Java 1.5
Tiger

A Deve/oper's
Notebook

Brett McLaughlin

David Flanagan

O REILLY"

main

Table of Contents
I ndex

Reviews
Examples

Reader Reviews
Errata

Academic

Java 1.5 Tiger: A Developer's Notebook
By David Flanagan, Brett McLaughlin

Publisher
Pub Date
ISBN

Pages

: O'Rellly

- June 2004

: 0-596-00738-8
: 200

Paginaldi 1

This no-nonsense, guide by bestselling Java authors Brett M cLaughlin and David Flanagan jumps
right into Tiger. Using the task-oriented format of this new series, you'll get complete practical
coverage of generics, boxing and unboxing, varargs, enums, annotations, formatting, the for/in loop,
concurrency, and more.

Table of Contents Paginaldi 3

Table of Contents

Index

Reviews

Examples

Reader Reviews

Errata

. Academic

Java 1.5 Tiger: A Developer's Notebook
By David Flanagan, Brett McLaughlin

Publisher : ORellly

Pub Date : June 2004
ISBN : 0-596-00738-8
Pages : 200

Copyright
The Developer's Notebook Series

Notebooks Are...
Notebooks Aren't...

Organization
Preface

Organization
How This Book Was Written
About the Examples
Conventions Used in This Book
How to Contact Us
Acknowledgments from Brett
Acknowledgments from David
Chapter 1. What's New?
Section 1.1. Working with Arrays
Section 1.2. Using Queues
Section 1.3. Ordering Queues Using Comparators
Section 1.4. Overriding Return Types
Section 1.5. Taking Advantage of Better Unicode
Section 1.6. Adding StringBuilder to the Mix
Chapter 2. Generics
Section 2.1. Using Type-Safe Lists
Section 2.2. Using Type-Safe Maps
Section 2.3. Iterating Over Parameterized Types
Section 2.4. Accepting Parameterized Types as Arguments
Section 2.5. Returning Parameterized Types
Section 2.6. Using Parameterized Types as Type Parameters
Section 2.7. Checking for Lint

Table of Contents

Section 2.8. Generics and Type Conversions
Section 2.9. Using Type Wildcards
Section 2.10. Writing Generic Types
Section 2.11. Restricting Type Parameters
Chapter 3. Enumerated Types
Section 3.1. Creating an Enum
Section 3.2. Declaring Enums Inline
Section 3.3. Iterating Over Enums
Section 3.4. Switching on Enums
Section 3.5. Maps of Enums
Section 3.6. Sets of Enums
Section 3.7. Adding Methods to an Enum
Section 3.8. Implementing I nterfaces with Enums
Section 3.9. Vaue-Specific Class Bodies
Section 3.10. Manualy Defining an Enum
Section 3.11. Extending an Enum
Chapter 4. Autoboxing and Unboxing
Section 4.1. Converting Primitives to Wrapper Types
Section 4.2. Converting Wrapper Types to Primitives
Section 4.3. Incrementing and Decrementing Wrapper Types
Section 4.4. Boolean Versus boolean
Section 4.5. Conditionals and Unboxing
Section 4.6. Control Statements and Unboxing
Section 4.7. Method Overload Resolution
Chapter 5. varargs
Section 5.1. Creating aVariable-Length Argument List
Section 5.2. Iterating Over Variable-Length Argument Lists
Section 5.3. Allowing Zero-Length Argument Lists
Section 5.4. Specify Object Arguments Over Primitives
Section 5.5. Avoiding Automatic Array Conversion
Chapter 6. Annotations
Section 6.1. Using Standard Annotation Types
Section 6.2. Annotating an Overriding M ethod
Section 6.3. Annotating a Deprecated M ethod
Section 6.4. Suppressing Warnings
Section 6.5. Creating Custom Annotation Types
Section 6.6. Annotating Annotations
Section 6.7. Defining an Annotation Type's Target
Section 6.8. Setting the Retention of an Annotation Type
Section 6.9. Documenting Annotation Types
Section 6.10. Setting Up Inheritance in Annotations
Section 6.11. Reflecting on Annotations
Chapter 7. The for/in Statement
Section 7.1. Ditching lterators
Section 7.2. Iterating over Arrays
Section 7.3. Iterating over Collections
Section 7.4. Avoiding Unnecessary Typecasts
Section 7.5. Making Y our Classes Work with for/in
Section 7.6. Determining List Position and Variable Value
Section 7.7. Removing List Itemsin afor/in Loop
Chapter 8. Static Imports
Section 8.1. Importing Static Members
Section 8.2. Using Wildcards in Static Imports
Section 8.3. Importing Enumerated Type Values

Pagina2di 3

Table of Contents Pagina3di 3

Section 8.4. Importing Multiple Members with the Same Name
Section 8.5. Shadowing Static Imports
Chapter 9. Formatting
Section 9.1. Creating a Formatter
Section 9.2. Writing Formatted Output
Section 9.3. Using the format() Convenience Method
Section 9.4. Using the printf() Convenience Method
Chapter 10. Threading
Section 10.1. Handling Uncaught Exceptionsin Threads
Section 10.2. Using Thread-Safe Collections
Section 10.3. Using Blocking Queues
Section 10.4. Specifying Timeouts for Blocking
Section 10.5. Separating Thread Logic from Execution Logic
Section 10.6. Using Executor as a Service
Section 10.7. Using Callable Objects
Section 10.8. Executing Tasks Without an ExecutorService
Section 10.9. Scheduling Tasks
Section 10.10. Advanced Synchronizing
Section 10.11. Using Atomic Types
Section 10.12. Locking Versus Synchronization

Colophon
[ndex

Day Day Up Paginaldi 1

Java 1.5 Tiger: A Developer's Notebook™
by Brett McLaughlin and David Flanagan

Copyright © 2004 O'Reilly Media, Inc. All rights reserved.
Printed in the United States of America

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
O'Reilly books may be purchased for educational, business, or sales promotiona use. Online editions

are also available for most titles (safari.oreilly.com). For more informxation, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com .

Editor: Brett McLaughlin
Production Editor: Reg Aubry
Cover Designer: Edie Freedman
Interior Designer: Melanie Wang

Printing History:
June 2004: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Developer's Notebook series designations, Java 1.5 Tiger: A Developer's
Notebook, the look of alaboratory notebook, and related trade dress are trademarks of O'Reilly
Media, Inc.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. Many of the designations used by

manufacturers and sellersto distinguish their products are claimed as trademarks. Where those

designations appear in this book, and O'Reilly Media, Inc. was aware of atrademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00738-8
[M]

mailto:corporate@oreilly.com

The Developer's Notebook Series Paginaldi 3

The Developer's Notebook Series

So, you've managed to pick this book up. Cool. Really, I'm excited about that! Of course, you may
be wondering why these books have the oddlooking, college notebook sort of cover. | mean, thisis
O'Relilly, right? Where are the animals? And, really, do you need another series? Couldn't this just be
a cookbook? How about a nutshell, or one of those cool hacks books that seems to be everywhere?
The short answer isthat a developer's notebook is none of those things—in fact, it's such an
important idea that we came up with an entirely new look and feel, complete with cover, fonts, and
even some notes in the margin. Thisisal aresult of trying to get something into your hands you can
actually use.

It's my strong belief that while the nineties were characterized by everyone wanting to learn
everything (Why not? We all had six-figure incomes from dot-com companies), the new millennium
is about information pain. People don't have time (or the income) to read through 600 page books,
often learning 200 things, of which only about 4 apply to their current job. It would be much nicer to
just sit near one of the ubercoders and look over his shoulder, wouldn't it? To ask the guys that are
neck-deep in this stuff why they chose a particular method, how they performed this one tricky task,
or how they avoided that threading issue when working with piped streams. The thinking has always
been that books can't serve that particular need—they can inform, and let you decide, but ultimately
acoder's mind was something that couldn't really be captured on a piece of paper.

This series says that assumption is patently wrong—and we aim to proveit.

A Developer's Notebook isjust what it claims to be: the often-frantic scribbling and notes that a true-
blue a pha geek mentally makes when working with a new language, API, or project. It's the no-
nonsense code that solves problems, stripped of page-filling commentary that often serves more as a
paperweight than an epiphany. It's hackery, focused not on what is nifty or might be fun to do when
you've got some free time (when's the last time that happened?), but on what you need to simply
"make it work." Thisisn't alecture, folks—it'salab. If you want alot of concept, architecture, and
UML diagrams, I'll happily and proudly point you to our animal and nutshell books. If you want
every answer to every problem under the sun, our omnibus cookbooks are killer. And if you are into
arcane and often quirky uses of technology, hacks books ssmply rock. But if you're a coder, down to
your core, and you just want to get on with it, then you want a Developer's Notebook. Coffee stains
and all, thisis from the mind of a developer to yours, barely even cleaned up enough for print. | hope
you enjoy it...we sure had a good time writing them.

Notebooks Are...

Example-driven guides

Asyou'll seein Organization section, developer's notebooks are built entirely around example
code. You'll see code on nearly every page, and it's code that does something—not trivial
"Hello World!" programs that aren't worth more than the paper they're printed on.

Aimed at developers

Ever read a book that seemsto be aimed at pointy-haired bosses, filled with buzzwords, and

The Developer's Notebook Series Pagina2di 3

feels more like a marketing manifesto than a programming text? We have too—and these
books are the antithesis of that. In fact, a good notebook is incomprehensible to someone who
can't program (don't say we didn't warn you!), and that's just the way it's supposed to be. But
for developers...it'sasgood as it gets.

Actualy enjoyable to work through

Do you redly have timeto sit around reading something that isn't any fun? If you do, then
maybe you're into thousand-page language references—but if you're like the rest of us,
notebooks are a much better fit. Practical code samples, terse dialogue centered around
practical examples, and even some humor here and there—these are the ingredients of a good
devel oper's notebook.

About doing, not talking about doing

If you want to read abook late at night without a computer nearby, these books might not be
that useful. Theintent is that you're coding as you go along, knee deep in bytecode. For that
reason, notebooks talk code, code, code. Fire up your editor before digging in.

Notebooks Aren't...

Lectures

We don't let just anyone write a devel oper's notebook—you've got to be a bonafide
programmer, and preferably one who stays up alittle too late coding. While full-time writers,
academics, and theorists are great in some areas, these books are about programming in the
trenches, and are filled with instruction, not lecture.

Filled with conceptua drawings and class hierarchies

Thisisn't anutshell (there, we said it). Y ou won't find 100-page indices with every method
listed, and you won't see full-page UML diagrams with methods, inheritance trees, and flow
charts. What you will find is page after page of source code. Are you starting to sense a
recurring theme?

Long on explanation, light on application

It seems that many programming books these days have three, four, or more chapters before
you even see any working code. I'm not sure who has authors convinced that it's good to keep
areader waiting thislong, but it's not anybody working on this series. We believe that if you're
not coding within ten pages, something's wrong. These books are also chock-full of practical
application, taking you from an example in abook to putting things to work on your job, as
quickly as possible.

The Developer's Notebook Series Pagina3di 3

Organization

Developer's Notebooks try to communicate different information than most books, and as a result,
are organized differently. They do indeed have chapters, but that's about as far as the similarity
between a notebook and atraditional programming book goes. First, you'll find that all the headings
in each chapter are organized around a specific task. Y ou'll note that we said task, not concept. That's
one of the important things to get about these books—they are first and foremost about doing
something. Each of these headings represents asingle lab. A lab isjust what it sounds like—steps to
accomplish aspecific goal. In fact, that's the first heading you'll see under each lab: "How do | do
that?' Thisisthe central question of each lab, and you'll find lots of down-and-dirty code and detail
in these sections.

Some labs have some things not to do (ever played around with potassium in high school
chemistry?), helping you avoid common pitfalls. Some labs give you a good reason for caring about
the topic in the first place; we call thisthe"Why do | care?' section, for obvious reasons. For those
times when code samples don't clearly communicate what's going on, you'll find a"What just
happened” section. It'sin these sections that you'll find concepts and theory—but even then, they are
tightly focused on the task at hand, not explanation for the sake of page count. Finally, many labs
offer alternatives, and address common questions about different approaches to similar problems.
These are the "What about..." sections, which will help give each task some context within the
programming big picture.

And one last thing—on many pages, you'll find notes scrawled in the margins of the page. These
aren't for decoration; they contain tips, tricks, insights from the devel opers of a product, and
sometimes even alittle humor, just to keep you going. These notes represent part of the overall
communication flow—getting you as close to reading the mind of the devel oper-author as we can.
Hopefully they'll get you that much closer to feeling like you are indeed learning from a master.
And most of all, remember—these books are...

All Lab, No Lecture

—Brett McLaughlin, Series Creator

Preface Paginaldi 6

Preface

Professiona Java
Enterprise Java
Commercia Java

These are all terms that are commonplace in programming discussions these days—and for good
reason. Gone are the days when Java was considered atoy language for creating web games, futilely
trying to catch up to its "big brothers,” C and C++. While AWT and Swing (and now SWT) are
important parts of the Java language, Java has also evolved to take on more far-ranging tasks—
database interaction, financia management, e-commerce, and more. Its speed is comparable to C,
and its APIs are farreaching. As aresult, the core language has undergone significant stabilization,
and Java 1.3, and then 1.4, were largely steps towards maturing the platform, rather than radically
changing it.

Enter Java 1.5—code-named Tiger. Actualy, it's Java 5, version 1.5. Well, it's the J2SE, which |
suppose makesit Java 2, Standard Edition, 5, version 1.5. Confusing enough for you? Thankfully,
whatever the thing is called, the additions are worthy of al the hubbub; thisisn't your father's Java
(or to be more accurate, it's not your dightly older brother's Java) anymore.

Looking more like a completely new product than just arevision of an older language, Tiger is
chock-full of dramatic changes to what you know as simply Java. Y ou can't just read through the
release notes and figure this one out; and since the new features are alot more important than all the
oddities about its versioning, I'll just call it Tiger throughout the book, and sidestep Java 2 version
5..er.version 1.5..well...as| said, Tiger.

Whatever Tiger ends up being called officidly, it introduces so many new features to the language
that it took nearly 200 pages to cover them— and you'll find that each page of this book is dense
with code, example, and terse explanation. There isn't any wasted space. In fact, that's precisely what
you're holding in your hands—a concise crash course in the next evolution of Java, Tiger. By the
time you're through, you'll be typing your lists, taking your overloading to an entirely new level,
writing compile-time checked annotations, and threading more efficiently than ever. And that doesn't
take into account how much fun it isto type al sorts of new characters into your source code. Y ou
haven't lived until @ <, >, and %are strewn throughout your editor...well, maybe that's just me
wanting to have alittle more fun at the workplace. Whatever your reason for getting into Tiger,
though, you'll find more tools at your disposal than ever before, and far more change in any version
of Javasinceitsinitia 1.0 release. Fire up your code editor, buckle your seat belts, and get ready to
hit the ground running.

Let'stamethe Tiger.

Organization

This book is set up to be something of a cross between alearning exercise (where you would read
from front to back), and a cookbook (where you can skip around without concern). For the most part,
you can feel freeto look through the table of contents or index, and find what you're looking for.
However, as many of the subjectsin this book are interrelated (such as generics, thefor/in
statement, and autoboxing), you may find yourself reading an article that assumes knowledge from a
previous section of the book. In these cases, just browse the referenced chapter, and you should be

Preface Pagina2di 6

all set. A little extralearning is a good thing anyway, right?

How ThisBook WasWritten

This book isthe result of an unusual, but fruitful collaboration between David Flanagan and Brett
McLaughlin. David was at work on the fifth edition of Javain a Nutshell, but was eager to get
coverage of the major language changesin Tiger out sooner than the production schedule for that
book allowed. Brett, meanwhile, was the driving editorial force behind this innovative new series of
Developer's Notebooks, and was eager to include atitle on Tiger in the series.

The process went like this:

1 David researched the new features of Tiger and wrote about them for Javain a Nutshell. He
sent drafts of his new material to Brett.

1 Brett feverishly ripped those chapters apart, rewrote almost everything, added new examples,
and reassembled everything into the Developer's Notebook format.

The result is abook almost entirely written by Brett, based on research done by David. The tone of
the writing and the engaging style of the book is Brett's, and readers of this book and Javain a
Nutshell will be hard-pressed to find any duplication of prose. In afew cases, Brett has used code
samples that also appear in Javain aNutshell, and in each case that fact is mentioned in the margin.

About the Examples

This book has hundreds of code examples, spread throughout its pages. While some complete code
listings are shown in the text, other examples are shown only in part. While some readers may enjoy
typing in these programs on their own, many of usjust don't have the time. Because of this, every
single example, and ailmost all of the partial examples, are ready for compilation in Java source files,
ready for download.

Additionally, the process of compilation (especially class path issues) remains one of Java's most
problematic features. To help you out, an Ant buildfile isincluded with the samples, called
build.xml. You'll need to download and install Ant (available at ant.apache.org) to take advantage of
this buildfile, and | strongly urge you to do just that. Ant installation is easy, and you can always
refer to Ant: The Definitive Guide (O'Reilly) if you need assistance. Y our directory structure should
look something like this:

<basedir >

+--src (contains build.xm)

+--cl asses

Preface Pagina3di 6

o Thisisall taken care of for you if you just download the code and unzip it.

Navigate to your local src directory, and type ant . You'll get an error if you don't have Ant set up
properly. Otherwise, you should see something like the following:

${basedi r}\ code\ src>ant

Buildfile: build.xn

conpi | e:
[echo] Compiling all Java files..
[javac] Conpiling 41 source files to code\cl asses
[javac] Note: code\src\comoreilly\tiger\chO6\DeprecatedTester.java
uses or overrides a deprecated API.
[javac] Note: Reconpile with -Xlint:deprecation for details.
[javac] Note: Some input files use unchecked or unsafe operations.

[javac] Note: Reconpile with -Xlint:unchecked for details.

BUI LD SUCCESSFUL

Total tinme: 9 seconds

I'll leave it to you to explore the other targets within build.xml; there are also notes in most chapters
about targets that apply to that chapter, or to a specific example. All this code is heavily tested, and

mildly documented. Just make sure you've got Tiger as the first Java compiler on your classpath, or
you'll get all sorts of nasty errors!

Y ou may download this sample code, as well as check out errata, view related resources and online
articles, and see the latest on this book, at www.oreilly.com/catalog/javaadn/ . Check this site often,
as lots of new content may be available as time goes by and we update the exampl es.

Conventions Used in This Book

Italic is used for:
1 Pathnames, filenames, program names, compilers, options, and commands

1 New terms where they are defined

http://www.oreilly.com/catalog/javaadn/

Preface Pagina4 di 6

1 Internet addresses, such as domain names and example URL s

Boldface is used for:
1 Particular keys on a computer keyboard

1 Names of user interface buttons and menus

Constant width is used for:

1 Anything that appears literally in a JSP page or a Java program, including keywords,
datatypes, constants, method names, variables, class names, and interface names

1 Command lines and options that should be typed verbatim on the screen
1 All JSP and Java code listings

1 HTML documents, tags, and attributes

Constant width italic is used for:

1 Genera placeholdersthat indicate that an item is replaced by some actual valuein your
own program

Constant width bold is used for:

1 Text that is typed in code examples by the user

o Thisicon designates a note, which is an important aside to the nearby text.

de= Thisicon designates a warning relating to the nearby text.

HERT *t
How to Contact Us

Please address comments and questions concerning this book to the publisher:

OReilly Media, Inc.

1005 Gravenstein H ghway North

Preface Pagina5di 6

Sebast opol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or |ocal)

(707) 829-0104 (fax)

We have aweb page for this book, where we list errata, examples, or any additional information.
Y ou can access this page at:

www.oreilly.com/catal og/javaadn/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network,
See our web dite at:

www.oreilly.com/

Acknowledgments from Brett

The"1" you see in these pages is me—for better or for worse, | came up with this series, and am
thrilled to be able to bring one of the first books in the seriesto you. But, that leads me to the
enormously talented group of folks who made that possible.

There was atime when | loved writing acknowledgements, because | got to thank everybody
involved in helping me get through another book. Of course, now | redlize that there are so many
people | forget to thank, that I'm alittle scared...l guess that's the Oscar-acceptance-paranoia working
itself out. In any case, any book such asthistruly is atremendous effort by aton of people, and |
couldn't go without at least trying to name most of them.

To Mike Loukides, who edits most of my books (this being the exception), and Mike Hendrickson,
who's just all-around smart—thanks for paving the way for these new, inventive, cool little
notebooks. | think you've done the programming world areal service with them. | need to thank
David Flanagan for doing all the heavy lifting; the Sun folks, especially at CAP, for letting me see
JDK 1.5 early on; and guys like Hans Bergsten, Bruce Perry, Bob McWhirter, and Steve Holzner for
writing good books and letting me spend less time editing than | deserve to.

Finaly, in trying to keep things brief (you'll think I'm funny because of that, right?), | owethe
biggest debt to my family, asis aways the case. My wife, Leigh, only gripes occasionally when I'm
working at 9:00 at night. Of course, that's mostly because she's exhausted from chasing the two bits
of inspiration | have; my older son, Dean, and my younger son, Robbie. When you guys can read,
you'll see your names here, so thank the readers for the college fund, OK?

Acknowledgments from David

Thanks first and foremost to Brett for his enthusiasm, and for working overtime and pulling this

http://www.oreilly.com/catalog/javaadn/
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

Preface Pagina6 di 6

book together so quickly. Thanks also to Mike Loukides for supporting the endeavor, and to Deb
Cameron, my editor for Javain a Nutshell, for allowing me the time to work on it.

Chapter 1. What's New? Paginaldi 17

Chapter 1. What's New?
NOTE
In this chapter:

1 Working With Arrays

1 Using Queues

1 Ordering Queues Using Comparators

1 Overriding Return Types

1 Taking Advantage of Better Unicode

1 Adding StringBuilder to the Mix

Even with nearly 200 pages before you, it's going to be awfully tough to cover al of Tiger's new
features. Whether it's called Java 1.5, 2.0, Java 5, or something altogether different, this version of
Javais an entirely new beast, and has tons of meat to offer.

Rather than waste time on introductory text, this chapter jumps right into some of the "one-off"
features that are new for Tiger, and that don't fit into any of the larger chapters. These will get you
used to the devel oper's notebook format if it's new for you, and introduce some cool tools along the
way. Then Chapter 2 gets downright serious, as generics are introduced, and from there to the last
page, it's arace to cram everythingin.

1.1 Working with Arrays

Tiger has a pretty major overhaul of its collection classes, most of which have to do with generic
types and support for the new f or /i n loop. Without getting into those details yet, you can get some
immediate bang for your buck by checking out thej ava. util. Arrays class, which is chock-full of
static utility methods (many of which are new to Tiger).

1.1.1How do | dothat?

Thejava. util.Arrays classisaset of static methods that all are useful for working with arrays.
Most of these methods are particularly helpful if you have an array of numeric primitives, whichis
what Example 1-1 demonstrates (in varied and mostly useless ways).

Example 1-1. Using the Arrays utility class

package comoreilly.tiger.chO1l,;

i mport java.util.Arrays;

i mport java.util.List;

Chapter 1. What's New? Pagina2di 17

public class ArraysTester {

private int[] ar;

public ArraysTester(int nunVal ues) {

ar = new int[nunVal ues];

for (int i=0; i < ar.length; i++) {

ar[i] = (1000 - (300 + i));

public int[] get() {

return ar;

public static void main(String[] args) {
ArraysTester tester = new ArraysTester(50);

int[] myArray = tester.get();

/1 Conpare two arrays

int[] myOherArray = tester.get().clone();

if (Arrays.equal s(nyArray, myQtherArray)) {
Systemout.println("The two arrays are equal!");

} else {

Systemout.println("The two arrays are not equal!");

/1 Fill up sone val ues
Arrays.fill (myQtherArray, 2, 10, new Doubl e(Math.Pl).intValue());

nyArray[30] = 98;

Chapter 1. What's New? Pagina3di 17

/[l Print array, as is
Systemout.println("Here's the unsorted array...");
Systemout.println(Arrays.toString(nyArray));

Systemout.printin();

/1 Sort the array

Arrays.sort(myArray);

/1 print array, sorted
Systemout.printin("Here's the sorted array...");
Systemout.println(Arrays.toString(nyArray));

Systemout.printin();

/1 Get the index of a particular value
int index = Arrays. bi narySearch(myArray, 98);

Systemout.printIn("98 is located in the array at index " + index);

String[][] ticTacToe = { {"X*, "O', "O'},
("o, X, X,
("X, oL XY

System out. println(Arrays. deepToString(ticTacToe));

String[][] ticTacToe2 ={ {"O', "O', "X},
("o, "x, X},

{"x, "0, "X"}};
String[][] ticTacToe3 = { {"X", "O', "O'},
("o, X Xy,

{"x*, "0, "X'}};

if (Arrays.deepEqual s(ticTacToe, ticTacToe2)) {

Chapter 1. What's New? Pagina4di 17

Systemout.println("Boards 1 and 2 are equal.");
} else {

Systemout.println("Boards 1 and 2 are not equal.");

if (Arrays.deepEqual s(ticTacToe, ticTacToe3)) {
Systemout.println("Boards 1 and 3 are equal.");
} else {

Systemout.println("Boards 1 and 3 are not equal.");

The first method to take note of, at least for Tiger fans, ist oSt ri ng() . This handles the rather
annoying task of printing arrays for you. Whilethisistrivial to write on your own, it's still nice that
Sun takes care of it for you now. Here's some program output, showing the effects of Arrays.
toString() onanarray:

NOTE

Running Ant and supplying atarget of "run-chO1" automates this.

run-choO1:

[echo] Running Chapter 1 exanples from Tiger: A Devel oper's Notebook

[echo] Running ArraysTester...

[java]l] The two arrays are equal!

[java]l Here's the unsorted array...

[java] [700, 699, 3, 3, 3, 3, 3, 3, 3, 3, 690, 689, 688, 687, 686, 685,
684, 683, 682, 681, 680, 679, 678, 677, 676, 675, 674, 673, 672, 671, 98,
669, 668, 667, 666, 665, 664, 663, 662, 661, 660, 659, 658, 657, 656, 655,

654, 653, 652, 651]

[java]l] Here's the sorted array...

[java] [3, 3, 3, 3, 3, 3, 3, 3, 98, 651, 652, 653, 654, 655, 656, 657,

Chapter 1. What's New? Pagina5di 17

658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673,
674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688,

689, 690, 699, 700]

[javal] 98 is located in the array at index 8

Another similar, but also new, method is deepToSt ri ng() . This method takesin an object array,
and prints out its contents, including the contents of any arrays that it might contain. For example:

String[][] ticTacToe = { {"X", "O', "O'},
("o, X, Xy,
{"x, "0, "X"}};

System out. println(Arrays. deepToString(ticTacToe));

Here's the outpuit:

[java] [[X, O O, [O X X, [X, O X]]

This starts to really come in handy when you've got three or four levels of arrays, and don't want to
take the time to write your own recursion printing routines.

Finally, Arrays providesadeepEqual s() method that compares multidimensional arrays:
String[][] ticTacToe = { {"X', "O', "O},
{"o, "X, "X},
{"x*, "0, "X'}};

System out. println(Arrays. deepToString(ticTacToe));

String[][] ticTacToe2 { {"oO', "O, "X},
("o, "x, "X},

{"x*, "0, "X'}};

String[][] ticTacToe3 = { {"X", "O', "O'},
("o, X, Xy,

{"x*, "0, "X'}};

Chapter 1. What's New? Pagina6 di 17

if (Arrays.deepEqual s(ticTacToe, ticTacToe2)) {
Systemout.println("Boards 1 and 2 are equal.");
} else {

Systemout.println("Boards 1 and 2 are not equal.");

if (Arrays.deepEqual s(ticTacToe, ticTacToe3)) {
Systemout.println("Boards 1 and 3 are equal.");
} else {

Systemout.println("Boards 1 and 3 are not equal.");

As expected, the first comparison returnsf al se, and the second t r ue:

[java] Boards 1 and 2 are not equal

[java] Boards 1 and 3 are equal

1.1.2 What About...

...hash codes? Java 101 dictates that every good equal s() method should be paired with an
equivaent hashCode(), and the Arrays classisno exception. Arr ays defines both hashCode()
and deepHashCode() methods for just this purpose. I'll leave it to you to play with these, but they
are self-explanatory:

i nt hashCode = Arrays. deepHashCode(ti cTacToe);

1.2 Using Queues
Another cool collection additionisthej ava. uti | . Queue class, for all those occasions when you

need FIFO (first-in, first-
the already robust Java Collection ...er...collection.

NOTE

Some queues are LIFO (last-in, first-out).

1.2.1How do | dothat?

Chapter 1. What's New? Pagina7di 17

Thefirst thing to realize is that proper use of a Queue implementation is to avoid the standard
collection methods add() andrenove(). Instead, you'll need to useof fer () to add elements.
Keep in mind that most queues have afixed size. If you call add() on afull queue, an unchecked
exception is thrown—which really isn't appropriate, as a queue being full isa normal condition, not
an exceptional one. of fer () simply returnsf al se if an element cannot be added, whichis morein
line with standard queue usage.

In the same vein, renove() throwsan exception if the queue is empty; a better choice isthe new
pol I () method, which returnsnul | if thereis nothing in the queue. Both methods attempt to
remove elements from the head of the queue. If you want the head without removing it, use el ement
() or peek().Example 1-2 shows these methodsin action.

Example 1-2. Using the Queue interface

package comoreilly.tiger.chO1l,;

i mport java.io. | OException;
i mport java.io.PrintStream
i mport java.util.LinkedList;

i mport java.util.Queue;

public class QueueTester {

public Queue q;

public QueueTester() {

g = new LinkedList();

public void testFIFQ(PrintStream out) throws | COException {
g.add("First");
g. add(" Second") ;

g.add("Third");

oj ect o;
while ((o =qg.poll()) '= null) {

out.println(o);

Chapter 1. What's New? Pagina8di 17

public static void main(String[] args) {

QueueTester tester = new QueueTester();

try {

tester.testFl FQ(System out);
} catch (1 OException e) {

e.printStackTrace();

Intest FI FQ(), you can seethat the first itemsinto the queue are the first ones out:

[echo] Runni ng QueueTester..
[java] First
[java] Second

[java] Third

As unexciting as that may seem, that's the bulk of what makes Queue unique—the ordering it
provides.

If you're paying attention, you might wonder about this bit of code, though:

public Queue q;

public QueueTester() {

g = new LinkedList();

In Tiger, Li nkedLi st has been retrofitted to implement the Queue interface. While you can use it
like any other Li st implementation, it can also be used as a Queue implementation.

NOTE

Chapter 1. What's New? Pagina9di 17

| suppose you file this under the "fewer classes equals less clutter” theory.
1.2.2 What about...

...UsiNg a queue in a concurrent programming environment? Thisisa common usage of a queue,
when producer threads are filling the queue, and consumer threads are emptying it. Thisismore of a
threading issue, and so I've left it for Chapter 10—but thereis plenty of coverage there.

1.3 Ordering Queues Using Compar ators

While FIFO isauseful paradigm, there are times when you'll want a queue-like structure, ordered by
another metric. Thisis exactly the purpose of Pri ori t yQueue, another Queue implementation. Y ou
provide it a Conpar at or , and it does the rest.

1.3.1How do | dothat?

PriorityQueue worksjust as any other Queue implementation, and you don't even need to learn any
new methods. Instead of performing FIFO ordering, though, aPri ori t yQueue ordersitsitems by
using the Conpar at or interface. If you create a new queue and don't specify a Conpar at or , you get
what's called natural ordering, which applies to any classes that implement Conpar abl e. For
numerical values, for instance, this places highest values, well, highest! Here's an example:

PriorityQueue<l nteger> pq =

new PriorityQueue<lnteger>(20);

/1 Fill up with data, in an odd order
for (int i=0; i<20; i++) {

pg. of fer(20-i);

/1 Print out and check ordering
for (int i=0; i<20; i++) {

Systemout.println(pg.poll());

Since no Conpar at or implementation isgivento Pri ori t yQueue, it orders the numbers lowest to
highest, even though they're not added to the queue in that order. So when peeling off elements, the
lowest item comes out first:

[echo] Running PriorityQueueTester..

[java] 1

Chapter 1. What's New?

[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]

[java]

10

11

12

13

14

15

16

17

18

19

20

Pagina10di 17

However, this queue starts to really come into its own when you provide your own comparator, as
shown in Example 1-3. Thisis done viathe constructor, and a custom implementation of

java.util. Conparator.

Example 1-3. Using a PriorityQueue

package comoreilly.tiger.chO1l,;

i mport java.util.Conparator;

import java.util.PriorityQueue;

i mport java.util.Queue;

public class PriorityQueueTester {

public static void main(String[] args) {

Chapter 1. What's New? Paginal1ldi 17

PriorityQueue<l nteger> pq =
new PriorityQueue<lnteger>(20,

new Conpar at or<Integer>() {

public int conpare(lnteger i, Integer j) {
int result = i9%R - |j9%;
if (result == 0)
result =i-j;

return result;

/1 Fill up with data, in an odd order
for (int i=0; i<20; i++) {

pg. of fer(20-i);

/1 Print out and check ordering
for (int i=0; i<20; i++) {

Systemout.println(pg.poll());

The output from thisis lowest to highest even numbers, and then lowest to highest odd numbers:

[echo] Running PriorityQueueTester..
[java] 2
[java] 4
[java] 6

[java] 8

Chapter 1. What's New? Pagina12di 17

[java] 10
[java] 12
[java] 14
[java] 16
[java] 18
[java] 20
[java] 1
[java] 3
[java] 5
[java] 7
[java] 9
[java] 11
[java] 13
[java] 15
[java] 17

[java] 19

1.4 Overriding Return Types

One of the most annoying features when you're using Java inheritance is the inability to override
return types. Thisis most commonly desired when you've got a base class, and then a subclass adds a
dimension (either literally or figuratively) to the base class. Typically, you're unable to return that
extra dimension without defining a new method (and new name), since the method that the base
class used probably had a narrower return type. Thankfully, you can solve this problem using Tiger.

