldi / i r>x,oldi iT->x,oldi\ 

dis(l, Rf°")< dis(l,Jg-°")-n + Q b t " ' ^ J + a x ( ' ^ ' " ' \ D. 

(2.39) 

, I 7~>X,01ai , I nX .O 

a x + n - | i ? j 2 ' | a x + n - \R^ 

Proof. Using the assumption and (2.34) we can conclude that 

* * ( ! ) = | l A W - ° l d | - | W r W 

a 

n — | i ? x , „ e w 

x + n-\R*;c 

n — 1 n x . n e w 

Id, « x + | w - I d | a x + | w - I d | 

J i V / , i x.oldi . i x.oldi , i7->x,oldi* 

ax + |wj2' | QX + |wi2' | ax + n~ \R^ \ 

Therefore the following fact holds: 

th (I) > t,-a (I) «=*• ^ ^ r > ^ — ^ r . (2.40) 
J 1 v ' J2\ / i D x , o l d | . i D x , o l d i v / 

ax + n- \R^ | a x + n - \R^ \ 
But for k = 1,2, | i % n e w | = | i?^o l d |+dis(l , ^ ° l d ) . Consequently by (2.40) it 
follows that tjl (I) > th (I) if and only if (2.39) is true. • 

In order to utilize the parameter a x to establish the classifying order of the 
input fuzzy pattern I by the fuzzy ART, we define the function 

„ i D x , o l d i „ i D x , o l d i 

*,(*) = {n + x- | ^ o l d | ) | n-\Rn _ n-\Rh , 
^ ' n V^x + n-\RlM\ x + n-lR^r 

h{x) - disd ^d^+. - i^r i + *a*r l d i - i^oldD 
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Theorem 2.13 Suppose an input pattern I = (x, xc) is presented to the 
fuzzy ART, and the parameter ax « 0. Then 

(i) IflE R*f fl i?*'0 , then I chooses first the rectangle between li?*'° I 

and |-R*2'° | with smaller size; 

(ii) If I € i?*'old \ i?*'old, then I chooses first i?*'old; 

(Hi) Ifl$. R^° U -R?'° , then the pattern I chooses first R*'ola if and only 

dis(I, R*;old)(n - \R*:°ld\) < dis(I, ^ 2 ' o I d ) (n - |i?*;°ld|). 

jx.old y iJ*,old j i / i e n j c f t 0 0 5 e s firsf ^x.old. 

J b . : ' ° l d l I P X ' ° l d thorn iho nn++0™ T ^ ? , ™ o 0 c K^t R X ' ° l d ,'• 

J l A I J2 1̂  ^ '-"^V1) -""J2 ^V'" |-"-Jl 

Proof, (i) is a direct corollary of Lemma 2.5, so it suffices to show (ii) and 
(iii). 

(ii) Since lira <fio(x) = 0, when a x « 0, 0o(aa:) ~ 0. Therefore, <̂ >o(a:x) < 
• dis(M, I, i??'° ). Then by Lemma 2.6 it follows that I chooses the rectangle 

Rlold firstly. 
(iii) Obviously, the following fact holds: 

l i m > ( z ) = 0i(O) 
(dis(I ,^o l d)(n-l^;o l d | ) ) 

0 n - \R£ | 

And when a x « 0, we have, dis(I,-R*'old) < <f>i(ax) <̂ => dis(I,.R*'old) < ^i(0). 

So by Lemma 2.7, I will first choose i?*'old ^=> dis(I, i^;o l d) < ^i(0), that is, 

dis(I, R*;°ld)(n - | i%o l d | ) < dis(I, i%o l d)(n - |i?*;old|). D 

Next let us proceed to discuss the choosing order of the input fuzzy pattern 
by the fuzzy ART when the parameter a x is 'medium' or 'sufficiently large'. 
By Lemma 2.7 and Theorem 2.13, if I G R*;old n R*;old, the conclusion (i) of 
Theorem 2.13 holds when ax is 'medium' or 'sufficiently large'. So it suffices 
to solve our problem for I e R*fd \ i?*'old and I g i?*'old U i?*'old. 

Theorem 2.14 Suppose the fuzzy pattern I = (x,xc) is presented to the 

fuzzy ART, and ax is 'medium', i.e. 0 < ax < +oo, moreover, |-R*'° |< 
|it-2' |. Then 

(i) / / I e R*'° \ i?*'° , we have, I will first choose R*'° if and only if 

d i s ( l , i % o l d ) < 0 o ( a x ) . (2.41) 

Moreover, the function </>o(0 is nondecreasing on R, and 

0 < 4>o W < | ^ 2 ' ° l d | - 1 ^ ' ° l d | • (2.42) 

(ii) Iflg R*fd U i?*'old, then I wiZZ /ir-st choose R*fd if and only if 

d i s ( I , i% o l d )<<Ma x ) . (2-43) 
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And the function <fii(-) is nondecreasing on R, moreover 

->x,old 

dis(l,i^d)."~ * ' < «Max) < d i B ^ ^ J + l f ^ l - l i ^ l 
J2 I 

(2.44) 
Proof, (i) At first, by Lemma 2.6, I will first choose _R*-old if and only if 

(2.41) is true. And we can conclude by computation that 

= d«Mx) = (n-\R*fd\)(\R*fd\-\R*fd\) 
d x (;c + r i _ | i i x , o i d | ) 2 

Using the fact | i?£o l d |< n, and the assumption we get, \R^old\-\Rf°ld\> 0. 
Then <f>'0(x) > 0, that is, <po{-) is nondecreasing on M. Moreover, 0o(O) = 

0, <^o(+oo) = lim Mx) = |iff 'o ld |- |iff , o ld | . Therefore by a x > 0, 0 < 
X —» + 0 0 I J 2 I I J l I 

0o(c*x) < 0o(+oo) it follows that (2.42) is true. 
(ii) Using Lemma 2.7 we imply the first part of (ii) holds, it follows by 

computation that 

,,, , d0o(x) _ (n - |i?£neW|)(l^'0ld| - |i?rUD 
dz (x + n _ | j R ^ ° l d | ) 2 

By assumption and the fact |JR-' e w | < n we get, </>i(x) > 0. So ̂ i(-) is nonde­

creasing on KL Denote <j>\ (+oo) = lim </>i (a;). It is easy to show 
x—>+oo 

:,old 
l 

^J2 ) I 7-)X,old 

n—\R. 
1(0)=dis(l,fi--old)-n | 5 l ! ^ i ( + o o ) = d i s ( I , ^ o l d ) + l ^ o l d | - | ^ ; o l d | 

moreover (/>i(0) < 0 i (a x ) < 0i(+oo). Thus, (2.44) is true. • 

When ax —> +oo, we have, </>o(ax) —• |^ 2 ' ° | —|-^i'° I' a n d </)i(ax) —• 
dis(l, JR^old) + | i ? ^ o l d | - | ^ ; o l d | . Then by Lemma 2.6 and Lemma 2.7 easily we 
can obtain the following conclusion. 

Theorem 2.15 Suppose the fuzzy pattern I = (x, x°) is presented to the 
fuzzy ART. The parameter a x « +oo. Then 

(i) If I G i?*'old \ i^;o l d , tfien I will first choose R*fd «/ and or% i/ 

dis(I, i%old)< |i?£OId|-|i*'old|. 
(ii) Ifl(£ R*;old U JR*'old, ften I wiZi /irsi choose R*fd if and only if 

J- ft nX,o ld \ ^ j - / T r>x.old\ . I r>x,old I I r>x,old I 

d l s( l , R^ )<dis( l , iJja' )+|i?J2- l - l ^ . ; |. 
In the subsection we discuss how to choose committed nodes in the learning 

of the fuzzy ART. The main results come from [7, 14]. As for how to choose 
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the uncommitted nodes by the fuzzy ART some tentative researches are pre­
sented in [14], which is also a meaningful problem for future research in the 
field related. Based on geometric interpretations of the vigilance test and the 
F* layer competition of committed nodes with uncommitted ones, Anagnos-
topoulo and Georgiopoulos in [1] build a geometric concept related to fuzzy 
ART, category regions. It is useful for analyzing the learning of fuzzy ART, 
especially the stability of learning in fuzzy ART. Lin, Lin and Lee utilize the 
fuzzy ART learning algorithm as a main component to addresses the structure 
and the associated on-line learning algorithms of a feedforward multilayered 
network for realizing the basic elements and functions of a tradit ional fuzzy 
logic controller [30-32]. The network structure can be constructed from train­
ing examples by fuzzy ART learning techniques to find proper fuzzy partit ions, 
membership functions, and fuzzy logic rules. Another important problem re­
lated fuzzy ART is how to find the appropriate vigilance range to improve its 
performance. We may build some robust and invariant pa t te rn recognition 
models by solving such a problem [24]. 

2.4 .3 Fuzzy A R T M A P 

As a supervised learning neural network model the fuzzy ARTMAP consist 
of three modules, the fuzzy ART X , fuzzy A R T y and the inter-ART module, 
shown as in Figure 2.8. 

Both fuzzy ART X and fuzzy A R T y are the fuzzy ART's , accepting the 
inputs x , y , respectively. The inter-ART module consists of the field Fxy and 
the reset node 'Reset ' . The main propose of F x y is to classify a fuzzy pa t te rn 
into the given class, or re-begin the matching procedure. For instance, when 
the fuzzy A R T y generates a wrong match, by the fuzzy ARTX the vigilance px 

increases, so tha t the maximum matching degree between the resonance fuzzy 
pa t t e rn and the input pa t t e rn can achieve. 

- fuzzy ARTX fuzzy ARTy 

Figure 2.8 Fuzzy ARTMAP architecture 
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As the respective input patterns of fuzzy ARTX and fuzzy ARTy, I x = 
(x, xc), I y = (y, yc) are two complement code, where x is a stimulus fuzzy 
pattern, and y is a response fuzzy pattern, which is a prediction of the fuzzy 
pattern I x . In the fuzzy ARTX, the output of layer Ff is ax = (ax, . . . ,ax

n X), 
and b x = (6X, ...,6^x) is the output of layer F x . Let the j—th connection 
weight vector from F x down to F x be w x = (w*1: ...,w*,2nX,). Similarly, in 
the fuzzy ARTy , suppose a y = (ay, . . . ,ay

n y) and b y = (b\,...,b^ny) are the 
output patterns of Ff and F y , respectively. And let w y = (w^, ...,u;y,2riy0 
be the k—th connection weight vector from F y down to F y . Also we suppose 
ax y = (axy , . . . , a^y) is a output pattern of field F x y , and w x y = (w*^,..., w^y) 
is the j—th connection weight vector of F x to F x y . 

In the inter-ART, field F x y is called a map field, which accepts the outputs 
coming from the fuzzy ARTX and fuzzy ARTy. Map field activation is governed 
by the activity of the fuzzy ARTX and the fuzzy ARTy, in the following way: 

the j * — th Ff node is active and F y is active, 

the j * — t h F x n o d e is active andFf is inactive, 

F x is inactive and F y is active, 

F x is inactive and F y is inactive. 

If in F x the j*—th node is active, then its output can be transported to the 
field F x y through the weight vector w x y . And w x y may be classified into a 
defined fuzzy pattern class. If F y is active, then only when a identical fuzzy 
pattern class is obtained by fuzzy ARTX and fuzzy ARTy, respectively F x y 

is active. If a mis-match between b y and w x y takes place, a x y = 0, and the 
search procedure is active. 

Searching match. When the system accepts an input pattern, the vigi­
lance px of ARTX equals to the minimum value p x , and the vigilance of F x y is 
p. If |a x y |< p • | b y |, then we increase p x , so that p x > | l x A wx , | - | l x | , and 
thus 

| a x | = | l x Awx , |< px • | IX | , 

where j * means an active node in F x . Thus, through the search procedure of 
ARTX we can obtain the fact: either there is an active node j * in F x , satisfying 

| a x | = | l x A wx» |> p x • | l x | ; 

| a x y | = | b y A w x y | > p - | b y | , 

or there is no such a node, then F x stop the expressing procedure of the input 
patterns. 

Learning of map field. The connection weight iuxy of F£ —> F x y is 
trained with the following scheme: 

Step 1. Initialize: wxy(0) = 1; 

, x y 

b y A w x y , 
XV 

W j .
y , 

b y , 
o, 
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Step 2. Resonance: If the resonance corresponding to the active node j * of 
ARTX takes place, let w*?' = ax y ; 

Step 3. Prediction: If the fuzzy pattern corresponding to the node j * in 
ARTX can predict the fuzzy pattern corresponding to the node A:* in ARTy we 
let w*?k, = 1. 

All equations of the subsection 2.4.2 for fuzzy ART module are valid for the 
ARTX and ARTy modules of fuzzy ARTMAP. If we are only focusing on pattern 
classification tasks, the templates formed in ARTy are not very interesting. To 
enforce this type of clustering in ARTy the vigilance parameter py in ARTy 

is chosen equal to one. The templates formed in ARTX are a different story. 
The discussion in the subsection 2.4.2 about templates in fuzzy ART is still 
valid for templates in the ARTX module of the fuzzy ARTMAP. Moreover, the 
definition of a distance in fuzzy ART, mentioned in 2.4.2, is also valid for the 
ARTX module of the fuzzy ARTMAP. 

In the following, we explain the classification results of fuzzy ARTMAP 
about the input fuzzy patterns. Lemma 2.5, Lemma 2.6, Lemma 2.7 and 
Theorems 2.13, 2.14, 2.15 are applicable without any modification for the ARTX 

module of the fuzzy ARTMAP. The order of search, established for fuzzy ART 
is also applicable for the ARTX module of the fuzzy ARTMAP. Similarly with 
with the fuzzy ART, Theorem 2.13, Theorem 2.14 and Theorem 2.15 explain 
also how the fuzzy ARTMAP chooses among the committed nodes in the ARTX 

module. 
Fuzzy ARTMAP can also be employed to deal with noisy data. For exam­

ple, Marriott and Harrison use it to approximate a noisy continuous mapping, 
and a fuzzy ARTMAP variant is built [40]. Some meaningful and important 
problems related to this subject include building novel fuzzy ARTMAP mod­
els to improve the classification performances [1, 17], designing some efficient 
learning algorithms related to accelerate the classifying procedures [17] and 
analyzing the convergence of learning algorithms of fuzzy ARTMAP [15, 16] 
and so on. 

2.4.4 Real examples 

Now let us take some real examples to illustrate the effectiveness of Theo­
rems 2.13, 2.14 and 2.15. To justify the large ax values of the aforementioned 
fuzzy ART variant, i.e. corresponding to M x —> +oo, ax —> +oo, we compare 
its performance with one of the original fuzzy ART algorithm (Mx = 2n, a x 

is reasonably small). The criterion for the comparison is the average clustering 
performance of the algorithms related. To this end we choose five databases 
coming from [14], they are, heart the disease database, the diabetes database, 
the wine recognition database, the ionosphere database and the sonar database. 
Then, for different vigilance values p's the average clustering performance of 
the fuzzy ART variant is evaluated for each database. We also calculate the 
average clustering performance of the original fuzzy ART algorithm for the 
same databases, the same vigilance value and a wide range of ax values. 
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Table 2.4 Comparison of clustering performance 

Heart 

Disease 

Diabetes 

Wine 

Recog. 

Ionosph. 

Sonar 

p = 0.3 

p = 0.4 

,9 = 0.8 

,9 = 0.2 

p = 0.4 

p = 0.9 

,9 = 0.5 

,9 = 0.6 

,9 = 0.9 

p = 0.2 

,9 = 0.4 

p = 0.7 

p = 0A 

p = 0.6 

p = 0.8 

a x —> oo 

a x = 0.6 

a x —• oo 
a x = 13.0 
ax = 0.01 

a x —> oo 

a x = 6.0 

a x —> oo 

a x = 0.8 

a x —+ oo 
a x = 7.4 
a x = 0.01 

a x —> oo 

a x = 2.6 

a x —• oo 

a x = 5.0 

a x —> oo 
a x = 24.0 
a x = 0.01 

a x —> oo 

a x = 0.8 

a x —> oo 

a x = 12.6 

a x —> oo 
a x = 34.0 
a x = 0.01 

a x —> oo 

a x = 0.6 

a x —> oo 

a x = 0.8 

a x —> oo 
a x = 30.0 
ax = 0.01 

a x —> oo 

a x = 0.6 

Av-1 St-1 Av-n St-n 

57.7% 1.64% 5.80 0.00 

57.9% 1.44% 5.50 0.53 

62.7% 2.34% 10.3 0.79 
65.1% 2.04% 15.6 1.35 
61.4% 1.75% 4.00 1.18 

77.8% 1.57% 60.4 2.72 

74.6% 2.08% 55.0 2.89 

65.7% 0.83% 2.90 0.32 

65.2% 0.62% 2.50 0.53 

71.4% 3.40% 9.90 0.74 
72.4% 3.10% 14.7 0.95 
69.4% 1.80% 6.30 0.48 

91.1% 1.05% 245.7 2.97 

92.9% 0.88% 234.3 4.22 

68.2% 6.95% 2.00 0.32 

63.2% 6.98% 3.00 0.00 

82.8% 7.73% 5.60 0.92 
90.2% 4.06% 8.80 0.45 
87.8% 2.74% 5.20 0.45 

98.2% 0.86% 53.8 1.23 

98.8% 0.75% 53.6 1.52 

93.0% 1.76% 15.0 1.00 

78.7% 2.99% 17.0 0.94 

94.6% 1.07% 31.7 2.03 
87.0% 2.24% 37.1 1.45 
91.9% 2.69% 26.3 1.64 

97.2% 1.53% 63.6 1.88 

94.7% 2.70% 60.6 1.63 

54.9% 2.24% 2.00 0.00 

54.3% 2.73% 2.00 0.00 

86.9% 5.59% 10.2 1.03 
87.0% 3.30% 9.50 1.08 
93.7% 2.28% 9.80 0.79 

92.6% 1.64% 34.4 2.17 

95.4% 1.91% 33.2 2.30 
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The testing results are reported in Table 2.4, where for ease of presentation 
we report the average clustering performance of the original fuzzy ART only 
for selective ax values. Also we give the average number of F * nodes created 
by the fuzzy ART variant and the original fuzzy ART algorithm. Moreover, 
standard deviation of the clustering performance, and the number of nodes are 
also reported in Table 2.4. 

In Table 2.4, 'Av-F means average percentage of correct clustering; 'St-1' 
means standard deviation of correct clustering; 'Av-n' means average number 
of F£ nodes, and 'St-n' means standard deviation of F * nodes. The training 
list of each database consists of inputs and corresponding output patterns. For 
the training of fuzzy ART only the input patterns of the training list are used. 
In the heart disease database, n = 13, and there are 203 input patterns in the 
training list, which belong to five different classes. In the diabetes database 
n = 8, and the training list consists of 576 input patterns belonging to two 
different classes. In the wine recognition database, n = 12 and there exist 120 
input patterns in the training list, which belong to three different classes. In 
the ionosphere database n = 34, and the training list consists of 200 input 
patterns belonging to two different classes. In the wine recognition database, 
n = 60 and there exist 104 input patterns in the training list, which belong to 
two different classes. 

After the training is over, we assign a label to each category formed in F* 
layer of the fuzzy ART, by the output pattern to which most of the input pat­
terns that are expressed by this category are mapped. For each input pattern in 
the training list, fuzzy ART chooses a category in Ff layer. If the label of this 
category is the output pattern that this pattern corresponds to in the training 
list, then we say that fuzzy ART makes a correct clustering. If, on the other 
hand, the label of this category is different from the output pattern that this 
pattern corresponds to in the training list, then we say that fuzzy ART clusters 
this input pattern erroneously. From Table 2.4 we can know, the order of search 
results for fuzzy ART are of practical significance for small, intermediate and 
large a x values. However, the very large choices for the choice parameter value 
ax and the parameter M x are not a good combination of parameter values 
for fuzzy ARTMAP. Fuzzy ARTMAP simulation results conducted with these 
parameter choices indicate that fuzzy ARTMAP creates too many clusters in 
ARTX for solving the pattern classifications corresponding to the five databases 
mentioned above, and as a result they are not worth mentioning here. Thus, 
the fuzzy ARTMAP simulations with very large M x and a x values are not 
practical. So the classifications obtained by fuzzy ARTMAP are of practical 
significance only for small, intermediate a x values. 

Above evaluating procedure is motivated by Dubes and Jain [11], where a 
number of clustering techniques are compared with each other. The average 
performance shown in Table 2.4 are calculated by training fuzzy ART with ten 
different orders of pattern presentations from the training list. 
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CHAPTER III 
Fuzzy Associative Memory—Feedback Networks 

Fuzzy associative memory in the preceding chapter is a feedforward system 
whose information flows from input layer to output layer. So such a neural 
network is static. The research related is closely associated with fuzzy rela­
tion equation theory [2, 3, 40, 43]. In the chapter we proceed to study some 
further subjects of Chapter II, that is, the feedback versions of FAM's, which 
is a feedback FNN. So the research of feedback FAM's includes their topologi­
cal architectures, learning algorithm for connection weights and the dynamical 
properties related, such as stability of the systems, attractors and attractive 
basin and so on [28-33, 36, 37, 45, 46]. Bidirectionality, or forward and back­
ward information flow, is utilized to produce a two-way associative search for 
fuzzy pattern pairs. An important attribute of the feedback FAM's is their 
ability to retrieve some stored patterns from their noise or partial inputs. The 
achievements related have found very useful in many application areas, for in­
stance, pattern recognition [13], system forecast [16, 18], control and decision 
[18], etc. As in Chapter II we focus on the fuzzy operator pair 'A — V also, 
and the feedback FAM's based on 'A — V' in the chapter. 

In the following we present the systematic study to two classes of FNN's, 
they are fuzzy Hopfield networks and fuzzy bidirectional associative memory 
(FBAM). Fuzzy Hopfield networks are the fuzzy versions of the discrete Hop-
field networks, in which the operations '+ ' ' x ' are replaced by the composition 
of the fuzzy operators 'V' 'A', and 0 — 1 string information is superseded by 
fuzzy information with the vector form whose components belonging to [0, 1]. 
Similarly, a FBAM can be established based on one bidirectional associative 
memory. 

§3.1 Fuzzy Hopfield networks 

To develop a FNN system with real sense, an unavoidable problem that 
we have to deal with is fault-tolerance of the system, since in practice fuzzy 
information to be processed is always corrupted or distorted, or some error 
information is contained. So it is very important and meaningful for pattern 
recognition, system identification and forecasting and so on how to design a 
FNN so that right fuzzy patterns can be recalled even with some distorted 
input patterns. The subjects in this area now begin to attract many scholars' 
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attention [1, 15], while in the past much more attention was focused on the 
storage capability of FNN's [8, 10, 11]. In the section we aim mainly at the 
following fuzzy Hopfield network based on the fuzzy operator pair 'V — A': 

x(t) = x(i - 1) o W (3.1) 

where t = 1, 2,... is the iteration step of the system, 'o' is V — A composite 
operation, W = (wij)nxn is a connection weight matrix, x(0) is an initial 
fuzzy pattern. In the following we at first analyze the dynamic properties of 
(3.1), including the system state when the iteration step t —> +oo, that is, 
the attractors of the system and the corresponding attractive basins. Then 
we present an analytic learning algorithm for (3.1). For a given fuzzy pattern 
family the learning algorithm can lead to such a connection weight matrix that 
all fuzzy patterns are attractors, the corresponding attractive basins are largest 
and consequently the system possesses optimal fault-tolerance. Finally these 
results are illustrated by some simulation examples. As in chapter II we write 
N = {1, . . . ,n}, P = {1, . . . ,p}, n, p are natural numbers. 

3.1.1 Attractor and attractive basin 

In the following let us establish the attractors and attractive basins for the 
system (3.1). As a subset of [0, l ] n the attractive basins here are larger than 
ones in [29, 34]. 

Definition 3.1 The fuzzy pattern b is called an attractor of (3.1) if b = 
boVF. Provided b is an attractor of (3.1), and there is a set Fq C [0,1]™, so that 
b & Fq, moreover, Vx e Fq, Taken x as an initial fuzzy pattern, the system 
(3.1) converges to b . Then we call Fq an attractive basin of b. The attractive 
basin Fq is called non-degenerate if the volume of Fq as a subset of [0, 1]" is 
nonzero. 

Fault-tolerance of (3.1) means the capability of the system to recall a right 
fuzzy pattern when the input signal (initial pattern) is corrupted. Obviously, 
fault-tolerance of a dynamic system can be determined by the sizes of attractive 
basins of the corresponding attractors. So it is necessary for (3.1) to possess 
fault-tolerance that the system is trained to guarantee the attractive basins 
of the corresponding attractors are non-degenerate. To this end we suppose 
b = (6i,...,6n) is a fuzzy pattern and W = (iVij)nxn is a connection weight 
matrix of (3.1). Denote 

HG(W,b,i) = {j e N K - > bj}, HE(W,b,i) = {j G N K - = bj}, 

where i G N, and let 

Hg{W,b) = {ieH\Ha(W,b,i)jt:Q, HE(W,h,i) = 9}; 

Hfr(W,b) = {i £N\HG(W,b,i)uHE(W,b,i) = 0 } ; 

HGe(W,b) = {ie N\HG(W,b,i) ^ 0, HE(W,b,i) ^ 0}; 

HE(W,b) = {ie N\HG(W,b,i) = 0, HE(W,b,i) ^ 0}. 
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f V {bj}, HE(W,bJ)^<D; 
bj{W,b) = I jeH£(w,b,i) 

{ o, HE(w,b,i) = a. 

{ A {bj}, HG(W,b,i)^<D-

{ 1, HG(W,b,i)=<t). 

Let us now introduce other two sets: 

Hf(W,b) = {i£N\HE(W,b,i)=~N}, 

HGe(W,b) = {i G HGe(W,b)\HE(W,b,i) U HG(W,b,i) = N}. 

Write 

_ f min{i|z G Hf(W,b)}, Hf{W,b) ± 0, 
? e ~ \ n + 1, Hf(W,b) = 9; 

j mm{i\i G HGe(W, b)}, # f e(W, b) ^ 0, 
V ~ \ n + 1, HGe(W,b) = 0. 

For the set C C N, we define the following function: 

w{C) = \ (3.2) 

If i G N, Vji G HE(W,b,i), j 2 G #G(VF,b,i) , we have bh < bh. Let 

A°(W,b) = {(xlt...,xn) G [0,l]"|x l se G [b}jW,b), b?jW,b)], 

xlc G [6je(W,b), 1], a* G [0,1] (i G #0
L(W,b)), 

a* G [bj(W,b) • t uOr lpO^b) ) , ft?(W,b)] (i G HG*(W,b) \ {ige}), 

Xl G [bj(W,b) • m(HE(W,b)), l] (i e ^ ( ^ b ) \ {ie}), 

X , G [0, &?(W,b)]( iei / 0
G(W,b))}. 

(3.3) 
By (3.3) it follows that -A°(W, b) includes the attractive basin obtained in [32]. 

Definition 3.2 We call (W, b) to satisfy GE condition, if the following 
facts hold: 

(i) Vj G N, there exists i G N, so that j G HE(W,b,i); 
(ii) Vi G N, and j 2 € # G ( W , b , i ) , j i G ffB(W,b,i), we have, bh < bh. 

Theorem 3.1 Suppose the fuzzy pattern b = (bi,...,bn) is an attractor 
of (3.1). W = (wij)nxn is the connection weight matrix. Moreover, (W, b) 
satisfies GE condition. Then for any x = (x\,...,xn) G A®(W, b), x converges 
to b by one iteration. 
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Proof. By the assumption easily we have, b e At(W,b), and for i G 
N, b}(W,b) < 6f(W,b). Given j € N, and the fuzzy pattern x = (xi, ...,xn) € 
A°(W, b). If Hf(W, b) + 0, then ie e HE(W, b) and HE(W, b, ie) = N. There­
fore by (3.3) we can get 

V {xiAWij} > V {xi/\Wij} 

> xie A wiaj > ( V {h})/\wiej > bj. 

(3.4) 
If Hfe(W, b) ^ 0, with the same reason we get 

\J {xiAWij} >bj. 
ieHg (W,b)UH<fe(W,b) 

If Hf e(W, b) UHf{W, b) = 0, then w(HE{W, b)) = w ( # f e(W, b)) = 1. Since 
(W, b) satisfies GE condition, choose io 6 N, so that j € ifB(W /,b,io). Thus, 
«o e i f ^ W , b) U H^(W, b). Considering (3.3) and j € HE{W, b, i0), easily we 
can imply 

V (XiAWij) > V (b}(W,b)AWij) 
iGH^ {W,b)UH°e(W,b) ieH^ (W,b)UH^s(lV,b) 

> ^ ( W ^ A U ^ ^ , 
(3.5) 

In summary we have, V {xi A Wij) > bj. So 

V {xiAWij} ~ ( V {^jAWij})v( V {xiAWij}) 

v ( V feA»y])v( V {XiAWij}) r36) 

> ( V {XJ Awij})> 6j. 
ieH(f(W,b)UJ?Ge(Vl/jb) / 

On the other hand, for j S N, let 

*i(?)= V K'A^Wb)}= V { ^ A ( /\ {&,})}. 
i € f^ (W,b ) iGi?G(w,b) /c6-tfG(W,b,i) 

Since j e F G (W,b , i ) it follows that /\ {bfc} < fy. And by j <£ 
ks=HG(W,b,i) 

HG(W,b,i) we can conclude that w^ < bj. Hence V {xi A w^} < 
ieH§>(W,b) 
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h(q) < bj. With the same reason we have 

bj > k{q) = V {Wij A l } > V {wij A Xi}; 

bj>l3(q)= V K-A^,b)}> V {wijAXi}. 
ieH§"(W,h) i&H°"{W,b) 

Therefore we can obtain the following face: 

\f{xiAwij}<l1(q)Vl2(q)Vl3(q)V (^ \J {xt A Wy}) < bj. (3.7) 
»SN ieHfr(W,b) 

Thus synthesizing (3.6) and (3.7) we get, V (w^ A x^) = bj (j G N). That is, 

by one iteration x converges to b . • 

To guarantee certain fault-tolerance of a fuzzy Hopfield network, it is nec­
essary to enlarge the attractive basins of corresponding attractors. Next let 
us discuss this problem by adjusting suitably the connection weight matrix of 
(3.1). 

Theorem 3.2 In the system (3.1), suppose the fuzzy pattern b is an at-
tractor of (3.1) when the connection weight matrix is chosen as W\ and W2, 
respectively. Moreover, W\ C W2, and W\ is defined through W2 by letting 
some nonzero elements ofW2 be zero. Both (W\, b), (W2, b) satisfy GE con­
dition. Then A°(W2,b) C A°t(Wub). 

Proof. By the assumption and Theorem 3.1, we can show, if choose W 
in (3.1) respectively as W\, W2, then both Al(W1,b) and A$(W2,b) are the 
attractive basins of the attractor b, correspondingly. To prove our theorem, by 
(3.3) it suffices to show that V« G N, the following facts hold: 

bj (Wi, b) < b\ (W2, b), bi (W2, b) < 6? (Wx, b) (3.8) 

In fact, let Wk = (w | ) n xn (k = 1,2). By the assumption, Vi, j G N, either 
wjj = 0 or, wjj = wij. So for each i G N, Vj G N, bj ^ 0, j G HE(Wx, b, i), = > 
j € HE(W2,b,i). Thus, by the definitions of bj(W,b), bf{W,b) it follows that 

b\{Wl,b)= \ / {bk}< \ / {bk} = bj(W2,b). 
k^HE(W1,b,i) k€HE(W2,b,i) 

The first part of (3.8) holds. On the other hand, W\ C W2 implies that for 
each i G N, we get, Vj G N, fy ^ 0, j G i r G ( W i , b , i ) , = > j € i J G (W 2 ,b , i ) . So 

6?(W2)b) = / \ {bk}< / \ {6fc} = ft?(Wi,b). 
fcei/G(W2,b,i) fceHG(lVi,b,i) 

The second part of (3.8) holds. In summary (3.8) is true. • 
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Using Theorem 3.2 we can get such a fact associated to the system (3.1), 
that is, provided (W, b) satisfies GE condition, with the fuzzy inclusion ' c ' 
sense, the smaller the matrix W is, the larger the attractive basin of the cor­
responding attractor is. That provides us with a useful criterion for designing 
learning algorithm of W to guarantee optimal fault-tolerance. 

3.1.2 Learning algorithm based on fault—tolerance 

Suppose B = {bk = (bk,..., b^)\k G P} is a family of fuzzy pattern. In the 
subsection we develop a learning algorithm for W, the connection weight matrix 
of (3.1) to minimize W and to ensure each fuzzy pattern in B is an attractor of 
(3.1). Moreover, we utilize some conditions to maximize the attractive basin 
of each attractor, so that the system can possess optimal fault-tolerance. 

Definition 3.3 The fuzzy matrix W = (wij)nXn is called to be weakly 
reflexive, if W is a weakly diagonal dominant matrix, that is, Vi, j G N, Wij < 
^ jj-

lt is easy to prove that if W = {wij)nxn is weakly reflexive, then W C W2. 
For a given fuzzy pattern family B, introduce the following notations: 

HG(bk,j) = {ieN\bk>bk}. (3.9) 

Recalling the notations in §2.1, Similarly we define, G^{B) = {k G P\bk > bk}. 
And if i, j G N, we write 

Aij(B) = {i1eK\i1<i,G?lj{B)?<t>, / \ {bk} = f\ {bk}}. 
keG^B) k€G%(B) 

By the following analytic learning we can get the connection weight matrix 
Wo = « ) „ x n : 

< 

V {%}, 
fceP 

( A {&£}W(Ay(B)), i^3,ie \J HG(hk,j); 
Vfc€G«(B) J feSP 

0, i^j, i# (J HG(bk,j). 
fcep 

(3.10) 

By (3.10) easily we have, Vj G N, k e P, there exists uniquely i G N, so that 
wij = tf- In t n e following let us present some useful properties of WQ. 

Theorem 3.3 Suppose W0 — (u;°.,.)nXn is defined by (3.10). Then the 
following conclusions hold: 

(i) WQ is weakly reflexive, consequently Wo C WQ2; 
(ii) If in (3.1) let W = W0, then each fuzzy pattern bk in B is an attractor 

of (3.1). 
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Proof, (i) By (3.10), obviously it follows that Vi, j G N, w^ = V {tf} > 
fcep 

w°j. So Wo is weakly diagonal dominant, i.e. W0 is weakly reflexive. Therefore, 
W0 C W0

2. 
(ii) Give arbitrarily k G P, and i, j e N. If i = j , we have 

bk A «,?• = 6* A u& = 6* A ( V {bf}) = bk. (3.11) 
fc'eP 

Assume that i ̂  j . Then by i 0 HG(bk,j) it follows that &£ < bk. So &£ Aw°,- < 

bf, If i G HG(bk,j), then i G |J HG(bk',j), and when ^ - ( B ) ^ 0, we get, 
k'eP 

bk A wfj =0 <bk. Also when Ay(B) = 0, considering A; G G^{B) and (3.10) 
we have 

wlA 6" = ( A i & f >) A6*fc ^ h ) A 6" = foi • 
fc'ecg(B) 

In summary the following conclusion holds: 
i^j=^w°jAbk <bk. (3.12) 

So (3.11) and (3.12) imply, V {w% A bi} = fo?- Thus, bfc is an attractor of 

(3.1). • 

For i, j G N, denote ^ ( j ) = {/c G P\tf = V {6j'}}> a n d 

fc'eP 

f {feeP|6^= A {bf}}, G£(B)^0; 
Ev

B{i,j) = { fc'ecg(B) (3.13) 
I 0, G£(B) = 0. 

Definition 3.4 In (3.1), let W = W0 = (wj)„ x „ . The fuzzy pattern 
family Z3 = {bfc = (6*, ...,&£) |fc G P} is called to be correlated, if the following 
conditions hold: 

(i) For any j G N, |J E%{i,j) U £ s ( j ) = P; 

(ii) Vfc G P, i G N, if j G HG(W0,b
k,i), and j 0 G HE(W0,b

k,i), then 

If the fuzzy pattern family B is correlated, we can establish a non-degenerate 
attractive basin for each fuzzy pattern b in B, where b is an attractor of (3.1). 

Theorem 3.4 Let B = {bk = (bk, b%,...,bk)\k G P} be a fuzzy pattern 
family, and the following conditions hold: 

(i) Vj e N, k G P, 0 < b) < 1; 
(ii) B is correlated. 
Suppose W0 is defined by (3.10), and in (3.1) W = W0. Then Vfc G P, bfe 

is an attractor of (3.1), whose attractive basin A®(Wo,bk) is non-degenerate. 
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Proof. Give k G P. By Theorem 3.3 it follows that W = W0 implies bfc 

is an attractor of (3.1). In the following let us prove, (Wo, bk) satisfies GE 
condition. 

In fact, B is correlated, then Vj € N, there is i\ G N, satisfying k G 
E%(iuj)uEB(j). We write 

i0 = mm{l € N|fc G E%(l,j)UEB(j)}. 

Then k G E^(i0,j) U £ B ( j ) . If k G £ B ( j ) , we have, Vfc' G P, b£' < bk. There­
fore, W j j = bk, and j G ifB(W0 ,b f c , j ) . If A: € E^(i0J), by (3.5), it follows 

that Gg-(B) ^ 0. Thus, i„ G \J HG(bk',j). So we can show, A(i0,j) = 0. 
fc'eP 

Otherwise, we choose /o G ̂ 4j0j(B), then lo < io- Moreover 

A {fti>= A {&$} = &£,=• fee ££(!„, j), 

which contradicts the definition of i0. So Aioj(B) = 0. So using (3.10) and 
(3.13) we can imply, bk = f\ bf = wiaj, that is, j G HE(W0,h

k,i0). 
fc,eG^(B) 

Thus, for j G N, there is i G N, so that j G F B (W 0 ,b f c , i ) . On the other 
hand, Vji G H B (W o ,b f e ,0 , j 2 G HG(W0 ,b f e , i ) , we get, w°h = &£, ^ > 6*,. 
Since 6 is correlated, it follows that bk

2 > bk
t. Therefore, (Wo, bfc) satisfies GE 

condition. By Theorem 3.1, for each x = (xi,...,xn) G A°(Wo,bk), x converges 
to bfc with one iteration. So Aj(W),bfc) is the attractive basin of bfe. By the 
assumption and (3.10), obviously A°(Wo,bk) is non-degenerate. D 

Let us now present another useful property of Wo, which shows the mini­
mality of Wo. 

Theorem 3.5 Let B = {hk = (bk, 6|,...,6^)|fc G P} be a correlated fuzzy 
pattern family. And suppose WQ is defined by (3.10). Then Wo is a minimum 
matrix among the fuzzy matrices W 's with the following conditions: 

(i) Vfc G P, (W, bfc) satisfies GE condition; 
(ii) For each fc G P, bfe is an attractor of W, i.e. bk o W = bfe; 
(Hi) W is weakly reflexive. 

Proof. By Theorem 3.4, Wo defined by (3.10) satisfies the conditions (i) 
(ii) and (iii). For arbitrary W = (wij)nXn with the assumptions (i) (ii) (iii). 
At first, by (ii) (iii) it is trivial to show Wjj = U!° for each j G N if W C Wo-
Next let us use reduction to absurdity to show the other conclusions. Assume 
the result is false, then we may assume W C Wo, and there exist iQ, jo G N, 
satisfying wioj0 < w°ojo. Then i0 ^ j 0 . It is no harm to assume 

{i G N\wijo < w" 0 }= {i0, k, - , iP} • 1 < «o < h < • • • < iP < n. (3.14) 
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By the definition (3.10) of W0, G?ojo{B) ^ 0, and there is k0 G P, so that 
tf° = wfojo. So wiojo < bk°. Since (W, bk°) satisfies GE condition by the 
assumption, there is a i' G N, so that jo € HE(W,bko,i'). Obviously i' ^ io-
If h < i', by (3.14) we have, wVjo = w°jo = bk\ Thus G$jo(B) + 0. By 
(3.10) it follows that wfo3o = 0, which is a contradiction. So i' > i0. Then by 
the assumption of W, we get, wv3a < W^,-Q. Next let us show Wi>j0 < w%j0-
Otherwise bk° = Wi>j0 = w L , which implies Gffjo(B) ^ 0, and then w° -o = 0 
by (3.10), which is also a contradiction. So it is no harm to assume i' = i\. 
Similarly we have, there is kx e Gfijo(B) : w°ljo = b)]. With the same reason 
we can imply, there exists k^ £ G^- (B), so that 

bkl =w • < w° • = bk2 

Continuing the procedure until the p—th step, we get a kp G Gfjg (B), so that 
wiPjo < wi j0

 = bj„- Since (W,bk") satisfies GE condition, there is i* € N : 
jo G HE(W,bfc»,i*). Similarly we can show, i» > ip, and Wi,^0 < w^ J o , which 
contradicts (3.14). Thus, Wo is a minimum matrix with the given conditions. 

• 
By Theorem 3.2, Theorem 3.4 and Theorem 3.5, for a given fuzzy pattern 

family B if we train the system (3.1) so that its connection weight matrix W 
is determined as Wo, then each fuzzy pattern in B is an attractor of (3.1), 
moreover we can establish the largest attractive basins of the system, and 
consequently fault-tolerance of the system is optimal. 

3.1.3 Simulation example 

To illustrate above results we in the subsection employ a simulation example 
to establish the attractors, attractive basins of the attractors related to the 
system (3.1). We may show that this dynamical system possesses and optimal 
fault-tolerance if we choose the connection weight matrix rationally. To this 
end let N = {1, 2, 3, 4, 5, 6}, P = {1, 2, 3, 4, 5}. By Table 3.1 we give a fuzzy 
pattern family B, which are asked to be the attractors of (3.1). 

Table 3.1 Fuzzy pattern family 

k bk 

1 (0.6 0.5 0.6 0.8 0.3 0.6) 

2 (0.5 0.7 0.7 0.8 0.7 0.6) 

3 (0.6 0.4 0.7 0.3 0.7 0.4) 

4 (0.5 0.7 0.4 0.3 0.7 0.6) 

5 (0.4 0.7 0.7 0.8 0.3 0.5) 
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Using (3.13) we can calculate the set Eg(i,j) as shown in Table 3.2. 

Table 3.2 The set E%(i, j) 

1 
2 
3 
4 
5 
6 

1 

0 
{5} 
{5} 
{5} 
{2,4} 

{5} 

2 

{3} 
0 
{3} 

{1} 
{3} 

{1} 

3 

{4} 
{4} 
0 

{1} 
{4} 
{4} 

4 

{3,4} 

{3,4} 

{3,4} 

0 
{3,4} 

{3,4} 

5 

{1,5} 

{1,5} 

{1,5} 

{1,5} 

0 
{1,5} 

6 

{3} 
{5} 
{3} 
{5} 
{3} 
0 

Thus we can obtain the following sets: 

Kx = {1, 3}, K2 = {2, 4, 5}, K3 = {2, 3, 5}, 

K4 = {1, 2, 5}, K5 = {2, 3, 4}, K6 = {1, 2, 4}. 

Therefore 
VjeN, ( U E%{i,jj)uEB(j) = P. 

So by (3.10) it follows that 
HEN 

Wo 

/ 0.6 0.4 0.4 0.3 0.3 0.4 \ 

0.4 0.7 0 0 0 0.5 

0 0 0.7 0 0 0 

0 0.5 0.6 0.8 0 0 

0.5 0 0 0 0.7 0 

\ 0 0 0 0 0 0.6 / 

We can show, B is correlated. Hence by Theorem 3.1, if in (3.1) let W = Wo, 
then all b 1 , b 2 , . . . ,b5 are attractors of the system. To calculate the attractive 
basin of bfc, at first we compute b\(W0, b

k) (k £ P, i G N). 

Table 3.3 The value of b\(W0,b
k) 

1 
2 
3 
4 
5 
6 

1 

0.6 
0 
0 
0.8 
0 
0.6 

2 

0 
0.7 
0.7 
0.8 
0.7 
0.6 

3 
0.6 
0 
0.7 
0 
0.7 
0 

4 

0.4 
0.7 
0 
0 
0.7 
0.6 

5 
0.3 
0.7 
0.7 
0.8 
0 
0 
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Similarly we can calculate 6? (Wo, bfc) for k G P, i g N a s follows: 

Table 3.4 The value of bf {W0, b
k) 

1 

1 

0.5 

0.6 

1 

0.3 

1 

2 

0.5 

1 

1 

1 

1 

1 

3 

1 

0.4 

1 

0.3 

1 

0.4 

4 

0.5 

1 

0.4 

0.3 

1 

1 

5 

0.4 

1 

1 

1 

0.3 

0.5 

Table 3.5 The sets H^e(W,bk), H^(W,bk) and H§{W,hH) 

No. 

1 

2 

3 

4 

5 

rrGe H0 

0 
0 
0 

{1} 

{1} 

(W,bk) H£(W,hk) 

{1,4,6} 

{2,3,4,5,6} 

{1,3,5} 

{2,5,6} 

{2,3,4} 

Hg(W,bk) 

{2,3,5} 

{1} 
{2,4,6} 

{3,4} 

{5,6} 

Therefore we can conclude that 

^ ( W o . b 1 ) = [0.6,1] x [0,0.5] x [0,0.6] x [0.8,1] x [0,0.3] x [0.6,1]; 

A°t(W0,b
2) = [0,0.5] x [0.7,1] x [0.7,1] x [0.8,1] x [0.7,1] x [0.6,1]; 

A°t(W0,b
3) = [0.6,1] x [0,0.4] x [0.7,1] x [0,0.3] x [0.7,1] x [0,0.4]; 

A°(W0,b
4) = [0.4,0.5] x [0.7,1] x [0,0.4] x [0,0.3] x [0.7,1] x [0.6,1]; 

A°(W0,b
5) = [0.3,0.4] x [0.7,1] x [0.7,1] x [0.8,1] x [0,0.3] x [0,0.5]. 

Above subsets of [0, l ] 5 constitute the maximum attractive basins of b 1 , . . . , b 5 , 
respectively. 

§3.2 Fuzzy Hopfield network with threshold 

Prom the preceding section, the storage capacity of fuzzy patterns and fault-
tolerance are two important functions of a fuzzy Hopfield network. So one 
main objective for analyzing such FNN's is to improve fuzzy Hopfield networks 
in their storage capacity and fault-tolerance. To this end, we in the section 
introduce a threshold d to the node i in (3.1) for i 6 N. Also Wij € [0, 1] 
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means the connection weight from the node i to the node j . When a system 
receives a input fuzzy pattern as x(0) = (xi(0), ...,xn(0))G [0, l ] " , the system 
evolutes with the following scheme: 

n 

Xj(t) = \/((xi(t-l)Vcl)/\wij)(j = l,...,n), (3.15) 

where £ = 1,2,... means the iteration or evolution step. x(£) = (IEI(£),.. . , £„(£)) 
is the system state of (3.15) at the step £. If the state of (3.15) keeps still 
after finite time steps, the network has finished the associative processes. The 
ultimate state b of the system is called an equilibrium point or, a stable state 
of (3.15). Therefore, the feedback FAM's may be characterized as the dynamic 
processes that the recurrent FNN's process to their stable states (attractors) 
from the initial states. In the following let us present some useful properties 
about the attractors of (3.15). 

3.2.1 Attractor and stability 

For the given fuzzy patterns a = (ai, . . . ,an) , b = (&i, ...,&„) G [0, l ] n , and 
the fuzzy matrix W = (wij)nxn, we introduce the notations: 

a V b = (ai V6i , . . . , a n V6„) , W2 = WoW, Wk = Wk~1oW, 

where k = 2,3,.. . . Easily we can show 

( a V b ) o W = ( a o H / ) v ( b o W), Wk = Wk'1 o Wl (3.16) 

where I < k, and k, I G N. For t = 1,2,..., if x(£) = (x\(t), ...,x„(£)), c = 
(ci, . . . ,cn), Rewrite the system (3.15) as 

x ( t ) = ( x ( t - l ) V c ) o W . (3.17) 

Definition 3.5 The fuzzy pattern b = (bi, ...,&„) is called a stable state 
of (3.17), if b = (b V c) o W, also b is called an equilibrium point of the system. 
The attractive basin of the stable state b means the collection of fuzzy patterns 
Af(h) C [0, l ] n , so that Vx € Af(b), the system converges to b if the initial 
pattern is x. The vector c G [0, 1]™ is called a threshold vector. 

In [41, 42], Sanchez E. calls the fuzzy set b that satisfies b = b o W for 
the given fuzzy matrix W a eigen-fuzzy set. Sanchez determines a greatest 
eigen-fuzzy set and minimum ones. One of our aims in the section is to design 
a learning algorithm for W, so that the given fuzzy patterns (sets) b 1 , . . . , b p 

satisfy the relations that bl = h1 o W for i = 1, ...,p. 
It is well known that Hopfield networks whose connection matrices are sym­

metric and have zero diagonal elements are stable if they evolute with parallel 
fashions [19, 22, 52]. The following theorem shows the similar conclusions for 
the system (3.17). 
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Theorem 3.6 The following conclusions related to the system (3.17) hold: 
(i) There exists s £ N, so that the system converges to a limit cycle whose 

length does not exceed s, that is, there are fuzzy patterns x i , . . . ,x s , satisfying 

x2 = (xi Vc)oW,. . . ,x f c + 1 = (x f e Vc)oW,. . . , X l = (xsVc)oW. (3.18) 

(ii) IfWC. W2, then the system converges to its equilibrium point within 
finite iteration steps. 

Proof, (i) By the definition of the composition operation 'o', there are at 
most finite different members in the matrix sequence {Wfe|fc = 1,2,...}. And 
consequently there exists a q £ N, so that Wq+k = W for k = 1,2,.... For a 
given initial fuzzy pattern x, let x(0) = x. Considering (3.17), we get by the 
induction method that 

x(g + q + 2) = (x(q + q + 1) V c)oW 

= ((x(0) V c) o Wq+q+2) V(c o Wq+q+l)v(c o Wq+q)v- • • V ( c o f ) 

= ((x(0) V c) o Wq+2)v(c o Wq+x)V • • • V (c o W) = x(q + 2). 

That is, x(2g + 2) = x(q + 2). Choose s = q, and let xi = x(s + 2), x2 = 
x(s + 3),. . . ,x s = x ( 2 s + l) . Thus, (3.18) holds. 

(ii) The fact W C W2 implies Wk C Wk+1 for k = 1, 2,.... Therefore, the 
fuzzy matrix sequence {W^jfc = 1,2,...} which contains only finite different 
members is monotonically increasing. Thus, there exists I € N, satisfying 
Wl+1 = Wl. Let us now prove, b = x(Z) is a stable state of the system (3.17). 
By the induction method we get 

x(Z + 1) = ((x(0) V c) o Wl+1)w(c o Wl)\J • • • V (c o W). 

And Vfc < I, Wk C Wl+1, c c x(0) V c, So 

coWk c (x(0) V c) o Wl+1 =^ -x.(l + 1) = (x(0) V c) o Wl+1. 

With the same reason, x(0 = (x(0) V c) oWl = (x(0) V c) o Wl+1, Hence 
b = x(l) — x(Z + 1) = (x(Z) V c)oW, i.e. the system converges to the stable 
state b at Z—th iteration step. • 

For given fuzzy patterns a = (ai,...,an), b = (bi,...,bn) G [0, 1]™, we 
denote by H(a, b) the Hamming metric between a, b, that is, H(&, b) = 

n 

^2 \di — bi\. To study the stability of (3.17) we at first present a useful lemma. 
i = l 

Lemma 3.1 Let a, 6, c 6 [0, 1], and p e N , Oj, h G [0, 1] for i = 1, ...,p. 
Let W = (wij)nxm be a fuzzy matrix. Then 

(i) |(aAc) - (bAc)\ < \a - b\; 

(ii) |a, -bi\ <h(i = 1, ...,p), 
p 

V ai ' 
i=l 

P 

- Vfc 
1 = 1 

< /l, 
p A a*-

i = i 

p 

-Kb < h: 
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(Hi) W o WT C (W o WT)2, WT o W C (WT o W)2. 

Proof, (i) Since a A c = (a + c - \a - c | ) /2 , bAc=(b + c-\b- c | ) /2 , it 
follows tha t 

| (a A c) - (b A c) | = -1 (a - 6 + \b - c\ - \a - c\) \ 

<\(\a-b\ + \(\b - c \ - \ a - c\)\)< \{\a - b\ + \a - b\)= \a - b\. 

(ii) By the induction method we can show tha t 

P p 

| V a * - v H < / i - (3-19) 
4 = 1 4 = 1 

In fact when p = 1, obviously (3.19) holds. Assume tha t when p = k, (3.19) is 
k k 

t rue. If let a' = \J a,, 6' = V 6i, then |o' — fr'| < /i. So when p = k + 1, we 
i = i i = i 

fc+i fe+i 
have, V a, = a' V Ofe+i, V h = b' V b^+i- Therefore 

i = l i = l 

fe+i fe+i 
V a, - V &i = l a ' v afc+i - &' V 6fc+i | 

i = l i = l 

= o I ( ( a ' ~ 6 ' ) + (a/=+i — &Jfc+i) + ja' — «fc+iI - \b' -h+i\)\-

Next we show (3.19) in the following four cases, respectively: 

1. a' > ak+i, b' > bk+i; 2. a' < ak+i, b' > bk+1; 

3. a' > ak+i, b' < bk+1; 4. a' < ak+i, b' < bk+x. 

To the case 1, \a! V ak+\ — b' V bk+i\ = \a' — b'\ < h, which implies (3.19); As 
for the case 2, \a' V ak+\ — b' V bk+i\ = \ak+i —b'\, then 

—h<a' — b'< ak+1 —b'< ak+1 - bk+1 < h, 

So \a' V afe+i — b' V bk+\\ < h, which also ensure (3.19) to hold. To the other 
two cases, we can show, \a' V ak+i — b' V bk+i\ < h. Thus, when p = k + 1, 
(3.19) holds. By the induction principle we can obtain (3.19). 

(iii) It suffices to show the first par ts , since the second can be proved, 
similarly. Let W oWT = («;«)„**, (W o WTf = {w%)ny,n. Then Vi, j e N, 
we get 

w l = V (wik A Wfej) = V (( V (W*P A wfcp)) A ( V (Wkp A Wjp))) 
fceN fcGN p g M p 6 M 

> V ( V (wip A wfcp A Wfcp A wjp) > V ( V (wip A wkp A Wjp)) 
fe6N p S M pGM fe€N 

> V (Wip A Wjp) > Wij . 
p 6 M 
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Thus, W o WT C (W o WT)2, The lemma is proved. • 

Definition 3.6 Suppose the fuzzy pattern b is an equilibrium point of 
(3.17). b is called to be Lyapunov stable, if Ve > 0, there is 5 > 0, so that 
for every fuzzy pattern x satisfying H(x., b) < S, H(x(k), b ) < e holds for 
k = 1,2,..., where x(0) = x, x(fc) means the k-th iteration state of the system. 
We call a Lyapunov stable state an attractors of the system. If Vx g [0, 1]", 
take x as the initial fuzzy pattern, the system (3.17) converges to an attractor 
within finite iteration steps. Then we call (3.17) to be uniformly stable. 

Theorem 3.7 In the system (3.17), suppose the connection weight matrix 
W satisfies W C W2. Then 

(i) (3.17) is uniformly stable; 
(ii) If the fuzzy pattern b is an equilibrium point, then b is Lyapunov stable, 

consequently b is an attractor of the system. 

Proof. At first we prove (ii). Since W C W2, it follows that Wk C 
Wk+l (k = 1, 2,...). Using the induction method we get 

x(fc) = ((x{0)\Jc)oWk)\/(coWk-1)v---\/(coW) (fc = 1,2,...). 

For I < k, we can conclude that the following facts hold: Wl C Wk, c o Wl C 
(x(0) V c) o Wk. So x(fc) = (x(0) V c) o Wk. We denote Wk = (ty^)nxn (k > 
1), x(k) = (xi(k), ...,xn(k)) (k > 0), b = (&i, •-.,6ri). Since b is an equilibrium 
point, Vj G {1, . . . ,n}, we have 

n n 

Xj(k) = V ((^(0) v a) A w%), bj = V ((h, v a) A «,£.). 

So Ve > 0, choose 5 = e/n. Arbitrarily giving a fuzzy pattern x : H(x, b) < 
S, we let the initial fuzzy pattern x(0) = (xi(0), ...,xn(0)) = x. Then Vi G 
{1, . . . ,n}, |a;i(0) — bi\< e/n. Using Lemma 3.1 we can conclude 

(xi(0) V Ci) A wkj - (bi V a) A wkj < \xi{Q) - h\< e/n. 

Therefore Lemma 3.2 may imply the following fact holds: 

n n 

| \J ((^(0) V Ci) A wk
3) - \/ ((h V a) A wkj) |< e/n, 

i = i i = i 

n 
that is, |a;j(fc) — bj\< e/n. Thus, H(x(k), b ) = Sl^j'C^) — ^ J K £- ^° * n e 

i = l 
equilibrium point b is Lyapunov stable, and therefore b is an attractor. 

(i) can be proved, directly by above proof for (ii) and Theorem 3.7. D 
As stable states of a dynamic neural system, attractors play important roles 

in the applications of FNN's. In the following let us present the systematic 
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discussion to attractors and their attractive basins. Give the fuzzy pattern 
b = (bi, ...,»«), and j = 1, ...,n. Denote 

H\W,j) = {ie N\wid A (bi V a) > bj}. 

We at first build an equivalent condition for b being an attractor of (3.17). 

Theorem 3.8 Suppose b = (bi, ...,&„) is a fuzzy pattern. In (3.17), W c 
W2. Then b is an attractor of (3.17) if and only if the following conditions 
hold: 

(i) Vz, j G {1, . . . ,n}, Wij A (bi V c») < fy; 
r « ; V j e { l , . . . , « } , ff*(W,j)^0. 
Moreover, if b is an attractor of (3.17), and denote 

n 

At(W,b,c) = {(x1,...,xn)\Vi = l,...,n, \J (bt A Wij)< Xi < bt V a}. (3.20) 
j=i 

Then Vx € At(H^, b ,c) , x converges to b TO£/I one iteration. 

Proof. If b = (bi,..., 6n) is an attractor of (3.17), then Vj € N, we have 

bJ= yiwijA&Va)). (3.21) 
ieN 

So obviously (i) holds. By (3.21), using reduction to absurdity we can show 
that (ii) is true. 

Conversely, Vj e N, (i) may imply, V (w^ A (bi V c$))< bj; And (ii) may 

imply, V (vjij A (6j V C J ) ) > &,-. Thus, (3.21) holds, i.e. b is an equilibrium point 
i€N 

of (3.17). By the assumption and Theorem 3.7, b is an attractor of (3.17). 
n 

Next let us prove the last part of the theorem. Let b] = \J {pi AtUij), b2 = 
3 = 1 

bi V Ci (i = l , . . . ,n). Since b is an attractor of (3.17), easily we can show, 
both bi = (b\,..-,&^), b2 = (b\,...,b\) can converge to b with one iteration. 
Considering Vx € At(W, b , c), we get, b i C x C b 2 . Therefore 

b = (bi V c) o W C (x V c) o W C (b2 V c) o W = b, 

i.e. (x V c) o W = b, x converges to b with one iteration. • 

3.2.2 Analysis of fault—tolerance 
The fault-tolerance of FNN's characterizes the abilities that the systems 

recall the fuzzy patterns stored if the noisy or imperfect inputs are presented 
to the systems. And the attractive basin of the attractors of the systems char­
acterizes the fault-tolerance of the systems. Let us now derive the nontrivial 
attractive basins of the attractors of the system (3.17). And the system can be 
ensured to possess good fault-tolerance. 
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Lemma 3.2 Let b = (bi,...,bn) be an attractor of (3.17), and W = 
(wij)nxn be the connection weight matrix related. Then Vi G N, Ci < bf(W,b). 

Proof. By reduction to absurdity, if assume the conclusion is false, then 
there is i' G N, so that Ci> > bf,(W,b). Using (3.17) and considering a< G [0, 1], 
we get, HG(W,b,i') ^ 0. Thus, there exists k G HG(W,h,i'), satisfying cy > 
bk, moreover w^k > bk- So we can conclude that 

\f ((bi V Ci) A wik) > (bi> V a>) A Wi>k > Ci> A wvk > bk, 
iGN 

which contradicts the fact that b is an attractor of (3.17). D 

For i G N, we introduce the following notations: 

f 0, Ci >b}(W,b); 
d}(W,b)={ " J L ^ <%{W,b) = bj{W,b). (3.22) 

[ bj(W,b), Ci <bj(W,b). 

Easily we can show the following inequalities: 

d\ (W, b) < b\ (W, b) < d] (W, b) V c i ( i e N ) . (3.23) 
If i 6 N, Vji G HE(W,b,i), j 2 G HG(W,b,i), bjl < bh, then we denote for a 
given threshold vector c = (d,..., cn) : 

AI(W,b,c) = {(Xl,...,xn) G [0, l]n\Xi G [0, ePi(W,b)] (i G HG(W,b)), 

Xl G [dj(W,b), d2
t(W,b)} (i G Ht(W,b)), 

Xi G [dj(W,b), 1] (i G H*(W,b)), xt G [0, 1] (i G H^(W,b))}. 
(3.24) 

Lemma 3.3 Let W = (wij)nxn be a connection weight matrix, and b = 
(bi, ...,&„) be an attractor of (3.17). Vj G N, let 

h(q)= V {WijA(dUW,b)VCi)}, l2(q)= V H - A l } . 
i€H^(W,b)UH°(W,b) ieHE(W,b) 

Then h(q) V l2(q) < bj. 

Proof. If i G Hg(W,b) and j G i J ^ W . b , * ) , then Wij = by, If i G 
iJ0

B(W,b) but j £ # B ( W , b , i ) , then by iJG (W,b, i ) = 0, we imply Wij < bj. 
Therefore 

h(q) = V H'Al} 
i€iff(W,b) 

= ( V { '̂})v( V K})<tr 
\ | J6Hf (W,b),jeHE(W,b,i) ' \\ieHE(W,b),j<£HE(W,b,i) 

(3.25) 
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For i € N, by j G HG(W,h,i) it follows that f\ {h} < ty. Since b is 
keHG(W,b,i) 

an attractor, we can obtain 

\/i G N, Cj A Wij < (bi V Cj) A w^j < bj. 

So if j G HG(W,b,i), then we can conclude that 

(df(W, b) V Cj) A w^ = ({ / \ {6fc}}vci) AWij < bj. 
keHG(W,b,i) 

And by j 0 HG(W,b,i) we can show, IOJJ < bj. Thus, (d? (W, b)VCj)AWjj < fy. 
In summary we may imply the following fact: 

V {{d^W,b)WCi)AWij} 
ieHG(W,b) 

= ( V {(df(iy,b)Vc l)AU ; i j})v (3.26) 
i\i£HG (W,b),jeHG(W,b,i) ' 

v ( V {(d^W^V Cl)Kw%j\\<br 
Ki\ieHG(W,b),jgHG(W,b,i) ' 

On the other hand, by Lemma 3.2, for % G N, d?(W,b) V c* = 6?(W,b) V c» = 
b}(W,b). Provided j G ̂ ( W , b , i ) , we have u^- = bj. It follows that 

Wy A (d? (W, b) V Q ) < Wij < 6j. (3.27) 

If j £ # B ( W , b , i ) , then j e # G ( W , b , i ) . Thus, d?(W,b) = A { M < 
keHG(W,b,i) 

bj\ And by j g" ifG(W, b, i) it follows that w^ < bj. Therefore 

Wij A (d?(W, b) V c») = wi:/ A d'j{W, b) < fy. (3.28) 

Using (3.27) (3.28), we can by the same method as (3.26) show that 

\ / {(d? (W, b) V Q ) Awy }<bj. (3.29) 

Synthesize (3.26), (3.29), h(q) = V {(d^W^b) V Ci)Au^}< 
ieHGe(W,b)UHG(W,b) 

bj. Thus by (3.17) it follows that h(q) V l2(q) < bj. D 

Theorem 3.9 Let the fuzzy pattern b = (b\,...,bn) be an attractor of 
(3.17), and W = (u)ij)nxn be the connection weight matrix related. Moreover, 
the following conditions hold: 

(i) Fori G N, andVji G HE(W,b,i), Mj2 G HG(W,b,i), it follows that 
bjx <bh; 
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(ii) For j G N, there exists i G N, so that j G HE(W,b,i). 
Then for any x = (xi,...,xn) G Af(W,b,c), x converges to b with one 

iteration. 

Proof. For i G N, By the condition (i), bj(W,b) < bf(W,b). So using (3.22) 
we get, dj(W, b ) < d?(W, b ) . For any j G N, and x = (xj.,..., xn) G Af (W, b , c), 
by the condition (ii), there is i0 G N, so tha t j G i J E ( W , b,^o). Hence i0 G 
fl^WibJUff^W.b). Considering j G HE(W,b,io), and (3.23) (3.24) we 
get 

V {{xiVc^fxwij}^ V {{d\{W,b)\jCi)/\Wij} 
ieH^(W,b)UH^"(W,b) ieHg (W,b)UH^"{W,b) 

> V i f V {6fc})A«;ij)> V {6fc}>&i-
i€fff (W,b)U.fff e(W,b) k Vfce-H"E(W,b,i) ' > k£HE(W,b,i0) 

Therefore it follow tha t 

V {(xi V C J ) A Wij} 

= ( V {(ijVc,)AiDyj)v( V {{xiVc^AWij}) 
i£if0

Ge(lf,b) ' \<=H°(W,b) ' 

v( V {(xlVci)Awii})v( V {{xiVc^AWij}) 
\eH^(w,b) ' \eHfr(w,b) ' 

> V {(xiVc^AWi^^bj. 
ieHg (W,b)UH°"(W,b) 

(3.30) 
On the other hand, by Lemma 3.2 it follows tha t 

\J{(xiVci)AwZJ}<l1{q)Vl2(q)V^ \f {(x< V a) A Wij}^ < bj. (3.31) 
iSN iei /£(W,b) 

Synthesizing (3.30) and (3.31) we obtain, V {?%'A(z; Vc;)} = bj {j G N). Tha t 

is, x converges with one iteration to B. • 

By (3.17) and Theorem 3.9, if for i G N, 0 < 6̂  < 1, and the conditions of 
Theorem 3.9 hold, then the at tractive basin A%(W,b,c) is non-degenerate. 

R e m a r k 3 .1 Using Theorem 3.9 to compare (3.24) with a corresponding 
conclusion in [34] we can say tha t the at tractive basins of a fuzzy Hopfield 
network with threshold are larger than the corresponding ones of the fuzzy 
Hopfield network in §3.1, and consequently the system (3.17) possess much 
bet ter fault-tolerance. 

To demonstrate the effectiveness of the proposed FNN in the storage and 
association of fuzzy pat terns , in the following let us discuss a simulation ex­
ample. Suppose N = {1, 2, 3, 4, 5, 6}. By Table 3.6 we give the fuzzy pat terns 
b \ b 2 , b 3 . 
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Table 3.6 Fuzzy patterns 

No. 

1 

2 

3 

bfe 

(0.4 0.5 0.4 0.4 0.4 0.5) 

(0.4 0.4 0.4 0.3 0.3 0.4) 

(0.5 0.4 0.5 0.3 0.3 0.4) 

Assume that the connection weight matrix of (3.17) is given as 

0 0 0.3 0.3 0 \ 

W = (Wij) ij )6x6 

( 0.5 

0 

0 

0.4 

0 

V 0 

0.5 

0 

0.4 

0 

0 

0 

0.5 

0.4 

0 

0 

0.3 

0.3 

0 

0.4 

0.3 

0.3 

0.3 

0 

0.4 

0.3 

0 

0 

0.4 

0 

0.5 / 

and the threshold vector as c = (0.4, 0.4, 0.4, 0.3, 0.3, 0.4). Easily we can show, 
W C W2, and the conditions of Theorem 3.9 hold. So b 1 , b 2 , b 3 all are the 
attractors of the system (3.17). To calculate the respective attractive basins 
As

t(W,b\c), A$(W,b2,c), Af(W,b3 ,c), related to b \ b 2 , b 3 , we at first cal­
culate the sets Hge(W,b), Hg(W,b), Hg(W,b) and Hfr(W,b), as shown in 
Table 3.7. 

Table 3.7 The index sets #0
Ge(W,b), H§(W,h), Hg{W,h), H^{W,b) 

fuzzy pattern H§e{W,b) H§{W,b) Hg(W,b) Hfr{W,b) 

b = b* 

b = b2 

b = b3 

0 
{1,2,3,6} 

{2,6} 

{1,3} 

{5} 

{5} 

{2,4,5,6} 

{4} 
{1,3,4} 

0 
0 
0 

dJCW.b1), d2(W,bl); d\{W,b2), d2(W,b2), dj{W,b3), d2(W,b3) can be 
calculated by using (3.22) respectively, as shown in Table 3.8. 

Table 3.8 endpoints of attractive basins 

No. d\{W,bl) dliWM) dj(W,b2) d2(W,b2) d\(W,b3) d2(W,b3) 

1 

2 

3 

4 

5 

6 

0 

0.5 

0 

0.4 

0.4 

0.5 

0.4 

1 

0.4 

1 

1 

1 

0 

0 

0 

0.4 

0 

0 

0.4 

0.4 

0.4 

1 

0.3 

0.4 

0.5 

0 

0.5 

0.4 

0 

0 

1 

0.4 

1 

1 

0.3 

0.4 
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Therefore we can establish the respective attractive basins as 

A?(W,b\c) = [0,0.4] x [0.5,1] x [0,0.4] x [0.4,1] x [0.4,1] x [0.5,1]; 

As
t(W,b2,c) = [0,0.4] x [0,0.4] x [0,0.4] x [0.4,1] x [0,0.3] x [0,0.4]; 

As
t(W,b3,c) = [0.5,1] x [0,0.4] x [0.5,1] x [0.4,1] x [0,0.3] x [0,0.4]. 

Enlarging the respective attractive basins of attractors is an important 
method to improve fault-tolerance of a fuzzy Hopfield network. The size of 
the attractive basin of an attractor of (3.17) is mainly determined by the con­
nection weight matrix W and threshold vector c. So it is very important and 
meaningful to develop some algorithms for W and c so that the corresponding 
attractive basins are as large as possible [35, 36, 38]. In addition to the analytic 
learning algorithms built aforementioned the BP type fuzzy algorithms [44, 48, 
55], the fuzzy GA's [5, 50] and other dynamical learning procedures [9, 16, 47] 
and so on will be efficient tools to solve such a problem. 

§3.3 Stability and fault-tolerance of FBAM 

We introduce feedback connection weights in the two layer FAM's of Chap­
ter II, and there are feedforward and feedback fuzzy information flows in the 
corresponding FNN's. By the connection weight matrix W fuzzy information 
flows forward and by the corresponding transpose WT fuzzy information flows 
backward. We call such FNN's the fuzzy bidirectional associative memories 
[30, 33, 38], i.e. FBAM's for abbreviation. They are also nonlinear dynamic 
systems, on which we focus in the section. As in the case of the fuzzy Hop-
field networks, the attractors of a FBAM constitute the corresponding storage 
patterns, each of which may possess a non-degenerate attractive basin. So a 
FBAM can possess good fault-tolerance [8, 15, 20]. Next let us study the fol­
lowing meaningful problems related to a FBAM: First, for any fuzzy connection 
weight matrix W, the FBAM is globally stable; Second, each equilibrium point 
of the system is Lyapunov stable, i.e. all equilibrium points are the attrac­
tors of the system; Finally, with some condition each attractive basin can be 
non-degenerate, and consequently the system possesses good fault-tolerance. 

3.3.1 Stability analysis 

A FBAM system can be defined as follows: 

xfe = fe-i 0 WT 

(3.32) 
yK = x l O W, 

where k = 1,2,..., xfe = (zf, ...,x£), yk = (y^,...,y^), W = (t%)„Xm is the 
connection weight matrix, and 'o' is the 'V — A' composition operation. (3.32) 
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can also be rewritten as 

f *ki= V ( ^ _ 1 A ^ ) ( i G N ) i 
JeM (3 33) 

v$= V^'A^O'eM). 

By H(a1, a2) we denote the Hamming metric between the fuzzy patterns a1 

and a2, and if [(a1, b1) , (a2, b2)] denotes the Hamming metric between the 
fuzzy pattern pairs (a1, b1) and (a2, b2) , that is 

f f [ ( a \ b1) , (a2, b2)] = H{&\ a2) + H ( b \ b2) . 

The fuzzy pattern pair (a, b) is called an equilibrium point of (3.32), if a = 
bo W T , b = aoW. If (a, b) is an equilibrium point of (3.32), and Ve > 0, there 
is 5 > 0, then for a given fuzzy pattern pair (x, y) : H[(x, a), (y, b)]< 5, 
taking (x, y) as an initial pattern of the system (3.32), Vfc > 1, it follows that 
ii[(x fe, a), (yfe, b)]< e. We call (a, b) to be Lyapunov stable. A Lyapunov 
stable equilibrium point is called an attractor of (3.32). 

Denote W o WT = (&„)„*„, (W o WT)k = {w%)nXn. 

Theorem 3.10 For arbitrary connection weight matrix W, each equilibrium 
point (a, b) of the system (3.32) is Lyapunov stable, and consequently each 
equilibrium point of the system is an attractor. 

Proof. Give an initial pattern pair (x°, y°) : x° = (x°, ...,x°), y° = 
(j/°, ...,2/JJJ, by (3.32) and the induction method it follows that 

J x2fe = x ° o ( l f o WT)k, ( y2k = y° o {WT o W)k, 

\ x2k-1=x1o(WoWT)k-1] \ y2k-l=ylo(WToW)k-1. 

Since (a, b) is an equilibrium point of (3.32), we have, a = bo WT, b = ao W. 
Therefore for any nonnegative integer p, we can conclude that 

a = a o ( W o WT)P, b = b o (WT o W)p. (3.35) 

For £ > 0, choose 8 = e/(2m + 2n). Give an initial fuzzy pattern pair (x°, y°), 
satisfying H[(x°, a), (y°, b)] < 5. Then Mi e N, |x° - a»| < e/(2m + 2n); Vj G 
M, \y° -bj\< e/(2n + 2m). And by x 1 = y° o WT', we get, Vi G N, 

\ai ~ xlI = | V ibi A w ^ } _ V {y°i A Wii) 

By Lemma 3.1 easily we have, \bj A Wij - y° A ty^ |< |6j - y°\ < e/(2m + 2n). 
Also Lemma 3.1 may imply, \at — x}\ < e/(2m + 2n) (i G N). And by (3.34) 
(3.35) it follows that 

\x2k 
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Moreover, \x° A Wij - a,j A wtj\< \x° - a.j\ < e/(2m + 2n). So using Lemma 
3.1 we get, \x2k - <n\< e/(2m + 2n), that is, #(x2 f c ,a) < e/2. With the same 
reason we have 

And \x) A wk~l - cij A w^f1]^ \x) - Oj| < e/(2m + 2n). So \x2k~x - at\ < 
e/(2m + 2n), i.e. H(x2k~1, a )< s. In summary, for k > 1, it follows that 
H(xk, a )< e/2. Similarly we can show, for k > 1, H(yk, b ) < e/2. Therefore 

#[(x f c , yfe), (a, b) ]= H(xk, a) + //(yfc, b) < e (k > 1). 

Thus, (a, b) is Lyapunov stable, and therefore (a, b) is an attractor. • 

By Theorem 3.10, we can in the following treat an equilibrium point and an 
attractor of (3.32) as an identity. We call (3.32) to be globally stable, if for any 
fuzzy pattern pairs (x, y), and take it as an initial pattern, (3.32) converges 
to an attractor or a limit cycle. Let us now show the system (3.32) is globally 
stable for any fuzzy connection weight matrix W. 

Theorem 3.11 Let the fuzzy matrix W be an arbitrary connection weight 
matrix of (3.32). Then the system converges to a limit cycle whose period does 
not exceed 2, with finite iterations. That is, there exist the fuzzy pattern pairs 
(a1, b1) , (a2, b2) , so that 

f a2 = b 1 o WT, f a1 = b 2 o WT, 

\ b 2 = a1 o W; \ b 1 = a2 o W. 

Proof. By the definition of 'o', The composition fuzzy matrix of two fuzzy 
matrices, based on 'o' does not generate new elements. So the fuzzy matrix 
sequences {(W o WT)k\k = 1,2,...} and {(WT o W)k\k = 1,2,...} contain at 
most finite different terms, respectively. By Lemma 3.1, This two fuzzy matrix 
sequences are increasing. So there is a natural number I, satisfying 

Vp >i,(Wo wTy = {wo wTf, (wT o w)1 = {wT o wy. 

Using (3.32), (3.34) easily we can imply 

x2'+4 = x ° o ( ^ o WT)l+2 =x°o(Wo WT)1 = a1, 

y2l+4 = y0o (WT Q wy+2 =y0Q (WT Q wy A b l . 

x2i+3 = x i 0 (W 0 wry+i = x i 0 Qy Q wry * ^ 

y2'+3 = y i o (WT o W)l+l = y 1 o (WT o W)1 = b 2 . 



Chapter III Fuzzy Associative Memory—Feedback Networks 91 

Also we can conclude that 

bloWT = (y°o(WToW)l)oWT 

= y°oWTo(WoWT)l=x1o(WoWT)l=a?-, 

b2oWT = (y
lo(WToW)l)oWT 

= y
1oWTo(WoWT)l=xPo(WoWT)l+1=a1. 

Similarly we have, a1 o W = b 2 , a2 o W = b 1 . That is 

S? = b1oWT, J a 1 =b 2 oW T , 

b 2 = a1 o W; \ b 1 = a2 o W. 

So the system (3.32) converges to a limit cycle whose period does not exceed 
2. • 

3.3.2 Fault—tolerance analysis 

It is well known that fault-tolerance of a dynamic system can be determined 
by the spatial sizes and shapes of attractive basins of corresponding attractors 
[8, 20]. The attractive basin of the attractor (a, b) of (3.32) means a subset Fq 

of [0, 1]™ x [0, l ] m , so that for any (x, y) € Fq, taking it as an initial pattern, 
(3.32) converges to (a, b). The attractive basin Fq is non-degenerate means 
that as a subset of [0, l ] n x [0, l ] m its volume is nonzero. 

Suppose a connection weight matrix of (3.32) is a fuzzy matrix W = 
(wij)nxm- For a given fuzzy pattern pair (a, b) : a = (ai,...,an), b = 
(bi, ...,bm) and for i € N, j € M, we introduce the following notations: 

BGj(W,b,i) = {j e M\Wij > b3}, BG'(W,a,j) = { i € N|w^ > a ,} , 

BE'(W,b,i) = {j e M\wtj = bj}, BE'{W,*,j) = {i e N | ^ - = a ,} . 

We define the following sets: 

BGe'(W,b) = {ie N\BG'(W,b,i) ^ 0, BE'(W,b,i) ^ 0}, 

£ 0
G e j ( W » = {j e M\BG<(W,*,j) ^ 0, BE<{W,*,j) ± 0}, 

BEl(W,b) = {ie N\BGj(W,b,i) = 0, BEj(W,b,i) ^ 0}, 

BE'(W,a) = {j e M\BG'(W,a, j) = 0, BE'(W,&,j) + 0}, 

BGl{W,b) = { i e N |B G j (W,b , i ) ± 0, BEj(W,b,i) = 0}, 

BGj(W,a) = {j e M\BG>(W,a,j) ± 0, BE'(W,&,j) = 0}. 

Similarly with Definition 3.2, we build the GE condition for (3.32), that is, 
(W, a, b) is called to satisfy GE condition if the following conditions hold: 
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(i) Vt G N, Vji G BE'(W,b,i), h G BGJ(W,b,i), bh < bh; 
(ii) Vj G M, Vii G £ B ' ( W , a , j ) , *2 e 5 G ' ( W , a , j ) , "n < a*; 
(iii) Vj G M, there is i G N, satisfying j € B-Bj(W /,b,i); 
(iv) Vi G N, it follows that there is j G M, so that i G BEl(W,a.,j). 
For i £ N, j S M, define 

V {bk}, BE'(W,b,i 

0, BEj(W,b,i 

1, £ G j ( W , b , i 

V {«fc}, B E ' ( ? , a , j 
4 3 . ( W , a ) = I fc€B*/(W,a,i) 

0, B £ ' W a , j 

A {afc}, 5 G ' ( W , a , j 

1, BG'{W,a,j 

7^0 

= 0 

7^0 

= 0 

7^0 

= 0 

7^0 

(3.37) 

Thus, we can introduce the following subsets related to (a, b) to build the 
attractive basin. 

^ ( a , b) = {(Xl,...,xn) G [0,l]n\xi € [0, (&(W,b)] (i G fi0
G'Wb)), 

x, G [dUW,b), dUW,b)] (i e B0
Ge '(^b)), 

a* € [dii(W,b), 1] (i G BEl(W,b)), Xi G [0, 1] (otherwise)}; 

(3.38) 

^ ( a , b) = {(yi,...,ym) G [0,l]m\yj G [0, d2
hj(W,a)] (j G i ?o G j Wa)) , 

y3 G [ < - ( W » , ^ . ( W , a ) ] (j G B0
Gej(W;a)), 

% € K - ( W , a ) , 1] (j G Bf J (W,a) ) , % G [0, 1] (otherwise)}. 

(3.39) 

Theorem 3.12 Let the fuzzy matrix W be a connection weight matrix of 
(3.32), and the fuzzy pattern pair (a, b) be an attractor, (W, a, b) satisfies GE 
condition. Then for any (x, y) G AyV(a, b) x A^(a , b), taking it as an initial 
pattern pair, the system converges to (a, b) with one iteration. 

Proof. Considering (W, a, b) satisfies GE condition, we can conclude, 
Vt e N, dii(W,b) < &(W,b ) . Let W = K ) „ x m , a = ( a 1 ; . . , a n ) , b = 
(bi, ...,bm). For any j G M, and x = (xi, ...,xn) G A^v(a,b), by GE condition, 
there is i0 G N, so that j G BEj (W, b, i0). Hence i0 G BGei (W, b) U BEl (W, b). 
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Considering j € BEj(W,b,io), we have 

V {xiAwtj}> V {dli{W,h)AWij} 
ieB^' (ff,b)UB0

Ge ' (W,h) ieBa1 {W,b)UB°ei (W,b) 

> V {( V {bk})AWlj\ 
iEB*1 (W,b)UB0

Ge' (W,b) ^ B B J (W,h,i) 

> V ih} > bj. 
k<=BEJ(W,b,i0) 

Therefore it follows that 

V {xi Awij} 
ieN 

> ( V {xiAwij})v( V { i i A t » , j } ) v ( V {xiAWij}^ 
ieBoe'(W,b) ieB^'(W,b) ieB^(W,b) 

> ( V {xiKv>ij})>bj. 

(3.40) 
On the other hand, for j e M, denote 

h(Q)= V K'A^(W,b)}= \/ {WlJA( f\ {bk})}. 
ieB°'(W,b) i&B°'(W,b) keBGJ(W,b,i) 

By j e BGj (W, b , i) we imply, f\ {bk} < bj. And by j 0 S6-7 (W, b, i) 
fc€BG^(W,b,i) 

we imply, w^ < bj. So it follows that V { î AtVij} < h(q) < bj. Denote 
i€B^(W,b) 

l2(q) = \J {Wij A 1}. If j € BEj(W,b,i), then Wij = bj. And when 
iesf J (W,b) 

j £ BEj(W,b,i), since BGj(W,b,i) = 0, we get, wtj < bj. Therefore 

\J {xiAWij}<l2{q)<bj. (3.41) 

i&B**(W,b) 

With the same step we can conclude that 

bj>l3(q)= V { < % A ( 4 ( ^ b ) } > V iwijAXi). (3.42) 
iEB° e j (W,b) i£B°e'(W,b) 

So we can conclude that 

V {Xi A w^} = h(q) V l2{q) V lz{q)\l 
igN 

V {x; Au^ -H ; 
i £ B G e / (W,h)UB®J (W,b)UBG/ (W,b) 

VI V {Xi A f c l K d j . 
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Synthesizing (3.41) and (3.42) we get, V {wij A Xi} = bj (j G N). That is, 
i£N 

xoW = b. With the same reason, for y e A^(a, b), it follows that yoWT = a. 
Thus, taking (x, y) as an initial pattern the system converges to the attractor 
(a, b). • 

Remark 3.2 Under the conditions of Theorem 3.12, if Vi € N, j e M, 0 < 
di < 1, 0 < bj < 1, then by (3.38) and (3.39) we can get a non-generate 
attractive basin A^v(a, b) x ^4^(a, b). 

3.3.3 A simulation example 

Let N = {1, 2, 3, 4, 5, 6}, M = {1, 2, 3}. By Table 3.8 we give the fuzzy 
pattern pairs (a1, b1) , (a2, b2) , (a3, b3) for training the FBAM. 

k 

1 

2 

3 

Table 3.8 Fuzzy pattern 

afc 

(0.4 0.4 0.6 0.5 0.4 0.6) 

(0.3 0.3 0.4 0.5 0.3 0.4) 

(0.4 0.4 0.3 0.3 0.4 0.3) 

family 

bk 

(0.6 0.5 0.4) 

(0.4 0.5 0.3) 

(0.3 0.3 0.4) 

Considering the GE condition, we propose the connection weight W of the 
system (3.32): 

/ 0.3 0.3 0.6 0.4 0.3 0.6 \ 

WT = K i ) 3 x 6 = 0 . 3 0 0.4 0.5 0 0.4 

\ 0.4 0.4 0.3 0.3 0.4 0.3 j 

Table 3.9 B%ei {W, b), ...,B°J(W,a) 

Bt'(W,b) 

BtJ(W,a) 
B°>(W,b) 

B°'(W,a) 

B*'(W,b) 

B*'(W,a) 

(a1 

0 
0 
0 
0 
{1 

{1. 

