

PIC Microcontrollers

ThisPageisIntentionallyLeftBlank

PIC Microcontrollers
An Introduction to
Microelectronics

Second Edition

Martin Bates

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Newnes

An imprint of Elsevier

Linacre House, Jordan Hill, Oxford OX2 8DP

200 Wheeler Road, Burlington, MA 01803

First published 2000 by Arnold

Second edition 2004

Copyright © 2004, Martin Bates. All right reserved

Appendix A has been reprinted with permission of the copyright owner, Microchip Technology

Incorporated © 2001. All rights reserved. No further reprints or reproductions may be made without

Microchip Technology Inc.’s prior written consent.

Information contained in this publication regarding device applications and the like is intended as

suggestion only and may be superseded by updates. No representation or warranty is given, and

no liability is assumed by Microchip Technology Inc. with respect to the accuracy or use of such

information, or infringement of patents arising from such use or otherwise. Use of Microchip

Technology Inc. products as critical components in life support systems is not authorized except

with express written approval by Microchip Technology Inc. No licenses are conveyed implicitly

or otherwise under any intellectual property rights.

The right of Martin Bates to be identified as the author of this work has been asserted in accordance

with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced in any material form (including photocopying or storing

in any medium by electronic means and whether or not transiently or incidentally to some other use

of this publication) without the written permission of the copyright holder except in accordance with

the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued

by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England WIT 4LP.

Applications for the copyright holder’s written permission to reproduce any part of this publication

should be addressed to the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in

Oxford, UK: phone: (+44) 1865 84830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk.

You may also complete your request on-line via the Elsevier homepage (http://www.elsevier.com),

by selecting ‘Customer Support’ and then ‘Obtaining Permissions’

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data

A catalogue record for this book is available from the Library of Congress

ISBN 0 7506 6267 0

For information on all Newnes publications

visit our website at http:// books.elsevier.com

Typeset in 10/12 pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India

www.integra-india.com

Printed and bound in Meppel, The Netherlands by Krips bv.

Contents

Preface to the First Edition x

Preface to the Second Edition xii

Introduction xiii

PART A MICROELECTRONIC SYSTEMS 1

Chapter 1 Computer Systems 3
1.1 The PC System 3
1.2 Wordprocessor Operation 9
1.3 PC Microprocessor System 11
1.4 PC Engineering Applications 14
1.5 The Microcontroller 15
Summary 18
Questions 18
Activities 19

Chapter 2 Information Coding 20
2.1 Number Systems 20
2.2 Machine Code Programs 25
2.3 ASCII Code 28
Summary 29
Questions 29
Answers 30
Activities 30

vi Contents

Chapter 3 Microelectronic Devices 32
3.1 Digital Devices 32
3.2 Combinational Logic 36
3.3 Sequential Logic 39
3.4 Data Devices 41
3.5 Simple Data System 43
3.6 4-Bit Data System 44
Summary 47
Questions 47
Activities 48

Chapter 4 Digital Systems 49
4.1 Encoder and Decoder 49
4.2 Multiplexer, Demultiplexer and Buffer 51
4.3 Registers and Memory 51
4.4 Memory Address Decoding 51
4.5 System Address Decoding 54
4.6 Counters and Timers 55
4.7 Serial and Shift Registers 56
4.8 Arithmetic and Logic Unit 57
4.9 Processor Control 58
Summary 59
Questions 59
Answers 60
Activities 60

Chapter 5 Microcontroller Operation 61
5.1 Microcontroller Architecture 61
5.2 Program Operations 65
Summary 73
Questions 73
Answers 74
Activities 75

PART B THE PIC MICROCONTROLLER 77

Chapter 6 A Simple PIC Application 79
6.1 Hardware Design 79
6.2 Program Execution 83
6.3 Program BIN1 85
6.4 Assembly Language 87

Contents vii

Summary 90
Questions 90
Answers 91
Activities 91

Chapter 7 PIC Program Development 92
7.1 Program Design 94
7.2 Program Editing 96
7.3 Program Structure 101
7.4 Program Analysis 101
7.5 Program Assembly 105
7.6 Program Simulation 109
7.7 Program Downloading 112
7.8 Program Testing 114
Summary 115
Questions 115
Answers 116
Activities 116

Chapter 8 PIC 16F84 Architecture 117
8.1 Block Diagram 117
8.2 Program Execution 119
8.3 Register Set 120
Summary 126
Questions 127
Activities 127

Chapter 9 Further Programming Techniques 129
9.1 Program Timing 129
9.2 Hardware Counter/Timer 131
9.3 Interrupts 135
9.4 More Register Operations 140
9.5 Special Features 144
9.6 Program Data Table 148
9.7 Assembler Directives 150
9.8 Special Instructions 153
9.9 Numerical Types 154
Summary 155
Questions 155
Answers 156
Activities 156

viii Contents

PART C APPLICATIONS 157

Chapter 10 Application Design 159
10.1 Design Requirements 160
10.2 Block Diagram 162
10.3 Hardware Design 162
10.4 Software Design 164
10.5 Program Implementation 171
10.6 Source Code Documentation 174
Summary 175
Questions 175
Activities 176

Chapter 11 Program Debugging 177
11.1 Syntax Errors 177
11.2 Logical Errors 179
11.3 MPLAB Tools 183
11.4 Test Schedule 184
11.5 Hardware Testing 186
Summary 189
Questions 189
Activities 189

Chapter 12 Prototype Hardware 191
12.1 Hardware Design 191
12.2 Hardware Construction 192
12.3 Demo Board 196
12.4 Demo Board Applications 200
Summary 210
Questions 210
Activities 211

Chapter 13 Motor Applications 213
13.1 Motor Control Methods 213
13.2 Motor Applications Board 214
13.3 Control Methods 218
13.4 Position Control 219
13.5 Closed Loop Speed Control 221
13.6 Commercial Application 231
Summary 232
Questions 232
Activities 233

Contents ix

PART D MORE CONTROLLERS 235

Chapter 14 More PIC Microcontrollers 237
14.1 Common Features of PIC Microcontrollers 237
14.2 Selecting a PIC 242
14.3 Advanced PIC Features 244
14.4 Serial Communications 251
Summary 254
Questions 255
Activities 255
Answers 255

Chapter 15 More PIC Applications and Devices 256
15.1 16F877 Application 256
15.2 16F818 Application 273
15.3 12F675 Application 274
15.4 18F452 Application 275
Summary 278
Questions 278
Answers 279
Activities 279

Chapter 16 More Control Systems 280
16.1 Other Microcontrollers 280
16.2 Microprocessor System 282
16.3 Control Technologies 288
16.4 Control System Design 298
Summary 299
Questions 301
Activities 301

Appendix A PIC 16F84 Data Sheet 302

Appendix B DIZI-2 Board and Lock Application 347

Index 367

Preface to the First Edition

The Microchip™ PIC 16F84 microcontroller is an unremarkable looking 18-pin chip – so
why write a whole book on it? The answer is that it contains within its ordinary looking
plastic case most of the technology that students of microelectronics need to know about in
order to understand microprocessor and computer systems. It also represents a significant new
development in microelectronics and, importantly, it offers an easier introduction to the world
of digital processing and control than conventional microprocessors. The microcontroller is a
self-contained, programmable device, and the student, hobbyist or engineer can put it to use
without knowing in too much detail how it works. On the other hand, we can learn a great deal
about microelectronics by looking inside.
Studying the PIC chip will give the user a valuable insight into the technology behind

the explosion in microprocessor-controlled applications which has occurred in recent years,
which has been based on cheap, mass-produced digital circuits. Mobile phones, video cameras,
digital television, satellite broadcasting and microwave cookers – there are not many current
electronic products which do not contain some kind of microprocessor. Industrial control
systems have seen similar developments, where complex computer control systems have steadily
increased productivity, quality and reliability. The key, of course, is the increase in power of
microprocessors and related technology, while the cost of these clever little chips continues to
fall.
The microcontroller is essentially a computer on one chip, which can carry out a complex

programmed sequence of actions, with the minimum of additional components. As an example,
in this book a motor control circuit will be described which allows the motion of a small
dc motor to be programmed and controlled by the PIC chip. The only additional major
components required are power transistors to provide the current drive to the motor. In the
past, equivalent control and interface circuits for such an application would have required many
more components, and been much more complicated and expensive to design and produce.
The small microcontroller also makes it easier for a device such as a motor to be individually
controlled as part of a larger system.
When I first came across the PIC chip a few years ago, it was immediately obvious that

this would be an ideal device for teaching and learning microprocessor software techniques,
especially for students with minimal prior knowledge and skills. It is relatively cheap, and, even
better, it has non-volatile program memory that is electrically reprogrammable (Flash ROM). In
addition, the manufacturers, Arizona Microchip, had the foresight to make development system
software required to develop programs for the chip widely available. Packages are available for
DOS and Windows, and the support hardware and software are being added to all the time, by
the manufacturers, independent suppliers and enthusiasts. On the other hand, a complete set of
more powerful development tools is also available for the professional user.
Both DOS and Windows versions of the PIC development system have been used to prepare

the sample applications in this book, and the programs downloaded using the PICSTART-16B

Preface to the First Edition xi

programming unit. However, there are many designs for inexpensive programmers available
in magazines and on the Internet, usually with their own software. The current Windows

version of the program development package, MPLAB, can be downloaded free of charge from

the Internet at ‘http://www.microchip.com’, along with data sheets and all the latest product

development information. The data sheet for the PIC 16F84 is reprinted in full, because it is an

excellent document which contains the definitive information on the chip, presented in a clear

and concise manner.

The objective of this book is to ensure that any beginner, student or engineer, will quickly

be able to start using this chip for their own projects and designs. When I started using it in my

teaching, I put together a teaching pack and was expecting a range of suitable reference books

to quickly appear. Indeed, the chip soon started to feature in numerous electronics magazine

projects and was clearly popular, but all the books that I obtained seemed to assume quite a lot

of prior knowledge of microprocessors. I wanted to use the PIC with students who were new
to the subject, and eventually I realised that if I wanted a suitable book, I would have to do it

myself! I hope that the reader finds the result useful.

Martin P. Bates

Lecturer in Microelectronics

Hastings College of Arts & Technology

July 1999

Preface to the Second Edition

The revisions required in the second edition of this book are mainly due to the rapid development
of microcontroller technology. As the PIC family of devices has grown, more features have been
incorporated at lower cost. So, while the focus of the first edition was the popular 16F84 chip,
and this remains a valuable reference point for the beginner, the scope has been expanded so
that a broader understanding of the range microcontroller types and applications can be gained.
One of the reasons the 16F84 was originally selected was its flash memory, which allows

easy reprogramming, making it a good choice for education and training. Flash memory is now
available in a wider range of devices, making the choice of chip less obvious. On the one hand
we now have more small 8-pin chips which can be used in simple systems requiring fewer
inputs and outputs, as well as a proliferation of more powerful devices incorporating a variety
of serial data interfaces, as well as analogue inputs and many other advanced features.
For this reason the focus has been shifted away from the 16F84. A wider selection of

devices and I/O methods is now discussed, and a more general treatment attempted. Application
development software has also moved on, and new methods of programming and debugging
introduced. I hope I have been able to reflect these developments adequately without introducing
too many complications for the beginner, to whom this text is still firmly addressed.
Part A is a general introduction to microelectronics system technology, and can be skipped if

appropriate. In Part B, the PIC microcontroller is described in detail from first principles. Part
C contains practical advice on implementing PIC projects, with examples. Part D contains new
material on the more advanced features of other PIC MCUs (Microcontroller Units) as well as
a review of a range of other control system technologies.
I have tried to incorporate a systematic approach to project development, making the design

process as explicit as possible. The book will thus support the delivery of the microelec-
tronic systems and project modules of, for example, UK BTEC electronics programmes which
incorporate an Integrated Vocational Assignment, which requires the student to develop a
specific project and document the process in detail. The PIC is a good choice for producing
interesting, but achievable, projects which incorporate a good balance between hardware and
software design, and allow the design process to be clearly documented through every stage.
Acknowledgement is due to Microchip Technology Inc. for their kind permission to reproduce

the PIC 16F84A data sheet, to Microsoft Corporation and Labcenter Electronics for the
application software used to produce documents, drawings, circuit schematics and layouts for
this book, and to all for use of their trademarks.
Finally, thanks to the following for their help, advice and tolerance: Melvyn Ball (Hastings

College), Jason Guest (General Dynamics, Hastings), Chris Garrett (University of Brighton)
and, of course, Julie at home; also, to all colleagues who commented on the first edition, and
students who bought it!

Martin Bates
December 2003

mbates@hastings.ac.uk

Introduction

Let’s admit one thing straight away – microprocessor systems are quite complicated! However,
they are now found in so many different products that all students of engineering need to know
something about how they work.
In this book we are going to look specifically at the PIC family of microcontrollers. Microcon-

trollers have all the essential features of a full-size computer, but all on a single chip. By
contrast, conventional microprocessor systems, such as the PC (personal computer), are built
with a separate processor, memory, input and output chips. The extra hardware and software
required to make these chips work together makes the system more difficult to understand than
our single chip microcontroller unit (MCU).
As well as being easier to understand, microcontrollers are important because they make

electronic circuits cheaper and easier to build. ‘Hard-wired’ circuits can be replaced with a
microcontroller and its software, reducing the number of components required. Importantly, the
software element (control program) can be reproduced at minimal cost, once it has been created.
So the development costs may be higher, but the production costs will be lower in the long
run. It is also easier to change software if the product is to be modified. In general, software
is increasingly replacing hardware in electronic designs. For example, to design a system like
a video recorder without microprocessors or microcontrollers would be very complicated and
expensive, if not impossible.
Using the PIC, we will find that we can quite quickly work out some simple, but useful,

applications. These will illustrate the universal principles of microprocessor systems that apply
to more complex computer and control systems. At first, however, we do not have to worry too
much about exactly how the chip works – we will go back to that later. The big problem with
microprocessors and microcontrollers is that in order to fully understand how the system works,
we have to understand both the hardware and the software at the same time. Therefore we have
to circle round the subject, looking at the system from different angles, until a reasonable level
of understanding is built up.
We will approach microcontroller and microprocessor systems (microsystems) step by step,

assuming very little prior knowledge. The operation of the PC will be outlined first, because
most students will be familiar with how it works from the user’s point of view. We will look
at how the hardware and software interact, and the function of the Pentium microprocessor in
controlling the input (keyboard, mouse), output (screen) and memory and disks.
Some basic microelectronic system principles will then be covered. One objective is to

understand the hardware diagrams in the PIC data sheets, so that external circuits connected
to the PIC input/output pins can be designed correctly. Also, it is necessary to understand
the internal hardware configuration of a microcontroller to fully understand the programming
of the chip. The clarity and completeness of these data sheets is an important reason for
choosing the PIC as our typical microcontroller. We can then start to look specifically at the
PIC microcontroller and develop simple applications which will illustrate the essential hardware

xiv Introduction

features and basic programming ideas. More details will then be added using further application
examples.

In the final section, the complete application design process will be described, including use of

the PIC development system and hardware design methods. The range of PIC microcontrollers

and the more advanced features of some of them will then be described, plus some other

types of control technologies which can carry out similar functions to microcontrollers, such

as programmable logic controllers.

All reference material can be downloaded from www.microchip.com and other manufac-

turers’ websites.

Part A
Microelectronic Systems

1 Computer Systems

2 Information Coding

3 Microelectronic Devices

4 Digital Systems

5 Microcontroller Operation

ThisPageisIntentionallyLeftBlank

Chapter 1
Computer Systems

1.1 The PC System

1.2 Wordprocessor Operation

1.3 PC Microprocessor System

1.4 PC Engineering Applications

1.5 The Microcontroller

We will begin our study of microsystems with something familiar, by looking at how the PC
(personal computer) works when running a wordprocessor. Most readers will be familiar with
using a wordprocessor and will know more or less how it functions from the user’s point of
view. Some basic microsystem concepts will be introduced by analysing how the software
operates with the computer hardware, to allow the user to enter, store and process documents.
For example, we will see why different kinds of memory are needed to support the system
operation.
It is also useful to get some idea of how a PC works because it is used as the hardware

platform for the PIC program development system. The programs for the PIC are written
using a text editor, and the machine code program created and downloaded to the PIC chip
using the PC. The PIC development system hardware can be seen connected to the PC in
Fig. 1.1(a). A simplified diagram, Fig. 1.1(b), allows us to see the main parts of the system more
clearly.
We will then have a quick look at a microcontroller system, set up to operate as a simple

equivalent of the microprocessor-based PC system, so we can see how it compares. The
microcontroller has a keypad with only 12 keys instead of a keyboard, and a seven-segment
display instead of a screen. Its memory is much smaller than the PC, yet it can carry out the
same basic tasks. In fact, it is far more versatile; the Pentium™processor used in the PC is
designed specifically for that system. The microcontroller can be used in a great variety of
circuits. Also, it is much cheaper!

1.1 The PC System

The PC hardware is based on the Intel™ series of microprocessors with Microsoft Windows™
operating system software. The standard PC hardware comprises a main unit, separate keyboard
and mouse, VDU (visual display unit) and possibly a printer and connection to a network.
The circuit board (motherboard) in the main unit carries a group of chips which work together

4 Computer Systems

(a)

Network

Keyboard

Screen

CD ROM

Floppy disk

Power

Reset

Main
unit

Printer

Mouse

Hard disk bay

(b)

Figure 1.1 (a) The PC system (with PIC development system); (b) Diagram of PC system.

to provide digital processing of information and control of input and output devices. A power

supply for the motherboard and the peripheral devices is included in the main unit.

The processor must have access to software (programs) to allow useful work to be done by

the hardware. These are usually stored on a hard disk inside the main unit; this can hold large

amounts of data which is retained when the power is off. There are two main types of software

required – the operating system (Windows™) and the application (Word™). As well as the

operating system and application software, the hard disk stores the data created by the user

(document files). Documents can also be stored on floppy disk for backup or portability.

The PC System 5

The keyboard is used for data input, and the VDU displays the resulting document. The

mouse provides an additional input device, allowing operations to be selected from menus or

by clicking on icons and buttons. This is called the graphical user interface (GUI). There may

be a network card fitted in the PC to exchange information with other users, download data or

applications, or share resources such as printers over a local area network (LAN). In addition, a

modem can give direct access to a wide area network (WAN), usually the Internet. A CD ROM

drive allows large volumes of reference information stored on optical disk to be accessed, and

is also used to load application software.

If we remove the cover from the main unit, the main components can be identified fairly

easily. In the photograph, Figure 1.2(a), the power supply is top left, with the hard disk drive

below and the motherboard vertical at the back of the tower case. The disk and video interface

cards are visible at the bottom, slotted via edge connectors into the motherboard, with a modem

in the middle in the dark casing. The connections to the video board and modem are available

at the rear (left) of the case, with the floppy disk at the front (top right). In current PC designs,

some of these interfaces are built into the motherboard, so the whole package is more compact.

Block diagrams are useful for showing the main parts of a complex system, and how they

connect together, in a simplified form. Figure 1.2(b) shows the components of the PC system

and the direction of the information flow between them. In the case of the disk drives and

network it is bidirectional (flowing in both directions), representing the process of saving data

to, and retrieving data from, the hard disk or floppy disk.

1.1.1 PC Hardware

Inside the PC main unit, the motherboard has slots for expansion boards and memory modules to

be added to the system. The power supply and disk drives are fitted separately into the main unit

frame. The keyboard and mouse interfaces are usually on the motherboard. In older designs, the

expansion boards carried interface circuits for the disk drives and external peripherals such as

the display and printer, but these functions now increasingly incorporated into the motherboard

itself. Note that the functional block diagram does not show any difference between internally

and externally fitted peripherals, because it is not relevant to the overall system operation.

The PC is a modular system, which allows the hardware to be put together to meet the

individual user’s requirements, and allows subsystems, such disk drives and keyboard to be

easily replaced if faulty. The modular design also allows upgrading (for instance, fitting extra

memory chips) and also makes the PC architecture well suited to industrial applications. In

this case, the PC can be ‘ruggedised’ (put into a more robust casing) for use on the factory

floor. This modular architecture is one of the reasons for the success of the PC as a universal

hardware platform.

1.1.2 PC Motherboard

The main features of a typical motherboard are shown in Fig. 1.3. The heart of the system is the

microprocessor, a single chip, which is also called the central processing unit (CPU). This name

refers back to the days when the CPU was built from discrete components and could be the

size of a washing machine! In Fig. 1.3(a), the CPU is under the cooling fan at the lower right.

The CPU controls all the other system components, but must have access to a suitable program

in memory before it can do anything useful. The blocks of program required are provided by

the operating system software and the application software which are downloaded to memory

from the hard disk on startup.

6 Computer Systems

Main
unit

VDU

Keyboard

Disk
drives

Printer

Mouse
Network

(b)

Figure 1.2 The PC system main unit. (a) View of PC main unit; (b) Block diagram of PC system.

The Intel CPU has undergone continuous development since the introduction of the PC in

1981, with the Pentium processor being the current standard. Intel processors are classified as

CISC (complex instruction set computer) devices, which means they have a relatively large

number of instructions which can be used in a number of different ways. This makes them

powerful, but relatively slow compared with more streamlined processors which have fewer

instructions. These are classified as RISC chips (reduced instruction set computer), of which

the PIC microcontroller is an example.

As stated above, CPU cannot work on its own; it needs some memory and input/output

devices for getting data in, storing it and sending it out again. The main memory block is

The PC System 7

(a)

BIOS ROM

Keyboard
controller

RAM
SIMM
slots

Integrated
support chip

CPU

Clock
generator

Adapter
card slots

IC 1

IC 2

IC 3 IC 4

(b)

Figure 1.3 PC motherboard. (a) PC motherboard in the main unit; (b) Layout of PC motherboard.

8 Computer Systems

made up of RAM (read and write memory) chips, which are mounted in SIMMs (single in-line
memory modules). Higher capacity DIMMs (dual in-line memory modules) are used currently.
These can be seen at the top of the photograph in Fig. 1.3(a). Additional peripheral interfacing
boards are fitted in the expansion card slots to connect the main board to the disk drives, VDU,
printer and network. Spare slots allow additional peripheral interfaces and more memory to be
added if required. Each peripheral interface is a sub-circuit which is built around a specific
input/output chip (or set of chips) which handles the data transfer.
The integrated support device (ISD) is a chip which provides various system control and

memory management functions in one chip, and is designed for that particular motherboard.
The motherboard itself can be represented as a block diagram (Fig. 1.4) to show how the
components are interconnected.

Microprocessor

Keyboard
interface

VDU
interface

Mouse
interface

Network
interface

Printer
interface

Disk
interface

Bus

RAM
memory

ROM
memory

Figure 1.4 Block diagram of PC motherboard.

The block diagram shows that the CPU is connected to the peripheral interfaces by a set of
bus lines. These are groups of connections on the motherboard which work together to transfer
the data from the inputs, such as keyboard, to the processor, and from the processor to memory.
When the data has been processed and stored, it can be sent to an output peripheral, such as
the screen. We will look at how this is achieved in more detail later.
Busses connect all the main chips in the system together, but, because they operate as shared

connections, can only pass data to or from one peripheral interface or memory location at a
time. This arrangement is used because separate connections to all the main chips would need
an impossible number of tracks on the motherboard. The disadvantage of bus connection is
that it slows down the program execution speed, because all data transfers use the same set of
lines, and only one data word can be present on the bus at any one time. To help compensate
for this, the bus connections are typically 16, 32 or more bits wide, that is, there are 16 or
32 connections working together, each carrying one bit of a data word simultaneously. This
parallel data connection is faster than a serial connection, such as the keyboard input or network
connection, which can only carry one bit at a time. In the microcontroller, these system bus
connections are hidden inside the chip, making circuit design easier.

1.1.3 PC Memory

There are two types of memory in the PC system. The main memory block is RAM, where input
data is stored before and after processing in the CPU. The operating system and application
program are also copied to RAM from disk for execution, because access to data in RAM is

Wordprocessor Operation 9

faster. Unfortunately, RAM storage is ‘volatile’, which means that the data and application
software disappear when the PC is switched off, and these have to be reloaded each time the
computer is switched back on.
This means that some ROM (read only memory), which is non-volatile, is needed to get the

system started at switch on. The BIOS (basic input/output system) ROM chip, seen at the left
of Fig. 1.3(a), contains enough code to check the system hardware and load the main operating
system (OS) software from disk. It also contains some basic hardware control routines so that
the keyboard and screen can be used before the main system has been loaded.
The hard disk is a non-volatile, read/write storage device, consisting of a set of metal disks

with a magnetic recording surface, read/write heads, motors and control hardware. It provides
a large volume of data storage for the operating system, application and user files. A number
of applications can be stored on disk and then selected as required for loading into memory;
because the disk is read and write device, user files can be stored, applications added and
software updates easily installed.

1.2 Wordprocessor Operation

In order to understand the operation of the PC microprocessor system, we will look at how the
wordprocessor application uses the hardware and software resources.

1.2.1 Starting the Computer

When the PC is switched on, the BIOS ROM program starts automatically. It checks that the
system hardware is working properly and displays messages to report the results. If there is a
problem, the BIOS program attempts to diagnose the fault, and will display an error message.
If all is well, it loads (copies) the main operating system software (Windows) from hard disk
into RAM. As you will probably have noticed, this all takes some time; this is an indication of
the amount of data transfer required, and the relatively slow access to the hard drive.

1.2.2 Starting the Application

Windows displays an initial screen with icons and menus which allows the application to
be selected using the mouse and on-screen pointer. Word is started by clicking on its icon;
Windows converts this action to a command which runs the executable file (WINWORD.EXE)
stored on disk. In older machines the operating system, MSDOS (Microsoft disk operating
system), required this command to be typed in to start the application.
The application program is transferred from disk to RAM, or as much of it as will fit in

the available memory. If necessary, application program blocks can be swapped into memory
when needed. The wordprocessor screen is displayed and a new document file can be created
or an existing one loaded by the user from disk for updating.

1.2.3 Data Input

The main data input is obviously from the keyboard, which consists of a grid of switches which
are scanned by a dedicated microcontroller within the keyboard unit. This chip detects when
a key has been pressed, and sends a corresponding code to the CPU via a serial data line in
the keyboard cable. The serial data is a sequence of high and low voltages on a single wire,

10 Computer Systems

which represent a binary code, each key generating a different code. The keyboard interface
converts this serial code to parallel form for transfer to the CPU via the system data bus. It also
signals separately to the CPU that a keycode is ready to be read into the CPU, by generating an
‘interrupt’ signal. This serial-to-parallel (or parallel-to-serial) data conversion process is required
in all the interfaces that use serial data transfer, namely, the keyboard, VDU, network and
modem. Binary coding, interrupts and other such processes will be explained in more detail later.
In Windows, and other GUIs, the mouse can be used to select commands for managing the

application and its data. It controls a pointer on the screen; when the mouse is moved, the
ball turns two rollers, which have perforated wheels attached. The holes are detected using
an opto-detector, which sends pulses representing movement in two directions. These pulse
sequences are passed to the CPU via the mouse interface and used to modify the position of
the pointer on the screen. The buttons, used to select an action, must also be input to the CPU.

1.2.4 Data Storage

Each character of the text being typed into the wordprocessor is stored as an 8-bit (one byte)
binary code, which occupies one location in RAM. Each bit of data must be stored as a charge
on small capacitor in the RAM chip. The parallel data is received by the CPU, then sent back
via the same data bus lines from the CPU to the RAM. The RAM stores the data bytes at
numbered locations; these address numbers are identified by the CPU using the system address
bus. The data is transferred on the data bus to the address in RAM selected by the CPU via the
ISD, which provides the additional logic required to handle the data transfers.

1.2.5 Data Processing

In the past, programs running on the DOS operating system required less processing power,
partly because the screen was simpler, being divided up into one space for each character. The
video interface would convert the stored character code into the pattern for the character, and
output it to the correct position on the screen.
The Windows screen is more complicated, because the text is displayed in graphics (drawing)

mode, at a higher resolution, so that the text size, style and layout appears on screen as it will
be printed. Graphics, tables and special characters can be embedded in the text. This means the
CPU has far more work to do in displaying the page, and this is one reason why Windows needs
more memory and a more powerful CPU than former DOS-based wordprocessors. The processor
must also manage the WIMP (Windows, Icons, Mouse, Pointer) interface, which allows actions
to be selected on screen. Word now has many more features than earlier wordprocessors, and
there is now little difference between a typical wordprocessor and so called desk-top publishing
(DTP) programs, which provide comprehensive page layout control.

1.2.6 Data Output

The characters must be displayed on the screen as they are typed in, so the character codes
stored in memory are also sent to the VDU via the system data bus and video interface. The
display is made up of single coloured dots (pixels) organised in lines across the screen, which
are output in sequence from a video amplifier. This is known as a scanned display. The shape
of the character on screen must be generated from its code in memory, and sent out on the
correct set of lines at the right time on the video signal. The display is therefore formed as a
two-dimensional image made up from a serial data stream which sets the colour of each pixel
on the screen in turn, line by line.

PC Microprocessor System 11

If a file is transferred on a network, it must also be sent in serial form. The characters (letters)

in a text file would typically be sent as ASCII code, along with formatting information and

network control codes. ASCII code represents one character as one byte (8 bits) of binary code,

and is therefore a very compact form of the data. The code for ‘A’ for example is 01000001.

The printer works in a similar way to the screen, except that the output is generated as lines

of dots of ink on a page. If you watch an inkjet printer working, you can see the scanning

operation take place. In older printers, the data is sent in 8-bit parallel form, along with control

codes, via the printer port. If the printer itself is capable of formatting the final output, only the

character code and any formatting codes are needed. For cheaper printers, the computer itself

must generate the page layout, and send a ‘bit-map’ of the page, where one bit (or group of

bits) is the code for one coloured dot on the page; this will take longer.

The operation of the wordprocessor can be illustrated using a flowchart, which is a graphical

method of describing a sequential process. Figure 1.5 describes only the basic process of text

input and word wrapping at the end of each line. Flowcharts will be used later to represent

microcontroller program operation.

Wordprocessor

Initialise

Key pressed?

Store key code

Display character

End of line?

Process wordwrap

No

No

Figure 1.5 Wordprocessor flowchart.

1.3 PC Microprocessor System

As we have seen, the PC working as a wordprocessor carries out the following functions:

• Data input

• Data storage

• Data processing

• Data output

12 Computer Systems

All microprocessor systems perform these same basic functions. To carry them out, the

microprocessor system needs a set of supporting chips with suitable interconnections. The

system will therefore typically consist of:

• CPU

• RAM

• ROM

• I/O (Input/Output) ports

• ISD

• XTAL (crystal) clock generator

These devices must be interconnected by:

• address bus

• data bus

• various control lines

These busses and control lines originate from the CPU, which is in overall charge of the system.

1.3.1 System Operation

The PC motherboard components are connected as shown in Fig. 1.6. The address and data

busses, control lines and support chip are required to handle the data transfer between the

CPU, memory and ports. The clock circuit contains a crystal oscillator as found in watches and

clocks, which produces a precise fixed frequency signal which drives the microprocessor. The

CPU operations are triggered on the rising and falling edges of the clock signal, allowing their

relative timing to be precisely controlled. This allows events in the CPU to be completed in

the correct sequence, with sufficient time allowed for each step.

The CPU generates all the main control signals based on this timing reference. This is why

the CPU should not be operated at a frequency above its rated clock speed – correct completion

of each step can no longer be guaranteed, and the system could crash. A given CPU can be

used in different system designs, depending on the type of application, the amount of memory

needed, the I/O requirements and so on. The ISD is designed to assist the processor to handle

memory and I/O operations within a particular design.

CPU

ISD

ROM RAM
Keyboard

port

Key
codes

Address bus

Data bus

Control lines

Expansion

Bus
Clock

ISD
control

Reset

Figure 1.6 Block diagram of PC microprocessor system.

PC Microprocessor System 13

For simplicity, only the keyboard port is shown in the block diagram, as this was sometimes
(in older designs) the only I/O device on the main board. However, other ports, such as
the printer, modem and so on are connected in the same way, whether they are part of the
motherboard or fitted as expansion cards. The signal connections to the plug-in peripheral
interfaces will be made to the system busses and the relevant control lines via the expansion bus,
which appears on the motherboard as edge connectors. This allows the system to be upgraded
by replacing or adding to these cards. In current designs, where upgrading is less likely to be
required, the VDU, disk and network tend to be integrated onto the main board. Additional
RAM memory may be fitted in a similar way if spare slots are available.

1.3.2 Program Execution

The ROM and RAM memory contain program information and data in numbered locations.
The ISD contains address decoding logic which allocates a particular memory chip to a range
of addresses. The I/O port registers, which are set up to handle the data transfer in and out of
the system, are also allocated particular addresses by the system designer, and accessed by the
CPU in the same way as memory locations.
A register is a temporary store for a data word within a port chip or the CPU. In the port

chip it can hold data, or a control code which sets up how the port will operate. For example,
the bits in the data direction register control whether each port pin operates as an input or an
output. The data being sent in or out is then stored temporarily in the port data register. More
of this later!
The wordprocessor program consists of a list of instructions in binary code stored in memory,

with each instruction and any associated data (operands) being stored in sequential locations.
The program instruction codes are fetched into the CPU and decoded. The CPU sets up the
internal and external control lines as necessary and carries out the operation specified in the
program, such as read a character code from the keyboard port into the CPU. The instructions
are executed in order of their addresses, unless the instruction itself causes a jump to another
point in the program, or an interrupt is received.

1.3.3 Execution Cycle

Program execution is illustrated in Fig. 1.7. Assuming that the application program code is in
RAM, the program execution cycle proceeds as follows:

1. The CPU outputs (1) the address of the location (memory slot) containing the required
instruction. This address is kept in the program counter. The sample address is shown in
decimal (3724) in Fig. 1.7, but it is output in binary form on the address lines from the
processor. The ISD uses the address to select the RAM chip which has been allocated
to this address. The address bus also connects directly to the RAM chip to select the
individual location.

2. The instruction code is returned to the CPU from the RAM chip via the data bus (2). The
CPU reads the instruction from the data bus into an instruction register. The CPU then
decodes and executes the instruction (3). The operands (data to be processed) are fetched
(4) from the following locations in RAM via the data bus, in the same way as the
instruction.

3. The instruction execution continues by feeding the operand(s) to the data processing logic
(5). Additional data can be fetched from memory (6) (this would be the text data in our

14 Computer Systems

RAM

CPU Contents Address

Program counter 3724 Instruction 3724
Operand 3725

Instruction register Inst. code Operand 3726

Next instr. 3727

Data register Operand etc. 3728

Data
processing

Data byte 5821
Data byte 5822

Data register Result Data byte 5823

etc.

2

4

5

6

7 8

1

3

Figure 1.7 Program execution sequence.

wordprocessor). The result of the operation is stored in a data register (7), and then, if
necessary, in memory (8) for later use. In the meantime, the program counter has been
incremented (increased) to the address of the next instruction code. The address of the next
instruction is then output and the sequence repeats from step 2.

The operating system, the wordprocessor program and the text data are stored in different
parts of RAM during program execution, and the wordproccessing application program calls
up operating system routines as required to read in, process and store the text data. Current
CISC processors such as the Pentium series have instructions which are more than 8 bits in
size which are stored in multiple locations, and use complex memory management techniques,
to speed up program execution. These long instructions and data words are normally multiples
of 8 bits, as this is how the memory is organised.

1.4 PC Engineering Applications

The PC can be used as a standard hardware platform in a variety of engineering systems by
fitting special interfacing hardware in the expansion slots and programming the PC to control
the target system through this I/O hardware (Fig. 1.8). This type of arrangement is increasingly
used in manufacturing systems where the PC might control a machine tool, robot or assembly
system, or be used to run an instrumentation or data logging application. The PC provides a

PC

Input /
output

expansion
card

Target
system

with
sensors and

actuators

Digital I/O

Analogue I/O

Figure 1.8 PC engineering application.

The Microcontroller 15

standard network interface so that commands or design data can be sent to the PC and status

information and other measurement data can be returned to a supervisory computer.

The PC has the advantage of using a standard operating system and programming languages

which allow control programs to be written in high level languages such as ‘C’ or Visual

Basic. Graphical programming tools are also available for designing control and instrumen-

tation applications more quickly and easily. An example of this type of system is given in

Chapter 16.

1.5 The Microcontroller

We have now looked at some of the main ideas to be used later in explaining microcontroller

operation: hardware, software, how they interact and how the function of complex systems

can be represented in a simplified form such as block diagrams and flowcharts. We can now

compare the PC system with an equivalent microcontroller system.

The microcontroller can provide, in a simplified form, all the main elements of the conven-

tional microprocessor system on a single chip. As a result, less complex applications can be

designed and built quickly and cheaply. A working system can consist of a microcontroller

chip and just a few external components for feeding data and control signals in and out.

1.5.1 A Microcontroller Application

A simple equivalent of the word processing application described above could be built as shown

in Fig. 1.9, around an MCU (microcontroller unit).

The basic function of the system shown is to store and display numbers which are input on

the keypad. The microcontroller chip can be programmed to scan the keypad and identify any

key which has been pressed. The keys are connected in a 3×4 grid of rows and columns, so

that a row and a column are connected together when the key is pressed. The microcontroller

can identify the key by selecting a row and checking the columns for a connection. Thus, four

input lines and three outputs are required for connection to the microcontroller. In order to

simplify the drawing, these parallel connections are represented by the block arrows.

Seven-segment displays show the input numbers as they are stored in the microcontroller.

Each display digit consists of seven light emitting diodes (LEDs) which show as a line segment

of the number when lit. Each number from 0 to 9 is displayed as a suitable pattern of lit

segments.

Microcontroller

0

1 2 3

4 5 6

7 8 9

#*

Keypad Display

Select
digit

Select
row

Read
column

Output digit

Clock

MCU

Figure 1.9 Microcontroller keypad display system.

16 Computer Systems

The basic display program could work as follows: when a key is pressed, the digit is displayed

on the right (least significant) digit, and subsequent keystrokes will cause the previously entered

digit to shift to the left, to allow decimal numbers up to 99 to be stored and displayed.

Calculations could then be performed on the data, and the result displayed.

The starting point for writing the program for the microcontroller is to convert the general

description given above into a description of the operations which can be programmed into the

chip using the set of instructions which are available for that microcontroller. The instruction

set is defined by the manufacturer of the device. The process whereby the required function

is implemented is called the program algorithm, which can be graphically represented by a

flowchart (Fig. 1.10).

Keydisplay

Initialise

Scan keypad

Key pressed?

Convert key to
seven-segment code

First digit?

Shift digits
left in display

Display least
significant digit

No

Yes

Figure 1.10 Flowchart for keypad display program.

With suitable development of the software and/or hardware, the system could be modified to

work as a calculator, message display, electronic lock or similar application. Additional digits

could be added to the display as required. Keyboard scanning and display driving are standard

operations for microcontrollers, and the techniques required to create the working application

will be explained in later chapters.

The Microcontroller 17

1.5.2 Programming a Microcontroller

Some microcontrollers have ROM program memory, which is programmed before the chip

is fitted into the application circuit, and cannot be changed. One-time programmable (OTP)

devices are generally used for longer production runs where the program is known to be correct.

We will be using PIC chips which have flash program memory, which can be erased and

re-programmed many times, which is invaluable when learning. A PIC device is programmed by

placing it in a special programming unit which is attached to a host computer (Fig. 1.11). Note

the zero insertion force (ZIF) socket which will accept different-sized chips for programming.

The program is written and converted to machine code in the host computer using suitable

development system software and downloaded via a serial data link to the chip in the programmer

unit. Themicrocontroller is then taken out of the programmer, and placed in the application circuit.

The circuit can then be checked for correct operation.

Having introduced some basic ideas concerning microprocessors and microcontrollers, in the

next chapter we will review some principles of digital circuits and microprocessor systems.

The process of creating microcontroller applications such as the example outlined above can

then be tackled.

Programmed PIC
chip then filled into
application circuit

Host
computer

Edit, assemble,
test, debug and

downloade
PIC program

Application
circuit

Programmer
unit

with chip socketData link

PIC chip being
programmed

(a)

(b)

Figure 1.11 Programming a PIC microcontroller. (a) PIC program downloading; (b) PIC
programming unit.

18 Computer Systems

Summary

• The PC consists of data input, storage, processing and output devices.

• The main unit is a modular system, consisting of the motherboard, power supply, disk drives
and expansion cards containing interfacing circuits plugged into the motherboard.

• The motherboard carries the microprocessor (CPU) chip, RAM memory modules, a BIOS
ROM, ISD and keyboard interface.

• The CPU communicates with the main system chips via a shared set of address and data
bus lines. The address lines select the device and location for the data to be transferred on
the data bus.

• The microcontroller provides, in simplified from, most of the features of a conventional
microprocessor system on one chip.

Questions

1. Name at least two PC input devices, two output devices and two storage devices.

2. Why is the BIOS ROM needed when starting the PC?

3. Why are shared bus connections used in the typical microprocessor system, even though
it slows down the program execution?

4. State two advantages of the modular PC hardware design.

5. Why does the PC take so long to start up?

6. Sort these data paths into serial and parallel:
(a) internal data bus
(b) keyboard input
(c) VDU output
(d) printer output
(e) modem I/O

7. State the function, in ten words or less, of the:
(a) CPU
(b) ROM
(c) RAM
(d) ISD
(e) address bus
(f) data bus
(g) program counter
(h) instruction register

8. Explain the difference between a typical microprocessor and microcontroller.

The Microcontroller 19

Activities

1. Study the messages which appear on the screen when PC is switched on, and explain their

significance with reference to the system operation.

2. Under supervision if necessary, and with reference to relevant manuals, carry out the

following investigation: Disconnect the power supply and remove the cover of the main

unit of a PC and identify the main hardware subsystems – power supply, motherboard

and disk units. On the motherboard, identify the CPU, RAM modules, expansion slots,

keyboard interface, VDU interface, disk interface, printer interface. Is there an internal

modem or network card? Are there any other interfaces fitted?

3. Run the wordprocessor and study the process of word-wrapping which occurs at the end of

each line. Describe the algorithm that determines the word placement, and the significance
of the space character in this process. Draw a flowchart to represent this process.

Chapter 2
Information Coding

2.1 Number Systems

2.2 Machine Code Programs

2.3 ASCII Code

This chapter introduces some methods for representing information within microprocessor
systems. Binary and hexadecimal number systems will be outlined, so that data storage and
program coding methods can be explained.
Much of modern technology is based on the use of mathematical models to represent

information and processes in the real world. These mathematical models are used in engineering
to help design new systems and products. For instance, the three-dimensional drawing of a
suspension arm for a car created on a CAD (computer aided design) system screen is generated
from a digital representation of the shape of the part in the memory of the computer. The
advantages of the computer model are fairly obvious – it can be stored on disk, transferred
electronically and modified much more easily than the equivalent information on paper. The
component design can also be mathematically analysed in the computer prior to construction.
For example, the stresses and strains to which the component will be subject at its final position
in the suspension assembly can be studied. Further, when a component design is finished, the
design data can be converted directly to a program for a machine tool which will automatically
manufacture the part.
The programs for our microcontroller applications will be stored in the same way; we

therefore need to know something about how such data is represented in the computer.

2.1 Number Systems

Mathematics is based on number systems, which use a set of characters to represent numerical
values. The characters used are simply symbols, just squiggles on a page, but the number
systems they are part of have been developed over thousands of years – because they are so
useful.
In microprocessor, microcontroller and digital electronic systems, numerical processing is

carried out using binary codes, a number system which has only come into common use with the
development of digital computers. We therefore have to understand binary numbering in order
to use a microcontroller. Another number system, hexadecimal, is also useful here because it
provides a more compact way of representing binary code.

Number Systems 21

2.1.1 Decimal: Base 10

The name of each number system refers to the ‘base’ of the number system, which corresponds
to the number of symbols used in representing values. In decimal, ten symbols are used, with
which, hopefully, you are familiar:

0 1 2 3 4 5 6 7 8 9

Why use a particular base number? The reason for using ten is simple – we humans have
ten fingers which can be used for counting, so the decimal system was developed as a way of
writing this down and doing calculations on paper (or stone!) instead of on our fingers. We
use the term ‘digit’ to refer to fingers and numbers and ‘digital’ to describe binary electrical
circuits. The use of written numbers was essential for the original development of industry and
commerce.
Assuming that we know how to count and write down numbers in decimal, let’s analyse

what a typical number means. Take the number 274; in words, it is two hundred and seventy
four. This means: take two hundreds, seven tens and four units and add them together. The
position of each digit in the number is literally significant; each column has a weighting which
applies to the digit in that column. As you know, the least significant digit is conventionally
placed at the right, and the most significant at the left. More digits are added at the left hand
end as the number size increases. In decimal, the columns have a weight 1, 10, 100, etc. Note
that these correspond to a power series of 10, the number system base. Another example is
detailed in Table 2.1.
A number system can be used with any base you like, but some are more useful than others.

For instance, relics of the base 12 system are still in use – think of clocks, boxes of eggs and
measurement of angles. Base 12 is useful because 12 is divisible by 2, 3, 4 and 6, giving lots of
useful fractions – a half, a third, a quarter and one-sixth. However, the decimal system is our
standard system, so the analysis of other systems will still be based on decimal for comparison
of number values.

2.1.2 Binary: Base 2

Binary is used in digital computer systems because it represents the way that values are stored
and processed. The binary digits, 0 and 1, represent two voltage levels used in digital circuits,
typically 5V and 0V. We can understand the binary system by comparing it with decimal –
the basic rules are the same for any number system.
In binary, the base is 2, so the column weighting is a power series of 2, as shown in Table 2.2

(note that any number to the power zero has the value 1). With a base of 2, only the digits

Table 2.1 Structure of a decimal number

Column weight 1000 100 10 1

Power of base 103 102 101 100

Digits 3 6 5 2

Total value = (3×1000) + (6×100) + (5×10) + (2×1)

22 Information Coding

Table 2.2 Structure of a binary number

Most significant bit (MSB) — Least significant bit (LSB) —
� �

Column weight 27 26 25 24 23 22 21 20

Decimal weight 128 64 32 16 8 4 2 1

Example number 1 0 1 0 0 0 1 1

Decimal equivalent 128 + 0 + 32 + 0 + 0 + 0 + 2 + 1 = 163

0 and 1 are available, so the numbers tend to have lots of digits. For instance, a 32-bit computer
uses 32-digit binary numbers. An example with 8 digits is given showing what the digits
represent and how to convert the value back to decimal.
The decimal equivalent in all number systems can be calculated by multiplying the digit

value by its weighting in decimal, and then adding the resulting column products. In binary,
because the digit value is 1 or 0, the result can be obtained by simply adding the digit weight
where the digit value is a ‘1’, because any number multiplied by zero is zero. When decimal
data is entered into a computer, the values are converted to binary. The program instructions
which process input and output data are also stored as binary codes.

2.1.3 Hexadecimal: Base 16

Binary numbers have lots of digits, so they are not very easy to understand when written down
or printed out. Conversion to decimal is not particularly straightforward, so hexadecimal is used
as a way to represent binary numbers in a compact way, while allowing easy conversion back
to the original binary.
Hexadecimal (base 16), or ‘hex’ for short, uses the same digits as the decimal system from

0 to 9, then uses letters A to F, as a single character representation for numbers 10–15. Thus,
characters which are normally used to make words, are here used as numbers, because the
symbols are already available. A binary number can then be easily converted to hex by writing
it down in groups of 4 bits, and then converting each group to its equivalent hex digit, as in
Table 2.3.
The base of the number can be shown as a subscript where necessary to avoid confusion.

All number systems use the same set of characters, so if the base of the number given is not
obvious from the context, it can be specified. For example, the number 100 (one, zero, zero)
could have the decimal value 4 in binary, 100 (one hundred) in decimal or 256 in hexadecimal.
A letter following a number can also indicate its base, such as A9h for hexadecimal. Later, we
will see other ways of indicating numerical type when programming.
Some examples of equivalent values are given in Table 2.4. The numbers are printed in

‘Courier’ type, as used on old-fashioned typewriters, because each character occupies the same
space, so all the digits line up neatly in columns.

2.1.4 Counting

A list of equivalent numbers, counting from zero, is given in Table 2.5, with some comments
on important values. This table also defines memory capacity in microprocessor systems; for
example, ‘1k’ of memory is 1024 locations. Notice that 1024= 210. This is worth remembering
as a starting point in calculating memory capacity.

Number Systems 23

Table 2.3 Hexadecimal digits

Decimal Binary Hexadecimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Table 2.4 Examples of equivalent values

Decimal Binary Hexadecimal

1610 1 00002 1016

3110 1 11112 1F16

10010 110 01002 6416

16910 1010 10012 A916

25510 1111 11112 FF16

102410 100 0000 00002 40016

Table 2.5 Significant equivalent numbers

Decimal Binary Hex
(Base 10) (Base 2) (Base 16) Comment

0 0 0 All the same
1 1 1 All the same
2 10 2 [21] Use 2nd column in binary
3 11 3 Maximum 2-bit count
4 100 4 [22] Use 3rd column in binary
5 101 5
6 110 6

7 111 7 Maximum 3-bit count
8 1000 8 [23] Use 4th column in binary
9 1001 9 Decimal and hex same until 9

10 1010 A Use letters in hex
11 1011 B
12 1100 C
13 1101 D

continued...

24 Information Coding

Table 2.5 continued

Decimal Binary Hex
(Base 10) (Base 2) (Base 16) Comment

14 1110 E

15 1111 F Maximum 4-bit count
16 1 0000 10 [24] Use 2nd column in hex
17 1 0001 11 Use space to clarify binary
18 1 0010 12
19 1 0011 13
20 1 0100 14
21 1 0101 15
22 1 0110 16
23 1 0111 17
24 1 1000 18
25 1 1001 19
26 1 1010 1A
27 1 1011 1B
28 1 1100 1C
29 1 1101 1D
30 1 1110 1E

31 1 1111 1F Maximum 5-bit count
32 10 0000 20 [25]
33 10 0001 21
34 10 0010 22
..
62 11 1110 38

63 11 1111 39 Maximum 6-bit count
64 100 0000 40 [26]
65 100 0001 41
..

127 111 1111 79 Maximum 7-bit count
128 1000 0000 80 [27]
129 1000 0001 81
..

254 1111 1110 FE

255 1111 1111 FF Maximum 8-bit count
256 1 0000 0000 100 [28]
..

511 1 1111 1111 1FF Maximum 9-bit count
512 10 0000 0000 200 [29]
..

1023 11 1111 1111 3FF Maximum 10-bit count
1024 100 0000 0000 400 [210] = 1k

..

2047 111 1111 1111 7FF Maximum 11-bit count
2048 1000 0000 0000 800 [211] = 2k

..

4095 1111 1111 1111 FFF Maximum 12-bit count
4096 1 0000 0000 0000 1000 [212] = 4k

..

65535 1111 1111 1111 1111 FFFF Maximum 16-bit count

Machine Code Programs 25

The rules for counting in any number system are given below.

1. Start with all digits set to zero.

2. In the right digit position (LSB), count up from zero to the maximum digit available (1 in

binary, 9 in decimal, F in hexadecimal).

3. If a column value is at its maximum, reset it to zero, and increment (add 1 to) the next

column to the left.

In microprocessors, there is a fixed number of digits in the registers which store binary

numbers (8, 16, 32 bits or more). If the number storage space has a fixed number of digits,

leading zeros must be used to fill the empty positions, because each register bit must be either

1 or 0, and leading zeros do not alter the value.

2.1.5 Bits, Bytes and Words

One binary digit represents a ‘bit’ of information. A group of 8 bits is called a ‘byte’, and

larger binary codes are called ‘words’. This last term is used fairly loosely, but it sometimes

refers to a 16-bit code, with a 32-bit code called a ‘long word’, specifically in the Motorola

68000 CPU, which was widely used in the past. As we now know, in hexadecimal four bits are

represented by one hex digit, so a byte is 2 hex digits, and so on. Thus, register and memory

values are typically displayed as hexadecimal numbers with 2, 4, 8, 16 . . . digits.

2.2 Machine Code Programs

Microcontrollers store their program code and data in binary form, typically using voltage levels

of +5V and 0V to represent binary 1 and 0. The program is normally stored in non-volatile

ROM, and is executed by passing each code in turn to a decoding circuit which sets up the

processor to carry out that particular instruction. The processor then operates on input or stored

data, and switches the outputs as required.

2.2.1 Data Words

Conventional microprocessors handle the code in 8-bit binary words, or multiples of 8 bits.

The data word size has increased with the complexity of the integrated circuits available; some

examples are given in Table 2.6.

The first generation of popular UK home computers, such as the Commodore, Apple, BBC

and Spectrum used 8-bit microprocessors; that is, the program and data words were all 8-bit

numbers. Second generation home games machines such as the Atari and Amiga used the 16-bit

68000 chip, which was also the processor used in the Apple Mac, the first mass-produced

computer to use a WIMP interface.

The original IBM PC was a business-oriented personal computer using the Intel 8088, which

handled 16 bits inside the CPU, but only 8 bits externally. The Intel processor then went through

a progressive development, leading to the 32-bit Pentium processor, and on to the current

generation. At the same time clock speeds increased, and the processor complexity developed,

so that the data processing capability of the current Pentium PC is massive compared with the

original 8-bit machine.

26 Information Coding

Table 2.6 Comparison of microprocessors and microcontrollers

Microprocessor/
microcontroller

Computer/
application

Address
bus (bits)

Data bus
(bits)

Instruction
(bits)

Internal CPU
data (bits)

Zilog Z80 Spectrum 16 8 8/16/24 8

Rockwell 6502 Commodore/BBC 16 8 8/16/24 8

Motorola 68000 Atari/Amiga/Mac 24 16 16/32/48 16

Intel 8086/8 PC XT 16 + 4 8/16 16/32/48 16

Intel Pentium Pentium PC 32 32 16/32/64 32

Intel 8051 Industrial/Control Internal 16 Internal 8 16 8

PIC 16F84 Industrial/Control Internal 13 Internal 8 14 8

The 8051 was one of the first widely used microcontrollers and is well established in the

industrial control market. The PIC family is a more recent challenger for the position of leading

microcontroller type. Its manufacturer, Microchip, has succeeded by initially specialising in

small, cheap, re-programmable devices which were good for beginners, and then expanding the

range, providing free development tools along the way.

2.2.2 Machine Code

Microprocessor machine code is a list of binary codes which are often shown in hexadecimal.

An example of 6502 code is listed in Table 2.7.

The program code is a list of 8-bit binary numbers, stored in numbered memory locations,

here starting at 020016, forming a list of instructions for the microprocessor to execute. The

function of this particular program is to load a number given in the program �5516� into the main

data register (called A), and then store it in a memory location �030016�. The program shows

two instructions, each of which starts with the instruction (operation) code itself �A916�8D16�,

which are followed by data required by the instruction (a number to load, and a memory

address to store it in). These are called the operands. Note that in 6502 programs, the complete

instruction may consist of 1, 2 or 3 bytes.

Table 2.7 6502 machine code

Memory address Hex code Meaning

First 0200 A9 Load the main data register A
instruction 0201 55 with the number 55

Second 0202 8D Store the contents of register A
instruction 0203 00 in the memory location

0204 03 whose address is 0300

Next 0205 XX Next instruction code � � �
instruction 0206 XX Next operand � � �

Machine Code Programs 27

2.2.3 8086 Machine Code

The Intel 8086 was the CPU developed for in the original IBM PC. It is useful to know
something about 8086 machine code (see Table 2.8) because this is the native language of
the PC, and it can be studied without access to any other hardware system. As with other
processor families, the same basic instruction set has been expanded for later processors, but
the basic syntax is the same, so 8086 code should run on a Pentium processor. Backward code
compatibility has always been a major feature of the Intel/Microsoft product line.

Table 2.8 PC machine code

Address
segment: Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

1B85:0100 OF 00 B9 8A FF F3 AE 47-61 03 1F 8B C3 48 12 B1
1B85:0110 04 8B C6 F7 0A 0A D0 D3-48 DA 2B D0 34 00 74 1B
1B85:0120 00 DB D2 D3 E0 03 F0 8E-DA 8B C7 16 C2 B6 01 16

8086 code can be viewed on a PC by selecting the ‘MS-DOS prompt’ from the Windows
Start button menu. An MS-DOS window should open with a ‘>’ symbol and flashing cursor.
Text commands can then be entered (before Windows, all operating system actions had to
be entered this way). Type ‘debug’, which is a text command to the operating system. A ‘-’
prompt appears, to indicate that Debug commands will be accepted. If ‘d’ (dump) is entered, the
contents of a block of PC program memory will be dumped to the screen as 2-digit hex codes.
The addressing system in the Intel processor was more complicated than that in most other

processors, with the address derived from the combination of a 16-bit segment address and an
offset. This system was originally devised when the 16-bit 8086 was introduced, to maintain
compatibility with older 8-bit systems. The memory was at this stage divided into 10× 64k
segments (64k is the maximum memory space addressable with a 16-bit address). Thus each
address is shown in the form ‘SSSS:OOOO’, where SSSS is the 4-hex-digit segment address
and OOOO is the 4-bit offset. For example, if SSSS= 1B8516 and OOOO= 010016, then the
actual address will be 1B850+ 0100 = 1B95016. In theory, this system could address up to
4 gigabytes of memory.
If the Debug command ‘u’ is entered, the source assembly language ‘mnemonics’ are

displayed for the current memory range. It can be seen that each instruction can contain 1, 2,
3 or 4 bytes. Assembly language is the programming method used for writing machine code
programs, because the assembler mnemonics are easier to remember than the corresponding
binary codes. An assembler utility is required to convert the source code mnemonics into
executable machine code. This idea will be explained in more detail later, using the PIC
instruction set as an example.

2.2.4 PIC Machine Code

The PIC machine code program is easier to interpret than the 8086 code, because it has
instructions which are of fixed length (14 bits in the 16F84). In hexadecimal, a 14-bit instruction
must be represented with four digits, with the most significant two bits unused. The default
program start address (which is used if the programmer does not specify another), is 0000
(zero). A simple PIC machine code program is shown in Table 2.9.
The machine code for the first PIC program, BIN1, that we will be studying later is

listed. It consists of five instructions, stored at addresses 0000–0004 in the program memory.

28 Information Coding

Table 2.9 Simple PIC machine code program BIN1

Program memory Program machine
address code Meaning of Machine Code

0000 3000 Move the number 00 into the working register
0001 0066 Copy this code into port B data direction register
0002 0186 Clear port B data to register to zero
0003 0A86 Increase the value in port B data register by one
0004 2803 Jump back to Address 0003

The meaning of each instruction is given, but a fuller explanation will have to wait for now.

Each instruction is 14-bits long, but the actual operation code and operand length varies within

the fixed total, as shown in Table 2.10.

Table 2.10 PIC machine code in binary form

Memory address Binary machine code Meaning

000 11 0000 0000 0000 Load W with 00000000 (0)
001 00 0000 0101 0110 Copy W to direction register of port 110 (6)
002 00 0001 1000 0110 Clear data register of port 110 (6)
003 00 1100 1000 0110 Increment register of port 110 (6)
004 10 1000 0000 0011 Jump back to address 0000000011 (3)

The operation code part of the 14-bit instruction is shown in bold, while the operand is

shown in italics. The operands refer to numbered registers and addresses within the PIC chip.

For example, the last instruction operand contains the address of the third instruction, because

the program jumps back and repeats from this point.

The PIC machine code can be seen in the programmer software (MPLAB) window prior

to downloading, or printed in the source program list file. When the PIC chip is placed in

the programmer unit, the binary codes for the program can be sent to its program memory, in

serial form, one bit at a time. Each 14-bit code is stored at the address location (0000–0004)

specified. When the program is later executed, the codes are interpreted by the processor block

in the chip and the action carried out. The meaning and use of the registers will be explained

later, when this program will be analysed in more detail.

2.3 ASCII Code

ASCII (American standard code for information interchange) is a type of binary code for

representing alphanumeric characters, as found on your computer keyboard. The basic code

consists of seven bits. For example, capital (or ‘upper case’) ‘A’ is represented by binary code

100 0001 (65), ‘B’ by 66, and so on to ‘Z’ = 65+ 25 = 90 = 10110102. Lower case letters

and other common keyboard characters such as punctuation, brackets and arithmetic signs, plus

some special control characters also have a code in the range 0–127. The numerical characters

ASCII Code 29

also have a code, for example ‘9’ = 01110012, so you sometimes need to make it clear if the
code is the binary equivalent �10012� or the ASCII code �01110012�.
We will not be using ASCII codes a great deal in this book, but we need to know of them, as

they are the standard coding method for text files. When a program is typed into the computer
to create a ‘source code file’, this is how the text is stored. Later, the ASCII codes must be
converted into corresponding binary machine code instructions. If this is confusing, come back
to this point when we have looked at programming in more detail!

Summary

• Programs and data in a microprocessor system are stored in binary form, typically as ‘0’ = 0V
and ‘1’ = 5V.

• The binary codes can be displayed and printed in hexadecimal form, where 1 hex digit = 4
binary bits.

• A microprocessor program consists of a sequence of binary codes representing instructions
and data which are decoded and executed by the CPU.

• The microprocessor memory contains a set of locations, numbered from zero, where the
program is stored.

• Each program instruction consists of an operation code and (often) an operand.

• Each complete instruction may occupy a fixed number of bits or a variable number of bytes.

Questions

A calculator which converts between number systems is required for this exercise. Attempt the
following calculations manually, and then check the answer on a calculator.

1. Refer to Table 2.5.
(a) Predict the binary equivalent of 3510, 6110 and 102510.
(b) Convert the numbers in (a) from binary to hexadecimal.
(c) Work out the 8-bit binary code for the 6502 program code in Table 2.7.
(d) Write down the 16-bit binary code for the hex address 020316.

2. Write down the hex code, and work out the decimal equivalent number for the binary
numbers:
(a) 1012
(b) 11002
(c) 100111102
(d) 0011 1010 1111 00002

3. Light emitting diodes are often used to display output codes in simple test systems, where
a binary ‘1’ lights the LED. For an 8-bit output, work out the binary and hex code required:
(a) to light all the LEDs,
(b) to switch them all off,

30 Information Coding

(c) to light alternate LEDs, with the LSB = 1.
Now work out the hex data sequence of eight 2-digit hex numbers which will produce:

(d) a bar graph effect on a set of eight LEDs (all off, then LSB on, two on, three on and
so on until all eight are on),

(e) a scanning effect (switch on one LED at a time, in order, LSB first).

Answers

1. (a) 3510 = 1000112
6110 = 1111012
102510 = 100000000012

(b) 3510 = 2316
6110 = 3D16

102510 = 40116
(c) A916 = 101010012

5516 = 010101012
8D16 = 100011012
0016 = 000000002
0316 = 000000112

(d) 020316 = 00000010000000112

2. (a) 1012 = 516 = 510
(b) 11002 = C16 = 1210
(c) 100111102 = 9E16 = 15810
(d) 00111010111100002 = 3AF016 = 1508810

3. (a) 111111112 = FF16

(b) 000000002 = 0016
(c) 010101012 = 5516
(d) 00, 01, 03, 07, 0F, 1F, 3F, 7F, FF16

(e) 00, 01, 02, 04, 08, 10, 20, 40, 8016

Activities

1. The seven-segment display is a device which we will use later as an output device for the
PIC chip. Digits are displayed by illuminating selected segments. A diagram showing the
connections to the LED segments is given in Fig. 2.1(a). The segments are identified by
letter: ‘a’ for the top segment, ‘b’ is the next clockwise round the outside, and so on up to
‘f’ for the top left segment, with the middle segment called ‘g’.
These are connected as shown to a port data register bits 1–7, with the LSB not connected.

Work out the binary and hex codes required to obtain the displayed characters 0–F shown
in Fig. 2.1(b), if the display operates ‘active high’, that is, a ‘1’ in the register switches
the corresponding segment on. Assume that bit 0= ‘0’.

2. Debug is a DOS utility which allows you to operate at machine code level in the PC
system. At the DOS prompt on a PC, enter the command ‘debug’; a prompt ‘-’ is obtained.
(a) Enter ‘?’ and the debug commands are displayed.
(b) Enter ‘d’ (dump) and the contents of the current memory range are displayed in hex

bytes (2 digits), with the ASCII character equivalent at the right. The 4-digit codes

ASCII Code 31

(a)

(b)

cd

e

f
g

a

b

Bit 1
Bit 2

Bit 3
Bit 4
Bit 5
Bit 6

Bit 7

Seven-segment
LED display
(active high)

Figure 2.1 Seven-segment display of hex digits.

on the left are the segment address and offset, separated by a colon. The addresses

are displayed at intervals of 16 (=10H) locations, since each row shows 16 bytes.

(c) Enter ‘u’ (un-assemble), and the assembly code is displayed, one instruction per line.

Note the presence of instructions such as MOV (Move data), ADD (add data), INC

(increase value by 1) and so on. Note also the variable instruction length.
(d) Enter ‘r’ and the processor registers are displayed. Note that at least one of the

segment registers (CS, DS, SS, ES) contains the segment address, and the instruction

pointer (IP) contains the offset.

(e) Enter ‘t’ to trace the machine code execution. The code is executed one instruction

at a time so that you can track the changes in the registers. Note that the system

continues to run normally in background during debugging, so that the screen remains

visible and further debug operations can be called.

(f) Enter ‘q’ to quit.

Chapter 3
Microelectronic Devices

3.1 Digital Devices

3.2 Combinational Logic

3.3 Sequential Logic

3.4 Data Devices

3.5 Simple Data System

3.6 4-Bit Data System

We have seen in Chapter 2 that a microcontroller program consists of a list of binary codes,

stored in non-volatile memory. The instructions are executed in sequence, processing data

obtained from the chip registers or inputs. The results are stored back in the registers, in RAM

locations or sent to an output device. We will now look briefly at the basic circuit elements

needed to provide these functions. The intention is to explain the operation of basic elements of

logic devices, which include microcontrollers, in enough detail to allow the reader to understand

PIC data sheets.

3.1 Digital Devices

The binary codes which make up the program and data in the microcontroller are stored and

processed as electronic signals. The binary numbers are conventionally represented as follows:

Binary 0 = 0V

Binary 1 = +5V

A+5V supply, usually derived from the mains, is therefore required to power the circuits.

It must be able to provide sufficient current for the processor circuits, at a voltage which must

be between 4.75V and 5.25V for standard TTL (Transistor–Transistor Logic).

The power consumed in operating a digital circuit simply appears as waste heat, which must

be removed from the chip. This is why a large complex device such as the Pentium processor

typically has a heatsink and fan attached. The power consumption is the product of the supply

voltage and current drawn at the power supply pins of the chip:

P = VI Watts (I = chip current)

= V2 /R Watts (R = input resistance of chip)

Digital Devices 33

If the same logic function can be implemented with less power consumed, this problem of

power dissipation can be reduced and system efficiency increased. There are two ways to do

this: to use a low power transistor type in the circuits, or to reduce the voltage, or both. A supply

of 3.3V is now commonly used to reduce power consumption in large chips. The heating effect

is proportional to the supply voltage squared (see above), so the voltage reduction from 5V to

3.3V will reduce heating and power consumption by 66%.

In the original small-scale chips, bipolar transistors were used to form TTL gates. However,

these have relatively large power dissipation, and run at correspondingly high temperatures.

This limits the number of gates that can be operated on one chip, so VLSI (very large-scale

integrated) circuits normally use FET-based (field effect transistor) logic gates, because of their

lower power consumption. Also, these chips can run from a wider range of supply voltages,

so are more suitable for battery-powered applications, such as laptop computers. There is

continuing development of logic technologies, to obtain higher speed, lower cost and lower

power dissipation in increasingly complex chips.

The PIC chip is a CMOS (complementary metal-oxide semiconductor) device, using FETs

as digital switches. These, when combined together in various ways, create logic gates that

can process binary data. For example, we will see how logic gates can be combined to create

a binary adder, which is an essential feature of any microprocessor, allowing it to carry out

binary arithmetic.

3.1.1 FET Logic Gates

The FET is the basic switching device which appears in the PIC data sheet in the equivalent

circuits for various functional blocks. It is a transistor which works as a current switch; current

flow through a semiconductor ‘channel’ is controlled by the voltage at the input ‘gate’.

A single FET is shown in Fig. 3.1(a). Current flows through the channel when it is switched

on by applying a positive voltage between the gate and 0V. When the input voltage is zero, the

channel has a high resistance to current flow, and the device is off. Some FETs operate with a

negative voltage at the input to control the current flow.

A logical ‘invert’ operation is implemented by the FET circuit in Fig. 3.1(b). Assume that

the FET is switched on with +5V at input A. The channel will then have a low resistance

allowing current to flow through the load resistor, R, causing a volt drop across it. This means

that the voltage at F must fall, and for correct operation, F must be near zero volts when the

FET is on. Thus the output is near 0V (logic 0) when the input is +5V (logic 1).

Conversely, the output is ‘pulled up’ to +5V (logic 1) by R when the input is low (logic 0).

There is then no current flow in the FET channel, and no voltage dropped across the resistor.

The output must therefore be at the same voltage as the supply, +5V.

The logic operation ‘AND’ requires the output of a gate to be HIGH only when all inputs

are HIGH (see Table 3.1). ‘NAND’, the inverse operation, requires that the output is LOW

only when all inputs are HIGH. This operation can be implemented as shown in Fig. 3.1(c).

The output F is only low when both transistors are on. The AND function can be obtained

by inverting the NAND output; this can be achieved by connecting the inverter circuit to the

NAND output.

Similarly, the logic operation ‘OR’ requires the output of a gate to be HIGH when either

input is HIGH (see Table 3.1). ‘NOR’, the inverse output, requires that the output is LOW

when either input is HIGH. This operation can be implemented as shown in Fig. 3.1(d). The

output F is low when either transistor is on. The OR function can then be obtained by inverting

the NOR output, by connecting the inverter circuit.

34 Microelectronic Devices

Input A

Input B

Input
voltage

Current flow

Channel

0 V

Gate

0 V

Output F

+5 V

Input A

Load
resistance

0 V

Output F

+5 V

 Input A

Input B

Load
resistance

0 V

Output F

+5 V

Load
resistance

(a)

(c)

(b)

(d)

Figure 3.1 Field effect transistor logic gates. (a) Field effect transistor; (b) FET logic inverter;
(c) Simplified NAND gate; (d) Simplified NOR gate.

Table 3.1 Logic table for one and two input gates

Outputs

Inputs NOT AND OR NAND NOR XOR

0 1 - - - - -
1 0 - - - - -

00 - 0 0 1 1 0
01 - 0 1 1 0 1
10 - 0 1 1 0 1
11 - 1 1 0 0 0

3.1.2 Logic Circuits

In real logic gates, the circuits are a little more complex. There are no actual resistors used

because they waste too much power; instead, other FETs are used as ‘active loads’, which

reduces the power which would be dissipated as heat in the resistors. The logic operations in

Table 3.1 are all we need to make any logic or processor circuit.

Digital Devices 35

Digital circuits are based on various combinations of these logic gates, fabricated on a silicon

wafer. They can be supplied as discrete gates on small-scale ICs (SSI), or as complete logic

circuits on large-scale ICs (LSI). Microprocessors are the most complex of all, containing

thousands of gates and millions of transistors; these are called very large-scale ICs (VLSI).

3.1.3 Logic Gates

Whichever technology is used to fabricate the gates, the logical operation is the same. The

symbols for logic gates used in most data sheets, including the PIC, conform to US standards,

because that is where the chips are often designed. The basic set of logic devices are the AND

gate, OR gate and NOT gate (or logic inverter), shown in Fig. 3.2.

There are three additional gates which can be made up from the basic set, the NAND gate,

NOR gate and XOR (exclusive OR) gate. The NAND is just an AND gate followed by a NOT

gate, and a NOR gate is an OR gate followed by a NOT gate. An XOR gate is similar to an OR

gate (see Table 3.1). The inputs on the left accept logic (binary) inputs, producing a resulting

output on the right. These logic values are typically represented by +5V and 0V, as we have

seen. These gates, in various combinations, are used to make the control and data processing

circuits in a microprocessor, microcontroller and supporting chips. Their functions have been

summarised in the logic table, Table 3.1.

The logic table shows all the possible input combinations for one and two inputs. Obviously,

the only possible inputs for the inverter are 1 and 0. The number of different inputs for the

two input gates is four, that is, the total number of unique 2-bit codes. When specifying logic

gate or circuit operation, all possible input combinations can be generated by counting up from

zero in binary to the maximum allowed by the number of inputs. The resulting output which is

obtained from each gate is then listed.

(c) NOT gate

(a) AND gate (b) OR gate

(d) XOR gate

(f) NOR gate(e) NAND gate

Figure 3.2 Logic gate symbols (US standard).

36 Microelectronic Devices

The operation of logic circuits is shown in this way in IC data sheets, sometimes with 0

represented by L (low) and 1 by H (high). Note that only two inputs to each gate are shown

here, but there can be more than two. The logical operation will be similar; for instance, a

3-input AND gate requires all inputs to be high to give a high output.

Variations may appear in data sheets. For instance, the circle representing logic inversion

may be used at the input to a gate, as well as the output. It should always be possible to work

out the logical operation from the basic logic symbol set. More detailed analysis and design of

discrete logic circuits is provided in standard textbooks, and does not need to be covered here.