14.1How do | dothat?

Example 1-4 isasimple class hierarchy that demonstrates overriding the return type of a superclass's
method.

NOTE

Keep in mind that none of this code compiles under Java 1.4, or even in Tiger without the "-source
1.5" switch

Example 1-4. Overriding the methods of a super class

cl ass Point 2D {

Chapter 1. What's New? Pagina13di 17
protected int x, vy;
public Point2D() {

t his. x=0;

this.y=0;

public Point2D(int x, int y) {
this.x = x;

this.y =vy;

cl ass Poi nt 3D ext ends Poi nt 2D {

protected int z;

public Point3D(int x, int y) {

this(x, y, 0);

public Point3D(int x, int y, int z) {

this.x = x;
this.y =vy;
this.z = z;

cl ass Position2D {

Poi nt 2D | ocati on;

public Position2D() {

this.location = new Point2D();

Chapter 1. What's New? Paginal14 di 17

public Position2D(int x, int y) {

this.location = new Point2D(x, Yy);

public Point2D getLocation() {

return | ocati on;

cl ass Position3D extends Position2D {

Poi nt 3D | ocati on;

public Position3D(int x, int vy, int z) {

this.location = new Point3D(x, vy, z);

public Point3D getLocation() {

return | ocati on;

Thekey isthelinepubl i ¢ Poi nt 3D get Locati on(), which probably looks pretty odd to you, but
get used to it. Thisis called a covariant return, and is only alowed if the return type of the subclass
is an extension of the return type of the superclass. In this case, thisis satisfied by Poi nt 3D
extending Poi nt 2D. It's accomplished through the annotation, covered in detail in Chapter 6.

1.5 Taking Advantage of Better Unicode

While many of the features in this chapter and the rest of the book focus on entirely new features,
there are occasions where Tiger has simply evolved. The most significant of these is Unicode
support. In pre-Tiger versions of Java, Unicode 3.0 was supported, and all of these Unicode
charactersfit into 16 bits (and therefore achar). Things are different, now, so you'll need to
understand a bit more.

Chapter 1. What's New? Pagina15di 17

15.1How do | dothat?

In Tiger, Java has moved to support Unicode 4.0, which defines severa characters that don't fit into
16 bits. This means that they won't fit into achar , and that has some far-reaching consequences.
You'll haveto usei nt to represent these characters, and as a result methods like

Character. i sUpper Case() and Character.isWitespace() now have variantsthat accepti nt
arguments. So if you're needing values in Unicode 3.0 that are not available in Unicode 3.0, you'll
need to use these new methods..

NOTE
Most of the new characters in Unicode 4.0 are Han ideographs.
1.5.2 What just happened?

Toreally grasp al this, you have to understand a few basic terms:

codepoint

A codepoint is anumber that represents a specific character. As an example, 0x3CO isthe
codepoint for the symbol p.

Basic Multilingual Plan (BMP)

The BMPisal Unicode codepoints from\ u0000 through\ urFFF. All of these codepoints fit
into aJavachar .

supplementary characters

These are the Unicode codepoints that fall outside of the BMP. There are 21-bit codepoints,
with hex values from 010000 through 10FFFF, and must be represented by anii nt .

A char , then, represents a BMP Unicode codepoint. To get all the supplementary charactersin
addition to the BMP, you need to use an i nt . Of course, only the lowest 21 bits are used, as that's all
that is needed; the upper 21 bits are zeroed oui.

NOTE
Thisall appliesto "StringBuffer" and "StringBuilder" as well.

All this assumes that you're dealing with these charactersin isolation, though, and that's hardly the
only use-case. More often, you've got to use these characters within the context of alarger St ri ng.
In those situations, ani nt doesn't fit, and instead two char values are encoded, and called a
surrogate pair when linked like this. Thefirst char isfrom the high-surrogates range (\ ubD800-

\ ubDBFF), and the second char isfrom the low-surrogates range (\ uDC00- \ uDFFF). The net effect is
that the number of chars inastring isnot guaranteed to be the number of codepoints. Sometimes
two char s represent a single codepoint (Unicode 4.0), and sometimes they represent two codepoints
(Unicode 3.0).

Chapter 1. What's New? Pagina 16 di 17

1.6 Adding StringBuilder tothe Mix

Asyou work through this book, you'll find that in several instances, the class St ri ngBui | der is
used, most often in the manner that you're used to seeing St ri ngBui | der used. St ringBui | der isa
new Tiger classintended to be a drop-in replacement for St ri ngBuf f er in cases where thread safety
isn't an issue.

1.6.1How do | dothat?

Replace all your St ri ngBuf f er code with St ri ngBui | der code. Really—it's as simple asthat. If
you're working in a single-thread environment, or in a piece of code where you aren't worried about
multiple threads accessing the code, or synchronization, it's best to use St ri ngBui | der instead of
StringBuf f er . All the methods you are used to seeing on St ri ngBuf f er exist for St ri ngBui | der,
so there shouldn't be any compilation problems doing a straight search and replace on your code.
Example 1-5 isjust such an example; | wroteit using St ri ngBuf f er , and then did a straight search-
and-replace, converting every occurrence of "StringBuffer" with " StringBuilder".

Example 1-5. Replacing StringBuffer with StringBuilder

package comoreilly.tiger.chOl
i mport java.util.Arraylist;

i mport java.util.lterator;

i mport java.util.List;

public class StringBuil derTester {

public static String appendltens(List list) {

StringBuilder b

new StringBuilder();

for (lterator i list.iterator(); i.hasNext();) {

b. append(i.next())

.append(" ");

return b.toString();

public static void main(String[] args) {

Chapter 1. What's New? Pagina 17 di 17

Li st

list.

list.

list.

list.

list.

list.

list.

list

add("
add("
add("
add("
add("
add("

add("

= new ArraylList();
")

play”);

Bour geoi s");
guitars");

and");

Huber");

banj os");

Systemout. println(StringBuilderTester.appendltenms(list));

You'll see plenty of other code samples using St ri ngBui | der in the rest of this book, so you'll be
thoroughly comfortable with the class by book's end.

1.6.2 What about...

...l the new formatting stuff in Tiger, likeprintf() andformat()?StringBuil der, asdoes
St ri ngBuf f er, implements Appendabl e, making it usable by the new For nat t er object described
in Chapter 9. It really is adrop-in replacement—I promise!

Chapter 2. Generics Paginaldi 23

Chapter 2. Generics
NOTE
In this chapter:

1 Using Type-Safe Lists

1 Using Type-Safe Maps

1 lterating Over Parameterized Types

1 Accepting Parameterized Types as Arguments

1 Returning Parameterized Types

1 Using Parameterized Types as Type Parameters

1 Checking for Lint

1 Generics and Type Conversions

1 Using Type Wildcards

1 Writing Generic Types

1 Restricting Type Parameters

Without any further ado, I'm going to dive right into the deep end of the pool. More than any other
feature, Tiger (or whatever version it ends up being labeled as) brings to the table generics. While
the name might throw you, generics actually bring a greater degree of type safety to Java than
anything you could imagine. It'sfinally possibleto create parameterized types, lists that only accept
Strings, and ditch all that annoying class-casting code. Even better, you can limit types that your
custom classes and methods accept, removing a huge amount of tedious errorchecking and type-
checking code.

Additionally, generics are foundational to many of the other features specific to Tiger. Generics have
abearing on varargs, annotations, enumerations, collections, and even some of the new concurrency
utilities of the language. While you may want to browse through other parts of this book, you'd do
well to take your time and really work through this chapter, lab by lab. There, that's enough
introduction for a few chapters—Iet's get toit.

2.1 Using Type-Safe Lists

One of Java's greatest strengthsisitstyping. Everything is an object, and, in fact, every class either
explicitly or implicitly descends from Obj ect . This provides atremendous amount of type-safety—
your methods can take I nt eger S, St ri ngs, Li st'S, Maps, or your own custom objects as parameters,
and know at the outset what they'll have to work with.

Chapter 2. Generics Pagina 2 di 23

With all thistype-safety, Java has a gaping hole that Tiger finally fills—the ability to create type-
safe arrays and lists, ensuring that collections of objects only allow for a certain type to be inserted.

21.1Howdol dothat?

One of the most annoying tasksin Javais having to cast objects pulled out of aLi st , when you
already know what's in the Li st (such aswhen you fill it yourself, or atrusted source handles
populating it):

NOTE
Generics don't apply to primitive types.
List listOFStrings = getListOFStrings();

for (lterator i = listOFStrings.iterator(); i.hasNext();) {

String item= (String)i.next();

/1 Work with that string

Remove that cast, though—pull out (St ri ng)—and you'll get a compiler error:
NOTE

This particular code sampleisin com.oreilly. tiger.chO2. GenericsTester.

[javac] Conpiling 1 source file to code\cl asses

[javac] code\src\comoreilly\tiger\chO2\GenericsTester.java: 17:
i nconpati bl e types

[javac] found . java.l ang. Ovj ect

[javac] required: java.lang.String

[j avac] String item=i.next();

[j avac] n

[javac] Note: code\src\comoreilly\tiger\chO2\ GenericsTester.java uses
unchecked or unsafe operations.

[javac] Note: Reconpile with -Xlint:unchecked for details.

[javac] 1 error

No matter how much you trust the get Li st Of St ri ngs() method, the compiler doesn't trust it one
bit. It assumes the worst, and if you've ever had anyone else work with you, you realize the compiler
is often right more than you are.

Chapter 2. Generics Pagina 3 di 23

Genericslet you finaly get around this, by limiting the type that a particular Li st will accept:

Li st<String> |istOfStrings;

While this syntax probably looks pretty odd, it doesthe trick—I i st Of St ri ngs can now only be
populated with St ri ng instances. Y ou also need to assign it an instance that only accepts the same

type:

List<String> listOfStrings = new LinkedList<String>();

| realize that the syntax just gets weirder, but that's what you have to work with. Angle brackets
everywhere! Now you can add St ri ngsto thisLi st , but you cannot add any other type:

NOTE

Here, and in other output dumps, I've made slight formatting changes to fit things on the printed
page.

Li st<String> onlyStrings = new LinkedList<String>();
onlyStrings. add("Legal addition");
onlyStrings.add(new StringBuilder("Illegal Addition"));

onl yStrings. add(25);

The compiler will let you know about the problem:

[javac] code\src\comoreilly\tiger\chO2\GenericsTester.java: 24:
cannot find synbol

[javac] synbol : nethod add(java.lang. StringBuil der)

[javac] location: interface java.util.List<java.lang.String>

[j avac] onlyStrings.add(new StringBuilder("Illegal Addition"));

[j avac] n

[javac] src\comoreilly\tiger\chO2\GenericsTester.java:25: cannot find

synbol

[javac] synbol : nethod add(int)

[javac] location: interface java.util.List<java.lang.String>

[j avac] onl yStrings. add(25);

[j avac] n

[javac] Note: code\src\comoreilly\tiger\chO2\ GenericsTester.java uses
unchecked or unsafe operations.

[javac] Note: Reconpile with -Xlint:unchecked for details.

Chapter 2. Generics Pagina4 di 23

[javac] 2 errors

2.1.2 What just happened?

In pre-Tiger versions of Java, the method signature for add() inLi st looked likethis:

public bool ean add(Object obj);

In Tiger, though, things have changed:

public bool ean add(E o);

Before you go looking up E in Javadoc, though, it's just a placeholder. It indicates that this method
declares atype variable (E) and can be parameterized. The entire Li st classis generic:

public interface List<E> extends Collection, Iterable {

There'sthat E again. When you supply atypein theinitialization of aLi st , you parameterize the
type—you indicate what type its parameters can accept:

Li st<String> onlyStrings = new LinkedList<String>();

One way to understand thisisto imagine that the compiler replaces every occurrence of E with the
type you supplied—in this case, a St ri ng. Of course, thisisjust done for this particular instance of
Li st. You can have multiple Li st s, all with different types, and all in the same program block.

The end result of all thisisthat onl yStri ngs no longer has a method add(Obj ect obj) ; it only has
add(String o). So, whenthe compiler seesadd() with anything other than a St ri ng parameter, it
kicks out an error. Thisisthe power of generics, and parameterized types—they provide built-in type
safety for your collection types.

2.1.3What about...

...lists of primitive types? The types that are allowed by Li st s (and other collection classes) are all
objects; as aresult, they don't work with primitive values. The introduction of generics, despite all of
its wonder and magic, doesn't change this. So the following won't compile:

List<int> list = new LinkedList<int>();

However, thiswill:

Li st<Integer> |ist = new LinkedList<Integer>();

If you're thinking that now you've got to do all sorts of annoying conversion betweeni nt and
I nt eger , that's just because you haven't made it to Chapter 4 yet. In that chapter, you'll see that
autoboxing makes this a particularly useful way to deal with primitives.

Chapter 2. Generics Pagina5di 23

2.2 Using Type-Safe Maps

As cool as generics maketheLi st class, it wouldn't be much good if that was the only collection
that could be parameterized. All of the various collection classes are now generic types, and accept
type parameters. Since most of these behave like Li st , I'll spare you the boring prose of covering
each one. It isworth looking at Map, though, as it takes two type parameters, instead of just one. You
useit just asyou useLi st , but with two types at declaration and initialization.

22.1Howdol dothat?

java. util.Map hasakey type (which can be any type) and a value type (which can be any type).
Whileit's common to use a numeric or St ri ng key, that's not built into the language, and you can't
depend on it—at least, not until Tiger came aong:

Map<l nt eger, |nteger> squares = new HashMap<lnteger, I|nteger>();

for (int i=0; i<100; i++) {

squares. put (i, i*i);

for (int i=0; i<10; i++) {
int n =i%*3;

out.println("The square of " + n + " is " + squares.get(n));

Thisis asimple example of where anew Map is declared, and both its key and value types are
defined as | nt eger . This ensures that you don't have to do any casting, either in putting values into
the Map or pulling them out. Pretty easy stuff, isn't it? Of course, you could use any of the following
lines of code aswell:

/1 Key and value are Strings

Map<String, String> strings = new HashMap<String, String>();

/1 Key is a String, value is an Object

Map<String, Object> map = new HashMap<String, Object>();

/1 Key is a Long, value is a String

Map<Long, String> args = new HashMap<Long, String>();

Chapter 2. Generics Pagina 6 di 23

2.2.2What just happened?

As briefly mentioned in Using Type-Safe Lists, autoboxing helps when you want to stuff primitives
into a collection. In this case, even though the Map is defined to take | nt eger s, it'sthei nt counter i
that is used to create values. Without getting into the details covered in Chapter 4, Java autoboxes
theint valueof i intoan| nt eger, behind the scenes, meeting the requirements of the squar es
Map.

2.3 Iterating Over Parameterized Types

Although thef or /i n loop provides a means of amost completely avoiding the
java.util.lterator class, that particular feature of Tiger isn't covered until Chapter 7. But until
you get to that chapter (and probably occasionally after that), it's still useful to know how generic
collection types affect I t er at or . You'll need to perform an extra step to get the full power of
generics.

2.3.1Howdol dothat?

It would seem that once you've parameterized your collections, grabbing an I t er at or and using it
would be trivial:

List<String> listOfStrings = new LinkedList<String>();
listOF Strings. add(" Happy");
listOfFStrings.add("Birthday");

listOfStrings.add("To");

listOf Strings.add("You");

for (lterator i = listOFStrings.iterator(); i.hasNext();) {
String s = i.next();

out.println(s);

However, all is not well. Here's what the compiler spits back to you:
[javac] code\src\comoreilly\tiger\chO2\GenericsTester.java: 54:
i nconmpati bl e types
[javac] found : java.lang. Ovj ect
[javac] required: java.lang.String
[j avac] String s = i.next();

[j avac] n

Chapter 2. Generics Pagina7 di 23

[javac] Note: code\src\comoreilly\tiger\chO2\ GenericsTester.java
uses unchecked or unsafe operations.
[javac] Note: Reconpile with -Xlint:unchecked for details.

[javac] 1 error

The problem here is that while you've parameterized your Li st , you haven't parameterized your
I'terator. It'sstill pitting out Obj ect s, and doesn't know that it should only expect to receive and
respond with St ri ng types. Just like the collections, I t er at or isageneric typein Java, and is
declared aspublic interface Iterator<E> Itsnext() method, then, returnsE (whichisa
placeholder, as detailed in "Using Type-Safe Lists"). To parameterize it, you use the same syntax as
you did for collection classes:

List<String> listOfStrings = new LinkedList<String>();
listOFStrings. add(" Happy");
listOfFStrings.add("Birthday");

listOfStrings.add("To");

listOfStrings.add("You");

for (lterator<String>i = listOStrings.iterator(); i.hasNext();) {
String s = i.next();

out.println(s);

Now this!terat or only workswith St ri ng types, and your code compiles (and runs) normally.
Y ou should always pair your | t er at or swith your collections like this—if the collection is
parameterized, the I t er at or should use the same parameter.

2.3.2 What about...

...If you define atypesafe | t er at or, for a collection that isn't typesafe. Well, you're basically
playing with fire, and assuming that someone filled the collection correctly. The following code, for
example, compiles and runs without a problem (although you'll get I i nt warnings, detailed in
"Checking for Lint":

public void testTypeSafelterators(PrintStream out) throws | OException {
List listOFStrings = new LinkedList();
listOf Strings.add("Happy");
listOfF Strings.add("Birthday");
listOfStrings.add("To");

listOfF Strings.add("You");

Chapter 2. Generics Pagina 8 di 23

for (lterator<String>i = listOStrings.iterator(); i.hasNext();) {
String s = i.next();

out.println(s);

In this case, it was probably just an oversight that Li st wasn't also parameterized. However, the
following code also compiles fine, but fails horribly at runtime:

public void testTypeSafelterators(PrintStream out) throws | COException {

List listOFStrings = getList();

for (lterator<String>i = listOStrings.iterator(); i.hasNext();) {
String s = i.next();

out.println(s);

private List getList() {
List list = new LinkedList();
list.add(3);
list.add("Blind");

list.add("Mce");

return |ist;

Theget Li st () method, which presumably could have been coded by atrusted (or even a non-
trusted) source, is supposed to return only St ri ng objects (at least, that's inferred by the use of

| terator<String>). However, it adds anumeric object (ani nt that gets boxed into an | nt eger),
and at runtime anasty C assCast Except i on pops up. Thisiswhy you should always parameterize
your collectionsif you want to parameterize your I t er at or S. If you took that step, you'd get an error
at compile-time when trying to assign the Li st returned from get Li st () (whichisnot
parameterized) to aLi st <Stri ng>. That error protects you from problems just like this one.

Chapter 2. Generics Pagina 9 di 23

2.4 Accepting Par ameterized Typesas Arguments

So far, all of this parameterization has occurred in the same code block. However, that's unrealistic,
and you'll quickly want to write methods that take advantage of parameterized types. Thisis where
generics start to really become powerful. First, you need to understand how a method can tell the
compiler that it only accepts a specific parameterization of a generic type.

241 Howdol dothat?

Just use the same syntax you've been using (and which should be getting oddly comfortable by this
point) in your argument list:

private void printListOfStrings(List<String> list, PrintStream out)

throws | OException {

for (lterator<String>i = list.iterator(); i.hasNext();) {
out.println(i.next());

}

This allows your method body to act on that parameterization, avoiding class casts and the like. In
this example, it's possible to parameterize the 1 t er at or aswell, because the compiler ensures that
only Li st <Stri ng> is passed into the method. Any other Li st types are refused (at compiletime).

2.4.2 What about...

..trying to passinaplain old Li st , without any parameterization, evenif it hasonly Stri ngsin it?
This actually will work, with the caveat that you're left to your own devices in ensuring that the Li st
hasinit what it's supposed to. If not, you'll get more Cl assCast Except i onsthan you can shake a
stick at, all at runtime. In either case, you'll get I i nt warnings, which are described in " Checking for
Lint," later in this chapter.

2.5 Returning Parameterized Types

In addition to accepting parameterized types as arguments, methods in Tiger can return types that are
parameterized.

25.1Howdol dothat?

Remember the get Li st Of Strings() method, referred to in "Using Type-Safe Lists'? Here is the
actual code for that method:

private List getListOFStrings() {

List Iist = new LinkedList ();

Chapter 2. Generics

list

list.

list.

list.

list.

_add("
add("
add("
add("

add("

Pagina 10 di 23

Hel | 0");
Worl d");
How") ;
Are");

You?");

return |ist;

While thisis aworkable method, it's going to generate all sorts of | i nt warnings (see Checking for
Lint for details) because it doesn't specify atype for the Li st . Even more importantly, code that uses
this method can't assumethat it isreally getting aLi st of Strings. To correct this, just parameterize
the return type, aswell asthe Li st that is eventually returned by the method:

private List<String> getListOFStrings() {

List<String> list = new LinkedList<String>();

list

list.

list.

list.

list.

_add("
add("
add("
add("

add("

Hel | 0");
Worl d");
How") ;
Are");

You?");

return |ist;

Pretty straightforward, isn't it? The return value of this method can now be used immediately in type-

safe ways:

List<String> strings = getListOfStrings();

for (String s :

strings) {

out.println(s);

Thisisn't possible, without compile-time warnings, unlessget Li st Of Strings() hasa
parameterized return value.

Chapter 2. Generics Pagina 11 di 23

2.6 Using Parameterized Types as Type Parameters

Collectionsin Tiger are generic types, and accept type parameters. However, these collections can
store collections themselves, which are in turn also generics. This means that a parameterized type
can be used as the type parameter to another generic type.

26.1How do | dothat?
The Map interface takes two type parameters: one for the key, and one for the value itself. While the

key isusually astri ng or numeric ID, the value can be anything—including a generic type, like a
Li st of Strings.

So Li st <St ri ng> becomes a parameterized type, which can be supplied to the Map declaration:

Map<String, List<String>> map = new HashMap<String, List<String>>();

If that's not enough angle brackets for you, here's yet another layer of generics to add into the mix:

Map<String, List<List<int[]>>> nap = getWeirdMap();

Of course, where things get really nutsis actually accessing objects from this collection:

int value = map. get (soneKey).get (0).get(0)[O0];

What's cool about thisisthat all the casting is handled for you—you don't need to do any casting to
Li st, but instead can just et the compiler unravel all your parameterized types for you.

2.7 Checking for Lint

Several timesin this chapter, you've heard about | i nt warnings, which sounds more like something y
get out of adryer than a compiler. These warnings are anew feature of Tiger, though, and important i
figuring out how to really bulletproof your code.

2.7.1Howdol dothat?

Take asimple piece of code that used a type that can be parameterized, but without type parameters:
private List getList() {
List list = new LinkedList();
list.add(3);
l'ist.add("Blind");

list.add("Mce");

Chapter 2. Generics Pagina 12 di 23

return |ist;

If you compilethisin Tiger, withthe - source 1.5 flag, you'll get this message:
NOTE

Y ou can compile al of the examples for this book with "-Xlint:unchecked" by using the Ant target
"compilecheck".

Not e: GenericsTester.java uses unchecked or unsafe operations.

Note: reconpile with -Xlint:unchecked for details.

If you recompile with the suggested flag, you are telling the compile to show | i nt warnings (- Xl i nt
specifically to show those warnings that are unchecked.

Here's some sample output with these warnings turned on:

[javac] code\src\comoreilly\tiger\chO2\GenericsTester.java: 63: war
[unchecked] unchecked call to add(E) as a menber of
the raw type java.util.List

[j avac] list.add(3);

[j avac] n

[javac] src\comoreilly\tiger\chO2\GenericsTester.java: 64: warning:
[unchecked] unchecked call to add(E) as a menber of
the raw type java.util.List

[j avac] list.add("Blind");

[j avac] n

[javac] src\comoreilly\tiger\chO2\GenericsTester.java: 65: warning:
[unchecked] unchecked call to add(E) as a menber of
the raw type java.util.List

[j avac] list.add("Mce");

[j avac] n

[javac] 3 warnings

These warnings indicate that the compiler isn't able to ensure that the values added to the list (named
in this case) are the intended type. That's because | i st wasn't parameterized.

Chapter 2. Generics Pagina 13 di 23

Y ou can get rid of these warnings by specifying atypeinyour Li st construction:

private List getList() {
Li st<Obj ect> list = new Li nkedLi st <Cbj ect>();
l'ist.add(3);
list.add("Blind");

list.add("Mce");

return |ist;

NOTE
Autoboxing is covered in Chapter 4.

While this doesn't do much for type-safety, it does take care of the warnings, as the types being addec
li st areall of type Oj ect (theliteral 3 isautoboxed to an | nt eger , which is of course an Obj ect).

2.7.2 What about...

NOTE

Annotations are covered in Chapter 6.

...annotations? For those of you who may be ahead on Tiger, there is an annotation, called

Suppr essWar ni ngs, which allows you to keep these warnings from showing up in a compilation usir
source 1.5.Youcanaso just recompileunder Java 1.4, although that's obviously a pretty shortsight

solution. The best choice, if at all possible, isto parameterize your generic types, and enforce type-sa
whenever possible.

2.8 Genericsand Type Conversions

Now that you have all your nifty parameterized types, you'll probably want to perform all sorts of
nifty type conversions. ThisLi st of I nt eger sgets tossed into that Map of Nunber s...then again, it's
not quite that easy. You'll need to take great care if you want these conversions to actually work.

28.1Howdol dothat?
The key in casting generic typesis to understand that as with normal, non-generic types, they form a

hierarchy. What's unique about generics, though, isthat the hierarchy is based on the base type, not
the parametersto that type. For example, consider this declaration:

Li nkedLi st <Fl oat > fl oatLi st = new Li nkedLi st <Fl oat>();

The conversion is based on Li nkedLi st , not Fl oat . So thisislegal:

Chapter 2. Generics Pagina 14 di 23

Li st <Fl oat > noreFl oats = fl oatLi st;

However, the following is not:

Li nkedLi st <Nunber > nunberLi st = fl oat Li st;

While Fl oat isindeed asubclass of Nurber , it's the generic type that isimportant, not the parameter
type.

2.8.2What just happened?

There are two key things to understand if you want to know why type conversions work like this; the
first is seeing how type conversions can be abused, and the second is erasure. First, consider this
sample code, which is actually illegal in Tiger; it demonstrates why converting a

Li nkedLi st <Fl oat > to aLi nkedLi st <Nurber > (or even to aLi nkedLi st <Cbj ect >) should indeed
beillegal:

Li st<Integer> ints = new ArraylList<Integer>();

ints.add(1);

ints.add(2);

/1l This is illegal, but use it for illustration purposes
Li st <Nunmber > nunbers = ints;

/1 Now a float is being added to a list of ints! This results in a
/1 Cl assCast Excepti on when the itemis retrieved fromthe
/1 [ist and used as an int (instead of a float)

nunbers. add(1. 2);

// This is even worse
Li st <Obj ect > objects = ints;

obj ects. add("How are you doi ng?");

Clearly, it needs to be the base type that is considered in type conversions, not the parameter type.

The second concept you'll want to grasp is erasure. Genericsin Tiger is acompile-time process, and
all typing information is handled at compiletime. Once the classes are compiled, the typing
information is erased (thus the term erasure). Consider the following two declarations:

Li st<String> strings = new LinkedList<String>();

Li st<Integer> ints = new LinkedLi st<Integer>();

Chapter 2. Generics Pagina 15 di 23

Thisinformation is used at compile-time to perform type-checking, but then the typing information
is dropped out at runtime. So, to the VM, these declarations actually become:

Li st strings = new LinkedList();

Li st ints = new LinkedList();

The type parameters are gone, now. With that in mind, consider this (illegal) cast:

Li st<Integer> ints = new LinkedLi st<Integer>();

Li st <Nunber> nums = ints

While this may look OK at compile-time, at runtime there are smply two lists, one trying to be cast
to the other—without any type-safety in play at all. Again, then, the compiler does the right thing by
using the base type, rather than the parameterized type, for cast checks.

2.8.3What about...
NOTE

Some folks get upset that parameterization is only a compiletime thing. A worthy gripe, but
something (compile-time checking) is almost always better than nothing.

...defeating type-safety? Well, when you understand the reasons for casting restrictions and erasure,
it actually becomes pretty easy to get around type checking. First, for backwards-compatibility, you
can always cast a parameterized type to araw type—that is, a generic type with no parameterization:

Li st<Integer> ints = new Li nkedLi st<Integer>();

/1 We can widen (due to backwards conpatibility)

List oldList = ints;

/1 This line should be illegal, but it happily conpiles and runs

ol dLi st.add("Hel 1 0");

/1 Here's the problem

Integer i = ints.get(0);
Thisobviously leadsto aCl assCast Except i on at runtime, but it compilesjust fine. Y ou'll get an
unchecked warning (if you're compiling under Tiger), but that's it.

Y ou can also use erasure to break type-safety. Remember that at runtime, erasure removes all your
parameterization. This means that when you access parameterized types with reflection, you get the

Chapter 2. Generics

effects of erasure, at compile-time (Example 2-1):
Example 2-1. Breaking type safety with reflection

package comoreilly.tiger.ch02;

i mport java.util.Arraylist;

i mport java.util.List;

public class Badl dea {

private static List<Integer> ints = new ArrayList<Integer>();

public static void fillList(List<lInteger> list) {
for (Integer i : list) {

ints.add(i);

public static void printList() {
for (Integer i : ints) {

Systemout. println(i);

public static void main(String[] args) {
Li st<Integer> nylnts = new ArraylList<Integer>();
nylnts.add(1);
nylnts. add(2);

nylnts. add(3);

Systemout.printin("Filling list and printing in normal way..."

fillList(nmylnts);

printList();

Pagina 16 di 23

Chapter 2. Generics Pagina 17 di 23

try {

List Iist = (List)Badldea.cl ass.getDeclaredField("ints").get(null);
[ist.add("Illegal Value!");
} catch (Exception e) {

e.printStackTrace();

Systemout.println("Printing with illegal values in list...");

printList();

When i st isassigned thereference of thei nt s Li st it does not havethel nt eger restriction that
the i nt s member variable does. Asaresult, adding ast ri ng value (like"lllegal Vauel") is
perfectly legal—erasure has removed any parameterization. It's only at runtime, when iterating over
the list and printing it, that the problem shows up.

2.9 Using Type Wildcards

NOTE

While I'm sure plenty of folks disagree, | think production code shouldn't issue warnings.

So now you've got generic types figured out, and even understand all the unchecked warnings your
code is generating. Still, here are times when you really do want aplain old Li st , or Map, or
whatever, without parameterization. Thisis going to result in unchecked errors, unless you employ
the generics wildcard.

29.1How do | dothat?

To illustrate the problem, here's areally simple method that prints out all the members of aLi st :

public void printList(List list, PrintStreamout) throws | OException {
for (Iterator i = list.iterator(); i.hasNext();) {

out.println(i.next().toString());

Chapter 2. Generics Pagina 18 di 23

NOTE

Since writing this, later versions of the compiler don't throw warnings here. Still, it makes a good
point, so I've left it in for you.

The problem is that this generates unchecked warnings, something you should avoid whenever
possible. What you're really saying, though, isthat pri ntLi st () takesany Li st. Thisiswhere the
wildcard operator comesin, which for genericsis a question mark (?). Make the following change:

public void printList(List<?>list, PrintStreamout) throws |OException {
for (Iterator<?> i = list.iterator(); i.hasNext();) {

out.println(i.next().toString());

Y ou've now expressed in syntax what you meant—any type is acceptable, and the unchecked
warnings go away.

2.9.2 What about...

...using Li st <Obj ect > to get around this same problem? Y ou might want to review Generics and
Type Conversions, and see if you really want to do that. A Li st <I nt eger > cannot be passed to a
method that takes aLi st <bj ect >, remember? So your pri nt Li st () method would be limited to
collections defined as Li st <Qbj ect >, which isn't much use at all. In these cases, the wildcard really
isthe only viable solution.

Y ou should also be thinking about the declaration of methodsin classes likethis:

public interface List<E> {

public E get();

public void add(E val ue);

NOTE
Y ou would read thisas a"list of unknown".

Since you've declared thelist asalLi st <?>, get () now returns an Obj ect , which is as close to
"unknown" as Java gets. At the sametype, thisis very different from aLi st <Obj ect >, which can
only work with Obj ect s. Where things get even odder isfor theadd() and other methods that take
aparameter that matches the type of the collection. Since the compiler cannot check to ensure type-
safety, it rejectsany call toadd(), addAl I (),andset () for aLi st <?>. In other words,
supplying the wildcard to a generic type effectively makesit read-only.

Chapter 2. Generics Pagina 19 di 23

2.10 Writing Generic Types

With an arsenal of generic terminology under your belt, you're probably wondering about writing
your own generic types. I'm wondering about it, too, so | figureit's worth covering. They're actually
pretty smple to write, and you've already got the tools from earlier labs.

2.10.1How do | dothat?