-b1) 

2,3,4,5 

2,3} 
6} 

(a2 ,b2) 

{3,6} 

{1} 
{1,2,5} 

{3} 

{4} 

{2} 

(a3 ,b3) 

0 
0 
{3,4,6} 

{1,2} 

{1,2,5} 

{3} 

Easily the fuzzy pattern pair (afc, bfc) (k = 1, 2,3) is an attractor of (3.32). 
So the conditions of Theorem 3.12 hold. To calculate the attractive basin 
A^y(ak, bk) x A^v(a

k, bk) of (afc, bfc), we firstly compute the following sets: 

B^(W,b), B^(W,a),B*'(W,b), B^(W,R), Bf'(W,b), B°'(W,a). 
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By (3.38) (3.39) we calculate d^(W,bk), d^(W,a.k), (i e N, j e M, k 
1,2,3, h = 1,2), as shown in Table 3.9. 

Table 3.10 values of dii(W, bk), ..,di6(W, hk) 

No. dix{W,hk) di2(W,bk) di3(W,bk) dl4(W,bk) di5(W,bk) di6(W,bk) 

1 

2 

3 

0.4 

0 

0.4 

0.4 

0 

0.4 

0.6 

0.3 

0 

0.5 

0.5 

0 

0.4 

0 

0.4 

0.6 

0.3 

0 

Table 3.11 values of d£i(W, b fc),.., dl6(W, hk) 

No. d2
al(W,bk) d2

a2(WM) d^WM) dl4(W,bk) d2
a5(W,bk) dl6(W,bk) 

1 

2 

3 

1 

0.3 

1 

1 

0.3 

1 

1 

0.4 

0.3 

1 

1 

0.3 

1 

0.3 

1 

1 

0.4 

0.3 

Table 3.12 values of di1(W,ak), ...,di3{W,ak), dll{W,ak),.., dl3(W,ak) 

No. dk(W,a f c) dl
h2(W,ak) di3(W,a

k) d2
hl{WMk) d2

h2(W,ak) d2
b3(W,a

k) 

1 

2 

3 

0.6 

0.3 

0 

0.5 

0.5 

0 

0.4 

0 

0.4 

1 

0.4 

0.3 

1 

1 

0.3 

1 

0.3 

1 

By (3.38) (3.39) the attractive basin is A^(ak, bk) x A^(ak, bk) for the 
attractor (afc, bfe) (k = 1,2,3), where 

f A ^ ( a 1 , b 1 ) = [0.4,1] x [0.4,1] x [0.6, l ] x [0.5, l ] x [0.4, l ] x [0.6,1], 

\ A ^ ( a 1 , b 1 ) = [0.6, l ] x [0.5, l ] x [0.4,1]; 

J A^(a2,b2) = [0,0.3] x [0,0.3] x [0.3,0.4] x [0.5, l] x [0,0.3] x [0.3,0.4], 

\ A ^ ( a 2 , b 2 ) = [0.3,0.4] x [0.5, l ] x [0,0.3]; 

J ^ ( a 3 , b 3 ) = [0.4,1] x [0.4,1] x [0,0.3] x [0,0.3] [0.4, l ] x [0,0.3]; 

{ A ^ ( a 3 , b 3 ) = [0,0.3] x [0,0.3] x [0.4,1] • 

A FBAM is globally stable and its equilibrium points are Lyapunov stable, 
which constitutes the theoretic basis for application of FBAM's. A FBAM pos­
sesses good fault-tolerance, which is necessary for FBAM's to store and recall 
fuzzy patterns. Like the fuzzy Hopfield networks, FBAM's as (3.32) can pos­
sess large attractive basins of corresponding attractors by suitable connection 
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weight matrix W. By Theorem 3.12, we choose W so that the GE condition 
should be ensured, since by (3.38) (3.39), the corresponding attractive basins 
can be non-degenerate accordingly, and consequently fault-tolerance of the sys­
tem can be guaranteed. So developing some succinct learning algorithm for W 
to enlarge the sizes of attractive basins is important and meaningful for future 
research in the field. 

§3.4 Learning algorithm for F B A M 

Establishing the connection weight matrix suitably is a key factor for a 
FBAM to possess good fault-tolerance. So in this section we focus mainly on 
a learning algorithm for the connection weight matrix so that the attractive 
basins related are non-degenerate, and therefore the system may possess good 
fault-tolerant. 

3.4.1 Learning algorithm based on fault—tolerance 

Give p G N , and the set P = {1,2, ...,p}. Also give the fuzzy pattern family 
for training networks: 

( A B) = {(afc, bfc)|afc = (a*, . . . , < ) , bfe = (bl ...,bk
m), k e P } . 

Let us now build an analytic learning algorithm for W of (3.32). When (A, B) 
satisfies some conditions, each fuzzy pattern pair in (A, B) is an attractor of 
(3.32), moreover, the corresponding attractive basins are non-degenerate, and 
so good fault-tolerance of (3.32) can be guaranteed. 

For i G N, j 6 M, considering the notations defined we recall the following 
expressions: 

Gij(A,B) = {ke P\ak > b)}, L y ( A B ) = {k e P|&£ > a*}; 

EA(i) = {*ePa f= V {a?'}|, EBU) = {kePbk = V '{#})• 
I. P e p J ^ fr'eP > fc'eP fe'ep 

To improve fault-tolerance of FBAM's we introduce the following new nota­
tions: 

<(M) 
' ( A K } ) A ( A {&£}), LIJ(A,B)UGIJ(A,B)^ 

Kk£Li:i(A,B) ' XkeGij(A,B) ' 

EC
B(i,j) 

EC
A(i,j) 

Lij{A,B)uGij(A,B) 

{k e P\bk = ((i,j)}, Lij(A,B)uGij(A,B) ± 0; 

0, Lij(A,B)uGij(A,B) = 0. 

{k e P\ak = ((i,j)}, GtJ(A,B)ULlj(A,B) ± 0; 

0, Glj(A,B)uLij(A,B) = <&. 

(3.43) 

(3.44) 
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Let us now develop an analytic learning algorithm to establish a connection 
weight matrix W = W* = (w*j)nxm 

of (3.32). 
C(i,j), LlJ(A,B)UGij(A,B)^H; 

V K f c } , Llj(A,B)UGZJ(A,B) = ®. ( 3 - 4 5 ) 

fceP 

Definition 3.7 We call the fuzzy pattern pair family (A,B) to be co­
existed, if the following conditions hold: 

(i) Vi G N, there is j G M, so that Vfc G P, ak = bk; 
(ii) Vj G M, there is i G N, satisfying Vfc G P, ak = bk; 

(iii) Vi e N, U Ec
A(i,j) U £^(i) = P, Vj G M, U 4 (*> i ) U #s ( j ) = P-

(iv) \/k G P, Vi G N, if j i G BGj(W„bk,i), j 2 G B B j (W. ,b f c , i ) , we have, 

(v) For any j G M, if ix G BG '(W*,a fc, j ) , i2 G BE'(W*,a.k, j ) , it follows 
tha ta* <ok

li. 

Obviously the conditions (i) and (ii) of Definition 3.7 are equivalent with 
the following facts (i') and (ii'), respectively: 

(i') Vi G N, there is j G M, satisfying Li:j(A, B) U Gij(A, B) = 0; 
(if) Vj G M, there is i G N, so that I^fyl, B) U G ^ A <B) = 0. 
Learning algorithm (3.45) is efficient, which can be demonstrated by the 

following result. 

Theorem 3.13 Suppose a fuzzy pattern pair family as 

(A, B) = {(afe,bfc)|afc = (ak,...,ak
n), bfc = (bk, ...,bk

m),k G P} 

is co-existed. Moreover, Vi G N, j G M., fc G P, i/ie following conditions hold: 
(i) 0 < ak < 1, 0 < bk < 1; 
(n,) (-4, £5) is co-existed. 
In (3.32) choose W = W*. TTien Vfc G P, (afc, bfc) is an attractor of the 

system, and the attractive basin A^ (afc,bfc) x A^ (afc,bfc) is non-degenerate. 

Proof. Give fceP, and in (3.32) let W = W*. For any j G M, since (A, B) 
is co-existed, we have, {i G ~N\Lij(A,B) U Gij(A,B) = 0} ^ 0. Also since 
Vi' G {i G N|Li j (AS) U Gij{A,B) = 0}, we can imply, W G P, ak', = bk'. So 
by (3.45) it follows that 

V {ak A wtf = bk A wioj = bkA(K\f {bf}) = b). (3.46) 
i\Lii(A,B)uGii(A,B)=$ fc'SP 

On the other hand, if Gij(A, B) ^ 0, then by k G Gij(A,B) we can conclude 
that 

ak A w*j =akA((i,j)<akA( / \ {fef }) < ak A bk = bk. 
k'eGi:j(A,B) 
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Because k $ Gij(A,B) can ensure that ak < bk, we get, ak A iu*- < bk. Thus, 
V {ak A w*j} < bk. Similarly we have, V {a% A wi*j} ^ &£• 

i|Gy(AB)#0 i|Ly(^,B)^0 
Therefore 

V KA<}<6£. 

Considering (3.46) we imply, \/ {a^ A «;?•} = 6̂  (j G M). With the same 

reason, the fact V {bk A «;*•} = af (i G N) holds. So (afc, bfc) is an attractor 
jeM 

of (3.32). 
Now let us show, (W*, afc, bfc) satisfies GE condition. Since (A, B) is co­

existed, it follows that Vj G M, there is i\ G N, so that A; G E${i\,j) U Es{j)-
If A; G EB(J), then V/c' G P, fe^ < 6^. By the assumption we have 

{I G N |Gy(AB) ULy(Af i ) = 0 } ^ 0-

So let i0 G {/ G N | G y ( A S ) U l y ( A S ) = 0}. Thus 

™ioj= V « ' } = V ^ ' } = 6i-
fc'ep fe'ep 

That is, j G £B j (W*,b f c , i 0 ) . Using (3.43) we get 

k G 4 ( i i , j ) , => Gilj{A,B)ULilj(A,B) ± 0. 

So (3.45) and (3.43) imply that b) = C(ii,j) = whj, i.e. j G BEj(W*,bk,i1). 
Hence for j G M, there is i G N, so that j G . B ^ W , , bfc, i). On the other hand, 
Vji G B ^ ( W . , b f c , t ) , j 2 G 5G- '(W„b f c ,«), by the condition (ii), bk

2 > &£. 
Using the same steps we can conclude that 

(1') Vi € N, there is j G M, so that i G BEl(W*,bk,j); 
(2') Vt! G BE'(W„bk,j), i2 e BG>(W*,bk,J),=>ak

2 > a*. 
So (W», afc, bfe) satisfies GE condition. V(x, y) G Af^(afc,bfe) x ^ ( a f e , b f e ) , 
By Theorem 3.12, (x, y) converges to (afc, bk) with one iteration. Thus, 
A^Vt(a

k,bk) x A^(ak,bk) is the attractive basin of (afe, bfe). And by the 
assumption and Remark 3.2 A^y (afc,bfc) x A^ (afe,bfc) is non-degenerate. D 

Prom the proof of Theorem 3.13 the following conclusion is trivial. 

Remark 3.3 Let (A, B) be co-existed. Then VA; G P, Vj G M, there is 
i G N, so that w^ = bk; Symmetrically V? G N, Vfc G P, there is j G M, 
satisfying «;*• = ak. 

3.4.2 A simulation example 

Let us in the following explain the realizing steps of the analytic learning 
algorithm (3.45), and therefore demonstrate its efficiency. To this end let N = 
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{1, 2, 3, 4, 5, 6}, M = {1, 2, 3, 4}, P = {1, 2, 3}. By Table 3.13 we give the 
fuzzy pattern pair family (A, B) = {(afc, bfc)|fc G P } . 

Table 3.13 Fuzzy pattern pair family 

fc 
1 

2 

3 

afc 

(0.4 0.4 0.6 0.5 0.4 0.6) 

(0.3 0.3 0.4 0.5 0.5 0.4) 

(0.4 0.4 0.3 0.3 0.3 0.3) 

bk 

(0.6 0.5 0.4 0.4) 

(0.4 0.5 0.3 0.5) 

(0.3 0.3 0.4 0.3) 

With the following steps we may realize the learning algorithm (3.45): 
Step 1. Put k = 0; and for i e N, j G M, calculate Lij(A,B), Gij(A,B), 

consequently determine ((i,j); 
Step 2. For i G N, j G M, calculate E^(i,j), E^(i,j), EA(i) and EB(j); 
Step 3. Discriminate whether (A, B) is co-existed or not, that is, verify the 

following conditions to hold or not: 
(1') Vj G M, |J E%(i,j) U EB{j) = P. and L^A, B) U G y ( A B) = 0 holds 

for at least one i G N; 
(2') Vi G N, U £^( i , j ) U EA{i) = P, and L0-(a, B) U (^ ( . 4 , B) = 0 holds 

.7'6M 

for at least one j G M. 
If yes go to the following step, otherwise stop the procedure; 
Step 4- By (3.45) to determine W*, and let k = k + 1; 
Step 5. Discriminate whether (W*, afc, bfe) satisfies GE condition, if yes, go 

to the following step; otherwise go to step 4; 
Step 6. For afe, bfe, W* we compute the sets: B^e'(Wt,b

k), and 

^ ' ( W ^ b ^ . B ^ ^ b * ) , £ 0
G e j ( ^ , a f e ) , B ^ ( W „ a f c ) , B°'(W„ak); 

Step 7. Use (3.38) (3.39) to compute A^(ak,bk) x A^(a f e ,b f c ) , the at­
tractive basin of (afc,bfe). 

For (.4, B) shown as Table 3.13, easily we can show that the conditions 
in above steps hold. So we can establish the connection weight matrix W» = 
« ) e x 4 of (3.32) as 

W? = (w*i)4x6 

( 0.3 0.3 0.6 0.4 0.4 0.6 ^ 

0.3 0.3 0.4 0.5 0.4 0.4 

0.4 0.4 0.3 0.3 0.3 0.3 

V 0.3 0.3 0.4 0.4 0.5 0.4 ) 

The fuzzy pattern pair (afe, bk) (k = 1,2,3) is the attractor of (3.32). To 
compute the attractive basin A^ (afe, bk) x A^(afc, bfc) (fc = 1, 2, 3), we first 
calculate the following sets: B° e j (W.,b f c ) , £G e j(W*,a f e) , B^I(Wt,b

k), and 
BgJ(W,,a.k), B^(W*,bk), BZJ(W*,a.k), as shown in Table 3.14. 
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Table 3.14 B°ei (W*,hk),..., BoJ(W*,ak) 

B£e'(W*,hk) 

B^ej(W„a.k) 

B°'(W*,hk) 
B^(W*,ak) 

BEl(W*,bk) 

BEj(W*,8Lk) 

(a1, b 1) 

0 
0 
{5} 
{4} 
{1,2,3,4,6} 

{1,2,3} 

(a2, b 2) 

{3,6} 

{1} 
{1,2} 

{3} 
{4,5} 

{2,4} 

(a3, b 3) 

0 
0 
{3,4,5,6} 

{1,2,4} 

{1,2} 

{3} 

For i G N, j G M, k G P, we determine d^(W»:,bfe), <Pai(W*,bk), and 
dL(W*,afc), djL-(W*,afc) by using (3.37). And compute the attractive basin 
A^(a.k,bk) x A^(ak,bk) (k G P) of (afc, bfe), where 

f Afa (a1, b 1) = ([0.4,1] x [0.4, l] x [0.6, l] x [0.5, l] x [0,0.4] x [0.6, l], 

\ ^ ( a 1 , b 1 ) = [0.6,1] x [0.5, l]x [0.4, l]x [0,0.4]; 

j A ^ (a2, b 2) = [0,0.3] x [0,0.3] x [0.3,0.4] x [0.5, l] x [0.5, l] x [0.3,0.4], 

\ A ^ (a2, b 2) = [0.3,0.4] x [0.5, l] x [0,0.3] x [0.5, l]; 

( A%,m (a
3, b 3) = [0.4, l] x [0.4, l] x [0,0.3] x [0,0.3] x [0,0.3] x [0,0.3], 

\ A ^ (a3, b 3) = [0,0.3] x [0,0.3] x [0.4, l] x [0,0.3]. 

There are still two important and meaningful problems to be solved. First, 
the condition of the fuzzy pattern pair family (A, B) being co-existed should be 
improved so that the learning algorithms related can be applied more widely; 
Second, develop a novel learning algorithm for W to enlarge the attractive 
basins related, and therefore improve fault-tolerance of the system (3.32). 

3.4.3 Optimal fault—tolerance 

Let us next generalize (3.38) (3.39) to improve fault-tolerance of (3.32). 
To this end we use (3.2) to enlarge the attractive basins determined by (3.38) 
(3.39) through taking the function tu(-) as a bridge. Let 

Bf'(W,b) = {ie N\BE'(W,b,i) = M } , 

BfJ(W,&) = {j G M\BE'(W,&,j) = N}. 

j min{i\i£Bf'(W,b)}, Bf'(W,b)^9; 

! e _ [ n + l, Bf'(W,b) = 9. 

f min{j \j G BfJ (W, a )} , BEJ (W, a) ^ 0; 

m • 1, BfJ(W,a) = $. 
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Suppose (W, a, b) satisfies GE condition. For simplicity we also denote 

A ^ ( a , b ) = {(xu...,xn) G [0, l]n\Xi G [0, d2
ai(W,b)} (i G B°'(W,b)), 

Xi G [<& W > ) • ro(Bf (W,b)), 1] (i G B f ( W , b ) \ {ie}), 

*i G [ d L W b ) , <&(^,b)] (* G 5 0
G e i ( ^ b ) ) , 

^ e € [di i e(W,b), l ] , i j 6 [0, 1] (otherwise)}; 

(3.47) 

A ^ ( a , b ) = {(yi,...,ym) G [0, l}m\yj G [0, < ( W , a ) ] (j e ^ ( W . a ) ) , 

% G [ ^ . ( ^ a ) • ^ ( B f ' ( W , a ) ) , 1] (j G Bf J(W,a) \ {je}), 

%• G [ < ( W » , <-(W,a)] (j G B^(W,a)}), 

Vu e [<£,-„ W a), 1], % G [0, 1] (otherwise)}. 
(3.48) 

Theorem 3.14 Let W be the connection weight matrix of (3.32), and 
the fuzzy pattern pair (a, b) be an attractor of (3.32). Let (W, a, b) satisfy GE 
condition. Then for any (x, y) G Ay^(a, b) x A^(a , b), taking it it as an initial 
fuzzy pattern, the system (3.32) converges with one iteration to (a, b). 

Proof. Give i G N, j G M. Since (W, a, b) satisfies GE condition, we get 
by (3.37) that 

dl
ai(W, b) < d2

ai(W, b), di3(W, a) < d2
bj(W, a). (3.49) 

For fuzzy pattern pair (x,y) G A^(a,b) x A ^ ( a , b ) : x = (x1,...,xn), y = 
(yi,...,ym), HBf1 (W, b) ^ 0, then by ie G Bf1 (W, b), we have BE' (W, b, ie) = 
M. So by (3.47) it follows that 

V {xk A wkj} > V {xk A Wfcj} > z i e A w;ieJ-
fc6SfJ(lV,b)UB^ei(W,b) keBf'(W,b) 

> 4 i e W b) A wiej > ( V ih}) Awiej 
ykeBEJ(W,b,is) 

> ( V {h})Awiej >bj. 

(3.50) 
If Bf1 (W, b) = 0, then w(BfJ (W, b)) = 1. Since (W, b) satisfies GE condition, 
we choose i0 G N, so that j G BEj(W,b,i0). Therefore, i0 G B%e'(W,b) U 
Bf ' (W,b) . Considering (3.46) and j G B B j (W,b , i 0 ) , we can conclude that 

V {xkAwkj}> V {dik(W,b)Awkj} 
keBf1 {W,b)\jB^ei (W,b) fcesf' (W,b)UB^e i (W,b) 
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> dii0(W,b)A wloj >( V {h}) AwloJ > bj. 
ykeBBJ(W,b,i0) 

In summary, \/ {xk A wkj} > bj. Thus 
keB^"1 (W,b)UBf7 (W,b) 

V {xkAwkj} = ( V {xkAwkj})v( V {xkAwkj}jV 
fceN keB°e'(W,b) k€B°'(W,b) ' 

v( V {xkAwkj}jv( V {ifcAwtj} 
feesf' (w,b) ^ B 0

G B ' (w,b)usf' (w,b)us°J (w,b) 

> f V {̂ fc Au>fcj}J> 6j. 
fcefif ' (W,b)UB0

Ge/ (W,b) 

(3.51) 
On the other hand, let 

h(q)= V HiA4(W,b)}= V {^iA( A {ft*'})}-
fc€B°J(W,b) k e B ^ W . b ) k'eBGJ(W,b,k) 

By the fact that j G BG-7(VF, b, fc), it follows that /\ {6fe} < bj. And 
fcGBGJ(W,b,i) 

j g BGj(W,b,k) may imply, wfci < bj. So V {̂ fc A wkj} < h(q) < bj. 
keB°'(w,b) 

With the same reason we have 

bj > h{q) = V {wkj A 1} > V iwkj A xk}; 
keBf'(W,b) keBf'(W,b) 

b3 > h(q) = V {wkj A d\k{W, b)}> V {Wkj A xfe}. 
fc£B0

Ge' (W,b) fc6B^ej(W,b) 

Therefore, the following fact holds: 

V {xk A wk]} < h(q) V J2((jf) V l3(q)V 
feeN 

v ( V {xkAWkj}J<bj. 
kgBf1 (W,b)UB0

G/ (W,b)UBG e / (W,b) 

(3.52) 

Thus, using (3.51) and (3.52) we get, V {wkj A xk} = bj (j G M). Using the 
feeN 

similar steps we can show, \J {yk A Wik} = a,i for i G N. Hence x o W = 
keM 

b, y o WT = a. That, (x, y) converges with one iteration to (a, b). • 

Remark 3.4 Under the conditions of Theorem 3.14, if Vi G N, j G M, 0 < 
a» < 1, 0 < bj < 1, then by (3.47) (3.48) we can show, the attractive basin 
AyV(a, b) x ^4^ (a, b) is non-degenerate. 
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Now let us enlarge the attractive basins of the attractors of (3.32) by ad­
justing W suitably. 

Theorem 3.15 Suppose (a, b) is an attractor of (3.32) when the connection 
weight matrix W is W\ and W2, respectively. Moreover, W-y C W2, and W\ 
is defined by substituting some nonzero elements respectively of W2 for zero. 
(W\, a, b) satisfies GE condition, and so does a, b, W2. Then 

A^ 2 (a ,b) x ^ 2 ( a , b ) C A ^ ( a , b ) x A ^ ( a , b ) . 

Proof. By the assumption and Theorem 3.14, Ayy (a, b) x A\ (a, b) and 
A^y2(a,b) x A^ 2 (a ,b) are the attractive basins of (a,b) when W being W\ 
and W2, respectively. To prove our conclusion it suffices by (3.47) and (3.48) 
to show, Vi € N, j e M, it follows that 

dli(Wi,b) < dii(W2,b), d2
ai(W2,b) < dUWx,h). (3.53) 

dlj (W1:a)< < (W2, a), o%j (W2, a) < d2
bj (W,, a). (3.54) 

In fact, Suppose Wk = ( « ^ ) „ X n {k = 1,2). Then by the assumption, Mi G 
N, j e M, either w}j = 0 or, wjj = wfj. So for i £ N, we have, BEj (Wi,b,i) C 
BEj{W2,b,i). Thus 

4i(Wi,b)= \ / {bk}< \ / {bk} = d1
ai(W2,b). 

keBEJ(W1,b,i) k€BEJ(W2,b,i) 

The first part of (3.53) holds. On the other hand, W\ C W2 may imply, 
Vi e N, BG-'(Wub,i) C BG^(W2,b,i). Hence 

<&(W2)b) = / \ {bk}< / \ {bk} = d2
ai(Wub), 

k£BGJ(W2,b,i) keBGJ(Wi,b,i) 

i.e. the last part of (3.53) holds. So (3.53) is true. Similarly we can show, 
(3.54) holds. • 

By Theorem 3.15, in the system (3.32), provided (W, a, b) satisfies GE con­
dition, the smaller the connection weight matrix W is, the larger the attractive 
basin of each attractor is. Such a fact can lead us to develop a novel learning 
algorithm for W so that the system (3.32) possesses optimal fault-tolerance. 
At first we improve (3.45) so that 

(i) When (A, B) satisfies some simple conditions, each fuzzy pattern pair 
in (A, B) is attractor of (3.32); 

(ii) W achieves its minimum value, and consequently (3.32) has optimal 
fault-tolerance. 
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To this end, we denote for i G N, j G M 

LA(i,j) = {jx G M\n < j , Gih(A,B)) ± 0, and C(i, j i ) = C(i,j)}, 

LB(i,j) = {h G N|»i < *, Lid{A,B) ± 0, and C(*i,j) = COU)}, 

DA(i,j) = k G N h < i, a* = o£ = V K f c ' } | , (3-55) 

£>B(i, j ) = { j ! e M j j < j , 6* = 6* = V { # })• 
fc'ep 

Now we can determine the connection weight matrix W — WQ = (w--)n X m of 
(3.32) as follows: 

< = 
'C(i,j) A {™(LA(i,j))Avo(LB(i,j))}, Lij(A,B)uGij(AJB)^, 

( V {a*})/\{w(DB(i,j))Aw(DA(i,j))}, Lij(A,B)uGij(A,B)=9. 

(3.56) 

Theorem 3.16 Suppose (a, b) is an arbitrary fuzzy pattern pair, a = 
(«!, . . . ,an) , b = (bi,...,bm), moreover, Vi € N, j G M, a» • bj / 0. Fuzzy 
matrices W*, Wo are defined by (3.45) and (3.56) respectively. (W7*, a, b) 
satisfies GE condition. Then (Wo, a, b) satisfies GE condition also. 

Proof. By the respective definitions of (3.45) (3.56), obviously we have 

Vi G N, j G M, w% ? 0, = • «;?• = <, . . (3.57) 

For each i G N, we choose arbitrarily j 1 ; j 2 £ M satisfying the conditions: 
ji G BEj(W0,h,i), j 2 G B G j (Wo,b , i ) . Then by the assumption we get, 
wiji = bji > 0, Wij2 = bJ2 > 0. By (3.57) it follows that w*ji = bji: w*J2 > bj2. 
So fa G B B j (W„,b , i ) , ji G B G j (W»,b , i ) . Since (W», a, b) satisfies GE 
condition, bj1 < bj2. For arbitrary j G M, also using the assumption that 
(W*, a, b) satisfies GE condition, we imply, there is i G N, so that j G 
^ ^ ( W t j b j z ) , i.e. w*j = bj > 0. Using (3.57) again, we obtain io°- = fy. 
hence j G BEj(Wo,b,i). With the same steps we can show, for each j G M, 
and Vii G B B / (W 0 , a , j ) , V«2 G B G / (W 0 , a , j), it follows that atl < ai2. More­
over, Vi G N, 3j G M, satisfying i G BEl(W0, a , j ) . Thus, (W0, a,b) satisfies 
GE condition. D 

Considering the fact that Wo C W*, Theorem 3.15 and Theorem 3.16, 
we can get better fault-tolerance of the system (3.32) if we choose Wo as 
the connection weight matrix rather than W*. Furthermore, Similarly with 
Theorem 3.5, we may show the minimality of Wo defined by (3.56) with the 
given conditions. 

Remark 3.5 Suppose a fuzzy pattern pair family as 

(A, B) = {(afc,bfc)|afc = (a? , . . ,a*) , bfe = ( & ? , . . . , 0 , * e P} 
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is co-existed. W0 = {w^j)nxrn is defined by (3.56). Then Wo is minimum among 
the fuzzy matrices W's which satisfy the following conditions: 

(i) Vfc G P, (afe, bk) is an attractor of W; 
(ii) Vfc G P, (W, afc, bfe) satisfies GE condition. 

By Theorem 3.15, Theorem 3.16 and Remark 3.5, if the connection weight 
matrix of (3.32) is Wo, then each fuzzy pattern pair in (A, B) is the attractor. 
Moreover, the attractive basins related is maximum, and therefore the system 
possesses good fault-tolerance. 

3.4.4 An example 

To show the advantage in fault-tolerance of the FBAM defined by W) over 
that by W*, we in this subsection use the same example as in §3.4.2 to calculate 
the attractive basins related to W). So N = {1,...,6}, M = {1, 2, 3, 4}, and 
the fuzzy pattern pairs (A1, Bl), (A2, B2), (A3, B3) are shown in Table 3.13. 

It is easy to show that the conditions of Theorem 3.15, Theorem 3.16 and 
Remark 3.5 hold. Using (3.55) we can establish the connection weight matrix 
W0 = (11^)6x4 as follows: 

rT . 
= (W°i)4x6 = 

/ 0.3 

0.3 

0.4 

\ 0.3 

0 

0 

0 

0 

0.6 

0.4 

0.3 

0.4 

0.4 

0.5 

0 

0 

0 

0 

0 

0.5 

°\ 
0 

0 

0 / 

The fuzzy pattern pair (afc, bfc) for k = 1, 2, 3 is the attractor of (3.32) 
when W = W0. To compute the attractive basin AyV(ak,hk) x A^v(a

k,bk) of 
(afc, bfc) (k = 1, 2, 3), using the same steps as in §3.4.2 we can calculate the fol­
lowing sets: B°ei (W, b), B°ej (W, a), B$' (W, b), B°J (W, a), B^1 (W, b) and 
J3jfJ(W,a) shown in Table 3.14. For i G N, j G M, k e P, we determine 
c4(W*,b fe), (&(W„b f c), and c^.(W„a f c), c^(W*,a fe) by using (3.47). And 
compute the attractive basin A^v{ak,hk) x A^(a fe,b fc) (k G P) of (afe, bfc), 
where 

f A ^ C a S b 1 ) = ([0.4,1] x [0,1] x [0.6, l] x [0.5, l] x [0,0.4] x [0, l], 

{ ^ ( a 1 , b 1 ) = [0.6,1] x [0.5, l]x [0.4, l]x [0,0.4]; 

J A^(a 2, b2) = [0,0.3] x [0, l] x [0.3, l] x [0.5, l] x [0.5, l] x [0, l], 

\ A^(a 2,b 2)= [0.3,0.4] x [0.5, l]x[0,0.3] x [0.5,1]; 

J A ^ ( a 3 , b3) = [0.4,1] x [0, l] x [0,0.3] x [0,0.3] x [0,0.3] x [0, l], 

\ ^ ( a 3 , b3) = [0,0.3] x [0,0.3] x [0.4, l] x [0,0.3]. 

From above respective attractive basins of ( a ^ b 1 ) , (a2 ,b2) and (a3 ,b3) we 
can see they are larger than the corresponding ones respectively in §3.4.2. And 
so the fault-tolerance of the system (3.32) is improved by using WQ. 
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§3.5 Connection network of F B A M 

By the preceding section we know, provided the connection weight matrices 
are chosen suitably, FBAM's may possess good fault-tolerance. In the section 
we suggest a novel method to study the transition laws of the states of the 
FBAM's, and give a further research on the attractors of the FBAM's. By 
the proposed approach here, some FBAM's with poor fault-tolerance may be 
discriminated. The tools to do these are the fuzzy row-restricted matrices, 
elementary memory and fuzzy homomorphism operators, etc. In the following 
we write also N = {1, . . . ,n}, M = {1, . . . ,m}, m, n > 3. If x G [0, 1]™, denote 

(x)j = Xj the j—th component of x. 

3.5.1 Fuzzy row—restricted matrix 

To study the attractors of FBAM's, we introduce the fuzzy row-restricted 
matrix and the fuzzy connection matrix related to a given fuzzy matrix. Con­
sidering finxm means the collection of all fuzzy matrices with n rows and m 
columns, we propose R = (r^) G /Jnxm and L = (Iji) G fimxn to generalize 
(3.32) as follows: 

* k-i r ( 3 - 5 8 ) 

x = y ' O L 

where k = 1,2,..., is the iteration steps, (3.58) is called a generalized FBAM. 
Denote xfc = (x\, —,x^), yk = (j/f, . . . ,y£j , We rewrite the system (3.58) as 

Vj= V K * - 1 A r y } ( j € M ) , 

, , (3-59) 
4= ViVj-^hi] (i€N). 

Considering (3.58) or (3.59) is uniquely determined by the fuzzy matrices R, L, 
we also call (R, L) a generalized FBAM. 

Definition 3.8 Suppose A G [0, 1], k, p, q G N, and the fuzzy matrices 
W = (wij) G fj,„xm- Define W^ = (wjj), W^ = (wf^e nnXm, respectively 
as follows: 

( Wij i^k \ WH i^Pi<l 

We call W^ the k—multiple matrix of W, and W^ the p — q commutative 
matrix of W. 

We denote by A = (5^) the identity matrix, i.e. 5ij = 1 (i = j) and 
Sij = 0 (i ^ j). And by Afc(A) denote the k—multiple matrix of the identity 
matrix A. Apq means the fuzzy matrix obtained by interchanging p-th row 
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and q-th row of A, i.e. Apq is the p — q commutative matrix of A. From now 
on, we call Afc(A) and Apq the fuzzy row-restricted matrices. For simplicity we 
omit the mark of the order of a fuzzy row-restricted matrix, since it is easy to 
know the order through the fuzzy matrix used for composition. For example, 
if W £ Hnxm, by Afe(A) o W we implies the order of A^(A) is n. It is trivial by 
Definition 3.8 to show that 

Proposi t ion 3.1 Suppose W^\ W^ are k-multiple matrix and p — q 
commutative matrix of W, respectively. Then 

(i) W™ = Afc(A) o W, WW = Apq o W; 
(ii) Vx £ [0, l ] n , (x o Apg) o Apq = x, moreover, Apq o (Apq oW) = W; 
(Hi) Vx e [0, l ] n , A e [0,1], x o Afc(A) C x, Afc(A) o W C W. 

If the fuzzy matrix P can be represented as follows: Ai o A2 o • • • o A(, 
where Ap (p = l,...,l) is a fuzzy row-restricted matrix. We call P a fuzzy 
elementary matrix. Denote the relation that W2 — P ° W\ between W\ and 

W2 by W± —• W2. Suppose Ai, A2 are fuzzy row-restricted matrices. We call 
(Ai ofi , A20L) a fuzzy connection network of (R, L), also, the connection 
network of (R, L) for simplicity. 

Introduce the following notations for the given fuzzy pattern (a, b) : a = 
(ai, . . . ,a„), b = (bi,...,bm), fuzzy matrices R = (nj) € finxm, L = (Iji) £ 
fJ-mxn and (fci, k2), {i, j) £ N x M : 

Nki = N \ {h}, Mk* =M\ {fc2}, 

EAB{J) = {»' £ N|ai/ = bj}, EBA(i) = {f £ U\bj, = <n}, 

GAB{J) = {i' £ N|oi» > bj}, GBA(I) = {f £ M\br > a j , 

IABU) = {*' £ N|oi/ > bj}, IBA{i) = if £ M\bj, > at}, 

JRB{J) = {*' £ Nlr^/j > bj}, JLA(i) = {f £ M\lj>i > a j , 

GRB(J) = {i' £ N|r</j > bj}, GLA(i) = {j' £ M\lri > <n}. 

If P is a subset of N or M, XP means the characteristic function of P, and 
Card(P) means the cardinal number of P, i.e. the total number of elements in 
P. 

3.5.2 The connection relations of attractors 

In the following, we study the relations between the attractors of (R, L) 
and ones of the corresponding connection network. Considering Theorem 3.10 
we generalize the definition of attractors of (3.58), i.e. the fuzzy pattern (a, b) 
is called the attractor of the system (3.58) if b = a o R, a = b o L. Also (a, b) 
is called the attractor of (R, L). 

Theorem 3.17 Let the fuzzy pattern pair (a,b) : a = (ai, . . . ,a„), b = 
(bi,...,bm), be the attractor of (R, L), fci € N, k2 £ M. Then (a,b) is a 
attractor of the connection network (Afe1(a) o R, Afc2(/3) o L) for each a, /3 £ 
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[0, 1] if and only if the following hold: 

( Vj e M, Nk> n iAB(j) nJRB(j)^(D, 
{ , 3-60 

[ Vi e N, Mfc2 n iBA(i) n jL A(») + 0. 

Proof. For each a, /3 6 [0, 1], at first we suppose (a, b) is the attractor 
of (Afcl (a) o R, Afc2 (/?) o L), but (3.60) is not true. Then it is no harm to 
assume there exists jo G M, so that Nkl n IAB(JO) H JRB(JO) = 0- Denote 
Vjo = ( ^ ° (Afci(«) ° # ) ) v Considering V« € Nfel, i G" IAB(j0) D JRB(Jo), we 
get 

i e Nfel =>• a,i < bjo or, rijo < bjo =>• 6; A w ^ < bjo. 

Thus, V {aj A r,j0} < 6j0. Therefore if let a < bj0, and 

2/io = ( V {ai A r«o}) v(°*i A a A rkija)< K-
i€Nki 

we can conclude that b ^ a o f A ^ (a)oR), that is, (a, b) is not the attractor of 
(Afcj (a) o R, A^2 (/?) o L), which contradicts the assumptions of the theorem. 
Thus the condition (3.60) holds. 

Conversely, if the condition (3.60) holds, then Vi G N, j G M, there exist 
i0 G Nfel n IAB(j) n J/JBO"), jo G Mfc2 n / ^ ( i ) n JLA(«)- Consequently we have 

io G Nfel, and aio > bj, rioj > bf, j 0 G Mk2, and bjo > a;, ljoi > a*. 

Therefore considering the assumptions and (iii) of Proposition 3.1, we obtain 
b = a o i ? D a o (Afcl(a) oR), a = b o i 3 b o (Afc2(/3) oL). and 

fy > (a o (Afcl (a) o i?)) = ( V {ai, A rv.,-}) V(a A rfclj A akl )> aio Ario;7- > bj, 
VeN'i y 

a . > ( b ° (Afe2 (0) o L)).= ( V {°i' A ij'i}) v(/3 A ?fc2i A 6fe2)> bjo Arjoi > a*. 
VeM'2 J 

Hence, (a o (Afcl(a) o R)) .= bj, (b o (Afc2(/3) o L)) .= a». Thus (a,b) is the 

attractor of (Afcl (a) o R, Ak2 (/?) o l ) . D 

By Theorem 3.17, the following corollary is trivial. 

Corollary 3.1 Let the fuzzy pattern pair (a, b) be the attractor of (R, L). 
And k\ e N , hi G M. Then the sufficient and necessary condition that (a, b) 
is not the attractor of (Afc^a) o R, Afe2(/3) o L) for each a, (3 G [0, 1], is that 
one of the following conditions holds: 

(i) There is j 0 G Mfc2, so that IAB(jo) n JRB(j0) = {hi} or 0; 
(ii) There exists io G Nfcl, satisfying IBA(io) fl JLA(^O) = {^2} or 0; 
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For px, gi G N, p2, q2 G M, (i,j) G N x M, define RSj(puqi), RTj{puqi), 
and LSi(p2,q2), £7Kp 2 , g 2 ) respectively as follows: 

RSj(pi,qi)= V Wi' A n>j}, RTj(pi,qi) = {rPlj A aqi) V(rq i^ A a p i ) , 

LSi(p2,q2)= V ( V A Zj'O, LTi(p2,q2) = {lP2i A bq2)v(lq2i A 6P 2). 
j ' e M P 2 n M 9 2 

Let Ai, A2 G [0, 1]. we call (Ai, A2) the neighboring values in x G [0, 1]™, if 
for each component x of x , either x < Ai A A2 or, x > \\ V A2. Obviously, if 
Ai = A2, (Ai, A2) are neighboring values in each x £ [0, l ] n . 

T h e o r e m 3 .18 Suppose ( a , b ) : a = ( o i , . . . , a n ) , b = (bi,...,bm) is 
the attractor of (R, L), and pi, q± G N, p 2 , g2 G M, so that ( a p i , a 9 l ) are 
neighboring values in b , (bP2 , bq2) are ifte neighboring values in a. ^4nd a p i > 
a?D P̂2 > <̂?2- Then (a, b ) is afeo i/ie attractor of ( A P i g i ° i ? , AP 2 9 2 oL) if and 
only if one of the following conditions holds for any i G N, j G M : 

( RSj(Pl,qi) > bj, RTj(Pl,qi) < 6,-, 
I1) 4 

[ LSi(p2,q2) > ai, LTi(p2,q2) < a,; 

.... f l - X £ B A ( P i ) 0 ' ) + r g i j > a P l , X B B x ( 9 i ) 0 ' ) - l + r g i j <aqi, 
(u) S 

[ 1 - X E A B ( P 2 ) W + ^2i > &P2» X ^ B ( 9 2 ) ( 0 - ! + lQ2i < K-

Proof. Sufficiency: Give arbitrarily i G N, j G M. Let (i) hold, then con­
sidering the following fact: 

bi = V irkjAak} = RSj(pi,qi) V ( r p i j V a p i ) v ( r 9 l i V a 9 l ) , 
feeN 

we get, RSj(p\,qi) = bj. Therefore RSj{pi,q{) V RTj(pi,qi) = bj, and con­
sequently (a o ( A P l 9 l o R))j = bj. Wi th the same reasons we may show, 
( b o ( A P 2 g 2 o i ) ) i = a i . 

Suppose (ii) holds. In order to prove (a o ( A P l 9 l o i?)) .= bj, it suffices by 

the assumptions to show the conclusion holds in the following four cases: 

( i ' ) 6 j > a P l , (ii ')& i = a P l , (hi') bj = aqi, (iv')bj<aqi. 

To case (i'), bj > aPl > aqi, then ( a P l A r p l j ) v ( a g i A r g i j ) < bj, and RTj(pi,qi) < 
bj. Since b = a o R, it follows t ha t RSj(pi,qi) = bj, moreover 

( a o ( A p i g i o R)).= RS&uqi) V RTj(Pl,qi) = bj. (3.61) 

To case (ii'), j G EBA(PI), by the condition (ii) we obtain 

XEBA(PI)U) = 1. riij > aPi- (3-62) 
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Since (a, b ) is the a t t rac tor of (R, L), the following fact holds: 

bj= V W A r f c j } - (3-6 3) 
fceN 

So using (3.62) (3.63) and the fact bj = api we can conclude tha t 

bj > RSj(j>i,qi) ==>• RSj(p1,qx) V (rPlj A aqi)v(rqij AaPl)= bj. 

Therefore, ( a o ( A P i q i oR)) .= RSj{pi,qi)y RTj{pi,qx) = bj, and (3.61) holds. 

To case (hi'), j G EBA(<1I)> SO by the condition (ii), (3.61) and the inequality: 

aPl > aqi it follows tha t XEBA(QI)(J) = 1' rgd ^ a<?i> a n d rpd ^ bj- T n u s 

bj = RSj (pi, qi) V {rPlj A aPl) V ( r 9 l i A aqi) 

= RSj (pi, ft) V (rpi j A a g i ) V (rqij Aapi). 

Tha t is, (b o (Apq o W)) =bj. 

To case (iv'), bj < aqi. Then rPlj A aPl < aqi < aPl, rqij A aqi < aqi < aPl. 
Hence (rPlj A aPl)v(rqij A s „ ) = r P l i V rgiJ- = RTj(p1,q1). Consequently 

bj = RSj(puqi)v( V {hArkj}) 
V f c6{ P l , g i } y 

= RSj(Pl,qi) V RTj(Pl,qi) = ( b o (A„ , o i ? ) ) ^ 

So 6j = (b o (Apq o 7?)).. Wi th the same reason, (b o (AP 2 9 2 o L)) .= at. Hence 

Vi G N, j G M, If (i) or, (ii) holds, we have, b = a o ( A P l 9 l o f i ) , a = 

b o (AP2g2 o L), i.e. (a, b ) is the at t ractor of ( A P l 9 l o R, AP2q2 o L). 

Necessity: Suppose (a, b) is the a t t ractor of ( A P i g i o R, AP2q2 o L). Then 

bj = RSj(puqi)V (rPljAapi)\/(rqijAaqi) 
(3-64) 

= RSj (pi, qi) V (rPlj Aaqi)V (rqd AaPl). 

For j G M, if the condition (i) is false, then RSj(pi,qi) < bj, or RTj(p\,qi) > 
bj. Since bj = RSj{pi,q\) V RTj(pi,qi), we have, RSj(pi,qi) < bj. Let us next 
show (ii) in the preceding four cases: (i') (ii') (hi') and (iv'), respectively. 

If bj = aPl, then considering RSj (pi, q\) < bj and bj = aPl > aqi, and (3.64) 
we can show, rqij > aPl. So 1 - XEBA(PI)U) + rii3 = rgd ^ api- I f bj = a«i> 
then (3.62) implies, rqij < aqi. Thus, XEBA(qi)(J) - 1 + rqij = rqij < aqi. To 
the other cases, obviously we have 

l-XEBA(Pl)(J)+rqij >api, XEBA(qi)(J) ~ l + rii3 < a ? i -

Similarly we can prove, if for i G M, the condition (i) is false, then 

1 - XEAB(p2)(i) + lq2i > bp2, XEAB(q2){i) ~ 1 + lq2i < K' 
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Hence Vi G N, j G M, the condition (i) or (ii) is true. D 

3.5.3 The elementary memory of (R, L) 

It is very important for FBAM's to construct some dynamical networks 
with better fault-tolerance. By the method in the subsection, we may establish 
some novel ways to do that by the elementary memory of the FBAM (3.58) if 
(R, L) can be trained so that the given fuzzy pattern pairs are the elementary 
memories of the network. 

Definition 3.9 Suppose (a, b) is a fuzzy pattern pair, we call (a, b) an 
elementary memory of (R, L) if the following conditions hold: 

(i) For any k\ G N, k2 G M and « , / ? £ [0, 1], (a, b) is the attractor of 
(Akl(a)oR, Afc2(/3)oL); 

(ii) Vpi, q\ G N, and Vj>2, 92 S M, (a, b) is the attractor of the connection 
network (APuqi o R, AP2Q2 oL). 

Obviously if (a, b) is an elementary memory of (R, L), (a, b) is also the 
attractor of (R, L). Next let us present some sufficient and necessary conditions 
that a attractor of {R, L) is an elementary memory of (R, L). 

Theorem 3.19 Assume that the fuzzy pattern pair (a, b) is an attractor of 
(R, L). Then the sufficient and necessary condition that (a, b) is the attractor 
of (Akl(a) o R, Ak2(P) o L) for each ki G N, k2 G M, a, [3 e [0, 1], is that the 
following conditions hold: 

( V j e M , C&Td(lAB{j)nJRB(j))>2; 
< (3.65) 
[ V« G N, Card(/BA(*) D JLA{I))> 2. 

Proof. Sufficiency: For each j G M, if (3.65) is true, we suppose i\, i2 G 
IABU)

 n
 JRB(J) • h+ii- Then 

rikj >bjt alk >bj (A = 1 , 2 ) . (3.66) 

Vfci G N, a G [0, 1], By (3.66), the assumptions and the condition (hi) of 
Proposition 3.1 we can show 

ki <? {h, 12},=*^ > (eLo(Akl(a)oR)).> (ah Arnj)V(ai2Ari2J) > bj. (3.67) 

if k\ G {i\, i2}, it is no harm to assume k\ = i\. Similarly with (3.67) it follows 
that 

bj > ( a o (A f c l (a) °R))j> «i2
 Ari2j > bj-

In summary, (a o (Akl(a) o i?)) .= bj (j G M). 

With the same reason, Vi G N, (bo {Ak2{(3) oL)) .= en (k2 G N, (3 G [0, 1]). 
Therefore, for any k\ G N, k2 G M, and a, f3 G [0, 1], (a, b) is the attractor of 
(Akl(a)oR, Ak2(p)oL). 
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Necessity: At first we can show the following facts for any i G N, j G M : 

f i' G IAB(J) n JRB(J) <=> rVj A av > bj, 

< (3.68) 
[ j ' G IBA(I) n J L ^ ( i ) «=> Zj'i A 6j/ > ai. 

If (3.65) is false, it is no harm to assume jo G N, satisfying the condition: 
Card( i J 4s( jo) H JRB(JO))< 3. Then (3.68) implies, either there is i 0 G N, so 
tha t riojo A a io > 6 j o , and Vi G N l ° , r i j 0 A o , < o j o; or, Vi G N, rijo Aat < bjo. 
Choose k\ = %Q , a < bj0, we get 

(a o (Afel (a) o i i ) ) J Q = y {r i j o A a j V ( a A riojo A o , c ) < 6 j 0 . 

Thus, b ^ a o (Afe1(a) o R), which is a contradiction. So (3.65) holds. • 

By the induction method and the proof of Theorem 3.19, we may easily 
show the following conclusions. 

Corol lary 3.2 Let (a, b) be the attractor of (R, L) andp € N, q G M, p < 
n — 1, q < m — 3. Then the sufficient and necessary conditions that (a, b) is 
the attractor of (A f e l ( a i ) o • • • o A f c p (a p ) o R, A j ^ i ) o • • • o Aiq(/3q) o L) / o r 
arbitrary ki,...,kp G N, li,...,lq G M and a i , . . . , a p , /3i, . . . , /3g G [0, 1] are as 
/oHows; 

f Vj G M, C&vd(lAB{j) n J f l B ( j ) ) > P + 1, 

\ Vi G N, C a r d ( / B A ( i ) n JLA{i))> « + 1. 

By Corollary 3.2, if the conditions related hold, a fuzzy pa t te rn pair ob­
tained based on (a, b ) by letting p components of a and q components of b be 
changed in [0, 1] and leaving other components unchanged, can converge to the 
at t ractor (a, b ) with one iteration. The fact shows good fault-tolerance of the 
corresponding FBAM's . 

T h e o r e m 3 .20 Suppose the fuzzy pattern pair (a, b ) is the attractor of 
(R, L), and for Vi G N, j G M, the following conditions hold: 

(i) GRBU) x GAB{J) = 0, GLA(i) x GBA(i) = 0; 

(ii) Card( (J R B ( j ) n IABU)))> 2 , C a r d ( ( J L A ( i ) n IBA(i)))> 2. 
Then (a, b ) is an elementary memory of (R, L). 
Conversely, if (a, b) is the elementary memory of (R, L), then for each 

i G N, j G M, the above condition (i) and the following condition (Hi) hold: 

(Hi) C a r d ( J f i B ( j ) n IABU))> 1 °r> C&vd(JLA(i) n IBA(i))> 3-

Proof. For each i G N, j G M, we suppose (i) (ii) hold. By Theorem 3.19 
it suffices to prove tha t (a, b ) is the a t t ractor of ( A p i 9 l o R, AP2ig2 o l ) for any 
Pi, Ii G N, p2, »2 G M. By condition (i) we may easily show 

Vii, %2 G N, a n A ri2J < bj. (3.69) 
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Also by (3.69), Vii, i2 G JRB(J) n IAB(J), it follows tha t 

atl Ari2j =bj. (3.70) 

Using the condition (ii), we suppose i', i" G N : i' ^ i", so tha t i ' , i" G 

J f l s ( j ) n J A B ( J ) - If {*', i"} n {pi, 9 i} = 0, by (3.69) (3.70) we imply 

RSj(pi,qi)= V iak A rfcj} = fy, 
fceNPinJV9! 

RTjipx^qx) = (api A r ? l i ) v ( a g i A r w ) < V 

Therefore we can conclude t ha t 

(a o ( A P l 9 l o R))j = RSj(Pl,qi) V RTj{Pl,qi) = 6,-. (3.71) 

If {i', i"} fl {pi, qi) ^ 0, we may assume i' = p\, i" = 93. By (3.70) it follows 
tha t 

RTj(pi,qi) = {aPl /\rqij)w(aqi ArPlj)= bj. 

And (3.69) implies, RSj(pi,qi) < bj. Thus (3.71) is also t rue. Hi' = pi, <?i G-

{i', i"}, by (3.69) (3.70) we get 

RTj(Pi,qi) = (oj' A r 9 l j ) v ( a g i A r y j ) < bj, 

RSj{pi,qi) = V {«fc A rfc:(} > Oj» A rt»j = bj. 
fceNPiniV'i 

On the other hand, by (3.69), RSj(p\,qi) < bj. Therefore, ( a o (AP l ( 3 l) oR)j = 
RSj{px,qi) V RTj(p1,q1) = bj, i.e. (3.71) is t rue. 

In summary, (a o ( A P i g i o i?)) .= bj (j G M). Similarly we can show tha t , 

(b o (AP 2 9 2 o L)).= Oj (i G N), tha t is, Vpi, 91 G N, p 2 , 92 G M, ( a , b ) is the 
a t t ractor of ( A P l 9 l o R, AP2Q2 o L). 

Conversely, let ( a , b ) be an elementary memory of (R, L). Then Vpi, qi G 
N, P2> 92 G M, (a, b ) is the at tractive of ( A P l 9 l o R, AP 2 9 2 o L). Obviously, 
if let pi = 91, P2 = 9 2 ; it follows t ha t (a, b ) is the a t t rac tor of (R, L). If the 
condition (i) is false, we may assume j 0 G M, and let GRB(JO) X GAB(JO) ¥" 0-
For (ii, i2) G GRB(jo) x GAB(JO), we have, rii;,-0 > &j0,a i2 > &,0. Let px = 
h, 9i =ii- Then 

RTjo(pi>Qi) = (riiio A a . 2 ) v ( r i 2 , 0 A a i x ) > 6 j o . 

Hence (a o ( A P l 9 l o i?)) . > RTj0(pi,qi) > bj0. Thus, the fuzzy pa t te rn pair 

(a, b) is not the a t t ractor of ( A P i q i o R, AP 2 9 2 o L), which is a contradiction. 
Tha t is, \/i G N, j G M, the condition (i) is t rue. 

If we assume tha t the condition (iii) is false, choose j'o G M, satisfying 
Card( ( JKs( jo ) n 7 A B O ' O ) ) ) = 0. It is easy to show, Vfc G N, rfcj0 < bjo, or 
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ftfc < bj0. So Y {afc A Tkj0} < bj0, which is also a contradiction, since (a, b) is 
fceN 

an attractor of (R, L). The condition (iii) holds. • 

3.5.4 The transition laws of states 

For given fuzzy matrices R — (Tij) ^ Mnxmj L — (Jji) ^ f-^mxni 
define a 

transformation T{RiL) : [0, l ] n x [0, l ] m —> [0, l ] m x [0,1]™, so that 

V x e [ 0 , l ] " , y e [0,1]™, T ( R ,L )(x,y) = (x ,y)o(P, L) = (xoR, yoL). (3.72) 

Assume R £ fJ,nxm, P £ fJ-nxn, L £ Hmxn, Q € pimxm, also define a transfor­
mation T(RiL) o T{PtQ) : [0, l ] n x [0, l ] m —y [0, l ] m x [0,1]™ as follows: 

V x e [0,1]", y £ [0,1]"\ (T ( R ,1 )oT (p iQ ))(x,y) =T (H i L )(T ( P ,Q )(x,y)). (3.73) 

Lemma 3.4 Let R £ nnxm, P G l^nxn, L £ / i m x „ , Q e Vmxm- Then 

T(PoR, QoL) = T{R,L) ° T{P,Q)-
Proof. For any (x, y) £ [0, l ] n x [0, l ] m , it is easy to show 

T{PoR,QoL)(x,y) = (x,y)o{PoR,QoL) = {xoPoR,yoQoL) 

= (xoP , yoQ)o( iJ ,L) = (x ,y)o(P,Q)o( iJ ,L) 

= T ( R i i ) ((x, y) o (P, Q)) = T{R,L) (T{PtQ) (x, y)) 

= (T ( f i , t ) oT ( P , Q ) ) (x ,y) . 

Therefore, T ( P o i ? i Q o L ) = T ( i J iL) o T M . D 

Theorem 3.21 Let the FBAM's {Rx, Lx), (R2, L2) satisfy the condi-
P Q 

tion: Ri —• R2, Lx —• L2. Suppose P £ finXn, Q £ fimxm are fuzzy fuzzy 
elementary matrices. There are row-restricted matrices Px,...,Pk, Q\,...,Qk 
satisfying, P = Pk o Pk-\ o • • • o P2 o P 1 ; Q = Qko Qk-\ o ••• oQ2o Q3. Then 

T ( f l 2 , i 2 ) = ^ . L i ) ° T ( P , Q ) = T ( f i i ,L i ) ° T (P i ,Q i ) ° " • ° T{Pk,Qk)- ( 3 - 7 4 ) 

Proof. Lemma 3.4 implies that 

T(R2,L2) ~ T(^PoR1,QoL1) = T(pk0pk_l0...0p20ploRli QkoQk_1o---oQ2oQ1oL1) 

= ^(f l i .Li) 0T(pkoPk_l0...0p2oP1,QkoQk_1o---oQ2oQ1) 

= T(Rl,L1) ° T (P i ,Q i ) ° % < = P t - i o - o P 2 , QfcoQfe_l0-..oQ2) 

= T ( f i i ,L!) o T ( P i , Q i ) ° - - - ° T ( P f c - i , Q ^ i ) o T (P f e ,Q f c ) ' 

So ti follows that (3.74) is true. • 
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Definition 3.10 Suppose the fuzzy pattern pair (a, b) is an attractor of 
(R, L). And 

Af(R,L; ( a , b ) ) = { ( x , y ) e [ 0 , l ] n x [ 0 , l ] m | x o i j = b, y o L = a } . 

That is, for any (x,y) G Af(R, L; (a, b)) , it converges with one iteration to the 
attractor (a, b) of (R, L). Thus, the fuzzy pattern pair family N(R, L; (a, b)) 
is the attractive basin of (a, b). Obviously 

(x, y) £ M(R, L; (a, b)) «=» T{RtL) (x, y) = (a, b). 

If the sequence of fuzzy pattern pairs (ai, bi) , . . . , (a;, b;) is the limit cycle of 
(R, L), that is 

a2 = b 1 o L, f a3 = b 2 o L, f a' = b ' 1 o L, ( a1 = b* o L, 

b 2 = a1 o R; \ b 3 = a2 o R- \ bl = a '"1 o R; \ b 1 = a' o R. 
(3.75) 

Moreover 

^ ' ( f l ,L ; (a 1 ,b 1 ) , . . . , ( a , ,b , ) )= {(x,y) € [0,1]" x [0,l}m\3k G {l,...,l} : 

xoR = bk,yoL = ak}. 

We call A/"(ii, L; (ai ,bi) , . . . , (a;,b;)) an attractive basin of limit cycle (ai, b i ) , 
- , ( a j , bi). 

Theorem 3.22 Let (a, b) be the attractor of (i?i, L\). P G ixnxn, Q 6 
P Q 

fJ-mxm, moreover, Ri —• R2, L\ —> L2. Then (a, b) is the attractor of 
(R2, L2) if and only i/T(p iQ)(a,b) G J\f(Ri,L1; (a ,b)) . 

Proof. Suppose (a, b) is the attractor of (R2, L2). Then boL2 = a, aoi?2 = 
b , i.e. T(j{2)I/2)(a, b) = (a, b). By Lemma 3.4 it follows that 

(a,b) = T(Je2iL2)(a,b) = (T(p0fl l iQ0Ll)(a,b) 

= (T{RuLl) o r ( p, Q ) ) (a ,b) = (T ( P i Q )(a,b)) o {R1,L1) 

= (aoP, boQ)o(RuL1), 

That is, aoPoR1 = a, b o Q o L1 = b. So T (p i Q )(a,b) G Af(R1,L1; (a ,b)) . 
Conversely, if T (pQ)(a,b) G N(Ri,L\\ (a,b)), also using Lemma 3.4 we get 

(a,b) = T (p,Q )(a ,b)o(i?1 ,L1) = T ( i ? l i L l )(T (p,g )(a,b)) 

= (T(Rl,Ll) oT (p i Q ))(a,b) = T ( p o f l l j Q o i l ) (a ,b ) 

= T ( f l 2 , i 2 ) ( a . b ) -

Thus, (a, b) is an attractor of (R2, L2). D 
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Theorem 3.23 Suppose the sequence of fuzzy pattern pairs as (ai, t»i),..., 
(a;, bj) is a limit cycle of (Ri, L\), and P e ^nxn, Q € Hmxm, moreover, 

P Q 

Ri —> R2, L\ —• L2. If the sequence of fuzzy pattern pairs is also a limit 
cycle of (R2, L2), then 

Vfce{l,...,Z}, T (p,Q )(a f c ,b f c)eA/ '( i i i ,Li;(ai ,bi) ) . . . , (a , ,b,)) . 

Conversely if let 

A [ (ajb ,b' f c)€A/'(iJi,Li;(a f c+i,b f c+1)) ) 1 < k < I; 
T(P,Q)(ak,bk) 

( a ^ b ^ e A T ^ i . L i K a L b ! ) ) , k = l. 

Then (a1; bi) , . . . , (a;, b() is a limit cycle of (R2, L2). 

Proof. Let the fuzzy pattern pairs (ai, bi) , . . . , (a;, bj) constitute a limit 
cycle of (Jf?2, L2). Then Vfc G {1,.. . , I}, it follows that 

T(p,Q) (afe>bfe) o (Ri,L±) = T(RuLl){T(P}Q)(a.k,bk)) 

= (T(RUL!) °T'(p)Q))(afe,bfc) =T(Pof i l iQoZ/1)(a fc ,b fc) 

= T(R2,L2)(
ak>hk) = (a f e ,b f c)o (R2,L2) 

( (a f e + i ,b f c + i) , 1 < k < I 

\ (a i ,b i ) , k = l. 

Therefore, T(piQ)(afc, bfe) € Af(Ri,Lt\ (ai, bi) , . . . , (a/, b;)). Conversely, easily 
we have 

(ai ,b!) o(R2,L2) = ( a 1 , b 1 ) o ( P o i ? 1 , Q o L 1 ) 

= T ( P o i i l iQo I ,1)(a1 ,bi) = T{RuLl) o(T (p i Q)(a1 ,bi)) 

= (a'1b'1)o(J?1,L1) = (a 2 ,b 2 ) . 

With the same reason, we get 

(a2 ,b2)o(i?2,£2) = (a3,b3), . . . ,(aj_1 ,bj_1)o(i?2 ,I ,2) = (a/,bj), 

(ai,bi) °(R2,L2) = (a i ,b i ) . 

That is, (ai, bi) , . . . , (a;, b;) is a limit cycle of (-R2, £2)- • 

Next let us take an example to demonstrate our main conclusions. Let 
N = {1, 2, 3}, M = {1, 2, 3, 4}, and 

Ri 

/ 0.8 0.4 0.5 0.6 

0.5 0.5 0.4 0.4 

y 0.6 0.5 0.5 0.6 
Li 

( 0.7 0.4 0.6 ^ 

0.7 0.3 0.2 

0.4 0.5 0.4 

V 0.6 0.5 0.7 J 
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We assume 
a0 = (0.6,0.5,0.6), b 0 = (0.6,0.5,0.5,0.6); 

ai = (0.7,0.5,0.6), bi = (0.7,0.5,0.5,0.6). 

Table 3.15 Attractors of FBAM 

Ri Li Pi : Ri = Pi o Ri Li : Li = Qi o L\ attractors 

Hi Li P i = A Qi = A (ao,bo);(ai ,bi) 

R2 L2 P 2 = A i ( 0 . 4 ) Q2 = A3(0.3) (a0 ,b0) 

R3 L3 P 3 = A2 3 Q3 = A M (a0 ,b0) 

Ri L4 P4 = Ai2 Qi = A13 (a0 ,b0) 

It is easy to show, the conditions of Theorem 3.23 hold for (ao, bo). So 
(ao, bo) is an elementary memory of (R\, L\). Thus, for (ao, bo), {R\, L\) 
has good fault-tolerance. Also we can from Table 3.15 obtain the following 
facts: 

(i) To the connection networks (R2, L2), (-R3, L3) of (Ri, l a ) , by one it­
eration, the state corresponding to (ai, bi) belongs to the attractive neigh­
borhoods M(R2,L2; (a 0 ,b 0 ) ) , A/"(i?3,i3; (a0 ,bo)), respectively. Thus we may 
realize to escape from the attractor (ai, bi) that is not the elementary mem­
ory of (Ri, L\). (ai, bi) may converge to (ao, bo), an elementary memory of 

(Ru Li). 
(ii) To the connection network (R4, L4), (ai, bi) belongs to the attractive 

neighborhood N(R4,,L±; (ao,bo)), so the state escapes also from (ai, b i ) . 
The following two problems are very meaningful and important for the 

future studies: 
(1') How do we design some learning algorithms for (R, L), so that the 

given fuzzy patterns are the elementary memories [52, 53]? 
(2') How do we enlarge the storage capacity if the fuzzy patterns stored are 

the elementary memories [20, 49]? 

§3.6 Equilibrium analysis of fuzzy Hopfield network 

Similarly with §3.5 we in this section employ connection networks to study 
the attractors and attractive cycles of fuzzy Hopfield networks. A novel ap­
proach is proposed for designing the FNN's with good fault-tolerance. 

Let F be a fuzzy elementary matrix. If the fuzzy Hopfield networks W\, W2 

satisfy the condition: W2 = FoWi, we write also W\ —• W2. For a given fuzzy 
pattern b = (bi,...,bn) and a fuzzy matrix W = (wij)nxn, if k € N, j £ N, 
denote 

HG(b,j) = { J G N|6, > bj}, HE(b,j) = {ie N|6, = 6,}; 

MW,b,j) = {ie N\Wij > bj}, JE(W,b,j) = {ie N|W l j = &,}; 
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HGB(b,j) = HG(b,j)uHE(b,j), JGE(W,b,j) = JG(W,b,j)uJE(W,b,j). 

Proposition 3.2 Let W^, W^ be the k—multiple network (matrix) and 
p — q commutative network (matrix) of W, respectively, and b = (b\,..., bn) be 
a fuzzy pattern. Then Vj G N, it follows that 

(i) JGE(W^,b,j)c JGE(W,b,j); 
(ii) q G HE(b,p) = > JGE(WW,b,j) = JGE(W,b,j); 
(iii) Cz,rd(jGE(WW,b,j))= Caxd(JO B(W,b, j ) ) . 
Its proof is trivial considering the definition of JGE(W,b,j). 

Proposition 3.3 Let W = (Wij)nxn, V = {vij)nXn be two given networks, 
andb = (b\, ...,&„) be a fuzzy pattern. DenoteWUV = (wij\Zvij)nXn, WC\V = 
(wijA Vij)nxn. Then Vj G N, we have 

f JG(WUV,b,j) = JG(W,b,j)liJG(V,b,j); 
S (3.76) 
\ jG(w n y,b,j) = jG(w,bj) n JG(V,b,j). 

Proof. For any j G N, it is easy to show 

i€ JG(WUV,b,j) «=>• Wij V Vij > bj, 

<̂ => w^ > bj or vtj > bj <=> i G J G ( W , b, j ) U JG(V, b,j). 

So the first part of (3.76) holds. Similarly we can show the other conclusions 
hold. • 

Obviously, Proposition 3.3 holds for JGE(W U V,b,j), JGE{W n V,b,j). 

3.6.1 Connection relations of attractors 

Next let us present the connection relations between the attractors of W 
and ones of the connection network of W. 

Theorem 3.24 Let the fuzzy pattern b = (bi,..., bn) be an attractor of W. 
Then VA G [0,1], b is an attractor of Afc(A) oW if and only if the following 
conditions hold: 

Vj G N , Nfe n HGE(b,j) n JGE(W, b,j) + 0. 

Proof. For any A G [0,1], let b be an attractor of Afe(A)oW, but there is j 0 G 
N , s o t h a t N f c n F G E ( b , j 0 ) n J G B ( W , b , j 0 ) = 0. Let yjo = (bo(Ak(X)oW))jo. 

Then Vi G Nfc,i g HGE(b,j0) n J c B ^ . b , j 0 ) - Therefore 

i G Nfc = > 6j < bjo or w i io < bjo => h A wijo < bjo. 

Thus, \J (pi A Wij0) < bj0. If letting A < bj0, we have 

Vio = ( V & A ""* } ) V (6fc A A A w f c j o) < bjo. 
i€N f c 
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So b is not an attractor of Afc(A) o W, which is a contradiction. Hence the 
conditions of the theorem hold. 

Conversely, with the conditions of the theorem, Vj € N, we have, i0 G 
N f enffG B(b, j )H JGE{W,b, j ) . So i„ G Nfe, bio > bj, wloj > bj. By Proposition 
3.2 we get, b = b o l f D b o (Afc(A) o W). Therefore 

bj > (b o (Afc(A) o W)) = ( \J{biA wy})V(A A wkj A bk)>bio A wioj >bj, 

i.e. (b o (Afc(A) o W)) = bj. Thus, b is an attractor of Afe(A) o W. D 

By Theorem 3.24 the following result is trivial. 

Corollary 3.3 Let the fuzzy pattern b be an attractor of W. Then VA G 
[0,1], b is not an attractor of A^ (A) oW if and only if there is jo G Nfe, so that 
HGE(b,j0) n J c s W b , j 0 ) = W or, HGE(h,j0) n JGE(W,b,j0) = 0. 

For p, q G N, and j 6 N, we denote Sj(p, q), Rj(p, q) respectively as follows: 

sj (P> ?) = V & A W l i ^ ' Ri (P>«) = ("'PJ A 6g) V (w9j A 6P). 
ieNPnAT? 

Theorem 3.25 Lei b = (bi,...,bn) be an attractor of W, and p , g £ N 
satisfy the condition: bp > bq; Vj € N, either bj > bp, or bj < bq. Then b is 
also an attractor of Apq oW if and only if Vj G N, one of the following facts 
holds: 

(i) Sj(p,q) > bj, Rj(p,q) < bj; 

m { 1 ~ X H ^ ^ P ) ^ + wv - bp> 
\ XHE(b,q){j)-l + wqj <bq. 

Proof. Sufficiency: For any j G N, suppose the condition (i) is true. Using 
the following fact: 

bj = V {Wii Abi} = SJ(P> l) v (wPj V bp) V(wqj Vbq). 

we get, Sj(p, q) = bj. So Sj(p, q) V Rj{p, q) = bj, i.e. (b o (Apq o W ) ) ^ ^-. 
If the condition (ii) is true, by the assumptions it suffices to prove the 

conclusion in the following four cases, respectively: 

(i') bj > bp; (ii') bj = bp; (m) bj = bq; (iv') bj < bq. 

To the case (i'), bj > bp > bq, so (bp A wpj)v(bq A wqj)< bj, and Rj(p,q) < bj. 
Since b = b o W, it follows that Sj (p, q) = bj. Hence 

(b o (Apq oW))= Sj(p, q) V Rj(p, g) = bj. (3.77) 
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To the case (ii'), j G HE(b,p), so by (ii) we get 

XHB(b,p)(j) = 1, Wqj > K- (3-78) 

Since b is an at t ractor of W, it follows tha t 

bj=\/{biAwij}. (3.79) 
i€N 

Therefore by (3.78) (3.79) and the fact: bj = bp, we get 

bj = Sj (p, q) V (wpj A bp) V (wqj A bq) 

< Sj(p, q) V (wpj A bq)v(wqj A bp)= bp = bj. 
(3.80) 

Moreover, wpj < bj. Therefore 

Thus, ( b o (Apq o W)) .= Sj(p, q) V Rj(p, q) = bj, (3.77) is t rue . 

To the case (hi'), j G HE(b,q), then by the condition (ii), (3.79) and the 
inequality: bp > bq we have 

XHE(b,q)U) = l,Wqj < bq. (3.81) 

sfore 

bj = Sj(p, q) V (wpj Abp)v(wqj A bq) 

= Sj(p, q) V (wpj A bq)v(wqj A bp)= (b o ( A M o PF)) .. 

To the case (iv'), bj < bq, then wpj A bp < bq < bp, wqj A bq < bq < bp. So 

(wpj A bp)\j(wqj A 6 g ) = Wpj V wqj — Rj(p, q). 

Hence we obtain the following fact: 

bj=Sj(p,q)v( \ / {hAWij})= Sj(p,q)VRj(p,q) = (bo(ApqoW)).. (3.83) 

ie{p,q} 

By (3.77) (3.80) (3.82) and (3.83) we imply, bj = ( b o (Apq oW)).. Thus, 

Vj G N, if either the condition (i) or, (ii) holds, we have, bj = ( b o (Apq o W)) ., 

t ha t is, b = b o (Apq o W), b is the a t t ractor of Apq o W. 

Necessity: Let b be an at t ractor of Apq o W. Then 

bj = Sj (p, q) V (wpj A bp) V (wqj Abq)= Sj (p, q) V (wpj Abq)v (wqj A bp). (3.84) 

If there is j G N, not satisfying (i), then Sj(p,q) < bj or, Rj(p,q) > bj. By 
bj = Sj(p,q) V Rj(p,q), we obtain, Sj(p,q) < bj. Next we show the condition 
(ii) at above four cases (i') (ii') (hi') and (iv'), respectively. 



Chapter III Fuzzy Associative Memory—Feedback Networks 121 

bj, then by Sj(p,q) < bj and bj = bp > bq, and (3.84) we imply, 
wqj > bp. Thus, 

1 - XHE(b,p)(j) + Wqj = Wqj > bp > \ . 

If bj = bq, also by (3.84) it follows tha t wqj < bq. So XffE(b,g)(J) — 1 + wqj = 
wqj < bq. As for the other cases, the condition (ii) is obviously true. Therefore, 
Vj G N, (i) or, (ii) holds. • 

Corol lary 3 .4 Let b = (&i,..., bn) be a fuzzy pattern. And p, q G N, fee 
N p n Nq. The following conditions hold: 

(i) bp > bq, Vj G N, either bj > bp or, bj < bq; 
(ii) A e [0,1], b is the attractor of both W, Apq o W and A/. (A) o W. 
Then we can conclude that 
(f) b is an attractor of Apq o Afc(A) o W; 
(Sf) b is an attractor of Afc(A) o Apq o W. 

Proof. (1') Suppose Afe(A) o W = W™ = ( < ) „ x n - Then 

f Wij, i ± k, 
Wij = 1 

[ w^ A A, i = k. 

By the assumption and Theorem 3.24, b is an at t ractor of W^\ moreover 

( 1 - XHE(b,p)(j) + wqj > bp; 
\ XHE(b,q)(j)-l+Wqj <bq. 

Since k G N p fl Nq, we have, k ^ p, q, and 

J 1 - XHE(b,P)(j) + wij > bp] 

1 XHE(b,q){j) ~ 1 + wx
qj <bq. 

So Theorem 3.25 implies, b is an a t t ractor of Apq o W^\ tha t is, b is an 
at t ractor of Apq o Afc(A) o W. 

(2') Denote W^ = ( w ? ) n X n . Then Vj G N, we can easily show 

JGE(W^2\bJ)=< 

JGE(W,b,j), j +p,q\ 

JGE(W,b,p), j = q; (3.86) 

. JGE(W,b,q), j =p. 

Since for any A G [0,1], b is the a t t ractor of A^(A) o W, by Theorem 3.24 it 
follows tha t 

Vj G N, Nk n HGE(b,j) n JGE(W, b,j) ^ 0; 

Vj G N, Nk n # G E (b , j) n jG B(w(2),b, j) ^ 0. 
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So using Theorem 3.24 we get, VA G [0,1], b is the attractor of Afe(A) o W^ = 
Ak{X)oApqoW.n 

3.6.2 Elementary memory of W 

It is a very important theoretic and applied problem for FAM's to discrim­
inate the pseudo-attractors from the attractors of FAM's. A fuzzy pattern b ' 
is called a pseudo-attractor of W if b ' = b ' o W, but b ' is not a fuzzy pattern 
stored. By the methods proposed in the subsection we may develop some novel 
ways to do that by the elementary memories of W. 

Definition 3.11 We call the fuzzy pattern b an elementary memory of W, 
if the following conditions hold: 

(i) For any k G N, and AG [0,1], b is an attractor of A^(A) o W; 
(ii) Vp, q G N, b is an attractor of Apq o W. 

Obviously, if b is an elementary memory of W, b is an attractor of W. 
Next we establish some equivalent conditions that an attractor of W is also an 
elementary memory. 

Theorem 3.26 Let the fuzzy pattern b be an attractor of W. Then Vfc G 
N, A G [0,1], b is also an attractor of A^(A) oW if and on if 

Vj G N, Card(ffGB(b, j) n JGE(W,h,j))> 2. (3.87) 

Proof. Sufficiency: For any j G N, suppose (3.87) is true, choose i\, i% G 
HGE(b,j) n JGE(W,b,j) : h ^ i2- Then 

wimj>bj,bim>bj(m=l,2). (3.88) 

Given arbitrarily k G N, A G [0,1], by (3.88), Proposition 3.2 and the assump­
tion it follows that 

k^{ii,i2}=>bj > ( b o ( A f c ( A ) o W 0 ) > 
3 (3.89) 

> (6ix A ^ j j V ^ Awi2j)> bj. 

If A; € {ii,i2}, we may assume k = i\. Similarly with (3.89), we have 

bj > (b o (Afe(A) o W))> bi2 A wi2j > b^ 

In summary, (b o (Ak(X) o W)) .= bj (j G N), i.e. VA: G N, AG [0,1], b is an 

attractor of A^ (A) o W. 
Necessity: At first, for any j G N, it is easy to show 

i G HGE(b,j) n JGE{W,b,j),<=^ Wij Abi> bj. (3.90) 

We use reduction to absurdity to show (3.87). If (3.87) is false, then there 
is j 0 G N, so that Card(HGE(h,j0) H JGE(W,b,j0))< 1. So by (3.90), either 
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there is i0 G N, satisfying wioj0 A bio > bj0, and Vi G N*°, w i j 0 A 6» < bjo, or 
Mi G N, w i j 0 Abi < bj0. Choose k = j 0 , X < bj0, then 

(b o (Afc(A) o W0) > o = ( V {wHo A foj) V ( A A wioJo A 6i„)< 6jo-
ieN*o 

Thus, b ^ b o (Afc(A) o W), which is a contradiction. So (3.87) is true. D 

By the induction method and Theorem 3.26 the following result is trivial. 

Corol lary 3 .5 Suppose b is an attractor of W, and m G N, satisfying 
m < n — 2. Then for any k\,...,km G N;Ai , . . . ,A m G [0,1], b is an attrac­
tor of Afcj(Ai) o • • • o Afcrn(ATO) o W if and only if, Vj G N, it follows that 
Ca,vd(HGE(b,j) n J G B ( W , b , j ) ) > TO + 1. 

By Corollary 3.5, If the m—th component of b changes in [0, 1] and other 
components unchange, then the new fuzzy pat tern related converges with one 
iteration to b , which shows us good fault-tolerance of the fuzzy Hopfield net­
works. 

T h e o r e m 3 .27 Suppose b = (bx,...,bn) is a fuzzy pattern, and for any 
j € N, the following conditions hold: 

(i)JG(W,b,j)xHG(b,j)=9; 

(ii) C a r d ( j G B ( W , b , j) n HGE(b,j))> 2. 

Then Vp, q G N, b is the attractor of Apq o W, and therefore b is an 
elementary memory of W. 

Conversely, if for any p, q G N, b is an attractor of Apq o W, then \fj G N, 
above (i) and the following (Hi) hold: 

(Hi) Czrd(jGE(W,b,j)nHGE(b,j))> 1. 

Proof. For any j G N, by the assumptions (i) (ii) are t rue . Vp, q G N, by 
condition (i), easily we have 

V^ , i2 G N, 6ix A w i 2 j < bj. (3.91) 

And by (3.91), Vii, i2 G J G E ( W , b , j) H HGE(b,j), it follows tha t 

bilAwi2J = bj. (3.92) 

Using the condition (ii), we choose i', i" G N satisfying i' =fi i", so tha t i', i " G 
J G B ( W , b , j ) n ^ G i s ( b , i ) . 

If {i\ i"} n {p, g} = 0, Then (3.91) (3.92) imply 

Sj(P,9) = V {&i A wi:;-} = bj; i? , (p ,q) = (bp A wqj)v(bq A wpj)< bj. 
zeNPnNi 

Therefore 
(b o (Apq o W))= Sj(p, q) V Rj(p, q) = bj. (3.93) 
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If {i', i"} n {p, q} ^ 0, it is no harm to assume i' = p,i" = q. By (3.92), 
Rj(p,q) = (bp A wqj)vbq A wpj)= bj. So it follows that Sj(p,q) < bj. Thus, 
(3.93) is true. Also we may assume %' = p, q g {«', i"}. By (3.91) (3.92) it 
follows that 

Rj(P,<l) = (h> A%' )v (&,Aw i ( j )< bj; 

Sjip, q)= V {bi A Wij) > bin A w^j = bj. 
»6N"nJV9 

On the other hand, by (3.91) we get, Sj(p,q) < bj. Thus, (b o (Apq) o W) .= 

Sj(p,q) V Rj(p,q) = bj, i.e. (3.93) is true. In summary, (b o (Apq o W)) .= 

bj (j e N), => Vp, ? 6 N , b is the attractor of Apq o W. 
Conversely, assume that for p, q e N, b is an attractor of ApqoW. Obviously, 

if p = q, then b ia an attractor of W. If there is jo G N, so that the condition 
(i) is false, then let (11,12) € Jc(W,b,j0) x Hc(b,jo). Therefore, wilj0 > 
bj0, bi2 > bj0. Choose p = ii, q = %2- Then 

Rj0(P><l) = (wido ^bi2)v(wi2J0Abil)> bjo. 

Thus, (bo(ApqoW)) . > Rj0(p,q) > bj0. hence b is not the attractor of ApqoW, 
which is a contradiction. So Vj €E N, the condition (i) holds. 

Assume that (iii) does not hold, that is, there exists jo £ N, so that (iii) 
is false, then C&rd(JGE(W, b, jo) H HoE(b,jo))= 0. Also it is easy to show, 
Vi S N, Wij0 < bj0 or, 6; < bj0. So \/ {h A u>ij0} < bj0, which contradict the 

fact also. Thus, b is an attractor of W. Hence the condition (iii) holds. • 

3.6.3 The state transitive laws 

For the given fuzzy matrix W = (wij)nxn, define the transformation Tw '• 
[0,1]™ —• [0, l]n, satisfying 

Vx G [0,1], 7V(x) = x o W. (3.94) 

Also for the fuzzy matrices Wi, W2, define the transformation Tw1 ° ?V2 : 
[0, l ] n —> [0, l]n as follows: 

Vx G [0,1]™, (TWl o7Va)(x) = TWl(TwM) (3-95) 

Lemma 3.5 Let Wi, W2 be fuzzy matrices. Then Twl0w2 = Tw2 ° ^Vi-

Proof. For any x G [0,1]™, by (3.94) (3.95) it follows that 

TWloW2(x) = x o (Wi oW2) = ( x o f ! ) o W2 

= TWl(x) o W2 = TW2(TWl(x)) = (TW2 o 7VJ(x) . 

So Twxow2 — T\v2 ° Twx • D 
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If F is a fuzzy matrix, we call TF a fuzzy elementary transformation. 

Theorem 3.28 Let the fuzzy Hopfield networks W\, W2 satisfy: W\ —> 
W2. Suppose TF is a fuzzy elementary transformation, so that there exist fuzzy 
row-restricted matrices Ai,. . . , A m : F = A m o ATO_i o • • • o A2 o A3. Then 

TW2 = TWl oTF = TWloTAlo.-.o TAm. (3.96) 

Proof. By Lemma 3.5 it follows that 

Tw2 = TfoWi = T(Amo---oA2oA1)oW1 

= TWl O (TAmo-.-oA2oA1) = TWl O ( T A J O (TAmo.--oA2)) 

= TWl o (TAl o (TA2 O • • • o (TAm • • •))) = TWl o TA l o • • • o TAm. 

Thus, (3.96) is true for the fuzzy elementary transformation Tp. • 

Suppose the fuzzy pattern b is an attractor of W. Moreover, Af(W; b) = 
{x e [0, l ] n | x o W = b } . Then for any x G A/"(W;b), X converges with one 
iteration to b . Therefore, Af(W; b) is an attractive neighborhood of b . If the 
sequence of fuzzy patterns bi , . . . , bj is the limit cycle of W, that is 

b 2 = b x o W, . . . ,b; = b/_i oW, bi = b; o W. 

Denote a collection of fuzzy patterns by 

AA(iy;b1,...,b i) = {xG[0 , l ] n | 3 f cG{ l , . . . , 0 : x o W = b f c}. 

we call N(W\ bi , . . . , b/) an attractive neighborhood of limit cycle {b1 ; . . . , b ;} . 

Theorem 3.29 Let b be an attractor ofWi, and W\ —> W2. Then b is 
also an attractor of W2 if and only ifTp(b) e Af(Wi;h). 

Proof. Suppose b is an attractor of Wi- Then bo W2 = b , that is, TW2(b) = 
b. By Lemma 3.5 it follows that 

b = TW2(b) = (TFoWl(b) = (TWl o I » ( b ) = TWl (TF(b)) = TF(b) o Wt. 

That is, I>(b) o Wx = b . So TF(b) G MiW^b). 
Conversely, if TF(b) G AT(Wi;b), by Lemma 3.5 we can conclude that 

b = T F ( b ) o W 1 = T W l ( T F ( b ) ) = (T W l oT F ) (b ) 

= TFoWl (b) =TW2{b)=boW2. 

So b is an attractor of W2- D 
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Theorem 3.30 Let the fuzzy pattern family {t>i, ...,b;} be the attractive 
w 

cycle of W\, and W\ —> W2 • If the family is also the attractive cycle of W2, 
thenVk G {l,...,l}, TF{hk) G-A/X^ilbi, ...,b;). Conversely, let 

TF(bk) 
± f b'keAf(W1;bk+1), \<k<l; 

~ \ h'k&N{Wi;hx), k = l. 

= TW2(bk)=bkoW2 = 

Then the fuzzy pattern family {bi,..., b;} is the attractive cycle of W2. 

Proof. Assume that the family {bi, . . . ,bj} is the attractive cycle of W2. 
Then Mk G {1,.. . , I}, it follows that 

TF(bk) o Wi = TWl (7>(b)) = (TWl o TF)(bk) = TFoWl (bk) 

bfe+i, l<k<l, 

bi , k = l. 

Therefore, Tp(bfc) G Af(W;bi, ...,b/). Conversely, it is easy to show 

bi o W2 = bi o (F o Wt) = TFoWl (bi) = TWl o (TF(bj)) = b ; o Wx = b2. 

With the same reason, we have, b2oW2 = b 3 , . . . ,b;_ioW2 = b;, bioW2 = b i . 
That is, {bi, ...,b;} is the attractive cycle of W2. D 

Next let us take an example to demonstrate above results. Let N = 
{1, 2, 3, 4}, moreover 

Wx 

/ 0.7 0.5 0.6 0.4 \ 

0.4 0.5 0.7 0.5 

0.6 0.4 0.7 0.5 

\ 0.5 0.5 0.6 0.4 / 

And denote 

b 0 = (0.6,0.5,0.6,0.5), bx = (0.7,0.5,0.6,0.5). 