Such discrete design principles are, in any case, less important now for the circuit designer

due to the availability of microcontrollers such as the PIC which provide a software-based

alternative to ‘hard-wired’ logic.

3.2 Combinational Logic

Logic circuits can be divided into two categories, combinational and sequential. Combinational

logic describes circuits in which the output is determined only by the current inputs, and not by

the inputs at some previous point in time. Circuits for binary addition will be used as examples

of simple combinational logic. Binary addition is a basic function of the arithmetic and logic

unit (ALU) in any microprocessor. A 4-bit binary addition is shown in Fig. 3.3, to illustrate the

process required.

The process of binary addition (Fig. 3.3) is carried out in a similar way to decimal addition.

The digits in the least significant column are added first, and the result 1 or 0 inserted in the

‘Sum’ row. If the sum is two (102�, the result is zero with a carry into the next column. The

carry is then added to the sum of the next column, and so on, until the last carry out is written

down as the most significant bit of the result. The result can therefore have an extra digit, as

in our example.

1 1 1 1 (A)

+ 0 1 1 0 (B)

= 0 1 0 1 (Sum)

Carry: 1

1

1 1

Figure 3.3 Example of binary addition.

Having specified the process required, we can now design a logic circuit to implement this

process. We will use a binary adder circuit for each column, feeding the carry bits forward as

required.

3.2.1 Simple Binary Adder

The basic operation can be implemented using logic gates as shown in Fig. 3.4.

The two binary bits are applied at A and B, giving the result at F. Obviously, some additional

mechanism is needed to store and present this data to the inputs, and this will be described

later. This circuit is equivalent to a single XOR gate, which can therefore be used as our basic

binary adder.

Combinational Logic 37

A

B
F

Figure 3.4 Binary adder logic circuit.

3.2.2 Full Adder

To add complete binary numbers, a carry bit must be generated from each bit adder, and added
to the next significant bit in the result. This can be done by elaborating the basic adder circuit
as shown in Fig. 3.5(a).
The required function of the circuit can be specified with a logic table, as shown in Fig. 3.5(b).

To implement this logic function, the carry out (Co� from each stage must be connected to the
carry in (Ci� of the next, so that we end up with four full adders cascaded together. The overall

Input
A

Input
B

Carry in
Ci

Carry out
Co

Sum
S

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

0

1

1

1

0

1

1

0

1

0

0

1

A

Ci

S

Co

Inputs

Carry
in Sum

Carry
out

(a)

(b)

B

Figure 3.5 Full adder circuit and logic table. (a) Full adder logic circuit; (b) Full adder logic table.

38 Microelectronic Devices

carry in must be applied to the Ci of stage 1 and the carry out will then be obtained from Co

of stage 4.

3.2.3 4-Bit Adder

A set of 4 full adders can be used to produce a 4-bit adder, or any other number of bits, by

cascading one adder into the next. The PIC 16F84A ALU, for example, processes 8-bit data. As

we are not particularly concerned with exactly how the logic is designed, as we can hide it inside

a block, and then define the required logical inputs and the resulting outputs (See Fig. 3.6).

All possible input combinations must be correctly processed, and these can be specified by

using a binary count in the input columns. The state of the output for each possible input

INPUTS OUTPUT
Input A Input B Output sum

Row A4 A3 A2 A1 B4 B3 B2 B1 Ci Co S4 S3 S2 S1 Dec

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1

3 0 0 0 0 0 0 0 1 1 0 0 0 1 0 2

4 0 0 0 0 0 0 1 0 0 0 0 0 1 0 2

5 0 0 0 0 0 0 1 0 1 0 0 0 1 1 3

6 0 0 0 0 0 0 1 1 0 0 0 0 1 1 3

.
etc. etc.

.

509 1 1 1 1 1 1 1 0 1 1 1 1 0 1 30

510 1 1 1 1 1 1 1 1 0 1 1 1 1 0 30

511 1 1 1 1 1 1 1 1 1 1 1 1 1 1 31

Co Carry out

S1

S2

S3

S4

Sum outputInput B

B1

B2

B3

B4

A1

A2

A3

A4

Input A

4-bit
binary
adder

Carry in Ci

(a)

(b)

Figure 3.6 4-bit binary full adder. (a) 4-bit adder block; (b) Logic table for 4-bit adder.

Sequential Logic 39

combination is then defined. With 2× 4-bit inputs, plus the carry in, there are 512 possible

input combinations in all, so the logic table only shows the first few and last rows, as examples.

In the past, logic circuits had to be designed using Boolean mathematics and built from

discrete chips. Now, programmable logic devices (PLDs) make the job easier, as the required

operation can be defined with a logic table or function statement. This is entered as a text file

into a PC and converted into programming instructions which are sent to the chip, in much the

same way that the PIC itself can be programmed.

3.3 Sequential Logic

Sequential logic refers to digital circuits whose outputs are determined by the current inputs

AND the inputs which were present at an earlier point in time. That is, the sequence of inputs

determines the output. Such circuits are used to make data storage cells in registers and memory,

and counters and control logic in the processor.

3.3.1 Basic Latch

Sequential circuits are made from the same set of logic gates shown in Fig. 3.2. They are

all based on a simple latching circuit made with two gates, where the output of one gate is

connected with an input of the other, as shown in Fig. 3.7(a).

This circuit uses NAND gates, but NOR gates will work in a similar way. When both inputs,

A and B, are low, both outputs must be high. This state is not useful here, so is called ‘invalid’.

When one input is taken high, the output of that gate is forced low, and the other output high.

Inputs Outputs
Time A B X Y Comment

1 0 0 1 1 Invalid

2 0 1 1 0 X = 1

3 1 1 1 0 Hold X = 1

4 1 0 0 1 Reset X = 0

5 1 1 0 1 Hold X = 0

6 0 1 1 0 Set X = 1

7 1 1 1 0 Hold X = 1

A

B

X

Y

(a)

(b)

Figure 3.7 Basic latch operation. (a) Basic latch circuit; (b) Sequential logic table for basic latch.

40 Microelectronic Devices

The latch is now set, or reset, depending on which output X or Y, is being used. In Fig. 3.7, X

is taken as the output and is set high. This state is ‘held’ when the other input is taken high,

and this gives us the data storage operation required. The output X can now be reset to zero by

taking input B low. This state is held when B is returned high.

The sequence of events is shown in Fig. 3.7(b). At time slot 3 a data bit ‘1’ is stored at X,

while at time slot 7 data bit ‘0’ is stored. Note that in the time slots when both inputs are high,

output X can be high or low, depending on the sequence of inputs before that step was reached.

With additional control logic, the basic latch circuit can be developed to give two main types

of circuit: the D-type (‘Data’) bistable or latch which acts as a 1-bit data store, and T-type

(‘Toggle’) bistable which is used in counters. Such bistable (two stable states) devices are

frequently referred to as ‘flip-flops’. Different kinds of sequential circuits including counters

and registers can be constructed from a general purpose device called a ‘J-K flip-flop’.

Counters will be covered in the next chapter.

3.3.2 Data Latch

A basic sequential circuit block is a data latch, which is shown in Fig. 3.8(a). The input and

output sequence can be represented on a logic table, Fig. 3.8(b). When the enable (EN) input

is high, the output (Q) follows the state of the input (D). When the enable is taken low, the

output state is held. The output does not change until the enable is taken high again. It is called

a transparent latch, because the data goes straight through when the enable is high. There are

other types of latches, called edge-triggered, which latch the data input at a specific point in

Inputs Output
Time D EN Q Comment

1 0 0 x Output unknown

2 0 1 0 Output = Input 0

3 0 0 0 Data 0 latched

4 1 0 0 Data 0 held

5 1 1 1 Output = Input 1

6 1 0 1 Data 1 latched

7 0 0 1 Data 1 held

8 0 1 0 Output = Input 0

Data
input

Enable
input

Data
output

D

EN

Q

(a)

(b)

Figure 3.8 Data latch operation. (a) Data latch; (b) Sequential logic table for data latch.

Data Devices 41

time, when the enable (or ‘clock’) signal changes. This type of circuit block is used in registers
and static RAM to store groups of, typically, 8 bits.
A timing diagram (Fig. 3.9) gives a pictorial view of the latch operating sequence, which

may be easier to interpret than the logic table. It can also provide information about the precise
timing of the signals, if required. This may be important, because there is always a delay
between changes at the input and output of any gate. When designing high-speed circuits in
particular, these timing characteristics must be carefully considered. However, for simplicity,
time delays between the signal edges are not shown in Fig. 3.9.

Data input
D

Enable
EN

Data output
Q

Time

1

0

1

1

0

0

Input 0

2 3 4 5 6 7 81

Invalid Input 0 Hold 0 Hold 0 Input 1 Hold 1 Hold 1

Figure 3.9 Data latch timing diagram.

These signals in the actual circuit can be displayed using an oscilloscope, if small timing
delays are significant. If not, a logic analyser may be used, which operates like a multichannel
digital oscilloscope allowing many signals to be displayed simultaneously; however, it may not
record small time delays. The logic analyser works by sampling the signals at intervals, and
can display the data in numerical form, as in the sequential logic table.

3.4 Data Devices

All data processing or digital control systems have circuits to carry out the following operations:

• data input

• data storage

• data processing

• data output

• control and timing

Data processing devices must be controlled in sequence to carry out useful work. In a
microprocessor system, most of this control logic is built into the CPU and its support chips,
but additional control circuits usually need to be designed for each specific system. In order to

42 Microelectronic Devices

illustrate the principles of operation of microprocessor and microcontroller systems in simplified

form, a set of basic logic devices will be used to make up a basic data processing circuit. These

are shown in Fig. 3.10.

3.4.1 Data Input Switch

In Fig. 3.10(a), a switch (S) and resistor (R) are connected across a 5V supply. If the switch

is open, the data output is ‘pulled up’ to +5V, via the resistor. If the switch is closed, the

logic level at the data output must be zero, as it is connected directly to ground. The resistor

is required to prevent a short circuit between the +5V and 0V supplies, while allowing the

output to rise to +5V when the switch is open.

This only works if a relatively small current is drawn by the load at the data output. This

is usually not a problem, as digital inputs typically draw no more than a few microamps. If

necessary, a capacitor may be connected across the switch for debouncing; if the switch contacts

do not close cleanly, this ensures a smooth transition from high to low, and back.

3.4.2 Tri-State Gate

The tri-state gate (TSG) (Fig. 3.10(b)) is a digital device which allows electronic switching and

routing of signals through a data processing system. It is controlled by the gate enable input

(GE). When GE is active (in this example high), the gate is switched on, and data is allowed

through, 1 or 0. When GE is inactive (low), the data is blocked, and the output goes into a high

impedance (HiZ) state, which effectively disconnects it from the input of the following stage.

The TSG may have an active low input, in which case the control input has a circular invert

Current driver IC

Data
input

0 V

LED

R

Data
output

Data latch

Enable pulse

D Q

Data
input

+5 V

0 V

Data

R

S
TSG
enable
[GE]

Data
out

Tri-state gate IC

Data
in

(a) (b)

(c) (d)

Figure 3.10 Data circuit elements. (a) Switch input; (b) Tri-state gate; (c) Data latch; (d) LED output.

Simple Data System 43

symbol. TSGs can be obtained as individual gates in a small-scale integrated circuit chip, and
are used as basic circuit building blocks within large-scale integrated circuits such as the PIC
microcontroller.

3.4.3 Data Latch

A data latch (Fig. 3.10(c)) is a circuit block which stores one bit of data, as described above.
If a data bit is presented at the input D (1 or 0), and the latch is ‘clocked’ by pulsing the
latch enable input (0, 1, 0), the data appears at the output Q. It remains there when the input is
removed or changed, until the latch is clocked again. Thus, the data bit is stored, and can be
retrieved at a later time in the data processing sequence.

3.4.4 LED Data Display

An LED can provide a simple data display device. In Fig. 3.10(d) the logic level to be displayed
(1 or 0) is fed to the current driver, which operates as a current amplifier and provides enough
current (typically about 10mA) to make the LED light up when the data is ‘1’. The resistor
value controls the size of the current. Seven-segment and other matrix displays use LEDs to
display decimal or hexadecimal digits by lighting up suitably arranged LED segments or dots.

3.5 Simple Data System

The way that data is transferred through a digital system using the devices described above is
illustrated in Fig. 3.11. The circuit allows one data bit to be input at the switch (0 or 1), stored
at the output of the latch and displayed on the LED.
The operational steps are as follows:

1. The data at D1 is generated manually at the switch (‘0’ = 0V and ‘1’= +5V).

2. When the TSG is enabled, the data becomes available at D2 (while the gate is disabled,
the line D2 is floating, or indeterminate).

3. When the data latch is pulsed, level D2 is stored at its output, D3. D3 remains stored until
new data is latched, or the system powered down.

4. While latched, the data at D3 is displayed by the LED (ON = ‘1’), via the current driver
stage.

D1 D2
TSG

TSG
enable
[GE]

+5 V

0 V

Data
input
switch

Data
output
display

D3

Current
driver

Data
latch

Data latch
enable pulse
[LE]

D Q

0 V

EN

Figure 3.11 1-bit data system.

44 Microelectronic Devices

Table 3.2 1-bit system operating sequence

Operation Switch D1 GE D2 LE D3

Data input 1 Open 1 0 x 0 x

Input enable Open 1 1 1 0 x

Latch data Open 1 1 1 0-1-0 1

Input disable Open 1 0 x 0 1

Data input 0 Closed 0 0 x 0 1

Input enable Closed 0 1 0 0 1

Latch data Closed 0 1 0 0-1-0 0

Input disable Closed 0 0 x 0 0

Note that all active devices (gate, latch and driver) must be connected to the +5V power
supply, but these supply connections do not have to be shown in a block diagram or logic circuit.
Table 3.2 details the control sequence, with the data states which exist after each operation.
Note that ‘x’ represents ‘don’t know’ or ‘don’t care’ (it could be 1, 0 or floating).

3.6 4-Bit Data System

Data is usually moved and processed in parallel form within a microprocessor system. The
circuit shown in Fig. 3.12 illustrates this process in a simplified way.
The function of the 4-bit system is to add two numbers which have been input at the switches.

The two numbers A and B will be stored, processed and output on a seven-segment display
which shows the output value in the range 0–F. The display has a built-in decoder which
converts the 4-bit binary input into the corresponding digit pattern on the segments. To obtain
the correct result, the two input numbers must add up to 1510 or less.
The common data bus is used to minimise the number of connections required, but it means

that only one set of data can be on the bus at any one time, therefore, only one set of gates must
be enabled at a time. The data destination is determined by which set of latches is operated
when data is on the bus. The gates (data switches) and latches (data stores) must therefore be
operated in the correct sequence by the control unit (See Table 3.3).
The 4-bit adder works as follows; for the moment, we will assume that these operations are

carried out manually using suitable switches or push buttons to generate the control signals.
The first number (6) is set up on the input switches, and the data input gate enable (DIGE) set
active. This data word is now on the bus, and can be stored in latch A by pulsing the data A
latch enable (DALE). Now the input switches are changed to generate the second number (5)
which must be added to the first. This value now appears on the bus and can be stored in latch
B by activating DBLE.
With the numbers stored at the outputs of the latches DA and DB, the result appears at the

output of the binary adder, DO. If the data output gate is enabled (DOGE), the result will appear
on the bus. However, the data input gate must be disabled first, so that there is no conflict on
the bus. The result can then be stored and displayed by operating the data output latch enable
(DOLE).

4-Bit Data System 45

Seven-segment
display

4-bit binary
adder

D

D Q

DA

DB

DIGE

DOGE

DALE

DBLE

DOLE

D Q

d3
Data
bus
lines

Control
unit

Program
control

sequence

DO

4-bit data
input gate

4-bit data
output latch

Input
switches

Data
latch

A

Data
latch

B

Data output
gate

Q

d0

d1

d2

Figure 3.12 4-bit data system.

If this operating sequence can be automated, and we then have the makings of a micropro-

cessor. The binary operating sequence produced by the control unit must be recorded and played

back in some way. This can be done by storing it in a ROM memory block, along with the

data to be input at the switches. Combining the ‘instruction codes’ (control switch operations)

with the ‘operands’ (input data) gives us a ‘machine code program‘ as seen in Table 3.4.

The program described above has three instructions, of 9 bits in length – it is running a

simple processing system with a set of codes which are equivalent to the machine code program

in a microcontroller. The next step would be to replace the binary adder with a block that could

also subtract and carry out logical operations such as increment, shift, AND, OR and so on.

Different instruction codes would then set up the circuit to carry out all the required operations.

More latches could be added, forming registers within the processor. Better input and output

devices such as a keypad and multi-digit display would then give a usable system, as outlined

in Chapter 1. The means to program the ROM (a development system) completes our processor

system. This is how early calculator chips were developed, leading to microprocessors and

microcontrollers. The system outlined can be built (if you can get the obsolete components!).

Table 3.3 4-bit system operating sequence

Input
switches
(4-bit
binary)

DIGE
(Data
input
gate

enable)

DOGE
(Data
output
gate

enable)

DALE
(Data A
latch

enable)

DBLE
(Data B
latch

enable)

DOLE
(Data
output
latch

enable)

Display
hex
0-F

Data
bus
(4-bit
binary) Operation

0 xxxx 0 0 0 0 1 X xxxx Ready for input
1 0110 0 0 0 0 1 X xxxx Set data input number A on switches
2 0110 1 0 0 0 1 6 0110 Enable data A onto bus by switching on input gates
3 0110 1 0 0-1-0 0 1 6 0110 Store data A in latch A by clocking it with a pulse
4 0110 0 0 0 0 1 X xxxx Disable input gates – no valid data on bus
5 0101 0 0 0 0 1 X xxxx Set data input number B on switches
6 0101 1 0 0 0 1 5 0101 Enable data B onto bus by switching on input gates
7 0101 1 0 0 0-1-0 1 5 0101 Store data B in latch B by clocking it with a pulse
8 0101 0 0 0 0 1 X xxxx Disable input gates – no valid data on bus
9 xxxx 0 1 0 0 1 B 1011 Enable result from ALU onto bus
10 xxxx 0 1 0 0 0 B 1011 Store result in output latch by clocking it with a pulse
11 xxxx 0 0 0 0 0 B xxxx Result displayed – ready for next input

4-Bit Data System 47

Table 3.4 4-bit system ‘machine code program’

‘Instruction’ code ‘Operand’ Hex ‘program’ Operation

1 0101 0110 15 6 Input and latch data A

1 0011 0101 13 5 Input and latch data B

0 1001 0000 09 0 Latch and display result

Summary

• MOS digital circuits are based on the field effect transistor acting as a current switch. These

are combined to form logic gates on integrated circuits.

• The basic set of logic gates is AND, OR and NOT, from which all logic functions can be

implemented. NAND, NOR and XOR form a useful additional set.

• Combinational logic gives outputs which depend only on the current input combination.

Sequential logic outputs additionally depend on the prior sequence of inputs.

• Basic data system devices are the data latch used for bit storage and the TSG used to

route data. Data input and output devices are also needed. Additional logic circuits provide

sequential control.

Questions

1. Why is it necessary for battery-powered digital circuits to operate at a wide range of

voltages?

2. Draw a simple logic inverter using a FET and a resistor, and then add to the circuit to

provide the AND and OR logic functions.

3. Describe in one sentence the operation of (a) an OR gate and (b) an AND gate.

4. Representing a 1-bit full adder as a single block, with inputs A, B and Ci, and outputs S

and Co, draw a 4-bit adder consisting of four of these blocks, with the inputs and outputs

shown in Fig. 3.6(a).

5. Construct a timing diagram for the sequential logic table shown in Fig. 3.7(b) to show how

a basic latch works.

6. Draw a circuit with two input logic switches whose data can be stored in one of three

different D-Type latches. Describe how the control logic must work to allow either input

to be stored in any of the latches.

7. Modify the 4-bit system (Fig. 3.12) operating sequence so that only the final result is

displayed.

48 Microelectronic Devices

Activities

1. Construct the full adder circuit using the necessary logic chips and check that it works as

described; then simulate it using a suitable schematic capture and simulation package and

check that the function is accurately simulated.

2. Investigate the operation of a suitable programmable logic device, and work out how it

would be programmed to create a 4-bit adder.

3. Investigate how the basic latch circuit could be used to ‘debounce’ the data input switch.

4. Using suitable digital circuit simulator software, test the 4-bit system operation, if the

components are available in the device libraries.

Chapter 4
Digital Systems

4.1 Encoder and Decoder

4.2 Multiplexer, Demultiplexer and Buffer

4.3 Registers and Memory

4.4 Memory Address Decoding

4.5 System Address Decoding

4.6 Counters and Timers

4.7 Serial and Shift Registers

4.8 Arithmetic and Logic Unit

4.9 Processor Control

The basic set of digital devices described in Chapter 3 are enough to build working data systems,

but they can be combined into common circuit blocks which are used in more complex digital

designs. These have previously been available as discrete small-and medium-scale integrated

circuits, and are essential elements within all microprocessor system chips and microcontrollers.

4.1 Encoder and Decoder

A digital encoder is a device which has a number of separate inputs and a binary output.

An output binary number is generated corresponding to the numbered input which is active.

A decoder is a device which carries out the inverse logical operation: a binary input code

activates the corresponding output. Thus, if the binary code for 5 (101) is input, output 5 of the

decoder goes active (usually low). An example of encoder and decoder operation is described

below, where they are used to operate a keypad.

A set of switches are combined in a two-dimensional array to form a simple keyboard.

These may have 12 keys (decimal) or 16 keys (hexadecimal). The decimal pad has digits 0–9,

hash (#) and star (*), while the hex keypad has digits 0–F. A hex keypad is used in the example

illustrated in Fig. 4.1. To read the keypad, an interface is needed which can detect when one

of the buttons has been pressed. A software-based solution is explained later in Chapter 15, so

a hardware solution will be described here.

Four select lines are output from a row decoder which are normally high (pull-up resistors can

be attached to each line if necessary). When a binary input code is applied, the corresponding

50 Digital Systems

Inputs Outputs

B A 0 1 2 3

0 0 0 1 1 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

Inputs Outputs

0 1 2 3 B A

0 1 1 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 1 1

R1

0

00

4

01

8 A

10

C
11

00

Row
decoder

Column encoder

A

0

1

2

3

B

1 2 3

0 1 2 3

5 6 7

9 B

AB

D E F

01 10 11

R0 C1 C0

(a)

(b)

(c)

Figure 4.1 Keypad scanning using an encoder and decoder. (a) Hexadecimal key pad operation;
(b) 2-bit decoder logic table; (c) 2-bit encoder logic table.

row select line goes low. A 2-bit binary counter can be used to drive the row decoder (see

below for counters), which will generate each row select code in turn, continuously. If a switch

on the active row is pressed, this low bit can be detected on the column line. The column

lines, which are also normally high, are connected to a column encoder. This generates a

binary code which corresponds to the input which has been taken low by connection to the row

which is low.

Thus the combination of the row select binary code (R1, R0) and the column detect binary

code (C1, C0) will give the number of the key which has been pressed. For instance, if key 9 is

Memory Address Decoding 51

pressed, row 2 will go low when the input code is 10. This will take column 1 low, which will

give the column code 01 out. The complete code is then 1001, which is 9 in binary. Encoders

and decoders are combinational logic circuits which can be designed with any number of code

bits, n, giving 2n select lines.

4.2 Multiplexer, Demultiplexer and Buffer

These devices can be constructed from the same set of gates: two TSGs and a logic inverter, as

seen in Fig. 4.2. All are important for the operation of bus systems, as outlined in Chapter 3.

A multiplexer is basically an electronic changeover switch, which can select data from

alternative sources within the data system. A typical application is to allow two different signal

sources to use a common signal path (bus line) at different times. In Fig. 4.2(a), input 1 or 2

is selected by the logic state of the select input. The logic inverter ensures that only one of the

TSGs is enabled at a time. Conversely, a demultiplexer (Fig. 4.2(b)) splits the signal using the

same basic devices. That is, it can pass data to alternative destinations from the bus.

The bidirectional buffer (Fig. 4.2(c)) is used to allow data to pass in one direction at a time

along a data path, for example, on a bidirectional data bus. To achieve this, the TSGs are

connected nose to tail, and operate alternately as in the multiplexer. When the control input is

low, the data is enabled through from left to right, and when high, from right to left.

4.3 Registers and Memory

We have seen previously how a 1-bit data latch works. If the bidirectional data buffer

(Fig. 4.2(c)) is added, data can be read from a data line into the latch, or written to the data

line from it, depending on the data direction selected. We then have a register bit store. In

Fig. 4.3(a), the data in/out line can be connected to the D input or Q output, depending on the

state of the data direction select. If data is to be stored by the latch from the data line, latch

enable is activated at the appropriate time.

If a set of these register elements are used together, a data word can be stored. A common

data word size is 8 bits (1 byte), and most systems handle data in multiples of 8 bits. An 8-bit

register, consisting of 8 data latches, is shown in Fig. 4.3(b). The register enable and read/write

(data direction select) lines are connected to all the register bits, which operate simultaneously

to read and write data to and from the 8-bit data bus.

4.4 Memory Address Decoding

A static RAM memory location operates in a similar way to the register. The memory device

typically stores a block of 8-bit data bytes which are accessed by numbered locations (Fig. 4.4).

Each location consists of eight data latches which are loaded and read together. A read

operation is illustrated; the data is being output from the selected location. A 3-bit code is

needed to select one of the eight locations in the memory block, using an internal address

decoder to generate the location select signal. The selected data byte is enabled out via an

output buffer, which allows the memory device to be electrically disconnected when another

device wants to use the bus.

52 Digital Systems

TSGs

Logic inverter

Select
data direction

Bidirectional
data

Bidirectional
data

TSGs

Logic inverter
Select
input

Data
input

Output 2

Output 1

TSGs

Logic inverter

Select
input

Input 1

Input 2
Multiplexer
output

(a)

(b)

(c)

Figure 4.2 (a) 1-bit multiplexer; (b) 1-bit demultiplexer; (c) Bidirectional data buffer.

The number of locations in a memory device can be calculated from the number of address

pins on the chip. In the example above, a 3-bit address provides eight unique location addresses

(0002–1112�. This number of locations can be calculated directly as 23 = �2×2×2� = 8. Thus,

the number of locations is calculated as 2 raised to the power of the number of address lines.

Some useful values are listed in Table 4.1. Each memory location normally contains 1 byte.

Table 2.5 was derived in a similar way and contains other significant values up to the largest

16-bit number, FFFF.

In a microprocessor system, program and data words (binary numbers) are stored in these

memory locations, ready for processing in the CPU. The data transfer is implemented using a

Memory Address Decoding 53

EN

D Q

Data in/out

Data
direction
select

Latch
enable

Bidirectional
buffer

Data
bus
line

8-Bit
data
bus

8-Bit
data
bus

Register
enable

7

Bit number

1

Read/
write

0 0 1 0 1 1 0

(a)

(b)

6 5 4 3 2 1 0

Figure 4.3 Register operation. (a) Data register bit operation; (b) 8-bit data register operation.

01100101

10010000

11101011

00110101

00111010

00011111

11101011

01110001

000

001

010

011

100

101

110

111

Data
out

Output
buffer

3-bit
input
address

A2

A1

A0

8-bit memory
locationsAddress

decoder

Output
enable

Location
select lines

Figure 4.4 Memory device operation.

54 Digital Systems

Table 4.1 Common Memory Sizes

Address lines Locations (1 byte each) Memory size

8 28= 256 256 bytes

10 210= 1024 1 kb (kilobyte)

16 216= 65536 64 kb

20 220= 1048576 1 Mb (megabyte)

30 230= 1073741824 1 Gb (gigabyte)

System
address
decoder

CPU

RAM
1

RAM
2

ROM Input /
output
port

Chip
select

High
address
lines

Read/write

Register
select

Address bus

Data bus

Low
address

Figure 4.5 Microprocessor system addressing.

bus, which is a common set of lines which pass data between memory and registers, with TSGs

directing the data to the correct destination (Fig. 4.5).

4.5 System Address Decoding

Although we are mainly concerned with microcontroller architecture, it is worth looking briefly

at memory and I/O access in a conventional system, because it explains the process which

occurs within the microcontroller chip and is important for an overview of microprocessor

systems. It is a logical extension of address decoding within each memory chip. We will look

at conventional system operation in more detail in Chapter 16.

As we have seen, there are usually several memory and input/output devices connected to

a common data bus in the typical microprocessor system. Only one can use the data bus at

any one time, so a system of chip selection is needed, so that the processor can ‘talk to’ the

required peripheral chip.

Counters and Timers 55

Table 4.2 Typical memory map

Address range

Lowest Highest
address address Number of locations Device

0000 7FFF 800016 = 3276810 RAM (32k)

8000 801F 2016 = 3210 Parallel port registers

A000 A008 8 Serial port registers

C000 FFFF 400016 = 1638410 ROM (16k)

Figure 4.5 shows the basic connections in a microprocessor system which allows the CPU
to read and write data to and from the memory and I/O devices. Let us assume that the CPU is
reading a program instruction from ROM, although all data transfers are done in the same way.
The CPU program counter contains the address of the instruction; this is output as a binary

code on the address bus. The system address decoder takes, in this system, the 2-bit code on the
most significant address lines and sets one of four chip select lines active accordingly, which
activates the chip to be accessed (ROM). The low order address lines are used, as described
in section 4.4, to select the required location within the chip. Thus, the location select is a
two-stage process, with external (system) and internal (chip) decoding of the address.
When the location has been selected, the data stored in it can be read (or written) via the data

bus according to the setting of the read/write (R/W) line, generated by the CPU. To read from
memory, the TSGs at the output of the selected device (ROM) are enabled, while all others
connected to the bus are disabled, allowing the ROM data onto the bus lines. The data can then
be read off the bus by the CPU, and copied into a suitable register (instruction register in this
case). Note that ROM cannot be written and therefore does not need the R/W line connected.
The I/O port only has a few addressable locations, its registers, so only a few of the address
lines are needed for this device.
As a result of the design of the decoding system, the memory and I/O devices are allocated

to specific ranges of addresses. The system can thus be tailored to a specific type of application
by the hardware designer, with just the right amount and type of memory and I/O.
A typical memory map for a system with a 16-bit address bus (four hex digits) is shown in

Table 4.2. The I/O is memory mapped, that is, the port registers are placed in the same address
space as the memory. Notice that not all the available addresses have to be used.

4.6 Counters and Timers

A counter/timer register can count the number of digital pulses applied to its input. If a clock
signal of known frequency is used, it becomes a timer, because the duration of the count is
equal to the count value multiplied by the clock period. Like the data register, the counter/timer
register is made from bistable units, but connected in ‘toggle’ mode, so that each stage drives
the next. Each stage outputs one pulse for every two pulses which are input, so the output pulse
frequency is half the input frequency for each stage (Fig. 4.6(a)). The counter/timer register can
therefore be viewed as a binary counter or frequency divider, depending on the application.

56 Digital Systems

T-type
(toggle
mode)

flip-
flop

Input frequency = f Output frequency = f/2

0 00 0 0 1 00

Clock /pulses

00000000

Preload with start value

0–255

Time-out signal

(a)

(b)

Figure 4.6 Counter/timer register operation. (a) Toggle mode stage; (b) 8-stage counter register.

Figure 4.6(b) shows an 8-bit counter/timer, with the input to the LSB at the right. The

binary count stored increments each time the LSB is pulsed. Two pulses have been applied,

so the counter shows binary 2. After 255 pulses have been applied, the counter will ‘roll

over’ from 11111111 to 00000000 on the next pulse. A signal is output to indicate this, which

can be used as a ‘carry out’ in counting operations or ‘time out’ in timing operations. In a

microprocessor system, the ‘time-out’ signal typically sets a bit in a ‘status’ register to record

this event. Optionally, an ‘interrupt’ signal may be generated, which forces the processor to

carry out an ‘interrupt service routine’ to process the time-out event. Interrupts will be explained

later.

If the clock pulse frequency is 1 MHz [1 megahertz], the period will be 1 � s [1 microsecond],

and the counter will generate a time-out signal every 256 �s. If the counter can be preloaded,

we can make it time out after some other number of input pulses. For example, if preloaded

with a count of 56, it will time out after 200 �s. In this way, known time intervals can be

generated. In conventional microprocessor systems, the I/O ports often contain timers that the

processor uses for timing operations. Most PICs have an 8-bit counter/timer, with a ‘prescaler’

that divides the input frequency by a factor of between 2 and 256 in order to extend its range;

some have 16-bit counters, which allow longer intervals to be generated without a prescaler.

PIC timer/counters are explained in more detail in Chapter 9.

4.7 Serial and Shift Registers

The general purpose data register, as described in Section 4.3, is loaded and read in parallel.

A shift register is designed to be loaded or the data read out in serial form. It consists of a

set of data latches which are connected so that a data bit fed into one end can be moved from

one stage to the next, under the control of a clock signal. An 8-bit shift register can therefore

store a data byte which is read in one bit at a time from a single data line. The data can then

Arithmetic and Logic Unit 57

Time

Shift clock

Serial data input

Bit

1 00 0 1 1 11

Read out in parallel

Shift clock

Serial data input

Bit 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(a)

(b)

Figure 4.7 Shift register operation. (a) Shift register; (b) Shift register signals.

be shifted out again, one bit at a time, or read in parallel. Alternatively, the register could be

loaded in parallel and the data shifted out onto a serial output line.

In Fig. 4.7(a), the 8-bit shift register is fed data from the right. The shift clock has to operate

at the same rate as the data, so that the register samples the data at the right time at the serial

data input. This means that there must be agreed clock rates used to set up the shift register

in advance. As each bit is read in, the preceding bits are shifted left to allow the next bit into

the LSB. The timing diagram shows the data being sampled and shifted on the falling clock

edge; note that only the state of the input at the sampling instant is registered, so the short

negative-going pulse between bits 6 and 7 is ignored.

This type of register is used in microprocessor serial ports, where data is sent or received in

serial form. In the PC, this could be the modem or network port, the keyboard input or VDU

output.

4.8 Arithmetic and Logic Unit

The main function of any processor system is to process data, for example, to add two numbers

together. The arithmetic and logic unit (ALU) shown in Fig. 4.8 therefore is an essential feature

of any microprocessor or microcontroller.

A binary adder block has already been described, but this would be just one of the functions

of an ALU. The ALU takes two data words as inputs and combines them together by adding,

subtracting, comparing and carrying out logical operations such as AND, OR, NOT, XOR;

these will be described in more detail in the next chapter. The operation to be carried out is

determined by function select inputs. These in turn are derived from the instruction code in the

program being executed in the processor. The block arrows used in the diagram indicate the

parallel data paths, which carry the operands to the ALU and the result away. A set of data

registers which store the operands are usually associated with the ALU, as seen in the 4-bit

data system in Chapter 3.

58 Digital Systems

Data word 1

Data word 2

Result

Control inputs
select operation

ALU

Figure 4.8 Arithmetic and logic unit.

4.9 Processor Control

The instruction decoder is a logic circuit in the CPU which takes the instruction codes from the

program to control the sequence of operations. The decoder output lines, which are connected

to the registers, ALU, gates and other control logic, are set up for a particular instruction to be

carried out (e.g. add two data bytes).

The processor control block (Fig. 4.9) also includes timing control and other logic to manage

the processor operations. The clock signal drives the sequence of events so that after a certain

number of clock cycles, the results of the instruction are generated and stored in suitable register

or back in memory.

The block diagram for the PIC 16F84A provided in the Appendix (Fig 1-1) shows a complete

system. The data paths between each block show the data word size and the possible data

transfer routes. The control lines which are set up by the instruction decode and control block

are not shown, because it would make the diagram too complicated; but they are implicit in that

the system cannot work without them. They connect to all parts of the processor, enabling data

outputs at the source end, and operating data latches at the receiving end, of all data transfers.

We can now see more clearly the main difference between the microcontroller and micropro-

cessor. In the conventional system, the bus system is external to the CPU, while it is internal

to the microcontroller.

Instruction
decoder

CPU
sequence

control

Clock

Instruction
code

Control lines
to processor
registers,
ALU, etc.

Figure 4.9 CPU control logic.

Processor Control 59

Summary

• The encoder generates a binary code corresponding to the active numbered input, and the
decoder carries out the inverse operation activating the selected output according to the
binary input.

• The multiplexer allows a selected input to be connected to a single output line, and the
demultiplexer carries out the inverse operation connecting a single input line to a selected
output line.

• A register or memory cell stores one bit of data using a data latch and bidirectional buffer.

• Numbered memory locations are accessed by decoding the address to generate a system
device select and chip location select.

• Counters and timers use a counting register to count digital pulses, or measure time intervals
using a clock input.

• Shift registers convert parallel to serial data, and back.

• The ALU provides data processing operations.

• The processor control signals are generated by the instruction decoder and timing circuits.

• The clock signal provides the timing reference signal for all processor operations.

Questions

1. Describe the process whereby an encoder and decoder could be used to scan a 4 × 32 key
computer keyboard.

2. Two 8-bit registers, A and B, are connected to an 8-bit data bus via bidirectional buffers, so
as to allow data to be stored and retrieved. Draw a block diagram and explain the sequence
of signals required from the controller circuits to transfer the contents from A to B using
data direction select and data latching signals.

3. A minimal microprocessor system, configured as shown in Fig. 4.5, has a 16-bit address
bus. The two most significant lines, A14 and A15 are connected to the 2-bit decoder,
which operates as specified in Fig. 4.1(b), with A14 = input A (LSB) and A15 = input
B (MSB). The four select outputs are connected to memory and I/O chip select inputs as
follows: 0 = RAM1, 1 = RAM2, 2 = ROM, 3 = I/O. The RAM1 chip is selected in the
range of addresses from 0000 to 3FFF (hex). Work out the lowest address where each of
the three remaining chips are selected.

4. Calculate the number of locations in a memory chip which has 12 address pins.

5. Calculate the time interval generated by an 8-bit timer preloaded with the value 11001110
and clocked at 125 kHz.

60 Digital Systems

Answers

3. 4000, 8000, C000

4. 4096

5. 400 �s

Activities

1. In a suitable TTL logic device data book or supplier’s catalogue, look up the chip numbers

and internal configuration of the medium scale ICs: 3 to 8-line decoder, octal D latch, octal

bus transceiver, 8-bit shift register, 4-bit binary counter. Also identify the largest capacity

RAM chip listed in your source.

2. Refer to the PIC 16F8X data sheet, Fig 1-1 (block diagram). State the function of the

following features: ROM program memory, RAM file registers 68×8, program counter,

instruction register, instruction decode and control, multiplexer, ALU, W reg, I/O Ports,

TMR0.

3. Refer to the PIC 16F8X data sheet, Fig 4-1 (block diagram of pins RA3:RA0). Identify

the following devices in the circuit diagram: FET, OR gate, TSG, transparent data latch,
edge-triggered data latch. Describe how an input data bit would be transferred onto the

internal data bus line from the I/O pin.

Chapter 5
Microcontroller Operation

5.1 Microcontroller Architecture

5.2 Program Operations

To understand the operation of a microcontroller requires some knowledge of both the internal
hardware arrangement and the instruction set which it uses to carry out the program operations.
We now have some knowledge of the digital circuit blocks which make up microsystems. In
this chapter we will look at some common elements of microcontrollers and the basic features
of machine code programs.

5.1 Microcontroller Architecture

The architecture (internal hardware arrangement) of a complex chip is best represented as a
block diagram. This allows the overall operation to be described without having to analyse the
circuit, which will be very complex, in detail. The PIC data sheet (see Appendix A) contains
the definitive block diagram (Fig. 1-1) of the PIC 16F84A, but simplified versions will be used
to help explain particular aspects of the chip operation. First, however, we will look at a general
block diagram which shows some of the common features of microcontrollers (Fig. 5.1).
The block diagram shows a general microcontroller that can be considered in two parts,

the program execution section and register processing section. This division reflects the PIC
architecture, where the program and data are accessed separately. This arrangement increases
overall program execution speed and is known as Harvard architecture.
The program execution section contains the program memory, instruction register and control

logic which store, decode and execute the program. The register processing section has special
registers used to set up the processor operations, data registers to store the current data, port
registers for input and output, and the ALU to process the data. The timing and control block
co-ordinates the operation of the two parts as determined by the program instructions and
responds to external control inputs, such as the reset.

5.1.1 Program Memory

The control program is normally stored in non-volatile ROM. Microcontrollers which are
designed for prototyping and short production runs have traditionally used Erasable Program-
mable ROM (EPROM) into which the program can be ‘blown’ using a suitable programming

62 Microcontroller Operation

Clock
Reset

Interrupts

Program counter

Working
register

ALU

Timing, control and register selection

ROM
program
memory

Instruction
decoder

Instruction
register

RAM data
registers

Program execution section Register processing section

Modify

Address

Literal
address

operation

Set up

Port
regs

Port
regs

Input /
output

Input /
output

Set
up
&
dataStack

Status
and

special
function
registers

Internal data bus

Set up

Figure 5.1 General microcontroller block diagram.

unit. Though EPROM can be erased and reprogrammed, the chip must be removed and placed
under an ultraviolet lamp to clear an existing program, which is inconvenient.
More recently, microcontrollers which have flash ROM have become more common; these

are generally more suitable for learning programming and prototyping. An existing program can
be simply overwritten, and this can even be done while the chip is still in the application circuit.
Usually, however, the chip is placed in a programming unit attached to the host computer for
program downloading, prior to fitting it in the application board.
When the program is known to be correct, and will not need further modification, it can

be downloaded into one-time programmable memory, which, as the name implies, cannot be
erased or overwritten. For longer production runs, ready-programmed chips can be ordered
from the manufacturer, which use mask progrmmed ROM, where the program is built in during
chip fabrication.

5.1.2 Program Counter

The program counter is a register which keeps track of the program sequence by storing the
address of the instruction currently being executed. The default start address of the program is
usually zero; this is where the first instruction in the program will be stored unless the program
author specifies otherwise. The program counter is therefore automatically loaded with zero
when the chip is powered up or reset. In the PIC 16XXXX chips (any chip starting with 16),
the program counter is file register 2.
As each instruction is executed, the program counter is incremented (increased by one) to

point to the next instruction. Program jumps are achieved by changing the program counter to
point to an instruction other than the next in sequence. For instance, if a branch back by three
instructions is required, 3 is subtracted from the contents of the PC.
Sometimes, it is necessary to jump from address zero to the start of the actual program at

a higher address, because special control words must be stored in specific low addresses. For
instance, PIC 16XXXX devices use address 004 to store the ‘interrupt vector’, if interrupts are

Microcontroller Architecture 63

to be used. In this case, the main program should not be located at address zero, instead a jump

to a higher address should be placed there. However, this problem can be ignored for programs

which do not use interrupts, and our simple programs can be located at address zero. Interrupts

will be explained in more detail later.

Associated with the program counter is the ‘stack’. This is a temporary program counter

store. When a subroutine is executed (see Section 5.2.3), a stack register temporarily stores the

current address so that it can be recovered at a later point in the program. It is called a stack,

because the addresses are restored to the PC in the reverse order to which they were stored,

that is, ‘last in, first out’ (LIFO), like a stack of plates.

5.1.3 Instruction Register (IR) and Decoder

To execute an instruction, the processor copies the instruction code from program memory

into the instruction register. It can then be decoded by the instruction decoder, which is a

combinational logic block which sets up the processor control lines as required. These control

lines are not shown explicitly in the block diagram, as they go to all parts of the chip.

In the PIC, the instruction code includes the operand, which may be a literal value or register

address. For example, if a literal given in the instruction is to be loaded into the working register

(W), it is placed on an internal data bus and the W register latch enable lines are activated by

the timing and control logic. The internal data bus can be seen in the manufacturer’s block

diagram (Fig 1-1) in the data sheet.

5.1.4 Timing and Control

This sequential logic block provides overall control of the chip, and from it, control signals go

to all parts of the chip to move the data around and carry out logical operations and calculations.

A clock signal is needed to drive the program sequence; it is normally derived from a crystal

oscillator, which provides an accurate, fixed frequency signal. There is always a maximum

frequency of operation specified: PIC 16XXXX chips can operate at any frequency from a

maximum of 20 MHz, down to zero.

The reset input can restart the program at any time by clearing the program counter to zero. If

the program runs in a continuous loop, and there is no instruction to exit the loop, the reset may

be needed. However, it is not essential to connect an active reset input because the program

will start automatically at program ROM address zero, as long as the reset input (!MCLR) is

connected in its active state, which is high. In most of the sample programs in this book, it is

assumed that the chip would be switched off, then on again, to restart the program, and a reset

switch is not required.

The only other way to stop or redirect a continuous loop is via an ‘interrupt’. Interrupts are

signals generated externally or internally, which force a change in the sequence of operations.

If an interrupt source goes active in the PIC 16XXXX, the program will restart at address 004,

where the sequence known as the ‘interrupt service routine’ (or a jump to it) must be stored.

More details are provided in Chapter 9.

5.1.5 Working Register

In some microcontrollers and microprocessors, this is called the accumulator (A), but the name

working register (W) used in the PIC system is a better description. It holds the data that the

processor is working on at the current time, and most data has to pass through it. In the PIC,

64 Microcontroller Operation

if a data byte is to be transferred from the port register to a RAM data register, it must be

moved into W first. The working register or accumulator works closely with the ALU in the

data processing operations.

5.1.6 Arithmetic and Logic Unit

This is a combinational logic block which takes one or two input binary words and combines

them to produce an arithmetic or logical result. In the PIC, it can operate directly on the contents

of a register, but if a pair of data bytes is being processed (for instance, added together),

one must be in W. The ALU is set up according to the requirements of the instruction being

executed by the timing and control block. Typical ALU/register operations are detailed later in

this chapter.

5.1.7 Port Registers

Input and output in a microcontroller are achieved by simply reading or writing a port data

register. If a binary code is presented to the input pins of the microcontroller by an external

device (for instance, a set of switches), the data is latched into the register allocated to that port

when it is read. This input data can then be moved (copied) into another register for processing.

If a port register is initialised for output, the data moved to that register is immediately available

at the pins of the chip. It can then be displayed, for example, on a set of LEDs. Each port

has a ‘data direction’ register associated with its data register. This allows each pin to be set

individually as an input or output before the data is read from or written to the port data register.

In the PIC 16F84A, there are two ports, A and B. Port A has five pins and Port B has eight.

A ‘0’ in the data direction register sets the port bit as an output, and a ‘1’ sets it as an input.

These port registers are mapped (addressed) as special function registers 5 and 6, respectively

(Bank 0). In larger chips, additional ports may be available. For example, in the PIC 16F877,

Ports C, D and E are available at register addresses 7, 8 and 9, respectively. The port data

direction registers are mapped into a second register ‘bank’ (Bank 1) with addresses starting at

8516 for Port A, 8616 for Port B, and so on. These are accessed by special instructions which

will be explained later.

5.1.8 Special Function Registers (SFRs)

These registers provide dedicated program control registers and processor status bits. In the

PIC, the program counter, port registers and spare registers are mapped as part of this block.

The working register is the only one that is not located in the main register block and is accessed

by name, ‘W’, not by number.

A processor will also contain control registers whose bits are used individually to set up

the processor operating mode or record significant results from those operations. Processors

generally have a status register (SR) which will contain a zero (Z) flag. This bit is automatically

set to 1 if the result of any operation is zero in the destination register (the register which

receives the result). The carry (C) flag is another commonly used bit in the status register – it

is set if the result of an arithmetic operation produces a carry out of the most significant bit of

the destination register, that is, the register overflows. In the PIC 16XXXX, the status register

is file register 3.

The status register bits are often used to control program sequence by conditional branching.

Alternate sections of code are executed depending on the state of the status flag. In the PIC

Program Operations 65

Table 5.1 Selected PIC special function registers

File
register
address Name Function

Bank 0

01 TMR0 Timer/counter allows external and internal clock pulses to be counted

02 PCL Program counter stores the current execution address

03 STATUS Individual bits record results and control operational options

05 PORTA Bidirectional input and output bits

06 PORTB Bidirectional input and output bits

0B INTCON Interrupt control bits

Bank 1

85 TRISA Port A data direction bits

86 TRISB Port B data direction bits

system, this is achieved by an instruction which tests the bit and skips the next instruction
conditionally. The test and skip instruction is generally followed by a jump instruction to take
the execution point to another part of the program, or not, as the case may be. This will be
explained more fully in the next section.
The most important SFRs are listed in Table 5.1.

5.2 Program Operations

We have seen in Chapter 2 that a machine code program consists of a list of binary codes stored
in the microcontroller memory. They are decoded in sequence by the processor element, which
generates control signals that set up the microcontroller to carry out the instruction. Typical
operations are:

• load a register with a given number;

• copy data from one register to another;

• carry out an arithmetic or logic operation on a data word;

• carry out an arithmetic or logic operation on a pair of data words;

• jump to an alternative point in the program;

• test a bit or word and jump, or not, depending on the result of the test;

• jump to a subroutine, and return later to the same point;

• carry out a special control operation.

The machine code program must be made up only from those binary codes which the
instruction decoder will recognise. These codes could be worked out manually from the
instruction set given in the data sheet (Table 7-2). When computers were first developed, this
was indeed how the program was entered, using a set of switches or keyboard. This is obviously

66 Microcontroller Operation

time consuming and inefficient, and it was soon realised that it would be useful to have a
software tool which would generate the machine code automatically from a program which
was written in a more user-friendly form. Assembly language programming was therefore
developed, when hardware had moved on enough to make it practicable.
Assembly language allows the program to be written using mnemonic (‘designed to aid the

memory’) code words. Each processor has its own set of instruction codes and corresponding
mnemonics. For example, a commonly used instruction mnemonic in PIC programs is
‘MOVWF’, which means move (actually copy) the contents of the working register (W) to a
file register which is specified as the operand. The destination register is specified by number
(file register address), such as 0C (the first general purpose register in the PIC 16F84). The
complete instruction, with its machine code equivalent, is:

008C MOVWF 0C

There are two main types of instruction:

1. Data processing operations

• MOVE copy data between registers.

• REGISTER manipulate data in a single register.
• ARITHMETIC combine register pairs arithmetically.

• LOGIC combine register pairs logically.

2. Program sequence control operations

• UNCONDITIONAL JUMP jump to a specified destination.

• CONDITIONAL JUMP jump, or not, depending on a test.

• CALL jump to a subroutine and return.

• CONTROL miscellaneous operations.

Together, these types of operations allow inputs to be read and processed, and the results stored
or output, or used to determine the subsequent program sequence.

5.2.1 Single Register Operations

The processor operates on data stored in registers, which typically contain 8 bits. The data can
originate in three ways:

1. A literal (numerical value) provided in the program;

2. An input via a port data register;

3. The result of a previous operation.

This data can be processed using the set of instructions defined for that processor. Table 5.2
shows a typical set of operations which can be applied to a single register. The same binary
number is shown before processing, and then after the operation has been applied to the register.
As an example of how these operations are specified in mnemonic form in the program, the

assembler code to increment a PIC register is:

0A06 INCF 06

Register number 06 happens to be Port B data register, so the effect of this instruction can
be seen immediately at I/O pins of the chip. The corresponding machine code instruction is

Program Operations 67

Table 5.2 Single register operations

Operation Before After Comment

CLEAR 0101 1101 ——◮ 0000 0000 Reset all bits to zero

INCREMENT 0101 1101 ——◮ 0101 1110 Increase binary value by one

DECREMENT 0101 1101 ——◮ 0101 1100 Decrease binary value by one

COMPLEMENT 0101 1101 ——◮ 1010 0010 Invert all bits

ROTATE LEFT/RIGHT 0101 1101 ——◮ 1011 1010 Shift all bits left by one place,
replace MSB in LSB

SHIFT LEFT/RIGHT 0101 1101 ——◮ 0010 1110 Shift all bits right by one place,
losing the LSB

CLEAR BIT 0101 1101 ——◮ 0101 0101 Reset bit (3) to 0

SET BIT 0101 1101 ——◮ 1101 1101 Set bit (7) to 1

0A86 in hexadecimal, or 00 1010 1000 0110 in binary (14 bits). As you can see, it is easier to
recognise the mnemonic form!

5.2.2 Register Pair Operations

Table 5.3 shows basic operations that can be applied to pairs of registers. Normally, the result
is retained in one of the registers, which is referred to as the destination register. A binary
code to be combined with the contents of the destination register is obtained from the source
register. The source register contents remain unchanged after the operation.
The meaning of each type instruction is explained below, with an example from the PIC

instruction set. In the PIC, there is an option to store the result in W, the working register, if
that is the source. Note also that the PIC does not provide moves directly between file registers,
all data moves are via W.

Move

It is the most commonly used instruction in any program and simply moves data from one
register to another. It is actually a copy operation, as the data in the source register remains
unchanged until overwritten or the processor is reset

080C MOVF 0C, W

This instruction moves the contents of register 0C (1210� into the working register.

Arithmetic

Add and subtract are the basic arithmetic operations, carried out on binary numbers. Some
processors also provide multiply and divide in their instruction set, but these can be created if
necessary by using shift, add and subtract operations.

078C ADDWF 0C

This instruction adds the contents of W to register 0C.

68 Microcontroller Operation

Table 5.3 Operations on register pairs

Registers Registers
Operation before after Comment

MOVE Copy operation
Source 0101 1100 0101 1100 Overwrite destination with source,

Destination xxxx xxxx ——◮ 0101 1100 leaving source unchanged

ADD Arithmetic operation
Source 0101 1100 0101 1100 Add source to destination,

Destination 0001 0010 ——◮ 0110 1110 leaving source unchanged

SUB Arithmetic operation
Source 0001 0010 0001 0010 Subtract source from destination,

Destination 0101 1100 ——◮ 0100 1010 leaving source unchanged

AND Logical operation
Source 0001 0010 0001 0010 AND source and destination bits

Destination 0101 1100 ——◮ 0001 0000 leaving source unchanged

OR Logical operation
Source 0001 0010 0001 0010 OR source and destination bits

Destination 0101 1100 ——◮ 0101 1110 leaving source unchanged

XOR Logical operation
Source 0001 0010 0001 0010 Exclusive OR source and destination

Destination 0101 1100 ——◮ 0100 1110 bits leaving source unchanged

Logic

Logical operations act on the corresponding pairs of bits in a literal, or source register, and

destination. The result is normally retained in the destination, leaving the source unchanged.

The result in each bit position is obtained as if the bits had been fed through the equivalent

logical gate (see Chapter 3).

3901 ANDLW 01

This instruction carries out an AND operation on the corresponding pairs of bits in the binary

number in W and the binary number 00000001, leaving the result in W. In this example, the

result is zero if the LSB in W is zero. This type of operation can be used for bit testing if the

processor does not provide a specific instruction.

5.2.3 Program Control

As we have already seen, the microcontroller program is a list of binary codes in the program

memory which are executed in sequence. The sequence is controlled by the program counter.

Most of the time, the PC is simply incremented by one to proceed to the next instruction.

However, if a program jump (branch) is needed, the PC must be modified, that is, the address

Program Operations 69

of the next instruction must be loaded into the PC, replacing the existing value. This new

address can be given as a jump instruction operand (absolute addressing), or calculated from

the current address, for example, by adding a number to the current PC value (relative

branch).

The PC is cleared to zero when the chip is reset or powered up for the first time, so

program execution starts at address 0000. The clock signal then drives the execution sequence

forward. During the execution cycle, the program counter is incremented to 0001, so that the

processor is ready to execute the next instruction. This process is repeated unless there is a jump

instruction.

On the question of terminology, ‘jump’ and ‘branch’ are two terms for describing sequence

control operations, but the ways in which they work are slightly different. A ‘branch’ is made

relative to the current address, by adding to the current value in the PC. A ‘jump’ uses absolute

addressing, that is, the contents of the PC are replaced with the destination address. Because

the PIC is a RISC processor, it does not provide branch instructions in its basic instruction

set, but such operations can be created from the available instructions, if required. Therefore,

the program counter can be modified directly using a register processing operation to create a

relative jump or branch.

The jump instructions must have a destination address as the operand. This can be given a

numerical address, but this would mean that the instructions would have to be counted up by

the programmer to work out this address. So, as we will see later in the program examples,

a destination address is usually specified in the program source code by using a recognisable

label, such as ‘again’, ‘start’ or ‘wait’, in the same way that mnemonics are used to represent

the binary machine code instructions. The assembler program then replaces the label with the

actual address when the assembler code is converted to machine code.

Program sequence control operations are illustrated in Figs 5.2, 5.3 and 5.4.

Jump

The unconditional jump (Fig. 5.2) forces a jump to another point in the program every time it is

executed. This is carried out by replacing the contents of the program counter with the address

of the destination instruction, in this case, 005. Execution then continues from the new address.

Note that the code for GOTO is 28h combined with the destination address 05h, giving the

instruction code 2805h (h for hexadecimal).

Address Program

000 2805 Put 005 into
program counter
instead of 001

001

002

003

004

005 XXXX Next instruction

006

007

005 Program
counter

Figure 5.2 Unconditional jump.

70 Microcontroller Operation

The unconditional jump is often used at the very end of a program to go back to the beginning

of the sequence, and keep repeating it.

start first instruction

.................

.................

GOTO start

The label ‘start’ is placed in the first column of the program code, to differentiate it from the

instruction mnemonics, which must be placed in the second column, as we will see. The label

and its reference must match exactly. The label is replaced by the corresponding address by

the assembler when creating the machine code for the GOTO instruction.

Conditional Jump

The conditional jump instruction is required for making decisions in the program. Instructions

to change the program sequence depending on, for instance, the result of a calculation or a test

on an input are an essential feature of any microprocessor instruction set.

In Fig. 5.3, the code 1885 tests an input bit of the PIC and skips the next instruction if it is

zero (‘0’). Instruction YYYY (representing any valid instruction code) is then executed. If the

bit is not zero (i.e. ‘1’), the instruction 2807 is executed, which causes a jump to address 007,

and instruction ZZZZ is executed next. This is called Bit Test and Skip, and is the way that

conditional branches are achieved in the PIC.

In PIC assembly language, this program fragment looks like this:

....

....

BTFSC 05,1 ; Test bit 1 of file register 5

GOTO dest1 ; Execute this jump if bit = 1

.... ; otherwise carry on from here

....

....

dest1 ; branch destination

The PIC is an RISC processor, designed with a minimal number of instructions, so the

conditional branch has to be made up from two simpler instructions. The first instruction tests

a bit in a register and then skips (misses out) the next instruction, or not, depending on the

result. This next instruction is usually a jump instruction (GOTO or CALL). Thus, program

Address Program Comment

000

001

002 1885 Test input bit
and skip this instruction if zero
and execute this one

003 2807

004 YYYY

005

006

007 ZZZZ Jump to here if not zero

Figure 5.3 Conditional jump.

Program Operations 71

execution continues either at the instruction following the jump, if the jump is skipped, or at
the jump destination.
In complex instruction set processors, conditional jump instructions which test specific bits

in the CPU status register are usually available. When the CPU operates on some data in a
register, status register bits record certain results, such as whether the result was zero or not. In
this case, if the result of a previous instruction was zero, a ‘zero flag’ is set to 1 in the status
register.
Pseudocode (structured program description) for a typical use of the conditional jump, a

delay routine, would look like this:

Allocate ‘Count’ Register

....

....

Load ‘Count’ register with literal XX

again Decrement ‘Count’ register

Test ‘Count’ register for zero

If not zero, jump to label ‘again’

Next Instruction

....

This software timing loop simply causes a time delay in the program, which is useful, for
instance, for outputting signals at specific intervals. A register is used as a down counter by
loading it with a number, XX, and decremented it repeatedly until it is zero. A test instruction
then detects that the zero flag has gone active, and the loop is terminated. Each instruction
takes a known time to execute, therefore the delay can be calculated.

Subroutine

Subroutines are used to carry out discrete program functions. They allow programs to be
written in manageable, self-contained blocks, which can then be executed as required. The
instruction CALL is used to jump to a subroutine, which must be terminated with the instruction
RETURN.
CALL has the address of the first instruction in the subroutine as its operand. When the

CALL instruction is decoded, the destination address is copied to the PC, as for the GOTO
instruction. In addition, the address of the next instruction in the main program is saved in the
‘stack’. In the PIC, this is a special block of RAM memory used only for this purpose, but
in conventional processors, a part of main RAM memory may be set aside for this purpose.
The return address is ‘pushed’ onto the stack when the subroutine is called, and ‘popped’
back into the program counter at the end of the routine, when the RETURN instruction is
executed.
In Fig. 5.4, the subroutine is a block of code whose start address has been defined by label as

0F0. The CALL instruction at address 002 contains the destination address as its operand. When
this instruction is encountered, the processor carries out the jump by copying the destination
address (0F0) into the program counter. At the same time, the address of the next instruction
in the main program (003) is pushed onto the stack, so that the program can come back to the
original point after the subroutine has been executed.
One advantage of using subroutines is that the block of code can be used more than once in

the program, but only needs to be typed in once. In the PIC program SCALE (see Chapter 12),

72 Microcontroller Operation

Address Main Program

000

001 To call subroutine
Program counter
loaded with destination
address 0F0
and return address 003
pushed onto stack
automatically

002 20F0

003 YYYY

004

005

006

007

Subroutine

0F0 ZZZZ

0F1

0F2 To return from subroutine
Program counter
reloaded with 003
pulled from stack

0F3

0F4 0008

XXXX 0003 Stack

Program
counter

xxxx

xxxx

Figure 5.4 Subroutine call.

a delay loop is written as a subroutine. It is a counting loop which just uses up time to give a

delay between output changes, which is ‘called’ twice within a loop which sets an output high,

delays, sets the output low, and delays again before repeating the whole process. The same

program also contains an example of direct modification of the program counter (labelled PCL)

to create a data table.

Pseudocode for a delay loop written as a subroutine would be as follows:

; Program DELTWICE *********************************

Allocate ‘Count’ Register

....

....

Load ‘Count’ register with value XX

CALL ‘delay’

Next Instruction

....

....

Load ‘Count’ register with value YY

CALL ‘delay’

Next Instruction

....

Program Operations 73

....

END of Program

; Subroutine DELAY *********************************

delay Decrement ‘Count’ register

Test ‘Count’ register for zero

If not zero, jump to label ‘delay’

RETURN from subroutine

; End of code ***************************************

Note that the ‘delay’ routine is called twice, but using a different delay value in the ‘Count’

register. Thus, the same code can be used to give different delay times. Notice also that we

have started using comments in our pseudocode to identify the functional blocks as the program

gets more complex.

Summary

• The typical microcontroller contains a program execution section, and a register processing

section.

• The program counter steps through the program ROM addresses, and the instructions are

decoded and executed.

• Data is transferred via port registers, stored in RAM/registers and processed in the ALU.

• Special function registers hold control, setup and status information.

• Instructions move or process data, or control the execution sequence.

• The content of the data registers is manipulated as single data words, or using register pairs.

• Program jumps can be unconditional or conditional, using bit testing or status bits to

determine the sequence.

• Subroutines are distinct program blocks which operate using call, execute and return.

Questions

1. Outline the sequence of program execution in a microcontroller, describing the role of the

program ROM, program counter, instruction register, instruction decoder, and timing and

control block.

2. A register is loaded with the binary code 01101010. State the contents of the register

after the following operations on this data: (a) clear, (b) increment, (c) decrement,

(d) complement, (e) rotate right, (f) shift left, (g) clear bit 5, (h) set bit 0.

74 Microcontroller Operation

3. A source register is loaded with the binary code 01001011, and a destination register loaded

with 01100010. State the contents of the destination register after the following operations:

(a) MOVE, (b) ADD, (c) AND, (d) OR, (e) XOR.

4. In a microcontroller program, a subroutine starts at address 016F and ends with a ‘return’

instruction at address 0172. A ‘call subroutine’ instruction is located at address 02F3.

Assuming that the microcontroller has one complete instruction in each address, list the

changes in the contents of the program counter and stack between the time of execution of

the instruction before the call and the instruction following the call. Indicate an unknown

value as XXXX.

5. Write a pseudocode program for the process by which two numbers, say 4 and 3, could

be multiplied by successive addition. Use the register instructions Clear, Move, Add,

Decrement, Test for Zero and Jump if Zero to Label.

Answers

2. (a) 00000000, (b) 01101011, (c) 01101001, (d) 10010101, (e) 00110101, (f) 11010100,

(g) 01001010, (h) 01101011.

3. (a) 01001011, (b) 10101101, (c) 01000010, (d) 01101011, (e) 00101001.

4. PC Stack

· · · · · · · ·

02F2 XXXX Instructions

02F3 XXXX before Call

016F 02F4 Subroutine Start

0170 02F4 Subroutine

0171 02F4 instructions..

0172 02F4 Return

02F4 XXXX Instructions

02F5 XXXX after Call

· · · · · · · ·

5. Allocate registers A,B,C

Clear register A

Move 4 into register B

Move 3 into register C

Loop1 Add B to A

Decrement C

Test C for zero

Jump back to ‘Loop1’ if C not zero

Finished with product in A

Program Operations 75

Activities

1. Study the PIC 16F8X block diagram (Appendix A, Fig. 1-1), and identify the features

described in Section 5.1.

2. Study the PIC instruction set (Appendix A, Table 7-2) and allocate the instructions to

the following categories: Move, Arithmetic, Logic, Jump and Control. Make a list of

instructions, organised in these categories, with a description and an example for each

showing the required syntax (one line per instruction). This can then be used as a handy

instruction reference when programming.

ThisPageisIntentionallyLeftBlank

Part B
The PIC Microcontroller

6 A Simple PIC Application

7 PIC Program Development

8 PIC 16F84 Architecture

9 Further Programming Techniques

ThisPageisIntentionallyLeftBlank

Chapter 6
A Simple PIC Application

6.1 Hardware Design

6.2 Program Execution

6.3 Program BIN1

6.4 Assembly Language

A very simple machine code program for the PIC will now be developed, avoiding compli-

cating factors as far as possible. A simplified internal architecture will be used to explain

the execution of the program, and the program will then be developed further, with new

programming techniques being added at each step. Since the core architecture and programming

methods are similar for all PIC microcontrollers, this serves as an introduction to the whole

family.

The specification for the application is as follows. The circuit will output a binary count

to eight LEDs, under the control of two push button inputs. One input will start the output

sequence when pressed. The sequence will stop when the button is released, retaining the

current value on the display. The other input will clear the output (all LEDs off), allowing the

count to resume from zero.

6.1 Hardware Design

We need a microcontroller which will provide two inputs and eight outputs, which will drive

the LEDs without additional interfacing, and has reprogrammable flash memory to allow the

program to be developed in stages. An accurate clock is not required, so a crystal oscillator is

not necessary. The PIC 16F84A meets these requirements; it is a basic device, so we will not

be distracted by unused features.

6.1.1 PIC 16F84A Pinout

The PIC 16F84A microcontroller is supplied in an 18-pin DIL (dual in line) chip. Simplified

pin labelling, taken from the data sheet (see Appendix A), is shown in Fig. 6.1. Some of the

pins have dual functions which will be discussed later. The suffix ‘A’ in the chip number

indicates the enhanced version of the chip, which, as far as we are concerned, is functionally

identical to the original 16F84, except that it can run at 20 MHz.

80 A Simple PIC Application

RA2

RA3

RA4

MCLR

Vss

RB0

RB1

RB2

RB3

RA1

RA0

CLKIN

CLKOUT

Vdd

RB7

RB6

RB5

RB4

Pin 1 Marker

9 10

18

PIC
16F84

Figure 6.1 Pin-out of PIC 16F84.

The chip has two ports, A and B. The port pins allow data to be input and output as digital

signals, at the same voltage levels as the supply which is connected to Vdd and Vss. CLKIN

and CLKOUT are used to connect clock circuit components, and the chip then generates a

fixed frequency clock signal which drives all its operations. !MCLR (‘NOT Master CLeaR’)

is a reset input, which can (optionally) be used to restart the program. Note that the active

low operation of this input is indicated by a bar over the pin label. An exclamation mark at

the beginning of the pin label means the same thing. In many applications, this input does

not need to be used, but it must be connected to the positive supply rail to allow the chip

to run.

A summary of the pin functions is provided in Table 6.1. Port B has eight pins, so we will

assign these pins to the LEDs and initialise them as outputs. Port A has five pins, of which two

can be used for the input switches. A resistor and capacitor will be connected to the CLKIN

pin to control the clock frequency. !MCLR must be connected to +5V.

6.1.2 BIN Hardware Block Diagram

The hardware arrangement required for the application can be represented in a simplified form

as a block diagram (Fig. 6.2). The main parts of the hardware and relevant inputs and outputs

should be identified, together with the direction of signal flow. The nature of the signals may

be described with labels or illustrated with simple diagrams. The power connections need not

be shown; it is assumed that suitable supplies are available for the active components. The idea

is to outline the basic hardware arrangement without having to design the circuit in detail at

this stage.

Port A (5 bits) and Port B (8 bits) give access to the data registers of the ports, the pins being

labelled RA0 through to RA4, and RB0 through to RB7 respectively. The two push button

switches will be connected to RA0 and RA1, and a set of LEDs connected to RB0–RB7. The

switches will later be used to control the output sequence. RA1 will be programmed to act

Hardware Design 81

Table 6.1 PIC 16F84 pins arranged by function

Pin Label Function Comment

14 Vdd Positive supply +5V nominal, 3–6V allowed
5 Vss Ground supply 0V

4 !MCLR Master clear Active low reset input
16 CLKIN Clock input Connect RC clock components to 16
15 CLKOUT Clock output Connnect crystal oscillator to 15 and 16

17 RA0 Port A, Bit 0 Bidirectional Input/Output
18 RA1 Port A, Bit 1 Bidirectional Input/Output
1 RA2 Port A, Bit 2 Bidirectional Input/Output
2 RA3 Port A, Bit 3 Bidirectional Input/Output
3 RA4 Port A, Bit 4 Bidirectional Input/Output+ TMR0 Input

6 RB0 Port B, Bit 0 Bidirectional Input/Output+ Interrupt Input
7 RB1 Port B, Bit 1 Bidirectional Input/Output
8 RB2 Port B, Bit 2 Bidirectional Input/Output
9 RB3 Port B, Bit 3 Bidirectional Input/Output
10 RB4 Port B, Bit 4 Bidirectional Input/Output+ Interrupt Input
11 RB5 Port B, Bit 5 Bidirectional Input/Output+ Interrupt Input
12 RB6 Port B, Bit 6 Bidirectional Input/Output+ Interrupt Input
13 RB7 Port B, Bit 7 Bidirectional Input/Output+ Interrupt Input

PIC
16F84

Input
port A

CLKIN

!MCLR

Output
LEDs

Input push buttons
(active low)

RC
clock

+5 V

Clear

Count

Output
port B

Figure 6.2 Block diagram of BIN hardware.

as a ‘run’ input, enabling the binary count, while RA0 will provide a ‘reset’ input to restart

the output sequence. However, these inputs will not be used in the first program, BIN1. The

connections required are shown in Table 6.2.

The block diagram can now be converted into a circuit diagram. The input and output circuits

have already been introduced in Section 3.4. The clock components are the only additional

parts needed, and the configuration and values for these are obtained from the data sheet. The

circuit diagram is shown in Fig. 6.3.

82 A Simple PIC Application

Table 6.2 PIC 16F84A pin allocation for BIN application

Pin Connection

Vss 0V
Vdd +5V

!MCLR +5V
CLKIN CR clock circuit
CLKOUT Not connected (n/c)

RA0 Reset switch
RA1 Count switch
RA2 n/c
RA3 n/c
RA4 n/c

RB0 LED bit 0
RB1 LED bit 1
RB2 LED bit 2
RB3 LED bit 3
RB4 LED bit 4
RB5 LED bit 5
RB6 LED bit 6
RB7 LED bit 7

+5 V

0 V

10k

2n2

Clock

PIC
16F84

220 R

10k
13

12

11

10

9

8

7

6
16

17

18

Clear

Count

4
14

5

Figure 6.3 Circuit diagram of BIN hardware.

6.1.3 BIN Circuit Operation

Active low switch circuits, consisting of normally open push buttons and pull-up resistors, are

connected to the control inputs. The resistors ensure that the inputs are high when the buttons

are not pressed. The outputs are connected to LEDs in series with current-limiting resistors.

Program Execution 83

The PIC outputs are capable of supplying enough current (up to 20 mA) to drive LEDs directly,
making the circuit relatively simple. The external clock circuit consists of a capacitor (C) and
resistor (R) in series; the value of C and R multiplied together will determine the chip clock
rate. The resistance in this circuit has been made variable, and the values shown should allow
the clock frequency to be adjusted to 100 kHz. The reset input (!MCLR) must be connected to
the positive supply (+5 V) to allow the chip to run. Other unused pins can be left open circuit,
but unused I/O pins should be programmed as inputs.

6.2 Program Execution

The program for the chip is created using the PIC development system software on a PC and
downloaded via a serial data link. This process will be described in more detail later, but for
now we will assume that the program is in memory.
A block diagram showing a simplified program execution model for the PIC 16F84 is shown

in Fig. 6.4. The binary program, shown in hexadecimal, is stored in the program memory. The
instructions are decoded one at a time by the instruction decoder, and the required operations
set up in the registers by the control logic. The file registers are numbered from 00 to 4F, with
the first 12 registers (00–0B) being reserved for specific purposes. These are called special
function registers (SFRs). The rest may be used for temporary data storage, and are called
general purpose registers (GPRs). Only GPR1 is shown in Fig. 6.4.