If you need to define some sort of collection, or container, or other custom object that deals directly
with another type, generics add aton of optionsto your programming toolkit. For example, Example
2-2 isabasic container structure useful mostly for illustrating important generic concepts.

NOTE

Y ou can use anything you want for the type parameter, although a single letter is most common.

Example 2-2. A basic generic type

package comoreilly.tiger.ch02;

i mport java.util.Arraylist;

i mport java.util.List;

public class Box<T> {

protected List<T> contents;

public Box() {

contents = new ArraylList<T>();

public int getSize() {

return contents.size();

publ i c bool ean i sEmpty() {

return (contents.size() == 0);

Chapter 2. Generics Pagina 20 di 23

public void add(T o) {

contents. add(o);

public T grab() {
it (lisEmty()) {
return contents.renove(0);
} else

return null;

Just as you've seen in Tiger's pre-defined generic types, asingle letter is used as the representative
for atype parameter.

Y ou create a new instance of thistype exactly as you might expect:

Box<String> box = new Box<String>();

This effectively replaces all the occurrences of T with St ri ng for that specific instance, and suddenly
you've got yourself aSt ri ng Box, SO to speak.

2.10.2 What about...

...static variables? Static variables are shared between object instances, but parameterization occurs
on a per-instance basis. So you could feasibly have a Box<I nt eger >, aBox<St ri ng>, and a

Box<Li st <Fl oat >>, all with a shared static variable. That variable, then, cannot make assumptions
about the typing of any particular instance, as they may be different. It also cannot use a
parameterized type—so the following isillegal:

private static List<T> staticList = new ArrayList<T>();

Y ou can, however, use static methods that themselves have parameterized types:

public static int biggest(Box<T> box1l, Box<U> box2) {

i nt box1Si ze box1. get Si ze();

i nt box2Si ze box2. get Si ze();

return Math. max(box1Si ze, box2Si ze);

Chapter 2. Generics Pagina 21 di 23

2.11 Restricting Type Parameters

Suppose that you want aversion of Box that only accepts numbers—and further, that based on that,
you want to add some functionality that's specific to numbers. To accomplish this, you need to
restrict the types that are allowed.

2.11.1 How do | dothat?

Thisis pretty smple—you can actually insert an ext ends cl assNane onto your type variable, and
voilal Check out Example 2-3.

Example 2-3. Restricting the parameterization type

package comoreilly.tiger.ch02;

i mport java.util.lterator;

public class Nunber Box<N ext ends Number > extends Box<N> {

public NunmberBox() {

super();

/1 Sum everything in the box
public double sum) {
doubl e total = O;
for (lterator<N> i = contents.iterator(); i.hasNext();) {
total = total + i.next().doubleValue();

}

return total

The only types allowed here are extensions of the class Nunber (or Nunber itself). So the following
statement isillegal:

Chapter 2. Generics Pagina 22 di 23

Nurmber Box<String> illegal = new Number Box<String>();

The compiler indicates that the bound of this type is not met. The bound, of course, isthe restriction
put upon typing, and that's exactly what the error message indicates:

[javac] code\src\comoreilly\tiger\chO2\GenericsTester.java: 118:
type paraneter java.lang.String is not within its bound

[javac] Number Box<String> illegal = new Number Box<String>();

[j avac] n

[javac] code\src\comoreilly\tiger\chO2\GenericsTester.java: 118:
type paraneter java.lang.String is not within its bound

[javac] Number Box<String> illegal = new Number Box<String>();

[j avac] A

Y ou can use this same syntax in method definitions:
public static double sunmBox<? extends Nunber> box1,
Box<? extends Nunber> box2) ({
doubl e total = O;
for (lterator<? extends Number> i = boxl.contents.iterator();
i.hasNext();) {
total = total + i.next().doubleVvalue();
}
for (lterator<? extends Number> i = box2.contents.iterator();
i.hasNext();) {
total = total + i.next().doubleVvalue();

}

return total

This startsto get alittle weird, | realize, but them's the breaks. It gets worse because you have to use
the wildcard indicator, and then repeat the expression (? ext ends Nunber) in the method body. One
way to clean this up is to declare your own type variable inline (and make your syntax even odder):

public static <A extends Number> doubl e sum(Box<A> box1,
Box<A> box2) ({

doubl e total = O;

Chapter 2. Generics Pagina 23 di 23

for (lterator<A> i = boxl.contents.iterator(); i.hasNext();) {
total = total + i.next().doubleVvalue();

}

for (lterator<A> i = box2.contents.iterator(); i.hasNext();) {
total = total + i.next().doubleVvalue();

}

return total;

The portion of the method declaration right before the return value, <A ext ends Nunber >, provides
atyping variable which is then used throughout the method declaration and body.

2.11.2 What about...
NOTE

Y ou can aso check out the in-depth chapter on genericsin Javain aNutshell, Fifth Edition
(O'Relilly).

...the other thousand-and-one variations on this theme? | say that only somewhat tongue-in-cheek, to
stress that generics are a huge topic unto themselves. In fact, | suspect that there will be at least afew
books entirely on generics alone before 2004 has come to a close, and those books will cover far
more than this chapter. It's worth knowing that there are ways to extend classes and implement
interfaces in your type variables, there are ways to require the superclass of a particular object, and a
whole lot more.

Of course, there are ways to juggle knives also, but some thingsjust don't fit into a developer's
notebook. Y ou should have more than enough tools to get most of your programming tasks done,
and by the time you've got all this mastered, those other books will probably be on bookshelves. So
enjoy this, take a deep breath, and turn the page for more Tiger antics.

Chapter 3. Enumerated Types Paginaldi 33

Chapter 3. Enumerated Types
NOTE
In this chapter:

1 Creating an Enum

1 Declaring Enums Inline

1 lterating Over Enums

1 Switching on Enums

1 Maps of Enums

1 Sets of Enums

1 Adding Methods to an Enum

1 Implementing Interfaces with Enums

1 Vaue-Specific Class Bodies

1 Manually Defining an Enum

1 Extending an Enum

In Java 1.4 and below, there were two basic ways to define new types: through classes and
interfaces. For most object-oriented programming, this would seem to be enough. The problemis
that there are still some very specific cases where neither is these is sufficient, most commonly when
you need to define afinite set of allowed values for a specific datatype. For instance, you might
want atype called G- ade that can only be assigned valuesof A, B, C, D, F,orInconpl ete. Any
other values areillegal for thistype. This sort of construct is possible prior to Tiger, but it takesalot
of work, and there are still some significant problems.

Since we're good developers and try our best to avoid alot of work whenever possible, Sun finally

helped us out with the new enumerated type (generally referred to simply as an enum). This chapter
deals with enums: how to create, use, and program with them.

3.1 Creating an Enum
Creating an enumerated type involves three basic components, at a minimum:
1 The enumkeyword

1 A namefor the new type

Chapter 3. Enumerated Types Pagina2 di 33

1 A list of allowed values for the type
There are several optional components that may be defined as well:
1 Aninterface or set of interfaces that the enum implements
1 Variable definitions
1 Method definitions
1 Vaue-specific class bodies

These optional components are detailed in the labs throughout this chapter; this lab covers the most
basic concepts of enumerated types.

3.1.1Howdol dothat?

Example 3-1 is about as basic of an enum as you'll find, representing asimple Gr ade object.

Example 3-1. A simple enumerated type

package comoreilly.tiger.ch03;

public enum Grade { A, B, C, D, F, | NCOWLETE };

NOTE
Enums allow you to dump most of your "public static final" variable declarations.

Y ou can then define a class that refersto this enum just asit would to any other Java class or
interface, as shown in Example 3-2.

NOTE

More often than not, you'll only need the basic enum functionality.
NOTE

The convention isto use all capital letters for enumerated type identifiers.
NOTE

"Grade" is used just like anyother Javatype.

Example 3-2. Referring to an enum in another class

package comoreilly.tiger.ch03;

public class Student {

Chapter 3. Enumerated Types Pagina3di 33

private String firstNanme;
private String | astName;

private G ade grade;

public Student(String firstNanme, String |astNanme) {
this.firstNanme = firstNameg;

this.last Nane = | ast Nane;

public void setFirstName(String firstNane) {

this.firstName = firstName;

public String getFirstName() {

return firstNanme;

public void setlLast Name(String | astName) {

this.last Nane = | ast Nane;

public String getLastNane() {

return | ast Nane;

public String getFull Nane() {
return new StringBuffer(firstNane)
.append(" ")
. append(| ast Nane)

.toString();

Chapter 3. Enumerated Types Pagina4 di 33

public void assignG ade(G ade grade) {

this.grade = grade;

public Grade getGade() {

return grade;

Pretty basic, isn't it? The final piece is actually using this code in conjunction with the enum, as
shown here:

public void testG adeAssi gnment (PrintStreamout) throws | OException {

Student studentl = new Student("Brett", "MLaughlin");
Student student2 = new Student("Ben", "Rochester");
Student student3 = new Student ("Dennis", "Erwin");

student 1. assi gnGr ade(G ade. B) ;
st udent 2. assi gnGr ade(G- ade. | NCOVPLETE) ;

student 3. assi gnGr ade(G ade. A) ;

NOTE

This codeisin the com.oreilly. tiger.ch03. GradeTester class.

| realize that you may have expected some complex treatment of enums, but I'm not sure | can make
it any harder—enums are a nice, elegant feature of the language, and really don't take much
explaining—at least for basic usage.

3.1.2What just happened?

| know there are many of you out there wondering about what goes on under the hood. Here are the

highlights about how you can use enums, and their basic construction:

Enums are classes

Chapter 3. Enumerated Types Pagina5di 33

Asaresult, you get type-safety, compile-time checking, and the ability to use themin variable
declarations. This beats the proverbial pants off of integer constants (see What about... in this
lab).

Enums extend javalang.Enum
j ava. | ang. Enumisanew classin Tiger, and is not itself an enumerated type. All enumerated
typesimplicitly extend Enum

Enumerated types aren't integers
Each declared value is an instance of the enum class itself; this ensures type-safety and allows
for even more compile-time checking.

Enums have no public constructor

This removes the ability to create additional instances of the enum not defined at compile-
time. Only those instances defined by the enum are available.

Enum values are public, static, and fina

Values cannot be overwritten, changed, or otherwise messed with in ways that affect your
programming logic. The enum itself is effectively fi nal , asit cannot be subclassed (see
Extending an Enum). In fact, the specification says that you are not allowed to declare an
enumasfinal or abstract, asthe compiler will take care of those details.

Enum values can be compared with == or equals()

Because enums are effectively final, and thereisadistinct set of values, you can use—for
comparison. Additionally, enumerated types have aworking equal s(), for usein collection
classes (see Maps of Enums and Sets of Enums later in this chapter).

Enums implements java.lang.Comparable

As aresult, enum values can be compared with conpar eTo(), and ordering occursin the
same order as values are declared in the enum declaration.

Enums override toString()
ThetoString() method on an enumerated type returns the name of the value.

G ade. | NCOWPLETE. toString() returnsthestring "INCOMPLETE". However, this
method isn't final, and can be overridden if desired.

Enums provide a valueOf() method

Chapter 3. Enumerated Types Pagina 6 di 33

The static val ueOf () method complementstoString().G ade. val uet
("I NCOWPLETE") returns Gr ade. | NCOVPLETE.

. If you change the behavior of t oSt ri ng(), you need to also change the
= behavior of val ueX (). These two methods should always be mirror
images of each other.

Enums define a fina instance method named ordinal()
oridinal () returnstheinteger position of each enumerated value, starting at zero, based on

the declaration order in the enum. Thisisn't amethod you should use in your own code, but it's
used by other enum-related functionality, so isworth knowing aboui.

Enums define a values() method

val ues() alowsfor iteration over the values of an enum, as detailed later in this chapter in
Iterating Over Enums.

NOTE

"Grade" isthetype; A, B, C, and so forth are the values for that type. Enum terminologyis a bit
confusing, o it's good to keep these straight.

NOTE
Enums are not "final" when they have value-specific methods, discussed later in the chapter.
3.1.3What about...

...doing thisin Java 1.4 (and previous releases)? At first glance, you may not see all the advantages
that enums offer, especially if you're comfortable with static and final variables (essentially
constants) in pre-Tiger JDKs. In fact, the Gr ade class should look an awful lot like the O dGr ade
class shown in Example 3-3, which is how you might write Gr ade in apre-Tiger environment.

Example 3-3. Writingenumsin pre-Tiger JDKs

package comoreilly.tiger.ch03;

public class A dG ade {

public static final int A= 1,

public static final int B =2
public static final int C=3
public static final int D= 4,
public static final int F =5

Chapter 3. Enumerated Types Pagina7 di 33

public static final int |INCOVWPLETE = 6;

However, there are alot of problems that aren't immediately apparent. First, consider that the
following line of codeislegal if you areusing O dGr ade:

student 1. assi gnGrade(1);

If you move to Tiger, though, and declare that assi gnGrade() only accepts a G ade enum, that
same line will result in acompiler error:

[javac] code\src\ch03\ G adeTester.java: 19:
assignGrade(comoreilly.tiger.ch03. Grade) in
comoreilly.tiger.ch03. Student can not be applied to (int)

[j avac] student 1. assi gnGrade(1);

NOTE
Your error may look a little different—I formatted this to be readable on the page of a book.

Using the O dGr ade class, you aren't passing in an object of a specific type; you're just passing in an
int, that happens (in your specific program implementation) to be associated with the variable name
A dGr ade. A. You should see the enormous ability to misuse these integer constants, because they're
not strongly typed to a specific grade.

Even worse, consider using this same system (St udent and O dGr ade), but with another "constant"
class:

public class A dC ass {

public static final int EnglishLit = 1;
public static final int Calculus = 2;
public static final int MisicTheory = 3
public static final int MisicPerfornmance = 4;

Now things get even hairier, because suddenly the following codeislegal:

student 1. assi gnGrade(d dd ass. Engl i shLi st);

Chapter 3. Enumerated Types Pagina8di 33

Some junior programmer’'s typo suddenly gave this student an A! Enumerated types may seem like a
minor convenience, but they turn out to be amajor step forward for Java. Use them often, and let the
compiler catch your mistakes, rather than alate-night debugging session.

3.2 Declaring Enumsinline

Whileit's useful to create a separate enum class, defined in its own source file, sometimesits aso
useful to just define an enum, use it, and throw it away. Thisis possible through member types.

3.21Howdol dothat?

Just define the enum within your class, as you would any other member variable. Y ou might need a
Downl oadSt at us enum, for example, but only within a Downl oader class:

public class Downl oader {

publ i c enum Downl oadStatus { | N TIALIZI NG | N_PROGRESS, COWPLETE };

/1 Class body

Oddly enough, this same code may be written as follows:

public class Downl oader {

public static enum Downl oadStatus { I NI TIALI ZI NG | N _PROGRESS, COWPLETE };

/1 Class body

In this case, the st at i ¢ modifier has been added. This has no effective change on the enum, as
nested enums are implicitly st ati c. In other words, it's sort of like declaring an interface

abst r act —it's redundant. Because of this redundancy, I'd recommend against using the st ati c
keyword in these declarations.

NOTE

Examples in the enum specification also omit "static” in nested declarations.

Chapter 3. Enumerated Types Pagina9di 33

3.3 Iterating Over Enums

Ever been given a class with lousy documentation, no source code, and little instruction on its use?
Welcome to the loosely knit organization of real-world programmers. In many cases, you can resort ti
reflection to figure out what a class has to offer in lieu of source code, and of course JavaDoc is
always helpful. In the case of enumerated types, though, there's a nice built-in feature: the val ues()
method. This method provides access to al of the types within an enum.

3.3.1Howdol dothat?

Invoking the val ues() method on an enum returns an array of al the valuesin the type:

public void |istGadeVal ues(PrintStreamout) throws | OException {
Grade[] gradeVal ues = Grade.val ues();
for (Gade g : Grade.values()) {

out.println("Alowed value: "" + g + "'");

Thisisaniceway to get aquick dump of all the allowed values for a particular enum:

run-cho03:

[echo] Running Chapter 3 exanples fromJava 1.5: A Devel oper's Noteboo

[echo] Running G adeTester...

[java]l] Al owed val ue: 'A'

[java] Al owed value: 'B
[java] Al owed value: 'C
[java] Al owed value: 'D
[java] Al'l owed value: 'F

[java] Al owed val ue: ' I NCOWLETE

NOTE
Run this sample with the Ant target "run-ch03".
3.3.2What just happened?

First, note that type-safety is employed. val ues() doesn't return an array of St ri ng values—insteac
it returns an array of Gr ade instances. Intheout . println() statement, each Gr ade hasits

Chapter 3. Enumerated Types Pagina 10 di 33

toString() method executed, which in turn does providea St ri ng name for the value. At no point
are you working with integer constants or even St ri ng values—the Gr ade object hides all these
implementation details from you, and allows strict compile-time checking.

3.3.3What about...

..using af or/inloop? Well, you're ahead of me—f or /i n isn't covered until Chapter 7. Still, for
those of you who are curious, you can indeed perform the same iteration with Tiger'snew for/in
capabilities:

/1 for/in |oop
for (Gade g : grade.values()) {

out.println("Allowed value: "" + g + "'");

3.4 Switching on Enums

Asyou begin to integrate enums into your own programs, one of the first tasks you'll want to
accomplish isusing an enum with aswi t ch statement. Thisis a pretty obvious application; there's
little value in using enums if you can't easily react to the set of values available.

34.1Howdol dothat?

Prior to Java 1.4, swi t ch only worked with int, short, char, and byte values. However, since enums
have afinite set of values, Tiger adds swi t ch support for them. Here's an example of using an enum
inasw t ch statement:

public void testSwitchStatement (PrintStreamout) throws | OException {

StringBuf fer outputText = new StringBuffer(studentl. getFull Name());

switch (studentl.getGade()) {

case A
out put Text . append(" excelled with a grade of A");
br eak;

case B: // fall through to C

case C
out put Text . append(" passed with a grade of ")

.append(studentl. getGrade().toString());

br eak;

Chapter 3. Enumerated Types Pagina 11 di 33

case D: // fall through to F
case F:
out put Text . append(" failed with a grade of ")
.append(studentl.getGade().toString());
br eak;
case | NCOWPLETE:
out put Text . append(" did not conplete the class.");

br eak;

out.println(outputText.toString());

NOTE

This code assumes that studentl has already been created; thisis taken care of in the test class,
"GradeTester".

The argument to swi t ch must be an enumerated value; in this case, the return type of get Grade()
is G ade, which meets these requirements. However, there is another requirement that makes this
code alittle odd--did you catch it? Note the format of each case clause:

case A
case B:
case C
case D
case F:

case | NCOWLETE:

See anything missing? How about the enum class identifier:
case Gade. A
case G ade. B:
case Grade. C
case Grade.D

case G ade. F:

Chapter 3. Enumerated Types Pagina 12 di 33

case G ade. | NCOVPLETE:

For those of you up on Tiger, this may make you think about thei nport st ati ¢ feature of the
language, which | cover in Chapter 8. However, the two have no relation (except perhaps on an
implementation level)—Tiger simply requires that you not preface each enumerated type with the
enum class name. In fact, it's a compilation error if you do! Sort of anice convenience function, |
think.

There's another issue you should be careful about—not handling every enumerated type. In the
following version of the swi t ch, I've left out handling of Gr ade. D:

switch (studentl.getGrade()) {
case A
out put Text . append(" excelled with a grade of A");
br eak;
case B: // fall through to C
case C
out put Text . append(" passed with a grade of ")
.append(studentl.getGade().toString());
br eak;
case F:
out put Text . append(" failed with a grade of ")
.append(studentl.getGade().toString());
br eak;
case | NCOWPLETE:
out put Text . append(" did not conplete the class.");

br eak;

NOTE

Y ou can compile the book's code with warnings turned on with "ant checkcompile”. All "-Xlint"
warnings will be displayed.

It's not completely clear asto if the compiler will be required to issue awarning if all types aren't
handled; however, it is clear that thisis bad coding. You need to be sure that every possible
enumerated type is handled, or get ready for some late-night debugging sessions.

Chapter 3. Enumerated Types Pagina 13 di 33

- As of thiswriting, the Tiger compiler did not issue a- Xl i nt warning in this
ar Situation.

3.4.2What just happened?

The handling of an enumerated type by the compiler is alittle different than the handling of an
integral type. That difference stems from enum values not being compile-time constants; in other
words, your code is not turned into the following at compile-time:

switch (studentl.getGrade()) {
case 0:
out put Text . append(" excelled with a grade of A");
br eak;
case 1: // fall through to C
case 2:
out put Text . append(" passed with a grade of ")
.append(studentl.getGade().toString());
br eak;
case 3: // fall through to F
case 4:
out put Text . append(" failed with a grade of ")
. append(studentl.getGade().toString());
br eak;
case 5:
out put Text . append(" did not conplete the class.");

br eak;

Instead, assuming that the enum and swi t ch statement exist in the same compilation unit, ajump
tableis created, relating each enumerated type to the value of or di nal (), invoked on each type.
That resultsin nearly the same performance as the inlining shown above; the ordinal values aren't
inserted into the code, but the compiler can look them up in the jJump table extremely quickly. If the
enum is changed and recompiled, the jump table is updated, and there's no problem.

More often than not, though, the swi t ch and enum are not in the same compilation unit, and thisis
not possible. In these cases, most compilers turn the swi t ch statement into aseriesof i f/ el se
statements:

Chapter 3. Enumerated Types Pagina 14 di 33

Grade tnp = studentl.get Grade();
if (tnp == Grade. A)
out put Text . append(" excelled with a grade of A");
else if ((tmp == Grade.B) || (tnmp == Grade.C))
out put Text . append(" passed with a grade of ")
.append(studentl.getGade().toString());
else if ((tnp == Grade.D) || (tnp == Grade.F))
out put Text . append(" failed with a grade of ")
. append(studentl.getGade().toString());
else if (tnmp == G ade. | NCOWLETE)

out put Text . append(" did not conplete the class.");

Thisisn't efficient as ajump table, but this ensures that if the enum is changed in one compilation
unit, the swi t ch statement (in a different unit) continues to function properly. It also removes the
need to worry about reordering of an enum, which would affect ajump table.

3.4.3What about...

...using the def aul t keyword? It's perfectly legal, and in fact strongly recommended. Since enumis
anew typein Java, it would be easy for someone to come along and add a new type to your enum
without you knowing about it:

public enum Grade { A, B, C, D, F, |NCOVPLETE,

W THDREW PASSI NG, W THDREW FAI LI NG };

NOTE

"default” isbest used in this way, to catch unexpected values—it's generally good programming
practice to specificallyhandle every known value, though, as that makes your code much clearer.
"default" should be for handling unknown conditions, and not used as a catch-all.

Now, your swi t ch code will fail because it doesn't account for all the possible Gr ade values. It's
better to plan for thiswith alittle more robust code:

switch (studentl.getGrade()) {
case A
out put Text . append(" excelled with a grade of A");
br eak;

case B: // fall through to C

Chapter 3. Enumerated Types Pagina 15 di 33

case C
out put Text . append(" passed with a grade of ")
.append(studentl.getGade().toString());
br eak;
case D: // fall through to F
case F:
out put Text . append(" failed with a grade of ")
.append(studentl.getGade().toString());
br eak;
case | NCOWPLETE:
out put Text . append(" did not conplete the class.");
br eak;
defaul t:
out put Text . append(" has a grade of ")

.append(studentl.getGade().toString());

An even better idea would be to throw some sort of error on an unexpected type--this will ensure that
you and other programmers realize that something is out of sync:

default: throw new AssertionError("Unexpected enunerated val ue!");

3.5 Mapsof Enums

Once you've gotten your fingers used to typing publ i ¢ enum you'll start to find all sorts of
interesting uses for enums. Once you've gotten past the very basic constant-replacement, you'll start
to see that they also serve as great keys, or indices, in collection-type structures. Apparently the Sun
guys thought the same thing, and provided anice facility for working with enums as indices.

35.1How do | dothat?

In the old, archaic, pre-Tiger days (snicker, snicker), you might have used a constants class like
A dAnt St at us (you'll remember asimilar class from Example 3-3):

public class A dAntStatus {

public static final int INTIALIZI NG = O;

Chapter 3. Enumerated Types Pagina 16 di 33

public static final int COWPILING = 1;
public static final int COPYING = 2;
public static final int JARRI NG = 3;
public static final int ZI PPING = 4;
public static final int DONE = b;
public static final int ERROR = 6;

Y ou might then write a smple array of messages that are associated with each of these status codes:

String[] ant Messages = new String[] {

“Initalizing Ant...", /1 I NITIALI ZI NG
"Conpiling Java classes...", // COVPILING
"Copying files...", /1 COPYI NG
"JARring up files...", /1 JARRI NG
"ZIPping up files...", /1 ZI PPl NG
"Build conplete.”, /1 DONE

"Error occurred." /1 ERROR

Y ou can then access the appropriate message using the constant:

int antStatus = ant Process. getStatus();

out.println("ant> " + ant Messages[ant Status]);

It's a pretty valid desire to want to accomplish the same sorts of tasks with enumerated types, and get
all the benefits of enums along the way. You'll need to usethej ava. uti | . Enumvap classto
accomplish this, which is anew collection type just perfect for the job. First, you need to define the
enum you want to use for akeyset, as shown in Example 3-4.

Example 3-4. An enum to use for a keyset

package comoreilly.tiger.ch03;

public enum Ant St atus {

I NI TI ALT ZI NG,

Chapter 3. Enumerated Types Pagina 17 di 33

COWVPI LI NG,
COPRYI NG,
JARRI NG,
Z1 PPI NG,
DONE,

ERROR

Y ou can now create a new Enunmap, in conjunction with generics declare the enumerated type you
want to use for the key, and the class type you want to use for the value:

EnumVap<Ant St at us, String> ant Messages;

Then, when creating a new instance, you pass the Enumvap the Class object for the enum used for the
keyset:

EnumMVap<Ant St atus, String> ant Messages =

Enumvap<Ant St at us, String>(Ant Status.class);

- This should further emphasize the fact that enums are really just Java classes
s that the compiler handles specially. Thisis discussed in more detail in
* % Creating an Enum lab.

NOTE

Remember to declare the types being used, key and value, in both the variable declaration and the
variable instantiation.

Oncetheinitialization is taken care of, things get very simple. Y ou just seed the values, and use
them:

public void test Enunmvap(PrintStream out) throws | OException {
/l Create a map with the key and a String nessage
EnumMVap<Ant St atus, String> ant Messages =

new Enumvap<Ant St atus, String>(Ant Status.class);

/1 Initialize the map

Chapter 3. Enumerated Types

ant Messages. put (Ant St at us
ant Messages.
ant Messages.
ant Messages.
ant Messages.
ant Messages.

ant Messages.

/1 lterate and print

for (AntStatus status :

out.println("For status "

ant Messages

NOTE

This codeisin AntStatusT ester. java.

put (Ant St at us.
put (Ant St at us.
put (Ant St at us.
put (Ant St at us.
put (Ant St at us.

put (Ant St at us.

. I NI TI ALI ZI NG,
COWPI LI NG,
COPRYI NG,
JARRI NG,

Z1 PPI NG,
DONE,

ERROR,

nessages

.get (status));

+ status + "

Pagina 18 di 33

“Initializing Ant...");
"Conpi ling Java classes...");
"Copying files...");
"JARring up files...");
"ZIPping up files...");
"Build conplete.");

"Error occurred.");

Ant St atus. values()) {

nessage is: " +

Running this code nicely prints out all the status codes, and the associated message with each:

[echo] Running AntStatusTester. ..

[java] For

[java] For status

[java] For status

[java] For status

[java] For status

[java] For status

[java] For status ERROR,

DONE, nessage is:

status | NI TI ALI ZI NG, nessage is:
COWPI LI NG, nessage i s:
COPYI NG, nessage is:
JARRI NG, nessage is:

ZI PPI NG, nessage is:

nessage is:

Error

Initializing Ant...

Conpi l i ng Java cl asses. ..

Copying files...
JARring up files...
ZIPping up files...

Buil d conpl ete.

occurred.

Of course, as an added benefit, Enumvap protects you from mis-ordering when initializing values,
reordering in the enumerated type, and just about any other strange situation that can arise from more

than one person working on code at the

same time.

Chapter 3. Enumerated Types

3.6 Sets of Enums

Pagina 19 di 33

Another common usage of constantsis to represent afeature set of aparticular item, such asacar, or
even something really exciting, like aguitar. Y ou could then use bitwise operators to compare or
check for specific features. Asin the lab on Maps of Enums, the Java language folks realized this,
and added another collection class for the purpose, j ava. uti | . Enunet .

3.6.1Howdol dothat?

First, examine the way this scenario might be handled in pre-Tiger days. Example 3-5isasmple
class that defines some common guitar features.

Example 3-5. Guitar feature set

package comoreilly.tiger.ch03;

public

publ
publ

publ

publ

publ

publ

publ

publ

publ

class A dCuitarFeatures {

c stati

c stati

c stati

c stati

c stati

c stati

c stati

c stati

c stati

fi

fi

fi

fi

fi

fi

fi

fi

fi

na

na

na

na

na

na

na

na

na

i nt

i nt

ROSEWOOD
MAHOGANY

ZI RI COTE

SPRUCE

CEDAR

AB_ROSETTE

AB_TOP_BORDER

| L_DI AMONDS

| L_DOTS

0x01;
0x02;

0x04;

0x10;

0x12;

0x30;

0x32;

0x40;

0x42;

11

/1

/1

11

11

11

11

11

11

back/ si des
back/ si des

back/ si des

top

top

abal one rosette

abal one top border

di anond/ square inl ay

dots inlays

These are all features, and are all represented by powers of two. That allows them to be combined

likethis:

i nt

bour geoi sD150

= d dGui t ar Feat ur es. ROSEWOOD

A dGui t ar Feat ur es. SPRUCE

Chapter 3. Enumerated Types Pagina 20 di 33

O dGui t ar Feat ures. AB_ROSETTE |

A dGui t ar Feat ures. | L_DI AMONDS;

With thisinitial work done (you could represent every guitar in aline thisway), you can test a
specific guitar for a specific features, using the bitwise AND operator:

bool ean hasAbRosette = (bourgeoi sD150 & O dCGuitarFeatures.|L_DI AMONDS) != 0;

Looking at the constantsin O dGui t ar Feat ur es, you should see that they are just another case of an
enumerated type, and could be represented in Tiger as shown in Example 3-6.

Example 3-6. Representing guitar featuresin Tiger

package comoreilly.tiger.ch03;

public enum CuitarFeatures {
ROSEWOOD, // back/ sides
MAHOGANY, // back/ sides

ZI RI COTE, // back/sides

SPRUCE, // top

CEDAR, // top

AB_RCSETTE, /1 abal one rosette

AB_TOP_BORDER, // abal one top border

I L_DI AMONDS, // dianond/square inlay

| L_DOTS /1 dots inlays

NOTE

Be sure and continue to compile with the "-source 1.5" switch. Using the provided Ant scripts takes
care of this, by the way.

Chapter 3. Enumerated Types Pagina 21 di 33

However, operating on these constants with bitwise operatorsisn't possible, at least without the help
of anew class, j ava. uti | . Enuntet . Here are the methods of this class you should be concerned
with, most of which are factories:

/1l Returns a new EnuntSet with all elenents fromthe supplied type

public static EnuntSet all Of (Cl ass el ement Type);

/1 Returns a new EnuntSet of the sane type as the supplied set, but
/1 with all the values not in the supplied set; a mrror inage

public static EnuntSet conpl enent Of (Enuntset e);

/1 Returns a new EnunfSet fromthe provided collection

public static EnuntSet copyOf(Collection c);

// Returns a new EnunSet with no values in it

public static EnunSet noneOf (Cl ass el ement Type);

/1 Various nmethods to create an EnunSet with the supplied elenments in it

public static EnuntSet of (E e[, E e2, E e3, E e4, E e5]);

/] Varags version

public static Enuntet of (E... e);

/1 Creates an EnunBet with a range of val ues

public static EnuntSet range(E from E to);

/1 returns a copy of the current set - not a factory nethod

public EnunBSet clone();

You may have tolook at thisfor aminute to get the sense of things—the format is rather odd. But, to
create anew Enunset of all guitar features, just use the following:

EnunSet al | Features = Enuntet. al | OF (CGui t ar Feat ur es) ;

Simple enough, right? If you want only the back and side woods, you could use this notation:

Chapter 3. Enumerated Types Pagina 22 di 33

EnunSet backSi des = EnunSet . of (CGui t ar Feat ur es. ROSEWWOOD,
Gui t ar Feat ur es. MAHOGANY,

Gui t ar Feat ures. ZI Rl COTE) ;

You could also usether ange() operator:

EnunSet backSi des = Enunfet . range(Guit ar Feat ur es. ROSEWOOD,

Gui t ar Feat ures. ZI Rl COTE) ;

. Thisisreally abad idea—reordering of the enum screws this up, and you can
— never really completely insulate yourself from that possibility. Always use of
() instead of range(), if at al possible.

conpl ent Of () isaso ahandy method:

EnunSet noAbal one = EnunSet . conpl ement OF (

EnunSet . of (Gui t ar Feat ures. AB_ROSETTE, Cuitar Feat ures. AB_TOP_BORDER)) ;

With your setup done, you can just use the cont ai ns() method, available to all collection classes,
to check for avalue or vaues:

EnunSet bour geoi sD150 = Enuntet . of (GQui t ar Feat ur es. ROSEWOOD,
Gui t ar Feat ur es. SPRUCE,
Gui t ar Feat ur es. AB_ROSETTE,

Gui tar Feat ures. | L_DI AMONDS) ;

bool ean hasAbRosette = bourgeoi sD150. cont ai ns(Cui t ar Feat ures. AB_ROSETTE) ;

NOTE

Y ou can't use varargs to work with the of() method, due to the usage of generic typesin the factory
method. Variable arguments are detailed in Chapter 5.