Table 3.16 Attractors of connection network 

Wi 

Wx 

w2 

w3 

w4 

Wl:Wi = Fic 

JPi = A 

F2 = Ai(0.5) 

F3 = A14 

-F4 = A23 

Wx attractor 

b 0 ; bi 

b 0 

bo 

bo; bi 

It is easy to show that the conditions of Theorem 3.30 hold for bo. So 
bo is a fuzzy elementary memory of Wx- Thus, for bo, W\ possesses better 
fault-tolerance. Also we can from Table 3.16 get the following facts: 
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(i) To the connection networks W2, W3 related to W\, by one iteration, 
the states of W2, W3 corresponding to b i belong to Af(W2;bQ), Af(W3;b0), 
respectively. Thus, we can realize to escape from the a t t ractor t>i tha t is not a 
fuzzy elementary memory of W\. h\ may converge to bo, a fuzzy elementary 
memory of W±. 

(ii) To the connection network W4, b i is also an a t t ractor of W4, so the 
state of Wi can not escape from b i . 

In the chapter, based on the fuzzy operator pair (V, A) we present the basic 
results concerning the research on feedback FNN's . They include, some system­
atic conclusions related to dynamic FNN's , such as stability, a t t ractor , a t t rac­
tive basin, and the iteration laws of the system states and so on; fault-tolerance 
of the systems, and the learning algorithms for the connection weight matrices 
related, etc. These results can widely be applied in information processing, 
especially in information restoration. To apply the FNN's in more application 
fields, it is necessary to generalize the fuzzy operator pair (V, A), since it is 
not optimal in many applications. So within a general framework developing a 
systematic approach to the feedback FNN's is important and meaningful. 
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CHAPTER IV 
Regular Fuzzy Neural Networks 

The neural systems with the following properties are called regular fuzzy 
neural networks (FNN's): (i) The topological architectures are identical with 
ones of conventional multi-layer feedforward neural networks; (ii) The input 
signals, connection weights and biases (or thresholds) related, are fuzzy sets 
in .F(R); (iii) The internal operations are based on Zadeh's extension principle 
and fuzzy arithmetic [73, 84]. Like conventional neural networks (see [9, 10, 
14-16, 67, 72]), regular FNN's have recently been successfully applied in many 
real fields, for example, system modeling [8, 17, 28, 71], pattern classification 
[37, 41, 74], system identification [25, 39, 42, 71], process control [29, 72], signal 
processing [66], and communication [66], and so on. 

We may classify regular FNN's into three classes that distinguish themselves 
with the values of input signals and connection weights [6, 64, 65]. The first 
one includes those whose inputs are real numbers and connection weights are 
fuzzy sets (see [29, 50, 51, 56, 57, 59]). The second one refers to those whose 
inputs are fuzzy sets and connection weights are real numbers [37, 39]. The 
third one means those whose inputs and weights are fuzzy sets (see [21-25, 41, 
53] etc.). And the third class is general, it includes the preceding two classes 
as special cases. The study of this chapter focuses on the third class FNN's, 
that is, both input signals and connection weights of FNN are fuzzy sets. 

The research in this field is at its infancy and many fundamental problems, 
such as, the systematic analysis for network structures, the learning algorithms 
for fuzzy weights and fuzzy biases, the study to the performance of the algo­
rithms related, approximating capability analysis of FNN's, and so on remain 
to be solved. We start the chapter with the investigation of fuzzy neurons. A 
complete analysis to above important subjects are presented in the rest sections, 
respectively. In addition to those, we shall establish the equivalent conditions 
for universal approximation of regular FNN's, which provides us with necessary 
theoretic basis for applications of FNN's. Also some realization algorithms for 
universal approximation are developed, and intensive simulations are carried 
out to demonstrate the validity of our conclusions. 

§4.1 Regular fuzzy neuron and regular F N N 

We can classify fuzzy neurons into three classes [1, 32, 65]. They are regular 
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type, whose inputs and connection weights are fuzzy sets, and internal oper­
ations are based on extension principle and fuzzy arithmetic; Fuzzy operator 
type, whose signals related belong to [0,1], and internal operations are deter­
mined by t—norm and t—conorm; And fuzzy algebraic structure type, whose 
neuron inputs are fuzzy sub-space [1]. In real, the fuzzy neurons in use are 
mostly the preceding two classes. Let us mainly aim at regular fuzzy neurons. 
At first, by Zadeh's extension principle we define the extension operations and 
fuzzy arithmetic in .Fo(K). 

Let A, Be J-Q(R), and A e l , define extended plus '+ ' , extended subtraction 
' —', extended multiplication '•' and extended scalar product '•', respectively 
as follows: Let z £ l , 

U + B)(z)= V {A(x) A B(y)}; (A - B)(z) = V/ {A(x) A B(y)}; 
x-\-y=z x—y=z 

U-B)(z)=V{A(x)AB(y)y,(\-A)(z)= V U ( * ) } = M A ) '
 X/°' 

xy=z Xx=--z IX{0}{Z), A = 0. 

For given X = {Xi,...,Xd),Y= (Yi,-,Yd) € - F o W , we call <X,Y> the 
fuzzy inner product, which is written as 

(X, Y> = E I , T , . 

When both X, Y degenerate as vectors x = (xi,...,Xd), y = (j/i, —,yd) e 
Rd, (X, Y ) is an inner product in Rd. If A c Rd is bounded, by s(-,A) we 
denote the support function of A : s(x, A) = sup{(x, y ) |y G A} (x G Rd). 

Assume that / : T0(R)d —> .F(R) is an extended function of / : Rd —> R, 
by [73], if / is continuous, it follows that / : ^o(K)d —> ^ b W - By cc(K) we 
denote the collection of all bounded closed intervals of R. Obviously 

AG f0(K) =^>Va6 (0,1], Aae cc(E), moreover Supp(A) G cc(M). (4.1) 

For A, Be f0(K), we may show A C B , = > Supp(A) C Supp(S), Ker(^l) c 

Ker(B). If A = (Ai,-,Ad) G -^oW*, from now on we denote Supp(A) = 

(Supper) , . . . , Supp(Ai))-

Lemma 4.1 Let A, B, Ai,-,Ad& ^b(R), and a G (0,1], A G (0,+oo). 
Then the following facts hold: 

(i) (A + B)a =Aa + Ba, (A-B)a=AaxBa, (A- A)a = A Aa; 

(ii) If f : Rd —> R is continuous, f(Ai,—,Ad)a = f{(Ai)a,—,(Ad)a), 
r^j I-J r^j r^i 

furthermore, /(Supp(Ai),...,Supp(A*)) = Supp(/(Ai,.. . , Ad))-
Proof, (i) and the first part of (ii) come from [73, 84], so it suffices to prove 

the second part of (ii). 
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At first, for A\,...,Ad C R, we shall prove: f(Ai,...,Ad) = f(Ai,...,Ad). In 
fact, by the fact that f(Ai, ...,Ad) C f(A±, ...,Ad), and the continuity of / it 
follows that f[A,...,Ad) is a closed set, and f(Ai,...,Ad) c f(Ai,...,Ad). 
On the other hand, arbitrarily given y G f(Ai,..., Ad), there exists x = 
(xi, ...,Xd) : Xi G Ai, satisfying y = / (x ) . Therefore, Vi G {1, ...,d}, there is a 
sequence {x%\k G N} C Aj : xf —• x̂  (ft —> +00). Write x^ = {x\,...,xd), 
then /(xfc) G /(Ai, . . . , Ad), Xfc —> x (A; —> +00). By the continuity of 
/ , it follows that lim /(xjt) = / (x) = y. Hence y G /(Ai, . . . , Ad). Thus, 

f(A1,...,Ad)c f{Au...,Ad). Consequently, f(Au...,Ad) = f(Au..., ~Ad). By 
the following fact: 

Supp( /Ui , . . . . Ad)) = {ye R | / U i , . . . . Ad){y) > 0}, 

/ (Su P pU 1 ) , . . . , Supp(Ad) )= / ({xGMUi(x )>0} , . . . , {xGM| Ad(x)>0}), 

(4.2) 
and by (4.2) we obtain 

/ (SuppU 1 ) , . . . , Supp( l d ) )= / ({x 1 GEUi(x 1 )>0} , . . . , {x d GR| A d(x d)>0}) 

= {/ (z i , - ,Zd) |Ai(xi) > 0, ...,Ad(xd) > 0}. 

And by (1.8) it is easy to prove 

{y G M | / U i , . - , Ad){y) > 0}= {/(an, ...,a;d)|Ai(a;i) > 0,...., Ad(xd) > 0}. 

Thus, Supp( /Ui , . . . ,Ad))= /(Supp(Ai) , . . . ,SuppUd)) . D 

4.1.1 Regular fuzzy neuron 

A regular fuzzy neuron is defined by fuzzifying a crisp neuron, directly. Its 

structure is shown as Figure 4.1. d fuzzy inputs Xi,—,Xd, a n d connection 

weights Wi, —, Ifd related are fuzzy numbers in .Fo(R). 

e 

Figure 4.1 Regular fuzzy neuron 

The I/O relationship of the fuzzy neuron is determined as follows: 

~ ~ ~ d 

Y= F{Xi,...,Xd) = <J(J2 Xi- Wi + e)= a((x, W)+<=>), (4.3) 
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where 6 means a fuzzy bias (or a fuzzy threshold), and X = (Xi, •••, Xd), W = 

(Wi, •••, Wd) G .Fo(K)d is fuzzy vectors, cr : K —• R is a transfer function. 
If CJ(X) = x, the neuron related is called linear. In real, usually a is selected 

as the following forms (where a > 0 is a constant) [32]: 

(i) Piecewise linear function : a(x) = ——^ -; 

(ii) Hard judgment function : a(x) = sign(x); 

(hi) S type function : a(x) = (a > 0); 
1 + exp(—ax) 

(iv) Radial basis function : <r(x) = exp(—a|x|). 

Related to (4.3) an obvious fact holds, that is, the I/O relationship F(-) is 

monotone, i.e. for given Xi, —,Xd, Zi, •••, Zd G -^b(K), 

XiCZi (i = l,...,d)=>F{Xi,...,Xd)cF(zi,...,Zd)- (4-4) 

Fuzzy neurons can process all kinds of fuzzy information, efficiently . It includes 
crisp neurons as special cases. 

4.1.2 Regular fuzzy neural network 

A regular FNN is an organic structure that connects many neurons in given 
order. Now the research will aim at a multi-layer feedforward regular FNN. 
As an example, taking a three layer feedforward network with multiple inputs 
and single output (MISO), we can establish the topological structure related 
as shown in Figure 4.2, where the connection weight between neuron i in the 

input layer and neuron j in the hidden layer is Wij S T$ (M), and the connection 

weight between j and output neuron is Vj& Jro(I&)-

Input layer Hidden layer Output layer 

Figure 4.2 Topological s t ruc ture of regular F N N 

Assume that the neurons in the input and output layers are linear, and the 
hidden neurons have transfer function a. Denote 

wC/) = (Wij,-,Wdj), x = (Xi,...,xd)-
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The I/O relationship of the regular FNN determined by Figure 4.2 is as follows: 

r^i A ro ~ no f^1 no / & no no no \ 

Y = Fnn(Xi, ...,Xd) = E Vj • CT(Z Xi • Wij + Oj 
(4.5) 

m no no no no 

= E Vj-a((x, w(j))+ej). 

where 6-,-e ^b(R) (J = 1, ...,m) is a fuzzy threshold of hidden neuron j . By 

(4.4) easily we have, fuzzy function Fnn is non-decreasing, that is, the following 
fact holds: 

XiCZi {i = l,-J),=^Fnn(Xl,...,Xd)CFnn(Zl,...,Zd)- (4.6) 

Two important subjects related to regular FNN's are as follows. The first is 
the learning algorithm for fuzzy connection weights Wij, Vj and fuzzy thresh­
old 0 j . The second is the analysis of the universal approximation property. 
The systematical research to such two problems is our main objective in this 
chapter. Before doing that, as preliminaries we are going to give the definition 
of universal approximation of regular FNN's, and present the analysis of the 
universal approximation of three-layer feedforward FNN's defined as (4.5) to 
the given fuzzy function classes. 

Definition 4.1 Let CF be a sub-class of collection of continuous fuzzy 
functions that Jb(R)d —• -^(M). Universal approximation of FNN (4.5) to 
Cp means that if VF G Cp, and arbitrarily given compact set U C .Fo(R)d, 

and e > 0, there exist m £ N, and fuzzy weights Wij,Vj£ ^o(K), and fuzzy 

threshold 9 j € Fo(M.) (i = l,-,d,j = l , . . . ,m), such that V X = (Xi,...,Xd) & 

U, D(Fnn{X), F(X))< e. Also FNN (4.5) is called the universal approximator 
of Cp, or we call that CF guarantee the universal approximation of FNN (4.5) 
to hold. 

Choosing CF = {continuous fuzzy function that jF0(M)d —> .Fo(K)}, Buck­
ley and Hayashi in [5] have proved that the universal approximation of FNN's 
as (4.5) to CF does not hold. And they conjecture that if letting CF = 
{continuously increasing fuzzy function that .Fo(J£)d —> ^ ( M ) } , the universal 
approximation of FNN (4.5) holds. However, by the following discussion we 
may find that such a conjecture is wrong. Being increasing is only a neces­
sary condition for fuzzy functions to guarantee the universal approximation of 
FNN's to hold. 

4.1.3 A counter example of universal approximation 
no r v fv j 

Let TG J-o(R). If the membership curve of T is a trapezoid, T is called a 

trapezoidal fuzzy number, as shown in Figure 4.3. Write T as ( io /WW^i) , 
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where Supp(T) = [to, *i], Ker(T) = [t2, t3]. If AG f 0 ( K ) , and denote 

S u p p U ) = [s1(A),s2(A)}, Ker(A) = [ e i U ) , e2{A)]. 

Let us now define the trapezoidal fuzzy function T r(-) as follows [53]: Tr(A) 

(si(A)/e1(A)/e2(A)/s2(A)), as shown in Figure 4.4. 

0 to t2 t3 

Figure 4.3 T(-) 

si(A) ei(A) e2(A) s2(A) 

Figure 4.4 Tr (!)(•) 

L e m m a 4.2 Trapezoidal fuzzy function Tr(-) is increasing, that is, for arbi­

trary Ai,A2£ ^b (R) , J 4 I C A 2 , = > Tr(Ai) C T r ( ^ 2 ) , moreover Tr is uniformly 

continuous on jFo(M). 

Proof. For i = 1,2, assume tha t Supp(^ i ) = [si(A»), s2(^4i)], K e r ( A ) = 

[ e i ( A ) , e2(Ai)]- Then by fact tha t AiCA2 we obtain 

S1U2) < fliUi) < S2U1) < S2U2) , 

e i U 2 ) < e i ( 2 i ) < e 2 U i ) < e2{A2). 

Thus, ( s i U i ) / e i U i ) / e 2 U i ) / a 2 U i ) ) c ( s i ( ^ ) / e i U 2 ) / e 2 U 2 ) / s 2 U 2 ) ) , it 

follows tha t Tr(Ai) C T , . ^ ) - So T r(-) is increasing. 

Arbitrarily given e > 0, let 8 = e. For each A,B€ .Fo(K) = £>U, 5 ) < <V2, 

it follows tha t dH{Aa,Ba) <5/2(0<a< 1). Write 

Tr(A) = ( a i U ) / e i U ) / e 2 U ) / a 2 U ) ) , 

Tr (B) = ( s i ( J B ) / e i ( B ) / e 2 ( B ) / s 2 ( B ) ) . 

By (1.1) for defining d # , and by choosing a = 1, a = 0, respectively, we 
conclude tha t 

m a x { | s i U ) - s i ( B ) | , \s2(A)-s2(B)\, \ei(A)-ei(B)\, \e2(A)-e2(B)\}< - . (4.7) 

For arbitrary a G [0,1], easily we have 

I > ( ( a i U ) / e i U ) / e 2 U ) / a 2 U ) ) a , (s1(B)/e1(B)/e2(B)/s2(B) ) a ) = J ? V J ? , 
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where J ? = |(1 - a)(Sl(A) - s*(B)) + a(ei(A) - e<(i?))| (i = 1,2). By (4.7) it 
follows that J f < (1 - a)S/2 + ad/2 = S/2(i = l,2). Thus 

D({s1(A)/e1(A)/e2(A)/s2(A)), (s1(B)/e1(B)/e2(B)/s2(B))) 

= V {-/fV •/?}<£. 
«6[0,1] Z 

That is, D(T r(A), TT{B)) < 5 = e. Therefore, Tr is uniformly continuous on 
.Fo(R). • 

Example 4.1 Let Tr(-) be a trapezoidal fuzzy function. Then there is a 
compact set U C .FoQR), such that FNN (4.5) can not with arbitrary accuracy 
approximate Tr onM. 

Proof. Define fuzzy numbers A,B& -FoQR) a s follows, respectively: 

x + 1 

Vx G R, A(x) 

1 1 
X+2' ~2-X<0' 

1, x = 0; 

1 „ 1 
- - x , x < 0 < - ; 

B(x) 

I 0, otherwise. 

2 ' 

1, 
l - x 

v 0, 

- 1 < x < 0 ; 

x = 0; 

0 < x < 1; 

otherwise. 

The curves related to A{-),B(-) are shown in (a) (b) of Figure 4.5, respec­
tively. Obviously, Va G [1/2,1], AQ=.Ba= {0}- Since Tr is a trapezoidal fuzzy 
function, it follows that Vx G R, we have 

Tr(A)(x) = < 

2x + l, — < x < 0; 

l - 2 x , x < 0 < - ; T r(B)(x) = ^ 

0, otherwise. 

Easily, we can show that 

V G [ 0 , 1 ] , Tr(A)a= [ 

x + 1, - 1 <x < 0; 

l - x , 0 < x < 1; 

0, otherwise. 

a — 1 1 — a , Tr(£?)a= [a - 1 , 1 - a ] (4.8 
2 ' 2 

Let us now prove when d = 1, FNN (4.5) can not with arbitrary accuracy 

approximate Tr on compact set W = {A, B} C .Fo(R). If the fact does not hold, 

let £0 = 0.1, then there exist m G N, and WIJ,VJ,QJ& .Fo(R) (j = l , . . . ,m), 
such that 

£o £o 
tftFnnU), T r U ) ) < y , d(Fnn{B), Tr{B))< 
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Choose «o = 0.75. It follows that 

£o 
dH(Fnn(A)a0, Tr(A)ao)< -f, dH(Fnn(B)ao, Tr(B)ao)< y . (4.9) 

Since Aao=Bao= {0}, by Lemma 4.1, Fnn(A)ao = £ (Wi, ) • cr((9j ) ) = 

Fnn(B)ao- So by (4.9) we obtain 

dH(Tr(A)ao, Tr{B)ao)< dH(Tr(A)ao, Fnn(A)ao)+dH(Fnn(A)ao, Tr(B)ao) 

= dH{Tr{A)ao, Fnn(A)ao)+dH(Fnn(B)ao, Tr(B)ao) 

On the other hand, by (4.8) it follows that 

\a0 - 1 1 - a0 

(4.10) 

dH(Tr(A)ao, Tr(B)a0) = dH([-

{ 

j , [«o - 1, 1-cco 

max 
a 0 - 1 1 — ao |i 1 — «o 1 

> so, 

which contradicts (4.10). So FNN (4.5) can not approximation Tr on W with 
arbitrary accuracy. • 

Figure 4.5 Membership curves: (a) Curves of A, Tr{A); (b) Curves of B, Tr(B) 

4.1.4 An example of universal approximation 

By Example 4.1 and Lemma 4.2, if choose Cp as the collection of all con­
tinuously increasing fuzzy functions, the universal approximation of FNN (4.5) 
to Cp does not hold. An important problem is, whether can a sub-class Cp 
of the collection of continuous fuzzy functions be established to guarantee the 
universal approximation of FNN (4.5) to hold? The answer is yes, since we can 
choose Cp = {extended function of continuous real function}. In the following 
we study such a problem in Rd. 
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Lemma 4.3 Let f,g be continuous functions on compact set B C Rd, and 
let h > 0. Moreover, Vx G B, | / (x) — g(x)| < h. Then for each compact set 

Bi C B, it follows that <h. V {/(x)}- V (ff(x)} 
x€Bi xeBi 

Proof. Since Bi is a compact set, and / , g are continuous on B\, there 
are x 0 G Bi, y0 G S i , satisfying / (x 0 ) = V {/(x)},g(y0) = V {s(x)}- If 

x6B a xEBi 

l/(xo) - ff(yo)| > h, we have 

/ (x 0 ) - s(yo) < -h, or / (x 0 ) - ff(y0) > fc. (4.11) 

To the first case of (4.11), considering /(yo) < /(xo), we obtain 
/(yo) - 5(yo) < /(xo) - ff(yo) <-h=> | / (y0) - s(y0) | > h, 

which contradicts the assumption! To the second case of (4.11), since g(xo) < 
g(yo), it follows that 

/(xo) - #(xo) > / (x 0 ) - g{y0) >h,=> | / (x0) - 5 (x 0 ) | > h, 

which also contradicts assumption. Thus, (4.11) does not hold, that is, —h < 
/(xo) -S (yo) < h, So | / (x 0) - 5 ( x o ) | < h, i.e. | V / (x) - V <?(x)| < h. 

x6Bi x6J5x 

The lemma is proved. • 

Diamond P. & Kloedem P. have showed in [19, 20] that each compact set 
in •T-o(R) is uniformly bounded, that is, the following conclusion holds. 

Proposition 4.1 LetU C jFo(M)d be a compact set. Then the supports of 
fuzzy sets in U is uniformly bounded, that is, there is a compact set U C Rd, 

such that V AG U, Supp(A) C U. 

Proof. Fuzzy number 0 = X{0} x ••• x X{o} G .Fo(R)d, where X{0}(0) = 

1 ; X{o}(x) = 0 {x ^ 0). Since U is a compact set in metric space (.^(R)01, .D), 

the set {-D(0, A ) | A G U}C 1 is a bounded set, that is, there is K > 0, 
r^/ r^i r^j no rv rvj 

we have, A 0 = ((Ai)o, •••, (A*)o) = (Supp(J41), ...,Supp(Ad))= Supp(A), hence 

V AG U, D(d, A ) < K, and therefore sup{||x|| |x = (xi,...,a;d) GAo}< K. 

Thus, if let U = [-K, K]d, then U C Rd is a compact set. Moreover, V AG 

U, Vx £ Supp(A), ||x|| < # , i.e. x G [/. Therefore, Supp(A) CU.D 

Lemma 4.4 Let f : M.d —• R be a continuous function. Then extended 
function f : Jro(M)d —• To(R) is continuous in Jro(R)d. 

Proof. By Lemma 4.1 we obtain the fact that for arbitrary (Ai, —,Ad) £ 

.F0(R)d, Supp( /Ui , . . . ,A i ) )= /(SuppUi), . . . ,Supp(A,))- Since / is continu­

ous, /(Supp(Ai),.. . ,Supp(Ad))c R is a compact, i.e. Supp( / (^ 1 , ...,Ad))c R 
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is compact. Also by Lemma 4.1 we obtain, f(Ai,-,Ad)a = f({Ai)a,-,(Ad)a) 

for each a G (0,1]. The fact that (Ai)a G cc(M) implies f\{Ai)a,—,{Ad)a)€ 

cc(R). Obviously, Kev(f(Ai,.-,Ad))^ 0- So f(Ai,...,Ad) e -F0(R), i.e. the 
range of extended function / is included in TQ (R). 

Arbitrarily given (Ai,---,Ad) & JroQ&)d, and e > 0. There is a closed in-
terval [a, 6] : Va G [0,1], G4i)a X ••• X (Af)a C [a,b]d. Obviously, / is 
uniformly continuous on [a, b]d, so there is 8 > 0, such that V(a;i, ...,2^) G 
[a, 6]d, V(yi,...,yd) G [a, 6]d, it follows that 

Vi G {l , . . . ,d}, |a;j — 2/»| <5,=> \f(xi,...,xd) - f(yi,-,yd)\< 2 ' 

For each (Xi,-,Xd) G ^b(K)d , if £>(Xi,Ai) < <* (« = l,-,d), then Va G 

[0,l],dH((Xi)a, (Ai)a)< 8, that is 

V ( A {l«-*l})}v{ V ( A {\t-s\})}<6(i = l,...,d). 
te(Ai)a se(Xi)a s£(Xi)a te(Ai)a 

Thus, for each i G {1, ...,d}, if t G (A)ai there is s' G (Xt) a , |£ — s'\ < S. On 

the other hand, Vs G (Xj)Q, there is t' G (.4»)a, satisfying \t' — s\ < S. So for any 

(xu...,xd) G {Ai)a x ••• x (A*)a, there is (y[,...,yd) G (Xi)a x ••• x (Xd)a, 
\xt -y'i\< S (i = l,...,d), satisfying |/(a;i,...,a;d) - f(y[, ...,y'd)\ < e/2. And 

V(yi,...,j/d) G (Xi)« x - - - x (Xd)Q, there is (x[, ...,x'd) G ( i i ) a x • • • x (Ajc, : 
\x'i -yt\ < 5 (i = l,...,d), such that \f(x[,...,x'd) - f(yi,...,yd)\ < e/2. That 
is, we can conclude that 

V { A {\f(xi,-,xd)-f(vi,...,vd)\}\<h 
XlG(Al)a,--^Xd£(Ad)a 3 / l€(Xl)a , - - - jydG(Xd)a 

V ( A {\f(x1,...,xd)~f(y1,...,yd)\}\<l 

Thus, we can conclude that the following fact holds: 

V { A {\f(xi,...,xd)-f(yi,...,yd)\}\v 
xie(Ai)a,-,xd€(Ad)<* yie(Xi)a,--,yde(Xd)c, 

v | V A {\f(xi,.:,xd)-f(yi,...,yd)\} 
yie(Xi)c---,yd€(Xd)a x1€(A1)a,...,xd€(Ad)a 

<£. 
- 2 
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Consequently, we obtain 

dH{f(Xi,...,Xd)a, f(Ai,...,Ad)a) 

= dH(MXl)a,...,(Xd)a), / (Ul)a , . - ,Ud)a))< \-

D(f(Xi,...,Xd), f(Ai,...,Ad)) 

= V {dH(f{Xi,...,Xd)a,f(Ai,...,Ad)a)}<^<e-
a€[0,l] Z 

So / is continuous at (Ai, —,Ad)- Consequently / is continuous in .Fo(R) • O 

Let us now generalize the conclusion (ii) of Lemma 3.1 to general case. 

Lemma 4.5 Let I be an arbitrary index set, {at\i G / } , {bi\i G / } C [0,1], 
and h > 0, satisfying Vi € / , |a» — 6»| < h. Then 

|V a i" V b i | - / l ; |A a '~ A&i|-ft-

Proof. By assumption easily it follows that both (3 = \J ai and X = \J bi 

exist, moreover, /3, A G [0,1]. Let us now prove |/3 — A| < h. 
For each £ > 0, there are i0, j 0 G / , so that o,0 < /3 < ai0 + e, 6j0 < A < 

bj0 + e. Thus 
aiQ-bjo-e < (3 -X< aio - bjo + e. (4.12) 

If IQ = jo, by assumption and (4.12) we obtain — h — e < ai0—bj0—e < j3 — X < 
aio — bj0 + e < h + s. So \(3 ~ X\ < h + e. Therefore, \/3 — A| < h. If i0 ^ j 0 , it 
suffices to prove |/3 — A| < h, respectively with respect to the following cases: 

I- aio > ajo, bio > bjo; II. aio > ajo, bio < bjo; 

III. aio < ajo, bio > bjo; IV. aio < ajo, bio < bjo. 

To the case I, easily we have 

-h < ajo ~ bjo < aio - bjo < aio - (A - e) < aio - bio + e < h + e. 

So by (4.12) it follows that -h - e < (3 - A < h + 2e, i.e. \/3 - X\ < h + 2s, =^ 
|/3 — A| < h. To the case II, the following fact holds: 

-h < ajo - bjo < aio - bjo < aio - bio < -h. 

By (4.12) we can conclude that -h-e<(3-X<h + e => \(3 - X\ < h. 
With the similar reason we can show |/3 — A| < h to case III and case IV, 

respectively. Hence the first part of lemma is proved. 
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Easily we can imply that if Vi G / , let a\ = 1 — a*,^ = 1 — &i, then 

a\, b't £ [0,1], and |<-6<| <h{ie I). So by (i) it follows that V < - V * i < f t ' 

Therefore 

|A^-A 6 i l= | ( 1 -A°<)- ( 1 -A 6 0 |= |V a *-V 6 ^ / i -
The lemma is proved. • 

Lemma 4.6 Assume that f,g: Md —*• M. are continuous functions, h > 0. 
Moreover, for each compact set o/ffid, it follows thatWx G B, |/(x)— g(x)\ < h. 

Then for arbitrary compact setU of To(M)d, and each {Ax, •••, Ad) G U, we have, 

D(f{Ai,...,Ad), g(Ai,...,Ad))<h. 

Proof. Arbitrarily given U C .Fo(K)d, by Proposition 4.1 it follows that 

there is a compact set B of Kd, so that for each {Ai,—,Ad) G U, the set 

defined as {x = (xi,...,a;d)|a;i 6 Supp(Ai), —,Xd G Supp(J4d)} is included in 
B. Since/, g are continuous, by Lemma 4.1 we obtain Va G [0,1], and for each 

{Ai,-,Ad) e U, f{Ai,...,Ad)a = f({Ai)a,-,{Ad)a), and g{Ai,...,Ad)a = 

g{{Ai)on •••) {Ad)a)- Therefore, the following fact holds [19, 20]: 

dH(f{Ai,-.-,Ad)a, g{Ai,..;Ad)a) 

= dH(f({Ai)a,.-, {Ad)o), g{{Ai)a, - , {Ad)a) (4.13) 

= V {\s{pJ{(Ai)a),-,{Ad)a)-s{p,g{{Ai)a,...,{Ad)a)\}-
| P | = i 

Moreover, for each p G M : \p\ = 1, we have 

\s(p, f({Ai)a, -,(Ad)a))-s(p,g({Ai)a, -,(Ad)a))\ 

= \sup{p • y\y G f({Ai)a, •••, {Ad)a)}- sup{p • j/|y e fl(Ui)Q, - , (Ad)a)}| 

= |sup{p • / ( X i , ..., Zd)|Xj G (.&)<*}- SUp{p • 5 (^1 , ..., Xd)\Xi G ( A ) a } |, 
(4.14) 

Considering assumption and the fact that {{xi,...,Xd)\xi G (Ai)Q,i = l,---,d}c 
B, \p\ = 1, we imply 

Vx = (xi,...,a;d) G {Ai)a x ••• x U d ) a , |p- / (x) -p-g{x)\= | / (x ) -gr (x) | < ft. 

So it follows that dH (f({Ai)a, - , {Ad)a), g({A\))a,..., (A*)«)) < /i by Lemma 
4.5 and (4.13) (4.14). Therefore 

D(f(Ai, ...,Ad), g{Ai,...,Ad)) 

= V { d f f ( / ( U l ) a , . . . , U d ) a ) , < 7 ( U l ) a , - , U d ) a ) ) } < A . 
a€[0,l] 
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The lemma is proved. • 

Theorem 4.1 Let f : Ed —• I l e a continuous function, and let U C 
J7o(M)d be an arbitrary compact set. Then for each e > 0, there are m G 
N, Vj, 6j G R, and w^ = (wy, ...,wdj) G Rd (j = 1, ...,m), SMC/I i/iat 

m 

vx=(ii,..,L)ew, £>(/(x), ^^••^((wj,x)+^))<£, 

wftere a is Tauber- Wiener function. 

Proof. By Proposition 4.1 it follows that there is compact set £/ C Md, so 

that \f(Xi,...,Xd) £W, {x = ( x i , . . . , ^ ) ! ^ e Supp(Xi),i = l,...,d}c U. For 
£ > 0, since a is Tauber-Wiener function, there are m G N, Uj,0j G M, and 
Wj = (wy, . . . , ^ 0 G Md(j = 1, ...,m), satisfying 

V x € t / , / (x ) - Y^vi • v((X'™j)+0j) 
J = l 

e 
< 2 " 

lit 

Let <7(x) = ^2 Vj • <T( (X ,WJ)+0J ) (X € Kd). By Lemma 4.6 we obtain 
i=j 

V X = ( X i , . » i d ) 6 W , D(f(Xi,...,Xd), g(Xi,...,Xd))< | . 

Therefore, -D ( / ( X ) , X3 vj "<T((wj > X )+#?)) < e/2, which implies the theorem. 

• 
By Theorem 4.1, if we choose Cp as the collection of all extended functions, 

the regular FNN's as (4.5) are the universal approximators of Cp. Related to 
this fact an important problem is, whether can we establish some equivalent 
conditions for continuous fuzzy function class CF to guarantee the universal ap­
proximation of multilayer feedforward regular FNN's to hold? Such a research 
topic is important and urgent to apply regular FNN's as useful tools of solving 
many real questions, such as, system modeling and system identification and 
so on. The systematic research to this topic is the main objectives of §4.4 and 
§4.5, respectively. To this end, let us now develop some learning algorithms for 
FNN (4.5). 

§4.2 Learning algorithms 

Since the input signals, connection weights and the thresholds related to 
regular FNN's are fuzzy numbers, naturally it is much more difficult to develop 
learning algorithms for regular FNN's than for corresponding conventional neu­
ral networks, which leads to lacking systematic achievements in the field. The 
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basic processes to deal with the learning for FNN's are similar ones for con­
ventional neural networks, that is, define a suitable error function, and develop 
some iteration schemes for fuzzy weights and fuzzy bias terms. Since we do not 
have the calculus for fuzzy numbers, the conventional learning algorithms for 
multi-layer neural networks cannot be directly fuzzified. 

So far there have been two approach to complete the learning of the regular 
FNN's. One is to apply the level sets (a—cuts) of fuzzy numbers related, 
and the BP algorithm is employed to adjust the endpoints of the level sets 
to determine the fuzzy weights and biases. For instance, Buckley et al. [7], 
Hayashi et al. [36] and Ishibuchi et al. [37] apply direct fuzzification to develop 
the fuzzy delta rule. However, it cannot be used, practically because of the 
lack of theoretic support. By restricting fuzzy weights and fuzzy biases to 
be real numbers, Ishibuchi et al. [39] propose a fuzzy BP algorithm based 
on finite level sets of the fuzzy numbers related. A general fuzzy number 
cannot be determined by finite parameter collection. This is a main reason 
that causes the difficulty for developing FNN learning algorithms. To avoid 
such a case, specifically, many authors restrict fuzzy weights and biases to 
be a given fuzzy set class, such as triangular and trapezoidal fuzzy numbers. 
Ishibuchi et al. [38, 40, 41] use symmetric triangular fuzzy numbers for fuzzy 
weights. And in [42], Ishibuchi et al. examine the ability of regular FNN's 
with four types of fuzzy weights (i.e. real numbers, symmetric triangular fuzzy 
numbers, asymmetric triangular fuzzy numbers, and asymmetric trapezoidal 
fuzzy numbers) to realize approximately fuzzy IF-THEN rules. In order to 
call off constraint conditions for fuzzy weights, Dunyak et al. [21-23] present 
a transformation which does not simplify the representation of fuzzy weights. 
And based on the level sets of fuzzy numbers and the interval arithmetic, Park 
et al. [75] develop an inversion algorithm of regular FNN's. 

However, no matter how different fuzzy weights and error functions these 
learning algorithms have, two important operations 'V' and 'A' are often in­
volved. An indispensable step to construct the fuzzy BP algorithm is to differ­
entiate 'V — A' operations by using the unit step function, that is, for the given 
real constant a, 

d(xVa) ( !, x>a, d{x A a) _ f 1, x<a, 

dx \ 0, x<a; dx \ 0, x > a. 

Above representations are only valid for special case x ^ a. And if x = a, they 
are no longer valid. Based on these two derivative formulas, the chain rules 
for differentiation of composition functions are only in form, and lack rigorous 
mathematical sense. Apply [81, 82] to fully analyze the 'V — A' operations and 
to develop a rigorous theory for the calculus of 'V' and 'A' operations are two 
subsidiary results of this section. 

Another approach for the learning of regular FNN's is to utilize genetic 
algorithm (GA) (see Goldberg [31], Mitchell [70]) to minimize the error func­
tion and consequently determine the fuzzy connection weights and bias terms. 
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When the learning for weights and biases is completed with GA, the fuzzy num­
bers related must be restricted to a small class, such as triangular or trapezoidal 
fuzzy numbers, so that they can be determined by a few of parameter related 
to the class of fuzzy numbers. For instance, Aliev et al. [3] and Krishnamraju 
er al. [48] employ simple GA to train the triangular fuzzy number weights 
and biases of regular FNN's. They encode all fuzzy weights as a binary string 
(chromosome) to complete the search process. And the transfer function a 
related is assumed to be an increasing real function. 

Unlike neuro-fuzzy networks of mapping a non-fuzzy input signal to a non-
fuzzy output, which are the main objectives of Chapter VI (see also [12, 46, 49]), 
regular FNN's can directly process fuzzy information. If a real system maps 
fuzzy inputs to fuzzy outputs, we can employ regular FNN's not neuro-fuzzy 
networks to realize this system, approximately (Ishibuchi et al. [44]). Further­
more, applying regular FNN's we can solve the overfitting problem (Feuring 
et al. [25]). Hence regular FNN's play an important role, which can not be 
replaced by neuro-fuzzy networks in application. 

In this section, we at first employ level sets of fuzzy numbers to develop 
learning algorithms of FNN's. The first step to do this is to represent the 
output fuzzy numbers of FNN as some functions of the endpoints of level sets 
related to fuzzy weights and thresholds. Here the triangular and trapezoidal 
fuzzy numbers are generalized to general ones. So the results in the section is 
general and can be widely applied in real fields. 

4.2.1 Preliminaries 

Before developing learning algorithms, we at first recall the interval arith­
metic, the detail related please see [2, 73]. Let [aL, au], [bL, bu] be closed 
intervals. By '*' we denote '+ ' ' —' 'x (•)' and '-=-', respectively. If let 

h=inf{x*y\x£ [aL,au],y£ [bL,bu]}, 

I* = sup{x*y\x e [aL,au],y G [bL,bu]}, 

we define [aL,au]*[bL,bu]= [/», / * ] . Easily we can show 

[aL, au] + [bL, bu]= [aL + bL, au + bu], 

[aL, au] - [bL, bu] = [aL -bu,au - bL], 

moreover, [aL, au] x [bL, bu]= [cL, cu], where 

cL=min{aL- bL,aL- bu,au- bL,au- bu}, cu=m^{aL- bL,aL- bu,au- bL,au- bu). 

If 0 ^ [bL, bu], we can obtain the operation law of interval division: 
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If / : R —• E is a monotone function, / can be extended as follows: 

f([aL,au])= [f(aL)Af(au), f(aL)vf(au)]. 

Next, we restrict the general fuzzy number space to a smaller class, i.e. 

.FocW, satisfying V A€ .Foc(R), i f l e t Supp(2) = [a1, a2], Ker(A) = [e1, e2], 

then A(-) is increasing on [a1, e1) (i.e. for arbitrary x\, x% G [a1, e1), x\ < 

a;2 ,=> A(xi) <A{x2)); and is decreasing on (e2, o2](i.e. for arbitrary X\, x2 € 

(e2, a2], x\ < X2, =^A(x\) >A{X2))- Obviously, .Foc(lR) is closed under 
the extended operations '+ ' , '•', and '—', respectively. Furthermore, .Foc(]R) 
includes the fuzzy numbers often used in application, such as triangular fuzzy 
number, trapezoidal fuzzy number and so on. 

Theorem 4.2 For any s > 0, and A,B& Tod^j, if there are m0 G N, 
and constants ao, OL\, ..., amo G [0,1] : 0 = ao < ct\ < • • • < amo = 1, satisfying 

dH(Aak^, Aak) < e/3, dH{Bak-!, Bak) < e/3 (k = l , . . . ,m0) . Then by the 

fact thatVk G {0, l , . . . ,m 0 } , dff(A*fe, Bak) < e/3, it follows that D (A, B) < e. 

Proof. Given arbitrarily a G [0,1], it follows that there is k G {l, . . . ,mo}, 
satisfying a G [afc_i,afc]. So we have 

dH(Aa,Ba) < dH(Aa,Aak) + dH(Aak,Bak) + dH(Bak,Ba). (4.16) 

Considering A,B& !Foc(P)> a n d the definition of J-oc(M.), we can obtain the 

following inequalities: dH(Aa,Aak) < duiAa,,^,Aak) and dH(Ba,Bak) < 

dHiBoc-^Bak)- By (4.16) it follows that 

dH{Aa,Ba) < dH{Aak_1,Aak)+dH{Aak,Bak)+dH{Bak-.1,Bak) 

s e e 
< 3 + 3 + 3 = £ ' 

by which we can prove the theorem. • 

For any 7 G N, let AG J ^ c W , and denote Aak = Wk, a2.], where ojfc = 
fc/7 (k = 0,1, ...,7)- By continuously increasing curves we link up such points 

on the curve y =A(-) as (aj, 0), (a\,A(a\)),..., (a*, 1) successively. By continu­

ously decreasing curves we link up the points (a2 ,1), (a2_D A(a7_i)),—, (ao'O)' 

successively. Thus, we obtain a fuzzy number c1(A) G TodM.) : Supp(c7(A)) = 

Supp(A); Ker(c7U)) = Ker(A); c7U)« fe =Aak (k = 0,1, ...,7). We call c7(A) 

a defined-piecewise fuzzy number of A . If the curve segments linked up suc­

cessively become line segments, c7(A) is called a symmetric polygonal fuzzy 

number, which is a main objective in Chapter V. By Theorem 4.2 we can show 

the following fact. 
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Corollary 4.1 Let AG T0c(R). Then when 7 - • +00, D(A, c7(A)) -> 0, 

that is, lim D(A, Cy(A)) = 0. 
7—>+oo 

Proof. For AG .Foc(R), ak = k/-y (k = 0,1, ...,7), Let Aak= [ai,a%]. Then 

by the fact A(-) is increasing and right continuous on (a^az), and decreasing 
and left continuous on (a%, a^), it follows that Ve > 0, there is 70 G N, such that 

V7 G N : 7 > 70, K-a jLi I < e/3, l ^ - a L i I < ff/3- T h u s - dff(A»»» A*fe_J < 

e/3 (fc = 1,...,7). But Aak= c-y{A)ak, Theorem 4.2 implies D(A, c7(A)) < e. 

So lim £>(A, c T U)) = 0. • 
-f—y+oo 

4.2.2 Calculus of V — A functions 

As the preliminaries of developing learning algorithms, let us now study the 
derivatives of V — A functions and derivation operation laws (see [81], [82]). By 
V — A function class Cmm we mean the collection of all functions generated 
with the following rules [81]: 

(ii) If / , g G Cmm, then / V g, f Ag G Cmm, where 

( / V g){x) = f(x) V g(x), ( / A g){x) = f(x) A g(x); 

(iii) If / G Cmm, and F G C^K), then F(f) G £ m m . 
The basis forms of V — A functions are / Vg and f Ag, where f,g G C 1 (R). 

In the following we mainly aim at the derivatives related to V — A functions. 
To this end, let 

lor(-) : R —• R, lor(x) = < 

1, x > 0, 

i , x = 0, (4.17) 

0, x < 0. 

For given p G N, let / i , . . . , / p G C^R) . By the following theorem, we can 
characterize the differentiability of the V-A functions /1V- • • V/p and /iA- • -A/p. 

Theorem 4.3 Suppose / 1 , . . . , / p G C^R) . Write F = /1V- • • V/p , and G = 
/ i A - A / , . For z0 G R, tet I(x0) = {* G {1, ...,p}|/i(x0) = F(x 0 )} ; J(x0) = 
{ie{l , . . . ,p} | / i(a;o) = G(xo)}. ™en 

(%) F is differentiable at XQ -£=>• either I(xo) is a singleton set or, Vi, j G 
/(xo), fl(x0) = f<(x0); 

(ii) G is differentiable at XQ -£=> either J(XQ) is a singleton set or, Vi, j G 
J(x0), fl(x0) = ffao). 

Proof. It suffices to prove (i) because the proof of (ii) is similar. Assume that 
F is differentiable at XQ, and I(XQ) is not a singleton. For given i, j G I(XQ), 
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satisfying the following equalities: 

ffao)= V {fk(*o)},fj(xo)= A {/*(*<>)}. 
kel(xo) k£l(x0) 

If fl(xo) ± ffao), then f!(x0) > f-(x0). Since fu fc G Cl(R), moreover 
fi{xo) = fj(xo) = F(x0), there is S > 0, such that Vx G (x0 — 5, x0), fj(x) > 
fi(x), and Vx G (x0,xo + 5),fj(x) < fi{x). Consequently, by the fact / j , fj G 
C^K) it follows that 

F'(Xo-0)= lim F{X) - F{X0) < lim fi{x) ~ fiixo) = fAxo); 
x - t x o - 0 X — Xo x^xo-0 X — Xo J 

F ' ( x o + 0 ) = Hm F{X) - F{X0) > lim fi{x) ~ f^o) = f<{x0). 
x ^ x o + 0 X — Xo x ^ x o + 0 X — Xo 

Considering F is differentiable at Xo, i.e. F'(xo — 0) = F'(XQ + 0) = F'(xo), 
we obtain /j(x0) > F'{XQ) > //(xo), which is a contradiction! So Vi,j G 
/ (x 0 ) , / / (x 0 ) = / j(x0) . 

Conversely, if /(xo) is a singleton set, let IQ G {l , . . . ,p}. Then fi0(xo) = 
F(x0), furthermore, \/i G {l,...,p}, i ̂  io, =>• /i0(x0) > fi(x0)- So there is 
a neighborhood (xo — #, xo + #) of xo, satisfying Vx G (xo — S, xo + 5), Vi 7̂  
*o, fi0(

x) > fi(x):^^' F(x) = fi0(x). Thus, F is differentiable at Xo- If /(xo) 
is not a singleton, then \/i,j G /(x0),/j'(xo) = /j(xo) = A. there is <5' > 0, 
such that Vx G (xo — 5', xo + 5'), Vi G /(xo)> Vfc 0 /(xo), fi(x) > fk(x). Hence 
Vx € (x0 — 5', Xo+5'), there exists ix G I(XQ), fijx) = F(x). Arbitrarily given 
a sequence {yk} C l : yk ^> Xo(k —> +00). Since I(xo) is a finite set, and the 
following set 

Io(x0) = {j G I(x0)\ there is{yfc!} c {yfc} : fiy^ (yki) = fj(yki) = F(yki)}=£ 0. 

For each j G Io{xo), we have 

n m F^O-F^o) = l i m 4 > K > ) = lim/i(^)-/j(^)._A 
z^+00 j / f e i - x 0 ;^+oo yki - x0 1^+00 yki - x 0 

(4.18) 
Easily we can show that {yk} can be finitely partitioned into infinite subse­
quences, each of which can guarantee (4.18) to hold. Therefore 

lim ^ ) - J ' ( ' o ) = A , = , l i m ^ ) - ^ o ) = A 
k—>+oo yk — Xo x—>x0 X — Xo 

That is, F is differentiable at xo- D 

Choose p = 2, by Theorem 4.3 we can easily show the following conclusion. 

Corollary 4.2 Let f,g G C 1 ^ ) , andxo G K. T/ien the following conditions 
are equivalent: 
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(i) f(x0) = g(x0), f'{x0) ^ g'(xo); 
(ii) f V g is non-differentiable at xo; 
(iii) f A g is non-differentiable at x$. 

Similarly with Theorem 4.3, we can also characterize the differentiability of 
hx = lor(/(x) - g{x)) and h2 = lor(g(x) - f(x)). 

Theorem 4.4 Suppose f,g£ C^R) . Define the functions hi, h2 respec­
tively as follows: hi(x) = lor(/(x) — g(x)), h2(x) = \or(g(x) - f(x)). For given 
xo G K, the following conditions are equivalent: 

(i) hi is differentiable at XQ\ 
(ii) h2 is differentiable at XQ\ 
(Hi) Either f(xo) ^ g(xo) or, f(xo) = g(xo) and there is 6Q > 0 : Vx G 

(x0 - So, x0 + S0), f(x) = g(x). 
Furthermore, when hi,h2 are differentiable at xo, it follows that h[(xo) = 

h'2(x0) = 0. 

Proof. By the definition (4.17) for lor(-), easily we can show that Vx G 
R, lor(/(x) — g(x)) = 1 — lor(g(x) — /(x)) . It suffices to prove (i) <=>• (iii). 
Let (i) hold, and /(#o) = g(xo)- If (iii) does not hold, then Vfc G N, there 
exists Xfc G (xo — 1/fc, Xo + 1/fc) : /(xfc) ^ g{xk). So there is a subsequence of 
{xfe}, and harmlessly we choose the subsequence to be {xfc}, satisfying {xfc} C 
(xo — 1/fc, xo + 1/fc)- Moreover, either Vfc G N, f(xk) > g{xk) or, Vfc G 
N, /(xfc) < g(xk). It is no harm to assume Vfc G N, /(xfc) > g{xk)- Therefore 

n m hi(xk)-hi(x0) = n m lor(/(x fc)-g(x fc))-l/2 = ^ 1-1/2 = + ^ 

fc—>+oo Xfc — X o fc->+oo Xfc — X o fe—>+ooXfc—Xo 

which contradicts the fact that hi is differentiable at Xo- So (iii) holds. Con­
versely, if /(xo) 7̂  g(xo), let /(xo) > g(xo)- Then there is a neighborhood 
(xo — S, xo + S) : Vx G (xo — S, Xo + S),f(x) > g(x),^=> hi(x) = 1. Hence 
hi is differentiable at xo, moreover h[(xo) = 0. If there exists So > 0 : Vx G 
(x0-S0, x0 + S0), f(x) = g(x), then Vx G (x0-S0, x0+S0), /ii (a;) = 1/2. Ob­
viously, hi is differentiable at x0, and h[(xo) = 0. Thus, (i) holds. In summary, 
when hi, h2 are differentiable at xo, h[(xo) = h'2(xo) = 0. • 

For / , g G C1(M), define Umm(f, g) = {x €R\f V g is differentiable at #} , 
and U\OT(f,g) = {x G R | lor(/(x) — g(x)) is differentiable at x} . By Corollary 
4.2 and Theorem 4.4, easily we have 

WmTO(/, g) = {xGR I / A 5 is differentiable a t x } ; 

Wior(/,3) = {xeR|lor(g(a;) —/(x))is differentiable a t x } , 

also U\or{f,g) C Umm(f,g), and the complement [Wior(/,5)]C, [Umm(f,g)]C 

can be represented as following, respectively: 

[Ulol(f,g)}c={xeR\f(x) = g(x),\/S>0,3x'e(x-S,x+S):f(x')^g(x')}; 

pmm(f,g)]C= {X G R | / ( x ) = 9(X), f'{x) ^ g>(X)}. 
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Theorem 4.5 Let / ,gGC 1 (W). Then [UiOT(f,g)]c at most is a numerable 
set, consequently \Umm(f,g)\ is also at most a numerable set. 

Proof. At first we show that Va, b G M.: a < b, \/k G N, the collection 

V(a,b,k) = {xe[a,b}\f(x)=g(x),\/6>0,3x'£(x-d,x+6):\f(x')-g(x')\>^} 

at most is a finite set. Otherwise, there is a infinite sequence {XJ} C [a, b] : Vj G 
N, f(xj) = g(xj). Moreover, V<5 > 0,3a^- G (XJ - 6, Xj + 5) : \f(x'j) - g(x'j)\ > 
1/fc. Since {x,,} has a convergent subsequence, which can harmlessly be assumed 
to be {XJ}, that is, let lim Xj = XQ G [a, b]. By the continuities of / , g it follows 

j—>+oo 

that f(xo) = g(xo), and easily we can show that 

V<5>0, 3x'0e[a,b]n(x0-S, x0 + 5): \f(x'0)-g{x'0)\>^. 

And there is <5o > 0, so that the following fact holds: 

1 
3fc' RV~ / " v ~ u " " 3k' 

\/x€[a,b]n(x0-50,x0+So), \f(x)-f(x0)\<—, \g(x) - g(x0)\< 

Choose x'0 G [a, b] n (xo - 50, x0 + So). Then 

i < | / K ) " 9(x'0)\ < \f(x'0) - f(x0)\ + \g(x0) - g(x'0)\ < i - + i - = A , 

This is a contradiction. So at most V(a, ft, k) is a finite set. Also it is easy to 
show 

+oo +oo 

[Uior{f,g)]c= (J Uv(-J'J' fe)> 
j = l fe=l 

hence [Wior(/, fiO]C is a t most a numerable set. Easily we have [Wmm (/,<?)] C 
[Wior(/,g)]°- Thus, [Wmm(/,g)]° is also at most a numerable set. • 

By Theorem 4.5, if f, g e C1(M), we may imply that / V g, f A g, and 
lor(/(-) — <?(•)), lor(g(-) — /(•)) a r e differentiable almost everywhere (a.e.). So 
using Corollary 4.2, we can easily show the following conclusion. 

Corollary 4.3 Suppose the functions / , g are differentiable on M., hi = 
f V g, /12 = / A g. Then hi,hi are differentiable on WL a.e., and if hi, /12 are 
differentiable at x, we have 

d )̂ = d(nx)vj(x)) = lor{m_g{x))^i+lor{g{x)_m)<m., 
d^) = d(f(x)^g(x)) = lor{f{xyg{x))^+lov{g{xyf{x)f_m_ 

Specifically, if a e l , then 
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Proof. Arbitrarily given x € R, it follows that 

f(x) V g{x) = f(x)lor(f(x) - g(x)) + g(x)\oi(g(x) - f(x)), 

f(x) A g(x) = g(x)lor(f(x) - g(x)) + f(x)lor(g(x) - f(x)). 

Assume that /Vg, f f\g are differentiable at x. If lor(/(-)— <?(•)), \oi(g(-) — /(•)) 
are differentiable at x, we can employ derivation laws and Theorem 4.4 to imply 
the conclusion. If lor(/(-) — <?(•)), lor(g(-) — /(•)) are non-differentiable at x, 
By Corollary 4.2 and Theorem 4.4, f(x) = g(x), f'(x) = g'(x), which can also 
show our conclusion. • 

If our study topics are restricted to a bounded interval [a, b], the corre­
sponding conclusions also hold, that is, we have 

Remark 4.1 If we substitute the closed interval [a, 6] for R, Theorem 4.3, 
Theorem 4.4 and Corollary 4.3 also hold. 

4.2.3 Error function 

In the sequel, we write a^ = k/-y (k = 0,1, ...,7). Related to the regular 
FNN's as (4.5), introduce the following notations for i = 1, ...,d; j = 1, ...,m : 

(Xi)ak = K W X?(fe)]; (^i)ak = [w]m, w*m]; 

(Yi)ah= [v)w, «?(fc)]; (@3)a = [B){kV e](k)}. 

In the subsection we assume that the transfer function a is continuous, the 

input Xi€ .Foc(K-) (i = 1, ...,d). By (4.5) and the interval arithmetic we have 

m 

L( i i , . , i d )a t = ^ [ 4 ) , 4 ) ] ^ ( [ 4 t ) , x2
m]), (4.i9) 

where X\k,, X?,k-> are defined respectively as follows: 

d 
Xj(k) = ej{k) + Jlmm{Xi(k)Wij(.k)> Xi(k)Wij(k)> x2i(k)Wij(k)' X\k)W1j(k)}^ 

%—1 
< 

d 
x m = 0m+J2max-{xl(k)wij{k)> xkk)wij{k)> x\k)wlj{ky x\k)w2ij(k)}-

(4.20) 
Since er(-) is a continuous function, for j = 1, ...,m; k = 1, .. . ,7, we conclude 

"([*i<*)» xm])= [*i(^(fc),^(fc)), *2(^ ( fc),x? ( fc))], (4.21) 

where both *i(- , •), * 2 ( - , •) are continuous. By (4.19), Fnn(Xi,-,Xn)ak = 
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A 

T,[Rlj(ky RKk)]: 

Rm = {vm • *i(*iW ^(k))Y{v){k) • *2(xj(fc), jqw)}, 
A H w * i ( ^ ) ' xm)Hvm •*»(*&). ^(fc))}; 

*?<*> = H*> • ^xm> xm)^{vm • *>WW. ^(*))}v 

V H « • » i (^) - A?w)}v{"?w • ^xm> xm)\ 
(4.22) 

If a is nonnegative and increasing, by (4.21) it follows that 

* i (4w xm)=a(xhk))> *2(xhk)> xm)=cr(xm)-

(4.19) becomes as, F„„(Xi, . . . ,Xn)a f c = £[«}(*)> ^ w H ^ K W ' a(Xi(fc))]-

And (4.22) is as follows: 

Rm = {vm-<xm))A{vm-°(xm))-> 
(4.23) 

m ^ = (4fe)-a(xj(fc)))v(,|(fc)..(x|(fc))). 

Let ( (Xi( l ) , . . . ,Xi ( l ) ) ; 0 ( l ) ) , . . . , ( (Xi ( i ) , . . . ,Xd(L)) ; O(L)) be a family of 

fuzzy patterns for training FNN's, that is, when {Xi{l), ••••lXd{l)) is the input 

of a FNN, the corresponding desired output is 0(1), where I = 1,...,L. Let 

(Xi(i))ah= [^(0 , 4,)(0]; (5(0)afc= [o\k)(i), olk)(i)}. 

By the definition of metric D(-,-) and Corollary 4.1, we conclude that 

D(Fnn(Xl(l),...,Xd(l)), 0(0)WO 

if and only if for arbitrarily sufficiently large 7 € N, the following fact holds: 

E ^ ( ( i ? n n ( X i ( 0 , - - , X d ( 0 ) ) „ , , ( O ( 0 ) „ J ~ °- Considering the equivalence 
fe=i 
between dff(-, •) and ds(-, •), we define the error function as follows: 

1 L 7 m „ m 9 

^ = ^ E ( [°U (0 - E *i W (0] + [oh (0 - E ^ W (0] ) - (4.24) 
;=i fc=o j = i i = i 

where R]{k)(l), R2j(k)(
l) a n d X)(fc)(0- Xj(k)(l) a r e determined by (4.20) and 

(4.22) when the input of a FNN is (Xi(l), - , Xd(l)) Q = 1, - , L). 
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4.2 .4 Part ia l der ivat ives of error funct ion 

Now we focus on the differentiability of the error function E(-) with re­
spect to the parameters w\j{k), w2

ij(k), v){k), v2
(ky 0) ( fc), 62

{k) (i = 1, ...,d; j = 

l , . . . ,m ; k = 0 ,1 , . . . , 7 ) , respectively. Assume tha t there are N such param­
eters. Then easily N = 2m(7 + \)(d + 2). For given i £ {l,...,d};j <E 

{ l , . . . , m } ; k G { 1 , . . , 7 } , let £>«fc)(Z) = £ i ? | ( (Z) - o<?fe)(0 (<? = 1, 2). By 

(4.24), if let p = «^ j ( f e ) , u?(fe), 0?(fe) (g = 1,2), respectively, we have 

f^K^^o8^). .«. 
Let a : M. — • R+ be a differentiable and increasing function. Let parameter p 
be 

wij(k)' w1j(k)i ^j(fc)' ^l(fc)' respectively. By (4.23) (4.25) and Corollary 4.3, 
and the fact <j(X\k.) < cr(X2,ks), it follows tha t 

^=»; (^Ei-((- ir'^,)^ww(o)a%^; 
dR2

i(kM) „ 2 a x ' m 
v~ . ^ l o r ( ( - l ) S | ( f e ) ) a ' ( X * ( f c ) ( Z ) ) -

P = 1 (4.26) 

^ J L _ = lor(^ ( f c ) ) • , ( * i ( f c ) ( 0 ) + l a r ( - « , W ' " ( * i % ) ( 0 ) ; 

lor ( -^ 2
( f c ) ) - a (XJ ( f c ) (0)+lor(^ 2

( f e ) ) • * (X2
{k)(l)). 

dR)(,,(l) dR2,M) 
Furthermore, >)?> = J"?' = 0. We choose p = wq.,,„ 6>« (q = 

j(fe) j(fe) 
1,2), respectively. By (4.20), Corollary 4.3, and w1 . , , , < w?.(k), we get uij(fe) - ^ij(fc)' 

a*,w(0 : ^ r 1 ^ = E4fc)(0ior((-i)t+%j(fe)(0)ior(4fe)(0); 
»j(fe) t=l 

9 X 2 (0 2 

2 

- C T - = E4fc)(0^((-l)t+1^(fe)(0)lor(-4fc)(Z)); 
a %(fe) t=l 

dX2 (I) 2 

-gT = E«?w(0M(-l)*+1*«(fc)(0)Ior(^(0). 
ij(fc) t=l 

(4.27) 
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dXg,,M) dX*~* 
Moreover, J[k) = 1; Jf ) (0 = 0 (q = 1,2), where 

° j(fc) ot,m 

*ii(k) (0 = K(fc)^(fe) (0) v Kw*? ( fc ) (0) - Hmxm W) v K w ^ w (0) • 

Synthesizing (4.25) (4.26) and (4.27) we obtain the following conclusion: 

Theorem 4.6 Let the transfer function a : R —> M.+ be a non-negatively 
differentiable, increasing function. Then the error function E is differentiable 
a.e. on M. with respect to the parameters w?-/fc\,

 v9(k)> ̂ tk) (l = 1 » 2 ; z = 
1, ...,d; j = 1, ...,m; k = 0,1, ..-,7). Moreover, if let 

&m{l) = E ^ ( 0 l o r ( ( - l ) t + 1 * y ( f c ) ( 0 ) l o r ( ( - l ) * a : f ( ^ ( 0 ) ; 

r?i(fc)(0 = |i4fe)«ior((-i)t+1^(fc)(0)ior((-i)''+14fc)(0); 

W 0 = "}(fc)M«j(fc)) • ^(fc)(0 + "i(fc)M-«|(fc)) • £>ffc)(0; 

Ai(fe)(0 = ^ ( fc )lor(-Vj ( fc )) • D\k){l) + v*ik)\0T(v]{k)) • Dfk)(l). 

The following partial derivative formula with respect to wq.,k^, vq
(k-., 6

9(k\ hold: 

w^€(%w^)(^(4*)(#iw(0^)(0^(4*)(')))i 
*J'(*0 1=1 

&3~ =EDUl) • (lOT(-^(fc))^(^(fe)(0)+lorK2
(fc))a(4(fc)(0)); 

jC=) z=i j'(fe) ;= i 

Proof. By (4.26) (4.27) and Theorem 4.4, we conclude that the following 
partial derivative formulas with respect to wq.,k^ hold a.e.: 

QE>2 / A 

^ ^ = K ( X J ( f c ) ( 0 ) ^ . ( f c ) l o r ( - , | ( f c ) ) V ( 4 ( f c ) ( 0 ) ^ ( f e ) l o r ( ^ ) ) ] , | ( f c ) . 

(4.28) 
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By substituting (4.26) (4.28) for corresponding ones in (4.25) it follows that (i) 
holds. Similarly we can show (ii) (iii). • 

4.2.5 Learning algorithm and simulation 

Using the partial derivatives determined by Theorem 4.5, we can develop fol­
lowing iteration schemes related to afc-level sets [wjj^, wij(k)] > [vj(k)> v](k)] 

and [6]rk\, tftk)] C2 = 0,1,—,7) of the fuzzy weights Wij, Vj and the fuzzy 

threshold Qj . By (4.23) (4.24) the adjustable parameters are the endpoints: 
wim> wl(ky v)(ky vi(fc).

 ej(fe). ej(fc).
 w h e r e * = i . - . n . 3 = l , . . . ,m, k = 

0,1,...,7. Rewriting the parameters as w\,..., WN, we obtain the following iter­
ation scheme: 

wr[t + 1] = wr[t] - V • ̂ | T + a • Awr[t - 1] (r = 1,..., N). (4.29) 

where t — 0,1,. . . , is iteration step. And in each iteration we re-rank the 
following sets: 

{vl
m[t +1], ..yj{1)[t +1], ...,«?(7)[t + 1]}, 

{e){0)[t + i],...,o1
j(1)[t + i),...,o*h)[t + i]}, 

respectively, so that 

w; ll(0)[t+i] << m [*+i] < • • • << w [*+i ] <<-w[*+i] < • • • <«&W*+i]; ij(0)L«--r^ - % j ( 1 ) L t , - rx j - - - i i ( T )L"-r-j - <"y(7)L<-TXj - - % j ( 0 ) | 

«j(0)[*+i] < «j(i)[*+i] < • • • < "j(7 )[t+i] < «J-(7)[*+1] ^ • • • ̂  «i(0)[*+!]; 

l^(0)[* + 1l ^ 6,j(l)[* + 1] ^ • • • ̂  0i(-r)[* + 1] ^ 0i(7)[* + 1l ^ • • • ̂  «i(0)[* + 1 ] ; 

To examine the learning capability of the regular FNN (4.5), let us now 
study a simulation example, that is, the FNN is employed to realize a family of 
fuzzy IF-THEN inference rules, approximately. Also we present the numerical 
comparison of our model with other fuzzified neural networks developed in [37], 
[38], Suppose the inputs related to be a two dimensional variable (x\, x2), and 
the output to be an one dimensional variable y. IF-THEN rules are defined as 
follows: 

IF xi is high AND x2 is high THEN y is high; 
IF x\ is high AND x2 is low THEN y is medium; 

(4.30) 
IF xi is low AND x2 is high THEN y is medium; 

IF xi is low AND x2 is low THEN y is low. 

Here the antecedent and consequent fuzzy sets 'high' 'low' 'medium' are fuzzy 

numbers defined on the closed interval [0,4], respectively. Denote Jfj='high', 
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Me— 'medium', I,o='low', which are shown in (a) of Figure 4.6, respectively. 

{((Hi, Hi), Hi), ((Hi, Lo), Me), ((Lo, Hi), Me), ((Lo, lo), L0)} are 
chosen as the training pat terns for designing the learning algorithms of FNN's 
as (4.5) and those in [37], [38]. In FNN (4.5) let 7 = 5, i.e. ak = fc/5 (k = 
0 , 1 , . . . , 5), and there are five neurons in hidden layer, t ha t is, m — 5. Suppose 
the transfer function a(x) = 1/(1 +exp(—a;)). Wi th the following procedure we 
may complete learning process: 

A l g o r i t h m 4 .1 : The fuzzy B P algorithm. 
Step 0. Initialize connection weights and biases. Let iterative step t 

and all initial weights and biases are all generated, randomly in [-1,1]. 
Step 1. Let w[t] be w\m[i\, w*m[t], v*(k)[t], v*{k)[t], 0](fc)[f], 0]{k)[t] 

spectively. By Theorem 4.6 calculate dE[t]/dw[t], where i = 1,2; j — 1,.. 

A; = 0 , 1 , . . . , 5. 

Step 2. Using (4.29) we iterate wr[t] to obtain wr[t + 1]. 
Step 3.1it> 2000, or \E[t] -E[t+ 1]| < 0.001, stop the iterative procedure 

and output results, otherwise let t = t + 1, go to Step 1. 

0, 

re-

,5 ; 

Figure 4.6 Membership curves of fuzzy numbers 'high' 'low' 'medium' : (a) 
desired curves; (b) desired curves (—) and actual output curves by our method (•••); 
(c) desired curves (—) and actual output curves by Ishibuchi method in [38] (•••); 
(d) desired curves (—) and actual output curves by Ishibuchi method in [37] (•••)• 

Using Algorithm 4.1, we can t rain the regular FNN (4.5). And correspond­
ing to the input pat terns in the training set, we get the actual outputs of this 
FNN, as shown (b) of Figure 4.6. 

In [38], Ishibuchi et al use the symmetric triangular fuzzy number weights 
and biases to construct a regular FNN, whose B P type learning algorithms ad­
just only two kinds of parameters — two endpoints of the triangles. Using such 
a FNN model we can also realize the inference rules in (4.30), approximately. 
The corresponding actual and desired outputs are shown in (c) of Figure 4.6 
after 2000 iteration steps. Also, Ishibuchi et al take the real numbers as the 
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connection weights and biases to construct a FNN model in [37]. And sim­
ilarly with the convenient BP method they use (4.15) to develop a learning 
algorithm of the FNN. By iterating 2000 steps, we can get the actual outputs 
to approximate the rules in (4.30), as shown in (d) of Figure 4.6. 

Ishibuchi method [37] 
Ishibuchi method [38] 

• Algorithm 4.1 

Figure 4.7 Error curves of different models 

By comparing (b) (c) (d) of Figure 4.6, we can easily find that our FNN 
model (4.5) gives the best results, i.e. the error of FNN (4.5) is significantly 
lower than those Ishibuchi's FNN models [37], [38]. Also we can see from (d) of 
Figure 4.6 the larger error of the model in [37], and even getting the different 

outputs through this FNN when the corresponding inputs are (Hi, Lo) a n d 

(Lo, Hi), whereas the desired outputs are equal. 
Figure 4.7 shows the curves of the error function defined by (4.24), cor­

responding to above three FNN models, i.e. the regular FNN (4.5) and two 
Ishibuchi's models [37], [38], where we let ry = 0.1, a = 0.04 in our Algorithm 
4.1 and rj — 0.1, a = 0.18 in Ishibuchi's two algorithms, respectively. Also we 
can find from Figure 4.7 that despite some large fluctuation at the beginning of 
iteration, the square error of FNN (4.5) is lowest, and corresponding Ishibuchi's 
two FNN models, the square errors are approximately equal. So our result is 
also the best. 

From the simulation example we can also find, like the convenient BP algo­
rithm [12], the fuzzy BP algorithms are very sensitive to the learning constant r\ 
and momentum constant a, that is, very small variations of r] and a can result 
in a large change of the square error E. Furthermore, the choices for rj and a 
are blind. So in the next section we will focus on developing some systematic 
methods for choosing the learning constant r], rationally. One of the basic tools 
to do that is GA. 

§4.3 Conjugate gradient algorithm for fuzzy weights 

Since the learning constant 77 keeps unchanged in the iteration process of the 
fuzzy BP algorithm 4.1 for fuzzy weights of FNN's, the learning error can not 
be controlled, efficiently. Also the fuzzy BP algorithm is liable to fall into local 
minimum points, and it can not ensure some convergent speed. With different 
learning constants it can result in different results. Moreover, we have so far 
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not solved the theoretic problem how suitable rj can be selected. To study 
such a question systematically, this section will develop the fuzzy conjugate 
gradient(CG) algorithm for fuzzy weights. In each iteration step of the fuzzy 
CG algorithm, the learning constant rj is adjusted, rationally. The optimal 
•n is achieved by the genetic algorithm(GA). Also we show the algorithm is 
convergent. 

4.3.1 Fuzzy CG algorithm and convergence 

By w = (wi,...,Wd) we denote the vector consisting of all adjustable pa­
rameters w}j{k), w2

j{k); v){k), v2
j{k)- d){kve

2
j{k) (k = 0,1,...,7; i = l, . . . ,n; j = 

1, ...,m) related to (6). And V-E'(w) means the gradient vector of E = E(w) 
defined by (4.24): 

dE(w) 
dw2 ' •"' dw2 

(0) UUJdm{0) 

dE(w) dE(w) dE{w) 

dE(w) dE(w) dE(w) \ 
de\l) ' ' d9l{0) ' ' d9m(0) J 

_ /dE(w) dE(w) 
V dwi ' ' '' OWN 

For convenience, in this section let the input pattern ((Xi(l), •••,Xd(l)) (I = 
1, ...,L) of FNN (4.5) belong to .Fo(R+). Theorem 4.6 can be simplified: 

d 
X){k) = 9)(k) + S ixl(k)Wij(k) A X\k)Wlj(k))' 

d 
xm = e](k) + J2 (xl(k)wij(k)v xl(k)wij(k))' 

%m (0 = (xm (0 - x\k) (0)̂ (fc)> %(fc) (0 = (xm (0 - 4*) ^ K w ; 
*?,-(*)(0 = * ? ( * ) W l o ' K w ) + ^( f c ) (01or(-< ( f c ) ) , ^ , ( f e ) (0 = 0; 

rj i ( f c )(0 = 4 * ) ( 0 ^ K - ( f c ) ) + *?(fc)(01or(-t4(fc)), r2.(fc)(0 = 0. 

By Theorem 4.6 and (4.34) (4.35) we can show the following theorem. 

Theorem 4.7 For given fuzzy pattern pair (Xi (I), ...,Xd(l)', 0 ( 0 ) (I = 
1,..., L), define the following space 

Wnn = { W = (W1,...,WN) eRN\w!---WN ^0}. 
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If the transfer function a is non-negatively increasing and continuously differ-
entiable, we have the following conclusions: 

(i) The error function E(-) is differentiate in Wnn, and VE(-) is continu­
ous in Wnn; 

(ii) For given h > 0,...,lN > 0, letWl^n-
lN = {(wi,..., wN) G Wnn\ \wx\ > 

li,..., |WJV| > IN}- Then V-E(-) is uniformly continuous in W^"'™-
Henceforth we call Wnn to be the nonzero weight space of the regular FNN 

(4.5). Using the derivatives established in Theorem 4.6 and Theorem 4.7, we 
can calculate V-E'(w) in Wnn- Consequently, we design the following conjugate 
gradient algorithm. 

Algorithm 4.2 The fuzzy CG algorithm. 
Step 1. Initialize the weight vector w = w[0] = (w\,..., iwjy) G VVnn, and let 

t = 0. 
Step 2. Calculate the gradient V£'(w[i]), and discriminate ||VE(w[t])||< el 

if yes, go to Step 10; otherwise go to the following step. 
Step 3. Put v[i] = VE(w[t]), and let the direction h[t] = -v[ i ] . 
Step 4. Calculate n[t] > 0 : 

r)[t] = max{?7 > 0| -E(w[t] + Ah[£]) is decreasing with respect to A G [0,77]}. 

Step 5. Let w[t + 1] = w[i] + rj[t] • h[t]. 

Step 6. Discriminate xv[t + 1] = (wi[t + l],...,WN[t + 1]) G W„n? if yes, 
go to Step 8; otherwise we let «o = min{i G {l,...,N}\wi[t + 1] = 0}, and 
<5 = min{|i0i[i + l ] | |u>j[/j + l] ^ 0 } , and set 0 < 5' < 5. 

Step 7. If i0 > 1, letw io[t + l] = 6'•wio-1[t + i\/\wio-1[t + l]\; ifi0 = 1, let 
wi0[t + l]=S' • wN[t]/\wN[t]\. Go to Step 6. 

Step 8. Calculate the gradient VE(w[t + 1]), and discriminate whether 
||V£'(w[i + 1])||< e? if yes, go to Step 10; otherwise go to the following step. 

Step 9. Put v[t + l] = V£(w[t + l]), and let h[i +1] = -v[rj + l] +P[t] -h[t\. 
set t = t + 1, go to Step 4. Here we choose (3[t\ as follows [11, 76]: 

_ (VE(w[t]),VE(w[t})) _ ||VJg(w[t])f 

(V£(w[t - 1]), VE(w[t - 1])) \\S7E(w[t - 1])||2 ' 

Step 10. Output the weight vector w[t + 1]-

Remark 4.2 (i) Algorithm 4.2 is a fuzzy BP algorithm, in which the 
learning constant 77 and momentum constant a are adjusted in each iteration: 

w[t + 1] = w[i] - V[t] • V£(w[t]) + V[t^[t_~^] • (w[t] - w[t - 1]); 

(ii) By Step 4 calculating the learning constant r][t] is equivalent to solving 
the following minimum value problem: 

E(w[t] + ri[t]h[t]) = mm{E(w[t) + Ah[i])}. (4.31) 
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The key step to realize Algorithm 4.2 is to find the learning constant r)[t], 
t ha t is, get a solution of (4.31). To this end, we employ a non-accurate line 
search method, i.e. Armijo-Goldstein(A-G) line search [80] to establish 77ft] 
in Step 4. At first, for simplicity we leave out the iteration step t, and let 
rj[t] = 77, w[rj] = w, h[t] = h . Let (see [11, 77, 80]) 

£ ( w ) - E(w + ??h) > -7761 • (h , V £ ( w ) ) , 

(h , V £ ( w + r /h) )> b2(h, V £ ( w ) ) , 
(4.32) 

where 61, b2 are constants: 0 < b\ < b2 < 1. For given w = (wi, . . . , iu/v) G W n n , 
and a; > 0, let ip(x) = E(w + x h ) . 

ip(x) 

3/ = V(0) + 6iV''(0)a; 

2/ = V(0) + V'(0)x y = ip(r)o) + ip'(r)o)x 

Figure 4.8 Illustration of constraints in line search. 

T h e o r e m 4.8 (i) The left and right derivatives of the function tp(-) exist in 
[0, +00) ; (ii) For arbitrary w = (wi,..., WJV) G yV ra r l,h = (/i1; ...,/ijv) € K ^ , ifte 
function ?/>(•) is differentiable in M.+ ; (Hi) Ift G N, so i/iai w = w[i], h = h[i], 
iften >̂ is differ entiable at r\ = 0, and ^ ' (0 ) = ( h , V £ ( w ) ) < 0. 

Proof, (i): By definition (4.24) for £(• ) and Theorem 4.6, we can show 
tha t , the left and right derivatives of ip(-) exist in [0, +00) , t ha t is, (i) holds. 

(ii): Obviously, Rn \ Wnn is a finite set, so Vw G W n n , h G RN. The set 
{x G K |w + i h ^ Wnn} is finite. Thus, Apar t from finite x 's , w + x h G Wnn, 
So Theorem 4.7 implies, ip(-) is differentiable in M+ a.e.. 

(hi): Let w = (wi,...,wN) = w[ i ] , h = (/i!, ...,/ijv) = h[t]. By Algorithm 
4.2,w G W n n . So Theorem 4.7 implies, £'(•) is differentiable at w . Therefore 

lim 
x-»0+0 

= lim 
x^0+0 

E(w + xh) - £(w) 
X 

-E(iui + x / i i , ...,WN+xh>N) — E(wi,W2+xh.2, ...,WN + X / I J V ) 

H 1- lim 

, dE(w) 
OWi 

E(wi,..., W J V - I , wN + X/IJV) - S ( i o i , , . . . , wN) 

^ f ^ > - ^ 
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i.e. tp(-) is differentiable at x = 0, ip'(0) = (h, VE'(w)). By the definit ion of 
h, (h, V J B ( W ) ) < 0, which implies the theorem. D 

Let us now use Theorem 4.8 to show the existence of constants b\, 62 in the 
A-G condition (4.32). By Figure 4.8, we can find the first condition in (4.32) 
refers to the straight line y = ip(0) + biip'(0)x; The second condition refers to 
the tangent line y = ip(r)o) + tp'(r]o)x. 

Theorem 4.9 Let {w[i\ \t G N} c W n n , {h[i\ \t G N} c MN. For each 
t e N, if denote w = w[i], h[t] = h, then there are bi, hi : 0 < b\ < 62 < 1, and 
770 G [0,+00), such that E(-) is differentiable a i w + rjh, and the A-G condition 
(4.32) holds. 

Proof. By Theorem 4.8, T/>'(0) < 0, so x = 0 is not a minimum point of 
ip(-) in [0, +00). Since tp(x) > 0, we choose 61 G (0,1/2), so that at least there 
exist two points of intersection between the curve y = ip(x) a n d the straight 
line y = T/>(0) + b\ip'(Q)x, as shown in Figure 4.8. Let 

772 = min{A > 0\tp(b) = ip(0) + M ' (0 )A} . 

ThenVAG [0,772], ^(A) < ip{0) + hXip'(0), and ^(rj2) = ip{0) + hv2ip'{0)- that 
is, VA G [0,772], we have 

E(w) - E(w + Ah) > -A6i(h, V£(w)) . 

Choose 62 € (0,1) : 62 > b\. Obviously, there is XQ G [0 ,+OO), satisfying 
ip'(x0) > 0 > 61 ̂ '(0) > b2tp'(0). So let 

770 = minja; G M+|^'(x) exists, and^'(a;) > &2^'(0)}; 

771 = minjx G ]R+|'i/>
/(:r) exists, &nd4>'(x) > foi-0'(O)}. 

Then 770,771 G [0,772] : 770 < 7/1, and Vcc G (770,771), if ip'(x) exists, we have, 
b2ip'(0) < ij)'{x) < bitp'(0). Therefore, choose 77 G (770, T?I), so that tp(-) is 
differentiable at 77, i.e. E(-) is differentiable at w + nh. And (Vi?(w + ?7h),h)> 
b2ip'{0). Thus 

E(w) - E(w + nh) > -&i»7(h, V£(w)) ; (V£(w + r)h), h ) > b2(h, V£(w)) . 

The theorem is proved. • 

By Theorem 4.9, it follows that the A-G condition (4.32) is rational as 
the constraint of minimum problem (4.31). Therefore, it can ensure some 
convergent speed of Algorithm 4.2. 

Theorem 4.10 Let {w[t]\t G N} be a vector sequence generated by Algo­
rithm 4-2- Let there be Zi,...,Zjv : h > 0 (i = l,...,N), satisfying {w[t}\t G 
N} C yVlnn"

lN, and there be 8Q G (0,7T/2), the angle of intersection between 
h[t] and — VE(w[t\) be 0[t] : 0 < 0[t] < n/2 — 9Q. And in learning constant 
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sequence {r][t]\t G N}, r)[t] satisfies the A-G condition (4-32) for each t G N. 
Then lim IIV-B^w^])!^ 0, moreover, each cluster point of {w\t\\t G N} is the 

p—•+oo 

minimum value point of E(-). 
Proof. By Algorithm 4.2, Vt G N,w[i] G Wnn. So using Theorem 4.7 we 

imply the error function E(-) is continuously differentiable at w[i\. Moreover, 
Vt G N, E(w[i\) > 0, by Theorem 4.9 it follows that 

E(w[t}) - E(w\p + 1]) > -blV[t] • (VE(w[t]), h[t])> 0. (4.33) 

That is, {.E(w[t])|i G N} is decreasing. So the limit lim E(w[t]) exists, and 
t—>oo 

lim (E(w[i\) - E{w[t + 1]))= 0. By A-G condition (4.32) we obtain 

0 < 77[t]-||h[i]||-||VE(w[t])||-sin((90) 

< »?[«] • ||h[t]||-||V£7(w[*])||-coB(6>[*]) 

= -V[t] • (VE(w[i]),h[t])< ^{E(w[t}) - £7(w[* + 1 ] ) ) - 0(t - +oo), 

So lim r)[t] • | |h[il|U|V£(w[i])||= 0. If let l l V ^ ^ i ] ) ! ! / * 0 (t -> +oo), then 

there are so > 0, and a subsequence {|| V£ ,(w[tg])||, g G N}: ||Vi?(w[£g])||> £o-
Therefore, lim n[t] • | |h[iJ| | = 0. Since {w[t} \t G N} C W'1"-*", by Theorem 

4.7, VE(-) is uniformly continuous on W ^ " ' " . Considering 

||w[t, + 1] - w[t,]| |= n[tq\ • ||h[i,]||-> 0(q -> +oo), (4.34) 

we imply for sufficiently large q, \\VE(w[tq + 1]) - VE(-w[tq])\\< cos(6[tq]) • 
\\VE{w[tq])\\. Thus 

| ( v£ (w[ t , + i ] ) , h [ { 9 ] ) - ( v % [ g ) , h [ t ? ] ) | 

<||V£7(w[t, + l])-V£;(w[t,]) | | - | |h[t ,] | | 

< cos(e[tq}) • | |VE(w[t,])||-||h[t,]||= (V£(w[t,]),h[t?]). 

Hence we can imply that 

<V£(w[ig + l]),h[t,])< 2<V£(w[t,]),h[i,])< 0, 

which contradicts A-G condition. So lim ||£(w[t])||= 0. The second part of 

the theorem is the direct result of the fact that {.E(w[£] \t G N)} is decreasing. 
D 

Using Theorem 4.10 and Theorem 4.9, we can show that Algorithm 4.2 con­
verges to a minimum point of E(-) with some convergent speed. So Algorithm 
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4.2 can improve the fuzzy BP algorithm to overcome the drawbacks of choosing 
77, blindly and being liable to fall into local minimum points. In the following 
lets us establish optimal 77 at each iteration of Algorithm 4.2 by solving con­
straint type minimum problem (4.31) (4.32). The basic tool to do that is the 
GA. 

4.3.2 GA for finding optimal learning constant 

In Algorithm 4.2, the learning constant r)[t] = rj can be obtained by solving 
the following constraint type minimum problem: 

{
E(w + rjh) = min{£'(w + Ah)}, 

f E ( w ) - £ 7 ( w + Ah) + A6i-(h,V£;(w))>0; (4-35) 

Subject to < 
[ ( h , V £ ( w + A h ) ) - & 2 - ( h , V £ ( w ) ) > 0 . 

Now we employ a simple GA to find a solution of (4.35). To this end, con­
sidering E(w + Ah) > 0, we transform the constraint type problem into a 
unconstraint one [48, 60]: 

max{G(A)} = max< „. •... • -^r-r >, (4.36) 
A > 0 1 V n A > o \ 1 + r L 1 j i ? (w+Ah) r -, C(A) J V / 

where C(A) is defined as follows: 

C(X) = \E(w) - E(w + Ah) + Xh • (h, V£(w)) | 

+ | ( h , V £ ( w + Ah))-62 • ( h ,V£(w) ) | . 

To guarantee the error sequence to belong to the given interval, let the learning 
constant lie in [0,1/5]. The main steps of using GA to solve (4.36) are as follows: 

(1) Code. Using a binary number (3 to express 77 e [0,1/5], approximately. 
Such a (3 can represent a possible solution of (4.36), all of which constitute the 
solution space S0 of (4.36). 

(2) Initialize. Let n0 G N be the population size at each evolution genera­
tion. Randomly we choose from S0 n0 individuals A(0,1), A(0, 2),..., A(0, n0) to 
constitute the initial population Pu(0) = {A(0,1),..., A(0,no)}, and set t = 0. 