6.2.1 Program Memory

The program memory is a block of flash ROM, which means it is non-volatile, but can be easily
re-programmed. The program created in the host computer is downloaded via port register
pins RB6 and RB7 when the chip is placed in its programming unit and set to program mode
by supplying +14 V at the !MCLR pin. It is possible to write the program directly into the

Flash ROM
program
memory

File
registersAddress High byte

Low byte

30 000 0 00 02 Program
counter 00 001 PCLATH PCL

01 002

0A 003 TRISA 1F 05 PORT A

28 004 TRISB 00 00 06 PORT B

xx 005

XX

XX

0C GPR1

Instruction
decoding

and control W 00 Working
register

00

66

86

86

03

xx

Figure 6.4 PIC 16F84 simple program execution model.

84 A Simple PIC Application

programming software in hexadecimal form, but it is normally created using assembly language.

This will be described later.

The 14-bit codes are loaded into memory starting at address 000. When the chip is powered

up, the program counter resets automatically to 000, and the first instruction is fetched from

this address, copied to the instruction register in the control block, decoded and executed.

6.2.2 Program Counter: File Register 02

The program counter keeps track of the program execution by holding the address of the

current instruction. It is automatically incremented to point to the next instruction during the

execution cycle. If there is a jump in the program, the program counter is modified by the jump

instruction, so that it then points to the required jump destination.

6.2.3 Working Register: W

This is the main data register (8 bits) used for holding the data that is currently being worked

on. It is separate from the file register set and is therefore referred to as W in the PIC program.

Literals (values given in the program) must be loaded into W before being moved to another

register, or used in a calculation. Most data movements have to be via W, in two stages, since

direct moves between file registers are not available in the instruction set.

6.2.4 Port B Data Register: File Register 06

The 8 bits stored in the Port B data register will appear on the LEDs connected to pins RB0–

RB7, if the port bits are initialised as outputs. The data direction is set as output by placing a

data direction code in the register TRISB. A ‘0’ in TRISB sets the corresponding pin in the

port register as an output (0 = Output). A ‘1’ sets it to input (1 = Input). In this case, 00000000

(binary) will be placed in TRISB to set all bits as outputs, but any combination of inputs and

outputs can be used.

6.2.5 Port A Data Register: File Register 05

The least significant five bits of file register 05 are connected to pins RA0–RA4, the other

three being unused. This port will be used later to read the push buttons. If not initialised as

outputs, the PIC I/O pins automatically become inputs, i.e. TRISA = xxx11111. We will use

this default setting for Port A. However, the state of these inputs will have no effect unless the

program uses them; the first program BIN1 will not.

6.2.6 General Purpose Register 1: File Register 0C

The first general purpose register will be used later in a timing loop. It is the first of a block

of 68 such registers, numbered 0C–4F. They may be allocated by the programmer as required

for temporary data storage, counting and so on.

6.2.7 Bank 1 Registers

The main registers such as the program counter and port data registers are in a RAM block

called register bank 0, while TRISA, TRISB and PCLATH are in a separate block, bank 1.

Program BIN1 85

Bank 0 can be directly addressed, meaning that data can be moved into them using a simple

‘move’ instruction.

Unfortunately, this is not the case with bank 1 registers. Special instructions are needed to

load them, and there are two ways to do this. The first way is a simple method which we will

use initially. It requires the 8-bit code to be loaded to be placed in W first, and then moved into

the bank 1 register using the TRIS command. Later, we will use the recommended method,

using bank selection.

PCLATH stands for Program Counter Latch High. This stores the most significant two bits

of the 10-bit program counter, which also cannot be accessed directly.

6.3 Program BIN1

The simple program called BIN1, introduced in Chapter 2, is listed as Program 6.1. The program

consists of a list of 14-bit binary machine code instructions, represented as 4-digit hex numbers.

If bits 14 and 15 are assumed to be zero, the codes are represented by hex numbers in the

range 0000–3FFF. The program is stored at addresses 000–004 (5 instructions) in program

memory.

Program 6.1 BIN1 machine code

Memory address Machine code instruction Meaning

000 3000 Load working register (W) with number 00
001 0066 Store W in Port B direction code register
002 0186 Clear Port B data register
003 0A86 Increment Port B data register
004 2803 Jump back to address 0003 above

6.3.1 Program Analysis

The explanation of the program instructions must be related to the internal hardware of the PIC

16F84, as shown in Fig. 6.4.

Address 0000: Instruction = 3000

The code 3000 means move (copy) a literal (number given in the program) into the working

register (W). All literals must be placed initially in W before transfer to another register. The

literal, which is zero in this case, can be seen in the code as the last two digits, 00.

Address 0001: Instruction = 0066

This means copy the contents of W to the Port B data direction register (TRISB). W now

contains 00, which was loaded in the first instruction. This code will set all 8 bits of TRISB to

zero, making all bits output. The file register address of Port B (6) is given as the last digit of

the code.

These first two instructions are required to initialise Port B for output, using the TRIS

command to load the bank 1 register called TRISB in the register set.

86 A Simple PIC Application

Address 0002: Instruction = 0186

This instructionwill clear file register 6 (last digit), whichmeans that it will set all bits in the Port B

data register (PORTB) to zero. Operations can be carried out directly on the port data register,

and the result will appear immediately on the LEDs. On start-up, the register bits default to ‘1’,

switching the LEDs on. When the ‘clear’ instruction is executed, they will go out.

Address 0003: Instruction = 0A86

Port B data is modified; the binary value is increased by 1 and this value will be seen on the

LEDs.

Address 0004: Instruction = 2803

This is a jump instruction,which causes the program to go back and repeat the previous instruction.

This is achieved by the instruction overwriting the current program counter contentswith the value

03, the destination address, which is given as the last two digits of the instruction code.

6.3.2 Program Execution

BIN1 is a complete working program, which initialises and clears Port B and then keeps

incrementing it. The last two instructions, increment Port B and jump back, will repeat indefi-

nitely with the value being increased by 1 each time. In other words, Port B data register will

act as an 8-bit binary counter. When it reaches FF, it will roll over to 00 on the next increment

operation. If you study the binary count given in Table 2.5, you can see that the least significant

bit is inverted each time the binary count is incremented. RB0 will thus be toggled (inverted)

every time the increment operation is repeated. The next bit, RB1, will toggle at half this rate,

and so on, with each bit toggling at half the frequency of the previous bit. The MSB therefore

toggles at 1/128 of the frequency of the LSB. The output pattern generated is shown in Fig. 6.5.

An instruction in the PIC takes 4 clock cycles to complete, unless it causes a jump, in which

case, it will take 8 clock cycles (or two instruction cycles). The repeated loop in BIN1 will

0

1

2

3

4

5

6

7

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Time

Bit

Figure 6.5 Waveforms produced by program BIN1 at Port B.

Assembly Language 87

therefore take 4+ 8 = 12 clock cycles, and thus it will take 24 cycles for the RB0 to go low
and high, giving the output period of the LSB. With the clock component values as indicated
on the circuit diagram in Fig. 6.3, the clock can be set to run at 100 kHz, so RB0 would then
flash at 100 kHz/24 = 4.167 kHz, and RB7 will then flash at 4167/128 = 32.5 Hz. This is too
fast to see unaided, but it is possible to reduce the clock speed by increasing the value of the
capacitor C in the clock circuit. Alternatively, the outputs can be displayed on an oscilloscope.
We will see later how to slow the outputs down without changing the clock.
The frequencies generated are actually in the audio range, and they can be heard by passing

them to a small loudspeaker or peizo buzzer. This is a handy way of checking quickly that the
program is working, and also immediately suggests a range of PIC applications – generating
signals and tones at known frequencies by adjusting the clock rate or using a crystal oscillator.
Again, we will come back to this idea later and see how to generate audio outputs or a tone
sequence to make a tune like a mobile phone ring tone.

6.4 Assembly Language

It should be apparent that writing the machine code manually for any but the most trivial
applications is going to be a bit tedious. Not only do the actual hex instruction codes have to
be worked out, but so do jump destination addresses and so on. In addition, the codes are not
easy to recognise or remember.

6.4.1 Mnemonics

For this reason, microcontroller programs are normally written in assembly language, not
machine code. Each instruction has a corresponding mnemonic defined in the instruction set in
the data sheet. The main task of the assembler program supplied with the chip is to convert a
source code program written in mnemonic form into the required machine code. The mnemonic
form of the program BIN1 is shown in Program 6.2.
The instructions can now be written as recognisable (when you get used to them!) code

words. The program can be typed into a text editor, spaced out as shown, using the tab key
to place the code in the correct columns. Note that the first column (column 0) must be kept
blank – we will see why later. The instruction mnemonics are placed in column 1, and the
operands (data to be operated on) in column 2. The operand 00 is the data direction code for
the port initialisation, 06 is the file register number of the port data register, and 03 is the jump
destination address, line 3 of the program. The PIC instructions are all 14 bits long, so each
line of source code becomes a 14-bit code, which we have already seen.

Program 6.2 Mnemonic form of program BIN1

Top left of edit window

�Line number Column 0 Column 1 Column 2 Column 3

0 MOVLW 00
1 TRIS 06
2 CLRF 06
3 INCF 06

4 GOTO 03
5 END

88 A Simple PIC Application

The meaning of the mnemonics is as follows:

0 MOVLW 00 Move Literal 00 into W

1 TRIS 06 Move W into TRISB to set Port B as outputs

2 CLRF 06 Clear file register 06 (Port B)

3 INCF 06 Increment file register 06 (Port B)

4 GOTO 03 Jump to address 03 (back to previous instruction)

END End of source code - this is not an instruction!

The END statement is an ‘assembler directive’; it tells the assembler that this is the end of

the program, and is not converted into an actual instruction. When entering the program, there

must be space before and after each instruction mnemonic, and it is advisable to lay out the

program in columns as shown to improve its readability.

6.4.2 Assembly

The source code program could be created using a general purpose text editor, but is normally

created within a dedicated software package such as MPLAB, the PIC integrated development

environment (IDE), which contains the assembler as well as a text editor. The source code text

is entered and the assembler invoked from the menus. The assembler program analyses the

source code, character by character, and works out the binary code required for each instruction.

The terminology can be confusing here; the assembly language application program (source

code) is created in the text editor, while the software tool which does the conversion is the

assembler program.

The source code is saved on disk as a text file called PROGNAME.ASM, where

‘progname’ represents any suitable filename. This is then assembled by the assembler program

MPASM.EXE, which creates the machine code file PROGNAME.HEX. This appears as

hexadecimal code when listed. At the same time, PROGNAME.LST, the list file is created

which contains both the source and hex code, which may be useful later on when debugging

(fault finding) the program. Further information on using MPLAB will be given later.

6.4.3 Labels

The mnemonic form of the program with numerical operands can now be further improved. The

operands can be input in a more easily recognisable form, in the same way that the mnemonics

represent the instruction codes. The assembler is designed to recognise labels. A label is a word

which represents an address, register or literal. Examples used below are ‘again’, ‘portb’, and

‘allout’.

The jump destinations are defined by label, by simply placing the label at the beginning

of the destination line, and using a matching label as the jump instruction operand. When the

program is assembled, the assembler notes the numerical address of the instruction where the

label was found, and replaces the label, when found as an operand, with this address. Register

and literal labels, on the other hand, must be ‘declared’ at the beginning of the program, and

the assembler will then substitute the numerical operand for the label when it is found in the

source code.

The program BIN1 can thus be re-written using labels as shown in BIN2 source code

(Program 6.3). The literal value 00 and the port register address 06 have been replaced with

labels which are assigned at the beginning of the program. These are ‘equate’ statements, which

Assembly Language 89

Program 6.3 BIN2 source code using labels

Edit window

allout EQU 00
portb EQU 06

MOVLW allout
TRIS portb

CLRF portb
again INCF portb

GOTO again

END

allow the numbers which are to be replaced in the source code to be declared. In this case,

the label ‘allout’ will represent the Port B data direction code, while the data register address

itself, 06, will be represented by the label ‘portb’. ‘EQU’ is another example of an assembler

directive, which is an instruction to the assembler program and will not be translated into code

in the executable program.

Note that lower case is used for the labels, while upper case is used for the instruction

mnemonics and assembler directives. Although this is not obligatory, this convention will be

used because the instruction mnemonics are given in upper case in the instruction set. The

labels can then be distinguished by using lower case. The jump destination label is simply

defined by placing it in column 0 of the line containing the destination instruction. The ‘GOTO

label’ instruction then uses a matching label. Initially, labels will be limited to six characters;

they must start with a letter, but can contain numbers, e.g. ‘loop1’.

The programs BIN1 and BIN2 are functionally identical, and the machine code will be the

same.

6.4.4 Layout and Comments

A final version of BIN2 (Program 6.4) includes comments in the program to explain the action of

each line, and the overall program. As much information as possible should be provided; when

learning programming, comments help the learner to retain information, and when developing

real applications, it will help with future modifications and upgrading (software maintenance).

Comments must be preceded with a semicolon (;), which tells the assembler to ignore the

rest of that line. Comments and information can thus occupy a whole line, or can be added

after each instruction in column 3. A minimal header has been added to BIN2, with the source

code file name, author and date, and a comment added to each line. Blank lines can be used

without a comment ‘delimiter’ (the semicolon); these are used to break up the source code

into functional sections, and thus make the operation of the program easier to understand. In

BIN2.ASM, the first block contains the operand label equates, the second the port initialisation

and the third the output sequence. The layout of the program is very important in showing how

it works.

We now have a program that can be entered into a text editor, assembled and downloaded

to the PIC chip. The exact way of doing this will vary with the version of the PIC software

and programming hardware that you use.

90 A Simple PIC Application

Program 6.4 BIN2 source code with comments

; BIN2.ASM M.Bates 11-10-03
;
; Outputs a binary count at Port B
; ..

allout EQU 00 ; Define Data Direction Code
portb EQU 06 ; Declare Port B Address

MOVLW allout ; Load W with DDC
TRIS portb ; Set Port B as outputs

CLRF portb ; Switch off LEDs
again INCF portb ; Increment output

GOTO again ; Repeat endlessly

END ; Terminate source code

Summary

• A block diagram can be used to outline the hardware, and the circuit designed from it.

• The PIC 16F84 program is stored in flash ROM, at addresses from 000. The instructions are

decoded and executed by the processor control logic.

• The CPU registers are modified according to the program, and the sequence can be modified

by the instructions.

• The PIC 16F84 has 14-bit instructions, containing both the operation code and operand.

• The program is written using assembler mnemonics and labels to represent the machine code

instructions and operands.

• Layout and comments are used to document the program operation.

Questions

1. State the 4-digit hex code for the instruction INCF 06.

2. State the 2-digit hex code for the instruction MOVLW.

3. What is the meaning of the least significant two digits in the PIC machine code instruction

2803?

4. Why must the instruction mnemonic be in the second column of the source code?

Assembly Language 91

5. Give two examples of a PIC assembler directive. Why are they not represented in the
machine code?

6. What are the numerical values of the labels ‘allout’ and ‘again’ in BIN2?

Answers

1. 0A86

2. 30

3. Jump destination

4. Labels go in first column

5. EQU, END

6. 00, 03

Activities

1. Check the machine code for BIN1 against the information given in the PIC instruction set
in the data sheet, so that you could, if necessary, work out a program entirely in machine

code. Modify the machine code program by deleting the ‘Clear Port B’ operation and

changing the ‘Increment Port B’ to ‘Decrement Port B’. What would be the effect at the

output when the program was run?

2. Construct the circuit shown in Fig. 6.3 using a suitable hardware prototyping method. Refer

to Chapter 12 if necessary. A socket must be used for the PIC chip. Enter the machine

code for BIN1 directly into the programming software memory buffer and download to the
chip. Run the program in the hardware or a simulated circuit. Feed the outputs to a small

loudspeaker with a 220R current-limiting resistor in series. Use an oscilloscope to measure

the clock and output frequencies. Confirm the relationship between the clock frequency

and the output frequencies. Increase the capacitor value to 220 nF, which should make the

MSB flash at a visible rate. Predict the output frequency (Hint: the rate is proportional to

the product of RC clock components).

3. Enter the program BIN2, using labels, into the text editor, assemble and test as above.

Check that the machine code and function is identical to BIN1.

4. Display or print out the list file BIN2.LST and check that the machine code generated is

the same as BIN1. Note that there is no machine code generated for comment lines or

assembler directives. See Table 7.4 for a list file example.

Chapter 7
PIC Program Development

7.1 Program Design

7.2 Program Editing

7.3 Program Structure

7.4 Program Analysis

7.5 Program Assembly

7.6 Program Simulation

7.7 Program Downloading

7.8 Program Testing

We have seen how to start developing PIC application hardware and software, and can now
take a closer look at some of the software tools available, and how each is used in the program
development process. The program BIN2 will be further developed using the same hardware
as described in Chapter 6.
This chapter will describe features of the standard PIC development system which is currently

available, but hardware and software support to application developers are being continuously
developed by Microchip and independent suppliers. The Internet provides ready access to the
most recent information on the range of PIC chips and support software available at any given
time. The manufacturer’s website can be found at www.microchip.com.
Since the available software tools are continuously updated, a definitive tutorial in using a

particular version would soon be out of date. At the time of writing, MPLAB Version 6 is
the most recently released version of the PIC IDE, but the reader will need to refer to the
manufacturer’s documentation for details concerning the use of any particular version. The
intention at this stage is to outline how to assemble and test demonstration programs BIN3 and
BIN4 in general terms. More details on debugging programs are provided in Chapter 11.
The flowchart in Fig. 7.1 gives an overview of the program development process. The starting

point is the specification for the program, which describes how the application will function
when complete. This must then be analysed by the software designer so that the required
program can be derived from it, taking into account the features of the instruction set of the
microcontroller. The program algorithm describes the process whereby the correct outputs are
obtained from the given inputs. Various software design techniques are available to outline the
program, including flowcharts and pseudocode, which we will use here. These must represent
the program processes and their sequence in a consistent way, which can then be converted to
source code.

PIC Program Development 93

PIC PROGRAM

Convert specification
into algorithm

Edit source code

Assemble program

Syntax errors?

Test code in simulator

Logical errors?

Download hex code to chip

Test code in target hardware

Functional errors?

DONE

Yes

Yes

Yes

Figure 7.1 PIC program development process.

The program source code is developed from the program algorithm, by filling in the details

and converting each program block to assembler code. The program must be saved on disk

as it is developed; it is a good idea to always have copies on different disks (floppy, hard

disk or network drive) in case of disk failure – this always happens when you least expect it!

The source code text file is called PROGNAME.ASM, where PROGNAME is the application

name, such as BIN1. Successive versions of a program can be numbered: BIN1, BIN2, etc.

The program can then be assembled by calling up the assembler utility; this is called MPASM.

It converts the source code into machine code and creates additional files to help with debugging

(fault finding) the program. If a mistake has been made in the individual instruction (e.g. mis-

spelling a mnemonic), it will be reported in an error message window and an entry added to the

error file on disk. This must then be corrected in the source code and the program re-assembled

until it is free of syntax errors.

The program can then be tested for correct operation before it is downloaded to the chip

using the simulator MPLAB SIM. The program is loaded and executed on-screen, and checked

step by step for the correct logical operation, by monitoring the changes in the registers, and

checking the timing if necessary. Simulated inputs are also needed. If a logical error is found,

the source code must be re-edited, re-assembled and the simulation repeated.

When the logical errors have been removed, the program can be downloaded to the chip

and it should work first time, if the hardware has been correctly designed. Final testing can

94 PIC Program Development

Table 7.1 Components of MPLAB development system

Software tool Tool function Files produced or used File description

Text editor Used to create and modify
source code text file

PROGNAME.ASM Source code text file

Assembler Generates machine code
from source code, reports
syntax errors, generates
list and symbol files

PROGNAME.HEX
PROGNAME.ERR
PROGNAME.LST

PROGNAME.COD

Executable machine code
Error messages
List file with source
and machine code
Symbol and debug
information

Simulator Allows program to be
tested in software before
downloading

PROGNAME.HEX
PROGNAME.COD

Programmer Downloads machine code
to chip

PROGNAME.HEX

then compare the finished circuit function with the specification, and, hopefully, no further
debugging should be necessary at this stage.
The main software tools and files created and used by MPLAB during the development

process are listed in Table 7.1.

7.1 Program Design

There are national and company standards for specifying engineering designs which should be
applied in commercial work. The design rules for different types of products will vary; for
instance, a military application will be designed to a higher standard of reliability and more
rigorously tested and documented than a commercial one. Our designs here are artificial in
that they are intended to illustrate features of the PIC microcontroller rather than meet a user’s
requirement. Nevertheless, we can follow the design process through the main steps.

7.1.1 Application Design

The first step in the design process is to specify the functions and performance required by the
application. In the real world, this needs to be done in some detail so that the overall design,
development and production costings and timescales can be predicted, as well as establishing
the market or customer requirements. For our purposes, the minimal specification given in
Chapter 6 will suffice.
The next step is to design the hardware on which the application program will run. A block

diagram which shows the user interface (input and output) requirements is a good starting
point. The interfacing of the microcontroller is generally based on a limited number of standard
devices, such as push buttons, keypad, LED indicators, LCD (liquid crystal display), relays and
so on. The circuit design techniques required will not be covered here, but we must ensure that
the demands on the microcontroller are within its specification. For example, the maximum
current available at the standard PIC output is about 20mA, sufficient to drive an LED, but not
a relay.

Program Design 95

The microcontroller itself must be selected by specifying the requirements such as:

• number of inputs and outputs

• program memory size

• data memory size (number of spare file registers)

• program execution speed

• other special interfaces (e.g. analogue inputs, serial ports)

The hardware configuration for the BINx applications has already been described in Chapter 6.
We have established that the instruction set and programming features of the microcontroller
selected are suitable. If further features were required, the existing hardware design could
be modified. If the microcontroller selected was then found to be lacking in some way, for
example, not enough I/O pins, another microcontroller, or other types of hardware such as a
conventional microprocessor system, must be considered. However, it is easier to stay within
one family of processors, and most manufacturers supply a range of chips, from which the most
suitable can be selected.

7.1.2 Program Specification

The operational requirements of the application must be clearly specified in advance. In the
commercial environment, a customer may do this, or if the application is a more speculative
venture, the requirements of the potential market must be analysed. A specification must then
be written in a way that lends itself to conversion into a software product using the language and
tools available. Each programming language offers a different combination of features which
must be matched to the user requirement as closely as possible. Similarly, the hardware system
type must be selected to suit the application, before attempting the detailed circuit design.
Choosing the most suitable microprocessor or microcontroller is clearly crucial. To make this
choice, one needs a knowledge of the whole range of options. Chapter 14 provides a starting
point for investigating and comparing different solutions.
For so-called embedded applications (the controller is built into the application circuit), the

main choice of language is between assembler and a high level language (HLL) such as ‘C’.
C allows such features as screen graphics, file handling and complex calculations to be more
easily included in an application. For example, a maths function such as ‘Sin x’ is provided
in C; this would require a much more complex calculation in assembly language. On the
other hand, assembly language code is generally faster and requires less memory. Of course,
ultimately all languages are converted into machine code to run on the selected processor. The
HLL requires more program memory because each statement is converted into several machine
code instructions.
High level languages are normally used to develop applications for conventional processor

systems, especially if using theWindows/Intel PC as a standard hardware platform. However, for
less complex applications, a suitable microcontroller would be used, programmed in assembler
language. The PIC family contains an expanding range of devices, which offer a combination
of different features, for example, built-in serial communication ports or analogue to digital
converters (ADCs). The more powerful 18XXXX series of PICs is typically programmed in
‘C’ (see Chapter 16).

7.1.3 Program Algorithm

The specification for the demonstration application is as follows. The circuit will output a
binary count to eight LEDs, under the control of two push button inputs. One input will start the

96 PIC Program Development

output sequence when pressed. The sequence will stop when the button is released, retaining

the current value on the display. The other input will clear the output (all LEDs off), allowing

the count to resume from zero.

The BIN3 specification is much less demanding than would normally be the case for real

software product. The frequency of operation of the output could, for instance, be specified.

As the specification is not very specific, it should be easy to meet!

A flowchart is useful for clarifying the algorithm, particularly when learning, as it provides a

pictorial representation. A flowchart for BIN3 is shown in Fig. 7.2. The program title is placed

in the start symbol at the top of the flowchart, and the process required defined as a sequence of

blocks. Each flowchart box will contain a description of the action at each stage, using different

shaped boxes for processes (rectangle), input and output (sloping) and decisions (pointed). The

decision box has two outputs, to represent a conditional branch in the program. This decision

box should contain a question with the answer yes or no, and the active selection labelled Yes

or No as appropriate; only one needs to be labelled. The jump destinations are also labelled;

these same labels will be used in the program as address labels. Software design techniques,

including flowcharts, will be covered in more detail later.

BIN3

Clear output port

Run?

Increment output

Yes

No

Reset

Start

Reset?

Initialise ports

Delay

Figure 7.2 Flowchart for BIN3.

7.2 Program Editing

The program is written using the instruction set of the processor selected. This is provided with

the hardware data sheet, for the 16F84A, Section 7 of the data sheet. A summary is provided

in Table 7-2 of the data sheet. The source code, that is, the assembly code program, must be

entered into a suitable text editor, usually the MPLAB edit window. We will not go into the

details of using a text editor, as it is assumed that the reader is familiar with using a word

processor.

The MPLAB text editor has limited editing features, because it is only used for creating plain

text files. The typeface ‘Courier’ is used because each character occupies the same space, unlike

proportionally spaced typefaces such as ‘Arial’ and ‘Times Roman’. Displayed in this way, the

text lines up vertically as well as horizontally, so the program can be laid out consistently in

Program Editing 97

columns using tab stops, making it easier to understand. The tab spacing should be set to 8

characters for the programs in this book.

When a new application is started, a separate folder should be created to contain the source

code file, and all the other files that will be created. Name the folder with the application

name, e.g. BIN3. When the source code file has been opened, enter the source code filename

(e.g. BIN3.ASM) at the top of the file, and immediately save it in the folder. This ensures that

the required filepath is checked for correct operation before any further source text is entered.

When saving on floppy, there is a high risk of disk failure and possible operating system crash,

resulting in the loss of the edit file. Avoid disaster by keeping at least two copies of the source

code on different drives.

7.2.1 Instruction Set

Table 7.2 is a more user-friendly form of the PIC 16F84 instruction set organised by function.

An example is given with each instruction so that the exact syntax can be seen. More detailed

information is provided in the data sheet. Other PIC chips have additional instructions, but they

all use the same basic set.

7.2.2 BIN3 Source Code

In program BIN3 the same instructions are used as in BIN2 (Chapter 6), with additional

statements to read the switches and control the output. Program 7.1 is the result.

Firstly, note the general layout and punctuation required. The program header block contains

as much information as is necessary at this stage. These comments are preceded by a semicolon

on each line to indicate to the assembler that this text is not part of the program. Assembler

directives such as EQU and END are also not part of the program proper, but used to define

labels and the end of the program source code. The labels ‘porta’, ‘portb’ and ‘timer’ refer to

file registers 05, 06 and 0C, respectively; ‘inres’ and ‘inrun’ are input bit labels representing

the push buttons. The program uses ‘Bit Test and Skip’ instructions followed by ‘GOTO label’

for conditional jumping.

At this stage, the reader can type the source code into the editor without full analysis in

order to practise use of the editor. The instructions are placed in the first three columns, and the

comments can be left out to save time. Labels go in the first column, instruction mnemonics in

the second, and the instruction operands in the third. The source code text file should be saved

as BIN3.ASM in a suitably named directory or folder on disk.

7.2.3 Syntax

‘Syntax’ refers to the way that words are put together to create meaningful statements, or a

series of statements. In programming, the syntax rules are determined by the assembler which

will be used to create the machine code, in our case, MPASM.EXE. The assembler must be

provided with source code which it can convert into the required machine code without any

ambiguity, that is, only one meaning is possible. This is why the assembler syntax rules are

very strict.

7.2.4 Layout

The program layout should be in four columns, as described in Table 7.3. Each character

then occupies the same space, and the columns are correctly aligned. The label, command and

98 PIC Program Development

Table 7.2 PIC 16F84 instruction set by functional groups

PIC 16F84 INSTRUCTION SET BY FUNCTIONAL GROUPS

F = Any file register (specified by number or label), example is 0C
W = Working register, W
L = Literal value (follows instruction), example is 0F9
* = Use of these instructions not now recommended by manufacturer

Operation Example
Move

Move data from F to W MOVF 0C,W

Move data from W to F MOVWF 0C

Move literal into W MOVLW 0F9

Register
Clear W (reset all bits and value to 0) CLRW

Clear F (reset all bits and value to 0) CLRF 0C

Decrement F (reduce by 1) DECF 0C

Increment F (increase by 1) INCF 0C

Swap the upper and lower four bits in F SWAPF 0C

Complement F value (invert all bits) COMF 0C

Rotate bits Left through Carry Flag RLF 0C

Rotate bits Right through Carry Flag RRF 0C

Clear (reset to zero) the bit specified (e.g. bit 3) BCF 0C,3

Set (to 1) the bit specified (e.g. bit 3) BSF 0C,3

Arithmetic
Add W to F ADDWF 0C

Add F to W ADDWF 0C,W

Add L to W ADDLW 0F9

Subtract W from F SUBWF 0C

Subtract W from F, placing result in W SUBWF 0C,W

Subtract W from L, placing result in W SUBLW 0F9

Logic
AND the bits of W and F, result in F ANDWF 0C

AND the bits of W and F, result in W ANDWF 0C,W

AND the bits of L and W, result in W ANDLW 0F9

OR the bits of W and F, result in F IORWF 0C

OR the bits of W and F, result in W IORWF 0C,W

OR the bits of L and W, result in W IORLW 0F9

Exclusive OR the bits of W and F, result in F XORWF 0C

Exclusive OR the bits of W and F, result in W XORWF 0C,W

Exclusive OR the bits of L and W XORLW 0F9

Test and Skip
Test a bit in F and Skip next instruction if it is Clear (=0) BTFSC 0C,3

Test a bit in F and Skip next instruction if it is Set (=1) BTFSS 0C,3

Decrement F and Skip next Instruction if it is now Zero DECFSZ 0C

Increment F and Skip next Instruction if it is now Zero INCFSZ 0C
Jump

Go To a Labelled Line in the Program GOTO start

Jump to the Label at the start of a Subroutine CALL delay

Return at the end of a Subroutine to the next instruction RETURN

Return at the end of a Subroutine with L in W RETLW 0F9

Return from Interrupt Service Routine to next instruction RETFIE

Program Editing 99

Control
No Operation – delay for 1 cycle NOP

Go into Standby Mode to save power SLEEP

Clear Watchdog Timer to prevent automatic reset CLRWDT

Load Port Data Direction Register from W* TRIS 06

Load Option Control Register from W* OPTION

The result of arithmetic and logic operations can generally be stored in W instead of the file
register by adding ‘,W ’ to the instruction. General purpose register 1, address 0C, represents
all file registers (00–4F). Literal value 0F9 represents all values 00–FF. Bit 3 is used to represent
file register bits 0–7. For MOVE instructions data is copied to the destination but retained in the
source register.

Program 7.1 BIN3 source code

; BIN3.ASM M. Bates 12-10-03
;...
;
; Slow output binary count is stopped, started
; and reset with push buttons.
;
; Processor = 16F84 Clock = CR, 100kHz
; Inputs: RA0, RA1 Outputs: RB0 - RB7
;
; ***

; Register Label Equates ...

porta EQU 05 ; Port A Data Register
portb EQU 06 ; Port B Data Register
timer EQU 0C ; Spare register for delay

; Input Bit Label Equates...

inres EQU 0 ; ‘Reset’ input button = RA0
inrun EQU 1 ; ‘Run’ input button = RA1

; ***

; Initialise Port B (Port A defaults to inputs).........................

MOVLW 00 ; Port B Data Direction Code
TRIS portb ; Load the DDR code into F86

; Start main loop ..

reset CLRF portb ; Clear Port B

start BTFSS porta,inres ; Test RA0 input button
GOTO reset ; and reset Port B if pressed

continued � � �

100 PIC Program Development

BTFSC porta,inrun ; Test RA1 input button
GOTO start ; and run count if pressed

INCF portb ; Increment count at Port B

MOVLW 0FF ; Delay count literal
MOVWF timer ; Copy W to timer register

down DECFSZ timer ; Decrement timer register
GOTO down ; and repeat until zero

GOTO start ; Repeat main loop always
END ; Terminate source code

Table 7.3 Layout of assembler source code

Column 1 Column 2 Column 3 Column 4

Label COMMAND Operand/s ; Comment

Label
EQUated to
a value, or
to indicate
a program
destination
address for
jumps.

Mnemonic
form of the
instruction for
the processor
to carry out
a specific
operation.
Only mnemonics
specified in
the instruction
set may be
used.

The data or
register
contents to
be used in the
instruction.
Registers
are usually
represented by
a label. Some
instructions
do not need an
operand.

Explanatory text
to the right of a
semicolon on any
line of code helps
the programmer
and user to
understand the
program. It has
no effect on the
operation of the
program. Full
line comments
may also be used
between program
blocks.

operand columns should be set to a width of 8 characters, with the maximum label length of
6 characters, leaving a minimum of two clear spaces between columns (longer labels can be
used, but a different form of the program layout must then be used). The tab key is normally
used to place the text in columns, and the tab spacing can be adjusted if necessary.

7.2.5 Comments

Comments are not part of the actual program, but are included to help the programmer and user
understand how the program works. Comments are preceded by a semicolon (;), which can be
placed at the beginning of a line to indicate a comment which relates to a whole program block
(functional set of statements), or at the start of Column 4 for line comment. The comment and
line are terminated with a line return (‘Enter’ key).
A standard header block is recommended (see Program 7.1). For simple programs, the first

line should at least contain the source code file name, the author and date, and/or version
number. A program description should also be provided in the header, and for more complex
programs, the processor type, hardware setup and other relevant information.

Program Analysis 101

7.2.6 Creating a Project

MPLAB is designed to work using a named project to keep track of the application files created.
A project file can be created which records information about the project such as the location
of the application files and the window configuration used for testing. When the project is
re-opened, the windows re-appear as they were last set up. It is not essential to create a project
for our simple applications, which can be assembled by selecting ‘Quickbuild’ (Ver. 6) or
‘Build Node’ (Ver. 5) but earlier versions of MPLAB required it, and it will be needed for
more complex applications.

7.3 Program Structure

Structured programming means constructing the program, as far as possible, from discrete
blocks. This makes the program easier to write and understand, more reliable and easier to
modify at a later date.

7.3.1 BIN4 Source Code

Program BIN3 (Chapter 6) is unstructured, in that the program instructions are essentially
executed in the order given in the source code. An equivalent ‘structured’ program, BIN4, is
listed as Program 7.2.
The main difference between BIN3 and BIN4 is that the program now has the delay code

as a ‘subroutine’. The subroutine is inserted before the main program block, and assembled
first. It is then ‘called’ from the main program by label. The subroutine can be created as a
self-contained program block, and re-used in the program as necessary. It can be called as
many times as required, which means that the block of code only needs to be written once. It
can also be saved as a separate file and re-used in another program.
A program flowchart has been given for BIN3 (Fig. 7.2). The same flowchart describes

BIN4, but the delay routine can now be expanded as a separate subroutine flowchart (Fig. 7.3).
In addition, the delay time is loaded prior to the subroutine execution, so the same delay routine
could be used to provide different delay times. The use of flowcharts in program design will
be more fully examined in Chapter 10.

7.4 Program Analysis

The program BIN4 will now be analysed in some detail as it was designed to contain examples
of most of the basic PIC syntax. A sample instruction is given in each case.

7.4.1 Label Equates

timer EQU 0C

The use of labels in place of numbers makes programs easier to write and understand, but we
have to ‘declare’ those labels at the beginning of the program. In assembly code, the assembler
directive EQU is used to assign a label to number, which can be a literal, file register number
or individual register bit. In BIN4, ‘porta’ and ‘portb’ are the port data registers (05 and 06)
and ‘timer’ is the first spare register (0C), which will be used as a software counter. The labels
‘inres’ and ‘inrun’ will represent Bit 0 and Bit 1 of Port A; they are simply given the numerical
value 0 and 1.

102 PIC Program Development

Program 7.2 BIN4 source code

; Source File: BIN4.ASM
; Author: M. Bates
; Date: 15-10-03
; ...
; Program Description:
;
; Slow output binary count is stopped, started
; and reset with push buttons. This version uses a
; subroutine for the delay....
;
; Processor: PIC 16F84
;
; Hardware: BIN Demo System
; Clock: CR ∼100kHz
; Inputs: Push Buttons RA0, RA1 (active low)
; Outputs: LEDs (active high)
;
; WDTimer: Disabled
; PUTimer: Enabled
; Interrupts: Disabled
; Code Protect: Disabled
;
; ***

; Register Label Equates..

porta EQU 05 ; Port A Data Register
portb EQU 06 ; Port B Data Register
timer EQU 0C ; Spare register for delay

; Input Bit Label Equates...

inres EQU 0 ; ‘Reset’ input button = RA0
inrun EQU 1 ; ‘Run’ input button = RA1

; ***

; Initialise Port B (Port A defaults to inputs).........................

MOVLW b’00000000’ ; Port B Data Direction Code
TRIS portb ; Load the DDR code into F86
GOTO reset

; ‘delay’ subroutine...

delay MOVWF timer ; Copy W to timer register
down DECFSZ timer ; Decrement timer register

GOTO down ; and repeat until zero
RETURN ; Jump back to main program

Program Analysis 103

; Start main loop..

reset CLRF portb ; Clear Port B Data

start BTFSS porta,inres ; Test RA0 input button
GOTO reset ; and reset Port B if pressed
BTFSC porta,inrun ; Test RA1 input button
GOTO start ; and run count if pressed

INCF portb ; Increment count at Port B
MOVLW 0FF ; Delay count literal
CALL delay ; Jump to subroutine ‘delay’

GOTO start ; Repeat main loop always
END ; Terminate source code

BIN4

Yes

No

Port A = Inputs

Output count = 0

Reset?

Run?

Increment output count

Set delay count

Delay

Delay

Return

No

Load timer

Decrement
timer = 0?

(a)

(b)

Port B = Outputs

Figure 7.3 Flowcharts for program BIN4. (a) Main routine; (b) Subroutine.

104 PIC Program Development

7.4.2 Port Initialisation

TRIS portb

Port B is used as the output for the 8-bit binary count. The data direction must be set up using the

TRIS command, which loads the port data direction register with the data direction code. In this

example, the code is given in binary, b‘00000000’. This is useful, especially if the port bits are

to be set as a mixture of inputs and outputs; the binary code identifies the data direction for each

bit individually. This code is loaded into W using MOVLW, and the TRIS command follows.

The TRIS instruction is still available as a simple way of initialising the ports, but the

manufacturers recommend an alternative method which involves bank selection, and will be

covered later. Hopefully, TRIS will continue to be supported in by the MPASM assembler, as

it is easier for beginners.

7.4.3 Program Jumps

GOTO start

The ‘GOTO label’ command is used to make the program jump to a line other than the one

following. In BIN4, ‘GOTO reset’ skips over the following DELAY routine, to start the main

loop. We will come back to the reason for this in a moment. There is another unconditional

jump at the end of the program, ‘GOTO start’, which makes the main loop repeat endlessly.

Other ‘GOTO label’ instructions are used with ‘Test and Skip’ instructions to create conditional

branches. In this program, the input buttons are checked using this type of instruction and the

program branches, or not, depending on whether it has been pressed.

7.4.4 Bit Test and Skip if Set/Clear

BTFSS porta,inres

The input button connected to Port A, bit 0 is tested using the above instruction, which means

‘Bit Test File (register bit) and Skip the next instruction if it is Set (=1)’. Without labels, the

instruction’ ‘BTFSS 05,0’ would have the same effect. The buttons are connected ‘active low’,

meaning that the input goes from ‘1’ to ‘0’ when the button is pressed. If the button connected

to RA0 is not pressed, the input will be high, that is, set. The following instruction, ‘GOTO

reset’ is therefore skipped, and the next executed. When the button is pressed, the ‘GOTO

reset’ is executed, and the CLRF instruction repeated, clearing the previous count.

BTFSC means ‘Bit Test and Skip if Clear’; it works in the same way as BTFSS, except that

the logic is reversed. Thus, ‘BTFSC porta,inrun’ tests bit 1 of Port A register and skips the

following ‘GOTO start’ if the ‘run’ button has been pressed. The program will then proceed to

increment the output count. If button is not pressed, the program waits by jumping back to the

‘start’ line. The combined effect is that the count runs when the ‘run’ button is pressed, and

the count is reset to zero if the ‘reset’ button is pressed.

7.4.5 Decrement/Increment Register and Skip If Zero

DECFSZ timer

The other instructions for conditional branching allow a register to be incremented or

decremented and then checked for a zero result. This is a common requirement for counting

Program Assembly 105

and timing applications, and in the delay routine in BIN3, a register ‘timer’ is loaded with the

maximum value FF and decremented. If the result is not yet zero, the jump ‘GOTO down’ is

executed. When the register reaches zero, the GOTO is skipped and the subroutine ends. In

BIN4, the timer value is set up before the delay subroutine is called.

7.4.6 Subroutine Call and Return

The main elements of the subroutine call structure are shown below:

main ; start main program

......

CALL delay ; jump to subroutine

...... ; return to here

delay ; subroutine start

......

......

RETURN ; subroutine ends

In this program, the subroutine provides a delay by loading a register and counting down to zero.

Thedelay is startedusing the ‘CALLdelay’ instruction,when theprogramjumps to the label ‘delay’

and runs from there. CALLmeans ‘jump and come back to the same place after the subroutine’, so

the return address has to be stored for later recall in a special memory block called the ‘stack’.

The address of the instruction following (in this case ‘GOTO start’) is saved automatically on

the stack as part of the execution of the CALL instruction. The subroutine is terminated with the

instruction ‘RETURN’, which does not require an operand because the return destination address

is automatically pulled from the stack and replaced in the program counter. This takes the program

back to the original place in the main program. The stack can store up to eight return addresses, so

multiple levels of subroutine can be used. The return addresses are pushed onto and pulled from

the stack in order, so if a CALL or RETURN is missed out of the program, a stack error will occur.

7.4.7 End of Source Code

END

The source code must be terminated with assembler directive END so that the assembly process

can be stopped in an orderly way, and control returned to the host operating system.

7.5 ProgramAssembly

The assembler program (MPASM) takes the source code text and decodes it character by character,

line by line, starting at the top left. InMPLAB, the correct processor type must first be selected via

the configurationmenu, as there is some variation in valid syntax between processors. Then, in the

project menu, select the option to assemble a single file. It is not necessary, at this stage, to create

a project.

When the assembler runs, the corresponding 14-bit binary machine code for each line in the

source code is generated, until the END directive is detected. The binary code created is automat-

ically saved as a file called BIN4.HEX in the same folder as the source code.

106 PIC Program Development

7.5.1 Syntax Errors

If there are any syntax errors in the source code, such as spelling, layout, punctuation or failure to
define labels properly, error messages will be generated by the assembler. These will be displayed
in a separate window, indicating the type of error and line number. You must note the messages
and line numbers, or print out the error file, BIN4.ERR. Then go back and re-edit the source code
andmake the necessary changes. The error is sometimes on a previous line to the one indicated, and
sometimes one error can generate more than one message. Warnings and information messages
can usually be ignored. There is more details about error messages in Chapter 11.
You may receive the following messages:

Warning[224] C:\ MPLAB\ BOOKPRGS\ BIN4.ASM 65 : Use of this

instruction is not recommended.

Message[305] C:\ MPLAB\ BOOKPRGS\ BIN4.ASM 81 : Using default

destination of 1 (file).

The first warning will be caused by using the instruction TRIS, which the manufacturer warns
may not be supported in future (OPTION is also not recommended). However, it is used here
because it simplifies the initialisation of the ports. The message about the ‘default destination’ is
caused by the simplified syntax used in these programs, where the file register is not explicitly
specified as destination in instructions where the result can be placed either in the file register
or in the working register (see Section 9.4.1). The assembler assumes that the file register is the
destination by default.
Whenall errorshavebeeneliminated, and theprogramsuccessfullyassembled, themachinecode

can be inspected by viewing programmemory.Note that the source code labels are not reproduced,
as the program code has been ‘disassembled’ from the machine code. That is, the hex file has been
converted back to mnemonic form so that it can be checked against the original.

7.5.2 List File

Aprogram ‘list file’ BIN4.LST is also produced by the assembler, which contains the source code,
themachine code, errormessages and other information all in one listing (Table 7.4). This is useful
for analysing the program and assembler operations, and debugging the source code.
The list fileheader shows theassemblerversionusedandsource filedetails.Thecolumnheadings

are then given:

LOC: Memory location addresses at which the machine code

will be stored

VALUE: The numerical value with which equate labels will be

replaced

OBJECT CODE: Machine code produced for each instruction

LINE: Line number of list file

SOURCE TEXT: Source code including comments

At the end of the list file, additional information is provided:

SYMBOL TABLE: Lists all the equate and address labels allocated

MEMORY USAGE MAP: Shows the locations occupied by the object code

Note that there is no machine code produced by the lines which are occupied by a full line
comment. The actual program starts to be produced at line 00040. The machine code for the first

Program Assembly 107

Table 7.4 BIN4 list file

MPASM 01.21 Released BIN4.ASM 24-10-03 15:04:14

LOC OBJECT CODE LINE SOURCE TEXT
VALUE

00001 ;
00002 ; BIN4.ASM M. Bates 24-10-03
00003 ; ...
00004 ;
00005 ; Output binary sequence is stopped, started
00006 ; and reset with input buttons...
00007 ;
00008 ; Processor: PIC 16F84
00009 ;
00010 ; Hardware: PIC Demo System
00011 ; Clock: CR∼100kHz
00012 ; Inputs: Push Buttons RA0, RA1 (active low)
00013 ; Outputs: LEDs (active high)
00014 ;
00015 ; WDTimer: Disabled
00016 ; PUTimer: Enabled
00017 ; Interrupts: Disabled
00018 ; Code Protect: Disabled
00019 ;
00020 ; Subroutines: DELAY
00021 ; Parameters: None
00022 ;
00023 ; **
00024
00025 ; Register Label Equates
00026

0005 00027 porta EQU 05 ; Port A Data Register
0006 00028 portb EQU 06 ; Port B Data Register
000C 00029 timer EQU 0C ; Spare register for delay

00030
00031 ; Input Bit Label Equates
00032

0000 00033 inres EQU 0 ; ‘Reset’ input button=RA0
0001 00034 inrun EQU 1 ; ‘Run’ input button = RA1

00035
00036 ; **
00037
00038 ; Initialise Port B (Port A defaults to inputs).....
00039

0000 3000 00040 MOVLW b’00000000’ ; Port B Data Direction Code
0001 0066 00041 TRIS portb ; Load the DDR code into F86

00042
0002 2808 00043 GOTO reset ; Jump to start of main

00044
00045 ; Define DELAY subroutine........................
00046

0003 30FF 00047 delay MOVLW 0xFF ; Delay count literal
0004 008C 00048 MOVWF timer ; is loaded into spare reg.

00049
continued � � �

108 PIC Program Development

Table 7.4 continued

0005 0B8C 00050 down DECFSZ timer ; Decrement timer register
0006 2805 00051 GOTO down ; and repeat until zero then
0007 0008 00052 RETURN ; return to main program

00053
00054
00055 ; Start main loop
00056
00057

0008 0186 00058 reset CLRF portb ; Clear Port B Data
00059

0009 1C05 00060 start BTFSS porta,inres ; Test RA0 input button
000A 2808 00061 GOTO reset ; and reset Port B

00062
000B 1885 00063 BTFSC porta,inrun ; Test RA1 input button
000C 2809 00064 GOTO start ; and run count if pressed

00065
00066

000D 0A86 00067 INCF portb ; Increment count at Port B
000E 2003 00068 CALL delay ; Execute delay subroutine
000F 2809 00069 GOTO start ; Repeat main loop

00070
00071
00072 END ; Terminate source code

SYMBOL TABLE
LABEL VALUE

__16C84 00000001
delay 00000003
down 00000005
inres 00000000
inrun 00000001
porta 00000005
portb 00000006
reset 00000008
start 00000009
timer 0000000C

MEMORY USAGE MAP (‘X’ = Used, ‘-’ = Unused)

0000 : XXXXXXXXXXXXXXXX -
0040 : -

All other memory blocks unused.

Errors : 0
Warnings : 0
Messages : 2

Program Simulation 109

instruction is shown in column 2 (3000), and the address where it will be stored in the chip when
downloaded is shown in column 1 (0000). The whole program will occupy locations 0000–000F
(16 instructions).
Ifwestudy themachinecode,wecanseehowthe labellingworks; forexample, the last instruction

‘GOTO start’ is encoded as 2809, and the 09 refers to address 09 in column 1, the location with
the label ‘start’. The assembler program has replaced the label with the corresponding numerical
address for the jumpdestination. Similarly, the label ‘porta’ is replacedwith its file register number
05 in the instruction code to test the input, 1C05.
The label values are listed again in the symbol table. These values will be used by the simulator

to allow the user to display the simulated registers by label. The amount of programmemory used,
16 locations (0000–000F), is shown in graphical format in the memory usage map, and finally a
total of errors, warnings and messages given. If there are fatal errors, which prevent successful
assembly of the program, the list file will not be produced.

7.6 ProgramSimulation

TheBIN4.HEX file could nowbe downloaded to the PIC chip and executed; it would run correctly,
because the program given here has already been tested. However, when a program is first
developed, it is quite likely that ‘logical’ errors will be found. Logical errors prevent the program
from work correctly; that is, the program executes but it does not necessarily carry out the right
operations in the right order.
If this is so, the source codemust be analysed again to try to find the errors. In complex programs,

this process might have to be repeated many times, making it time-consuming and inefficient if
the program has to be downloaded for testing in the hardware each time. This is where a software
simulator comes in – it allows the program to be ‘run’ on the host PC, as if it were being executed in
the chip, but without having to download to the actual hardware. It can then be checked for logical
errors and the source code changed and re-tested much more quickly and easily.
Using the simulator MPLAB SIM (Fig. 7.4), the program can be run and stopped at will; this

allows the effect of the program on the registers to be checked at critical points. For example, in
BIN4wewould check to see that Port B has been incremented after the execution of themain loop,
because this is the primary function of the program.
Suppose that in developing BIN4 we had failed to analyse the switching logic correctly, and

instead of the instruction BTFSS (Bit Test and Skip if Set) at the line labelled ‘start’, BTFSC (Bit
Test and Skip if Clear) had been entered. The program would assemble successfully, but when
tested, would not run correctly.While the ‘inres’ switch was not pressed, the programwould jump
back to the ‘reset’ line instead of going to the second switch (‘inrun’) test to allow the output
sequence to be started. This fault could be detected in the simulator, by running the program,
stepping through the start sequence and simulating the switch inputs.
BIN4 can be tested as follows. Figure 7.4 shows the relevant windows in a screen shot from

MPLAB 6.

7.6.1 Single Stepping

To test a program in the edit window (source code debugging),make sure it is saved and assembled
correctly.Enable the simulatormodeas requiredby theMPLABversion inuse, so that the simulator
toolbar buttons are showing. Operate the ‘Run’ button; nothing appears to happen, but when the
‘Stop’ button is operated, the current execution point is indicated in the source code window.

110 PIC Program Development

Figure 7.4 MPLAB simulation windows for debugging program BIN4.

The program can now be executed one instruction at a time using the ‘Step Into’ button, and the

sequence examined. The program should loop through the reset sequence. The program can be

restarted from the top at any time by clicking on the ‘Reset’ button.

7.6.2 Input Simulation

We now need to simulate the action of the push buttons in the hardware which are used to start and

stop the output sequence. The simplest way to do this is to use ‘asynchronous input’ found under

the dubugger, stimulus menu. This displays a set of screen buttons which can be assigned to any

input. Assign a button to RA0 and RA1, and set to toggle mode; the toggle option will make the

input change over each time the button is pressed.

The inputs can now be toggled to allow the program to proceed from the reset loop. Set both

inputs high initially; taking RA1 low will allow the main loop to proceed, and operating RA0 will

execute the reset loop.Unfortunately, the state of the input is not indicated in the simulator stimulus

window, so file register 05, Port A,must be displayed (preferably in binary) in order to confirm the

changes on the inputs.

7.6.3 Register Display

View the file registers, or special function registers, to check the effect of the programon the output

register 06, Port B. The changes at the inputs can also be checked, and any intermediate changes in

Program Simulation 111

internal registers tracked. Registers can also be displayed selectively using awatchwindow,where

only those registers affected by the program are seen.

7.6.4 Step Over

Once theprogramhasentered thedelay loop, single stepping isnot souseful, because theprogramis

simply executing the same simple sequence over and over. A short cut around the delay subroutine

is needed. Oneway to do this is to use the ‘StepOver’ button; when the subroutine is reached in the

main loop, it is executed at full speed and the single steppingmode re-entered upon return from the

subroutine.

7.6.5 Breakpoints

Another technique for executing some parts of the program at full speed is the use of breakpoints.

For example, if part of a large program is known to be correct, it can be skipped and single stepping

started at a later point in theprogram. InBIN4, abreakpoint canbe set at the start of themain loopby

right-clickingwith themouse over the program line labelled ‘start’, and selecting ‘Set Breakpoint’

from the menu. The program can then be run from the start, and it will stop at the breakpoint. Run

again, and a complete loop will be completed at full speed and Port B should increment.

7.6.6 Stopwatch

The program timing can be checked using the stopwatch feature. This displays the total number

of instructions executed and the time elapsed, calculated from the processor clock frequency. For

BIN4, a CR clock is assumed, operating at 100 kHz. The processor frequency must be set to this

value in the simulator. Then run the program to the break point at ‘start’, zero the clock and run

again. The stopwatch will display the total time for one cycle.

The frequency of the output can now be predicted. Two program loop cycles will cause the low

output bit RB0 to be toggled up and down once, giving one full output cycle. Therefore, we can

double the loop time to give the output period, and calculate the reciprocal to give the frequency at

RB0. The period at RB7 will be 128 times longer, and the frequency 128 times higher.

From the stopwatch readings:

Number of instructions executed per loop= 777

Processor frequency = 100 kHz

Loop time = 31.08 ms

Therefore:

Output period at RB0 = 2× 31.08 = 62.16 ms

Output period at RB7 = 0.06216× 128= 7.96 s

Output frequency at RB0= 1/0.06216 = 16.1 Hz

This shows that changes in the higher order output bits will be clearly visible using this clock

frequency with the maximum delay loop count (FF). The frequency at RB1 will be about 8Hz,

RB2 4Hz, RB3 2Hz and RB4 1Hz and so on.

More information about usingMPLAB for debugging is given in Chapter 11.

112 PIC Program Development

7.7 ProgramDownloading

After testing in the simulator for correct operation, the machine code program can now be blown

into the Flash ROM on the chip. The program is downloaded via a serial or parallel link into RB6

(clock) andRB7 (data) on the chip,while aprogrammingvoltageof about 14V is applied toMCLR.

There are two methods for program downloading, outlined below.

7.7.1 Programming Unit

In this case, a programming unit must be plugged into the serial port of the PC (COM1 or COM2),

power connected and the chip inserted into the socket on the programmer. This is usually a ZIF

socket which is opened to allow the IC to be dropped in, and closed to clamp the pins (Fig. 7.5).

The chip orientation must be carefully checked, as inversion could probably damage the chip, as

the supplies will be reversed. Anti-static precautions should be observed, since the PIC is a CMOS

device (conductive bench cover and earthed wrist strap). However, the device has not been found

to be too sensitive in practice.

The programming unit is enabled from the main menu bar. If the programming unit has been

correctly connected, a programming dialogue should open, with the hex code to be downloaded

also visible. If not, the COM port may need to be changed.

Before downloading, the chip configuration options need to be selected (Fig. 7.6).

Figure 7.5 PIC programming unit.

Program Downloading 113

Figure 7.6 MPLAB (version 5) program downloading windows.

Oscillator (Clock): RC

The main options here are ‘RC’ and ‘XT’. RC must be selected for the oscillator configuration

used in the BIN hardware. XT will be used later for crystal-oscillator-clocked applications. The

programwill not run in the hardware if the wrong type of oscillator has been selected, so check this

carefully.

Watchdog Timer (WDT): Off

Thewatchdog timer is an internal timerwhich automatically restarts the program if it is not cleared

back to zero within 18 ms, using the instruction CLRWDT. This can be used to stop the controller

getting ‘stuck’ in a loop, due to an undetected program bug, or an input condition which has not

been predicted in testing. For applications not using this feature,WDTmust be switched off, or the

program will reset repeatedly, preventing normal operation.

Power Up Timer (PuT): On

Mains-derived power supplies may take some time to reach the correct value (+5V) when first

switched on. The power up timer is an internal timer which delays the start of program execution

until the power supply is at the correct voltage and stable. This helps to ensure that the program

starts correctly every time. Always enable the power up timer unless there is a good reason not to

do so.

114 PIC Program Development

Code Protect (CP): Off

If this bit is enabled, the program cannot be read back into MPLAB and copied or manipulated.
This is normally only necessary for commercial applications to prevent software piracy, so code
protection can normally be switched off.
When the configuration bits have been set, click on the program button, and the progress of the

programdownload shouldbedisplayed.Whencomplete, the chip canbe removed to the application
circuit.

7.7.2 In-Circuit Programming and Debugging

The PIC chip can alternatively be programmed while fitted in the application circuit. This is very
useful as it minimises risk of damage, allows the chip to be programmed with different software
versions after completion of the hardware and even allows remote re-programmingvia a communi-
cations link. All that is needed is an on-board connection to RB6, RB7 andMCLR.
In addition, this connection allows in-circuit debugging (ICD), which is a very useful feature

available inmorerecentlydesignedPICchips.The16F877isoneof these; it canbeprogrammedand
the application debugged in circuit using the ICD facility. An ICD hardware module is connected
to the serial port of the PC; its output lead is then connected to pins RB6 and RB7 of the chip in the
application circuit. The program can then be downloaded.
If the chip is now set to run in ICDmode, the debugging features availableMPLAB (single step,

breakpoints, etc.) can be used to control and monitor program execution in the chip itself, rather
than in a purely software simulation. This has the great advantage that the interaction with the real
hardware can be monitored, and hence the hardware and software verified at the same time. See
Chapter 14 for more details.

7.8 ProgramTesting

The application circuit should be checked for correct on-board connections before inserting the
microcontroller and other active devices (this is easier if the chips are in sockets). Static hardware
testing is important if it is a newly constructed circuit, and essential if it is newlydesigned.When the
hardware has been thoroughly checked, insert the microcontroller (ensuring correct orientation)
and power up!
In a commercial product, a test schedule must be devised and correct operation to that schedule

confirmed and recorded. The test procedure should check all possible input sequences, not just the
correct ones, if the design is to be foolproof. It is, in fact, quite difficult to be sure that complex
programswill always be 100% reliable, as it is often not feasible to predict every possible operating
sequence. A outline test procedure for BIN4 is suggested in Table 7.5.
The program should start immediately on power up. If it does not function correctly,when tested

against the original specification, a fault finding process needs to be followed, as outlined below.

1. Hardware checks

(a) +5 V on MCLR, Vdd, 0 V on Vss,

(b) clock signal on CLKIN,

(b) input changes on RB0, RB1.

2. Software Checks

(a) simulation correct,

(b) correct clock selected,

Program Testing 115

Table 7.5 Basic test schedule for BIN4

Test Correct operation Checked

1 Check PIC connections Correct orientation and pins

2 Power up LEDs off

3 Clock frequency 100 kHz

4 Press RUN Count on LEDs

5 Release RUN LED count halted

6 Press and release RESET LEDs off

7 Press RUN Count on LEDs from zero

(c) WDT off, PuT on, CP off,

(d) program verified.

More suggestions on hardware and software testing are given in Chapter 11.

Summary

• The development process consists of application specification, hardware selection and design,
and program development and testing.

• The program is converted from a software design to assembler source code, FILENAME.ASM,
using the instruction format defined for the assembler.

• The assembler converts the source code text into object code, FILENAME.HEX. Any syntax
errors detected must be corrected.

• A list file, FILENAME.LST, is created which lists the source code, object code, label and
memory allocation.

• The simulator allows the machine code to be tested without downloading to the actual target
system. Logical errors can be detected and corrected at this stage.

• The program can then be downloaded and tested in the target hardware, using a test schedule
developed from the specification.

Questions

1. Place the following program development steps in the correct order: Test in Hardware,
Simulate, Assemble, Edit Source Code, Download.

2. Suggest two advantages of using ‘C’ as the programming language.

3. State two advantages of using subroutines.

116 PIC Program Development

4. State the instruction for incrementing the register 0F.

5. Inwhich registermust a port data direction code be placed prior to using the TRIS instruction?

6. How could you halve the delay time in BIN4?

7. Explain how a switched input on RA4 of the PIC 16F84 is simulated in MPLAB.

8. State the configuration bit settings which should normally be selected when downloading

a simple application to a PIC chip. Why is it generally desirable to enable the power on

timer?

Answers

4. INCF 0F

5. W

6. Delay Count = 80h

Activities

1. Download from www.microchip.com or otherwise obtain the supporting documentation for

MPLAB. Study the tutorial in the User’s Guide and the help files supplied with MPLAB

as necessary to familiarise yourself with editing, assembling and simulating an application
program. Start up MPLAB, create a source code file for BIN3, and enter the assembler code

program, leaving out the comments. Assemble, correct any errors and simulate. Check that

the Port B (F6) file register operates as required.

2. Construct a prototype circuit and test the program to the test schedule given inTable 7.5. Refer

forward to Chapter 12 if necessary.

3. Modify the program as BIN4 and confirm that its operation is essentially the same.

4. Modify the program to scan the output, that is, move one lit LED up and down the display,

repeating indefinitely. Use the rotate instructions, and subtraction from 1 and 80h to check if

the bit is at one end.

Chapter 8
PIC 16F84 Architecture

8.1 Block Diagram

8.2 Program Execution

8.3 Register Set

An overview of programming the PIC microcontroller has been provided in Chapter 7; we can

now look at the PIC internal hardware arrangement in more detail. We will use the 16F84 as a

reference, since it has all the essential elements, without some of the more advanced features

such as analogue inputs and serial ports found on larger chips such as the 16F877, which we

will look at later. The other members of the PIC family are based on the same architecture,

with elements added, removed or modified according to the combination of features provided

in each chip.

The key reference is Fig. 1.1 in the PIC 16F84A Data Sheet, the ‘PIC 16F84A Block

Diagram’. The data sheet contains all the details of the internal architecture discussed in this

chapter. Refer back to Chapter 4 for a description of the function of elements such as registers,

ALU, multiplexer, decoder, program counter and memory.

8.1 Block Diagram

A somewhat simplified internal architecture (Fig. 8.1) has been derived from the block diagram

given in the data sheet. Some features seen in the manufacturer’s diagram have been left out

because they are not important at this stage. The functional blocks of the chip are shown,

with the main address paths identified as block arrows. The 8-bit data paths are shown in an

alternative style as single arrows in this diagram. The timing and control block has control

connections to all other blocks, which set up the processor operations, but they are not all

shown explicitly in order to keep the diagram as clear as possible.

The file register set contains various control and status registers, as well as the port registers

and the program counter. The most commonly used are the ports (A and B), status register

(STATUS), real-time clock counter (TMR0) and interrupt control (INTCON). There are also a

number of spare general purpose registers (GPRs) which can be used as data registers, counters

and so on. The file registers are numbered 00–4F, but are usually given suitable labels in the

program source code. File registers also give access to a block of EEPROM, a non-volatile

data memory.

118 PIC 16F84 Architecture

I/O

Flash
ROM

program
memory

Instruction
register

Instruction
decoder

Stack

Program
counter

Ports and
timer

Status

Option

Interrupt

File select

General
purpose
registers

EEPROM
access

EEPROM
data memory

13-bit program address

Instruction code
5-bit file register address

Data bus (8)

ALU

Working
register

ALU results

Timing and
control

Multiplexer

Literal data (8)

File
Registers

ClockReset

Operation

Working
data (8)

Figure 8.1 PIC 16F84 internal architecture.

8.1.1 Clock and Reset

A clock circuit is connected to the timing and control block to drive all the operations of

the chip. For applications where precise timing is not required, a simple external resistor and

capacitor network controls the frequency of the internal oscillator. Typically, relatively low

frequencies are used (<1MHz) with an RC clock. For more precise timing, a crystal oscillator

is used (see Fig. 12.7); a convenient frequency is 4MHz, because each instruction takes four

clock cycles to execute, that is, 1�s. The exact program execution timing can then be more

easily calculated, and the hardware timer used for accurate signal generation and measurement.

With the high-speed oscillator option selected, the processor can be clocked at up to 20MHz,

giving a minimum 200 ns instruction execution period, and a maximum instruction execution

rate of 5MIPs (millions of instructions per second).

The timing and control circuits contain start up timers which means that the reset input

!MCLR can simply be connected to Vdd, the positive supply, to enable the processor. In earlier

processors, an external reset circuit was often needed to ensure a smooth start up. An external

reset button or control signal can still be connected to !MCLR if required. The controller

program can then be restarted by pulsing the reset input low.

Program Execution 119

8.1.2 Harvard Architecture

It can be seen in the block diagrams that the memory and file register address lines are

separate from the data paths within the processor. This is referred to as Harvard architecture;

it improves the speed of processor operation because data and addresses do not have to share

the same bus lines. It also allows ‘pipelining’ of the instruction execution; as one instruction is

executed, the next is being fetched from program memory, thus doubling the overall execution

rate. The reduced size of the instruction set also speeds up decoding and the short data path

length in a single chip design reduces data transmission time. All these features contribute to

high-speed operation, compared with some other microcontrollers which use a ‘conventional’

architecture.

8.2 Program Execution

The program consists of a block of 14-bit codes which contain both operation code and operand

in a fixed length instruction. This machine code program is normally created using a host PC,

and downloaded, as outlined in Chapter 7. We are not too concerned here exactly how the

downloading is carried out; all we need to know for now is that the program is received in

serial form from the host PC via the I/O port pin, RB7, and written to the program memory

while a programming voltage applied to !MCLR. RB6 acts as a serial data clock.

8.2.1 Program Memory

Since the program memory is flash ROM, an existing program can be replaced by simply

overwriting with a new program. Up to 1024 (1k) instructions can be stored in program memory.

The program counter (PCL) holds the current address, and is reset to 0000 when the chip is

powered up or reset.

The user program must therefore start at address 0000, but the first instruction can be GOTO

the start of the program at some other labelled address. This is essential when using interrupts,

as we shall see later, because the interrupt service routine (or GOTO ISR) must be placed at

address 0004. The address is fed to the program memory via a 13-bit address bus. As the 16F84

memory only contains 1k locations, the actual address required is only 10 bits, but a standard

13-bit address is used in order to maintain compatibility with other PIC processors with more

program memory, and other future products.

8.2.2 Instruction Execution

This section contains the instruction register, instruction decoder, and timing and control logic.

The 14-bit instructions stored in program memory are copied to the instruction register for

decoding. The instruction decoder logic converts the instruction input into settings for all the

internal control lines. The 14-bit instruction contains both the operation code and operand. The

instruction decoder will only use the operation code bits, while the operand provides a literal,

file register address or program address when the instruction is executed.

If, for example, the instruction is MOVLW (Move a Literal into W), the control lines will

be set up to feed the literal operand to W via the multiplexer and ALU. If the instruction is

MOVWF, the control lines will be set up to copy the contents of W to the specified file register.

The operand will be the address of the file register (00–4F) required. If we look at the ‘move’

120 PIC 16F84 Architecture

instruction codes quoted in the Data Sheet, Table 7-2, we can see the difference in the code
structure:

MOVLW k = 11 00xx kkkk kkkk

MOVWF f = 00 0000 1fff ffff

MOVF f,d = 00 1000 dfff ffff

In the MOVLW instruction, the operation code is the high 4 bits (1100), ‘x’ are ‘don’t
care’ bits, and ‘k’ represents the literal bits, the low byte of the instruction. In the MOVWF
instruction, the operation code is 0000001 (7 bits) and ‘f’ indicates the file register address bits.
Only 7 bits are used for the register address, allowing a maximum of 27�= 128� registers to be
addressed. In fact, the 16F84 has only 80 registers in all, but 7 bits are still needed to address
this number.
In the MOVF instruction the operation code is 001000, and the file register address is needed

as before to identify the data source register. However, there is one bit, d, which controls the
data destination. This bit must be 0 to direct the data into W, the usual operation. For example,
to move an 8-bit data word from file register 0C to W requires the syntax MOVF 0C,W.

8.2.3 Data Processing

The ALU can add, subtract or carry out logical operations on single data bytes or pairs of
numbers. These operations are carried out in conjunction with the data multiplexer and working
register. The multiplexer allows new data to be fed from the instruction (a literal) or a register.
This may be combined with data from W, or register data manipulated in a single register
operation. W is used in register pair operations as the temporary store. Final results are stored
back in the file registers.

8.2.4 Jump Instructions

If a GOTO instruction is decoded, the program counter will be loaded with the program memory
address of the jump destination given as the instruction operand. The program label used in
the source code will have been replaced by the destination address by the assembler. For
conditional branching (making decisions), any file register bit can be used by a ‘Bit Test and
Skip’ instruction, which is then followed by a GOTO or CALL instruction.
If a CALL instruction is decoded, the destination address is loaded into the PC in the same

way as for the GOTO, but in addition, the next address to the CALL is stored on the stack (the
return address). The subroutine is then executed until a RETURN instruction is encountered.
The return address is then pulled from the stack and placed in the PC, allowing program
execution to pass back to the original point. The stack works on a last in, first out (LIFO) basis,
with the last address stored being the first to be recovered.
In conventional processors, the stack can be modified directly as it is typically located in

main memory, but in the PIC this is not the case – stack operation is entirely automatic.

8.3 Register Set

All the file registers are 8-bits wide. They are divided into two main blocks – SFRs, which are
reserved for specific purposes, and GPRs which can be used for temporary storage of any data
byte. The file register set is shown in Fig. 8.2 in numerical order.

Register Set 121

Address Page 0 Page 1 Address

0 IND0

1 TMR0 OPTION 81

2 PCL

3 STATUS

4

5 PORTA TRISA

TRISB

85

6 PORTB 86

7

8 EEDATA EECON1 88

9 EEADR

FSR

EECON2 89

A PCLATH

B INTCON

C GPR1

D GPR2

E GPR3

F GPR4

10 GPR5
.
.
.
.
.

|

GPRs

|

4F GPR68

Figure 8.2 PIC 16F84 file register set.

The registers in Page 0 (file addresses 00–4F) can be directly addressed, and it is

recommended that the register labels given in Fig. 8.2, which match the data sheet, are used as

the register labels. These labels are also used by default in MPLAB. Standard header files can

be included in your programs which define all the register names.

Special instructions are available to access the Page 1 registers. We have already used the

instruction TRIS to access the data direction registers TRISA and TRISB. In a similar way,

we will use the instruction OPTION to access the option register; this will be used later to

set up the hardware timer, TMR0. Alternatively, a register bank select bit in the status register

can be used to access Page 1 file registers; this method is recommended for more advanced

programming (see Section 9.4.2). Note that ‘Page 0’ means the same as ‘Bank 0’.

8.3.1 Special Function Registers

The operation of the SFRs is summarised below, with the emphasis on those which are used

most frequently. The functions of all the registers are detailed in the chip data sheet. The shaded

registers in Fig. 8.2 either do not exist, or are repeated at addresses 80–CF (Page 1).

PCL Program Counter Low Byte

File Register Number = 02

The program counter contains the address of (points to) the instruction currently being executed,

and counts from 000 to 3FF unless there is a jump (GOTO or CALL). The PCL register

contains only the low 8 bits (00–FF) of the whole program counter, with the high 2 bits

(00–03) stored in the PCLATH register (address 0A). We only need to worry about the high

bits if the program is longer than 255 instructions in total, which is not the case for any of

the demonstration programs, and then only if the program counter is being modified directly.

122 PIC 16F84 Architecture

The PC is automatically incremented during the instruction execution cycle, or the contents

replaced entirely for a jump.

PORTA Port A Data Register

File Register Number = 05

Port A has 5 I/O bits, RA0–RA4. Before use, the data direction for each pin must be set up

by loading the TRISA register with a data direction code (see below). If a bit is set to output,

data moved to this register appears at the output pins of the chip. If set as input, data presented

to the pins can be acted on immediately, or stored for later use by moving the data to a spare

register. Examples of this have already been seen in earlier chapters. In the 16F84, RA4 can

alternatively be used as an input to the counter timer register (TMR0) for counting applications.

The use of the hardware timer will be covered in Chapter 9. The PORTA register bit allocation

is shown in Table 8.1. In other PIC chips, most port pins will have at least two uses, depending

on how the control registers are set up.

All registers are read and written in 8-bit words, so we sometimes need to know what will

happen with unused bits. When the Port A data register is read within a program (MOVF), the

3 unused bits will be seen as ‘0’. When writing to the port, the high 3 bits are simply ignored.