3.7 Adding Methodsto an Enum

Those of you paying attention should have noticed something pretty important that | said earlier in
this chapter in Creating an Enum lab—that enums are just Java classes. They have some special

Chapter 3. Enumerated Types Pagina 23 di 33

behavior that you get for free, but ultimately they are indeed compiled classes. What's important
about thisisthat it implies that you can do some pretty cool things with enums beyond the basics
you've seen so far—such as adding methods to the enum. Thisis a great way to make your enum
even more valuable to application programmers.

3.7.1Howdo | dothat?

Adding methods to an enum works just like adding methods to a normal Java class. Example 3-7 isa
beefed-up version of Gui t ar Feat ur es that adds several new methods.

Example 3-7. Adding methodsto an enum

package comoreilly.tiger.ch03;

public enum CuitarFeatures {

ROSEWOOD(0) /1 back/si des
MAHOGANY(0) , /1 back/ si des

ZI Rl COTE(300) , /1 back/ si des
SPRUCE(0) , /1 top

CEDAR(0), /1 top

AB_ROSETTE(75) , /| abal one rosette

AB_TOP_BORDER(400), // abal one top border

| L_DI AMONDS(150) , /1 dianond/ square inlay

I L_DOTS(0); /1 dots inlays

/** The upcharge for the feature */

private float upcharge;

Gui tar Features(fl oat upcharge) {

t hi s. upcharge = upcharge;

public float getUpcharge() {

Chapter 3. Enumerated Types Pagina 24 di 33

return upcharge;

public String getDescription() {

switch(this) {

case ROSEWOOD: return "Rosewood back and sides";
case MAHOGANY: return "Mahogany back and sides";
case ZI Rl COTE: return "Ziricote back and sides";
case SPRUCE: return "Sitka Spruce top";

case CEDAR: return "Wester Red Cedar top";
case AB ROSETTE: return "Abal one rosette";

case AB TOP_BORDER: return "Abal one top border";
case | L_DI AMONDS:

return "Di anonds and squares fretboard inlay";
case |L_DOTS:

return "Smal |l dots fretboard inlay";

default: return "Unknown feature";

There are quite afew things here that you'll need to take note of. First, the class now has a
constructor that takesin af | oat parameter for the upcharge of each feature. As aresult, each
enumerated type now passes in a parameter to the constructor:

ROSEWOOD(0) , /1 back/si des
MAHOGANY(0) , /1 back/ si des
ZI Rl COTE(300) , /1 back/ si des
SPRUCE(0) , /1 top
CEDAR(0) , /] top

AB_ROSETTE(75) , /| abal one rosette

Chapter 3. Enumerated Types Pagina 25 di 33

AB_TOP_BORDER(400), // abal one top border

| L_DI AMONDS(150) , /1 di anmond/ square inlay

I L_DOTS(0); /1 dots inlays

Thislooks alittle odd in the code, but opens up aworld of possibilities for information to be passed
in for each value. Y ou should aso notice that the final value is followed by a semicolon. This
denotes the end of the values section, and is required.

Then, variables are declared, and methods appear, just like any other class. In the example,

get Upchar ge() returnsthe value supplied to the constructor, and get Descri pti on() suppliesa
human-readable version of the feature. Y ou'll seethat swi t ch isused, as described in Switching on
Enums, and this makes the method body simple to read and understand.

. Y ou cannot put your variable declarations before the enumerated values. The
o following code, for example, won't compile:

public enum CuitarFeatures {

private float upcharge;

ROSEWOCD,

MAHOGANY, // etc.

All declarations must follow the enumerated type declarations.

3.7.2 What about...

...limiting access to the enum constructor? Enum constructors are implicitly private, so thisistaken
care of for you. In some programming techniques, such as singletons, access modifiers are placed in
front of the constructor so that it can't be directly accessed:

public enum CuitarFeatures {

ROSEWOOD(0) /1 back/si des
MAHOGANY(0) , /1 back/ sides

ZI Rl COTE(300) , /1 back/ si des

Chapter 3. Enumerated Types

SPRUCE(0) , /1 top
CEDAR(0), /1 top
AB_ROSETTE(75) , /| abal one rosette

AB_TOP_BORDER(400), // abal one top border

| L_DI AMONDS(150) , /1 dianmond/ square inlay

I L_DOTS(0); /1 dots inlays

/** The upcharge for the feature */

private float upcharge;

private GuitarFeatures(float upcharge) {

t hi s. upcharge = upcharge;

}

/1 O her nethod bodies

Pagina 26 di 33

This compiles, but it just explicitly does what the compiler takes care of for you—making the

constructor private. However, you cannot supply the standard publ i ¢ modifier:

public CuitarFeatures(float upcharge) {

t hi s. upcharge = upcharge;

If you try this, you'll get acompiler error:
[javac] src\chO3\ CuitarFeatures.java: 21:

nodi fi er public not allowed here

[j avac] public CuitarFeatures(float upcharge) {

[j avac] n

Chapter 3. Enumerated Types Pagina 27 di 33

So leave all modifiers off of enum constructors.

3.8 Implementing I nterfaces with Enums

Now that you're starting to add methods to your enums (see the previous lab on Adding M ethods to
an Enum for detailsif you're skipping around), you may find that you want to define methods in an
interface, and implement that interface with one, two, or even more enums. Y ou may also want to
have an enum implement an interface, and have classes implement that same interface. All thisis
possible, and even quite simple.

3.8.1Howdol dothat?

Example 3-8 isavery simple interface that could describe enumerated types that represent features
on al sorts of instruments (not just guitars).

Example 3-8. Base inter face for feature enums

package comoreilly.tiger.ch03;

public interface Features {

/** Get the upcharge for this feature */

public float getUpcharge();

/** Get the description for this feature */

public String getDescription();

It'strivial to make Gui t ar Feat ur es implement this interface, as the methods are already written:

public enum CuitarFeatures inplenments Features {

Now you can create Banj oFeat ur es, Mandol i nFeat ur es, and more, al using the same interface as
astarting point. This creates a nice sense of uniformity among your enums, and is highly
recommended.

3.9 Value-Specific Class Bodies

Chapter 3. Enumerated Types Pagina 28 di 33

In covering the more advanced features of enums, | can't leave out the ability to define value-specific
class bodies. That sounds sort of fancy, but all it meansisthat each enumerated value within atype
can define value-specific methods. Thisis arather obscure bit of functionality, but sort of cool to
talk about around the water cooler.

3.9.1Howdol dothat?

Example 3-9 is an example of aclass that determines how the per f or () method is executed based
on the enumerated value. It's a perfect example of value-specific class bodies.

Example 3-9. Value-specific class bodiesin an enum
/1l These are the opcodes that our stack machi ne can execute.

enum Opcode {

/1 Push the single operand onto the stack
PUSH(1) {
public void perform StackMachi ne machine, int[] operands) {

machi ne. push(operands[0]);

}, /1 Remenber to separate enum val ues with conmas

/1 Add the top two values on the stack and put the result

ADD(0) {
public void perfornm StackMachi ne machine, int[] operands) {

machi ne. push(machi ne. pop() + machi ne. pop());

/* OQther opcode val ues have been onmitted for brevity */

/1 Branch if Equal to Zero
BEZ(1) {
public void perfornm StackMachi ne machine, int[] operands) {

i f (machine.pop() == 0) machi ne. set PC(operands[0]);

}; /1 Remenber the required senicolon after |ast enum val ue

Chapter 3. Enumerated Types Pagina 29 di 33

/1 This is the constructor for the type.

Opcode(i nt numOperands) { this.nunOperands = nunOperands; }

i nt numOperands; // how many integer operands does it expect?

/1 Each opcode constant nust inplenent this abstract nethod in a
/1 val ue-specific class body to performthe operation it represents.

public abstract void perforn(StackMachi ne machine, int[] operands);

NOTE
This exampleislifted straight out of Javain a Nutshell, Fifth Edition (O'Rellly).

Skipping past the individua types (which you should already understand), the method that each
value should implement isdefined: per f or m(), which takes two arguments. Finally, each value is
followed by an opening curly brace, one or more value-specific methods, and then a closing curly
brace. Thisworks in conjunction with any constructor that must be supplied avalue, as this enum
has. The end result, frankly, is one of the oddest |ooking Java constructs you'll ever see.

3.9.2What just happened?

In the lab on Creating an Enum, | mentioned that enumerated type values are created and marked as
final (inadditiontobeingpublic andstatic), ensuring that they aren't changed by some
malicious or unknowing programmer. In the case of a value-specific class body, though, thisisn't
possible. Instead, an anonymous subclass of the typeis created, and the value becomes a singleton
instance of that subclass. This still ensures that multiple instances of the same value aren't floating
around, but it does change what's going on at the compiler level abit. Despite this, you still can't
extend an enum (see Extending an Enum for more details).

NOTE

| suppose you could really clutter things up with generics and varargs, but you get the idea... value-
specific class bodies are often a pain to debug for even mid-level programmers, because of their
unusual syntax.

3.9.3What about...

...Just using amore generic method that determines what to do based on aswi t ch statement? Well,
that's a better idea, to be honest. Here's the (much cleaner) way to write OpCode:

/1 These are the the opcodes that our stack machi ne can execute.
abstract static enum Opcode {

PUSH(1) ,

Chapter 3. Enumerated Types Pagina 30 di 33

ADX(0) ,

BEZ(1); // Remenber the required semcolon after |ast enum val ue

i nt numOper ands;

Opcode(i nt numOperands) { this.nunOperands = nunOper ands; }

public void perfornm(StackMachi ne machine, int[] operands) {
switch(this) {
case PUSH. rmachi ne. push(operands[0]); break;
case ADD: machi ne. push(machi ne. pop() + machine. pop()); break;
case BEZ: if (machine.pop() == 0) machi ne. set PC(operands[0]); break;

default: throw new AssertionError();

Thisis so painfully simpler than the first version of OpCode that | hesitated to even include this lab—
but for completeness, hereit is. If at al possible, though, consider using swi t ch in your method
bodies to direct program flow, rather than value-specific class bodies.

3.10 Manually Defining an Enum

You'l recall from thefirst lab, Creating an Enum, that all enums implicitly extend the new
j ava. | ang. Enumclass. This classlooks a bit like Example 3-10; I've trimmed the method
implementations and just |eft the declarations in for clarity.

Example 3-10. Thejava.lang.Enum class

package j ava. | ang;

public class EnunxE extends EnunxE>> inpl ements Conparabl e<E>, Serializable {

protected Enun(String name, int ordinal);

Chapter 3. Enumerated Types Pagina 31 di 33

protected Cbject clone();

public int conpareTo(E 0);

public bool ean equal s(bj ect other);
public C ass<E> getDecl aringC ass();
public int hashCode();

public String name();

public int ordinal();

public String toString();

public static <T extends EnunxT>> T val ueOf (Cl ass<T> enunilfype, String nane);

NOTE

This code listing is extracted from the Java 1.5 JavaDoc. Source codeisn't available as of the time of
this writing.

If you're abit of a hack, that may get your mind wandering...couldn't | just manually define my own
enum, then? Good question.

3.10.1 How do | dothat?

Y ou don't—at least, not in Tiger. While thisis very much an accessible class, and isindeed the base
class of all enumerated typesin Tiger, the compiler won't let you extend it, as Example 3-11 triesto
do.

Example 3-11. Attempting to extend java.lang.Enum

package comoreilly.tiger.ch03;

public class ExtendedEnum ext ends Enum {

}

Attempting to compile this class give you the following error:
[javac] src\ch03\ Ext endedEnum j ava: 3:
cl asses cannot directly extend java.l ang. Enum
[javac] public class ExtendedEnum extends Enum {

[j avac] n

Chapter 3. Enumerated Types Pagina 32 di 33

3.11 Extending an Enum

It's often easy to define a hierarchy of enumerations. In this scenario, one enum represents a base
type of allowed values. Subclasses of that enum would add additional values to the base enum,
perhaps specialized to acertain task.

3.11.1 Howdo | dothat?

Here's another one of those pesky, "Y ou don't” labs. Tiger does not allow extension of an enum. For
example, consider Example 3-12, asimple extension of the G ade enum defined back in Example 3-
1

Example 3-12. Extending the Grade enum

package comoreilly.tiger.ch03;

public enum Col | egeGrade extends G ade { DROP_PASSI NG, DROP_FAI LI NG }

In theory, thiswould take the values Gr ade. A, Gr ade. B, and so forth, and add to them two new
values, Col | egeGr ade. DROP_PASSI NGand Col | egeGr ade. DROP_FAI LI NG, However, you'll get
compilation errorsif you try this:

conpi |l e-ch03-errors:
[echo] Compiling all Java files...

[javac] Conpiling 13 source files to classes

[javac] src\ch03\Col |l egeGrade.java:3: '{' expected

[javac] public enum Col | egeGrade extends G ade {DROP_PASSI NG DROP_
FAI LI NG}

[j avac] n

[javac] src\ch03\Col |l egeGrade.java: 3: <identifier> expected

[javac] public enum Col | egeGrade extends G ade {DROP_PASSI NG DROP_
FAI LI NG}

[j avac]

[javac] 2 errors

NOTE

Chapter 3. Enumerated Types Pagina 33 di 33

Use the Ant target " compilechO3- errors" to try and compile the CollegeGrade. java sourcefile.
3.11.2 What about...

...using aclass to extend an enum, instead of another enum? That doesn't work either. There's just no
getting around this limitation, at least that 1've been able to find..

NOTE

If you find a sneaky way to extend an enum, let us know! Well add it to the next edition.

Chapter 4. Autoboxing and Unboxing Paginaldi 10

Chapter 4. Autoboxing and Unboxing
NOTE
In this chapter:

1 Converting Primitives to Wrapper Types

1 Converting Wrapper Types to Primitives

1 Incrementing and Decrementing Wrapper Types

1 Boolean Versus boolean

1 Conditionals and Unboxing

1 Control Statements and Unboxing

1 Method Resolution Overload

When you begin to study Java, one of the first lessonsis aways about objects. In fact, you could say
that j ava. | ang. Obj ect isthe very cornerstone of Java. Practically 99% of everything you do in the
language revolves around that class, or one of its subclasses. It's the 1% of the time, though, that can
be a pain—when you suddenly find yourself having to convert between your objects and Java
primitives.

Primitivesin Javaareyour i nts, shorts, chars, and so on—typesthat aren't objectsat all. Asa
result, Java has wrapper classes, such as| nt eger, Short, and Char act er, which are object
versions of the primitive types. Where things get annoying is when you have to go back and forth
between the two—converting a primitive to its wrapper, using it, then converting the object's value
back to a primitive. Suddenly, methods such asi nt val ue() begin to litter your code.

Happily, Tiger finally takes care of thisissue, at least as much as can be expected without tossing out
primitives completely. Thisis handled through two new conversion features: boxing and unboxing.

And, just to add some more words to the English language, it does these conversions automatically,
so we now talk about autoboxing and auto-unboxing.

4.1 Converting Primitivesto Wrapper Types

Literal valuesin Java are always primitives. The number 0, for example, isani nt , and must be
converted to an object through code like this:

Integer i = new Integer(0);

Thisis pretty silly, for obvious reasons, and Tiger removes the need for such nonsense through
boxing.

41.1Howdol dothat?

Chapter 4. Autoboxing and Unboxing Pagina2di 10

Y ou can now dispense with the manual conversions, and let the Java virtual machine (VM) handle
conversion of primitives to object wrapper types:

Integer i = 0;

In the background, Java handles taking this primitive and turning it into awrapper type. The same
conversion happens with explicit primitive types:

int foo = 0;
I nteger integer = foo;

If you're not completely convinced of the value of this, try typing these statementsinto a pre-Tiger
compiler, and watch in amazement as you get some rather ridiculous errors:

NOTE

The "compile-1.4" target compiles the examples from this chapter with the "-source 1.4" switch.
conpi l e-1. 4:
[echo] Compiling all Java files..
[javac] Conpiling 1 source file to classes

[javac] src\comoreilly\tiger\chO4\ ConversionTester.java: 6: inconpati bl

types

[javac] found ©oint

[javac] required: java.lang.Integer

[j avac] Integer i = 0;

[j avac] N

[javac] src\comoreilly\tiger\chO4\ ConversionTester.java:9: inconpati bl
types

[javac] found ;int

[javac] required: java.lang.Integer
[j avac] I nteger integer = foo;
[j avac] n

[javac] 2 errors

These errors "magically" disappear in Tiger when using the - source 1.5 switch.
4.1.2 What just happened?
Behind the scenes, these primitive values are boxed. Boxing refers to the conversion from a primitive

to its corresponding wrapper type: Bool ean, Byte, Short, Character, Integer, Long, Float,
or Doubl e. Because this happens automatically, it's generally referred to as autoboxing.

Chapter 4. Autoboxing and Unboxing Pagina3di 10

It's also common for Java to perform awidening conversion in addition to boxing avalue:
Nunber n = 0. 0f;

Here, theliteral isboxed into a Fl oat , and then widened into a Nunber .

NOTE

It's possible to specifically request a boxing conversion—that's basically anew form of casting. It's
just easier to let the VM handle it, though.

Additionally, the Java specification indicates that certain primitives are always to be boxed into the
same immutable wrapper objects. These objects are then cached and reused, with the expectation that
these are commonly used objects. These specia values are the bool ean valuest rue and f al se, al
byt e values, short and i nt values between -128 and 127, and any char in the range\ u0000 to

\ u007F. Asthisall happens behind the scenes, it's more of an implementation detail than something
you need to worry much about.

4.2 Converting Wrapper Typesto Primitives

Just as Tiger converts primitives to wrapper types as needed, the reverseis aso true. Like boxing,
unboxing involves little effort on the part of the programmer.

421Howdol dothat?

Here's some more simple code that does both boxing and unboxing, all without any special
instruction:

/1 Boxi ng
int foo = 0;

I nteger integer = foo;

/1 Sinple Unboxing

int bar = integer;

I nt eger counter = 1; /'l boxing

int counter2 = counter; // unboxing

Pretty simple, isn't it?
4.2.2 What about...

...nul I value assignment? Since nul | isalegal value for an object, and therefore any wrapper type,

Chapter 4. Autoboxing and Unboxing Pagina4 di 10

the following code islegal:

Integer i = null;
int j =1i;

i isassigned nul | (whichislegal), and theni isunboxed intoj . However, nul | isn't alegal value
for a primitive, so this code throws aNul | Poi nt er Excepti on.

4.3 Incrementing and Decr ementing Wrapper Types
When you begin to think about the implications of boxing and unboxing, you'll realize that they are
far-reaching. Suddenly, every operation available to a primitive should be available to its wrapper-

type counterpart, and vice versa. One of the immediate applicationsis the increment and decrement
operations: ++ and - - . Both of these operations now work for wrapper types.

43.1Howdol dothat?

Well, without much work, actualy:

I nteger counter = 1;
while (true) {
Systemout.printf("lIteration %% ", counter++);

if (counter > 1000) break;

The variable count er istreated just asani nt inthis code.
4.3.2 What just happened?

It's worth noting that more happened here than perhaps meets the eye. Take this simple portion of the
example code:

count er ++

Remember that count er isan I nt eger . So thevaluein count er was first auto-unboxed into ani nt ,
asthat's the type required for the ++ operator.

- Thisis actually an important point—the ++ operator has not been changed to
s | work with object wrapper types—t's only through autounboxing that this code
4 works.

Once the value is unboxed, it is incremented. Then, the new value has to be stored back incount er,
which requires a boxing operation. All thisin afraction of a second!

Chapter 4. Autoboxing and Unboxing Pagina5di 10

Y ou might also notice that the I nt eger value of count er was compared to the literal, and therefore
primitive, value 1000. Thisisjust another example of autounboxing at work.

4.4 Boolean Versus boolean

Thebool ean typeisalittle bit of a special case for Java primitives, mostly because it has several
logical operators associated with it, such as! (not), | | (or), and && (and). With unboxing, these are
now useful for Bool ean values as well.

44.1Howdol dothat?

Any time you have an expression that uses!, | | , or &&, any Bool ean values are unboxed to bool ean
primitive values, and evaluated accordingly:

Bool ean casel true;

Bool ean case2 = true;

bool ean case3 fal se;

Bool ean result = (casel || case2) && case3;

In this case, the result of the expression, abool ean, isboxed into ther esul t variable.
NOTE

For inquiring minds, primitives are boxed up to wrapper typesin equality comparisons. For operators
such as <, >=, and so forth, the wrapper types are unboxed to primitive types.

4.4.2 \What about...

...direct object comparison? Object comparison works as it aways has:

Integer i1l = 256;
I nteger i2 = 256;
if (il ==12) Systemout.println("Equal!");

el se Systemout.println("Not equal!");

The result of running this code, at least in my JVM, isthe text "Not equal!" In this case, there is not
an unboxing operation involved. Theliteral 256 is boxed into two different | nt eger objects (again,
in my JVM), and then those objects are compared with ==. The result is false, as the two objects are
different instances, with different memory addresses. Because both sides of the == expression
contain objects, no unboxing occurs.

Chapter 4. Autoboxing and Unboxing Pagina6di 10

. Y ou can't depend on this result; it's merely used as an illustration. Some

= JVMs may choose to try and optimize this code, and create one instance for
both I nt eger objects, and in that case, the == operator would return atrue
result.

But, watch out! Remember (from "Converting Primitives to Wrapper Types'), that certain primitive
values are unboxed into constant, immutable wrapper objects. So, the result of running the following
code might be surprising to you:

Integer i1 = 100;
Integer i2 = 100;
if (il ==12) Systemout.println("Equal!");

el se Systemout.println("Not equal!");

Here, you would get the text "Equal!" Remember that i nt values from -127 to 127 are in that range
of immutable wrapper types, so the VM actually uses the same object instance (and therefore
memory address) for bothi 1 and i 2. Asaresult, == returns a true result. Y ou have to watch out for
this, asit can result in some very tricky, hard-to-find bugs.

4.5 Conditionals and Unboxing

One of the odder features of Javais the conditional operator, often called the ternary operator. Thisis
the operator version of ani f/ el se statement, represented by the ? character. Since it evaluates an
expression, the unboxing features of Tiger affect it, too. You can use it with al sorts of new types.

451 Howdol dothat?

Here isthe format of this operator:

[conditional expression] ? [expressionl] : [expression2]

If [condi tional expression] evaluatestotrue,then[expressionl] isexecuted; otherwise
[expression2] is.Inpre-Tiger Java, [condi tional expression] hadtoresultinabool ean
value. Thiswas abit of apain if you had a method that returned a Bool ean wrapper type, or an
expression that involved aBool ean. In Tiger, thisis no longer a problem, and the ternary operator
happily gobbles up any unboxed Bool ean values:

Bool ean arriving = fal se;

Bool ean |l ate = true;

Systemout.println(arriving ? (late ? "It's about time!" : "Hello!")

Chapter 4. Autoboxing and Unboxing Pagina7di 10

(late ? "Better hurry!" : "Goodbye"));

4.5.2 What just happened?

The ternary operator is alittle tricky, in both Java 1.4 and Tiger, so it's worth mentioning some
additional details. In pre-Tiger environments, [expr essi on1] and [expressi on2] hadto either be
of the same type, or one had to be assignabl e to the other. So both had to be St ri ng values, or one
could beani nt and the other afl oat (asanint could bewidenedto afl oat). In Tiger, the
restrictions loosen a bit due to unboxing. One or both expressions can be unboxed, so one could be
an | nt eger and the other could be aFl oat , for example. However, both will be unboxed, and the

i nt will bewidened tof I oat, S0 the return type of the expression would be af | oat —the result is not
boxed back into aFl oat .

Another addition to Tiger is automatic casting of reference to their intersection type. That's a
mouthful, so here's an example:

NOTE

Thanks to Javain a Nutshell, Fifth Edition (O'Reilly) for this example.
String s = "hello";

StringBuffer sb = new StringBuffer("world");

bool ean mut abl e true;

Char Sequence cs nmutable ? sb : s;

In pre-Tiger environments, this would generate an error, assb (asStri ngBuffer)ands (aStri ng)
cannot be assigned to each other. However, this code should really work, as both St ri ng and
St ri ngBuf f er implement the Char Sequence interface. However, you have to perform some casting:

Char Sequence cs = mutabl e ? (Char Sequence)sb : (Char Sequence)s;
In Tiger, though, any valid intersection of the two operands can be used. Thisis essentially any
object, walking up the inheritance chain, that is common to both operands. In this case,
Char Sequence fitsthat criteria, and soisavalid return type.

NOTE

Technically, thisis afeature of the generic support in Tiger, but it seemed appropriate to mention it
here. Generics are covered in detail in Chapter 2.

Asaside effect of this, note that two reference types (objects) always sharej ava. | ang. Obj ect asa
common ancestor, so any result of aternary operation involving non-primitive operands can be
assigned toj ava. | ang. Obj ect .

Chapter 4. Autoboxing and Unboxing Pagina8di 10

4.6 Control Statements and Unboxing

There are several control statements in Javathat take as an argument abool ean value, or an
expression that resultsto abool ean value. It shouldn't be much of a surprise that these expressions
now also take Bool ean values. Additionally, the swi t ch statement has an array of new types it will
accept.

46.1How do| dothat?

if/else, while,anddo al areaffected by Tiger's ability to unbox Bool ean valuesto bool ean
values. By now, this shouldn't require much explanation:

Bool ean arriving = fal se;

Bool ean |l ate = true;

I nt eger peopl el nRoom = 0O;
i nt maxCapacity = 100;
bool ean ti meToLeave = fal se;
whi | e (peopl el nRoom < maxCapacity) ({
if (arriving) {
Systemout.println("It's good to see you.");
peopl el nRoomt+;
} else {
peopl el nRoom -;
}
if (timeToLeave) {
do {
Systemout.printf("Hey, person %l, get out! %", peopl el nRoon);
peopl el nRoom -;

} while (peopl el nRoom > 0);

NOTE
Y ou might want to be cautious running this code—it's actually an infinite loop.

There are several boxing and unboxing operations going on here, in several control statements.
Browse through this code, and work mentally through each operation.

Chapter 4. Autoboxing and Unboxing Pagina9di 10

Another statement that benefits from unboxing isswi t ch. In pre-Tiger JVMs, the swi t ch statement
acceptsint, short, char, or byte vaues. With unboxing in play, you can now supply it with
I nteger, Short, Char,andByte valuesaswell, in addition to the introduction of enuns.

NOTE

Enums are covered in Chapter 3.

4.7 Method Overload Resolution

Boxing and unboxing offer alot of solutionsto common problems (or, at least annoyances) in Java
programming. However, these solutions manage to introduce a few quirks of their own, particularly
in the area of method resolution. Method resolution is the process by which the Java compiler
determines which method is being invoked. You'll need to be careful, as unboxing and boxing affect
this process.

47.1How do!| dothat?

In the normal case, Java handles method resolution by using the name of the method. In cases where
amethod is overloaded, though, an extra step must be taken. The arguments to the method are
examined, and matched up with the arguments that a specific version of the requested method
accepts. If no matching argument list isfound, you get a compiler error. Sounds simple enough,
right? Well, consider the following two methods:

public void doSonet hi ng(doubl e num;
public void doSonet hi ng(Integer nunj;

Now supposed that you invoked doSonet hi ng() :

int foo = 1;
doSormet hi ng(f oo);

Which method is called? In a pre-Tiger environment, thisis easy to determine. Thei nt iswidened
to adoubl e, and doSonet hi ng(doubl e nun) iscalled. However, in a Tiger environment, it would
seem that boxing would occur, and doSormet hi ng(| nt eger nun) would be what the method
invocation would resolve to. While that's reasonable, it is not what happens.

Imagine writing a program like this, compiling and testing it in Java 1.4, and then recompiling it
under Tiger. Suddenly, things start going haywire! Obviously, thisisn't acceptable. For that reason,
method resolution in Tiger will always select the same method that would have been selected in Java
1.4. Asarule, you really shouldn't mess around with this sort of overloading anyway, if at al
possible. Be as specific as possible in your method naming and argument lists, and this issue goes

away.
4.7.2 What just happened?
In Tiger, because of these restrictions, method resolution is a three-pass process:

1. The compiler attempts to locate the correct method without any boxing, unboxing, or vararg
invocations. Thiswill find any method that would have been invoked under Java 1.4 rules.

Chapter 4. Autoboxing and Unboxing Pagina10di 10

2. If thefirst passfails, the compiler tries method resolution again, thistime allowing boxing and
unboxing conversions. Methods with varargs are not considered in this pass.

3. If the second pass fails, the compiler tries method resolution one last time, allowing boxing
and unboxing, and also considers vararg methods.

These rules ensure that consistency with pre-Tiger environments is maintai ned.
NOTE

Varargs are detailed in Chapter 5.

Chapter 5. varargs Paginaldi 15

Chapter 5. varargs
NOTE
In this chapter:

1 Creating aVariable-Length Argument List

1 lterating Over Variable-Argument Lists

1 Allowing Zero-Length Argument Lists

1 Specify Object Arguments Over Primitives

1 Avoiding Automatic Array Conversion

One of the coolest features of Java, and of any object-oriented language, is method overloading.
While many might think Java's strengths are its typing, or all the fringe APIsit comeswith, there's
just something nice about having the same method name with avariety of acceptable arguments:

Guitar guitar = new Guitar("Bourgeois", "Country Boy Del uxe",
Gui t ar Wwod. MAHOGANY, Guitar Wod. ADI RONDACK,

1.718);

GQuitar guitar = new Guitar("Martin", "HD 28");

Guitar guitar = new Guitar("Collings", "Cw28"
Gui t ar Wod. BRAZI LI AN_ ROSEWOOD, Gui t ar Wood. ADI RONDACK,
1.718,

Gui tarlnlay. NO_ I NLAY, Cuitarlnlay. NO_| NLAY);

This code calls three versions of the constructor of a (fictional) Gui t ar class, meaning that
information can be supplied when it's available, rather than forcing a user to know everything about
their guitar at one time (many professionals couldn't tell you their guitar's width at the nut). Here are
the constructors used:

public CGuitar(String builder, String nodel) ({
}

public Guitar(String builder, String nodel,

Gui t ar Wod backSi desWwbod, GuitarWod topWwod,

Chapter 5. varargs Pagina 2 di 15

float nutwdth) {

public Guitar(String builder, String nodel,
Gui t ar Wod backSi desWwbod, GuitarWod topWwod,
float nut Wdth,

GQuitarinlay fretboardlinlay, Guitarlnlay toplnlay) {

NOTE
Enums, which are used in these examples, are detailed in Chapter 3.

However, things start to get alittle less useful when you want to add information that isn't finite. For
example, suppose you want to allow additional, unspecified features to be added to this constructor.
Here are some possible invocation examples:

Guitar guitar = new Guitar("Collings", "CwW28"
Gui t ar Wod. BRAZI LI AN_ ROSEWOOD, Gui t ar Wood. ADI RONDACK,
1.718,
Guitarlnlay. NO I NLAY, Cuitarlnlay.NO | NLAY,

"Enl ar ged Soundhol e", "No Popsicle Brace");

GQuitar guitar = new Guitar("Martin", "HD 28V",
"Hot -rodded by Dan Lashbrook", "Fossil lvory Nut",

"Fossil lvory Saddle", "Low profile bridge pins");

For these two cases alone, you'd have to add another constructor that takes two additional strings,
and yet another that takes four additional strings. Try and apply these same versions to the aready-
overloaded constructor, and you'd end up with 20 or 30 versions of that silly constructor!

It's here where variable arguments, more often called varargs, come in. Another of Tiger's additions,
varargs solve the problem detailed here once and for all, in a pretty slick way. This chapter covers
thisrelatively smplefeature in all its glory, and will have you writing better, cleaner, more flexible
codein no time.

NOTE

All of the new formatting methods, which are detailed in Chapter 9, use varargs.

Chapter 5. varargs Pagina3di 15

5.1 Creating a Variable-Length Argument List

Variable arguments allow you to specify that a method can take multiple arguments of the same type,
and don't require that the number of arguments be pre-determined (at compile- or runtime). Thisison

varargs..
5.1.1Howdol dothat?

First, get used to typing the ellipsis (...). Those three little dots are the key to varargs, and you'll be
typing them quite often. Here's aversion of the Gui t ar constructor that uses varargs to allow for an
indeterminate number of St ri ng features:

NOTE

All these constructors are shown, completed, in the source code for the com.oreilly.tiger.ch05.Guitar
class.

public Guitar(String builder, String nodel, String... features);

The argument St ri ng... f eat ur es indicates that any number of St ri ng
all of the following invocations are legal:

Guitar guitar = new Guitar("Martin", "HD 28V"
"Hot -rodded by Dan Lashbrook", "Fossil lvory Nut",

"Fossil lvory Saddle", "Low profile bridge pins");

Guitar guitar new Cuitar ("Bourgeois", "OMC

"Incredi ble flaned mapl e bi ndings on this one.");

Guitar guitar = new Guitar("Collings", "Ow42",

"Once owned by Steve Kaufnman--one of a kind");

Y ou could add the same variable-length argument to the other constructors:

public GQuitar(String builder, String nodel,
Gui t ar Wod backSi desWwbod, GuitarWod topWwod,

float nutWdth, String... features)

Chapter 5. varargs Pagina4 di 15

public Guitar(String builder, String nodel,
Gui t ar Wod backSi desWwbod, GuitarWod topWwod,
fl oat nut Wdth,
Guitarinlay fretboardlnlay, Guitarlnlay toplnlay,

String... features)

Example 5-1 shows asimple class that puts this all together, and even uses delegation to pass some
varargs around.