(3) Calculate fitting. Given X(t,j) e Pu(t), calculate G(X(t,j)), where Pu(t) 
means the t— th generation population. 

(4) Genetic selection. By roulette wheel selection method, the live proba-

bility of X(t,j) is pj = G(X(t,j))/ £ G(X(t,j')), that is, the probability that 

X(t,j) is reproduced to offspring is pj. 
(5) Genetic operator. Randomly choose from Pu(t) the individual pair 

(A(£, j i ) , X(t, J2)) to match. Cr is the single-point crossover operator, and the 
crossover probability is pc, that is, with probability pc cross over the pair at a 
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randomly chosen point to form two offspring Cr(X(t, j \ ) , X(t, j2)), which is the 
set {X(t + 1, j ' i ) , X(t + 1, j2)}. Take an example as follows: 

crossover point 
A(t,ji): 1 0 1 | 10 1 cT X(t+l,j[): 1 0 1 1 1 0 
X(t.j2) : 010 | 110 * X(t+l,j'2): 0 1 0 1 0 1 

If no crossover takes place, two offspring are exact copies of their respective 
parents. 

By mutat ion operator the offspring muta te at each locus: 0 — • 1 or 1 —> 0 
with mutat ion probability pm. By the mutat ion operator we can accelerate the 
convergence to optimal solution, and insure the population against permanent 
fixation at any particular locus. To ensure the individuals close to optimal 
solution not to be violated, we let pm be small, for example pm = 0.005. 

(6) Stop condition. Repeat above steps (3)-(5) until a suitable solution is 
achieved, or the iteration number exceeds the given bound. 

4 .3 .3 S imula t ion e x a m p l e s 

Let us now proceed to analyze the approximation realization of fuzzy I F — 
T H E N rules by FNN's as (4.5) based on the fuzzy CG algorithm 4.2. Moreover, 
we present the comparison between the results based on our method and those 
in [23], [41]. Also we study the generalization capability of FNN (4.5). Choose 
the fuzzy IF—THEN rules as (4.30), which can be realized by FNN (4.5) using 
the fuzzy CG algorithm 4.2, approximately. In Algorithm 4.2, when employing 
GA to determine rj[t], we choose no = 20. The parameters are represented 
by binary numbers with length I = 6. So code size is 26 = 64, and code 
accuracy is 6 = (1 - 0) / (5(2 ' - 1)) = 1/315. The initial population Pu(0) = 
{A(0,1),. . . , A(0, 20)} is chosen, randomly. Define (3[i\ as follows: 

0[t] = m m ( | | V £ ( w [ i ] ) | | 2 / | | V £ ( w [ i - l ] ) | | 2 , 0.05 • V[t - l]/r,[t]). 

In A-G condition let b\ = 0.4, b2 = 0.45. The crossover probability pc = 0.5, 
mutat ion probability pm — 0,005. The parameters and their codes have fol­
lowing relationships: 

0 0 0 0 0 0 > 0; 0 0 0 0 0 1 > 6; 

0 0 0 0 1 0 y 25; 1 1 1 1 1 1 > 1/5. 

And we can obtain the real value x corresponding to the binary code A = 
b6b5b4b3b2bi : 

*=°+(I>*-1)?=i-5irS>'M-
i = i i = i 

So we have, rj[t] G [0,1/5]. We choose the iteration number of Algorithm 4.2 to 
be 500, which is much smaller than tha t of Algorithm 4.1. After i teration pro­
cess, we can get a suitable parameter vector w, which will be used to complete 
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a fuzzy rule table based on (4.30). As the iteration progresses, the learning 
constant r) changes as Figure 4.9. As shown in Figure 4.10, the rational vari­
ation of r\ can result in quick decreasing of the square error E(-), which is 
approximately equal to tha t of Algorithm 4.1. 

In [21-23], Dunyak et al establish a transformation for endpoints of level sets 
of fuzzy weights to leave out the constraints of designing the gradient descend 
learning algorithms of fuzzified neural networks. Using Dunyak's method, we 
can t rain regular FNN's based on rules (4.30). And we get the corresponding 
square error curve, as shown Figure 4.10 after 500 iterations. Ishibuchi et al 
in [41] use the trapezoidal fuzzy number weights and biases to construct a 
FNN model, in which four parameters related to four vertices of a trapezoid 
are adjustable. Also, based on (4.30) we t rain this FNN and the square error 
.E(-) is shown in Figure 4.10. By comparison, obviously our result is best, 
and Ishibuchi's models [41] is bet ter than those in [37, 38] since using the 

trapezoids to approximate the curves Lo, Me, Hi, respectively is bet ter than 
using real numbers or triangles. The error of Dunyak's method is largest since 
the corresponding transformation is defined by a series of sum formulas, which 
can result in a large accumulated error. 

— Algorithm 4.2 
• • Ishfouchi model [41] 
• Dunyak model [23j 

"0 SO 100 150 200 250 300 350 400 450 500 " 50 100 150 200 250 300 350 403 450 5 M 
Iteration sleD t Iteration steD t 

Figure 4.9 Learning constant curves Figure 4.10 Error function curves 

The fuzzy rules in (4.30) are shown as Figure 4.13 in the framework of a 
fuzzy rule table, in which only four rules out of 25 fuzzy IF—THEN rules are 
presented and others are missing. 

low medium tow medium medium high high medium low medium low medium medium high medium high 

Figure 4.11 Figure 4.12 

Figure 4.11: Antecedent and consequent fuzzy sets; Figure 4.12: Actual outputs of 
FNN (4.5) 



166 Liu and Li Fuzzy Neural Network Theory and Application 
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Figure 4.13 Figure 4.14 

Figure 4.13: Uncompleted fuzzy rule table; Figure 4.14: Fuzzy rule table completed 
by FNN (4.5) 

Let us complete the rule table by assigning one of the five linguistic values 

as 'high' 'medium high ( M H ) ' 'medium' 'medium low ( M L ) ' and 'low', whose 
membership curves are shown in Figure 4.11, respectively, to the consequent of 
each missing rule. For example, we choose the input vector (x\, x2) to be 

(Lo, ML), (Zo, Me) , (ML,MH), (Me, Hi), (MH, Hi), 

respectively, the corresponding outputs of FNN (4.5) are respectively shown in 

Figure 4.12, from which we can obtain their respective linguistic values: 'ML' 

'ML 'Me' ' M H ' and ' M H ' - Similarly we can complete the other missing rules, 
as shown in Figure 4.14. Obviously, these consequents conform to inference 
sense of (4.30). So FNN's as (4.5) possesses strong generalization capability, 
which is advantageous over that of Ishibuchi's model in [38], since the similar 
rule table is completed based on nine fuzzy rules. 

§4.4 Universal approximation to fuzzy valued functions 

The connection weights and thresholds of the regular FNN (4.5) are fuzzy 
numbers. If no constraint exists for such fuzzy weights, it will be very difficult 
to study this FNN and its learning algorithms. So in this section we shall re­
strict the inputs related to be real numbers to construct a four-layer regular 
feedforward FNN, and develop a systematic theory about the universal approxi­
mation of such regular FNN's. It is show that the four-layer feerforward regular 
FNN's can be universal approximator of continuous fuzzy valued functions that 
Rd —> ^o(K), which provides us with the theoretic basis for choosing fuzzy 
functions to design fuzzy systems and fuzzy controllers in application. 

4.4.1 Fuzzy valued Bernstein polynomial 

Let us now extend a conventional multi-variate Bernstein polynomial to 
general one, which serves as a bridge to study universal approximation of reg­
ular FNN's. Given m G N, and a multi-variate function / : [0, l ] d —> K, 
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then Bernstein polynomial Bm(f) with respect to / is defined as follows: For 
x = (xi,...,Xd) G [0, l ] d , we have 

i i , . . . , i d = O x ' 

(4.37) 

Denote # m ; i , . , d ( x ) = ( J J • • • ( J J * ! 1 • • -x l / ( l - xx)—11 • • • (1 - xd) 

where x = (x\, ...,xd) G [0, l ] d . Easily we obtain 

m r m /rn\ 1 r m /m\ 
E xm;i,.,d(x)= E UUi-xoH--- E , K(i-^) r 

ii , . . . , id=0 L i = 0 \ * / J Li=0 W 

= (X! + 1 - X ! ) m • • • (a;d + 1 - X d ) m = 1. 

(4.38) 
Define the fuzzy valued Bernstein polynomial with respect to the fuzzy valued 
function J : [0, l]d —> T0(M) as follows: 

m 
Bm(J;Xi,...,Xd) = ^2 Km;i1...id(Xl,...,Xd)- j(—,...,—). 

"» lit fit ' 
ii,...,id=0 

Now let us study the approximation of the fuzzy valued Bernstein polynomial. 
At first we present a useful conclusion. 

Lemma 4.7 Assume that A, Ai, Ai£. ^o(R), m G N, and the fuzzy set 

family {Wk \k = 1, . . . ,m}, {Vk \k = 1, . . . ,m}c JF0(R). TTien 

ft) -D(A • Ai,A • A2 ) < \A | • -D(Ai,22 ); 

^ Proof. VQ G [0,1], let (Ai)a = [a}a,a
2
a] (* = 1,2), Aa= K,a2

a], and 
(Wfe)Q = [wla,wla], (Vk)a = [v\a,vla\ (k = l, . . . ,m). By the definition of 
dn{-, •) we imply the following equalities: 

dH (Ul)a,(A2)a)= ^ ( [ a l « , a L ] , [ aL, aL]) = I^L ~ a Ll V kla - «2a|-

We shall prove (i) and (ii), respectively. 

(i) Since Va e [0,1], (A- Ai)a =Aa • (Ai)a, if let (A • Ai)a = [v\ V% we 
have 

V1 = (ai • a\a) A (a2
a • a\a) A (a* • a?Q) A (a2 • afQ), 

^ = (ai . ai j v (a2 • a\a) V (oi • a\a) V (a2, • a f j . 

With the same reason if let (A • A2)a = [£*, £2], it follows that 

C1 = (ai • «L) A (a2 • a£a) A (a* • a2
2a) A (a2, • a2

2a), 

e = (ai • a\a) V (a2
a • a\a) V (<£ • a\a) V (a2

a • a
2
a). 
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Furthermore, we can easily show the following facts: 

K • a\a - ai • a\a)\ < \a\a - a\a\ • \A \ < \A \ • D(Ai,A2 ) 

l«« ' a\a ~ a-l • < J | < \a\a - a\a\ • \A | < \A | • D(Ai, A2 ) 

K • < " < • oL)| < \a\a - a\a\ • \A \ < \ A | • D(2i,A2 ) 

la-a
2

2a\-\A\<\A\-D{AuM) a-l • ah ~ al • 4a)\ < \a 

So by Lemma 4.5 and (1.1) it follows that 

dH{(A-Ai)a, u-A2)a) = dHdn1,^}, ie,e}) 
= Itf-fMrf-fl^lAl-DiAuAz). 

Therefore, D(A • Ai, A • A2) < \ A \ • D(Ai, A2)- which implies (i) holds, 
(ii) At first it is easy to show that for arbitrary t\,..., tm, Si,..., sm G M, 

(E^i)v(EM<£(Wvki). 
k=\ fc=l fe=l 

So Va e [0,1], by (4.39) it follows that 

(4.39) 

« m ^ \ / m ~ \ \ / r m rn ~\ r m rn ~\\ 

Ewk) Jzvk) )=dH( E wla, E < , E <*, E < ) 
m m r m -i r m 

E(^L-^L)V E H L - < J < EK«-<*| v E|<-»*Q 
L fc=i 

M t Mi/ ,>_, r^j 

< E ( K a - « L | v h L - « L | ) = E d f f ( ( W f c ) a , (Vfc)a) . 
fe=l fc=l 

E w ,̂ E vk < V E ^ ( ( ^ ) a , (^)a)< J2D(wk, vk). 
fc=l fe=l y aS[0 , l ] Vfe=l fc=l 

Thus, (ii) holds. • 

Using Lemma 4.7 we can present the universal approximation of fuzzy val­
ued Berstein polynomials. 

Theorem 4.11 Let J : [ai,b\] x • • • x [ad,bd] —> ^o(K) be a continuous 
fuzzy valued function. Then Ve > 0, there is m £ N, such that 

W(xi,...,xd) € [ai,&i] x ••• x [ad,bd], D{Bm{J;x1,...,xd), J(x1,...,xd)) < e. 

Proof. Since by some suitable linear transformation we can turn [a*, bi] (i = 
l,...,d) into [0,1], without loss generality, we can assume [ai, bi] = [0,1] (i = 
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1,..., d). By real analysis, we can show the following fact: 

Vte [0,1], meN, ^ ( m k - m i ) ¥ ( i - * ) r 

i=o ^ l ' 
mt(l-t)<—. (4.40) 

Since J is continuous on [0, l ] d , it follows tha t J is uniformly continuous on 
[0, l ] d . So for e > 0, there is 5 > 0, so tha t Vx = (xi , ...,Xd), y = (yi, —,2/d) €E 
[0, l ] d , | |x - y | | < 5,=> D ( J ( x ) , J ( y ) ) < e /2 . Thus, there exists m G N, 
satisfying Vi i , . . . , i d = l , . . . ,m , 

Vx ,y € 
^ 1 - 1 H I r*d — 1 id 

, x • • m m m m 
, D ( J ( x ) , J ( y ) ) < - . (4.41) 

By the continuity of J it is easy to show tha t D ( J ( x ) , J ( y ) ) is continuous 
with respect to ( x , y ) on [0, l ] d x [0, l]d. So there is M > 0, such tha t Vx, y e 
[0 , l ] d , D ( j ( x ) , J ( y ) ) < M. For each x = (Xl,...,xd) € [0, l]d, by (4.38) and 
(4.40) (4.41), and Lemma 4.7 it follows tha t 

D{Bm{J;x),J{x))=D[ £ # m ; i , . . , d ( x ) j ( ^ , . . . , ^ Y J ( x ) 
\ i i , . . . , i d = 0 V m m / 

= £>( E^; i 1 . . . i l f (x ) j (^ , . . . ) ^) , £ #m;i,.,d(x)J(X) 
Vi , . . . , id=0 V m m / ilt...,id=0 

< E K m ; i l . . . i , ( x ) i ? ( j ( ^ ) . . . , ^ ) ) J ( x ) ) 
ii,...,id=o \ \m mJ J 

< E K m ; n . . , d ( x ) D ( j ( ^ , . . . , ^ ) , J ( x ) ) + 

+ E i f m ; i , . , d ( x ) D ( j ( ^ , . . . , ^ ) , J ( x ) ) 

ii,...,id:||*-(k,...,&)||>* ^ V W m / ' 

<- + M-
ii,...,*d:| |x-(£,...,£)||>5 

2-i - K m ; i i . . . i ( i (
x ) 

- ( ^ ^ n2 
^ 771 ' ' 7 7 1 ' 

< - + M - E - ^ m ; i i . . . i , i ( x j 

i l , . . . , < d : | | x - ( ^ , . . . , ^ ) l l > * 

E(^-^)2 

fc=l 
<52 

^ 0 + ^ 2 " ^ ^m;i 1 . . . i d ( a ; l , - - -^r f ) E l ^ f c ) 2 <52 
i i , . . . ,»d=0 L f c = l m' 

p \f d m 

< 

2 m ^ f c f A ^ o ^ 
e M d rn e Md 

2 m2<52 4 2 4 m £ 2 ' 

Select m > Md/(2e • S2), the theorem is proved. • 
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Remark 4.3 If J is continuous on Rd, then in Theorem 4.11, the set 
[ai, &i] x • • • x [ad, bd] can be extended as an arbitrary compact set of Kd, in 
which the theorem holds. 

4.4.2 Four-layer regular feedforward F N N 

This subsection focuses mainly on proving that four-layer regular feedfor­
ward FNN's with real number inputs can be universal approximators of fuzzy 
valued functions. The basic tool is the fuzzy valued Bernstein polynomial. Let 

T> = \ P : Rd _+ .F„(R)|P(x) =iwk -i\(x), 
L fe=i 

q G N, Wk€ .Fo(]R), Pk(-) is d variate polynomial^. 

Definition 4.2 Let A be a subclass of all fuzzy valued function that 
Rd —> J"0(K). Given J :Md —> .Fo(R), if Ve > 0, and for arbitrary compact 
set U C Kd, there is H € A, such that Vx G U, D(J(x), H(x)) < e. Then A is 
called a universal approximator of J. 

input layer hidden layer hidden layer output layer 

Figure 4.15 Four-layer regular feedforward F N N 

By Theorem 4.11 and Remark 4.3, V is a universal approximator of arbi­
trary continuous fuzzy valued function J : Rd —> J-bQR). Let 

H[(T] = {FN : Rd —•» JS(K)|i?,Ar(x)= £ Wk-ij^Vju • a«x ,U( j )>+ 9,- ) ) 
<• fc=i \ /=i y 

P , ( / e N , T^fc, Vjk, ®j€ ^o(K), U(j) G J o W d } . 

(4.42) 
Obviously, for each H G H[<r], H is a regular feedforward FNN with two hidden 
layers, in which the first layer hidden neurons have the transfer function a(-), 

and fuzzy threshold Qj, the second layer hidden neurons are linear, as shown 

in Figure 4.15. U(j) = (Uij,-,Udj)-
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Specifically, if let U(j), Vjk, &j be u(j) G Rd, Vjk, Oj G K, respectively, we 
obtain the subset Ho[o'} of H[a] as 

n0[a] = {FN : Md —> JF0(K)|Fw(x) = £ Wfc • ( £ vjk • a((u(j),x)+6j)) 

P , ? e N , M>fce J T ) W , vjk, Bj G R, u(j) G Md}. 

(4.43) 
Before studying the universal approximation of H[cr] or Wo[cr]; we present 

a useful property about universal approximators. 

Lemma 4.8 Let A be a universal approximator of the fuzzy valued function 
J : M.d —> .Fo(K), andVFw € A, -FJV be continuous. Then J is also continuous. 

Proof. If assume the conclusion to be false, there 
andeo > 0, such that V<5 > 0, there is x' = (x'±, ..-,x'd) G Rd : | | x 0 -x ' | | < 5, and 
D(J(x ' ) , J(xo)) > eo- Choose 5 = 1 , 1/2, ..., 1/fc,..., respectively, we obtain 
the sequence {xfc = (x\, ...,x^)\k G N}c Md, satisfying 

Vfc G N, ||xfe - x°|| < \ , D(J(x f c), J (x°) )> £0. 

Let [/ = {x°, x1 , . . . ,x f e , . . .}. Obviously, U C M.d is a compact set. By the 
assumption there is FN G A, satisfying Vx G U, £>(J(x), FN(x)) < eo/4. On 
the other hand, since FN is continuous at x°, there exists 5o > 0 satisfying the 
following condition: 

Vx G U, ||x - x°|| < S0 = » I>(*V(x), FJV(x°))< ^ . 

Let n0 G N, so that l /n 0 < d0. Thus, Z^F^x™0) , F J V ( X ° ) ) < e0/4. Therefore 

£0 < D(j (x"°) , J(x0)) 

< D(J(x°), Fw(x°))+ JD(F iV(x0), Fw(x""))+£)(FJv(x"o), J(x"°)) 

< T + T + T < £ ° ' 
which is contradictory. So J is continuous on Kd. • 

Now, we proceed to analyze the properties of four layer regular feedforward 
FNN's, which are similar with ones of conventional neural networks. 

Theorem 4.12 Let a : M —> M be a Tauber-Wiener function. Then 
(i) For each P g P , Ti.o[o'] is the universal approximator of P. 
(ii) If J : Rd —> ^o(R) is continuous, then both Ho[o-] and 7i[o] are the 

universal approximators of J, respectively. 
q ~ 

Proof, (i) Let P(x) = £ Wk --Pfc(x) (x G Rd), and without losing 
fc=i 

generality to assume not all | W\ |,—,| Wq | are 0. Choose arbitrarily the 
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compact set U C R d , and e > 0. Since the polynomial Pk (k = l,...,q) 
is continuous on WLd, and a is a Tauber-Wiener function, there exist pk G 
N, v'lk,...,v'pkk,0[k,...,9'pkk G K, u ^ l ) , . . . , < ( ? * ) G Rd, satisfying Vx = 
(xi , . . . ,a ;d) G t/, 

|P fc(x) - 5 > J f c • <r«x, u U j ) ) + ^ f c ) | < ^ • (4-44) 
j= i 2g- V {I VTfc |} 

l<fc<g 

q fc-1 
Let p = ^ p fc. For k = 2, ...,q, denote /?fc = £ ) p r , /?i = 0. If fc = 1, . . . ,g, j = 

fc=l r=l 
l , . . . , p , let 

f ^ - / s o f e ' & < 3 < Pk+u / ^ o - ^ ) * . Pk<3< ft+i> 
Vjk = < 0j = < 

[ 0, otherwise; ( 0, otherwise; 

r u ^ ( j - / 3 f c ) , pk<j<pk+i, 
u u) = s 

I 0, otherwise. 

Vfc 6 { 1 , . . . , q}, it is easy to show 

P Pk 

J > , - f c • a « x , u(j)> + 0j)= J2v'jk • * « x , u'fe(j)) + fyt)- (4.45) 

9 ~ p 

Let G(x) = X] Wfc • E vjk • ^ ( ( x , u ( j ) } + % ) • Then for x ell, using Lemma 
fc=i i= i 

4.7 and Lemma 4.8 we can show 

# ( G ( x ) , P ( x ) ) = ! > ( £ W - f c - E « J - f c - « T ( ( x , u ( j ) > + ^ ) , E W-fc--Rfe(x)) 
vfc=i j= i fc=i ' 

< E I #fc I • I E fjk • * « x , u(i)> + <?i)--Pfc(x)| 
fc=i i = i 

< V {I wk 1} E |ft W - E ^fc • ^«x, u'fc(j)) + e'jk) | 

< V {|Wfc|}-<T 
i<fe<9 2g- V {\Wk\}

 l 

l<k<q 

Thus, Vx G E/, P > ( J ( x ) , G ( x ) ) < £ > ( j ( x ) , P ( x ) ) + £ > ( P ( x ) , G ( x ) ) < e /2 + e /2 = 

(ii): It is the direct result of Theorem 4.11 and (i). Thus, the theorem is 

proved. • 
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Let us now give some equivalent conditions for the universal approximation 
holding. 

Theorem 4.13 Let a : M —> R be a continuous Tauber-Wiener function, 
and J : Rd —• ^o W - Then the following propositions are equivalent: 

(i) J is continuous; 
(ii) Ho[cr} is the universal approximator of J; 
(Hi) H[cr] is the universal approximator of J; 
(iv) V is a universal approximator of J. 

Proof. By Theorem 4.12, ( i)=Kii); And by H0[o-\ C H[<J], then (h)=>(iii) 
is trivial; By the continuity of cr(-), it is easy to show, V i ^ £ W[c], F^ is 
continuous. By Lemma 4.8, (iii)=>(i); And easily it follows that each function 
in V is continuous. So by Theorem 4.11 and Lemma 4.8, (i)<=>-(iv). • 

4.4.3 An example 

In this subsection we illustrate by a real example the realization steps of the 
approximation process established by Theorem 4.12 and Theorem 4.13. Let the 
transfer function a(x) = l / ( l+exp(—x)) . Then a is a Tauber-Wiener function 
(see [13-15]). Choose the error bound e = 0.2, and the dimensionality d = 1. 
At first, we need the following lemma. 

Lemma 4.9 Let f : M. —> M. be a continuously differentiable function, and 
f be a derived function of f, C C M be a compact set. By \f'\c we denote 

the maximum norm of f' on C. For Wi, W2& FoQR), satisfying Supp(Wj) C 

C (j = 1,2). Then D(f(Wi), f(W2))< \\f'\\c • D(Wi, W2). 

Proof. By the definition of the metric D(-,-) it is easy to show 

D{f(Wi), f(W2))= V {dH{f(Wia), f(W2a))} 
a6[0,l) 

= V {dH(f(Wia), f(W2a))} 
a€[0,l) 

= V {max{ V A {\u-v\}, V A {W-v\}}} 
Qet°'1) u&f(wla)vef(w2a) ueKw2a)v^f(wia) 

• • • • 
< V (max{ V M\f(x)-f{y)\}, V A { | / ( z ) - / ( l / ) | } } } 

C1 ' ; xewlay(EW2a x£w2ay£Wia 

• • • • 

<||/'||c- V (max{ v A {\x-y\h V A {k-y|}|i 
• • • • 

= \\f'\\c- V {dH((Wi)a, (W2)a)} = \\f'\\c-D(Wi,W2). 
"6[0,1) 

The lemma is completed. • 

file://{/x-y/h
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Using the conclusions in [14-16], [47], [79], we can directly construct a three 
layer feedforward neural network related to a continuous function / : R —• R 
to represent / with the approximate sense « e , that is 

Proposition 4.2 Assume that f : [0,1] —> R be a continuous function. 
There is N G N, and write Xj = j/N (j = 0,1, ...,N). Moreover, for any 
t G [{j - l)/N, j/N], \f(t) - f((j - 1)/JV) |< e/4, so that if let 

g(t) = f(0) + ^(f(jj)-f(t^))<r(K(t-tJ)), 

where K satisfying: K/N > W, t > W = > \a(t) - 1| < 1/N,t < -W => 
\a(t)\ < 1/N, and tj = (XJ + x i _i ) /2 (j = 1, ...,7V). Then Vt G [0,1], we have, 
\f(t)-g(t)\<e. 

Proof. For t € [0,1], let j G {1,.. . , N}, so that t £ [ X J - I , Xj]. Denote 

hit) = /(0) + (/(*,) - /(^_1))-a(if (t - *,-)) +XX/(*0 - /(^i-i))-
By the definition of <?(•) and the assumption we can show 

i-\ 
\g(t)-Ht)\ < E\f^i)-f^i-i)\MK(t-u))-i\ 

i=l 

3-1 

N 

E |/(ar0-/(^-i)|-k(^(*-*i))l 

AT 

- £i4jv ,t;-4w 2 

Moreover, easily we have, h(t) = f(xj-i) + (f(xj) — f(xj-i))-cr(K(t — tj)). So 

|s(*)-/(*)| < |/(*)-M*)|+|/(*)-fl(*)| 

< |/(*)-/(^)|+|(/(^)-/(^-i))^(^(*-*i))|+| 

s e e 
* 2 + 4 + 4 = £ -

The proposition is completed. • 

Define the fuzzy valued function S : R —> .F0(R) as follows: Vt G R, 5(f) = 

exp{cos(VF- t )} , where W £̂ ^ ( R ) is a given fuzzy number: 

Mx G R, W(x) = < 

2x, 0<x<-, 

2 - 2x, - < x < 1, 

I 0, otherwise. 
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By Lemma 4.9 it is easy to show S is continuous on R. For the error bound 
e = 0.2, using the following steps we can construct a four layer feedforward 
FNN FN e Ho[a] to represent S, approximately. 

2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.7 2.71 2.72 

Figure 4.16 Fuzzy set S( l /4) and fuzzy set FJV(1 /4 ) 

2.4 2.45 2.5 2.55 2.6 2.65 2.7 

Figure 4.17 Fuzzy set S( l /2) and fuzzy set FN(l/2) 

2.1 2.2 2.3 2.4 2.5 2.6 2.7 

Figure 4.18 Fuzzy set S(l) and fuzzy set FN(1) 

Step 1. Determine the fuzzy valued polynomial P(-) with respect to S. Ob­

viously, | W | < 1, and using Lemma 4.9, we have, fit) = exp(cos(i)). Vii, t2 € 

[0,1], it is easy to show, S u p p ( ^ / - tr) C [0,1] (i = 1, 2). Then 

D{S(h), S(t2)) = D(f{W-t1),f(W-t2))<\\f\\l0iiyD(W-t1,W-t2) 

< V {sin(£)exp{cos(»}}- | W |- \h-t2\ < 2 - \h - t2\ 
te[o,i] 

Let qeN. Then £ > ( s ( - ) , 5 ^ ^ ^ j < - (i = l , . . . , g ) . By Theorem 4.11, it 
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follows that 

M= \ / {D(S(h), S(t2))}< 2, 5 = 0.025. 

ti,*2e[o,i] 

When q > M/(e • c52), i.e. if q > 1.6 x 104, then D(Bq(S;t), S(t))< e/2 for 
each t G [0, 1]. For simplicity, we proceed to construct our approximate process 
by choosing q = 40. Hence 

*«(**> = t ( T V ( ! - *)4°-fe • e x p ( c o s ( ^ . ± ) ) . 
fc=o v 7 

Step £. For fc = 0,1,...,40, construct the three layer feedforward network 
Nk. Let Pk{t) = {4°)tk{l - i)40" f c , then 

Wk = e x p ( c o s ( w > - ^ ) ) , = » | Wk | < 2.712. 

By Proposition 4.2 we construct the neural network as 

where ifj, pk satisfy the following conditions: 

\ti-t2\<—,=*-\Pk(t1)-Pk(t2)\< rvj 5 
Pfc 2g- max{ | Wk |} 

i<fc<9
u (447) 

— > W : |<r(i) - 1| < — (t > W), |a(i)| < — (* < -W). 
V Pk Pk Pk 

It is easy to show, \Pk\,Q x,< 4 (fc = 0,1,...,40). So using (4.47) and Lemma 
4.9, we can choose 

pk = 440, Kk = 2630 (fc = 0,1, . . . , 40); W = 6.2. 

Step 3. Construct a four layer regular feedforward FNN as F^ : R —• 
f o W - By Theorem 4.12 and (4.46). Let 

FN(t) = ^2 Wk • YlvJk ' a(ui ' * + ^')-
fe=0 j = l 

Then Vt G [0,1], D(S'(i), FN(t)) < e. Using the fact: Po(0) = 1 = 2cr(0), W"0= 

exp(cos(W-0))= exp(l), Pfe(0) = 0 (fc = 1, ...,40), we have 

w.[Mo)+|i,,(Maot-?eazi))((i-i)"-(i-^)")]«p(i) 

- £ - H ( - i ) ) - E ( ^ ( ^ H ( ^ ) ) K — ^ ) -
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As shown in Figure 4.16, Figure 4.17 and Figure 4.18, they illustrate the 
values of the original fuzzy valued function S(-) and its approximate fuzzy 
valued function FN(-) determined by the FNN, at t — 1/4, t = 1/2 and t = 
1, respectively, that is, the membership curves of the fuzzy sets 5(1/4) and 
Fjv(l/4), 5(1/2) and FN(l/2), 5(1) and FN(1), respectively. 

By comparison among Figures 4.16, 4.17 and 4.18, we can find that even 
choosing the polynomial whose order is much lower than ones needed in The­
orem 4.11, we can construct a four layer regular feedforward FNN FN(-) to 
approximate the fuzzy valued function 5(-) with the given accuracy. 

§4.5 Approximation analysis of regular F N N 

In previous section, we show that a four layer regular feedforward FNN with 
real inputs is the universal approximator of continuous fuzzy valued functions. 
If the input signals are fuzzy sets, whether do the regular FNN's possess the 
same property for the fuzzy functions defined on a collection of fuzzy sets? 
Buckley and Hayashi [5] firstly study such a topic, and show that the conti­
nuity of fuzzy functions is not a sufficient condition for ensuring the universal 
approximation of regular FNN's. In addition to the continuity, we must intro­
duce other conditions for fuzzy functions. To this end, we shall restrict our 
discussions on the bounded fuzzy number collection .FC(1R). 

4.5.1 Closure fuzzy mapping 

Definition 4.3 Let F : ̂ "c(lR)d —> FC(R), and following conditions hold: 

(i) Let h,...,Id C M be index sets, {(Ai^, —, Adkd)\k\ G h,...,kd G Id}c 

Fc(M)d be a pre-compact set, i.e. {(^ifcu..., AifcJl^i G h,...,kd G Id} is a 

compact set, then if V« G {1,.. . , d}, \J Aik& f c (R) , the following fact holds: 
keh 

VaG[0,l), F ( | J Aik,..., (J Adk)a = | J F(Alkl,...,Adkd)a; 
keh keid " fci£/i,...,tje/d 

(ii) Va G [0, l ) ,V( l i , ...,Ad) G •7rc(M)d, we have 

F(Ai,..., Ad ) ? = F((AiU , - , (A*)a) • 

We call F a closure fuzzy mapping. 

Now we give an example of closure fuzzy mapping. 

Proposition 4.3 Let the function f : IRd —• E be continuous. Then the 
extended function of f to Tc(M.)d, also denoted by f is a closure fuzzy mapping. 

Proof. At first define the extended function / : ^"c(M)d —> FC(R). Va G 

[0,1), X=(Xi,...,Xd)e Tc{R)d, f(Xi,...,Xd)a =f((Xi)a,...,(Xd)a)cR. 
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So we conclude that 

f{Xl,...,Xd)a =f((Xl)a,-,{Xd)a)a-• • • • 

For any index sets I\,...,Id C M, and for each pre-compact set of Jr
c(R)d : 

{{Aikl,...,Adkd)\ki G h,...,kd e Id}, if Vi = l,...,d, U Aik& ^c(K), then for 
keu 

any y G R, it is easy to show the following fact: 

/(u 2i*,-, u ^)(»)= v (A(U 2ife)c*)} 

v I A ( V W } = v ( v ( A W ) 

ki€li,---,kdeld Kkxellt...,kdeld 
V {/Uifc1,...,J4dfcd)(j/)}=( U f{A\k-,,--,Adkd)){y)-

Therefore, / ( (J Aik,••.,[) Adk )= (J f(Aikl,-,Adkd). Thus, 
keii fce/d fci6/i,...,fc<ie/d 

Va G [0,1), we have 

/ ( U i4ifc,-, U Aifc) = U f{A\k1,—,Adkd)c 
vfccr, fce;, ' « fc, <=r, L C L ' 
xfce/i fce/d ' " fcle/i,...,fed6/d 

U / ( ( A l f c l ) a , - , U d / c d ) a ) a -
fcie/i,...,fccf6/d * * • 

So / is a closure fuzzy mapping. • 

By Proposition 4.3, we can imply, VP EV, P is a closure fuzzy mapping. 
Let A be a subclass of all fuzzy functions .^(R)^ —> FC(WL), and F : 

JFc(lR)d —• ^C(]R). Similarly with Definition 4.2, we can define A as a universal 
approximator of F. 

Lemma 4.10 Let I be an arbitrary index set, and A, B, At, Bt c l (i € I) 
be nonempty, h > 0. Then 

(i)dH(A,B) = dH(A,B); 

(ii) Vi G I, dH(Ai,Bi)<h=> dH(\j At, \JBi)< h. 

Proof, (i) By (1.3) easily we imply, dH{A,~A) = djj(B,B) = 0. Hence 

dH(A,B) < dH(A,A) + dH(A,B) + dH(B,B) = dH(A,B). 

Similarly we have, dH(A,B) < dH{A,B). Thus, dH{A,B) = dH(A,B). (i) 
holds. 
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(ii) Let W = U Ai, V = (J B,. By the assumption and (1.3) it follows 
iei iei 

that 
W e / , V /\{\x~y\}<h, \ / /\{\x-y\}<h. (4.48) 

Vxo G W = |J Aj, there is i0 G / , satisfying x0 G -/4io. By (4.48) we obtain 
iei 

f\{\x0-y\}< A {ko-J/|}<ft-
V€V y£Bi0 

So V A {\x~ v\} ^ ^- Similarly we can show, V f\ {\x — y\} < h. There-
xewyev yevxew 

fore, dH(W, V) < h. Hence by (i) we have, dH(jjA~, \J Bt)= dH{W, V) < h. 
\ei iei ' 

U 

Using Lemma 4.10 we can get a useful property about the universal approx­
imators. 

Theorem 4.14 Let for each G G A, G be a closure fuzzy mapping, and 
A be the universal approximator of F : Jr

c(M.)d —> ^ ( K ) . Then also F is a 
closure fuzzy mapping. 

Proof. We apply reduction to absurdity to show the conditions (i) (ii) in 
Definition 4.3 hold for F. Ar first we show (i). 

If condition (i) in Definition 4.3 does not hold for F, there exist index 

sets I^,...,I°d C R and {Ui f c l , ...,Adkd)\ki G I?,...,kd G Tj} C f(R)d, a pre-

compact set family, so that Vi G {l , . . . ,d}, (J AifeG ^ ( M ) , and there is a G 
k e/° 

[0,1), satisfying 

F(\J life,..., U Adk) ? U F(Alkl,...,Adkd)a. 
ykei° kei° /ri fcie/°,...,fcde/° 

Choose 

£0 = 2dH[F{ U ^ 1 * " - ' U ^ d f e ) a ' U ^UlfcD-.AdfcJa j , 
^ fee/? fcei° " fci€/?,...,fcd€/S * ' 

U = {(Aik1,...,Adkd)\kie / ? , . . . , fcd G J ° ) | j { ( U Aik,..., U A * ) ) . 
k J ^fcei? fce/° / J 

Obviously, e0 > 0, and U C .F(K)d is a pre-compact set. By assumption, there 

is G G A : V XG U, D(F(X), G(X))< e0/2. So using (1.6) we imply 

Vfci e l? , . . . , fc d eid> ^(-PUifci>- ,AdfcJa, G,Uife1,...,A(ifcd)a)< y , 
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Thus, using Lemma 4.10 we obtain the following facts: 

drf [ F A Uc.,,»;Adks) , II G(Aifc,, ••••AdkJ ) ) < —, iH( U F(Aikl,-,Adkd)a, U G(Aikl,-,Adkd)a): 
vfeie/1°,...,fc(j6/° • fc1e/1°,...,fcde/° • ' 

'<f-di/fW U Aifc,..., U A » ) , G( U Aifc,..., U A * ) ) : 
v vfce/° fce/J / ( ? vfce/? fce/g / ? / 

(4.49) 
By assumption G is a closure fuzzy mapping, so we have 

G(U life,-, | J Adfc) = |J G(Alkl j •••, ^4dfcd)a • 
fee/? fce/Jj ° fcie/f,...,fcde/S 

By the triangle inequality for dfj and (4.49) it follows tha t 

e0<dH(F({J Aik,-, U Adk) , U F(Aikl,-,Adkd)a) 
v vfce/° fcei° /ci fci6/?,...,fe<,e/S « y 

< d H ( > ( U Aik,..., U A f t ) , G( U life,..., U Adk) ) 
v vfc€J? fce/S . fee/? fee/J ' " J ' 

+ d f f ( G ( U Aik,-, U Adfc) , U G(Aikl,.:,Adkd)a), 
v \fee/° fce/° ' ? feie/1°,...,fcde/° • ' 

+ d f f ( U G(Ai f e l , . . . ,2dfed ) a , U ^ ( i n t i , - , ^ ) a 
vfcie/?,...,fede/S • fcie/?,...,fed€/S 

Which is contradictory. So (i) in Definition 4.3 holds. Wi th the same reason, 
we can show (ii) in Definition 4.3. Thus, F is a closure fuzzy mapping. • 

T h e o r e m 4 .15 Let F, G : .F c(R)d — • .FC(]R) be a closure fuzzy mapping, 
and Ui,..., Ud C M be compact sets. Let for any x = (x±,..., Xd) € U± x • • • x 
Ud, D(F(x), G ( x ) ) < h. Then 

(i) For each X = (Xi, ...,Xd), where Xi c U (i = 1, ...,d) is a convex set, 
we have D(F(X), G ( X ) ) < /I ; 

(MJ For each X = ( X i , - , X d ) e ^ W , and Supp(Xi) C £/» (i = 1, . . . ,d) , 

it follows that D(F{X), G ( X ) ) < ft. 

Proo/. (i) At first by [19, 20] we have, {{x}\x e Xi}c TC(R) (i = 1, ...,d) 
is a pre-compact set. Moreover by assumption, Vx = (x i , ...,Xd) '• Xi e Xi (i = 
l,...,d), it follows tha t x G E/i x • • • x Ud. So £>(F(x) , G ( x ) ) < /i. Thus, 
Va G [0,1), x = (xi,...,xd) : Xi £ Xi (i = l,...,d), dH(F(x)a, G ( x ) a ) < /i. 
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Therefore, using assumption and Lemma 4.10 we imply 

dH(F (X) a , G(X)a)=dH(F(X^, G(X)I) 

= dH(F( U {x},..., U {x})a, G( U {x},..., U {x}) ) 

= dH( |J F(xi , . . . ,xd )„ , U G(xi,...,xd)a)<h. 

Thus, D(F(X), G(X))= V { < M F ( X ) a , G(X) Q )}< ft. (i) holds. 
a6[0,l) 

(ii) Since F, G are closure fuzzy mapping, Va £ [0,1), we have 

F(x)a =F((Xi)a,...,{Xd)a)a, G(X)« = G ( ( X i ) « , . . . , ( X d ) a ) Q -

Thus, by (i) and Lemma 4.10 we obtain 

dH{F(X)a, G{X)a)=dH(F(X)a, G{X)a) 

= dH ( F ( ( X i ) ? ,..., (Xd)a)a , G((Xi)a ,..., ( X d ) a ) J 
* • * * • 

= dH(F({Xl)a , -.., (Xd)a) a , G((Xl)a , •••, (Xd)« ) a ) 
* • * * • 

< D(F({Xl)a , -.., (Xd)a),G((Xl)a , - , fc)?))< A-

Therefore, £>(P(X),G(X)) = V {dH(F(X)a, G(X)«)}< h. D 
a6[0,l) 

Let us now aim at the universal approximation of V to continuously closure 
fuzzy mappings. 

Theorem 4.16 Let F : Fc{M,)d —• FC(M) be a continuous fuzzy function. 
Then the universal approximation of V holds for F if and only if F is a closure 
fuzzy mapping. 

Proof. Necessity is a direct result of Theorem 4.14 and the fact: VP G V, P 
is a closure fuzzy mapping. So it suffices to prove sufficiency. By assumption, 
if F is restricted to Rd, then F is continuous fuzzy valued function. For each 
e > 0 and compact set U C F(M)d, and let U = U\ x • • • x Ud c Rd be 
a compact set corresponding to U. By Remark 4.3, there is a fuzzy valued 

polynomial P0 : P0(x) = £ P,(x) • Ai (x £ l d , 4 , 6 f c(R)) , so that Vx e 

£/, £>(F(x), P O ( X ) ) < e/2. Define fuzzy polynomial P as follows: 

v x = (Xi,...,xd) e ^c(M)d, P(x) = 53 X -Pi(x). 
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Considering X = {Xi,—,Xd) G W, we obtain Supp(Xi) C t/j (i = 1, ...,d). 

Then using Theorem 4.15 V XG W, we imply that £>(F(X), ^ ( X ) ) < e/2 < e. 
that is, the universal approximation of V to F holds. D 

In the following we extend the inputs of the regular FNN defined by (4.42) 
(4.43) as the fuzzy sets in PC(M.). We obtain the general four layer regular 
feedforward FNN, i.e. let 

H[<T] = \FN FN(X) =Y.Wk-(i.Vjk- <r{(X, U( j ) )+ Oj 

for xeTc(R)d,P,geN, Wk, Vjk, e^e fc(R), U(i) e ^c(K)d}. 
(4.50) 

Specifically, if let Vjk, Oj be Vjk, 0j G R, respectively, and U(j) G .Fc(R)d be 

a vector Ufc(j') G R , then we obtain a subset 7io[c] of H[<r] : 

HO[<T] = {FN F J V ( X ) = iwk-iZ vjk-a((u(j), X > + ^ ) ) 
"- /c=i \ j = i ' 

for XG ; C ( R ) ' , P , « 6 N , W-fce .FC(R), «ifc, 0,- e R, u(j) £ K d } . 

(4.51) 

Remark 4.4 By Proposition 4.3 easily we have, if FJVG Ti[o'], then FAT is 
a closure fuzzy mapping. 

We proceed to discuss the universal approximation. The equivalent con­
ditions of continuous fuzzy functions which can be represented with the sense 

"s=se" by the functions in 7i[cr] or Ho[o"], can be established. 

Theorem 4.17 Let a be a Tauber- Wiener function, and F : .Fc(R)d —> 

•FC(R) be a continuously closure fuzzy mapping. Then 7io[o] is the universal 
approximator of F. 

Proof. For arbitrarily e > 0, and compact set U C .F(R)d, suppose U = U\ x 
• • • x Ud C Rd is a compact set corresponding to U. Obviously, F is continuous 
if it is restricted to Rd. By Theorem 4.11, there are p, q G N, vjk, 9j G R, WfcG 
TC(M) and u(j) G Rd (k = 1, ...,q, j = 1, ...,p), such that 

i p 

V X G U , £ > ( F ( X ) , ^ H > f e - ^ ^ f c - a ( ( x , u(j)) + 0j))<-. 
fc=i j = i 

Let F JV(X) = Y, Wk-T, Vjk • <J((X, u(j)) + 05) (XG ^(R)**). Then we have, 
fe=i j = i 

.FJVGWOM- And FN is a closure fuzzy mapping, by assumption and Theorem 

4.15 it follows that V XG U, D(F(5L), G(X))< e/2 < e, i.e. Ho M is the 
universal approximator of F. D 
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Similarly with Theorem 4.13, we can obtain the equivalent conditions about 
universal approximators. 

Corollary 4.4 Let a be a Tauber-Wiener function, and F : jFc(M)d —• 
!FC(M) be a continuous fuzzy function. Then the following facts are equivalent: 

(i) 7io[o"] is the universal approximator of F; 

(ii) H[a] is the universal approximator of F; 
(Hi) F is a closure fuzzy mapping; 
(iv) V is the universal approximator of F. 

Proof. Using Theorem 4.17, Remark 4.4, Theorem 4.14 and Theorem 4.15 
and with the order: (i)=>(ii) =>(ii i)=>(i) , (i) •<==>-(iv), we can show the con­
clusion. • 

4.5.2 Learning algorithm 

In this subsection we applying the approach in §4.2 to develop a learning 

algorithm of the regular FNN's in ?-̂ o[cr]- Also we discuss our subjects in sub-
space FQC(J&). Here we assume that er(-) is a continuously differentiable and non-
negatively increasing function. Choose 7 £ N, let ak' = k' /*y (k' = 0,1, ...,7). 

If FAT G HO[(T], for i = l,...,d; k = l,...,q, let 

(Wk)ak,= K ( f c / ) , w2
Kkl)]; {Xi)ak= [x\(kl), x2

i(kl)]. 

If X = (Xi, -;Xd) £ -Foc(IL)d, we introduce the following notations: 

d d 

-^j(fc') = z2\uijxi(k') AuiJXi(k'))
+®J> Xj(k') = J2\UiJXi{k') VuiJxi(k'))+0j> 

t = l i = l 

Yk\k>) = t(vjka(XJ{k>))Avjka(X]{k>))), 

Yk%,} = E {vJka{X)(kl)) V vjka(X>{kl))), 
j = i 

Then the ak> — cut of F J V ( X ) can be represented as follows: 

FN(X)ak, = E K(fe<)> wl{k')]\ E vjk ^ E « i i - K V ) ' x\v)]+ej)) 
k=\ j = l S = l ' ' 

= E H{k/), VIOOHT, vjk • [o{x]{kl)), ff(-x-?(fe/))]), 
fc=i J = I 

• 1 

2.) \w
k(k')Yk{k') Aw

k(k')Yk{k>) Aw
k(k')

Yk(k')
 Aw

k(k>)Yk(k'))' 
•k=i 

q 

,E vu;fc(fc')5/fc(fc') v w
k(k')Yk{k')

v ^(fco^fcCfc')v ^(fco^fcCfc')) 
(4.52) 
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Let FN&HO[<T]- Choose fuzzy pattern pairs ((Xi (I), ...,Xd (I)); O (0) (I = 
1,..., L), by which we can train the fuzzy connection weights and thresholds of 

FN, where (Xi(l),--,Xd(l)) is the input of FN, and 0(1) is the correspond­

ing output. Le tO(0a„ , = [oi(l), ol(l)], (Xi(l))ak,= K V ) ( 0 , *? ( fc0(0]-

Similarly with (4.24), we define the following error function: 

E = \i{ijE{FN{Ui),...rxd{i))ak, (o(D)j2) 

= \ti (k(o - i zi(kl){i)\\[oui) - i zi(kl){i)Y). 
^ i = l f e ' = 0 V L fc=l J L fc=l V ' J y 

where Zhk,Jl), Zk,k,M) are defined respectively as follows: 
(4.53) 

Jfe(/c') 

^V)(o = wkk>Ak>)W A^(fc0nV)(o A<fco
y

fcV)W A ^(^%') (0 . 

and i/
fc

1(fc,)(0: Yk(k')(l) i s t h e representation of Y^,-,, yfc
2
(fc/), respectively, by 

letting x\,k,s = xj,k,M), x?,k,<. = x^,k,M). We write all adjustable parameters 

related to FN as a vector w = (u>i, ...,WN), that is 

w (u11,...,udp,vii,...,vpq,e1,...,ep,wl(0),...,wliy),w^l),...,wlw). 

Similarly with Theorem 4.6, we can prove 

Theorem 4.18 Let the transfer function a : M —* M. be continuously 
differentiable and non-negatively increasing. Then the error function defined 
by (4-53) is differentiable a.e. with respect to w in M.N. Further, for r = 
1,2; k = l,...,q; k' = 0,1, ...,7; j = l,...,p; i = l,...,d, if let 

A ^ ( 0 = E Zl{kl){l)-o\,{l), Al(l)= E Zl{kl){l)-ol,{l); 
k=l k=l 

Dl{k,)(l)=wi{k,)Yk\k,)(l)Awl{k,)Yk^^ 

Dl(kl){l) = K{kl)Yk\kl)(l) V wl^Y^l) - wl{kl)Yk\kl)(l) V wl(kl)Y*(kl)(l); 

U{(k>){l) = l o r ( ( - l ) ^ ( f c / ) ) l o r ( i ? i ( f e , ) (0 )+ lo r ( ( - l )X( f c ' ) ) l o r ( - ^ ( f c , ) (0 ) ; 
^ ( f c 0 ( 0 = l o r ( ( - l ) ^ ^ ( f c 0 ) l o r ( ^ ( f c / ) ( 0 ) ^ o r ( ( - l ) ^ ^ ( f c / ) ) l o r ( _ j D 2 ( f c / ) ( 0 ) . 
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^ M f c O ^ ) = ^ f c ( l o K ( - 1 ) r ^ f c ) ^ ( ^ ( f c o W ) ( E ^ ) ( O l o r ( ( - l ) t + 1 ^ ) ) + 

+ lo r ( ( - l ) ^ 1 ^)a ' (XJ ( f c , ) ( / ) ) (g4 - f ) (01or ( ( - l )%) ) ) ; 

we obtain the following partial derivative formulas: 

,dE JL X vi f ^ f - E E E{^(fc0(0(E^(^)(0)ior((-i)t+1^))-
j l — -LrC —U rC — i £— J. 

+Hl{k,)(l)(iAX^p))lov((~l)\k))}. 

W^r. = t E E{A^(0(^V)W^fc(fcO(0 + ^V)(0^.fc(fcO(0)-

dE JL X r „ i „w ^ 

+A^(Z)(FfeV)(/)C^(fe/)(0 + ^V ) (0^ f e ( f c , ) (0)} ; 

(i«) ^T = ^ S {HMfc')W(E o(Xj
3

(-*)(0)lor((-l)t^fc)) 
C^jfe J=lfc'=Ol' t = l 

+^2(fe0(0(E^(^)(0)lor((-l)*+1^fe))}; 

O W /e(fc ') i = l 

Proof Similarly with Theorem 4.6 we can directly show (iv). Considering 
the following facts we can prove (i)-(iii), respectively: 

0 f W O = dzj(kl)ii) _ dYk\kl){i) + dzi(kl){i) _ ayfc
2

(fc<)(Q 
9 u y dYk(k>) dua dYk(kn dua 

dzi(kl){i) = dzj{kl){i) _ a y ^ t p + dzi(kl)(i) _ arfc%,)(0_ 
5wife 9yfe(fc') a ^ arfe2(fe') a ^fe ' 

^ ( f c 0 ( 0 dZ^jl) dYk\kl){l) dZl(kl){l) dY*{kl)(l) 

™i dYk\kl) ' d93
 + dY*{kl) " d63 • 

where r = 1,2. Similarly with Theorem 4.6, we can show that E is differentiable 
a.e. with respect to w in R^. The theorem is proved. • 

By the partial derivatives determined by Theorem 4.18, we can construct 
an improved fuzzy BP algorithm, that is, the accelerated convergence fuzzy 
BP algorithm. Similarly with Algorithm 4.2, we let the learning constant rj 
vary as the time step iterates, i.e. suppose n = T][t] = p(E[i\), J] is defined by 
the error function E[t] in each iteration: p(E[t\) = poE[t]/\\VE(w)\\ , where 
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VE(w) = (dE/dw\, ...,dE/dwN) is a gradient vector, p0 is a given constant, 
we obtain the following iteration scheme: 

uzj[t + 1] = ul3[t] - p0 • E[t] • | ^ j / l | V ^ ( w ) | | 2 dE[t] 
)Uij[t] 

dE[t] / „ „ „ , Nl|2 
Vjk[t + 1] = Vjk[t] - po • E[t] • g ^ / || VS(W 

0j[t + i] = 6j[t] - po • E[t] • g | j / | |V£(w) | | 2 ; 

« W ' +!] = "WJ " PO •E^ • a^WllV25(w>ll2 (r = ^ 
fc(fc') L J 

(4.54) 
Let po ba a small positive number, such as, po = 0.01. We can construct the 
learning algorithm for FN£ WO[°"]: 

Algorithm 4.3 Accelerated convergence fuzzy BP algorithm. 
Step 1. Randomly choose initial values: Uj^O], u,fc[0], 6j[0] and wLfc/J0] 

(r = 1,2), and let i = 0; 
Step 2. Calculate the following partial derivatives: 

8E[t] dE[t] dE[t] dE[t] 

dUij[ty dvJk[ty dofty dwi(kl)[ty 

Step 3. According to iteration scheme (4.54) update the parameters Uij, Vjk, 
ei a n d < ( f c ' ) ; 

Step 4- For each k € {l,...,q}, with the increasing order, we re-array the 
set {wLfc,Jr = 1,2; k' = 0,1, . . ,7}, that is, from small to large we have 

w 'fc(O) < Wl(l) < • • • < «>fc(7) < Wfc(7) < • • • < Wfe(0)-

Step 5. Discriminate whether |.E[t]|< el If yes go to Step 6, otherwise let 
t = t + 1 go to Step 2; 

Step £. Output all parameters. 

Using Algorithm 4.3, we can employ the four layer regular feedforward 
FNN's in Ho[&] to represent a class of fuzzy functions, approximately, that is, 
we can realize the result of Theorem 4.16 by this algorithm. 

Example 4.2 Define fuzzy function F : .Foc(]R)2 —• FocQR) as follows: 

V X = (Xi, X2) € FocQBL)2, F(X) = F(Xi, X2) = m a x ( X i , X 2 ) , (4.55) 

where Vx e R, define max(Xi,X2 )(x) =Xi(x) V J 2 ( ^ ) - Then easily we can 
imply, the fuzzy function F defined by (4.55) is continuously increasing closure 
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fuzzy mapping. Choose fuzzy set family U = {(X(h), X(h))\h,l2 € NU{0}}, 

where X(l) (I 6 N) is defined as follows: 

f 2x(5/2 + 1) + 5Z2 + 3 

Va; e R, X{l)(x) = < 

1 1 
~ 5 / 2 + l ~ 2 

-2x(5/2 + l) + 5Z2 + 3 n ^ 1 v ' 0 < x < 

5Z2 + 3 

5Z2 + 3 

< x < 0, 

1 

5?2 + l 2 

otherwise; 

VxeM, X(0)(x) = < 

l + 2x, --<x<0, 

l - 2 x , 0 < x < 

I 0, 

1 
2 ' 

otherwise. 

50 100 150 200 250 300 350 400 450 500 
Iteration steo k 

Figure 4.19 (a): Changing law of r\\ (b): Changing curve of E 

We can show that U C TQC(J&)2 is a compact set. For given e = 0.1. To apply 
a four layer regular feedforward FNN to represent F under the approximate 
sense "« £ " , we choose the fuzzy pattern family 

Uo = {{x(li),X{h))\h,l2 = 0,1,2}. 

Figure 4.20 Fuzzy set F{X(0),X(l)) and fuzzy set FN(X{0), X(1)) 
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Figure 4.21 Fuzzy set F(X(4),X(4)) and fuzzy set FJV(X(4) ,X(4) ) 

We can easily show, lim D(x(l), X(0))= 0, furthermore, V X€ U, there 
l—>+oo 

is YG UQ, such that i l (X , Y ) < e/2, that is, UQ is a e/2-net of U. Since 
X(0) CX(2) CX(1), we obtain under the sense " « e " the learning patterns for 
realizing fuzzy function F as follows: 

((X(0),X(0));X(0)), ( ( X ( 0 ) , i ( l ) ) ; £ ( l ) ) , ((£(0),X(2));X(2)), 

((X(1),X(0));X(1)), ((X(1),X(1));X(1)), ((X(1),X(2));X(1)), 

((X(2),X(0));X(2)), ((X(1),X(1));X(1)), ((£(2),X(2));X(2)). 

So let L = 9, and choose 7 = 1. And two hidden layers have five hidden neurons, 
respectively, that is, p = q = 5. In Algorithm 4.3, after 500 iterations we can 
obtain the changing curve of the error function E with respect to the iteration 
step t, as shown in Figure 4.19(b). As t increasing, E[t] converges to 0. The 
convergence speed of {E[t\ \t G N} is much quicker than that of Algorithm 
4.1. Figure 4.19(a) illustrates the changing law of the learning constant 77 in 
Algorithm 4.3 with respect to the iteration step t. 

Randomly we choose (X(0),X(1)), (X(4),X(4))e U, Calculate the values 

of fuzzy function F and FNN FN at the given two points, respectively, as 
shown in Figure 4.20 and Figure 4.21. Thus, it can be seen that with the 
given accuracy e, the fuzzy function F can be realized by a four layer regular 
feedforward FNN, approximately. 

Similarly with studying the BP algorithm, we can show the convergence 
of the accelerated convergence fuzzy BP Algorithm 4.3. Also similar with 

Theorem 4.7 we define the nonzero weight space W n n of Hole]- In VV„n, By 
(4.56) we imply that the error function E is differentiable. Also we can show 

E[t + 1] - E[t] = g ( — ) • ( « ; * [ * + 1] - Wi[t])< 0. 

Considering E[t] > 0, we have, {E[i\ \t € N} is a convergent sequence. By 
the illustration, we can also see that the convergence speed of {E[t] \t & N} is 
much quicker than that of the fuzzy BP Algorithm 4.1. 
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§4.6 Approximation of regular FNN with integral norm 

In preceding two sections we study the universal approximation of regular 
FNN's with Hausdroff metric for fuzzy sets, systematically. That is, the regular 
FNN's can with arbitrary accuracy approximate a class of continuous fuzzy 
functions on each compact set of /c(Md). Such facts can provide us with the 
theoretic basis for applying FNN's to many real fields, such as system modeling, 
system identification and so on. However, if a real I/O system is not continuous, 
but a general integrable system, how can we use FNN's to solve the similar 
problems? That is, whether can we study the universal approximation of FNN's 
with general integral norm? In the section we focus on fuzzy valued integrable 
functions, and present the approximation capability of regular FNN's to a large 
class of fuzzy valued functions. 

4.6.1 Integrable bounded fuzzy valued functions 

For a given set T c l d , and (T, BT, p) is a Lebesgue measure space, where 

BT — B(lT = {C HT : C € B}, and B is a Lebesgue measurable set family in 
M.d. Let J^(E) C .Fo(K), so that (jg(M),D) is a completely separable metric 
space. By [64] we imply, J-fftM.) can be the triangular fuzzy number space, or 

trapezoidal fuzzy number space, and so on. denote Ll{T) = V-{T,BT,^) = 
{f:T-^R\JT\f(x)\dp<+oo}. 

Definition 4.4 The fuzzy valued function F : T —> ^J(R) is called to be 
integrable and bounded on T, if there is p G L1 (T), satisfying Vx £ T, Va £ 
[0 , l ] ,VyeF(x ) Q , \y\<p(x). 

As an example of integrable and bounded fuzzy valued functions, easily we 
can show the following conclusion. 

Remark 4.5 (i) If the set T C Md is bounded, and F : Rd —> J^(R) 
is continuous, then we can choose p(x) = |F(x)| (x G T). Therefore, F is 
integrable bounded on T; 

(ii) Let F : T —> T$(M) be integrable and bounded on T. Then |F(-)| G 
L\T). 

Let £X(T, BT, p) be a collection of all integrable bounded fuzzy valued func­
tions that T —• J^(R). For Fu F2 G ̂ ( r .Br .A*) . define 

A ( F i , F 2 ) = ( D{F1{x),F2{x))Ap, (4.56) 
JT 

Then by Remark 4.5, easily we have, for Fu F2 G &{T,BT,li), A(F1 ; F2) < 
+oo. Considering ( .FQ(R), .D) is a completely separable metric space, we show 
that the metric space (£ 1 (T,ST, /X) , A) is also complete and separable. 

Definition 4.5 Let S : T —• f 0
c ( l ) , and {Tt : 1 < i < K] be a finite 

K 
partition of T, i.e. \J Tk = T, Tt n 7) = 0 (i ^ j ) , and T; £ BT (i = 1,..., A"). 

fc=i 
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If there exist Ai,..., AK& TQ(M),
 s u c h that 

K 

VxGT,5(x) = ^ X T f c ( x ) - 2 f c , 
i t=i 

we call S a fuzzy valued simple function on T, where XTk(-)
 ls a characteristic 

function of Tfc. 

Similarly with the conventional measure theory, we at first prove that the 
collection of all fuzzy valued simple functions on T is dense in £1(T, BT, AO-

Theorem 4.19 Assume that F : T —> ^o(^ ) *s an integrable bounded 
function, and fi(T) < +00. Given arbitrarily e > 0, then there is a fuzzy valued 
simple function S : T —> T§ (R), such that A(F, S) < e. 

Proof. Since F is integrable and bounded, by Remark 4.5 we obtain, there 
is 6 > 0, satisfying, for each P C T, fj,(P) < 8, such that Jp |F(x)|d/x < e/2. 
It is no harm to assume n(T) = 1. Since ( 7 Q ( I ) , D) is a separable space, we 

let A0 = {Ai, i e N} be a dense subset of .Fo(R). T n e n v Xe T^{R), there is 

i G N, such that D(x, Ai ) < e/2. Let 

T 1 = { X G T | D ( F ( X ) , A i ) < | } , 

T2 = {x G T|Z)(T(x), ^ ) > | , £>(f (X), M ) < | } , 

T„ = { x £ T|£>(F(x), Ai)> I (» = l,...,ra - 1), £>(F(x), A„ )< | } , 

Easily we have, T; n T,- = 0 (i ^ j). For each x G T, if x G" Ti, there is z0 G N, 

so that D(F(x), Aio) < e/2, and D(F(x), Ai )> e/2 (i < i0). Thus, x e T „ . 
Therefore, T = (J T*. Considering the following fact: 

M(T) = M ( U T 4 )= ^ > ( T ) < +00, 
i 6N iGN 

do ~ 
we imply, there is d0 G N, satisfying /i( U T ) < <!>. Let 5(x) = £] XTi(x) • Ai 

i>d0 »=1 

(x G T). And write To = U Tj, then {T0,Ti, ...,Td0} is a finite partition of 
i>do 

T. Let Ao= 0, easily it follows that S is a fuzzy valued simple function on T, 
furthermore 

Vi : 1 < i < do, Vx G T , T>(T(x), 5(x)) = £>(F(x), X ) < | ; 

I I>(F(x) ,5(x) )d / i= / £>(F(x), {0})d/z = / |F (x) |d /x<f , 
•/T0 J T 0 J To Z 
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Also we have 

A(F,S) = f £>(F(x), S(x))d/i = L D(F{x), S(x))d/i 
JT J u Tt 

= £ / ^ W , S(x))d/x+ / # ( F ( x ) , S(x))d/a 

< £ / ' D { F ( X ) , A i ) d ^ + ^ < ^ t [ dv+£-<£-v(T) 
i=lJTi z Ai=\JTi z z 

Thus, the theorem is proved. D 

By S we denote the collection of all fuzzy valued simple functions thst 
Rd —• ^o(M). For each T cRd, S eS, then the restriction of S on T is also 
a fuzzy valued simple function on T, which is also written as S. 

4.6.2 Universal approximation with integral norm 

By Theorem 4.19, if (T,BT,(J>) is a bounded measure space, then S is the 
universal approximator of each fuzzy valued integrable bounded function with 
integral norm, that is, Ve > 0, VF G C1{T,BT,^), there is S G S, so that 
A(F, S) < e. Also we call S the Li(fi)— norm approximation of F. 

Theorem 4.20 Let T C Kd 6e a bounded set, so (T,BT,H) be a bounded 
measure space. Then [CX(T,BT,H), A), £/ie integrable bounded fuzzy valued 
function space is a completely separable metric space. 

Proof. It is no harm to assume that T = [0, l]d is a compact set. Then 
fi(T) = 1. Easily we have, A is a metric of the space £1(T, BT, M)- The complete­
ness can be demonstrated as that of L\{T). So it suffices to prove sufficiency. 

Let Ao = {Ai, AI, •••} is a dense subset of (.^(IR), -D). Write 

C(T) = {F : T —> J^(M)|Fis continuous onT }, 

In the following we show, C(T) is dense in S. Choose a closed set B C T. For 
xeT, define LB(x) G K+ : LB(x) = inf{||x - x j |xi € -B}. Let 

x f Q„(x) = l, ( X G B ) , 

° " ( x ) = T T ^ M x ) ( n G N ) ' ^ I lim Q„(x) = 0, ( x £ B ) . 
^ n—»+oo 

For each AG ^g(R), if let F(x) =A-XB(X), Fn(x) = 4 -Q„(x) (x G T), by 
Lebesgue's control convergent theorem we obtain 

A(F,Fn)= f £>(F(x),F„(x))dM <\A\- /" |xB(x)-Qn(x) |d/i — 0 (rc^+oo). 

By the definition of Lebesgue measurable set, VB G BT, V AG .^(IR), ^ follows 

that {Q„} c C(T), satisfying lim AU-XB, Q„)= 0. Thus, Ve > 0, V5 G 5 , 
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By Lemma 4.7 it is easy to show, there is Q G C(T), such that A(5, Qn)< £, 
that is, C(T) is dense in S. Let 

m 

CP{T) = [F :T -^ ^0
c(M)|F(x)= £ ^.. .^ -^m;j,..id(x), 4,.,dG A0}, 

i i , . . . , j ( i = 0 

Then Cp(T) is a countable set. Theorem 4.11 implies, Ve > 0, VF G C(T), 
there is a fuzzy valued Bernstein polynomial Bm (F) which is defined as follows: 

•Bm(-F;x) = J2 Bix...id • Km.h.__id(-x.), where Bi^.^e ^"o(R)> satisfying 
ii,...,id=0 

Vx G T, D(F(x), Bm(F;x))< e/2. Since A0 is dense in (^(R),D), there is 

{An..^} C A , so that Vzi,...,id G {0, l , . . . . ,m}, D{Bir...id, A^...id )< e/2. 
So using Lemma 4.7 and (4.38) we obtain 

£>(Bm(F;x), Y, Ai1...id-Krn]il...id(x)\ 
v i i , . . . , i d = 0 y 

< E K m ^ . ^ M • £>(An...id, Si!...*,, )< - , 
i i , . . . , i d = 0 2' 

where x G T. Let Pm(x) = £ i , , . . . , , - i f m ; ! l . . i d (x ) . Then P m e C P ( T ) , 
i i , . . . , i d = 0 

furthermore 

A(F, Pm) < A(F, B m ( F ) ) + A ( S m ( F ) , Pm) 

= f D(F(x), Bm(F;X))dfi+ [ D(Bm(F;x), Pm(x))dM < e. 
JT JT 

Hence Cp(T) is dense in C(T), and also dense in S. By Theorem 4.19, we im­
ply, CP(T) is dense in (Cl (T, BT, fi), A). Thus, ( ^ ( T , ^ , A*), A) is separable. 
Therefore, (£1(T, S T , A4); A) is a completely separable metric space. • 

We call the transfer function a to be Ll(T)-universal [9], if V/ G Ll(T), 
and Ve > 0, there exist K G N, and a three layer feedforward neural network 

K 

defined as g(x) — ^ a,i • a((wfc, x)+0fc), which there are if hidden neurons, 
fc=i 

so that { J" r | /(x) — <7(x)|d/u}< e. By [9], if a : M —> M. is not a polynomial a.e., 
and Vo, & £ l : a <b, Ja \cr(x) Ida; < +oo, then for each compact set T e l , a 
is I/1 (T)— universal. 

Theorem 4.21 Let (T,BT,/J>) be a finite measure space, and a : M. —• R 
be L1 (T)—universal. Then the following conclusions hold: 

(i) With integral norm 7io[cr] and consequently Ti[a] is the universal approx­
imator of S; 

(ii) Assume that F : T —• •T-o(R) is integrable bounded. Then with integral 
norm H[a] can approximate F to arbitrary degree of accuracy. 
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Proof, (i) Let <S(x) = J2 Ak • Xrfc(x) (x G T). Without losing generality we 
fe=i 

let not all | Ai |, •••, | Aq | are zero. For arbitrary e > 0, since \Tk £ ^(T) (k = 
1,. . . ,Q), and a is LX(T)-universal, there are pfe G N, v'lk,...,v'pkk, 9'lk,-,9'Pkk G 
R, u'fc(l), ...,u'fc(pfc) e Ud, satisfying 

Pk 

JT 2q- V (Ufel) 

l<fe<9 

q fc-1 
Let p = ^ pfc. Then for fc = 2,...,q, write /3fc = ^ pr, /?i = 0. For k = 

fc=l r = l 
1,..., q, j = l,...,p, similarly with the proof of Theorem 4.12 we define 

f wy_^)fc, Pk < J < Pk+i, \ 0'u_Pk)k, Pk < j < Pk+u 
Vjk = < dj = < 

[ 0, otherwise; (̂  0, otherwise; 

, , f u'k(J-Pk), Pk<j<Pk+i, 

[ 0, otherwise. 

i ~ p 

Let -FJV(X) = J2 Ak • J2 vjk • cr((x> u ( j ) )+#j)- Easily we can show, FN e 
k=i j=i 

T~io[cr], furthermore 
P Pk 

Vjk • CT((X, u(j))+6j)= ^2v'jk • <T((X, u'k{j))+9'jk). 
j=i j=i 

By Lemma 4.7 it follows that 

f / 9 P q 

A(FN,S)= / D(^2Ak-J2vJk-<r((X, u( j ))+^) , £ Ak •XT.Wjd/z 
•^T fc=i j = i fc=i 

S Ufe | • ^(xr f c(x), $ > , - * • CT«X> u(J))+^))dM 
-1 fe=i j = i 

/. Pfc 

< Q • V I A* | • / XT,(X) - J2 v'jk • " « x , u'fe(j)> + ^ fc) d/« 
l<fc<9 JT ~[ 

< e. 

So with integral norm Holer] is the universal approximator of <S. 
(ii) It is the direct result of Theorem 4.19 and (i). Thus, the theorem is 

proved. • 
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By the crisp measure we introduce the integral norm of fuzzy valued func­
tions, and study the universal approximation of regular FNN's to integrable 
bounded fuzzy valued functions in this metric. By Remark 4.5, the results 
presented here are general comparing with tha t of §4.4. Since the fuzzy val­
ued measures and fuzzy function integrals are manifold [57], [64], undoubtedly, 
choosing different fuzzy integrals result in different research results. This sec­
tion is only a beginning in the subjects related. There are a number of problems 
and questions to be solved. The integrable systems exist extensively in real and 
theoretic fields, so the research on universal approximations of FNN's with in­
tegral norm is very important and challenging, theoretically and practically. 
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CHAPTER V 
Polygonal Fuzzy Neural Networks 

Using the results obtained in Chapter IV, we enunciate that, to ensure the 
regular FNN's to constitute universal approximators to the continuous fuzzy 
function class CF, each fuzzy function in CF must be a closure fuzzy mapping 
besides being monotone and increasing. However, in practice it is difficult 
to discriminate a given fuzzy function whether is a closure fuzzy mapping, 
which results in much inconvenience, undoubtedly for application of FNN's. 
To overcome the drawback this chapter will introduce a novel FNN—polygonal 
FNN, whose topological architecture inherits from one of a regular FNN, and 
internal operations are based on a family of simplified extension principle [31, 
37, 38]. 

As a generalization of triangular or trapezoidal fuzzy numbers, the polygo­
nal fuzzy numbers presented in this chapter can approximate a class of bounded 
fuzzy numbers, with arbitrary degree of accuracy. So compared with regular 
FNN's, polygonal FNN's have the following advantages: First, the I/O rela­
tionship structures are more succinct, and hence it is easier to analysis the basic 
properties related, such as approximation capability, learning algorithm and so 
on; Second, more strong approximation capability can be ensured, for polygonal 
FNN's can be universal approximators to monotone increasing and continuous 
fuzzy functions, and thus wider application area for polygonal FNN's can also 
be guaranteed; Finally, we can express the I/O relationship of a polygonal FNN 
as the combination of I/O relationships corresponding to some crisp neural net­
works. 

To realize above objectives let us now show some uniformity results about 
universal approximation related to crisp feedforward neural networks. Then 
we focus on the topics related to polygonal FNN's, including system structure 
analysis, representation of I/O relationships, and universal approximation and 
so on. By designing a fast convergent learning algorithm and illustrating some 
simulation examples, it is demonstrated that polygonal FNN's are easy to train 
and apply. 

§5.1 Uniformity analysis of feedforward networks 

As a topic closely related to approximation of neural networks, the unifor­
mity analysis for system universal approximation has recently attracted much 
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at tention [8, 27, 50, 51, 54]. The uniformity of universal approximation of 
neural networks means tha t for a given accuracy e > 0, the neural networks 
can provide with a uniform representations under the sense ' ~ e ' , to a fam­
ily of continuous functions. Tha t is, if a is a transfer function, I C W1 is 
a compact set, for each compact family V C C(7) , of continuous functions, 
there is q G N, so tha t V/ 6 V, there exist </>i(/), ...,</>,(/) G R, satisfying 

/ ( x ) - E 4>k{f) • Nj?(x) < £ ( x € / ) , where Nj?(-) is a function deter-
fc=i 

mined by a TO layer feedforward neural network, which is only dependent of V, 
and independent of each function / in V. For example, if m = 3, there exist 
p G N, ?;fcj G R, 0j G E, and u ( j ) G R d (fc = l , . . . ,g ; j = l , . . . , p ) , being only 
dependent of V, so tha t 

Vx €l,Vfe V, / (x ) - £ > ( / ) • ^ ^ i a ( ( u ( j ) , x ) + ^ ) 
fe=i j = i 

< £ , 

where, <£*;(•) (A; = 1, •••,q) is a continuous functional. In [9, 27], the systematic 
achievements related to universal approximation of neural networks with the 
integral norm LP(I) are presented. We can utilize these results to deal with 
uniformity analysis for universal approximation, consequently to s tudy the ap­
proximation capability of neural networks within a general framework. Thus, 
we may make an essential exposition to neural system approximation, which is 
of very significance in theory, as the approximate representations of nonlinear 
operators by neural networks [8, 27], and application as system identification 
[9, 52], system modelling [52], signal processing and so on. This section will 
mainly aims at the following important problems: 

(i) Whether can we choose the family {4>k{-)\k = l , . . . ,g} of continuous 
functionals, so tha t {<pi(f),..., 4>q(f)} or at least a part of this set is independent 
of / , and <pk ( / ) can be calculated with a unifying computat ion framework? 

(ii) Besides continuity of the functionals, whether are some prescribed con­
ditions for <f>k(f), such as <f>k{f) being increasing with respect to / , i.e. / < 
5, = > <t>k{f) < 4>k(g), be ensured? 

In this section we take the four layer, i.e. TO = 3 and three layer, i.e. TO = 2, 
feedforward neural networks, respectively, as our research objects to deal with 
above problems, systematically. For given compact set I C Rd, define the 
maximum norm || • | |C(/) as follows: | | / | | c ( / ) = V { | / ( x ) | } -

xe/ 

5.1.1 Universa l a p p r o x i m a t i o n of four-layer ne twork 

At first let us aim at the uniformity analysis for universal approximation 
of four layer neural networks. To this end we introduce a novel function — 
uniform Tauber-Wiener function. 

Def in i t ion 5.1 Let a : R —> M be a transfer function, we call a a uniform 
Tauber-Wiener function, if for each compact set V C C(I), Ve > 0, there are 
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p, q G N and vjk, 0j G R, u(j) G M.d (k = 1, ...,g; j = 1, ...,p), so that V/ G F, 
it follows that there exist q real numbers, </>i(/), ...,</>q(f) satisfying 

/ (x) - £ > f c ( / ) • 5 > k < r ( ( u ( j ) , x > + ^ ) | < £ ( x e J ) ' 
fc=i j = i 

If / G C(7), 5 > 0, by [/(/, 5) we denote a 5-neighborhood of / in C(I), 
that is 

U{f,8) = {g£C(I)\\\g-f\\c(i)<5}. 

In the following we develop a constructive proof to establish sufficient conditions 
for connection weights of a four layer feedforward neural networks, so that the 
given approximating accuracy is ensured. Moreover, a learning algorithm easy 
to operate is designed to realize the according approximating procedure. To 
this end, we firstly establish an approximate expression for / = 1 by a three 

n 
layer neural network as, J2 ci " &(uiX + 0$) (x 6 l ) . 

Theorem 5.1 Let the transfer function a be a generalized sigmoidal func­
tion, i.e. lim er(x) — 1, lim a(x) = 0. Moreover, a is bounded. For arbi-

x—>+oo x—> — oo 

trary s > 0, and M > 1, n G N, the following conditions hold: 
(i) Vx > M, \a(x) - l | < e/3, Vx < - M , |cr(x)|< e/3; 
(ii) If the constant K satisfying: \/x G R, |er(x)|< K, we have, (2K+l)/n < 

e/3. 
Then there exist f3 > 0, and Ai,..., An € R, so t/ia£ 

11 " 
VxER, - V ( a ( / ? x + Ai) + a ( - / ? x - A i ) ) - l 

i = l 

< £ (5.1) 

Proof. Partition the interval [—M, M] into n equal parts: — M = XQ < 
x\ < • • • < xn-i < xn = M, and x; = —M + [2Mi)/n for i — 0,l,...,n. Choose 
P > 0, satisfying: /3/n > 1. Let U = (x; + Xi-i)/2 (i = 1, ...,n), and set 

1 n 

Vx G R, 5(a;) = - £ ) [a(/?(x - t;))+o-(-/3(x - t0)] • 

Let us show Vx G R, \S(x) - 1| < e. In fact, if x < - M , Vi = 1, ...,n, | x - t ; | > 
|x0 - t i | = M/n, we have, /3(x - tt) < (3M/n < - M , and -/3(x - t;) > M. 
By assumption (i) we imply, |cr(-/3(x - t j ) ) - l | < e/3, |a(/3(x - ij)) < e/3. 
Therefore 

|S(x) - 1| 

1 

£ [(<J(-/3(X - U)) - l)+a(/3(x - t0)] 

< ;E[K-^-*o)-i|+K^-*i))|]<^|:(|+|)<e-
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With the same reason, Var > M, \S(x) - 1| < e. If x G [-M, M], let A; G 
{l , . . . ,n} , a; G [a?fc-i, a:*,]. For i G {0, l,...,fc - 1}, it follows that x — U > 
xk-i -U> (xt - a*_i)/2 = M/n. So 0(x - U) > pM/n > M, -/3(x - U) < 
—M. Similarly, for i G {k + l , . . . , n} , x — U < —M/n. Hence j3{x — U) < 
—M, —f3{x — t{) > M. By conditions (i) (ii) we obtain 

\S(x) - 1 | = - £ [a(-0(x - tt))-l + a({3(x - U))} 

<-E[\<j(/3(x-ti))-l\ + \a(-P(x-ti))\]+-[\a(-l3(x-tk))\ + 
Tl i=\ ft 

+ \a(p(x-tk))\+l]+- £ [|o-(j0(a: —*<))|-t-|o"(—>»(ar —**)) —1|] 
n i=k+l 

1 fe-1 1 
n i = i v 3 3 y n i = f c + 1

v 3 3 ' 
2tf+l 

< 3 
e e 
3 + 3 = £ -

(5.2) 
In summary, \/x G R, |5(a;) — 1| < e. By letting Aj = —/?£* (i = 1, ...,n), we 
imply the theorem. D 

Let us now proceed to study the approximation capability of a four layer 
feedforward neural network by using the Bernstein polynomial as a bridge. Also 
some order conditions for connection weights are established. Give m G N, and 
a multivariate function / : [0, l ] d —> R. The multivariate Bernstein Bm(-) 
defined in (4.37) is firstly utilized to show the following lemma. 

Lemma 5.1 Let V C C([0, l]d) be a compact set, and arbitrarily give e > 0. 
Then there is n G N, so that Vm G N : m > n, if partition [0, 1] into m equal 
parts: 0 < 1/m < • • • < (m — l)/m < 1, for arbitrary f G V, we have 

Vx=(x1,...,xd)£[0,l]d, / ( x ) - ] T /(-L,...,J|)ijrmi<i... i ( I(x) 
i i , . . . , » d = 0 

< £. 

Proof. Since V C C([0,1] ) is a compact set, there exist 7 G N, and 
7 

/ i , . . . , / 7 G V, so that V C | j I / ( / j , e/3), moreover, / i , . . . , / 7 are uniformly 

continuous on [0, l ] d . So there is 6 > 0, satisfying: Vx1 = (x\,...,xd), x2 = 
{x\,...,xl) G [0,l]d, \x\-xl\ < 5 (i = l , . . . , d ) ,=> l /^x1) - / , - ( x 2 ) | < 
e/4 (j = 1,...,7). Moreover, there is M > 0, so that Vj G {1,.. . ,7}, Vx G 
[0, l]d, | / j(x)| < M. Give m G N : 1/m < J. Partition [0, 1] into TO parts: 
0 < 1/m < • • • < (TO — l ) /m < 1. Then for each j — 1, ...,7 and Vii, ...,id G 
{1, . . . ,m}, we have 

VxG 
h - 1 «i 

m ' TOJ • x 
id 

m TO '>«-''&•••• ! ) h 4 (5-3) 

file:///x/-xl/
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By (4.38) (4.40) and (5.3), Vj = 1,...,7, Vx = (xi,...,xd) G [0, l ] d , we can 
show the following facts: 

/ i W - E / j ( ^ . - » ^ ) ^ m i i i . . . i d ( x ) 
h,...,id=0 m m 

JU/(I)"''&"-'s)),r-*-*w 

i l , . . . , i - : | | x - ( ^ , . . . , ^ ) | | < * ^ m / 
+ 

E ^ m i t 1 , . . . , i d ( x ) / j ( ^ , . . . ) ^ ) - / , - ( x ) 
ii,...,i.,:||*-(k,...,£)||>* " m 

<-+M-
4 E 

i1 , . . . , id : | |X-(ii : , . . . ,^) | i>«5 

^»-m;ii,...,»i VXJ 
_ ("ll. M 

^ m > ' m 

^ | + ^ - E ( E 0^-x*T-Hmxk-h?) 
<± III u j . = 1 ik=o 

e 2Md m e Md 

(5.4) 

4 m2(52 4 4 2m£2 ' 

Choose n G N : n > max(l/<J, (6Md)/(s62)). Thus, Vm > n, (Md)/(2m52) < 
e/12. Therefore 

/j'W- X) ^(^' - .JrJ^i i i - i -W 
» l , . - - i » d = 0 

< 

For arbitrary / G V, let j 0 G {1, ...,<?}, such that / G £/(fjo, e/3). So Vx G 
[0, l ] d , | /(x) - / j o (x) | < e/3. By (5.2) (5.3) and (5.4), Vx = (xu...,xd) G 
[0, l ] d , it follows that 

/ ( x ) - E / ( ^ - , ^ ) ^ ; n , . . . , i . ( x ) 

< | / ( x ) - / , 0 ( x ) | + / j 0 ( x ) - E fjoQ,..,%)Km.iiu...,im(x) 
h,...,id=0 m m 

+ E / j o ( ^ . - - — ) - / ( — ,•••.—) i^m;i1...id(x) 

e £ e 
< 3 + 3 + 3 = £ -

Thus the lemma is proved. • 

Let / c Rd be a compact set, we call the functional <j> '• C(I) —> E to be 
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order-preserved (also see [30, 33]), if 

V/, g G C(I), f<g=> 4>{f) < #<?), 

where f < g means tha t Vx G / , / ( x ) < g(x). 

T h e o r e m 5.2 Let a be a Tauber-Wiener function. Then a is a uniform 
Tauber-Wiener function, that is, for arbitrary compact set V C C([0, l ] d ) , and 
Ve > 0, there are p, q G N, u ( j ) G R d , vjk, 6j G R (k = 1, ...,q; j = 1, ...,p), 
and continuous functionals (fri,...,(pq : C([0, l]d) —> R, such that for each 
f G V, we have, \\f - if/| |c([o,i]d) < £> wflere 

ff,(x) = ]T^(/)Q>, f e (7(<u(j),x)+^ 
fe=i J '=I 

Moreover, all functionals related are order-preserved, i.e. V/, g G V, / > 
0, =>- 4>k(f)><f>k{g) (k = l,...,q). 

Proof. Since V C C([0, l]d) is a compact set, for arbitrary e > 0, by Lemma 
5.1, there is m G N, so tha t V x = (x\, ...,:rd) G [0, l ] d , if let 

m 

5m(/;x)= ^2 f\—,-,—)Km;iu...,iA
XlT-;Xd)-, (5-5) 

"» / / i III ' 
i i i i = 0 

we can obtain the following facts: 

Vx G [0, l}d, V/ G V, \Bm(f;x) - / ( x ) | < (5.6) 

A 
It is no harm to assume M / — V { | / ( i i / m , . . . , i d / m ) | } > 0. For arbitrary 

i l , . - - , i d = 0 

ii,...,id G {0 ,1 , . . . , m } , -Km;ii...id(x) is a multi-variate polynomial denned on 
[0, l]d, so it is continuous on [0, l]d. By the assumption, a is a Tauber-Wiener 
function, there are q{ii,—,id) & N, and Uj(zi, ...,id) £ R d , 0i(ii, ••-,id) £ 
R, Uj(zi,. . . , id) G R (i = 1, . . . ,g(z i , . . . , i d ) ) , so tha t V x - (xi,...,xd) G [0, l ] d , 
we have |^T O ; i l . . . i d(x) - ^ . . . ^ ( x ) ^ e / ( 3 M ( m + l ) d ) , where 

g(* i , • • •>»<*) 

^Vii...id(x) = ^ v i(ii , . . . , id)cr((u i(ii , . . . , id), x)+6'i(ii, . . . ,id)). 