When used as outputs, the port lines are able to provide up to 20mA of current (except RA4),

in or out, which is enough to drive our LEDs in the demonstration circuit. An equivalent circuit

for each port pin is given in the data sheet, Section 5.

TRISA Port A Data Direction Register

File Register Number = 85

The data direction of the port pins can be set bit by bit by loading this register with a suitable

binary code, or the hex equivalent. A ‘1’ sets the corresponding port bit to input, while a ‘0’

sets it to output. Thus, to select all bits as inputs, the data direction code is 1111 1111 (FFh),

Table 8.1 PIC 16F84 port bit functions

Register bit Chip pin label Function

Port A
0 RA0 Input or Output
1 RA1 Input or Output
2 RA2 Input or Output
3 RA3 Input or Output
4 RA4/T0CKI Input or Output or Input to TMR0
5 – None
6 – None
7 – None

Port B
0 RB0/INT Output or Input or Interrupt Input
1 RB1 Output or Input
2 RB2 Output or Input
3 RB3 Output or Input
4 RB4 Output or Input + Interrupt on change
5 RB5 Output or Input + Interrupt on change
6 RB6 Output or Input + Interrupt on change
7 RB7 Output or Input + Interrupt on change

Register Set 123

and for all outputs is 0000 0000 (00h). Any combination of inputs and outputs can be set by

loading the TRIS register with the required binary code.

When the chip is powered up, these bits default to ‘1’, so it is not necessary to initialise

for input, only for output. This makes sense, because if the pin is incorrectly wired up, it is

more easily damaged if set to output. For instance, if the pin is accidentally grounded, and then

driven to a high state, the short circuit current is likely to damage the output circuit. If set as

an input, no damage would be done.

The data direction register TRISA is loaded by placing the required code in W and then

using the instruction TRIS 05 or TRIS 06 for Port A and Port B, respectively. Alternatively all

file registers with addresses 80–CF can be addressed directly, using the page selection bits in

the option register, and this may be seen in later programs.

PORTB Port B Data Register

File Register Number = 06

Port B has the full set of eight I/O bits, RB0–RB7. If a bit is set to output, data moved to this

register appears at the output pins of the chip. If set as input, data presented to the pins can be

read at this address. The data direction is set in TRISB, as described above, and all bits default

to input on power up. The PORTB register bit allocation is shown in Table 8.1.

Bit 0 of Port B has an alternate function; it can be initialised, using the Interrupt Control

Register (INTCON), to allow the processor to respond to a change at this input with an interrupt

sequence. In this case, the processor is forced to jump to a predefined interrupt service routine

(ISR) upon completion of the current instruction (see Section 9.3). The processor can also be

initialised to provide the same response to a change on any of the bits RB4–RB7.

TRISB Port B Data Direction Register

File Register Number = 86

As for Port A, the data direction can be set bit by bit by loading this register with a suitable

binary code, or the hex equivalent, where ‘1’ (default) sets an input, and ‘0’ sets an output

(must be initialised). The program instruction ‘TRIS 06’ moves the data direction code from

W to TRISB register.

STATUS Status (or Flag) register

File Register Number = 03

Individual bits in the status register record information about the result of the previous

instruction. Probably the most commonly used is the zero flag, bit 2; when the result of any

operation is zero, this zero flag bit is set to ‘1’. It is used by the Decrement/Increment and

Skip if Zero instructions, and can be used by the Bit Test and Skip instructions, to implement

conditional branching of the program flow. The status register bit functions are shown in

Table 8.2. We can leave consideration of the rest of these for the moment; the data sheet and

more advanced programming references will provide more information.

TMR0 Timer Zero Register

File Register Number = 01

A timer/counter register counts the number of pulses applied to a clock input; the binary count

can be read from the register when the count is finished. TMR0, being an 8-bit register, can

count up to 255 pulses. For external inputs, the pulses are applied at pin RA4. When used as

timer, the internal clock is used to supply the pulses. If the processor clock frequency is known,

the time taken to reach a given count can be calculated. When the counter rolls over from FF

124 PIC 16F84 Architecture

Table 8.2 STATUS register bit functions

Bit Label Name Function

0 C Carry flag Set if register operation causes a carry out of bit 8 of
the result (8-bit operations)

1 DC Digit carry flag Set if register operation causes a carry out of bit 3 of
the result (4-bit operations)

2 Z Zero flag Set if the result of a register operation is zero

3 PD Power down Cleared when the processor is in Sleep mode
4 TO Time out Cleared when Watchdog Timer (WDT) times out

5 RP0 Register bank RP0 selects File Registers 00–7F or 80–FF
6 RP1 Select bits RP1 not used
7 IRP IRP not used

to 00, an interrupt flag (see INTCON below) is set, if enabled. This allows the processor to

check if the count is complete, or to be alerted when a set time interval has elapsed, even if it

is doing something else at the time. The timer register can be read and written directly, so a

count can be started at a preset value. The timer zero label refers to the fact that other PICs

have more than one timer/counter register, but the 16F84 has only one. More details on using

the TMR0 are given in Chapter 9.

OPTION Option Register

File Register Number = 81

Table 8.3 details the option register bit functions. The counter/timer operation is controlled by

OPTION register bits 0–5. When used as a timer, the processor clock signal is used to increment

Table 8.3 OPTION register bit functions

Bit Label Name Function

0 PS0 Prescaler rate
Select bit 0

These 3 bits form a 3-bit code to select one of
8 prescale values for the counter/timer TMR0
or WDT1 PS1 Prescaler rate

Select bit 1
2 PS2 Prescaler rate

Select bit 2

3 PSA Prescaler
Assignment

Assigns prescaler to WDT or TMR0

4 T0SE Timer zero
Source edge select

Select rising or falling edge trigger for T0CKI
input at RA4

5 T0CS Timer zero
Clock source select

Select timer/counter input as RA4 or internal
clock

6 INTEDG Interrupt edge select Select rising or falling edge trigger for RB0
interrupt input

7 RBPU Port B pull-up enable Enable pull-ups on Port B pins so input data
defaults to ‘1’

Register Set 125

the counter register. If a crystal clock is in use, the timing will be very accurate. Prescaling

can be selected to increase the maximum time interval; this means dividing down the timer

input frequency by a factor of 2, 4, 8, 16, 32, 64, 128 or 256. As the case with the TRISA and

TRISB registers, the OPTION register has to be accessed using a special instruction, namely

‘OPTION’. The alternative method, which is recommended by the manufacturers, uses bank

selection. There is more on using the timer in Chapter 9.

INTCON Interrupt Control Register

File Register Number = 0B

The INTCON bit functions are given in Table 8.4. An interrupt is a signal which causes the

current program execution to be suspended, and an ISR to be carried out. An interrupt can be

generated by an external device, via port B, or from the timer. However, in all cases, the ISR

must start at address 004 in the program memory. If interrupts are in use, an unconditional

jump from address zero, the program start address, to a higher start address, is needed. The

INTCON register contains three interrupt flags and five interrupt enable bits, and these must be

set up as required during the program initialisation by writing a suitable code to the INTCON

register. Program 9.2 demonstrates the use of interrupts.

Other SFRs

Registers EEDATA, EEADR, EECON1 and EECON2 are used to access the non-volatile ROM

data area (see Table 8.5). PCLATH acts as a holding register for the high bits (12:8) of the

program counter. The file select register (FSR) acts as a pointer to the file registers. It can be

used with IND0, which gives indirect access to the file register selected by FSR. This is useful

Table 8.4 Interrupt control register (INTCON) bit functions

Bit Label Name Function

0 RBIF Port B change
Interrupt flag

Set when any one of RB4–RB7 changes state

1 INTF RB0 pin
Interrupt flag

Set when RB0 detects interrupt input

2 T0IF Timer overflow
Interrupt flag

Set when timer TMR0 rolls over from FF to 00

3 RBIE Port B change
Interrupt enable

Set to enable Port B change interrupt

4 INTE RB0 pin
Interrupt enable

Set to enable RB0 interrupt

5 T0IE Timer overflow
Interrupt enable

Set to enable timer overflow interrupt

6 EEIE Data EEPROM
write
Interrupt enable

Set to enable interrupt on completion of write operation
to non-volatile data memory

7 GIE Global interrupt
Enable

Enable all interrupts which have been selected

126 PIC 16F84 Architecture

Table 8.5 Other PIC 16F84 registers

NUM Name Function

00 INDF File register memory indirect addressing
04 FSR for block access

0A PCLATH Program counter high byte

08 EEDATA Data EEPROM indirect addressing for
09 EEADR block access

88 EECON1 Data EEPROM read and write control
89 EECON2

for a block read or write to the GPRs, for example, saving a set of data read in at a port. More

information on this is given in Section 9.4.3.

8.3.2 General Purpose Registers (GPR1–GPR68)

The GPRs are numbered 0C–4F. They are also referred to as SRAM registers, because they

can be used as a small block of static RAM for storing blocks of data, such as a data table

of values read in at a port at intervals. We have already seen an example of using the GPR1

(address 0C) as a counter register in a delay loop. The register was labelled ‘timer’, preloaded

with a value, and decremented until it reached zero. This is a common type of operation, and

not only used for timing loops. For example, a counting loop can be used for doing an output

a certain number of times. We could have used any of the GPRs for this function because they

are all operationally identical; however, we do need to declare a different name for each when

using more than one.

Summary

• The 16F84 internal architecture can be represented as a block diagram showing the main

functional blocks, which are: program ROM, execution logic, data processing, file registers

and data EEPROM.

• The following features of PIC chips enhance performance: Harvard/RISC architecture,

instruction pipelining, high clock rate, single chip system.

• The program memory stores up to 1024 14-bit instructions. The program execution starts at

address 0000.

• The 14-bit instruction contains operation code and operands, which can vary in length.

• The ALU processes data from the instruction, registers or W.

• Jump instructions modify the program counter to change the execution sequence.

• The file register set contains SFRs and GPRs.

Register Set 127

• The most important of the SFRs (with their address/number) are the timer (01), program

counter (02), status register (03), Port A (05), Port B (06) and interrupt control (0B).

• The GPRs are a block of registers that can be used separately, or in blocks, to store temporary

data, act as counters, and so on.

Questions

1. State the function of the following blocks within a PIC microcontroller: program memory,

program counter, instruction decoder, ALU, W.

2. Why is it not necessary to initialise a PIC port for input?

3. State the main functions of the ALU, and the three sources of its data input.

4. Why is the stack needed for subroutine execution?

5. State the function of the following PIC file registers: PORTA, TRISA, TMR0, PCLATH,

GPRxx.

6. State the function of the register bits: STATUS, 2; INTCON, 1; OPTION, 5.

7. Which port pin gives access to TMR0?

8. What is the default destination of a ‘move’ operation?

Activities

1. Refer to Table 8.6. Complete the logic table to show the binary code present on the

internal data connections and in the registers during or after each instruction cycle while

the program BIN1 is executed. Copy this table and complete the additional columns to the

right for each of the remaining four instructions. The first is given as a guide.

Table 8.6 Question 1

Instruction number 1 2 3 4 5

Address 0000

Instruction MOVLW 00

Machine code 3000

Program address bus (13 bits) 0 0000 0000 0000

File register address (5 bits) X XXXX

Instruction code register 0011 0000

128 PIC 16F84 Architecture

Table 8.6 continued

Instruction number 1 2 3 4 5

Literal bus 0000 0000

Data bus (8 bits) XXXX XXXX

Working register 0000 0000

Port B data register XXXX XXXX

Port B data direction register XXXX XXXX

2. Study the PIC 16F84A Data Sheet (see Appendix A), Section 4.0. Study the block diagram

of the internal circuit connected to pin RA0. The FETs at the output form a complementary

pair of switches, a P-type and an N-type. The P-FET is on when its gate is low. The N-FET
is on when its gate is high. For output, the TRIS latch is loaded with the data direction

bit 0, and the data is loaded into the data latch from the data bus.

(a) Draw a logic table to represent the operation of the output logic when the TRIS latch

is clear (Q= 0), that is, the pin is set as an output.

(b) Extend the logic table and prove that P and N are both off when the pin is initialised

for input.

(c) By referring to Chapter 3 if necessary, describe how a data bit is read onto the data

bus when the pin is set for input.
(d) What are the functions of the output FETs in the operation of the I/O pin?

Chapter 9
Further Programming Techniques

9.1 Program Timing

9.2 Hardware Counter/Timer

9.3 Interrupts

9.4 More Register Operations

9.5 Special Features

9.6 Program Data Table

9.7 Assembler Directives

9.8 Special Instructions

9.9 Numerical Types

Now that the basic programming methods have been introduced, we can look at some more

advanced techniques. Sample programs demonstrating use of the timer, interrupts and data table

are included in this chapter.

9.1 Program Timing

The microcontroller program execution is driven by the clock signal generated by an internal

oscillator whose frequency is controlled by either an external RC or crystal (XT) network.

This signal is divided into four internal clocks (Q1–Q4) which run at a quarter of the oscillator

frequency (Fosc/4). These provide four separate pulses during each cycle to trigger the processor

operations. These include fetching the instruction code from the program memory, and copying

it to the instruction register. The instruction code is then used by the decoder to set up the

control lines to carry out the required process. The four clocks are used to operate the data

gates and latches within the MCU to complete the data movement and processing.

This instruction timing is illustrated in Fig. 9.1. Note that, if the CR clock option is used,

an output instruction clock signal at Fosc/4 is available at the CLKOUT pin to operate external

circuits synchronously. It can also be used in hardware testing to check that the clock is running,

and to measure its frequency.

The result of this clocking scheme is that each instruction takes four clock cycles to execute,

unless a jump (GOTO or CALL) occurs. These will take eight clock cycles, because the program

counter contents have to be replaced, and this takes an extra instruction cycle.

130 Further Programming Techniques

Q4 Q1 Q2 Q3 Q4 Q1 Q2

Fetch instruction from PC address

Execute previous instruction

Clock

Clock out (RC mode)

Instruction cycle time

Figure 9.1 PIC instruction timing.

9.1.1 Pipelining

The instruction fetch and execute cycles can be carried out simultaneously, because the data

is being transferred on separate data paths (see Fig. 8.1). While one instruction is being

executed, the next is being fetched from the program memory into the instruction register.

This overlapping of execution stages is called ‘pipelining’, with the PIC having a two-stage

pipeline. The CISC microprocessors such as Pentium use more elaborate pipelining to break

the instruction processing into multiple stages, and thereby boost performance.

9.1.2 Execution Time

We can now predict how long a particular sequence will take to execute. A clock rate of 4MHz

is a convenient default value because it is the maximum operating frequency in standard XT

mode (see the PIC 16F84A data sheet, Table 6-1), and also gives an instruction execution rate

of 1MIP (millions of instructions per second) and an instruction cycle time of 1�s.

A delay loop is shown in Table 9.1. The move instructions take one cycle each, and the

DECFSZ instruction is then repeated 254 times. The GOTO takes two cycles, because each

time the GOTO is executed, the RETURN is pre-fetched, and then not executed, so a cycle

is wasted. On the 255th loop, the register becomes zero and the GOTO is skipped, and the

RETURN executed. This also takes two cycles, because of another wasted pre-fetch cycle,

but is only executed once per delay sequence. The total loop time can then be calculated,

by totalling the time taken for each instruction and the loop. As we can see, this comes to

768 �s, at 4MHz. This figure can be confirmed if the program containing the loop is run in

the simulator, using the stopwatch, with the clock frequency set to 4MHz.

The block execution time for a section of code can thus be predicted before testing in simulator

or hardware. Alternatively, the timing can be checked and modified using the simulator.

Incidentally, NOP (No OPeration) is useful here. For time critical sequences, NOP may be used

to insert a delay of one instruction cycle, that is, four clock cycles; it has no other effect. Using

this, a delay of 1ms can be created using the delay loop with the count set to 249 and a NOP

in the loop to make the loop execution time 4 �s. The total loop time is then (249×4�s) plus

a few cycles for the loop initialisation and return.

Hardware Counter/Timer 131

Table 9.1 Sequence execution time

Label Instruction Operand Time (cycles)

delay MOVLW 0xFF 1
MOVWF timer +1

down DECFSZ timer + (1×255)
GOTO down +(2×254)+1
RETURN +2

Total 768

Clock frequency = 4 MHz
Instruction frequency = 1 MHz
Instruction period = 1 �s
Total delay time = 768 �s

9.2 Hardware Counter/Timer

Accurate event timing and counting is often needed in microcontroller programs. For example,

if we have a sensor on a motor shaft which gives one pulse per revolution of the shaft, the

number of pulses per second will give the shaft speed. Alternatively, the interval between pulses

can be measured, using a timer, to obtain the speed by calculation. A process for doing this

would be:

1. wait for pulse,

2. read and reset the timer,

3. restart the timer,

4. process previous timer reading,

5. go to 1.

If an independent hardware timer is used to make the measurement, the controller program

can carry on with other operations, such as processing the timing information, controlling the

outputs and checking the sensor input, while the timer keeps an accurate record of the time

elapsed. The motor application in Chapter 13 uses this technique.

9.2.1 Using TMR0

The special file register 01 in the 16F84 is called timer zero (TMR0); it is an 8-bit counter/timer

register which, once started, runs independently. This means it can count inputs or clock pulses

concurrently with (at the same time as) the main program execution. The counter/timer can

also be set up to generate an interrupt when it has reached its maximum value, so that the main

program does not have to keep checking it to see if a particular count has been reached. A block

diagram of TMR0 and its associated hardware and control registers is shown in Fig. 9.2.

As an 8-bit register, TMR0 can count from 00 to FF (255). The operation of the timer is set

up by moving a suitable control code into the OPTION register. The counter is then clocked by

an external pulse train, or, more usually, from the chip oscillator. When it reaches its maximum

value, FF, and is incremented again, it ‘rolls over’ to 00. This register ‘overflow’ is recorded by

132 Further Programming Techniques

Bit Timer interrupt bit label and function

2 T0IF
TMR0 overflow interrupt flag

0 = No overflow
1 = Overflow

5 T0IE
TMR0 overflow interrupt enable

0 = Disable
1 = Enable

7 GIE
Global interrupt enable

0 = Disable
1 = Enable

Prescaler division ratio
Bit Timer control bit label and function 2

0 PS0 Prescaler rate select bit 0

1 PS1 Prescaler rate select bit 1

2 PS2 Prescaler rate select bit 2

3 PSA Prescaler assignment bit 0 = Select prescaler for TMR0
1 = Deselect prescaler for TMR0

4 T0SE TMR0 source edge select bit 0 = Increment on rising edge of RA4
1 = Increment on falling edge of RA4

5 T0CS TMR0 clock source select bit 0 = Instruction clock = Ext. clock /4

1 = Select RA4 input

X X X X X X X X

Prescaler

CLKIN/4

RA4

Pre
scale
value
select

Load/read
TMR0 register

TMR0
overflow

TMR0 input

1 X 1 X X 1 X X

Bit

INTCON register

X X X 0 0 0 0 0 OPTION register

Bit

Interrupt or poll

Edge
select Input

select

Prescale
enable

TMR0 register

7 6 5 4 3 2 0

7 6 5 4 3 2 1 0

4 8 16 32 64 128 256

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

1

Figure 9.2 Hardware counter/timer setup and operation.

the INTCON (interrupt control) register, bit 2 (T0IF), going to ‘1’ (assuming that it has been

previously enabled and cleared). This condition can be checked by bit testing in the program,

or can trigger an interrupt (Section 9.3).

9.2.2 Counter Mode

The simplest mode of operation of TMR0 is counting pulses applied to RA4, which has the

alternate name T0CKI, Timer Zero Clock Input. These pulses could be input manually from a

push button, or, more likely, would be produced by some other signal source, such as the sensor

on the motor shaft mentioned above. If the sensor produces one pulse per revolution of the

shaft, and one of the PIC outputs controls the motor, the microcontroller could be programmed

to rotate the shaft by a set number of revolutions. If the motor were geared down, a positioning

system could be designed to move the output through a set angle, in a robot, for example.

Hardware Counter/Timer 133

In order to increase the range of this kind of measurement, the prescaler allows the number
of pulses received by the TMR0 register to be divided by a factor of 2, 4, 8, 16, 32, 64, 128 or
256. The ratio is selected by loading the least significant three bits in the OPTION register as
follows: 000 selects divide 2, 001 divide by 4 and so on up to 111 for divide by 256. TMR0
can also be pre-loaded with a value, and the overflow detected when it has been ‘topped up’
by a set number of pulses.

9.2.3 Timer Mode

The internal clock is selected by setting the OPTION register, bit 5, to 0. To use TMR0 as an
accurate hardware timer, a crystal oscillator must be used as the chip clock source. A convenient
crystal frequency is 4MHz, because it is divided by four before it is fed to the input of TMR0,
giving a pulse frequency of 1 MHz. The counter would then be clocked every 1�s exactly,
and would take 256�s to count from zero to zero again. Again, by preloading with a suitable
value, a smaller time interval could be selected, with time out indicated by the timer interrupt
flag. For example, by preloading with the value 156 (9C), the overflow would occur after
100�s. Alternatively, the time period measured can be extended by selecting the prescaler. The
maximum timer period would then be 512�s, 1024�s and so on to 65.536ms. Crystals are also
available in frequencies that are more conveniently divisible by 2. For example, a 32.768 kHz
crystal frequency will produce a time-out every 1.0000 s, if the prescale value of 32 is selected.
In Fig. 9.1, TMR0 is set up with xxx000002 in the option register, selecting the internal

clock source, with a prescale value of 2. The INTCON register has been set up with the timer
interrupt enabled and the timer overflow interrupt flag has been set (overflow has occurred).

9.2.4 TIM1 Timer Program

Program TIM1, which demonstrates the use of the timer, is listed as Program 9.1. It is designed
to increment a binary output once per second. The program uses the same demonstration BIN
hardware as the previous programs, with eight LEDs displaying the contents of Port B. An
adjustable CR clock is used, set to give a frequency of 65536Hz (approximately). This frequency
is divided by four, and is then divided by 64 in the prescaler, giving an overall frequency
division of 4×64= 256. The timer register is therefore clocked at 65536/256= 256Hz. The
timer register counts from zero to 256 and so overflows every second. The output is then
incremented; it will take 256 s to complete the 8-bit binary output count.

9.2.5 Timing Problems

Each instruction in the program takes four clock cycles to complete, with jumps taking eight
cycles. If the program sequence is studied carefully, extra time is taken in completing the
program loop before the timer is restarted. In this application, it will cause only a small error,
but in other applications it may be significant. Also notice that the program has to keep checking
to see if the time-out flag has been set by the timer overflowing. It is more efficient to allow
the processor to carry on with some other process while the timer runs, and allow the time-out
condition to interrupt the main program when it has finished.

9.2.6 More Timers

Because they are so useful, some larger PIC chips have more than one timer/counter. The
16F877, for example, has three. In addition to Timer 0 (TMR0), it has Timer 1, a 16-bit counter

134 Further Programming Techniques

Program 9.1 TIM1 source code

; ***
; TIM1.ASM M. Bates 6/1/99 Ver 1.2
; ***
;
; Minimal program to demonstrate the hardware timer operation.
;
; The counter/timer register (TMR0) is initialised to zero and diven
; from the instruction clock with a prescale value of 64.
;
; T0IF is polled while the program waits for time out.
; When the timer overflows, the Timer Interrupt Flag (T0IF) is set. The
; output LED binary display is then incremented. With the clock adjusted
; to 65536 Hz, the LSB LED flashes at 1 Hz.
;

; Processor: PIC 16F84
;
; Hardware: PIC BIN Demo Hardware
; Clock: CR = 65536 Hz (approx)
; Outputs: RB0 - RB7: LEDs (active high)
; WDTimer: Disabled
; PUTimer: Enabled
; Interrupts: Disabled
; Timer: Internal clock source
; Prescale = 1:64
; Code Protect: Disabled
;
; Subroutines: None
; Parameters: None
;

; ***

; Register Label Equates..

TMR0 EQU 01 ; Counter/Timer Register
PORTB EQU 06 ; Port B Data Register (LEDs)
INTCON EQU 0B ; Interrupt Control Register

T0IF EQU 2 ; Timer Interrupt Flag

; ***

; Initialise Port B (Port A defaults to inputs).................

MOVLW b‘00000000’ ; Set Port B Data Direction
TRIS PORTB

MOVLW b‘00000101’ ; Set up Option register
OPTION ; for internal timer/64

CLRF PORTB ; Clear Port B (LEDs Off)

Interrupts 135

; Main output loop ..

next CLRF TMR0 ; clear timer register
BCF INTCON,T0IF ; clear timeout flag

check BTFSS INTCON,T0IF ; wait for next timeout
GOTO check ; by polling timeout flag

INCF PORTB ; Increment LED Count
GOTO next ; repeat forever...

END ; Terminate source code

(using two registers in cascade) which provides an accurate count up to 64 535. It can also

operate with its own independent oscillator, which can operate with a 32.768 kHz crystal, which

can be used to give an accurate time interval up to 2 s. Timer 2 is another 8-bit counter which

is designed to be used in generating a pulse-width-modulated output signal. This can be used

to drive motors and other loads which require a variable power input. Obviously, additional

control registers are needed to setup and operate these extra timers.

9.3 Interrupts

Interrupts are generated by an internal or external asynchronous (not linked to the program

timing) event, and the interrupt signal can be received at any time during the execution of

the main process. For example, when you hit the keyboard or move the mouse on a PC, an

interrupt signal is sent to the processor from the keyboard interface to request that the key be

read in, or the mouse movement transferred to the screen. The code which is executed as a

result of the interrupt is called the ‘interrupt service routine’ (ISR). When the ISR has finished

its task, the process which was interrupted must be resumed as though nothing has happened.

This means that any information being processed at the time of the interrupt may have to be

stored temporarily, so that it can be recalled later. The program counter is saved automatically

on the stack, as when a subroutine is called, so that the program can return to the original

execution point after the ISR has been completed. This system allows the CPU to get on with

other tasks without having to keep checking all the possible input sources.

9.3.1 Interrupt Setup

A block diagram detailing the 16F84 interrupt system is given in Fig. 9.3. The PIC has four

possible interrupt sources:

1. RB0 can be selected as an edge-triggered interrupt input by setting INTCON,4 (INTE),

with the active edge selected by OPTION,6 (INTEDG).

2. RB7–RB4 can be selected to trigger an interrupt if any of them changes state, by setting

INTCON,3 (RBIE).

3. TMR0 overflow interrupt can be selected by setting INTCON,5 (T0IE).

4. Completion of an EEPROM (non-volatile data) write operation can be used to trigger the

interrupt.

136 Further Programming Techniques

 Interrupt control bit functions

Bit Label Function Settings

 INTCON

0 RBIF Port B (4:7)
Interrupt flag

0 = No change
1 = Bit change detected

INTF RB0
Interrupt flag

0 = No interrupt
1 = Interrupt detected

T0IF TMR0 overflow
Interrupt flag

0 = No overflow
1 = Overflow detected

RBIE Port B (4:7)
Interrupt enable

0 = Disabled
1 = Enabled

INTE RB0
Interrupt enable

0 = Disabled
1 = Enabled

T0IE TMR0 overflow
Interrupt enable

0 = Disabled
1 = Enabled

EEIE EEPROM write
complete interrupt
enable flag

0 = Disabled
1 = Enabled

GIE Global
interrupt enable

0 = Disabled
1 = Enabled

OPTION 6

7

6

5

4

3

2

1

INTEDG RB0 interrupt
Active edge select

0 = Falling edge
1 = Rising edge

Control

INTCON

PCL

GOTO YYY

Interrupt
service
routine

Main
program

Program
memory

000

004

XXX

YYY

ZZZ

3FF

StackProgram counter

OPTION

RB7
RB6

RB5
RB4

RB0

ZZZ

EECON1

TMR0

T0IF EEIE INTF

RBIF

Figure 9.3 Interrupt setup and operation.

If interrupts are required, the interrupt source must be enabled in the INTCON (interrupt

control) register. Then, the global interrupt enable bit, which enables all interrupts, must be

set (INTCON,7) and finally the specific interrupt bit must be set. Note that, although there are

four interrupt sources, they will all call an ISR at location 0004. If more than one interrupt

source is to be used, a mechanism for identifying which is active must be included in the

application program. There is no hardware interrupt priority system, as is available in more

complex processors.

Interrupts 137

9.3.2 Interrupt Execution

Interrupt execution is also illustrated in Fig. 9.3. Each interrupt source has a corresponding

flag, which is set if the interrupt event has occurred. For example, if the timer overflows, T0IF

(INTCON,2) is set. When this happens, and the interrupt is enabled, the current instruction is

completed and the next program address is saved on the stack. The program counter is then

loaded with 004, and the routine found at this address is executed. Alternatively, location 004

can contain a ‘GOTO addlab’ (address label) if the ISR is to be placed elsewhere in program

memory. If interrupts are to be used, a GOTO must also be used at the reset vector address, 000,

to redirect the program counter to the start of the main program at a higher memory address,

because the ISR (or GOTO addlab) will occupy address 004. The ISR must be created and

allocated to address 004 (ORG 004) as part of the program source code.

The ISR must be terminated with the instruction RETFIE (return from interrupt). This causes

the original program address to be pulled from the stack, and program execution resumes at the

instruction following the one which was interrupted. It may be necessary to save other registers

as part of the ISR, so that they can be restored after the interrupt. This is called ‘context saving’.

This is illustrated in INT1 program below by saving and restoring the contents of Port B data

register as part of the ISR.

9.3.3 INT1 Interrupt Program

A demonstration program, Program 9.2, illustrates the use of interrupts. The BIN hardware

must be modified to run this program, with the push buttons connected to RB0 and RA4. This

is necessary because only Port B pins can be used for external interrupts.

The program outputs the same binary count to Port B, as seen in the BINx programs, to

represent its normal activity. This process is then interrupted by RB0 being pulsed manually.

The interrupt service routine causes all the outputs to be switched on, and then waits for the

button on RA4 to be pressed. The routine then terminates, restores the value in Port B data

register and returns to the main program at the original point. The program structure and

sequence can be represented by the flowcharts in Fig. 9.4.

Program 9.2 INT1 interrupt program

;***
; INT1.ASM M. Bates 12/6/99 Ver 2.1
; ***
;
; Minimal program to demonstrate interrupts.
;
; An output binary count to LEDs on PortB, bits 1-7
; is interrupted by an active low input at RB0/INT.
; The Interrupt Service Routine sets all outputs high,
; and waits for RA4 to go low before returning to
; the main program.
; Connect push button inputs to RB0 and RA4
;
; Processor: PIC 16F84
; Hardware: PIC Modular Demo System
; (reset switch connected to RB0)

continued...

138 Further Programming Techniques

; Clock: CR ∼100kHz
; Inputs: Push Buttons
; RB0 = 1 = Interrupt
; RA4 = 0 = Return from Interrupt
; Outputs: RB1 - RB7: LEDs (active high)
;
; WDTimer: Disabled
; PUTimer: Enabled
; Interrupts: RB0 interrupt enabled
; Code Protect: Disabled
;
; Subroutines: DELAY
; Parameters: None
;
;***

; Register Label Equates..

PORTA EQU 05 ; Port A Data Register
PORTB EQU 06 ; Port B Data Register
INTCON EQU 0B ; Interrupt Control Register
timer EQU 0C ; GPR1 = delay counter
tempb EQU 0D ; GPR2 = Output temp. store

; Input Bit Label Equates

intin EQU 0 ; Interrupt input = RB0
resin EQU 4 ; Restart input = RA4
INTF EQU 1 ; RB0 Interrupt Flag

;
**

; Set program origin for Power On Reset...........................

org 000 ; Program start address
GOTO setup ; Jump to main program start

; Interrupt Service Routine at address 004........................

org 004 ; ISR start address

MOVF PORTB,W ; Save current output value
MOVWF tempb ; in temporary register

MOVLW b‘11111111’ ; Switch LEDs 1-7 on
MOVWF PORTB

wait BTFSC PORTA,resin ; Wait for restart input
GOTO wait ; to go low

MOVF tempb,w ; Restore previous output
MOVWF PORTB ; at the LEDs
BCF INTCON,INTF ; Clear RB0 interrupt flag
RETFIE ; Return from interrupt

Interrupts 139

; DELAY subroutine...

delay MOVLW 0xFF ; Delay count literal is
MOVWF timer ; loaded into spare register

down DECFSZ timer ; Decrement timer register
GOTO down ; and repeat until zero then
RETURN ; return to main program

; Main Program ***

; Initialise Port B (Port A defaults to inputs)..................

setup MOVLW b‘00000001’ ; Set data direction bits
TRIS PORTB ; and load TRISB

MOVLW b‘10010000’ ; Enable RB0 interrupt in
MOVWF INTCON ; Interrupt Control Register

; Main output loop ...

count INCF PORTB ; Increment LED display
CALL delay ; Execute delay subroutine
GOTO count ; Repeat main loop always

END ; Terminate source code

; **

The program is in three parts: the main sequence which runs the output count, the delay

subroutine which controls the speed of the output count and the interrupt service routine. The

delay process in the main program is implemented as a subroutine, and expanded in a separate

flowchart. The ISR must be shown as a separate chart because it can run at any time within the

program sequence. In this particular program, most of the time is spent executing the software

delay, so this is the process which is most likely to be interrupted.

The interrupt routine is placed at address 004. The instruction ‘GOTO setup’ jumps over it

at run time to the initialisation process at the start of the main program. The interrupt and delay

routines must be assembled before the main program, because they contain the subroutine start

address labels referred to in the main program, so they are entered first in the source code. The

last instruction in the ISR must be RETFIE. This instruction pulls the interrupt return address

from the stack and places it back in the program counter, where it was stored at the time of the

interrupt call.

To illustrate context saving, the state of the LEDs is saved in register ‘tempb’ at the beginning

of the interrupt, because Port B is going to be overwritten with ‘FF’ to switch on all the LEDs.

Port B is then restored after the program has been restarted. Note that writing a ‘1’ to the input

bit has no effect. During the ISR execution, the stack will hold both the ISR return address and

the subroutine return address.

9.3.4 More Interrupts

In larger PIC chips, additional interrupt sources are typically present, such as analogue inputs,

serial ports and additional timers. These all have to be setup and controlled via additional

140 Further Programming Techniques

INT1

Initialise ports
and interrupt

Delay

Increment
LEDs by 2

Save current
LEDs value

Switch on
all LEDs

Re-enable
interrupt

Return

ISR

Restart
Input = 0?

Restore previous
LEDs value

No
DELAY

Load 'Timer'
register with FF

Decrement

'Timer' zero?

Return

No

(a)

(b)

(c)

Figure 9.4 INT1 interrupt program flowcharts. (a) Main sequence; (b) Delay routine; (c) Interrupt
service routine.

special function registers. As an example, the 16F877 has 14 interrupt sources, but still has

only one interrupt vector address, 0004, to handle them. The interrupt bits must be checked in

software to see which is active before calling the appropriate ISR. Also, the stack can still only

hold eight return addresses, despite the program memory being 8k. The limit of eight levels of

subroutine or interrupt can easily be exceeded if the program is too highly structured, so this

must be borne in mind when planning the program implementation.

9.4 More Register Operations

The functions of the most commonly used registers are described in Chapter 8, and further

operations using the PIC registers are outlined in this section.

More Register Operations 141

9.4.1 Data Destination W

The default destination for operations which generate a result is the file register specified in
the instruction. For example:

INCF spare

increments the register labelled ‘spare’, with the result being left in the register. The above
syntax generates a message when the program is assembled to remind the user that the ‘default’
destination is being used. This is because the full syntax is

INCF spare,1

where ‘1’ indicates the file register itself as the destination. If the result of the operation were
required in the working register W, it could be moved using a second instruction

MOVF spare,W

However, the whole operation can be done in one instruction by specifying the destination as
W as follows:

INCF spare,0

or

INCF spare,W

The label W is automatically given the value 0 by the assembler. The result of the operation
is stored in W, while the original value is left unchanged in the file register. All the register
arithmetic and logical byte operations have this option, except CLRF (Clear File Register)
and CLRW (Clear Working Register) which are by definition register specific, MOVWF and
NOP (No operation). This option offers significant savings in execution time and memory
requirements, which in PIC applications may be quite significant, and compensates for the lack
of instructions to make direct moves between file registers.

9.4.2 Register Bank Select

The 16F84 file register set (Fig. 8.2) is organised in two banks, with the most commonly used
registers in the default bank 0. Some of the control registers, such as the port data direction
registers, TRISA and TRISB, and the OPTION register, are mapped into bank 1. Many of the
SFRs can be accessed in either bank. Others have special access instructions, namely TRIS to
write the Port A and B data direction registers, and OPTION which is used to set up the real
time clock counter.
The manufacturer recommends using bank selection to access all these registers, and the

instruction set warns that the instructions TRIS and OPTION may not be supported by future
assemblers. Bank 0 is enabled by default, and bank 1 registers OPTION, TRISA, TRISB,
EECON1 and EECON2 can be selected by setting bit 5, RP0, in the STATUS register, prior to
accessing the corresponding register number. The alternative method to set Port B to output is
therefore as follows:

STATUS EQU 03 ; label for status register

TRISB EQU 86 ; label for data direction register

BSF STATUS,5 ; select bank 1

CLRW ; load W with data direction code

MOVWF TRISB ; set Port B as outputs

BCF STATUS,5 ; re-select bank 0

142 Further Programming Techniques

It is a good idea to re-select bank 0 immediately, as this is the most commonly used. However,

if further bank 1 access is required, leave this step until later. Once a bank has been selected,

it remains accessible until de-selected. Larger PIC chips which have more special function

registers and provide more data registers have four register banks, requiring two bits for bank

selection, status bits 5 and 6.

An alternative is to use the pseudo-operation ‘BANKSEL’ as follows:

BANKSEL TRISB ; select bank containing TRISB, bank 1

CLRW ; load code for all outputs

MOVWF TRISB ; set Port B as outputs

BANKSEL PORTB ; re-select bank containing PORTB, bank 0

BANKSEL selects the bank that the specified register is in, so, to change banks, any register in

the required bank will do. The temperature control program (Program 15.1) uses this technique,

and it is recommended as the best option for accessing registers not in bank 0.

Pseudo-operations, or special instructions, are explained in Section 9.8.

9.4.3 File Register Indirect Addressing

File register 04 is the File Select Register (FSR). It is used for indirect or indexed addressing

of the other file registers, particularly the GPRs. If a file register address (00–4F) is loaded into

FSR, the contents of that file register can be read or written through file register 00, the Indirect

File Register (INDF). This method can be used for accessing a set of data RAM locations, by

reading or writing the data via INDF, and selecting the next file register by incrementing FSR

(see Fig. 9.5). This indexed, indirect file register addressing is particularly useful for storing

a set of data which has been read in at a port, in, for example, a data logging application.

An output data table of predefined values, such as seven-segment display codes, can use the

program data table method described in Section 9.6.

The demonstration Program 9.3 loads a set of file registers, 20–2F, with dummy data (AA),

using FSR as the index register. Here, FSR operates as a pointer to a block of locations and

is incremented between each read or write operation. Notice that the data actually has to be

moved into INDF each time.

9.4.4 EEPROM Memory

Many PIC chips have a block of electrically erasable read only memory (EEPROM) which

operates as non-volatile read and write memory; the data written to this block is retained when

the power is off. This is useful, for example, for security applications such as an electronic lock,

where the correct combination can be stored and changed as required. Access to EEPROM is

illustrated in Fig. 9.6.

The four registers used to access the memory are EEDATA, EEADR, EECON1 and EECON2.

The data to be stored is placed in EEDATA, and the address at which it is to be written

(00–3F) in EEADR. Bank 1 must then be selected, and a read or write sequence included in

the program as specified in the data sheet, Section 3. The complex write sequence is designed

to reduce the possibility of an accidental write to EEPROM, whereby valuable data is lost.

Reading the EEPROM is more straightforward. The LOCK application program in Appendix B

includes examples of the code sequences required to read and write EEPROM. Other devices

use a different technique to access the EEPROM; the 8-pin PIC 12CE518/9 devices use serial

More Register Operations 143

00 INDF
Indirect file register

04 FSR
File select register

20 General purpose
registers

21

22

2F

4F

Set
address,
inc/dec,
check,
and repeat

Write
data

File register address

A

A

A

Data
written
through
to GPR

Select
file
register

Block of
GPRs
loaded
with dummy
data

3

1

2

4

A A

2 0

A A

A

A

A

Figure 9.5 Indirect file register addressing.

access via the unused bits of the port register. The individual device data sheet must therefore

be studied carefully to use this feature.

9.4.5 Program Counter High Register, PCLATH

The 16F84 has 1k of program memory (000–3FF), requiring a 10-bit address; the 8-bit PCL

(program counter low byte) can only select one of 256 addresses. The 1k of program memory

is therefore divided into four 256 word blocks (pages), one of which is selected with 2 extra

bits in the PCLATH (program counter latch high) register. The PCL provides the address

within each page of memory and is fully readable and writable. When a program jump is

executed, PCL and PCLATH are modified automatically, that is, CALL and GOTO use a

full 10-bit operand for jumps, so do not require any special manipulation of the address

for jumping across page boundaries. However, if PCL is modified by a direct write under

program control, PCLATH bits 0 and 1 may need to be manipulated to cross page boundaries

successfully.

In other PIC devices, there may be other limitations to program branching operations. For

example, CALL instructions in the 12C5XX group are limited to the first 256 locations of the

program, even though the overall memory may be up to 1k. Check the data sheet carefully to

avoid problems with this limitation.

144 Further Programming Techniques

Program 9.3 Indexed file register addressing

; index.asm M Bates 29-10-03
; ...

; Demonstrates indexed indirect addressing by
; writing a dummy data table to GPRs 20 - 2F

; ...

PROCESSOR 16F84 ; select processor

FSR EQU 04 ; File Select Register
INDF EQU 00 ; Indirect File Register

MOVLW 020 ; First GPR = 20h
MOVWF FSR ; to FSR

MOVLW 0AA ; Dummy data
next MOVWF INDF ; to INDF and GPRxx

INCF FSR ; Increment GPR Pointer
BTFSS FSR,4 ; Test for GPR = 30h
GOTO next ; Write next GPR

SLEEP ; Stop when GPR = 30h

END ; of source code

29

2A

2B

EEDATA

EEADR

EECON1

EECON2

EEPROM
memory

xxxx xxx1

xxxx xxxx

Enable RD bit
x

B

x

Select location

Data returnedFile
registers

1

2

3

x

8

x2 A

B 8

Figure 9.6 EEPROM read operation.

9.5 Special Features

PIC chips have a number of special features which enhance its flexibility and range of
applications. Different oscillator types can be used, timers enabled to ensure reliable program
start up and recovery, and in-circuit programming and code protection are available.

Special Features 145

9.5.1 Oscillator Type

PIC chips can be operated with an external RC network, a crystal oscillator and an externally
or internally generated clock signal. Typical oscillator circuits are illustrated in Fig. 9.7.
For applications where the precise timing of the program is not important, an inexpensive

RC clock circuit (Fig. 9.7(a)) can be used. This requires only a resistor and capacitor connected
as shown to the CLKIN pin of the chip. If a variable resistor is used, as in the BIN hardware,
the clock rate can be adjusted, within limits, and therefore all output signal frequencies can
be changed simultaneously (for example, the outputs from the program BIN1). The clock and
output frequency can thus be ‘trimmed’ to a required value. On the other hand, the clock signal
will not be very accurate or stable.
The crystal is slightly more expensive, but is far more precise than the RC clock. In the XT

oscillator circuit (Fig. 9.7(b)) the crystal resonates at a fixed frequency, with an accuracy of
around 50 ppm (parts per million), or 0.005%. This will allow the hardware timer to measure
exact intervals and to generate accurate output signals. The overall execution time of the

Vdd

PIC

CLKIN

CLKOUT

Vss

+5 V

0 V

Clock output = Fosc/4

Ctyp. = 10 nF

Rtyp. = 10 k

C × R = 100 µs
Frequency ~10 kHz

Vdd

PIC

OSC1

OSC2

+5 V

0 V

C1 = C2
 ~22 pF

C1 C2

XTAL

Crystal frequency
1–20 MHz

(a)

(b)

Figure 9.7 PIC clock circuits. (a) RC oscillator; (b) Crystal oscillator.

146 Further Programming Techniques

program blocks can also be predicted; this can be done by calculation, or, more readily, by use

of the stopwatch in MPLAB.

If the PIC chip is part of a larger system, or one with more than one processor, a system

clock signal generated by a master oscillator can be input at CLKIN. One of the crystal options

must then be selected. The clock type must be selected when programming the chip, to match

the target system hardware design. There are three types of crystal which can be used: standard

(XT), low power (LS) or high speed (HS). XT mode should be used for clock speeds up to

4MHz, and HS used up to 20MHz.

In order to minimise the number of external components required, some PIC chips now

have an on-board oscillator option, which provides a 4MHz clock and 1�s instruction cycle.

Because this is not a precise oscillator, it is tested in production and a calibration value supplied

pre-programmed in the first program memory location. This value must then be loaded into

the oscillator calibration register OSCCAL. Even so, the accuracy achieved is specified as only

about 5% (3.8–4.2MHz).

9.5.2 Power-on Timers

When a power supply is switched on, the voltage and current initially rise in an unpredictable

way, depending on the design of the supply and the circuits connected to it. If the processor

program tries to start immediately, before the supply had settled down, it may not start correctly.

In a conventional microprocessor, an external circuit is typically connected to the CPU reset

input, which provides a delay between the power being switched on and the processor starting.

The PIC has the required power-on timers built in to the chip. The reset input can therefore

simply be connected to the positive supply (+5V) for many applications, as is the case in the

examples in this book. When the PIC is powered up, a power-on reset pulse is generated when

the supply voltage detected at Vdd rises through about 1.5V. This starts a power-up timer

which times out after 72ms, which in turn triggers an oscillator start-up timer, which delays

for another 1024 clock cycles, to allow the internal clock to stabilise. An internal reset is then

generated, and the program starts executing. The power-up timer should normally be enabled

when programming the chip, as the resulting delay on start up will normally be insignificant.

9.5.3 Watchdog Timer (WDT)

This is an internal independent timer which, by default, forces the PIC to automatically restart

after a fixed period (about 18 ms). The idea is to allow the processor to escape from an endless

loop or other error condition, without having to be reset manually. This facility would be

used by more advanced programs, so our main concern here is to prevent watchdog timeout

occurring when not required, because it will disrupt the sequence and timing of our programs.

The WDT can be disabled by selecting the appropriate configuration setting during program

downloading, and this is the usual option for simple programs. If the watchdog is to be employed,

the WDT must be regularly reset within the program loop using the instruction CLRWDT. If

this happens at least every, say, 1ms (1000 instructions at 4MHz), the WDT auto-reset can be

prevented. If a program misbehaves in the simulator, check that WDT is disabled.

9.5.4 Sleep Mode

The instruction SLEEP causes normal operation to be suspended and the clock oscillator to be

switched off. Power consumption is minimised in this state, which is useful for battery-powered

Special Features 147

applications. The PIC is woken up by a reset or interrupt; for example, when a key connected

to Port B is pressed.

The SLEEP instruction is used (see Program 9.3) if the program is not required to loop

continuously. If the program execution is allowed to run on into unprogrammed locations, there

is a problem. The bits in the empty memory locations after the last instruction code default

high. In the ’84, this is in fact a valid PIC instruction, ADDLW FF, which means add literal

‘FF’ to W, so this instruction will be repeated throughout the unused locations. The program

counter will roll over to zero after executing these meaningless instructions up to address 3FF,

and the program at 000 will be restarted, so the program will loop by default. It is therefore

a sensible precaution to terminate the program with a SLEEP instruction if does not run in

continuous loop. If SLEEP is used to stop the program at the end, a power-on reset, external

reset or an interrupt can then restart the processor.

9.5.5 In-Circuit Programming and Debugging

In-circuit programming allows the chip to be programmed without being removed from the

circuit, which avoids possible mechanical (broken/bent legs) and electrical (static) damage.

The programming module is connected to the serial port of the host PC and to the chip via

two port pins (RB6 and RB7 in the 16XXX) via a suitable connector (Fig. 9.8). The program

can then be downloaded in the usual way, in serial form. Note, however, that the circuit must

be designed so that the normal operational connections to the port pins do not interfere with

the downloading process. If in doubt, leave these pins exclusively for programming. When

programming is complete, the connector can be removed, the board set to run and the port pins

used for their normal function.

PIC

RB6

RB7
!MCLR

ICD/
Programmer

module

Clock

Data

Vpp = 13 V

HOST
PC

(MPLAB)

Serial
Port

COM1/2

Figure 9.8 Serial programming and ICD connections.

PIC chips are now designed to allow this programming link to be used in a cheap but effective

debugging system. If ICD is supported by the target hardware, an ICDmodule acts as programmer

anddebugging interface.ThesameMPLABsimulator tools canbeused to test theprogramas it runs

in the actual chip, rather than in the purely software model, with the real hardware acting as inputs

and outputs. This allows the hardware to be verified, and timing critical operations to be tested

easily and reliably. All the usual techniques are available: single stepping, breakpoints, register

monitoring and so on. The finished program can be tested at full speed in the actual hardware,

and any final bugs removed. Previously, an expensive in-circuit emulator would be needed for this

type of testing (see Section 11.5.2). It is anticipated that this feature will be extended to more PIC

devices, as it is a valuable low-cost tool for PIC program development.

By incorporating the programming interface into the target hardware, it is also possible

for microcontrollers to be reprogrammed remotely after final installation. If a suitable

148 Further Programming Techniques

communication link is available, a new control program can be downloaded while the target
processor remains at its remote site. This is a great advantage in, for example, distributed
sensing and monitoring applications, where a site visit would be expensive or time-consuming.
Obviously, the new program would need to be fully tested on an identical local system before
being downloaded to the remote system.

9.5.6 Code Protection

In commercial applications, the PIC program designer does not want the software supplied
with a product to be copied by a market competitor. The ‘Code Protect’ fuse, selected during
programming, is designed to prevent unauthorised copying. The chip can also be given a unique
identification code during programming, if required. For our purposes, the code protection
should not be enabled, as the program cannot then be read back for verification.

9.5.7 Configuration Word

The oscillator selection bits (2), watchdog timer, power-up timer and code protection are all
selected by setting the bits of a configuration word, located at a special address which is only
accessible when the chip is being programmed. These bits can be set via the programming
dialogue in MPLAB, as described in Chapter 7. Alternatively, the configuration options can be
set by including an assembler directive in the source code.

9.6 Program Data Table

A program may be required to output a set of pre-defined data bytes, for example, the codes
to light up a seven-segment display with the correct pattern for each display digit, as in
Program 12.2. The data set can be written into the program as a table within a subroutine, and
the data list accessed using CALL and RETLW. To fetch the table value required, the position
in the table is placed in W. ‘0’ will access the first item, ‘1’ the second and so on. At the top
of the subroutine, ADDWF PCL is used to add the table pointer value to the program counter
register so that the execution point jumps to the required item in the list. RETLW is then used
to return the table value in W, and it can then be moved to the required file register.
Program 9.4, TAB1, shows how such a table may be used to generate a sequence at the

LEDs in our BIN demonstration hardware. In this case, it is a bar graph display which lights
the LEDs from one end, using the binary sequence 0, 1, 3, 7, 15, 31, 63, 127, 255.
Spare registers labelled ‘timer’ and ‘point’ are used. Port B is set as outputs and subroutines

defined for a delay and to provide a table of output codes. In the main loop, the table pointer
register ‘point’ is initially cleared, and will then be incremented from zero to 9 as each code is
output. The value of the pointer is checked each time round the loop to see if it is 9 yet. When
9 is reached, the program jumps back to ‘newbar’, and the pointer reset to zero.
For each output, the pointer value (0–8) is placed in W and the ‘table’ subroutine called. The

first instruction ‘ADDWF PCL’ adds the pointer value to the program counter. At the first call,
this value is zero, so the next instruction ‘RETLW 000’ is executed. The program returns to the
main loop with the value 00 in W. This is output to the LEDs, the delay run, and the pointer
value incremented. The new value is tested to see if it is 9 yet, and if not, the call is made to
the table with the next value, 1, and so on to 8. Each time the pointer value is added to PCL, so
that the program jumps to the second, then third, then fourth code and so on, until finally the
ninth code, which is 0FF, is returned to the main output loop for display. After this, the test of

Program Data Table 149

Program 9.4 TAB1 table program

;***
; TAB1.ASM M. Bates 13/6/99 Ver 1.3
; ***
;
; Output binary sequence gives a demonstration of a
; bar graph display, using a program data table...
;
; Processor: PIC 16F84
;
; Hardware: PIC Demo System
; Clock: CR ∼10kHz (Cycle time ∼0.7s)
; Inputs: none
; Outputs: LEDs (active high)
;
; WDTimer: Disable
; PUTimer: Enable
; Code Protect: Disable
;
; Interrupts: Disabled
; Subroutines: ‘delay’ (no arguments)
; ‘table’ (argument ‘point’)

; **

; Register Label Equates....................................

PCL EQU 02 ; Program Counter Low Register
PORTB EQU 06 ; Port B Data Register
timer EQU 0C ; GPR1 used as delay counter
point EQU 0D ; GPR2 used as table pointer

; **

ORG 000
GOTO start ; Jump to start of main prog

; Define DELAY subroutine...................................

delay MOVLW 0xFF ; Delay count literal
MOVWF timer ; loaded into spare register

down DECFSZ timer ; Decrement timer register
GOTO down ; and repeat until zero
RETURN ; then return to main program

; Define Table of Output Codes

table ADDWF PCL ; Add pointer to PCL
RETLW 000 ; 0 LEDS on
RETLW 001 ; 1 LEDS on
RETLW 003 ; 2 LEDS on
RETLW 007 ; 3 LEDS on
RETLW 00F ; 4 LEDS on
RETLW 01F ; 5 LEDS on
RETLW 03F ; 6 LEDS on
RETLW 07F ; 7 LEDS on
RETLW 0FF ; 8 LEDS on

continued...

150 Further Programming Techniques

; Initialise Port B (Port A defaults to inputs).........

start MOVLW b‘00000000’ ; Set Port B Data Direction Code
TRIS PORTB ; and load into TRISB

; Main loop ..

newbar CLRF point ; Reset pointer to start of table

nexton MOVLW 009 ; Check if all outputs done yet
SUBWF point,W ; (note: destination W)
BTFSC 3,2 ; and start a new bar
GOTO newbar ; if true...

MOVF point,W ; Set pointer to
CALL table ; access table...
MOVWF PORTB ; and output to LEDs

CALL delay ; wait a while...

INCF point ; Point to next table value
GOTO nexton ; and repeat...

; End of main loop ..

END ; Terminate source code

the pointer being equal to 9 succeeds, the jump back to ‘newbar’ taken, and the process repeats.
Note the use of ‘W’ as the destination for the result of the subtract (SUBWF) instruction. This
is necessary to avoid the pointer value being overwritten with the result of the subtraction.

9.7 Assembler Directives

Assembler directives are commands inserted in PIC source code which control the operation
of the assembler. They are not part of the program itself and are not converted into machine
code. Many assembler directives will only be used when a good knowledge of the programming
language has been achieved, so we will refer to a small number of selected examples at this
stage. The use of some of these is illustrated in Program 9.5, ASD1. The assembler directives
are placed in the second column, with the instruction mnemonics. We have already met some of
the most commonly used directives, but END is the only one which is essential, all the others are
simply available to make the programming process more efficient. For definitive information
refer to the documentation and help files supplied with your current assembler version.

9.7.1 Control Directives

Processor

Specifies the PIC processor for which the program has been designed, and allows the assembler
to check that the syntax is correct for that processor. The simulator also uses this to automatically
select the right processor. The processor can be selected in the assembler command line, if so,
this supersedes the source code directive.

Assembler Directives 151

Program 9.5 ASD1 assembler directives program

;***
; ASD1.ASM M. Bates 17/12/03 Ver 1.1
;***
; Assembler directives, a macro and a pseudo-operation are
; illustrated in this counting program ...
; ***

; Directive sets processor type:
PROCESSOR 16F84

; Set configuration fuses:
__CONFIG B‘1111111111110011’

; Code protection off, PuT on, WDT off, RC clock

; SFR equates are inserted from disk file:
INCLUDE "C:\PIC\REG84.EQU"

; Constant values can be predefined by directive:
CONSTANT maxdel = 0xFF, dircb = b‘00000000’

timer EQU 0C ; delay counter register

; Define DELAY macro ***

DELAY MACRO

MOVLW maxdel ; Delay count literal
MOVWF timer ; loaded into spare register

down DECF timer ; Decrement spare register
BNZ down ; Pseudo-Operation:

; Branch If Not Zero
ENDM

;***

; Initialise Port B (Port A defaults to inputs)

MOVLW dircb ; Port B Data Direction Code
TRIS PORTB ; Load the DDR code into F86

; Start main loop

CLRF PORTB ; Clear Port B Data & restart
again INCF PORTB ; Increment count at Port B

DELAY ; Insert DELAY macro
GOTO again ; Repeat main loop always

END ; Terminate source code

__Config

The configuration directive allows the configuration bits to be specified in the source code, so

that they do not have to be set up each time when downloading. This is obviously useful if the

program has to be downloaded several times before completion of debugging. The significance

of each bit is shown in the data sheet, Section 6.1. A 16-bit word is loaded into the configuration

register by this directive. Bits 0 and 1 set the clock type (11= RC�01=XT), bit 2 disables the

152 Further Programming Techniques

watchdog timer if cleared and bit 3 enables the power-up timer if cleared. All the other bits are
set to 1 to disable code protection. The double underscore which starts the directive indicates
an operation on the MCU registers.

Org

Sets the code ‘origin’, meaning the address which will be allocated to the first instruction
following this directive. We have already seen (Program 9.2) how it is necessary to set the
origin of the interrupt service routine as 004. The default origin is 000, the first program
memory location, so if not specified, the program will be placed here. This is the reset address
where the processor always starts on power up or reset. If using interrupts, an unconditional
jump ‘GOTO addlab’ should be used as the first instruction at the reset address 000. This will
jump over the ISR (or a jump to it) placed at address 004. The main program can then be
placed at a higher address using the ORG directive.

End

Informs the assembler that the end of the source code has been reached. This is the one directive
that must be present.

9.7.2 Conditional Directives

These directives allow selective assembly of source code blocks. That is, sections of code can
be omitted during assembly, or repeated, by use of high level language type statements such as
IF . . . ELSE . . . ENDIF. Assembler ‘variables’ are used to define the conditions for assembly.

9.7.3 Listing Directives

List

This directive has a number of options which allow the format and content of the list file to be
modified, e.g. number of lines and columns per page, error levels reported, processor type and
so on.

Page

Forces a page break when printing.

Title

Defines the program name printed in the list file header line, if you want it to be different from
the source code file name (see also SUBTITL).

9.7.4 Data Directives

Equ

EQU is probably the second most commonly used directive, because it allows literal and register
labels to be defined, and we have already used it routinely. It assigns a label to any numerical
value (hex, binary, decimal or ASCII), and the assembler then replaces the label with the
number. This allows recognisable labels to be used instead of numbers.

Special Instructions 153

Include

This directs the assembler to include a block of source code from a named file on disk. If

necessary, the full file path must be given. The text file is included as though it had been typed

into the source code editor, so it must conform to the usual assembler syntax, but any program

block, subroutine or macro could be included in the same way. This allows separate source

code files to be included, and opens the way for the user to create libraries of reusable program

modules. In the example ASD1, it is used to include a standard header file (REG84.EQU)

which defines labels for all the special function registers in the PIC. Use of this option is

recommended when the basics have been mastered; standard header files, which use labelling

which is consistent with the SFR labels used in the register monitoring windows in MPLAB,

are supplied with the development system files for all processors.

Data, Zero, Set, Res

Allow program constants and data blocks to be defined and memory allocated for specified

purposes.

9.7.5 Macro Directives

Macro Endm

A macro is a block of source code which is inserted into the program when its name is used as

an instruction. In ASD1, for example, DELAY is the name of the macro, and its insertion in the

main program can be seen in the list file. Thus using a macro is equivalent to creating a new

instruction from standard instructions, or an automatic copy and paste operation. The directive

MACRO defines the start of the block (with a label), ENDM terminates it. It effectively allows

you to create your own instruction mnemonics (see also LOCAL and EXITM).

9.8 Special Instructions

Special instructions are essentially macros which are pre-defined in the assembler. A typical

example is shown in the program ASD1, ‘BNZ down’, which stands for ‘Branch if Not Zero

to label’. It is replaced by the assembler with the instruction sequence Bit Test and Skip and

GOTO:

BNZ down = BTFSS 3,2

GOTO down

These two instructions are inserted into the program in place of the special instruction. The zero

flag (bit 2) in the status register (register 3) is tested, and the GOTO skipped if it is set as a result

of the previous operation being zero. If the result was not zero, the GOTO is executed, and

the program jumps to the address label specified. Special instructions are designed to simplify

operations using the carry or zero flag, and are equivalent to conditional branch instructions in

complex instruction set processors. This type of instruction is included in the main instruction

set of the more powerful 18XXX series of PICs.

154 Further Programming Techniques

9.9 Numerical Types

Literal values given in PIC source code can be written using different number systems. The

default is hexadecimal, so if the type is not specified, the assembler will assume it is hex.

However, it is very important to note that the assembler will still get confused between numbers

and labels if the hex number starts with a letter (i.e. A, B, C, D, E or F). The literal must start

with a number, so use a leading zero at all times. Then 8-bit literals will be written as three

digits, with the first always zero (000–0FF).

The numerical types supported by the MPASM assembler are:

• hexadecimal

• decimal

• binary

• octal

• ASCII

To specify a type, the initial letter of the type can be used with quotes, such as:

H‘3F’

D‘47’

B‘10010011’

A‘K’

Binary is useful for specifying register values which are bit-oriented, as is the case for many

SFRs; the state of each bit can be clearly seen. In particular, we have used binary to define

port data direction codes in our demonstration programs.

If an ASCII character is specified, the corresponding 8-bit code in the range 00–7F will be

loaded representing the code for each character in the set (see Table 9.2). This option is used

Table 9.2 ASCII character set

Low High bits

bits 0010 0011 0100 0101 0110 0111

0000 Space 0 @ P ` p
0001 ! 1 A Q a q
0010 " 2 B R b r
0011 # 3 C S c s
0100 $ 4 D T d t
0101 % 5 E U e u
0110 & 6 F V f v
0111 ‘ 7 G W g w
1000 (8 H X h x
1001) 9 I Y i y
1010 * : J Z j z
1011 + ; K [k {
1100 , < L \ l �
1101 - = M] m }
1110 . > N ∧ n ∼

1111 / ? O _ o Del

Numerical Types 155

in sending data to alphanumeric liquid crystal displays, for example. The character itself may
then be used in the program, and the assembler does the code conversion:

MOVLW ‘Y’ ; Converted to binary 01011001

MOVWF PortB ; send to display

Note that the A for ASCII can be left out, and the character still be correctly recognised by the
assembler.

Summary

• Each PIC instruction takes four clock periods to execute (instruction cycle time). Jumps take
two instruction cycles. Block execution times can therefore be calculated.

• The hardware counter/timers can be used to count inputs or time intervals. Programmable
prescalers extend the range of the counter. Timer overflow sets the time-out flag, which can
be used to trigger an interrupt.

• Interrupts allow an internal or external event to change the program sequence, and force the
execution of an ISR. There are multiple interrupt sources, but no interrupt priority.

• Register and memory bank selection are sometimes necessary; EEPROM is available for
non-volatile storage.

• The clock signal which drives the chip can be obtained from an RC or crystal circuit, or
master system clock. Power-on timers, watchdog timer, sleep mode, in-circuit programming
and code protection are available.

• Program data tables can be operated using CALL and RETLW, with an incrementing PCL
offset.

• Assembler directives are instructions to the assembler which are not converted into machine
code.

• Macros are user-defined instructions. Special instructions are pre-defined macros.

• Numerical types hex, decimal, binary, octal and ASCII character codes can be used in the
source code.

Questions

1. State the number of clock cycles in a PIC instruction cycle and the number of instruction
cycles taken to execute the instructions (a) CLRW (b) RETURN.

2. If the PIC clock input is 100 kHz, what is the instruction cycle time?

3. Calculate the pre-load value required in TMR0 to obtain a delay of 1ms between the
load operation and the T0IF going high, if the clock rate is 4MHz and the prescale ratio
selected is 4:1.

156 Further Programming Techniques

4. List the bits in the SFRs which have to be initialised to enable an RB7:RB3 interrupt.

5. Sketch the circuits for an RC and crystal clock, showing typical component values and

chip connections. State one advantage of each type.

6. State the assembler directive that must be used in all PIC programs.

7. Explain the difference between a subroutine and a macro.

Answers

2. 40�s

3. 6

4. TRISB, 3, 4, 5, 6 and INTCON bits 0, 3, 7

6. END

Activities

1. Calculate the time taken to execute one complete cycle of the output obtained from TAB1
with a clock rate of 10 kHz.

2. Modify the program TIM1 to use a timer interrupt rather than polling to control the delay.

3. Devise a program to measure the period of an input pulse waveform at RB0, which has a

frequency range of 10–100 kHz. The input period should be stored in a GPR called ‘period’

as a value where 0A16 = 10�s and 6416 = 100�s, with a resolution of 1 bit per �s. The

clock uses a 4MHz crystal. Estimate the accuracy of the frequency measurement at each
end of the range.

Part C
Applications

10 Application Design

11 Program Debugging

12 Prototype Hardware

13 Motor Applications

ThisPageisIntentionallyLeftBlank

Chapter 10
Application Design

10.1 Design Requirements

10.2 Block Diagram

10.3 Hardware Design

10.4 Software Design

10.5 Program Implementation

10.6 Source Code Documentation

This chapter will take you through the complete process of application design and development,

based on a simple motor drive system. At each step, relevant design techniques will be explained

and a suitable implementation developed, stage by stage.

Before designing hardware or writing a program, we have to describe as clearly as possible

what an application is required to do. That means a specification is needed which defines the

user’s requirement. There are national and international standards which should be observed

when designing commercial products to aid clear communication between the engineer,

management and client; here we will simply establish some basic, ‘common sense’ rules.

Once the specification has been written, a useful starting point for hardware design is a block

diagram. We have already seen numerous examples in previous chapters. It should represent the

main parts of a system and the information flow between them, in a simplified form. This can

later be converted to circuit diagrams and the hardware connections laid out and constructed on

PCB. In a similar way, software can be designed using techniques which allow the application

program to be outlined, and then the details progressively filled in. Flowcharts have been used

already, and this chapter will explain in more detail the basic principles of using flowcharts to

help with program design.

Pseudocode is another useful method for designing software. The program outline is entered

directly into the source code text editor as a set of general statements which describe each major

block, which would normally be defined as functions and procedures in a high level language,

and subroutines and macros in a low level language. Detail is then added under each heading

until the pseudocode is suitable for conversion into source code statements for the assembler

or compiler for the target processor or programming language. The pseudocode versions can

be described as level 1, 2, 3 and so on, as more detail is added.

At this stage, we will concentrate on flowcharts, because they are suitable for simple real-time

applications, as their graphical nature makes them a good learning tool. The first step in the

software design process is to establish a suitable algorithm for the program; that is, a processing

160 Application Design

method which will achieve the specification using the features of an available programming

language. This obviously requires some knowledge of the range of languages which might be

suitable, and experience in the selected language. Formal software design techniques cannot

be properly applied until the software developer is fairly familiar with the relevant language

syntax. However, when learning programming we have to develop both skills together, so some

trial and error is unavoidable. When learning, it is useful to apply these design techniques

retrospectively, that is, as an analytical tool or as part of the application documentation. For

instance, a final version of a flowchart might be drawn after the program has been written and

tested, when the suitability of the design algorithm has been proven.

In this chapter, a simple demonstration application will be used to illustrate the development

process. Real software products will generally, of course, be far more complex, but the same

basic design principles may be applied. If the design brief is not specific about the hardware,

considerable experience and detailed knowledge of the options available are required to select

the most appropriate hardware and software combination. The relative costs in the planning,

development, implementation, testing, commissioning and support of the product should also

be estimated to obtain the most cost-effective solution. Naturally, the example used here to

illustrate the software development process has been chosen as suitable for PIC implementation.

The application program will be required to generate a pulse width modulated (PWM) output.

This can also be generated by a specially designed interface in many microcontrollers, including

PICs, as it is a common requirement. The software implementation will help us understand the

operation of the hardware-based PWM interface, which will be described later.

10.1 Design Requirements

A system is required to provide a PWM drive signal for a small DC motor. Under PWM control,

the motor runs at a speed which is determined by the average level of the signal, which in turn

is dependent on the ratio of the on (mark) to off (space) time. This method provides an efficient

method of using a single digital output to control output power from a motor, heater, lamp or

similar power output transducer. PWM is also used to control small digital position servo units, as

used in radio-controlled models, for example. The basic drive waveform is shown in Fig. 10.1.

A variable mark/space ratio (MSR) of 0–100%, with a resolution of 1%, is required. The

frequency is not critical, but should be high enough to allow the motor to run without any

significant speed variation over each cycle (>10Hz). It is desirable to operate at a frequency

above the audible range (>15KHz) because some of the signal energy can radiate as sound from

the windings of the motor, which can be quite irritating! However, a dedicated PWM interface is

Mark (M)

Space (S)

Volts

Time

+5 V

Waveform period (T)

Frequency, f = 1/ T Hz Mark / space ratio = M/S × 100%

Variable falling edge position

0 V

Figure 10.1 Pulse width modulated signal.

Design Requirements 161

needed to achieve this. We will go for low-frequency operation just to demonstrate the principles

involved. The hardware is also simplified; for example, instead of a single FET drive transistor as

used here, a full bridge driver IC would typically be used to provide bidirectional motor control.

The motor speed will be controlled by two active low inputs which will increment or

decrement the PWM output. An active low enable signal is also required to switch the drive

on and off, while preserving the existing setting of the MSR. The system should start on reset

or power up at 50% MSR, that is, with equal mark and space, and a reset input should be

provided to return the output to the default 50% MSR at any time. The increment and decrement

operations must stop at the maximum and minimum values; in particular 0% must not roll

over to 100%, causing a zero to maximum motor speed transition in a single step. The inputs

and outputs must be TTL compatible for interfacing purposes, allowing PWM control from

another master controller for multiple motor control. A programmed device will be used so

that it is possible to modify the control algorithm to suit different motors and to enable future

enhancement of the controller options and performance. A logic table (Table 10.1) specifies

the operation required.

In addition, a performance specification should be provided to quantify the performance

criteria as far as possible:

PERFORMANCE SPECIFICATION

Project: MOT1

Variable Speed Controller for Small DC Motor

1. Maximum load: 500mA @ 5V (2.5W @ 100% MSR)

2. Manual or remotely controlled variable MSR:

2.1 Start: at 50% MSR

2.2 Reset: to 50% MSR

2.3 Range: Min < 1%, Max > 99%

2.4 Step Resolution: < 1%

2.5 Manual Control:

2.5.1 Push Button Increment, Decrement

2.5.2 Hold MSR when inputs inactive

Table 10.1 MOT1 application control logic

Inputs Operation Output

!MCLR !RUN !UP !DOWN Description dc motor

0 x x x Initialise – set speed to 50% Off

1 1 x x Disabled Off

1 0 1 1 Run with MSR=50% Default speed or
or run at current speed speed constant

1 0 0 1 Increment MSR (hold at max) Speed increasing

1 0 1 0 Decrement MSR (hold at min) Speed decreasing

162 Application Design

10.2 Block Diagram

In the block diagram, the system inputs and outputs must be identified, and if necessary,
a provisional arrangement of sub-systems worked out (see Fig. 10.2). The direction and
type of information flow between the blocks should be identified clearly, using directed line
segments (arrows). Small diagrams can be used to illustrate the waveform of a signal, if
appropriate. Parallel data paths should be shown as broad arrows, or with suitable signal
labelling.

PWM output

!UP

!DOWN

!RUN

!MCLR

Pulse
width

modulator

Current
drive

DC
motor

Figure 10.2 MOT1 system block diagram.

The block diagram can be drawn using the drawing tools in Word, other standard wordpro-
cessor or DTP package, since it needs only basic shapes, arrows and text boxes. Experiment
with your usual package.
In Word, the drawing toolbar may need to be enabled via the main menu ‘view, toolbars,

drawing’. The drawing can be embedded in a text file, but beware of interaction of drawing
objects with the text cursor, which can disrupt the drawing. It is usually a good idea to move
the text cursor below the drawing area. A drawing grid can be switched on to help line up the
main drawing objects; from the ‘draw’ menu, select ‘grid’ and check the ‘snap to grid’ option.
To make fine adjustments to drawing objects, the grid can later be switched off.
The main elements can be drawn using text boxes, and the same object used for labelling

with ‘no line’ and ‘no fill’ options selected. Various line and arrow styles are available, and
the ‘freeform’ line style in the ‘autoshapes’ menu is useful for multi-segment lines. This menu
also provides various standard shapes for block diagrams and flowcharts.
When the drawing is finished, select all the drawing elements by looping with the ‘select

objects’ tool and select ‘draw, group’. This will create a single drawing object which will no
longer be affected by the text cursor, and allows the whole drawing to be re-positioned on the
page if necessary.