Example 5-1. Using varargsin constructors

package comoreilly.tiger.ch05;

public class Guitar {

private String buil der;

private String nodel;

private float nutWdth;

private GuitarWod backSi desWhod;
private GuitarWod topWod;

private Guitarlnlay fretboardlnlay;

private Guitarlnlay toplnlay;

private static final float DEFAULT_NUT W DTH = 1. 6875f;

public Guitar(String builder, String nodel, String... features) {

t hi s(builder, nodel, null, null, DEFAULT_NUT WDTH, null, null, features);

public Guitar(String builder, String nodel,
Gui t ar Wod backSi desWwbod, GuitarWod topWwod,
float nutWdth, String... features) {

t hi s(buil der, nodel, backSi desWwbhod, topWwod, nutWdth, null, null, features

Chapter 5. varargs Pagina5di 15

public Guitar(String builder, String nodel,
Gui t ar Wod backSi desWwbod, GuitarWod topWwod,
fl oat nut Wdth,
Guitarlinlay fretboardlnlay, Guitarlnlay toplnlay,

String... features) {

this. builder = builder;

t hi s. nodel = nodel;

t hi s. backSi deswbhod = backSi desWbod;
this.topwod = topWwod,;

this.nutWdth = nut Wdt h;
this.fretboardlnlay = fretboardlnl ay;

this.toplnlay = toplnlay;

5.1.2 What just happened?

When you specify a variable-length argument list, the Java compiler essentially reads that as "create ¢
array of type <ar gument type> ".You typed:

public CGuitar(String builder, String nodel, String... features)

NOTE
You'll get acompiler error from this, and one that's not all that descriptive of the real problem.

However, the compiler interpretsthis as:

public GQuitar(String builder, String nodel, String[] features)

This means that iteration over the argument list is simple (as shown in "Iterating Over Variable-Lengt
Argument Lists"), asis any other programming tasks you need to undertake. Y ou can work with
varargs just as you would with arrays.

However, there are some limitations. First, you can only use one ellipsis per method. Thus, the

Chapter 5. varargs Pagina 6 di 15

followingisillegal:
public Guitar(String builder, String nodel,

String... features, float... stringHeights)

Additionally, the ellipsis must appear as the last argument to a method.
5.1.3 What about...

...If you don't have any featuresto passin? That's fine. Just call the constructor in the old way:

GQuitar guitar = new Guitar("Martin", "D-18");

Look closely, though—there is no constructor with the following signature:

public Guitar(String builder, String nodel)

So, what gives? Well, as an added bonus to varargs, not passing in an argument is a legitimate option
So whenyou see String... f eat ur es, you should think "zero or more St ri ng arguments.” That save:
you from creating another constructor without the varargs parameter.

5.2 Iterating Over Variable-Length Argument Lists

All this varargs business is well and good, but unless you can actually use them in your methods, it's
obviously just eye-candy and window dressing. However, you can work with vararg parameters just ¢
you do an array, making usage a piece of cake.

521 Howdol dothat?

Make sure you read "Creating a Variable-Length Argument List," which lets you know the most
important piece of information relating to vararg methods—variable-length arguments are treated jusl
as arrays. So, continuing with the previous example, you could do something like this:

public Guitar(String builder, String nodel,
Gui t ar Wod backSi desWwbod, GuitarWod topWwod,
fl oat nut Wdth,
Guitarlinlay fretboardlnlay, Guitarlnlay

String... features) {

this.builder = builder;

t his. nodel = nodel;

Chapter 5. varargs Pagina7 di 15

t hi s. backSi deswbhod = backSi desWbod;
this.topwod = t opWod

this.nutWdth = nut Wdt h;
this.fretboardlnlay = fretboardlnl ay;

this.toplnlay = toplnlay;

for (String feature : features) {

System out. println(feature);

NOTE
The for/inloop is covered in detail in Chapter 7.

Thisisn't particularly sexy, but it should get the point across. As another example, here'sasimple
method that cal culates the maximum from a set of numbers:

NOTE

This example is yanked straight out of Javain aNutshell, Fifth Edition (O'Reilly).
public static int max(int first, int... rest) {
int max = first;
for (int i : rest) {

if (i > max)

}

return max;

Simple enough, right?
5.2.2 What about...

...storing variable-length arguments? Since the Java compiler treats these like arrays, an array is
obviously agreat choice for storage, as seen in Example 5-2, which isamodified version of Example
5-1.

Chapter 5. varargs Pagina8di 15

Example 5-2. Storing variable-length arguments as member variables

package comoreilly.tiger.ch05;

public class Guitar {

private String buil der;

private String nodel;

private float nutWdth;

private GuitarWod backSi desWod;
private GuitarWod topWod,;

private Guitarlnlay fretboardlnlay;
private Guitarlnlay toplnlay;

private String[] features;

private static final float DEFAULT_NUT W DTH = 1. 6875f;

public Guitar(String builder, String nodel, String... features) {

thi s(builder, nodel, null, null, DEFAULT_NUT WDTH, null, null, features);

public Guitar(String builder, String nodel,
Gui t ar Wod backSi desWwbod, GuitarWod topWwod,

float nutWdth, String... features) {

t hi s(buil der, nodel, backSi desWwod, topwWod, nutWdth, null, null,

public Guitar(String builder, String nodel,
Gui t ar Wod backSi desWwbod, GuitarWod topWwod,
fl oat nut Wdth,
Guitarinlay fretboardlnlay, Guitarlnlay toplnlay,

String... features) {

features

Chapter 5. varargs

this.

this.

this.

this.

this.

this.

this.

this.

Y ou could also store these in Java collection classes easily:

bui | der = buil der;

nodel = nodel;

backSi desWwod = backSi desWod;
t opWwod = t opWod

nut Wdt h = nut Wdt h;

fretboardlnlay = fretboardlnl ay;

toplnlay = toplnlay;

features = features;

/1l Variabl e decl aration

private List features;

/1 Assi gnment

this.features = java.util.Arrays. asLi st(features);

NOTE

in method or constructor body

Pagina9di 15

Thejava.util. Arrays class has several nice methods for working with arrays, all of which are of intere
in varargs methods.

5.3 Allowing Zero-Length Argument Lists

One particularly nice feature about varargs is that a variable-length argument can take from zero to n
arguments. This means that you can actually invoke one of these methods without any parameters,
and things still behave. On the other hand, this means that, as a programmer, you better realize you
must safeguard against this condition.

5.3.1Howdol dothat?

Remember in "Iterating Over Variable-Length Argument Lists," you saw this simple method:

public static int max(int first, int...

int max = first;

for (int i : rest) {

Chapter 5. varargs Pagina 10 di 15

if (i > max)

}

return max;

Y ou can call this method in several ways:
int max = MathUtils. max(1l, 4);
int mx = MathWils. max(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

int max = MathWils. max(18, 8, 4, 2, 1, 0);

What's not so nice is that there are many cases where you may already have the numbersto passin
stored as an array, or at least in some collected form:

// Get the nunmbers from sone net hod

int[] nunbers = getlListO Nunbers();

It'simpossible to just pass these numbers on to the max() method. Y ou would need to check the list
length, and strip off the first object (if it's available), then check the typeto ensureit'sani nt . That
would be passed in, along with the rest of the array (which can be iterated over, or converted
manually to a suitable format). In general, this processisareal pain andisalot of work for what
should betrivial. To get around this, remember that this method is treated by the compiler asthe
following:

public static int max(int first, int[] rest)

NOTE

Autounboxing helps some, as "Integer" objects are freely convertedto™ ™ "int" primitives.
Autounboxing is covered in Chapter 4.

So, by extension, you could convert max() tolook likethis:
public static int max(int... values) {
int max = I nteger. M N_VALUE;
for (int i : values) {
if (i > max)

max = i;

Chapter 5. varargs Pagina 11 di 15

}

return max;

Y ou've now created a method that can easily be used with arrays:

/1 Get the nunmbers from sone net hod

int[] nunbers = getlListO Nunbers();

int max = MathUtils. max(nunbers);

While using a single variable-length argument made this task easier, it introduces problems if you
pass in a zero-length array—in the best case, you're going to get unexpected results. To account for
this, you now need alittle error checking. Example 5-3 is a complete code listing for the Mat hUti | s
class, which at this point is more of amat huti | class!

Example 5-3. Handling zer o-ar gument methods

package comoreilly.tiger.ch05;

public class MathUils {

public static int max(int... values) {
if (values.length == 0) {
throw new |11 egal Argunment Excepti on("No val ues supplied.");

}

int max = I nteger. M N_VALUE;
for (int i : values) {

if (i > max)

}

return max;

Chapter 5. varargs Pagina 12 di 15

Anytime you have the possibility for a zero-length argument list, you need to perform this type of
error checking. Generaly, aniceinformative I | | egal Ar gunent Except i on isagreat solution.

5.3.2What about...

....nvoking this same method with normal non-array arguments? That's perfectly legal, of course.
The following are all legitimate ways to invoke the mex() method:

int max = MathUtils. max(nyArray);

int mx = MathWils. max(newint[] { 2, 4, 6, 8 });
int max = MathWils. max(2, 4, 6, 8);
int max = MathUtils. max(0);
int max = MathUtils. max();
NOTE

Whatever you do, please don't throw a checked exception—you just add hassle for programmers
using your code, and for what is a fringe case, rather than a normal problem.

5.4 Specify Object Arguments Over Primitives

Asdiscussed in Chapter 4, Tiger adds a variety of new features through unboxing. This allows you,
in the case of varargs, to use object wrapper typesin your method arguments.

541 Howdol dothat?

Remember that every classin Java ultimately is a descendant of j ava. | ang. Obj ect . Thismeans
that any object can be converted to an Obj ect ; further, because primitiveslikei nt and short are
now automatically converted to their object wrapper types (1 nt eger and Shor t inthis case), any
Javatype can be converted to an Obj ect .

Thus, if you want to accept the widest variety of argument typesin your vararg methods, use an
object type as the argument type. Better yet, go with Obj ect for the absolute most in versatility. For
example, take amethod that did some printing:

private String print(Object... values) {
StringBuilder sb = new StringBuilder();
for (Object o : values) {
sb. append(0)
.append(" ");

}

return sb.toString();

Chapter 5. varargs Pagina 13 di 15

The basic idea here is to print anything and everything. However, the more obvious way to declare
this method islike this:

private String print(String... values) {
StringBuilder sb = new StringBuilder();
for (Object o : values) {
sb. append(0)
.append(" ");

}

return sb.toString();

The problem here is that now this method won't take Stri ngs, i nt s, fl oat s, arr ays, and avariety
of other types, al of which you might want to legitimately print.

By using a more general type, Obj ect , you obtain the ability to print anything and everything.

5.5 Avoiding Automatic Array Conversion

Tiger adds all sorts of automatic conversions and conveniences, which is pretty cool...about 99% of
the time. Unfortunately, there are times when all those helps turn into hindrances. The conversion of
Obj ect ... to Obj ect [] in avarargs method can be one of those cases, and you'll find that in rare
cases, you heed to work around Java.

55.1How do| dothat?

Before getting into the details of getting around this issue, be sure you understand the problem. Take
Javasnew printf() method, area convenience:

Systemout. printf("The bal ance of %'s account is $%,6.2f\n",

account . get Omer (). get Ful | Nane(), account. getBal ance());

If you look at the Javadoc for printf(), you'll seeitsavarargs method, with two parameters. a
St ri ng for the formatting string, and then Ooj ect ... for all the arguments passed in for use in that
formatting string:

Chapter 5. varargs Pagina 14 di 15

PrintStreamprintf(String format, Object... args)

NOTE
printf(), along with the other new Tiger formatting methods, are detailed in Chapter 9.

By now, you can mentally convert this to the following:

PrintStreamprintf(String format, Object[] args)

All good, right? Well, most of the time. Consider the following code:
bj ect[] objectArray = get Obj ect ArrayFronSonmewher eEl se();

out.printf("Description of object array: %\n", obj);

NOTE

| realize thisisn't the most common scenario. Then again, if al | covered were common scenarios,
wed all be debugging right now, wouldn't we?

This might seem a bit far-fetched—however, consider this as normal fare for introspective code.
That's a ten-cent word for code that investigates other code. If you are writing a code analysistool, or
an IDE, or anything else that might use reflection or asimilar API to figure out what objects an
application uses, this suddenly becomes anormal usecase. Here, you're not really interested in the
contents of the object array as much as you are with the array itself. What typeisit? What's its
memory address? What isits St ri ng representation? Keep in mind that all these questions apply to
the array itself, and not to the contents of the array. For example, let's say the array is something like
this:

public Object[] getojectArrayFrontSonewher eEl se() {

return new String[] {"Hello", "to", "all", "of", "you"};

In that case, you might write some code like this to begin to answer some questions about this array:

out.printf("Description of object array: %\n", obj);

However, the output isn't what you expect:
run- ch05:
[echo] Running Chapter 5 exanples from Java Tiger: A Developer's

Not ebook

Chapter 5. varargs Pagina 15 di 15

[echo] Running VarargsTester. ..

[java] Hello

What in the world? Thisis hardly what you'd expect to see—however, the compiler did just what it
always did—it converted oj ect ... intheprintf() method to Obj ect[]. When it read your
method invocation, it saw an argument that was, in fact, Obj ect []! So instead of treating the array
as an object itself, it broke it up into its various parts. The first argument became the St ri ng "Hello",
which was passed to the format string (%), and the result was "Hello" being printed out.

To get around this, you need to tell the compiler that you want the entire object array, obj , treated as
asingle object, and not as agrouping of arguments. Here's the magic bullet:

out.printf("Description of object array: %\n", new Object[] { obj });

Alternatively, here's an even shorter approach:

out.printf("Description of object array: %\n", (Object)obj);

In both cases, the compiler no longer sees an array of objects, it simply seesasingle Oj ect (which
just happens to be an array of objects). The result is what you should want (at least in this rather odd
scenario):

run- ch05:
[echo] Running Chapter 5 exanples from Java Tiger: A Developer's

Not ebook

[echo] Running VarargsTester. ..

[java] [Ljava.lang.String; @44b88

While this may look like gibberish to you, it's probably what reflection-based or other introspective
code wants to take alook at.

Chapter 6. Annotations Paginaldi 31

Chapter 6. Annotations
NOTE
In this chapter:

1 Using Standard Annotation Types

1 Annotating an Overriding Method

1 Annotating a Deprecated Method

1 Suppressing Warnings

1 Creating Custom Annotation Types

1 Annotating Annotations

1 Defining an Annotation Type's Target

1 Setting the Retention of an Annotation Type

1 Documenting Annotation Types

1 Setting Up Inheritance in Annotations

1 Reflecting on Annotations

One of the more popular terms being tossed around in programming these days is metadata.
Metadata is simply information about information. It resides somewhere in the spectrum between
Java source code, which israw information for a compiler, and JavadocJavadoc, which is pure
documentation. Metadata typically makes statements about source code that is interpreted at some
point, usually by a code or dataanaysistool.

Your first thought might be, "Well, Javadoc takes care of that, right?' Consider this—how many
ways are there to say, "This variable should not be null." In Javadoc, you might say "non-null," you
might say "This variable shouldn't be null," you might say "Don't assign null to this." All arevalidin
terms of documentation, but there is no consistency among them. Thereisn't any tool that could
analyze and account for al the variances in how you might state this simple condition. Annotations,
new to Tiger, seek to solve that problem by providing a well-defined metadata mechanism.

In anutshell, annotations are modifiers that can be applied to package and type declarations,

constructors, methods, fields, parameters, and even variables. They take the form of nane=val ue
pairs, and you can use Java's built-in types, as well as define custom annotation types of your own.

6.1 Using Standard Annotation Types

Standard annotation types are those that are provided "out of the box" in Tiger. There are three of
these, and all three are defined in thej ava. | ang package. These annotation types can be used

Chapter 6. Annotations Pagina2di 31

without any extrawork on your part in your own programs.
6.1.1 How do | dothat?

The three standard annotation types that are pre-defined in Tiger are listed here, detailed briefly, and
then covered more fully in the following labs:

NOTE

None of these have to be imported, asthey are al in the "javalang" package, and are automatically
available.

Override

java. | ang. Overri de isused to indicate that a method overrides a method in its superclass.

Deprecated

j ava. | ang. Depr ecat ed indicates that use of a method or element type is discouraged.

SuppressWarnings

j ava. | ang. Suppr essWar ni ngs turns off compiler warnings for classes, methods, or field and
variableinitializers..

Here's an example of using the Over ri de annotation type:

@verride
public String toString() {

return super.toString() + " [nodified by subclass]”;

Here's asample of using Depr ecat ed:

@eprecated public class Betamax { ... }

And finaly, here's Suppr essWar ni ngs in action:
@uppr essWar ni ngs("unchecked")
public void nastyMethod() {

/1 body omitted

Chapter 6. Annotations Pagina3di 31

| realizethat | really haven't told you how these work—that's intentional. Now that you've seen each
annotation in use, you should realize that each has an entirely different syntax. To get a handle on
annotations, we'll have to delve into just a bit of theory, and then there are labs going into each of the
standard annotations in detail. Buckle up for amoment, let's deal with some technical details, and
then you'll be ready for some more practical instruction.

6.1.2 What just happened?

First, you need to understand the difference between an annotation and an annotation type. Taking
the last part first, an annotation type is a specific name of an annotation, along with any default
values and related information. Y ou just saw three annotation types: Overri de, Depr ecat ed, and
Suppr essWar ni ngs. An annotation, then, uses an annotation type to associate some piece of
information with a Java program element (methods, classes, variables, etc.). So your code might only
use one annotation type, like Over ri de, and yet have ten or fifteen annotations (if it used Overri de
ten or fifteen times).

Annotation types can have values as well—note that Suppr essWar ni ngs passed in the valued
"unchecked", which would be used by the annotation type to process or store information. This
passed-in value, aong with any default values, al make up the annotation's members. Thisis where
the nane=val ue syntax comesin that | mentioned in the early part of this lab—it allowsfor an
annotation's members to be set.

In addition to the three standard annotation types, there are three categories of annotations:

Marker annotations

Marker annotations are used with annotation types that define no members. They smply
provide information contained within the name of the annotation itself. An annotation whose
members all have default values can also be used as a marker, since no information must be
passed in. The syntax of amarker issimply:

@ar ker Annot ati on

Sngle-value annotations

Single-value annotations have just a single member, named val ue. The format of asingle-
value annotation is:

@i ngl eval ueAnnot ati on("sone val ue")

Full annotations

A full annotation really isn't acategory, as much asit is an annotation type that uses the full
range of annotation syntax. Here parentheses follow the annotation name, and all members are
assigned values:

@Reviews({ // Curly braces indicate an array of val ues

@revi em gr ade=Revi ew. Gr ade. EXCELLENT, reviewer="df"),

Chapter 6. Annotations Pagina4 di 31

@Revi em gr ade=Revi ew. Gr ade. UNSATI SFACTORY, revi ewer="eg",

conment =" Thi s nmet hod needs an @verride annotation")

1)

NOTE
There are no semicolons at the end of annotation lines.

With each category, there is a slightly different syntax—which is why each standard annotation type
isused alittle differently. Each of the following three labs will detail one of the standard annotation
types, indicate the category it falsinto, and give you further details about using that annotation type.

6.1.3 What about...

...tools like XDoclet (xdoclet.sourceforge.net) that aready handle this sort of analysis, especially in
enterprise programming. XDoclet already provides for much of the same information, reading
metadata in source code and managing dependences (especialy between the numerous source file
listings required for EJBs), all through Javadoc parsing and some nifty class generation tools.

Thesetools are actually great examples of why annotations are needed. While XDoclet parses
Javadoc, it can't figure out if the Javadoc syntax is correct or not—if it finds matching tags, it uses
them, and a misspelling isignored without a peep. However, annotations are checked by the Java
compiler—meaning you can't have something like thisin your code:

@verridde // Note the m sspelling

The compiler will complain about this misspelling, meaning you're protected not only at the code
level, but at the annotation level as well. Now, take this extra checking, and pair it with the
associations, analysis, and code generation that XDoclet does. Suddenly, agreat tool becomes even
better, even more user-friendly, even more a part of the standard suite of Javatools. In short,
annotations could be the real breakthrough in making tools such as XDaoclet a part of every
programmer's toolkit.

6.2 Annotating an Overriding Method

The Over ri de annotation type is a marker interface, and has no memberstoinitialize. It is used to
indicate that a method is overriding a method from its superclass. In particular, it's supposed to help
ensure you actually do override a method—by avoiding misspellings or confusion over the correct
name and parameter list of the method you're trying to override. In these cases of error, a compiler
can catch the problem and report it.

6.2.1How do | dothat?

Because Override is amarker interface, there are no values that you need to supply it. Just preface it
with the annotation syntax marker, the at sign (@, and type "Override". This should be on aline by
itself, just before the method declaration you want to indicate as an overriding method, as seenin

Example 6-1.

Chapter 6. Annotations Pagina5di 31

NOTE
Largely by coincidence, the @sign, pronounced "at", is amnemonic for Annotation Type.

Example 6-1. Using the Override annotation type

package comoreilly.tiger.ch06;

public class OverrideTester {

public OverrideTester() { }

@verride
public String toString() {

return super.toString() + " [OverrideTester |nplementation]"”;

@verride
public int hashCode() {

return toString().hashCode();

Thisisn't very sexy or glamorous, but it compiles without any problem. Where things start to
become useful is when you don't do what you intended do. Change the hashCode() method to look
likethis:

@verride
public int hasCode() {

return toString().hashCode();

NOTE

This method exists, but is commented out of, the Override- Tester's source listing in the book's
sample code.

Here, hashCode() ismisspelled, and the method is no longer overriding anything, making the
annotation speak up. Compilethis class, and you'll get the following error:

Chapter 6. Annotations Pagina 6 di 31

[javac] src\chO6\COverrideTester.java: 1:

nmet hod does not override a nmethod fromits superclass
[j avac] @verride
[j avac] n

[javac] 1 error

Suddenly, that little annotation becomes quite aboon, catching mistakes at compile time. It's also
such an easy thing to integrate into your programming practices that 1'd recommend you useit often.

6.2.2 What about...

...the methods that should be overridden? Over ri de marks the overriding method, not the overridden
method—this is an important distinction, and you should learn it well. Java has ways to indicate that
amethod should be overridden already—namely, by declaring that method as abst r act .

6.3 Annotating a Deprecated Method

LikeOverri de,java. | ang. Depr ecat ed isamarker annotation type. It also has an analog in the
Javadoc world, the @epr ecat ed tag. Both indicate the same thing, although to different tools (see
Wheat about...). Use Depr ecat ed anytime you want to ensure that classes are warned about
overriding a particular method.

6.3.1How do | dothat?

Depr ecat ed isamarker interface, and is used without parentheses or member values, just as
Overri de is. However, it isintended to be placed on the same line as the declaration that is
deprecated, where the Over r i de annotation was placed on the prior line. Example 6-2 isasimple
example of using Depr ecat ed.

Example 6-2. Using the Deprecated annotation type

package comoreilly.tiger.ch06;

public class DeprecatedC ass {

| *
* This met hod has now been deprecated in favor of doSonet hingEl se()
* @leprecated Use doSonet hi ngEl se() instead
*/

@eprecated public void doSonething() {

/1 Really... do sonething...

Chapter 6. Annotations Pagina7 di 31

public void doSonet hi ngEl se() {

/1 Do sonething else (and presumably better)

On its own, this annotation doesn't do anything. However, it comes into play when other classes
override deprecated methods, as the class in Example 6-3 does.

Example 6-3. Overriding a method marked as depr ecated

package comoreilly.tiger.ch06;

public class DeprecatedTester extends DeprecatedC ass {

public void doSonething() {

/1 Overrides a deprecated nethod

NOTE
Turn on deprecation checking with the "-Xlint: deprecation” flag.

If you compile these classes, and turn on deprecation checking in your compiler, you'll get a
warning:

[javac] src\chO6\ DeprecatedTester.java:5: warning:
[deprecation] doSonmething() in
comoreilly.tiger.ch06. DeprecatedC ass has been deprecated
[javac] public void doSonething() {

[j avac] N
Again, thisisn't arevolutionary new feature, but it still adds some help for introspection tools such as
XDoclet.
6.3.2 What about...

NOTE

Chapter 6. Annotations Pagina8di 31

The Javadoc tag is lower-case, the annotation type is uppercase.

...the @epr ecat ed Javadoc tag? First, realize that it's not at al made obsolete by the Depr ecat ed
annotation type. Javadoc comments are consumed by the Javadoc tool, and are avita part of any
class's documentation. The Depr ecat ed annotation type is then used by the compiler to ensure that
your code matches what the documentation indicates—that a method or classisindeed deprecated.
It's an important distinction, and well worth remembering. In fact, you should always use the two in
tandem, one for documentation and one for compilation. Additionally, the compiler will still read
and process the @lepr ecat ed tag for backwards compatibility.

In addition, you might wonder about the - depr ecat i on flag, also available to be passed toj avac. If
you compile with the - depr ecat i on flag, but without - Xl i nt : depr ecat i on, you get the exact same
result asusing - Xl i nt: depr ecat i on. In fact, from what | can tell from testing the JDK, these two
flags function identically in Tiger.

6.4 Suppressing Warnings

With the advent of Tiger, there are times when pre-Tiger code works exactly as it should, but
generates warnings. Thisis most often the case in collections, as Tiger alows much stronger typing,
and in fact pushes you to code that way. However, thoroughly tested code should never issue or
generate warnings, creating a bit of a catch 22. Y our code works great, but causes warningsin
Tiger—on the other hand, ignoring all warningsin a program isn't agood idea, either. How do you
deal with this situation?

NOTE
Y ou can view warnings from the Java compiler with the "-Xlint" switch.

The answer is to use another standard annotation type, Suppr essWar ni ngs, which lets you turn off
warnings for a particular class, method, or field/variable initializer. At the same time, warnings for
other pieces of code are |left intact, as they should be.

NOTE

An example of awarning that should be fixed is not handling all enumerated type valuesin a
"switch" statement.

6.4.1How do | dothat?

Suppr ess\War ni ngs isnot amarker interface, as Depr ecat ed and Overri de are, but instead has a
single member named val ue. val ue isasString array (String[]), and the value of thismember is
an array of the types of warnings to be suppressed. So, you could suppress unchecked warnings with
the following annotation:

| *
* Normal pre-Tiger nethod body

*/

@uppr essWar ni ngs(val ue={"unchecked"})

public void nonGenericsMethod() {

Chapter 6. Annotations Pagina9di 31

Li st wordList = new ArrayList();

wor dLi st . add("foo0");

NOTE
This codeisin com. oreilly.tiger.chO6. SuppressWarnings Tester.

If you're used to looking at Tiger code, you may see something wrong here—because generics aren't
used, this generates an unchecked warning (at least, without the Suppr essWar ni ngs annotation)
because wor dLi st is untyped. However, this warning disappears with the annotation—particularly
useful if you're compiling under Tiger, but targeting a pre-Tiger platform.

If you remove the annotation, you can see the warning that this code generates:
[javac] src\chO6\ SuppressWarni ngsTester.java: 15:
war ni ng: [unchecked] unchecked call to add(E) as a nmenber of the
raw type java.util.List
[j avac] wor dLi st. add("foo");

[j avac] N

Of course, this has no business showing up if you truly are merely trying to target apre-Tiger
platform, and it's here that Suppr esswar ni ngs really comesinto play. Y ou can aso specify multiple
warnings to ignore:

| *
* Normal pre-Tiger nethod body
*/
@uppr essWar ni ngs(val ue={"unchecked", "fallthrough"})
public void nonGenericsMethod() {

Li st wordList = new ArrayList();

wor dLi st . add("foo0");

In fact, there's one more notation step you can take—annotation types that only have one member
will automatically pass al values through to that member, aslong as that member is named val ue.
As aresult, you can omit the val ue= portion of the declaration:

Chapter 6. Annotations Pagina 10 di 31

NOTE

Curly braces are used anytime a member takes an array of values.
| *
* Normal pre-Tiger nethod body
*/
@uppr essWar ni ngs({"unchecked", "fallthrough"})
public void nonGenericsMethod() {

Li st wordList = new ArrayList();

wor dLi st . add("foo0");

Thisisanice keystroke saver, at least in my book. The compiler is smart enough to route these
values to the annotation type's single member, val ue.

6.5 Creating Custom Annotation Types

While the three annotation types you've seen are useful, they hardly cover all the types of
annotations you may want to make on your source code. In fact, you may get so into annotations that
you want to define some of your own. Fortunately, Tiger lets you do thiswith the @ nt er f ace
keyword, along with afew other oddball syntactical constructs new to the language.

6.5.1How do | dothat?

Annotation types are, at their most basic level, Javainterfaces. As such, they look similar to anormal
Javainterface definition, but you use the @ nt er f ace keyword instead of i nt er f ace, which tells the
compiler that you're writing an annotation type instead of anormal interface. Example 6-4 isavery
simple marker interface.

Example 6-4. Simple marker annotation type

package comoreilly.tiger.ch06;

/**
* Marker annotation to indicate that a nmethod or class
* is still in progress.
*/

public @nterface InProgress { }

Chapter 6. Annotations Pagina 11 di 31

Y ou can use this on any method or class you like:
@omoreilly.tiger.ch06.1nProgress
public void cal cul atelnterest(float amount, float rate) {

/! Need to finish this nethod | ater

NOTE

In this example, you don't need to prefix "InProgress’ with its package, but it illustrates that these are
used just like other Java classes.

Y ou can define an annotation type with amember nearly as easily, as Example 6-5 illustrates.

Example 6-5. An annotation with a member

package comoreilly.tiger.ch06;

/**

* Annotation type to indicate a task still needs to
* be conpl et ed.

*/

public @nterface TODO {

String value();

NOTE

Oddly enough, the Javafolks didn't go with the tried-and-true JavaBeans conventions, with methods
like setX XX () and getX XX().

The declaration of the member is simple enough, but the parenthesis at the end probably looks alittle
odd—that's because it's not just a member declaration, but also a method declaration. Y ou're actually
defining amethod called val ue(), and the compiler then automatically creates amember variable
with the same name. Along the same lines, since annotation types function like interfaces, the
methods are all implicitly abstract, and have no bodies.

The variable name val ue is used, which lets source code that references this type use the shorthand
notation @obq(st ri ngVal ue) . Thisis anice feature, and one you should strive to allow for. You
see dl of thisin play in the following:

@omoreilly.tiger.ch06.1nProgress

@ODO("Figure out the anpunt of interest per nonth")

Chapter 6. Annotations Pagina 12 di 31

public void cal cul atelnterest(float amount, float rate) {

/! Need to finish this nethod | ater

Adding an extramember (or two) is equally simple, as Example 6-6 demonstrates.
NOTE

Thisisreally an amped-up version of "TODQO", shown in Example 6-5.
Example 6-6. M ultiple membersin an annotation type

package comoreilly.tiger.ch06;

public @nterface G oupTODO {

public enum Severity { CRITICAL, | MPORTANT, TRIVI AL, DOCUMENTATI ON };

Severity severity() default Severity.| MPORTANT,;
String item);

String assignedTo();

Here, an enumerated type is added to spice up the mix, and then used by the severi t y member.
i t emdtill holds the item that needs to be handled, and assi gnedTo provides the person the TODO
item is assigned to:

NOTE

Chapter 3 covers enumerated types.

@omoreilly.tiger.ch06.1nProgress

@ oupTOD(
severity=G oupTODO. Severity. CRI Tl CAL,
items"Figure out the ampunt of interest per nonth",
assi gnedTo="Brett MLaughlin"

)

public void cal cul atelnterest (float amount, float rate) ({

/! Need to finish this nethod | ater

Chapter 6. Annotations Pagina 13 di 31

Asafinal note, you can set member values to defaults, although the syntax looks more than alittle
odd; Example 6-7 is an updated version of Example 6-6.

Example 6-7. Default valuesin an annotation type

package comoreilly.tiger.ch06;

i mport java.util.Date;

public @nterface G oupTODO {

public enum Severity { CRITICAL, | MPORTANT, TRIVI AL, DOCUMENTATI ON };

Severity severity() default Severity.| MPORTANT,;
String item);
String assignedTo();

String dateAssigned();

Thisis probably even stranger for me to type than the new generics syntax, so it may take some time
to get used to. Still, it's nice to be able to set these defaults, even if it isalittle syntactically strange.

6.5.2 What about...

...extending other interfaces, or even annotation types? Y ou can't. The @ nt er f ace keyword
implicitly indicates an extension of j ava. | ang. annot ati on. Annot at i on—and you can't compile
an annotation type that explicitly tries to extend anything else. However, you can extend and
implement annotation types, although these extensions and implementations are not treated as
annotation types.