Therefore using (5.5), we can show 

* m ( / ; x ) - £ / ( ^ , . . . , ^ ) - ^ , . , d ( x ) 
„• „• , — n \ III ill / ii,..-,id=0 

h,...,id=0 V™ mJ 

771 

h,...,id=o ^rn m 

£ 

il,-..,id=0 

K„ l(x1,...,xd)-Nil...id{'x.) (5.7) 

3M(m + l ) d 3 ' 
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Let <t>ilt...,id : C([0,l]d) —• R, so that for each / e C([0,l]d), fau...,id{f) = 
f(i\/m, ...,id/m)(ii,...,id = 0,1, ...,m). Obviously falt...,id

 m a order-preserved 
and continuous functional. The index set {(ii,...,id)\ii,—>id — 0,1,...,m} is 
re-arrayed with the following order: 

{(0,...,0),...,(0,...,m), ( l ,0, . . . ,0), . . . , ( l ,0, . . . ,0,m), . . . , 

(m,. . . ,m,0), . . . , (m,. . . . ,m)}. 

Denote q = (m+l ) d , a n d p = E Q(h, -,id)- If 3 G {1, -,p}, k 6 {1,...,?}, 
i i , . . . , i d=0 

define 

f «j(0, ...,0), 1 < j < q(0, ...,0), k ~ (0, ...,0), 

Vj(h,...,id), E - E E 9(ii,-,«d) < j < E - E 9(*i,-,^)> 
^1=° »d-i=°*d=0 

^jfc = S fe <-> (ii,...,id), 

m 771—1 m 

Vj(m,...,m), E E q{ii,-,id) <j < E Q{ii,-,id), 
ii,...,id~i=0id=0 ii,...,id=0 

k <-> (m, . . . ,m) , 
(5.8) 

where k <-> ( i i , ...,i<j) means the ordinal number of (ii,...,id) being k after the 
re-array procedure. Using the sets 

{u i ( i i , . . . , i d ) | i = l , . . . , g ( i i , . . . , i d ) } , { ^ ( H , . . . , i d ) | i = 1,... , g(i i , . . . , i d ) } , 

Similarly with (5.8) we can define the vector family {u(j)\j = l,...,p} C Rd 

and the real number family {9j\j = 1, . . . ,p} C R. Furthermore, we can prove 
tha t , {<j>ilt...,id\ii,...,id = 0 , 1 , . . . ,m} = {</>fc|/c = 1,...,<?}, and 

m q(il,---,id) 

E <l>ii,...,id{f) • E ^ ( i i , . . . , i d )o - ( (u i ( i i , . . . , i d ) , x )+6 ' i ( i 1 , . . . , i d ) ) 
i i , . . . , i d = 0 i = l 

= E Mf) • E « J - f e « 7 ( ( u ( j ) , x ) + f l J - ) = # / ( x ) . 
fe=l j = l 

Thus, using (5.6) (5.7) Vx e [0, l ] d , we can obtain 

| / (x) -Hf{x)\ < | / (x) - B m ( / ; x ) | + |B m ( / ; x ) - ^ ( x ) ! < | + | = \e. 

That is, | | / — #/||c([o,i]d) ^ 2e/3 < £. Moreover, fa, ...,(f>q are order-preserved 
and continuous functionals, which proves the theorem. • 

Let V C C(Md) be a given compact set. For each compact set I C Md, we 
restrict each function in V to define on i", then V C C(I) is a compact set. 
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Similarly, when substituting I for [0, l]d, we can obtain the conclusion similar 
with Theorem 5.2. In the following, we utilize an example to demonstrate the 
realization procedure of Theorem 5.2, and develop a learning algorithm for the 
functional <j>k(k — l,...,q), connection weights Vjk, 0j G R, and weight vector 
u(j) G Rd. 

Example 5.1 Let d = 1, / = [0, 1], and er be bounded and increasing, 
lim a(x) = 1, lim <j{x) — 0. Then a is Tauber-Wiener function [31]. 

x—>-foo x—> — oo 

Choose V = {sm(x/n)+(n - l)/n\n € N}u{l} C C([0,1]). And let gn{x) = 
sin(x/n)+(n — l)/rc (x G [0,1]), then we can show 

(i) gn(x) < gn+i(x) (x e [0, 1]); (ii) gn converges uniformly to 1 (n -> +oc). 

It is easy to show that V is a compact set. Give arbitrarily e > 0. Considering 

xi - x2 
Vn G N, \gn(xi) - gn(x2)\ 

. xi . x2 sin sin — 
n n < (x!,x2 e [o,i]). 

we choose m = Int(3/e)+l , and partition [0, 1] into m equal parts: 0 < 1/ra < 
• • • < (m — l)/m < 1. Define one-dimensional Bernstein polynomial as follows: 

Bm{gn;x) = Y,9n{~) U K*1 'x)m~k = T,9"(^)K<"*W- (5-9) 
fc=0 ^ ' k=0 

Choose M > 0, so that \a(t) - 1| < e/3 (t > M), \a{t)\ < e/3 (t < -M). And 
let /3 > 0 : 0/(2m) > M. By Theorem 5.1 and Proposition 4.2, it follows that 
if letting 

M£)-M^))M^-^))+ JVfc(ar) = E 
^m;fc(0) 

- E ! o-(-/3(x 
j=i m 

m 

2 J - 1 
2m 

(5.10) 
we have, ||ifm;fc(") — Nfc(-)|L., i ] )< e/^' ^ Theorem 5.2, we define the fol­
lowing single input four layer feedforward neural network: 

^ E ^ [ E M < - ^ - ^ ) ) 

(5.11) 
Then, \\gn — H3n\\„,, ,,< e (n G N). By above discussion we obtain the fol­
lowing learning algorithm for connection weights: 

Step 1. Using (5.7) we choose m G N, and define M > 0 : \a(t) - 1| < 
e/3 (t > M), |o-(i)| < e/3 (t < - M ) ; 
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vjk = 

U3 = \ 

) m \mJ 
I Km.k(0) 
^ m 

/?, j = l,...,m, 

-P, j = m+l , . . . ,2m; 

Step 2. Define the functionals </>o, (f>\,..., (j>m : <fik{g) — g(k/m) (5 6 V); 
Step 3. By (5.10) define vjk, u(j) = Uj G R, 0,- (fc = 0,1, . . . , m; j = 

l , . . . ,2m): 

^m;fc(o) , „ (J\ is / i —1^ • ! 
\-Km]k[ — )-Km]k{ , j = l,...,m, 

j = m + 1,..., 2m; 

ft(2j ~ 1) . . 
— H ; > J = 1,-,m, 

2m 
0(2(j-m)-l) . 

2m 
Let us now Illustrate the realization procedure of uniform approximation of 

four layer feedforward neural network within the following general framework. 
Algorithm 5.1 Realizing algorithm for uniform approximation of neural 

network. Let compact set V C C([0, l]d). Then 
Step 1. By the given accuracy e > 0, we get m G N, and d— dimensional 

Bernstein polynomial Bm(-); 
Step 2. With the accuracy e/3 construct the three layer feedforward neural 

network Nilt,,_^d corresponding to the approximating polynomial iifm;j1...id(-), 
and get the weights Vi(ii,..., id), 0i{i\, ••-, id) G Rj a n d Uj(ii,..., id) G Rd; 

Siep 5. Define the functional ^,i1,...,id(/) = f(ii/lm,...,id/m) ( / G V), 
and by (5.8) calculate the connection weights: Vjk, 0j G R, u(j) G Rd (fc = 
1, -,q; j = h-,p); 

Step 4- Output the four layer feedforward neural network requested. 

5.1.2 Uniformity analysis of three layer neural network 

Let us proceed to study the uniformity of universal approximation for the 
three layer feedforward neural network, i.e. m = 2 in N™(-). To this end, we 
focus on one-dimensional case, i.e. d = 1. Define a compact subset of C(R+), 
which is called quasi-difference order-preserved set [40]. 

Definition 5.2 A function set Cor(R+) C C(R+) is called quasi-difference 
order-preserved set, if the following conditions hold: 

(i) C0r(R+) is a compact set, moreover, the limit lim f(x) exists for each 
x—>-(-oo 

/ G Cor(R+), ; 
(ii) For arbitrary A > 0, there are TOO G N, and y\, ...,yma G [0, A], so that 

S A = {y G [0, ,4]I there a re / , <? G Cor(R+), f £ g, f(y) = g(y)} ^ ^ 

= 0/1,-,2/mo}; 

(hi) Vai, a2 G [0, A] : ai < a2, [ai, a2] D {yi, ...,ymo} = 0, then 

V/, ff G Cor(R+), f<g,=> f(a2) - f{ax) < g(a2) - g(ai). 
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To deal with uniform approximation of three-layer neural networks, we at 
first show the following conclusion. 

Lemma 5.2 Let Co C C(R+) be a compact set, moreover V / G Co, the 
limit lim f{x) exists. Then for arbitrary e > 0, there are A > 0, and 5 > 0, 

x—>+oo 

so that 

Van, x2 >A,Wfe C0, | / (x i ) - f(x2)\< e, 

Vxi, x2 G [0, A], V/ G Co, |xi - x2 | < <5, = > | / (x i ) - / ( x 2 ) | < £. 

Proof. By assumption we have, Co C C(R+) is a compact set. Then there 
are g G N, and {fi,.---,fq} C Co, such that V/ G Co, there is q\ G {l , . . . ,g}, 
satisfying ||/—fqi | |C,R . < e/4. Moreover, \lq' G {1,. . . , g}, the limit lim fq'{x) 

exists. Then there is A > 0, so that Vxi, x2 > A, \/q' G {l,...,q}, we have, 
\fq'(xi) ~ fq'(x2)\< e/A. Arbitrarily given / G C0, there is q0 G {1, ...,<?}, such 

that | | / - / , 0 | | c ( R + ) < £ / 4 ' = * V x e M + ' l / W - A o W h e/4. SoVxi, x2 > A, 
it follows that 

| / (* i ) - / ( x 2 ) | < | / (x i ) - / 9 o (x i ) | + | /g o(xi) - fqo(x2)\ + \fqo(x2) - f(x2)\< e. 

Considering that fi,...,fq are uniformly continuous on [0, A], with the similar 
reason we can show that there is 5 > 0, Vxi, x2 G [0, A], \x\ — x2\ < 5, => 
V / G Co, | / (x i ) — / (x 2 ) |< £• The lemma is proved. • 

Write Xo = 0. Choose TO G N. For A > 0, we partition [0, A] into TO identical 
length sub-intervals: 0 < A/m < • • • < (m — l)A/m < A. And let Xk = kA/m 
for k = 1,..., TO. Denote tfe = (xfc + x fc_i)/2. If / G C(R+), let 

m 

Sf(x) = /(0) + Y,(f(xk) ~ f(xk-i))<r(P{x - tk)) (x G R+), (5.13) 

where /3 is a constant. We shall give the uniform representation of a quasi-
difference order-preserved set by three-layer feedforward neural networks. 

Theorem 5.3 Let a : R —• [0,1] be a generalized Sigmoidal function, 
that is, <T(X) —> 1 when x —> +00, and o~(x) —> 0 when x —• —00. Also let 
er(0) > 0, and Cor(R+) C C(M+) is a quasi-difference order-preserved set. 
Then for arbitrary e > 0, ift.ere are p g N , and order-preserved functional <pj : 
Cor(R+) —> R+, (3 G R+, 6>j G 1 (j = 1, ...,p), so that for each f G Cor(R+), 

i/ let Fs{x) = £ <^(/) • a{px - 0j) {x G R+), we toe, | | / - F / H ^ } < e. 

Proof. Given arbitrarily e > 0. By assumption, Cor.(R+) C C(R+ ) is a 
quasi-difference order-preserved set. Lemma 5.2 and Definition 5.2 imply that 
there are A > 0, TO0 G N, y\, ...,ymo

 e [0, -A], and TO G N, so that A/m < 
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max{\ykl - yk2\ \ykl ^yk2,h,k2 = l , . . . ,m 0 } , moreover 

Vxi, x2 > A, V/ G Cor(K+ | / ( x i ) - / ( x 2 ) | < - , 

Vx1)x2e[0,A], \Xl-x2\<-, V/eCor(R+), |/(an) - /(x2)|< £ 

m ' ' 4m0 

(5.14) 
Partition the interval [0, A] into m identical length sub-intervals: 0 < A/m < 
••• < A(m — l ) /m < A, and let xk = kA/m (fc = 0,1, ...,m), moreover let 
tk = (xk + x^_i)/2 (fc = l , . . . ,m). Then by definition of m, A in (5.12), it 
follows that Vfc G {1, ...,m}, at most there is one x G [xfc_i, x^], such that 
x G XU- define set K as follows: 

K= {fcG {l , . . . ,m} | [xfc_i, x f c ] }n£A^0 ,=>Card ( iT ) < m0. 

By assumption, lim cr(x) — 1, lim <r(x) = 0. Choose /? > 0, so that 
x—>+oo a:—• —oo 

x > P, =>• \cr(x) — 1| < 1/m, x < —/?, ==> |<r(x)| < 1/m. Moreover, 
(3/(2m) > 1. Arbitrarily given / G Cor(M+), defining S/(x) as (5.13) we shall 
prove 

VxGM+ , | / ( x ) - 5 / ( x ) | < | , (5.15) 

In fact, Vx G R+, if x > A, it follows that Vfc G {l , . . . ,m}, f3(x - tk) > 
f3A/(2m) > A , = > |<r(/?(a;-i f c))-l |< 1/m. By (5.14) we obtain 

\f(x)-f(A)\< - \f(A)-Sf(x)\<J2\f(^)-f(xk-1)\-\a((3(x-tk))-l\< 

Therefore, \f(x) - Sf(x)\< e/2, that is, (5.15) holds; If x G [0, A], let k0 G 
{l , . . . ,m}, xG [xfco_i, xfeo]. Write 

fco-i 

h(x) = / (0) + (f(xko) - f(xko_l))a(f3(x - tko))+ J2 (/(**) ~ /(xfc-i))-
fc=i 

If fc < fc0, then /3(x - tk) > (3A/(2m); If fc > fc0, then /3(x - tfc) < -f3A/(2m). 
Thus 

| / ( x ) -Mx) | < J2\f(xk)-f(xk^)\-\a((3(x-tk))-l\ 
fc=i 

771 

+ E |/(a*)-/0*fc-i)|-K/3(s-tk))| (5.16) 
fe=fc0+l 

fco — 1 p m p P 

< E — + E — <-• 
fc=i 4m fc=feo+14m 4 
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Moreover, it is easy to prove h(x) = f(xko-1)+(f(xko)-f(xko_1))a(/3(x-tko)). 
So by (5.14) (5.16) it follows that 

\f(x) - Sf(x)\< \f(x) - h(x)\ + \h(x) - Sf(x)\ 

| / (x) - f(xko^)\ + \f(Xko) - fix^vtfix - tk0)) + £- < £ + £ + £ = £, 

Also (5.15) holds. In summary (5.15) holds. For / G Cor(R+), define the 
function Ff(-) as follows: 

Vxf=R+,Ff{x)=f{0) + Yl (f{xk)-f(xk-i))<r(P(x-tk)). 
k€{l,...,m}\K 

For k G {l, . . . ,m} \K, define functional <pk : Cor(M.+ ) —> K+ , satisfying 
^k(f) = f{xk)—f{xk-\), and let uk = /3,9k = —(3tk. Re-arrange the order of set 
{l,...,m}\K as {2,...,p}(peN), and define Mf) =/(0)/ff(0), «i = 0x = 0. 
Then 

V/ G Cor(R+), Ff(x) = J2<pj(f)a{ujx + dj)). 

By condition (iii) of Definition 5.2 and the definition of set K we may easily 
prove that <f>i,..., <j>p : Cor(]R+) —> M+ are order-preserved functional. By 
(5.14), \Sf(x)-Ff(x)\< £ \f(xk)-f(xk-i)\-nP(x-tk))\<mo-e/{4mo) = 

k€K 

e/4 for each x G K+. Thus, if / G Cor(R+), by (5.15) we can conclude for 
a ; e l + that 

| /(x) - Ff(x))\< \f(x) - Sf(x)\ + \Sf(x) - Ff(x)\< \ + £- = | . 

Thus, | | / — -P/||cflR }< e/2 < e. The theorem is proved. • 

Let us now develop a learning algorithm by an example to realize the ap­
proximation shown by Theorem 5.4. A concrete constructing procedure of a 
three-layer feedforward neural network is also presented. 

Example 5.2 Let the function fk(x) = fc/((fc+l)(l+exp(-x))) for k G N. 
Then {fk} C C(R+). Further it is easy to prove that {fk} is a quasi-difference 
order-preserved set, here for arbitrary A > 0, we may choose E^ = 0. Give 
arbitrarily e > 0. 

Step 1. Let A — max ( 1 , 1 + ln(4/e)). Choose m G N : A/m < e/4. Then 

Vx > A, V/c G N, 
k 

A £ 
Vxi, x2 G [0, A], \xi -x2\ <—,=> |/fe(xi) - / fc(x 2 ) |< |xi - x 2 | < - . 
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Step 2. Choose tj = (2j - l)A/2m, and let (3 > 0 : \a{x) - l | < 1/m (x > 
/?), \a(x)\< 1/m (x < -/?), PI{2m) > 1. Denote 

m + l 

Then Ff(-) is the three-layer feedforward neural network that satisfies the given 
conditions, where (f>i(fk) = /fe(0)/a(0), <?i = 0, 4>j(fk) - fk(xj-i) - fk(xj-2), 
9j = —fUtj-i (j = 2, ...,m + 1). Easily it follows that <j>j : {/*,} —• K+ is an 
order-preserved functional. 

In above discussion, we establish a family of continuous functions, each of 
which can be approximated by three-layer feedforward neural networks with 
identical base function, to arbitrary degree of accuracy. The conclusion gener­
alizes the approximation results related feedforward neural networks [8, 9, 27]. 
Moreover, it can be applied to construct some fuzzy neural networks, which 
can provide the approximations with arbitrary accuracy to a class of fuzzy 
functions. That is our research subject in §5.4. 

§5.2 Symmetric polygonal fuzzy number 

The research on fuzzy numbers has received considerable attention, and 
many theoretical achievements related have emerged (see [6, 10-12, 18, 29, 43, 
45, 62] etc). Fuzzy numbers have found useful in many research fields, such as 
fuzzy control [2, 3, 26], fuzzy neural networks [13, 14, 19-22, 34-36, 48], fuzzy 
reliability [4], fuzzy system analysis [45], signal process [5], expert system [1, 7, 
17], regression analysis [16, 23-25, 56-58], programming problem [49, 59] and 
so on. 

Recent years, many scholars take general fuzzy numbers as basic tools to 
deal with their respective problems with vagueness and uncertainty. For in­
stance, Chen et al [5] use generic LR fuzzy numbers to develop a noise filter 
based on a family of fuzzy inference rules, and corresponding capability for 
noise removal is improved, significantly. And Kuo et al [28] present a primitive 
LR fuzzy cell structure for hardware realization of fuzzy computations. In [6] 
Chen employs some step form fuzzy numbers to simplify the fuzzy arithmetic 
operations, such as addition, multiplication, subtraction and division and so on. 
However, we still encounter many drawbacks when the LR or step form fuzzy 
numbers are applied in real, such as: When representing LR fuzzy numbers 
through a few of adjustable parameters, we can not control the approximating 
accuracy, efficiently. It is not convenient to take LR fuzzy numbers as fuzzy 
weights of fuzzy neural networks; Although a step form fuzzy number can be 
determined, uniquely by a few of parameters, its form is too complicated for cal­
culating fuzzy relational structures to be very useful for solving real problems. 
Also it is difficult to develop some learning algorithms for fuzzy neural networks 
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with step form fuzzy number weights. Furthermore, these fuzzy numbers are 
not closed under the fuzzy arithmetic operations based on Zadeh's extension 
principle [15], [47]. 

Therefore it is urgent that the following problems are studied and solved. 
First, the fuzzy arithmetic based on Zadeh's principle should appropriately be 
modified, so that the common fuzzy numbers are closed under some non-linear 
operations, for example multiplication and division. Second, whether can the 
triangular and trapezoidal fuzzy numbers be generalized as general ones, so that 
the novel fuzzy numbers have simple forms and can represent a large of class 
of fuzzy sets, approximately. Third, The new fuzzy number space possesses 
similar properties with ones of triangular or trapezoidal fuzzy number space. 
Finally, a few of adjustable parameters can determine such a fuzzy number, so 
we can use them to deal with some complicated fuzzy computations. In the 
section our aim is to introduce polygonal fuzzy numbers and polygonal line 
operators and to present the systematic studies to above problems. 

As in §4.2, we deal with our questions in the fuzzy number space .Foc(R). 

Let A& Jroc(R), and denote Ao= [aj, a^], Kei(A) — [ej, eg]. Then A(-) is 
strictly increasing and right continuous on [aj, ej); and strictly decreasing and 

left continuous on (eg, ajj]; on [ej, eg1] we have A(x) = 1. 

5.2.1 Symmetric polygonal fuzzy number space 

As the generalizations of triangular and trapezoidal fuzzy numbers, we de­
fine n-symmetric polygonal fuzzy numbers for n G N in the section. They are 
similar with triangular and trapezoidal fuzzy numbers in their structures and 
basic properties (also see [32, 37, 38]). 

t4-) 

Figure 5.1 The symmetric polygonal fuzzy number A 

Definition 5.3 Let AG -FocW- If there exist n G N, and a\,a\, ...,a^, a^, 
a^l_1,...,al G M : aj < • • • < a\ < a^ < • • • < aft, so that the following 
conditions hold: 

(i) Supp(2) = [aj, a0], Ker(A) = K , a2
n\^ 

(ii)Let k G {1, ...,n}. Then a}k_x < a\ =^A\a\_l) = (k-l)/n, 2 ( 4 - 0 ) = 

k/n, and a\ < a\_x, =^-A{a\_1) = (k - l ) /n , A{a\ + 0) = k/n; 

(hi) Vfc G {1, . . . ,n}, A(-) is linear on [a\_1, a\] and [a|, a\_-A, respectively. 
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Here A{a\ ~ 0) is the left limit lim A{a\ — t), and A{a\ + 0) is the right 

limit lim A(a\ + t). A is called a n—symmetric polygonal fuzzy number, 

and we denote A by A= ([aj,, a^]; a j , ...,a^_1; a\_1,..., aft). The collection of 
all n—symmetric polygonal fuzzy numbers is denoted by ^ Q " ( R ) . 

In particular, let n = 1, then an 1—symmetric polygonal fuzzy number is 

triangular or trapezoidal. If A— ([o-n, a%\; a j , ...,aJ t_1,a^_1,...,ao) € T[ 

then we have, Ker(,4) = [a^, a%], Supp(A) = [oj, aft], and 

•tn( 
0c\ 

al
0 < a{ < • • • < al

n < a\ < a\_x < • • • < a§, 

Vi = 0,1, ...,n, Ai/n= K , af]-
(5.17) 

Moreover 

(5.18) 
0 <A( f lu) <A{a\) <••• <A(a\_,) <AK) = 1, 

0 <A{al) <A{a\) <••• <A&_X) <A(a2
n) = 1. 

The fuzzy numbers denned here are simpler and more applicable than ones 
with step forms in [6]. By ^g™(R+) we denote the collection of all nonnegative 

fuzzy numbers in J^{M), that is, V A€ Ff£(R+), it follows Vx < 0, A(x) = 0. 

Theorem 5.4 Let A, Be ^™(M). Moreover let 

A= \[ani anb a0> • • • i a n - l ; a ra- l> •••>ao)i 

B=([bl,bl]]bl...X-i,bl_l,...,bl)-

Then the following conclusions hold: 
~ ~ n 

f ^ U , B ) = V{dff([aJ, a?], [6j, &?])}; 
i=0 

("««; ACB«=> Vi G {0,1, . . . ,n}, ^ < a\ < a? < &?. 

Proo/. (i) Give arbitrarily a G [0, 1]. Let Aa= [a*, a£], B Q = [6*, 6^], a G 
[(z — l ) /« , i/n] for some i G {1, ...,n}. Let us now prove, \a}a — b\\ < \a\ — 
bj\ V \aj_i — &i_il in the following cases, respectively. 

I. oJ_i < a}, &?•_! < &J; II. a j_! = oj, b ^ < b}; 

III. a j_! < ah 6j_i = ^ IV. aj_i = aj , 6j_i = &J-

It is no harm to assume (i — l ) / n < a < i/n. Using Definition 5.3, we get 

in case I that, Maj^) = ^ 4 ( 0 ^ ) = (i - l ) /n; A(aj - 0) =2(a? + 0) = i/n, 
moreover, the following facts hold: 

( a)x=a\_l + (na~{i-l))(a\~a\_1), 

\bl= bU + {na - (i - !))(&} - bU). 

file:///aj_i
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Therefore, it follows that 

K-bi\ = | ( n a - ( i - l ) ) ( a l - 6 l
1 ) + ( i - n a ) ( a 2

1 _ 1 - 6 t 1 ) | 

< \a\-bl\V\aU-bU\. 

Easily we can show, (5.19) holds in case II, and so we also get (5.20). Similarly 
we can prove (5.20) in case III. And in case IV, a\ — bl

a = 0 = \a\ — b}\ = 
\aj_1—bj_1\, which also ensures (5.20) to hold. In summary, we have \a}a— b^\ < 
\aj ~ bj\ V \a\_-y — b}_1\. With the same reason, we can show, |o^ — b^\ < 
|af - &?l V |a?_x - t>?_x | - Consequently 

f dH([al al], K ^ ] ) < m a x { ^ - i . Ki}> 

{ K^ = dH{[aU, a?_i], [bU, &?_i])> Kt = dH([a}, a2], [b], 6?]). 

So £>(A, B) = V { 4 ( A a , -Ba )}= V {dii(Ai/n, Bi/n ) } , which implies 
0 < a < l i=0 

(i) by (5.17). 

(ii) 4 C 5 = > V i € {0, l , . . . ,n} , X/nC£?i/„ . So Vi G {0,1, . . . ,n}, [a|, a?] C 
[&*, &?], i.e. &J < a,1 < af < b2. Conversely, Va G [0,1] : a G [(i - l)/n, i/n]. 

Using (5.19) we obtain, [al
a, a?a] c [b^, b^} holds, that is, AaCBa • So ACS . 

• 
By the definition of J^(M) and (5.19) we can get the following conclusion. 

R e m a r k 5.1 Let AG ^ " ( K ) . Define the interval valued function / / : 

If (a) =Aa (a 6 [0, 1]). Then / / is uniformly continuous on [0, 1], that is, Ve > 

0, there is S > 0, so that Vai, a2 £ [0,1], |ai — CK2I < 8 =>• dn{Aai, Aa2) < e-

In fact, for each A= ([a^, a£]; aQ,...,aJl_1, a ^ ! , . . . , ^ ) G ^o"(M), it is 
no harm to assume that a\ < o^, a^ < a^. For arbitrary e > 0, choose 
5 = min{l/(2n), e/{2nal

n - 2na\), e/(2nal - 2na2
n)}> 0. Vo-i, a2 G [0,1] : 

|ai — a2\ < 5. There is i e. {l,...,n — 1}, so that a i , «2 6 [(i — l) /n , (i + l ) / n ] . 
By (5.19) it follows that 

!««! - a i 2 | = (aUi ~ai-i) • I n a i - n a 2 | < n ( a ^ - o J ) • |ax - a 2 | < - . 

Similarly, \a2
ai - a2

a2\< e/2. So di/(AQl, Aa2) = K j - f l a 2 l v la«x ~ al2\ < £-

Theorem 5.5 For a given n € N, (^"(M), £>) is a completely separable 
metric space. 

Proof. It is trivial that (^"(M), D) is metric space. At first we prove the 

completeness of the space. Let {A[k] \k G N} C ^ " ( R ) be a basic sequence, 

that is, Ve > 0, there is K G N, so that Vfci, k2 > K, D(A[h], A[k2})< 

file:///a/-bl/V/aU-bU/
file:///a/_-y
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e/2, where A[k] = {K{k), a2
n{k)}; aj(fc), ...,aj,-i(fc), «Li(*0> ...,a2

0{k)). By 
Theorem 5.4, for k\, fc2 > K, i = 0,1, . . . , n, it follows that 

dH([aJ(fci), ^(fci)], [aJ(fc2), a?(fc2)])< | . 

So Vi G {0,1,.. . , n}, we get 

K ( * i ) - « i ( * 2 ) | < | , | a ? ( * i ) - a ? ( f c 2 ) | < | . 

Therefore for each i = 0,1, ...,n, both {a\{k)\k G N}, {a?(fc)|A; G N} C K are 
basic sequences. There are a], a2 G R, so that lim aj(k)=aj, lim a?(fc) = 

k—>+oo /c—>+oo 

a?. Moreover, Vfc G N, aj_i(&) < a\{k) < a2(k) < a2^{k) => a}^ < a} < 

a2 < a2_Y. Let A= {K, a2
n}; ai , . . ,aj ,-i> a2

n_x, ...,a
2). Then Ae ?&(R). So, 

there is m G N : Vfc > m, Vi G {0,1,. . . ,n}, we have 

K ( * ) - a J | < | , l « i ( * ) - « i l < | . = > dH([aJ(*).a?(fe)], [ a j , a ? ] ) < | . 

By Theorem 5.4, when k > m, we have 

n 

D(4fc], 2 ) = V {<**(&(*)> a?(fc)]' K1' «?])}<£' 
i=0 

that is, lim A[fc] =A . Thus, ( ^ ( R ) , D) is complete. 
A:—>+oo 

Next let us prove the separability. Define the set C as follows: 

C = {L= {[In, ln\; lo,-..,ln_x, ln_x,...,ll) G ^ o c W | 

IQ, l\,..., ln, ln,..., IQ are rational numbers}. 

Obviously, C C ^ " ( K ) is a countable set. And given arbitrarily AE T^{R), 

let A= {[an, an}; aQ,...,an_1, an_1,...,a
2
)). Ve > 0, choose rational numbers 

ll,...,ln, l2
n,...,ll satisfying ll

0 < • • • < l\ < l\ < l2
n_Y < ••• < I2, and Vi G 

{0,1,.. . , n}, k = 1, 2, Kfe - J* | < e. Let 2 = ([£, l2
n}; Zj,..., Z ^ , d , . . . , i§). By 

Theorem 5.4, LG J ^ ( R ) , and ^ ( [ a j , a2}, [ij, l2})= \a\ - Zj| V \a2 - l2\ < e. 
Then 

n 

D{A,L) = \J{dH{[a\,a2], [l\,l2])}< e, 
i=0 

that is, C is dense in ^ " ( M ) . So J^™(R) is separable. Hence (Ĵ ™ (R), £>) is a 
completely separable metric space. • 

Theorem 5.6 Suppose U C foc(R). JTien i/ie following conclusions hold: 
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(i) U is bounded if and only if there is a compact set U C R, so that 

VXGW,Supp(X)cC/ ; 
(ii) U C ^ " ( R ) is a compact set if and only iflA is bounded and closed. 

Proof, (i) Suppose that U C .Foc(R) is bounded. And choosing AG U, we 

imply, there is a M > 0, such that V Xe U, D(A,X) < M. Assume that 

Supp(A) = [aj, O,Q], and set U = [aj — M, a% + M], then U C R is a compact 

set. Moreover, V X€ U, if let Supp(X) = [xj, x%\, we have D(A, X) < M, i.e. 
dH([al, al], [xl, xl})= | a J - x J | V | a g - ^ | < M. So a\-M < xj < xg < ag+M. 

Thus Supp(Z) C [aj - M, a§ + M] = £/. 

Conversely, it is no harm to assume U = [-M, M] C R is a symmetrically 

bounded and closed interval, so that V XG W, Supp(X) C [—M,M]. Give 

AG U. Then V X& U, if let Aa= K , a„], X Q = [^L ^a] for e a c n a G [0, 1], we 

have A a , X a c [-M, M]. So 

dHCL,Xa) = K - xi\ V \a2
a - x2

a\ < (\ai\ + |a£|) V (\a2J + \x2
a\) < 2M. 

Therefore, D(A, X) = V {dff(A«, Xa)} < 2M for each XE U, that is, U 
a<E[0,l] 

is bounded. 

(ii) Assume that U C .7-0™ (R) is bounded and closed. It suffices to prove U 

is sequentially compact. Let {A[k] \k € N} CM, and write 

A[k] = ([<£(*), a* (fc)]; aJ(A:),..., a ^ f c ) , a ^ f c ) , . . . , a§(fc)) (fc = 1,2,...). 
(5.21) 

By (i), there is a compact set [ / c l , such that {a^(fc)|fc £ N} C f/ (t = 
0,1, ...,n; j = 1,2). So there is convergent subsequence of {al(k)\k G N} for 
each i = 0,1, ...,n; j = 1,2. By the method of choosing subsequences, it is no 
harm to assume lim a\{k) = a\. Using (5.21) we obtain a}_1 < a\ < a2 < 

k—>+oo 

a|_i fori = l,. . . ,n. So A= ( K , o?n}; a o V - X - i , a^_1; ...,a§)e ^™(R). Since 

U is closed, AG U. Thus W is sequentially compact. 

The necessity is obvious. • 

By Theorem 5.6 ( ^ " ( R ) , D) is a locally compact space. Thus, by Theorem 
5.5 and Theorem 5.6 the properties of symmetric polygonal fuzzy numbers are 
also similar with ones of triangular or trapezoidal fuzzy numbers. And the 
conclusions in [55] are generalized to general cases. 

Theorem 5.7 Let U C FQ™(R) be bounded and closed. Then {Aa | Ae U) 
is equicontinuous with respect to a, that is, Ve > 0, there is 5 > 0, so that 

Vai, a2 G [0,1], and for each A£ U, \a\ - a2\ < <*,=>• dH(Aai, Aa2) < £• 
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Proof. For any £ > 0, by Ve/3(A) C ^ " ( R ) we denote e/3—neighborhood 

of given A . By Theorem 5.6, U is compact, consequently by the fact that 

U~ H/3(-4) 3 W w e show that there are TO G N and Ai, • ••, Am& M, so that 

U Ve/3(Ai) D W. By Remark 5.1, there is J > 0, such that Vi G {l , . . . ,m}, 
i=i 

and Vai, a2 e [0,1], |ai - a2 | < <J, =>• dij((Ai) a i , (A)a 2 )< e/3- Therefore, 

VAeW, let 70 € { l , . . . ,m}, AG Ve/3U»0)- Thus 

dii{Aai, Aa2 ) < dH(Aai, (Ai0)ai)+dH{(Ai0 Jan \AiQ)ct2) 
r^i /-VJ £ £ £ 

+dH{(Aio)a2, Aa2 )< - + - + - = e. 

So {Aa I A& U} is equicontinuous with respect to a. D 

5.2.2 Polygonal line operator 

Let us discuss now the approximation capability of ^ Q " ( R ) to fuzzy num­

bers in J r
0c(R). Choose A& .Foc(R), a n d n € N. Partition [0, 1] into n equal 

parts: 0 < 1/ra < • • • < (n — l ) /n < 1. Let A / , ^ [a*, a?] for i G {0, l , . . . ,n} . 

Link the points (aj, 2(aJ)) , . . . , (an, A (a*)), (a£, A ( O ) , . . . , (ag, A(ag)), by 

line successively. And a polygonal line denoted by tAn (•) is established. Obvi­

ously, fuzzy number i^lnG ^ " ( R ) . tAn is called n—symmetric polygonal fuzzy 

number with respect to A . The membership curve of such a n—polygonal 

fuzzy number is shown in Figure 5.2. We can show, Ker(A) = Ker(tAn) = 

[an, an], Supp(^l) = Supp(iAn) = [aj, ag]. Moreover 

«o < «i <•••<<<< < < _ i < • • • < ag; 

Mi G {0,1,. . . , n} , A i / n = (k4 n ) i / n . 

2/ 

(5.22) 

Figure 5.2 Illustration of polygonal fuzzy operator 

Let n G N, define the operator Zn : T0c(R) —> ^o"(R) as follows: 

VAe.Foc(R), Z „ U ) = L 4 „ . 
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Zn{-) is called a n—polygonal line operator. 

Theorem 5.8 Let A, B€ .Foc(R), and n € N. Write 

Zn{A) = ( K , a2
n\\ al,...,a}n_x, a2_1 ) . . . ) a2) ) 

Zn(B) = (lb1
n,bl];bl,...,bll-1,bl_1,...,bl). 

Then the following conclusions hold: 

(i) Z „ U ) C Zn(B) ^=* V* G {0,1, . . . ,n}, [a], a2} C [ftj, &?]; 

^ A C S i/ and onfy i/Vra e N, Z„(A) C Zn(B); 

(Hi) If m G N, f/ien D(Zm(A), Zm(B)) < D(A, B). Moreover, we have, 

lim D(A, Zm(A)) = 0. 

Proof, (i) Since Z „ U ) , Zn(f?) € ^o"(M), (i) is directly obtained by Theo­
rem 5.4. 

(ii) Let ACS . Then Va G [0, 1], 2 aC£?Q . If i = 0,1, . . . , n, Ai/nCBi/n, i-e. 

[oj, a?] C [6J, &?]. (i) implies Zn(A) C £„ (£) . 
Conversely, for each /3 G [0, 1], let 

Ap= [a}{(3), a2(P)}, B?= [b1^), b2((3)}. 

If A<£B, there is a G [0, 1] : Aa£Ba • Then by Aa= [a1 (a), a2(a)}, _B«= 
[61(a), 62(a)], we have, either a1 (a) < bl{a) or b2(a) < a2(a). It is no harm to 

assume o}(a) < bl{a), and there are x0, yo G R : a =A(xo) =B(yo)- Then a 
is a cluster point of the ranges of A(-), B(-), respectively. And a1(-), &1(-) are 
increasing and right continuous. Hence there are m G N, and j G {l , . . . ,m}, 
such that a G [(j — l ) /m, j / m ] , furthermore, a}(j/m)< 61( j /m). Thus, 

Zm(A) <t Zm(B), which contradicts the assumptions. So ACS . 
(iii) By Theorem 5.4, it follows that 

~ ~ m ~ ~ 
Z?(Zm(A), ^m(B)) - V {dH(Aj/m, Bj/m)} 

3=0 

< V {dH(Aa, Ba)}=D(A, B). 
a€[0,l] 

Since AG .Foc(R), and let Ao= [c, d], Ker(A) = [a, 6], we can easily show, 

A(-) is strictly increasing on [c, a], and strictly decreasing on [b, d]. For each 

a G [0, 1], let Aa= [a1 {a), a2(a)], and Zn(A)a = [aj,(a), o^(a)]- There is 
AT G N, so that Vn > AT, there exists ln G N : a G [(Zn - l ) /n , Zn/n]. Thus, by 
the facts that 

A(l„-l)/n= Zn(A)(ln-l)/n ^AaDAln/n= Zn(A)ln/n, 
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and Zn(A)in/n C Zn{A)a C Zn(A)(in-i)/n, we can get 

dfl(AQ1 Zn(A)a) 

< dH(Aa, Ain/n)+dH(Ain/n, Zn{A)in/n)+dH{Zn{A)i 

= dH(Aa, Ain/n)+dH(Zn(A)in/n, Zn(A)a) 

< dH(A(ln-l)/n, Aln/n)+dH{A(ln — l ) / n ; Ain/n ) 

= 2-dH(Aln/n, A(ln-l)/n)-
(5.23) 

Since ln/n —> a, (/„ —l)/n —• a when n —> +00, and Zn/n —(Z„ — l ) /n = 1/n, 
using Theorem 5.7 we can show, Ve > 0, there is a no € N, so that for each 
n > n0, dH(Ain/„, A(/„-i)/„ )< e/2. By (5.23), dH(Aa, Zn{A)a)< e. Hence 
when n > no it follows that 

D(A, Zn{A))< sup {dH(Aa, Zn(A)a)}<e. 
a€[0,l] 

Thus, lim D(A, Zn(A)) = 0, which implies (iii). • 

Next we illustrate the approximation of J^(M) with arbitrary degree of 

accuracy to each element in ^ ( R ) by two concrete fuzzy numbers A, B defined 
respectively as follows: 

exp{- (^) 2 } , 0<*<4, 

0 otherwise; 

( l - ( l - x ) 2 , 0 < a ; < 1, 

1 < x < 2, 

A(x) 

B {x) = < 
1, 

Ax — x2 

0, 

2 < x < 4, 

otherwise. 

Then for n G N, and give the error bound e > 0, by (5.23) we can show 

D(A, Zn(A))< 2 • V {dH(Ai/n, 2(i-i)/„ )} 
i = l 

<4-( \/ JV 1 1 1 " - 1 ^ - 1 ) -V lnn - ln i ) ) , 

D(B, Z„(B))< 2 • V {dH{Bi/n, B(i-l)/n )} 

= 2-V{|tAIEI-Ap:|}' 
i=i U V n V n IJ 

(5.24) 
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where Int(ne 1) means the integer part of ne 1. In (5.24) we can imply the 
following inequality: 

V < ^/ln n — ln(i — 1) — i/m n — In i > 
i=Vn.t{ne~1} 

_ n r l n i - l n ( i - l ) -i 1 1 
i=lnt (ne- i ) ' - - \ / lnn- ln( i - 1) + s/\a.n-\ni> ne'1 - 1 /2m_zi_ 

(5.25) 
Since when n > 2, 2(rc - l) ln(l + l / (n - 1))> 1, using (5.25) we can show 

V {>A-V ln-}^-^-r-^3I< 
v l \ i — 1 V »J n e 1 — 1 

, . . . _ , . . . . _ _ n — 3 
=Int(ne-x) 

So if n > 154/e2 > 3, we have 3y/(n - l ) / ( n - 3 ) < e / 4 , = > £>(2; Z „ ( l ) ) < e. 

As for £?, we can imply the following facts: 

£>(£, Z „ ( B ) ) < e , ^ = ^ n > —; D(B, Zn{B))< e, «=>• n > -^. 

Therefore, with different error bounds e's, we can get the corresponding n's for 

Zn{A) approximating A, and Zn(B) approximating B, respectively, as shown 
in following Table 5.1 

Table 5.1 Values of n's corresponding to different error 

0.1 

A 1.54 x 104 

B 200 

0.08 

2.32 x 104 

313 

0.05 

6.16 x 104 

800 

0.04 

9.63 x 104 

1250 

bounds e's 

0.01 

1.54 x 106 

20000 

5.2.3 Extension operations based on polygonal fuzzy numbers 

Let us now present some novel extension operations in ^ " ( K ) , they are 
fuzzy arithmetic ' + ' , ' — ', ' x ' and '-=-', which are somewhat different from ones 

based on Zadeh's extension principle [15, 47, 62]. Let A, B£ ^ Q " ( R ) : 

A= ( K , al]; a j , . . . , ^ . ! , al_lt...,al), B= ([&*, b2
n\; 60, ...,fo^_1, ^_ 1 , . . . ,6g) . 

Define the extension operations '+ ' , ' —', ' x ' as follows, respectively: 

' A + B= ( K + &i, a2
n+bl}; aj+fe1,, . . . ,ai_i + 6i_i, a iUi+*£- i , -,a^+b2), 

A-B=([ai-b2
n, al-bi}; a j -6g, . . . ,a i_i -6j i_i , al^-b^, ...,a§-&J), 

k A x B= {[cn, cn\; c0,..., cn_1, cn_1,..., c0), 
(5.26) 
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where c], c? (i = 0 , 1 , . . . , n) are determined by the interval multiplication [6, 18]: 
-1 ^21 

assume tha t either Supp(B) C (0, +oo) or Supp(B) C (—oo, 0), define \JB 

and A-r- B respectively as follows: 

1 - (\— -ll-i- -J— —L —\ 4 ^ ~-4 1 
~~ ~~ V W"' ? J ' / ? ' ' " ' A2 ' hi ' ' " ' 7,1 J ' X ~ ' 
^ V L O n ° n J °0 ° n - l ° n - l ° 0 ' B 

If er : R — • R is a monotone function, a is extended as follows, a : T^{ 

HcW, V l = ( K , a 2 ] ; aS,. . . ,aJ,-i» a 2 ^ , . . . , ^ ) , let 

(5.27) 

a(A)=-
' ( [ ^ ( 4 ) . CT(an)]'» CT(ao)> - . °"(an-i)> °"(an-i)> - » ° " ( a o ) ) ^ i n c r e a s i n g ; 

( t ° ' ( a n) . 0 ' ( 0 n)] ; o - (ao) ) - . C T ( °n- i ) . CT(an-i)» - . °"(ao))> °"decreasing. 
(5.28) 

Suppose tha t a € R, a • ̂ 4 or A • a are the scalar product of A by a: 

a • A-
{[aa}n, aa2

n]\ aal,...,aa\_x, aa2
n_1,...,aal), a > 0; 

([aal, aal
n\; aal, ...,aal^, aa^, . . . , aa j ) , a < 0. 

(5.29) 

Obviously, if A, B e ^oc(K )» a G K, then A + B, A - B, A x B, a • Ae 

J o " ( R ) . Further, if Supp(B) C (0, +oo) or Supp(B) C ( - o o , 0), A + BG 

^ o " ( R ) - B y (5.26)-(5.29), A + B, A - B are identical with ones based Zadeh's 
extension principle in [18], and J ^ " ( R ) is closed under non-linear operations 
' x ' , '-^' and a(-), etc. These facts make it possible in J ^ " ( R ) to realize some 
nonlinear fuzzy operations, fast and accurately. Take ' x ' as an example: let 

A= ([0,1]; - 1 , - 0 . 5 , 1 . 5 , 2 ) , B= ( [ -0.5,0.5] ; - 2 , - 1 , 1 , 2 ) . 

il a\ a\ a\ a\ o?0 b\ b\ b\ b\ b\ b\ c\ c\ c\ c\ c\ 

Figure 5.3 The multiplication A x B of A and B 

A 
Then C = A x B = ( [ -0 .5 , 0.5]; - 4 , - 1 . 5 , 1 . 5 , 4 ) , which is shown in Figure 

5.3. 
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If A, B .Foc(R), by A + B, A-B, Ax B, ,4 -̂  5 , we denote the extended 
addition, substraction, multiplication and division between A, B based on 
Zadeh's principle [18], respectively. By (5.26)-(5.29), we have 

A + B=A + B, A- B=A - B 

for each A, BG ^g"(M). Let us show now the respective relations between + 

and +, — and —, x and x through the operator Zn(-). 

Theorem 5.9 Let A, B£ f0 c(K), n £ N. Then we have 

(i) Zn{A) = Zn(B) <«=• Vi e {0,1, . . . ,n}, Ai/n=Bi/n^=> Zn(A)i/n = 

Zn(B)i/n for each i £ {0,1,.. . , n}. 

(ii) Zn{A + B) = Zn(A) + Zn(B); Zn(A - B) = Zn{A) - Zn(B); And 

Zn (Ax B) = Zn(A) x Zn(B). 

Proof. By (5.17) and Theorem 5.4, if C, £><£ .?o"(K), t h e n w e have, 

C=D<S=> Vi G {0,1, ...,n}, Ci/n=Di/n, by which (i) follows directly. 

(ii) At first easily we can show, A + B, A - B, A x B£ T0c(R). By (5.24) 
and (5.26)-(5.29), Vi G {0,1, . . . ,n}, using the conclusions in [18], we have 

Zn(A + B)i/n = (A + B)i/n =Ai/n + Bi/n= Zn(A)i/n + Zn(B)i/n. (5.30) 

Therefore Zn[A + B)i/„ = (Zn(A) + Zn(B))i/n which implies Zn(A + B) = 

Zn[A) + Zn(B) by (i). Similarly, Zn(A - B) = Zn{A) - Zn(B). According to 
(5.25), we can prove the following equality: 

(Zn(A) x Zn(B))./n= Zn(A)i/n x Zn(B)i/n. 

Hence similarly with (5.30), we have, Zn(A x B) = Zn(A) x Zn(B). • 

Obviously, if A, B£ .Foc(R) and either Supp(B) C (0, +oo) or Supp(B) c 
(—co, 0), then we have for each n £ N : 

Zn(A + B) = Zn(A) + Zn(B). 

The symmetric polygonal fuzzy numbers introduced in this section are gen­
eral cases of triangular and trapezoidal fuzzy numbers. Moreover, their struc­
tures and representing forms are simple, and can provide with the approxi­
mations to a class of bounded fuzzy numbers, with any accuracy. Also we 
construct a novel fuzzy arithmetic that is convenient to realize. If we derive 
fuzzy neurons and fuzzy neural networks based on such a fuzzy arithmetic, 
the corresponding systems will possess strong learning capability. And fuzzy 
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information processing can be realized, adaptively. The future research topics 
related include constructing a novel class of fuzzy neurons and fuzzy neural net­
work based on symmetric polygonal fuzzy numbers. That will be an attractive 
field related to fuzzy neural networks and their applications. 

§5.3 Polygonal FNN and learning algorithm 

We call such a network system to be a polygonal FNN, that its connection 
weights and thresholds belong to ^ " ( R ) , its internal operations are based on 
(5.26)-(5.29). A polygonal fuzzy number is determined by finite points with 
some order relations. So the objective to study the learning algorithms related 
to such FNN's is to seek finite real numbers with the given order relations. Sim­
ilarly with Chapter IV, we in the section employ the gradient descend method 
to develop another fuzzy BP algorithm for the polygonal FNN's. Since the in­
ternal operations in a polygonal FNN are defined by (5.26)-(5.29), the interval 
arithmetic [62] can be utilized to analyze the I/O relationships of the FNN's. 
By Algorithm 4.1 in §4.2, the first step to this end is to define a suitable error 
function E(-) and to develop some computation methods of partial derivatives 
of E with respect to the adjustable parameters. The basic tools to do this are 
the V — A function and Theorems 4.3-4.5 and Corollary 4.3. At first let us 
analyze the I/O relationships of polygonal FNN's and their expression forms, 
thoroughly. 

5.3.1 Three layer feedforward polygonal F N N 

In the subsection we focus on the single input and single output (SISO) 
polygonal FNN's with one hidden layer, whose structure is as follows: the 

output neuron is linear, the output fuzzy set is Y, and all hidden neurons 
have the transfer function a : R —> R. Figure 5.4 illustrates the topological 

architecture of such a FNN, whose input signal X is a polygonal fuzzy number 

or belongs to !FQC(M.). When X& foc(K)i the input neuron has the polygonal 
operator Zn(-). 

X~ *°\~ *® 

input layer hidden layer output layer 

Figure 5.4 SISO three layer feedforward polygonal F N N 

The fuzzy connection weights Uj, Vj and fuzzy threshold Qj in Figure 5.4 
all belong to JFQ™(R). In the following of the section we assume <x to be contin-
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uous sigmoidal function, and to be differentiable on R. The I/O relationship of 
the FNN in Figure 5.4 can be expressed as 

~ ~ p ~ ~ ~ ~ 
Y= Fnn{X) = 5 ] v r er(Uj • X + 6 , ) , (5.31) 

where the extension operations related are defined by (5.26)-(5.29). So the 

output fuzzy set Y€ J^{M). For j = 1, ...,p, set 

— ^L^n ) x n j , ^ 0 ' •••» ^n— 1J ^ n — 1 ' " ' i ^ O / ' 

^•= ([«iC7).«nC7')];«oO').-.ui-iC7').«n-iO').-.«o(i))» 
(5.32) 

V j = ( K ( j ) , ^ ( j ) ] ; ^ ( j ) . - , « i - l ( j ) . V n - l C 7 ) . - . « o ( j ) ) , 

6 i = ( [ 6 i i ( j ) , ^ a ) ] ; ^ O - ) , - , ^ - i ( j - ) , ^ - i O - ) . - . 0 § ( j ) ) -

For simplicity, we assume the input X of the polygonal FNN to belong to 
•7=0"(R+) or J"0c(R+)- Denote 

£[*] = j > n n : Hc(^+) ^ Hc(M) Fnn(X) = £ Vj • Cl{U j • X + Sj), 

•ZM = {r»n : ^0c(K+)—>^3?(R) Tnn(X) = E F i - ^ - Z n ( X ) + Q j ) 
~ j=1 

n, p eN, Vj, Uj, Oj€ HcW}-

Obviously, given Fnn €P[cr], then F„„ corresponds to a SISO three layer feedfor­
ward polygonal FNN, whose transfer function in the hidden layer is a, and the 
neurons in input and output layers are linear, input signal belongs to .7g"(]R+), 
and output signal belongs to JFQ™(M), internal operations are defined by (5.26)-

(2.29). If Tnn EZ[c], also Tnn corresponds to a SISO three layer polygonal 
FNN, with the input including in J7

0c(M+), output in ^ " ( K ) , and the input 
neuron having the polygonal line operator Zn{-). 

Theorem 5.10 Let p e N, and Uj, Vj, SjG Hc(R) U = l . - , p ) - Then 
for each Xe J^(M.) : X= ([x*, x2

n\; x j , ...,xl
n_x, x2

n_x, ...,£§), the following 
facts hold: 

Fnn(X) =EVj- o-{Uj • X + Oj) = ([ri(xl,x2
n), ll(xl

n,xl)]; 

7oOEo>a;o)> •••,7 r l_i(x r l_1,xn_1), ln~i\xn,-iixn-i)i •••i7o(xo>xo) )> 
(5.33) 
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(5.34) 

where ^{x\,x2) (k = l,2;i = 0,1, ...,n) can be expressed as 

IrtKxix^), jf(xlxf)}= [E(W(J>(«KJ))}AK(J>(^0'))}) 

E(K(j>WC?))}vKo-y(«?U) 

And sj(j), s2(j) are defined as follows: 

( s}(j) = mm{ul{j)x\, u\{j)x2, u2{j)x}, u2(j)x2}+8}{j), 

\ s'fti) = mflx{«i(j>J, «JC/)i?, u2(j)xj, u2(j)x2}+6?(j). 

Proof. For j = 1, ...,p, let T^X) =Vj- • a(Uj • X + Qj). If we denote 

Uj • X + Qd= {[si(j), 4 ( j ) ] ; aSC?') .- ,^-iO') . *n-iO').-.*o(j ')), 

and [cj(j'), c | ( j)]= ["i(j)i U!(J)] x [^h ^iL then using the interval multipli­
cation and (5.26) (5.32) we have 

4 ( i ) = min{uKj>iJ M K J > | , u2{j)x\, u2(j)x2}, 

c?(j) = max{uHj>i , «K.?>?; «?(•?>*, u f ( j>?} . 

By (5.26), sj(j) = c?(j)+0?(j) (i = 0,1, ...,n; 9 = 1,2). So using (5.27) we can 

calculate Tj(X) as 

^ • (Hsi(j)), a(s2
n(j))]; aistij^-Msi-iti)), <K*n-i(j')), - , *0»§(j)))> 

where CT(S?(J)) > 0 (Q = 1,2). Thus for i = 0,1, . . . , n, (5.26) (5.27) (5.32) imply 

\lj(x},x2), 7 ? ( * h ^ ] = E (K( j )> v2(j)]x[a(sj(j)), a(s2(j))]) 

= E [ {« ! ( j> (4 ( j ) ) }A{^( j> ( S f ( j ) ) } , {v2(j)a(sj(j))}v{v2(j)a(S
2(j))}]. 

Therefore we can calculate the closed interval \y}(x\,x2), 7?(a;J,a;?)] as 

h\{x\,x*), l2{x\,x2)]= [ E { ^ ( j ) a ( S K j ) ) } A { ^ 0 > ( S ? ( j ) ) } , 
L i=i 

EKOX^O-))}v{«?0>(a?o-))}l, 

which implies the following equality holds by (5.34): 

tnn\X) = [\jn(xn,Xn), Jn{Xn,Xn)\; 

lo(xh,xl),...,'ri_1(xi_1,xl_1),'y
2
l_1{xll_1,xl_1),...,^(xl,x2

))). 
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The theorem is proved. • 

5.3.2 Learning algorithm 

Next let us develop a fuzzy BP algorithm for the fuzzy weights and thresh­
olds of the polygonal FNN's. Similarly with Algorithm 4.1 (see also [39]) we 
at first define a suitable error function E, then calculate the partial derivatives 
of E with respect to all adjustable parameters. And finally establish some 
iteration schemes of the parameters. 

Given the fuzzy pattern pairs (X(l) , O(l)) , • ••, (X(L), 0{L)) for training 

the FNN. That is, when the input of the polygonal FNN is X{1), the desired 

output is 0{l), while Y(l) is the real output. Thus, Y{1) = Fnn(x{l)), where 

I = 1,...,L. In the following the fuzzy weights Vj, Uj and fuzzy threshold 

Qj are adjusted, rationally, so that for each I = 1,...,L, we have, Y(I) can 

approximate O(0- To this end, for / = 1,..., L, let 

X(l) = {[xi(l),xl(l)}-,xh(l),...,x^1(l),xl_1(l),...,x
2
0(l)), 

Y(i) = ([yi(0.i/S(0];»S(0,-,J/i-i(0,^-i(0,-.^(0), 

5(0 = (K(0,^(0];oS(0.-. 0^(0,^-1(0,-.og(0)-

For convenience of computing the partial derivatives related to the error func­

tion, we define a metric DE between X and Y-

DE{X, Y) = (Y,{dE{[x\, *?], [yl yj]))2f-
i=0 

where fuzzy sets X, YE ^ " ( R ) , they are 

"V" ( 0 " 1* * T* T* T* T* 1 

?= (fe/i, !/nl; »o,-,i/i-i, i/S-i,-,»o)-

By the equivalence between d# and O?.E, and Theorem 5.4, we can get, the 
metrics DE and £> are equivalent. Define the error function E as follows: 

-. L .. L n 

s = î (̂5(o,r(o)2=^E(E{ (̂K(o,o?(o], mum))2)-
1=1 1=1 i=0 

(5.35) 

Obviously E1 = 0 if and only if for each I = 1,..., L, we have, O(0 =Y"(0- Since a 
symmetric polygonal fuzzy number can be determined by finite real parameters, 
we can develop some iteration schemes to update these parameters to get a new 
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polygonal fuzzy number. Thus, an iteration learning algorithm for the fuzzy 
weights and thresholds can be established. 

We write all adjustable parameters w*(j), v?(j), 0?(j) (i = 0,1, ...,n; j — 
1, ...,p; q = 1,2) as a vector w, consequently the error function E in (5.35) can 
be expressed as E(w), where 

w = (i4(l),...u§(l),...,t4(p),...,tig(p), ^( l ) , . . . ,v§( l ) , . . . , 

^ (P) , - ,«§(P) ,^(1) , - ,<?§(?) ) 

= (»!,.. . ,%). 

Theorem 5.11 Lei E be an error function defined by (5.35). Then E = 
E(w) is differentiable almost everywhere (a.e.) in M.N with respect to Lebesgue 
measure. Moreover, for I — 1,...,L; i = 0,l,...,n; j — l,...,p, if let 

(tj(l) = ol(l)-yj(l), 

t?(0 = o?(0-i/?(0; 
T](j,l) = a'(S](j,l))vj(j)\0T(v}(j)), r?(j-,0 = a'(sKj,l))vj(j)loT(-v}(j)), 

TUJJ) = <?'(sl(j,l))v?(j)\or(-vf(j)), Ti(jJ) = a'(sKj,l))vf(j)lov(vKj)); 

MoJ) = (KO>J(0> A KO>H0})-(KO>?(0} A {«?(J>?(0»; 

Ai(j, 0 = (K(j>H0> v K(j>J(0»-(KO>?(0} v {«?0>?(0»; 

Si(i, j , 0 = E lor((-l) f cA i(j ,Z))lor((-l)«+1x i
f c(0)^(0; 

fc=i 

S f t U . O = E lor(( - l ) 3 - f cA i ( j ,0) lor(( - l )% f c ( / ) )^(Z) . 
fc=i 

(5.36) 
VFe /lave i/ie following partial derivative formula for each i = 0,1, ...,n; j = 
l,...,p\ q = 1,2 : 

« ^ y - E * f (0 ( lo r ( -^ ( j ) ) C T (4 - 9 ( j , 0 )+ lo rK( j ) ) a ( S f ( j , 0 ) ) ; 

(ii) a f̂(7) = £ ( 5 ^ ' ^ • (*J(OrJ(j.O + *?(0r?(j'.0) 

+S2(i)j,o-(tj(0r?0-,0 + *?(0rj(j,0)); 
<9E m / 2 N 

R ^ y = g(i:it?(01or((-l)«+2-fc«?(j))t;?(j))^(^(j-,0)-

Proo/. Similarly with Theorem 4.6 E = E(w) is differentiable a.e. in RN 

with respect to Lebesgue measure. To show (i)-(iii), since the proofs for (i) 
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and (iii) are similar with one of (ii), it suffices to prove (ii). For I = 1,..., L; i 
0,1, ...,n, we have 

{dE{[o]{x),c?S)l [yHl),yf{l)])}2= (oHl)-yHl))2+(oUl)-y?(l))2, 

By (5.35) the definition of E, it follows for q = 1,2 that 

BE 1 A d 

{E{(oHi)-yim2+(ol(i)-yl(i))2}}) 

(2.37) 
Theorem 5.10 implies the following equalities: 

o\{i) = E (vJUXsUfJ)) A « J 0 > W 0 V ) ) ) , 

°?(0 = £ K 2 0 > ( ^ ( J ' , 0 ) V ^ 0 > ( S ? ( J ' , / ) ) ) . 

where sj(j',l), s?(j',l) can be expressed as 

f *2(/> 0 = «J(/)*K0 A «J(j-')x?(0 A u1{j')x\(l) A «f (/K2(/) + ej(j'); 

I W , 0 = «J(i')^(0 v«?(/)*?(0 v«?0")^(0 v«?tf>?(0 + 6»?(j'); 

So considering Corollary 4.3 and the fact sj(j, I) < sf(j, I), we can show 
(5.38) 

^?(j ,0 0*jaO' 
t*(j) ( lor( -^( j ) )^(^0 ' , 0 ) ^ f e f + l o r ^ O O K t f t t 0 ) ^ 7 # ) ^ f ( j ) 

Similarly it follows that 

do2S) 
du\(j) -vf(j) lor(-vj(j)y(s$ti,l)) dul{j) 

+ \ov(vi(j))a'(sKj,l)) 

(5.39) 

du?(j)\-
(5.40) 



Chapter V Polygonal Fuzzy Neural Networks 229 

For q = 1, 2, by (5.39) (5.40) we get 

= <T'(sl(j,l)){tl(l)v}(j)\ov(vj(j))+t^l)vUj)\ox(-vHj))) 
ds}(l) 
dul(j) 

+a>m, I)) (t}(l)vHj)lov(-vl(j)) + mvf(j)\oT(vUj))) - ^ 

= (tj(0rjao + ̂ (0r?0\0)^ | | + (tj(0ila0 + ̂ (0rf(i.0)^||-
(5.41) 

Since sj(jj) = {«J( j>J(0}A{«?0>KO}AKCj>?(0}A{«?( j )a :?(0}, by 
Corollary 4.3 it follows that 

H | | = l o r ( A i ( j , / ) ) l o r ( ( - l ) % ? ( 0 K 1 ( j ) - ^ ( i ) ) ) ^ ( 0 

+ lo r ( -A i ( j , 0 ) l o r ( ( - l ) ^K0(«J ( j ) -«?0 - ) ) )*K0-
(5.42) 

Since uj(j) < u?(j), we can write (5.42) as 

H j ! = ^ l o r ( ( - l ) f e A l ( j , 0 ) l o r ( ( - l ) 3 ^ 4 ( / ) ) ^ ( Z ) . (5.43) 

With the same reason we have 

H | | = ^ l o r ( ( - l ) 3 - f e A i ( j , 0 ) l o r ( ( - l ) % ? ( 0 ) ^ ( 0 . (5.44) 

We replace dsj^/du^j), dsf^/dujij) in (5.43) (5.44) into (5.40), and re­
place the result into (5.37), (ii) is ensured. • 

To develop the learning algorithm for the polygonal FNN in (5.31), the first 
step is to define iteration schemes for parameter vector w, i.e. the iteration 
laws of u^(j), Vi(j) and #f(j). Based on Algorithm 4.3, the learning rate rj 
and momentum constant a are improved, so that they are the functions of the 
iteration step t. Let 

r, = r,[t] = Po • p{Ew[t})= ; ° / 2 ; a = a[t] = _| V U ; | , (5.45) 
||V£(w[t])|| £|AE(w[fc]) 

fc=i 

where A£(w(t])= E (w[t]) - E (w[t - 1]) (i = 1,2,...), and £(w[0]) is a larger 
real number, for example, i?(w[0])= 200; w[t] is parameter vector at iteration 
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step t; and po is a small constant, such as po = 0.01; V£(w[t]) is gradient 
vector of E at step t, i.e. VE(w[t])= (dE(w)/dwi, ...,dE(w)/dwiv)\w=,ty 
For i = 0,1, ...,n; j = 1, ...,p; q = 1,2, we denote 

| |VB(W[(]) | | a».0)W ' E ' | A j ; (w[ t ] ) | 
fc=l 

| |VE(w[i])|| dViUm £\AE(w[k])\ 

||V£?(w[t]) || cW.UJltJ £ | A . E ( w [ f c ] ) | 
fc=i 

(5.46) 
where g = 1,2, A«?(j)[t] - u?(j)[<] - «?0')[* ~ 1]. Av?(j)[*] = t>?(j)M -
«?0-)[* - 1], and A0?(j)[*] = ^ ( j ) M - 0?(J')[* - !]• For each j = 1, ...,p, re-
array {aJO')5-5aiO'). OnC?').-.°oC/)}. {&oO')»-»6iC7), ^ ( j ' ) . - . ^ ( j ) } and 
{co(i); •••>cn(i)i cn(j)> •••'co(i)} respectively, with the increasing order as the 
sets {ai(j), a2(j),...,a2n+2(j)}, {h(j), b2(j), . . . ,62„+2(j)} a n d {ci(j), c2(j), 
•••,C2n+2(j)}, that iS 

ai(j) < a2{j) <••• < an+x{j) <••• < a2n+2{j), 

h(j) < h(j) <•••< bn+i(j) < • < b2n+2(j), (5.47) 

Cl(j) <C2(j) <••• < Cn+l(j) <•••< C2n+2{j). 

Define Vj[t + 1], Uj[t + 1], 8 # + 1] £ ^o"(K) respectively as follows: 

£,-[* +1] = ( K ( i ) [ i +1] , u£(j)[* +1]] ; 

«S0')[* + 1]. - . «n - l0 ' ) [* + 1]. «n-lC/)[* + 1]. ->«o(j)[* + 1]), 

v:i[* + i] = (KC?)[* + i ] ,^C/)[* + i]]; 
^(j)[t + i],-.«i_x(j)[* + i].^-iO')[* + i].-.vgO')[* + i]). 

e j[t + i] = ([0i(j)[* + i] ,^(j)[* + i]]; 

6>J(j)[* + i ] , -^i- i ( j ' ) [ t + i].^-iC?')[* + i],-.<?§0')[t + i]), 

where uf (j), vf(ji), #f (j) at the step t+1 are determined as follows, respectively: 

«i(j')[* + 1] = Ot+iO'). «?0')[* + 1] = fl2n+2-i(;'). 

Vi = 0,1, ...,n, { vl(j)[t + 1] = 6<+i0)» ViU)[t + 1] = 62n+2-i(j), (5-48) 

*i 0')[* + 1] = Ci+lU), %U)[t + 1] = C2n+2-<(j)-
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Thus, we can get the fuzzy weights Uj[t + 1], Vj[t + 1] € ^ " ( K ) , and fuzzy 

threshold Oj[t + 1] G J o " ( l ) (j = 1, ...,p) at the iteration step t+1. Now we 
utilize (5.46)-(5.48) to develop a fuzzy BP algorithm. 

Algorithm 5.2 Fuzzy BP algorithm with variable learning rate and mo­
mentum constant. ^ ^ 

Step 1. Randomly choose initial fuzzy weights and threshold: JJj [0], Vj [0], 

&i [°] U = !» - . P ) , and put £ = 0. 
Step 2. For j = l,. . . ,p, let 

' Uj[t] = (KO0[t],^(j)[t]];t4(j)[t],...,<_1(j)[*],^-iO')[*],"-.^(j)[*]), 

• £;[*] = (K(j)[*],^0-)[*]];^(j)[t].-».«i-i(j)[*],t'Li(j)[*].-".^(j)[*]), 

e,M = (K(j)W,C(i)W];^(i)W,---,^-i(i)W,^-i(j)M,---,^(j)W). 

Step 3. For j = 1, ...,p; i = 0,1, . . . , n; 9 = 1,2, complete the following value 
assignment: 

<(J)W — <{j), u?(j)[t} — <(j) , 6>?(j)M — 0j{j). 

Step 4- For I = 1,...,L; j = 1, ...,p; i = 0, ...,n and 9 = 1,2, using (5.36) 
we calculate the following values: 

tlil) (9 = 1,2), r« ( j ,0 (g = l,. . . ,4), S«(z,j,0 (g = l,2), A ^ Z ) , A ^ Z ) . 

5iep 5. By Theorem 5.11 calculate dE/du1(j), dE/dv^{j), dE/d6l(j). so 
by (5.44)-(5.46) compute uf(j)[t + 1], v?(j)[t + 1] and 9«(j)[t + 1]. 

Step £. Discriminate i > Ml or for Z = 1,..., L, discriminate D(Yi, Oi) < £? 
If yes go to Step 7; otherwise let t = £ + 1, go to Step 2. 

Step 7. Output Vj-[i], 9 ^ ] , Uj[t] {j = l,. . . ,p), and O; (Z = 1,...,L). 
In Step 6, M is a prescribed upper bound of iteration steps, £ is error bound. 

5.3.3 A simulation 

In the subsection we illustrate an approximate realization of SISO fuzzy 
inference model by the polygonal FNN's, which can be applied, efficiently in 
many real applications, such as the control for water level of a container [43], 
the control for the temperature of a smelting furnace [26] and so on. The 
inference rule base {Ri\l = 1, ...,L} consist in L fuzzy inference rules, which 
can expressed as 'IF ... THEN ...': 

Ri: IF t is X(l), THEN s is d(l), 

where Z = 1,..., L, and let L = 5 in the following. X(l) is the antecedent fuzzy 

set, 0(1) is the consequent fuzzy set, and X(l), 0(1) € ^ " ( M ) , where n = 2. 
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The membership curves of X(l) and 0 ( 0 for I = 1, ...,5 are shown in Figures 
5.5 and 5.6, respectively. 

t i £2 £3 £4 £5 

Figure 5.5 The antecedent fuzzy set of fuzzy inference rule 

+ 3/ 

Figure 5.6 The consequent fuzzy set of fuzzy inference rule 

Next we express the above antecedent and consequent pairs as input output 
pairs of a polygonal FNN, correspondingly. Thus, we can obtain the set of fuzzy 

patterns for training the FNN, that is M = {(X{1), 5(1)),. . . , (if(5), 5(5))}. 
Let t\ = s\ = 0, and i ,+ 1 — U = 0.6, s, — Sj+i = 0.4 (i = 1, ...,4) in Figures 

5.5 and 5.6, respectively. X(l) and 0(1) (I = 1,...,5) are defined, respectively 
in Table 5.2. 

Table 5.2 Training fuzzy patterns 

x(i) Oil) 
X(l) = ([0,0.1]; 0,0,0.2,0.5) 0(1) = ([0,0.05]; 0,0,0.2,0.35) 

X{2) = ([0.5,0.7]; 0.1,0.4,0.8, l . l) 5(2) = ([0.35,0.45]; 0.05,0.2,0.6,0.75) 

X(3) = ([1.1,1.3]; 0.7,1.0,1.4,1.7) 5(3) = ([0.75,0.85];0.45,0.6,1.0,1.15) 

jf(4) = ([1.7,1.9]; 1.3,1.6, 2.0, 2.3) 5(4) = ([1.15,1.25]; 0.85,1.0,1.4,1.55) 

X{5) = ([2.3,2.4]; 1.9, 2.2,2.4, 2.4) 5(5) = ([1.55,1.6]; 1.25,1.4,1.6,1.6) 

From Table 5.2, n = 2. We choose the transfer function a : R —• R as the 
following function, from which it follows that a is continuously increasing and 
differentiable on [0, +00), and is identical to zero on (—00, 0] : 

Vx e M, a{x) = < 
x>0, 

1 + x2' 

0, x < 0. 
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Figure 5.7 The error curve with changing learning rate and momentum constant 

Choose p = 30, that is, there exist 30 neurons in the hidden layer of the 
polygonal FNN. The FNN is employed to realize above SISO fuzzy relationship, 
approximately. Using Algorithm 5.1, we can get the real output of the FNN 

corresponding to X(l) {I = 1, ••-, 5), after learning of 400 iteration steps: 

y ( l ) = ([0.0103,0.1305]; 0.0061,0.0076,0.176,0.486), 

y(2) = ([0.3181,0.4603]; 0.0631,0.232,0.535,0.9238), 

y(3) = ([0.7019,0.865]; 0.3633,0.5954,0.9465,1.3336), 

F(4) = ([1.1146,1.2672]; 0.7726,1.0106,1.3413,1.6780), 

y(5) = ([1.4936,1.5646]; 1.204,1.4086,1.5698,1.7053). 

By the comparison between Y{1) and 0{l), we obtain, the polygonal FNN can 
realize the given fuzzy inference rules with high degree of accuracy. Figure 5.7 
illustrates the relation curve of E with respect to the iteration step t. 

Similarly with Algorithm 4.3, we may show the convergence of Algorithm 
5.2, whose convergent speed is as quick as ones of Algorithms 4.1, 4.3, as the 
simulation results showing. Also we can utilize GA to design some learning 
algorithms for the polygonal FNN's as in Algorithm 4.2 (see also [39, 60, 61]). 

§5.4 Universal approximation of polygonal F N N 

We may know from the simulation example of preceding section that a 
polygonal FNN can provide approximate realization of a family of fuzzy infer­
ence rules with given accuracy. Whether can the polygonal FNN's approximate 
any continuous fuzzy function defined on any compact set? That is, can the 
polygonal FNN's be universal approximators? In the section we focus on this 
problem, and study the approximating capability of the FNN's, thoroughly. 

By J:oc(M.+ ) we denote the collection of all non-negative fuzzy numbers in 

.Foc(R)- That is, V Ae •7r
0c(K+), we have Vx < 0, A(x) = 0. 
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5.4.1 I /O relationship analysis of polygonal F N N 

Let F : Tfc (R+) —> Tj£ (K) be a fuzzy function. p[a] is called to be uni­
versal approximator of F, if Ve > 0, and for arbitrary compact set U C ^o"(IR+), 

there is Fnn e V[a], so that V I S U, D(Fnn(x), F(X))< e. Similarly, we call 

Z[<J\ is universal approximator of F : 17
roc(R+) —• ^o™(K). 

Using Theorem 5.4 and Theorem 5.8 we can get, if F G P[a] (or F £ Z[a}), 
the fuzzy function F is continuous on T%£(R+) ( or ,Foc(U+))-

Theorem 5.12 Let F : f$(R+) —• F&(M.) be a fuzzy function. Then 

there exist U, V, 6G T&(K), so that F{X) =V • <r(U • X + 9 ) i/ and only 

if the following conditions hold: V X— ([x„, X„]',XQ, ...,ar^_2, a r ^ j , ...,£0) e 

F$(R+), F (X) G ̂ u"(K) A a s the following representation: 

F(X) = ([ti(xlxl),ti(xlxl)Y, 

fo[X0,X0), ••••,fn-i{xn_i,Xn_1), fn_1(xn_1,Xn_1), ...,f0{X0,X0)), 
(5.49) 

w/iere f?{x\,xf) = a{i,q)a(b1(i,q)xj + b2(i,q)x2 + i(i,q)) (i = 0,1,...,n;q = 
1,2), anda(i,q), bl{i,q), b2(i,q) and ^{i,q) satisfying the following conditions: 
Vi e {0,1, ...,n — 1}, it follows that 

(b1(i,q)b2(i,q)=0(q = 1,2); 

a(i, 1) < a(i + 1,1) < a(i + 1, 2) < a(i, 2); 

' 0 < b1^, 1) < &(i + 1,1), 62(i, 1) < b2(i + 1,1) < 0, 

6X(* + 1,2) <6 1 (*>2)<0, 0<6 2 ( z + l,2) <6 2( i ,2) , 

7(*. 1) < 7(« + 1.1) < 7(* + 1,2) < 7(*. 2), 

bl{i,l)<b2{i,2), b2{i,l)<b\i,2); 

' 0 > bx(i, 1) > fc1^ + 1.1)- &2(«» 1) > &2(* + 1.1) > 0, 

O ^ f c 1 ^ ) > 61(* + 1,2), b2(i,2)>b2(i + l,2) > 0, 

7(»,1)>7(* + 1,1), 7(*,2)>7(* + l,2), 

_ 7(1, 1) = 7( t , 2), &«(i, 1) = 69(i, 2) (q = 1,2); 

61(*+1,1) < bl{i, 1) < 0, 0 < b2(i+l, 1) < b2{i, 1) < 0, 

0<6 x ( i , 2 ) <6 1 ( t + l ,2), b2(i,2) <b2(i +1,2) < 0, 

ftH^^ftl), b2{i,2)<b\i,l), 

7 ( i , 2) < 7 ( t + 1,2) < 7 ( t + 1,1) < 7(», !)• 
(5.50) 

a(i, 1) > 0, 

a(i, 1) < 0, 
a(i,2) > 0 , < 

a(«,2) < 0 , 
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Proof. Necessity: Let F(X) = V • <r(U • X + 0 ) ( I S J$?(R+)), Using 

(5.26)-(5.29) we have, (5.49) holds for F(X) . Let 

v={[vl
n,v

2
ny,vi,...,v1

n_1,v
2

n_l,...,v
2), e=([^,^];^,...,^_1,^_1,...,^), 

^ = (K,Wn];«0. -> u n- l . ' ' 

Then we have, U • X + 9 = ( [4 , 4 ] ; cj, ...,<£_!, c2_1 ; ...,4), where [cf, c2] = 
([uj, u2} x [a;|, a;2]) + [0j, 0?]. By the interval operation laws [31, 62], cf, c2 can 
be expressed as 

c\ = xa.m{u}x], u\x\, u2xj, u2x2}+ej, 

c2 = max{«Ja;J, u\x\, u2x}, u2x2}+92. 

Since x\, x2 > 0, we have, c\ = mm.{u\x\, u\x2}+6}, c2 = max{u2x], ufx?} + 
el i.e. 

u}xj + el, uj>o, 
u}x2+6}, uj<0; 

utf + el «?>o; 
ute + eh «?<o. 

(5.51) 

Therefore, F (X) = £ • {[si, s2]; si,...,3^, s2
n^,...,s2), where sj = <r(c?) > 

0 (g = 1,2). Thus, [/^(xj,x?), ff(x},x2] = [v},v2] x [S|, S
2 ] , i.e. for i = 

0,1, ...,n, we get 

l / i W ixi)i Ji \xi J •£» ) \ 

Ws\,v2s2}, v}>0, 

[v}s2, v2s2}, v}<0< v2, 

Hsh v2s\), v2 < 0. 

(5.52) 

By the definition of f?{x\,x2) (q = 1,2) in (5.49) and (5.52), it follows for 
i = 0,1, ...,n, if letting a(i, 1) = v\, a(i,2) = vf, and 

02 a(i, 2) > 0, 
7(*,1) 

b\i,l) = < 

b1(i,2)=\ 

9j a(i,l)>0, 
•y(i,2) = < , 

e2, o ( i , l ) < 0 ; . 1 0\, a(i,2)<0. 
(5.53) 

uj, 

u2 

0 

u\, 

0 

a(i,l) > 0 , 

a(i,l) < 0, 

otherwise; 

a(i,2) > 0 , 

a(i,2) < 0 , 

otherwise; 

«J > 0, 

«?<o, 

«?<o, 
«J > 0, 

62(i,l) = . 

fo2(i,2) = < 

u], 

u2, 

0 

f 2 

u i > 

0 
v. 

a(i , l ) > 0 , 

a(i,l) < 0, 

otherwise. 

a(i,2) > 0 , 

a(i,2) < 0 , 

otherwise. 

u] < 0, 

u 2 > 0 , 

(5.54) 
u2 > 0, 

uj < 0, 

(5.55) 
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we can obtain (5.50) by (5.53)-(5.55). 

Sufficiency: By (5.50) for F(x) it follows that 

Ji \xi>xi) < fi+i\xi+i>xi+\) < fi+i\xi+iixi+i) < fi\xi-,xi)-

For i = 0,1,...,n, define vj, vf; uj, u2; 6j, 92 as follows, respectively: v\ 
a(i, 1), u? = a(i, 2); and 

7( t , l ) , a ( i , l ) > 0 , 

7(»,2), a ( i , 2 ) < 0 , 

0, otherwise; 

' 7 ( i ,2) , o ( i , l ) > 0 , 

7 ( i , l ) , a ( i , 2 ) < 0 , 

0, otherwise; 

bl{i,l), a ( t , l ) > 0 , 61(*.1)>0. 

62(i,l), a( i , l ) > 0 , 62(i,l) < 0, 

^ , 2 ) , a(i,2) < 0,^(1,2) >0, 

b2(i,2), a(i,2) < 0, 62(i,2) < 0, 

0 otherwise; 

^ ( z . l ) , a( i , l ) < 0 , ^ ( M ) < ° , 

62(i,l), a( i , l ) < 0 , b2(i,l) > 0 , 

b 1 ^ , a(i,2) > 0 , bx{i,2) < 0 , 

b2(i,2), o(t,2) > 0 , 62(z,2) > 0, 

0 otherwise. 

Using (5.50) we can show, Vi = 0,1, . . . , n — 1, it follows that 

v] < vL, < v2 
i+l *+l < v2, u] < u]+1 < u2

+1 < u2, e\ < e}+1 < e2
+1 < e2. 

(5.56) 
It suffices to show, uj < u2 (i = 0,1, . . . , n) in (5.56) because the other inequal­
ities can be proved, similarly. If a(i,l) > 0, then a(i,2) > 0. By (5.50), it 
follows that bl(i, 1) > 0, b2(i, 1) < 0. 

Case I, $(1,1) = 0 : b2(i,l) = 0 = > u2 is either b2{i,2) or 0, for if 
u2 = bx{i,2) < 0, by (5.46) we have, 61(i,2)62(i, 2) = 0, implying b2(i,2) = 0. 
Then by f}{x\,x2) < f2(x\,x2) (xj, x2 e R + ) we can get contradiction. So 
u] < u2. If b2(i, 1) < 0, then u2 is either b2(i,2) or b 1 ^, 2), which can imply, 
u\ < u2, since by (5.50), b2(z, 2) > 0 and b2(i, 1) < bx(i, 2). 

case II, 61(i, 1) > 0 : Using (5.50), we have b2(i, 1) = 0. Similarly with case 
I, u2 = b2(i, 2). Also by (5.50) it follows that, bx{i, 1) < b2{i, 2), so u] < u2. 

As for the cases of a(i,2) < 0 or, a(i,l) < 0 < a(i,2), similarly we can 
show, MJ < u2. 
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Define respectively V, U, 9 G H™ W a s follows: 

V= ( K , vl]; vl,...,vi_l,vl_1,...,vl), 

U= \[u
n, un\; u0, ...,un_l, u n _ i , ••-, w0J, 

, 9 = ([^ni 0n]> ^ 0 ' - " ) ^ - l > ^ n - l i " - ) ^ o ) -

By above discussions we can show, F(X) — V • <J(U • X + O). The theorem is 
proved. • 

Corollary 5.1 Let Fnn : Fjg{R+)—> f£{R) be a fuzzy function. Then 

the following propositions hold: 

(i) IfFnn G V[a], then\>A,B£ ^ ( K + ) , ACB,^ Fnn(A) C Fnn(B); 

(li) Fnn G V[<r] ^ V I = ( [ 4 , x ^ x j , . . . , ^ , x2
n^,...,x2) G J=3?(R+), 

we /lave 

PrinKX) = ^ [ S n ( X n , a ; n j , snl a '7U -^n/Ji 

S0(X0, XQ), ..., Sn_1[Xn_1, Xn_1), Sn_i(Xn_i,Xn_1), ..., SQ{XQ, X 0 ) J , 

(5.57) 
p 

where s\[x\,x2) = £ Vj{i,q) • a(u)(i,q)x1
i + u2(i,q)x2 + 6j(i,q)) (q = l,2;i = 

0 , 1 , . . . , n) satisfying, vj = 1, ...,p, if let 

a(i,q)=Vj(i,q), bl(i,q) = u](i,q), b2(i,q) = u2{i,q), -y(i,q) = 9j{i,q), 

(5.50) of Theorem 5.12 holds. So if fc?(j)(a;|,x?) = Vj{i,q) • a(u){i,q)x} + 

u2(i,q)x2 + 6j(i,q)), it follows that 

h](j)(x},x2) < h\+l{j){x\+1,x
2
+1) < h2

+l(j){x\+l,x
2
+1) < h2(j)(xlx2). 

Proof (i) For X= {K, x2
n}; z j , . . . , ^ , x2

n_„ ...,x2)e J & ( R + ) , let 

~ p ~ ~ ~ ~ 
F n n (X) = J2 Vj • o-(Uj • X + Qj)- (5.58) 

3 = 1 

Since ACB, using the extension criteria (5.26)-(5.29) and the interval arith­

metic, we get, Vj = 1, ...,p, JJj • A C Uj • B . Therefore 

Uj • A + Qj CUj -B + Qj), => a(Uj • A + Qj ) C a(Uj -B + Qj). 

P P 
With the same reason, ]T Vj • cr(Uj • A + Qj ) C J2 Vj • o-(ij • B + @j ) , 

j=i j = i 

that is, Fnn{A) C Fnn{B). 
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(ii) Necessity: Let Fnn 6 V[cr], so tha t Fnn{X) can be expressed as (5.58). 