10.3 Hardware Design

Unless the program is being written for an existing hardware system, the general hardware
configuration must be worked out as part of the design exercise. The nature and complexity of the
software is an important consideration in the selection of a microprocessor or microcontroller,
as is the number and type of inputs and outputs, data storage and interfacing.
The design requirements of MOT1 could be satisfied using relatively complex controller

system, based on a conventional CISC processor, such as the 68000, and additional features

Hardware Design 163

could then easily be included. More inputs and outputs could allow control of several motors

simultaneously, a standard serial interface to a host computer system would be available, and

the larger memory could accommodate a more complex program, or a program written in

a high level language such as ‘C’. In the simple PWM example proposed here, however, the

requirement is of minimal complexity with no special interfacing specified.

Alternatively, a purely hardware solution could be produced based around, for example, the

555 timer. However, this would not provide the push button digital control required as the 555

timing is controlled by an analogue input. Therefore a small microcontroller solution appears

the most suitable.

A circuit derived from the block diagram is shown in Fig. 10.3. The motor is controlled

by an FET, which acts as a current switch operated by the PIC TTL level output. The motor

forms an inductive load, so a diode is connected to protect the FET from any back emf from

the motor. The input control uses simple active low push buttons, with connections for remote

system control.

PIC

3 V DC
motor

+5 V

0 V

RA4
RA2
RA3

!MCLR

RA0

100 k

100 kCLKIN

10 k

1 nF

RunDown UpReset

1 k0

Remote
control
inputs

Figure 10.3 MOT1 circuit diagram.

The microcontroller only needs four I/O pins, so a 6 I/O 12XXX series device could be

considered. However, an external reset is required, so our reference device 16F84 will be used.

The controller I/O allocation can then be specified as shown in Table 10.2.

Table 10.2 MOT1 I/O allocation using PIC 16F84

Signal Type Pin Description Comment

Clock System CLKIN RC clock ∼100 kHz
Reset System !MCLR Active low Restart at default speed
PWM Output RA0 Pulse FET drive
Run Input RA4 Active low Enable motor
Up Input RA2 Active low Increase speed
Down Input RA3 Active low Decrease speed

164 Application Design

The PIC provides motor speed control with a PWM output at RA0. The !RUN (‘Not Run’,
active low) input has been allocated to RA4. This will be programmed to enable the PWM
output to run the motor when low. When RA2 (!UP) is low, the MSR at RB0 should increase,
and the motor speed up. When RA3 (!DOWN) is low, the MSR should be reduced, slowing
the motor down. !MCLR (Master Clear) is the reset input to the PIC, which will restart the
program when pulsed low, and hence reset the speed to the default value of 50% MSR.
We can now start work on the software using a flowchart to outline the program. A few

simple symbols and rules will be used to help devise a working assembly code program. These
are explained below.

10.4 Software Design

Computer and controller programs in general incorporate three main types of operation:

1. Sequence (no jumps): A sequence of instructions is executed without branching. The
program counter is not modified.

2. Selection (conditional jump): A condition is tested for result true or false and a jump is
made or not, depending on the result. In high level languages, these operations may be
combined to provide a multiple choice branch depending on the value of the variable.

3. Iteration (repeating loop): A conditional branch is used to jump back and repeat a sequence
while a condition is true, or until a condition is met, or endlessly (this is the last option at
the end of the program).

A program consists of a sequence of instructions in a low level language (LLL) such as PIC
assembler, or statements in a high level languages (HLL) such as Basic, Pascal or ‘C’. These
instructions are executed in the order that they appear in the source code, unless there is an
instruction or statement which causes a jump, or branch. Usually jumps are ‘conditional’, which
means that some input or variable condition is tested and the jump made, or not, depending on
the result. In PIC assembler, ‘Bit Test and Skip if Set/Clear’ and ‘Decrement/Increment File
Register and Skip if Zero’ provide conditional branching when used with a ‘GOTO label’ or a
‘CALL label’ immediately following.
A loop can be created by jumping back at least once to a previous instruction. In our standard

delay loop, for instance, the program keeps jumping back until a register which is decremented
within the loop reaches zero. In high level languages, conditional operations are created using
the IF (a condition is true) THEN (do a sequence), and loops created using the statements such
as DO (a sequence) WHILE (a condition is true/not true).

10.4.1 MOT1 Outline Flowchart

Flowcharts illustrate the program sequence, selections and iterations in a pictorial way, using
simple set of symbols. Some basic recommendations for laying out flowcharts will be made
here which will help to ensure consistency in their use and will allow flowcharts to be used
to create well-structured programs. An outline flowchart for the motor speed control program
MOT1 is shown in Fig. 10.4.
The outline flowchart shows a sequence where the inputs (run, speed up and speed down) are

checked and the delay count modified if either of the speed control inputs are active. The output
is then set high and low for that cycle, using the calculated delays to give the mark/space ratio.

Software Design 165

MOT1

Initialise Port A
and delay count

Test inputs and
modify count

Output high
and delay for count

Output low
delay for !count

Figure 10.4 MOT1 outline flowchart.

The loop repeats endlessly, unless the reset is operated. The reset operation is not represented

in the flowchart, because it is an interrupt, and therefore may occur at any time within the loop.

The program name, MOT1, is placed in the start terminal symbol. Most programs need some

form of initialisation process, such as setting up the ports at the beginning of the main program

loop. This will normally only need to be executed once. Any assembler directives, such as label

equates, should not be represented, as they are not part of the executable program itself.

In common with most so-called ‘real-time’ applications, the program loops continuously until

reset or switched off. Therefore, there is an unconditional jump at the end of the program back

to start, but missing out the initialisation sequence. Since no decision is made here, the jump

back is simply represented by the arrow, and no process symbol is needed. It is suggested here

that the loop back should be drawn on the left side of the chart, and any loop forward on the

right, unless it spoils the symmetry of the chart or causes line segment crossovers (see below).

Note that when branching, the flow junctions must be between process boxes, to preserve a

single input, single output rule for each process. Each process then always starts and ends at

the same point.

10.4.2 MOT1 Detail Flowchart

The outline flowchart given in Fig. 10.4 may show enough information for an experienced

programmer. If more detail is needed, boxes in the main program can be elaborated until there

is enough detail for the less experienced programmer to translate the sequence into assembly

code. A detail flowchart is shown in Fig. 10.5.

After the initialisation sequence, a set of conditional jumps is required to enable the motor,

check the ‘up’ and ‘down’ inputs, and test for the maximum and minimum values of the value

of ‘Count’ (FF and 01). Two different forms of the decision box have been used in this example,

both of which may be seen in other references. The diamond-shaped decision symbol is used

166 Application Design

MOT1

Define motor output
up, down, run inputs

count = 80h

Run = 0?
No

Up = 0?

Inc and test
count = 0?

Decrement
count

No

No

Down = 0?

Dec and test
count = 0?

Increment
count

No

No

Set motor on

Delay for count

Set motor off

Delay for (256 – count)

Figure 10.5 MOT1 detail flowchart.

Software Design 167

here to represent a ‘Bit Test and Skip If Zero/Not Zero’ operation, while the elongated symbol

represents an ‘Increment/Decrement and Test for Zero’ operation, which essentially combines

two instructions in one. In either case, the decision box should contain a question with its

outputs representing a ‘Yes’ or ‘No’ result of the test.

10.4.3 Program Structure

In the previous example program BIN4, a delay subroutine is used. Recall that this is a process

defined as a separate block of code which can be used more than once. It is indicated in the main

program flowchart (Fig. 7.3(a)) with the subroutine box with double sides. The delay routine

sequence is then detailed in Fig. 7.3(b). It starts with a terminal symbol which contains the

subroutine start label used in the program source code, and ends with ‘Return’. All subroutines

which are invoked with the CALL instruction must be terminated with a RETURN instruction.

The CALL automatically pushes the return address onto the stack, and the RETURN pulls it

back into the program counter. Failure to observe this rule will result in a stack error.

‘Decrement and Skip if Zero’ is used to create the standard software delay loop. The two

delays required in BIN4 could be written separately, but the function is the same, with only

the delay count differing; using the same delay block twice is more code efficient. Sometimes

separate blocks might be used if the timing is critical. Alternatively, a macro could be defined

for the delay which the assembler would insert twice (see Chapter 9) which would effectively

create a ‘delay’ special instruction.

A subroutine will often use a value set up in the calling routine. In BIN4, the value for

the delay time is placed in W for use by the delay routine; this is an example of ‘parameter

passing’. Other blocks in the main program can also be created as subroutines, but they are

most useful when the routine is to be used more than once. The subroutine can then be copied

for use in another program, or saved as a separate file for inclusion in new programs.

The application MOT1 does not require the use of subroutines.

10.4.4 Flowchart Symbols

A minimal set of flowchart symbols is shown in Fig. 10.6, most of which have already been

used. For commercial applications, the relevant standards should be applied, and would override

any recommendations made here.

Terminals

These symbols are used to start or end the main program or a subroutine (see Fig. 10.6(a)).

The program name or routine start label used in the source code should also be used in the

start box. If the program loops endlessly the END symbol is not needed, but RETURN must

always be used to terminate a subroutine. In PIC programming, use the project name (MOT1)

in the start symbol of the main program, and the subroutine start address label in subroutine

start symbols.

Processes

The process box is a general purpose symbol which represents a sequence of instructions,

possibly including loops inside it (see Fig. 10.6(b)). The top level flowchart of a complex

program can be simple, with a lot of detail concealed in each box. A subroutine is a process

168 Application Design

(a)

TITLE

END RETURN

Start program End program Return from subroutine

(b)

Description Description

 Process Subroutine

(c) (d)

Description Condition
true?

Yes / No

Default

Figure 10.6 Flowchart symbols. (a) Terminals; (b) Processer; (c) Input/Output; (d) Decision.

which will be implemented in the source code as a separate block, and which may be used

more than once within a program. It should be expanded into a separate subroutine flowchart,

using the same name in the start symbol as that shown in the calling process. Subroutines can

be created at several levels in a complex program.

Input/Output

This represents processes whose main function is input or output using a port data register in

the microcontroller or microprocessor system (see Fig. 10.6(c)). Use a statement in the box

which describes the general effect of the I/O operation, for example, ‘Switch Motor On’ rather

than ‘Set RA0’. This will make the flowchart easier to understand.

Decisions

The decision symbol contains a description of the selection as a question. There will be two

alternate exit paths, for the answer ‘yes’ and ‘no’ (see Fig. 10.6(d). Only the arrow looping back

or forward needs to be labelled ‘yes’ or ‘no’; the default option, which continues the program

flow down the centre of the chart, need not be labelled. In PIC assembly language, this symbol

would refer to the ‘Test and Skip’ instructions. In the MOT1 detailed flowchart, an enlarged

Software Design 169

decision box is used to represent the ‘Decrement/Increment and Skip if Zero’ operation. This

symbol allows more text inside, so is a useful alternative to the standard diamond shape.

10.4.5 Flowchart Structure

In order to obtain good program structure, there should be a single entry and exit point to

and from all process blocks, as illustrated in the complete flowcharts. Loops should therefore

rejoin the main flow between symbols, and not connect into the side of a process symbol, as

is sometimes seen. Terminal symbols have a single entry or exit point. Decisions in assembler

programs only have two outcomes, branch or not, giving two exits. Loops back should be drawn

on the left of the main flow, and loops forward on the right of the main flow, if possible. For the

main flow down the page, the arrowheads may be omitted as forward flow is clearly implied.

Connections between pages are sometimes used in flowcharts, shown by a circular labelled

symbol. It is recommended here that such connections be avoided; it should be possible to

represent a well-structured program with a set of separate flowcharts, each of which should

fit on one page. An outline flowchart should be devised for the main sequence, and then each

process detailed with a separate flowchart, so that each process can be ideally implemented as

a subroutine or macro. In this case, the main program sequence should be as small as possible,

consisting of subroutine calls and the main branching operations.

Therefore, the program should initially be represented as an outline flowchart on a single page,

and each process expanded using subroutines or functions on separate pages. Keep expanding

the detail until each block can be readily converted to source code statements. A well-structured

program like this will be easier to debug and modify. Subroutines can be ‘nested’ to any

required depth, depending on the stack size of the system. Smaller PICs tend to have an 8-level

deep hardware stack, which means that only eight levels of subroutine are allowed.

10.4.6 Structure Chart

The structure chart is another method for representing complex programs (see Fig. 10.7). Each

program block is placed in a hierarchical diagram to show how it relates to the rest of the

Program
name

Initialise
Process
inputs

Process
outputs

Sub1 Sub2 Sub3

Sub4 Sub5

Figure 10.7 Structure chart.

170 Application Design

program. This technique is more commonly used in data processing in business applications

running on larger computer systems.

The program shown in the structure diagram has four levels. The main program calls

subroutines to initialise, process inputs and process outputs. The input processing routine in

turn calls Sub1 and Sub2 subroutines. Output processing only requires Sub3, but Sub2 calls

Sub4 and Sub5 at the lowest level. At this level, three stack locations will be used up.

10.4.7 Pseudocode

Pseudocode is a text form of the program design. The main operations are written as descriptive

statements which are arranged as functional blocks. The structure and sequence are represented

by suitable indentation of the blocks, as is the convention for HLLs. A pseudocode version of

MOT1 is shown in Fig. 10.8.

The pseudocode version of the program uses high level style syntax, such as IF…THEN

to describe the selections in the program. It has the advantage that no drawing is required,

and the pseudocode can be entered directly into the text editor used for writing the source

code. It can start as a brief outline, and be developed in stages until ready to be translated

into assembler syntax. The pseudocode can be left in the source code as the basis of program

comments, or replaced, whichever suits the programmer. Although used here to represent an

assembler program, pseudocode is probably the more suitable for developing ‘C’ programs for

applications for the more powerful PIC microcontrollers.

MOT1
Program to generate PWM output to Motor

Initialise
Outputs

Motor
Inputs

Speed up
Speed down
Run enable

Registers
Count = 128

Start loop

IF Run enable = off THEN wait
IF Speed up = on THEN inc Count
IF Count = 0 THEN dec Count
IF Speed down = on THEN dec Count
IF Count = 0 THEN inc Count

Switch on Motor
Delay for Count

Switch off Motor
Delay for 256 – Count

End loop

Figure 10.8 MOT1 pseudocode.

Program Implementation 171

10.5 Program Implementation

When the program logic has been worked out using flowcharts, or otherwise, the source

code can be entered using a text editor. Normally the program editor is part of an integrated

development package such as MPLAB. Most programming languages are now supplied as part

of an integrated edit and debug package.

10.5.1 Flowchart Conversion

The program design method should be applied so as to make the program as easy as possible

to translate into source code. The PIC has a ‘reduced’ instruction set, meaning that the number

of available instructions has deliberately kept to a minimum to increase the speed of execution

and reduce the complexity of the chip. While this also means that there are fewer instructions

to learn, the assembler syntax (the way the instructions are put together) can be a little

more tricky to work out. For example, the program branch is achieved using the ‘Bit Test

and Skip’ instruction. In CISC assembly code languages, branching and subroutine calls are

implemented using single instructions. The PIC assembler requires two instructions. However,

recall that ‘special instructions’ (essentially pre-defined macros) are available which combine

‘test’, ‘skip’ and ‘goto’ instructions to provide equivalents to conventional conditional branching

instructions.

The representation of the program with different levels of detail is illustrated in Fig. 10.9.

Figure 10.9(a) shows the process in detail so that each process box converts into only one

or two lines of code. This may be necessary when learning the programming syntax. Later,

when the programmer is more familiar with the language and the standard processes which

tend to recur, such as simple loops, then a more condensed flowchart may be used, such as

Fig. 10.9(b), where the loop is concealed within the ‘delay’ process. As we have seen above,

this process can also be written as a separate, re-usable, software component, a subroutine. The

corresponding source code fragment is shown in Table 10.3.

Delay

Set output high

Set output low

Load counter

Decrement and
test counter = 0?

Set output high

Set output low

No

(a) (b)

Figure 10.9 PIC program branch flowcharts. (a) Detail flowchart; (b) Outline flowchart.

172 Application Design

Table 10.3 PIC program branch code fragment

; Branch Program Fragment
.
.
BSF PortA,0 ; Set Output

MOVLW 0FF ; Set Count Value
MOVWF count1 ; Load Count

back1 DECFSZ count1 ; Dec. Count & Skip if 0
GOTO back1 ; Jump Back

BCF PortA,0 ; Reset Output
.
.

Another limitation in PIC 16XXXX assembler is found when moving data between registers.

It is not possible to copy data directly between file registers, it has to be moved into the

working register, W, first, and then into the file register. This requires two instructions instead

of the single instruction available in CISC processors. This problem is overcome to some

extent by the availability of the destination register option with the byte processing operations.

Nevertheless, the advantage of simplicity when learning PIC programming outweighs these

limitations, especially when learning assembler programming for the first time!

We can see from the above examples that the software design techniques should be applied

in a way which suits the application, the language and the level of expertise of the programmer.

10.5.2 MOT1 Source Code

The program source code for the MOT1 program is given in Program 10.1. The program

produces the PWM output by toggling RA0 with a delay. A register labelled ‘timer’ holds

the current value for the ‘on’ delay. The program does not use a subroutine for the delay,

because the ‘timer’ value has to be modified for the ‘off’ delay. Note the use of the COMF

instruction, which complements the contents of the timer register, which effectively subtracts

the value from 256. The total PWM cycle time stays constant as a result. When incremented,

the ‘timer’ value has to be checked to prevent it rolling over from FF to 00 , by decrementing

it again if the new value is zero. The roll-under at the low end of the scale is prevented in a

similar way.

The program source code has instruction mnemonics in upper case to match the instruction

set in the data sheet. However, they are not case sensitive, so you will often see them in lower

case. On the other hand, labels are case sensitive by default, so they must match exactly when

declared and used. The label case sensitivity can be switched off as an assembler option if you

wish. Upper case characters for the special function register names (PORTA) have been used

to match the register names used in the data sheet, and lower case characters with the first

letter capitalised used for general purpose registers (Timer, Count). The bit labels are lower

case (motor, up, down, run), as are the address labels.

Using source code editing conventions like this is not obligatory, but consistent layout and

presentation improves program readability and makes it easier to understand. Unfortunately,

there is no generally accepted convention for assembler source code presentation.

Program Implementation 173

Program 10.1 MOT1 source code

; ***
; MOT1.ASM M. Bates 14/6/99
; ***
;
; DC Motor Control using Pulse Width Modulation Motor (RA0) starts
; with 50% MSR when enabled with RA4. Speed controlled with
; RA2, RA3.
;
; Hardware: Simple Motor Circuit
; Clock: CR ∼100kHz
; Inputs: Push Buttons (active low):
; RA2 = Speed Up
; RA3 = Slow Down
; RA4 = Run
; Outputs: RA0 (active high) = Motor
;
; Chip Fuse Settings:
; WDTimer: Disable
; PUTimer: Enable
; Interrupts: Disable
; Code Protect: Disable
;
; ***

PROCESSOR 16F84

; Register Label Equates..

PORTA EQU 05 ; Port A
Timer EQU 0C ; Delay Counter
Count EQU 0D ; Delay Count Pre-load

; Input Bit Label Equates ...

motor EQU 0 ; Motor Output = RA0
up EQU 2 ; Speed Up Input = RA2
down EQU 3 ; Slow Down Input = RA3
run EQU 4 ; Motor Enable Input = RA4

; ***

; Initialise ...

MOVLW b’11111110’ ; Port A bit direction code
TRIS PORTA ; Set the bit direction
MOVLW 080 ; Initial value
MOVWF Count ; ...for delay

; Next Page ..

; Input Test ...

start BTFSC PORTA,run ; Test Run input
GOTO start ; & wait if HIGH

continued...

174 Application Design

BTFSS PORTA,up ; Test Up input, if hi
INCFSZ Count ; ...inc Count, test
GOTO test ; and check down button
DECF Count ; or dec Count again if 00

test BTFSS PORTA,down ; Test Down input, if hi
DECFSZ Count ; ...dec Count, test
GOTO cycle ; and do an output cycle
INCF Count ; or inc Count again if 00

; Output High and Delay..

cycle BSF PORTA,motor ; Switch on motor

MOVF Count,W ; Get delay count
MOVWF Timer ; Load timer register

again1 DECFSZ Timer ; Decrement timer register
GOTO again1 ; & repeat until zero then

; Output Low and Delay...

BCF PORTA,motor ; Switch off motor

MOVF Count,W ; Get delay count again
MOVWF Timer ; Reload timer register
COMF Timer ; Complement timer value
INCF Timer ; Inc to avoid 00 value

again2 DECFSZ Timer ; Decrement timer register
GOTO again2 ; & repeat until zero then

; Repeat Endlessly..

GOTO start ; Restart main loop
END ; Terminate source code

10.6 Source Code Documentation

Most programming languages allow comments to be included in the source code as a debugging

aid for the programmer, and information for other software engineers who may need to fix the

code at a later date. Comments in PIC source code are preceded by a semicolon; the assembler

ignores any source code text following, until a line return is detected.

A header should always be created for the main program and the associated routines. It should

contain relevant information for program downloading, debugging and maintenance. Examples

have already been given. The layout should be standardised, especially in commercial products.

The asterisk symbol (*) is often used to separate and decorate comments; rows of dots are also

useful, but there is some scope here for individual touches!

The author‘s name, organisation, date, and a program description is essential. Hardware

information on the processor or system type is important; for example, when a PIC program is

assembled, the processor type must be specified, because there is some variation in the syntax

required for each PIC chip type. The processor type may be specified in the header block as an

assembler directive, or by selecting the processor in the MPLAB development system options.

Source Code Documentation 175

Target hardware details such as input and output pin allocation is useful, and the design clock

speed needs to be specified in programs where code execution timing is significant. Programmer

settings which enable or disable hardware features such as the watchdog timer, power-up timer

and code protection should also be listed.

The general layout of the source code should be designed to make the structure clear, with

subroutines headed with their own brief functional description. Blank lines should separate

the functional program blocks; that is, instructions which together carry out an identifiable

operation. In this way, the source code can be presented in a way that makes it as easy to

interpret as possible.

Summary

• The application requirements and target performance specification should be clearly stated

as the first step in software design.

• A block diagram should be used to outline the hardware, components selected and a circuit

designed.

• Programs consist of statements which allow sequence, selection and iteration.

• The software algorithm should be represented with a suitable software design aid, and

elaborated until sufficiently detailed to translate into source code.

• Flowcharts should be structured, using separate charts to expand the processes in the higher

level chart.

• Program flowcharts can be constructed from symbols representing terminals, processes,

input/output, decisions and subroutines.

• Other methods for software design are pseudocode and structure charts.

• Source code should be fully commented for future reference, maintenance and modification.

Questions

1. Explain how PWM offers an effective way of controlling DC loads from a single digital

output.

2. Explain briefly the role of the block diagram and flowchart in creating the final hardware

and software design for an application.

3. State the three basic operations that make up a microcontroller program, how they are

represented in a flowchart and give an example of how each is implemented in PIC

assembler code.

4. Explain briefly the role of the subroutine in structured programming, and why it is generally

desirable to use them.

176 Application Design

Activities

1. Compare the source code for MOT1 with the flowchart in Fig. 10.5, and the pseudocode

in Fig. 10.8, and check that they correspond.

2. (a) Devise a block diagram for a motor control system which has a bidirectional drive

and inputs which select the motor on/off and direction of rotation. Separate active high

outputs will be used to enable the motor in each direction. Investigate and select a suitable

component to provide the interface to a small DC motor.

(b) Construct a flowchart for a PIC program which will allow the user to turn the motor

on and off from a single active low input, but only allow the direction to be changed when

the motor is off. Produce a logic table, outline and detail flowcharts, and write the code

observing the recommendations for source code documentation.

3. (a) Devise a set of structured flowcharts for making a cup of tea (manually!).

(b) Draw a block diagram of a coffee machine, and devise a set of flowcharts for a control

program. You may assume a PIC microcontroller will be used with suitable interfacing,

sensors and actuators.

Chapter 11
Program Debugging

11.1 Syntax Errors

11.2 Logical Errors

11.3 MPLAB Tools

11.4 Test Schedule

11.5 Hardware Testing

The design of a simple PIC motor control application MOT1 has been described in Chapter 10,
and an assembler code program has been developed. In practice, it is unlikely that such a
program will be written without any errors, especially when learning the language, so we now
need to look further at the techniques and tools available for debugging (removing the errors
from) PIC programs. We are going to continue with MOT1 as our example application, and
will see how to resolve two main types of error.
Syntax errors. The syntax of a language refers to the way that the words are put together;

any language, programming or spoken, must follow certain rules so that the meaning is clear.
The rules in programming languages are very strict, because the source code must be converted
into machine code without any ambiguity. Syntax errors are mistakes in the source code, such
as mis-spelling an instruction mnemonic, or failure to declare a label before using it in the
program. These errors are detected by the MPLAB assembler (MPASM), resulting in error
massages being generated and displayed in a separate window. The source code is colour-coded
in recent versions of MPLAB to indicate possible syntax errors instantly.
Logical errors. When a program is assembled without any syntax errors, it does not mean

that it will function correctly when run in the hardware. Logical errors may well be present
which prevent correct operation as originally specified. The software simulator (MPSIM) is
used to detect and correct these errors prior to downloading to the chip. This allows the program
to be run in a virtual processor, and logical errors detected by inspecting the program output,
and comparing it with that which would be expected if the performance specification were
correctly met. This normally requires inputs to be simulated as well.
If either type of error is detected, the program must be re-edited to remove the errors.

11.1 Syntax Errors

When the program source code for a PIC program has been created in the editor, it must
be converted into machine code for downloading to the chip. This is carried out by the
assembler program, which analyses the source code text line by line, and converts the instruction

178 Program Debugging

mnemonics into the corresponding binary codes for loading into the chip program memory, as

PROGNAME.HEX. Only valid statements as defined in the PIC instruction set (see Appendix A)

will be recognised and successfully converted. Assembler directives are also included, but these

are not converted to machine code.

Before starting a project, create a folder to keep the project files in, named, for example,

‘Motor’. In MPLAB 6, the source code is created in an edit window opened by hitting the

‘new file’ button. Type in the file name and save it immediately in the application folder as

MOT1.ASM or any file name with an ASM extension. At the same time, create a backup

version of the file on a different drive (floppy, network or removable drive).

When the program has been entered and saved, the project menu item ‘Quickbuild’ (or

equivalent other MPLAB versions) will assemble a single file. If required, a project can be

created, so that the MPLAB setup can be saved between sessions. In the Project menu, select

‘New . . .’ and call the project MOT1, or the same name as the source code. Now select

‘Add Files to Project . . .’ and select the source code created above. The program can now be

assembled by selecting ‘Build All’, and the project saved.

In the source code file, numerical formatting, assembler directives and so on must all be used

correctly. If they are not, error messages will be generated when the program is assembled.

These describe the syntax errors which have been found. The error messages are saved in a

text file PROGNAME.ERR, and displayed when the assembler is finished.

For demonstration purposes, deliberate errors were introduced into the example program

MOT1.ASM (Program 10.1), and the error file MOT1.ERR generated by the assembler is listed

in Table 11.1. There are three levels of error shown: ‘Message’, ‘Warning’ and ‘Error’. The

source code line number where the problem was found is indicated, and the type of problem

that the assembler thinks is present. However, a word of warning – due to the presence of

the error itself, the assembler may be misled as to the actual error. Consequently, the message

generated is not always accurate. For example, the incorrect instruction mnemonic at line 58

caused the assembler to misinterpret ‘Count’ as an illegal op-code.

The PROCESSOR directive was misplaced, causing a non-fatal warning, which would not

itself prevent successful assembly of the program. The TRIS instruction also caused a warning

in the MPLAB assembler, because its use is not recommended, but will still be successfully

assembled. It is used in our examples because the alternative method of port initialisation, using

page selection, is more complicated to use.

Table 11.1 Selected error messages from assembly of MOT1

Deleting intermediary files... done.
Executing: "C:\Program Files\MPLAB IDE\MCHIP_ Tools\mpasmwin.exe"/q
/p16F84"MOT1.asm"
/l"MOT1.1st" /e"MOT1.err"
Warning[205] C:\MOT1.ASM 24 : Found directive in column 1.(PROCESSOR)
Warning[224] C:\MOT1.ASM 44 : Use of this instruction is not recommended.
Message[305] C:\MOT1.ASM 56 : Using default destination of 1 (file).
Warning[207] C:\MOT1.ASM 58 : Found label after column 1.(DEC)
Error[122] C:\MOT1.ASM 58 : Illegal opcode (Count)
Error[113] C:\MOT1.ASM 71 : Symbol not previously defined (Timer)
Error[113] C:\MOT1.ASM 73 : Symbol not previously defined (again1)
Error[129] C:\MOT1.ASM 92 : Expected (END)
Halting build on first failure as requested.
BUILD FAILED

Logical Errors 179

The instruction mnemonic DECF was mis-spelt as DEC, causing the errors at line 58. This
contributed to the register label count being misinterpreted. The register label ‘Timer’ was
missed out of the EQU statements at the top of the program causing the error at line 71. The
jump destination ‘again1’ has been incorrectly labelled ‘again’, causing the error at line 73.
Finally, the END directive had been omitted at the end of the program, causing the message
‘Expected (END)’.
The message ‘Using default destination of 1 (file)’ refers to the fact that the full syntax for

MOVWF instruction has not been used. Using the full syntax, the destination for the result of
the operation is specified as the file register or the working register, by placing a W (0) or
F (1) after the destination register number or label. In the examples throughout this text, we
take advantage of the assumption by the assembler that the destination is the file register if
not specified in the instruction; this simplifies the source code. More advanced programmers
will use this feature of the instruction set to save instructions when the data destination is
the working register. When the error messages have been studied carefully, and printed out if
necessary, the source code must be re-edited and re-assembled until it is correct.

11.2 Logical Errors

When all syntax errors have been eliminated, the program will assemble successfully, and the
hex file created. However, this does not necessarily mean that it will function correctly when
downloaded to the chip; in fact, it probably won’t! Usually there will be logical errors, particu-
larly when learning the programming method. Mistakes in the program functional sequence or
syntax will prevent it operating as required. For instance, the wrong register may be operated
on or a loop may execute correctly, but the wrong number of times. There may also be ‘run-
time’ errors, that is, mistakes in the program logic which only show up when the program is
actually executed. A typical run-time error is ‘Stack Overflow’, which is caused by CALLing
a subroutine, but failing to use RETURN at the end of the process.

11.2.1 Simulation

Conventional microprocessor system hardware varies between each application because they
are built from discrete chips. The configuration of the CPU, memory and I/O chips is designed
to suit the application; therefore only the CPU itself can normally be simulated, not the whole
system. Some logical errors can only be detected by running the program on the actual hardware,
and testing for the correct outputs in response to the specified inputs. In some systems, it is
possible to download the program to RAM for testing, so that it can be more easily corrected.
In others the program can only be installed by programming an EPROM memory chip and
actually fitting it in the hardware. This could mean erasing and reprogramming the EPROM
repeatedly, in order to get the program right. This can obviously be quite time-consuming, and
to be avoided if possible.
If the program is being tested in the hardware, it may also be difficult to work out exactly

what the problem is. The program execution may stop, without any indication of the reason.
If the system operating program has some debugging built in, and some means to display the
errors, the program can be tested in the target hardware, but this adds complexity to the target
system which may not be needed once the application program is up and running correctly.
Alternatively, an in-circuit emulator (ICE) can be used for hardware testing (see Section 11.5.2),
but these are relatively expensive.

180 Program Debugging

The advantage of the microcontroller is that the design of the chip is fixed, so a full simulation

model can be provided for each. This allows the program to be tested for logical errors before

downloading. The simulation package (MPSIM) allows windows to be opened to show the

source code, machine code, registers, simulated input, timing checks and so on. The program

can then be run, stopped and stepped through one instruction at a time. Source level debugging

shows the current execution point on the source code itself. Breakpoints allow the code to be

stopped at any point, so that the registers and outputs can be inspected.

The software simulator is therefore a very useful tool for program testing. One of the

advantages of the PIC range is that the development system, including the assembler and

simulator, has always been provided free by Microchip to encourage the market for its chips.

11.2.2 Program Testing

The simulator must model the operation of the selected microcontroller as accurately as possible.

The user must be able to provide the inputs which would occur in the actual system, and be

able to monitor the effect on relevant registers. The program will need to be started, stopped at

critical points and single stepped to check the sequence of operations, and timing measured. All

possible input events and sequences must be anticipated and tested, to ensure that no unforeseen

problems arise when the application is in use.

Inputs

The simplest method of simulating inputs is the asynchronous stimulus. Single bit inputs are

changed via on-screen buttons at the required time while the program is executed in single-step

mode. The other method is to use a stimulus file, which automates this process, allowing the

same test sequence to be input every time the program is run in the simulator. This will save

time while debugging more complex applications.

Outputs

For monitoring the outputs, various options are available. All the file registers may be displayed

simply as hex numbers in a table. The SFRs can be displayed separately, in a choice of formats;

hex, binary and decimal. Selected registers can be viewed in a ‘watch’ window, using the

register labels from the source code.

Timing

Program timing can be checked using the stopwatch. First, the clock rate must be entered so

that the actual timing can be predicted. The time taken for sequences to execute can then be

checked. For example, the period of the waveform output by MOT1.

11.2.3 Testing in MPLAB 6

To test the program, the source code must be assembled or the project built. Ensure that the

correct processor is selected, via the ‘Configure’, ‘Select Device’ dialogue. Select the 16F84

for the MOT1 project. At the same time, it is advisable to set the chip fuses via ‘Configure’,

Logical Errors 181

‘Configuration Bits’, selecting oscillator = RC, watchdog timer off, power-up timer on and

code protect on.

Now select ‘Debugger’, ‘Select Tool’ then ‘MPLAB SIM’. The debugging tools should then

appear in the toolbar:

RUN Executes the program.

HALT Stops the program with the current execution point indicated.

STEP INTO Executes program one instruction at a time.

STEP OVER Single step current routine, but execute subroutines at full speed.

RESET Start again at the top of the program.

The program can now be run and stopped to make sure the simulator is working. When

halted, the current execution point is indicated. We now need to set up the simulator so that the

relevant information is displayed so that correct program function can be confirmed, or logical

errors corrected. A typical display for MOT1 is shown in Fig. 11.1.

11.2.4 Setting up MPLAB 6

Simply running the program in the simulator does not generally provide enough information to

confirm correct operation. Single stepping allows the program to be executed one instruction

at time; the registers can then be checked for the correct results.

Figure 11.1 MPLAB 6 debug screen for MOT1.

182 Program Debugging

View Outputs

The file registers can be displayed in simple hex by selecting ’View’, ‘File Registers’ but this
is of limited use. Instead, select ‘View’, ‘Special Function Registers’; Port A is displayed in
binary. Also select ‘View’, ‘Watch’ and display the labelled Count and Timer registers using
the ‘Add Symbol’ dialogue.

Assign Inputs

We now need to set up the simulator inputs. Select ‘Debugger’, ’Stimulus’ and the ‘Pin
Stimulus’ tab in the Simulator Stimulus dialogue. ‘Add Row’ and click on the ‘Pin’ cell; select
‘RA4’. Click on the ‘Action’ cell and select ‘Toggle’ mode. Type ‘Run’ in the Comment
column. Repeat this for RA2 (Up) and RA3 (Down). Hide the blank columns. When the ‘Fire’
button is pressed, the input will change over, but only after the next step in the simulation.

Set up Stopwatch

Select ‘Debugger’, ‘Settings’ and the ‘Clock’ tab. Set the oscillator frequency to 100 kHz. Select
‘Debugger’, ‘Stopwatch’ to display the stopwatch. Arrange the windows for best visibility.

11.2.5 Testing MOT1

Set all the inputs high by clicking on each fire button and stepping once. Reset the program
and single step through the initialisation sequence. Check that the Port A input bits are set high
in the SFR window. Step through the initialisation sequence to ‘start’ and check that ‘Count’
is initialised correctly. With the ‘run’ input high, the program should wait at the ‘start’ label.
Now clear input RA4 by hitting the Fire button, and step to the start of the delay sequence.

Once in the delay sequence, single stepping is not helpful, so we will now use breakpoints
to test the main loop. Set a breakpoint at the BSF instruction by right-clicking on that line.
A red marker appears in the margin. Set a break point at the BCF instruction as well. Reset
the program and run to the first breakpoint. Zero the stopwatch and run to the next breakpoint
and note the time (15ms). Zero the stopwatch again and run to the first breakpoint. The time
should be similar (16ms), indicating approximately 50% MSR. At the same time, check that
RA0 is toggling each time, which indicates that the output PWM signal is present.
The up and down control can now be tested. Hit the ‘Up’ button (RA2) and check that the

Count value increments for each output cycle. Disable ‘Up’ (high) and enable ‘Down’ (low).
The Count value should decrement. Now remove the breakpoints (right click) and run the
program. The Count value should go down to 01 and stop there. Now enable the ‘Up’ input
and check that Count goes to its maximum value (FF) and stops there. The stopwatch can now
be used to check the minimum and maximum MSR values meet the specification.
The single step facility has two options, ‘step into’ and ‘step over’. ‘Step into’ means execute

all the instructions including those in subroutines. As we have seen above, the delay sequence
is not suitable for single stepping as it is repetitive. If the delay is in a subroutine, as in BIN4,
step over could be used; this will step through the current routine, but will run any subroutines
called at full speed. This allows each program block to be tested separately. However, as the
delays in MOT1 are not subroutines, breakpoints are used to allow them to be run through
then at full speed. Alternatively, the process can be shortened by changing the count register
value to a low value, either in the source code or simulator, or commenting out the call to the
subroutine.

MPLAB Tools 183

11.2.6 Stimulus File

Testing the program in the simulator can be automated by use of a stimulus file. This allows
the state of an input or file register to be changed at particular step in the program. The same
test sequence can then be applied each time the simulation is run, making the testing quicker
and easier in more complex applications. In MPLAB 6, select ‘Debugger’, ‘Stimulus’ and the
’File Stimulus’ tab and follow the help guide to create the necessary files.

11.2.7 Tracing

Tracing is another way of checking the program sequence. As each instruction is executed, the
changes in relevant registers are logged to a file. In MPLAB 6, run the program, and select
‘View’, ’Simulator Trace’ to see the trace record up to that point. Scroll down the bottom of
the list to see the most recent events. Note that the ‘probe’ columns are not used in the software
simulation, and should be deselected via the simulator settings.
MOT1 is now tested. Save the program if it has been corrected, and save the project.

11.3 MPLAB Tools

The most commonly used windows in the simulator are described below.

11.3.1 Edit Window

The Edit window is used for creating and editing the program. When one of the assembly
options is selected, the source code in the current edit window is converted to machine code
(PROGNAME.HEX). If syntax errors are then detected, the error file is displayed automatically,
and the number of the incorrect line in the source code is given. When the program is stopped,
the current instruction is indicated in the source code window. Breakpoints can be inserted by
right-clicking on the line required; they are then indicated in the left margin.

11.3.2 Special Function Register Window

The SFRs are displayed in a number of different formats. It is particularly useful to see the
contents in binary, as many of the SFRs are bit-oriented. The most commonly needed are:

WREG Working register (not an SFR).
01 TMR0 Timer zero hardware counter.
02 PCL Program counter.
03 STATUS Flag register, zero flag = bit 2.
05 PORTA I/O port.
06 PORTB I/O port.
85 TRISA Data direction register for PORTA.
86 TRISB Data direction register for PORTB.

11.3.3 Watch Window

A watch window allows selected registers to be displayed, and only those of interest in a
particular application. In MPLAB 6, the ’Add SFR’ button is used to display the SFRs, and ‘Add
Symbol’ to display the registers identified by user label. The numerical format, among other
characteristics, can be changed by right-clicking on the window and selecting ‘Properties . . .’.

184 Program Debugging

11.3.4 Simulator Stimulus

To test the MOT1 program, the inputs which enable the motor and change the speed must be

simulated. The simplest method is to use the ‘Pin Stimulus’ option in the simulator stimulus

window. Each input is assigned a row in the table, and normally set to ‘toggle’ mode. When

the table is complete, it can be saved as a separate file.

11.3.5 Stopwatch

The stopwatch window allows the simulated chip clock to be set to the frequency that will

be used in the actual hardware. For simulating MOT1, the value 100 kHz is entered. The

total number of instructions executed and the corresponding elapsed time are then correctly

displayed. These can be reset to zero at any time. When testing MOT1, the time taken for the

delays and the overall output period can be checked. This type of check can also be carried out

using a break point.

11.3.6 Program Memory

If the ‘Program Memory’ is selected from the ‘View’ menu, the program can be viewed in

different forms. The ‘Opcode Hex’ option shows the raw hex code. ‘Machine’ displays the

disassembled program. This means, the simulator has taken the machine code program and

converted it back into instruction mnemonics, to confirm that it is correct. The hex machine

code (Opcode) for each instruction is shown against each instruction alongside the program

memory location (Address) at which it is stored. Selecting the ‘Symbolic’ display restores the

original labels used. When the simulation is run, the execution point is also shown in this

window.

11.4 Test Schedule

Using the simulator, the program function can be tested against the specification. The specifi-

cation therefore should be converted into a test procedure which will test all its functions, and

all possible incorrect input sequences, especially where these are generated by an operator.

A test procedure for MOT1 is suggested in Table 11.2.

The test procedure looks very detailed when written down, but in practice it does no more

than test all the features of MOT1. The software product needs to meet the specification only

once, in a prototype hardware. Once the software is proved, the hardware in the production

units can be tested in conjunction with software which is known to be correct.

11.4.1 Typical Logical Errors

It is difficult to anticipate exactly what kinds of logical errors will arise, as they are usually the

result of inexperience, but the following types of errors are typical.

Port Initialisation

If a port does not appear to respond to output operations, check that the initialisation is correct.

Test Schedule 185

Table 11.2 Simulation test schedule for MOT1

Project: MOT1 Simulator: MPLAB 6.1

Setup: Source code: MOT1.ASM
Watch registers: PORTA, Timer, Count
Simulator Stimulus: RA2 = up, RA3 = down, RA4 = run (toggle mode)
Stopwatch: Clock frequency 100.00 Hz
Optional: Program memory

Test Action Required Performance �/X Fault/Comment

1 Initialise RA2, RA3,
RA4=1

Check watch window,
PORTA

All inputs inactive

2 Start Step over Count = 80
Waits in start loop

Waiting for run
enable

3 Enable run Input:
RA4=0
Step over

RA0=1
Runs into high delay
Timer decrements to 0
RA0=0
Runs into low delay Timer
decrements to 0
Repeats

One cycle of output
at default MSR
50% stopwatch:
Output period
≈33ms

4 Disable run Input:
RA4=1
Step over

Returns to start loop Waiting for run
enable

5 Select
increment

Input:
RA2=0
RA4=0
Step over

Count increments to 81,
82 after next cycle, etc.

Count increments
MSR increasing

6 Test for no
roll-over

Run at full
speed and
stop

Maximum count = FF
Count NOT to 00

Roll-over prevented

7 Select
decrement

Input:
RA3=0
RA4=0
Step over

Count decrements to FE,
FD after next cycle, etc.

Count decrements
MSR decreasing

8 Test for no
roll-under

Run at full
speed and
stop

Minimum count = 01
Count NOT to 00

Roll-under
prevented

9 Restart All
inputs = 1
run and stop

Returns to start loop Restart correct

10 Program reset Reset Execution reset to first
instruction

Reset correct

11 Recheck
default output

RA4=0 Count = 80 Output toggles
MSR ∼50%

Tested: MBates Date: 4/11/03

186 Program Debugging

Register Operations

If a register is not responding as it should, ensure that the correct register is being modified,
and the address label is correct.

Bit Test and Skip

Obtaining the correct sequence of operations in the program depends on these instructions.
Make sure the skip condition is correct, clear or set, as this is easy to get wrong.

Jump Destinations

Make sure that the destination specified is correct, and the loop sequence includes all the
necessary steps.

Program Structure

If the program gets lost during subroutine execution, check that call address labels are
correct, and all subroutines are terminated with ‘return’ instructions. Note that the stack
overflow/underflow warning which indicates that CALL and RETURN are not matched
correctly is disabled by default in MPLAB 6. Stack error detection can be enabled via the
‘Debugger’, ‘Settings’, ’Break Options’.

11.4.2 Limitations of Software Simulation

The simulator allows the program logic to be tested before running the program in the actual
hardware to ensure that it is functionally correct. However, the simulation cannot be 100%
realistic, and its limitations need to be taken into account in testing the real system. The
following is an example of the kind of error that might easily be missed, but seriously affects
the operation of the application, and would compromise safe operation of the real system if a
more powerful motor were used.
The simulation showed that after initialising Port A, with bit zero (RA0) set as output, this

data bit goes high by default (all port bits default to logic ‘1’). The motor will therefore come
on, even if the enable input has not yet been operated. This is obviously a major flaw, which
can be fixed by following the port initialisation instructions with one to clear the motor output
bit. This would still result in a very short pulse to the motor at the start of the program. If
this caused a problem to the motor drive, an alternative fix would be needed; for example, an
external circuit which ensured that the motor was not powered up until the controller had been
started.

11.5 Hardware Testing

When the program has been fully debugged in the simulator, it can be downloaded to the chip,
which is then placed in the target system. However, the target hardware layout and connections
should be checked and tested separately before inserting the chip. The board should be carefully
inspected for correct assembly; solder bridges between tracks and dry joints are common faults.
The connections can be buzzed out with a continuity tester and checked against the circuit
diagram.

Hardware Testing 187

Before fitting the chip, it is a good idea to apply power and check the rest of the circuit,

but make sure the components connected to the chip outputs can be safely powered up with an

open circuit input. For example, in the MOT1 circuit, the FET gate input should not be allowed

to float, so there is a pull-down resistor fitted. The supply current should not be excessive, and

components should be checked for overheating. The voltages at the chip power supply pins

(Vdd and Vss) of the chip should also be checked, as incorrect connection of the supply is

likely to damage most ICs.

If all is well, switch off the power and fit the chip using a suitable tool. Anti-static precautions

should be observed, but PIC chips have not been found to be particularly sensitive in practice.

Make sure it is the right way round! Pin 1 should be marked on the board. Switch on and check

that the chip is not overheating or drawing excessive current. If left to overheat for more than

a few seconds, the chip will probably be destroyed, but you may be able to rescue it if you

switch off before the smoke appears!

11.5.1 In-Circuit Program Testing

Connect an oscilloscope to the output. On power up, there should be no output from MOT1.

When the ‘Run’ button is pressed, the default output waveform with a 50% mark/space ratio

should be observed, running at a frequency of about 30Hz. The speed ‘Up’ and ‘Down’ buttons

should be operated to ensure that the speed control stops at the minimum and maximum value,

and does not ‘roll over’ from zero to full speed in one step. Note that the program algorithm

does not give an MSR of 100% or 0%, but stops one step short of the maximum and minimum.

Since there are 255 steps altogether, the step size is less than 1%.

The circuit should also be tested for ‘fail-safe’ operation, that is, no unplanned or potentially

dangerous output is caused by an incorrect input operating sequence. In this case, operating

both the ‘Up’ and ‘Down’ buttons together would be an erroneous input combination, which

should result in no change in speed, because the increment and decrement operations cancel

out.

Other examples of potential problems which would need to be considered are input switch

bounce, variation in component performance (check specifications), dynamic operation of

motor, minimum MSR required to make the motor run, and so on. More complex applications

are likely to have more potentially incorrect input conditions and component-related problems,

but the test schedule should ideally anticipate all possible fault modes (not easy!). If the circuit

is being produced on a commercial basis, a formal test schedule would be needed, and the

performance certificated as correct to the product specification.

A basic test schedule for the MOT1 program running in a PIC 16F84 is given

in Table 11.3. Additional documentation should be prepared according to circumstances

(education, commercial, research) to provide the application user or product customer with the

relevant information on using the system.

11.5.2 In-Circuit Emulator

The simulator allows the software to be tested without the target hardware; however, the

execution speed may be lower than in the real hardware, and input conditions due to the real

components such as non-ideal voltage levels and transient signals may not be simulated. This

limits the accuracy of the test.

On the other hand, an ICE allows the hardware to be tested without the microcontroller (or

microprocessor). It allows a host computer with a special emulation pod attached to replace the

188 Program Debugging

Table 11.3 Test schedule for MOT1 application board

TEST Project Name: MOT1
SCHEDULE

Batch No: Specification Number:

Test Required Result Tick Comment

Inspected No faults observed

Power Up Motor off Output low

!RUN operated Motor on, 50% MSR Frequency ∼30 Hz

!UP operated MSR increases >99% Step Resolution <1%

!UP released MSR constant Speed held

!DOWN operated MSR decreases <1% Step Resolution < 1%

!DOWN released MSR constant Speed held

!MCLR pulsed Speed reset 50% MSR Restarts program

!RUN released Motor Off Output low

Tested by:

Signed: Date:

target processor (see Fig. 11.2). A header connector with the same pin out as the processor

is connected to its socket on the board. The pod provides the specific processor emulation

hardware, which is able to represent that particular processor at full speed. The program can

then be tested with the actual hardware, giving more realistic results.

PC
host

computer
running
emulator
software

PC bus
ribbon
cable

Emulator
pod

Emulator header
connection

Additional
logic probes

Target
application
boardUser debug

selections and
status display

Figure 11.2 In-circuit emulator set-up.

Hardware Testing 189

Professional development systems use this technique as it allows the complete application
hardware system to be tested as it interacts with a virtual processor. This type of equipment
is usually regarded essential in the commercial development environment, but it is relatively
expensive. Individuals, educational users and smaller companies, with limited development
budgets, will find the low-cost ICD (see Section 7.7.2) option a very useful alternative.

Summary

• There are two main types of error that can occur in source code, syntax and logical errors.

• Syntax errors are invalid statements which are detected by the assembler; error messages
are generated to assist debugging.

• Logical errors are mistakes in the program design or implementation, which can be detected
by using the simulator to test the program operation.

• MPLAB is an IDE, featuring an editor, assembler, simulator, emulator support and
downloading software.

• A typical MPLAB simulation setup would use the source code, program memory, SFR,
watch, trace, stopwatch and stimulus windows.

• Logical errors can be identified using step into, step over and breakpoints functions with
register monitoring.

• The ICE allows the software to be tested at full speed on the target hardware.

Questions

1. Explain briefly the difference between syntax and logical program errors, and how they
are detected.

2. Explain the difference between ‘simulation’ and ‘emulation’ in the PIC system. Why does
emulation need some extra hardware, and simulation does not?

3. How are the following used in program debugging: single stepping, breakpoint, pin
stimulus, watch window?

4. An instruction in the program memory listing appears as follows:

0005 1A05 start btfsc 0x5,0x4

Explain the meaning of each of the six elements in the line.

Activities

1. (a) In MPLAB, open a source file edit window, enter the source code for MOT1 and
assemble it. Note any error messages generated. If the program assembles correctly
first time, put some deliberate errors in the source code and inspect the error messages.

190 Program Debugging

(b) In MPLAB, create a project MOT1, assign MOT1.ASM to the project and test the

program using the setup suggested in Section 11.4. Use the test schedule in Table

11.2 to check the program operation and confirm that it meets the specification.

2. Modify the application by eliminating the inputs and generating a PWM output whose MSR

increments automatically, once per output cycle. Allow the incremented count register to

roll over from 100% MSR to restart at 0% MSR. Devise a test schedule to confirm correct

operation. Download to a PIC chip and run the program in the hardware, monitoring the

output with an oscilloscope. What output should you see? Predict the time taken (to the

nearest half second) for a complete cycle from 0 to 100% MSR.

(Answer: 8.5 s)

Chapter 12
Prototype Hardware

12.1 Hardware Design

12.2 Hardware Construction

12.3 Demo Board

12.4 Demo Board Applications

We now come to the stage where we need to look at the techniques available for designing

and building our PIC circuits. Circuit design, simulation and layout software has developed to

the point where powerful packages are now available at a reasonable cost. Current software

allows the circuit to be drawn, tested by simulation, and the circuit netlist (list of components

and connections) produced. This is then imported into a PCB design package where the circuit

is laid out on screen; this can be printed onto a masking sheet, or a file generated which can be

used to automatically produce a PCB. Currently, a popular choice in the UK is ProteusTM from

Labcenter Electronics. This consists of two main parts, ISISTM for circuit design and schematic

capture, and ARESTM for PCB layout. However, the design, layout and construction of PCBs

will not be discussed in detail, because it involves learning to use this specialist PCB design

software, which is beyond the scope of this book.

12.1 Hardware Design

Traditionally, circuits have been designed as sketches on paper and a final version produced by

a draughtsman. This relied heavily on the experience of the electronics engineer to be able to

predict the circuit performance from theoretical knowledge and practical experience. Numerous

prototypes would typically be needed to arrive at a working solution.

This process has, since the development of increasingly powerful desktop computers, been

radically improved. The designer still has to come up with the original ideas, but the proposed

circuits can now be quickly drawn and tested on-screen, and a working design produced without

a pencil touching paper or any component being inserted in a prototype board. The design cycle

is much faster and the time taken from design concept to market is a major competitive factor

in a rapid changing industry. Therefore, electronic computer aided design (ECAD) is now a

vital tool for the electronics engineer, just as CAD has become for the mechanical engineer.

Thus, a circuit diagram can be drawn and converted into a PCB layout within a single

software package. The circuit design can be tested for correct function by software simulation

192 Prototype Hardware

which incorporates mathematical models for the behaviour of each component, and their

interaction. Libraries of microprocessor and microcontroller models, as well as interactive on-

screen components, are now included; a circuit can be drawn on-screen, the application program

attached to the microcontroller and the program tested by operating the on-screen inputs, such

as switches and/or a keypad, with the mouse. The results are then displayed on simulated

displays (LED and LCD) or operate animated output devices such as relays and motors.

As an example, a simple circuit design created in the schematic capture package ISIS is

shown in Fig. 12.1. It is an electronic dice board with a push button, seven-segment display and

buzzer controlled by a PIC 16F84. It can be programmed to display a random number between

one and six when the button is pressed.

Figure 12.1 Circuit desgin for DICE board.

When a suitable program is assigned to the PIC in the simulation, the circuit becomes

interactive on screen. When the switch is operated, the display will operate in the same way

as the real device. If the chip is programmed to make a sound, the waveform can be displayed

on a virtual oscilloscope, and even be reproduced from the PC audio output, if the CPU is fast

enough.

12.2 Hardware Construction

First, we will look briefly at some traditional techniques suitable for building one-off boards

and prototypes. A general purpose demonstration board will be then designed and laid out

in prototype form, and some programs provided to demonstrate its features and the related

Hardware Construction 193

programming principles. The DIZI board (display and buzzer with interrupt) has a seven-

segment display and an audio output for some simple display and sound applications (see

Appendix B).

12.2.1 Printed Circuit Board

The PCB is the standard method for making electronic circuits. In its basic form, it starts

life as a sheet of insulating fibreglass board with a layer of copper on one side. The circuit

connections are made by photographically transferring a pattern of conducting tracks and pads

for the component connections onto the copper. For complex circuits, such as a PC motherboard,

multilayer boards are used to accommodate the large number of parallel data connections.

The layout for a simple PIC circuit is shown in Fig. 12.2. It has a PIC 16F84, push button,

seven-segment display, buzzer and associated components and can be programmed to operate as

an electronic dice, generating a random number between one and six. The pattern of the copper

tracks is shown, as well as the ‘silk screen’ printing which will be applied to the component

side of the board to show where to place the components.

Silk
screen
print

Track PadPIC

Figure 12.2 PIC dice board layout.

The layout is reversed as it will be printed onto a translucent mask, which is then used to

create the pattern of connections on the copper side of the board. The copper layer is coated with

a light-sensitive material, which is exposed to ultraviolet light through the mask. In the exposed

areas of the board, the photo-sensitive material becomes soluble and is removed by a caustic

solvent, exposing the copper below. This is then dissolved (etched) in an acid bath, leaving

behind the copper layout where it was protected by the etch resisting layer. The components

are then fitted to the silk screen side of the board, and the leads and pins soldered to the pads.

Once the layout has been designed, it can be used for batch production of the application

hardware. Specialist companies are often used to manufacture the boards direct from the file

output of the PCB design software. The final PCB-based product is shown in Fig. 12.3.

Even with the current ECAD packages, the PCB layout can take some time to create, and a

considerable amount of skill is needed to use the software. Therefore, we will also look at how

to prototype our hardware using traditional methods which do not require specialist software

or PCB fabrication equipment.

194 Prototype Hardware

Figure 12.3 PIC 16F84 dice board.

12.2.2 Breadboard

A common method of constructing prototype circuits uses breadboard (plugblock) to wire up
prototype circuits. The connecting wires are pushed into an array of interconnected sockets,
allowing circuits to be quickly built and modified. A typical circuit, which will be discussed
later, is illustrated in Fig. 12.9. The circuit for testing the BINx programs in Section B can also be
built this way, as it is not too complicated, and may need modifying for experimental purposes.
The breadboard module has sets of terminals laid out on a 0.1" grid which will accept the

manual insertion of component leads and insulated tinned copper wire (TCW) links. It has rows
of contacts interconnected in groups placed either side of the centre line of the board, where the
ICs are inserted, giving typically four contacts on each IC pin. At each side of the board, there
are longitudinal rows of common contacts which are normally used for the power supplies.
Some types of breadboard can be supplied in blocks that plug together to accommodate larger
circuits, or are mounted on a base with built-in power supplies.
The layout for a simple circuit is shown in Fig. 12.4, with a PIC 16F84 driving an LED at

RB0 via a current-limiting resistor. The only other components required are a capacitor and a
resistor to form the clock circuit, but we must not forget to connect the !MCLR (master clear)
pin to the positive supply, or the chip will not run. The chip could now be programmed to
flash the output at a specified rate. To connect up the circuit, we will need to refer to the chip
pinout, which is given in Fig. 12.5.
Breadboard circuits can be built quickly, with no special tools required. However, the

connections are relatively unreliable, so bad connections are likely in more complicated circuits.
Therefore, method of producing prototype circuits with more reliable soldered connections is
useful.

12.2.3 Stripboard

Stripboard is a prototyping method which requires no special tools or chemical processing. The
components are connected via copper tracks laid down in strips on a 0.1" grid of pin holes
in an insulating board. The components are soldered in place and the circuit completed using
wire links placed on the component side and soldered to the tracks on the copper side. The
tracks must then be cut where the same strip is used for separate connections in the circuit. The
components are generally placed across the tracks, so that each pin connects with a separate

Hardware Construction 195

Clock
CR
circuit

PIC
16F84

LED
output

Connected
internally

0 V Power
supply

+5 V

Figure 12.4 Breadboard layout.

Function Label Pin Pin Function

I/O Port A bit 2 RA2 1 18 RA1 Port A bit 1 I/O

I/O Port A bit 3 RA3 2 17 RA0 Port A bit 0 I/O

I/O RA4 or timer input RA4 / T0CKI 3 16 OSC1/CLKIN Crystal or RC oscillator In

In Master clear (Reset) !MCLR 4 15 OSC2/CLKOUT Crystal circuit (if used) Out

In Supply 0 V VSS 14 Supply +5 V In

I/O Port B bit 0 + interrupt RB0/INT 6 13 RB7 Port B bit 7 (+ interrupt) I/O

I/O Port B bit 1 RB1 7 12 RB6 Port B bit 6 (+ interrupt) I/O

I/O Port B bit 2 RB2 8 11 RB5 Port B bit 5 (+ interrupt) I/O

I/O Port B bit 3 RB3 9 10 RB4 Port B bit 4 (+ interrupt) I/O

Label

5 VDD

Figure 12.5 16F84 pinout.

track. The tracks must be cut between opposite DIL chip pins, and other required positions,

using a hand drill. An example is shown in Fig. 12.11.

Care is required to avoid ‘dry’ joints (too little solder) or short circuits between tracks due

to solder splashes and whiskers (too much solder!). A manual drawing may be used to draft

the layout, if necessary, but a reasonably experienced constructor can build the circuit directly

onto the board, with maybe some additional wastage of board area. It is also possible to work

out the layout using a simple drawing package, or the drawing tools in a wordprocessor.

196 Prototype Hardware

A2 A1

A3 A0

A4 C1

MC CO

0V V+

B0 B7

B1 B6

B2 B5

B3 B4

10 k

220 R

PIC 16F84

10 nF

+5 V

0 V

Track cut

LED

TCW linkComponent pins

Figure 12.6 Stripboard connections.

Figure 12.6 shows how the simple PIC circuit can be laid out for construction on stripboard

using general purpose drawing tools, such as those provided with Word. In the wordprocessor,

the drawing toolbar needs to be switched on, and page layout view selected. In the ‘Draw’

menu, the grid should be switched on and set it to 0.1"; this allows layouts to be drawn actual

size, since this is the spacing between standard in-line pins. The circuit can then be drawn using

suitable line styles, text boxes and so on. When finished, use the ‘Select Objects’ tool to select

the whole drawing and ‘Group’ it in the ‘Draw’ menu. This prevents text cursor movement from

disrupting the drawing, and the whole diagram can be re-positioned on the page if required.

12.3 Demo Board

A circuit will be now designed, and a set of programs outlined, to illustrate the hardware

design process and programming principles discussed in previous chapters. The DIZI board will

allow the user to experiment with the various features of the PIC hardware and programming

techniques within a single hardware module.

12.3.1 Hardware Specification

The microcontroller demonstration board will be suitable for demonstrating a wide range of

processes incorporating display, audio, counting, timing and interrupt operations. The board will

have a single digit seven-segment display for showing output data in hexadecimal and decimal

form, and a low power audio transducer. Manually operated toggle switches will provide a 4-bit

parallel input. Two input push buttons should be available; one to simulate input events to be

counted, the other to simulate an external interrupt input. Timed events should be measured or

generated with an accuracy of better than 1%. The circuit will be battery powered, with a push

button power switch to ensure that the power cannot be left on, and a power ‘on’ indicator.

Demo Board 197

The board will be as small as possible, and the microcontroller must be easily reprogrammable,

with flash memory.

12.3.2 Hardware Implementation

The seven-segment display will require seven outputs from the microcontroller. Active high

operation can be provided by a common cathode LED display, and the display decimal point

can be used as the power indicator. The audio transducer requires one output; a peizo buzzer

was tested for suitability, since its power consumption is low. Although the device is specified

to operate at a fixed frequency, it was found to be satisfactory in its frequency response.

A miniature dip switch bank will be used for 4-bit input, and miniature push buttons used,

to conserve space.

Fourteen I/O pins are required; the PIC 16F84A has only thirteen, so a chip with more I/O

could be considered. However, the audio output and interrupt input could use the same I/O pin,

because the high impedance of the buzzer will not interfere with input signals on the same pin.

RB0 will be used as the dual function pin, since it is defined as the principal interrupt input,

but can also be used as an output. The outputs can source up to 25mA, but current-limiting

resistors will restrict the current per display segment to 10–15mA to control the maximum load

on the port when all the segments are on.

The I/O allocation for the project is therefore as follows:

Seven-Segment display Outputs RB1–RB7

4-Bit switch bank Inputs RA0–RA3

Push button Input RA4

Push button interrupt Input RA0 (dual function)

Audio transducer Output RA0 (dual function)

A crystal clock of 4MHz will be used to obtain the required timing precision, and the

convenience of a 1�s instruction cycle. The 16LF84A-04 (LF= low voltage) can operate from

a supply of between 2.0 and 5.5V, so the circuit will be powered from 2×1�5V dry cells, giving

a 3.0V supply. The ‘04’ suffix indicates that a maximum 4MHz clock frequency can be used.

A block diagram of the proposed system is shown in Fig. 12.7. The inputs and outputs are

given the labels which will be assigned in the application programs.

12.3.3 Implementation

A circuit for the DIZI board is shown in Fig. 12.8. The PIC 16LF84A drives an active high

(common cathode) low current seven-segment LED display at Port B, RB1–RB7, via a block

of 270R current-limiting resistors. RB0 drives an audio sounder when set as an output, but can

also be used to detect the ’Interrupt’ push button when set as an input and the chip is initialised

for this option. To prevent RB0 being shorted to ground if set as an output, the spare 270R

resistor is connected between the push button and RB0. This does not affect the operation of

the sounder, which has a relatively high resistance. The flying lead is suggested because this

would allow the all output pins to be monitored for audio output if, for example, BIN2 were

run on this hardware.

A 4-bit DIP switch input is connected to Port A, RA0–RA3, with a push button connected to

RA4, which can be used as an external pulse input to the counter/timer register RTCC. These

operate as active low inputs with 10k pull-up resistors, as does the interrupt push button.

198 Prototype Hardware

RA4
RB7

to
RB1

RA3
to
RA0

RB0

OSC1/2

XTAL
4 MHz

!INPUT

!INTER

PIC 16F84

PORT A

PORT B

BUZZER Power on
indicator

Switch bank

Seven-segment display

Figure 12.7 Block diagram of DIZI demonstration board.

g

f

e

d

c

b

a

10k × 8 Resistors

0 V

+3 V

220 R
× 8

Interrupt

Input

Seven segment
display

Vss

Vdd MCLR

RA4

RA3

RA2

RA1

RA0

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

4 MHz

22 pF

DIP Switch × 4

PIC
16F84

Cathode

2 × 1.5 V

Flying
test
lead

dp

220 R

Power
ON

Peizo-
buzzer

Output
test
point

Power
ON

 OSC1 OSC2

Figure 12.8 DIZI board circuit diagram.

A breadboard version of the circuit is shown in Fig. 12.9. A stripboard layout for the DIZI

board is shown in Fig. 12.10. The detail of the component pin connections has been omitted due

to the reduced scale of the illustration, but this information can be obtained from the component

pin out data, when selecting particular components.

The finished stripboard circuit is shown in Fig. 12.11.

Demo Board 199

Figure 12.9 DIZI breadboard prototype circuit.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Peizo
buzzer

0 V

+3 V

Input
button

Input
DIP

switch

Interrupt
button

Seven-
segment

display

Buzzer
output

e
d
cc
c
dp

g
f

cc
a
b

1

Power
button

Resistors 100k × 8

PIC
16F84A

Crystal
clock

220 R
220 R
× 8

TCW
bridge

Figure 12.10 Stripboard layout for DIZI board.

200 Prototype Hardware

Figure 12.11 DIZI stripboard circuit.

12.4 Demo Board Applications

A set of programs to run on this hardware is listed below. Selected applications will be

developed and coded (*), and the reader is invited to investigate the others, using the techniques

covered thus far.

Display

FLASH1 Flash all segments
STEP1 Step through segments

HEX1 Binary to Hex converter

MESS1 Message display

SEC1 One-Second Clock

REACT1 Reaction timer

* DICE1 Electronic dice

Sound

BUZZ1 Output single tone
SWEEP1 Sweep tone frequency

* TONE1 Switch tone on/off

SEL1 Select tone on switches

Demo Board Applications 201

GEN1 Audio frequency generator

MET1 Metronome
GIT1 Guitar tuner

* SCALE1 Musical scale

BELL1 Doorbell tune

Interrupts

STEP1 Step through scale

STEP2 Step scale and display note

BUZZ2 Output tone using TMR0

REACT2 Reaction timer using TMR0

SEC2 One-second clock using TMR0
MET2 Metronome using TMR0

EEPROM

STORE1 Store a display sequence in EEPROM

STORE2 Store a tone sequence in EEPROM

LOCK1 Store a code and buzz if matched

12.4.1 Program BUZZ1

A flowchart for the program BUZZ1 is shown in Fig. 12.12. It will generate a single tone at

the buzzer when the input button is operated, by toggling the output to the buzzer, with a delay

between each change of output state. If a count of 255 is used with a 1�s instruction cycle

time, we have seen that the loop itself will take:

255×3×1= 765�s

which will give a frequency of approximately:

1000000/765×2= 650Hz

BUZZ1

|
Initialise

RA4 = Input
 RB0 = Output

|
|

Input low?

|
Output high

Delay

|

|

Output low

|
Delay

No

Figure 12.12 BUZZ1 flowchart.

202 Prototype Hardware

The frequency is not critical, so we will ignore the additional loop instructions, because

they will only make a small difference. The result is well within the audio range, and

therefore is suitable. It can be adjusted by simply reducing the count value in the delay loop;

650Hz is the minimum frequency available. A more precise calculation of the delay loop

can be used to obtain a more exact frequency, or the hardware timer can be used. In either

case, the period can be checked using the stopwatch in the simulator before downloading

(see Program 12.1).

Program 12.1 BUZZ1 source code

;
; BUZZ1.ASM M. Bates 6/4/99
; **
;
; Generates an audio tone at Buzzer when the
: Input button is operated..
;
; Hardware: PIC 16F84 DIZI Demo Board
; Clock: XTAL 4MHz
; Inputs: RA4 : Input (Active Low)
; Outputs: RB0 : Buzzer
; MCLR: Enabled
;
; PIC Configuration Settings:
; WDTimer: Disable
; PUTimer: Enable
; Interrupts: Disable
; Code Protect: Disable
;

PROCESSOR 16F84 ; Declare PIC device

;Register Label Equates...................................

PORTA EQU 05 ; Port A
PORTB EQU 06 ; Port B
Count EQU 0C ; Delay Counter

;Register Bit Label Equates

Input EQU 4 ; Push Button Input RA4
Buzzer EQU 0 ; Buzzer Output RB0

;Start Program ***

;Initialise (Default = Input)

MOVLW b’00000000’ ; Define Port B outputs
TRIS PORTB ; and set bit direction
GOTO check

;Delay Subroutine ..

delay MOVLW 0FF ; Standard Routine
MOVWF Count

down DECFSZ Count
GOTO down
RETURN

Demo Board Applications 203

;Main Loop ...

check BTFSC PORTA,Input ; Check Input Button
GOTO check ; and wait if not ‘on’

BSF PORTB,Buzzer ; Output High
CALL delay ; run delay subroutine
BCF PORTB,Buzzer ; Output Low
CALL delay ; run delay subroutine
GOTO check ; repeat always

END ; Terminate source code

12.4.2 Program DICE1

This program will generate a ‘random’ number at the display between 1 and 6 when the input

button is pressed. A continuous loop will increment a register from 1 to 6, and back to 1. The

loop is stopped when the button is pressed and the number displayed. The display is retained

when the button is released. A table is required to work out the display digit codes.

First, the allocation of the segments to the pins on the display chip must be established. The

segments of the display are labelled from a–g, as shown in Fig. 12.13. They must be lit in

the appropriate combinations to give the required digit display; for instance, segments ‘b’ and

‘c’ must be lit for the digit ‘1’ to be displayed. A table is useful here to work out the codes

required for output to the display (Table 12.1).

c
d

e

f
g

a

b

RA4

PIC 16F84

RB1
RB2
RB3

RB4
RB5
RB6

RB7

Roll
button

Seven-segment
LED display
(active high)4 MHz

clock

Figure 12.13 Block diagram for DICE1 system.

The display is ‘active high’ in operation. This means a ‘1’ at the pin will light that segment.

This arrangement is also described as ‘common cathode’, as all the LED cathodes are connected

together at the common terminal. A ‘common anode’ display will therefore operate ‘active

low’. The binary or hexadecimal code for each digit will be included in the program in the

form of a program data table.

The program represented in the flowchart, Fig. 12.14, uses a spare register as a counter which

is continuously decremented from 6 to 0. When the button is pressed, the current number is

204 Prototype Hardware

Table 12.1 DICE1 display encoding table

Segment code (1 = Segment on)

Displayed g f e d c b a Hex
digit RB7 RB6 RB5 RB4 RB3 RB2 RB1 (RB0 = 0)

1 0 0 0 0 1 1 0 0C
2 1 0 1 1 0 1 1 B6
3 1 0 0 1 1 1 1 9E
4 1 1 0 0 1 1 0 CC
5 1 1 0 1 1 0 1 DA
6 1 1 1 1 1 0 1 FA

DICE1

Setup display outputs

Set count register to 6

Input button on?

Call TABLE

Output code to display

Decrement count
and check = 0?

(a)

Table

Return with

Seven-segment
code

(b)

Yes

No

reload

start

nexnum

Add count register to
program counter

Figure 12.14 DICE1 program flowcharts.

Demo Board Applications 205

used to select from the table of codes using the method described in Program 9.4. This results

in the pseudo-random number code being displayed, and remaining visible until the button is

pressed again. Because the number is selected by manually stopping a fast loop, the number

cannot be predicted. In the flowchart, the jump destinations have been labelled, and these labels

will be used in the program source code. The table subroutine is also named ‘table’ to match

the source code subroutine start label (see Program 12.2).

Program 12.2 DICE1 source code

; DICE1.ASM M. Bates 6/4/99
; ***
;
; Displays pseudo-random numbers between 1 and 6 when
; a push button is operated.
;
; Hardware: PIC 16F84 DIZI Demo Board
; Clock: XTAL 4MHz
; Inputs: RA4 : Roll (Active Low)
; Outputs: RB1-RB7 : 7-Segment LEDs (AH)
; MCLR: Enabled
;
; PIC Configuration Settings:
; WDTimer: Disable
; PUTimer: Enable
; Interrupts: Disable
; Code Protect: Disable
;

; Set Processor Options...

PROCESSOR 16F84 ; Declare PIC device

; Register Label Equates..