6.6 Annotating Annotations

Just as you can annotate classes, you can also annotate your own custom annotations. This may seem
alittle silly at first blush, but if you begin to build up alarge repository of customized notations, this
becomes quite important. Just as Javadoc and comments are incredibly useful for a programmer
studying a previously written class, meta-annotations, or annotations on annotations, are
indispensable for figuring out someone else's intent for a customized annotation.

6.6.1 How do | dothat?

Chapter 6. Annotations Pagina 14 di 31

There are four standard meta-annotations, all defined inthej ava. | ang. annot at i on package:

Target
This meta-annotation specifies which program elements can have annotations of the defined
type.

Retention
This meta-annotation indicates whether an annotation is tossed out by the compiler, or retained
in the compiled classfile. In cases where the annotation is retained, it also specifies whether it
isread by the Java virtual machine at class |oad.

Documented
This meta-annotation indicates that the defined annotation should be considered as part of the
public API of the annotated program element.

Inherited

This meta-annotation is intended for use on annotation types that are targeted at classes,
indicating that the annotated type is an inherited one.

These are all somewhat self-explanatory, so with afew examples, these meta-annotations should be
easy to put into use. Each is covered in detail in the next severa labs.

6.7 Defining an Annotation Type's Target

The first meta-annotation, Tar get , is used to specify which program elements are allowed as targets
for the defined annotation. This prevents misuse of an annotation, and is strongly recommended as a
sanity check for all your custom annotations.

6.7.1How do | dothat?

Tar get should be used in the lines directly preceding the annotation definition:

@rar get ({ El ement Type. TYPE,
El ement Type. METHOD,
El ement Type. CONSTRUCTOR,
El ement Type. ANNOTATI ON_TYPE})

public @nterface TODO {

Tar get takes a single member whose typeis an array of values, each of which should be an

Chapter 6. Annotations Pagina 15 di 31

enumerated value from thej ava. | ang. annot at i on. El enent Type enum.

This enum defines the various program elements allowed as targets of an annotation type, and is
shown in Example 6-8.

NOTE

The actual parameter typein Target is ElementType]].

Example 6-8. The ElementType enum

package java.l ang. annotati on;

public enum El enment Type {

TYPE, /1 Class, interface, or enum (but not annotation)
Fl ELD, /1 Field (including enurerated val ues)

VETHOD, /1 Method (does not include constructors)
PARAMETER, /1 Method paraneter

CONSTRUCTOR, /1 Constructor

LOCAL_VARI ABLE, // Local variable or catch clause
ANNOTATI ON_TYPE, // Annotation Types (nmeta-annotations)

PACKAGE /1 Java Package

You'll need to remember to import both Tar get and El ement Type in your code. Example 6-9 shows
an updated version of the TODO annotation type, first defined back in Example 6-5.

Example 6-9. Annotating an annotation

package comoreilly.tiger.ch06;

i mport java.l ang. annot ati on. El enent Type;

i mport java.lang.annotation. Target;

/**

* Annotation type to indicate a task still needs to
* be conpl et ed.

*/

@rar get ({ El ement Type. TYPE,

Chapter 6. Annotations Pagina 16 di 31

El ement Type. METHOD,

El ement Type. CONSTRUCTOR,

El ement Type. ANNOTATI ON_TYPE})
public @nterface TODO {

String value();

It's interesting to note the Tar get meta-annotation is used on itself (shown in Example 6-10),
indicating that it can only be used as a metaannotation.

Example 6-10. Sour ce code for Target annotation type

package java.l ang. annotati on;

@ocunent ed

@Ret enti on(Retenti onPolicy. RUNTI ME) ;
@ar get (El ement Type. ANNCTATI ON_TYPE)
public @nterface Target {

El ement Type[] val ue();

6.7.2 What about...

...annotation types that work for all program elements? In these cases, you don't need to use Tar get
at all.

6.8 Setting the Retention of an Annotation Type

The Ret ent i on meta-annotation annotation defines how the Java compiler treats annotations.
Annotations can be tossed out of acompiled class file by the compiler, or kept in the classfile.
Additionally, the Javavirtual machine can ignore annotations (when they are retained in the class
file), or read those annotations at the time aclassisfirst loaded. All of these options are specified by
Ret enti on.

NOTE

A few folks recommend using Target and indicating al valid ElementTypes for documentation
purposes. | think thisis pretty silly, to be honest.

6.8.1How do | dothat?

Like Tar get , you specify the retention of an annotation type just before the annotation definition

Chapter 6. Annotations Pagina 17 di 31

(thepublic @nterface ling). Also, like Tar get , the argument to Ret ent i on must be avalue from
an enum support class—in thiscase, j ava. | ang. annot ati on. Ret ent i onPol i cy. Thisenum is
shown in Example 6-11.

Example 6-11. The RetentionPolicy enum

package java.l ang. annotati on;

public enum RetentionPolicy {

SOURCE, /1 Annotation is discarded by the conpiler
CLASS, /1 Annotation is stored in the class file, but ignored by the VM
RUNTI VE /1 Annotation is stored in the class file and read by the VM

The default retention policy, for all annotations, is Ret ent i onPol i cy. CLASS. Thisretains
annotations, but doesn't require the VM to read them when classes are |oaded.

A good example of using Ret ent i on occurs in the Suppr essWar ni ngs annotation. As that

annotation type is purely used for compilation (ensuring warnings of the specified type are
suppressed), it does not need to be retained in aclass's bytecode:

@Ret enti on(Ret enti onPol i cy. SOURCE)

public @nterface SuppressWarni ngs {

NOTE

Don't forget to import javalang. annotation. Retention and java.lang.annotation. Retention Policy.

6.9 Documenting Annotation Types

Annotations are a nice addition, and are a particularly cool feature if you need to troubleshoot,
update, or maintain code that was written by someone else. It a'so makes for akiller code-level
management System on open source projects. In "Creating Custom Annotation Types,” | developed
very simple annotation types—I nPr ogr ess, TODO, and Gr oupTODO—that would all function in that
sort of environment. While these are great if you're actually scanning source code, they aren't visible
in the code's Javadoc. Thisiswhere the Document ed meta-annotation comes into play. Y ou can use
it to ensure your annotations show up in generated Javadoc.

NOTE
If you're using the supplied Ant buildfile, use "ant Javadoc" to generate Javadoc.
6.9.1 How do | dothat?

First, to understand what detail you are missing without using Docunrent ed, generate Javadoc for the

Chapter 6. Annotations

Pagina 18 di 31

source code of this book. Pull up those API docs, and navigate to thecom orei | I y. ti ger. ch06
package, and then the Annot at i onTest er class. Scroll down, if needed, to the cal cul at el nt er est

() method—you should see something similar to Figure 6-1.

Figure 6-1. calculatel nterest() without documentation of annotations

& dnrwtabsnTovter {Jave 15 & Develaps 'y Mebebonk] - bazills Fusios =||C

B BN Mew g Db Twk B
i 1 T o S S e g ot TPl gl 9 S D oo anane oy O Fas it Do 20 | 550D o]

Sbl | Mg |) ORsly | Pmyreeng | Fissnn

|'|'.I'|-r|m-|-: mlisrated fram clace pavs lang Olgect

efials, Cfiralies, petdlaas, Rashlole, pabtily, noUifflll. eadtciag, walk, Wit wain

_— [edoee

|{.'un~=lrut'lur Dietail
by Tester
Clams
PuELIc AenelallanTeslex |
|f‘|f|:~[||m| Dretail
EmsTs calcnkareBgerest
APRCETBON Typs public vold calculateinterest (Zloar mcunt

flomr TALS)

Creerview Package [HEIT] Use Tres Deprecoted Index Help

PREY £LANE
[T

copright © A0 Ol Mo, baz. AT Biplre Reservad

Nothing special, right? Right—but there's something missing. Remember the code for this method:

@omoreilly.tiger.ch06.1nProgress
@ oupTOD(
severity=G oupTODO. Severity. CRI Tl CAL,
items"Figure out the ampunt of interest per nonth",
assi gnedTo="Brett MLaughlin",
dat eAssi gned="04- 26- 2004"
)
public void cal cul atel nterest(float ampunt, float rate) {

/! Need to finish this nethod | ater

While the source code contains some pretty important information, in the form of the | nPr ogr ess

and Gr oupTODO annotations, this information missing from the Javadoc.

To fix this, you need to add a @ocunent ed meta-annotation to any annotation type that you want to
appear in Javadoc. In this case, both I nProgr ess and Gr oupTODO, as well as TODO, could use this
addition. Example 6-12 shows an updated | nPr ogr ess; you can add the same lines to the other

annotation types.

Example 6-12. Adding documentation to | nProgr ess

Chapter 6. Annotations Pagina 19 di 31
package comoreilly.tiger.ch06;
i mport java.l ang. annotati on. Docunent ed;

i mport java.l ang.annotati on. Retenti on;

i mport java.l ang. annotati on. RetentionPoli cy;

/**

* Marker annotation to indicate that a nmethod or cl ass

* is still in progress.
*/
@ocunent ed

@Ret enti on(Ret enti onPol i cy. RUNTI ME)

public @nterface InProgress { }

I've also added the Ret ent i on meta-annotation to this class; anytime you use the Docunent ed
annotation, you should pair it with aretention policy of Ret enti onPol i cy. RUNTI ME. Make this
same change to the other annotation types defined incom orei |l l'y. ti ger. ch03.

Clean out your old Javadoc files. Now, recompile your classes and run the Javadoc generator again.
Thistime, you'll get abit different output—navigate againto com orei | I'y. ti ger. ch06, and then
Annot at i onTest er, and finally to thecal cul atel nterest () method. Figure 6-2 shows the same
method, but this time the annotations show up in the Javadoc.

NOTE

"ant clean" will remove all compiled classfiles, and Javadoc files, allowing a clean generation of
Javadoc.

Figure 6-2. Javadoc with annotations showing up

Chapter 6. Annotations Pagina 20 di 31

[{@ AnnotationTester (Java 1.5- A Developer's Hotebook) - Mazilta Firefox BE x|
Bk £ vew G Doomals ok b (W)

1 'i.'_':l b+ . el Nj t’] L] Pl Dt e 2l 20met tingsy B b W 20MGL anughlin My S 200 0ument s 0 Ry faitng) Jeva 8 20 S0 20-HIIRBIT :"_i G
ke [Music [y ORelly [Programming [Finance

l,.: Bl
All Ciasge
Batiidoas |Cnns!ructnr Detail I
Coem oy figer child

5 AnnotationTester

S0 Drefhy liper ST

i % | public AnnotationTester|)
| commonedly Goer choG Method Detail |
Classes
calenlateInterest
nfrogress

BGzoupTiDi [seve

page |

public vouid calculateInterest [f1loar amount,

Overview Package [EFFT]Use Tree Deprecated Index Help

FREV CLASE NENTCLARS ERAMES O FRAMEE
SUMMARY: RESTED | FIELD | COMETE | METSOD DETAIL: FIELD [COMETR | B EHOD

€| F)

6.10 Setting Up Inheritancein Annotations

A classic case of creating a problematic situation comes up with inheritance. Consider a class that
has been deprecated, and set to be phased out of use. It's possible (and quite easy) for a programmer
who isn't paying attention to extend that class, useit all over the place, and avoid the deprecated
warnings that would have shown up if the superclass, which is deprecated, was used. The problemis
that a class that is deprecated doesn't pass on this deprecation status to its subclasses—creating a
potential for real problemsin your code. Suddenly you have thousands of references to a non-
deprecated class, but you can't remove the deprecated class because it's the superclass of al the
referenced objects! Using the I nher i t ed meta-annotation can help out here.

6.10.1 How do | dothat?

Let's take another example of a status, represented by an annotation, which should be inherited: the
| nProgr ess indicator. Example 6-13 shows a simple class that uses this annotation.

Example 6-13. Using the | nProgress annotation

package comoreilly.tiger.ch06;

i nport java.io. | OException;

i mport java.io.PrintStream

@ nProgress

public class Super {

Chapter 6. Annotations Pagina 21 di 31

public void print(PrintStream out) throws | OException {

out.println("Super printing...");

Example 6-14 is another simple class, which extends Super .
Example 6-14. Extending the Super class

package comoreilly.tiger.ch06;

i mport java.io. | OException;

i mport java.io.PrintStream

public class Sub extends Super {
public void print(PrintStreamout) throws | OException {

out.println("Sub printing...");

If you generate the Javadoc for these classes, you'll see, as shown in Figure 6-3, that Super is
correctly noted as being in progress.

Figure 6-3. Super, with an InProgress annotation

Chapter 6. Annotations Pagina 22 di 31

-]

Fﬁ!uﬂr [Java 1.5: A Developer's Motoboak) - Mazilla Firefox =JolEd
Bl ER Yew Go Bookmarks Took e Ay
@ : R 2P ﬁ | Pl Dncuments S hand s 2rSek tings et 20MCL sughindiy % 200ccument s Fo/ Rl fWiriting 1 " Gl

[ExBtie Exmax Eyomedy EyProgranmng £3France

o~ l'mﬂlﬂuwlﬂﬂw :

£l Classes | Class Super

Packages Java. lang. Obisce
| Cltlrl': areily tiger chis i) L cam, sreilly. tiger . chié, Super
[»

& | Direet Enown Subelasses:

com oredlby tiger.chil = S

Classes T

AnnotationTester

DeprecatedCiass BInProgeess

DeprecatedTester public class Super

Onerride Tester extends Java, bang.Cbject

Sul

Super

SuperSubTester
vppresswarngsTe | [(Constructor Summary
Enums

T

(8, 8]

=

SEEEI.' [

0. Severity|w

The problem is that Sub, which is based on an in-progress class, does not have this indicator (see
Figure 6-4).

The problem isthat the | nPr ogr ess annotation type isn't inherited; this use-case shows that's
probably a mistake. To correct it, make the following changeto | nPr ogr ess:

@ocunent ed
@ nherited
@Ret enti on(Ret enti onPol i cy. RUNTI ME)

public @nterface InProgress { }

Recompile your classes, and re-generate your Javadoc. I'll bet you're expecting to see another figure,
with the Sub class pulled up, flagged as being in progress. Well, that's what | was expecting too—but
it doesn't work yet. Presumably thiswill be fixed before things go final, but hopefully you've at |east
gotten the idea about what should happen.

It's also worth noting that while the documentation feature isn't working correctly, reflectionis. You
can indeed determine that Sub isin progress through reflection—it just doesn't show up in the
Javadoc. To see how reflection works with annotations, see Reflecting on Annotations.

Figure 6-4. Sub, without an annotation

Chapter 6. Annotations Pagina 23 di 31

[@/Sub (1ava 1.5 A Developer's Hotebook) - Mazilla Firefox mE =
| B2 Edt Wew G0 Bockmads Tooks el Wy

@~ - ﬁ L Fie 1 foocument s 0snd s 2TSettings e et 2 20MCL sughinHhy 4 20000urment {0 ey frting) 1 :-l WG

|| 3 bible [y L}Q'F-E#_[_L;]“WM iy 2] |

T SOMBART NES TEUT P T R | SR TETAIL TIECU T NI T AEIORE [a
Al Classes [}
Packanes com.areilly tiger.chilf
com oredy tiner cnoz | Class Sub
£ »

java. lang.Object

o
oo oreilly igar chl =

Classes
AnnotationTester

Lcom.oreilly. piger . chdg. Supes
L com. ereilly. tiger . chos, Sub

public clas=s Sub
sxtends Supet

i

Suppr

SubTaster
esswamingsTe | |(Constructor Summary

Enums

Sub [}

L%

6.10.2 What about...

...interfaces? Annotations marked as | nheri t ed only apply to subclasses, so implementing a method
with annotations will not result in the annotations being inherited.

Additionally, if you override a method from a superclass, you don't inherit that specific method's
annotations. Only the annotations on the superclassitself are inherited, and those by the subclass as a
whole.

- Y es, that's a mouthful. Stop, take three breaths, and read it again. It will start
a5 | to make sense—I promise.
1SN

6.11 Reflecting on Annotations

So far, all the discussions on annotations have been around looking at them visually—either in
source code or in Javadoc. However, there are enough code introspection tools these days that it's
worth talking about using reflection to determine what annotations a class (or field, or method) has.
Thej ava. | ang. refl ect package has several additionsthat make this a piece of cake.

6.11.1 How do | dothat?

The easiest way to check for an annotation is by using thei sAnnot ati onPresent () method. This
lets you specify the annotation to check for, and get a true/false result:

public void test Annotati onPresent (PrintStreamout) throws | OException {

Cl ass ¢ = Super.cl ass;

Chapter 6. Annotations

bool ean i nProgress = c.isAnnotati onPresent (I nProgress.cl ass);

if (inProgress) {
out.println("Super is In Progress");

} else {

out.println("Super is not In Progress");

NOTE
This codeisin the ReflectionTester class.

Running this code gives you the following output:

run-cho06:

[echo] Running Chapter 6 exanples from Java Ti ger

Not ebook
[echo] Running ReflectionTester..

[java]l Super is In Progress

Pagina 24 di 31

A Devel oper's

Additionally, this approach lets you take advantage of the | nheri t ed annotation, described in

Setting Up Inheritance in Annotations:

public void testlnheritedAnnotation(PrintStreamout) throws |OException {

Cl ass ¢ = Sub. cl ass;

bool ean i nProgress = c.isAnnotati onPresent (I nProgress.cl ass);

if (inProgress) {
out.println("Sub is In Progress");
} else {

out.println("Sub is not In Progress");

NOTE

This assumes you follow the steps in " Setting Up Inheritance in Annotations” and mark "Super" as

being in progress.

Chapter 6. Annotations Pagina 25 di 31

Remember that although Sub is not marked asin progress, it inherits from Super , whichisin
progress. Additionally, the I nPr ogr ess annotation was marked as| nheri t ed, so the in-progress
indicator should be passed on to subclasses. Running this new method shows that this, indeed,
works:

run-ch06:

[echo] Running Chapter 6 exanples from Java Tiger: A Developer's
Not ebook

[echo] Running VarargsTester. ..

[java]l Super is In Progress

[javal] Sub is In Progress

Although thisis not picked up in the Javadoc, it certainly appearsin your reflection-based code.

If you're not checking for a marker interface, though, you may have to go beyond
i sAnnot at i onPresent () —especially if you need to get values from the annotation. Here'sa
smple example:

NOTE

Reflection on annotations only works for annotation types that have Runtime retention.
public void testGet Annotation(PrintStream out)

throws | OExcepti on, NoSuchMet hodException {

Class ¢ = AnnotationTester. cl ass;
Met hodEl ement el ement = c. get Met hod("cal cul atel nterest”,

float.class, float.class);

GroupTODO groupTodo = el enent. get Annot ati on(G oupTODO. cl ass);

String assignedTo = groupTodo. assi gnedTo();

out.println("TODO Item on Annotation Tester is assigned to: '" +

assi gnedTo + "'");

Once the method in question islocated (in thiscase, cal cul atel nterest () onthe
Annot at i onTest er class), that method can be queried for a specific annotation. In this case, the
code locates the Gr oupTODO annotation, and grabs the value of assi gnedTo. The output of this

Chapter 6. Annotations Pagina 26 di 31

method is shown here:

run-ch06:

[echo] Running Chapter 6 exanples from Java Tiger: A Developer's
Not ebook

[echo] Running ReflectionTester...

[java]l Super is In Progress

[javal] Sub is In Progress

[javal] TODO Item on Annotation Tester is assigned to: 'Brett

McLaughl i n'

To use this code, you obviously have to know exactly what you're looking for—and that's one of the
few drawbacks of get Annot ati on().

Finally, you can use get Annot at i ons() if you'retrying to locate all annotations for a program
element, or if you need to iterate through all annotations looking for a specific one. For example,
here's asimple utility method that prints out all annotations for a supplied element:

NOTE

The for/inloop is detailed in Chapter 7, and printf() and other new formatting methods are covered
in Chapter 9.

public void printAnnotations(AnnotatedEl enent e, PrintStream out)

throws | OException {

out.printf("Printing annotations for '%' %% ", e.toString());

Annotation[] annotations = e.getAnnotations();
for (Annotation a : annotations) {
out.printf(" * Annotation '%' found%",

a.annot ati onType().getNane());

If you supplied this method the cal cul at el nt erest () method from Annot ati onTest er, you'd
get the following outpuit:

run-cho06:

Chapter 6. Annotations Pagina 27 di 31

[echo] Running Chapter 6 exanples from Java Tiger: A Developer's
Not ebook

[echo] Running ReflectionTester...

[java]l Super is In Progress

[javal] Sub is In Progress

[javal] TODO Item on Annotation Tester is assigned to: 'Brett
McLaughl i n'

[java] Printing annotations for 'public void comoreilly.tiger.chO06.
Annot at

ionTester.calculatelnterest(float,float)'

[java] * Annotation 'comoreilly.tiger.ch06.InProgress' found

[java] * Annotation 'comoreilly.tiger.ch06. GoupTODO found

This codeisreally pretty straightforward, so I'll leave it to you to work through the details. Example
6-15 isthe complete code listing for Ref | ecti onTest er , which has all these reflection-based
annotation methods within it.

NOTE

If you don't want to pick up inherited annotations, you can use get DeclaredAnnotations() instead of
getAnnotations().

Example 6-15. Testing r eflection-based annotation methods

package comoreilly.tiger.ch06;

i nport java.io. | OException;
i mport java.io.PrintStream
i mport java.lang.reflect. Annot at edEl ement ;

i mport java.l ang. annotati on. Annot ati on;

public class ReflectionTester {

public ReflectionTester() {

}

Chapter 6. Annotations Pagina 28 di 31

public void testAnnotationPresent(PrintStreamout) throws | CException {

Class ¢ = Super.cl ass;
bool ean i nProgress = c.isAnnotati onPresent (I nProgress.cl ass);
if (inProgress) {

out.println("Super is In Progress");

} else {

out.println("Super is not In Progress");

public void testlnheritedAnnotation(PrintStreamout) throws | OException {
Class ¢ = Sub.cl ass;
bool ean i nProgress = c.isAnnotati onPresent (I nProgress.cl ass);
if (inProgress) {
out.println("Sub is In Progress");
} else {

out.println("Sub is not In Progress");

public void testGet Annotation(PrintStream out)

throws | OExcepti on, NoSuchMet hodException {
Class ¢ = AnnotationTester. cl ass;
Annot at edEl enent el emrent = c. get Met hod("cal cul atelnterest”,

float.class, float.class);

GroupTODO groupTodo = el enent. get Annot ati on(G oupTODO. cl ass);

String assignedTo = groupTodo. assi gnedTo();

out.println("TODO Item on Annotation Tester is assigned to: '" +

Chapter 6. Annotations

assi gnedTo + "'");

public void printAnnotations(AnnotatedEl enent e, PrintStream out)

throws | OException {

out.printf("Printing annotations for '%' %% ", e.toString());

Annotation[] annotations = e.getAnnotations();
for (Annotation a : annotations) {
out.printf(" * Annotation '%' found%",

a.annot ati onType().getNane());

public static void main(String[] args) {
try {

Refl ecti onTester tester = new ReflectionTester();

tester.test Annot ati onPresent (System out);

tester.testlnheritedAnnotation(System out);

tester.testGet Annotati on(System out);

Class ¢ = AnnotationTester.cl ass;

Annot at edEl enent el ement = c. get Met hod("cal cul atel nterest”,

float.class, float.class);
tester.printAnnotations(el enent, System out);
} catch (Exception e) {

e.printStackTrace();

Pagina 29 di 31

Chapter 6. Annotations Pagina 30 di 31

NOTE

AnnotatedElement is a new interface that the reflection constructs (like Method and Class)
implement. It allows access to the new annotation methods used in this code.

6.11.2 What just happened?

The key to much of the code you've just seenis anew interface,

java.lang.refl ect. Annot at edEl ement . In Tiger, the core reflection constructs all implement this
interface: C ass, Const ruct or, Fi el d, Met hod, Package, and Accessi bl eObj ect . Thisalowsfor
the code you've aready seen to be introspected for annotations—all these element types provide the
following methods as aresult of implementing Annot at edType:

public Annotation getAnnotation(C ass annotati onType);

public Annotation[] getAnnotations();

public Annotation[] getDecl aredAnnotations();

public bool ean i sAnnot ati onPresent (Cl ass annot ati onType);

Since any Java program element can be treated as an Annot at edType, you can always get at an
element's annotations using these methods.

NOTE

I've smplified the generics syntax for clarity here. If you're into generics, check out the Javadoc on
AnnotatedElement for more details on parameters and return types for these methods.

6.11.3 What about...

...annotations that aren't marked as visible at runtime? Recall that you have to explicitly set an
annotation's retention to Ret ent i onPol i cy. RUNTI ME for any of thisto work. Even if the annotation
isretained at compilation (the default behavior), if the VM doesn't load this retention at class-load
time, then reflection can't pick up the annotation. In fact, thisiswhy the I nheri t ed and Docunment ed
annotations should always be paired up with the following annotation:

@Ret enti on(Ret enti onPol i cy. RUNTI ME)

This ensures that your documentation and/or inheritance is actually readable by code-introspection
tools.

Oddly enough, Deprecation does not have runtime retention—it has source

Chapter 6. Annotations Pagina 31 di 31

- retention. So, one of the most valuable annotations, the oneindicating
s deprecation, is undetectabl e through Java reflection.

Chapter 7. The for/in Statement Paginaldi 20

Chapter 7. Thefor/in Statement
NOTE
In this chapter:

1 Ditching lterators

1 Iterating over Arrays

1 lterating over Collections

1 Avoiding Unnecessary Typecasts

1 Making Your Classes Work with for/in

1 Determining List Position and Variable Value

1 Removing List Itemsin afor/in Loop

One of the coolest things about Tiger isthat it offers so many new language features. When Java 1.3
and 1.4 were released, they had some new goodies, but most of the changes were either
implementation issues (like all the Collection class restructuring), or things you didn't use everyday
(like proxies). Tiger is very different, though—you get to write new, funky-looking code, and that's
about as good asit gets for hardcore devel opers.

This chapter examines one of these new language features, thef or /i n loop. This name is abit
deceiving, asthe loop never usesthei n keyword; as aresult, it's often called enhanced f or , and
even sometimes f or each . No matter what you call it, though, it's mostly a convenience function—it
doesn't make Java do anything particularly new, but it does save some keystrokes. If you're an emacs
orvi guy, that's pretty nice—the less you type, the more advanced a programmer you must be, right?

7.1 Ditching Iterators

Atitsmost basic, thef or /i n statement getsrid of the need to usethej ava. util.lterator class.
That class, useful in looping over collections of objects, was rarely useful in and of itself. Instead, it
made looping, and accessing the objectsin that loop, possible. As a means to an end, though, Sun cut
out the explicit usage of | t er at or and streamlined the basic f or loop in the process. As aresult, you
too can ditch the usage of I terat or .

71.1Howdol dothat?

Y ou certainly remember the old (yup, it isindeed old now) f or loop:

/** From ForlnTester.java */
public void testForLoop(PrintStreamout) throws | OException {

List list = getList(); // initialize this list elsewhere

Chapter 7. The for/in Statement Pagina2di 20

for (lterator i = list.iterator(); i.hasNext();) {
ohject listElement = i.next();

out.println(listElement.toString());

/1 Do sonething else with this |list object

NOTE

All the unnamed samplesin this chapter arein the class com.oreilly. tiger.chO7. ForInTester.
Remember to compile using the "-source 1.5" switch with "javac”.

Thisisaperfect example of I t er at or Ssmply being the means of getting at objectsin the list, rather
than providing real value to theloop. f or /i n alows thisloop to be rewritten:

public void testForlnLoop(PrintStream out) throws | OException {

List list = getList(); // initialize this list elsewhere

for (Cbject listElement : list) {

out.println(listElement.toString());

/1 Do sonething else with this list el enent

NOTE
Thisremoval of Iterator has some consequences—see the later 1abs in the chapter for details.

Notice that theline oj ect 1istEl ement = i.next();from thefirst code sample has
disappeared. Thisisthe basis of what f or /i n does—it removesthe| t er at or from the process.

7.1.2 What just happened?

For those of you into specifications and language structure, the loop is structured like this:

Chapter 7. The for/in Statement Pagina3di 20

for (declaration : expression)

st at enent

The Java specification defines the precise behavior of the f or /i n loop by trandating it to the
equivalent f or loops shown below. In these loop trandations, theterms decl ar at i on,
expression , and st atement should be replaced with the corresponding part of thef or /i n loop.
The identifiers beginning with # are synthetic variables that the compiler uses for the translation.
Their names are not legal Java identifiers, and you cannot use them in the loop body.

A for/inloopinwhich the compile-time type of the expressionis|! terabl e<E> (discussedin
"Avoiding Unnecessary Typecasts'), istranslated to this f or loop:

for (Iterator<E> #i = (expression).iterator(); #i.hasNext();) {
declaration = #i.next();

st at enent

NOTE
This sample uses generics, covered in Chapter 2.

If expressi on does not use generics and its compile-time type is just an unparameterized
| t er abl e, then the loop is trandated in the same way except that the <E> is dropped:

for (Iterator #i = (expression).iterator(); #i.hasNext();) {
declaration = #i.next();

st at enent

If the compile-time type of expr essi on isanarray of type T[], where T isany primitive or
reference type, then the loop is translated as follows:

{

T[] #a = expression

| abel s

for (int #i = 0; # < #a.length; #i ++) {

Chapter 7. The for/in Statement Pagina4 di 20

declaration = #a[#i] ;

st at enent

Note that this code is designed to ensure that expr essi on is evaluated only once. If thefor/i n loop
is labeled with one or more labels, those labels are trandated as shown so that they appear after the
evaluation of expressi on . Thismakesalabeled cont i nue within the loop statement work
correctly.

There are some further points about the syntax of thef or /i n loop that you should be aware of:

1 expressi on must be either an array or an object that implementsthej ava. | ang. I terabl e
interface. The compiler must be able to ensure this at compile-time—so you can't use aLi st
cast to Obj ect , for example, and expect things to behave.

1 Thetypeof thearray or I t er abl e elements must be assignmentcompatible with the type of
the variable declared in the decl ar ati on . If the assignment won't work, you're going to get
errors.

1 Thedecl arati on usually consists of just atype and a variable name, but it may include a
fi nal modifier and any appropriate annotations (see Chapter 6 on Annotations). Using f i nal
prevents the loop variable from taking on any value other than the array or collection element
the loop assigns. It also emphasizes the fact that the array or collection cannot be altered
through the loop variable.

1 Theloop variable of thef or /i n loop must be declared as part of the loop, with both atype and
avariable name. Y ou cannot use a variable declared outside the loop as you can with the f or
loop.

NOTE

Using the "final" modifier is agood way to ensure bulletproof code, unless you really need to modify
the loop variable.

7.1.3 What about...

...just using aregular for loop? You'rewelcometo it. f or /i n realy doesn't add any functionality—
it's ultimately about convenience. And you'll see several instances in this chapter where this
convenience comes with afunctionality loss, rather than gain. So, if you're only init to get

something done, f or /i n doesn't really offer you much, other than the ability to keep up with the
number of times you need to iterate over a collection. On the other hand, if your goal inlifeisto type
aslittle as possible, or if you just want to be the cool guy who uses new and odd-looking structures,
for/in isperfect.

7.2 Iterating over Arrays

Chapter 7. The for/in Statement Pagina5di 20

for/in loopswork with two basic types: arrays and collection classes (specifically, only collections
that can be iterated over, as detailed in "Making Y our Classes Work with for/in"). Arrays are the
easiest to iterate over using f or /i n.

7.2.1How do | dothat?

Arrays have their type declared in the initialization statement, as shown here:
int[] int_array = new int[4];
String[] args = new String[10];

float[] float_array = new float[20];

This means that you can set up your looping variable as that type and just operate upon that variable:

public void testArrayLoopi ng(PrintStream out) throws | OException {

int[] primes = newint[] { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

/1 Print the prines out using a for/in |oop
for (int n: primes) {

out.println(n);

Thisisabout as easy asit gets. As a nice benefit, you don't have to worry about the number of times
to iterate, and that alone is worth getting to know this loop.

7.2.2 What about...

...Iterating over object arrays? No problem at all. Consider the following code:

public void testObjectArrayLooping(PrintStreamout) throws | OException {

List[] list_array = new List[3];

list_array[0] = getList();
list_array[1l] = getList();
list _array[2] = getList();
for (List | : list_array) {

out.println(l.getC ass().getName());

Chapter 7. The for/in Statement Pagina 6 di 20

This code compiles and runs perfectly.

7.3 Iterating over Collections

Iterating over a collection worksin just about the same way asiterating over an array. The main
difference isthat you're going to have to add some type-casting, as the objects within a collection
aren't compile-time determinable, except when using generics (see the next section on Avoiding
Unnecessary Typecasts for details on genericsand f or /i n).

7.3.1How dol dothat?

Example 7-1 is a ssmple program that shows several types of collection iteration.
Example 7-1. Demonstrating the for/in loop with collections

package comoreilly.tiger.chO07,

i mport java.util.Arraylist;
i mport java.util.HashSet;
i mport java.util.List;

i mport java.util. Set;

public class ForlnDenmo {

public static void main(String[] args) {
/1 These are collections we'll iterate over bel ow.
List wordlist = new ArrayList();

Set wordset = new HashSet();

/1 We start with a basic |oop over the elements of an array.
/1 The body of the |loop is executed once for each elenent of args[].
/1 Each time through one elenment is assigned to the variable word.