For j e {1, ...,p}, denote Hj(x) = Vj • cr(Uj • X + Qj ) • By Theorem 5.12, if 

let X= {K, x2
n); a r j , . . . , x i_ 1 , < , ...,a;§)e f£(R), then 

#*(£) = ([fti(j)(^,4), ^( i ) (xi ,^)] ; ftJO^arS,ig),..., 

V i U J ( V i > V i ) i ' ' i i - i u J A - i ' V i J i •••i^oU)(a:'0):Eo))-

Moreover, ft?(j)(a;J,a;?) = ^ ( i , g ) • cr(u)(z,g):rj + u2(i,q)x2 + 6j(i,q))(q = 

l , 2 ; i = 0, l , . . . , n ) . Thus, by Theorem 5.12, if let 

a( i ,g) =Vj(i,q), b1^^) = u1
j(i,q), b2(i,q) = u2(i,q),-y(i, q) = 0j(i,q), 

we can imply (5.50). Denote s^(x},x2) = £ sUJ)(xhx2i)- By (5.26)-(5.29) it 
3 = 1 

follows tha t (5.57) holds, i.e. 

-f*nn(Aj = \\Sn[Xn,Xn), Sn{Xn,Xn)\\ S0 (X0, XQ) , ..., 

Sn-lVXn-l' Xn-\)i sn-\ \Xn-\ i Xn-1 )i •••> s0\x0i x0)) ) 

Sufficiency: Using the assumption and Theorem 5.12, we get, Vj = 1, . . . ,p; z = 
0 , 1 , ...,n if let 

hqiU)(xhx2i) = vj(hl) • o{u)(i,q)x\ + u2(i,q)x2 + 9j{i,q)) {q = 1,2), 

there are V j , £7j and 0 j G ^ " ( E ) , so tha t provided 

ffjW = ( ^ n ( j ) ( ^ 4 ) , ^ n 0 ' ) ( ^ ^ n ) ] ; ftj(j')(4, x g ) , ..., 

' l n - l ( i ) ( V l i 3 : i i - l ) i 'ln-\\3)\xn-l-:xn-l)i •••> "oUH^CH ^O/J i 

it follows tha t flj(X) = V j • (?(Uj • X + 6 j ) . Therefore 

~ p ^ p ^ ^ ^ ^ 

^ n n ( X ) = ^ # j ( X ) = ^2Vj- T(Uj -X + Qj). 

Hence F n n e 7->[o']. the theorem is proved. • 

T h e o r e m 5.13 Let F : 17
roc(K+) —> .Foc(K) &e a fuzzy function, and 

Z [<?} be the universal approximator of F. Then F is increasing, that is, if 

A, Be J7oc(R+) -ACB, we have F(A) C F(B). 

Proof. By reduction to absurdity to show the conclusion. If the theorem 

does not hold, then there exist A, B& Jroc(^-+) • ACB, but F(A) <£ F{B). By 
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Theorem 5.8, there is n G N, so that Zn(F{A))<£ Zn{F{B)). For Xe ^o c(K+) , 
we write 

Zn(F(X))= ([ft(X), fliX)}; ft(X),...,fLi(X), fLi(X),...,fi(X)), 

there is i G {0,1,. . . ,«}, satisfying ft (A) < ft(B) or, ft (A) > ft(B). It is no 

harm to assume ft (A) < ft{B). Let U = {A, B}, £ = (ft(B) - ft(A))/3. By 

the assumption we have, there is Tnn G Z[cr], so that D(F(X), Tnn(X))< £ 

for X=A, or X=B . Theorem 5.8 implying 

D(Zn(F(X)), Zn(Tnn(X)))< D(F(X), Tnn{X))< e (xe {A, B}). 

For Xe J"0c(R+), letting 

4(T„n(i))=([ti(i)>^(i)];t;(i),..,t1(i),t1(i))...I^(i)), 

we show by Theorem 5.8 that \ft(X) - tj(X)\v\ft (X) ~ t?(X)\< £ for X=A 

or, X=B . Therefore 

-2s < t\ {B) - t\ (A) + ft (A) ~ ft (B) < 2e => t\ (B) > t\ (A). (5.59) 

Using Corollary 5.1 and Theorem 5.4 we get, Tnn(A) C Tnn(B), which contra­
dict (5.59). Hence the proof is completed. • 

As a consequence of Theorem 5.8 and Theorem 5.13, it follows that 

Corollary 5.2 Let F : ^ ( M + ) —> ^ " W be a fuzzy function, andT>[a] 
is universal approximator of F. Then F is increasing. 

Proof. If the conclusion does not hold, we have, A, £?G .7^™(R+) : ACB, 

but F(A) <fi F(B). For Xe J^(R+)), if let 

F(X) = {[fl{X)Jl{X)\Jl{X),...J^1{X)Jl-1{X),...Jt{X)), 

there is i G {0,1, ...,n}, so that either ft (A) < ft(B) or, ft (A) > ft{B). it is 

no harm to assume ft (A) < ft{B). Choose the compact set U — {A, B}, £ = 

(fi(B) — ft(A))/3. By the assumption it follows that there is Fnn G V[v], so 

that D(F(X), Fnn(X))< £ if X=A or, X=B . Thus, provided Fnn(x) can be 
expressed as 

Fnn(x) = (KU),4U)];soU)—4-iU)^LiU),...,s§U)), 
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we have by Theorem 5.8, \fl(A) - sl(A)\< e> \fi(B) ~ sj{B)\< e. Therefore 

-2e< s\ (B) - a\ (A) + ft (A) - ft {B) <2e,=> sj (j?) > s} (A). 

However, Fnn{A) C Fnn(B), which is a contradiction! So the proof completed. 

• 
Let us now study the approximation capability of a class of polygonal 

FNN's. That is done through the finite real values with given order relations, 
which correspond to the polygonal fuzzy numbers. 

5.4.2 Approximation of polygonal F N N 

In the following we focus on some subsets of P[cr] or Z\o\, where &{x) = 
1/(1+ e~x). Define 

VM = {F : J&(R+) — Jf t (R+) F(X) = t v j - <*(uy X +0j), 

p G N, VjZ ^3?(R+), Oj e R, UJ G R+};] 

Z0[*] = {F : ^oc(R+) —> Hn
c{^+) F{X) = £ V; • a(Uj • Zn(X) + Oj), 

L 3 = 1 

n, p G N, V^G ^o"(M+), % G R, iij G K + j . 

As a direct result of Corollary 5.1 and Theorem 5.12 we can show 

Corollary 5.3 Let F : J^(M.+) —> ^o?(R+) ^ a fuzzy function. Then 
F <EP0[a] if and only if V X= ([a£, x2

n\; x\, . . . . a ^ , xl_x, ...,xl) G ^™(R+), 
it follows that 

F(X) = {lfn(xn)> fn(Xn)\> / o (Xo) > •••> Jn-1 (Xn-\ ) > Jn-1 (Xn-1 )>•••> /o (^o)) > 

w;feere //(a;,1), /?(a:?) (i = 0,1, ...,ra) satisfying: there are p G N, VjG ^™(M+) 
/or eacft j G {l,-,p} : 

and U j G R+, 0j G R, so that ft(x\) = £ wJ(j>(u i a;J + 0,-), /?(a;?) = 
3 = 1 

t^uH^ + Oi). 
3 = 1 

Lemma 5.3 Let F : J^(R+) —> Jg"(R + ) be a fuzzy function, and 

F G p0[<r], satisfying V Xe F&(R+), 

F(X) = {[ftn(xn), fn(xl)]; / o 1 ^ ) , . . . , / ^ ^ - ! ) , /2- i0»£-i )>- , /o(*o))-
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Then\/i e {0,1, . . . ,n}, both /*(•) and /?(•) are non-decreasing, moreover for 
arbitrary a\, a2 € R+ : ax < a2, and for each i € {1, . . . ,n}, we Ziave 

/ / M - / / ( a i ) < / / + i ( a 2 ) - / / + i ( a i ) 

< / ^ i ( a 2 ) - / ^ 1 ( a i ) < ^ ( a 2 ) - / f ( a 1 ) . 

Proo/. Using Corollary 5.3 we get, / / ( • ) , fit) a r e non-decreasing. More­
over, considering er(-) is an increasing function we obtain 

f}{a2) - fl(ai) = t vj(j){a{Uja2 + e^-a^a, + 0j)} 

p 

< E vl+1(j){a(Uja2 + O^-afatu + 0j)} 

3 = 1 

= / i + i M - /iVi(oi)-

Similarly the other inequalities in (5.60) hold. • 

Let us now study the approximation capability of Po [<?] and Zo [c] to the 
continuous fuzzy functions. To this end, we define the operators 'max' and 

'min' in ^™(R). For A, B<E J^(R) : 

A={[a\, a2
n]; aj,...,a*-i> a2

n_x,...,al), B={[bl
n, b2

n\; o j , . . . , ^ , &^_i, •-•,&8), 

we define max(A, B), min(yl, B) G .7-0™ (R) respectively as follows: 

max(A, B) = {Kvbi, a2
nVb2

n}; aSv6S,...,aJl_1V6jl_1, a*_1Vi£_1,...,aJv&S); 

min(2, B) = ( K A 6 i , a*A*£]; a£A&S,...,ai-iA&i-i, a ^ A b ^ , . . . , aj A&J). 

For fuzzy functions F, G : J&?(R) —> ^ ( M ) , define max(F, G), min(F, G) : 

^ ( R ) —> ^oc(K) respectively as follows: V I S . ^ ( R ) , 

max(F, G)(X) = max(F{X), G(X)), mm(F, G)(X) = mm(F(x), G(X)). 
(5.61) 

Theorem 5.14 Suppose F, G G P o H be fuzzy functions. Then Ve > 0, 

there is Fnn E p0[CT], so thatM X& Jrfc(]BL+), D(Fnn{X), max(F, G)(X))< e. 

Therefore, Vo[o~] is universal approximator o/max(F, G). Similarly, Vo[o~] is 
also universal approximator of mm(F, G). 

Proof. Givee>0.ForX=([xi,a*]; arj, . . . ,4 - i> *n-i> ->*o) € ^ ( R + ) , 

since F, G € Vo[o~], by Lemma 5.3 we may assume 

TO = ([^(^).^(^)];/oH^).-»,^-i(^-i).^-i(4-i).-»./o2(^)). 

G(X) = ([gKxl), gl(x2
n)]; ^ ( i S J . - . f l i - ^ a r i - i ) , s S - i ^ n - i ) . -.flo(^o))-
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Furthermore, there is p G N, so that for q = 1,2; i = 0,1, . . . , n, it follows that 

0*(aO = E v.%.7') • tT{uj(g)x + 6j{g)). 
3 = 1 

By (5.61), V i e ^oc(K+), max(F, G)(x) can be represented as 

\[rn\xn)i rn\xn)\i r o ( a ; o ) ' •••) rn-l\xn-l)> rn-l{xn-l)' •••irO\xo))' 

where for q = 1, 2; t = 0,1, . . . , n, r?(x?) = /?(x?) V ff«(x?). Let 

Co = j^O) r l ) •••)r'n) r0> r l ) •••irnf-

Easily by Corollary 5.3 it follows that for q G {1,2}, i G {0,1, . . . ,n}, the limit 
lim rf (IE) exists. Moreover, Va; G WL+, r}{x) < r\+l{x) < rf+l(x) < rf(x). 

For each a, a2 G M+ : a\ < a2, and i G {0,1,.. . , n — 1}, next we shall show 

A(a2)-rl(ai) < rl+1(a2)-rl+1(ai) < r2
+1(a2)-r

2
+1(ai) < r2{a2)-ft{ai) 

At first by Lemma 5.3 we obtain 

fl(a2)-fl(ai) < fl+1{a2) - fl+1{ai) 

< ff+1(a2) - /iVi(ai) < ft(a2) - ftM, 

9i(a2)-gl(ai) < g}+1{a2) -g}+1(ai) 

< ^ + i ( « 2 ) - ^ + i ( a i ) < ^ M - / f ( a i ) . 

(5.62) 

(5.63) 

Choose Cor = {ff V g1\q = 1,2; i = 0 ,1, . . . ,n}. We can show that Cor is a 
quasi-difference order-preserved set. In fact, since a(x) — 1/(1 + e~x), and 

F, G G VoW], it follows by (5.60) that VA > 0, there is m0 G N, so that 

V * e { 0 , l , . . . , n } ) « € { l , 2 } , / ? ^ 5 ? ) C&rd({xe[0,A}\ft(x)=g?(x)})<m0. 

There is mi G N, Vm G N : m > mi, if partition the interval [0, A] into m equal 
length parts: 0 < A/m < ••• < A(m - l ) /m < A, then Vi G {0,1, . . . ,n}, Vg G 
{1, 2}, Vfc G {1,.. . , m}, at most there is one x G [(k—l)A/m, kA/m\, satisfying 
ff(x) — g1{x). Define the collection O of sub-intervals as follows: 

O {A: (k-l)A kA 

m m 
3q G {1,2}, i G {1, . . . ,n}, x G A, /«(z) = <?«(x)}. 

Then Card(O) < mo. For arbitrary ai , a2 G M+ : |ai — a2\ < A/m, if a,\, a2 G 
[(A; - l)A/m, fcA/m], and [(fc - l)A/m, kA/m]<£ O, then either /?(ai) > 
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gUai), ff(a2) > g^fa) or, / ? ( a i ) < tffa), tffo) < g«(a2). By (5.63), it 
can imply (5.62) holds at this two cases. Thus, Cor is a quasi-difference order-
preserved set. By Theorem 5.3, Ve > 0, there are p G N, Uj G E+, 0j G R, 
and order-preserved functional fa : Cor —> R+ (j = l,...,q), such that Vi = 
0,1, ...,n; q = 1,2, the following inequality holds: Va; G R+, 

< e. '?(*) - E & WWW + °i)|= |/'W V ̂ W - E& WM"^ + %) 
(5.64) 

For j G {l , . . . ,p}, define V,e J^™(R+)> 6 , € HcW a s follows, respectively: 

&j= 0j, and 

Vj= {[fa{rl
n), fa{r2

n)\, 4>M),...,fa{ri_{), fair2^),..., fa(r2
0)). 

Easily by Corollary 5.3 we have, if let Fnn(X) = £ Vj • a(uj- X + 9 j ) 

for XG Jrt£(R+), then Fnn£Vo[o]- Using Theorem 5.4 and (5.64) we can 

conclude that V X= ([x^, x^\; x\, ...,a;^_1, x2
l_1, ...,XQ) G J7Q"(R+), it follows 

that D(max(F, G)(X), Fnn(X))< e. Consequently, Vo[o~] is universal approx­

imator of max(F, G). Similarly VO[G\ is universal approximator of min(F, G). 

• 
Assume that all the fuzzy functions Fi,...,Fm belong to "PoH- And we 

write F — max(Fi, . . . ,Fm) , G — min(Fi, ...,Fm). By Theorem 5.14 and the 

induction method it follows that VoW] is universal approximator respectively to 
F, G. Theorem 5.14 plays a key role in the following research on approximating 
capability of polygonal FNN's. The proof of the following lemma is identical 
to one in [14, 31]. 

Lemma 5.4 Let A, Be J^"(R+), C, be ^™(K+), and ACB=>CCD; 

BdA^DCC . Then there is Fnn e p 0 H , satisfying Fnn{A) =C, Fnn(B) = 

D . 

Proof. Let Fnn{X) = £ Vj • <T{UJ- X +9j) (Xe J^?(R+ ) ) . And denote 

3 = 1 

A= ( [ a n > a n J > a 0 i • • • i a n - l > a n - l i •••>ao)> 

B={K,bl\;bl...,b\_l,bl_l,...,bl), 

G= \\pni cn\'i c 0 ' - " > c n - l ) c n - l > •••> c0/> 

D= \[dn, dn\; d0,..., dn_1, dn_l,..., d0), 

Vj= (HU), v2
n{j)\, i ^ . - X - i O ' ) . v2

n^(j),...,v2(j)). 

file:////pni
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where j = I,...,p. If X= {[xx
n, x

2
n]; z j , . . . . a ^ , x ^ , . . . , ^ ) G J^(R+), then 

we employ Corollary 5.3 to suppose 

Fnn(X) = y[sn(xn), sn(xn)\; s0{x0), —,sn_1(xn_1),sn_1(xn_1), ...,s0(x0)J, 

where a?(a;?) = E v1(j) • O{UJX\ + Oj) (q = 1, 2; i = 0,1, ...,n). And V« = 
3 = 1 

0,1,. . . , n, by assumption there are infinite solutions of the following system of 
equations with respect to v?(j) (q = 1, 2), and Uj, 6j : 

s1M)=Ev}(j)-<T(uja}+Oj) = c} 

*?(«?)= E ^ t f ) •*(«,•«?+ *;) = <* 
3 = 1 

s}(b})=f:vl(j)-a(ujb}+0j)=d} 
3 = 1 

*?(*>?) = 5 > ? ( J W M ? + **) = <*? 
3 = 1 

Using Corollary 5.3 we choose an arbitrary solution , from which Uj, Vj, 6j 
can be determined. So the lemma holds. • 

Theorem 5.15 Suppose F : ^™(M+) —• J^(R+) is a continuous fuzzy 

function. Then Vo [o~] is the universal approximator of F if and only if F is 
increasing. 

Proof. Corollary 5.2 can ensure the necessity, So it suffices to prove the 

sufficiency. For arbitrary e > 0, and compact set U C J Q ™ ( E + ) , V AG U, V BG 

U, let C= F(A), D= F(B). By the assumption for A, B, C, D, the conditions 

of Lemma 5.4 hold, so there is fuzzy function H[A, B] G V[o~], so that the 

equalities, H[A, B](A) = F(A), H[A, B](B) = F{B) hold. By the continuity 

of H[A, B] and F, there is 5 > 0, satisfying D(F(X), H[A, B](X))< e/4 for 

each XG Vs(B) flW, where Vg(B) is a £—neighborhood of B in the metric 

space (Jo"(]R+), D). Since U is a compact set, there are Bi, . . . , S m e J^™(E+), 

so that (J V^(Sj) D W. It is no harm to assume B\=B . Choose R[A] = 
3 = 1 

max(H[A, Bi],...,H[A, Bm})- By Theorem 5.14, there is T[A] G V[a], such 
that 

V i e W , D{R[A](X),T[A]{X))<^. (5.65) 
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For Xe J=3?(R+), put 

' F(X) = ([ft(X), /*(£)]; ti(X),...,fLM, fLi(X),-JZ(X)); 

R[A](X)=([rl(A)(X),rl(A)(x)}; 

r}>{A)(X),...yn-1(A)(X), rl_1(A)(X),...,r%(A)(X)); 

T[Mx)=([ti(A)(X),tl(2)(x)]-, 

tl(A)(X),...,t^M)(X), tl_l(A)(X),...,1?0(A)(X)). 

Using (5.65) and Theorem 5.4, we can show, V X& U, Vi = 0,1, . . . , n, q G 

{1,2}, r!(A)(X) > / ? ( £ ) - e / 4 . Since H[A,BJ](A) = F(A)(j = ! , - . " » ) , we 

get, i?[j4](A) = F{A)- With the same reason, there is r\ > 0, so that 

VX€V ? 7(A)nW, JD(F(X),i?[A](X))< | . (5.66) 

We obtain Ai,-.,AqeU: [j V^Aj) D U. Let G = mm(R[Ai], ...,R[Aq]). By 

Theorem 5.14, there is Tnn G P[CT], satisfying V X 6 U, D(G(X), Tnn(x))< 
e/4. Set 

G(x) = {[g\(x), &{X)]\ g^X),-.gl-Ax), gl-M,:.,g2
0(X)), 

Tnn(X) = ([tUx), t2
n(X)]; 4(X), -.-A-iiX), tl^iX), ...,t2

0(X))-

So by the definition for G and (5.66) we get, Vq G {1, 2}, i = 0,1, ...,n, V 1 £ 

W, s?(X) < f?(X)+e/4. Thus, Vq € {1,2}, it follows that 

f!(X) - \ < /\{rUAj)(X)}= gUx) < *?(£) + \ < /?(£) + \ 
3 = 1 

Hence V X 6 W, q G {1,2}, i = 0,1,...,n, | / / (X) - t ? ( X ) | < e/2. Theorem 5.8 

can imply the inequality: D[F(X), Tnn(x))< s. That is, V[cr] is the universal 
approximator of F. • 

Lemma 5.5 Let W C .Foc(]R) be a compact set. Then Ve > 0, there is 

n G N, so that V A€ U, D(A, Zn{A))< e. 

Proof. For arbitrary e > 0, since U C ^oc(K) is a compact set, there 

exist m € N, and Bi, ••-, B m £ W, satisfying (J V^(Bj) 3 W. By Theorem 5.8, 



246 Liu and Li Fuzzy Neural Networks and Application 

it ensures to exist n G N, such that Vj = l, . . . ,m, D(Bj, Zn{Bj))< e/3. 

Therefore, V A& U, there is j G {1, . . . ,m}, so that AG V£/3(B : /). Considering 

D(Zn{Bj), Zn(A))< D(Bj,A), we get 

# $ , Zn(A)) < D(A, BJ )+D(Bj, Zn{BJ))+D(Zn(Bj), Zn(A)) 
s e e 

< 3 + 3 + 3 = £ " 

So the lemma is proved. • 

Theorem 5.16 Let F : F0c(K+) —> •7roc(K+) be a continuous fuzzy func­

tion. Then Zo[cr] is universal approximator of F if and only if F is increasing. 

Proof. Theorem 5.13 and Corollary 5.2 can ensure the necessity, it suffices 
to prove the sufficiency. For arbitrary compact U C .Foc(M+) and e > 0, the 

continuity of F implies, F(U) = {F(X)\ XG U} C T0c(R) is a compact set. 
Moreover, by Theorem 5.8 it follows that there is n G N, and 5 > 0, such that 

V i e W U F ( M ) , D(Zn(X), X)<5; V i e M , D(F(X), F{Zn{X)))<£-. 

~ (5-67) 

In J^"(R + ) there is a compact setWn, satisfying Zn{U) = {Z n(X) | 1 € W}c 

Wn. Arbitrarily given FG J^"(R+), let G(y) = Zn(F(Y)). Theorem 5.13 im­

plies that G is continuous; Theorem 5.15 ensures to exist Fnn G Vic], satisfying 

VYeUn, D(G(y),Fnn(Y))<£-. 

Let Tnn(X) = Fnn(Zn(X)) (XE Jr
0c(R+)). Then D(G(Zn(x)), Tnn(X))< e/4 

for each 1GW, moreover, T G 2o[c]- Therefore, V i e W , by Theorem 5.8 and 
(5.67) it follows that 

D(F(X), Tnn(X))< D(F(X), Zn(F(X)))+D(Zn(F(X)), G{Zn{x))) 

+D(G(Zn(X)), Tnn{x))< E- + £-+£-<e. 

i.e. ZO[(T] is the universal approximator of F. D 

In the section the polygonal fuzzy numbers are employed to define the 
polygonal FNN's, which possess the following advantages: (i) In contrast to 
§4.5 and [41, 42], the equivalent conditions for the fuzzy functions, under which 
the polygonal FNN's can be universal approximators are much simpler. So the 
results are more applicable; (ii) As the FNN's with triangular or trapezoidal 
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fuzzy number weights and thresholds [14], it is easy for the polygonal FNN's 
to develop learning algorithms for fuzzy weights and thresholds; (iii) Since the 
systems can directly process fuzzy information, they possess the stronger input 
output capability than general fuzzy systems [46]; (iv) Compared with with the 
regular FNN's based on Zadeh's extension principle, which are not universal 
approximators to continuous and increasing fuzzy functions, the systems are 
advantageous in approximation and learning capability. 

Obviously the discussions are fit for the cases of negative fuzzy numbers and 
multiple-input and single-output. Although in practice much fuzzy information 
may be expressed as the positive or negative fuzzy numbers[14, 19-21], it is still 
an important problem how to generalize such fuzzy numbers to general cases. 
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CHAPTER VI 
Approximation Analysis of Fuzzy Systems 

Fuzzy system is an efficient model to simulate inference function of human 
brain [4, 13, 16-18, 60]. One most important advantage of using fuzzy systems 
is that linguistic fuzzy IF—THEN rules are naturally utilized in the systems. 
Linguistic fuzzy IF—THEN rules can be developed by human experts who are 
familiar with the process under consideration. As an important research topic 
related to fuzzy systems, universal approximation has attracted much attention 
in recent years (see [2, 21-23, 48, 52, 54, 55, 63, 72-79] etc). In most of fuzzy 
system applications, the main objective is to design a fuzzy system to approx­
imate desired output, such as control output and ultimate decision and so on. 
From a mathematical point of view, such an aim is to seek a mapping from 
input space to output space to approximate a prescribed function with a given 
accuracy. That is, given / € C(K.d), for arbitrary e > 0, and for each compact 
set U C Rd, there is a fuzzy system as T : Rd —> R, so that | | / - T ^ v< e. 
The achievements related to universal approximation of fuzzy systems have 
been applied successfully in many areas, for example, telecommunication [11], 
industry process control [18, 46, 58, 65], space techniques [18], system modeling 
[4, 13, 44], and pattern recognition [22, 43] and so on. 

Up to present the main achievements related to the subject concern mainly 
about universal approximation to continuous function class. However, in ad­
dition to continuous systems, there exist many other types of real systems, for 
instance, control processes of many nonlinear optimal control models [42] and 
the impulse circuit, the systems related are non-continuous but integrable. Fur­
thermore, randomness is a common phenomenon in real systems, so it is also 
an important problem how to deal with random systems. Thus, the systemati­
cal research for universal approximation of fuzzy systems in the noncontinuous 
or random environments is of much significance both in theory and applica­
tion, which are the main research objectives in this chapter and the following 
chapter. 

With respect to fuzzy control and modeling the existing fuzzy systems can 
be classified into two major types, namely Mamdani fuzzy systems and Takagi-
Sugeno (T-S) fuzzy systems. The primary difference between them lies in their 
inference rule consequent. T-S fuzzy systems use linear functions of input vari­
ables as the rule consequent [33, 46-47, 58, 68, 73-75], whereas Mamdani fuzzy 
systems employ fuzzy sets as the consequent [31, 32, 38, 39, 77-79]. In this 
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chapter we utilize a generalized defuzzification method to study this two types 
of fuzzy systems within a general framework, that is, generalized Mamdani 
fuzzy systems and generalized T-S fuzzy systems, which are called generalized 
fuzzy systems. With integral norm we shall show that this two generalized 
fuzzy systems can be universal approximators, respectively, that is, they can 
approximate each p— integrable function with any degree of accuracy. More­
over, the realizing procedures of the approximations are also demonstrated. 

A troublesome problem in fuzzy system application is 'rule explosion', which 
means the size of fuzzy rule base increases exponentially when the number of 
system input variables increases. An efficient method to deal with this prob­
lem is to introduce the hierarchical system configuration [49-51, 63, 64], i.e. 
instead of applying a fuzzy system with higher-dimensional input, a number of 
lower-dimensional fuzzy systems are linked in a hierarchical fashion. By such a 
hierarchy, the number of the fuzzy rules will increase linearly with the number 
of the input variables. This hierarchy is called hierarchical fuzzy system (HFS). 
Naturally we may put forward an important problem, that is, how can repre­
sentation capability of HFS's be analyzed? Kikuchi et al in [19] show that it is 
impossible to give the precise expression of arbitrarily given continuous func­
tion by HFS's. So we have to analyze the approximation capability of HFS's, 
i.e. whether are HFS's universal approximators or not? If a function is con­
tinuously differentiable on the whole space, Wang in [63] shows an arbitrarily 
close approximation of the function by HFS's. He also in [64] gives sensitivity 
properties of HFS's and designs a suitable system structure. For each compact 
set U and an arbitrarily continuous function / on U, how can we find a HFS to 
approximate uniformly / with the arbitrary given error bound el In order to 
analyze these problems, we in the chapter also show that the I/O relationship 
of a HFS can be represented as one of a standard fuzzy system. Then univer­
sal approximations of HFS's are systematically studied. Comparing with the 
approximation methods suggested by Wang [63, 66], Buckley [2], Ying [72-76], 
Zeng and Singh [77, 78], we may easily find that the methods in the chapter are 
directly based on the I/O relationship information of the functions to be ap­
proximated, no intermediate step need, consequently they are more applicable 
in practice. 

§6.1 Piece wise linear function 

As a basic tool to study universal approximation of fuzzy systems, a piece-
wise linear function which is called square piecewise linear function (SPLF) 
is presented in this section. SPLF is a multivariate version of one-variate 
piecewise linear function, and it plays a role of bridge in studying universal 
approximation of fuzzy systems. 

6.1.1 SPLF and its properties 

Next let us show some useful properties of SPLF. For a given SPLF, the 
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one-side partial derivatives exist and are bounded. Then we use SPLF's to 
build the approximate representations of continuous and integrable functions 
under the sense of ' « e ' according to the maximum norm and integral norm, 
respectively. 

Def in i t ion 6.1 Let S : Md —> M. We call S to be a SPLF, if the following 
conditions hold: 

(i) S is a continuous function; 
(ii) There is a > 0, so tha t S is identical zero outside the following cube 

A = {(xi,...,Xd) SM.d\-a <Xi < a, i — l,...,d}, 

so S has a compact support; 
(iii) There exist Ns € N, and d dimensional polyhedrons A I , . . . , A J V S , so 

tha t S is a linear function on each Aj, moreover for j = 1,..., Ns, we have 

(xi,...,xd) e A j , = » S(xi,...,Xd) = Y, XH -xi + li, 
i=l 

A i U • • • U AJVS = A, 

where, Ajj, jj are constants. Below A I , . . . , A J V S are called the polyhedrons 
corresponding to S. 

By Vd we denote the collection of all SPLF's , and Vd the set of all SPLF's in 
T>d, whose supports are included in [—1, l ] d . For S G T>d, denote V(Aj ) as the 
vertex set of A j , and V(S) the set of all vertices of A i , . . . , AJV S , i.e. V(S) = 
Ns 
\J V(Aj). By Definition 6.1 easily we have, if S € T>d, then V(xi,...,Xd) G 

j = i 

R d , Vi G {1, •••,d}, bo th left derivative dS_(xi, ...,Xd)/dxi and right derivative 

dS+(x\, ...,Xd)/dxi exist. Moreover, Vx° = (x®, •••,xd) G M.d, it follows tha t 

dS+ (x°) dS- (x°) 
dxi dxi < V {| 

dS+(x!,...,xd) dS-(xi,...,xd) 

(x1,...,xd)ev(S) 
dxi dxi 

dS+{xi,...,xd) dS-(x!,...,Xd) 
dxi dxi }• 

For arbitrary i G {1, . . . , d } , write 

A(S) = \/ { 
(xi,...,xd)ev(S) 

Then V/i G M, i G {1 , . . . , d}, it is easy to show 

|S ,(xi , . . . ,Xi_i ,Xi + / i ,Xi+ i , . . . ,a ;d) - S(xi, ...,xd)\< \h\ • Di(S). 

L e m m a 6.1 Suppose S : Rd —> R is a SPLF, and hi,..., hd G '. 
d constants. Then 

(6.1) 

(6.2) 

(6.3) 

given 

V ( x i , . . . , x d ) G E d , \S(xi + hi,...,xd + hd)-S{xi,...,xd)\<^2Dz{S)-\hi 
i=\ 
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Proof. At first it is easy to show the following inequalities: 

\S(x1 +hi,...,xd + hd) - S(x1,...,xd)\ 

= \S(xi + hlt...,Xd + hd) - S(xi,x2 + h2,...,xd + hd) 

+S(x1,x2 + h2,..., xd + hd) - S(x1,x2, x3 + h3,...., xd + hd) 

H h S(xi,..., Xd-i,xd + hd) - S(x!,..., xd) | 

< \S(xi + hi,...,xd + hd) - S(x1,x2 + h2,..;Xd + hd)\ 

+\S(xx,x2 + h2...,xd + hd) + S(x1,x2,x3 + h3,...,xd + hd)\ 

-\ h \S(xi,...,Xd-i,xd + hd) - S(x1,...,xd)\. 

Using (6.3) we can get the following fact: 

d 

\S(Xl + hx, ...,xd + hd) - S(xi, ...,xd)\< J2D^S">' 1^1-

The lemma is proved. • 

6.1.2 Approximation of SPLF's 

Next let us present the approximation representations of functions in Lp(fx) 
or C(U) by SPLF's with arbitrary accuracy e > 0, where U C Rd is a compact 
set. 

Theorem 6.1 Let fi be Lebesgue measure on Rd. Then T>d is dense in Lp(fi) 
with Lp([i)—norm, that is, for any s > 0, and f € Lp(/i), there is S £ T>d, so 
that | | / - S\\^p < e. 

Proof. For simplicity we show the conclusion in the two dimensional space 
M.2, i.e. d = 2. For the cases of d > 2 or d = 1, the proofs are similar. Since 
/ e Lp(/j,) we get, fR2 |/(x)|pd/x < +oo, that is 

/ | / ( x ) | * d / i = £ / l / W f d / i < +00. 
JR2

 TO=0^m<||x||<m+l 

Hence for e > 0, there is mo & N, satisfying 

E / |/(x)|"dA* < y , = > / l/(x)|pdM < ^ . 
= m o - l ' / m ^ l l x l l < m + 1 J | | x | | > m 0 - 1 ^ m—Tno 

A 
Let a > 0, so that A = {x € M 2 | - a < s i , x2 < a}D {x e R2 | ||x|| < m0}. 
Therefore 

/ |/(x)|*d/*< / | / (x ) | p d/ i< 
-'A0 J | |x | |>mo 
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Since JA | /(x)|pd/i < +00, in || • ||A,P-norm the function / can be approximated 
by continuous functions on A to any degree of accuracy [53]. Hence we can 
assume that / is Riemann integrable on A, and / (x) = 0 when x G dA, the 
boundary of A, i.e. 

dA = {(xi,x2) € A| |a;i| = a, \x2\ < a}u{(a;i,X2) G A| \xi\ < a, |x2| = a} . 

Thus, there is m G N, if partition each side of A into 2m identical length parts, 
and 4m2 squares as W\,..., Wim-2 are obtained. Let 

83= V {/W}» k= A {/(x)}(j = l,...,4m2)) 
xeWj xeWj 

4 m 2 _ 

Then £ Jw \6j -<L|pd/i < ep/A. Moreover, 

2 / (|^|V^|)MM< 
JW — 8 x 2 ? ' 

where B(A) is the index set of 8m —4 next-door neighbor squares of the bound­
ary dA. Respectively linking a pair of oppose vertices of Wj (j = 1, ...,4m2), 
we obtain 8m2 equicrural rectangular triangles Ai,.. . , A8m2. For each j = 
l,... ,8m2 , Using the function values of / at three vertices of Wj we can es­
tablish a spatial triangle (if the corresponding three spatial points are collinear 
a line segment is established). By these piecewise triangles we can define a 

SPLF S, and obviously S s D 2 . Denote BC(A) = {1, ...,4m2} \B(A). Consid­
ering the following facts: 

V j e B c ( A ) , [ | / ( x ) ~ S ( x ) | P d M < / {Sj-Sfdfi; 

VjGS(A) , / |S(x) | p d M < / ( l ^ l v ^ l ) ^ , 
JWj JWj 

and the inequality: (\a\ + \b\)p< 2p(\a\p + \b\p), we can show 

| / ( x ) - S ( x ) | P d M 

= E / | / ( x ) - 5 ( x ) | p d M + E / | / ( x ) - S ( x ) | p d M 
jeB'(A) JWj jSB(A) 3 

< E I fo-L^ + v*' E / ( |̂v|<y)pdM 
j €B c (A) JW, jGB(A) JWj 

L 
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So we can conclude that the following equality holds: 

11/ - S\\,,p = ( ^ |/(x) - S(x)|*dM + J^ | / ( x ) | V ) ' < ( | + | ) ' •• e . 

D 

Remark 6.1 In Theorem 6.1, since the SPLF S is identical to aero outside 
a cube as A = {{x\,...,Xd)\ — a < Xi < a, i = l,...,d}, by a suitable linear 
transform we can change S into Si G D|], so that Si is identical to zero outside 
[—l,l]d. Correspondingly / is changed into fa. If let A = [—1, l ] d , then we 
have, Ve > 0, there is S G £>d> | | / — 5 | | M P < e <=» Ve > 0, there exists 
SieV°d, \\A - Si\\A,p < e. 

If 5" is the SPLF obtained by the proof of Theorem 6.1, we can use / to 
calculate the supremum Di(S) (i = 1, ...,d) defined by (6.2), i.e. 

Corollary 6.1 Let f : M.d —> R be a Riemann integrable function, and 
S ^V^be a SPLF obtained in Theorem 6.1. Then there exist a > 0, and h > 0, 
so that for i G {1, ...,d}, if let x.h = (xi, ...,x^i,Xi + h,Xi+i, ...,Xd), and 

A(/)= V {h-l\f(^)-f(xi,...,xd)\} 
x\ ,...,Xd,Xi+/tE[—a,a] 

(6.4) 

we have, Vi G {l , . . . ,d}, D^S) = A ( / ) -

Proof. Similarly with Theorem 6.1, it suffices to prove the conclusion'when 
d — 2. Let a be a positive number obtained in the proof of Theorem 6.1, 
and h > 0 be the identical side length of the squares W\,..., W4m2. More­
over, let the three vertices of the rectangular triangle Aj (j = 1, ...,8m2) be 
(x\,x\), (x\,x\), (x\,x^), respectively. Then the corresponding function values 
are as following: f{x\,x\), f(x\,x\), f{x\,x\). By three points on the surface 
z = f\x\ix2) a s \xl> x2i j{xltx2))t \xl> x2> J\xlix2l)i \ x l i x2' J\xlix2))i 

we obtain a spatial triangle whose algebraic equation z = S{x\,X2) is 

Xi X2 

X X, 
(6.5) 

S{xi,x2) 

j[x1, x2) 

j{x1, x2j 

f{x\,xl) 
On Aj we can calculate the partial derivatives of S, dS/dxi, dS/dx2 respec­
tively as follows: 

(#2— x2)j{xli x2) + \x2~x2)J\xlix2) + \x2~x2)j\xlix2) dS(xi,x2) 
dxi 

dS(xi,x2) 
dx2 

(xl x 2 M l ^ \x2 •L2)x\ ' \x2 •L2)x\ 

{x\-x\)f{x\,x\) + {x\-x\)f{x\,xl) + {x\-x\)f{x\,xl) 
x2 •L2/ J ' l ' \x2 x 2 / x l ^ \x2 •L2lxl 

(6.6) 
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Since the three vertices of Aj lie in horizontal line and vertical line, respectively, 
and one is the crossover point of the horizontal and vertical lines, we can set 
„i _ x2, x\ = x\. Using the fact \x\— x - W\ ,.31 _ h, and 
(6.6), we get 

dxi 

dS(xi,x2) 

dS(xux2) _ \f(x\+ h,x\)-f(xlxl)\ 
h 

\f{x\,x\ + h)-f{xlx\)\ 
h dx2 

So by (6.2) it follows that (6.4) holds, which proves the lemma. • 

Corollary 6.2 Let /i be Lebesgue measure on R\, and g : R+ —> K 
satisfy: J"R2 \g(t, s)|2dyu. < +oo. Then for arbitrary s > 0, there exist a > 0, and 
a SPLF S+so that 

Supp(S) c {(t,s) G R^_|0 < t, s< a}= [0, a]2. 

Moreover, the following facts hold: 

(i){JR%\g(t,s)~S(t,s)\M^<e; 

(ii) If let 

Di(g) 

D2(g) 

A 

A 

V { 
ti , t i+/i,t2e[o,a] •• 

v { 
titt2,t2+he[0,a] K 

g(ti +h,t2) - g{h,t2) 

I h 

g{h,t2 + h) -g(h,t2) 

}• 

h 

then for sufficiently small h > 0, it follows that Di(S) = Di(g) (i = 1, 2). 

The proof of Corollary 6.2 is similar with ones of Theorem 6.1 and Corollary 
6.1, for Corollary 6.2 is different from Theorem 6.1, or Corollary 6.1 only in 
the domains, the former being R\ whereas the latter being M.d. Corollary 6.2 
will paly an important role in studying the approximating capability of fuzzy 
systems in random environment in chapter VII. 

Theorem 6.2 Let f : Rd —> M be a continuous function. Suppose U C 
Rd is an arbitrary compact set. Then there is a > 0, so that U C [-a, a]d, 
moreover, for any e > 0, there exists S G Vd, satisfying 

Supp(S) c [-a, a]d, | | / - S | | 0 0 , u < e . 

Proof. As doing in Theorem 6.1, we complete the proof in R2. Since U C IR2 

is a compact set, there is a > 0, satisfying U C \—a, a}2. For simplicity we 
may let [-a, a}2 = [ -1, l ] 2 . The continuity of / implies that / is uniformly 
continuous on [—1, l ] 2 . For arbitrary e > 0, there exists m0 G N, such that 
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for any m > m0, if partition [—1, 1] into 2TO subintervals with identical length, 
[—1, (1 —m)/m],... , [0, 1/m],..., [(m— l) /m, l ] , then 4TO2 small squares £>™'s 
denned as following are obtained, where i, j = — m + 1, — m + 2,..., m — 1, m. 

= {(*,</) G [-1, I ]2 ^ < x < -L, J—^ < y < A \ 
I L J

 TO m m m J 

then V(xi,yi), (x2,y2) G A™> |/(£i,2/i) - /(^2,2/2)|< e/5. Therefore 

%= V {/( .̂S/)}' *ij = A {/(a ; .y)}=>|^-*yl< | ' 

where i, j = —TO + 1, —m + 2, ...,m—l, m. Similarly with Theorem 6.1, through 
the small square D^i (i,j = —m + 1, — m + 2, ...,TO — 1, TO) we obtain 8m2 

equicrural rectangular triangles Ai,...,AgTO2. For each k G {l , . . . ,8m2}, by 
the spatial points (xk,yk, f(xk,yk)), (x%,yk, f{x\,y$)), (x%,yk, f(x%,yk)) 
we can determine a plane equation z = S(x,y) as (6.5). Let h be side length 
of D^j, i.e. h = 1/m. It is no harm to assume y\ = yk, xk = xk, x\ = 
x\ + h, yk = yk + h. Rewriting (6.5) we obtain 

S(x, y) = f(xk, yk) + \[{x- xk) (f(xk, yk) - f(xk, yk)) 

+(y-yk)(f(xk
3,yl)-f(xkiyki))]-

Given arbitrarily (x,y) G U, there is k G {1,.. . , 8m2}, so that (x,y) G Afc. By 
(6.7) easily we can show 

\f(x,y) - S(x,y)\<\f(x,y) - f(xk,yk)\ + 

+ ̂ ^|/(x2
fc,y2

fc)-M,^)| + t^|/fefe,2/3
fc)-/(^,^)|-

Using the fact \x - xk\/h < 1, \y — yk\/h < 1, and (6.7) we get 

e e £ 3e 
\f(x,y)-S(x,y)\< 

4 4 

Thus, | | / - ( S | | o o [ / < 3 e / 4 < £ . D 

Using Theorem 6.1 and Theorem 6.2 easily we can show the following con­
clusion. 

Remark 6.2 For a given function / , we can obtain a SPLF S by parti­
tioning [—a, a] into 2TO identical length parts, that is, partitioning the cube 
D = [—a, a]d into (2m)d small cubes, moreover 

/ , - , )=S( ,..., (pi,-,Pd = - T O , - T O + 1,..., TO-1, TO). 
\ T O ml \ TO TO / 
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By Theorem 6.1 and Theorem 6.2, if / 6 Lp(fj,), or U C Rd is a compact 
set, and g £ C(U), then for arbitrary e >,0 there exist Si, £2 G £>d satisfying 
respectively: | | / - S i | | L , >< e; \\g - 5 ,2||(7oo< £• By such a fact, universal 
approximations of fuzzy systems to continuous function class or, integrable 
function class are also the approximating problems in T>d by fuzzy systems with 
respective metric senses. From our discussions in the section, SPLF's possess 
many useful properties, such as they are zero outside a compact set of Rd; Their 
one-sided derivatives exist and are bounded; They are uniformly continuous on 
M.d and so on, which provide us with much convenience for studying universal 
approximation of generalized fuzzy systems. 

§6.2 Approximation of generalized fuzzy systems 

with integral norm 

By partitioning the input space of fuzzy systems we define the correspond­
ing SPLF S G Vd, and show that generalized fuzzy systems can be universal 
approximators with Lp((/,)— norm. These constitute the main research topics 
in the section. The proofs of the approximation theorems for generalized fuzzy 
systems are constructive, and so the corresponding approximating procedure 
can be convenient to realize. 

Give an adjustable parameter a > 0. For m G N, partition [—a, a] into 
mi + m2 parts: —a = a_mi < a_TOl+i < • • • < a_i < 0 < ai < • • • < 

am 2_i < am2 = a. Then define the fuzzy set Aij& -̂"(K) (i = 1, ...,d; j = 
—mi, —mi + 1 , . . . , my, — 1, m-i). For convenience of application, in the following 

we array Aij (i = 1, ...,d; j = —mi, — mi + 1, ...,7712 — 1, m%) with certain order, 
that is, this class of fuzzy sets can be denned as the following definition. 

Definition 6.2 Give adjustable parameters a > 0, and m £ N. The class 

of fuzzy sets {Aij \i G {1, •••,rf}, j G {—mi, —mi + 1, ...,m,2 — 1,7712}} is called 
to satisfy S-L condition, if the following facts hold: 

(i) Aij(-) is Riemann integrable on K; 

(ii) Each Aij is a fuzzy number, and the kernel Ker(Aij) includes {a,j}, 
the support Supp(Aij) C [—a, a], moreover for arbitrarily 
{—mi, —mi + 1, ...,7712 — 1, "12}, we have 

ki <k <k2, AikAx) > °> Aik2(
x) > 0, = > Aik(x) > 0; 

(iii) There is a constant CQ G N, independent of a, m so that Vx G [—a, a], 

V* G {1,.. . , d}, 1 < Card({j| Aij(x) > 0}) < c0. (6.8) 

In the following we denote the fuzzy set family with S-L condition of Defi-
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nition 6.2 by 0(a, mi + m2), i.e. 

0(a, mi +m2) = {Aij \i G {1, ...,d}, j G {-mi, - m i + l, . . . ,m2 - 1, m 2}}. 

If mi = TO2 = m, then write 0{a, mi + m2) = C(a, m). And let £(a, m) be the 

maximal length of the partition intervals corresponding to 0(a, m), that is, 

£(a, m) = V {|fli+i —aj|}- If the fuzzy set family {Aij \i — 1, ...,d; j = 
—m<i<m — 1 

—m, —m + 1, ....,m — 1, m} with S-L condition as obtained by dividing the 
interval [—a, a], equally, i.e. a,- = aj/m (j = — m, —m + l , . . . ,m — 1, m), 
then we denote the fuzzy set family by Oo(a, m). Figure 6.1 demonstrates the 

membership curves of fuzzy numbers in the fuzzy set family Oo(a, m), by which 

we know Co — 2. If Aij& Oo{a, m), for given i, we can describe Aij with some 
natural language senses according to the value of j , such as 'positive large' 
'positive small' 'negative small' 'negative large', and so on. When designing 

fuzzy inference rules, we take Co (a, m) as the antecedent fuzzy set family of 
fuzzy rules. 

JJ 
1 

il m , 
Figure 6.1 Membership curves of Aij's 

Let T be a continuous t—norm, satisfying a\ > 0, a2 > 0, => aiTa2 > 0. 
We introduce the following notations: 

a{Ta2 = T(ai, a2), aiTa2Ta3 = (aiTa2)Ta3,..., (cei, a2, a3 G [0,1]). 

For (pi,...,pd) G {-m, -m+ l , . . . ,m - 1, m}d, and AiPl,—,Adpd€ 0(a, m), 
let 

HPl...Pd(xi,...,xd) =AiPl(x1) T A2p2(x2) T---T AdPd(
xd)-

By Definition 6.2 it follows that V(xi, ...,xa) G [—a, a]d, there is (pi, ...,Pd) & 
{—m, —m+1, ...,m — 1, m} d , so that Hpl^Pd(xi, ...,Xd) > 0. Give (xi, ...,Xd) G 
[—a, a]d , denote 

N(xi,...,xd) = {(pi,...,pd) G {-m, - m + l , . . . , m - 1, m}d |AiP l , . . . , AdPd€ 

0(a,m), AiPl(xi)T---TAdpd(xd) > 0 } . 
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L e m m a 6.2 Let (x i , . . . , xj) G M.d. Then the following facts hold: 

(i) If {Aij \i = 1,.--, d; j = —m, —m + 1,...., m — 1, m } = C ( a , m), we have 

(pi,-,Pd) G JV(a;i,...,a;d), => Vi G { l , . . . , d } , aPi_Co < x* < aP i + C 0 ; 

fiij / / {Aij \i = l,...,d;j = — m, — m + 1, . . . . ,m — 1, ?n}=(9o {a,m), it 
follows that 

Vfa,...,Pd)£N{x1,...,xd),Vie{li...,d}, a ( P i ~ C o ) < ^ < a ( P t + C o ) 

m m 

Proof. It suffices to show (i), for the proof of (ii) is similar. For (pi , ...,Pd) £ 

N(xi,...,Xd), we have, N(x\, ...,xa) ^= 0, and (xi, . . . ,Xd) € [—a, a ] d . Consid­

ering A i P l (x i ) T---T AaPd (xd) > 0, we get, Vi = 1, ...,d, A i p i (a;,) > 0. 

For each i G { l , . . . , d } , since AiPi is a fuzzy number, and AiPi (a
Pi)

 = 1, w e 

can show, AiP i (aPi+Co)>y4.iPi(:ri) > 0> moreover aPi+Co G [—a, a] by the prop­
erties of fuzzy numbers [35] and the fact: Xi > aPi+C0, ==> Xi > aPi. Since 

Ai(Pi+co){aPi+c0)= 1 > 0, by the definition of Aij it follows tha t Vj : pi < j < 

Pi + c0 , Aij(aPi+C0)> 0. Therefore 

C a r d ( { j | A i j ( a P i + C o ) > 0 } ) > c0 + 1, 

which contradicts (6.8) of Definition 6.2. Thus, x» < aPi+Co. Similarly we can 
show, Xi > aPi_Co. So aPi-Co < Xi < aPi+Co (i = 1,..., d). The lemma is proved. 
• 

By Lemma 6.2, if assume lim £(a, m) — 0, then for any (x i , . . . , xj) G Kd , 
m—»+oo 

and V(pi, ...pd) G N(xi, ...,Xd), it follows tha t lim aPi = Xi (1 < i < d). 
m—>+oo 

6.2.1 Genera l i zed M a m d a n i fuzzy s y s t e m 

The fuzzy rule base of a Mamdani fuzzy system consists of Mamdani type 

fuzzy inference rules. For given AiPl, • •-,AdPd£ Oo{a, m), we can express the 
corresponding Mamdani fuzzy rule as follows [32, 72, 76-78]: 

RPl...Pd : IF x i is AiPl and • • • and xd is AdPd THEN u is Ur(Pl,...,Pd), 

where xi,...,Xd are input variables, AiPl, •••,AdPd are antecedent fuzzy sets, 
and u is output variable whose range is the interval U = [—b, b] (b > 0), 

and Ur(Pl,...,Pd) is consequent fuzzy set, r is an adjustable real function, and 

rl • Z —> Z. b is also an adjustable parameter . 
Using above Mamdani inference rule RPl...Pd we can define a fuzzy implica-

Rpi--Pd
=Alp1 X • • • X Adpd ^U r(pi,...,Pd)t 
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The implication relation is a fuzzy set on [—a, a]d x [—b, b], tha t is, RPl...Pd£ 
•7""([—a, a]d x [—6, &]). And its membership function is 

RPl...Pd (x!,...,xd,u) =AiPl(x1) T • • -T AdPd{
xd) T Ur(Pu...,Pd)(u). 

For any A& T(\—a, a]d), using the fuzzy relation RPl...Pd and the V — T com­

position 'o ' , we can establish a fuzzy set a s ^ o RPl...Pd on [—b, b] : 

{A°RPl...Pd)(u)= V {A(x[,...,x'd)TRPl_Pd(x'1,...,x'd,u)} 
{x'1,...,x'd)e[-a,a\d 

V {A(x[,...,x'd)TAkp1(x'1)T---TAdpd(x'd)TUr(Pl,...,Pd)(u)}. 
(x'1,...,x'd)e[-a,aY 

(6.9) 

In (6.9) choose A as a singleton fuzzification at (x\, ...,xn), i.e. 

A(x!,...,xd) = 1, A(x[,...,x'd) = 0 ((x'1,...,x'd) ^ (xi,...,xd)). 

Then (6.9) can be expressed as 

(A O RPl...Pd) (u) =A(x1,..., xd) T AkPl(xi) T---T AdPd(xd) T Ur(Pl,...,Pd)(u) 

= tipi...Pd(Xl, ...,Xd) 1 Ur(Pl,...,pd)\
u)-

(6.10) 
We assume tha t the rule base of a Mamdani fuzzy system is complete, t ha t 
is, the base includes all fuzzy rules corresponding to all possible combinations 

of antecedent fuzzy sets Aij's (i = l,...,d; j = 0, ± 1 , . . . , ± m ) . So there exist 
(2m + l)d fuzzy rules in the rule base, and the size of the fuzzy rule base is 
(2m + l)d. Let 

m 
Qd{r)= \ / {\r(Pl,...,Pd)\}. 

Pi,---,Pd = -m 

Also let t/r(Pl,...,pd)G F([-b, b}) : Ker(Ur(Pl,...,Pd)) = {b • r(pi, •••,pd)/Qd(r)}, 

and Ur(Pll...,Pd) be a fuzzy number. Using the generalized centroid defuzzifica-
tion (see [18, 23, 31, 32, 43, 65, 66, 72, 77] etc), and (6.10) we can obtain a 
crisp output [31, 32, 72]: 

m 
^ Qdjr) ' r ( P i , - , P d ) •HPl...Pd(x1,...,xd)

a 

Mm(x1,...,Xd) = , (6.11) 
2—i tlp\...pd\X\T ••••,xd) 

p1,...,pd = -m 

where (xi,...,xd) G Kd is system input, a : 0 < a < +oo is an adjustable 
parameter, and let 0/0 = 0. The I / O relationship (6.11) is called a generalized 
Mamdani fuzzy system. 
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By [9], if a — +00 , (6.11) is a fuzzy system with the maximum mean 
defuzzification [18, 65]; If a = 1, (6.11) is a fuzzy system with the centroid 
defuzzizer [26-29, 37, 38, 68, 76, 77]; If a = 0, (6.11) is a weighted sum fuzzy 
system [19, 21, 41]; If a — 1 — 7 + 7 / d (7 G [0,1]), (6.11) is a compensatory 
neuro-fuzzy systems [79]. 

T h e o r e m 6.3 Let \i be Lebesgue measure on Kd . Then with Lp(fi)—norm 
generalized Mamdani fuzzy systems can be universal approximators to SPLF's, 
that is, for any S G T>d, and Ve > 0, there is TOO G N, so that Vm > mo, it 
follows that 

( / |M m (x i , . . . , a ; d ) - S(x1,...,xd)\
pdij)P < e, 

i.e. \\Mm-S\\^p < e . 

Proof. Let [—a, a]d be the support of S G T>d, and A i , . . . , AJVS be polyhe-
Ns 

drons corresponding to S, moreover \J Aj = [—a, a]d. Let #0 = 1, and denote 

5(xi , . . . ,Xd) = < 

^2 Sn -Xi, (x i , . . . ,X d ) G A i , 
i = 0 

(6.12) 

I 0, 

J2siNs-
xi> (Xl,--,Xd) G A J V S , 

i=0 

otherwise. 

it is no harm to assume Sy (i = 0, l , . . . ,d ; j = 1, ...,iVs) can be expressed 
as a decimal number (otherwise Sy can be approximated by such a number) . 
Denote 

s0 = min{s G N | l 0 s • sy e Z , j = 0, l , . . . , d ; j = l , . . . , i V s } . 

Let m y = 10s° • Sjj (i — 0 , 1 , . . . , d; j = 1, ...,JVg). Then m y G Z. Define the 
function r : {—TO, —TO + 1, ••-, TO — 1, m } d —> Z as follows: 

r(pi,-,Pd) = < 

TO • ]T TO,I • 
i =0 

aft 
TO V TO TO / 

* op, / a p i a p d \ 

TO V TO TO / i=0 

It is easy to versify the following fact: 

Qd(r) = \ / {\r(Pl,...,pd)\}=m-\f ^2\mij\}-
pi,...,pd = -m 

Ns , d 

V{Z 
j=l i=0 

(6.13) 
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Put b = 10 s° • Qd(r). For any (pi,...,Pd) € {~m, -m + l , . . . ,m - 1, m}d, if 
(api/m, ...,apd/rn)G Aj, easily we can show 

5(^,. . . ,^)=X;-«~=IO-O-E 
\ m ml ^-^ m ^-^ i=0 

api 

m Qd(r) 
r(pi,...,pd)-

(6.14) 
So b-r(pi,...,pd)/Qd(r) = S(api/m,...,apd/m). By Lemma 6.2, V(a;i, ...,xd) G 
Kd, (pi,...,Pd) G ^ ( a i i , . . . , ^ ) , let api/m = xt + 0Pi/m, where \0Pi\< ac0-
So by (6.11) (6.14) and Lemma 6.2 if let x = (xi,...,Xd) it follows that 
Hp1...Pd(x1,...,Xd) = HPl...Pd(x), N(xi,...,xd) =N(x), S(xi,...,xd) = 5(x), 

\M„ r =/ 
E 5(^,...,^)Fpl...Pd(Xr 

P l , - - , P d = - m 
S(x) 

Z J " p i - P d W * 
Pl | . . . ,Pm = —"l 

d/u 

/ 
J[—o,o]' 

/ 
«/ [—a,ol 

E ( S ( ^ , . . . , ^ ) - S ( x ) ) i f p i . . . p , ( x ) ° 
r t j ^ — TO *• ' 3 l , . - - i P i i = — " I 

Z j •"Pl. . .pdlXJ 
Pi,...,pd = - m 

-dyli 

E ( 5 ( ^ 1 + ^ , . . . )x< f f%)-5(x))ffP l . . .P d (x) c 

( p i , - , P d ) 6 J V ( x ) 

Z ^ - " p i . - - P d ( x ) 
(pi ,- ,Pd)eiv(x) 

-d/x 

< 

E S(x1+
e-^,...,x^)-S^)HPl...Pd(Xr 

J (pi,---,Pd)eiV(x) 

i f - a , a ] d 

Z J - " P l - - P d ( X ) C 

(p i , - - - ,Pd)eN(x) 

-d// 

< / 
</[-a,al' 

( E E^^-^,. .pd(xr)p 

(pi , - - - ,Pd)GiV(x)i=0 

Zv -"Pl--P<ilXi 
(pi,...,pd)6JV(x) 

-d// 

< PEA(S))'/ 
V TO i=0 ' 7f-a,al ' 

( E #Pl...Pd(x)«Y 
(pi>---,Pd)eJV(x) 

Z^ -"pi - - -Pd( x ) c 

(pi,.--,Pd)eJV(x) 

F d / i 

< f ^ f ; D 1 ( S ) ) % ( [ - a , a ] ^ ( ^ E A ( S ) ) P . ( 2 a ) ^ . 
\ m 

(6.15) 
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Therefore, \\Mm - Sll < 1dlv • a1+d/pc0 • £ A ( 5 ) / m . Thus 
[fi'p~ <=o 

i=0 

The theorem is proved. D 

Corollary 6.3 With Lp(fi)—norm the generalized Mamdani fuzzy system 
Mm can be universal approximator, that is, if fi is Lebesgue measure onM.d, then 
for any e > 0 and f G Lp(fi), there is mo G N, so thatMm > mo, ||MTO — / | | < 
£. 

Proof For £ > 0, By Theorem 6.1 and its proving procedure, there exist 
a > 0 and a SPLF S G Vd, such that 

Supp(S) = {(Xl,...,xd) e Rd\-a <xt<a,i = l, ...,d}, \\f - S\\^p< | . 

By Theorem 6.3, there is mo G N satisfying: Vm > mo, \\S — Mm | | < - . 

Therefore 

| | M m - / | | <\\Mm~S\\ + | | / - 5 | | < ^ + | = £ . 
II "l •> H/i,p— II HM.P " " M , P 2 2 

Thus the conclusion is proved. • 

For a given error bound £ > 0, next let us estimate the size of the fuzzy 
rule base of a fuzzy system. 

Theorem 6.4 Suppose /x is Lebesgue measure on Rd, and f : Rd —> R. 
is Riemann integrable. Then for arbitrary e > 0, there are h > 0 and a > 0, if 
for any i = 1, ...,d, let xh = (xi, ...,x;_i, Xi + h, Xj+i, ...,£<*) and 

DH(f) = V V i^1 • |/(x^)-/(x!, ...,xd)\}= V(A(/)}. 

(6.16) 
we have, whenm > [2a)1+dlp -d-Dnif) -co/e, it follows that | | M m - / | | < e. 

Proof. By the proof of Theorem 6.1, for e > 0, there is a > 0. Parti­
tion [—a, a]d identically into sufficiently small cubes, and then divide these 
small cubes into d dimensional polyhedrons A I , . . . , A J V - Thus we can define 
S £ P i , so that | | / — 511 < e/2. Suppose the side length of these cubes 

d 

is h > 0. By Corollary 6.2 easily we have, DH(f) = \J {A(5 )} . Therefore, 
i= i 

Vt = 1, ...,d, Di(S) < DH(f). Let m > {2a)1+dlp • d • DH{f) • c0/e. So m > 
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d 

2i+d/pai+d/pCo j2 Di{S)/e. By Theorem 6.3 it follows that \\Mm -S\\ < e/2. 

Hence 

||/ - Mm\lp< ||/ - SH^+HS - Mm\lp< 1 + 1= e. 

The theorem is therefore proved. • 

In Theorem 6.4, if choose Co = 2, p = d — 1, and Supp(/) C [—1, l]d, 
that is, a = 1. Then the corresponding m satisfies: m > 8Z?#(/)/£. In the 
following we utilize a real example to demonstrate the realizing procedure of 
the approximation obtained. 

Example 6.1 Choose CQ = 2, and p = d = 1, i.e. we illustrate our example 
in one-dimensional space R. Give the error bound e = 0.1. Define the function 
/ : R —> R as follows: 

-i<*<4 
-\<x<0, 

0<x<\, 

\<x<l, 

otherwise. 

Easily we can show, if partition [—1, 1] identically into 20 parts, and then 
obtain the SPLF S G Vi, so that Supp(S) = [-1, 1], then | | / - S\\ < e/2. 
The curves of the functions / and S are shown in Figure 6.2 and Figure 6.3, 
respectively. 

At first let a = 1. By Theorem 6.4, DH(f) < 1, and if m > 4DH(f)/0.1, 
by (6.11) we can define the generalized Mamdani fuzzy system Mm satisfying 
11/ — Mm\\ < s. Choose m = 40, the size of fuzzy rule base corresponding to 

Mm is (2m + l ) 1 = 81. 

/(*) = 

f 1 (2a;+l)7r 
8""" 2 
1 / 1x9 

2 < * + 2 > « 

1 2 
•Z% i 
2 ' 
1 • / ^ 
gSin(7rx), 

. o, 

Figure 6.2 The curve of / Figure 6.3 The curve of S 
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Let Aij (j = 0, ± 1 , ...,±40) be obtained by the translation of the fuzzy 

number A denned as follows: 

1 
<x< 

A{x) = < 

Al (40)0*0 

' 4 0 ( 1 - * ) * , 0 _ 4 0 , 

4 0 ( l )H' "4l)^<0' 
0, otherwise; 

39 \ 39 
40 

0, 
(-S) <X<1, 

0, otherwise. 

40 

otherwise; 

39\ , 39 
40' 

And Aij(x) =A{x - J 7 4 0 ) (j = 0, ±1 , . . . , ±39). 

0.12 

0.1 

So.oa 

"° 0.06 

> 0.04 

0.02 

/ 
j 

I 
' / 

/ 

/ 

j 
/ 

J J 

/ \ 
/ \ 

/ \ 
/ \ ' 
/ \ 

/ \ 

a , . 

0 , 

S0. M 

r 
>0.04 

0.02 

/ 1 
I 

: / 

/ 

i 

j 
j 

/ \ 
/ \ 

/ \ ' 
/ \ : 

/ V 
Figure 6.4 I/O of Mm when a = 1 Figure 6.5 I/O of Mm when a = 1/2 

Since Hj(x) =Aij (x), by (6.11) (6.15) and the fact / ( j /40) = 5(j/40) we 
obtain the I/O relationship of the fuzzy system Mm(-) as follows: 

40 
E AiiW-fUs) 

Mm(x) = j=-i0 
40 „ 
E Aij{x) 

j = - 4 0 

I/O relationship curve of the corresponding generalized Mamdani fuzzy system 
is shown in Figure 6.4. 

Then choose a = 1/2, the corresponding generalized Mamdani fuzzy system 
can expressed as 

40 ^ 

E UM)*-f{i>) 
Mm(x) 

j = - 4 0 

E Ui3(x))i 
j = - 4 0 
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Figure 6.5 illustrates the I/O relationship curve. 
From above example we can find that it is easy to realize the approximation 

of the given function by a generalized Mamdani fuzzy system, moreover with 
Lp(fj,)— norm the high approximating accuracy can be ensured. 

6.2.2 Generalized T—S fuzzy system 

The consequent of a T-S type fuzzy inference is the function of input vari­
ables. If the rule base of a fuzzy system consists of T-S inference rules, the 
fuzzy system is called a T-S fuzzy system. Given the antecedent fuzzy sets 

AiPl,~-,Adpd£ Oo(a, TO), in the subsection the consequent function is chosen 
to be a linear function of the input variables. T-S fuzzy inference rule can be 
expressed as follows [33, 34, 73-75]: 

TRPl„,Pd : IF xi is A\Pl and x2 is A2P2
 a n d ••• a n d xa is AdPd 

THEN u is bo-Pl...Pd + bi-Pl.,.Pdxi + • • • + bd-lPl...pdXd. 

where bk-lPl...Pd (k — 0,1, ...,d) is an adjustable real parameter. Similarly with 
Mamdani fuzzy system, we assume the fuzzy rule base for a T-S fuzzy system 
is complete, i.e. the base includes all fuzzy rules corresponding to all possible 

combinations of AiPl, •••, AdPd€ Oo(a, TO) for pi,...,Pd = —m, -TO + 1, ...,m — 
1, TO). The size of the rule base is also (2m + l)d. Based on the generalized 
centroid defuzzifier we can define a generalized T-S fuzzy system whose I/O 
relationship is [33, 62, 73, 75] 

m / d 

E \HPl...Pd(x1,...,xd)
a • (J2 bk]Pl...Pdxk 

T-, / \ pi,...,pd = —m v k=0 / e i - 7 \ 

Tm{x1,...,Xd) = ^ , (6.17) 
Z J •tlPi...Pd\

xl-> •••> Xd) 
p i , . . . , p d = - m 

where let 0/0 = 0, and a G [0, +oo] is an adjustable, Xo = 1. Similarly with 
(6.11), if a = 1, (6.17) is a T-S system with centroid defuzzification; If a = +oo, 
(6.17) is a T-S fuzzy system with maximum mean defuzzification; If a = 0, 
(6.17) is also a weighted sum T-S system. In (6.17) if V/c £ {l,...,d}, bk-Pl...Pd — 
0, the system is call a simple generalized T-S fuzzy system. 

Theorem 6.5 Suppose \x is Lebesgue measure on W1. Then generalized T-
S fuzzy systems can be universal approximators to SPLF's with Lp(^,)—norm, 
that is, for any S € T>d, and \/e > 0, there is m G N, so that 

( \Tm(x1,...,xd) - S(x1,...,xd)\
pdn)P<e, < £. 

\p,,P 

Proof. If S £ Vd, as in Theorem 6.3, let Supp(>S) = [-a, a]d, and define S 
as (6.12). Define the parameter bk-Pl...Pm (k = 0,1, ...,d; pi, ...,pd = — TO, —m+ 
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1, ...,m — 1, m) as follows: 

°0;pi...pd — "^ l ) •••) I i 

\m m) 
"k;pi...pd = ^ ! /C = 1 , • • . , U . 

(6.18) 

By lemma 6.2, V(pi, ...,pd) G ^ ( ^ l , • •-,#<*)> denote Pi/m = Xi + #P j /m (i 
1, ...,<f), then |6>Pi| < aco- Using Lemma 6.1 we can show 

(pi,...,Pd) G ^ ( x i , . . . , ^ ) , Pd ^(xi, . . . ,^) - S ( — , . , 
\ m m s?E«' 

i = i 

(6.19) 
So similarly with (6.15) and using (6.18) (6.19), we let x = (xi,...,Xd) and 
obtain 

m / d \ 

..pd
xk) 1 

Oi,...,Pd =—TO ^ fc=0 ' 
- S ( x ) d/x 

E ffP1...Pd(x)« 
J>1 ,...,Pm = ~ m 

£ (tfPl...Pm(x)«. ( E 6fe;p,..Pdxfc-5(x))) 
,Pd = —m v fc=0 ' ' Pl>."iPd = —"l 

[-a,a]d 

E ^P1...p<l(x)c 

Pl,--,Pd = - ™ 

-d/i 

E H p 1 . . . p d ( x H s ( ^ , . . . , ^ ) - S ( x ) ) r 
/ (P l , . . . ,pd)6iV(x) V ' ' 

/ p d / i 
J [ - a , o ] d E HPl,...,Pi(x)c 

(pi,- ,Pd)€JV(x) 

< / 
•/[-a,a]< 

{ E i J i , 

(pi,- ,Pd)€JV(x) 
s(£,-,£)-s(x)|}P 

(pi,---,Pd)eW(x) 

-d/i 

< ( ^ E A(S))%([-a>o]")= ( ^ E A(S))P(2a) 

Hence if choose m > c0 • 2
d^ • al+d/P E A ( 5 ) / e , we have, ||Tm - 5 | | < e. D 

By above proof procedure the generalized T-S fuzzy systems using for ap­
proximating the given functions can be chosen as the simple generalized T-S 
fuzzy systems. Similarly with Corollary 6.3 and Theorem 6.4, using Theorem 
6.1 and Theorem 6.5 easily we can show 
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Corollary 6.4 Let \x be Lebesgue measure on M.d. Give arbitrarily / 6 
Lp(fj), and Ve > 0. For h > 0, a > 0, suppose Dff(f) is defined by (6.16). 
Then the following facts hold: 

(i) There is m € N, so that \\Tm — f\\n,P < £, «-e. wii/i Lp{^) — norm 
generalized T-S fuzzy systems are universal approximators; 

(ii) When h is sufficiently small, and m > (2a)1 + d /p • d • Dn(f) • co/e, we 
have, \\Tm — f\\ < e. 

' II ' " J i i /x,p 

In Corollary 6.4, if choose c0 = 2, d = 2, p = 1, a = 1, then the corre­
sponding m satisfies: m > 32Dn(f)/£; If d = 1, CQ = 2, p = 1, a = 1, then 
m > 8DH(f)/e. 

Example 6.2 Let Co = 2, p = 1, a = 1. In K, i.e. d = 1 we discuss our 
example. Define / : K —> M as follows: 

/ ( * ) 

1 • 7 T / , N 

- s i n - ( l + a;), 

1 
7T 

cos —x, 
2 

I 0, 

- 1 <x < 0, 

0 < x < 1, 

otherwise. 

Choose error bound e = 0.1. Easily we know, if partition [—1, 1] identically 
into 2m (TO > 10) parts, a SPLF S € V\ is defined so that | | / - 5 , | | M j P < e/2. The 
curves of the functions / , S is shown in Figure 6.6 and Figure 6.7, respectively. 

Obviously DH(f) < TT/8. By Corollary 6.4, TO > 8?r/0.8 = 10-TT, let m = 32. 
The size of the fuzzy rule base is (2 x 32 + l ) 1 = 65. By Remark 6.2, / ( j /32) = 

S(j/32) (j = 0, ±1 , . . . , ±32). Define Aij (j = 0, ±1 , . . . , ±32) as the translation 

of the following triangular fuzzy number A-

A(x) = < 

32 
<x <0 , 

0 < x < 
1 

I 0 
32' 

otherwise. 

15 15 
3 2 ( x - — ) , — <x<l, 

\ 32J' 32 ~ _ ' 
0, otherwise; 

Al(32)(x) z 

~ / N / -32fa 

Aij{x)=A(x-j/32) (j = 0,±l , . . . ,±31) . Since d = p = 1, HPl(x) =Alpi(x). 

, x + 
1 5 \ 1 <r <- 1 5 — , — 1 < x < , 
32/ ~ ~ 32' 

otherwise. 
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Thus, by (6.17) it follows tha t 

Tm{x) = 

32 

E Als(x)af(^) 
j = - 3 2 

32 ^ ' 
E Ai3{x)<* 

j = - 3 2 

Choose respectively a = 1, a = 1/3, the I / O relationship curves of the 
corresponding generalized T - S fuzzy systems are illustrated in Figure 6.8 and 
Figure 6.9, respectively, by which we can see by comparing tha t the general­
ized T -S fuzzy system approximation with Li(/i)— norm also possesses high 
accuracy at each point. 
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Figure 6.8 I/O of Tm when a = 1 Figure 6.9 I/O of Tm when a = 1/4 

E x a m p l e 6.3 Consider two dimensional case, i.e. d = 2, and / : 
is defined as follows: 

/(*) 

1 
(x + y + l)2, -l<x + y < 0 , 

O 

l-(x + y), 0<x + y<l, 

0, otherwise. 

For a given accuracy e = 0.2, in order to compute the SPLF S, satisfying 
| | / — S , | |[_i]i]?p < e /2 , we parti t ion [—1, l ] 2 identically into sufficiently small 
squares. So by choosing h = 0.01, we can get, Dn(f) < 1- Thus, we may 
choose B = (2 x 2 x 2 x 4 x l ) /0 .2 = 160. The size of the fuzzy rule base is 
(2 x 160 + 1 ) 2 = 103041. If let e = 0.1, by Corollary 6.4 it is necessary to choose 
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n = 320, and in the fuzzy rule base there must be (2 x 320 + 1) = 6412 — 
410881 fuzzy rules, which increases very quickly which n increases (i.e. 'rule 
explosion'). That will result in much inconvenience when fuzzy systems are 
employed to deal with high dimensional I/O mappings. So it is of significance 
in practice how to improve the structures of fuzzy systems to solve such a 
problem, which is the research subject in §6.3. 

In order to utilize the common advantages of generalized T-S fuzzy systems 
and generalized Mamdani fuzzy systems, let us now synthesize such two systems 
as one within a general framework, which is called generalized fuzzy system. 
To this end we at first develop a type of fuzzy inference rules as follows: 

GPl...Pd : IF xi is AiPl and x2 is A2p2 and ... and xj, is AdPd 

THEN u is A Vt(Pl...Pd;Xu...,Xd) +(1 - A) Ur(Pl,...,Pd), 

we let 0/0 = 0, A € [0,1] is an adjustable parameter, and 

d 
t(pi...pd; X1,...,Xd) — J2 hpi-Pd 'xi> 

i=0 

moreover, Vx is a singleton fuzzy set, that is, Vx is equivalent to the real 

number x : Vx {x) = l,Vx (%') = 0 (x ^ x'). Corresponding to above fuzzy 
rules we define a generalized fuzzy system [31] 

n , d s 

E ffp,...wWa (1-A)^r(p1 , . . ,pd) + AE^ 1 . . . P ^ ! 
P (v\ _ Pu-,Pd = ~n ^ i = 0 ' 

rm\-^) — n i 

Pi, — ,Pd = — n 

(6.20) 
where x = (x\, ...,Xd), A s [0,1], 0 < a < +oo, XQ = 1. If A = 1, then (6.20) is 
a generalized T-S fuzzy system; If A = 0, (6.20) is a generalized Mamdani fuzzy 
system. In practice (6.20) defines a general fuzzy system, and it concludes most 
of fuzzy systems in application as its special cases [31]. 

Using Theorem 6.3, Theorem 6.4 and Theorem 6.5 we can show the following 
conclusion. 

Corollary 6.5 Suppose n is Lebesgue measure on Rd. For any f € Lp(fi), 
and Ve > 0, the following facts hold: 

(i) VS G T>d, the generalized fuzzy system defined by (6.20) is universal 
approximator to S with Lp(/i)—norm; 

(ii) There is m £ N, so that \\Fm — f\\ < £, that is, with Lp(n)~norm 
generalized fuzzy systems can be universal approximators; 

(in) There is a sufficiently small h > 0, if Dn(f) is defined as (6.16), then 

m > M^ ; W^ | | f W | L < £ , 
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Proof. Let S be determined by (6.12), the d-variate function r be defined 
by (6.13). Similarly with Theorem 6.3, we define Q{r) and b > 0. Using (6.18) 
we determine the parameter bk-Pl...Pd (k = 0,1, ...,d). Easily we can show 

Also similarly with (6.15) (6.19), we can get 

m> ^ E A(S),=> ||Fm - S\\ < ̂  E A(5)(2a)"/" < e. 
e i=x

 M " > ^ m i=1 

(i) is proved, (ii) and (iii) are direct results of Corollary 6.3 and Corollary 6.4. 

• 
By comparison between Corollary 6.5 and Corollary 6.4 we get, if the accu­

racy related is identical, the size of fuzzy rule base of generalized fuzzy system 
(6.20) is same with ones of generalized T-S fuzzy system and generalized Mam-
dani fuzzy system, independent of A. 

R e m a r k 6.3 If lim £(«, m) = 0, and 0(a, m) constitute the antecedent 
m—>+oo 

fuzzy set family, similarly we can show, both generalized Mamdani fuzzy sys­
tems and generalized T-S fuzzy systems can be universal approximators with 
Lp{n)— norm. 

In the section we focus on Mamdani fuzzy systems and T-S fuzzy systems 
with a general framework. Taking SPLF's as bridges we analyze universal 
approximation of generalized fuzzy systems to p—integrable functions. Thus, 
by [16, 78] this two generalized fuzzy systems can be universal approximators, 
respectively with maximum norm and integral norm. 

§6.3 Hierarchical system of generalized 

T—S fuzzy system 

In most rule based fuzzy systems, fuzzy rule base consisting of a number 
of inference rules defined as 'IF...THEN...' is a key part. The size of a com­
plete rule base increases exponentially when the system input variable number 
increases, which is called 'Rule explosion'. Such a phenomenon is in nature 
the 'curse of dimensionality' which exists in many fields [10, 14]. That will not 
only generate complicated system structures, but also cause long computational 
time, even memory overload of the computer. 

To make fuzzy systems usable in dealing with complex systems, we must 
solve the 'rule explosion' problem [5-7, 40, 49-51]. In the research for fuzzy 
systems or fuzzy controllers, two classes of such methods are significant. One 
is based on the equivalence of 'intersection rule configuration' and 'union rule 
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configuration' [5, 6, 40]. Tha t is, if P and Q are two antecedents, and R is a 
consequent, then 

[(P A Q) => R] «=> [(P =>R)V(Q=> R)}. 

Another one is to introduce a hierarchical system configuration [49-51], which 
we shall focus on in the section and the next section. By this hierarchy we can 
deal with effectively some large scale systems in application. 

In order to analyze a HFS thoroughly, at first we show tha t the I / O re­
lationships of HFS's may be represented as ones of s tandard fuzzy systems. 
The further result is the equivalence between fuzzy system and its HFS. For 
convenience to define a HFS we give a fuzzy set family as 

{Aij \i = l,...,d; j = -m, - m + l , . . . , m - 1, m}c£>o(a, rn), 

where a > 0 is also a given real number. 

6.3 .1 Hierarchical fuzzy s y s t e m 

In the subsection we introduce a hierarchical s tructure to solve the 'rule 
explosion' problem, as shown in Figure 6.10. In this hierarchy, the first level 
fuzzy system gives an approximate output yj™, which is modified by the second 
level fuzzy system as an input variable; the third level system will modify the 
output y™ °f the second level fuzzy system; ... and so on. This process is 
repeated in succeeding subsystems of the hierarchy. 

L-th fuzzy system 

2-nd fuzzy system 
T T T 

yT 

l-st fuzzy system 

t .. t 
X\ Xdl Xdl + i Xdl+d2 Xdi + .-.+dL^ + l Xd 

Figure 6.10 Hierarchical fuzzy system 

In Figure 6.10 j/™,..., j/™_i a r e a ^ s o employed as the intermediate input vari­
ables of the corresponding subsystems. For each k = 1, ...,L — 1, we introduce 
fuzzy number Bkj£ T(K) (j = 0, ± l , . . . , ± m ) as the antecedent fuzzy set for 
the input variable y^1, such tha t \fy G R, Vfc G {1 , . . . , L — 1}, it follows tha t 

Caxd{{je{-m,-m + l,...,m-l,m}\Bkj(y) > 0 } ) > 1. (6.21) 
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In Figure 6.10, The first level and j—th (j = 2,...,L) level are T-S fuzzy 
systems. There exist d\ input variables x\, •••,Xd1 in the first level, and there 
are dj input variables Xdj_1+i, • ••,xdj_1+dj

 a n d a intermediate variable y™_\ 
that is the output of the (j — 1)—th level fuzzy system, in the j—th level. 
The following fuzzy inference rules being used in the first and j—th level fuzzy 
systems respectively, will be employed to define the I/O relationship of a HFS: 

~ ~ Pi 

IF xi is AiPl and • • • and xdl is AdlPdl THEN y f is &U;P1...P + £ H;Pl...Pdl
xi> 

4 = 1 

IF xdj_1+1 is A(d3._1+i)Pl and • • • and a ? ^ . , ^ is A ^ . ^ ^ . and y™j is Bj-i 

THEN % is 4. + <9qyf_Y + £ ^ xd]_1+l, 
J i=l J 

L 

where j = 2, ...,L; £ dj = d; q, pi, P2,... € {—m, —m + 1, ...,m— 1, m}, and 

6^ . „„ . , ĉ  are adjustable parameters. 

i/r-

I/ZLr 

Figure 6.11 Fuzzy system with intermediate input variables 

Through the hierarchy as in Figure 6.10 the size of fuzzy rule base of a fuzzy 
system can increase as the linear function of input variable number [63]. 

Proposition 6.1 Suppose there are L levels in a HFS, in which exist d\ 
input variables in the first level and exist dj + 1 input variables in which the 
intermediate variable vTL\ is included, in the j — th level (j = 2,...,L). / / 
d\ = dj + 1 = c, then the size of the fuzzy rule base related to this HFS is 
(2m + l ) c ( c Z - l ) / ( c - l ) . 

Proof. Let s be the size of the rule base, i.e. the total number of fuzzy 
rules related to the HFS as Figure 6.10. Obviously we have 

L 

s = (2m + l ) d l + ^ ( 2 m + l ) ^ + 1 = ( 2 m + l ) c + (Z,- l)(2m + l ) c = L (2m+l ) c . 

3=2 

L L 

Since d = £ dj = c+ £ ( c - 1) = Lc — L + 1, thus, L = (d— l)/(c— 1). Hence 
3=1 3=1 

s = (d — 1)(2TO + l ) c / (c — 1). The proposition is therefore proved. • 

y? 



276 Liu and Li Fuzzy Neural Network Theory and Application 

In Proposition 6.1, let c = 2, then s — (d — l ) (2m + l ) 2 . We introduce 
intermediate variables as y™,..., y™_x in HFS shown in Figure 6.10, and obtain 
a fuzzy system whose input variables are xi,...,Xd\ y™, •••,y™_1, as shown in 
Figure 6.11. 

Next let us prove the equivalence between the I / O relationship of the HFS 
as Figure 6.10 and one of the fuzzy system as Figure 6.11. To this end we at 
first analyze I / O relationships of generalized hierarchical T -S fuzzy systems, 
thoroughly. 

6.3.2 Genera l i zed hierarchical T—S fuzzy s y s t e m 

In the following we introduce the notation: x£ = (xk+i,---,Xk+n) £ K™ 
for k, n G N. For x = (xi , ...,Xd) = x „ € Rd, give the indices j and k G N, 
satisfying 0 < j < j + k < d. If p i , ...,Pk € {—m, —m + 1, . . . ,m - l , m } , denote 

ffPi...pfc(^i+i. - , ^ + f c ) = A y + i ) p i ( x J + i ) x - ' - x Aj+k)Pk(
xj+k) (6.22) 

If j = 0, j + k = d, the relation structure as shown in Figure 6.10 is a T -S fuzzy 
system, whose I / O relationship (xi , ...,£<*) —> Tm(xi, ...,Xd) is determined by 
(6.17); If j > 0, j + k < d, then in the HFS shown in Figure 6.10, the I /O 
relationships of the first level and j—th level fuzzy systems are also determined 
by the generalized T -S fuzzy systems as following: 

HI, / " i \ 

E Hpi-P^i^O) \b0;p1...pdl+J2bj;p1...pdl
xj) 

-i / J \ P l i " - iPd i — — m 7 — 1 

y r = ^ ( x 0
d o = ^ ^ — 

d1\
a 

2^ HPl...Pdl (x0 j 
P i , . - - i P d 1 = - m 

E K...P,, (xJ)J3,(i/r-i)] myf- i ) 
2/j ~ - ' m ( X ; i Vj-l)= m ~ Z ' 

E [HPl...Pdjti;)Bq(y?_1)]
a 

Q,Pl,---,Pdj=-m 

(6.23) 
i-i 

where we let 0/0 = 0; j = 2, ...,L, lj = ^ d&. The I / O relationship (6.23) is 
fc=i 

called a generalized hierarchical fuzzy system (generalized HFS), where 

dj 

z(J,yT-i) = K;P1...Pd] +4vr-i + £6ki.. .P- i
aV"- (6-24) 

i = l 

In order to analyze the I / O relationship of the generalized HFS we firstly 
present the following lemma. 