PCL EQU 02 ; Program Counter
PORTA EQU 05 ; Port A
PORTB EQU 06 ; Port B
Count EQU 0C ; Counter (1-6)

; Register Bit Label Equates....................................

Roll EQU 4 ; Push Button Input

; Start Program **

; Initialise (Default = Input)

MOVLW b’00000001’ ; Define RB1-7 outputs
TRIS PORTB ; and set bit direction

GOTO reload ; Jump to main program

continued ...

206 Prototype Hardware

; Table subroutine ..

table MOVF count,W ; Put Count in W
ADDWF PCL ; Add to Program Counter
NOP ; Skip this location
RETLW 00C ; Display Code for ‘1’
RETLW 0B6 ; Display Code for ‘2’
RETLW 09E ; Display Code for ‘3’
RETLW 0CC ; Display Code for ‘4’
RETLW 0DA ; Display Code for ‘5’
RETLW 0FA ; Display Code for ‘6’

; Main Loop ...

reload MOVLW 06 ; Reset Counter
MOVLF Count ; to 6

start BTFSC PORTA,Roll ; Test Button
GOTO nexnum ; Jump if not pressed
CALL table ; Get Display Code
MOVWF PORTB ; Output Display Code
GOTO start ; start again

nexnum DECFSZ Count ; Dec & Test Count=0?
GOTO start ; Start again
GOTO reload ; Restart count if zero

END ; Terminate source code

12.4.3 Program SCALE1

This program will output a musical scale of eight tones. The frequencies for a musical scale

from middle C upwards are:

262�294�330�349�392�440�494�523 �Hz�

These can be translated into a table of delay counts which gives the required tone period, since:

Period, T = 1/f(s)

where f = frequency(Hz)

The buzzer on the DIZI board is driven from RB0, so this needs to be toggled at a rate

determined by the frequency of each tone. We therefore need to use a counter register or

the hardware timer to provide a delay corresponding to half the period of each tone. We

have seen in Section 9.1.2 how to calculate the delay time for a loop. Using a formula for

the count value derived from this analysis, figures were calculated for a half cycle of each

tone, which were then placed in the data table in SCALE1.ASM. To keep the program simple,

Demo Board Applications 207

each tone will be output for 255 cycles, so we will use another register to count the number

of cycles competed during each tone. The scale will then be played over a period of about

5 s. The table of values can later be modified to play a tune in the doorbell program (see

Program 12.3).

Instead of a flowchart, the SCALE1 program source code listing has been annotated with

arrows to show the execution sequence. This informal method of analysis can be used to check

the program logic prior to simulation. The eight tone frequencies are controlled by the value of

‘HalfT’, obtained from the program data table at ‘getdel’. ‘HalfT’ is a counter value which will

give a delay corresponding to a half cycle of the frequency required when the chip is clocked at

4MHz. The eight tones are selected in turn by the value of ‘TonNum’, which is initialised to 8.

This is used as the program counter offset in the data table fetch operation. It is decremented

in the main loop after each tone has finished to select the next. The ‘HalfT’ values are thus

selected from the bottom of the table upwards.

The tone is generated in the routine ‘note’, where RB0 is set high, the delay using ‘HalfT’

runs, RB0 is cleared, and the second half cycle delay executed. No operation instructions (NOP)

have been inserted to equalise the duration of each half cycle. RB0 is toggled 255 times using

the ‘Count’ register, which gives duration of around half a second, depending on which tone

is being generated (the lower frequencies are output for longer). The main loop thus selects

each of the eight values of ‘HalfT’ in turn, and outputs 255 cycles of each tone. The program

is terminated with the SLEEP instruction to stop program execution running into the unused

locations following the program.

Program 12.3 SCALE1 source code

; SCALE1.ASM M.Bates 6/4/99
; **

; Outputs a scale of 8 tones, 255 cycles per tone,
; tone duration of between a half and one second.
; Hardware: PIC 16F84
; XTAL 4MHz, !MCLR to start
; Audio Output: RB0

; Assign Registers **********************************

PCL EQU 02 ; Program Counter
PORTB EQU 06 ; Port B for Output
HalfT EQU 0C ; Half Period of Tone
Timer EQU 0D ; Delay Time Counter
Count EQU 0E ; Cycle Count
TonNum EQU 0F ; Tone Number (1-8)

; Initialise Registers

MOVLW B’11111110’ ; RB0 set..
TRIS PORTB ; as output
MOVLW 08 ; Set intial value of..
MOVWF TonNum ; Tone Number
GOTO start ; Jump to main program

continued...

208 Prototype Hardware

; Tone Period Table (HalfT)

getdel ADDWF PCL ◭

NOP
◮ RETLW D’156’ ◮

◮ RETLW D’139’ ◮

◮ RETLW D’124’ ◮

◮ RETLW D’117’ ◮

◮ RETLW D’104’ ◮

◮ RETLW D’92’ ◮

◮ RETLW D’82’ ◮

◮ RETLW D’77’ ◮

; Delay for half tone cycle

delay MOVF HalfT,W◭
MOVWF Timer

again DECFSZ Timer
� GOTO again

RETURN ◭
..
.

◮

; Output 255 cycles of tone

note MOVLW D’255’◭
MOVWF Count

cycle BSF PORTB,0
� CALL delay◭

NOP
NOP
NOP

BCF PORTB,0

CALL delay◭
DECFSZ Count

GOTO cycle
..
.

RETURN ◭
..
.

◮

; Main Loop Outputs 8 Tones

start MOVF TonNum,W
� CALL getdel ◭

MOVWF HalfT
CALL note ◭

DECFSZ TonNum
GOTO start
SLEEP ◭

..

.

END ; of source code

Demo Board Applications 209

12.4.4 DIZI Application Outlines

Some further applications are outlined below, for the reader to develop for the DIZI hardware.

HEX1 Hex Converter

The hexadecimal number corresponding to the binary setting of the DIP switch inputs is

displayed. The input switches select from a table of 16 seven-segment codes which light up the

segments in the required pattern for each hex digit display:

0�1�2�3�4�5�6�7�8�9�A�b�C�d�E

Note that numbers B and D are displayed in lower case on a seven-segment display so that

they can be distinguished from 8 and 0 respectively. Use the switch input number to select one

of the 16 codes from a seven-segment table.

MESS1 Message Display

A sequence of characters is displayed for about 0.5 s each. Most letters of the alphabet can be

obtained on the seven-segment display in either upper or lower case, for instance ‘HI tHErE’.

Output a character code table with delay. The number of characters must be set in a counter,

or a termination character used.

SEC1 One-Second Timer

An output is displayed which increments exactly once per second, from 0 to 9, and then repeats.

A table of display codes is required as in the ‘Hex Converter’. A one-second time delay can

be achieved using the hardware timer (see Chapter 9) and spare register. A ‘tick’ could be

produced at the audio output by pulsing the speaker at each step.

REACT1 Reaction Timer

The user’s reaction time is tested by generating a random delay of between 1 and 10 s, outputting

a sound, and timing the delay before the input button is pressed. A number representing the

time between the sound and the input, in multiples of 100ms, is then displayed as a number

0–9, giving a maximum reaction time of 900ms.

GEN1 AF Generator

An audio frequency generator outputs frequencies in the range 20Hz–20 kHz. The sounder

output is toggled with a delay between each operation determined by the frequency required, as

in the BUZZ program. For example, for a frequency of 1KHz, a delay of 1ms is required, which

is 1000 instruction cycles at a cycle time of 1�s. The information on program timing must be

studied in Chapter 10. The delay time, and hence the frequency, can then be incremented using

the input button, and range selection with the input switches might be incorporated, as there

are only 255 steps available when using an 8-bit register as the period counter.

210 Prototype Hardware

MET1 Metronome

An audible pulse is output at a rate set by the DIP switches or input buttons. The output tick

can be adjustable from, say, 1 up to 4 beats per second, using the interrupt button to step the

speed up and down, and the input button to select up or down. A software loop or the TMR0

register can be used to provide the necessary time delays.

BELL1 Doorbell

A tune is played when the input button is pressed, using a program look-up table for the tone

frequency and duration. Each tone must be played for a suitable time, or number of cycles, as

required by the tune. The program can be elaborated by selecting a tune using the DIP switches,

and displaying the number of the tune selected.

GIT1 Guitar Tuner

The program will allow the user to step through the frequencies for tuning the strings of a

guitar, or other musical instruments using the input button, or selecting the tone at the DIP

switches. The program could be enhanced by displaying the string number to be tuned. The

tone frequencies will be generated as for the doorbell application. The digit display codes would

also be required in a table.

Summary

• Methods of circuit construction available include PCB, breadboard and stripboard.

• Design software is available to draw the application circuit, test it by interactive simulation

and create a board layout, but it requires time to learn to use the software, and etching

equipment is needed to produce a PCB.

• Breadboard is re-usable and allows circuits to be prototyped quickly and easily, but is

unreliable for complex circuits.

• Stripboard is more reliable, but not re-usable. Connections can be laid out on paper, using

computer drawing tools or directly onto the board.

• The DIZI demonstration board has a seven-segment display and audio output, with push

button input and interrupt and a 4-bit switched input, and can be used for demonstrating a

range of simple applications.

Questions

1. For constructing a circuit, state one advantage and one disadvantage of (a) breadboard (b)

stripboard (c) PCB design software.

2. State the maximum rated current output for port pins on the PIC 16F84A. How do these

ratings simplify the interfacing to this chip compared with standard digital outputs?

Demo Board Applications 211

3. Explain why a common cathode seven-segment display operates as an active high display.

State an input code for (a) all segments off and (b) all segments on for this type of display.

4. Outline an algorithm for generating a fixed frequency output of approximately 1 kHz from

the DIZI board using the hardware timer.

5. Describe a method of outputting a set of codes to drive a seven-segment display of

alphanumeric characters at a PIC parallel output.

Activities

1. Confirm by calculation that the values used in the program data table in SCALE1.ASM

will give the required delays.

2. Devise a breadboard layout for the BIN circuit in Fig. 6.3. Build the circuit and test the

BINx programs.

3. Devise a stripboard layout for the MOT1 circuit in Fig. 10.3, using a VN66 FET and 2V

small DC motor. Build the circuit and test MOT1.

4. Build the DIZI circuit on breadboard, stripboard or PCB and test the programs BUZZ1,

DICE1 and SCALE1.

5. Design and implement any of the programs outlined for the DIZI hardware:

HEX1, MESS1, SEC1, REACT1, GEN1, MET1, BELL1, GIT1.

6. (a) Investigate how an input from a numeric keypad can be detected. The typical keypad,

shown in Fig. 12.15, has 12 keys in four rows of three: 1, 2, 3; 4, 5, 6; 7, 8, 9; #, 0, *.

These are connected to seven terminals, and can be scanned in rows and columns. A key

press is detected as a connection between a row and a column. The pull-up resistors ensure

+Vs

1 2 3

4 5 6

7 8 9

* 0

4 3 2 5 6 7 8

Pull-up
resistors

#

Figure 12.15 Keypad connections.

212 Prototype Hardware

that all lines default to logic ‘1’. If a ‘0’ is applied to one of the column terminals (2, 3, 4),

and a key is pressed, this ‘0’ can be detected at the row terminal (5, 6, 7, 8). If the keypad

terminals are connected to a PIC port, and a ‘0’ output in rotation to the three columns,

a key can be detected as a combination of the column selected and the row detected.

Terminals 2, 3, and 4 will be set as outputs, and 5, 6, 7 and 8 as inputs. Draw a flowchart
to represent the process required.

A lock function may be implemented by matching an input sequence with a stored

sequence of, say, four digits, and switching on an output to a door solenoid if a match is

detected. Refer to Chapter 15, the temperature controller application, and Appendix B, the

lock application, for further information. Produce structured flowcharts for a lock program.

(b) Design, build and test an electronic lock system using the keypad shown, a suitable

PIC and an LED to indicate the state of the lock (ON = unlocked). Research the design

for the interface to a solenoid-operated door lock.

Chapter 13
Motor Applications

13.1 Motor Control Methods

13.2 Motor Application Board

13.3 Control Methods

13.4 Position Control

13.5 Closed Loop Speed Control

13.6 Commercial Application

This chapter will focus on a PIC application in which program timing is critical. This kind of

application is more demanding because the controlled device (motor) has its own dynamic charac-

teristicswhichmust be taken into account in the programdesign. Thehardware designwill be taken

as given, so that we can concentrate on the software development for this application.

13.1 Motor Control Methods

There are two main types of control system, open loop and closed loop. An open loop system is

essentially manually controlled. For example, a car requires the driver to monitor the direction

of travel and correct the steering to follow the road. A closed loop system uses sensors to

monitor the system outputs and control the process automatically, once the initial operating

conditions have been set. A central heating system is a simple example; the thermostat monitors

the temperature and switches the boiler on and off accordingly.

A small, inexpensive, DCmotor will be used to demonstrate the use of the PIC microcontroller

in a ‘real-time’ control application, allowing open and closed loop operation to be investigated.

Real-time systems are those where the time factor is important, and where the dynamic response

to control inputs and feedback from sensors is critical. Robot arm positioning is a good example

of a closed loop motor control application.

Motor output is measured as the shaft speed or position. Open loop control of a motor would

consist of simply switching it on and off for a fixed period to position it, or varying the speed,

under manual control. There are obvious limitations to open loop control. A DC motor does

not start until there is a reasonably large current, due to inertia, stiction and its electromagnetic

characteristics. This makes its response non-linear, which means that the speed is not directly

proportional to the current or voltage supplied. In addition, the speed cannot be accurately

predicted for any given current, because the load on the shaft will affect it. The final position

214 Motor Applications

of the shaft when the motor stops cannot be precisely controlled either. Therefore, if the speed

or position of a DC motor is to be controlled accurately, we need sensors to measure the output

variables, and a control system for the motor drive.

A simple analogue potentiometer can measure position, by converting it to a voltage, or

speed can be measured using a tachometer, which produces a voltage which is proportional to

the motor speed. These ‘transducers’ have traditionally been used in analogue motor control

systems, where all the signals are continuously variable currents and voltages. It is now more

common to use a digital control method, and the microcontroller can be used as the basis of a

programmable system in which the control algorithm can be designed to closely match the motor

and load requirements. The dynamic (time) response can then also be adjusted in software.

The speed of a DC motor is controlled by the current in the armature, which interacts with

the magnetic field produced by the field windings (or permanent magnets in small motors) to

produce torque. An analogue control system gives continuous control over the motor current,

and a digital to analogue drive converter can be used at the output if the feedback and control

is digital. However, the control interface can be simplified if PWM is used, as described in

Chapter 10. The PWM is a simple and efficient method of converting a digital signal to a

proportional drive current. Many microcontrollers now provide dedicated PWM outputs, but

we are going to generate the control signal in software.

Digital feedback can be obtained from a sensor which detects the shaft rotation. One way of

doing this is to use a perforated or sectored disk attached to the shaft and an optical sensor to

detect the slots or holes in the disk. The shaft position can be detected by counting pulses, and

the speed by measuring their frequency. This signal can be fed directly to a microcontroller

running a program which monitors the pulse input, and varies the output to control the speed

and/or position of the motor.

13.2 Motor Application Board

The block diagram for a motor application (MOTA) board is shown in Fig. 13.1, and a circuit

diagram in Fig. 13.2. A stripboard layout of the circuit is shown in Fig. 13.3 and a finished

stripboard circuit is shown in Fig. 13.4.

DC
motor

PIC
16F84

Switch
bank

Clock
4 MHz

8 bits Current

switch

and load

Analogue
interface

2 push
buttons

Analogue
inputs

Slotted
wheel

RA2 /3

Port B

RA2
RA3

RA0

RA4
(RB0)

RA1

Remote
digital
input

 Select
dummy

load

Manual
digital
inputs

Manual

Remote

Opto-
sensor

Figure 13.1 Block diagram of MOTA board.

Figure 13.2 Circuit diagram of MOTA board.

216 Motor Applications

Push
buttons

Opto-slot
sensor DC motor

PIC
 '84

Input
switch
bank

Digital input
connector

+5 V

0 V

Drive
FETs

Figure 13.3 MOTA board stripboard layout.

A variety of motor control operations can be demonstrated using this hardware:

• MOTOR ON/OFF,

• MOTOR FORWARD/REVERSE,

• OPEN/CLOSED LOOP POSITION CONTROL,

• OPEN/CLOSED LOOP SPEED CONTROL.

The MOTA circuit is designed to demonstrate position and speed control with a PIC 16F84(A)

microcontroller. Command inputs can be received from an 8-bit switch bank, a remote 8-bit

master controller, two push buttons or an analogue input. The motor can be turned in either

direction via bidirectional drive outputs, with LED motor direction indicators. The drive can

provide position and speed control, and can be pulse-width-modulated to control the speed.

The shaft speed and position are monitored by a slotted opto-sensor and disk with one slot,

feeding back one pulse per revolution to the controller. The PIC is crystal clocked at 4MHz,

for precise feedback measurement.

Motor Application Board 217

Figure 13.4 MOTA stripboard circuit.

Motor Drive

The small, inexpensive 2V permanent magnet motor is connected in a passive FET bridge with
R1 and R2 as load resistors. The motor current direction, forward or reverse, is controlled by
switching on one of two VN66 FETs from RA0 or RA1. A dummy load can be switched in
series with the motor to allowing testing of closed loop control. Light emitting diodes indicate
the motor direction. The use of a low-quality motor will emphasise the problems which will
arise from imperfections in the motor itself.

Opto-sensor

This contains an LED and photodetector mounted either side of the slot in a plastic housing.
The perforated disk attached to the motor shaft allows the light to pass through the holes
and digital pulses are output from the sensor via a built-in amplifier, which allows the
motor speed or position to be monitored by the controller. The sensor input is connected
to the T0CKI (RA4) input of the PIC, so that the shaft revolutions can be counted in the
counter/timer register. Alternatively, the slot pulse interval can be measured at RA4 using the
timer. The pulse may also be used to trigger an interrupt at RB0 by setting the pulse interrupt
select switch accordingly. This then means that only seven bits can be read from the binary
input.

Switched Inputs

The control program can allow the push buttons connected to RA2 and RA3 to stop, start or
change speed or direction. The binary input switches could then be used to select the speed or
position. Alternatively, a remotely generated digital control code can be applied to the digital
input connector pins from a master controller, which could be operating a number of motors in
a system. In this case, part of the digital input would be a motor select code, and part would be
a position or speed command. Serial commands could also be used, but a PIC with a dedicated
serial port would be better for this (see Chapter 14).

218 Motor Applications

If the parallel input is removed from the circuit, a smaller, cheaper PIC 12FXXX series

device could be used instead. These have six I/O pins, so there would be three inputs available

with which to control the motor speed, position and/or direction. Analogue inputs are also

available, if the motor needs to be voltage controlled.

Analogue Input

Analogue input is possible via RA2 and RA3 using a software-based analogue conversion.

However, it would be preferable to use a PIC with dedicated analogue inputs, such as the

16F818. This is a pin compatible with the 16F84, and could be used to measure analogue inputs

at RA2 and RA3 directly. In this case, the relevant pins are initialised as analogue inputs by

setting up the required registers during the initialisation phase of the program (see Chapter 14).

The hardware should be modified accordingly.

13.3 Control Methods

The PIC 16F84 is crystal clocked at 4MHz to give an instruction cycle time of 1�s. No manual

reset is required, but the power on timer should be enabled during programming to ensure a

reliable start.

13.3.1 Open Loop Control

Open loop control of a DC motor has been described in Chapter 10 and a program developed

which allows the speed to be controlled manually. In the MOTA circuit (Fig. 13.2), the motor

can be driven in either direction by setting RA0 or RA1 high, with both set low to turn the

motor off . Either can be pulsed for speed control, but they should not be high together; this

would switch on both transistors, resulting in no current through the motor, and a lot of wasted

power dissipated in the load resistors.

Open loop speed control can be implemented in various ways: programmed, push button

manual input, manual/remote binary/analogue input. Sequence control can be incorporated in

the program; for instance, the speed can be ramped up, held constant and then ramped down

over a fixed period of time. The push button inputs could be programmed to run the motor in

either direction or increment and decrement the speed in one direction by modifying the delay

in a PWM program. The speed could be set at the binary inputs to Port B, either manually at

the DIP switches, or with an 8-bit digital input code supplied from a master controller, and

analogue control is possible from a manual input (RV1) or from a remote voltage source.

13.3.2 Closed Loop Control

The PIC motor control board has a slotted wheel and opto-sensor to monitor the rotation of

the motor. A wheel with only one slot is used for the applications developed here to make the

calculation of speed simpler. One pulse per revolution will also provide plenty of time between

pulses for the control program to complete its processing tasks. The sensor is connected to RA4

of the PIC. As we know, the 16F84 contains an 8-bit counter/timer register, TMR0, which can

be clocked from RA4 or the system clock, which we can use to measure the pulse number,

frequency or period.

Position Control 219

Closed loop position control involves counting the slots as the shaft turns. This sounds
straightforward, but the dynamic characteristics of the motor have to be taken into account.
For example, the motor can be switched on from the controller, and the pulses counted, and
the motor turned off when a set number of pulses have been counted. However, the motor will
probably overshoot the required position due to inertia of the rotor. A simple solution would
be to keep counting the slots and turn the motor back by the requisite number of slots. This
might have to be repeated several times.
With only one slot, the position can only be determined to the nearest whole revolution.

This may be acceptable if a gearbox is fitted which reduces the angular rotation and speed. For
instance, if the gearbox has a reduction ratio of 50:1, the output can be positioned within 1/50
of a revolution. In addition, a slotted wheel with more slots can be used, and a proportionate
increase in accuracy obtained. With 100 slots, for example, and the gearbox, the accuracy will
be 360/5000= 0.072�.

13.4 Position Control

A simple program, which moves the motor by a number of revolutions set on the DIP switches,
is outlined in Fig. 13.5.

POS1

|
Initialise

ports for motor board
TMR0 for counting

|
Process switch input

and load counter

|
Switch motor on

|
|

Counter overflow?

|
Stop motor

|
SLEEP

No

Figure 13.5 Flowchart for motor program POS1.

The hardware timer/counter (TMR0) is used to count the pulses from the sensor. The timer
flag (T0IF) is set when the counter rolls over from 255 to 000, so the binary number at the
switches has to be complemented (subtracted from 256) to set the count to a value whereby it
reaches 256 (0) after the correct number of pulses. The option register has to be initialised to
select the T0CKI (RA4) pin for input, and to allocate the prescaler to the watchdog timer, so
that the count is not prescaled. The processor is put to sleep after the move has been completed,
so it would have to be reset to repeat the operation (see Program 13.1).
As mentioned above, the position control achieved with the program may not be accurate,

because, firstly, it can only count to the nearest whole revolution, and secondly, there is no
provision for preventing overshoot. One way of achieving better accuracy is for the current

220 Motor Applications

Program 13.1 POS1 basic motor position control

; **
; POS1.ASM M. Bates 7/4/99
; **
;
; Basic position control program runs motor for
; number of revs set on binary switch input.
; Uses TMR0 to count revs, but does not correct
; for overshoot...
;
; Hardware: PIC 16F84 Motor Board

; Clock: XTAL 4MHz
; Inputs: RB0-RB7 : DIP Switches (High)
; T0CKI : Shaft Sensor (Low)
; Outputs: RA0 : Motor (High)

; Set Processor Options

PROCESSOR 16F84 ; Declare PIC device

; Register Label Equates

PORTA EQU 05 ; Port A
PORTB EQU 06 ; Port B
TMR0 EQU 01 ; Counter/Timer
INTCON EQU 0B ; Interrupt Control

; Register Bit Label Equates

T0IF EQU 2 ; Timer Overflow Flag = INTCON,2
motor EQU 0 ; Motor Output = RA0

; Start Program **

; InitialisePort B defaults to input

MOVLW b’11111100’ ; Port A bit direction code
TRIS PORTA ; Set the bit direction
MOVLW b’00100000’ ; Code for Option Register
OPTION ; select T0CKI timer input
BCF INTCON,T0IF ; Clear Timer Overflow Flag

; Main Loop ..

MOVF PORTB,W ; Read switches
MOVWF TMR0 ; into counter
COMF TMR0 ; and complement

BSF PORTA,motor ; Motor ON
test BTFSS INTCON,T0IF ; Test Overflow Flag

GOTO test ; and wait until set
BCF PORTA,motor ; Motor OFF

SLEEP ; Suspend processor

END ; Terminate source code

Closed Loop Speed Control 221

position to be continuously compared with the required position, and the motor driven at a

speed proportional to the error. The motor will slow down as it approaches the target position.

This type of process is referred to as PID control, where the response of the system can be

tuned to give the best compromise between speed of response, accuracy and overshoot.

A simpler process called ‘trapezoidal’ control can also be used. This involves ramping the

motor speed up and down at the ends of the move, with a constant speed period in the middle.

Because the position control of a DC motor is not very practical without a gearbox, we will

look at speed control in more detail. The speed can also be measured by using an oscilloscope

to display the pulse period from the sensor, making it easier to monitor the motor behaviour.

13.5 Closed Loop Speed Control

A typical application may require the motor board to operate as a slave unit under digital

control. A master controller would supply an 8-bit code to set the speed of the motor, with

the local controller required to maintain it with a specified degree of precision. The MOTA

board allows for such an input; it can also be simulated for test purposes using the switch bank.

Suppose that the motor is to be controlled to a speed of exactly 50 revs per second (rps), which

is about 40% of nominal full speed. This will produce 50 pulses per second (pps) at RA4 with

a single slot in the wheel. The speed can be measured in one of two main ways:

1. counting sensor pulses over a measured time period,

2. measuring the period between sensor pulses.

13.5.1 Counting Pulses

The accuracy of the speed measurement using this method will depend on the number of slots

counted, because the error is always +/–1 slot. Thus, if 100 slots are counted, the accuracy will

be 1/100= 1%. If the count were made over a period of 1 s at 50 pps, the precision would be

1/50 = 2%. Therefore, for 2% accuracy, each count would take 1 s, and speed could only be

corrected once per second. This response time is too slow for most practical purposes, so this

option will be rejected. It could however be used if there were more slots in the disk or the

motor were running at high speed.

13.5.2 Measuring Pulse Period

At 50 pps, the target speed, the pulse period will be 1/50 s= 20ms. This can be measured by

comparison with a 20ms timer, which can be set up using the TMR0 hardware counter/timer

(see Chapter 9).

The PIC instruction cycle time is 1�s with a 4MHz clock. The counter can therefore be

clocked at a maximum 1MHz (once per instruction cycle). The timer prescaler allows this to

be divided by 2, 4, 8, 16, 32, 64, 128, or 256, by setting a 3-bit code in the option register.

A possible prescale factor is calculated as follows:

Now 20ms = 20000 �s

= 20000 instruction cycles

222 Motor Applications

The timer can count 256 cycles, therefore the prescale multiplier required

= 20000/256

= 78�125

The nearest available prescale multiplier = 128
Using this prescale value, the number of counts for 20ms

= 20000/128

= 156�25

= 156 �nearest whole number�

The actual motor period will then be

= 156×128×1�s

= 19968�s

This count is accurate to within 1% of 20ms. Remember, this value must be complemented
before loading into the timer register, because it counts up to zero at rollover.
The binary switch can then be used to input the timer value, to provide a variable, but

accurate speed control. The longest period then measurable will be

= 256×128

= 32768 �s

Motor period = 0�032768 s/rev.

Motor speed = 1/0�032768

∼ 30 revs/s

Therefore, this method should provide control from the motor maximum speed of about
125 rps down to about 30 rps. Lower speeds may be obtained by increasing the prescale factor
in the timer, to give a longer time interval. This could be done ‘on the fly’ by adding code to
allow the push buttons to select the operating speed range.
Alternative motor control algorithms will now be evaluated to illustrate the process whereby

the most appropriate implementation is selected where more than one algorithm is possible.

13.5.3 Synchronous Motor Control

System signals which could provide closed loop control are illustrated in Fig. 13.6. The motor
is driven with a PWM pulse whose length is controlled by a simple software loop. The shaft
speed is measured using hardware timer, as outlined above. Initially, the motor mark (on) period
will be set to the minimum value.

Closed Loop Speed Control 223

Motor

Sensor

Counter
Start Time out

Variable ON delay

Off

Control period

+5 V

0 V

Variable position
of falling edge On

Slot pulse

Time

Figure 13.6 Timing diagram for closed loop speed control of motor.

At the start of the control cycle, the motor would be switched on and the timer TMR0
cleared and started. It will be then incremented once per 128 instruction cycles. The sensor
and time out flag can be continuously checked to see whether the counter has finished, or
the next pulse has arrived. If the timer times out before the rising edge of the next pulse, the
motor is not going fast enough, so the speed must be increased by incrementing the ON time
period of the motor. If the pulse arrives first, the motor is going too fast, so the speed must
be reduced by decrementing the ON period. If the ON time starts at zero, it will be increased
until the motor starts. The speed should then stabilise at the value corresponding to the switch
input.
Using this method of control raises a few problems. Note that the drive signal and sensor

signal are locked together, with the same period. This means that the drive frequency will be
50Hz, which is too low. A higher frequency also prevents commutator switching in the motor
from interfering with the drive switching. In addition, with this algorithm, the drive will be on
for the same part of each revolution, potentially causing uneven wear on the commutator. We
will therefore consider an alternative algorithm.

13.5.4 Asynchronous Motor Control

We would prefer the PWM drive to operate at a higher frequency, and asynchronously (not
locked to the sensor cycle). The asynchronous algorithm still runs the motor using the software
delay loop to generate a pulse-width-modulated drive signal to the motor, but checking the
timer and sensor each time round the motor delay loop. The MSR is adjusted to control
the speed, using the input code and its complement to set the delays for the mark and
space.
The process is illustrated in the timing diagram (Fig. 13.7). The timing cycle starts at the

falling edge of the negative going sensor pulse, where the timer is started. The program waits
for the rising edge of the sensor pulse, then starts checking if the next pulse has arrived, or if
the timer has timed out, once per motor cycle.
If the speed is too low, the timer times out first, before the pulse arrives. In this case the speed

must be increased for the next timing cycle. On the other hand, if the slot arrives before the timer
has timed out, it means that the motor is running too fast, so the speed must be decremented
for the next cycle. When the speed is correct, the speed adjustment should alternate between

224 Motor Applications

Motor
drive

One revolution

+5 V

0 V
Slot pulse

Time

On delay

Off delay

20 ms

Reload timer

Slot flag set

Timer flag reset

Time out:
Increment speed,

Set done flag,
Reload timer,

Wait for next pulse

On

Off

Slot found
Reload timer
Clear done flag
Set slot flag

Slot found before time out
Set slot flag

Decrement speed
Reload timer

immediately

Timer runs

Time out:
Reload timer
Set slot flag

0

Sensor
(correct
speed)

Reset slot
flag

Alternates between
time out and
slot found

Sensor
(too slow)

Sensor
(too fast)

Figure 13.7 Timing diagram for high-frequency motor speed control.

incrementing and decrementing. This ideal performance may well be affected by imperfections

in the motor. In practice, it has also been found that there was significant ‘hunting’ (variation)

in the speed, because of the relatively low sampling rate.

Figure 13.8(a) shows the top level flow chart for the program. ‘Speed’ is a GPR which holds

the value for the PWM ON time. The OFF time is derived by complementing this value. The

total count for each motor drive cycle is then 256, which means the frequency will remain

Closed Loop Speed Control 225

constant. The ‘Reload Timer’ (RELTIM) routine restarts the timer (Fig. 13.8c). TMR0 starts

counting the internal instruction clock pulses as soon as it is reloaded. It is loaded with the

complement of the input switch value because time out is detected when the TMR0 register

rolls over from FF to 00. Therefore, the time interval is measured as the count from the loaded

value up to 00.

The most complex part of the program is the TESTEM routine, which checks the inputs and

modifies the value of ‘Speed’ accordingly (Fig. 13.8b). The requirements are:

1. To start the motor from rest, the MSR must be increased upwards when no slot is detected,

so that the motor will eventually start. A fairly high MSR is required to get the motor

moving initially.

2. When a slot is detected before a timeout, the timer must be restarted immediately.

3. When the timeout occurs first, the speed must be incremented and the timer must be

restarted, to get the motor started initially. If a slot then arrives, the timer must be restarted

again, so that it can correctly measure the time between the slot edges.

4. When the sensor is detected as low in the check cycle, it means that a falling edge has

arrived, and the timer must be restarted. The program must then wait for the sensor to go

high again before it starts looking for the next slot.

5. The speed must be stopped from rolling over from FF (maximum) to 00 (minimum), so

the speed is checked after incrementing and decremented again if it is found to be equal

to FE.

CLS1

|

Initialise
Switch and sensor inputs

Motor output
user, counter, speed

registers
Timer options

RELTIM

Motor on

Count = Speed

TESTEM

Motor off

Count = !Speed

TESTEM

again

(a)

Figure 13.8 Flowcharts for closed loop motor speed control. (a) Main loop.

226 Motor Applications

TESTEM

Time out flag set?

Set done flag

Increment speed

Speed = 0?

Decrement speed

Slot present?

Clear slot flag

Slot flag set?

Done flag set?

Decrement speed

Speed = 0?

Increment speed

Clear done flag

Set pulse flag

RELTIM

Decrement & Test
count = 0?

RETURN

No

NO

Yes

Yes

No

Yes

No

testem

teslot

clrdone

reload

datcon

(b)

RELTIM

Switch code to timer

Complement timer

Clear time out flag

RETURN

(c)

Figure 13.8 Flowcharts for closed loop motor speed control. (b) Input testing; (c) Timer reload.

Closed Loop Speed Control 227

To achieve these requirements, flags have been defined in a GPR to record the fact that the
falling edge has been detected and acted upon (flag ‘slot’), and another to record the fact that
the timer has been reset, to make the program wait for the next slot to restart the timer.

13.5.5 Program Simulation

The source code for the closed loop speed control program is shown as Program 13.2. In order
to avoid the need for an input stimulus file, this simulation version of CLS1 loads the timer
with the literal value ‘156’ in the subroutine RELTIM, rather than reading Port B switches.
For running in the hardware, the comment delimiter on the switch input read to Port B must
be removed, and the literal load operation commented out. The RA4 (sensor) input may be
simulated using the asynchronous input window in MPLAB. The results shown in Table 13.1
should be obtained.

Program 13.2 Closed loop motor speed control source code

; ***
; CLS1.ASM M. Bates 4/4/99
; ***
;
; Closed Loop DC Motor Speed Control using Pulse
; Width Modulation (software loop) to control speed
; and hardware timer to set reference time interval
;
; Hardware: PIC 16F84 Motor Board

; Clock: XTAL 4MHz
; Inputs: RB0-RB7 : DIP Switches (High)
; RA4 : Shaft Sensor (Low)
; Outputs: RA0 : Motor (High)

; Configuration Settings:
;
; WDTimer: Disable
; PUTimer: Enable
; Interrupts: Disable
; Code Protect: Disable
;

; Set Processor Options....................................

PROCESSOR 16F84 ; Declare PIC device

; Register Label Equates...................................

PORTA EQU 05 ; Port A
PORTB EQU 06 ; Port B
TMR0 EQU 01 ; Counter/Timer
INTCON EQU 0B ; Interrupt Control

Speed EQU 0C ; Counter Pre-load Value
Count EQU 0D ; Delay Counter
Flags EQU 0E ; User Flags

continued � � �

228 Motor Applications

; Register Bit Label Equates...................................

timout EQU 2 ; Time Out Flag = TMR0,2
motor EQU 0 ; Motor Output = RA0
sensor EQU 4 ; Shaft Opto-Sensor = RA4
slot EQU 0 ; Slot Found Flag
done EQU 1 ; Time Out Done Flag

; Start Program ***

; InitialisePort B defaults to input

MOVLW b’11111100’ ; Port A bit direction code
TRIS PORTA ; Set the bit direction
MOVLW b’00000110’ ; Code for option Register
OPTION ; Sets prescale 1:128
MOVLW 080 ; Initial value for
MOVWF Speed ; count pre-load value
MOVWF Count ; and counter itself
GOTO start ; Jump to main program

; RELTIM Routine ...

; Reloads TMR0 timer/counter register with complement of
; switch input (or dummy value for simulation mode)

reltim MOVLW d’156’ ; Dummy value for timer (sim)
; MOVF PORTB,W ; Input Switches (runtime)

MOVWF TMR0 ; Load Timer with input
COMF TMR0 ; Complement value
BCF INTCON,timout ; Reset ’TimeOut’ Flag
RETURN

; TESTEM Routine ...

; Increases speed if timeout detected or
; decreases speed if slot end detected...

testem BTFSS INTCON,timout ; Time Out?
GOTO tessen ; NO: Skip Speed Increment
BSF Flags,done ; Set Time Out Done Flag
INCFSZ Speed ; Test for maximum speed
GOTO reload ; NO: jump to timer reload
DECF Speed ; Decrement again
GOTO reload ; & jump to timer reload

tessen BTFSS PORTA,sensor ; Slot Present?
GOTO teslot ; YES: jump to test slot
BCF Flags,slot ; Reset ’Slot’ Flag
GOTO datcon ; & continue Count loop

teslot BTFSC Flags,slot ; ’Slot’ Flag Set?
GOTO datcon ; YES: Skip speed decrement
BTFSC Flags,done ; ’Done’ Flag Set?
GOTO clrdone ; YES: Skip speed decrement

DECFSZ Speed ; Test for minimum speed
GOTO clrdone ; NO: continue loop
INCF Speed ; YES: increment again

Closed Loop Speed Control 229

clrdone BCF Flags,done ; Clear ’Done’ Flag
setslot BSF Flags,slot ; Set ’Slot’ Flag

reload CALL reltim ; Reload timer

datcon DECFSZ Count ; Decrement & Test Count
GOTO testem ; Counter not zero yet
RETURN ; End motor cycle if zero

; Main Loop ..

start CALL reltim ; reload timer to start

again BSF PORTA,motor ; Motor ON
MOVF Speed,W ; Put ON delay value
MOVWF Count ; into Counter
CALL testem ; Insert Delay Code

BCF PORTA,motor ; Motor OFF
MOVF Speed,W ; Put ON delay value
MOVWF Count ; into Counter
COMF Count ; and convert to OFF value
CALL testem

GOTO again ; Insert Delay Code
END ; Terminate source code

Table 13.1 Test table for motor control program CLS1

Sensor Timout Done Slot Speed
After . . . input flag flag flag register Comment

Start 1 0 0 0 80 Motor stopped

Reload timer 1 0 0 0 80

Timeout 1 1 1 0 81 Motor starting up

Reload 1 0 1 0 81

Timeout 1 1 1 0 82

Reload 1 0 1 0 82

Slot 1 start and reload 0 0 0 1 82 First slot

Slot end 1 0 0 0 82

Timeout 1 1 1 0 83 Inc. speed

Slot 2 start and reload 0 0 0 1 83 Second slot

Slot end 1 0 0 0 83

Timeout 1 1 1 0 84 Inc. speed

Slot 3 start and reload 0 0 0 1 84 Third slot

continued � � �

230 Motor Applications

Table 13.1 continued

Sensor Timout Done Slot Speed
After . . . input flag flag flag register Comment

Slot end 1 0 0 0 84

Timeout 1 1 1 0 85

etc. Repeats
etc. until up to
etc.

Slot start and reload 0 0 0 1 XX Set speed

Slot end 1 0 0 0 XX

Timeout 1 1 1 0 XX + 1 Inc. speed

Slot start and reload 0 0 0 1 XX + 1

Slot end 1 0 0 0 XX + 1

Slot start and reload 0 0 0 1 XX Dec. speed

Slot end 1 0 0 0 XX

Timeout 1 1 1 0 XX + 1 Inc. speed

Slot start and reload 0 0 0 1 XX + 1

Slot end 1 0 0 0 XX + 1

Slot start and reload 0 0 0 1 XX Dec. speed

Slot end 1 0 0 0 XX

etc. Speed now stable
– repeat inc. and dec.

13.5.6 Hardware Testing

The correct function of the closed loop control program can be tested in the target system by
setting the binary input to 156 and checking the actual speed of the motor by measuring the
period of the sensor pulse on an oscilloscope; it should be 20 ms. The binary input can then be
varied, and the period should vary in proportion, within limits stated above. The transient and
start up response can be examined by stalling the motor, and studying the motor response as
it locks on to the target speed. A dummy load is also provided in series with the motor; when
it is switched in, the additional series resistance will reduce the motor in the current, hence
its speed. If the closed loop control is working, the drive should compensate and maintain the
speed of the motor by increasing the drive MSR.

13.5.7 Evaluation of Algorithm

Ideally, the PWM speed control should operate at a frequency above about 15 kHz; the program
CLM operates at only about 300Hz, because of the time required to sample the timer status
and sensor input, and to complete the software loop for one drive cycle, which uses a full 8-bit

Commercial Application 231

count (256). The frequency could be increased by reducing the total loop count to less than
256, but this will reduce the resolution of the control. Some compromise value could be arrived
at by calculation and experimentation, based on the required resolution.
The MOTA hardware provides for alternative implementations of closed loop control. RB0

can be optionally connected to the output from the motor shaft sensor, so that an RB0 interrupt
can be used to signal the arrival of a sensor pulse. Many PIC chips have more than one timer,
which would be useful in this application. The PWM signal could be generated using a hardware
timer, as well as the target sensor period. Some PICs have dedicated PWM outputs, which
would simplify the software, but would require the PWM interface to be correctly initialised.

13.6 Commercial Application

Attempting closed loop dynamic control using the PIC 16F84, which has only one timer and
one interrupt, illustrates its limitations, and why there is a range of more powerful processors
available in the PIC family. A commercial design for a similar system uses a PIC 17C42 running
at 16MHz, with a dedicated PWM output. It is designed for use in printers and plotters for
positioning the print or scan head quickly and precisely. A block diagram is shown in Fig. 13.9.
The motor is driven from a dedicated driver chip (LMD 18201) which requires only a single

PWM input. A 50% MSR gives zero output which corresponds to motor being stationary. The
motor can then be driven in either direction by varying the MSR above and below 50%. The
driver circuit incorporates a full ‘H-bridge’ driver chip, which can supply motor current in
either direction with minimal power consumption. The motor speed and position are monitored
by a shaft encoder which produces two pulse trains. The relative position of the pulses indicates
the direction of rotation of the motor. These are fed to a logic circuit which produces separate
count up and count down pulses which are counted by 16-bit counters in the PIC to allow
the current position of the motor shaft to be calculated. The control software is also far more
complex than our demonstration system, with nearly 2000 instructions.
The PIC 17C42 has a serial port which allows commands to the motor to be sent via a single

wire, and for the PIC to return information about the actual position, speed and so on, so that,

PIC
17C42

Rx
Serial port

Tx

CLKIN

PWM1

RTCC

TCLK3

Dir Out1

Out2

16R8
PLD

Count up

Count
down

16MHz

DC
motor

Shaft
encoder

E

LMD
18201

Commands

Status

Master
controller

PWM bridge driver

Feedback
encoder Microcontroller

Clock

Φ1

Φ2

Figure 13.9 Block diagram of servo control unit.

232 Motor Applications

Figure 13.10 PIC-based servo-control unit.

for instance, if the motor is stalled by a mechanical fault, the controller can detect the fault

condition. The hardware is shown in Fig. 13.10.

Summary

• A small DC motor under PIC control can be used to demonstrate a range of real-time

processes.

• The MOTA demonstration hardware allows motor control via a passive load bidirectional

FET bridge driver, with analogue and digital inputs.

• Open loop control can be implemented relatively simply using pulse counting for position

control and PWM for speed control.

• Closed loop control requires more complex algorithms which use pulse feedback to continu-

ously modify the drive output for position and speed control.

• A practical servo typically uses additional hardware, a more powerful microcontroller and

complex software for better performance.

Questions

1. Outline an open loop method of controlling the speed of a small DC motor, using a

microcontroller. Identify the main hardware components required.

2. Explain how a slotted wheel can be used to provide speed and position feedback from a

shaft to a microcontroller.

Commercial Application 233

3. Explain why closed loop control is necessary for accurate speed control of a DC motor.

4. Calculate the positional accuracy in degrees of the output shaft of robot arm drive with

a 90:1 gearbox, if a shaft encoder with 200 steps per revolution is attached to the motor

shaft. (Answer: 0.2��.

5. Describe two alternative methods of measuring the speed of a motor shaft using an opto-slot

detector with a crystal clocked microcontroller.

Activities

1. Construct the MOTA board using a method of your choice and devise a test schedule to

confirm the correct operation of the hardware prior to fitting the PIC chip.

2. Devise a program to rotate the MOTA board output by exactly 100 revs from its start

position. Evaluate the performance of the program in terms of speed of response, accuracy

and reliability. What are the characteristics of the motor which affect the performance?

3. Investigate the performance of the program CLS1 in terms of reliability, response time,

range of control (maximum and minimum speeds). Devise a method of loading the motor

to test the performance of the controller with varying loads (the speed should be held

constant within limits).

4. Modify CLS1 to read the input push buttons on the MOTA board to increase or decrease

the set speed.

5. Modify the program for the MOTA board to use the timer interrupt to signal time out.

Compare the performance of this alternative implementation with the program CLS1.

6. Modify the program for the MOTA board to use the RB0 interrupt to monitor the feedback

from the motor. Compare the performance of this alternative implementation with the

program CLS1.

7. Research and download the data sheet for a PIC chip which has analogue input/s, and
redesign the MOTA board and control program so that the motor speed can be accurately

controlled from an analogue input in the range 0–5 V.

8. Redesign the MOTA board circuit to use a full bridge motor driver IC instead of the dual

FET and passive bridge drive circuit.

ThisPageisIntentionallyLeftBlank

Part D
More Controllers

14 More PIC Microcontrollers

15 More PIC Applications and Devices

16 More Control Systems

ThisPageisIntentionallyLeftBlank

Chapter 14
More PIC Microcontrollers

14.1 Common Features of PIC Microcontrollers

14.2 Selecting a PIC

14.3 Advanced PIC Features

14.4 Serial Communications

The PIC 16F84 has been used as a reference device so far because its architecture and operation

are relatively simple compared with other PIC microcontrollers. The range of flash memory

PIC chips has now expanded such that alternative devices are now available which have more

features at a lower unit cost. This chapter will review these features so that the most suitable

device for a given application may be selected. Specifically, this means selecting the PIC chip

which has the required number and type of inputs and outputs, program memory capacity

sufficient for the application and so on, all at the minimum price.

We will continue to concentrate on PICs which have flash program memory, since these

are the best choice for learning about application development, prototyping and producing

one-off or low volume products. For larger production runs, OTP or mask programmed PICs

are available. The OTP devices can be programmed by the user or supplied pre-programmed if

the quantity justifies it, and the application program will not require any further modification.

The masked ROM device has the program built in during production, and would only be used

for high volume, mature products.

The main groups of PIC flash devices are shown in Table 14.1. They are divided into three

groups, with a different prefix number: the 12XXXX series are 8-pin miniature PICs, the

16XXXX group might be described as the standard series and the 18XXXX devices as the high

performance group. Their features are summarised in Table 14.1.

Full details of all these devices and the rest of the PIC range are provided at

www.microchip.com, from where the individual data sheets can be downloaded as PDF files.

14.1 Common Features of PIC Microcontrollers

All PIC microcontrollers use the same basic architecture and instruction set to provide a product

progression path from simple programs developed for the 12-series chip, through to the most

complex applications for the 18-series device. Of course, the common architecture is used in the

non-flash memory PICs as well. The architectural features may be compared by studying the

238 More PIC Microcontrollers

Table 14.1 PIC flash microcontrollers

12FXXX
• Low cost and small size
• 8-pin packages
• 6 I/O pins
• 33/35×12/14-bit instructions
• 1 k word program memory
• 20MHz clock
• 4MHz internal oscillator
• 8-bit and 16-bit timer
• Up to 4 analogue inputs*
• In-circuit programming and debugging*

16FXXX
• Mid-range cost and performance
• 14–40-pin packages
• 12–33 I/O pins
• 35×14-bit instructions
• 1–8 k word program memory
• 20MHz clock
• 4/8MHz internal oscillator*
• 2×8-bit and 1×16-bit timers*
• Up to 8 analogue inputs
• Serial communication ports, parallel slave port*
• 1/2 pulse width modulation outputs, capture & compare inputs*
• In-circuit programming and debugging*

18FXXX
• High performance
• 18–80-pin packages
• 13–68 I/O pins
• 58×16-bit instructions
• 2–64 k word program memory
• 40MHz clock
• 8/10MHz internal oscillator*
• 2–64 k program memory
• Up to 2×8-bit and 3×16-bit timers
• Up to 16 analogue inputs
• Serial communication ports, parallel slave port*
• Up to 14 pulse width modulation outputs, capture and compare inputs*
• CAN communication interface*
• In-circuit programming and debugging*

*Selected devices in the range

Common Features of PIC Microcontrollers 239

block diagram for each device found in its data sheet. The block diagram of the 16F84A can

be seen in Appendix A, Figure 1-1.

The common features of the PIC architecture are:

• Harvard architecture

• RISC instruction set

• flash program ROM with ISP

• RAM block including SFRs

• EEPROM non-volatile data memory

• single working register

• dedicated, non-writable stack

• power-up and watchdog timers

• multiple interrupt sources

• hardware timers

• sleep mode

• serial in-circuit programming

Harvard Architecture

In conventional processor systems, the instruction codes and associated operands have to be

transferred from memory using the same address and data bus as the system data, that is, the

data read in via inputs or generated by the processor. The PIC architecture has separate paths

for the instructions and the system data. The instruction fetch operation can therefore be carried

out at the same time as the results from the previous operation are stored. As a result, the

program executes faster at the same clock speed by carrying out these processes concurrently.

The overlapping of instruction fetch and execution stages is described as pipelining.

Risc Instruction Set

The PIC has a small number of instructions compared with a conventional CISC processor.

This has two main benefits – the instruction set is easier to learn and the code executes faster,

because the instruction decoding hardware is less complicated. The down side is that more

complex operations may have to be constructed from simpler ones, ending up taking longer to

execute. Overall, the RISC performance is frequently better because, in a typical application,

these complex instructions are not needed very often.

Flash Program Memory

Flash ROM is a great advance in memory technology which has developed over the last ten

years. Writable, but non-volatile, memory is essential in embedded systems to store the control

program. Previously, if erasable memory was required for development purposes, EPROM was

used, but this must be removed from the system for erasing under ultraviolet light. Battery-

backed RAM was an alternative, but, of course, batteries last only a limited time, and the

program can be lost. Flash ROM can be easily re-programmed many times, and in-circuit serial

programming (ISP) can be used to program the chip without the inconvenience and possible

damage caused by removing it from the circuit.

240 More PIC Microcontrollers

RAM and SFRs

The individual bits in the SFRs need to be read and written when initialising the chip or during

program operation. Because they are located in the same RAM block as the GPRs, they can be

accessed using the same instructions. This means that special instructions for control register

access are not needed, which helps to keep the instruction set small.

EEPROM Data Memory

This is very useful in applications where data read in at the ports or produced by the processor

needs to be stored in non-volatile memory. For example, in a keypad-operated electronic lock,

the lock code is entered by the user, and then must be retained to be checked against user

keypad input to release the lock. Data logging applications, where sampled input data may need

to be retained over a period of time, may also need to store the data while the power is off.

Working Register

Conventional processors tend to have a block of registers for storing current data. The Motorola

68000 processor, for example, has eight data registers. An architecture with only one working

register, used in conjunction with the RAM register block, reduces the overall number and

complexity of instructions required, as the options are reduced. This does mean, however, that

loading a register with a literal takes two instructions, as it has to be loaded into W first, then

into the register.

Stack

The stack size determines the number of subroutine or interrupt levels which can be used in

the application program. The 12-series chips have only a 2-level stack, the 16-series 8 levels,

and the 18-series 32 levels. This reflects the typical program complexity for each type. The

application programmer needs to be aware of this limitation, and balance the advantages of a

well-structured program using multiple subroutine levels, and the absolute limit imposed by the

stack size. Unlike some processors, the stack cannot be overwritten by a program instruction,

making it more secure.

System Timers

There is an array of features incorporated into the PIC microcontroller to ensure a smooth

start-up to the application program when power is applied or a reset generated. A power-on

reset is generated internally when the supply voltage has reached the required level. A power-on

timer then provides a delay to allow the power supplies to stabilise, and an oscillator start-up

timer provides a further delay to ensure that the clock is stable before program execution

begins. The watchdog timer is another standard feature which allows the chip to reset itself

automatically if the program execution fails to follow the normal sequence, thereby improving

overall reliability. Brown-out protection allows the chip to reset in an orderly fashion if the

power supply fails for a short period of time.

Interrupts

An interrupt is an internally or externally generated signal which forces the processor to suspend

the current operation and execute an interrupt service routine. The ISR thus has a higher priority

Common Features of PIC Microcontrollers 241

than the background process. PIC chips provide a variety of interrupt sources, for example, a

change on a selected input, or a hardware timer time-out. There is an interrupt priority system

available in the more advanced 18-series PICs; this allows the chip to be set up to ignore an

interrupt source if a more important one is already active. In conventional microprocessors,

such as the Motorola 68000, multiple interrupt vectors are available; that is, a different ISR

address can be specified for up to eight interrupt sources. This means that a different ISR for

each interrupt source can be specified. In the PIC, all interrupts have to be serviced via the

single interrupt vector, at address 004 in program memory. Therefore, to differentiate between

them, and to determine the action required, the ISR needs to check to relevant control register

flags to find out which interrupt source is active, before branching to the required routine. As

the number of peripheral devices increases, such as additional timers, serial ports and so on, the

number of potential interrupt sources increases, making interrupt servicing via a single vector

more complicated.

Hardware Timers

The number of hardware timers generally increases with the chip complexity. They are either

8-bit or 16-bit counters, with prescalers or post-scalers, which divide down the input or output

of the counter to extend its range. If we take the motor program in Chapter 13 as an example,

we can see how additional hardware timers would have been useful; the 20ms time interval

and the motor output cycle delay could both have been implemented as hardware operations,

while the sensor pulse monitoring could have used RB0 interrupt. This would have simplified

the control program significantly. Therefore a device with two hardware timers would have

been a better choice for this application.

Sleep Mode

This is a very useful feature for power saving and also terminating programs which do not

loop continuously. The processor shuts down when the instruction SLEEP is encountered, with

current consumed dropping to around 1�A. The device can then be woken up via an external

signal when required; the advantage in battery-powered applications is obvious. SLEEP can also

be used to terminate a program, so that program execution does not continue into unprogrammed

locations. These locations default to all ‘1’s, which generally corresponds to a valid instruction

code (ADDLW in 14-bit code, NOP in 16-bit code). If a program is not terminated with a

SLEEP or GOTO instruction, the program will carry on to the end of memory, the program

counter will roll over to zero, and the program will restart unexpectedly.

In-Circuit Programming

The PIC microcontrollers use a common program downloading system, which consists of

loading the program in serial form via one of the data pins when the chip is in programming

mode. The chip can be placed in a programming unit for downloading the application code, and

then transferred to the application board. Programming units usually have a ZIF socket which

is large enough to accommodate a range of PIC chips.

Alternatively, the chip can be programmed in circuit, if the application hardware is designed

for this option. This means that the chip can be left in circuit at all times, reducing the risk of

damage, and can be programmed after the circuit has been manufactured, and reprogrammed

at any time, via an on-board connector. This connector can be seen on the 16F877 temperature

controller board circuit diagram and hardware in Chapter 15.

242 More PIC Microcontrollers

14.2 Selecting a PIC

Each type of PIC microcontroller provides a different combination of features, so that the most
suitable can be selected for any given application. At the time of writing more than 140 are
available, and increasing all the time. Some of the main selection criteria are:

• number of I/O pins available

• program memory size

• program memory type (ROM, EPROM, Flash)

• EEPROM data memory

• timers (8-bit or 16-bit), CCP

• interrupt sources

• analogue inputs (8-bit or 10-bit)

• serial communication interfaces (USART, SPI, I2C, CAN)

• internal oscillator

• in-circuit debugging

• maximum clock speed

• package/footprint (DIP, SOIC, PLCC, QFP)

• price

When developing an embedded application, the hardware will generally be specified and
designed first. This will determine the number and type of inputs and outputs required. Simple
switches will require single digital input, while a keypad will require several. A temperature
sensor will need an analogue input, a motor will probably require a PWM output. Most systems
use some kind of status or information display, and type of display (status LEDs, seven-segment
LED or LCD) will determine the number of output pins needed to drive it. Serial communication
will often be used if the PIC is part of a larger system or is connected to a master controller.
When the hardware requirements have been established, the program can be developed using

MPLAB, and tested by simulation. The size of the program will then be known, so that chip
memory size can be specified. In addition, the size of the stack in the selected device must
be sufficient for the number of subroutine levels and interrupts; if not, the program can be
restructured or a different chip used. MPLAB can also be used for provisional chip selection,
since a specific device must be selected before the program is assembled.
We are assuming that flash memory PICs will be our first choice for experimental purposes,

but for commercial production, the memory type must be selected on the basis of minimum
cost for a given batch size. If overall size of the finished board is important, a surface mount
implementation may be needed.
When the design parameters such as I/O requirements, program memory size and so on have

been finally established, the most suitable device can be selected using the search facilities on
the manufacturer’s website. Summary information for selected PIC flash microcontrollers is
provided in Table 14.2, as a guide to the features available.

14.2.1 I/O Pins

This is probably the most important criterion for an embedded controller. The number and type
of inputs and outputs required should be clearly defined at an early stage in circuit design.
The grouping of the pins may also be important, as they are generally arranged as 8-bit ports,
with smaller chips having partial port implementations (e.g. Port A in the 16F84 = 5 bits).
If analogue inputs are required, these must be deducted from the digital I/O total, since they
share the same pins with digital I/O. The table shows that the number of I/O pins ranges from

Table 14.2 PIC flash microcontroller features

PIC Program File Timers Max. Internal In- CCP/
device Total I/O ROM RAM EEPROM Analogue 8 16 clock osc. circuit PWM Serial Relative
number pins pins words bytes bytes inputs bit bit (MHz) (MHz) debug modules comms cost

12F629 8 6 1k 64 128 – 1 + 1 20 4 � – – 1.02
12F675 8 6 1k 64 128 4 × 10-bit 1 + 1 20 4 � – – 1.26

16F627A 18 16 1k 224 128 – 2 + 1 20 4 – – UART 1.49
16F628A 18 16 2k 224 128 – 2 + 1 20 4 – 1 UART 1.70
16F630 14 12 1k 64 128 – 1 + 1 20 4 � – – 1.20
16F648A 18 16 4k 256 256 – 2 + 1 20 4 – – UART 1.83
16F676 14 12 1k 64 128 8 × 10-bit 1 + 1 20 4 � – UART 1.38

16F72 28 22 2k 128 – 4 × 8-bit 2 + 1 20 – – 1 – 2.10
16F73 28 22 4k 192 – 5 × 8-bit 2 + 1 20 – – 2 All 3.27
16F74 40 33 4k 192 – 8 × 8-bit 2 + 1 20 – – 2 All 3.97
16F76 28 22 8k 368 – 5 × 8-bit 2 + 1 20 – – 2 All 4.10
16F77 40 33 8k 368 8 × 8-bit 2 + 1 20 – – 2 All 4.58

16F818 18 16 1k 128 128 5 × 10-bit 2 + 1 20 8 � 1 I2C, SPI 1.71
16F819 18 16 2k 256 256 5 × 10-bit 2 + 1 20 8 � 1 I2C, SPI 1.71
16F84 18 13 1k 64 64 – 1 10 – – – – 4.39
16F84A 18 13 1k 64 64 – 1 20 – – – – 3.42
16F87 18 16 4k 398 256 – 2 + 1 20 8 � 1 All 2.26
16F88 18 16 4k 368 256 7 × 10-bit 2 + 1 20 8 � 1 All 2.41

16F873A 28 22 4k 192 128 5 × 10-bit 2 + 1 20 – � 2 All 3.98
16F874A 40 33 4k 192 128 8 × 10-bit 2 + 1 20 – � 2 All 4.35
16F876A 28 22 8k 256 368 5 × 10-bit 2 + 1 20 – � 2 All 4.28
16F877A 40 33 8k 256 368 8 × 10-bit 2 + 1 20 – � 2 All 4.68

18F1220 18 16 2k 256 256 7 × 10-bit 1 + 3 40 8 � 1 UART 2.78
18F2320 28 25 4k 512 256 10 × 10-bit 1 + 3 40 8 � 1 All 4.85
18F4320 40 36 4k 512 256 13 × 10-bit 1 + 3 40 8 � 2 All 5.29

18F6520 64 52 16k 2048 1024 12 × 10-bit 1 + 3 40 – � 5 All 6.52
18F8621 80 68 32k 3840 1024 16 × 8-bit 1 + 3 40 10 � 14 I2C, SPI 8.25
18F8720 80 68 64k 3840 1024 16 × 10-bit 1 + 3 40 – � 5 All 10.90

244 More PIC Microcontrollers

6 in the 8-pin chips to 68 in the 80-pin device. Most I/O pins have more than one function,

one of which can be selected during initialisation by setting up the relevant control register. If

no setup is performed for a particular pin, it will typically default to a digital input. Pins can

be re-configured within the program sequence to have a different function at different times.

If this is the case, the designer must ensure that the two functions do not interfere with each

other, in terms of both the hardware and software.

14.2.2 Program Memory

The specification of memory size can only be finalised after the software has been developed,

but an experienced application developer should be able to predict this requirement fairly early

on. If the program is developed in ‘C’ language, the memory size will be greater, because each

program statement can expand into several machine code instructions. In this case, an 18-series

device is likely to be the best choice, as the memory available is larger. Microchip supply a ‘C’

compiler for the 18XXX chips, and third party compilers are also available. For prototyping and

small production volumes, flash memory will be preferred. For intermediate volumes, where

the design is proven, OTP memory will reduce costs per unit. For high volume production, a

contract for mask programmed devices supplied by the manufacturer can be considered.

14.2.3 Data Memory

The file register RAM block tends to increase in size with the program memory size and chip

complexity. The number of variables and temporary data storage blocks required should be totalled

whentheprogramhasbeendeveloped,perhapsaddinganallowancefor futureexpansionorchanges

to the specification. If non-volatile data storage is needed, the EEPROMsizemust also be checked.

As can be seen in the table, RAM ranges from 64 to 3840 bytes in the flash PICs.

14.3 Advanced PIC Features

14.3.1 Timers and CCP

The timer capacity of the flash PICs ranges from only one 8-bit timer in the 16F84 to five in

some 18-series chips (2×8-bit plus 3×16-bit). Hardware timers should be used for most timing

and counting operations, because the processor can then carry on with some other process while

the timer process runs.

CCP stands for Capture/Compare/PWM. Capture mode provides input interval measurement

(Fig. 14.1). The value in a timer register is captured (stored) when an input changes; the time

between the timer start and input change can thus be measured. In the motor application, for

Count register

Capture register

Clock

Trigger
signal
from
input

Read captured value

Figure 14.1 Timer capture operation.

Advanced PIC Features 245

Count register

Comparator

Clock

Output
changes when
compare is true

Pre-load register

Write compare value

Figure 14.2 Timer compare operation.

example, the timer could be started when a pulse is received from the shaft sensor, and the time
captured when the next pulse arrives, giving the period of the shaft sensor pulse. An interrupt
can be enabled to signal this event.
Compare mode provides output interval generation (Fig. 14.2). A value is loaded into a

register which is then continuously compared with a timer register as it runs. When the register
values match, an output pin is toggled and an interrupt generated to signal the time-out event.
This is a convenient way to generate a timed interval, so that, for example, an output can be
switched a set time after an input has changed.
In PWM mode, preset values are loaded into two registers representing the mark and space

period of the PWM output required (Fig. 14.3). The timer value is then compared with the
mark register and the output toggled after the mark value is reached. The timer is then restarted
and compared with the space value as it runs, and the output toggled when the space value
matches. The process is repeated and the output from the flip-flop toggles after each mark and
space interval to generate a PWM output.

14.3.2 Analogue Inputs

Many PIC chips incorporate analogue inputs so that they can be used in control systems
with input sensors which produce a voltage, current or resistance change in response to an

Count register

Space comparator

Clock

Space register

Mark register

Mark comparator

Set

Flip
flop

Reset

Data bus

PWM
output

Load
mark

register
Data bus

Load
space

register

Figure 14.3 Pulse width modulation operation.

246 More PIC Microcontrollers

environmental variation. The temperature controller described in Chapter 15, for example,
is designed to accept inputs from temperature sensors which give an output change of
10mV per �C. The PIC then operates outputs which control the temperature in the target system.

Most PICs with this feature provide 10-bit conversion. This means that the input voltage
is converted to a 10-bit number, giving a resolution (accuracy) of 1 in 1024, or better than
0.1%. This is good enough for all but the most demanding applications. If such resolution
is not required, an 8-bit result can be obtained by ignoring the two extra bits. Multiple
analogue inputs are usually available; the PIC 16F877 in the temperature controller has
eight, although only four are used. Code for performing the analogue input conversion is
given in Program 15.1. Refer to the PIC 16F87X data sheet for details of analogue input
operation.
The analogue to digital conversion process is illustrated in Fig. 14.4. The port containing the

ADC inputs can be set up with a combination of analogue and digital inputs, or all analogue.
One of the analogue inputs is selected at a time for conversion, and the converter output is
stored in an ADC result register. The maximum and minimum voltage levels to be converted
can be set externally, or the internal supply voltages used. An external voltage reference of
2.56V gives a convenient 0.01V per bit conversion for an 8-bit result. A clock divider must be
set up to allow the minimum specified conversion time (about 20�s); for example, if the chip
clock is 20MHz, divide by 32 must be selected, and at 4MHz, divide by 8. The GO/DONE bit
in the control register is used to start a conversion; the same bit indicates when the conversion
is finished. The ADC works by successive approximation, details of which can be found in
standard electronics references.

Analogue
to

digital
converter

ADC
MUX

ADC control registers

Channel
select

bits

Analogue
inputs

External
reference
voltages

Select
external

or internal
reference

voltage

8/10-bit
output

Input
MUX

Set mix of
analogue
or digital

inputs

Data
bus

GO/
DONE

Divider

Clock rate
select

System
clock

Vss Vdd

Vadc

Internal reference voltages

Figure 14.4 Analogue to digital conversion block diagram.

Advanced PIC Features 247

14.3.3 Parallel Slave Port

The microcontroller may need to operate as part of a larger system, exchanging data with a master

controller, or other devices in the system, in the sameway that a peripheral interfacedeviceoperates

as a slave to themicroprocessor in a conventional system. An 8-bit port (Port D in the 16F877) can

therefore act as a parallel slave port, allowing 8-bit data exchange with a master controller, which

may be a conventional processor, a host computer or anothermicrocontroller (see Fig. 14.5). Three

bits of another port (E) provide a control signal interface, acting as active low read, write and chip

select inputs to the slave PIC. In addition, the slave may need to output an interrupt signal, which

can be generated in software at any convenient output pin.

14.3.4 Internal Oscillator

To save on external components, some PICs offer an internal oscillator option. It provides a

fixed 4MHz or 8MHz clock based on an internal RC oscillator. It is therefore not very accurate,

but its frequency can be trimmed using a calibration value pre-programmed into the chip by

the manufacturer. Even so, the frequency is only accurate to about 5%, so an external crystal

clock will still be needed to obtain accurate timing operations.

14.3.5 In-Circuit Debugging

By using an ICD hardware module instead of the usual programming interface, the serial

programming system can double up as a debugging tool. When the application program has

been downloaded, MPLAB can be used to monitor the program execution within the chip,

with the real hardware. The program will respond to actual inputs, and output to the hardware

devices. The program can be single stepped, breakpoints set and registers monitored, using the

same techniques as used in the software simulation; it can be then checked for correct operation

at full speed in the target hardware. When the program is fully debugged, the chip must be

reset to operate in normal run mode. So ICD is a very useful addition to the PIC debugging

toolset, and much cheaper than the alternative in-circuit emulation.

PIC
16F877

RD0
to
RD7

RE0
RE1
RE2

Rxx

Master
CPU

D0
to

D7

!RD
!WR

A0
to

Ax

INT

Address
decoder

!CS1
!CS2

etc

Parallel data × 8

Other ports
or memory

Figure 14.5 Parallel slave port connections.

248 More PIC Microcontrollers

The ICD system configuration is shown in Fig. 14.6(a). The ICD module sits in between

the host PC running MPLAB IDE and the application board with the PIC chip fitted. There

are two ways to connect to the chip, using a header and using an on-board ICP/D connector.

If no provision has been made on the application board for direct in-circuit programming and

debugging connections, an ICD header, which has the same pinout as the chip itself, can be

fitted to the PIC socket. The header connector is shown with its demo board in Fig. 14.6(b).

The PIC is then fitted into a corresponding socket on the header, which carries the ICP/D

connections to Port B. When debugging is complete, the chip can be switched to run mode and

plugged directly into the board.

A better option is to provide the ICP/D connection on the board, as this only requires a

suitable 6-way connector, a resistor to protect the !MCLR input. The connections required are

shown in Fig. 14.7. Vpp is the programming voltage supplied to the target chip by the ICD

module, and the program is downloaded via PGD. When switched to ICD mode, the same

connections allow the processor to be controlled from MPLAB, and register information to be

relayed back to the host to assist with debugging. The ICD system is shown connected to the

temperature controller board in Fig. 15.6.

Host
PC
+

MPLAB
IDE

ICD
module

Application
board

ICD
header

PIC
chip

(a)

Figure 14.6 In-circuit debugging system via header connection. (a) Block diagram; (b) ICD header
with demo board.

Advanced PIC Features 249

PIC

!MCLR

Vdd

Vss

RB7

RB6

RB3

6

5

4
3

2
1

ICD
module

Vpp

Vdd

Vss

PGD

PGC

PGM

RS232

+5 V

0 V

ICD
connector

22 k

PC
host

Figure 14.7 In-circuit programming and debugging on-board wiring.

14.3.6 Clock Speed

Clock speed is the main factor in the performance of any microprocessor system, and is critical

in some applications. For example, in the motor control example, the higher the clock speed, the

more precise the control can be, as the shaft speed can potentially be measured more accurately.

Most of the flash PICs currently available operate at up to 20MHz (12 and 16 series) or

40MHz (18 series). This gives an instruction cycle time of 200 ns or 100 ns (nanoseconds) and

an execution rate of 5 or 10 MIPs. All PICs use a fully static design which means that they

can operate down to zero frequency. The clock rate is limited by the time taken by the internal

signals to rise and fall, so correct performance is only guaranteed up to the maximum rated

speed. The maximum speed is also limited by power consumption and its heating effect.

Power consumption is generally proportional to clock speed in CMOS devices, since most

of the power is consumed when the component transistors switch on and off. This is illustrated

by the current consumption curve for the 16F84A found in the data sheet under electrical

characteristics, summarised in Fig. 14.8. Note that for operation at clock frequencies between

4 and 20MHz, high speed (HS) mode must be selected when programming the chip, and

below 4MHz crystal (XT) mode. The power consumption at high speed, especially if operating

in a small IC package, may necessitate additional cooling measures to keep a chip within

its temperature limits. A heat sink or even a fan, as found on the processor in a typical PC

motherboard design, can be fitted.

0

17

Power
(W)

1.0

HS modeXT mode

3.4

0.2

Current
(mA)

Clock frequency4 20

Figure 14.8 PIC 16F84A power consumption against clock rate.

250 More PIC Microcontrollers

14.3.7 Packaging

The standard package for integrated circuits is the plastic dual in-line (PDIP) chip, which has

two lateral rows of pins spaced at 0.1" intervals (Fig. 14.9(a)). The maximum number of pins

that can practically be accommodated in this type of package is 64, so other formats have been

adopted for larger chips. The plastic leaded chip carrier (PLCC) package has the pins arranged

around four sides of a square package, which is designed to fit in a recessed socket. The pin

grid array (PGA) has pins arranged in a grid covering one side of the package, with a flat

socket mounting.

Typically, the actual integrated circuit only occupies a small central portion of the DIP

package, so miniaturised packages are easily designed. Surface-mount components are now

increasingly used in commercial products, as chips become larger, circuits more complex, and

products themselves miniaturised. The pins of the ICs are not fitted through holes on the

board, but soldered onto the surface on flat pads. Surface-mount boards require very precise

manufacturing techniques, generally being produced on automatic assembly machines.

The small outline integrated circuit (SOIC, Fig. 14.9(b)) is a surface-mount DIL package

with a pin pitch of 0.05". The smaller shrink small outline plastic (SSOP, Fig. 14.9(c)) package

has a pin pitch of 0.026". Quad flat pack (QFP) is a square-surface-mount package for larger

chips, such as the 44-pin PIC 16F877, with pins on four sides.

Figure 14.9 18-pin packages. (a) Plastic dual in-line package (PDIP); (b) Small outline integrated
circuit (SOIC); (c) Shrink small outline package (SSOP).