System out. println("Assigning argunents to lists...");

Chapter 7. The for/in Statement Pagina7 di 20

for(string word : args) {
Systemout.print(word + " ");
wordl i st. add(word);

wor dset . add(wor d) ;

Systemout.printin();

/1 l1terate through the elenents of the List now.
/1l Since lists have an order, these words shoul d appear as above
Systemout.println("Printing words fromwordlist " +
"(ordered, with duplicates)...");
for(Object word : wordlist) {

Systemout.print((String)word + " ");

Systemout.printin();

/1 Do the sanme for the Set. The |oop | ooks the sane but by virtue of
/1 using a Set, we lose the word order and al so di scard duplicates.
Systemout.println("Printing words from wordset " +

“(unordered, no duplicates)...");
for(Object word : wordset) {

Systemout.print((String)word + " ");

NOTE
Thisexampleis culled from Javain aNutshell, Fifth Edition (O'Rellly).

NOTE

Chapter 7. The for/in Statement Pagina8di 20

When compiling this class, you'll get several warnings from the compiler because the code doesn't
use atyped list, like List<String>. I'll cover using generics with for/in later in the chapter.

Thisis pretty basic stuff, so I'll save atree and cut out repetitive discussion. Here's the output from
the program, which should look exactly as expected:

NOTE

If you're using the build.xml supplied with the examples, just type "ant runch07" to see this outpui.

run-ch07:

[echo] Running Chapter 7 exanples fromJava 1.5 Tiger: A Devel oper's
Not ebook\ n

[echo] Runni ng ForlnDeno.. .

[java]l Assigning argunents to lists...

[java]l] wordl word2 word3 word4 wordl

[java] Printing words fromwordlist (ordered, with duplicates)...

[java]l] wordl word2 word3 word4 wordl

[java] Printing words from wordset (unordered, no duplicates)...

[java]l] word4 wordl word3 word2

— Asin previous chapters, all program output is shown as it executes within
s Ant. Seethe Preface for details on setting examples up.

7.4 Avoiding Unnecessary Typecasts

Whilefor/inisnice, you still have to perform al those typecasts, as seen in Example 7-1. If you
recall from Chapter 2, though, Tiger introduces some pretty powerful language structures in the form
of generics. The main thrust of those new structures isto increase type safety, and that, paired with
what you aready know about f or / i n, can increase the convenience of this new loop. Y ou can get
away with being specific in your loop iterations, rather than getting an Obj ect from each iteration
and then casting that Obj ect to the appropriate type.

74.1How dol dothat?

Thefirst step in working with type-specific iterators actually hasto occur before you ever type
for/in.You need to declare your collections using generics:

/] These are collections we'll iterate over bel ow.

Chapter 7. The for/in Statement

List<String> wordlist = new ArrayList<String>();

Set <String> wordset = new HashSet<String>();

Pagina9di 20

Then write your code normally, except substitute a type-specific variable instead of a generic bj ect

and remove any typecasts:

for(String word : wordlist) {

Systemout.print(word + " ");

Example 7-2 isagenerics version of Example 7-1.
Example 7-2. Using thefor/in loop with generics

package comoreilly.tiger.ch07,

i mport java.util.Arraylist;

i mport java.util.HashSet;

i mport java.util.List;

i mport java.util. Set;

public class ForlnGenericsDenmo {
public static void main(String[] args) {
/1 These are collections we'll iterate over bel ow
Li st<String> wordlist = new ArrayList<String>();

Set <String> wordset = new HashSet<String>();

/1l We start with a basic |oop over the elements of an array.

/1 The body of the |loop is executed once for each elenent of args[].

/1 Each time through one elenent is assigned to the variable word.

System out. println("Assigning argunments to lists...");
for(String word : args) {

Systemout.print(word + " ");

Chapter 7. The for/in Statement Pagina 10 di 20

wordl i st. add(word);

wor dset . add(wor d) ;

Systemout.printin();

/1 1terate through the elenents of the List now.
/1l Since lists have an order, these words shoul d appear as above
Systemout.println("Printing words fromwordlist " +
“"(ordered, with duplicates)...");
for(String word : wordlist) {

Systemout.print(word + " ");

Systemout.printin();

/1 Do the sanme for the Set. The |oop | ooks the sanme but by virtue of
/1 using a Set, we lose the word order and al so di scard duplicates.
Systemout.println("Printing words from wordset " +

“(unordered, no duplicates)...");
for(String word : wordset) {

Systemout.print(word + " ");

The output isidentical to that from Example 7-1 (previously shown in "Iterating over Collections"),
S0 I've omitted it here.

7.4.2 What just happened?

When using genericsin this manner, you're essentially offloading all the typecasting (and possible

Cl assCast Except i ons) onto the compiler, rather than dealing with them at runtime. When the
collections were declared, the use of generics (<St ri ng>, syntactically) allowed the compiler to limit
the accepted types passed into the collections. As a nice side effect, your f or /i n statement can make

Chapter 7. The for/in Statement Pagina 11 di 20

this same assumption, and since the compiler checks al of this at compile-time, rather than runtime,
your code works, and saves you some typecasting in the process.

7.5Making Your ClassesWork with for/in

Degspite all the collection options available, there are times when it's still useful to define your own
custom objects. In cases where your objects represent some sort of collection, it's agood practice to
provide ameans of letting other classes iterate over them. In the past, this usually meant ensuring
that your class provided aj ava. uti |l . Iterator, alowing it to work with af or loop. With Tiger,
you should consider taking afew extra steps to ensure that your custom objects will work with
for/inaswel. Inaddition to working with I t er at or , you'll need to learn anew interface,
java.lang.Iterable,

NOTE
Note that Iterable isin java.lang, not java.util, as you might expect.
7.5.1How do | dothat?

First, familiarize yourself with Example 7-3 and Example 7-4, thel terator and I t er abl e
interfaces. Y ou'll need to grasp both of these to see how the various loops in Java work.

Example 7-3. The Iterator interface

package java. util;

public interface Iterator<E> {

public bool ean hasNext();

public E next();

public void remove();

I've obviously stripped this down to the bare essentials; that's all you really need, anyway. These

methods should look familiar, although | still find the generics syntax (<E> and E) a bit odd to look
a.

Here's| t er abl e, in the same form:

Example 7-4. The Iterableinterface

package j ava. | ang;

Chapter 7. The for/in Statement Pagina 12 di 20

public interface Iterabl e<E> {

public java.util.lterator<E> iterator();

There are two basic casesinwhich I terat or and |t er abl e become issues when dealing with
custom objects:

1 Your custom object extends an existing Collection class that already supportsfor/in.
1 Your custom object has to handle iteration manually.
7.5.1.1 Extending collection classes

Thefirst caseisthe easiest to deal with, as you can essentially steal behavior from the parent classto
do al the work. Example 7-5 shows a simple class that extends Li st .

Example 7-5. Extending the LinkedL st class

package comoreilly.tiger.ch07,

i mport java.util.LinkedList;

i mport java.util.List;

public class GuitarManufacturerLi st extends LinkedList<String> {

public GuitarManufacturerList() {

super();

public bool ean add(String manufacturer) {

i f (manufacturer.indexOf ("GQuitars") == -1) {
return false;

} else {
super . add(manuf act urer);

return true;

Chapter 7. The for/in Statement Pagina 13 di 20

This class doesn't do much in terms of customization—it does require that only St ri ng be allowed
as a parameter (through the extends Li nkedLi st <St ri ng> declaration), and that values passed into
the add() method have "Guitars' as part of their value. Thisis arather hackish way to ensure
manufacturers are supplied, but it's useful for an illustration.

Y ou can now use this class as shown in Example 7-6. The example creates a new instance of
Gui tar Manuf act ur er Li st , seeds it with some sample data, and then usesf or /i n to iterate over it.

With essentially no work on your part, you get the benefit of iteration from the superclass,
Li nkedLi st .

Example 7-6. Iterating over GuitarM anufacturerList

package comoreilly.tiger.ch07;

i mport java.io.l OException;

import java.io.PrintStream

public class CustonmbjectTester {

[** A custom obj ect that extends List */

private GuitarMnufacturerlList nanufacturers;

public CustomObjectTester() {

this. manufacturers = new GuitarManufacturerList<String>();

public void testLi stExtension(PrintStreamout) throws | OException {
/1 Add some itens for good neasure
manuf act ur ers. add(" Epi phone CGuitars");

manuf acturers. add(" G bson Guitars");

/] lterate with for/in

Chapter 7. The for/in Statement Pagina 14 di 20

for (String manufacturer : manufacturers) ({

out. printl n(manufacturer);

public static void main(String[] args) {

try {

Cust ombj ect Tester tester = new CustomObj ect Tester();

tester.testListExtension(Systemout);
} catch (Exception e) {

e.printStackTrace();

7.5.1.2 Handling iteration manually

In cases where you're not extending an existing collection class, you've got alittle more work to do.
Still, you'll usualy find yourself borrowing at least some behavior from existing collection classes,
and avoiding direct implementation of I t er at or . Example 7-7 shows asimple text file reader that

liststhelines of afile when iterated over.

NOTE

If you don't passin "LinkedList <String>" here, and just use "LinkedList", you'll get compiler
warnings indicating a possible type mismatch.

Example 7-7. Custom classthat doesn't extend a collection

package comoreilly.tiger.chO07,

i mport java.util.lterator;
i mport java.io.BufferedReader;
i nport java.io.Fil eReader;

i nport java.io. | OException;

Chapter 7. The for/in Statement Pagina 15 di 20

| **
* This class allows line-by-line iteration through a text file.
* The iterator's renove() nethod throws UnsupportedQOperat or Exception
* The iterator waps and rethrows | OExceptions as |1 egal Argunent Excepti ons.
*/

public class TextFile inplenments Iterable<String> {

/1 Used by the TextFilelterator class bel ow

final String filenaneg;

public TextFile(String filename) ({

this.filename = fil enane;

/1 This is the one nethod of the Iterable interface
public Iterator<String> iterator() {

return new TextFilelterator();

/1 This non-static menber class is the iterator inplementation

class TextFilelterator inplements Iterator<String> {

/1 The streamwe're reading from

Buf f er edReader in;

/! Return value of next call to next()

String nextline;

public TextFilelterator() {
/1 Open the file and read and renenber the first line.

/1 We peek ahead like this for the benefit of hasNext().

try {

Chapter 7. The for/in Statement Pagina 16 di 20

in = new BufferedReader (new Fil eReader (fil ename));
nextline = in.readLine();
} catch(l Oexception e) {

t hrow new ||| egal Argurment Exception(e);

}

/1 1f the next line is non-null, then we have a next |ine
public bool ean hasNext() {

return nextline !'= null

// Return the next line, but first read the line that follows it.

public String next() {

try {

String result = nextline;

/1 1f we haven't reached EOF yet

if (nextline !'=null) {
nextline = in.readLine(); /1 Read another |ine
if (nextline == null)
in.close(); /1 And cl ose on EOF
}

/1 Return the Iine we read |last time through
return result;
} catch(l Oexception e) {

t hrow new ||| egal Argurment Exception(e);

/1 The file is read-only; we don't allow lines to be renoved.

Chapter 7. The for/in Statement Pagina 17 di 20

public void remve() {

t hrow new Unsupport edOperati onException();

public static void main(String[] args) {
String filename = "TextFile.java";
if (args.length > 0)

filenanme = args[O0];

for(String line : new TextFile(filenane))

Systemout. println(line);

NOTE
This code sample isfrom Javain a Nutshell, Fifth Edition (O'Relilly).

The interesting work isin the TextFilelt er at or class, which handles al the work of iteration. The
first thing to notice is that thisiteration is completely read-only—r enmove simply throws an
Unsuppor t edOper at i onExcept i on. Thisisa perfectly legal and useful means of ensuring that
programmers understand the use-case your custom classes are designed for. I'll leave you to work
through therest of the details; the source code is pretty self-explanatory.

7.6 Determining List Position and Variable Value

for /i n, more than anything else, is about convenience. However, with that convenience comes a
degree of lost flexibility. One such exampleis the inability to determine the position in alist that the
for/in construct resides at. As your code executes within the f or /i n loop, thereis no way to access
the position in the list. Additionally, the list variable itself isn't accessible, making its access equally
impossible.

7.6.1How dol dothat?

In short, you don't. Sometimesit's just as important to realize what you can't do asit isto learn what
you can.

A common iteration technique is to use the loop variable, especidly if it's numerical, in the loop
body itself:

Chapter 7. The for/in Statement Pagina 18 di 20

Li st<String> wordLi st = new LinkedList<String>();
for (int i=0; i<args.length; i++) {

wor dLi st.add("word " + (i+1) + ": """ + args[i] + "'");

Thisis perfectly legitimate, and really useful if you're performing some sort of count. However, it's
impossible to access theiterator inaf or /i n loop, as that's kept internal (and not even generated
until compilation takes place). In this case, you're out of luck. You can usef or /i n to display the
results of asituation like this, but not to make the assignment itself:

public void determ neListPosition(PrintStreamout, String[] args)

throws | OException {

Li st<String> wordLi st = new LinkedList<String>();

for (int i=0; i<args.length; i++) {

wor dLi st.add("word " + (i+1) + ": '" + args[i] + "'");
}
for (String word : wordList) {
out.println(word);
}

Thisis hardly a severe limitation, but it's one you should be aware of.

Another common usage of listsis St ri ng concatenation, and that illustrates another of thefor/in
limitations. It's common in St ri ng concatenation to add separators between all but the last of a set of
words, such as when printing alist. This separator is often acomma or perhaps a space:

StringBuffer |ongList = new StringBuffer();
for (int i =0, len=wordList.size(); i < len; i++) {
if (i < (len-1)) {
| ongLi st . append(wordLi st.get(i))

.append(", ");

Chapter 7. The for/in Statement Pagina 19 di 20

} else {

| ongLi st . append(wordLi st.get(i));

}

out.println(longList);

Here, al but the last word in the list has a comma appended to it, while the last one is appended
without a comma. This makes for anice list output. However, this rather simple task isimpossible
with f or /i n, because the variable that is used to do all the work, i , isinaccessiblein afor/i n loop.
Again, afairly minor inconvenience, but it's certainly not timeto retire our old friend f or just yet.

7.7 Removing List Itemsin afor/in Loop

Another common task in loop iteration, particularly over collections, isinloop modification. Thisis
all done through the iterator, as directly modifying the collection creates all sorts of nasty loop
problems. Instead, using methods such asrenove() fromjava. util.lterator alows
modifications in aloop-safe way. However, since theiterator ishiddenin f or /i n, thisis another
limitation of for/in.

7.7.1Howdol dothat?

This is another one of those"Y ou can't” recipes. To see exactly what it isyou can't do, take alook at
the following code:

public void renoveListltems(PrintStreamout, String[] args)

throws | OException {

Li st<String> wordLi st = new Li nkedList<String>();

/1 Assign some words
for (int i=0; i<args.length; i++) {

wor dLi st.add("word " + (i+1) + ": '" + args[i] + "'");

/! Renove all words with "1" in them Inpossible with for/in
for (Iterator i = wordList.iterator(); i.hasNext();) {
String word = (String)i.next();

if (word.indexOf("1") !'= -1) {

Chapter 7. The for/in Statement Pagina 20 di 20

i.remove();

/1 You can print the words using for/in
for (String word : wordList) {

out.println(word);

In particular, notice the second f or 1oop, which usesr enove() toyank any wordsinthe Li st with
"1" in the text. This depends on the usage of 1 t er at or , which isn't availablein f or /i n, S0 you're out
of luck here.

7.7.2 What about...

...anything else that involves knowing where you are in the list? Nope— it's not possible. Here are
just afew examples of other things you can't do with for/i n:

1 Iterate backward through the elements of an array or Li st .

1 Use asingleloop counter to access similarly numbered or positioned elementsin two distinct
arrays or collections.

1 Iterate through the elements of aLi st using callsto get () rather than callsto itsiterator.

Watch out for this last one—it is alegitimate performance concern. For thej ava. util . ArraylLi st
class, for example, looping with thesi ze() and get () methods is measurably faster than using
thelist's| t er at or . In many cases, the performance difference is negligible and irrelevant. But,
when writing an inner loop or other performance-critical code, you might prefer to useaf or loop
with the get () method instead of af or/i n loop.

Chapter 8. Static Imports Paginaldi 11

Chapter 8. Static Imports
NOTE
In this chapter:

1 Importing Static Members

1 Using Wildcards in Static Imports

1 Importing Enumerated Type Values

1 Importing Multiple Members with the Same Name

1 Shadowing Static | mports

All right, let's begin with afair warning—thisisn't a very sexy chapter. It's not as exciting as
generics, it's not as (obviously) missing afeature in the language as varargs, it's not even as cool as
the f or /i n loop. Instead, this chapter is about a feature that is completely convenience-based. It adds
no new functionality to the language, and it doesn't even have much to do with how you write code.
Sort of an inauspicious beginning, huh?

Still, that said, static imports are extremely cool, especially when you start to pile on additional
language features, such as enumerated types. In anutshell, static imports allow you to import static
classes, variables, and enums, and reference them easily in your code. While you may not get any
new functionality, the convenience hereis very, very nice. As|'ve said before, | don't know any good
programmer who just loves typing out really long variable names, ten or fifteen timesin their
programs. Static imports help with just that task, and, as such, are very much worth covering.

8.1 Importing Static Members

If you've ever done any output in Java, you've typed Syst em out at least afew times. While there
are lots of better ways to handle output, there is perhaps none as ssimple, direct, and to-the-point as
good old System out. printin() and Systemerr.println().However, it'sannoying to type
System out and System err timeand time again (at least, it isfor me). In Tiger, this annoyanceis
gone, viastatic imports.

NOTE

If you try and import something non-static with this syntax, all you get isa"cannot find symbol"
compiler error—it's not very descriptive.

8.1.1Howdol dothat?

Anytime you have a static member, likeout and err inthej ava. | ang. Syst emclass, you can
import those static members into your code:

i mport static java.lang.Systemerr;

Chapter 8. Static Imports Pagina2di 11

i mport static java.lang. System out;

Youjust useinport static instead of i nport. Magically, your code can now use the methods of
these static members without prefacing those methods with the static member's package name, as
seen in Example 8-1.

Example 8-1. Using statically imported member variables

package comoreilly.tiger.ch08;

i mport static java.lang.Systemerr

i mport static java.lang. System out;

public class Staticlnporter {

public static void main(String[] args) {
if (args.length < 2) {
err.println(
"I ncorrect usage: java comoreilly.tiger.ch08 [argl] [arg2]");

return;

out.println("Good norning, " + args[0]);

out.println("Have a " + args[1] + " day!");

As said before, thisisn't anything particularly revolutionary, but it's certainly anice bonusto the
language.

As an added bonus, this same thing appliesto static methods, in addition to static variables. For
example, consider thej ava. uti | . Arrays class, which has several static methods, such as

bi narySearch(), sort(), andequal s(). These methods are just static members of the class,
and can be imported, just like the err and out members in Example 8-1:

NOTE

Chapter 8. Static Imports Pagina3di 11

Note that Arrays.sort() isa heavily overloaded method. Thisimport directive imports the method by
its name, and not any particular overloading of it.

i mport static java.util.Arrays.sort;

Y ou can now just code as shown here:

sort(myQojectArray); // no need to use Arrays.sort()

Thisisaparticularly nice improvement to the language, | think.
8.1.2 What about...

...static member types? A member type is a type defined within another class. For example, the

j ava. | ang. Char act er class defines a class within its body, called Subset . The formal name of this
class, because it does not stand on its own, is Char act er. Subset (and it appears that way within the
JavaDocs). You can import a member type, in Tiger and in previous versions, with anormal import
statement:

i mport java.l ang. Character. Subset;

Thisisalittle-known, little-used feature of Javathat has nothing to do with Tiger. However, where
Tiger does come in is adding the ability to do static imports. In the case of Char act er . Subset , not
only isSubset amember type, it's a static member type—meaning that it could also beimported as
seen here:

NOTE

Anonymous inner classes defined within a method are not members, and cannot be imported.

i mport static java.lang. Character. Subset;

So, which is correct? Actually, both. However, you shouldn't have both in the same code—just one
or the other. Otherwise, compilers will gripe about a name conflict (two identically named types).
Personadly, | likethe clarity of i mport stati c for this sort of thing, asit reminds me that

Char act er . Subset is static—but that's style more than any real best practice.

8.2 Using Wildcardsin Static Imports

While importing a single member is a nice addition, there are times when you may want to import a
lot of members. In these cases, you could easily fill apage with all thei nport stati c declarations
you'd need. Luckily, wildcards work perfectly well with static imports.

8.2.1Howdol dothat?

Piece of cake...just use awildcard, as you would with normal i mport statements:

Chapter 8. Static Imports Pagina4 di 11

i mport static java.lang. Math.*;

Now you can use expressions like the following in your code:

float foo = sqrt(abs(sin(bar)));

Again, nothing flashy here, but well worth knowing. It's possible to import anything declared as
st ati ¢ into the Java namespace. However, you couldn't do something like this:

i mport static java.lang. Systemout.println;

That's because while out is static, the method pri nt I n() isnot. Be careful to keep your static and
non-static items straight.

NOTE
printIn() is an instance method of the PrintStream class.
8.2.2 What about...

...all the code legibility lost by doing this sort of thing? It's certainly possible to go crazy with
imports, and lose all track of which methods belong to which class. Of course, this comes from
someone who almost never uses wildcards in normal import statements:

i mport java.io. | OException;

i mport java.io.PrintWiter;

i mport javax.servlet. ServletException,;
i mport javax.servlet.GenericServlet;

/1 etc.

Personally, | like it to be obvious what classes are used, as opposed to dropping an i nport
java. i o.* statement into code. But that's a stylistic decision, not afunctional one, and now Tiger
lets you keep whatever preference you choose.

As abest practice, though, 1'd recommend you only use static imports if you were going to use a
static member more than three times. In other words, there's value in the clarity of code that reads
Math. sqrt() asopposedtojustsqrt(), when that method isonly used oncein the entire
program. However, if you're using the method fifty times, thenit's just as clear to add astatic i nport
for the method and then use it without the prefix.

8.3 Importing Enumerated Type Values

The next natural thought in working with static importsis to use them in conjunction with another
Tiger feature, enumerated values (detailed in Chapter 3). Since the compiler declares enumerated

Chapter 8. Static Imports Pagina5di 11

valuesaspublic, static, andfinal,they are great candidates for being statically imported.
8.3.1Howdol dothat?

Remember that enums are just a specialized type of Java class. As aresult, the syntax to use them is
no different than what you've already seen. Example 8-2 imports the G- ade values from Chapter 3,
and then uses them in a simple program.

Example 8-2. Importing enum values

package comoreilly.tiger.ch08;

i mport static java.lang. System out;

i mport static comoreilly.tiger.ch03. G ade. *;
i mport java.io. | OException;
i mport java.io.PrintStream
i mport comoreilly.tiger.ch03. Student;
public class Enum nporter ({

private Student[] students = new Student[4];

public Enum nmporter() {

students[0] = new Student("Brett", "MLaughlin");

student s[0] . assi gnGrade(A);

students[1] = new Student("Leigh", "MlLaughlin");

student s[0] . assi gnGr ade(B);

students[2] = new Student("Dean", "MLaughlin");

student s[0] . assi gnGrade(Q) ;

student s[3] = new Student ("Robbie", "MLaughlin");

student s[0] . assi gnGr ade(| NCOVPLETE) ;

Chapter 8. Static Imports Pagina6di 11

public void printGades(PrintStreamout) throws | OException {
for (Student student : students) {
if ((student.getGade() == I NCOWLETE) |
(student.getGrade() == D)) {

/1 Make this student retake this class

public static void main(String[] args) {

try {

Enuml nporter inporter = new Enum nporter();

i mporter.printGades(out);
} catch (Exception e) {

e.printStackTrace();

NOTE

Dean and Robbie appear to be spending too much time playing guitar and banjo, and not enough
time studying!

Nowherein this class do you see Gr ade. A or Gr ade. | NCOVWPLETE, which really reduces the overall
clutter. Asaresult, the codeisagood deal clearer, and even alittle shorter (not a bad thing).

This same trick works for enums that are declared inline within aclass;, remember the Downl oader
example from Chapter 3? It's reprinted here for convenience:

package comoreilly.tiger.ch03;

public class Downl oader {

Chapter 8. Static Imports Pagina7di 11

publ i c enum Downl oadStatus { | N TIALI ZI NG | N_PROGRESS, COWPLETE };

/1 Class body

Y ou can import these into another class with the following line:

i mport static comoreilly.tiger.ch03. Downl oader. Downl oadSt at us. *;

As | mentioned back in Chapter 3, though, thisis more of a hack than areal programming solution.

If you need an enum in more than one class, it's a better practice to define the enum separately (init's
own .javafile), and then use it in both classes, rather than tying its declaration into a particular class
file.

8.4 Importing Multiple Memberswith the Same Name

When you start digging into the rules for Java imports and the Java namespace (the names available
to a piece of code, with or without package prefixes), things begin to get alittle hairy. For example,
itisillegal to have two type names that are identical within the same package. By extension, you
can't import two typesinto your code with the same name.

On the other hand, thisis precisely the sort of thing you want when dealing with methods—it's called
overloading. So you may have three, four, or more methods of the same name, al taking different
parameters, and j avac will happily compile your code. So here's the short version—types must be
named uniquely, methods need not be. And if you think overloading was cool in previous versions of
Java, wait until you see the implicationsfor Tiger!

84.1Howdol dothat?

Suppose you import thesort () method fromthej ava. util. Arrays class:

i mport static java.util.Arrays.sort;

There are 18 different versions of this method, and you get all of them via overloading. However,
let's also assume that you also need the Col | ecti ons. sort () methods aswell (there are two
versions of that one). Since this method takes different sets of arguments than any of the 18 versions
you've aready imported into your namespace, just add another i nport statement:

i mport static java.util.Arrays.sort;

i mport static java.util.Collections.sort;

Chapter 8. Static Imports Pagina8di 11

Just like that, you're al set, and you get even more overloading. Now the compiler will actually
decide, based on your arguments, which method, and even which class, to use to process your
method call. Pretty cool!

NOTE

Ascool asthisis, it really increases the work that someone on the debugging or testing team has to
do to figure out what's going on in your code.

8.4.2 What about...

...naming conflicts? As already stated, you'll get a compiler error if you import two types with the
same name into your program. So the following lines would be illegal in asource listing:

i mport java.util.Arrays;

i mport comoreilly.tiger.ch08. Arrays;

You'd get the following error:
[javac] src\ch08\Sortlnporter.java: 4:
java.util.Arrays is already defined in a single-type inport
[javac] inmport comoreilly.tiger.ch08. Arrays;

[javac] ~

When it comes to naming conflicts among imported static methods, though, things are alittle more
obscure. I've created a smple class, shown in Example 8-3, that defines a method of sort () with
the exact same arguments as one of thesort () methodsinjava. util. Arrays.

Example 8-3. Setting up a namespace conflict

package comoreilly.tiger.ch08;

public class Arrays {

public static void sort(float[] a) {

/' Do not hing

[/l This is just used to illustrate sone naning conflicts

Now, add you can create a naming conflict with the following lines in another class:

Chapter 8. Static Imports Pagina9di 11

i mport static java.util.Arrays.sort;
i mport static java.util.Collections.sort;

i mport static comoreilly.tiger.ch08.Arrays. sort;

In theory, there isonly a potential conflict here—but both j ava. util. Arrays and thenew Arrays
class define a method with the same name (sort) , that takes an identical argument set (float[]).
However, the compiler will not choke on this—in fact, it doesn't even provide you awarning! As
best | can tell, you're being given the benefit of the doubt as a programmer (never a good thing!).
However, if you try and use the method that's a problem, things go wrong, as shown in the following
code:

public static void main(String[] args) {

float[] f = new float[] {5, 4, 6, 3, 2, 1};

sort (f);

Thiswill cause acompiler error:
[javac] src\chO8\Sortlnporter.java: 16: reference to sort is ambiguous,
both nethod sort(float[]) in comoreilly.tiger.ch08. Arrays and
met hod sort(float[]) in java.util.Arrays match
[j avac] sort (f);

[j avac] n

So namespaces are alittle tricky, and you'd do well to be careful when importing static members of
the same name from multiple classes.

8.5 Shadowing Static Imports

Asafinal act of complete confusion in your code, you're welcome to shadow your imports, static or
otherwise. Shadowing is the process of having a member variable (or field, or method) effectively
hide something that is already in the Java namespace through an import.

8.5.1How do | dothat?

Simply declare a member variable named the same as what is imported, and that you want to
shadow. Example 8-4 is an example of just that processin action.

Example 8-4. Shadowing an import

Chapter 8. Static Imports Paginal10di 11

package comoreilly.tiger.ch08;

i mport static java.lang. Systemerr

i mport static java.lang. System out;

i mport java.io. | OException

i mport java.io.PrintStream

public class Staticlnporter {

public static void witeError(PrintStreamerr, String nsg)

throws | OException {

/1 Note that err in the paranmeter |ist overshadows the inported err

err.println(msg);

public static void main(String[] args) {
if (args.length < 2) {
err.println(
"I ncorrect usage: java comoreilly.tiger.ch08 [argl] [arg2]");

return;

out.println("Good norning, " + args[0]);

out.println("Have a " + args[1] + " day!");

try {

witeError(Systemout, "Error occurred.");
} catch (1 OException e) {

e.printStackTrace();

Chapter 8. Static Imports Paginalldi 11

NOTE
Example 8-4 is an updated version of Example 8-1.

Note that avariable named er r isdefined, loca to thewri t eError() method. That variable, in that
method, will shadow theerr variable imported fromj ava. | ang. Syst em Keep in mind, though,
that this adds yet another layer of obfuscation to your code. It's amost always easier to just rename
your variable to avoid this type of confusion, and save everyone some headaches:

public static void witeError(PrintStreamerrorStream String nsg)

throws | OException {

errorStream println(nsg);

Chapter 9. Formatting Paginaldi 10

Chapter 9. Formatting
NOTE
In this chapter:

1 Creating a Formatter

1 Writing Formatted Output

1 Using the format() Convenience M ethod

1 Using the printf() Convenience M ethod

Tiger has arather innocent looking new classcalled j ava. uti | . For matt er . Despite its |0oks,
though, this one class provides new functionality to all of Tiger's output methods. To cut to the
chase, all you former C programmers will finally get to compile code with printf () init—there,
now aren't you smiling already?

9.1 Creating a For matter

The simplest way to get started with the For mat t er classisto create a new instance of it, and then
do some work. You'll seein later labs that thisisn't always the best way to go about business, but it's
as good a starting point as any.

9.1.1Howdol dothat?

For mat t er has severa constructors, listed here:

/1 No-args version -- not particularly usefu

public Formatter();

/1 Basically, the no-args version with a |ocale

public Formatter(Locale I);

/] Creates a formatter with the supplied destination (sink)

public Formatter(Appendable a);

/] Creates a formatter with the destination, using the supplied |ocale

public Formatter(Appendable a, Locale |);

Chapter 9. Formatting Pagina2di 10

// Creates a new formatter with the fil ename as the sink

public Formatter(String fil eNane);

/!l Creates a new formatter with a file as the sink, using the specified
char set

public Formatter(String fileName, String csn);

// Same as above, but with a | ocale

public Formatter(String fileNanme, String csn, Locale |);

Thisis apretty wide range of options, and should cover your most basic formatting needs. Thus, you
could use code such as thisto create aFor mat t er targeted at aStri ngBui | der :

StringBuilder sb = new StringBuilder();

Formatter formatter = new Formatter(sb, Local e. FRANCE);

/1 The next lab details what you can do with Formatter

| realize this seems sort of trivial, but it's meant to be. For mat t er isanew class, but not a
particularly difficult one to master.

NOTE

If you're unfamiliar with StringBuilder, check out the lab at the end of this chapter.

9.2 Writing For matted Output

Once you've got your For mat t er instance, I'm going to make the rather silly leap to assuming you
want to use it. The best way to do thisisthrough the f or mat () method.

NOTE

A sink isaterm used to refer to where output goes to—sort of a collection bin. Often thisis some
output mechanism, like an Output-Stream, or an object that can later output what isin the sink, such
as StringBuffer.

9.2.1How do | dothat?

First, let's deal with the easy stuff—this new class has some simple methods to let you find out how
it's configured:

Chapter 9. Formatting Pagina3di 10

/! Return the locale for this Formatter

public Locale locale();

/1 Returns the last thrown | OException by the sink

public | OException i oException();

/1 Returns the sink for output

public Appendabl e out();

Thereisalso acl ose() method, which, unsurprisingly, closes the formatter when you're done with
output (whichis particularly important when you're holding onto file resources).

The most interesting methods are the two versions of f or mat () :

/1 Notice the varargs for multiple object arguments

public Formatter format(String format, Object... args);

// Same as above, but with a Locale

public Formatter format(Locale |, String format, Cbject... args);

While these methods return the object they're working on, it's common to not assign this return
value, and merely discard it instead. This method works, as shown here (in a simple example):

StringBuilder sb = new StringBuilder();

Formatter formatter = new Formatter(sb);

formatter.format ("Remai ni ng account bal ance: $% 2f", bal ance);

NOTE
If you're unclear on how varargs or the Object... notation works, check out Chapter 5.

This example would output the value in the bal ance variable, as a floating point number, with two
decimal places allowed. For those of you used to methods likeprintf() inC, thisisno big deal.
For those of you who didn't grow up on asteady diet of st ruct s, thisis still probably a bit odd.