L e m m a 6.3 Suppose x = x$ = (xi,...,Xd) € Kd , and i, j , fci, fc2 G N 
satisfy: l<i<j<i + ki+k2<d, i + ki — j . Then for any a : 0 < a < +oo ; 
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it follows that 

( £ Hpl...Pkitfr){ E Hqx..,k^YY) 
Vl.--,Pfc1=-"» V , - - - . 9 f c 2

= - m 

— V* U („k1 + k2\
a 

— Z^ I1pi~-Pk1+k2\*i ) • 
P l , - " , P f c 1 + k 2 = _ m 

Proof. By (6.22), it follows that the following inequalities hold: 

Hp1...Pkl(xi1)a=A(i+i)p1{xi+i)a x ••• x A(i+k1)pkl(xi+kl)
a, 

Considering i + k\ = j , we get 

E HPl...Pki(x^)a)-( £ Hqi...qk^fr) 

= ( E U( i+ i ) P l (^+ i ) a x ••• x A{i+kl)pkl(xi+kl)
a))-

> i , . . . , p f c l = - m 

•( E A(j+i)qi{xj+1)
a x • • • x A y + f c ^ ^ ^ + f c J " 

E {A(i+i)Pl(xi+i)a x ••• x J4(i+fcl)pfcl(
a;i+fei)ax 

P l v , P f c i , 9 l , - - , 9 f c 2
= _ m 

^ ( i + f e l + ^ q i ^ i + f e l + l ) " X • • • X A^+ki+k^q^iXi+^+^Y 

E {A(i+i)p1{xi+i)a x • • • x A(i+fc1+fe2)Pfcl+fc2(a;i+fc1+fc2)
aJ 

p i , . . . ,P fc 1 + f c 2 =-m v 

m 
= 2_, ^Pi---Pk1 + k2 v^ i+ l i •••' ^i+fci+fca J • 

Piv ,Pfc i+fe 2
 = ^ m 

Considering x^1+fe2 = (xj+i, ...,Xi+kl+k2), we can prove the lemma. • 

Theorem 6.6 Suppose y™,...,y™ are defined by (6.23). Then for any 
j = 2,...,!/, there exist ao(P, P J ) , a.i(P, P^) for i = l,...,lj + dj, such that if 
we denote 

P = (zi,...,i,-_i), P J = ( p i , . . . , ^ . + ^ ) , 

J(I^,yT,...,yT-i) ^BM) x ••• x ^ - ^ - i ) , 

0(x|/+1)=0(x1 , . . . ,x ; 3+1) = a0(P',P') + I > i ( / J ' , P J > i , 



278 Liu and Li Fuzzy Neural Network Theory and Application 

we can conclude that 

E [Hn...Pdj+li(4
i+i)JVi-,y?,---,v?-i)] o(4+1) 

H , . . . , j j _ i ; p i , . . . , p i . + d , = - m 

v? = — 
E [HP1...Pdj+lj (4

i+hWj;v?, ->vT-i)]a 

il,---,*j-UPi,~-,Pdj+lj=-™. 

(6.25) 
Proof. We employ induction to show the conclusion. At first when L = 2, 

we have, II = h = d\. By (6.23) it follows that 

V? = n ' P l ' - ' P d 2 ; "• • (6-26) 

E [HPl...Pd2{4:) Bn(yr)a]Z(2,y?) 
2=-™ 

E [HPl...Pd2(4Da Bn(y?)a] 
• •,Pd2=-m 

Using (6.23) (6.26) we can conclude that 

m 

E Hqi-qdifeo1) V)0;q1...qdl
ci1 +

 b0;Pl...PdJ 

Ji,pi,...,Pd2 = - m 

Z(2,yD 
2 ^ -"gi-.-gi l x o ) a 

d\ d-2 rn / a\ ai \ 

E Hqi...qdi (x^) a (E <?Ax...qil*i + E blP1...Pd2xdl^) 
qi,--,qdi=-rri M=l i = l 

_l 1 . 
771 

E -ngi...gi(xo )° 
qi,—,qd1=-™. 

(6.27) 
Substituting (6.27) for the corresponding term of (6.26) and using Lemma 6.3 
we get 

E (HPl...Pdl+d2 {41+d*)Bil(y?))aC(4*+d>) 
m » 1 , p i , . . . , p ( j 1 + d 2 = - m 

^2 = m ~ ) 

E {HPl...Pdl+da(4
1+d2)Bil(yT))a 

*i,pi , . -- ,Pd1+d2=-m 

where C(xQ1+d2)= C(xi, ...,xdl+d2) is a linear of xi, ...,xdl+d2 : 

di d2 

C ( V 2) = E ^Awi-Pd^i + E &?;pd1+i...Pd1+d2
a;di+* 

i—1 i— 1 
-L/,1 r

2 -I- ?,2 
^"0;pi...pdj ii T "0;pd l + 1 . . . p < j 1 + < i 2 -

If denote 

a0(I
2, P2) = bl.pi % +ko;pd1+1...pd1+d2; 
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I hlvd ^ P/,irf . dl + l<i<dl+d2. 
we can conclude that the following fact holds: 

E (HP1...Pd2+h (4^)J(i2;yD)ao(42+d2) 
m 

E (HP1...Pl2+d2(4
2+h)A^yT)) 

J/2m = m . (6-28) 

ii;Pi,---,Pd2+i2=-m 

dz+l2 

E where 0(x( , 2 + d 2 )=0(x 1 , . . . ,x j 2 + d 2 ) = a0( /2 , P 2 ) + E ^(I2, P 2 ) ^ . By (6.28) 

we imply, when j = 2 (6.25) holds. Assume (6.25) holds when j = L — 1. Since 
Zt-i + d_L-i = Zi it follows that 

E [HP1...PlL(4L)J(iL-1;y?,-,yf-2)]ao(^L) 
m ^ t 1 , . . . , i L _ 2 ; p i , . . . , P i I _ = - m 

VL-1— m ' 

E [HP1...PlL(rtWL-1\y?,-,y?-2)]a 

n,---,iL-2;pi,---,piL=—m 

(6.29) 

also we denote E(xl
0
L)= a 0 ( / L - 1 , P1'1) + E «i(^L _ 1 , PL~l)%i- By 

(6.23) we obtain 

E [HPl...PdL{x%)BiL(y?-i)]aZ(L,yZ_1) 
__ u . p i . - ^ ^ - m (6.30) 

E [^...p^K^BiJi/EL!)]0 

J i , p l , . . . , P d I _ = - m 

Similarly with (6.25) (6.26), substituting (6.29) for corresponding term in (6.30) 
d 

and letting 0 (x#)= O(x) = a 0 ( / L , P L ) + £ a i ( / L , P L )x i ; where 
i = l 

ao ( / L , P L ) = a o ^ " 1 , P ' " 1 ) -cft + 6fe, l t+1...p lL+di; 

f O i ^ - S P 1 - 1 ) - ^ , 1 < * < Z L , 
a-(7L P L ) = < 

I *& I i + 1 . . . P l i + d i . ?L + l < i < Z L + dL, 

and considering II + dz, = d, we can express the output yr£ as follows: 

m 

E [HPI...W (x) J(/L; yT, - , y^i)]aO(x) 
m _ J i , . . . , » i , _ i ; p 1 , . . . , p < j = — m 

^ L — m • 

E [HP1...Pd(x)J(IL;y?,...,y?_1)]
a 

il,...,iL-i;pi,...,pd =—m 
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Thus, when j = L (6.25) holds. By the induction principle the theorem is 
proved. • 

As an inverse process of the proof of Theorem 6.6, the following conclusion 
holds also. 

Theorem 6.7 Suppose y™,..., 2/™_i *s intermediate input variables. The 
I/O relationship (x\, ...,Xd) —• y™ of the generalized T-S fuzzy system is given 
as follows: 

m 

E [HPl...pJx)J(IL;y?,...,yZ_1j\
aa0(I

L, PL) 
J l , . . . , i L _ i ; p i , . . . , P d = - m 

VL= 

ii,...,ii^-i;pi,...,Pd = ~m 

ii,...,iL-i;pi,...,pd = -m 

E [HP1...Pd(x)-JVL;y?,-,vZ-i)]a 

in / d 

E [HPl...Pd(X)J(IL;yr,...,yt-i)]a(E^(IL,PL> 
Pi,...,pd = -m \=1 

E [Hpl...Pd(x)J(iL;v?,..,vT-1)]
a 

ii,...,iL-i;Pl,---,Pd = -m 

Then there exist b3
0.pi p., c\ and b\.pi___p. (j = 1,..., L; plt ...,pj = -m, -m + 

it 

E Hpl...Pdi(x^)a(bltPi,,,pdi + Ebl,Pl. 
,---,Pd1=-m s i=l 

1,..., m — 1, m), so that 

yT = M41) 

V? = Tj{xd>V?-i)-

Pl,---,Pd1— — m 
E tlpi...Pdl\

Xli •••iXd1) 
,Pdl=-m 

E [HPl...Pdl {rf)Bq(yJLx)]
aZ(j, yf_x) 

q,Pl,---,Pdi=-m 

E [Hpi...Pdjtf;)Bq{y?-1)]
t 

q,Pi,---,Pdj=-m 

where Z(j, 2/711) is also defined as (6.24): 

dj 

z(j, y™_x) = K;P1...pdj +4y7-i + l>2bi;pi...Pdj
xh+i-

» = i 

In application we can simplify the HFS (6.23), and obtain a simple HFS, 
i.e. for j = 2, ...,L, let 

bl,Pl...Pdl = 0 ( i = l, . . . ,d1); b{ = 0 ( t = l , . . . ,d i) . 
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Then HFS (6.23) is a simple HFS as 

y? = jr^)=^^l 
£ Hpi-Pdi \X0 ) \;P1...pdl 

d i \ a 

/_, Hpi—pdl (
X0 J 

Pi,---,Pd1=-m 
m _ rpra ( dj m \ 

tj-i,Pij+i,---,Pi:J+dj=-m 

£ [HPlj+1...Ph+dj (xj) s0--i)i3-l(i/r-i)]Q' 
* 3 - l > P I j + l ! " . i P l j + d j = - " l 

(6.31) 
where Zj, Q{yJ^i) are determined as follows for j = 2,..., L : 

(6.31) is called a simple generalized hierarchical T-S fuzzy system. As a special 
case of Theorem 6.6 and Theorem 6.7 we have 

Corollary 6.6 Let y™,...,y™ be the simple generalized hierarchical T-S 
fuzzy system defined by (6.31). Thenforanyj = 2,...,L, and P = (ii, ...,i,-_i), 
P3 = (Pi,-;Pij+dj) • ii,...,ij-i;pi,...,pij+dj € { - m , - m + l , . . . , m - 1 , m}, 
there is a constant ao(P, P3), so that 

£ [HPl...Pdj+lj{4^)J(P-,y?,...,y™_1)}
aa0(P,Pi) 

H,...,lj-i\px,...,piM =-m 
y? = ^ 7T, • 

E [HPl...Pdj+lj(4^)j(P;yT,...,y^1))
a 

i i , . . . , i j _ i ; p i , . . . , p ( i j + i J . = - m 

(6.32) 
(6.32) is a simple generalized T-S fuzzy system. By Corollary 6.6, the out­

put of a generalized hierarchical T-S fuzzy system defined as (6.31) can be 
expressed as one of a simple generalized T-S system. The adjustable param­
eters a0{I2,P2),...,a0{IL,PL) can be determined by the following iteration 
laws: 

a0(I
2, P2) = bl.pi...Pdic\ +&0iPdl+1...pdl+d2; 

a0(P, P3) =o 0 ( I ' - 1 ,P ' - - 1 )c>,_ 1 + ^ , + 1 . . , , + d , ( 6 ' 3 3 ) 

where j = 3, ...,L. On the other hand, by (6.33), if a0(I
2,P2), ...,a0(I

L, PL) are 
known, then choose b\.pi p , 

4j^-Xm...Pd. U = 2,...,L), so that (6.33) 
holds, that is, a known simple generalized T-S fuzzy system can determine a 
corresponding generalized hierarchical T-S fuzzy system. 
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§6.4 Approximation of hierarchical T—S fuzzy system 

By Corollary 6.6 a simple generalized T—S fuzzy system and its simple 
hierarchical fuzzy system are equivalent, so it seems to be an obvious fact 
tha t hierarchical T -S fuzzy systems can be universal approximators. However, 
how can we construct such an approximating system? For a given accuracy 
e > 0, how is the corresponding approximating procedure realized? How can 
we estimate the size of the fuzzy rule base of the T -S fuzzy system related? and 
so on. These problems are of much significance in theory and application of 
fuzzy systems. In the section we employ SPLF's to present systematic research 
to these subjects. 

6.4 .1 Universa l a p p r o x i m a t i o n w i t h m a x i m u m n o r m 

Considering tha t universal approximation is studied on a given compact set 
U C Rd, by Remark 6.1 we may assume U = [—1, l]d. Also in the following we 

let fuzzy set family {Aij \i = 1, ...,d\ j = —m, — m + 1, . . . ,m — 1, m } satisfy 
S-L condition, moreover 

{Aij \i — l,...,d; j = -m, -m+ l , . . . , m - 1, m } c Oo(l,m). 

T h e o r e m 6.8 Let S € V\. Then for any e > 0, there exist m G N and 
a simple generalized hierarchical T-S fuzzy system {y™, ...,y™}, determined by 
(6.31), so that \\yf - SW^^^K e. 

Proof. Suppose S € T>° is denned by (6.12), where a = l. Next let us prove, 
there are m £ N, and the coefficient ao(IL, PL), where 

IL = (h,...,iL-i), PL = (pi,-,PiL+dL) = (pi,-,Pd) • 

ii,...,iL-i, pi,...,pd = 0, ± l , . . . , ± m , 

so tha t if y™ is determined by (6.31) then \\y™ — S\\ ,_1 1 ] d < e. 

Define a0(I
L, PL) («i, ...,iL-i\ Pi,-,PiL+dL & {-m, - m + 1 , . . . , m - l , m}) 

as follows: 
a0(I

L,PL)=s(^,...,^). (6.34) 

By Lemma 6.2, for x = (x\, ...,Xd) 6 [—1, l]d, and for any (pi, ...,Pd) & N(x) = 

N(xi,...,xd), let 
a 

l , . . . , d ) . 

Then \6Pi 

(Pi,-

m 
= Xl + ̂  (i = 

m 
< CQ. Thus 

.,Pd)e JV(X) = > 5(X)-SP, 
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So considering II + dh = d, and denoting 

Hpl...Pd(x1,...,xd)-J(IL;y?,...,y^1)=$(IL,PL), 

and by (6.34) (6.35) we can conclude tha t 

-SHooj-i ,!]^ V {\y?-S(*)\} 
xe[- i , i ] d 

= V 
xe[- i , i ] d 

= V 
xe[- i , i ] d 

<. v { 
xe[- i , i ] d I. 

E ${IL,PL)a-a0{I
L,PL) 

i i , . . . , i i , _ i ; p i , . . . , P d = - m , , 

_ 5(x) 
E $(/£, PL)a 

ii,...,iL-i;p1,...,Pd = -m 

E W^PL)a(s(*k,.--,%)-s(x)) 
il,...,iL-1;p1,...,pd=-m 

} 

E *('L , ^L)< 
» i , . . . , t i , _ i ; p i , . . . , p ( j = — m 

} 
'lib 

E E ^ , P l ) a s £ , . , « ) - s ( x ) 
t l , .">*Ir- l = - T n ( p i , . . . , p d ) 6 J V ( x ) 

E E * a L , ^ L ) a 

i i , . . . , i i _ i = - m (pi , . . . ,p d )e iV(x) 

< V {^-EA(5)U^-EA(5). 
x € [ - l , l ] d l m i=l J TO i=l 

(6.36) 

If let TO > co • E A ( 5 ) / e , we have, ||y£> - ^ L ^ , ^ e. By (6.33), for 

2 < k < L, it follows tha t 

>(l\Pk)=a0(l
k-\ P^H^+a^...^-ao( (6.37) 

By (6.34) (6.37) we employ the backward induction to establish the parameters: 

^0;pi...pd ' cik_1 (k = 2,...,L), b^ • A simple generalized hierarchical T - S 

fuzzy system as (6.31) can be established. The theorem is therefore proved. • 

By Corollary 6.6, a simple generalized hierarchical T - S fuzzy system defined 
as (6.31) can be expressed as a generalized T - S fuzzy system, so for any e > 0, 
there exist m G N, and the parameter bo-tPl...Pd {pi, • ••jPd — 0, ± 1 , . . . , ±m) : 

"0;p1 . . .pd 

Pi Pd 
= *(£!,..., 

VTO 
TO TO 

Thus, the adjustable parameters 6o ;Pl...p , &o;Pl...P(i , c* satisfy the fol­

lowing backward iteration formulas, where i 6 {1, . . . , d} ; k € {2, . . . ,L} and 



284 Liu and Li Fuzzy Neural Network Theory and Application 

h-i; Pi,—,Pd e {-m, - m + l , . . . , m - 1, TO} : 

a>o(IL,PL) = bo-Pl...Pd = S[ —, . . . , — ) ; 
V TO ml 

< ao(Ik,P") = o o ^ - S P * - 1 ) • < _ , + bk
0lPlk+1...Plk+dk (k = L-l, ...,3); 

> «o(/2 ,P2) =bl,Pl...Pdicl +b2
0;Pdi+1...Pdi+d2. 

(6.38) 
Using Theorem 6.2 and Theorem 6.8 we can conclude that 

Theorem 6.9 Let f : [— 1, l]d —> I k a continuous function. Then for 
any e > 0, iftere is m £ N, i/ y™, ...,y™ are defined by (6.31), it follows that 

P L ' - / | L ) [ _ i ) i ] d < £ : -
By Theorem 6.9 simple generalized hierarchical T-S fuzzy systems can be 

universal approximators. So such hierarchical systems can be applied, effi­
ciently in designing fuzzy controller and system modeling and so on. For a 
given error bound e > 0, we can estimate TO, consequently the size of the rule 
base of a HFS can be estimated. 

Theorem 6.10 Let f : [—1, l]d —> R be a continuous function. Then 
for any e > 0, there is h > 0. Suppose Du{f) is determined as (6.16), where 
a = 1. We have, whenm > 2DH(f)cod/s, it follows that | | / — Z^H r_1 1id< £• 

Proof. By Remark 6.2, for e > 0, if partitioning [—1, l]d identically into 
small cubes, and then dividing these cubes respectively into d dimensional 
polyhedrons A I , . . . , A J V {N G N). Thus, we can establish a SPLF S, so that 
11/ ~ ,S'lloo,[-i,i]d < e /2 - Let the side length of a cube be h > 0, easily we get, 

d 
DH{f) = V {Di(S)}. By Theorem 6.8, if m > 2DH(f)c0d/e, it follows that 

i=\ 

m>2c0- £ Di(S)/e, so \\yf - 5 | | 0 O i [ _ 1 > 1 ] d < e / 2 . T h e r e f o r e 

II f - i i m \ \ < l l f - < ? l l -I-11 «? — ?;'7lll <̂  - -I- - — F 
\\J VL l l o o , [ ~ l , l ] d - H J < = , l l 0 o , [ - l , l ] d ^ ' l VL Hoo,[-l,l]d 2 2 ~ 

The theorem is therefore proved. D 

Ifletc0 = 2, d = 3, then by TO > 12DH(f)/e we have, | |/-2/™||0Oi[_ l i l ]d< >̂ 
Giving a continuous function / and an error bound e > 0, by the following steps 
we can realize the approximation of / by a simple generalized hierarchical T-S 
fuzzy system defined as (6.31): 

Step 1. By (6.16) we calculate the supremum Dn{f) and the minimum TO; 
Step 2. For a given real function / , we establish the antecedent fuzzy sets 

Aije 0 ( 1 , m) (i = l,...,d; j = 0, ± l , . . . , ± m ) , and Bkik.x {k = 2,...,L; «fc_i = 

0, ± 1 , . . . , ± T O ) . Usually the fuzzy set Aij is a triangular or trapezoidal fuzzy 
number; 
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Step 3. Using (6.34) (6.37) we establish the parameter a0(I
L, PL) as follows: 

\m mJ 

Step 4- By (6.38) the backward induction is employed to establish the pa­
rameters 6o._, n j i &o-n> J., n, ^ a n d cf, , related to the HFS; 

Step 5. Using (6.31) we obtain the simple generalized hierarchical fuzzy 
system {y?1, ...,yf}. 

6.4.2 Realizing procedure of universal approximation 

In the subsection we demonstrate a realizing procedure of universal ap­
proximation of generalized hierarchical T-S fuzzy system by a real example, 
let a — 1, d = 3, Co = 2 and d\ = 2, d^ = 1. Thus, the fuzzy system related 
has three input variables, and there exist two levels in the HFS related. Define 
a continuous function / : [—1, l ] 3 —> R as follows: 

f(Xl, x2, x3) = e x p j - ^ + ^ + ^ j ( N < 1 ; )X2| < 1 ; )X3| < 1}-

Give an error bound e = 0.1. Since 

expi - j—exp| — 2 
< —(|xi—a;2| + |2/x—2/21 + |^i—^2|), 25 J r l 25 

(6.39) 
and using (6.16) (6.39) we get, DH{f) < 2/25 < 1/12. So let m = 12/(12e) = 
1/0.1 = 10. Partition [—1, 1] identically into 20 parts. By Theorem 6.9 it 
follows that 

WvT ~ /lloo,[-i,i]d = hi0 ~ /lloo,[-i,i]3 < £ -
Using Proposition 6.1, we get the size of the rule base of the HFS related is 
(2m + l)2(d - 1), i.e. 2(2 x 10 + l ) 2 = 882. 

Define the triangular fuzzy number A as follows: 

A(x) 

10(1 -* ) , 0<x<±, 

„ 0; otherwise. 

Let Aij=A2j=A3j {j = 0,±1,.. . ,±10), and Aij (j = 0,±1,. . . ,±9) be defined 

through the translation of A, that is, Aij(x) =A(x — j / 1 0 ) , and 

, 10 fx V — < x < l , 
A1{w)(x) = \ V 1 0 ; ' 1 0 - -

0, otherwise; 
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Ai(-io)(x) -Hx+io)> ~ 
9 

10 / ' " - 10' 
0, otherwise. 

Define Bij (J = 0, ±1 , . . . , ±10) as follows: 

5y(»)=exp{-i(»-^)}. 

Since HPlP2P3(x\, x2, x3) —AiPl(xi)- AiP2(x2)- AiP3{x3), we get the following 
fact: 

J(I\ y?) = J(h, yT) =Bln(yT) = e x p j - ^ ^ } , 

So by (6.31) we can establish a two level simple generalized hierarchical T-S 
fuzzy system: 

Vi 

2/2 

10 
E Aip^Xi)- A2p2(x2)-bl.pip2 

Pl,P2 = ~W 

io I Z ' 
E Aip^xt)- A2P2(x2) 

Pl.P2 = —10 

E A3p3(x3)- Bu^vT) • (bl,P3 + c\y? 
* I ; P 3 = - 1 0 

E A3p3(x3)- BUl(yT) 
» i ; P 3 = - i O 

(6.40) 

Table 6.1 Approximating errors at sample points chosen randomly 

No. sample points f(x1,x2,x3) y% error 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

-0.9,-0.9,-0.9) 

;-0.7,-0.6,-0.5) 

-0.4,-0.3,-0.5) 

;0.2,0.3,-0.1) 

0.4,-0.5,0.6) 

'0,0.4,0.2) 

-0.5,0.2,0.2) 

-0.7,0.6,-0.8) 

0.6,0.9,0.8) 

0.9,0.9,0.9) 

0.9073745131 

0.9569539575 

0.9801986733 

0.9944156508 

0.9696694876 

0.9920319148 

0.9868867379 

0.9421413147 

0.9301587579 

0.9073745131 

0.9073745132 1.0 x 10~10 

0.9569539577 2.0 x IO"10 

0.9801986734 1.0 x 10"10 

0.9944156509 1.0 x MT10 

0.9696694870 6.0 x 10~10 

0.9920319151 3.0 x HT1 0 

0.9868867390 11.0 x 10"10 

0.9421413141 6.0 x HT1 0 

0.9301587580 1.0 x IO"10 

0.9073745132 1.0 x 10"10 
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By (6.38) and the fact: / (p i /10 , P2/IO, ps/10)= S(pi/10, P2/IO, ps/10), 
we define the parameters &0;PlP25

 ch anc^ ^QIPS
 m (6.40): 

After choosing 

bl .2 , , 2 _ f / P l F2 P 3 \ 
^Oipipa c t i ^ u 0 ;p3 "~ J V l0 ? 10 ? 10/ 

(6.41) 

we get a HFS as (6.31). By Theorem 6.6 the I/O relationship related can be 
expressed as 

10 

1/2 

E (lAiPM> A2P2(X2> Asm(x3)' BiixfoP)]-/(ft, fg, f§) 
*i;pi,P2»P3=--io 

10 

E [j4lpi0&l)- ^2p2(^2)- ^3P3(^3)* B l i x ^ r ) ] 
u;pi ,P2,P3=-io 

(6.42) 
Table 6.1 demonstrates some approximating errors at some points chosen ran­
domly when use y™ ^° approximate /(#i,#2>#3)- F¥om Table 6.1 we can see 
the high accuracy when HFS's approximating a given continuous function. 

Value of 5c 

1 -. 

>h).9B -j 

E£*0.96 -j 

"o 
§ 0.84 4 
•5 I 
> 0.92 J 

1 

Value of x. 

Figure 6.12 Surface of / when a-3 — 0 Figure 6.13 Surface of y™ when ^3 = 0 

Figure 6.14 Surface of / when #3 = 1 Figure 6.15 Surface of yj* when X3 = 1 

Let ^3 = 0 and x3 = 1, respectively, we can obtain the respective section 
surfaces of / and yf1 correspondingly, shown in Figure 6.12, Figure 6.13, Fig­
ure 6.14 and Figure 6.15. From table 6.1 and Figures 6.12-6.15 we know, with 
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the approximation sense 'ss e ' a generalized hierarchical T - S fuzzy system can 
represent a given continuous function. The realizing procedure is simple and 
succinct. If we use fuzzy systems without hierarchy to deal with the approxi­
mation, the size of the rule base related is (2m + l ) 3 = 2 1 3 = 9621, which is 
much larger than one of a HFS. 

6.4.3 Un ive r s a l a p p r o x i m a t i o n w i t h integral n o r m 

By Theorem 6.4 and Corollary 6.6 with integral norm simple generalized 
hierarchical T - S fuzzy systems can be universal approximators. In the follow­
ing let us show the conclusion and demonstrate the approximating procedure 
related. 

T h e o r e m 6.11 Suppose [i is Lebesgue measure on M.d. For any f € Lp(fi), 
and Ve > 0, let Dn{f) be established by (6.16) for a > 0 and h > 0. Then 

(i) There is m G N, so that if y™, ...,y™ are defined as (6.31), we have, 
\\VT ~ / | | < e> that is, simple generalized hierarchical T-S fuzzy systems are 
universal approximators with Lp(/j,)—norm; 

(ii) If h > 0 is sufficiently small, and TO > (2a)l+d/p • d • -Djy ( / ) • Co/s, it 
follows that ||y™ — / | | < e. 

Proof. By Theorem 6.1, there exist a > 0, and mo € N, so tha t VTO > mo, 
we have, S e T>d, Supp(>S) c [—a, a]d. Moreover 

/ |/(x)|pdM<^; | | / - S | | = ( / |/(x)-5(x)|"dMV 
J\\X\\>m-l 4 "M-P [JRd J 

£ 
< - . 

By remark 6.2 we get, S(api/m, ...,apd/m)= f(ap\/m, ...,apd/m). For IL — 
(h,—,iL-i) e { -m , - m + l , . . . , m - l , TO}L_1, PL = (p1,...,pd) e { - T O , - T O + 
1, ...,m — 1, m}d, let the constant ao(IL, PL) be defined as (6.33). Similarly 
with (6.36) we can show 

dfi y? - s\\l,P= [ d\y? - s(*)\ 
m 
E E *(iL,PLr\s(^,...,^)-s(x)\ 

, l n,---,*r,-i=-m(pi,.. . ,Pd)eiV(x) 
- / m 

J[-a,a]d ^2 E ®{IL, PL)a 

•i i n = - m (pi,---,Pd)eN(x) 

<\^-E Dt(S)]P.(2ay < \adCoDHif)]Pi2ar. 
; _ 1 J L TO J 

P 

d/x 

m i = l 

let TO > max {TOO, (2a)d/P+1-dcoDH(f)/ey and h = a/m. Then \\vT ~ S\\„iP< 

e/2, Therefore 

hT-f\\ <l|yL-5| | + | | 5 - / | | <^ + ^=e-
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Thus (i) (ii) hold and the theorem is proved. • 

Next let us use a real example to illustrate the realizing procedure of Theo­
rem 6.11, that is, construct a simple generalized hierarchical T-S fuzzy system 
to approximate a given integrable function with Lp(^)-~norm. 

Example §»4 For a HFS defined as (6.31) we let a = 1, d\ = 1, d2 = 
2, co = 2. Thus a fuzzy system has three input variables xi, x2, ^3, and the 
corresponding HFS has two levels, L = 2. Let / £ L2(fj) be defined as 

y(x1}x2jx3) £ I 3 . f(xux2,X3) = 
fexp(-2|a;?| - 2x\ - 2|a?3|

3), x2 > 0, 

[^exp(-2 |xf | + 2 a | - 2 | s 3 | 3 ) 5 x2 < 0. 

Choose error bound e = 0.1. With the following steps we establish the sample 
generalized hierarchical T-S system {yf, yf}, and realize the approximating 
procedure. 

0.2 v 

xf 0.14 

§• °-
Z -0.1 . 

> -0.2 
1 

Figure 6.16 Surface of / when x3 = 1 Figure 6.17 Surface of yf when x3 = 1 

Figure 6.18 Surface of / when x3 = 0 Figure 6.19 Surface of yf when x3 = 0 

Step 1. Establish the interval [-a, a], i.e. determine a > 0. Let D 
{Oi , x2j xs)\-l < xu ^2, ^3 < l } , then 

A 

/ | /(an, ar2, ^3)|d/i < 2 / exp(^2s)d; 
JW\D L Jl 

dx < 

So choose a = 1. By the definition of / , DHU) = 6-
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Step 2. Determine m. By Theorem 6.9 let m > (2a)d/p+1 • dc0DH(f)/e = 
36^32- So choose m = 204. 

Step 3. Define the fuzzy set family {Aij \i = 1, 2, 3; j = 0, ± 1 , . . . , ± m } C 

Oo(l , m) . 
/- / 1 \ 1 

2 0 4 ( ^ 4 - a ! ) ' ° ^ 2 0 4 > 

K i f i i H ' "201 *X<0> 
k 0; otherwise. 

^0*0 

Let Aij=A2j=A3j U = 0, ± 1 , . . . ,±204) , and Aij (j = 0, ±1 , . . . , ±204 ) be 

determined by the translation of A, i.e. Aij(x) =A(x — j / 2 0 4 ) . Moreover, 

define Z?ij ( j = 0, ± 1 , . . . , ±204) as follows: 

^(y) = ^{-\(y-^)}. 

Step 4. Similarly with (6.40) (6.41) (6.42) we get the HFS related as follows: 

240 ^ ^ ^ ^ 

E {Aip^y A2P2(x2y A3P3(x3y iWyr))/(lfe, ^ , iu) 
m _ »iiPi ;P2,P3 = - 2 4 0 

V"2 ~ 240 ^ ^ ^ ^ 
E (Ai P l (x i ) - ^2p2(ar2)- ^ 3 ( ^ 3 ) - S i n ^ D ) 

H ; P I , P 2 , P 3 = - 2 4 0 

Choose a?3 = 1 and £3 = 0. Figure 6.16 and Figure 6.17 illustrate respec­
tively the section graphs of the function / and the HFS y™ when x% = 1; And 
Figure 6.18 and Figure 6.19 illustrate the corresponding section graphs when 
X3 = 0. From Figures 6.16-6.19 we can see the high accuracy at each point. 

In the section we use SPLF's as the bridge to prove constructively tha t sam­
ple generalized hierarchical T -S fuzzy systems can be universal approximators 
with maximum norm or, with integral norm. Also some succinct realizing 
algorithm of approximating procedures are developed. These results can pro­
vide us with the theoretic basis for the wide application of T -S fuzzy systems 
[64-67]. A meaningful and important problem related to the subject for the fu­
ture research is how we can study the corresponding problems when processing 
Mamdani fuzzy systems or, the t -norm being not the product ' x ' . 
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CHAPTER VII 
Stochastic Fuzzy Systems and Approximations 

Learning by human knowledge and experience is an essential activity in 
fuzzy systems for achieving all kinds of information, including natural linguis­
tic information. As in the case of neural networks (see [8, 48]), the learning 
capability of a fuzzy system is closely related to its approximating ability. The 
capability of fuzzy systems in approximating arbitrary non-random I/O map­
pings has recently been demonstrated in the works of Wang [59], Wang and 
Chen [60], Ding et al [12], Ying and Ding [61-63], Liu and Li [38, 40] and so on 
for T-S fuzzy systems, the works of Liu and Li [37], Zeng and Singh [64, 65], 
Abe and Lan [1], etc for Mamdani fuzzy systems. 

Since in many practical cases the I/O mappings related are undoubtedly 
stochastic, the approximate realization of stochastic processes by some known 
systems, such as artificial neural networks [6], begins to attract many scholars' 
attention [4, 20, 56]. Of course such neural networks have so far been restricted 
to a small class which are called the approximation identity networks [10, 11, 
55]. 

As a kind of intelligent systems, fuzzy systems should possess approximat­
ing capability to stochastic systems since human speech, human inference and 
expert knowledge etc. all can be inherently stochastic [7, 42]. So it is natural 
and important to study in depth the approximate realization of stochastic pro­
cesses by fuzzy systems. However few achievements have so far been achieved 
in such a field [35, 39]. This chapter is devoted to the approximating capabil­
ities of Mamdani fuzzy systems and T-S fuzzy systems to a class of stochas­
tic processes. To this end, the two classes of fuzzy systems are extended to 
stochastic ones. In mean square sense the stochastic fuzzy systems based on 
the fuzzy operator composition 'V — x ' can approximate a class of stochastic 
processes including stationary processes and weakly stationary processes to ar­
bitrary degree of accuracy. Furthermore some efficient learning algorithms for 
the stochastic fuzzy systems is developed. 

§7.1 Stochastic process and stochastic integral 

As a preliminary for studying stochastic fuzzy system and its approximation 
to stochastic processes we in the section recall stochastic process and stochastic 
integral. Let (fi, A, P) be a probability space, and u : tt —• R be a random 
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variable with the following conditions: E(u) = 0, E(u2) < +00. All this type 
of random variables constitute a Hilbert space, which is denoted by L2(il), 
where (•, •) in inner product, and the corresponding norm is || • ||, E(u) is the 
expectation of u : 

Vu, v G L2(Q), (u, v)= E(u • v), \\u\\ = {E(u2)}^. 

Let {un, n G N} c L2(Q) be a sequence of random variables, u G L2(Q.). If 
lim E(\un — u\2) = 0, we call {«„, n G N} converges to u with mean square 

n—i-+oo 

sense, which is denoted by un —> u (n —> +00). 
Suppose the stochastic process x = {x(t), t G R + } satisfies the following 

condition: for any t G K+, x(t) G L2(fl). For s, t G M+, denote Bx(s,t) = 
E(x(t) • x(s)), we call Bx(-, •) the covariance function of x. Set 

C(fi) = |a; = {a ; ( t ) , t eR + } |3^ ( - , - ) : M^ —> R, ^( i , •) £L2(R+,B,F), 

Bx(s,t) = J °° 1>(8,9)rl>(t,9)F(de)}, 

where B is Borel algebra on M.+, and F is a finite measure on B. If x G C (fi), and 
-Bx(i, * + St) is a function of St, independent of t, we call x a weak stationary 
process. 

7.1.1 Stochastic measure and stochastic integral 

In order obtain the canonical representation of each process in C(f2), we at 
first recall stochastic measure and its integral in a unifying framework. Let 77 : 
B —> L2(n) satisfy the following condition: VCi, C2 e B, E^C^r)^)) = 
F(CiC\C2). Then rj is called a stochastic measure based on F. r\ : B —> L2(Q.) 
is a stochastic measure if and only if the following conditions hold [15, 19]: 

(i) \/A, Ax, A2 G B, Ai n A2 = 0, = > (r){Ai), r)(A2))= 0, moreover 
\\r,{A)\\= F(A); 

(ii) {S0 , Bu B2,...} C B : U Bt = Bo, B< n B,- = 0 (i ^ j ) , = > 
i= l 

£ ^(BO ^ r,(B0) (g - +00); 
i = i 

Suppose / G L2(M+, B, F). In the following we present the integral of / 
with respect to ?7(-). Firstly assume / is a simple function: 

n 

f(x) = Y^ aiXBi 0 ) (Bt G B, a,i G R, i = 1,..., n). 

Define / ( / ) = £ a,ir](Bi). we can conclude the following facts [15]: 
i = l 

(i) / ( / ) is independent of the expressing form of the simple function / ; 
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(ii) If / , g are simple functions, a, b G R, then I(af + bg) = al(f) + bl(g); 
(iii) Provided / , g are simple functions, we have, | | / ( / ) | | = \\f\\L (R \, more-

over ( / ( / ) , I(g))= / R + f(x)g(x)F(dx). 

For any / G L2(R+ , B, F), there exist a sequence of simple functions 
{/„|n G N} : | | / - / „ | | L a ( H + ) - 0 (n - +oo). Define / ( / ) = J j m ^ / ( / „ ) • / ( / ) 

is the stochastic integral of / with respect to r\ : 1(f) = JR f(8)rj(d6). 

By Karhunen Theorem [15, 22], Va; G C(fl), there is a stochastic measure rj 
on (R+, B, F) satisfying 

VteR+, x(t)= [ i/>(t,6)ri(d0), (7.1) 

moreover, E(\rj(I)\2) = F(J) (7 e -6). Suppose 7 = {7(6*), 0 G R+} is a stochas­
tic process with orthogonal increments, that is, V#i, 02, 63, 04 G R+, it yields 
that 

Oi<02<03< 04, => E((f(02) - 7(00X7(04) - 7(»4)))= 0. (7.2) 

Stochastic measure 77 may be generated by an orthogonal increment process as 
7 = {7(6>), 0 G R+}. In fact, if / = [0U 02) € B, let 17(f) = 7(02) - 7 ( 0 0 - T h u s > 
(7.1) may be expressed as 

W e l + , i ( t ) = / ^(t,0)d7(0). (7.3) 
JWL+ 

Define a real function / : R+ —• R+ as following: f(0) = E(\-y(9) -7(0) | 2 ) for 
each 0 G R+. By (7.2) easily we can show, /(•) is increasing and left continuous. 
For any semi-closed interval I = [9\, 02), define F(I) = f(02) — /(0i)- By the 
measure extension theorem [15], we can establish a measure on B determined 
by F, which is also denoted by F. 

Using the finite measure F on B we can construct an isometric mapping of 
L2(R+, B, F) to L2(Q). In fact, for any g(-) G L2(R+, B, F), by the stochastic 
integral J(g) = J*R g(0)dj(9), we may define a random variable J(g) G L2(fl). 

Given gu g2 G L2(R+, B, F), it follows by [15, 22] that 

E(\f gl{8)d1{0)\\[ 52(0)d7(0)l)= / gi(0)g2(9)F(d0). (7. 

For / 1 ; h e i 2 (R+ , B, F), put ufc = J ( A ) (k = 1,2). In (7.4) letting 9l 

92 = /1 - /2 we get 

2I|2L2(F) = / |/i(0)-/2(0)|V(d0) = S([/" (A(0)-/2(0))d7(0)]2) 

= E([J(h) - J(/2)]2) = E([Ul - u2]
2) = \\Ul - u2\\

2 

4) 

| / i - / : " 2 

(7.5) 
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Therefore J : L2(R+, B, F) —> L2(fi) is an isometric mapping. 
Also by [15, 22], for any x G C(fJ), (7.1) (7.3) can be extended to the vector 

case, and consequently, the covariance function of x is 

Bx(s,t)= [ (*T(s,e),y(t,e))F(d6), 

where (•, •) also denotes the inner product of the vector valued function \I/T = 
(tpi, tp2,---), where \I/T means the transpose of Vf. Thus, a canonical represen­
tation of x G C(fl) is as follows: 

Vt e R+, x(t) = [ (*T( t , 6), T(d0)), (7.6) 
JWL+ 

where T(-) = (^i(0> %(•), •••) *s a vector valued measure, satisfying 

VJ G B, E(\Vl(I)\
2) = E(\m(I)\2) = ••• = F(I), EimWTijil)) = 0 (i ^ j). 

If T = (71,72, •••)T , and 7̂  = {ii{0), 9 G K+} (i = 1,2,...) is a process with 
orthogonal increments, moreover 

VI =[0i, 02) eB,Tfc(J) = 7 i ( 0 2 ) -7 i (* i ) (t = 1,2,...). 

Hence (7.6) can be expressed as 

Vt G R+, x(t) = / (*T(f, 5), dT(0)), (7.7) 

where * T ( t , e) = (0X(M), fo(i,0),...), dT(0) = (d7i(0), d72(0), . - f - We 
call (7.7) a canonical representation of the stochastic process x = {x(t), t G 
M+}. In (7.7) 7J(-) (« = 1,2,...) is an orthogonal increment process with the 
following conditions: 

£( |d 7 l (0) | 2 ) = £( |d7 2(0) |2) = • • • = F{M), £(d7 i(0)d7 i(0)) = 0 (i ^ j ) . 
(7.8) 

7.1.2 Canonical representation of Brownian motion 

For applying convenience in the following we transform the vector valued 
stochastic process Y = {T(t), t G M+} in (7.7) into Brownian motion. To this 
end we introduce the definition of the standard Brownian motion, b = {b(t), t G 
K.+} is called a standard Brownian motion, if 

(i) V0i < 62, the increment b(62) — 6(#i) is a real random variable whose 
distribution is standard normal; 

(ii) V0i, 62, 03, 64 •• e1<62<63<64^ b{02) - b(0!) and b(64) - b(63) 
are independent; 
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(iii) E{\b{02) - b(0!)\2) = \02 - 0i\. Consequently E{\db{0)\2) = d0. 
Let BT{9) = (bi(6), b2(0),...), where 61, b2, ••-, are standard Brownian mo­

tions that are independent, satisfying: E{\bi{9)\2) = d0 = M{d0). Let M(-) 
is Lebesgue-Stieltjes measure on B. Then for I = [0\, 02) G B, M{I) = 
E(\bi{02) — bi{0\)\2). Suppose C(-) is a nonnegative function with the following 

condition: 7,(6*2) - 7»(0i) = J^2 C{0)dbi{0). Then by (7.8) and the fact that h 
is an orthogonal increment process, it follows that 

£(17,(02)-7i(#i) |2)= f 2C(0)2M(d0) = > F(d0) = C(0)2d0 = C(0)2M(d0). 

(7.9) 
If there is a density function /(•) of F, then /((?) = C{0)2. Let $T(£,6>) = 
C(0)¥T( t ,0) , then 

\/t,seR+, Bx(t,s)= UT(t,0),$(s,0))M(d0). 

Thus, the canonical representation of (7.7) x can be written as 

ViGR+, x(t)= [ ($T(t,9), dB(0)), (7.10) 

where dB(0) = (d&i(0), d&2(0),... ) T , and 

$T(i, e) = c(0)vT(t, 0) = (c(d)M0), c(e)<h{e),...). 

Let (R+, B, G) be a finite measure space, that is, C?(R+) < +00. So in the 
following we may assume G(dt) = exp(—10t)dt. Considering 

L2(R+, B, G) = {/ : R+ —> R | / |/(*)|2G(di) < +00}, 

we can rewrite the finite product measure space L2 (R^_, B x B, G x F) as 

L 2 ( 4 , B x B , G x F ) = ( / : R2 —^ Rl / \f(t,s)\2F(d0)G(dt) < +00 j . 

F o r / G L 2 ( R ^ , S x i 3 , G x F ) , l e t | | / | | L 2 ( G x F ) = { / n | / ( i , S ) | 2 F ( d 0 ) G ( d i ) } 5 . 

By Theorem 6.3, Theorem 6.4 and Corollary 6.4, to the generalized Mam-
dani fuzzy systems and generalized T—S fuzzy systems as (6.11) (6.17), respec­
tively letting a = 1, d = 2, easily we have the following conclusion. 

Theorem 7.1 Suppose g G L2(R^_, B xB, G x F). For any e > 0, choose 
a> 0 so that 

f \g{t,0)\2F{d0)G{dt)<£^. 
Jt>a,e>a ° 
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Then there is a sufficiently small h > 0, if let 

n , , w l\g(t,e + h)-g(t,0)\„\g(t + h,0)-g{t,e)\\ 
DH(9)= V ( 1 V h ) • 

t,d,t+h,0+h€[0,m 

there exists a fuzzy system defined as following: 
m 

E HplP2(t,e)-9(^,^) 
Ma,m(t,6) = ^ ^ , 

12 HPlP2{t,0) 
Pl,P2=0 

so that provided m > 4Dff(g)aco • J(G x F)([0,a]2)/e, it follows that, 

{[ \g(t,0) - Ma,m(t,O)\2F(d0)G(dt)Y< e. 

§7.2 Stochastic fuzzy systems 

Fuzzy systems can deal with linguistic and numerical information, simulta­
neously [3, 26, 32]. So it is undoubtedly very important to study their approx­
imation in stochastic environment, that is, the approximation capabilities of 
fuzzy systems to stochastic processes. To this end in this section we introduce 
stochastic fuzzy systems, and study stochastic integral of a fuzzy system. 

Since one of the variable sets related to a stochastic process related is time 
parameters, we can discuss our subjects in M+ x f2. Choose the antecedent fuzzy 

set family {Aij \i = 1,2; j = 0,1, . . . ,m}c Oo{a, m) on R+ , which satisfies the 
~ m ^ 

following condition: t <£ [0, a], Aij{t) = 0; Vi G [0, a], i = 1, 2, £) Aij(t) = 1. 

Suppose the continuous t—norm T is ' x ' , which is also written as '•'. Then 

N(h, t2) = {{pi,P2)\AiPl(tl) • A2p2{t2) > 0}, N(t) = {p\ AiP{t) > 0}. 

7.2.1 Stochastic T—S fuzzy system 

Using the antecedent fuzzy set Aij (i = 1, 2; j = 0,1, . . . , m) we can obtain 
the T-S fuzzy inference rule with two input variables: 

TRPlP2 : IF ti is A\Pl and t2 is A2p2 THEN u is 6o;PlP2 + &i;plP2*i + h-PlP2t2, 

where bolPlP2, &i;PlP2, b2-PlP2 (p\, p2 = 0, l , . . . ,m) are adjustable real parame­
ters. Corresponding to above T-S inference rule, and letting a = 1 in (6.17) 
we express the I/O relationship of T-S fuzzy system as follows [17, 23, 65]: 

12 (HPlP2(ti,t2) • (bo-PlP2 + bi-PlP2ti + b2.piP2t2 

Sa,m(tl,t2) = P-^^ ^ , (7.11) 
12 HPlp2{ti,t2) 

Pl ,P2=0 
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where ti, t2 G K+, and let 0/0 = 0. And HPlP2(ti,t2) =AiPl(ti)- A2p2(t2). 
771 r^ 

Since E Aij(t) = 1 (z = 1, 2), we get 
p=0 

E HPlP2{ti,t2) = E [AiPl(ti)][A2p2(t2)] 
Pl ,P2=0 P l ,P2=0 

E ^iP1(*i) E A2p2(t2) = i . 
i=o / Vp2=o / ^ > i = 0 

So (7.11) can be rewritten as 

m 
Sa,m{ti,t2) = E HplP2(ti,t2)[bo-PlP2 + bi-PlP2ti + b2-PlP2t2) 

Pl,P2=0 

m ^ ~ 

= E ^ipi(^i) ' A2p2(t2)(bo-PlP2 + bilPlP2ti + b2lPlP2t2) 
Pl,P2=0 

(7.12) 
for t\,t2 G M.+. Similarly we can express an one dimensional T-S fuzzy system 
as follows: 

m m 

50,m(*) = ^ r p ( i ) ( 6 0 ; P + h-.pt) = J2 AiP{t){b0,p + bMpt) (t G R+). (7.13) 
p=0 p=0 

If the adjustable parameters in (7.11) (7.12) are random variables, the corre­
sponding systems are called stochastic T-S fuzzy systems. 

Next let us represent approximately the stochastic integral of 50i7n(-, •) as 
the sum of one dimensional stochastic T-S fuzzy systems. 

Theorem 7.2 For any a > 0 and m G N, let the T-S fuzzy system 
Sa,m(-, •) be defined as (7.12), and 7 = {7(0), 0 G IR+} be a stochastic pro­
cess with orthogonal increments. Then for arbitrary t G R+, the stochas­
tic integral fR Sa,m(t, 0)fry(Q) exists, moreover for any e > 0, there exist 
6i,...,9q : 0 = #0 < #1 < • • • < 0q, independently oft satisfying: Vt G R+, the 
following fact holds: 

2 \ 
^ ( / Sa,mM)d7(0) - y > a , m M ; ) A 7 j 

w/iere A 7 i = 7(<7i) - 7 (^ -1 ) (j = 1,..., q). 

Proof. By (7.12), 9 > a = > 5a>m(i, 0) = 0, and when i < a, we get 

Sa%m{t,9)= J2AlPl(t)( Ys(b0;Plp2 + bi;PlP2t)A2PM + E A2p2(0)b 
APlP2U J 

Pl=0 > 2 = 0 P2=0 ' 

http://h-.pt
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Since AiPl{-), A2p2{-) are Riemann integrable on [0, a], we imply, stochastic 
integral J® Sa^m{t, 9)d^{8) exists. So fR Sa,m(t, 8)d/y(8) also exists. Moreover 

/ So , r o(t,0)d7(0)= E AiPl(t)[ E(bo;Pl,P2+bi-PlP2t) A2p2(9)d7(9) 
JR+ P i = 0 \ P 2 = 0 J O 

+ E &2;Pl,p2 / *• A2w(0)d7(0) • 
p 2 = 0 J O / 

(7-14) 
For the stochastic integrals J0 A2p2(#)d7(0) and J*0 0- A2P2(9)d'y(9), there are 
6i, ...,9q E K+, independently of £ so that 0 = 8Q < 9\ < • • • < 9q, and we have 

E 

E 

A2p2{8)d1{8)-Y.A2p2{8])Alj 
o j=i 

< 

m + 4 
2 2 • £ 

Jo 
9- A2P2{9)d1(9) ~ E Or A2p2(8J)Alj 

E (ko;p1p2+a2 •bl;p1p2) 
P l , P 2 = 0 

„ I m + 4 

2 V 2 2.£ 
< —^ . 

E ^2;p!p2 
P l , P 2 = 0 

(7.15) 
Easily we can show, Vi > a, Sa<m(t, 8) = 0, and for t < a, the following fact 
holds: 

/" Sa,m(t,9)dj(9) - E So ,m(t ,0 i)A7j 

E AiPl(t) E (6o i w n +i i ; P l W t ) / A2P2{9)d1{9) - E A 2 P 2 ( ^ ) A 7 J 
PI=O \p2=o <-Jo j=i 

+ E &2;plP2 / 9- A2P2{8)d1{9) - E 0j A2;P2(9J)Alj 
P 2 = 0 i = i 

(7.16) 

For any t G [0, a], E [AiPl(t)]2 < E ^ i P l ( t ) = 1, by (7.14)-(7.16) it follows 
p 1 = 0 Pl=0 

that 

£ ( | / Sa,m(t, 9)d1(9) - E Sa,m(t, 6»j)A7J-

< 
( m m . ra^ q ^ 

E[ E E(^0;p1p2+6l;p1p2i) / A2Pa(0)d7(<?) " E A2p 2 (^)A 7 j} 
\ P i = 0 | p 2 = 0 " - J o j = l J 

771. f ra a 

+ E b2;PlP2{ / 0- A2p2(0)d7(0) - E 0y A2-,PM)A7j\ 
p 2 = 0 k J o 7 = 1 J 
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< 
.Pi 

Pi=0 

< 2 ^ £ 
|P1,P2=C. 

V2{ EE[ E(b0;PlP2^>l;PlP2t){ / A2PM^^)-EA2PM)^A\ ) 
[Pl=o V P 2 = o *• Jo j=i ' ' 7 

1 

EE[ E b2;PlPJ / 0- A2p2(0)d7(0) - E *;• A2P2(%)A7,} 
'i=o V P2=o '-Jo j= i J l / J 

(&0;PlP2+&LlP2a
2K| /X2(0)d7(^)-EA2P2(^A7j) ' ) M./o i= i ' 

+ 6 | ; p i P 2 • E(\£ 9- A2pMdj(0) - £ ^ l 2 P 2 ( ^ A 7 , ) | 2 ) | 

m+2 / e e \ 

The theorem is therefore proved. • 

7.2.2 S tochas t i c M a m d a n i fuzzy s y s t e m 

Using fuzzy set Aij (i — 1,2; j = 0,1, ...,m) we can design Mamdani infer­
ence rule. Taking two special cases, we can establish the related rules with one 
input variable, whose p—th fuzzy rule for p = 0, 1,..., m) as follows: 

Rp : IF t is AiP THEN v is V0(P), 

where O(-) is a real function, and the consequent fuzzy set is a fuzzy number 

Vo(P)£ .F(R) : Kei(Vo(P)) = {O(p)}; and with two input variables, whose 
P1P2—inference rule for p 1 ; j>2 = 0, 1, ...,m as 

i ? P l P 2 : IF t\ is A i P l and t2 is .A2P2 THEN u is Ur(Pl •Pa) 1 

where r is a real function r : M2 —> R, and £/ r(P l ,P 2)6 .F(K) is a fuzzy number 

whose kernel is Ker( [ / r ( P l , P 2 ) ) = {r(pi , p2)}- By (6.11), we use the centroid 
denazification to get the corresponding I / O relationship: 

E yPiP2° v-^ ° RpiP2)yyPiP2) 
Ma,m(tl, h) = ^ ^ _ _ _ . ( 7 . 1 7 ) 

E (A°fiPlP2)(yPlP2) 
P 1 , P 2 = 0 

where yPlP2 — r(pi,p2) is a maximum value point of Ur(Pl,P2) in R, tha t is, 

Ur(Pl,P2)(yPlP2) = 1- Therefore, ( ^ "Wp l P 2 ) ( r (P i , P2)) = HPlP2{ti, t2). Using 
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(6.11) we can get from (7.17) a Mamdani fuzzy system with two input variables: 

m , s 

E [Hp1p2(h,t2)-r(p1,p2)J 
Ma^ih, t2) = P1'P2~° ' m - , (h,t2 G K+), (7.18) 

E HPlP2(ti,t2) 
Pl ,P2=0 

where let 0/0 = 0. Similarly with (7.12), the Mamdani fuzzy system can ex­
pressed as 

Ma,m(t1,t2)= J2 HPiP2{tut2)-r{Pup2), h,t2eR+. (7.19) 
P l , p 2 = 0 

With the same reason we can establish one dimensional Mamdani fuzzy system: 

m 

Ma,m(t)=J2Hp(t)-0(p), teR+. (7.20) 
p=0 

If in (7.19) (7.20), r(-, •) and O(-) are random functions, i.e. for eachp, pi, p2 G 
{0,1, ...,m}, the adjustable parameters 0(p), r(pi,p2) are random variables, 
then the corresponding I/O relationships are called stochastic Mamdain fuzzy 
systems. 

Similarly with Theorem 7.2, the stochastic integral of Ma<m{-, •) can be 
also represented as the sum of some one dimensional stochastic Mamdani fuzzy 
systems. 

Theorem 7.3 For any a > 0, and m G N, let Mamdani fuzzy system 
Ma^m{-, •) is defined as (7.19). Suppose 7 = {~f(Q), 0 G M+} is a stochastic 
process with orthogonal increments, Then it follows that 

(i) For any t € R+, the stochastic integral J"R Maim(t, 9)d'y{d) exists; 

(ii) Ve > 0, there exist 6\,..., 6q independently oft, and 0 = 9Q < B\ < • • • < 
8q, satisfying 

ViGM+, E{\ M o , m ( M ) d 7 ( 0 ) - ^ M a , m M j ) A 7 j - V< e, 
JS.+ j = 1 

where A 7 i = 1{6j) - 7 (^ -1 ) (j = 1, -,q)-

Proof. By (7.19) it follows that 0 > a, => Ma>m(t, 0) = 0, and when t < a, 
we have 

771 

Ma,m{t,0) = E HPlP2(t,6)-r(Pl,p2) 
Pl ,P2=0 

(7.21) III' rsj / III' r-j \ 

E ^iPl(*)( E A2p2(e)-r(pi,p2))-
P l = 0 > 2 = 0 ' 
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Since A%Pi (i = 1,2) is Riemann integrable we imply, the stochastic integral 
/ 0 Matm(t, 0)d7(#) exist, hence /K Ma>m(t, #)d7(#) also exists. So we can 
obtain (i). Moreover 

J
. m m -a 

1 Ma,m(t,9)d7(6)=J2AiPl(t)(J2<P^P^- A2P2(0)dl(6)). (7.22) 
K+ P l =o \ 2 = o Jo ' 

By the definition of stochastic integral [15, 30], there exist 9\,..., 6q € K+ : 0 = 
6*o < 9\ < • • • < 9q, independently of t. For any p2 € {0,1, . . . ,m}, it follows 
that 

E f ^2p2(^)d7^) - £ 22p2(^)A7j 
2 X 3 < - ^ ^ ^ E = . (7.23) 

/ m 

J E (r-(Pi,p2))
2 

V Pl,P2=0 

Obviously Vt > a, Ma^m(t, 9) = 0; when t < a, we have 

Ma ,m(t, 0)d7(0) - E Ma ,m(i , 0 ,)A7 j 

E AiPl(t)[ E r(pi,p2)- / ^2pa(6>)d7(6l) - E A2 p 2(%)A7 i ) . 
P l = 0 V

P 2 = 0 lJ0 7 = 1 J / 

(7.24) 

Since E [AiPl(i)]2 < E i4iPi(*) = 1 (* e [0, a]), by (7.21)-(7.24) we get 
p i = 0 P i = 0 

# ( / Ma,m(i,0)d7(0) - E MQ,m(i,^)A7j-
 2) 1 

V ./R+ j = l J J 

E r ( p i , P 2 ) / A2p2(0)d7(0) - E A2M)A'yj 
'2=0 k/0 j = l J 

E (r(pi, P2))2 E £ / ^2P(6>)d7(fl)- E A 2 p (^)A 7 : 
,P2=o P=o L Jo j=i 

\pi=o 

2 \ 1 2 

< 

< E ( E W P I , P 2 ) ) 2 - E 
P i = 0 v p 2 = 0 p 2 = 0 » = o . ( m + l ) . £ (r(pi)P2))2 

P l , P 2 = 0 

) 

< J E (r(pi,p2))
2 

P 1 , P 2 = 0 

\/Tn+ 1 • £ 

/ ( m + 1 ) . E (r(pi,P2))2 

P l , P 2 = 0 

£ , 
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The theorem is therefore proved. • 

In the section we introduce stochastic fuzzy systems, and establish the 
approximate representation of the stochastic integrals of a two dimensional 
stochastic T-S fuzzy system and a stochastic Mamdani fuzzy system. These 
results will play key roles in the research of the stochastic fuzzy systems related 
approximating a class of stochastic processes with the mean square sense. 

§7.3 Universal approximation of stochastic process 
by T-S fuzzy system 

To apply fuzzy systems widely a necessary and important topic is to study 
the approximate representations of stochastic processes by fuzzy systems. In 
the section we focus on the approximating capability of T-S fuzzy systems in 
stochastic environment under a mean square sense. 

7.3.1 Uniform approximation 

Suppose x = {x(t), t G R+} is a stochastic process, and (M+, B, F) is a 
finite measure space. If Ve > 0, there exists a family T-S fuzzy systems Sr

ajm(-) 
defined as (7.13) so that 

u E(\x(t) - Sa,m(t)\2)G(dt)Y _, , < e. 

Then we call T-S fuzzy systems are universal approximators with mean square 
sense to the process x. If the trajectory of x is uniformly continuous almost 
everywhere (a.e.) on R+ , we may employ the property of the process x itself 
to study the approximation of T-S fuzzy systems to x. 

Theorem 7.4 For any a > 0, suppose x = {x(t), t € [0, a]} is a stochastic 
process whose sample trajectory is uniformly continuous a.e. on [0, a]. Define 
a finite sum as 

m r^ 

EUlp(i)]Q(6o;P + 6l;Pi) 
Fa,m{t) = 5=5 _ _ (7.25) 

ZlAiP(t)]a 

p=0 

where 0 < a < +oo. Then there exist b0-p, b\-iP G L2(Q.) (p = 0,1, . . . , ,m), so 
that Fa^m{t) —-* x{t) (n —> +oo) holds uniformly for t G [0, a]. 

Proof. For given a > 0, and for any e > 0, using the assumption that 
the sample trajectory of x is uniformly continuous a.e. on [0, a], (7.25) and 
Lemma 6.2, we can find a sufficient large m e N, satisfying Vt G [0, a], p G 
N(t), \x(t) — x(ap/m)\< e, a.e.. Define the random variables bo-p, bi-p (p = 
0,1, ...,m) respectively as follows: 

bo;P(w) = x( —, w), h.p(w) = 0. 
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Obviously boiP, bitP G L2(£l) (p = 0 , 1 , . . . ,n ) . Moreover, Vt G [0, a], the follow­
ing facts hold: 

E(\x(t)-Fa,m(t)\2) 

( m ^ I / m ^ \ 2 1 

= E\ x(t)-Ek(t)]a(VP + M/E[4(*)1 \ 
( m ^ / / m ^ \ 21 

= E\ E[AiP(t)r{x(t)-b0.p-bhpt)/(z[AiP(tT) 
( rn ^ , , m ^ \ 2 1 

= E{ EiAiP(tT(x(t)-x(^))/(j:iA1P(t)r) 
L p=o ' >=o J ) 

< £ ZlAiP(t)]a\x(t)-x(^)\/(j:[Alp(tT) 
(. p=o ' vp=o ' ) 

= E{ E [AiP(i)]«|x(t)-x(f)|/( E UiP(*)]Q) } 

<E\ E [AiP{t)r-s/( E [liP(*)]a) }= 

Therefore lim E(\Fa m(t) - x(t)\2) = 0 holds uniformly for t € [0, a]. The 
771—» + 00 ' 

theorem is proved. • 

In (7.25) if let a = 1, then by E 4 i P (t) = 1, we get, Fa,m{t) = Sa,m(t) (t G 
P =0 

[0,a]). Thus, (7.25) is an one dimensional T - S fuzzy system. So the following 
conclusion is obvious. 

Corol lary 7.1 Suppose x = {x(t), t G K+} is a stochastic process with 
sample trajectory being uniformly continuous on M+ a.e., and when t $ [0, a], 
i/ie random variable x(t) is zero a.e.. Then T-S fuzzy systems are universal 
approximators to x, that is, for any e > 0, there is a T-S fuzzy system Satm, 

so that (JR+ E(\x{t) - Sa,m{t)\2)G{dt)Y<e. 

Proof. Given arbitrarily e > 0, since 0 < G(R+) < 1, let e' = e / (2G(R+)) . 

By Theorem 7.2 it follows tha t there is m G N satisfying, E(\Sa^m(t)—x(t)| ) < 

e' for all t G [0, a]. So using the fact: Vi ̂  [0, a], x(i) = 0 a.e., we get 

f E(\Sn,m(t) - x(t)\2)G(dt) = I" E(\Sa,m(t)-x(t)\2)G(dt) 
JR+ JO 

< f e'G(dt) = G(R+) • e' 

The corollary is therefore proved. • 

e 

^ 2 < £ < 
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7.3.2 Approximation with mean square sense 

If the sample trajectory of the stochastic process x = {x(t), t G E+} is not 
uniformly continuous on K+ , we may analyze the universal approximation of 
stochastic T-S fuzzy systems under the mean square sense. 

Theorem 7.5 Suppose x G C{Q). Then for arbitrary e > 0, there is 
an one dimensional T-S fuzzy system Sa>m(-) defined as (7.12), such that 

I J"R E(\x(t) — Sa,m(t)\ )G(dt) > < e, that is, T-S fuzzy systems are universal 

approximators of each process in C(f2). 

Proof. By the assumption and (7.7) we can get the spectrum representation 
of the process x : \/t € R+, it follows that 

x(t) = / Mt, 0)d7l(0) + Mt, 0)d72(#) + • • • = / (* T ( i , 9), dT(0)), 
Jo Jo 

where * T ( t , 9) = (V>i(i,0), ifo{t,0),..), dT(9) = (d7 l(0), d72(0), . . . ) T . More­
over, 7! = {71(6'), 9 e R+}, 72 = {72(^), ^ £ R+},. . . are orthogonal in­
crement process with the condition (7.8). By Theorem 7.1 it follows that 
the T-S fuzzy system 50im(-, •) is universal approximator of each function in 
L2{9?+, B x B, G x F). So there exist constant vectors as 

A0;PIP2 = v " 0 ; p i p 2 ' ° 0 ; p i p 2 ' " • ) ' ^ 1 ; P I P 2
 = ( . " 1 ; P I P 2 > " i ; p i P 2 ' • " ) ' 

^ 2 ; p i P 2 = ( ^ 2 ; P l p 2 ) ^ 2 ; P l p 2 ' • " ) i 

where pi, P2 = 0,1, . . . , m, such that 

/ *T(M)~ E ^ ^ ' ^ ^ + ^ W + ^ P ^ ) ] (̂d(?)G(dt)<y. 
Pl ,P2=0 

(7.26) 
Moreover, / t > a / e > 0 | | t f T ( t , 9)\\2G(dt)F{d9) < £

2 / 4 . Denote 

m 

Gl(t, 9)= Yl H^(*- *) (^o;Plp2 + ̂ W + AlPlP*e)' 
Pi iPa=0 

Therefore we may conclude that 

*T(M) -Gl(t,9)fF(d9)G(dt) < ~. (7.27) 

Using Theorem 7.2 easily we can show that the stochastic integral am{t) = 
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/ci ( G m(M)> d r (0 ) ) e x i s t s - By (7-4) ^ follows that 

[ E f ((^(t,e)-Gl(t,ff)), dr(e))2G(dt) 

= f | |*T(t , 9) - Gl(t, 9)\\2F(d9)G(dt) < ^ . 
JR2, 4 

(7.28) 

Thus, using the canonical representation of x and (7.28) we can show 

E{\x{t) - am{t)\2)G(dt) 

= I E( J ((H>T(t,0)-Gl(t,6)), dT((?)>2)G(dt)<f. 
Jm.+ \ JR+ J 4 

By Theorem 7.2, for e > 0, there exist 0\, 92,..., 9q: 0i < 92 < • • • < 0q, which 
are independent of t, so that 

(7.29) 

E 
r+oo 1 2 \ =-2 

/ <G£(M), dT(0)>-£<<£(*, 0,-). Ar;> < T - (7-3°) 
Jo = 1 / 

where A r , = (7i(%) - 7 i ( ^ - i ) , 72 (<?,-) - 72(^-1), . . . ) (j = l,...,q;0o = 0). 
Let 

It is easy to show that 50,m(-) is a n ° n e dimensional stochastic T-S fuzzy 
system, which is also represented as follows: 

Sa,m(t) — E \ E HPlP2(t,0j)[Ao.pip2 + Ay^.^^t + A2.piP2), AFj 
i = i p i , P 2 = o 

= E ^ W E E A2P2{0j)({AlPP2+ejAlpm, AFj) 
p—0 l_j' = l p 2 = 0 

+t-(Alppi,ATJ))y 

For p = 0,1, . . . , n, define the random variable parameters bo;p, b\;p as 

q m ^ , 

V P = E E A2PA0j)((bitPP2+93b\.pp2){11{93) - 7 1 ( ^ - 1 ) ) 
i=iP2=o v 

+ C C + ̂ 1 ; MJ (72(^) - 72(^-l))+ • • • ) 
q m ^ , 

KP=E E A2PM) (&i;H» (71 0?;) - 7 1 ( ^ - 1 ) ) 
j = l p 2 = 0 V 

+6? i P P a (72(<?i) -72(^- i ) )+-- - ) 
(7.31) 
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Therefore, Sa,m(t) = £ AiP(t)(b0;P + bliPt) (t e M+). So by (7.30) we have 
p=0 

f E( am{t) - £ AiP(t)(bo,P + b1>pt) )G(dt) 
h + V ' (7.32) 

= / E(\am(t) - Sa,m(t)\2)G(dt) < 6-. 
JR+

 4 

Moreover, by (7.29) (7.32) and the triangle inequality for metric: 

E{\x(t) - Sa,m(t)\2)G(dt) 

' f E(\x(t) - am(t) + am(t) - Sa,m(t)\2G(dt) 
KJR+ / 

< (J E(\x(t) - am(t)\2G(dt)Y + (E{\am(t) - Sa,m(t)\2G(dt)Y , 

we imply, (JR E(\x{t) - Sa,m(t)\2)G(dt)) * < e/2 + e/2 = e. The theorem is 
therefore proved. • 

We transform {T(9), 8 G M+} into a vector valued Brownian motion B = 
(bi, 62,...), where bi (i = 1,2,...) is a standard Brownian motion. Then by 
(7.10) (7.13) we can establish an one dimensional stochastic T-S system: 

m 

S0,m(i) = J2 AiP{t)(b0;P + bi.pt) (t e R+)> 

and bo-p, bi-p can be established by the following analytic learning algorithm: 

Kv = E E [A2PM)(KPP2 + ^2;pp2)(M^) - 61(^-1)) + 

KPP2 + 0jb2
2,pp2) (hiOj) - b2(9J.1))+ • • • ) ; 

Kv=T E A2P2(9j)(bi,PPAbi(^)-h(0j-i)) 

+blPP2H^)-b2(0J-i))+---). 
(7.33) 

Moreover, £ ( | M % ) - 6 i(0 j_1) |2)= \0j ~ 63.x\ (i = 1,2,...; j = l,. . . ,g). 

In (6.8) we choose CQ = 2, and the error bound e = 0.2, moreover, Aij (i = 
1, 2; j = 0,1, . . . , m) is defined by a translation of the triangular fuzzy number 
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A(-) defined as 
TO. a 

A(t) 

-t + 1, < i < 0 , 
a TO 

TO a 
1 1, 0<t<—, 

a TO 
0, otherwise; 

~ ,.. j A {t), t>0, ~ J A(t-a), t<a, 

[ 0, otherwise; (̂  0, t > a. 

And let A\j=Aif Aij(t) =A(t - aj/m) (j = 1,..., TO - 1). 

Example 7.1 Define the stochastic process x = {x(t), t £ R + } as follows: 

x{t) = tp(t) • cos(7o«) (t e R+), 

where 70 is a constant, ip(-) is a weak stationary process with zero mean, whose 
covariance function is given by 

Bv(t,a) = B ¥ , ( r ) = e x p { - 2 | r | } , r = t-s. 

In practice, x = {x(t), t G M+} may represent the well-known stochastic tele­
graph signal. By [15] we can get the relationship between the covariance func­
tion Bv(-, •) of <p and its spectral density function /(•) : 

f{6) = - / exp(-/0T)Bv(r)dT, BV(T) = - / exp(/0r)/(0)d0, 

(7.34) 
where I2 = - 1 . By (7.34) it follows that 

/ W = ^ , ^ F ( d * ) = / ( t f ) d * = ^ d * . 

Since Bx(t, s) = E(<p(t) • <p(s)) • cos(7o<) • cosmos), we get 

1 f+°° 1 4 
B *( i , s ) = 2 / exp(Jr6>)--^2 d6> • cos(70t) • cos(70s) 

/•+~4(cos(6>i)cos(6>s) + sin(6>£)sin(0,s)) , N / x n 

= J — 7T • (02 + 4) ' cos(7oi) • cos(70s)d6i 

+ 0 0 
A /•-t-00 

/ (*T(M), *(S,(?))F(dfl), 
./o 

where ^T(t, 8) = (cos(6t) cos(-jot), sin(#£)cos(7o£)). Consequently by (7.8) it 
follows that 

d?T(M) = C{0) • * T ( t , 0 ) ; M(d8) = d8= ^ • f{6)&6. 
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Thus, C(0) = 2/v/7r(6»2+4). Hence 

2 
$TM) 

\A(#2 + 4) 
(cos(6>£) cos(7oi), sin(#i) cos(7o£) 

= (<pi(t,8), <f>2(t,8)). 

where <pi(t, 0), v?2(t, 0) can be expressed as 

, , 2 • cos(6>£) cos(70t) 2 • sin(0i) cos(70t) 

y/MFT4J VV(02 + 4) 

Figure 7.1 The surface of Bx 

Choose 70 = 35. Easily we can show, ||$(-, -)|| 6 L2(M^_, B x B, G x M), 
moreover 

/ ( M M ) | 2 + |<p2(M)|2)M(d0)G(di) < 0.005 

Hence a = 1. By Theorem 7.1, we can get by calculating 

£>B-($) = £ > H ( V I ) V D f f ( f t ) < 20.13. 

Similarly we use Theorem 7.1 to estimate m : 

4 x 2 x 1 x 20.13 
TO > 

0.2 
y/(G x M)([0, l]2) > 257. 

So choose m = 257, and Aj.piP2 = 'A^.piP2 = (0, 0), moreover 

&O ;P IP2 = ¥ > i ( | ^ , ~j), bl.pip2 = ¥ > 2 ( | ^ , ^ ) ( p i , P 2 = 0 , l , - , 2 5 7 ) . 
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It is easy to show that 

/ / UT(t,6)-J2AiP(t)-AlJ F(d6)G(dt) 
JR+ JS.+ p_Q 

In Theorem 7.10 we choose 0j = j / 1 0 (j = 0,1, . . . , 10). Then 

10 2 

E(jSa,m(t, 0) - £so ,m(t , e^Abi\ )< £'/4 = 0 
i= i 

Therefore, for p = 0,1, . . . , 257, by (7.33) we get bUp = 0, and 

10 257 

< — =0.01. 
4 

01. 

^=|f M^M&^M^^)] 
+tp2[ P Vi 

257'257, j)Y 2V10/ V 10 / . 

Thus, the one dimensional stochastic T-S fuzzy system Sa,m can be expressed 

^ V257'257/L 2V10/ 2V 

So we can conclude that 

10 

j j - 1 
10 10 

l 
= YQ, J I =j2,p = q; 

0, otherwise, 

and BSa:m(t,s) = E(Sa,m(t) • 5„,m(s)). Thus 

1 257 10 ^ ^ ~ ( 3 \ ~ { 3 \ 
Bsa,m{t,s) = — Y, T. AiPl{t)-AiP3{s)-A2PATT:)-A2pA-7.)-

i U Pl,P2,P3,P4 = 0 j = l V i U / V i U / 

/ P i P2 \ / P 3 P4 N / P i P2 \ /_P3_ P4 \ \ 
V257' 2 5 7 / ¥ ' 1 \ 2 5 7 ' 257/ ^ 2 \ 2 5 7 ' 2 5 7 / ' ^ V 257' 2 5 7 / j ' Vi I 
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Figure 7.2 The surface of Bsa m when m = 40 

For simplicity of computation, we choose m = 40 to derive the surface of 
BMam(-, •) as shown in Figure 7.2. And Figure'7.1 is the surface of Bx(-, •). 
From the comparison between Figure 7.1 and Figure 7.2, we may see the fact 
the accuracy e in mean square sense is guaranteed. 

The section generalizes approximation analysis related to T-S fuzzy systems 
from deterministic I/O relationships to stochastic ones. That is, T-S fuzzy 
systems with the multiplication '•' norm can with arbitrary degree of accuracy 
approximate a class of stochastic processes. Thus, the application fields of 
T-S fuzzy systems may be extended, strikingly. Then, if the fuzzy systems 
related are Mamdani systems, whether how can we address the corresponding 
problems? This is one main topic in the following section to study. 

§7.4 Universal approximation of stochastic 
Mamdani fuzzy system 

In the section we extend results for Mamdani fuzzy systems in approximat­
ing deterministic nonlinear I/O relationships, to the case of stochastic processes 
in which the sample functions occur randomly [22, 30]. Also the fuzzy operator 
composition operation 'V — x ' is employed to define the Mamdani fuzzy sys­
tems related. A learning algorithm for realizing the approximating procedure 
is developed. 

7.4.1 Approximation of stochastic Mamdani fuzzy system 

Assume that (K+, B, G) is a finite measure space. If for any stochastic 
process x = {x(t), t G R+} £ C(fi), and Ve > 0, there is an one-dimensional 
stochastic Mamdani fuzzy system MQiTO(-) defined as (7.20), so that the follow­
ing estimation holds: {/R E(\x(t) - Ma,m(t)\2)G(dt)}^< e. Then stochastic 
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Mamdani systems are said to be universal approximators of C(fi). 

Theorem 7.6 Let x = {x(t), t G R+} G C(fi), and (R+, fi, G) be a 
finite measure space. Then for any e > 0, there is one-dimensional stochastic 
Mamdani system Ma<m{-) so that 

E(\x(t)-Ma 
2)G(dt)}1 

< e , 

that is, stochastic Mamdani fuzzy systems are universal approximators ofC{Q). 

Proof. By the assumption and (7.7) we can obtain the following canonical 
representation of the process x : Vi G R+, it follows that 

/•+oo 

c(t) = / < 
JO 

P i M ) d 7 i ( 0 ) + ¥>2(t,0)d72(0) + 
y + OO 

^ / ($T(t, 0), dr(0)), 
JO 

where 

$ T ( i , 0) = ( ^ ( i , 0), <p2(t, 9),...), dT(0) = (d7i(0), d7 2(0), . . .)T . 

Furthermore, 71 = {71(0), 9 G R + } , 72 = {72(A), 6* G R+}, . . . are the or­
thogonal increment processes with the condition (7.8). Using Theorem 7.1 we 
get, Mamdani fuzzy systems are universal approximators to each function of 
L2(M?+,B x B,G x F). There exist mapping n : R\ —> R, and m G N, so 
that if let RT(pi, p2) = (n(p i , P2), r2(pi, P2), •••) for p i ,p 2 = 0,1, . . . , m, we 
can conclude that 

r r m 2 £ 2 

/ / $T(i, 9)- J2 HplP2(t,0)-RT(Pl,p2) F(d9)G(dt) < - . (7.35) 
• y R + - / R + P1,P2=0 

Moreover . / i > a / f l > J * T ( t , 6>)||2G(di)F(d6>) < e2 /8. Denote 

m 

Sl(t,9)= £ HPlP2(t,6)-RT(Pl,P2). 
Pl ,P2=0 

Rewriting (7.35) we have 

/ / ZT(t,9)-Sl(t,6) 2F(d9)G(dt)<~. 
JR+ Jm.+ * 

(7.36) 

By Theorem 7.5, the stochastic integral am{t) = J0 °°(S^(t,0), dT(9)) exists. 
Moreover by (7.4) (7.36) it follows that 

f E I {($T(t,9)-Sl(t,0)),dr(0))2G(dt) 

f \\^(t,9)-Sl(t,0)\\2F(de)G(dt)<^. 
(7.37) 
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So using the canonical representation of x and (7.37) we get 

f E(\x{t) - am(t)\2)G(dt) 
JWL+ 

= / E( f ( ($T( i , O)-S%(t,0)), dT(0)) 2)G(dt) < ~. 

By Theorem 7.3, for any s > 0, there are 6X, 62,..., 0q : #i < 02 < • • • < #<?> 
independently of £, satisfying 

(7.38) 

£ ^ (s£(t, 5), dTW)-X;<^(t, <?,•), Ar,-> J< T , (7.39) 

where A r , = ( 7 l ( ^ ) - 71(^-1), 7a(0;) - 72(^-1), - ) (J = 1,-,<?; #o = 0). 
We write 

3 = 1 

Obviously Ma,m(-) is an one dimensional stochastic Mamdani fuzzy system, 
which can also expressed as 

q m 

Ma,m{t)=T.{ E HPlP2(t, ( ^ ( P i P a ) , Ar,-> 
J = l pl,p2=0 

m ^ / q m ^ 

= E 4 ( 0 E E JW**) • (^T(PIP2), AT,-

Hence for p = 0,1, . . . , m, we let 

q m q in ~ / 

0 ( p ) = £ E A2 P a (<9 i ) ( r i ( P , p 2 ) (7 i (^ ) -7 i (^ - i ) ) 

+ r 2 ( p , P2) (72 («j) - 12(63-1))+ •••)• 

(7.40) 

Therefore, Ma>m(i) = X) Aip(t) • 0{p) (t e R+). Rewriting (7.39) we get 
p=0 

.E vm(t)-E AiP(t)-0(p) )G(dt) 
p=0 

= [ E(\am(t)-Ma,m(t)\2)G(dt)< 

(7.41) 

By the metric triangle inequality, (7.37) (7.38) and (7.41) we can conclude that 
the following fact holds: 

jT E(\x(t)~Ma,m(t)\2)G(dt)y<{£~}l2+{£^y2=s 
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Consequently we obtain 

{E(\x(t) - Maim(t)\2)G(dt)Y< e, 

by which the theorem is proved. • 

In the proof of Theorem 7.6 we obtain an efficient algorithm (7.40), by which 
an one-dimensional stochastic Mamdani system can directly be constructed. 

7.4.2 Example 

The proposed approximating method of stochastic process by a stochastic 
Mamdani fuzzy system can be used in a variety of approximate realizations of 
stochastic processes. Here, we consider a non-stationary process, by which the 
stochastic telegraph signals may be described. To this end we at first let c0 = 2 
in (6.8), the error bound e = 0.2, and antecedent fuzzy sets be identical with 
ones of Example 7.1. Define the stochastic process as follows: 

Vi G K+, x(t) = z{t) • (sin(wii) +sin(w2i))> 

where u)\ > 0, UJI > 0 are constants, and z = {z(t), t 6 R+} is a zero mean 
weakly stationary process with the following covariance function: 

Bz{t, s) = E{z(t) • z(s)) = BZ(T) = \T\ • e x p { - | r | } , r = t-s. 

In practice x = {x(t), t € M+} may represent a stochastic telegraph signal. It 
is easy to prove x = {x(t), t € M+} is a non-stationary process. By the spectral 
representation (7.7) we get 

i /- + 00 1 p + OO 

BZ(T) = - / exp{/0r}/(0)d0, f(9) = - / exp{-/^T}i?z(T)dr, 

(7.42) 
where I2 = - 1 . By (7.42) it follows that 

i r+°° 
f(9) = - exp{-70r} - | r | exp{- | r | }d r 

9 p+co 
= — I T • exp{—r}cos(#T)dr 

*" Jo 
2 f+°° r 1 

= — I < exp{—r} cos(r^) — 9T • exp{—r} sin(r^) >dr 

2 f+°° 
= - exp{-T}(cos(r6>) - 0sin(-r0) - 62T • cos(6»r))dr 

n Jo 
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Figure 7.3 The surface of Bx 

Therefore we can conclude tha t the following fact holds: 

r+co 1 r+ca 

I exp{-T}cos ( r# )dT = ^ , / e x p { - T } sin(T#)d7 
Jo 1 + " Jo 1 + 02' 

Thus, f(0) = 2 / ( T T ( 0 2 + 1 ) 2 ) . Since Bx(t, s) = E(x(t)-x(s)), by (7.42) it follows 
tha t 

Bx(t, s) = E(z(t) • z(s)) • (sin(tL>ii) + sm(u2t)) (sin(wis) + sin(u;2s)) 

2 
— • (sin 
7T /

+oo 
exp{I0T} 

-oo 

dfl 

(02 + I) 

d0. 
4 f+occos(0(t — s)) 

- - • (sin(wii) + sm(u)2t)) (sin(wis) + sin(w2s))- / (a2,-i\2 

P u t $ T ( i , 0) = (ipi{t, 0), (p2(t, 0)), and denote 

<fi(t, 0) = y/2 • (sin(wit) + sin(u)2t))cos(0t), 

ip2(t, 0) = \[2- (sin(wit) +sin(w2t))sin(6»t). 

Considering the fact: F(d0) = f(0)d0, we can imply 

r+co 

Bx(t, s) = / ( $ T ( t , 0), $ (a , 0))F{d0). 
Jo 

Let \ t T (£ , 0) = (ipi(t, 0), ip2(t, 0)), where ipi(-, •), ip2(-, •) can be expressed 
respectively as follows: 

2 (sinfa^i) + sm(Lj2t))cos(6t) 

0F 02 + l ' 
2 (s in(wi i )+sin(w2t))s in(0t ) 

7^ 02 + l ' 



320 Liu and Li Fuzzy Neural Network Theory and Application 

Since | |*(., -)||2 = ^i2(-, -)+il$(; •), easily we have, | |*(. , . ) | | G L2(R%, B x 
B, G x M). Choosing u>i = w2 = 35, we can show 

f (^2(t, 0) + %l>l(t, e))M(d6)G(dt) < 0.005 = ^-. 
Jt>i,e>i ° 

So choose a = 1. If partition [0, 1] identically into m0(mo > 20) parts, and 
consequently [0, l ]2 is divided into m2, sufficiently small squares. Thus two 
piecewise linear function Si(-, •), S2(-, •) can be constructed, satisfying 

|V>i(*, 0) + V-K*. *) " Sl(t, 9) - 5|(t, 0)|G(di)M(d0) < ^ . 
[o,i]2 ° 

In order to estimate TO, we use Corollary 6.2 to estimate Djj(tpi) : DH(^) = 
£>/j(lM V DH(ip2) < 40. Since /i([0, a]2)= (G x M)([0, 1]2)< 1/10, it follows 
by Theorem 7.1 that 

4£>ff(*)co • # x M ) ( [ 0 , l f ) 4 x 40 x 2 
TO > !! , = > TO > ; = , = > - TO — 506 . 

e 0.2x^10 

I 

In Theorem 7.4 we may let q = 10. Then by (7.40) and Theorem 7.2 we can 
get an analytic learning algorithm for the stochastic Mamdani fuzzy system 

506 ^ 
Af„,m(t)= £ AiP (t) • 0(p) : 

p=0 
1U DUO ^ / 

0(P) = E E ^2P2(<?i)(ri(p, p2)(&i(%) - 61(^-1)) 
j=lP2=0 V 

+r2(p,P2)(62(fli)-62(^-1))) ( 7"4 3 ) 

For i = 1, 2 using (7.39) and considering #j = j/10, we have 

£ ( | ^ ) - fo^-l)!2) = |0, - %-! | = ^ . 