Serial Communications 251

14.3.8 Price

Price is determined by the complexity of the chip, but also by the volume of production. As the
range is constantly updated, each design can be superseded by a chip with better features; as the
volume builds up, the new device becomes cheaper due to economies of scale in production,
and recovery of development costs. The older design may become relatively more expensive,
as well as having less features, before slipping into obsolescence.
For example, at the current time the guide price quoted for the original 16F84 is $4.39,

while the pin-compatible replacement, the 16F818, which has analogue inputs and other extra
features, is only $1.71. Therefore, while the older chip has been used as an example, because
it is less complicated, the reader should consider using the more recent chip in his or her own
designs, even if the new features are not used to the full. It does mean, however, that the data
sheet may be more difficult to understand, because it has to cover all the additional features.
The relative cost for each chip shown in Table 14.2 is based on the ‘budgetary price’ quoted

by the manufacturer at the time of writing. The figures allow relative costs to be compared,
while the actual price will obviously increase in time.

14.4 Serial Communications

Serial communication ports allow the PIC to communicate with other devices, or exchange data
with a master controller, via a single connection. There are several protocols available:

• USART (universal synchronous/asynchronous receiver/transmitter)

• SPI (serial peripheral interface)

• I2C (inter-integrated circuit)

• CAN (controller area network)

14.4.1 USART

RS232 is a long established asynchronous communication protocol used at the serial (COM)
port of the PC. It is low speed, but is easy to understand and has been used as the standard
serial communication method between computers, terminals and other systems. It is used to
download programs to the MPSTART programmer module. ‘Asynchronous’ means that no
separate clock signal is provided with the data, so correct reception of data relies on the sender
and receiver operating at the same speed. Serial data is sent and received as individual bytes
using a pair of shift registers (Fig. 14.10(a)). After each bit of the data is shifted out of the
send register onto the line, it must be shifted into the receiver register at the same time. In
other words, the receiver must sample the line during the time that the bit is present. It must
then take the next sample after a specified interval. The ‘baud rate’ sets this time interval; at
192000 bits per second, the time interval is about 50�s. The sender and receiver must be set
up to operate at the same baud rate; there are a set of standard rates of between 300 and 57600
bits per second. The signal is illustrated in Fig. 14.10(b). The line is high when inactive; the
start of a byte is indicated by the falling edge of a start bit. The receiver then samples the line
at the required interval to read each bit, and is re-triggered for each byte.
When the USART is operated in asynchronous mode (Fig. 14.11), there is a separate data

path for send (TX) and receive (RX), which are symmetrical in operation. One byte of data
is transmitted at a time down a serial line, with start, stop and optional error check bits. In
synchronous mode, the TX pin is used instead to carry a clock (CK) signal, which is sent with

252 More PIC Microcontrollers

xxx10001 1101xxxx
Serial data line

Parallel load Parallel read
Send
clock Receive

clock

Shift out

Idle Start
bit

Stop
bit /s

Idle

1 0 0 0 1 0

Data

Sample data line

1 1

(a)

(b)

Figure 14.10 Serial data transfer. (a) Shift register operation; (b) Serial data signal.

Host

Transmit data, TXD

Receive data, RXD

Peripheral

RXD

TXD

Figure 14.11 USART asynchronous mode connections.

the data to control the receiver, making the process more reliable. In this mode, each device
can still send and receive, but only one at a time.
The RS232 type signal data signal produced by the PIC USART is output at TTL levels.

Other terminals, such as the PC, will produce a signal which is transmitted at a voltage up to
around +/− 24V to allow the signal to travel further on the line (up to about 100m). If the
PIC is to communicate with such a terminal, the signal must be passed through a line driver
which will boost the voltage and also shift the level as required.

14.4.2 SPI

The SPI system uses three pins:

• serial data out (SDO)

• serial data in (SDI)

• serial clock (SCK)

It is a single master, multi-slave system using hardware slave selection (Fig. 14.12). To
exchange data with a slave, the master selects it by taking the slave select input low (!SS).
Synchronous 8-bit data is then exchanged via SDI or SDO as required, with a clock pulse to
strobe in each bit to the destination register. Due to the hardware selection requirements, this
system is most suitable for communication between devices on the same board. Data can be
transmitted and received at the same time, at a clock rate of up to 5MHz with a 20MHz chip
clock.

Serial Communications 253

Master

Serial data out, SDO
Serial data in, SDI
Serial clock, SCK

Slave select
Outputs

SS3
etc

Slave 1

SDO
SDI
SCK

!SS

Slave 2

SDO
SDI
SCK

!SS

7 6 5 4 3 2 1 0

Data bits

SDO/SDI

SCK

SS1
SS2

(a)

(b)

Figure 14.12 Serial peripheral interface (SPI). (a) SPI connections; (b) SPI signals.

14.4.3 I2C

The I2C system uses two pins:

• serial data (SDA)

• serial clock (SCL)

This system also uses synchronous master/slave communication, but with a software
addressing system (Fig. 14.13). As in a network, the destination address for transmitted data in
a multi-slave system is transmitted on the same line (SDA) prior to the data. A seven- or ten-bit
address can be used (up to 1023 slaves), which must be programmed into an address register in
each slave. The clock can operate at up to 1MHz. This system is suitable for communication
between separate microcontroller boards, since no slave selection hardware connections are
needed. The hardware is simpler, but the software is more complex. Note that in the hardware
diagram, the lines are pulled up to +5V, giving active low, wired-OR operation on the serial
bus and clock line.

14.4.4 CAN

The CAN system uses two pins:

• CANTX (Transmit)

• CANRX (Receive)

The CAN system (Fig. 14.14) is designed for transmitting signals in electrically noisy
environments, such as motor vehicle control, using differential current drivers. It is only
available in selected high performance PIC 18-series devices. A more complete description and

254 More PIC Microcontrollers

Master Slave1 Slave2+5 V

SDA

SCL

7 6 5 4 3 2 1 0SDA

SCL

Acknowledge
Address/data bits

Start

(a)

(b)

Figure 14.13 Inter-IC bus (I2C). (a) I2C connections; (b) I2C signals.

Electronic control
unit ECU1

TX RX

ECU2

TX RX

CAN_H

CAN_L

Actuators

Sensors

Figure 14.14 CAN bus system.

information for setting up these serial communication interfaces is provided in the PIC 16F87X,

and other, PIC data sheets.

Summary

• The PIC family of microcontrollers share a common core architecture and instruction set.

The 18XXXX group of high power MCUs have an enhanced architecture and instruction set.

• All PICs are designed with separate program and data busses, a reduced instruction set and

two-stage pipelining to improve performance.

• To select a device for a given application, the number of I/O pins, the program memory

type and size, and special I/O requirements, such as analogue input and PWM output, must

be established.

Serial Communications 255

• In-circuit programming is a common feature, with in-circuit debugging in selected devices.

• A range of serial bus communication interfaces is available in selected chips, as well as a
parallel bus for operation within a master/slave system.

Questions

1. Summarise the differences between the PIC 12-, 16- and 18-series of microcontrollers.

2. Describe the features in the PIC chip which help to ensure that the program starts reliably.

3. State two advantages of in-circuit serial programming.

4. From the table of PIC flash microcontrollers, name (a) a device which has eight analogue
inputs in a package with fewer than 18 pins, and (b) another device which could control
10 PWM motor outputs, runs at 40 MHz and can be programmed in ‘C’.

5. What is the minimum time required to read four analogue inputs?

6. State two factors that limit the clock speed in a microcontroller.

7. Describe the essential difference between SPI and I2C addressing. Which has more complex
hardware requirements?

Activities

1. Download the data sheet and print the summary page for the PICs 12F675, 16F818 and
18F8720. Summarise the features and suggest a typical application, for each device.

2. A robot has five motors which are PWM driven with an analogue position sensor on each
axis. Select the cheapest PIC chip from Table 14.2 which could be used as a controller for
the robot positioning system. Download the data sheet and draw a block diagram for the
system, identifying the pins which should be connected to the motors and sensors.

3. Sketch a block diagram for an alternative implementation of the robot controller in Activity
2 using a separate controller for each axis connected to a master SPI controller. Select
the cheapest suitable chip for the slave controllers. If the pot on one axis rotates through
300 degrees, calculate the smallest movement which can be detected by the controller, using
a 10-bit conversion. Assume the sensor pot is attached directly to the robot axis. Suggest
an advantage of the master–slave system over the single controller solution proposed in
Activity 2.

Answers

Question 5. 4×20= 80�s

Activity 3. 300/1024= 0�3�

Chapter 15
More PIC Applications and Devices

15.1 16F877 Application

15.2 16F818 Application

15.3 12F675 Application

15.4 18F452 Application

In the previous chapter, the features of the three main groups of PIC flash microcontrollers have

been outlined. The standard group (16FXXX) provides an intermediate range of features, with

between 13 and 33 I/O pins and 1k–8k of program memory. The miniature group (12FXXX)

of 8-pin chips have six I/O pins and 1k instructions. The high performance group (18FXXX)

provides up to 64k program words and 68 I/O pins. In this chapter, an application for the

16F877 will be described in some detail, and how similar applications could be implemented

using a range of other devices.

15.1 16F877 Application

The 16F877 is at the top of the range in this group, and will therefore be used to illustrate

the range of features available within the 16 series, which have already been described in

Chapter 14. Other chips in this group have different combinations of these features; the intention

is to help the reader to make the best choice of chip for any given application.

The temperature controller described here uses most of the available I/O provided, including

analogue inputs. The 8k memory should be sufficient for most application programs which

might be developed for this hardware. A demonstration program is provided which will exercise

the hardware for test purposes, but it will be left to the reader to develop a fully functional

application.

15.1.1 Temperature Controller System

A temperature controller is required to control a system such as a greenhouse where the

temperature must be kept within set limits (0 – 50 �C) by a heating and ventilation system

(Fig. 15.1).

The unit will be programmed to accept a maximum and minimum temperature, or a set

temperature and operating range. The system operates on the average temperature reading from

16F877 Application 257

Controller

Heater

Fan

Temp. sensors

User input
Max. temp.
Min. temp.

Display
Max. temp.
Min. temp.

Running temp.

Vent

Figure 15.1 Temperature control system.

Table 15.1 Temperature controller function table

Measured temp. Heater Vent Fan Action

Temp. ≪ Min. ON OFF ON Forced heating

Temp. < Min. ON OFF OFF Heating

Min. < Temp. < Max. OFF OFF OFF Correct Temp.

Temp. > Max. OFF ON OFF Cooling

Temp. ≫ Max. OFF ON ON Forced cooling

four sensors to give a more accurate representation of the overall temperature in the enclosure.

Using more than one temperature sensor also allows the system to tolerate a fault in one sensor,

if the application software includes a check to see if one sensor is out of range. The temperature

is maintained by a switched heater, switched vent and a fan which can be speed-controlled.

The system should operate as specified in Table 15.1. The fan is fitted to the heater, so that it

can be used for forced heating or cooling, depending on whether the heater is on. It needs to

be connected to a PWM output on the controller if the rate of forced heating and cooling is to

be varied. A demonstration system was constructed, where the heater was represented by a pair

of filament lamps and the fan by a 5V CPU fan. The temperature sensors were standard LM35

devices which have a built-in amplifier which outputs 10mV per �C. Figure 15.2 shows the

interfacing requirements for the application. The temperature sensor readings can be averaged,

or processed with a weighting factor for each, to give a representative value for the measured

temperature. A heater is then controlled via a suitable interface. A relay can be used if on/off

control is sufficient. If proportional control is required, a PWM output would be required. In

the hardware design provided here, the heater and vent interfaces are implemented as normally

open switched relays, so that an external power supply can be used. The fan output demonstrates

the alternative solid state interface, using a general purpose power FET. This would allow

proportional control, but the external circuit must be operated at 5V. For PWM control, the

FET output would have to be re-allocated to one of the PWM outputs on the PIC 16F877.

258 More PIC Applications and Devices

MCU

10 mV per °C

2.56 V

4-row outputs
3-column inputs

Seven-segments

Temp.
sensor × 4

Test
inputs × 4

ADC
reference

12-button
keypad

2-digit
Seven-segment

LED display

Heater relay
interface

Vent relay
interface

Fan FET
interface

4 MHz
XT clock

ICP/D
interface

Buzzer

2-digit select

Figure 15.2 Temperature controller interfacing.

15.1.2 I/O Allocation

The I/O functions provided by the PIC 16F877 are detailed in Table 15.2. These were then

mapped against the requirements of the application, and the most convenient grouping decided,

giving the I/O allocation in Table 15.3.

Table 15.2 16F877 pin functions

Pin label Function

Port A (6 bits)

RA0/AN0 Digital I/O or analogue input 0
RA1/AN1 Digital I/O or analogue input 1
RA2/AN2/Vref− Digital I/O or analogue input 2 or positive reference voltage for ADC
RA3/AN3/Vref+ Digital I/O or analogue input 0 or negative reference voltage for ADC
RA4/T0CKI Digital I/O or input to timer 0
RA5/ AN4/SS Digital I/O or analogue input 0 or slave select input (SPI mode)

Port B (8 bits)

RB0/INT Digital I/O or external interrupt input
RB1 Digital I/O
RB2 Digital I/O
RB3/PGM Digital I/O or select serial programming mode
RB4 Digital I/O (interrupt on change)
RB5 Digital I/O (interrupt on change)

16F877 Application 259

RB6/PGC Digital I/O or in-circuit debugger or serial programming clock input
(interrupt on change)

RB7/PGD Digital I/O or in-circuit debugger or serial programming data input
(interrupt on change)

Port C (8 bits)

RC0/T1OSO/T1CKI Digital I/O or Timer 1 oscillator output or Timer 1 clock input
RC1/T1OSI/CCP2 Digital I/O or Timer 1 oscillator input or Capture 2 input or Compare 2

output or PWM2 output
RC2/CCP1 Digital I/O or Capture 1 input or Compare 1 output or PWM1 output
RC3/SCK/SCL Digital I/O or Synchronous serial clock input or output in SPI and I2C

modes
RC4/SDI/SDA Digital I/O or SPI data input or I2C data I/O
RC5/SDO Digital I/O or SPI data output
RC6/TX/CK Digital I/O or USART asynchronous transmit or USART synchronous

clock I/O
RC7/RX/DT Digital I/O or USART asynchronous receive or USART synchronous

data I/O

Port D (8 bits)

RD0/PSP0 Digital I/O or parallel slave port bit 0
RD1/PSP1 Digital I/O or parallel slave port bit 1
RD2/PSP2 Digital I/O or parallel slave port bit 2
RD3/PSP3 Digital I/O or parallel slave port bit 3
RD4/PSP4 Digital I/O or parallel slave port bit 4
RD5/PSP5 Digital I/O or parallel slave port bit 5
RD6/PSP6 Digital I/O or parallel slave port bit 6
RD7/PSP7 Digital I/O or parallel slave port bit 7

Port E (3 bits)

RE0/RD/AN5 Digital I/O or PSP read select or analogue input 5
RE1/WR/AN6 Digital I/O or PSP write select or analogue input 6
RE2/CS/AN7 Digital I/O or PSP chip select or analogue input 7

The interfacing for this application is typical of that required for simple control systems using

microcontrollers. Fortunately, this application does not need any analogue signal conditioning

on the input side, as the temperature sensors can be connected directly to the PIC. Other

references on interfacing will cover the range of design techniques needed for the most common

sensors and output devices.

15.1.3 Temperature Controller Circuit Description

Figure 15.3 shows the circuit for the temperature controller. Each section of the external circuits

can be described separately.

260 More PIC Applications and Devices

Table 15.3 Temperature controller I/O allocation

Device Function 16F877 Pin Initialisation

Temperature 10 mV per �C RA0, RA1, RA2, RA5 AN0, AN1, AN2,
sensors 0–512 mV=0–51.2 �C AN4

ADC reference 2.048 V RA3 VREF+
voltage

Heater Switched output RE0 Digital output

Vent Switched output RE1 Digital output

Fan Switched output RE2 Digital output

4 X 3 keypad Read column RD3, RD4, RD5, RD6 Digital output
Scan row RD0, RD1, RD2 Digital input

2 X 7-segment Segments RC1–RC 7 Digital output
display Digit select RB1, RB2 Digital output

Buzzer Audio alarm RB0 Digital output

ICP/D interface Program & debug RB3, RB6, RB7 N/A

Analogue Inputs

The four temperature sensors are allocated to four of the eight analogue inputs available on the
chip. In the demo system, standard sensors with an output of 10mV per �C were used (0 �C =
0mV). The controller is designed to operate at up to 50 �C, at which temperature the sensor
output is 500mV. This relatively low voltage is acceptable if the sensors are not connected on
long leads, which could pick up electrical noise. For more remote operation, a DC amplifier
should be used at the sensor end of the connection to increase the voltage to, say, 5.00V at
50 �C. Alternatively, or in addition, screened leads could be used. The inputs are protected by a
low pass RC filter; the input impedance at the ADC is high enough for this to have negligible
effect on the input voltage.
The ADC normally operates at 10-bit resolution, giving output values 0–1024. It needs

reference voltages to set the maximum and minimum values for the input conversion. These
can be provided internally as Vdd and Vss (supply values), but Vdd does not give a convenient
conversion factor. Therefore, an external reference value is provided from a 2.7V zener diode
and potential divider, giving Vref+ which is adjusted to 2.048V. This then gives a conversion
factor of 2048/1024 = 2mV per bit. To simplify the software, and to cover the correct range,
only the low eight bits of the ADC result will be used, with a maximum value of 255. At
50 �C, the input will be 500mV/2mV = 250, giving a resolution of 0.2 �C per bit. For test
purposes, a set of four on-board pots are provided, so that input voltages in this range can be
input manually, to check the operation of the software without having to heat and cool the
target system. These can be switched in and out as required via a bank of DIP switches.

Outputs

Two types of output are provided, relay and FET. The relay gives a switched output that is
isolated (electrically separated) from the controller. The external circuit operates with a separate

Figure 15.3 16F877 temperature controller circuit diagram.

262 More PIC Applications and Devices

supply, so the load (heater in this case) can be powered from a high-voltage supply if necessary.
The relay also provides a high off resistance (an air gap). The FET interface, on the other hand,
is more reliable, as it is solid state. The problem is that the load has to operate from the same
supply as the FET, the 5V board supply. It also does not provide electrical isolation between
the controller and the load, unless an opto-isolator is included between the FET and the MCU.
However, the FET can be switched at high frequency, while the relay cannot. The outputs
include an on-board LED to indicate their status, in case the state of the outputs cannot be seen
or are not connected.

Keypad

The 12-button keypad allows the user to input the required temperature and other operating
parameters as required by the application program. The target temperature would typically be
input as a 2-digit number. It may also be desirable to input upper and lower limits, alarm levels
and so on. These should be displayed as they are entered, to ensure that the correct figures are
stored. The keypad is simply a set of switches connected in a row and column arrangement (see
Chapter 12) and accessed by a scanning routine. If the row inputs (A, B, C, D) are all set high
initially, and no button is pressed, all the column outputs (1, 2, 3) will be high (pulled up to 5V).
If a ‘0’ is output on each row in turn, and a button pressed, that ‘0’ will appear at the column
output, and can be read in to the PIC. The combination of active row and column identifies the
key. The demonstration program (Program 15.1) includes a simple keypad scanning routine.

Display

A seven-segment display is used as it is relatively easy to drive, compared with a liquid crystal
display, and is self-illuminating. The decoding process has been covered in Chapter 12, where
a code to illuminate the segments to display digits 0–9 is looked up in a program data table. In
this case, two digits are required, but they can both be operated from the same set of outputs by
multiplexing. The digits are switched on alternately via Q1 and Q2; because they are switched
too fast for the eye to perceive, they appear to be on at the same time, albeit at reduced brightness.

Other Circuit Elements

A buzzer is fitted to provide an audible alarm output. This can be used to signal system failure,
temperature too low for too long and so on. Audible feedback from keystrokes is also desirable.
A 4MHz clock is used to give a convenient instruction execution time, although no timing
critical operations are required. In the context of this circuit, cost saving on clock components
would be insignificant. A manual reset is provided, so that the program can be restarted without
powering down. This will be useful for testing as well as in normal operation. In-circuit
programming and debugging are provided for via the ICD connector. The ICD module must
be connected between the host PC and the application board. MPLAB IDE can then be used
for testing the program in software initially, and then finally in ICD mode (see Chapter 14).

15.1.4 Hardware Development

The circuit was developed using Labcenter™ ISIS schematic capture software, which provides
interactive components for circuit testing, and integrated software and hardware testing. When
the circuit had been tested by interactive simulation, a stripboard implementation was devised
(Fig. 15.4).

16F877 Application 263

1

Q5
D6

Relay 1

Q3

D4

Relay 2

Q4

D5

8 × 220 R

2 × Seven-
segment

display

4 × 10 k
Pots

×4
DIP
switch

Push
button

×41 nF

PIC
16F877

×6 SIL IDC
connector

Buzzer
under
3 × 4
keypad

Q1, Q2

Relay outputs
FET

output

Temperature sensor inputs

+5 V5 V
PSU

Test input pots

Figure 15.4 Stripboard layout for TEMPCON board.

A demo target system was then constructed, comprising two filament lamps as the heaters,

operating from a high current 5V supply, controlled by the relay output on the application

board. A 5V CPU fan was fitted as the cooling element, and the temperature sensors were

arranged symmetrically inside the enclosure. The wiring of the target hardware is shown in

Fig. 15.5. Note that there was a sensor output on the fan which could be used to monitor the

actual fan speed, if a suitable interface were designed to convert the fan sensor pulse to TTL

levels. The vent was not physically implemented at this stage.

264 More PIC Applications and Devices

Sensor 2 output (0–512 mV)

Heater +5 V (1A)

Sensor 1 output (0–512 mV)

0 V

Fan sensor output

Fan control (0 V = On)

+5 V (100 mA)
Sensor 3 output (0–512 mV)

Heater 0 V
Sensor 4 output (0–512 mV)

Temp. sensor 1 Temp. sensor 2

Temp. sensor 3 Temp. sensor 4

Heater 1

Heater 2

FAN

Figure 15.5 Greenhouse simulator wiring.

The photo of the prototype system (Fig. 15.6) shows the simulator at the right of the picture,

with the ICD module (enclosed in ABS box), which is connected to ICD input of the TEMPCON

board. 5V power supplies and a host PC would complete the system.

When final hardware testing was completed, an application board was created using Labcenter

ARES™ PCB layout software, shown in Fig. 15.7. This incorporated an on-board +5V supply

for operation from a mains adapter.

15.1.5 Temperature Controller Test Program

Program 15.1 was written to exercise the hardware and to help get the reader started in

developing applications for the TEMPCON hardware.

The program will read in the analogue inputs and display the raw data on the displays. An

apparently random pattern results, which changes if the analogue inputs (test pots) are varied,

indicating that the hardware input and display interfaces are working. Pressing a key on the

keypad will select an analogue input for display; key ‘1’ for input 1, and so on to ‘4’, then

repeating for keys 5–8. Key 9 will enable the buzzer test, while ‘*’, ‘0’ and ‘#’ will operate the

heater, fan and vent, respectively. A full header has been included with as much information

as possible; details of target system, program description, register initialisation, port allocation

and so on. The ports and analogue control registers have been initialised using bank selection,

as recommended.

16F877 Application 265

Figure 15.6 TEMPCON system. (a) Stripboard version of temperature controller board;
(b) Temperature controller system with ICD module and dummy load.

266 More PIC Applications and Devices

Figure 15.7 Temperature controller board.

Program 15.1 Test program for TEMPCON board

;***
; Source File: CON0.ASM
; Design & Code: M Bates
; Date: 29-6-02
; Version: 1.0
; Customer: HCAT
;
; Target Hardware: 16F877 Controller Board (TEMPCON Board)
; Design & Layout: M Bates
; ISIS Design File: CON0.DSN
; Layout: Stripboard prototype
;
; Development System: MPLAB ICD Evaluation kit
; MPLAB IDE Ver 5.30.00
; Assembler: PICSTART Plus 2.40.00
;
;***
;
; Test program for PIC877 Controller Board using ICD system
; Use with ISIS CON0.DSN for simulation testing
;
; Circuit description:
; PIC 16F877 flash microcontroller gets 4 analogue inputs from temp
; sensors (or test input pots) to control Heater, Vent and Fan in a
; target system such as a greenhouse. Target temp will be set up
; using keypad input and displayed on 2-digit multiplexed LED display.
; Test program:
; Checks all inputs and outputs for correct hardware operation.
; - Press keypad buttons 1-4 to display raw data from input pots

16F877 Application 267

; - Buttons 5-8 ditto
; - Button 9 to sound buzzer
; - Button * to operate HEATER output
; - Button 0 to operate VENT output
; - Button # to operate FAN output
;
; PROGRAMMING OPTIONS **
;
; When programming PIC 16F877 in ICD mode, select:
;
; XT clock mode (4MHz, 1us per instruction)
; Power-up timer enabled
; Watchdog timer disabled
; Code Protection off
;
; I/O ALLOCATION **
;
; INPUTS..
;
; Analogue temp sensors AN0 - AN3 (0 - 5V)
; Keypad column detect RD0 - RD2 = 0

; OUTPUTS...
;
; Buzzer RB0 = toggle
; Keypad row select RD3 - RD6 = 0
; 7-segment display Select lo digit RB1 = 1
; Select hi digit RB2 = 1
; Segments RC1 - RC7 = 0
; Relay interfaces Heater RE0 = 1
; Vent RE1 = 1
; FET interface Fan RE2 = 1
;
; PORT DATA DIRECTION CODES REQUIRED
;
; TRISA = 11111111
; TRISB = 11111000
; TRISC = 00000000
; TRISD = 00000111
; TRISE = 00000000
;
; RB3, RB6, RB7 reserved for ICD operation
;
; ADC SETUP **
;
; ADCON0 Bits 76 01 = A/Dclock = f/8)
; Bits 543 Channel Select (AN0 - AN7)
; Bit 2 Go = 1 / Done = 0
; Bit 0 A/D module enable = 1
;
; ADCON0 = 01xxx001 depending on channel required
;
; ADCON1 Bit 7 0 = left justify result in ADRESH/ADRESL
; Bits 3210 0010 = RA0-RA5 analogue, RE0-RE2 digital
;
; ADCON1 = 00000010 continued ...

268 More PIC Applications and Devices

; ASSEMBLER DIRECTIVES **
;
; Create list file and select processor:

list p = 16f877
;
; Include file containing register labels:

include "p16f877.inc"
;
count EQU 020 ; assign GPR1 for counter
;
; Set origin at address 000:

org 0x000
;
; START PROGRAM ***

nop ; No op. required at 000 for ICD mode

; Initialise control registers

banksel TRISA ; Select DDR resgister bank 1
movlw b’11111000’ ; Setup buzzer and display digit

; select..
movwf TRISB ; ..as outputs
clrf TRISC ; Setup 7-segment driver port as outputs
movlw b’00000111’ ; Setup keyboard port for..
movwf TRISD ; .. row outputs and column inputs
clrf TRISE ; Setup relay port as outputs

; Setup ADC ...

banksel ADCON1 ; Select register bank 1
movlw b’00000010’ ; Set A/D mode left justify,4 channels
movwf ADCON1 ; and write A/D control word

banksel ADCON0 ; Select register bank 0
movlw b’01000001’ ; Set A/D frequency Fosc/8, select AN0
movwf ADCON0 ; and write A/D control word

; Initialise outputs ..

banksel PORTA ; select port data register bank 0
clrf PORTE ; switch off all outputs
goto start ; jump over subroutines to main loop

; Subroutine to wait about 0.8 ms

del8 clrf count ; Load time delay of 256 × 3=768 us
again decfsz count ; Decrement and test counter

goto again ; until zero
return ;

; Subroutine to get analogue input

; Wait 20us ADC aquisition settling time ..

getAD movlw 007 ; Load time delay of 7 × 3=21 us
movwf count ; Load counter

16F877 Application 269

down decfsz count ; Decrement and test counter
goto down ; until zero (3us per loop)

; Get analogue input ..

bsf ADCON0, GO ; Start A/D conversion
wait btfsc ADCON0,GO ; Wait for conversion to complete

goto wait ; by testing GO/DONE bit
return ; from subroutine with result in

; ADRESH

; Subroutines to process keys

proc1 movlw b’01000001’ ; Select analogue channel 1
movwf ADCON0 ; and
call getAD ; and get analogue input
return ; for next key

proc2 movlw b’01001001’ ; Select analogue channel 2
movwf ADCON0 ; and
call getAD ; and get analogue input
return ; for next key

proc3 movlw b’01010001’ ; Select analogue channel 3
movwf ADCON0 ; and
call getAD ; and get analogue input
return ; for next key

proc4 movlw b’01011001’ ; Select analogue channel 4
movwf ADCON0 ; and
call getAD ; and get analogue input
return ; for next key

proc5 movlw b’01000001’ ; Select analogue channel 1
movwf ADCON0 ; and
call getAD ; and get analogue input
return ; for next key

proc6 movlw b’01001001’ ; Select analogue channel 2
movwf ADCON0 ; and
call getAD ; and get analogue input
return ; for next key

proc7 movlw b’01010001’ ; Select analogue channel 3
movwf ADCON0 ; and
call getAD ; and get analogue input
return ; for next key

proc8 movlw b’01011001’ ; Select analogue channel 4
movwf ADCON0 ; and
call getAD ; and get analogue input
return ; for next key

proc9 bsf PORTB,0 ; Toggle buzzer on
call del8 ; delay about 0.8ms
bcf PORTB,0 ; Toggle buzzer off
call del8 ; delay about 0.8ms
return ; for next key

continued ...

270 More PIC Applications and Devices

procs bsf PORTE,0 ; switch on heater output
return ;

proc0 bsf PORTE,1 ; switch on vent output
return ;

proch bsf PORTE,2 ; switch on fan output
return ;

; Routine to scan keyboard ..

scan movlw 0FF ; Deselect...
movwf PORTD ; ...all rows on keypad

; scan row A of keypad

bcf PORTD,3 ; select row A of keypad

btfsc PORTD,0 ; test key 1
goto key2 ; next if not pressed
call proc1 ; process key 1

key2 btfsc PORTD,1 ; test key 2
goto key3 ; next if not pressed
call proc2 ; process key 2

key3 btfsc PORTD,2 ; test key 2
goto key4 ; next if not pressed
call proc3 ; process key 3

; scan row B of keypad

key4 bsf PORTD,3 ; deselect row A
bcf PORTD,4 ; select row B

btfsc PORTD,0 ; test key 4
goto key5 ; next if not pressed
call proc4 ; process key 4

key5 btfsc PORTD,1 ; test key 5
goto key6 ; next if not pressed
call proc5 ; process key 5

key6 btfsc PORTD,2 ; test key 6
goto key7 ; next if not pressed
call proc6 ; process key 6

; scan row C of keypad

key7 bsf PORTD,4 ; deselect row B
bcf PORTD,5 ; select row C

btfsc PORTD,0 ; test key 4
goto key8 ; next if not pressed
call proc7 ; process key 4

16F877 Application 271

key8 btfsc PORTD,1 ; test key 5
goto key9 ; next if not pressed
call proc8 ; process key 2

key9 btfsc PORTD,2 ; test key 2
goto keys ; next if not pressed
call proc9 ; process key 3

; scan row D of keypad

keys bsf PORTD,5 ; deselect row C
bcf PORTD,6 ; select row D

btfsc PORTD,0 ; test key *
goto key0 ; next if not pressed
call procs ; process key *

key0 btfsc PORTD,1 ; test key 0
goto keyh ; next if not pressed
call proc0 ; process key 0

keyh btfsc PORTD,2 ; test key #
goto done ; next if not pressed
call proch ; process key #

; all done

done return ; to main loop

; Main program **

start bcf PORTB,2 ; switch off high digit of display
bsf PORTB,1 ; and switch on low digit
call scan ; and read keypad
movf ADRESH,W ; move ADC result
movwf PORTC ; to display

bcf PORTB,1 ; switch off low digit of display
bsf PORTB,2 ; and switch on high digit
call scan ; and read keypad

movf ADRESH,W ; move ADC result
movwf PORTC ; to display

goto start ; repeat main loop

END ; of source code

The routine to read in an analogue input is based on the model routine provided in the data

sheet, where a delay of about 20�s is included to ensure that the input has had time to settle,

in case the input is changing rapidly. The conversion is then started by setting the GO bit in

the ADC control register, and then waiting for it to be cleared by the ADC to indicate that

the conversion is complete. In this program, only 8 of the 10 bits of the ADC result are used,

272 More PIC Applications and Devices

so the result is ‘left justified’ to place the most significant 8 bits in the ADRESH register for

output to the display. This allows the full range of the input (0–2.048V) to be checked.

In a working program, the analogue input value would be converted into a 2-digit decimal

value for the display. Using the conversion scaling calculated above, a temperature of 50 �C

would give a result of 250 (in binary) in ADRESL, with the result right justified. Only a

quarter of the full ADC range is then being used. This result can then be converted into the

corresponding display digits ‘5’ and ‘0’, and so on down to zero. The keyboard-scanning

routine uses a simple method to check if each key in each row has been pressed, calling the

required action if it has. A more elegant and compact keyboard-scanning method is possible

when reading in numerical values.

A full working program would allow the user to enter the maximum and minimum values for

the target temperature, and then go into run mode, where the temperature would be controlled

within the set range by operation of the heater, vent and fan. Pseudocode for the application

software is shown in Program 15.2.

Program 15.2 Pseudocode for TEMPCON Control software

TEMPCON
Initialise

Ports
Port A = Temp sensor inputs (4)
Port B = Display digit select (2), ICP/D (3)
Port C = Display segments (7)
Port D = Keypad (4 outputs, 3 inputs)
Port E = Heater, Vent, Fan outputs

ADC Left justify, 4 channels
ADC frequency Fosc/8, select input AN0

GetMaxMin
Scan keyboard
Store & display first digit of maxtemp
Scan keyboard
Store & display second digit of maxtemp
Convert to byte MaxTemp (0-200)

Scan keyboard
Store & display first digit of mintemp
Scan keyboard
Store & display second digit of mintemp
Convert to byte MinTemp

Cycle
Read tempsensor1
Read tempsensor2
Read tempsensor3
Read tempsensor4

IF sensor out of range
replace with previous value

Calculate AverageTemp

Display AverageTemp
MSD = AverageTemp/10
Get 7-seg code & display MSD

16F818 Application 273

LSD = Remainder
GEt 7-seg code & display LSD

IF AverageTemp > Mintemp
switch heater OFF
ELSE switch heater ON

IF AverageTemp > Maxtemp
switch vent ON
ELSE switch vent OFF

IF AverageTemp > Maxtemp + 4
switch fan ON
ELSE switch fan OFF

GOTO Cycle

15.1.6 Application Modifications

There are some features of the microcontroller which are not yet utilised in this application,

which could enhance it. As mentioned above, the PWM module could be used to control the

speed of the fan. In addition, a serial communication port could send the temperature data to a

master controller, and receive new operating parameters. If a PC were acting as the host, the

USART could be used, and the PC could display the operating data, perhaps as in graphical

form, or as a plot of temperature variation over time. This data could then be saved on disk,

and sent via a network to a supervisory system.

When designing the application initially, a top of the range device such as the 16F877 is a

good choice, as it has most of the available features. When the design has been finalised, it

may turn out that some features are not required, some I/O is unused or the program could be

fitted into a smaller memory. The designer can then review the alternative, cheaper or otherwise

more suitable devices, and transfer the application to that device as long as the hardware

redesign required is not excessive. The software reconfiguration should also not be too much of

a problem within the same PIC group, since the chips are designed to be interchangeable. This

idea is illustrated below, where the temperature controller is redesigned for other PIC chips.

15.2 16F818 Application

The PIC 16F818 is a replacement part for the 16F84. It has a compatible pin-out, and additional

features at a lower cost. Sixteen I/O pins are available, including five analogue inputs. It has

1k words of program memory; if extra memory is needed, the 16F819 has the same features

but 2k program memory.

As can be seen from the pin-out (Fig. 15.8), each pin has multiple functions, other than the

two supply pins. Analogue inputs can be selected on RA0–RA4, or external reference voltages.

There is a CCP module and a synchronous serial port offering SPI or I2C modes. Other special

features are a variety of power saving modes in addition to the usual ‘sleep’, an internal

oscillator which obviates the need for external clock components, and in-circuit programming

and dedugging.

Thus, many of the features of the more powerful 16F87X group are now available in the

smaller 18-pin package. It is recommended that, when the user is familiar with all the options

available on this chip, it can be used as a default choice when developing new PIC applications,

if the number of I/O is sufficient.

274 More PIC Applications and Devices

RA2/AN2/ Vref– 1 18 RA!/AN1
RA3/AN3/ Vref+ 2 17 RA0/AN0

RA4/AN4/ T0CKI 3 16 RA7/OSC/CLKI
RA5/!MCLR/ Vpp 4 15 RA6/OSC2/CLKO

Vss 5 14 Vdd
RB0/INT 6 13 RB7/ T1OSI/PGD

RB1/SDO/CCP1 7 12 RB6/ T1OSOT1CKI/PGC
RB2/SDO/CCP1 8 11 RB5/!SS
RB3/CCP1/PGM 9 10 RB4/SCK/SCL

Figure 15.8 The PIC 16F818 pin-out.

AN0

AN1

AN2 RA7

AN3

RB0–RB7
AN4

×8 Display

Temp.

Sensor

Inputs

×4

Set temp.

Heater

Vent

Fan

RA5

RA6

Figure 15.9 PIC 16F818 temperature control block diagram.

This chip could be used in the temperature controller if the keyboard were eliminated, and

the set temperature input from a pot via one of the analogue inputs (see Fig. 15.9). A fixed

control range might be necessary, as there would be no facility for entering maximum and

minimum temperatures. The display digit selection can be reconfigured to use only one output.

The application then only needs 16 I/O pins. Operational parameters could be transferred via

the serial interface if the display were left out (RB1, RB2 and RB4).

15.3 12F675 Application

The 12-series of PIC mini-chips offers flash memory in 8-pin packages. At the current time

there is limited choice, but no doubt the range will be expanded. The pin-out for the 12F675

illustrates the I/O features available (see Fig. 15.10).

The chip can be configured with six plain digital I/O pins, but also offers two timers, an

analogue comparator or four analogue input channels. The 12F629 is the same, except that it

does not include the ADC and is therefore a little cheaper. An internal oscillator and in-circuit

programming are also featured.

A temperature controller could be implemented using this chip if only two analogue inputs

are used (see Fig. 15.11). It could operate with a fixed set temperature, or another analogue

input could be used as a set temperature input. With no display, a dial on the set temperature

pot may be necessary.

Vdd 1 8 Vss

GP5/ T1CKI/OSC1/CLKIN 2 7 GP0/AN0/Cin+
GP4/AN3/!T1G/OSC2/CLKOUT 3 6 GP1/AN1/Cin–/ Vref

GP3/!MCLR/ Vpp 4 5 GP2/AN2/ T0CKI/INT/Cout

Figure 15.10 The PIC 12F675 pin-out.

18F452 Application 275

AN0 GP3

AN1 GP4

GP5

AN2

Temp.

Sensors

Set temp.

Heater

Vent

Fan

Figure 15.11 PIC 12F675 temperature controller.

15.4 18F452 Application

The 18-series of PIC microcontrollers is the most powerful in the flash family, ranging from
the 16 I/O, 4k memory 18F1220 to the 68 I/O, 64k memory 18F8720 at the current time. The
group offers different combinations of the advanced features, and the larger memory size means
that ‘C’ can be used for application programming. The instruction set of 75 16-bit instructions
is designed with this in mind.
A small selection of the available 18FXXXX devices are listed in Table 14.2. At the time

of writing there are a total of 33 in production, with several others listed as future products.
The architecture is somewhat more complex than the 14-bit devices, with extra blocks for
multiplication, a hardware data table access, additional file select registers and other advanced
features. The data bus is still 8-bit. Taking the 18F452 as an example, in terms of peripheral
features it is comparable to the 16F877 described in Section 15.1, so a comparison of the two
devices will be made to illustrate the differences and similarities of the two groups (Table 15.4).
As can be seen, the 18-series device has some advantages: 40MHz clock rate, 16k program

memory and more data memory. However, bear in mind that a program written in ‘C’ will not
be as code-efficient as an assembly language equivalent, so these advantages may or may not
translate into extra performance, depending on the application and the way that it is structured.
The main advantage is that more complex operations such as mathematical functions are easier
to program in ‘C’. The 18-series PIC has a richer instruction set, including instructions such as
multiply, compare and skip, table read, conditional branch and move directly between registers,
so still has advantages even when programmed in assembly language.

15.4.1 PIC ‘C’ Programming

For those readers unfamiliar with ‘C’ programming, a simple example is shown in Program 15.3.
The program will give the same output as BIN1.ASM assembly language program. The program
must be converted to PIC 16-bit machine code using a compiler such as MPLAB C18 Compiler,
which is supplied as an add-on to the development system. This compiler recognises ANSI ‘C’,
the standard syntax for microcontrollers (ANSI = American National Standards Institute). The
‘C’ compiler must be selected in the development mode dialogue when building the application.
The main elements of the program functioning are as follows.

/* comment */

Comments in ‘C’ source code are enclosed between /* and */; and can be run over several
lines.

#include<p18F456.h>

This is a compiler directive which calls up a header file named ‘p18F458.h’. This contains
pre-defined register labels for that particular processor, such as TRISB and PORTB, and the
corresponding addresses 06h and 86h.

276 More PIC Applications and Devices

Table 15.4 Comparison of the 16F877 and the 18F458

Feature 16F877 18F458

Total pins 40 40

Input/output pins 33 33

Ports A, B, C, D, E, A, B, C, D, E

Clock 20MHz 40MHz

Instruction bits 14 16

Program memory (instructions) 8k 16k

Instruction set size 35 75

Data memory (bytes) 368 1536

EEPROM (bytes) 256 256

Interrupt sources 14 21

Timers 3 4

Capture, compare, PWM modules 2 2

Serial communications MSSP, USART MSSP, USART, CAN

Parallel port Yes Yes

Analogue inputs 8 x 10 bits 8 x 10 bits

Resets POR, BOR POR, BOR, Stack, Programmed

In-circuit serial programming and debugging Yes Yes

int counter;

This assigns a label to a register and declares that it will store an integer, or whole number.

A standard integer in ‘C’ is stored as a 16-bit number, requiring two data RAM (GPR) locations.

void main(void)

This rather peculiar syntax simply indicates, as far as we are concerned here, the start of the

main program sequence. The following brace (curly bracket) encloses the main program with

a matching brace at the end. These are lined up in the same column and the main program

tabbed in between them, so that they can be matched up correctly.

counter = 1;

A value of 1 is initially placed in the variable location (low byte).

TRISB = 0;

A value 0 is loaded into the data direction register of Port B to initialise the port bits for output

to the LEDs.

while(1)

This starts a loop which will run endlessly. A condition is placed in the brackets which controls

the loop. For example, the statement could read ’while(count<256)’, in which case the following

group of statements within the curly brackets (braces) would execute 255 times, counting up

18F452 Application 277

Program 15.3 A simple PIC ‘C’ program

/* BIN1.C M Bates Version 1.0

Program to output a binary count to Port B LEDs

**/

#include <p18f458.h> /* Include port labels for this chip */
#include <delays.h>

int counter /* Label a 16-bit variable location */

void main(void) /* Start main program sequence */
{

counter = 0; /* Initialise variable value */
TRISB = 0; /* Configure Port B for output */
while (1) /* Start an endless loop */
{

PORTB = counter; /* Output value of the variable */
counter++; /* Increment the variable value */

Delay10KTCY(100); /* Wait for 100 x 10,000 cycles */
}

} /* End of program */

to the maximum binary value and stopping. The value 1 means the condition is ‘always true’,
so the loop is endless, until reset.

PORTB = counter;

The value in counter is copied to Port B data register for display on the LEDs

counter++;

The variable value is incremented each time the loop is executed. This causes the output to be
incremented the next time.

Delay10KTCY(100);

This calls a pre-defined block of code which provides a delay, so that the LED output changes
are visible. At a maximum clock rate, the processor instruction cycle time is 0.1�s, so the delay
works out to 0.1 s (10000 × 100 cycles). The overall count cycle will then take 25.6 s. This
function will require initialisation and loading of hardware timers and associated operations
which will clearly be quite complex in machine code.
The delay function is an example of a function call, which is one of the biggest advantages

of ‘C’ – the collection of standard routines, which are automatically available, means that the
programmer does not have to keep ‘re-inventing the wheel’, or even invent it for the first
time – it is ready-made.
The layout of the program, with tabs, is important for understanding the program and checking

the syntax if there are logical errors. However, the layout does not affect the program function,
only the sequence of characters. However, the statements must be all on one line; line returns
are not allowed within a statement.
Each complete statement is terminated with a semicolon; note that some are not complete in

themselves and do not have a semicolon. For example, ‘while(1)’ is not complete without the
loop statements, or at least the pair of braces. The close brace terminates the ‘while’ statement.
The whole of the main loop, and any functional sub-block, must be enclosed between braces.

278 More PIC Applications and Devices

15.4.2 Advantages of ‘C’ Programming

The ‘C’ compiler converts the program into PIC 16-bit machine code. Most of these ‘C’
statements translate into more than one machine code instruction. This can be confirmed by
studying the list file which is produced by disassembling the machine code.
The pseudocode for the temperature controller above can probably be more easily translated

into ‘C’ than assembly language. For example, the conditional control operations defined using
IF. . .THEN statements will translate directly, whereas, in assembler, it has to be implemented by
suitable combinations of ‘Bit Test and Skip’ with ‘Goto’ or ‘Call’. In addition, the comparison
of the ’average temperature’ with the set values can be done in one statement in ‘C’, but needs
a subtract or compare prior to a bit test, which is much more complicated. On the other hand,
checking bit inputs is not so easy in ‘C’ as in assembler, as ANSI C contains no individual
bit operations. Bit status in a register has to be checked by using a logical or numerical range
check.
There are many references on ‘C’ programming. To program a microcontroller in ‘C’, only

the basic set of statements and simple data structures will probably be needed, so if the
reader has some knowledge of ‘C’ already, using it to develop PIC applications should not
be too difficult. However, a full treatment will not be attempted here. We can now see the
advantages of using ‘C’ with the 18-series PIC. The chips themselves have a good range of
peripheral interfaces and other features, and can be programmed more easily using the high level
language.

Summary

• The PIC 16F877 has a good range of peripheral interfaces, including analogue inputs, serial
ports, CCP and PWM, and in-circuit debugging.

• The application designed around the PIC 16F877 operates as a temperature controller, with
four sensors, three outputs, a keypad and 2-digit display.

• The temperature controller can be programmed to maintain the temperature in a
heating/cooling system within a set range, display these parameters and operate alarms.

• A similar application can be implemented using the 16F818 without the keypad.

• A similar application can be implemented using the 12F675 without the display.

• The 18F458 has comparable I/O features to the 16F877, but can be programmed in ‘C’ and
runs at twice the speed.

Questions

1. (a) What interfacing modifications are recommended for the LM35 temperature sensor
if the connections are over 1m long?

(b) Calculate the output of the LM35 sensor at 25 �C, and the decimal value that would
be found in the ADRESL on completion of an A/D conversion of this input, if the
result is right justified.

18F452 Application 279

2. State one advantage of (a) the relay output and (b) the FET output as configured in the

temperature controller.

3. Describe briefly how a multiplexed seven-segment LED display works. Study the test

program and explain how it ensures that each digit has the same brightness.

4. State two reasons why the PIC 16F818 should be preferred over the 16F84 for most

applications.

5. Compare PIC assembler and ANSI ‘C’ programming, outlining the advantages of each.

Answer

1. (b) 125

Activities

1. Devise a more code-efficient keypad-scanning routine than that in Program 15.1 using

the rotate instruction, such that the binary value for the keys 0–9 are stored in a suitable

register. Assign keys ‘*’ and ‘#’ the hex values A and B, respectively.

2. Design and implement the fully functional program for the temperature controller based on

the pseudocode provided in Program 15.2. The user will enter upper and lower temperature

limits, set the controller to run mode where the outputs are operated to maintain the

temperature between those limits. The system should tolerate a fault in one sensor, which
puts its output outside the normal operating range. Devise a full design and performance

specification for the controller.

3. Design a temperature-controlled enclosure with heaters, fan and vent which will allow

a fully functioning temperature control program to be tested. Investigate the design of

an interface for the fan sensor, so that the fan speed could be controlled by PWM with

feedback. Investigate the set up required to use the PWM output of the 16F877, and

redesign the hardware as necessary.

4. Implement the redesign of the temperature controller for the 16F818 or the 12F675.

5. Study relevant ‘C’ programming references, the Microchip manual MPLAB C18 C

Compiler, Getting Started and modify the program BIN1.C such that the output can be

stopped, started and reset by push button inputs at RA0 and RA1. Why is reading inputs

more difficult in ‘C’?

Chapter 16
More Control Systems

16.1 Other Microcontrollers

16.2 Microprocessor System

16.3 Control Technologies

16.4 Control System Design

In this chapter, we will look at the range of other technologies available with which to build

controller systems. There are numerous families of other microcontrollers which compete

with the PIC range. Conventional microprocessor systems may be a better solution for larger

microsystems, and the programmable logic controller provides a self-contained device which

requires little additional interfacing. The PC itself can also be adapted as a controller host, with

suitable additional hardware. The object is to help the reader to select the most appropriate

solution for any given control problem.

16.1 Other Microcontrollers

There are several other families of microcontroller which are well established in the embedded

systems market. This book has concentrated on the PIC because it is, arguably, the most suitable

for learning about the principles of microcontroller application design and implementation. The

skills and knowledge gained with the PIC can then be transferred to other types of microcon-

troller. Many of the alternative types of MCU are designed principally for complex embedded

applications such as motor vehicle engine management, mass-produced consumer goods and

telecommunications. Digital signal processors, which are devices which specialise in high-speed

processing of analogue signals, are also becoming widely used in audio and communications

systems. The main manufacturers at the current time include National Semiconductor, Texas

Instruments, Analogue Devices and Hitachi. The product range from other selected manufac-

turers is outlined below.

16.1.1 Intel 8051

First introduced in 1980, the 8051 is the most well-established and widely used microcontroller.

As can be seen in the block diagram (Fig. 16.1), the original design was a mid-range device,

Other Microcontrollers 281

CPU
Instruction reg.

Program counter
Status register
Stack pointer

000 – FFF

EPROM
Program memory

4k

00–1F
Register banks

Interrupt
control

Timers
×2

PORTS

4 × 8 bits

Serial
port

Clock
Bus

control

P0

P2

P1

P3

T0
T1

TxD
RxD

INT0
INT1

ALE
EA
PSEN

XTAL

Timing
and control

20–3F
RAM

80–FF
Special function

registers

Reset

Multiplexed
address and
data for
external
memory

Ports P1
and P2

Timer
interrupts
and serial
port

ALTERNATE
FUNCTIONS

Internal
data bus
8 bits

Figure 16.1 Block diagram of Intel 8051 microcontroller.

with multiple parallel ports, timers and interrupts and a serial port. The 8051 can be used

as conventional processor, as well as a microcontroller. It can access external memory using

Port 0 and Port 2, which act as multiplexed data and address lines. Some of Port 1 and Port 3

pins also have a dual purpose, providing connections to the timers, serial port and interrupts.

The 8031 was a version of the 8051 without internal ROM, the application program being

stored in a separate EPROM. Many other microcontroller manufacturers now supply variants of

the 8051.

16.1.2 Motorola MC68HC11

This series is based on the architecture and instruction set of the standard Motorola 68000

microprocessor, which is discussed below. The MC68HC11A1P is a typical member of the

family, offering 8k program ROM, 512 bytes of data, 256 bytes of static RAM, 16-bit

multifunction timer, synchronous and asynchronous serial communications, eight A/D channels

and 38 I/O pins. It can also operate in microcontroller or microprocessor mode with external

memory accesses via multiplexed address and data busses at the multipurpose port pins. The

Motorola range is well established in motor vehicle and similar applications.

282 More Control Systems

16.1.3 Zilog Z8

The Z80 microprocessor was for many years the standard 8-bit microprocessor for industrial

applications, and the Z8 series is based on its architecture and instruction set. The Z8 Encore!

flash MCU family currently ranges from a device with 4k program memory and 11 I/O

(Z8F0441) to one with 64k memory and 60 I/O (Z8F6423) running at 20MHz, most with 10-bit

analogue inputs and the usual selection of peripheral interfaces.

16.1.4 Atmel AVR

Atmel also offers 8051-compatible devices as well as a further range of chips including the

AT90 series of mid-range microcontrollers, the miniature/mid range ‘tiny’ series and the power

‘mega’ group. The I/O pins available in flash memory devices range from 3 to 54, with clock

speeds from 4 to 16MHz. A typical example is the ATtiny2313: an 8-bit MCU, which has 2k

flash program memory, 120 instructions, 32 working registers, 18 I/O pins, on-chip debugging,

serial ports, and two timer/counter/compare modules in a 20-pin package. The larger instruction

and register set may give the Atmel chip the advantage in some applications, and the AVR

series is currently a popular choice where this is the case.

16.2 Microprocessor System

The conventional microprocessor system was the forerunner of the microcontroller. That is,

the elements of the microcontroller were originally developed as separate devices before being

integrated into one chip to produce the microcontroller. The PC, as outlined in Chapter 1, is

an example of a conventional system, where the individual CPU, memory and I/O devices are

linked together by system address, data and control busses.

The advantage of the conventional microprocessor system is that it can be designed to suit

the application; it will include only those peripherals that are actually needed, and memory

chips as required. Obviously, the system is more complex to design and build, and so this type

of system tends to be used for larger applications, where for example, large amounts of data

storage is required.

16.2.1 M68000 Hardware

The current PC architecture is quite complicated, with a hierarchy of busses operating at

different speeds. We will therefore look at a simpler example based on another commonly

used processor type, the Motorola 68000 (M68k), which has been widely used in both home

computers and industrial applications for many years. It is the CISC processor that has most

often been used in education and training because of its relatively regular architecture.

The block diagram of a typical development and training system is shown in Fig. 16.2. The

target board has a 68000 with CPU, EPROM, RAM and port chips on board which would

typically measure about 150×200mm (Fig. 16.3). It can be connected to an applications board

which has a range of peripheral transducers, such as switches, LEDs and PWM-controlled

motor and shaft opto-sensor. This is controlled by the 68000 CPU via a standard 68230 Parallel

Interface/Timer (PI/T) which has three 8-bit ports, of which Port A provides data transfer and

Port B the individual control and data lines.

Microprocessor System 283

Host PC

Source editor
assembler /

compiler
terminal emulator

68000 Target
board

68000 CPU
64k RAM

64k monitor EPROM
64k user EPROM

Serial ports
Parallel port

COM 1 or 2
Serial port

68681
DUART
Serial port

PA0
to

PA7

PB0
PB1
PB2

PB3
PB4
PB5
PB6
PB7

LEDs D1–D7
or ADC
or DAC

DAC enable
ADC start conversion
ADC busy

ADC enable
Motor sensor
Motor PWM drive
US/IR transmitter
US/IR receiver

Keyboard
VDU

Printer

Download
program
and send
commands

Display
monitor and
program
messages

68230
PI/ T

User port

×8 bits

Disk
storage

Figure 16.2 M68000 microprocessor demonstration system.

Figure 16.3 View of 68000 board.

284 More Control Systems

The program for the 68000 is prepared on a host PC, in a similar way to the PIC programs.
Assembly language source code is written using a text editor and converted to machine code by
an assembler program. Alternatively, the source code can be written in the high level language,
typically standard ‘C’. A compiler then converts the source code initially into assembler code,
which is then assembled. The machine code program created is downloaded via the PC serial
port to the serial port of the target board and hence into its RAM block.
A ‘terminal emulator’ utility is used for downloading, which also allows the target board to

use the PC screen and keyboard as a user interface for its monitor program, which functions as
a minimal operating system. Simple monitor commands are used to run and debug the program.
In single step or trace mode, the 68000 can display its register contents on the PC screen.
The PC provides the keyboard, screen, disk storage and printer during program development.
Once an application is up and running on the 68000 board, a user interface may no longer be
required, or if it is, a simple keypad and display may be sufficient. At this stage, the program
can be blown into EPROM to run independently and the PC disconnected.
The block diagram of the M68000 target board is shown in Fig. 16.4, so that it can be

compared with the PIC 16F84 internal architecture. Note that in the PIC, the internal architecture
of the processor is clearly illustrated in the manufacturer’s block diagram, whereas in the 68000
system, it is concealed within the CPU. Therefore, to see all the details of the 68000 system,
both the internal CPU architecture and the board circuit diagram must be studied.

16.2.2 M68000 program

A simple program for the 68000 system is shown in Program 16.1, so that the syntax for a
CISC processor can be compared with the PIC assembly language. The program has a similar
function to the PIC program BIN2, outputting a binary count to LEDs with a delay.

Comments

The comments are delimited with a star.

use tim.ini

This is equivalent to the include directive in the PIC; it incorporates a file ‘tim.ini’ which
contains standard register labels, Port A and DircA. Port A is the 8-bit port data register and
DircA the data direction register (DDR).

move.b #$ff,DircA

Move the literal FF into the DDR to set all bits as output. The ‘.b’ means this is a byte operation
(16- and 32-bit words can be moved in the 68000). ‘#’ means this is a literal (immediate data
in 68000 speak). ‘$’ indicates a hex number. Note that in the 68000, a ‘1’ in the DDR set that
bit as output – this is the opposite to the PIC.

again move.b d0, PortA

The word ‘again’ is an address (line) label, ‘d0’ is the first data register in a set of eight (d0–d7)
and PortA is the output register to which the LEDs are connected.

addq #1,d0

This means add 1 to (increment) d0. Surprisingly, the 68000 does not have an increment (or
decrement) instruction. ‘addq’ means ‘add quick’ used for adding a small number to a register.

Clock
8 MHz

68000
CPU

Reset
timer

Data bus D0–D15

PAL
address
decoder

Bus
error
timer

RAM
high
byte

RAM
low
byte

ROM
low
byte

ROM
high
byte
 PI\T

DUART

Manual
reset

User IRQ inputs

UDS
LDS
FC2
FC1
FC0

AS

E

BERR

VPA
R/ W

DTACK

Interrupt
priority
encoder

RST

HALT
A1–A4 A1–A5

CS

PIRQ
DTACK

R/ W

CS

R/ W
DTACK
OP2

RES

IRQ

RAMHI
RAMLO

PIT
DUART

ROM

MAX
232

MAX
232

Channel A
HOST PC

Serial
ports

Channel B
USER COMM/
PRINTER

PA0–7
User
portPB0–7

H0–3

D0–D7 D0–D7
Expansion

bus

Expansion
busAddress

R/ W
DTACK
VPA Control

AS
IRQ

PC0–6
Keypad/
display

IP/OP

64 k 64 k

IPL2
IPL1

IPL0

PIT

DUART
 4 USER

EXP

RSWAP

× 5

Address bus A1–A23
A21–A23 A1–A15 A1–A15

Data

Figure 16.4 Block diagram of M68000 board.

286 More Control Systems

Program 16.1 Simple program for 68000 board

* OUT3.ASM MPB 27/8/97
*
* A demo program using general purpose system
* initialisation file TIM.INI
*
* --

use tim.ini Initialise system

move.b #$ff,DircA Port A data direction code

again move.b d0,PortA Output data to LEDS
addq #1,d0 Increment output value

move.w #$0fff,d1 Initialise delay count
delay subq.w #1,d1 Decrement and

bne delay Loop until zero

bra again Repeat forever...........

move.w #$0fff,d1

Move a 16-bit word (w) into d1 to initialise the delay loop.

delay subq.w #1,d1

Decrement (subtract 1 from) the counter register ‘d1’.

bne delay

This means ‘branch if not zero’ to the label delay. The program jumps back and repeats the
decrement until the result of the previous operation (decrement) was zero. This is available in
the 14-bit PIC only as a pseudo-operation.

bra again

This is an unconditional jump equivalent to the GOTO label in PIC programs, to make the
program repeat endlessly.

It can be seen that the 68000 syntax is a more complex because, first, there are more
instructions and, second, there are more ways to use them, because there are more registers and
addressing modes. This is a good reason to choose the PIC for learning assembler programming.

16.2.3 Program Execution

The M68000 system (Fig. 16.4) is controlled by the CPU driven at 8MHz. The RAM holds
the user data and program, and the EPROM stores the monitor and communications program
which allows the program in RAM to be downloaded, run and debugged.
The system has a 16-bit data bus, and 24-bit addressing giving a maximum address space

of 16Mb (megabytes). In this minimal system, only a small fraction of this memory space is
used; the EPROM and RAM blocks are all 64k bytes, installed as pairs of identical chips which
store the upper and lower byte of the 16-bit data word. The 68000 instructions are of variable
length, 2, 4 or 6 bytes long, stored in adjacent locations.
The lowest memory locations 0000–0FFF are used by the system control software in the

68000, so the user’s machine code program is typically stored in RAM at a set of locations

Microprocessor System 287

from address $1000 ($=hex). Assuming it has already been downloaded to RAM using the

monitor commands in EPROM, the program is started by issuing a command from the terminal

(PC), specifying the start address; for example, ‘G $1000’ to start at the default user program

origin.

The program is executed by the CPU fetching each 16-bit code in turn from memory into

the CPU via the data bus. The program codes are found in memory by the CPU sending out the

addresses in sequence, starting with $1000, from its program counter register. The address is

‘decoded’ by the external logic which is contained partly in a PAL (programmable array logic)

chip and partly in the memory chips themselves. In this way, each individual memory location

(1 byte) can be accessed for reading and writing.

The address decoder chip generates the system chip select (CS) signals from the address lines

A21, A22 and A23, which ‘enable’ the memory or I/O device which is to be accessed. The

lower order address lines are fed directly to the memory chips to select an individual location

within the memory array. The read/write (R/W) controls the data direction for the data transfer

between the CPU and the other chips.

Note that in the conventional architecture, the program instructions and data transfers between

memory, ports and CPU use the same data bus lines. This slows down the system; this is why,

in the PIC design, the instruction and data busses are separated (Harvard architecture), allowing

faster operation at the same clock speed.

16.2.4 Ports

The PI/T chip connects the 68000 board to the application board. In a ‘real’ application,

this board would be replaced by the hardware required by that particular application, and a

keypad and display connected, if required. The DUART serial port allows the program to be

downloaded to RAM from the host PC. The MAX 232 chips are line drivers that boost the

signal power on the serial connection between the host and the target board.

The ports can request service from the processor by using the interrupt signal (PIRQ, IRQ)

so that more important data transfers can be completed quickly. The interrupt priority encoder

converts the active interrupt line number into a 3-bit code which identifies the device requesting

service to the CPU, which then runs a corresponding interrupt service routine. Here, the

conventional CPU has the advantage – it provides an interrupt priority system which allows

more important operations to take precedence over less urgent ones.

16.2.5 Bus Control

The 68000 has what is called an ‘asynchronous bus’. This means that the memory or I/O data

transfer is not completed unless the CPU receives a Data Acknowledge (DTACK) signal from

the peripheral chip. The 68000 I/O chips (PI/T and DUART) are designed to provide DTACK,

but memory chips are not processor specific in their design, so the DTACK for the memory

access cycles must be generated by the PAL decoder. If not received within a preset time, the

bus error timer generates an error signal to the CPU and the bus cycle is aborted, and an error

reported.

The busses and most of the system signals are available at an expansion connector so

that additional devices can be attached or data passed to another processor. The address

decoder generates a VPA signal which allows external devices to be added to the decoding

system.

288 More Control Systems

16.2.6 M68k Application

Figure 16.5 shows a block diagram of the M68000 board used as a supervisory controller,

making use of its multiple I/O facilities and the keyboard and display option. The motor control

board is designed to operate six motors under closed loop speed control. Each motor has its

own microcontroller, while the 68000 acts as a master controller. It could be used as a robot

drive system, for example.

68000 Target
board

68000 CPU
64k RAM

64k monitor EPROM
64k user EPROM

Serial port
Parallel port

68681
DUART
Serial port

PA0
to

PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

Motor speed

Motor 0
Motor 1
Motor 2
Motor 3
Motor 4
Motor 5
Latch speed
Fault

68230
PI/T

User port

× 8 bits
Modem or
network

interface

Keyboard
and

display
unit

PI/ T
PC 0–6

DUART
IPs and OPs

Motor
control
board M0

M1

M2

M3

M4

M5

Figure 16.5 Block diagram of M68K motor control system.

In a robot controller, the command to move to a particular position, given as a set of three-

dimensional co-ordinates, could be received via the serial port. The 68000 would work out

the move required for each motor (quite complicated!) and then select each motor in turn and

download data to move the motor through a calculated angle. The individual controllers could

ensure that each joint speeds up and slows down gradually to achieve smooth motion. Motor

operating sequences could be stored in the RAM block, while the communication and control

firmware would be resident in ROM.

16.3 Control Technologies

Microprocessors and microcontrollers fit into a range of technologies which may be used to

implement control systems, which includes:

• electromechanical relays

• programmable logic controllers

Control Technologies 289

• microcontrollers

• standard microprocessor boards

• dedicated microprocessor systems

• PC-based controllers

16.3.1 Relay Control

The relay is an electro-mechanical switching device, which can be used to build simple control

systems. A small input current through a coil operates, electromagnetically, a set of contacts

which can switch a load (motor, heater, pump, etc.) on and off (Fig. 16.6(a)). Thus a low-voltage

input circuit controls a high-power load circuit, and relays can be wired together to form a

sequential control system.

A relay circuit for controlling a machine tool is illustrated in Fig. 16.6(b). The system is

designed to provide push button operation and to prevent the main motor from starting unless

the machine guard is closed and the cutting fluid pump is on. There is also a torque overload

sensor which disables the machine if the tool jams or the motor is stalled for some other reason.

The relays operate in latched mode, and the system will ‘fail safe’ if the power goes off. Relay

Start

Stop

Guard

Motor Pump

24 V DC

240 V AC

+

–

L

N

Relay 1 Relay 2

Torque overload

Machine tool

24 V Common
terminal

Normally
open

Normally
closed

(a)

(b)

Figure 16.6 Relay control system. (a) Relay operation; (b) Wiring diagram of relay machine
control system.

290 More Control Systems

2 (motor) is controlled from Relay 1 (control), operated at 24V; the motor and pump use a

240V supply.

Another familiar example of a sequence control system is a domestic washing machine.

Traditionally, a motorised rotary switch operates multiple contacts in the required sequence to

open valves (filling), switch on motors (washing, spinning and pumping) and heaters. Switched

sensors (level, temperature) and safety interlocks (door switch) are also connected. Thus, electro-

mechanical devices provide a relatively straightforward solution for simple control applications,

or ones where the environment is hostile to delicate electronics. However, switches and relays

are inherently unreliable because of the moving parts.

16.3.2 PLC Control

Programmable logic controllers are often used for sequential control in industrial systems. The

PLC is a self-contained sequence controller, built around a microprocessor or microcontroller,

but with all the electronics and interfaces built in (Fig. 16.7).

The PLC can be programmed to act like a set of relays to give a particular output sequence in

response to switched inputs, which can be manual inputs or derived from sensors. It is suitable

for controlling systems where motors, heaters, valves and other loads must be switched directly

from a power supply. The same machine tool seen in the previous example is now shown under

PLC control in Fig. 16.8.

The PLC has inputs labelled X0, X1, X2 and X3. These are detected as ‘on’ when connected

to 24V via an external switched sensor or control input. The PLC is programmed to operate

the outputs, labelled Y0 and Y1, according to the input sequence. The outputs are also simple

switched contacts, as in the normally open contact of a relay, which operate a load circuit

with an external supply. They are typically designed to handle high-power loads operating

with mains voltage, or 3-phase supplies. If necessary, the PLC outputs can control external

Figure 16.7 Programmable logic controller.

Control Technologies 291

Start

Stop

Guard

Motor Pump

24 V DC

240 V AC

+

–

L

N

Torque overload

Machine tool

X0 X1 X2 X3 COM
Y0 Y1

PLC Programming
unit

Inputs Outputs Supply

24 V

Figure 16.8 Wiring diagram of PLC machine control system.

contactors (load relays) if the load current exceeds the PLC output contact rating. The control
and load circuits are electrically isolated from each other, for safety, reliability and ease of use.
The PLC inputs use opto-isolators, consisting of an LED and opto-detector. The on/off signal
is passed as infra-red light, giving complete electrical isolation between the input and controller
internal circuits.
The program for the PLC can be written in ‘ladder logic’ form (Fig. 16.9) which allows the

control program to be defined as if the PLC contained the relay system shown in Fig. 16.6. It
is a graphical programming method using a basic set of three symbols: normally open contacts,
inverted contacts and output coils. These are labelled to associate them with a physical input
(Xn) or output (Yn). The normally open contacts represent external normally open contacts
connected to the corresponding input; when the real contact closes, the contact in the program
is closed. An inverted contact (not shown in this example) reverses the polarity of the external
switch. The PLC will respond as if the ladder program were a wiring circuit. Assuming that
the sides of the ladder are supply rails, an output goes on when there is a closed path through
the contacts in that rung of the ladder to switch on the coil, which ‘operates’ the associated
output.
In Fig. 16.9, Y1 will come on when the ‘Start’ input is pressed, if the ‘Stop’ button is also

on (normally closed) and the ‘Guard’ switch is closed (guard closed). The contact labelled Y1
(Pump) closes as a result, which ‘holds on’ the output, even when the start button is released.
A second Y1 contact then switches on the motor, as long as the overload cut-out is closed (no
overload). The machine is then in run mode. If the motor is overloaded, the thermal cut-out
operates and switches off the motor, but the pump stays on to maintain coolant feed. If the
guard is opened or the stop button pressed, both the motor and the pump go off.
Ladder programming is a relatively easy method for creating this type of sequential

control program, compared with assembler or ‘C’ language. There are other graphical
programming methods which are even easier; refer to PLC programming references for more
information.

292 More Control Systems

X0 X2

Y1

Y1

Y1

Y0X3

Start Guard Pump

Overload Motor

X1

Stop

END

Figure 16.9 Ladder program for machine tool control.

16.3.3 Microcontroller

For comparison with other control technologies, Fig. 16.10 shows the machine tool operated

by a microcontroller.

As we know, the microcontroller uses signal levels around 5V, so the input switches

have to be connected with pull-up resistors. The microcontroller can then be programmed

(Program 16.2) to operate the output loads via suitable interfaces which allow its outputs to

switch the high-power motors. High-current FETs are useful here, as they can operate with

5V inputs and have no moving parts. The microcontroller has to be programmed in its native

language, or ‘C’, both of which take time to learn, as you know! This is why ladder logic was

developed for programming PLCs .

16.3.4 PC Host Control

The PC can be used to control external hardware directly via a suitable interfacing card fitted

in an expansion slot on the motherboard (Fig. 16.11). The ISA bus has been used for this since

the PC architecture was first devised, but the PCI bus, which is more compact, reliable and

faster, is now taking over.

The I/O card connects direct into the peripheral bus of the PC (address, data and control

lines) and incorporates port chips which allow external devices to exchange data direct with

the PC. A basic card would typically have 16 digital inputs, 16 digital outputs, and eight

analogue inputs, and one analogue output. The digital I/O operates at TTL levels, the same as

the microcontroller, so the interfacing requirements are similar, except that the internal +5V

supply of the PC can be used to provide the input operating voltages. The analogue inputs

required an ADC control sequence equivalent to that required by the analogue inputs in the

microcontroller.

Control Technologies 293

Start

Stop

Guard

Motor Pump

5 V DC
PSU

+

–

240 V AC

L

N

Torque overload

Machine tool

Program

Inputs

Outputs

RB0
RB1

RA0
RA1
RA2
RA3

Motor
interface

Pump
interfaceMicro-

controller

+5 V

0 V

Figure 16.10 Microcontroller-operated machine system.

Program 16.2 PIC machine control program

; MACHINE.ASM
; M Bates
; 5/12/03
; Ver 1.0

; Program to operate a simple machine tool

; Assembler directives

PROCESSOR 16F84

PortA EQU 05
PortB EQU 06

; Initialise ..

MOVLW B’11111100’ ; Initialise outputs
TRIS PortB ; to Motor & Pump

continued � � �

294 More Control Systems

; Start main loop ..

alloff CLRW ; Switch off
MOVWF PortB ; Motor & Pump

start BTFSC PortA,0 ; Check Start button
GOTO start ; & wait is not pressed

stop BTFSC PortA,1 ; Check for Stop
GOTO alloff ; & restart if pressed

guard BTFSC PortA,2 ; Check for Guard in place
GOTO alloff ; & restart if not safe

BTFSC PortA,3 ; Check for Overload
GOTO coolit ; & switch off Motor if true

BSF PortB,0 ; Motor ON
BSF PortB,1 ; Pump ON
GOTO stop ; and loop

coolit BCF PortB,0 ; Switch off Motor, keep Pump on

GOTO coolit ; and wait for reset

END

Figure 16.11 I/O card for PC-based controller system.

The PC I/O card could then, for example, control a machine, a process or the temperature

control system. The simple machine tool can be operated via a similar interface to the microcon-

troller (see Fig. 16.12). One of the advantages of using the PC is that the input and display

would be provided by the PC keyboard and VDU, so the hardware design required is limited

to the interfacing. The PC could be programmed in ‘C’ to operate the system, and graphical

functions are available which would allow a pictorial status display. A simple standard ‘C’

program which will run an I/O card is shown in Program 16.3, which can be compared with

the PLC and microcontroller programs above.