So by learning algorithm (7.40) and (7.34) (7.44) it follows that 

506 ^ ^ 

BMa,m(t,s)= E Ai P l ( t ) -Ai M (s )S(0(pi ) -0(p2)) 
Pl,P2=0 

506 10 ^ ~ ^ ^ 
= E E AiPl(t)• AiP2(s)• A2P3(Oj)- A2pi(Oj)-

Pl,--,P4=0j = l 

| / \506 ' 506/ ^ V506' 506/ u u j ; u J ; | ; 

)£(|62(^)-62(^_1) |2)J v V506' 506/ ^2V506' 506/ 
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Figure 7.4 The surface of Bua,m when m = 40 

Therefore we can obtain 

1 506 10 r^j ~ ^ / 7 \ ~ / 7 \ 

{ I ( Pi P3 \ ! f P2 Pi\ . , f Pi P3 \ , ( P2 P i \ \ 

•{Hsas' SMJ-HSM' soeJ+Msoe' Boe/Msoe' soeJ/-
For simplicity of computation, we choose m = 40 to derive the surface of 
B M O m ( - , •) as shown in Figure 7.4. And Figure 7.3 is the surface of Bx(-, •). 
From the comparison between Figure 7.3 and Figure 7.4, we may easily see the 
accuracy e in mean square sense is guaranteed. 
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CHAPTER VIII 

Application of FNN to Image Restoration 

The ambiguity and uncertainty always accompany the acquisition and trans­
mission of a real digital image. So in practice only a few of classes of degraded 
images can be treated successfully by mathematical model methods [4, 5], most 
degraded image cases can not be modelled by the conventional approaches. As a 
soft technique for dealing with the imprecision inhering in human brain, fuzzy 
sets can be an efficient tool to treat graded images, especially noise images 
[3, 10, 52-54]. Through fuzzy sets, we may use human knowledge expressed 
heuristically in natural language to describe digital images. Such a fact may 
result in the well-known rule-based approach for noise image processing. We 
can employ heuristic knowledge on noise images to build some suitable infer­
ence rules for removing noise [25-29, 54, 62]. To improve the adaptivity and 
filtering capability, an efficient approach is to utilize neural network filters [55, 
69] and fuzzy filters synthetically. As an organic fusion of fuzzy theory and 
neural networks, the FNN approach for signal and image processing has been 
of growing interest [2, 32, 66, 68]. The success of FNN's in image processing is 
that the filters based on FNN's can efficiently suppress noise without destroying 
important image details such as edges [14, 25, 37-39]. Using adaptive adjust 
of the FNN we can get an optimal filtering result, and some restored images 
with good performances can be achieved. 

In the chapter, fuzzy inference networks are studied systematically with 
a general approach, which is the basis to develop image restoration methods. 
Then we express a two dimensional digital image as a I/O relationship of a 
fuzzy inference network. And consequently we can develop a corresponding 
optimal filter, by which a restoration image with good performance can be 
resulted in from a noise one. To this end, we begin our research to introduce a 
defuzzifier with general sense, and then define generalized fuzzy inference neural 
networks (FINN's) and prove that the generalized FINN's can be universal 
approximators. We establish the equivalence between a FINN and a generalized 
fuzzy system. We utilize fuzzy sets to describe the gray levels of digital images. 
Then two dimensional digital images can be dealt with by using fuzzy inference 
networks, and an efficient FNN filter can be built. With the mean absolute 
error (MAE), some learning algorithms for the fuzzy inference networks can 
be developed to design optimal FNN filters. They can lead to good anti-
disturbance in image processing, that is, if images are corrupted by impulse 
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noise with high noise occurrence probability (p > 0.5), we can employ the 
FNN filter to give restoring image with good performance. Many simulation 
examples are presented to show the methods in the chapter are advantageous 
and efficient in processing noise images. 

§8.1 Generalized fuzzy inference network 

Fuzzy inference system can simulate and realize natural language and logic 
inference mechanic. The subjects related, such as how fuzzy rule base can 
be constructed by given linguistic and data information, whether the systems 
related can adaptively match fuzzy rules, and so on attract many scholar's 
attention [45, 46, 50, 57]. As a organic fusion of inference system and neural 
network, fuzzy inference network can realize automobile generation and auto­
mobile matching of fuzzy rules. Further, such a system can adaptively adjust 
to adapt the changes of conditions and self-improvement. Since 1990, many 
achievements have been achieved and they have found useful in many applied 
areas, for example, process control [33, 47], system modelling and system iden­
tification [20, 22, 27, 35, 42], expert system [23], forecasting [49] and so on. 
In the following, we shall study a class of generalized fuzzy inference network 
within a general framework, and discuss its all kinds of properties, including 
universal approximation. 

8.1.1 Generalized defuzzification operator 

As one of main components of fuzzy inference system, defuzzification con­
stitutes one important study object in fuzzy system and fuzzy control [12, 41, 
63, 64]. Defuzzification is a procedure by which a fuzzy set is transformed into 
one crisp value of being able to describe the fuzzy set. In fuzzy control, it 
turns a fuzzy decision into a concrete control value and system control may 
be realized. In defuzzification methods, there are two main classes most used. 
One is maximum of mean (MOM) method [23, 50, 67], and another is center 
of gravity method (COG) [23, 67]. In addition, many novel defuzzifications 
to the special subjects are put forward in recent years. These defuzzification 
approaches have their own advantages and disadvantages [63]. It is impossible 
to develop a general framework for defuzzification, including all cases. This is 
because in practice all models possess their own characteristics. 

In this subsection, we shall build some specific principles to define defuzzi­
fication operators [50, 58]. So it is possible to develop a more general definition 

for defuzzification. If a G [0,1], AG .F(R), then define fuzzy set aTA& .F(R), 

such that V;r G R, (aT A)(x) = a T A{x). In the following we assume that the 
fuzzy operator T satisfies the condition: Va, b G [0, 1], a, b > 0, = > aTb > 0. 

Definition 8.1 Suppose De : T(R) —> E is a mapping. And let T : 
[0,1] x [0,1] —> [0,1] be a t -norm. De(-) is called generalized defuzzification 
operator, if the following conditions hold: 
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(i) V A€ .F(R), De(A) G SuppU), thus, Vrr e R, De(X{x})= x; 

(ii) -De(-) is a continuous mapping, that is, if A& ^"(R), {An |n G N} C 

.F(R), then D(An, A) -> 0(n -> +00), = > De(An) - • A s U ) (n - • +00); 

(iii) Arbitrarily given Ai, ...,An& ^(R)) then 

n n n 

/\{I>eUi)} < i?e(|J A )< V {^UO}-

Lemma 8.1 Let a € [0,1], and AG ^ (R) , {an\n e N } c [0,1]. Then the 
following conclusions hold: 

(i) De : .F(R) —> R is a surjection, that is, \/x G R, i/iere is _BG -F(R), 

swcft tftat De(B) = x, consequently, for each a G (0,1], tftene is AG .F(R) 

independently of a, satisfying De(a T A) = x; 

(ii) If T is a continuous t—norm, and A satisfying condition: A(-) is contin­

uous and Supp(A) is bounded. Further for a G [0,1], Aa is a bounded convex 

set. Then lim an = a, =^> lim De(anT A) = De(aT A), and De(aT A) is 

continuous with respect to a. 

Proof, (i) Choose B= X{x}i i-e- B is the characteristic function of the 

point set {x}. Then Be .F(R). By Definition 8.1, De(B) = x. And if a G (0, 1], 

we choose A=B= X{x}- Then Supp(aTA) = Supp(aTx{x}) — {x}- Hence 

De(aTA) =x. (i) holds. 

(ii) Given arbitrarily /? G [0, 1], then A/3 is a bounded interval, and let 
the left, right endpoints related be aL(/3), au(fi), respectively. For any b G 

[0, 1], a € [0, 1], if a > b, obviously we have, {bTA ) = 0 ; and if a G [0, b], in 
the following we show 

bT(3 = a,^(aL((3), au((3))c (bTA)aC [aL((3), au(0)]. (8.1) 

In fact, for any x G (aL(/3), av(/?))cA/3, it follows that A(x) > (3. Then we 

have, bTA(x) = (bTA.)(x) > bT P = a, that is 

x G (bTA)a,^ {aL(P), au(P))c (bTA)0; 

Conversely, if x G (bTA)a , then bTA(x) > a. Since a G [0, b] = [6TO, 6 T l ] , 

by the continuity of T there exists /? G [0,1], so that bT/3 = a. Then A(x) > /?, 

for otherwise we have, A (a?) < /?, = > 6T A (x) < 6T/3 = a, which is a 

contradiction. So (bTA)a CAp • And (8.1) holds. 
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Va G [0, 1], \ln& N, it follows that {aL{(3n)\n G N}, {au(j3n)\n G N} are 

the left, right endpoints of (anT A ) a respectively. Considering lim a„. = a, 

we choose (3n satisfying the condition: (3n T an a, moreover lim fin — (3. 
n—>+oo 

Also by A{-) being continuous, aL(-), au(-) are continuous functions. Thus, 

lim aL(/3„) 
n—J'+oo 

(aTA)a (n 

lim au{/3n) = au(j3). Therefore, {anT A)a 
n—>-)-oo 

+oo). Hence lim D(anTA,aTA) 
n—>+oo 

0. (ii) is proved. D 

In order to account for the fact that most of defuzzification methods in 
application are special cases of the generalized defuzzifier in Definition 8.1, we 

at first restrict the fuzzy sets related into 0(a, va\ +m2), for this defining form 
for fuzzy sets is widely applied in application. We obtain the fuzzy set family 

{Aj \j = —mi, —mi + 1, . . . ,0 ,1, ...,7712} C O (a, 7711+7712), that is, we partition 
[—a, a] identically into mi + m2 sub-intervals: —a = a_m i < a_m i+i < • • • < 

ao = 0 < ai < • • • < am2. Let Aj be a triangular fuzzy number with {aj} being 
kernel, and a.j-i, a,j+i being left, right endpoints of the support, respectively, 
ss Figure 8.1 shown, we can obtain CQ = 2. 

-a O-mj+i a _ i 0 01 
*~x 

^mo—1 & 

Figure 8.1 The membership curves of fuzzy set family 

Example 8.1 For given A<E {Aj \j = - m i , - m i + 1, . . . ,0 ,1, . . . ,m2}, we 
define the defuzzification methods in the following different cases: 

^ ^ » / ~ N Lx-A{x)dx , , ^ „ X ~ N fv, x- A(x)dx 
COA(A) = m „ — ; MOM(A) = x „ — ; 

/H A{x)dx Jx. A{x)dx 

fl 

SA(A) = / (S • ai(a) + (1 - 6) • a2(a))da(Aa= [^(a) , a2(a)]) , 

where X* = {x* G K ^ x * ) is a maximum value of A(-)}- Then it follows that 
COA(-), MOM(-) and SA(-) can ensure the conditions (i)-(iii) of Definition 8.1 
hold. 

Since V A G {Aj \j = - m i , - m i + 1 , . . . , 0,1, . . . , m 2 }, A are triangular fuzzy 

number, easily we can show, MOM(^4)(-) [23, 67] and SA(A) [63] can guarantee 
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the conditions (i)-(iii) of Definition 8.1 hold, for MOM(A) is a discrete form 

MOM(A) = x* (A(x*) = l ) ; And A U B is a convex fuzzy set if and only if 

Ker(A) = Ker(fi). So it suffices to show COA(-) can guarantee the conditions. 

0 aL ac(bL) c* au(bc) bu 

Figure 8.2 The membership curves of two fuzzy intersecting sets 

In fact, COA(-) is a continuous case of centroid defuzzification [23]. Let 
~ ^ u ~ 

Supp(A) = [aL, au]. Then JK x A{x)dx = f®L x A(x)dx, so 
„u „u „u 

aL / A(x)dx < I x A\x)dx <au A(x)dx, =3> CO k{A) € Supp(2). 
JaL JaL JaL 

Also denote J(A) = fR A(x)dx, easily we can show, J(A) is continuous with 

respect to A . Similarly the integral fR x A(x)dx is also continuous with respect 

to A . Therefore, when J(A) ^ 0, we have, JR x A{x)dxj'JR A(x)dx is continu­

ous with respect to A, that is, when D(An, A) —• 0(n —* +oo), it follows that 

COA(An) —> COA(^4) (n —> +oo). Next let us show, COA(-) can ensure the 
condition (iii). By the induction method it suffices to prove the conclusion when 

n = 2. To this end we at first choose arbitrarily A, B& {Aj \j ~ —mi, —mi + 

1, . . . ,0 ,1 , ...,rn2}, and suppose Supp(^4) = [aL, au], K e r ^ ) = {ac}, also 

Supp(B) = [bL, bu], Ker(B) = {bc}. Denote 

r"u ~ ~ r*>u~ 
s(A) = / A(x)dx, s(B) = / B{x)dx. 

JaL JbL 

HAO B= 0, it follows that 

COA(A U B ) 
JaL x-A(x)dx + JbL x-B{x)dx 

£L A(x)dx + f*L B(x)dx 

s(A) • COAU) + s(B) • COA(B) 

s(A) + s(B) 
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Since s(A) > 0, s(B) > 0, we get 

COA(A) A COA(B) < COA(A U B ) < COA(A) V COA(B), (8-2) 

So the condition (iii) in Definition 8.1 holds; If .A H B^ 0, it is no harm to 
assume ac < bG, and A, B can be characterized by membership curves in 
Figure 8.2, respectively, where c* — (ac + bc)/2. Easily it follows that 

COA(A) = a + \ + a , COA(B) = + g ' • 

For B\, B2& ^ b W , we can prove 

Vx > COA(B2), Bi{x) =B2(x); Vx < COA(B2), Bi(x) >B2(x), 

=^COA(Bi)<COA{B2); 

Vx < COA(Bi), Bi(x) =B2(x); Vx > COA(Bi), Bi(a;) <B2(x), 

=^ COA(Bi)<COA(B2). 

(8.3) 

Two conclusions in (8.3) can be proved similarly, so it suffices to show the first 

one. Denote Supp(Bfe) = [b%, b%] (k = 1,2), then fef < b\. We can assume 

J . C O A ( B 2 ) ^ I ( X ) _ g 2 ^ d x ^ A l > 0, Jbf B2(x)dx = A2 > 0. Considering 

/ xB2(x)dx+ / x.B2(x)dx = COA(.B2)- / B2(x)dx, 
A f JC0A(B2) Jb{ 

we can conclude the following facts: 

j £ O A ( S 2 ) xBiOr)dx + J-6" „ xB2(x)dx 
COA(B0 = ^ = ^ ^ — 

jCOA(B2) ~ {x)dx ^ B2(x)dx 
J b i JCOA(B2) 

Ai • Ai + A2 - COA(g2) 
Ai + A2 

where Ai = J™>A(B,) X(BI{X)~ B 2 (x ) )dx /Ai < COA(Bi). So C O A ^ ) < 

COA(S2). That is, the first conclusion of (8.3) holds. Using (8.2) (8.3) we can 
conclude that 

COA(Bi) A COA(B2) < COA(Si U B2) < COA(Si) V COA(B2). 
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In summary (8.2) holds, so for COA(-) the condition (iii) holds. Hence the 
conditions (i)-(iii) of Definition 8.1 hold for COA(-). 

8.1.2 Fuzzy inference network 

For given a > 0, and m £ N, define adjustable antecedent fuzzy set family 
{Aij \i = l,...,d; j = 0, ± 1 , ...,±m} C 0(a,m). Mamdani inference rule 
Rpi—Pd is presented as in the subsection 6.2.1: 

RPl...Pd: IF xi is AiPl and ... and xd is AdPd THEN u is UPl...Pd • 

where pi, ...,Pd 6 {—m, —m+1, . . . , m —1, m}, UPl...Pd is an adjustable output 

fuzzy set. For given fuzzy input A£ •?"([—a, a]d), if A is singleton fuzzifica-
tion at (xi,...,Xd) G [—a, a]d, it follows by (6.10) that the output fuzzy set 

A ° RPl...Pd is determined as follows: 

(Ao Rpl,..Pd )(u) = HPl...Pd(x!, ...,xd)TUPl...Pd (u). 

Using 'V — T' composition rule, by {RPl...Pd\pi, •••,Vd = 0, ±1 , . . . , ±m} we can 

obtain a synthesizing fuzzy set as follow: JJ= U ( 4 ° RPl...Pd )'• 
Pl,--,Pd = - m 

U(u) = U {A°RPl...Pd)(u) 
Pl'-T~m . (8-4) 

V {HPl...pd(xi,...,xd)TUP1...Pd(u)}. 
Pl,--,Pd = - m 

Assume that De is a generalized defuzzifier, and let Fin(x±, ..-,Xd) = De(U), it 
follow that 

Fin(x1,...,xd) = De[ U (HPl...Pd(x1,...,xd)TUPl...Pd)l (8.5) 
Pl,--,Pd = -rn 

As shown in Figure 8.3 we call the system related a fuzzy inference neural 
network (FINN), whose I/O relationship is as (x\,... (xi,...,xd), 
where K = (2m + l)d, k corresponds to a multi-fold index p\...pd (Pi, ••nPd = 
0, ±1 , . . . , ±m). ko is the neuron p\...pd corresponding to the case of p\ = • • • = 
pd = —m. The FINN architecture consists of five neuron layers, of which there 
are three hidden layers, one input layer and one output layer. The neuron in 
hidden layers is called fuzzy inference unit which deals with fuzzy inference rule 
Rpi—Pd (Pi) •••yPd = 0, ±1 , . . . , ±m). There are d neurons in input layer and one 
neuron in output layer, which is called synthesizing-defuzzification unit. There 
are two functions related to output neuron, first synthesizing all fuzzy inference 
rules by the operator 'V" to establish synthetic fuzzy set U', Second, generalized 
defuzzifier De(-) is applied to U to derive the crisp output Fin(xi, ...,xd)-
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Input layer Hidden layer I Hidden layer II Hidden layer III Output layer 

Figure 8.3 Architecture of fuzzy inference network 

In the following we account for the connection weights between two neu­
rons in adjacent layers and the corresponding I/O relationships. 2md + d 
neurons are arranged in a column to form hidden layer I, and they are di­
vided into d groups, each of which there are 2rn + 1 neurons. In group 1, 
the neuron p\ (p\ = —m, —m + l,...,m — 1, m), whose input is X\, and 

output is AiPl (%i) is connected with the first one in the input layer; ...; 
In group d, the neuron pd (pd = —m, — m + l , . . . ,m — l ,m), whose input 

is xj, and output is Adpd (xd) is connected with the d-th neuron in input 
layer. Hidden layer II consists of (2m + l)d neurons, in which the neuron 
Pi—Pd (fi, •••iPd = 0, ±1 , . . . , ±m) is connected with the neuron p1 of group 1, 
..., the neuron pd of group d, respectively in hidden layer I. In hidden layer 

II, there are d inputs related to neuron p\...pd '• AiPl {x\), •••, Adpd(xd), whose 

output is AiPl(xi)T• • -TAdjd(xd) = Hpl,..Pd(xi,...,xd). Also in hidden layer 
III, there are (2m + l)d neurons, which are connected with the correspond­
ing neurons in hidden II, respectively, as shown in Figure 8.3. In hidden III, 
the input of neuron p\...pd is HPl.,,Pd(xi, ...,Xd), and corresponding output is 

HPl...Pd(xi,...,Xd)T UPl...Pd • The output neuron accepts (2m + l)d outputs 
of hidden layer III as its input. And by operator 'V' determining synthetic 
operator 'U' we obtain synthetic fuzzy set: 

U H(xi,...,xd)TUPl...Pd=U, 
Pl,---,Pd =—m 

then by generalized defuzzifler De(-) establishing crisp output Fin(x\, ...,Xd) = 

De(U). 
The adjustable factors of the FINN Fin defined by (8.5) are the antecedent 

fuzzy sets Aij's and the consequent fuzzy set UPl...Pd • In application, we always 
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fix the shapes of the antecedent and consequent fuzzy sets, such as triangular 
or trapezoidal fuzzy numbers, then adjust the parameters related to determine 
the fuzzy sets for building a FINN [42, 67, 73, 74]. Sometimes, for conve­
nience of simple computation and theoretic analysis, we can construct some 
fuzzy systems by not abiding by the composite rules of fuzzy inference rules. 
For instance, by using the composite operation 'V — x ' to determine the fuzzy 
set related to the fuzzy rules, we can define a fuzzy system, whose output 
is not determined by the synthesizing fuzzy set U according to 'V' and a re­
spective defuzzfication operator, but computed as a weighted sum of a family 
defuzzfying values corresponding to each inference rule, respectively [20, 22, 
36, 43, 60, 74]: The fuzzy set determined the fuzzy rule RPl...Pd is calculated 
by (6.10), the crisp value corresponding to maximum defuzzfication method is 
uPi...pd '• Upi...Pd(uPl...pd) = 1. And the crisp value of the synthesizing fuzzy set 
is established the following weighted sum: 

m m 

2-/ *lpi---Pd\xli •••> xd)u
Pl...pd 2-i £ipi...pd\

xli •••! xd) upi...pd 
Pi,...Pd = ~m Pi,...Pd = - m 

™ , or , 

2—1 "-pi...pd \xli ••• ' xd) 2—i -"Pi-.-Pd [xl> • • • ' Xd) •Pd\ 
Pl,...pd = - m p1,...pd — - m 

(8.6) 
where 0 < a < +oo. The second part of (8.6) is a generalized Mamdani system 
(6.11). Similarly we can also construct the fuzzy inference networks corre­
sponding to T-S fuzzy inference rules. 

TRPl...Pd: IF xi is A\Pl and ... and Xd is AdPd THEN u is fPl...Pd{xi, ...,xd), 

where fPl...Pd(xi, • •-,Xd) is an adjustable function of input variables x\, -.^Xd, 
which is chosen as a linear function in the following [22]: fPl...Pd(xi, ...,Xd) = 
bo-,pi...pd + bi-Pl...Pdxi + • • • + bd-lPl...PdXd- With such a restriction, we can write 
TRPl...Pd as a Mamdani inference rule form, let fPl...Pd{xi,..., Xd) be a singleton 
fuzzy set X{fP1...Pd(xu...,xd)}- Then 

TRPl...Pd: IF xi is AiPl and ... and xd is AdPd THEN u is X{fP1...Pd(x1,...,Xd)}, 

Similarly with (8.5), using the singleton fuzzification and the synthesizing fuzzy 
operator 'V' we can get the I/O relationship of the generalized FINN corre­
sponding to the fuzzy rule TRPl...Pd as follows: 

m 

Fin(xi,...,xd) = De[ ( J HPl...Pd(x1,...,xd)TxfP1...Pd(x1,...,xd))- (8.7) 
Pi,...,Pd=-m 

By the following Theorem 8.1, if we choose the denazification operators De(-)'s 
both in (8.5) and (8.7) as the weighted sum (8.6), respectively, the generalized 
FINN and the corresponding fuzzy system are equivalent. 
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Theorem 8.1 Let De(-) be a defuzzification operator for defining the FINN 

Fin(-), and U be a synthesizing fuzzy set determined by (8-4)- De(jj) is defined 
as the second part of (8.6), a £ [0, +oo]. Then we have 

(i) In Mamdani inference rule RPl...Pd, if we choose the consequent fuzzy 

SeZ Upi...pd U r 

(pi,---,Pd)e -F(l~^j &])) where b > 0 is an adjustable parameter, 
r : Rd —> R is an adjustable function, then the generalized FINN Fin(-) 
defined by (8.5) and the generalized Mamdani fuzzy system Mm(-) by (6.11) 
are functionally equivalent; 

(ii) Corresponding to T-S inference rule TRpi,,Pd, the I/O relationship 
Fin : Rd —> R by (8.6) and the generalized T-S fuzzy system by (6.17) are 
functionally equivalent. 

If choosing De(-) as the other forms [50], similarly we can show, Fin(-) and 
the corresponding fuzzy system are functionally equivalent [23, 30, 31]. 
8.1.3 Universal approximation of generalized FINN 

Let us now study the representing capability of Fin(-), and show some suc­
cessful applications of the inference network to system identification. The first 
step to do that is to show that Fjn(-) constitutes a universal approximator to 
a class of real functions, and demonstrate the realizing process. 

Theorem 8.2 Let T related to the generalized fuzzy inference network 
be a continuous t—norm. Then Fin(-) is a universal approximator. That is, 
for arbitrary e > 0, and each compact set U C Rd, if f : Rd —• R is 
an arbitrary continuous function, there are m € N, and fuzzy sets UPl...Pd£ 
T(R) (pi, ...,Pd = 0, ±1 , . . . , ±m), so that 

V(zi,...,a;d) e U, \f(xi,...,xd) - F i n(xi , ...,xd)\< e. 

Proof. Since U C M.d is a compact set, there is a > 0, so that U C [—a, a]d. 
By the continuity of / on [—a, a]d we imply, / is uniformly continuous on 
[—a, a]d. For s > 0, there exists 5 > 0, such that 

V(a;i,...,xd), (yi,...,yd) e [-a, a]d, \xt - yt\ < 5 (i = l,. . . ,d), 

=> \f(xi,...,xd) - f(yi,...,yd)\< -. 

Choose m € N, and partition [—a, a] into 2m parts: —a = a_m < ai_TO < 
• • • < am-i < am = a. Let m satisfy the condition: £(<x, m) < 5/(2CQ), where 
Co is defined by Definition 6.1. We can define the antecedent fuzzy set family 
as {Aij \i = l,...,d;j = 0, ± l , . . . , ±m} C G(a, m), so that each Aij (•) is 
continuous on R. Given arbitrarily (xi,...,xd) G U C [-a, a]d, V(pi, ...,pd) S 
N(xi,..., xd), by Lemma 6.2, it follows that \xi - aPi\< 2c0 • £(a, m) < S. Thus 

(Pi,-,Pd) G iV(xi,...,a;d),=> \f(xi,...,xd) - f(aPl, ...,aPd)\< | . (8.8) 
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By the definition of the generalized defuzzification operator De(-), there is 

b > 0, so tha t for any p\, ...,pd € {—m, - T O + 1, . . . ,TO — 1, TO}, we can ob­

tain the fuzzy set UPl...Pd& J-([—b, b]). By Lemma 8.1 we may choose UPl...Pd 

independent of Hpl,,,Pd(xi, ...,Xd). Moreover 

Ue\-Hp1...pd \xli •••ixd) J- U p1...pd ) = J \api! •••> aPd )• (8-9) 

Therefore, for any (xi,...,Xd) G U and (pi,...,Pd) € N(x\,...,Xd), using (8.8) 
(8.9) we can conclude tha t 

\f(x1,...,Xd)-De(HPl.„Pd(x1,...,xd)TUp1...pd ) | 
e (8-10) 

= \f(xi,...,Xd) - f(aPl,...,aPd)\< -. 

Thus, V(xi, ...,Xd) 6 U, by (8.10) and Lemma 4.5 easily we have 

f(xu...,xd)- A {De(HPl...pd{x1,...,xd)TUp1...pd}} 
(p1,...,pd)€N(x1,...,xd) 

= Le(x1,...,xd) < - , 

f(x1,...,xd)- V {De(HPi...Pd(x1,...,Xd)TUp1...pd}} 
(p1,...,pd)eN(x1,...,xd) 

= Le(xi,...,xd) < -. 

(8.11) 
Hence for any (x\, ...,Xd) £ U, using Definition 8.1 and (8.11) we get 

\f(xi,...,xd) -Fin{xi,...,xd)\ 

= f(xi,...,xd) -DA U HPl...Pd(xi,...,xd)TUPl...Pd J 
T l . - i P J = - " ' 

= / ( x i , . . . , a ; d ) - £ ) e f U Hpi...Pd(x1,...,xd)TUPl...pd 

(pi,---,Pd)eN(x1,...,xd) 

< Le(x!,..., x d ) V L e(a;i , . . . , x d ) < e. 

Consequently Fin{-) is universal approximator. • 

Theorem 8.2 may provide us with the theoretic basis for the application 
of generalized FINN's t o many real fields, such as system modeling, system 
identification, image processing and pat tern recognition and so on. Next let us 
take a few of simulation examples to demonstrate the application of the FINN 
Fin(-) in system identification. At first we suppose the antecedent fuzzy set 

family is {Atj \i = 1, ...,d; j = —mi, —mi + 1, . . . , T O 2 - 1 , TO2} C Q(a, mi+m2), 

and Aij=Aij (i = 1, ••-, d), Aij is the fuzzy set Aj shown in Figure 8.1. 
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Example 8.2 Let d — 2, the error bound e = 0.2. Given the compact set 
C = [—1, l]d, partition [—1, 1] identically into 2m parts, that is, in Figure 8.1, 
we choose the following parameters: 

j 
a = 1, mi = m,2 = m, a,- = — (j = 0, ±1 , . . . , ±m). 

m 

The fuzzy set Aij (i = 1, 2; j = 0, ±1 , . . . , ±m) is defined by the translation of 

the triangular fuzzy number A(-) • 

1 

A(«) = { 

mt + 1, <t<0, 
m 

1 - mi, 0 < t < 

0, 

1 

m 
otherwise. 

Al(-m){t) 
1 — m — mi, — 1 < t < — 1 

m 
0, otherwise; 

1 
, mt+l-m, 1 < i < l , (8.12) 

Aim (t) = { rn 

0, otherwise; 

AIJ=A2J; Aij(t) =A[t ) (j = - m + l , . . . , m - 1 ) . 

For convenience for application, we determine the crisp value De(U) of fuzzy set 
U by (8.6), U is the synthesizing fuzzy set corresponding to Mamdani inference 
rule RPl...Pd or T-S rule TRPl...Pd. And the continuous t—norm T is product 
' x ' . Obviously if a = 1, for any x, x\, ...,Xd € [—1, 1] we have 

/ m 
E Aij (x) = 1, 

j=-m 

m d / m r^ \ 

E #P l . . .pd(xi, . . . ,a;d)= n ( E Aij(xi))=l. 
4 pi,...pd =—rn i—1 ^j = ~m 

Define the continuous function /(• , •) as follows: 

f(xi, x2) = sin(10xi + 15x2) {x\, x2 e [-1, 1]). 

Let S = e/25, we get, if \x° - y°\ < 5, \x° - y°\ < 8, it follows that 

\f(xl xl) ~ M, yl)\ < 101*? - y?| + 15|x° - y°2\ < 255 = e. 

1.13) 
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Let m e N : c0/m = 2/m < e /25, i.e. m > 50/e = 250. Choose m = 250. So 
by Remark 6.2 and (8.6) we have 

Fin(Xl, X2) 

250 

E 
pi,P2 =—250 

Z~i H-piP2\xli x2) J 1 2 5 0 ' 2 5 0 ' 

Hr, 

250 

E #p l P 2 (o ; i , X 2 ) a 

Pi,P2 = - 2 5 0 

250 

E # P l P 2 ( ^ 2 ) " s i n ( f i + 32f) 
Pi>P2 = —250 _ ___ ; 

E HPlP2(xi, x2)
a 

PiiP2 =—250 

j(xi,a;2) = A i P l ( x i ) x ^ 2 ( ^ 2 ) (pi,P2 = 0 , ± l , . . . , ± m ) . 

We can illustrate the approximating surfaces of Z = Fin(x\, x2) as Figure 8.4 
when a = 1, 1/2 and a = 2, respectively. Also the original surface of / ( • , •) is 
shown in Figure 8.4, from which we can see the high approximting accuracy at 
each point. 

Original figure Approximating figure when a=1 

N 

-1 -1 X 

Approximating figure when a=1/2 

-1 -1 

Approximating figure when a=2 

-1 -1 -1 -1 

Figure 8.4 Original surface and approximating surfaces when a = 1, 0.5, 2 

8.1.4 S imula t ion of s y s t e m ident i f icat ion 

By Example 8.2 and Theorem 8.2, we can utilize generalized FINN's to 
express a given function approximately. This is a static system identification. 
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With the same reason the FINN'S can be used as a identification model for 
dynamic systems. Moreover, the identification results related are much more 
advantageous than ones by neural networks [48, 67]. In the following let us 
study the identification capability of the generalized FINN Fin(-) based on the 
T-S inference rule TRPl,,,Pd and the defuzzifier as (8.6). 

m d 

l_i tlp\...pd\X^i •••! Xd) ' /_, V%\p\...pd
xi 

Fin(x1,...,Xd) = „ , (8.14) 
Zw Hpi...pd\xl> •••ixd) 

Pl,---,Pd = -™ 

where x0 = 1. (8.14) is a generalized T-S fuzzy system. By Remark 6.2, if a 
series of output signals corresponding a identification model are known, we can 
use the FINN's to simulate the unknown system by adjusting the antecedent 
fuzzy sets related, where d = 1. 

The discrete-time system can be described by the following nonlinear dif­
ference equation: 

z(k + 1) = f(z(k),..., z(k - p + 1); x(k),..., x(k - q + 1)), (8.15) 

where x(j) (j = k — q + 1,..., k) represents the input of the SISO system at time 
j , z(k) is the output, and / is the unknown function to be identified, p, q € N. 

1. Parallel Identification Model: The structure of identification model 
can be described by the following equation [48]: 

Z{k + l)=F(Z{k),...,Z{k~p+l), x(k),...,x(k~q+l)), (8.16) 

where F(-) represents the function determined by a generalized inference net­
work, Z is the output of the identification system. The learning on line 

aims mainly on determining the antecedent fuzzy set Aij step by step, where 
j = - m i , - m i + 1,...,0, 1, . . . ,m2). 

Algorithm 8.1 Adjusting algorithm for antecedent fuzzy sets. 
Step 1. Give the initial inputs x(l), x(2), and put n = 2. 
Step 2. Rank {x(l), ...,x(n)} with the increasing order as {ui, ...,un}. Let 

i>i = ui, and 
bi+i = m.m{v,j\uj > bt + 6} (i = 1,2, ...,7), (8.17) 

where S > 0 is a constant, 7 < n. Set 7 > 1. And write {61, ...,67} (7 < n) as 

the following form, and using Figure 8.1 we define Aij-

{ { f l -m 2 j t t_ r a ! | i , , . . , f l r a i } , 61 < 0, 

{a 0 , a i , . . . , a m i } , 61 = 0, 

{ai,...,ami}, bi > 0 
Step 3. Discriminate n > Ml If yes go to the following step; otherwise let 

n — n + 1, and select the input x(n), go to Step 2. 
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Step 4- Output the antecedent fuzzy set {Ay}. 

Example 8.3 Let the system identified satisfy the following difference 
equation [48]: 

(8.18) 
z(k + 1) = 0.3 • z(k) + 0.6 • z(k - 1) + g{x(k)), 

, , , . /2-7rfc\ , 
x ( f c )=sm(^—J , A; = 1,2,..., 

where g(-) is a unknown system. And let the function be as follows: 

g{x) = 0.6 • sin(7ra) + 0.3 • sin(37rx) + 0.1 • sin(57ra;). 

Suppose x(k) be the input of the system at k. Choose a = 1, 5 = 0.005, and the 
learning iteration number M = 200. The system input is x(k) = sin(2-7rfc/250) 
in the learning procedure. Using Algorithm 8.1 we can obtain the antecedent 
fuzzy set family {Aij \j = -mi, -mi + 1, ...,0, l , . . . ,m2} C O {I,mi + m2). 
Then Vx G [a_ m i , a m 2 ] , we have, J ] Aij (x) = 1. To identify (8.18), we 

j=—m1 

employ Theorem 8.2, Remark 6.2, (8.16) and (8.18): 

' Z{k + 1) = 0.3 • Z(k) + 0.6 • Z(k - 1) + Fin(x{k)), 
Fin(x(k)) = J2 Aij{x(k)) • (Z(k + 1) - 0.3 • Z(k) - 0.6 • Z{k - 1)). 

j = - m i 

.19) 

nitial membership functions Final membership functions 

0 . 0 3 0 . 0 3 5 0 . 0 4 0 . 0 4 5 0.O5 

Figure 8.5 Membership function curves of initial and ultimate iteration 
step for online learning 

By learning algorithm 8.1, the number of antecedent fuzzy sets is mi +m,2 = 
113. Figure 8.5 demonstrates the initial two antecedent fuzzy sets and the 
ultimate antecedent fuzzy sets in the learning process, where for clarity we 
show only a part of ultimate membership function curves, i.e. one curve in 
every five ones. 
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Input s ignal 

40O 500 600 
T i m e st©D k 

Figure 8.6 Input curve of the system 

1oo 200 400 500 6O0 
Time stem k 

9O0 100O 

Figure 8.7 Outputs of system (imaginary line) and generalized FINN 
identifying model (dotted line) for parallel format 

900 10O0 
T ime steD k 

Figure 8.8 System output (imaginary line) and output of Mamdani fuzzy system 
identifying model with parallel format (dotted line) 

To show good identifying performance of the model (8.19) we change the 
system input after the model is trained (i.e. the time step k > 200). The 
variant inputs are presented the system with the following law: 

x{k) 

Sml25oJ' 
. /2kiT\ „ „ . /,2knk\ 

°-5-sm(25o)+0-5-s in(^r)' 
. /2fc7T\ 

sml , 
V 2 5 0 / ' 

2 0 1 < k < 400, 

401 < k < 800, 

801 < k < 1000. 
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These input variety is illustrated in Figure 8.6. The outputs of the original 
system and the trained identifying system, which correspond to these varying 
inputs are shown in Figure 8.7, from which we can see the identification error is 
very small even when the system input is changed. Thus the identifying model 
(8.19) possesses high approximation accuracy. 

400 5 0 0 6 0 0 
T ime steD k 

Figure 8.9 System output (imaginary line) and output of generalized FINN 
identifying model with series-parallel format (dotted line) 

400 500 600 
T ime steD k 

Figure 8.10 Output of system (imaginary line) and Mamdani fuzzy system 
identifying model(dotted line) with parallel-series format 

To test further the identifying capability of the identification model (8.19), 
we compare the identification performance with tha t in [67], which is based on 
Mamdani fuzzy systems with Gaussian membership function fuzzy sets, under 
the same conditions. 

A Gaussian type membership function may be established uniquely by its 
center xg, its width ag. So by designing the learning algorithms for a family 
of Xg's and <rg's, and the coefficients y's. we can establish a Mamdani fuzzy 
systems with Gaussian membership function fuzzy sets. 

Let the number of membership functions be 40. Then there are 120 param­
eters to be established by online B P algorithm. Figure 8.8 shows the curves 
corresponding to the original system and the identifying model. Easily we can 
see, the error resulted by Mamdani fuzzy system based on Gaussian type fuzzy 
sets is much lager, and when the system input is changed, the identifying sys­
tem can not simulate the original system very well and it can not follow the 
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output of original system when k > 300. If using the crisp neural networks, be 
[67] we can imply that the identifying performance is disadvantage over that of 
Mamdani fuzzy system based on Gaussian type fuzzy sets. So with the parallel 
format the identifying performance of the generalized fuzzy inference network 
identifying model is best. 

2. Series—parallel Identification Model: In contrast to the parallel 
identification model described above, in the series-parallel model the output of 
the original system (rather than the identification model) is fed back into the 
identification. The identification model can be expressed as follows [48, 67]: 

Z(k + 1) = 0.3 • z(k) + 0.6 • z(k - 1) + F(x{k)), (8.20) 

where F(-) is a generalized fuzzy inference network, or a Mamdani system based 
on Gaussian type fuzzy sets, or a feedforward neural network. It is obvious 
that the corresponding identifying performance is much better than that of the 
parallel format because of the use of original system outputs z(k), z{k — 1),. 
Figure 8.9 and Figure 8.10 demonstrate the identifying curves corresponding to 
generalized fuzzy inference network and Mamdani fuzzy system, respectively. 
Here we can find, the performance of generalized fuzzy inference network is best, 
and feedforward neural networks identification can not simulates the system 
[48, 67]. 

If the signal sequence to be processed, for example digital image contains 
some noises, we can treat the generalized FINN by designing learning algo­
rithms for the weight coefficient uPl...Pd in (8.6) as a noise filter, which is the 
subject in the following two sections. 

§8.2 Representat ion of two—dimensional 
image by F INN 

In the conventional image theory, we utilize a completely orthogonal func­
tion basis to establish some models for digital image representations, and then 
develop linear theory for image processing [5]. Although we can employ some 
classical mathematical tools such as Fourier transform and statistics and so on 
to process image linear models with a systematic approach, linear tools may 
solve after all only a small of problems related to image processing, and most 
of them are dealt with only by nonlinear techniques [4, 55]. In the section we 
present the approximate representation of a 2-D digital image by FINN's. By 
Theorem 8.2, the generalized FINN's can be universal approximators, so with 
the given accuracy we can code a 2-D image as the connection weights of a 
FINN. Moreover we can establish some optimal filters by designing learning 
algorithms based on minimizing the absolute error. 

8.2.1 Local F N N representation of image 

The gray level of a digital image at a given point can be expressed as the I/O 
relationship of a FINN determined by a local neighborhood of the point. To 
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this end we introduce a small operating windows which may slide on the whole 
image window, and then use the gray levels in the small window to develop 
some suitable fuzzy inference rules. Thus, a FINN can be defined and a local 
representation of the 2-D digital image is established. If the image is noise-free 
the representation is accurate, and if the image is noise, the representation can 
also serve as a filter. 

— 
(tl,*2) 

! ! ! ! ! ! 

(ti,t2) 

] | 

M2) 

1 1 1 1 1 1 1 1 1 1 1 1 

Figure 8.11 Sample window for local image representation 

Let X = (s(t\, t2))N1xN2
 De a 2-D digital image with N\ x JV2 pixels and 

L gray levels 0, 1,...,L - 1, that is, s(h, t2) E {0,1,...,L - 1} (0 < tx < 
Ni — 1, 0 < £2 < _/V2 — 1). For preserving the edges and locally fine structures 
of the image, we adopt a small window with m x 712 samples to determine 
the representation of the gray level value, where n\ -C N\, ri2 -C N2, Tii, n2 

are usually odd numbers. Let X_{t\, t2) = (s(ti + k, t2 + I)) , where k = 
- ( n i - l ) / 2 , . . . , ( m - l ) / 2 , I = - ( n 2 - l ) / 2 , . . . , ( n 2 - l ) / 2 , and {h, t2) is located 
on the central cell of the sample window as Figure 8.11. Considering nnixn2 is 
the collection of all matrices with n\ rows and n2 columns, we denote Xjt\, t2) 
by{s{t1+k,t2+l): - ( n i - l ) / 2 , . . . , ( n i - l ) / 2 ; - ( n 2 - l ) / 2 , . . . , ( n 2 - l ) / 2 } . To 
guarantee the small operating window to slide well on the large image window 
X — (s(ii, £2))^ xN > w e must extend X along the edge, as Figure 8.11. For 
t2 = 0,1, . . . , N2 - 1, h = - 1 , 0,1, . . . , iVi - 1, s ( - l , t2) = s(0, i2), s(JVi, t2) = 
s(JVi - 1, t2); s(tu - 1 ) = s(h, 0), s(h, N2) = a(h, N2 - 1). 

Define rank operator R : /J,nixn2 —* ^ 2 a s follows: for any XJt\, t2) = 
(s(ti +k,t2 + l) : -(m - l ) /2, . . . , (ni - l ) /2; -(n2 - l ) /2, . . . , (n2 - 1V2^ «= 
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Mmxn2, we have 

R(K(ti, h)) = {s0(ti, t2), si(ti, t2),.-,sniXri2-i(ti, t2) : 

«o(ti) t2) <••• < s„ lX„2_i(ii, t2)} 

= (R{K{ti, t2))0, R(2L(ti, t2))i,...,R(2(_(ti, t2),)niXn2-i), 

where R{X_{t\, h)) .= Si(ti, t2) (i = 0,1, . . . , ni x n2 — 1), and R2 means the 
collection of all subsets of M. 

In order to build the fuzzy inference rules for retrieving the noise image, 
we at first fuzzify the gray level s(ti, t2) of the pixel (ii, t2) as the trapezoidal 
fuzzy number s(t\, t2) (t\, t2 = 0,1,...,L — 1), as shown Figure 8.12. They 
may represent the linguistic concepts for the gray levels of the image, such 
as 'dark', 'very dark', 'darker', 'poorly dark', 'medium', 'very bright', 'bright', 
'brighter' and 'poorly bright', and so on. 

V 
s(ti,t2) 

' L i —•- x 

0 1 2 3 255 

Figure 8.12 Fuzzy numbers portraying gray level 

If X is uncorrupted, all pixels inside the sliding small window X_{t\, t2) 
may be assumed to have approximately equal gray levels [3]. So for each 
(ti, t2), let As(£i, t2) denote the difference between the gray levels of cen­
tral pixel (ti, t2) and the median value pixel in X_(ti, t2), that is, we have 
As(*i, t2) = \s(t\, t2) - S(nixn2+i)/2(*i, *2)|- Let 5s(ti, t2) mean the neigh­
boring difference of s(ti, t2) that is, if let s(ti, t2) = Sk(h, t2), the k + 1-th 
element of R{X_{t\, t2)), then 

5s(h, t2) = ^ ( N * ! ' t2)-skf(h, t2)\ + \s(ti, t2)-skb(t1, t 2 ) | ) , 

where kf = (k — l)V0, h = (k + l)A(n1xn2-l). In impulse noise environment, 
both As(ti, t2) and 5s{t\, t2) can be assumed to be 'small' if the pixel (t±, t2) 
is noise-free [3], otherwise it is reasonable to believe [t\, t2) is corrupted. The 

fuzzy set 'small' and 'large' are denoted as S, L, respectively, as shown Figure 
8.13. 

When (£1, t2) is uncorrupted, the filter should preserve the corresponding 
gray level, otherwise we have to choose the gray level as the median one of 
X.(t\, t2). This is because, although the median filter may vary the original 
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structure of the image, the probability of the median gray level of XJti, h) to 
be corrupted is minimum [10, 16]. According to such a principle, we can build 
the following inference rules: 

Roo • IF As(h, t2) is S and 5s(ti, t2) is S THEN y(tu t2) is s (h, t2); 

R0i : IF As(ii , t2) is S and 6s(h, t2) is L THEN y(tu t2) is m (t±, t2); 

Rio : IF As(ii , t2) is 2 and fo(*i, t2) is 5 THEN j/(<i, t2) is m (ii, £2); 

Ru : IF As(ti , i2) is L and &s(ti, i2) is L THEN y(ti, *2) is rh (ti, t2), 

where m(ti, t2) = S(nixn2+i)/2(£i> *2)- From now on let m(ti, t2) be a mediate 
gray level in X_(ti, h), that is, m(ti, t2) = S(„lXn2+i)/2(*i, *2)- By (8.6), the 
local FINN representation of the image X on the window X_{ti, t2) is defined 
as follows: 

y(h, h) 

E whh{Aih{xi)T A2i2{x2))
c 

jl,J2=0 

jl,J2=0 

J1,J2=0 
, (A y i (A*( i i , t2))TA2J2{Ss{ti, t2)))

C 

£ p L i ^ A a f a , i2))TA2 J 2(5s(i1 , i2))Y 

j l j 2 = 0 V y 

where £1 = As(<i, i2), a;2 = 5s(ti, t2), moreover 

s(ti,t2), J!=j2 = Aio=A2o=S, Aii—A2i=L, WJ1J2 — m(ii> *2), otherwise, 

and a : 0 < a < +oo is an adjustable parameter [17]. 

y 
1. 

0 
M 

s 

-s—• *—A — 

L 

- K- K 

(8.21) 

(8.22) 

Figure 5.13 Deviation fuzzy numbers 

Also we can adjust the output of (8.21) by changing the values of S, A and 
K in Figure 8.13. If the image is uncorrupted, we let S > 80 and A < 1, or a be 
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sufficiently large for the image with 256 gray levels. In the noise environment, 
(8.21) may be utilized as a filter, which is called FNN filter. And 5, A and K 
may be determined by some adaptive learning algorithms. 

Next, we employ the noise-free image 'Lenna' to show the effectiveness of 
the local representation (8.21) to reconstruct the original image. 

Example 8.4 Let X = {s{t\, ^2))512x512 be Lenna's image, a 2-D digital 
image sized 512 x 512 pixels with L = 256 gray levels. So 

V(*i, t2) : 0 < h < 511, 0 < t 2 < 511, s(ti, t2) G {0,1,...,255}. 

We may employ the FINN's determined by (8.21) to express accurately the 
image X if X is noise-free. To execute the I/O relationship defined as (8.21), a 
sliding 3 x 3 sample window is employed to determine the local area, on which 
the local representation as (8.21) of the image is defined. That is, n\ = n2 = 3. 
So n\ x n2 - 1 = 8. We choose S = 100, A < 1, and the t-norm T = x, a = 1. 
By (8.21) (8.22) and considering the fact: 

Aio(As(ti, t2)) + Au{As{tu t2)) 

= A2o(Ss{h, t2))+ A2i{Ss(tu t2)) = 1, 

we can obtain the local representation of the Lenna's image as follows: 

Y^ whh • (Ay1(As(ii , t2)x A2j2(5s(t1, t2)))
a 

y{h, t2) = 1 
£ (Aij^Asih, t2))x A2j2(6s(h, t2)))

a 

jl,32=0 

= m(ti, t2){Aio{Aa(t1, t2))- A2i{Ss(tu t2)) 

+ AniAsih, t2))- A20{Ss(tu t2)) 

+ An(As( t i , t2))- A2i(Ss(tu t2))} 

+s(h, t2)- Aio(A*(«i, t2))-
 rAm(&a(t1, t2)). 

Lenna's original image is shown in Figure 8.14. And Figure 8.15 gives the 
reconstruction image determined by Y = [y(ti, i2))5 1 2 x 5 1 2- By the comparison 
between Figure 8.14 and Figure 8.15 we may find that the representation is 
accurate. In fact, we can prove the following fact: 

V*!, t2 e {0,1,...,511}, \y(tu t2) - s(tu t2)\= 0, 

that is, the error related may vanishes. Thus the image is completely recon­
structed. 
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FUMHO 8. i i L ima ' s origin,)! ima&o Figure H. 15 Leunn's iccoiisiruHiou ;uiii}'.i 

8.2.2 Opt imal F N N filter 

In the impulse noise environment, if let in (8.21) (8.22) S = A = G, the 
FNN filter becomes the median filter; if let A = K = 0, the filter will leave the 
noise image unremoved. So it is important to adjust the values of S, A and K^ 
so that the corresponding FNN filter possesses the strong filtering capability. 

For simplicity we from now on assume that A is a positively small constant, 
such as A = 0.9. Thus, it suffices to design the learning algorithm for S since 
K = 255 - S — A for the image with 256 gray levels. To this end, the mean 
absolute error (MAE) criterion is employed to determine S to minimize the 
filtering error, consequently the optimal FNN filter may be constructed. 

Assume that X = (s{tu t2))N N is a 2-D image corrupted by impulse 
noise with the probability p, that is, if we denote the (ti, t2)-th. pixel in the 
uncorrupted image as s°(£i, fe), and let X° = (s°(ii, t2))N N , then s(ti, t2) 
can take three possible values: 

s(ti, t2) = { 

i 
^raax 

*°(*1. 
1 ^min 

h) 

with 

with 

with 

probability p/2, 

probability 1 — p. 

probability p/2, 

(8.23) 

where sm a x is maximum value in X° and appears as white dot; smin is minimum 
value in X° and appears as black dot. 

Suppose that Y = (t/(ii, t2))N N is the filtering image of X determined 
by (8.21) (8.22), then Y either is identical to the image X or generates a 
difference vector {s(i1} t2) - y(ti, h)\h = 0,1, ...,iVi - 1, t2 = 0,..., JV2 - l } . 
Thus, the MAE generated by using Y to estimate X is as follows: 

E(S) = \\X°{;-)-Y{-
A 

*1,*2 

8 ° ( * i . * 2 ) - y ( * i , t 2 ) | ) , (8-24) 
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where X° = (s°(*i, t2))N x J V is the desired image. As the value of S in Figure 
8.13 is suitably adjusted, the output of (8.21) is also controlled rationally. And 
the corresponding MAE is minimized. If there is SQ G R + , SO tha t E(SQ) = 
min{.E(S')}, then representation as (8.21) with the trapezoidal fuzzy numbers 

S, L derived by So is called the optimal FNN, which is also called the optimal 
FNN filter. 

7r 

6 

5 

: 3 

2 

1 

0 -

p=0.15 
p=0.35 

Minimum value(SQ=60) .. / 

^^^ Minimum va iue (S 0 =7m^ / 

— - FNN filter 
Median filter 

40 60 
S value 

Figure 8.16 

0.1 0.2 0.3 
Noise Drobabilitv o 

Figure 8.17 

Figure 8.16: Iteration of S for 'cameraman'; Figure 8.17: MAE of median and FNN 
filters for 'cameraman' 

When 5 = 0, the filter (8.21) becomes a median filter, by which most spike 
noises are filtered. However, the fine structure of the image is also removed. 
As the value of S increases, the filter leaves more and more gray levels tha t 
are uncorrupted unchanged, consequently the MAE E decreases. But when the 
value of 5 is larger than a certain threshold, the filter will leave some corrupted 
gray levels unremoved, further more and more such noise-corrupted ones in the 
filtering image arise as S becomes larger. Thus, there must be a So to minimize 
the MAE E(S). By the following learning, we may find such a So. 

A l g o r i t h m 8.2 Optimal FNN filter: 
Step 1. Est imate the amplitude H of the noise image, i.e. H = dma 

where d^ is approximately minimum gray level of the image. 
Step 2. Pu t t = 0 , and let S(t) = 0, E(S{-1)) = H/2; 
Step 3. By (8.21) calculate y(h, t2), and then obtain E(S[i\) by (8.24); 
Step 4- Construct the following iteration scheme and calculate E(S[t + 1]) 

by (8.21) (8.24): 

< 

S[t+i\ = S[t]-/3-(E(S[t]) 

Step 5. Discriminate whether E(S[t + 1 ] ) 

E(S[t-l])); 

< E{S[t\) or not? If yes, let 
t = t + 1, and go to Step 3; otherwise output S[t] as the optimal So and stop. 

In step 4, (3 > 0 is a given constant. To avoid tha t the algorithm fall into 
the locally minimum points, we may choose two or three different j3 values 
to operate the algorithm. Further we continue a few of iterations when the 
condition in step 5 holds. 
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W (<•) (0 
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Figure 8.18 (a) Original image; (b) Noise image with p = 0.15; (c) Noise image 
with p = 0.35; (d) (e) (f) Filtering images of (a) (b) (c) by median filter; (g) (h) (i) 
Filtering images of (a) (b) (e) by FNN filter. 

8.2»3 Expe r imen ta l resul t s 

In order to evaluate the filtering capability of the FNN filter, we utilize 
respectively cameraman's and Lenna's images degraded by the impulse noise 
to show that the FNN filter is superior to the median or the first order ROUS 
filters in removing impulse noise. The sliding window in the simulations is 
assumed to be 3 x 3. Let X = (s(£i, *2))256 256 ^ e *^e i m a S e 'cameraman5 

with 256 gray levels, which is corrupted by two kinds of impulse noises with 
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p = 0.15 and p = 0.35, respectively. The corresponding noise images are 
respectively shown in (b) (c) of Figure 8.18. Using Algorithm 8.2 we can get 
the iteration curve for finding the optimal So, which is shown Figure 8.16, from 
which we may choose S0 = 60 for p = 0.35, and So = 70 for p = 0.15. In Figure 
8.16 we add some iterative steps by the following scheme after the threshold 
is determined as doing in Step 5 of Algorithm 8.2 for avoiding to fall into the 
local minimum point: 

S[t + 1] = S[t] - (3 • \E(S[t]) - E(S[t - 1])|. 

Algorithm 8.2 is applied to the left upper part of the image 'cameraman' sized 
64 x 64 for p = 0.15 and p = 0.35, respectively. Also Figure 8.16 demonstrates 
the convergence of the algorithm. 

4 
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Figure 8.19 Figure 8.20 
Figure 8.19: Iteration of S with image 'Lenna'; Figure 8.20: MAE of median and 
FNN filters for 'Lenna' with p 

Figure 8.17 shows the MAE for median and FNN filters operating respec­
tively on the image 'cameraman' corrupted by impulse noise with different 
probability p. Each error curve corresponds to the median and FNN filters 
trained by the sub-image 'cameraman' of size 64 x 64 locating at the left upper 
of whole 'cameraman' sized 256 x 256. Easily we can find that the FNN filter 
gives the better results. From this plot, the filtering effect of the FNN filter is 
obviously advantageous over that of median filter. 

In Figure 8.18 we present several filtered images for subjective evaluation. 
The original image 'cameraman' is shown in Figure 8.18 (a), and the noise 
images with the probabilities p = 0.15 and p = 0.35 are shown in Figure 
8.18 (b) (c), respectively. Figure 8.18 (d) (e) (f) show the restored images 
by median filter corresponding to Figure 8.18 (a) (b) (c), respectively. And 
correspondingly Figure 8.18 (g) (h) (i) are the images restored by the FNN 
filter. From Figure 8.18 the FNN filter appears to have removed impulses as 
median filter does, also it preserves more of the fine structures of the image 
than median filter. So the FNN filter has a better performance. 

Next, the further comparison of the filtering capability is finished among 
the FNN filter, median and RCRS filters [19] for 256 x 256 image 'Lenna'. 
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Figure 8.21 (a) Original image; (b) Noise image with' p = 0.05; (c) Noise image 
with p = 0.15; (d) (e) (f) by median filter; (g) (h) (i) by RCRS filter; (j) (k) (1) by 
FNN filter, corresponding to (a) (b) (c) respectively. 
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At first, Figure 8.19 shows the iteration processes of Algorithm 8.2 for 
finding the optimal So, respectively for p = 0.05 and p — 0.15. By Figure 8.19, 
when p = 0.05, choose So = 70; when p = 0.15, also we may choose So = 70. 

Figure 8.20 shows the MAE curves with different probabilities for median, 
RCRS and FR filters, respectively. Each error curve corresponds to the speci­
fied filter trained on the left upper of size 64 x 64 of 'Lenna' operating on whole 
'Lenna' of size 256 x 256. Easily we can find that the FNN filter gives the best 
results. 

In order to see the subjective evaluation for the performance of the FNN 
filter, we give noise-free 'Lenna' image as Figure 8.21 (a), and (b) (c) show 
the noise images with the noise probabilities p = 0.05, p = 0.15, respectively. 
Figure 8.21 (d) (e) (f), Figure 8.21 (g) (h) (i) and Figure 8.21 (j) (k) (1) show 
the images restored using median, RCRS and FNN filters corresponding to (a) 
(b) (c), respectively. Also we can see the filtering performance of the FNN 
filter is best. 

Pixels and gray levels are two important factors of digital images. In this 
section we express an image as the I/O relationship of a FINN through this two 
factors. Thus, FINN'S may provide us with a useful framework for image pro­
cessing, especially for the restoration of noise images. From above discussions 
we also can see that the filtering performance of the filters based on FINN's 
is advantageous over that of many crisp nonlinear filters including median and 
RCRS filters and so on. However, the filters defined by FINN's can not solve 
all problems related. Many important and meaningful problems in the field 
are not treated by such filters. For instance, how can an image restoration 
model within general sense be constructed? When the image related is cor­
rupted by the high probability (p > 50%) impulse noise how is the filtering 
performance improved further? If the image is degraded by hybrid noise, i.e. 
several noises together corrupt the digital image, how can the corresponding 
restoration model be developed? and so on. We shall in the following give 
some further research to above problems. 

§8.3 Image restoration based on FINN 

By partitioning reasonably input space and gray level set of a digital image, 
respectively, a novel FNN that is called selection type FNN is developed. Such 
a system can represent continuous spatial images with arbitrary degree of ac­
curacy. Also a novel inference type FNN is built based on a family of inference 
rules with real senses. Thus, a novel FNN filter can be derived by the fusion of 
the selection type FNN and the inference type FNN. Applying FNN filter, we 
can find a good compromise between removing impulse noise and preserving 
fine image structure. When noise probability is zero, the image may completely 
be reconstructed by the novel FNN filter. To the degraded images corrupted 
by impulse noise and additive Gaussian noise, simultaneously, we can also get 
good filtering performance by using the novel FNN filter. 
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8.3.1 Fuzzy par t i t ion 

In order to use natural language to describe digital images and their gray 

levels, the interval [a, b] is parti t ioned by a fuzzy parti t ion. Let B\, ••• ,BP be 

fuzzy numbers. If there is c G R+, so tha t 

Vte[a,b], ^2Bj(t)<c, 

then {Bi,---,BP} is called a quasi-fuzzy part i t ion of [a, b]\ If Vi G [a, b], it 

follows tha t J2 Bj(t) = 1, then {Bi, •••, Bp} is called a fuzzy part i t ion of [a, b]. 
3 = 1 

In application, a digital image is a set scaled within a finite area. So let 
a > 0, so tha t the digital images related are restricted in the spatial area 
[—a, a]d, where d G N. Choose m G N, and part i t ion interval [—a, a] into 2m 
sub-intervals with identical length. Thus, we can define the fuzzy set family 

{Aij \i — 1,..., d\ j = 0, ± 1 , ±2 , . . . , ± m } c Oo{a, m), so tha t each Aij is a fuzzy 

number, and Vi 0 [—a, a], Aij (£) = 0. Obviously Vi = l , . . . ,d , the fuzzy set 

family {Aij, j = 0, ± 1 , . . . , ± m } constitutes a quasi-fuzzy part i t ion of [—a, a]. 

Membership degree 
DR Dr MD Br BR 

Gray level 
— — • -

L 
Figure 8.22 Gray level fuzzy sets 

Suppose the gray levels of the 2-D image F = {F(ti, t2), —a<ti,t2< a } 
belong to [0, L], tha t is, V(ii, t2) G [-a, a ] 2 , F(ti, t2) G [0, L]. We introduce 
a fuzzy parti t ion of [0, L], and use fuzzy sets to describe the image F. Thus, 
natural language such as 'dark (DK) ' 'darker (Dr) ' 'medium (MD)' 'brighter 
(Br) ' 'bright (BR) ' and so on may be employed to describe gray levels of the 
image. Their membership functions are shown in Figure 8.22. Let K be an 
adjustable natural number, K < L. Part i t ion [0, L] identically into K par ts . 
Write h = L/K. Choosing &o G N : fco < K, we employ natural language 
determined by ko fuzzy sets to describe the digital image F.\/k = l,...,K, write 
Ik = [{k — 1)1/K, kL/K\= [(k — l) / i , kh]. Define the fuzzy sets describing 
gray levels as follows: \/y G [0, L], let 

1, 0<y<h-l, 

Gi(y)={ h + l ~ \ h-l<y<h + l; (8.25) 

0, otherwise. 
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Gk0(y) 

y-L+h+1 
2 ' 

1, 

0, 

L-h-l<y<L-h + l, 

L-h+Ky<L, 

otherwise. 

3.26) 

And when k = 2, . . . , fc0 - 1, we suppose Ker(Gfc-i) C Ikr, Ker(Gfc) C Ik2, and 

Ker(Gfe+i) C h3- Choose 

y — k\h + 1 

Gk(y) = < 

(fc2 - fci - l ) / i + 2 

1, ( f c 2 - l ) / i + l < t < f c 2 / i - l , 

(fc3 - fc2 - l) / i + 2 

, 0, otherwise. 

.27) 

Figure 8.22 is the case of K = k0 = 5. 
For given t\, i 2 6 [—a, a], and fc € { 1 , . . . , fco}, we define the fuzzy mean of 

the image F at {t\, t2) as follows: 

<t2(
F) 

3i,32 =—m 

£ % i a ( * l , * 2 ) - G f c ( i ; ' ( ^ ) 
J i , j2 = - m 

3.28) 

m t i t (-^) i s called the fc-th local fuzzy mean of image F at ( t i , t 2 ) . If F = 
{-F(£i,£2), t i , i 2 € [—a, a]} is corrupted by impulse noise, for simplicity, we 
also denote the degraded image by F. Then by (8.23) with probability p the 
gray level of image F at (£i, i2) is changed into L or 0, t ha t is 

L, with probability p / 2 , 

F(h, t 2 ) = s ^ ( t i , £2)) with probability 1 — p, 

0, with probability p/2. 

Membership degree 

L Gray level 

Figure 8.23 Mean fuzzy set 
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In order to suppress impulse noise, choose adjustable I e R+ : I < L/2 to 
define fuzzy set "Trap' as shown in Figure 8.23. 

Vy e [0, L], Trap(</) - { 

y 
V 
l, 
L 

0, 

0<y<l, 

I <y < L-l, 

L-l <y < L, 

otherwise. 

Trap(-) is called the mean fuzzy set. For (t1; t2) G [—a, a]2, we call mtlt2(F) 
defined by following (8.29) the fuzzy mean of image F at (ti, t2): 

mtlt2{F) = 31,32 = 

lib 

E ?(*£> # ) • # * * ( * ! . h) • T r a p ^ , %)) 

E THnj2(tl,t2)-Tl&P(F(^, £ ) ) 
(8.29) 

Define the closed interval Aj = [(—a) V (a{j — 1)/TO), a A (a{j + l ) /m)] for 
j = —m, —m + 1, ...,m — 1, m, and let xA, be the characteristic function of Aj . 

Let Aij=./42j= XA-> then Co = 3. Discretize image F as the following digital 

image: S = {shJ2, j l t j 2 = 0, ± 1 , . . . ,±m}, where s^v, = F(aj1/m, aj2/m). 
A A L e t "^t1t2(-F) = a Q0> mtit2{F) = ro(X), Rewriting (8.28) (8.29) we obtain 

(j? + l)Am 

E 
(j° + l)Am 

E S j lJ2 trfc(.Silj2J 

mfc(X) 

TO(X) 

_ ji = (j?-l)V(-m)J2 = (jg-l)V(-m) 
(j? + l)Am 01 + l)Am 

E E Gk(SjlJ2) 
i1=(j°-l)V(-m) j 2 = (i°-l)V(-m) 

(i?+l)Am (j° + l)Am 
E E ^ i J2 T r ap( s j l j J 

Jl=(jg-l)V(-m)J2 = (jg-l)V(-m) 
(j° + l)Am (j° + l)Am 

E E Trap(sjli2) 
il = 0?- l )V( -m) j 2 = 0°- l)V(-m) 

A 
where X = {sjlh, ji = l?i ~ 1) V ( -m) , j?, (j? + 1) A m; j 2 = {f2 - 1) V 
(—TO), j'2, (j2 + 1) A TO} is the operating window corresponding to (t±, t2) = 
(mji/m, aj2/m). When ji, j 2 change from —TO, —m + 1,..., to TO, window X. 
slides on the whole image S. The number of the elements in X_ is called the 
width of operating window. And mk (X) is called the k-th local fuzzy mean of 
window X; and m(X_) is called the fuzzy mean of X-
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8.3.2 Selection type F N N and its universal approximation 

If the function of each output neuron of feedforward networks is with some 
criterions to choose one from its inputs as the output, such networks are called 
selection type neural networks. In this subsection, we develop a selection type 
FNN, which is a five layer feedforward network, as shown Figure 8.24. The 
neurons in the first hidden layer have transfer function Aij(-) (i = 1,2; j = 
—m, — m + 1, ...,m — 1, m), the membership function of gray level fuzzy set. 
The connection weights of neurons between two hidden layers are chosen as 

Gi(-)i •••! Gfc0(-)i the fuzzy set membership functions of fuzzy partition of the 
gray level set. By the fuzzy mean mtlt2(F) we can build a criterion for output 
neuron to choose output. Such a system can be universal approximator, that 
is, it can with arbitrary accuracy represent each continuous function on any 
compact set of Euclidean space. Also it can deal with impulse noise, efficiently. 
The learning algorithm of the network aims at seeking suitable partition of the 
gray level set. 

"JU2 "W2 

Figure 8.24 Selection type FNN 

The FNN that can realize fuzzy inference rules is called inference type FNN. 
We shall employ inference type FNN as shown Figure 8.25, and selection type 
FNN to construct another FNN filter —a novel FNN filter. 

Since the images related are two dimensional, in the following we aim mainly 
at the selection type FNN with two input neurons. As for one-input or rf-input 
(d > 3) selection type FNN, we may give similar discussions. In Figure 8.24, 
J = (2m + l ) 2 . And in the first hidden layer, there are two types of neurons. 
The transfer functions of the first type neurons are Ai(—m) {•),—, Aim{•), re­
spectively; And ones of the second type are A2(-m){-), —,A2m(-), respectively. 
In the second hidden layer, the neuron j ' = J1J2 is connected with the j i - th 
that is a first type neuron, and the jVth that is a second type neuron in the 

first hidden layer. Its two inputs are Aij1 (*i), A2j2{h)- The corresponding 

output is Wj1j2 • (Aij1{h)T A2j2(t2)) = wjth ' Hjijziti, t2), where Wj1J2 is an 
adjustable parameter. In the third hidden layer, the neuron k is connected 
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with the neuron f = jij2 in the second hidden layer. Their connection weights 

is Gk(sj1j2), where Sj1j2 is adjustable. The output of the neuron k is 

E Sj1J2,Gk{Sj1j2) • Hj1j2(ti, t2) 

Yk(h, *2) = J l ' J 2 = r „ • (8.30) 
E Gk(sjlh) • Hjlj2 (t\, t2) 

ji,32 = — m 

Also Yk(ti, t2) is the A:-th input of the output neuron, by which a selective 
output is obtained. The selection criterion of the output neuron is determined 
by rnt1t2- And the selection standard is the nearest distance, that is, choosing 
one from input patterns Yi (t\, £2), • • •, Yko (t\, t2), so that the chosen input being 
nearest to mtlt2 is taken as the output of the FNN: 

Af = Yk,(t1,t2): 

k! = maxfel {kx : \mtlt2 -Ykl(ti, t2)\ =min f c { |m M 2 -Yk{h, t2)\}}. 
(8.31) 

(8.30) (8.31) constitute the I/O relationship of the selection type FNN. Simi­
larly, we can derive the I/O relationship of one-dimensional and d— dimensional 
I/O relationships respectively as follows: 

E Sj Gkisj)- Aij(t) 

Y*® = JJ^^Z " . 
E Gk&y Axjit) 

j=—m 

Af = Yk,(t) : k' = maxjfci : \mt - Ykl(t)\ = min{|mt -Yk{t)\}}. 

Yk(h,...,td) 
E sji--jd Gk\sji...jd) ' Hj1...jd(ti, •••,td) 

m r^ 

E Gk{sj1...jd) • Hjl...jd(t1,...,td) 
jl,---,jd = -rn 

Af = Yk,(t1,...,td): 

k! = max{fci : \mtl...td -Ykl{h,...,td)\ = mm{\mtl...td-Yk(t1, ...,td)\}}. 
fci k 

(8.32) 
In the following, we show that the selection type FNN defined by (8.32) is a 
universal approximator. That is, if F : M.d —> R is a continuous function, and 
U C Kd is an arbitrary compact set, then Ve > 0, there exist m € N, Wj1,,.jd G 
^> Sji--Jd S M, and a mapping that (£1,...,id) —• m t l... td, so that V(£i, ...,£d) G 
U, \Af -F(t1,...,td)\ = \Yk,(t1,...,td)-F(t1,...,td)\<e, where 

k' = max{A;i : \mtl...td -Ykl(ti,...,td)\ = min{\mtl...td -Yk(ti,...,td)\}}. 
k\ k 
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T h e o r e m 8.3 The selection type FNN is a universal approximator, i.e. it 
can approximate each continuous function defined on arbitrary compact set of 
Kd with arbitrary degree of accuracy. 

Proof. Let F : M.d —> R b e a continuous function. It is no harm to assume 
tha t compact set U = [—a, a]d (a > 0). Arbitrarily given e > 0, part i t ion 
[—a, a] identically into 2m par ts . Since F is uniformly continuous on U, there 
is S > 0, so tha t 

V X l , x 2 € C / , | | x i - x 2 | | < 5 , = » | F ( x i ) - J F ( x 2 ) | < e . (8.33) 

where || • || is Euclidean norm. Let m G N, satisfying aco/m < 5. For j \ , ...,jd G 
{0, ± 1 , . . . , ± m } , choose Wj1...jd — Sj1...jd — F(aji/m,...,ajd/rri). Similarly 
with (8.29) we define mtl...td as follows: 

m 
E F(%,.... a-t\Hn..,2{tu ..,U) • T r a p ( F ( ^ , . . . , ^ ) ) 

_ jl,--.,jd =—m 
mt1...td — m • 

£ Hn...jd(tl,...,td)-Trw(F(^,...,^)) 

Let the natura l number K related to (8.25) (8.26) be adjusted so tha t for any 

(ti,...,td) G [—a, a\d, there is k G {l, . . . ,fco}, satisfying 

V(ji>-Jd)£N(h,...,td), Gk(sh...jd)^0, Af=Yk(t1,...,td). 

By (8.33) and Lemma 6.2, it follows tha t 

\F{t1,...,td)-Af\ = \F(tu...,td)-Yk(t1,...,td)\ 

m r^ 

Z^i Sji---3d Gk{Sj1...jd)Hj1...jd(tlT.-,td) 
h>~'j*=-m -F(tlt...,td) 

< 

< 

E Gk(sj1...jd)Hh...jd(t1, ...,td) 
ji,...,jd — -m 

E Gk(sjl...jd)Hjl...jd(t1,...,td) F ( t i , . . . , t d ) - F ( ^ ) . . . ) ^ ) 
Ui,--,jd)eN(t1,...,td) 

E Gk(sj1...jd)Hjl...jd(t1, ...,td) 
0'i,-j'd)eJV(ti,..,,td) 

E Gk{sj1...jd)Hjl_jd(ti, ...,td) • e 
( j i , - , 3 d ) e J V ( t i , . . . , t d ) 

E Gk(sj1...jd)Hjl...jd(ti, ...,td) 
(h,---,jd)£N{t1,...,td) 

= e. 

The theorem is therefore proved. • 
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Figure 8.25 Original surface Figure 8.26 Approximate surface 

Give a two-variate function as F(ti, t2) = exP{—|*i — *2|} -sin(8ti) -sin(8t2) 
for t i , t2 £ [—1, !]• With the error bound e = 0.1, we shall give the approximate 
representation of F by the selection type FNN. To this end, assume that c0 = 
2, m = 1, and t—norm T = ' x ' . Easily we have 

Vxi, x2 G [-1, l ] 2 , | | x i - x 2 | | < 0 . 0 1 , = > | F ( x i ) - F ( x 2 ) | < e . 

Let co/rn < 0.01. We can choose m = 200. And assume that A\j=A2j (j = 
-200, ...,200), and 

Vie [-1,1], A(t) = < 

Then we can conclude 

2 0 0 i + l , 

1 - 200i, 

{ 0, 

that 

- T ^ X < i < 0 
200 ~ ~ 

0 < t < , 
" 200' 

otherwise; 

iu(t) =A(-* - — y 
200/ 

Af = Yk,(tut2) = 

200 ^ ^ ^ 

E snh Gk'{shhy Aij^h) • Aij2(t2) 
j i , J2 = - 2 0 0 

200 ^ ^ „ 

E Gk'(sjlja)- Aij.ih) • Aih(t2) 
ji,h = -200 

k' = max{fci : \mtlt2 - Ykl(t1,t2)\= min{|m t l t 2 -Yk{U, *2)|}}-

200 

mtlt2 

E Sj i J2 T r ap(s j l J 2 ) - A y ^ t i ) • Aih{t2) 
ji,h = -200 

200 

E Trap(s,- l A)- A i j ^ t i ) • i4y2(*2) 
J l J 2 = -200 

S i l i a ~ F ( m ' m) 
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As shown in Figure 8.25 is the surface of function z = F{t\, t2). And we 
obtain the approximate surface z = Af by the selection type FNN, as shown in 
Figure 8.26. By the comparison between Figure 8.25 and Figure 8.26, it shows 
the high approximating accuracy of the selection type FNN. 

8.3.3 A novel F N N filter 

Suppose X = (sjj)jVixw2
 1S a g i v e n digital image. Also X denotes its 

noise version. For given p £ N, let the operating window be writ ten as X_ = 
(x-p, . . . ,xo, ...,xp). In this subsection we employ the operating window X_ to 
design another noise filter—a novel FNN filter. By Theorem 8.3 it can simulate 
some digital signals with arbitrary degree of accuracy. However, the niters 
remove fine image structure also. It is necessary to introduce the inference 
type FNN, as shown in Figure 8.27. 

m(X) t A±> 
I X 

-SuOv—<D 

Figure 8.27 Inference type FNN 

If X is a noise-free image, the gray degree levels x_ p , ...,XQ, ...,XP in the 
window X_ are approximately equal [3], t ha t is, x _ p « • • • K. X 0 « • • • ss xp « 
m(X_). So if u is an output variable, and v = |xo — rn(X_)\ is an input variable, 
then we can obtain the following Mamdani inference rules: 

IF v is 'small' THEN u is x0; 

IF v is ' large' THEN u is Af, 

where x0, Af mean the fuzzifications of xo, Af, respectively, satisfying x 0 € 

Ker (x 0 ) , Af G Kev(Af). On the gray level set [0,L], we define S= 'small' , 

L= ' la rge ' , S and L are called selection type fuzzy sets, as shown Figure 8.28, 
which is similar with ones of deviation fuzzy sets in Figure 8.13. 

Figure 8.28 Selection type fuzzy sets 
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Above inference relation may be realized by a three-layer inference type 
FNN, as shown Figure 8.27, where mo = 2, tp means the absolute value func­
tion. Thus the input of the neurons in hidden layer is |xo — m(X)\, and the 

transfer functions are determined by S(-) and £(•), respectively. By [13], The 
I/O relationship of the inference type FNN is as follows: 

Bt = 
x0- S(v) + Ar L(v) 

S(v)+ L{v) 

XQ- gfljQ - m(X)|) + Ar L(\x0 - m{X)\) 

S(\x0-m(X)\)+L(\xo-m(X)\) 

And using (8.30) we can conclude that 

(8.34) 

mk{X) = 
2_^i xj- Gk\Xj) 

i=-p 
p ~ ' 

E Gk(xj) 
m(X) 

J2 Xj • Trap(a;j) 
j=-p . 

p ' 

J2 Trap(xi) .35) 

Af = mr (X), where 

k' = maxjA)! : \m(X) - mkl(X)\= min{|m(X) - mk(X)\}}. 

(8.34) (8.35) constitute the I/O relationship of the novel FNN filter, whose 
architecture is shown in Figure 8.29. 

window X 

Xo 

Selection type FNN 

l_i 
Inference type FNN 

\m(X) 

Figure 8.29 A novel FNN filter 

Bf 

8.3.4 Learning algorithm 

This subsection aims at seeking an optimal FNN filter, which is constructed 
by designing learning algorithms for the parameters of the selection type FNN 
and the inference type FNN, respectively. The target function is MAE of the 
output of the filter, i.e. we obtain the optimal FNN filter by minimizing MAE. 

The learning algorithm for the selection type FNN aims at determining the 
partition of the gray level set [0, L], that is, establishing the value of ho, and the 
trapezoidal fuzzy numbers in fuzzy partition. The algorithm can be described 
as follows: 
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(i) To a m—bit digital image, the variety not exceeding 2 m ~ 4 in gray level 
of image will not lead to obvious visual changes [25]. So we may partition [0, L] 
identically into 2m~ 4 parts. 

(ii) Seek the concentration area of gray levels of the image X : Calculate 
the number Tk of {sij, i = l,...,Ni, j = 1,...,N2} belonging to the interval 

Ik = [(k - l )L/(2m~ 4) , kL/(2m-4)) (k = l , . . . ,2 m - 4 ) . And discriminate Tk > 
rf! If yes, I^ is called concentration area of gray levels of S, where r\ is a given 
constant corresponding to the image X. 

(iii) Determine the fuzzy partition of [0, L]: Let fco be the number of con­
centration areas of gray levels. These concentration areas of gray levels are 
Ii17 ...,Itk • By (8.25)-(8.27) we define the trapezoidal fuzzy numbers. 

In the definition of mean fuzzy set for the selection type FNN, the parameter 
I is assumed to be about 3, and the selection standard value is m(X), we can 
get good results for removing impulse noise. 

Based on above learning algorithm for the selection type FNN, we discuss 
the learning procedure of the inference type FNN, by which s\, s2 are deter­
mined to minimize MAE. If the noises in image is mainly impulse noise, we can 
assume that s\ + s2 ~ L, for example, let s\ + s2 = L — 1. So we can find out 
optimal value of s\ to minimize MAE. The algorithm is described as follows: 

(i) Put the initial value of si as si[0], and let the iteration step be t = 0; 

(ii) Calculate absolute error err [t] = E E - B / K M ) - * 7 ^ . ? ) \)/(NIXN2), 

where U(i,j) is the desired output of the novel FNN filter at pixel (i,j), and 
BqAi,j) is the real output of the novel FNN filter at pixel (i,j) when the 
iteration step is t. 

(iii) Iterate Si with the following scheme: 

r, -,1 r.i Aerrfil 
81[t + l]=8l[t]+a- t + j J , 

where a is the learning constant, Aerr[t] = err[t] — err[t — 1], and err[— 1] = 
err [0]/2. 

(iv) Discriminate \si[t + 1] — si[i]|< 0.1? If yes, output the value si[t + 1]; 
otherwise let t = t + 1, and go to step (ii). 

8.3.5 Simulation examples 

Assume that image X = {s^} with 512 x 512 pixels is a 8—bit Lenna image. 
If X is noise-free, it is shown as Figure 8.30 (a). In this subsection we employ 
Lenna image to examine the capability of the novel FNN filter to remove noises. 
To the degraded images corrupted by impulse noise, the novel FNN filter can 
give much better performance than AWFM filter in [25]. The capability of 
removing noise of the novel FNN filter is superior to one of conventional filters, 
such as median filter, RCRS filter, and so on. This is because by [25], AWFM 
filter can give better performance than the RS type filters can. So we choose 
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median and AWFM filters to demonstrate the advantageous performance of 
the novel FNN filter to remove noises. 

At first for simplicity, we sample uniformly from X to form sub-image Xf = 
(4j)64x64- Choose an operating window X_ with 3 x 3 . For given impulse noise 
probability as p = 0, 0.1, 0.3, 0.5, 0.6, 0.8, 1.0, we train the selection type FNN 
and inference type FNN by the sub-image Xf to obtain the optimal filter, 
respectively. Table 8.1 gives the respective minimum MAE's of median, AWFM 
and FNN filters corresponding to the given noise probabilities, respectively. 
From Table 8.1, the novel FNN filter gives the best filtering results, moreover, 
fine image structure is well preserved. 

Table 8.1 MAE's of three filters under different noise occurrence probabilities 

p = 0 p = 0.1 p = 0.3 p = 0.5 p = 0.6 p = 0.8 p = 1.0 

median filter 8.904 10.038 13.528 26.399 40.8604 77.091 130.0 

AWFM filter 2.519 9.333 13.093 15.854 19.804 30.688 124.453 

novel FNN filter 0.0 3.274 6.903 9.255 14.687 29.831 124.453 

(a) (b) (c) 

Figure 8.30 Lenna image (a) noise-free, (b) corrupted by impulse noise (p = 0.6), 
(c) corrupted by impulse (p = 0.4) and Gaussian noises 

With noise probability p = 0.6, we employ Xf to train the FNN's related. 
That is, under the criterion of minimum MAE we calculate optimal parameter 

si in the inference fuzzy sets $, L shown in Figure 8.28, and the optimal FNN 
filter can be constructed. To this end, let the learning constant a = 0.1. With 
100 iteration steps, «i converges approximately to 15, and the approximate 
MAE of the novel FNN filter is 14.6867. 
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( a ) {]>} 

Figure 8.31 Restoration of impulse noise image (a) median filter, (l>) AW FM filter, 
(c) novel FNN filter 

(b) of Figure 3.30 is Lenna noise image X degraded by impulse noise (p = 
0.6). And Figure 8.31 is the restorations of impulse noise image in Figure 8.30 
(b), where (a) is the image restored by median filter; (b) (c) are the images 
restored by AWFM filter and the novel FNN filter, respectively. Prom the 
comparison among (a) (b) and (c) in Figure 8.31, we can conclude that the 
novel FNN filter gives the best results though the performance of median filter 
is improved by AWFM filter, the novel FNN filter appears to be best both in 
removing impulse noise and preserving image structure. 

Figure 8.32 Restoration of hybrid noise image (a) median filter, (b) AWFM filter, 
(c) novel FNN filter 

Hybrid noise images mean ones that are corrupted by two or more kinds 
of noises. Applying the novel FNN filter to these noise images we also obtain 
acceptable restoring images. Assume that there are in image X impulse noise 
(p = 0.4) and Gaussian additive noise whose mean value fj, = 0, variance 
a2 = 0.02. X is shown in Figure 8.30 (c). We denote the minimum MAE of 
median filter, AWFM filter and the novel FNN filter by MAEm , MAE0 and 
MAE/, respectively. It follows that 

MAEm = 29.466, MAE0 = 30.053, MAE/ = 26.725. 



366 Liu and Li Fuzzy Neural Network Theory and Application 

The restoring images by such three filters is shown in Figure 8.32 (a) (b) (c), 
respectively. From Figure 8.32, it shows easily tha t the novel FNN filter can 
result in highest quality restoration, compared with median and AWFM niters. 

The suitable parti t ions of the input and output spaces are the basis to con­
struct selection type FNN's . Such networks possess strong capability for locally 
representing some I / O systems. They also leads to good anti-disturbance in 
image processing, tha t is, if the image is corrupted by impulse noise with high 
noise occurrence probability (p > 0.5), we can employ a selection type FNN to 
give restoring image with good performance. One presupposition to design an 
inference type FNN is to preserve the fine image structure. So as the fusion of 
a section type FNN and an inference FNN, the novel FNN filter can not only 
remove noises in the image, but also preserve fine image structure. In future 
research, selection type FNN's and inference type FNN's can widely be applied 
in many real fields, such as system modelling, system simulation and system 
identification, and so on. 
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N O T E : The indices include a few of notation classes. For example, universes, 
the basic sets in which the subjects are discussed, notations on sets and termi­
nologies and so on. They are not intended to assist the reader in surveying the 
subject matter of the book (for this, see table of contents), but merely to help 
him locate notations and definitions. 
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