Control Technologies 295

Start

Stop

Guard

Motor Pump

+

–

240 V AC

L

N

Torque overload

Machine tool

Keyboard

Inputs

Outputs
DO0
DO1

DI0
DI1
DI2
DI3

Motor
interface

Pump
interface PC + I/O card

+5 V Internal PSU

0 V

VDU

Figure 16.12 PC-controlled machine system.

The most significant features are the function calls to perform input and output. These are:

inputnum = inport(inreg);

outport(outreg,xx);

For input, the standard function ‘inport’ needs the address of the input register of the port

chip on the I/O card. The ‘base’ address of the card is the address of the first register, and the

other register addresses are calculated by adding an offset to this. The base address is 220h

(0x220), and input register has an offset of six locations. The input register address (inreg)

is therefore 220 + 6 = 226h in the PC memory map. When the function is called, the input

binary code present at the I/O card input pins is stored in integer variable ‘inputnum’; it can

then be processed or checked. The input number in the program is determined by the state of

the input switches, giving results in the range 0–15 (4 bits).

The output register has an offset of 13 (0x0D), so the output register address (outreg) is

22Dh (0x22D). The decimal equivalent number for the required output binary code follows

(xx). The number sent by the function will then appear at the output terminals of the I/O card.

The output can be 0, 1, 2 or 3 to set the pump and motor on or off under binary control.

The program works by reading the inputs and operating the outputs and displaying messages

according to the current state of the switches, using the ‘if(condition){block}’ syntax to perform

296 More Control Systems

Program 16.3 ‘C’ machine control program

/**
MACHINE.C M Bates 5/12/03 Ver 1.0
Program to control a simple machine tool

***/

#include <stdio.h>

main()
{

int base, inreg, outreg, inputnum, outputnum;

base = 0x220 ; /* I/O ports base address */
inreg = base + 6; /* Input register address */
outreg = base + 13; /* Output register address */

inputnum = 0;
outputnum = 0;

clrscr();
printf("\n\n Machine Control Program ");
printf("\n *************************** ");
printf("\n Ensure guard is closed before ");
printf("\n hitting the start button..... ");
printf("\n Enter to enable controller... ");
getch();

/* Control Loop **/

do
{ inputnum = inport(inreg); /* Read the input..... */
} while (inputnum != 0);

outport (outreg,3); /* Start the machine.. */

do
{ inputnum = inport(inreg) ; /* Run */
} while (inputnum == 1);

if (inputnum == 3)
{ outport (outreg,0);

printf("\n\n Stopped ");
}

if (inputnum == 5)
{ outport (outreg,0);

printf("\n\n\ GUARD OPEN close and restart ");
}

if (inputnum == 9)
{ outport (outreg,2);

printf("\n\n OVERLOAD! Wait for auto reset.... ");
}

printf(" \n\n\ Hit space to end, then restart... ");
getch();

} /* Finished **/

Control Technologies 297

a block of code if the condition in the brackets is true. There are many references to help

you learn ‘C’ programming, and some of the syntax has been explained in Chapter 15, so the

program will not be analysed any further here.

The program is very basic, and would need development to work with a real system. For

example, it does not deal with switch bounce. However, the PC-hosted system has some

significant advantages over the other implementations; the keyboard and screen are built in,

allowing the system to be controlled from the keyboard and the status displayed in detail using

text messages, or even graphics; any calculations required will also be easier to write in ‘C’.

A more powerful solution is to use a graphical control and instrumentation package such as

National Instruments Labview™, which allows the application software to be created without

the need for text-based programming. All the necessary control and monitoring function are

put together interactively on screen.

As we have seen, the serial (COM) ports on a PC are used to interface with a great variety of

systems – process controllers, instrumentation, machines and target systems of various kinds,

as well as the PIC programming and debugging systems. Using this interface, the PC can send

commands and data, and can receive status information from the target system. This can then

be displayed in graphical format, stored on disk or sent on via a network to a higher level

supervisory system. The PLCs, for example, are typically programmed and controlled in this

way. However, USB and network connections will tend to take over this type of function in

future. Networking also allows the PC to be controlled or re-programmed remotely, and to

return information to a supervisory system.

16.3.5 Manufacturing and Process Control

Microprocessors and microcontrollers are central to ongoing development of industrial

technology. The term ‘automation’ refers to machines that are specially designed for one

production task, but increasingly, flexible manufacturing systems are being introduced; they

can produce a range of similar products in smaller quantities at a viable cost. Motor vehicle

assembly is a well-established example.

A basic flexible manufacturing system (FMS) is illustrated in Fig. 16.13. It consists of a

milling machine, a hydraulic assembly rig and a materials-handling robot. It is designed to

machine and assemble a simple product. The mill produces the casing, the robot assembles it

and a cover is fitted in the hydraulic press.

A block diagram (Fig. 16.14) shows how the subsystems interconnect. The digital signals in

the system operate at 24V, the higher voltage providing better noise immunity than TTL (5V)

levels. The various controllers signal to each other to control the sequence of operations. For

example, when the mill has finished, it asserts (sets active) a ‘Mill Ready’ signal to the robot

controller, which triggers the robot program to pick up the finished workpiece.

The robot slide, the press rig and the mill are all controlled by PLCs, with the main

PLC controlling the whole system. In the system illustrated, the robot controller has two

microprocessors, because of the complex calculations required for the robot movement. The

PLCs are programmed from a PC, via the serial port; this link can be removed for normal

running. However, the main system PLC remains connected to its host PC, which then operates

as a SCADA (supervisory control and data acquisition) man–machine interface when the system

is running. It provides a virtual control panel and graphical status display of the system as it

runs, using status bits in the main PLC for its information. The system is stopped and started

from the SCADA virtual control panel.

298 More Control Systems

Figure 16.13 Flexible manufacturing system.

Main
PLC Robot

controller

Slide
PLC

Servo
motor

controller

Robot slide

Milling
machine

Press
rig

Press
PLC

M

System
host PC Network

Mill
host
PC

Figure 16.14 Flexible manufacturing system.

16.4 Control System Design

One of the disadvantages of the microcontroller and standard microprocessor board such as

the M68k target board is that the hardware is designed to be multipurpose, that is, it has not

been designed for any specific application. This means that there are likely to be features of

Control System Design 299

the hardware which are not utilised by a particular application, and the user will be paying for

unused facilities. The advantage of a conventional microprocessor is that the hardware can be

designed at component level to meet the requirements of the application exactly. For example,

the amount of memory, the type and number of I/O ports can be tailored precisely to meet

the needs of the application. The decision on which type of hardware to use must therefore

be made by balancing the ongoing cost of unused features against the extra development costs

of a tailor-made design. Existing expertise will be another factor; it takes time for the design

engineer to become familiar with any new developments.

The PLC offers an off-the-shelf hardware package, normally requiring no external electronics

to interface it. It is therefore commonly used in industrial control systems, which divide into

two main categories: process control and manufacturing systems. It is robust, easy to install

and easily programmed.

The PC itself can also be used as a controller, offering a standard operating system, graphics,

disk storage, communications and printing. One of the great advantages of the modular design

of the PC is that special interface cards can be fitted for control applications. The PC thus can

be turned into an oscilloscope, logic analyser, controller or data logger. It is also a universal

platform for running design software, for both mechanical and electronic CAD. Thus, you

can design hardware, run a control application, write the support documentation and sell your

product on the Internet, all using the same machine! Its role as a development platform for PIC

microcontroller designs is only one of many uses.

Table 16.1 provides a comparison of the advantages and disadvantages of the different forms

of system control outlined above.

We can see that a good working knowledge of all these options is required in order to select

the most appropriate technology for any given application. The PIC is one microcontroller

among many, and the microcontroller is only one solution to any given problem. Nevertheless,

the microcontroller is now meeting an increasing range of needs in current industrial and

consumer technology, and the PIC is the best device to start learning with – have fun!

Summary

• Numerous alternative microcontroller families exist, notably the Intel 8051 and derivatives

and the Motorola 68HC11.

• The Motorola 68000 (M68k) CISC microprocessor is widely used in education and industry,

and has a relatively straightforward architecture, but a complex instruction set.

• Simple sequence control can be implemented using electromechanical relays.

• PLCs have built-in interfacing and user-friendly programming methods to simplify sequence

control system design.

• The PC can be used as a universal design, control, monitoring, instrumentation, IT

applications and networking hardware platform.

• The control system designer needs to select the most suitable technology for any given

application.

Table 16.1 Comparison of control technologies

Technology Advantages Disadvantages Typical applications

Relays Simple to design Slow Machine safety interlocks
No programming needed Unreliable Simple process control
No electronics skills needed High power consumption High power systems
Good electrical isolation Not suitable for complex systems

PLC Minimal interfacing needed Limited processing functionality Machine control
Easy to program Limited interfacing flexibility Process systems
Easy to install Flexible manufacturing system

Microcontroller Flexible hardware design Hardware design skills needed Smart cards
Large choice Programming skill needed Consumer goods
Suitable for small embedded Limited memory Instrumentation
applications Dedicated controllers

Microprocessor Flexible controller design Expert hardware design skills Automatic machines
system Suitable for larger systems needed Specialist control systems

Expandable Good programming skill needed Large computers

PC Host Available off the shelf High cost of basic unit Machine tool host
High cost/performance ratio Large physical size SCADA
Built-in data storage and comms Only suitable for complex applications Large systems user interface
Graphical programming and display Instrumentation systems host
Basic interfacing skills only needed Networks and distributed systems
Standard operating system

Control System Design 301

Questions

1. Outline the differences between the PIC 16F84 and the Intel 8051 microcontrollers.

2. State two advantages and two disadvantages of the conventional processor system over the

microcontroller in designing a system to meet a particular specification.

3. Explain briefly the advantages of using a PLC compared to a microprocessor system in

control applications.

4. Draw a flowchart for the Program 16.2 to show the control sequence clearly.

5. What are the advantages of using the PC as a controller, compared with the microcontroller?

6. Match up the controller type with the most appropriate programming language or technique:

(i) Small microcontroller (a) ‘C’

(ii) CISC microprocessor (b) None
(iii) Relay system (c) Graphical

(iv) PLC (d) Assembler

(v) PC + I/O card (e) Ladder logic

Activities

1. Log on to the Atmel website and select a microcontroller from the list of available flash

devices which is most similar to the 16F84 and compare its features and block diagram.

Identify any advantages that the AVR microcontroller has over the PIC.

2. Obtain a copy of the M68000 summary instruction set, and compare it with the PIC

16XXXX instruction set. Identify three instructions which are not available in the PIC.

3. Devise a circuit to switch a motor on and off using push buttons and a single relay (no

safety interlocks needed).Why is this safer than using a simple mains switch?

4. Modify the PLC machine tool controller in Fig. 16.8, and its program, to operate an alarm

output if the machine stalls or overloads.

5. Devise a block diagram of a domestic washing machine, controlled by a microcontroller.

Show interface blocks between the switched actuators and sensors and the microcontroller.

Write a description of the operating sequence of the machine, and devise a flowchart for the

control sequence, constructed so that it could be implemented in PIC assembly language.

6. By reference to the temperature controller design in Chapter 15, design the hardware for

PIC implementation of the system shown in Fig. 16.10. Select a suitable device according

to the I/O and memory requirements, test Program 16.2 in the MPLAB simulator and

implement the design using the most readily available construction techniques. Devise a
target system to simulate the machine tool and confirm correct operation in hardware.

Appendix A
PIC 16F84A Data Sheet

Appendix A 303

304 Appendix A

Appendix A 305

306 Appendix A

Appendix A 307

308 Appendix A

Appendix A 309

310 Appendix A

Appendix A 311

312 Appendix A

Appendix A 313

314 Appendix A

Appendix A 315

316 Appendix A

Appendix A 317

318 Appendix A

Appendix A 319

320 Appendix A

Appendix A 321

322 Appendix A

Appendix A 323

324 Appendix A

Appendix A 325

326 Appendix A

Appendix A 327

328 Appendix A

Appendix A 329

330 Appendix A

Appendix A 331

332 Appendix A

Appendix A 333

334 Appendix A

Appendix A 335

336 Appendix A

Appendix A 337

338 Appendix A

Appendix A 339

340 Appendix A

Appendix A 341

342 Appendix A

Appendix A 343

344 Appendix A

Appendix A 345

346 Appendix A

Appendix B
DIZI-2 Board and Lock Application

DIZI-2 Demonstration Board

A circuit was required to demonstrate a range of basic microcontroller programming techniques
via a set of simple applications for the PIC 16F84. The DIZI (DIsplay, buZzer and Interrupt)
board was designed to allow the special hardware features of the PIC chip to be exercised,
including interrupts, timer and EEPROMmemory. In-circuit programming was not incorporated,
in order to emphasise the stand-alone operation of the microcontroller. The chip would be
programmed separately and then physically transferred to the target system. The enhanced
DIZI-2 board described in this appendix incorporates an on-board battery supply, a finger pot
to provide an analogue input and hardware switch debouncing to improve the reliability of the
push button operation.
The circuit is built on a 100× 100mm piece of stripboard which has copper tracks for making

the component connections on a standard 0.1" grid. The design includes a 2× 1.5V battery
pack on the board. The power is switched on via a non-latching push button so that it cannot
be left on accidentally, and thereby exhaust the batteries; it must be held on manually while
the circuit is in operation.
The basic demonstration programs in Part B of this book can be run on the DIZI-2 board,

while the motor programs must be run on the MOTA demo board. The simple introductory
circuits in Part B and the motor board can be constructed using the same techniques as will
be described for the DIZI board. The reader who is inexperienced in prototype construction is
encouraged to attempt these tasks. The binary output counts from the BINx programs will be
seen on the corresponding LED segments of the DIZI display, although the binary number is
not displayed so clearly as it would be on a set of eight discrete LEDs, or an LED bar graph
module.

DIZI-2 Board Design

A seven-segment display allows decimal and hexadecimal digits to be shown. A range of
applications with a numerical output can thus be demonstrated, for example, the electronic
DICE in Chapter 12 and the LOCK application detailed below. Port B has eight I/O bits; seven
are used for the LED display, leaving RB0 free for use as both an audio output and a push
button (interrupt) input. A small audio transducer, a peizo electric buzzer, provides a simple
and effective way of monitoring audio output frequencies or generating status signals.
Port A has five pins. RA4 can be used as an input to the TMR0 counter, so this was allocated

as another push button input. A 4-bit switch bank is useful for setting coded inputs (for example,

348 Appendix B

BCD inputs for the LOCK application), so RA0–RA3 were allocated for this purpose. The

switch and push button inputs have 100k pull-up resistors, and the push buttons have 22�F

debouncing capacitors. These are fitted to such inputs because, when a switch closes, the metal

contacts can bounce open again several times before finally closing. The CR network prevents

this from causing multiple transitions on the logic signal input to which the switch is connected,

because after the capacitor has quickly discharged on the first contact, it must recharge via the

100k. This takes a relatively long time, preventing the voltage from jumping back to a high

level when the contacts re-open. By the same process, the CR network also ensures a smooth

transition from low to high logic levels when the push button is released.

In addition, the CR network on RA4 was modified with a potentiometer (pot) connected as

a variable resistance in series with the 100k, so that it could also be used to demonstrate the

analogue input process in the LOCK program.

Circuit Diagram

Developing circuits for microcontrollers is not always too difficult, because the same circuit

elements can often be re-used in different designs. Thus, in the DIZI circuit (Fig. B.1), the

switch inputs, display outputs and the clock circuit are standard arrangements of components.

Remember, however, that, unlike the PIC, some microcontrollers cannot drive LEDs directly,

but need a current driver stage inserted between each output and the LED.

dp
g
f
e
d
c
b
a

100k × 8

0 V

+3 V

INT
INP

Seven-
segment
display

Vss O1 O2

Vdd

RA4

RA3
RA2

RA1

RA0

RB7

RB6

RB5
RB4

RB3

RB2

RB1

RB0

4 MHz
Peizo-
buzzer
(17 nF)

DIL × 4
switch

PIC
16F84

cc

Power
supply
2 × 1.5 V

220 R

Signal
output

Power
ON

10k

22 nF

220 R
 × 8

22 nF 22 pF 22 pF 22 nF

MCLR

Figure B.1 DIZI-2 board circuit diagram.

DIZI-2 Board Layout

The layout of a PCB or prototype circuit is derived from the circuit diagram. The pins on DIL

(Dual In-Line) chips are spaced 0.1" apart, so the circuits must be laid out on a 0.1" grid. When

Appendix B 349

the pin out of each component has been established by reference to the data sheet or catalogue

information, the connections can be mapped out on a square grid on paper. Alternatively, it is

not too difficult to use the basic drawing tools in a wordprocessor to do the same job. Examples

of such connection diagrams are given in the text. A more refined layout drawing for the DIZI-2

board is shown in Fig. B.2.

The board is viewed from the front (component) side, with the tracks on the back shown

vertically. The components are numbered for reference to the parts listed below. The chips

are all placed in the same orientation, so that pin 1 is bottom left. The seven-segment display

has the decimal point bottom right. The ICs must obviously be fitted across the tracks, so that

their pin connections are separated. The PIC chip should be fitted in a socket so that it can be

removed for programming.

Horizontal links of tinned copper wire (TCW) complete the connections required. A solder

joint is shown as a solid black dot. The broader solid lines indicate a continuous link across

the tracks on the back of the board, where a set of adjacent tracks must be connected. Where

required, the tracks are cut with a hand drill; these positions are shown as small white circles.

The tracks must also be cut between the opposite pairs of pins on each DIL component, and,

in this case, under the clock circuit capacitors (11).

A computer-drawing method allows component positioning to be easily adjusted so that the

minimum area of stripboard is used. However, with experience, the circuit may be built directly

onto the board without necessarily drawing the layout, perhaps with some wastage of board

area.

2 &

8

9

10

11

3

1 & 14

13

6

12
12

13 4

56 6

12

7

Figure B.2 DIZI stripboard layout.

350 Appendix B

Parts List

A parts list is required to specify the exact component when ordering from a suitable supplier.

The availability of components varies over time, so updating is sometimes necessary. For

example, the finger preset pot originally used in the design is no longer listed by the UK

supplier, and had to be replaced with an equivalent part. The layout then had to be amended

because the pin arrangement of the new component was different.

Layout Description

1 Battery box, 2 × AA cells, PCB mounting
2 Microcontroller, PIC 16LF84-04
3 Peizo electric sounder, PCB mounting
4 Seven-segment LED display, 0.5", Common Cathode
5 Piano DIL switch, 4-way
6 Tactile switch, PCB mounting (3 off)

Caps for above: Red
Blue
Yellow

7 Preset potentiometer, 10k, H-mount
8 DIL isolated resistor network, 100k × 8
9 DIL isolated resistor network, 220 R × 8
10 Quartz crystal, general purpose, 4 MHz
11 Capacitor, 22 pF, ceramic (2 off)
12 Capacitor, 22 nF, polyester (3 off)
13 Stripboard, SRBP 3939 100 × 100 mm
14 Batteries, 1.5 V, size AA, Duracell (2 off)
15 18-pin DIL IC socket

Construction

When the layout has been checked against the circuit diagram, the main components can be

inserted in the board and retained by, if necessary, slightly bending the corner pins outwards. All

the pins should then be soldered to the tracks using the minimum amount of solder necessary,

whilst ensuring that the joint is covered evenly with no cavities. At the same time, the soldering

iron should be in contact with the joint for the shortest possible time, to avoid component

overheating. The TCW links can also be retained before soldering by bending the ends towards

each other. If a very neat job is required, one end can be soldered and the link stretched slightly

before fixing the other end, to ensure that the link has no kinks in it, and that adjacent links

do not touch; insulated TCW may be used on longer links if necessary. The tracks should then

be cut where necessary, and the track side brushed with a small stiff brush to clear any debris.

Rake between the tracks with a small screwdriver or knife to ensure that there are no short

circuits left between adjacent tracks and solder joints.

Static Testing

Thoroughly re-inspect the board for correct connections, and that there are no debris, solder

splashes or whiskers or dry joints. With the batteries not yet fitted, check with a multimeter

that there is no short circuit between the power supplies. Fit the batteries, but not the PIC chip,

and hold down the power button. The display decimal point should light. Check the supply

voltages on the supply tracks and PIC socket pins: Pin 5 = 0V and Pin 14 =+3V. Check that

Appendix B 351

the voltages at the PIC inputs change correctly as the switches are toggled. A DMM (Digital

Multimeter) or oscilloscope is required for this test, because of the high impedance of the

pull-up resistors. Connect a temporary link between Pin 14 (+3V) on the PIC IC socket and

each PIC output in turn, RB0–RB7. The peizo-buzzer should produce an audible ‘tick’ and the

LED segments should light.

Test Program

To complete testing of the DIZI-2 board, a program should be blown into the PIC which

exercises all the hardware, while remaining as simple as possible so that there is no question

Program B.1 DIZI board test program

; diz1.asm

; Test DIZI hardware

GOTO inter ; jump over delay

; Delay Subroutine

delay MOVLW 0FF ; Load FF
MOVWF 0C ; into counter

down DECFSZ 0C ; and decrement
GOTO down ; until zero
RETURN

; Check Interrupt Button

inter BTFSC 06,0 ; Test Button RB0
GOTO inter ; until pressed

; Check Display

MOVLW 00 ; Set PortB bits
TRIS 06 ; as outputs
MOVLW 0FF ; Switch on all
MOVWF 06 ; display segments

; Check Input Button

input BTFSC 05,4 ; Test Button RA4
GOTO input ; until pressed

; Check DIP Switches and Buzzer

again MOVF 05,W ; get DIL input &
MOVWF 06 ; send to display
RLF 06 ; rotate bits left

continued...

352 Appendix B

BSF 06,0 ; set buzzer high
CALL delay ; delay about 1ms
BCF 06,0 ; reset buzzer low
CALL delay ; delay about 1ms

GOTO again ; and keep going..
END ; End of code

of the software being faulty. A suitable program is listed in Program B.1; it does not test the
analogue input operation, which will be covered later. When this program has been loaded, the
following test procedure will confirm correct hardware operation.

Step Test Result

1 Power Button On Decimal point ON
2 Button B pressed and released All display segments ON
3 Button A pressed and released Buzzer sounds
4 Operate DIL switches Segments a, b, c, d change

If faults are found, it is quite possible that there are still short circuits on the board. Check
also that all the tracks have been cut as required, and that all connections are correct.

Analogue to Digital Conversion

One feature of the DIZI board not described in the main text is the analogue input. A similar
input is available on the MOTA board, so the method for using it will now be explained. Some
PIC chips, and other microcontrollers, have built-in ADCs, which allow analogue voltages to
be converted to binary form for input to the processor. An ADC would be needed, for example,
if a temperature is to be measured by the controller in a process system. The general block
diagram for a counting ADC is shown in Fig. B.3.

ADC

Bit 7
|
|
|
|

Bit 0

Analogue
voltage

Binary
code

Start conversion
End of conversion

Set
voltage
range

Control

Figure B.3 General analogue to digital converter.

The 8-bit ADC shown in Fig. B.3 converts the analogue voltage present at its input to an 8-bit
binary number, which means it can detect 256 different voltage levels. If the input range is set to,
say, 0–2.55V, then 255 steps of 10mV can be detected. When the ‘Start Conversion’ (GO bit)

Appendix B 353

signal goes active, the DAC converts the binary number into a corresponding voltage. The ‘End

of Conversion’ signal to the processor is to indicate completion of the conversion process.

CR-ADC

The hardware for the standard ADC above is fairly complex, while the control process is

relatively simple. An alternative is to use simple external hardware with a software conversion

procedure, if there is no hardware ADC available. The CR-ADC is based on the measurement,

using a counter register, of the rise time in a CR network connected to the processor system

input. The CR converter will generally be slower and less accurate than a hardware-based ADC,

but may be quite adequate in simple applications.

The components connected to RA4 in the DIZI circuit are shown in Fig. B.4. The capacitor-

charging curve in Fig. B.5 shows the time constant of the circuit as 2.3ms, assuming that the

pot is set midway. This is the time taken to reach 63% of the final value (3V) as the C charges

via R. The PIC chip is a CMOS device, so the voltage level at which an input changes from

logic 0 to 1, the threshold voltage, is around half the supply voltage, 1.5V. Therefore the time

taken to reach this level, here called the charging time, is estimated at 1.5ms. This could be

calculated more accurately from the formula for the charging of a capacitor, but as long as the

circuit operation is consistent, it is not necessary for this application.

RA4

100k

10k

C = 22 nF

0 V

3 V

R = 105k +/–5k

Estimation of charging time

Capacitor value
= 22 nF = 22 × 10–9

 F
Resistor value with 10 k pot
set midway = 100k + 5k
= 105k = 105 × 103

 Ω

∴Network time constant = C.R
= 22 × 10–9 × 105 × 106 = 2.31 ms
Estimated charging time ≈1.5 ms

Figure B.4 CR conversion network.

3 V

0 V

Time (ms)

~1.5 V

Charging
time

Capacitor-
charging
voltage
 at RA4

RA4 threshold
voltage

Supply voltage

CR time
constant

1.9 V

~1.5 2.3

Figure B.5 CR network characteristic.

354 Appendix B

The resistance, R, varies between 100k and 110k, depending on the position of the pot.

The variation in the pot value will produce a corresponding variation in the rise time of the

circuit. The rise time can be measured by discharging the capacitor and then counting while

the voltage rises back towards the threshold. The capacitor is discharged by setting RA4 as

an output and then setting the port data bit to zero. RA4 is then reconfigured as an input

and checked at fixed time intervals while a register is incremented. The count is stopped

when RA4 goes high.

The waveform which will be seen at RA4 is illustrated in Fig. B.6 (not to scale). A register

labelled PotVal is incremented, and RA4 checked, within a loop taking, in the LOCK program,

20�s to execute (see Fig. B.7). An adjustable delay routine allows the timing to be modified

to suit the application and CR component values.

The result of the process is that a count is obtained which represents the setting of the

pot. This could be converted to a resistance value if required, but in the LOCK program all

we need is a variation in the displayed digit between 0 and 9, to allow the user to input a

decimal combination. Therefore, the delay associated with the count was simply adjusted to

give one decade on the display with one turn of the pot. Only the low four bits of the count

were required, so any decade of values could be used. The upper end of the 4-bit range, hex

numbers A–F, are displayed as ‘-’. These can be used as ‘hidden’ digits for extra security,

if required.

Sample RA4 every 20 µs and increment count
in PotVal register until RA4 goes high

Voltage on
RA4

3 V

1.5 V

RA4 = 0

RA4 = 1

Charging time varies
with pot resistance

Lower pot resistance
- Faster charging
 - Lower count Higher pot resistance

 - Slower charging
- Higher count

Time

Delay while C
discharges

Figure B.6 Conversion waveform at RA4.

Set RA4 as Output

Clear RA4 to 0V to discharge C

Clear Counter Register

Set RA4 as Input

Test RA4 while C charges through R:

 Increment Counter Register

 Delay 20us

 Until RA4 = 1

Convert Count to Resistance or Pot Position

Figure B.7 CR-ADC algorithm.

Appendix B 355

A similar method can be used to operate the analogue input on the MOTA board (Fig. 13.2).

The motor speed could then be controlled by a voltage source or sensor, or analogue feedback

employed to implement closed loop control.

EEPROM Memory

Non-volatile read and write memory is very useful because data input by the user or acquired

by the processor during its operation can be retained while the power is off. One important

application area is data security and encryption. PIC devices are used, for example, in smart

cards for controlling access to satellite television broadcast channels. The LOCK application

illustrates this feature of the PIC 16F84 by using the EEPROM memory to store a 4-digit

security code.

The PIC 16F84 has 64 bytes of EEPROM, with addresses 00–3F. The memory is accessed

via EEDATA and EEADR in the SFR set. The EEPROM address is loaded into EEADR, and

the data byte to be stored in EEDATA. An artificially complex write initialisation sequence

is then executed to actually write to the EEPROM memory, using EECON1 and EECON2

page 1 SFRs. The sequence is designed to reduce the possibility of an accidental write to the

EEPROM, because a high level of reliability is required for security applications. This code

sequence is given in the data sheet and LOCK program listing.

The read sequence, for retrieving the data, is more straightforward. Using EECON1, the

data in the address pointed to by EEADR is returned in EEDATA. For accessing sequences of

locations, EEADR can be incremented directly.

LOCK Application

In this demonstration application, a sequence of four decimal digits is stored in the PIC

EEPROM memory from the DIL switch inputs. This sets the combination for the lock. To

‘open’ the lock, the pot is rotated, and the input decimal digits are displayed and entered. This

simulates the rotary action of mechanical combination locks. If the sequence of four input digits

matches those previously stored in EEPROM, a siren sound is made to indicate the opening of

the lock.

In the actual application, a solenoid-operated lock mechanism would be activated from this

output, by replacing the siren sequence with an instruction to set an output bit. A suitable current

driver interface for the solenoid would be required. Only the Power button, Enter button, Digit

Select pot and display would be accessible to the user in the final design. The hardware would

need to be reconfigured so that the unit would appear as shown in Fig. B.8 to the user. The

DIL switch bank and its button for setting the entry code would be concealed.

Power

Enter
Select
digit

Figure B.8 Lock user interface.

356 Appendix B

Program Structure

The program contains the following blocks:

1. declaration of register and bit Labels

2. initialisation of registers

3. sequence 1 – Store combination

4. sequence 2 – Check combination

5. end 1 – Continuous siren output

6. end 2 – Sleep

7. Subroutine 1 – Display code table

8. Subroutine 2 – Variable delay

9. Subroutine 3 – Output one tone cycle

10. Subroutine 4 – Get digit from pot

The program blocks should be ordered in such a way that labels referenced have already

been defined when the program is assembled. Thus, the subroutines should be placed before

the main sequences in the source code. However, when actually developing the code, if you

are working ‘top down’, the subroutines may actually be written after the main sequences. To

place them correctly in the source code, they can then be inserted when editing, or cut and

pasted later.

The program has two main sequences, for inputting and checking a combination, and two

alternate endings. The processor goes to sleep after completion of the input sequence, or an

incorrect digit match. The DIZI board must be re-powered to try again, as there are no other

interrupts enabled to restart it. If the combination checks out correctly, the siren ending is used,

which continues until the power goes off.

Pseudocode

The program is outlined below using ‘pseudocode’, which is a text method of designing the

program, which may be used instead of a flowchart. The pseudocode is developed in a word

processor or the program source code editor until the statements are detailed enough to be

converted into assembly code statements. In this case, it must be written in a form which allows

it to be easily converted to PIC assembly language. The program structure and logic can thus

be worked out before attempting to write the source code itself. To use pseudocode effectively,

the programmer must be reasonably expert in using the language syntax.

The conventions used in the pseudocode are as follows:

• block structure applied

• target hardware specified

• Register and bit labels defined

• user inputs included in the sequence

• GOTO [deslab]

– Jump to destination address label

Appendix B 357

• CALL [subnam]

– Call subroutine at address label

– Values passed to and received from subroutine defined

• GOTO [addlab] UNTIL (condition)

– Implemented using Bit Test, Skip & GoTo operation

• (regname)

= Contents of register labelled ‘regname’

• program block type defined:

INIT = Initialise

MAIN = Main program

SEQn = Sequence ending with GOTO

ENDn = End operation
SUBn = Subroutine, optionally receiving and/or returning values

LOCK List File

The list file for the LOCK program contains the source code and machine code. If the reader

wishes to test the program, the machine code (column 2 of the list file) can be entered directly

into the program memory buffer in the programming software. This avoids the need to type in
the source code, if the hex file itself is not available.

The source code file uses the following conventions:

• full details of hardware and operation of application in source code;

• SFR, user and bit labels defined in separate blocks for clarity;

• block and line comments in source code;

• lower case for address labels;

• upper case for instruction mnemonics and SFR labels;

• capitalisation of user register labels;

• identification and separation of block types.

The pseudocode and list files are reproduced in Programs B.2 and B.3.

Program B.2 Lock program pseudocode

LOCK PROGRAM PSEUDOCODE MPB 29/8/99

Hardware: DIZI PIC 16F84 Demo Board

General Purpose Register Labels:

0C = Period = Delay Period Preload Value
0D = Count = Delay Counter
0E = PotVal = Count from ADC conversion
0F = DigVal = Low 4 bits of PotVal

User Bit Labels:
butA (RA4 input) - Normally 1
butB (RB0 input) - Normally 1
buzO (RB0 output)

See Data Sheet for SFR Labels and addresses

continued...

358 Appendix B

{Power Button On}

INIT: Initialise Port B *************************

Port A defaults to inputs

RA0 - RA3 = DIL Switches = 4-bit input

RA4 = Input = butA = INP Button

RB0 = Input = butB = INT Button

RB1 - RB7 = Output = 7 Seg Display

MAIN: Select Set or Check Combination ***********

select {Press Button A or B}

If (butA)=0, GOTO [stocom]
If (butB)=0, GOTO [checom]
GOTO [select]

SEQ1: Store 4 digits in EEPROM, beep after each *

stocom {Release Button A}

CALL [delay] with (W)=FF
GOTO [stocom] UNTIL (butA)=1

Clear (EEADR)
getdil {Set DIL Switches or Press A}

Read (PORTA) into (W)
Calc (W) AND 0F
Store (W) in (EEDATA)
CALL [codtab] with (W)=00-0F
{Returns with ’7SegCode’ in (W)}
Output (W) to (PORTB)
GOTO [getdil] UNTIL (butA)=0

waita {Release Button A}

GOTO [waita] UNTIL (butA)=1
Store (EEDATA) in (EEADR)
CALL [beep]
Increment (EEADR) from 00 to 04
GOTO [getdil] UNTIL (EEADR)=4
CALL [beep]
CALL [beep]
GOTO [done]

SEQ2: Check 4 digits from pot for match *************

checom {Release Button B}

CALL [delay] with (W)=FF
GOTO [checom] UNTIL (butB)=1

Clear (EEADR)
potin {Adjust Pot or Press Button B}

CALL [getpot] for (DigVal)
{Returns with (DigVal)=00-0F}
GOTO [potin] UNTIL (butB)=0

Appendix B 359

Read (EEDATA) at (EEADR)
Compare (EEDATA) with (DigVal)
If (Z)=0 GOTO [done]

waitb {Release Button B}

GOTO [waitb] UNTIL (butB)=1
CALL [beep]
Increment (EEADR)
GOTO [potin] UNTIL EEADR=4
GOTO [siren]

END1: Sequences matches, sound siren ******************

siren CALL [beep]
GOTO [siren]

END2: Digit compare failed, finish *******************

done Clear (PORTB)
Sleep

SUBROUTINES ***

SUB1: Get Display Code
Receives: Table Offset in W

Returns: 7-Segment Display Code in W

codtab Add (W) to (PCL)
RETURN with ’7SegCode’ in (W)

SUB2: Variable Delay
Receives: (Count) in W

delay Load (Count) from (W)
Decrement (Count) UNTIL (Count)=0
RETURN

SUB3: Outputs one cycle of sound output
Receives: (Period)

beep Load (Period) with FF
Set RB0 as 0utput

cycle Set (BuzO)=1
CALL [delay] with (Period) in W
Set BuzO=0
CALL [delay] with (Period) in W
Decrement (Period) from FF to 00
GOTO [cycle] UNTIL (Period)=0
Reset RB0 as Input
RETURN

continued...

360 Appendix B

SUB4: Get Pot Value using CR ADC method

Returns: (DigVal)=00-0F

getpot Set RA4 as Output
Clear (RA4)
CALL [delay] with (W)=FF
Reset RA4 as Input

Clear (PotVal)
check Increment (PotVal) from 00 to XX

CALL [delay] with (W)=3
GOTO [check] UNTIL (RA4)=1

(DigVal) = (PotVal) AND 0F
CALL [codtab] with (DigVal)=00-0F
RETURN

END OF LOCK PROGRAM *******************************

Program B.3 Lock program list file

00001 ;***
00002 ; LOCK.ASM MPB 17/8/99
00003 ;***
00004 ;
00005 ; Four digit combination lock simulation demonstrates the hardware
00006 ; features of the DIZI demo board and the PIC 16F84.
00007 ;
00008 ; Hardware: DIZI Demo Board with PIC 16F84 (4MHz)
00009 ; Setup: RA0-RA3 DIL Switch Inputs
00010 ; RA4 Push Button Input / Analogue Input
00011 ; RB0 Push Button Input / Audio Output
00012 ; RB1-RB7 7-Segment Display Output
00013 ; Fuses: WDT off, PuT on, CP off
00014 ;
00015 ; Operation ---
00016 ;
00017 ; To set the combination, a sequence of 4 digits is input on the DIL
00018 ; piano switches; this is retained in the EEPROM when power is off.
00019 ; To ’open’ the lock, a sequence of 4 digits is input via
00020 ; the potentiometer. These are compared with the stored data,
00021 ; and an audio output generated to indicate the correct sequence.
00022 ; The processor halts if any digit fails to match, and the
00023 ; program must be restarted.
00024 ;
00025 ; To set a combination:

Appendix B 361

00026 ; 1. Hold Power On Button
00027 ; 2. Press Button A
00028 ; 3. Set a digit on DIL switches and Press A - beeps
00029 ; 4. Repeat step 3 for 3 more digits
00030 ; 5. Release Power Button
00031 ;
00032 ; To check a combination:
00033 ; 1. Hold Power On Button
00034 ; 2. Press Button B
00035 ; 3. Set a digit on pot and Press B - beeps if matched
00036 ; 4. Repeat step 3 for 3 more digits
00037 ; - if digits all match, siren is sounded
00038 ; - if any digit fails to match, the processor

; halts
00039 ; 5. Release Power Button
00040 ;
00041 ; **
00042 PROCESSOR 16F84 ; Processor Type Directive
00043 ; **
00044
00045 ; EQU: Special Function Register Equates....................
00046

0002 00047 PCL EQU 02 ; Program Counter Low
0005 00048 PORTA EQU 05 ; Port A Data
0006 00049 PORTB EQU 06 ; Port B Data
0003 00050 STATUS EQU 03 ; Flags
0008 00051 EEDATA EQU 08 ; EEPROM Memory Data
0009 00052 EEADR EQU 09 ; EEPROM Memory Address
0008 00053 EECON1 EQU 08 ; EEPROM Control Register 1
0009 00054 EECON2 EQU 09 ; EEPROM Control Register 2

00055
00056 ; EQU: User Register Equates................................
00057

000C 00058 Period EQU 0C ; Period of Output Sound
000D 00059 Count EQU 0D ; Delay Down Counter
000E 00060 PotVal EQU 0E ; Analogue Input Value
000F 00061 DigVal EQU 0F ; Current Digit Value 00 to 09

00062
00063 ; EQU: SFR Bit Equates......................................
00064

0005 00065 RP0 EQU 5 ; STATUS - Register Page Select
0000 00066 RD EQU 0 ; EECON1 - EEPROM Memory Read Byte Initiate
0001 00067 WR EQU 1 ; EECON1 - EEPROM Memory Write Byte Initiate
0002 00068 WREN EQU 2 ; EECON1 - EEPROM Memory Write Enable
0002 00069 Z EQU 2 ; STATUS - Zero Flag

00070
00071 ; EQU: User Bit Equates.....................................
00072

0004 00073 butA EQU 4 ; PORTA - RA4 Input Button
0000 00074 butB EQU 0 ; PORTB - RB0 Input Button
0000 00075 buzO EQU 0 ; PORTB - RB0 Output Buzzer

00076
00077 ; **

continued ...

362 Appendix B

00078
00079 ; INIT: Initialise Port B (Port A defaults to inputs)
00080

0000 300100081 start MOVLW 001 ; RB0 = Input, RB1-RB7 = Outputs
0001 006600082 TRIS PORTB ; Set Data Direction
0002 008600083 MOVWF PORTB ; Clear Data
0003 286D00084 GOTO select ; Select Combination Read or

Write
00085
00086 ; SUBROUTINES ***
00087
00088 ; SUB1: 7-Segment Code Table using PCL + offset in W

Returns
00089 ; digit display codes, with ’−’ for numbers A to F
00090

0004 078200091 codtab ADDWF PCL ; Add offset to Program Counter
0005 347E00092 RETLW B’01111110’ ; Return with display code for ’0’
0006 340C00093 RETLW B’00001100’ ; Return with display code for ’1’
0007 34B600094 RETLW B’10110110’ ; Return with display code for ’2’
0008 349E00095 RETLW B’10011110’ ; Return with display code for ’3’
0009 34CC00096 RETLW B’11001100’ ; Return with display code for ’4’
000A 34DA00097 RETLW B’11011010’ ; Return with display code for ’5’
000B 34FA00098 RETLW B’11111010’ ; Return with display code for ’6’
000C 340E00099 RETLW B’00001110’ ; Return with display code for ’7’
000D 34FE00100 RETLW B’11111110’ ; Return with display code for ’8’
000E 34DE00101 RETLW B’11011110’ ; Return with display code for ’9’
000F 348000102 RETLW B’10000000’ ; Return with display code for ’-’
0010 348000103 RETLW B’10000000’ ; Return with display code for ’-’
0011 348000104 RETLW B’10000000’ ; Return with display code for ’-’
0012 348000105 RETLW B’10000000’ ; Return with display code for ’-’
0013 348000106 RETLW B’10000000’ ; Return with display code for ’-’
0014 348000107 RETLW B’10000000’ ; Return with display code for ’-’

00108
00109 ; --
00110 ; SUB2: Delay routine
00111 ; Receives delay count in W
00112

0015 008D00113 delay MOVWF Count ; Load counter from W
0016 0B8D00114 loop DECFSZ Count ; and decrement
0017 281600115 GOTO loop ; until zero
0018 000800116 RETURN ; and return

00117
00118 ; --
00119 ; SUB3: Output One Beep Cycle to BuzO
00120

0019 30FF00121 beep MOVLW 0FF ; Load FF into
001A 008C00122 MOVWF Period ; Period counter

00123
001B 300000124 MOVLW B’00000000’ ; Set RB0
001C 006600125 TRIS PORTB ; as output

00126
00127 ; Do one cycle of rising tone....
00128

001D 140600129 cycle BSF PORTB,buzO ; Output High
001E 080C00130 MOVF Period,W ; Load W with Period value
001F 201500131 CALL delay ; and delay for Period

00132

Appendix B 363

0020 1006 00133 BCF PORTB,buzO ; Output Low
0021 2015 00134 CALL delay ; and delay for same Period
0022 0B8C 00135 DECFSZ Period ; Decrement Period
0023 281D 00136 GOTO cycle ; and do next cycle until 0

00137
00138 ; Set RB0 to input again................................
00139

0024 3001 00140 MOVLW B’00000001’ ; Reset RB0
0025 0066 00141 TRIS PORTB ; as input
0026 0008 00142 RETURN ; from tone cycle

00143
00144 ; --
00145 ; SUB4: Get pot value (Rv) using rise time due to C and R

on RA4
00146 ; Returns with digit value (0-F) in DigVal
00147
00148 ; Discharge external capacitor on RA4
00149

0027 300F 00150 getpot MOVLW B’00001111’ ; Set RA4
0028 0065 00151 TRIS PORTA ; as output
0029 1205 00152 BCF PORTA,4 ; and discharge C setting

output low
002A 30FF 00153 MOVLW 0FF ; Delay for about 1ms
002B 2015 00154 CALL delay ; to ensure C is discharged
002C 301F 00155 MOVLW B’00011111’ ; Reset RA4
002D 0065 00156 TRIS PORTA ; as input

00157
00158 ; Increment a counter until RA4 goes high due to

charging of C
00159

002E 018E 00160 CLRF PotVal ; Clear input value counter
002F 0A8E 00161 check INCF PotVal ; increment counter
0030 3003 00162 MOVLW 03 ; Set delay count to 3
0031 2015 00163 CALL delay ; and delay between

input checks
0032 1E05 00164 BTFSS PORTA,4 ; Check input bit RA4
0033 282F 00165 GOTO check ; and repeat if not yet high

00166
00167 ; Mask out high bits of count value, and store & display
00168 ; 4-bit digit value, 0-F
00169

0034 080E 00170 MOVF PotVal,W ; Put count value in W
0035 390F 00171 ANDLW 00F ; and set high 4 bits to 0
0036 008F 00172 MOVWF DigVal ; Store 4-bit value
0037 2004 00173 CALL codtab ; Get 7-segment code, 0-9
0038 0086 00174 MOVWF PORTB ; and display

00175
0039 0008 00176 RETURN ; with DigVal from setting

of pot
00177
00178 ; MAIN SEQUENCES**************************************
00179
00180 ;SEQ1: Store 4 Digits in non volatile EEPROM
00181 ; Beep after each digit, and twice when 4 done
00182

continued ...

364 Appendix B

00183 ; Complete Button A input operation
00184

003A 30FF 00185 stocom MOVLW 0FF ; Delay for about 1ms
003B 2015 00186 CALL delay ; to avoid Button A switch bounce
003C 1E05 00187 BTFSS PORTA,butA ; Wait for Button A
003D 283A 00188 GOTO stocom ; to be released

00189
00190 ; Read 4-bit binary number from DIL switches into EEDATA

and display
00191

003E 0189 00192 CLRF EEADR ; Zero EEPROM address register
003F 0805 00193 getdil MOVF PORTA,W ; Read DIL switches
0040 390F 00194 ANDLW 0F ; and set high 4 bits to 0
0041 0088 00195 MOVWF EEDATA ; Put DIL value in EEPROM data

00196
0042 2004 00197 CALL codtab ; Display DIL input as decimal
0043 0086 00198 MOVWF PORTB ;

00199
0044 1A05 00200 BTFSC PORTA,butA ; Check if Button A pressed
0045 283F 00201 GOTO getdil ; If not, keep reading DIL input

00202
00203 ; Store the current DIL input in EEPROM at current address
00204

0046 1683 00205 store BSF STATUS,RP0 ; Select Register Bank 1
0047 1508 00206 BSF EECON1,WREN ; Enable EEPROM write
0048 3055 00207 MOVLW 055 ; Write initialisation sequence
0049 0089 00208 MOVWF EECON2 ;
004A 30AA 00209 MOVLW 0AA ;
004B 0089 00210 MOVWF EECON2 ;
004C 1488 00211 BSF EECON1,WR ; Write data into current address
004D 1283 00212 BCF STATUS,RP0 ; Re-select Register Bank 0

00213
004E 1E05 00214 waita BTFSS PORTA,butA ; Wait for Button A to be released
004F 284E 00215 GOTO waita ;
0050 2019 00216 CALL beep ; Beep to indicate digit write

done
00217
00218 ; Checkif 4 digits have been stored yet, if not, get next

0051 0A89 00220 INCF EEADR ; Select next EEPROM address
0052 1D09 00221 BTFSS EEADR,2 ; Is the address now = 4?
0053 283F 00222 GOTO getdil ; If not, get next digit
0054 2019 00224 CALL beep ; Beep twice when 4 digits stored
0055 2019 00225 CALL beep ;
0056 2874 00226 GOTO done ; Go to sleep when done

00228 ; --
00230 ; SEQ2:Check PotVal v EEPROM
00231

0057 30FF 00232 checom MOVLW 0FF ; Delay for about 1ms
0058 2015 00233 CALL delay ; to avoid Button B switch bounce
0059 1C06 00234 BTFSS PORTB,butB ; Wait for Button B to be released
005A 2857 00235 GOTO checom ;

00236
00237 ; Read the value set on the input pot
00238

005B 0189 00239 CLRF EEADR ; Zero EEPROM address
005C 2027 00240 potin CALL getpot ; Get a digit value set on pot (Rv)

Appendix B 365

005D 1806 00241 BTFSC PORTB,butB ; Check in Button pressed again
005E 285C 00242 GOTO potin ; If not, keep reading the pot

00243
00244 ; Get a digit value from EEPROM and compare with the pot

input
00245

005F 1683 00246 BSF STATUS,RP0 ; Select Register Bank 1
0060 1408 00247 BSF EECON1,RD ; Read selected EEPROM location
0061 1283 00248 BCF STATUS,RP0 ; Re-select Register Bank 0
0062 0808 00249 MOVF EEDATA,W ; Copy EEPROM data to W

00250
0063 068F 00251 XORWF DigVal ; Compare the input with EEPROM

data
0064 1D03 00252 BTFSS STATUS,Z ; If it does not match, go to sleep
0065 2874 00253 GOTO done ;

00254
00255 ; If digit match obtained, check if 4 done and do next if not
00256

0066 1C06 00257 waitb BTFSS PORTB,butB ; Wait for Button B to be released
0067 2866 00258 GOTO waitb ;
0068 2019 00259 CALL beep ; Beep to confirm successful match

00260
0069 0A89 00261 INCF EEADR ; Select next EEPROM location
006A 1D09 00262 BTFSS EEADR,2 ; 4 digits checked yet?
006B 285C 00263 GOTO potin ; If not, do the next
006C 2872 00264 GOTO siren ; When 4 digits done, run siren

00265
00266 ; **
00267
00268 ; MAIN: Select Set or Check Combination
00269

006D 1E05 00270 select BTFSS PORTA,butA ; Button A pressed?
006E 283A 00271 GOTO stocom ; If so, store a combination
006F 1C06 00272 BTFSS PORTB,butB ; Button B pressed?
0070 2857 00273 GOTO checom ; If so, check a combination
0071 286D 00274 GOTO select ; repeat endlessly

00275
00276 ; ***
00277
00278 ; END1: When combination successfully matched, make siren

sound
00279

0072 2019 00280 siren CALL beep ; Do a tone cycle
0073 2872 00281 GOTO siren ; and repeat endlessly

00282
00283 ; --
00284
00285 ; END2: When a digit check fails, go to sleep, and try again
00286

0074 0186 00287 done CLRF PORTB ; Switch off display
0075 0063 00288 SLEEP ; Processor halts

00289
00290 ; ***
00291 END ; of program source code

continued ...

366 Appendix B

SYMBOL TABLE
LABEL VALUE

Count 0000000D
DigVal 0000000F
EEADR 00000009
EECON1 00000008
EECON2 00000009
EEDATA 00000008
PCL 00000002
PORTA 00000005
PORTB 00000006
Period 0000000C
PotVal 0000000E
RD 00000000
RP0 00000005
STATUS 00000003
WR 00000001
WREN 00000002
Z 00000002
__16C84 00000001
beep 00000019
butA 00000004
butB 00000000
buzO 00000000
check 0000002F
checom 00000057
codtab 00000004
cycle 0000001D
delay 00000015
done 00000074
getdil 0000003F
getpot 00000027
loop 00000016
potin 0000005C
select 0000006D
siren 00000072
start 00000000
stocom 0000003A
store 00000046
waita 0000004E
waitb 00000066

MEMORY USAGE MAP (’X’ = Used, ’-’ = Unused)
0000 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXX -----

All other memory blocks unused.

Index

1-bit data system, 43

12F675 MCU, 274

12FXXXX MCU, 218, 238, 257

16F818 MCU, 273

16F84 MCU, 26, 117–27

architecture, 117

block diagram, 117, 118

clock, 118

file register set, 117–26

instruction set, 98

oscillator, 118

pinout, 80, 81, 195

reset, 118

16F877 MCU, 257, 258

16FXXXX MCU, 238, 257

18F452 MCU, 275

18XXXX MCU, 95, 238, 257

4-bit adder, 38

4-bit data system, 44

6502 CPU, 26

68000 CPU, 25, 26, 241

68000 system, 282

application, 288

block diagram, 286

bus operation, 286

DUART (Dual Universal

Asynchronous Receive

Transmit) device, 287

PI/T (Parallel Interface/Timer),

287

program execution, 286

program, 284, 286

68HC11 MCU, 281

8051 MCU 26, 280

8086/8 CPU, 25–7

Absolute address, 69

Accumulator, 63

Active load, 34

A/D see ADC

Adapter card, 7

ADC (Analogue to Digital

Converter), 246, 260

conversion time, 246

multiplexer, 246

number of, 243

operation, 271

reference voltage, 246, 260

resolution, 246

Add operation, 68, 98

Address, 13

bus, 12, 26, 54

decoder, 287

decoding, 51, 53, 54, 247

offset, 27

range, 55

segment, 27

ADRESH (A/D Result High byte)

register, 272

ADRESL (A/D Result Low byte)

register, 272

Algorithm, 16, 93

ALU (Arithmetic and Logic Unit),

36, 57, 61, 64

Analogue input, 218, 260

Analogue I/O, 14

AND gate, 33–5

And operations, 68, 98

ANSI (American National

Standards Institute), 275

Anti-static precautions, 112

Application, 4

circuit, 17

design, 94

development, 92–115

files, 94, 101

Architecture, 61

ARESTM (PCB layout software),

192, 264

Arithmetic operations, 66, 67, 98

ASCII (American Standard Code

for Information Interchange),

11, 28, 154

ASM file, 88

Assembler directives, 150

Assembler program, 88, 93,

94, 105

Assembly language mnemonics,

27, 66, 87

Assembly language programming,

66, 87

Asynchronous communication, 251

Asynchronous input simulation,

110

Asynchronous motor control, 223

Atmel AVR MCU, 282

Audio output, 87

Bank 1 registers, 84

BANKSEL operation, 142

Base, 21

Battery power, 33

Baud rate, 251,

Bidirectional buffer, 51

BIN hardware, 80–2

Binary, 20–5, 32

adder, 36

counter, 55, 86

sum, 37

type, 154

BIOS (Basic Input Output System),

7, 9

Bipolar transistor, 33

Bistable, 40

Bit, 8

Bitmap, 11

Bit test and skip operation, 65, 70,

98, 104

Block diagram, 5, 162

Branch, 69

Breadboard, 194, 195

368 Index

Breakpoint, 111

Bus, 8, 54

Buzzer, 197, 262

Byte, 10, 25

C (Carry Flag) bit, 124

‘C’ programming language, 95, 275

advantages, 278

inport() function, 295

machine control program, 296

outport() function, 295

simple program, 277

statements, 275

CAD (Computer Aided Design), 20

CAN (Controller Area Network)

system, 253

CANRX (CAN Receive)

signal, 253

CANTX (CAN Transmit)

signal, 253

CALL operation, 66, 71, 98,

105, 120

Capture operation, 244

Carry:

bit, 37

flag, 64, 124

in, 37

out, 37

Case, 89

CCP (Capture/Compare/PWM)

module, 244

CDROM (Compact Disk Read

Only Memory), 4, 5

Character code, 10, 28

Character type, 154

Chip select, 54

CISC (Complex Instruction Set

Computer), 6, 14

CK (USART serial clock) signal,

251

Clear operation, 67, 98

CLKIN (Clock In), 80, 145

CLKOUT (Clock Out), 80,

129, 145

Clock, 7, 12, 43, 55, 63, 118, 129

frequency, 12, 87, 130, 243

HS mode, 249

phases Q1–Q4, 129

RC mode, 83, 87

speed, 249

XT mode, 145, 249

Closed loop control, 213, 218, 221

CLRWDT (Clear Watchdog Timer)

operation, 99, 146

COD (debug) file, 94

Code protection, 113

Column layout, 97

Column weight, 21

COM port, 112, 197

Combinational logic, 36

Comments, 89, 100

Comparative cost of PIC MCUs,

243

Compare operation, 244

Complement operation, 67, 98

Conditional directives, 152

Conditional jump, 64, 66, 70

CONFIG directive, 151

Configuration word, 148

Context saving, 137

Control:

bus, 12

code, 13

logic, 58, 61

operations, 99

system design, 298

technologies, 288–300

unit, 44

Counter/Timer, 55, 131

CP (Code Protection) bit, 114, 148

CPU (Central Processing Unit), 5,

10, 12, 54, 55

Crystal clock, 12

Current:

driver, 42

limiting, 82, 197

output, 83

D-type latch, 40

Data, 4–14

bus, 12, 26, 44, 54

destination, 141

direction register, 13, 64

direction select, 51

directives, 152

display, 43

input switch, 42

input, 9, 41

latch, 40, 43, 51

memory, 244

output, 10, 41

parallel, 8

processing, 10, 13, 41, 120

register, 13, 53, 61

store, 10, 41, 44

switch, 44

table, 148

word, 25

DC (Digit Carry) bit, 124

DC motor control, 213–32

Debounce, 42

Debug, 27

Debugging, 109, 181

Decimal, 21, 154

Decoder, 50

Decrement and skip operation,

98, 104

Decrement operation, 67, 98

Default data direction bits, 84

Default destination register,

106, 179

Delay loop, 130

Demultiplexer, 51

Destination address, 69

Development system, 17

Dice board layout, 193

Digit, 21

Digital devices, 32

DIL (Dual In-Line) package,

79, 250

DIMM (Dual In-line Memory

Module), 8

Disk, 4–14

Disk interface, 8

DIZI application outlines:

BELL1, 210

GEN1, 209

GIT1, 210

HEX1, 209

MESS1, 209

MET1, 210

REACT1, 209

SEC1, 209

DIZI demo board, 196–210

applications, 200

block diagram, 198

breadboard circuit, 199

circuit diagram, 198

stripboard circuit, 200

stripboard layout, 199

Documentation, 174

Don’t know, don’t care state, 44

DOS (Disk Operating System), 10

DTP (Desk Top Publishing), 10

Dump, 27

ECAD (Electronic

Computer-Aided Design), 191

ECU (CAN Electronic Control

Unit), 254

Edge triggered latch, 40

EEADR register, 125, 142

EECON1 register, 125, 142

EECON2 register, 125, 142

EEDATA register, 125, 142

EEIE (EEPROM Interrupt Enable)

bit, 125, 136

EEPROM (Electrically Erasable

Programmable Read Only

Memory), 126, 135, 142, 144,

240, 243

Index 369

Emulator pod, 188

Enable, 40

Encoder, 50

END directive, 88, 105, 152

ENDM (End Macro) directive, 153

Engineering applications, 14

EOR (Exclusive OR) operation, 98

EPROM (Electrically Erasable

Read Only Memory), 61, 179

EQU (Equate) directive, 88,

101, 152

Equivalent values, 22, 23

ERR (error) file, 94, 106

Errors, 94, 106, 177

EXE (executable) file, 97

Execution time, 130

Expansion board, 5, 12, 14

Fan control, 257–73

Fatal error, 109

FET (Field Effect Transistor), 33

channel, 33

drive, 215, 217

gate, 33

interface, 163, 215, 260, 262

logic gate, 33

Filepath, 97

File registers, 83

Flash ROM memory, 17, 62,

83, 239

Floating state, 44

Floppy disk, 4, 5, 97

Flowchart, 11, 96, 165, 166

conversion, 171

decision, 96, 168

detail, 171

input/output, 96, 168

jump, 96

label, 96

outline, 171

process, 96, 167

start, 96

structure, 169

subroutine, 101, 103

symbols, 167

terminals, 167

FMS (Flexible Manufacturing

System), 297

Folder, 97

Frequency divider, 55

FSR (File Select Register), 125,

142, 143

Full adder, 37

Function call, 277

Gate enable, 42

GIE (Global Interrupt Enable) bit,

125, 136

GO/DONE bit, 246

GOTO operation, 69, 98, 104, 120

GPR (General Purpose Register),

83, 84, 120, 126

Graphical programming, 15

Greenhouse simulator, 264

GUI (Graphical User Interface), 5

Halt, 181

Hard disk (drive), 4, 5, 9

Hardware:

construction, 192

testing, 114, 186, 187

timers, 241

Harvard architecture, 61, 119, 239

Header, 89, 97–100

Heater control, 257–73

HEX file, 88, 105

Hexadecimal (hex), 20–8, 154

High impedance state, 42

HLL (High Level Language), 95

Host computer, 17

HS crystal, 146

I2C (Inter-Integrated Circuit)

system, 253

IBMTM PC, 25

ICD (In-Circuit programming and

Debugging), 114, 147, 243,

247

ICE (In-Circuit Emulator), 187, 188

IDE (Integrated Development

Environment), 88

I/O (Input/Output), 12, 54, 83

I/O allocation, 163

I/O number of, 242, 243

INCLUDE directive, 153

Increment and skip operation, 98

Increment operation, 67, 98

IND0 register, 125

Indexed addressing, 144

INDF register, 142, 143

Indirect addressing, 142, 143

Input, 4, 84

Input simulation, 110, 180, 182

Instruction:

code, 45

cycle, 86, 129

decoder, 13, 58, 63, 83, 119

execution, 119

register, 13, 61, 63, 119

set, 65, 97, 98

size, 26

timing, 129

INTCON (Interrupt Control)

register, 65, 123, 125, 132,

135, 136

INTE (RB0 Interrupt Enable) bit,

125, 135

INTEDG (Interrupt Edge select)

bit, 124, 135, 136

Intel 8086 CPU, 3, 27

Interface, 5, 94

Internal oscillator, 146, 243, 247

Internet, 5

Interrupt, 10, 56, 63, 125, 135–40,

197, 240

Interrupt vector, 62, 140

INTF (RB0 Interrupt Flag) bit,

125, 136

Inverter, 33

ISD (Integrated Support Device), 7,

8, 12, 13

ISISTM(schematic capture

software), 192, 262

ISP (In-circuit Serial

Programming), 241

ISR (Interrupt Service Routine),

63, 123, 135–7

Iteration, 164

J-K flip-flop, 40

Jump, 69, 86, 88

Jump instructions, 98, 120

Keyboard, 3–14

Keycode, 10, 12

Keypad, 15, 50, 258, 262

Keypad scanning, 269

Label, 69, 88, 109

Label equate, 89, 101

Ladder logic programming, 291

LAN (Local Area Network), 5

Latch, 39

Layout, 89, 97–100

Least significant bit, 22

LED (Light Emitting Diode), 15,

42, 43

LIFO (Last In First Out) stack, 120

LIST directive, 152

List file, 106, 107, 109

Literal, 88

LLL (Low Level Language), 164

LM35 temperature sensor, 257

Load current, 42

Location, 51

Location select, 53

Logic:

analyser, 41

circuits, 34

gates, 35

instructions, 98

operations, 66, 68

symbols, 35

370 Index

Logical error, 93, 109, 179, 184

Long word, 25

Low voltage operation, 33

LS crystal, 146

LSI (Large Scale Integrated)

device, 35

LST (list) file, 88, 94, 106

Machine code, 26–8

16F84, 27

6502, 26

8086, 27

program, 47, 65, 85

MACRO directive, 153

Main unit, 3–6

Manufacturing and process

control, 297

Mask ROM memory, 62, 237

Master controller, 217, 247

MCLR (Master Clear), 63, 80, 118

MCU (Microcontroller unit), 15

Memory, 5–14, 51

address, 51

map, 55

module, 5

size, 22, 54

usage map, 106, 108, 109

Messages, 178

MicrochipTM, 26

MicrochipTM website, 92

Microcontroller, 15, 300

application, 15

architecture, 61

block diagram, 62

control, 292

operation, 61

specification, 95

system, 3

Microprocessor, 5, 300

Microprocessor system, 12, 282

Modem, 5

Modular system, 5

Most significant bit, 22

MOT1 motor controller

hardware, 163

MOTA motor application board,

214–18

Motherboard, 5

Motor bridge driver, 231

Motor control, 160, 213

Motor controller, 231

Motorola 68000 CPU, 25, 26, 241

Mouse, 3–6, 10

interface, 8

Move operations, 66–8, 98, 120

MPASM (assembler), 93, 97

MPLAB (development system), 28,

88, 110

edit window, 96, 183

pin stimulus, 184

program memory window, 184

SFR window, 183

simulation, 109–11

stopwatch window, 184

watch window, 183

MSDOSTM (Microsoft Disk

Operating System), 9

MSR (Mark/Space Ratio), 160, 223

Musical tone frequencies, 206

NAND gate, 33–5

Network, 3–6, 8

Non-volatile, 9

NOP (No operation), 99, 130

NOT gate, 34–5

Number systems, 20–5

Numerical types, 154

Open loop control, 213, 218

Operand, 13, 45, 63

OPTION instruction, 125

OPTION register, 99, 124, 131,

133

Opto-sensor, 214, 217

ORG directive, 152

OR gate, 33–5

Or operation, 68, 98

OS (Operating System), 4, 9

OSC1/2 pins, 145

Oscillator, 113, 145

Oscilloscope, 41

OTP (One-Time Programmable)

memory, 17, 62, 237

Output, 4

Output buffer, 53, 84

Output testing, 180, 182

Overflow, 131

Packaging, 250

Page 0/1, 121

PAGE directive, 152

Parallel:

data, 8, 15

port, 55

slave port, 247

PC (Personal Computer), 3–15, 299

host computer, 3, 17, 83

host control, 14, 292, 300

I/O card, 292

machine code 27

system, 3, 12

terminal emulator, 284

PC (Program Counter), 13, 55, 62

PCB (Printed Circuit Board)

design, 192, 193

PCL (Program Counter Low)

register, 65, 83, 121

PCLATH (Program Counter Latch

High) register, 83–5, 121,

125, 143

PD (Power Down) bit, 124

PDIP (Plastic Dual In-line

Package), 250

Peizo buzzer, 197

PentiumTM processor, 3, 6, 25, 26

Peripheral interface, 8

PGA (Pin Grid Array)

package, 250

PIC:

12F675 MCU, 274

16F818 MCU, 273

16F84 MCU, 26, 79–90, 117–27

16F877 MCU, 257

18F452 MCU, 275

development system, 3

family, 26, 237

machine code, 27

selection, 242

PID control, 221

Pipelining, 119, 130

Pixel, 10

PLC (Programmable Logic

Controller), 290, 297, 299,

300

PLCC (Plastic Leaded Chip

Carrier) package, 250

PLD (Programmable Logic

Device), 39, 231

Port, 12

Port initialisation, 104

Port registers, 13, 61, 64

PORTA, 65, 83–5, 121

PORTB, 65, 83–5, 123

Position control, 213, 219

Power consumption, 32, 249

Power-Up Timer, 113

Powers, 21

Pre-load, 56, 133

Prescaler, 56, 125, 133, 221

Prescaler select bits, 124, 133

Price of PIC MCUs, 251

Printer, 3–8, 11

Printer interface, 8

PROCESSOR directive, 150

Program, 5–14

algorithm, 95

analysis, 85, 101

assembly, 105

backup, 93

control, 68

counter, 83, 84

debugging, 109, 181, 248

Index 371

development, 92–115

downloading, 17, 62, 112,

119, 248

editing, 96

execution, 13, 61, 83, 119

header, 89

implementation, 171

jump, 62, 68, 104

memory size, 243, 244

memory, 61, 83, 119

simulation, 109

specification, 95

structure, 101, 167

testing, 114, 180

timing, 111, 129

title, 96

Programming:

languages, 15

microcontroller, 16

unit, 17, 94, 112

Programs (source code):

ASD1, 151

BIN1, 85

BIN2, 90

BIN3, 99

BIN4, 102

BUZZ1, 202

CLS1, 227

CON0, 266

DICE1, 205

INT1, 137

MOT1, 173

POS1, 220

SCALE1, 207

TAB1, 149

TIM1, 134

Project, 101

ProteusTM (circuit design

software), 192

Prototype hardware, 193

PS0/1/2 (Prescaler Select) bits, 124

PSA (Prescaler Assignment)

bit, 124

Pseudocode, 71, 170

PSU (Power Supply Unit), 5

Pull-up resistor, 33, 42

Pulse period measurement, 221

Punctuation, 97

Push-button input, 197

PUT (Power-Up Timer), 113, 146

PWM (Pulse Width Modulation),

160, 214, 222–31, 243–5,

257–73

Q1-Q4 clock phases, 129

QFP (Quad Flat Package), 250

RAM (Random Access Memory),

7, 8, 12, 13, 14, 54, 55

RAM size, 243

RBIE (Port B Interrupt Enable) bit,

125, 135, 136

RBIF (Port B Interrupt Flag) bit,

125, 136

RBPU (Port B Pull-Up enable)

bit, 124

RC clock, 83, 113, 145

R/W (Read/Write), 55

Register, 13, 41, 51, 120

bank, 64

bank select, 121, 141

default, 86

display, 110

operations, 98

processing, 61, 66, 67

select, 54

Relative branch, 69

Relay control, 289, 300

Relay output, 260

Reset, 69, 110, 181

RETFIE (Return From Interrupt)

operation, 98, 137

RETLW (Return with Literal in W)

operation, 98, 148

RETURN (from subroutine)

operation, 71, 98, 105, 120

RISC (Reduced Instruction Set

Computer), 6, 239

Robot, 297

Roll over, 131

ROM (Read Only Memory), 8, 12,

13, 45, 54, 55

Rotate operation, 67, 98

RP0/1 (Register Page/Bank select)

bit, 124

RS232, 252

Run, 109, 181

RX (USART receive) signal, 251

SCADA (Supervisory Control and

Data Acquisition)

software, 297

Scanned display, 10

SCK (SPI Serial Clock) signal, 252

SCL (I2C Serial Clock), 253

Screen, 4,10

SDA (I2C Serial Data), 253

SDI (SPI Serial Data In)

signal, 252

SDO (SPI Serial Data Out)

signal, 252

Segment address, 27

Selection, 164

Semicolon, 89

Sequence, 164

Sequential logic, 39

Serial:

communication protocols, 251

data, 9, 17, 57

port, 55, 57, 231, 243

register, 56

Servo-control unit, 232

Set operation, 67, 98

Seven segment display, 15, 31,

197, 203, 262

encoding table, 204

multiplexed, 261, 262, 271

SFR (Special Function

Register), 64, 65, 83, 120,

121–6, 240

Shaft encoder, 231

Shift operation, 67, 98

Shift register, 56

SIMM (Single In-line Memory

Module), 7, 8

Simulation, 179, 186

Simulator, 93, 94

Single chip system, 15

Single stepping, 109

SLEEP operation, 99, 146, 241

Slotted disk, 214

Software design, 164

SOIC (Small Outline Integrated

Circuit) package, 250

Source code, 29, 96

Source code documentation, 174

Special instructions, 153

Speed control, 213, 221

Speed measurement, 221

SPI (Serial Peripheral

Interface), 252

SRAM (Static RAM), 126

SS (SPI Slave Select) signal, 252

SSI (Small Scale Integrated)

device, 35

SSOP (Shrink Small Outline

Plastic) package, 250

Stack, 63, 71, 105, 120, 240

Static RAM, 41, 51

Status bits, 56, 124

STATUS register, 56, 64, 65,

71, 123

Step into, 110, 181

Step over, 111, 181

Stimulus file, 183

Stop, 109

Stopwatch, 111, 182

Stripboard, 194, 196

Structure chart, 169

Subroutine, 71, 101, 105, 167

Subtract operation, 68, 98

372 Index

Swap operation, 98

Switch, 42

4-bit input, 197

8-bit input, 217

debounce, 42

input, 82

Symbol table, 106, 108, 109

Synchronous motor control, 222

Syntax error, 93, 106, 178

System timers, 240

T-type latch, 40

T0CKI (Timer Zero Clock Input)

pin, 132

T0CS (Timer Zero Clock Source

select) bit, 124

T0IE (Timer Zero Interrupt Enable)

bit, 125, 135, 136

T0IF (Timer Zero Interrupt Flag)

bit, 125, 132, 136

T0SE (Timer Zero Source Edge

select) bit, 124

Tab, 97

Tachometer, 214

Target system, 14

TEMPCON (temperature controller

system), 257–73

application pseudocode, 272

circuit description, 259

circuit diagram, 261

stripboard layout, 263

test program, 264, 266

Temperature controller

implementations:

12F675, 274

16F818, 274

16F877, 256

Temperature sensors, 257, 260

Terminal emulator, 284

Test and skip instructions, 98

Testing in MPLAB, 109,

180, 182

Test schedule, 114, 115,

184, 185

Text editor, 88, 94

Timer/Counter, 55, 123, 134,

240, 243, 244

Timing, 111

and control, 58, 61, 63, 119

diagram, 41

loop, 71

problems, 133

testing, 180

TITLE directive, 152

TMR0 (Timer Zero), 65, 123,

131–5, 219

TO (Time Out) bit, 124

Toggle mode, 55

Tracing, 183

Transparent latch, 40

Trapezoidal control, 221

TRIS, 99, 104, 106

TRISA register, 65, 83–5, 122

TRISB register, 65, 83–5, 123

TSG (Tri-State Gate), 42

TTL (Transistor-Transistor

Logic), 32

TX (USART transmit)

signal, 251

Typeface (font), 96

Unconditional jump, 66, 69

Unused pins, 83

Upgrade, 5

USART (Universal Synchronous/

Asynchronous Receive/

Transmit) device, 251

USB (Universal Serial Bus), 297

User interface, 94

VDU (Visual Display Unit), 3, 5, 8

Video interface, 5

VLSI (Very Large Scale

Integrated) device, 33

VN66 FET, 217

Volatile, 9

WAN (Wide Area Network), 5

Warnings, 178

WDT (Watchdog Timer), 113, 146

Website, 92

WIMP (Windows, Icons, Mouse,

Pointer), 10

WindowsTM (operating system),

3–10

WordTM (wordprocessor), 4,9

Working register, 63, 83–5,

120, 240

XOR (Exclusive OR) gate, 34–5

Xor (Exclusive OR) operation,

68, 98

XT (crystal) clock/oscillator, 113,

145, 146

XTAL (crystal), 12, 145

Z (Zero Flag) bit, 64, 71, 123, 124

ZIF (Zero Insertion Force) socket,

17, 112

Zilog Z8 MCU, 282

Zilog Z80 CPU, 26, 282