First, the St ri ng to output is passed in—no big deal here. However, within that St ri ng are several
items that are dynamic—not known until run-time. In the previous example, the dynamic item isthe
value of bal ance. Anytime you need to insert dynamic data like that, the %indicates that a value will

Chapter 9. Formatting Pagina4 di 10

be supplied, in the argument list (remember Ooj ect ...), to be inserted into the St ri ng. The
characters after the %indicate how that value should be formatted:

% argunent][flags][w dth][.precision]type

9.2.1.1Types

The only requirement hereist ype , so the example you saw previoudy could be written in its
smplest format as shown here:

formatter.format (" Remai ni ng account bal ance: $% ", bal ance);

NOTE

If uppercase and lowercase versions are listed (%s, %S), the uppercase variant produces the same
output as the lowercase variant, except that all lowercase |etters are converted to uppercase.

Table 9-1 isarundown of al the available types. Note that these are actually conversion types—if
the value supplied is not in the specified format, a conversion is attempted.

Table 9-1. Formatter conversion types

Conversion N

symbol Description

%o Escape sequence to allow printing of %inastri ng.

Y%a, YA Formats the value as a floating-point number in exponential notation, using base-
16 for the decimal part, and base-10 for the exponent part. Arguments must be
Fl oat, Doubl e, or Bi gDeci mal .

%, 9B Formats the value as either "true" or "false" (or "TRUE" or "FALSE", for). For
boolean values, this works as expected. For al other values, any non-nul | valueis
"true", whilenul | values are "false".

%, Y%C Formats the value supplied as a single character. Supplied value must be aByt e,
Short, Character, Orlnteger.

%l Formats the value as a base-10 integer. Arguments must be Byt e, Short,
I nt eger, Long, Or Bi gl nt eger.

%e, YE Formats the value as a base-10 floating-point number, using exponential notation.
Arguments must be Fl oat, Doubl e, or Bi gDeci nal .

o% Formats the value as a floating-point number in base-10, without exponential
notation. Arguments must be Fl oat, Doubl e, or Bi gDeci nal .

%y, %G Formats the value as a base-10 floating point number, with no more than 6
significant digits (if preci si on isnot supplied). Arguments must be FI oat ,
Doubl e, or Bi gDeci mal .

%, oH Formats the value as a hexadecimal representation of the value's hashcode.

% Outputs the line separator for the platform.

% Formats the value as a base-8 octal integer. Arguments must be Byt e, Short,
I nt eger, Long, Or Bi gl nt eger.

%, 95 Formats the value supplied asa st ri ng, usually through calling t oSt ri ng() on

Chapter 9. Formatting Pagina5di 10

the object.

%, o The prefix for all date/time conversions. All date/time types listed in Table 9-2)
requiresabat e, Cal endar, or Long argument. Note that thet or T determines
uppercase/lowercase, rather than the case of the letter following thet / T.

o, UX Formats the value as a base-16 hexadecimal integer. Arguments must be Byt e,
Short, Integer, Long, Or Bi gl nteger.

Because date/time are abit of a special case, they are listed in their own table, Table 9-2.

Table 9-2. Date and time conversion types

Conversion symbol | Description

% A The locale-specific full name of the day of the week

% a The locale-specific abbreviation of the day of the week

% B The locale-specific full name of the month

% b The locale-specific abbreviation for the month

% C The century, from 00 to 99 (by dividing by 100)

% c The complete date and time

% D The date in short numeric form

% d The day of the month, as atwo-digit number—o01 to 31

% E The date as milliseconds since midnight, UTC, on Jan. 1st, 1970
% e The day of the month, without leading zeroes—1 to 31

% F The numeric day in | SC8601 format

% H Two-digit hour of the day, using a 24-hour clock—o0 to 23
% h The abbreviated month name (identical to % b)

% | Two-digit hour of the day using a 12-hour clock—01 to 12
% | Three digit day of the year—001 to 366

% k Hour of the day on a 24-hour clock—o to 23

% L Three-digit milliseconds within the second—000 to 999

% | Hour of the day on a 12-hour clock—1 to 12

% M Two-digit minute within the hour—o00 to 59

% m Two-digit month of the year—01 to 12 (01 to 13 for lunar calendars)
% N Nanosecond within the second, expressed as nine digits

% p L ocale-specific morning or afternoon indicator

% R The hour and minute on a 24-hour clock

% r The hour, minute, and second on a 24-hour clock

% S Two-digit seconds within the minute—o00 to 59

Chapter 9. Formatting Pagina 6 di 10

% s Seconds since the beginning of the epoch

%uT Time in hours, minutes, and seconds, using a 24-hour format
%Y Four-digit (at |least) year

%y Last two digits of the year—00 to 99

% Z Abbreviation for the timezone

% Z The timezone as a numeric offset from GMT

| know that's alot of dry detail, especially for a down-and-dirty book such as this, but now you've
got al the conversion codes at your fingertips.

9.2.1.2 Precision
Y ou can add an optional precision indicator to your format string:
formatter.format (" Remai ni ng account bal ance: $% 2f", bal ance);
By adding . 2, it indicates that the value of bal ance should be given two decimal places of precision,
ensuring you get a number like 2510. 00 instead of 2510. . 2 inthiscasefillsthe preci si on spotin
the syntax list. Here are afew rulesthat apply:
1 For %e, 9%, and % , the default precisionis 6.

1 For %g and %G, the precision is the total number of significant digits to be displayed.

1 For %, %, and % (and their uppercase variants), the precision determines the maximum
characters output.

. If the formatted output exceeds pr eci si on , the output is truncated.
= Additionally, specifying precision for other conversion types can result in an
exception at runtime (not compile time).

1 Trailing zeros are always added as needed, to match the specified (or default) precision, for
numeric types.

9.2.1.3 Width

In addition to precision, the total minimum number of characters to be produced can be set through
width :

formatter.format (" Remai ni ng account bal ance: $%6. 2f", bal ance);

Here, the balance will be shown with at least six digits of total characters. If the formatted output is
less than the specified width, zeroes are added as padding on the |eft (values are right-justified). A
width can be specified for any conversion type other than % (which isn't atrue conversion type
anyway—it's aline separator).

Chapter 9. Formatting Pagina7 di 10

- If preci sion issmaller thanwi dt h , the formatted value is truncated to the
an supplied precision, and then padded with zeros to the supplied width.

9.2.1.4 Argument

By default, callstoformat () (andprintf(), detailedin"Using the printf() Convenience
Method") match each conversion with the arguments supplied to the method, in order, one after
another. However, you can optionally change that behavior with an argument indicator:

formatter.format (" Remai ni ng account bal ance: $%. 2f "+

"(Today's total bal ance: $9%<8. 2f)", bal ance);

Here, the < argument is used to indicate that the previous argument should be used (again), rather
than continuing on. Thisis a clever way to reuse arguments without listing them in the argument list
multiple times. It also allows the same argument to be formatted in different ways:

formatter.format ("Date: % DVnTinme: %tr%", SystemcurrentTimeMIlis());

Y ou can aso explicitly refer to an argument by its position, using the syntax [ar g- nunber] $. Thus,
you could refer to the second argument in the list with 92$.

9.2.1.5 Flags

Thefina option you have is to specify one or more flags, which are non-numeric characters that
appear just before width and precision indicators:

formatter.format (" Remai ni ng account bal ance: $%, 6. 2f " +

"(Today's total bal ance: $%, <8.2f)", bal ance);

In this example, two flags are used: the parenthetical ((), and the commaindicator (,). The
parenthetical indicates that negative values should be placed in parentheses, and the comma instructs
the formatter to insert commas (or any other local-specific grouping separator) between digits. So,
output from these instructions would look like $(8, 134. 28) , or $(008, 134. 28) , depending on the
width specified. Table 9-3 has the complete list of valid flags.

Table 9-3. Format flags

Flag | Description
Indicates that the formatted value should be |eft-justified, based onwi dt h .

Indicates that the formatted output should appear in aternate form. For %o, this means a
leading 0. For % and %, output will include aleading 0x (0X). For % and %5, theflag is
passed on to the object's f or mat To() method.

+ Indicates that numeric output should always include asign (+ or -).

Chapter 9. Formatting Pagina8di 10

The space value (which is hard to show in abook) indicates that non-negative values should
be prefixed with a space. Thisis generally used for alignment with negative numbers.

(Indicates that negative numbers should appear in parentheses.
0 Indicates that numeric values should be padded on the | eft.

Indicates that the local e-specific grouping character should be used for numeric values.

NOTE

The # flag only works in conjunction with %s and %S if the argument implements java.util.
Formattable.

9.2.1.6 Output

It's worth saying that with all of thistalk of formatting, nothing is output until you actually use your
sink:

Systemout.println(sb.toString());

It's easy to do lots of great formatting work, and then forget to actually output the results. There are
also severa other ways to output formatted strings like this, covered in the following recipes.

NOTE

If you've chosen a stream as your sink, then the output occurs as you format it .

9.3 Using the format() Convenience Method

The For mat t er object isanice addition to the language—however, it's a bit inconvenient to break
your program flow for four or five statements related only to formatting, and then get back to the job
at hand. It's even more distracting when you have to do this five or six timesin a single code block.
Fortunately, there are some nice convenience methods that make these steps largely unnecessary.

9.3.1Howdol dothat?
Theclassesjava.io.PrintStream java.io.PrintWiter,andjava.lang. Stringall havea

new method available to them in Tiger, called f or mat () . All three classes have two versions of the
method:

public [returnType] format(String format, Object... args);
public [returnType] format(Locale I, String format, Object... args);
i The st ri ng versions of these methods are st atii c.
::-'F"
1t

This should look awfully familiar if you just read "Writing Formatted Output”. For each of these,

Chapter 9. Formatting Pagina9di 10

returnType istheobject typeitself (soaPrintStream PrintWiter,or String). For both
Print Streamand Print Wi ter, the output is usually ignored; for St ri ng, the method is usually
invoked statically and the result is assigned to anew St ri ng. Each method used varargs, as did the
For mat t er object, allowing you to pass in as many arguments to be used by the format string as
needed.

So, rather than having to create anew For nat t er , Set one of these objects asits sink, and format it,
you can handle all of thisin asingle step:

String bal anceStnt =
String. format ("Remai ni ng account bal ance: $%, 6. 2f"+

"(Today's total bal ance: $%, <8.2f)", bal ance);

This saves afew steps, and now the bal anceSt nt St ri ng can be output easily. This method is even
more useful for the stream and writer versions:

Systemout.format("Date: % D¥nTinme: %tr%", SystemcurrentTimeMIlis

()):

9.4 Using the printf() Convenience M ethod

For those of you who are die-hard C and C++ fans, Tiger gives you the ability to type printf()
once more.

94.1Howdol dothat?

In "Using the format() Convenience Method," you saw how both the Pri nt St r eamand
PrintWiter classesoffer anew method caled f or mat () to handle formatted output. Each class
also hasamethod called pri nt f (), which does exactly the same thing. That's right— printf ()
and f or mat () areinterchangeable. So, if you favor usingprintf() overformat(), you'refree
to do so, as Example 9-1 shows.

Example 9-1. Using printf() instead of format()

package comoreilly.tiger.ch09;
i mport java.io.BufferedReader;
import java.io.File;

i nport java.io.Fil eReader;

public class Format Tester ({

public static void main(String[] args) {

Chapter 9. Formatting

String filename = args[O0];

try {

File file = new File(fil ename);

Fi |l eReader fil eReader = new Fil eReader(file);

Buf f er edReader reader

String |ine;

int i =1,

while ((line = reader.readLine()) != null) {
Systemout.printf("Line %d: %%", i++, line);

}

} catch (Exception e) {

Systemerr.printf("Unable to open file naned '%': %",

filename, e.getMessage());

new Buf f er edReader (fi |l eReader);

Pagina 10 di 10

Chapter 10. Threading Paginaldi 35

Chapter 10. Threading
NOTE
In this chapter:

1 Handling Uncaught Exceptions in Threads

1 Using Thread-Safe Collections

1 Using Blocking Queues

1 Specifying Timeouts for Blocking

1 Separating Thread L ogic from Execution Logic

1 Using Executor as a Service

1 Using Callable Objects

1 Executing Tasks Without an ExecutorService

1 Scheduling Tasks

1 Advanced Synchronizing

1 Using Atomic Types

1 Locking Versus Synchronization

From its earliest days, Java has been a multithreaded environment. While the threading capabilities
are formidable in Java 1.4, Tiger introduces a whole new slew of concurrency utilities, allowing for
further tweaking of your multithreaded programs.

10.1 Handling Uncaught Exceptionsin Threads

Normally a Javathread (represented by any class that extendsj ava. | ang. Thr ead) stops when its
run() method completes. In an abnormal case, such as when something goes wrong, the thread can
terminate by throwing an exception. This exception trickles up the thread's Thr eadGr oup hierarchy,
and if it getsto the root Thr eadGr oup, the default behavior isto print out the thread's name,
exception name, exception message, and exception stack trace.

To get around this behavior (at least in Java 1.4 and earlier), you've got to insert your own code into
the Thr eadGr oup hierarchy, handle the exception, and prevent delegation back to the root

Thr eadG oup. Whilethisis certainly possible, you'll have to define your own subclass of

Thr eadGr oup, make sure any Thr eadSsyou create are assigned to that group, and generally do alot
of coding that has very little to do with the task at hand—actually handling the uncaught exception.
Tiger simplifies al this dramatically, and lets you define uncaught exception handling on a per-

Chapter 10. Threading Pagina2 di 35

Thr ead basis.
10.1.1 How do | dothat?

Thej ava. | ang. Thr ead class defines anested interface in Tiger, called

Thr ead. Uncaught Except i onHandl er . Y ou can create your own implementation of thisinterface
and pass it to your target Thr ead'sset Uncaught Except i onHandl er () method (also new in Tiger).
Example 10-1 isasimple Thr ead that does just this.

Example 10-1. Thread with uncaught exception handler

package comoreilly.tiger.chl0;

public class Bubbl eSort Thread extends Thread {

private int[] nunbers;

publ i c Bubbl eSort Thread(int[] nunbers) {
set Name(" Si npl e Thread");
set Uncaught Except i onHandl er (
new Si npl eThr eadExcepti onHandl er());

t hi s. numbers = nunbers;

public void run() {
int index = nunbers.|ength;
bool ean finished = fal se;
while (!finished) {
i ndex- -;
finished = true
for (int i=0; i<index; i++) {
/] Create error condition
if (nunmbers[i+1] < 0) {
throw new |11 egal Argunent Excepti on(

"Cannot pass negative nunbers into this thread!");

Chapter 10. Threading Pagina3di 35

if (nunbers[i] > nunbers[i+1]) {
/1 swap
int temp = nunbers[i];
nunbers[i] = nunbers[i+1];

nunbers[i +1] = tenp;

finished = fal se;

cl ass Si npl eThreadExcepti onHandl er inpl enents

Thr ead. Uncaught Excepti onHandl er {

public void uncaught Excepti on(Thread t, Throwable e) {
Systemerr.printf("%: % at |line % of %%",
t.get Name(),
e.toString(),
e.get StackTrace()[0]. getLi neNunber(),

e.get StackTrace()[0].getFileName());

NOTE

| used a bubble sort for the example, but you should know that sorts like quicksort are much faster
(and therefore much cooler).

Thisisapretty normal Thr ead, with the exception of two items. First, there is arather odd condition
thrown into the sorting algorithm: if ani nt lessthan zero isin the supplied array, an

I Il egal Argunent Except i on istossed out. Second, to handle this (rather odd) case, an
implementation of Thr ead. Uncaught Except i onHandl er is defined, which prints out some
additional information about the problem, including a line number and filename.

Chapter 10. Threading

To see thisin action, you can use Example 10-2, asimple test program.

Example 10-2. Testing the uncaught exception handler

package comoreilly.tiger.chl0;

i mport java.io. | OException;

i mport java.io.PrintStream

public class ThreadTester {

private int[] posArray = newint[] {1, 3, 6, 3, 4, 2, 5};

private int[] negArray

new int[] {-2, -8,

public ThreadTester() {

}

public void testBubbl eSort(PrintStreamout) throws | OException {

-3,

Thread t1 = new Bubbl eSort Thr ead(posArray);

tl.start();

out.println("Testing with postive nunbers..."

/1 Wait for the thread to conplete
try {

tl.join();

printArray(posArray, out);

} catch (InterruptedException ignored) { }

Thread t2 = new Bubbl eSort Thr ead(negArray);

t2.start();

out.println("Testing with negative nunbers..."

try {

-9,

-10}:

Pagina4 di 35

Chapter 10. Threading Pagina5di 35

t2.join();
printArray(negArray, out);

} catch (InterruptedException ignored) { }

private void printArray(int[] a, PrintStreamout) throws | OException {
for (int n: a) {
out.println(n);

}

out.println();

public static void main(String[] args) {

ThreadTester tester = new ThreadTester();

try {

tester.testBubbl eSort (System out);
} catch (Exception e) {

e.printStackTrace();

NOTE
Running "ant runch10" will automate this for you.

If you run this example, which generates an error when negative numbers are supplied in negArr ay,
you'll seethe Si npl eExcept i onHandl er in action:

NOTE

Whilethisis afine example, it's still abad idea to writeto the console, or even System err, unless
you're sure where those errors are going, and that they will be seen by some set of human eyes. A
better idea would be to log these errors somewhere useful .

Chapter 10. Threading Pagina 6 di 35

[echo]
[java]
[java]
[java]
[java]
[} ava]
[} ava]
[} ava]

[java]

[java]

[java]

[java]
[java]
[java]
[java]

[java]

Runni ng ThreadTester. ..
Testing with postive nunbers...
1

2

Testing with negative nunbers. ..

Si npl e Thread: java.lang. Il egal Argunent Excepti on: Cannot pass
negative nunmbers into this thread! at |ine 23 of
Bubbl eSort Thread. j ava

-2

-8

-3

-9

-10

Also, notice that the negative array (negAr r ay) doesn't get sorted. That's because the thread threw an
exception and never completed the sort.

10.1.2 What about...

...Setting an Uncaught Except i onHandl er for al threads? Install a default handler: pass an
implementation of Thr ead. Uncaught Except i onHandl er tothe
Thr ead. set Def aul t Uncaught Except i onHandl er (), which s, of course, a static method:

Thr ead. set Uncaught Except i onHandl er (new MyDef aul t Handl er ());

If aThr ead hasits own handler, that of course overrides the default handler. In fact, here's the exact
sequence of checks that the JVM goes through when determining how to handle an uncaught

exception:

1. Check for athread-specific handler to invoke, and if one exists, invokeit.

2. Invoke the handler of the containing Thr eadGr oup.

Chapter 10. Threading Pagina7 di 35

3. If the containing Thr eadGr oup (and its ancestors) have not overridden uncaught Except i on
(), passthe exception up the Thr eadGr oup hierarchy, until the root Thr eadG oup is reached.

4. Invoke the default handler, obtained by calling Thr ead. get Def aul t Except i onHandl er ().

10.2 Using Thread-Safe Collections

If you've ever used Java's collection classesin an environment with lots of threads, you know that
Sun's nod to threading and collectionsis a bit heavy-handed. Y ou can either use HashMap, Li st
implementations, and Set implementations, which aren't thread-safe, and deal with threading on
your own, Or You can use Hasht abl e or Vect or , which has synchr oni zed methods al over the
place. Tiger has added a number of thread-safe collections, many of which perform even better than
Hasht abl e and Vect or when used correctly. While these classes are hardly magic bullets, they offer
more variety, and that's always a good thing.

NOTE
It's still beyond me why the read methods on Hashtable are synchronized.
10.2.1 How do | dothat?

All of Java's new concurrency support for collectionsistucked away inj ava. util.concurrent.
And, thankfully, the classes that mirror existing collections serve as drop-in replacements for their
non-threadsafe counterparts.

10.2.1.1 ConcurrentHashM ap

Thefirst, and probably most valuable, collection to look at is

java.util.concurrent. Concurrent HashMap. This class makes the obvious first nod towards
concurrence by not synchronizing any of its read methods. That takes care of alot of locking and
threading issues right off the bat. Even more importantly, Concur r ent HashMap segments its internal
hashtable, so you can write to one segment while another thread writes to another (in addition to
reads always being alowed). In terms of use, it isidentical to HashMap, o you can add the following
import:

i mport java.util.concurrent. Concurrent HashMap;

Now all you have to do is search and replace on "HashMap," and you're all set. | won't bore you with
the details...you should get the idea. Just make the change, and your code gets all the benefits of
concurrent reads, and even concurrent writes most of the time.

10.2.1.2 CopyOnWriteArrayList

java.util.concurrent.CopyOnWiteArrayList isathread-awareversion of Li st , and particular
(of course) ArraylLi st . Thisisagreat solution for arrays that are updated infrequently, but are read
very often. It disposes of synchronization, allowing any number of concurrent reads. For writing, it
actually creates a new copy of the underlying array, and then assigns that new copy (with changes)
back to the underlying copy.

Chapter 10. Threading Pagina8di 35

10.2.1.3 CopyOnWriteArraySet

java.util.concurrent. CopyOnWiteArraySet worksjust like CopyOnW i t eArraylLi st, and the
same functionality applies. You get concurrent reading, and pay afairly minimal performance cost,
aslong asyou're reading alot more than you are writing.

10.2.2 What just happened?

Concurr ent HashMap'smagic is all in the segmentation of itsinternal hashtable. By default, there are
16 segmentsin this hashmap, and any operation on one segment has no effect on the others—
including threading concerns. So you could, theoretically, have 16 threads operating on 16 different
segments, all at the same time. If you have specialized needs for segmentation, you can specify the
estimated threads that will write to the object:

Map map = new Concurrent HashMap(2000, 25, 25);

Thefirst parameter istheinitial size, common to normal HashMap implementations. Next comes the
load factor, and then the concurrency level. Thisisn't specifically named as the number of segments,
but instead as the number of threads you expect to be performing concurrent updates. The
implementation is then free to perform segmentation and internal sizing based upon that value.

Asfor the CopyOnW i t e collections, you're basically getting around concurrency issues atogether.
The reading part is easy—Iet any thread read from the collection anytime. Writing is alittle trickier,
and it's here where the downside comes into play. These collections create entirely new lists (or sets)
on update, make the changes requested, and then the modified list (or set) is assigned to the instance.
Thisisapretty clumsy operation if you're doing lots of writes, but for an occasional write compared
to aton of reads, it works great, and you get avery fast, thread-aware (albeit not thread-safe)
collection.

10.2.3 What about...

...the other classes and interfacesinj ava. uti | . concur rent ? Many of these classes are covered in
later labs, such as "Using Blocking Queues' and "Scheduling Tasks'. But, there are some additional
collection-anal ogs like those discussed here, such as Concur r ent Li nkedQueue. Once you
understand the basics presented here, you can figure out how these extra classes work with a quick
glance at the Javadoc. Remember, most of these are drop-in substitutions for non-concurrent
collections, so your learning curve should be next to nothing.

Y ou also might be wondering about how these new classes work with iterators. Any | t er at or
instance obtained from CopyOnW it eArrayLi st and CopyOnW it eArraySet reflects the contents of
the list or set when it was obtained. This means that you are essentially getting a snapshot of the list
or set, rather than a dynamic version. Depending on your application, this can be absolutely great, or
incredibly difficult! In general, use your iterators and ditch them, obtaining a new instance (through
iterator())if youneeditagainlater. Thiswill minimize the possibility of using stale datain your
program logic.

10.3 Using Blocking Queues

In Chapter 1, you saw that Tiger introduced a new collection type, j ava. uti | . Queue. Thisinterface
has several implementations, such as Del ayQueue and Pri ori t yQueue. However, al of these

Chapter 10. Threading Pagina9di 35

assume sufficient room in the queue for adding elements, or, at the least, an error when there isn't
room available.

True queues, though, often involve await period, where an element (or person—think of alinefor a
concert) waits in place until an opening is available. The same is true for removal—another thread
(or unruly ticketbuyer) shouldn't be able to jJump in front if there are aready threads waiting to peel
off the next item in the queue. Fortunately, the guys at Sun realized thisis an important threading
concept (or maybe just spent alot of time trying to see Dave Matthews recently). In either case, the
end-resultisj ava. util . concurrent. Bl ocki ngQueue. Thisinterface defines a means of blocking
other threads on a put, or atake. As an added bonus, I'll even drop the concert ticket analogy now.

10.3.1 How do | dothat?

The Queue interface definesthe of f er () method for adding elements to the queue, and the pol |

() method for removing elements. of f er () should be used instead of add() (definedin

Col | ecti on), because it returns abool ean value indicating if the addition was successful (implying
that the queue was not full). In the same fashion, pol I () simply returnsnul | if the queue is empty.
However, neither of these methods wait for space to be available, or for an element to be available,
respectively.

java.util.concurrent. Bl ocki ngQueue isan interface that extends Queue, and adds two more
methods: put () andtake(). Thisisone of those cases where a code sample is worth a thousand
words, so take alook at Example 10-3. This represents one of the classic uses of aqueue, in a
producer/consumer relationship.

NOTE

"add()" throws an unchecked exception if the queue isfull, which isn't really appropriate, as afull
gueueisn't an exceptional condition.

Example 10-3. A producer for a BlockingQueue

package comoreilly.tiger.chl0;

i mport java.io.PrintStream

i mport java.util.Date;

i mport java.util.concurrent. Bl ocki ngQueue;

public class Producer extends Thread {

private Bl ocki ngQueue q;

private PrintStream out;

public Producer (Bl ocki ngQueue ¢, PrintStreamout) ({

set Nanme(" Producer");

Chapter 10. Threading Pagina 10 di 35

this.q = q;

this.out = out;

public void run() {

try {
while (true) {

g. put (produce());
}

} catch (InterruptedException e) {

out.printf("% interrupted: %", getNane(), e.getMessage());

private String produce() {
while (true) {

doubl e r = Math.randon();

/1 Only goes forward 1/10 of the tine
if ((r*100) < 10) {
String s = String.format ("I nserted at %c", new Date());

return s;

Example 10-4 is the consumer half of the relationship.
Example 10-4. Consumer for a BlockingQueue

package comoreilly.tiger.chl0;

Chapter 10. Threading Pagina 11 di 35

i mport java.io.PrintStream

i mport java.util.concurrent. Bl ocki ngQueue;

public class Consuner extends Thread {

private Bl ocki ngQueue q;

private PrintStream out

public Consuner(String nanme, Bl ocki ngQueue q,
PrintStream out) {
set Nanme(nane) ;
this.q = q;

this.out = out;

public void run() {
try {
while (true) {
process(q.take());
}
} catch (InterruptedException e) {

out.printf("% interrupted: %", getNane(), e.getMessage());

private void process(Object obj) {
out.printf("% processing object: % "Us' 9",

getNane(), obj.toString()); }

Finally, here's a sample usage:

Chapter 10. Threading

public void testQeue(PrintStreamout) throws | OException {

Bl ocki ngQueue queue = new Li nkedBl ocki ngQueue(10);

Pr oducer

Consunmer cl =

Consuner c2

Consuner c3

Consunmer c4 =

p.start();

while (true) {

cl.

p = new Producer (queue, out)

new Consurmer (" Consuner

1,

new Consumer (" Consuner 2",

new Consurmer (" Consuner 3",

new Consurmer (" Consuner 4",

start(); c2.start();

/1 hang out for a while

NOTE

queue, out);
queue, out);
queue, out);

queue, out);

c3.start(); cd.start();

Pagina 12 di 35

Y ou can test out this method by running "ant runch10". It will wait forever, though, so you'll haveto
break out of the program.

You'll seetons of output, as the producer fills the queue and the consumers grab information out of
it. What's cool, though, is that the processing cycles through the four consumers, in order:

[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]

[java]

Consuner

Consuner

Consuner

Consuner

Consuner

Consuner

Consuner

1 process
"Inserted
2 process
"Inserted
3 process
"Inserted
4 process
"Inserted
1 process
"Inserted
2 process
"Inserted

3 process

ng

at

ng

at

ng

at

ng

at

ng

at

ng

at

ng

obj ect:
Tue May 04
obj ect:
Tue May 04
obj ect:
Tue May 04
obj ect:
Tue May 04
obj ect:
Tue May 04
obj ect:
Tue May 04

obj ect:

08:

08:

08:

08:

08:

08:

43:50 GVIr-06: 00 2004

43:50 GVIr-06: 00 2004

43:50 GVIr-06: 00 2004

43:50 GVIr-06: 00 2004

43:50 GVIr-06: 00 2004

43:50 GVIr-06: 00 2004

Chapter 10. Threading Pagina 13 di 35

[java] "Inserted at Tue May 04 08:43:50 GMr-06: 00 2004’
[java] Consumer 4 processing object:

[java] "Inserted at Tue May 04 08:43:50 GMr-06: 00 2004’

This lets you know that each consumer, once it gets its turn, has alock on the queue until it gets an
object. This could take afew seconds, or afew days, and the threads really don't care.

There are five out-of-the-box implementations of Bl ocki ngQueue; al areinthe
java.util.concurrent package:

NOTE

It'sabit of luck that these came out in order. Y our results may be completely different, orderwise.

ArrayBlockingQueue
Y ou have to specify the initial capacity when you create this queue, and like any other array,

this capacity isthe fixed limit. This queue has a somewhat reduced throughput as compared to
other implementations, but threads are served in the order that they arrive.

LinkedBlockingQueue

This queue is based on alinked list (duh!). While you can specify amaximum size, it is by
default unbounded.

PriorityBlockingQueue
This queue bases ordering on a specified Conpar at or , and the element returned by any t ake
() call isthe smallest element based on this ordering. If you don't specify a Conpar at or , the
natural ordering is used (assuming the objects supplied to it implement Conpar abl e). If your
objects don't implement Conpar abl e, and you don't have a Conpar at or to supply, there's
really noreasonto use Pri ori t yBl ocki ngQueue.

NOTE

There's a nonblocking version of PriorityBlockingQueue, java.util.PriorityQueue.

DelayQueue

Del ayQueue isessentially aversion of Pri ori t yBl ocki ngQueue that uses elements that
implement the new j ava. uti | . concurrent. Del ayed interface. Since thisinterface extends
Conpar abl e, it fitsright into aPri ori t yBl ocki ngQueue structure. Additionally, it won't
allow an element to be grabbed with t ake() until that element's delay has el apsed.

SynchronousQueue

Chapter 10. Threading Pagina 14 di 35

This queue has a size of zero (yes, you read that correctly). It blocks put () calls until another
thread callst ake(), and blockst ake() callsuntil another thread callsput () . Essentiadly,
elements can only go directly from a producer to a consumer, and nothing is stored in the
queue itself (other than for transition purposes).

These are self-explanatory, so pick the one you need, and go forth and code (well, after reading the
rest of this chapter).

NOTE

If you're familiar at all with Ada (a programming language used most often in military defense
programs), SynchronousQueueis alot like arendezvous “channel.

10.4 Specifying Timeouts for Blocking

When you're working with threads, you've often got to deal with blocking issues. Sometimes you
may want to simply have athread pause for a bit; other times you may be willing to wait, say, 10
seconds for an object lock, and then you'd rather move on than keep waiting. In these cases, it's
possible to specify the exact time you want to wait using the new
java.util.concurrent. Ti neUnit enum.

10.4.1 How do | dothat?

Tiger introducesthej ava. uti| . concurrent. Ti meUni t enum, which defines four values. SECONDS,
M LLI SECONDS, M CROSECONDS, and NANOSECONDS. I'll even bet you've already figured out what this
class does—it represents time, in meaningful units. One of the common usesisto put athread to
deep for aspecific anount of time:

try {
Ti meUni t . SECONDS. sl eep(30);

} catch (InterruptedException e) {

/1 report error

NOTE

It's also common to use these units in specifying how long threads should want for locks, as
inBlockingQueue.poll().

Here's an updated version of thet est Queue() method, shown in Using Blocking Queues:

public void testQueue(PrintStreamout) throws | OException {
Bl ocki ngQueue queue = new Li nkedBl ocki ngQueue();
Producer p = new Producer(queue, out);

Consumer ¢l = new Consuner (" Consuner 1", queue, out);

Chapter 10. Threading Pagina 15 di 35

Consuner c2 new Consumer (" Consuner 2", queue, out);

Consuner c3 new Consumer (" Consuner 3", queue, out);

Consuner c4 new Consumer (" Consuner 4", queue, out);

p.start(); cl.start(); c2.start(); c3.start(); cd.start();

try {

Ti meUni t . SECONDS. sl eep(2);

} catch (InterruptedException ignored) { }

NOTE
Enums and defining custom methods are all covered in Chapter 3.

This enum defines several other methods of interest:

long convert(long duration, TimeUnit unit)

Converts the specified direction to units for the current Ti meUni t .

void seep(long timeout)

Puts the thread to deep for specified units (covered in thislab).

void timedJoin(Thread t, long duration)

Joins the supplied thread, aswitht . j oi n(), with atimeout that once exceeded causes this
process to bail out.

void timedWait(Object o, long duration)

Waits to get the lock on o for the specified duration.

toMicrog(), toMillis(), toNanos(), toSeconds()

These are all conversion methods that take al ong value for duration, and return al ong value
representing the converted value. These are all convenience versions of convert().

10.4.2 What about...

Chapter 10. Threading Pagina 16 di 35

..statically importing Ti meUni t ? Yup, that's a good idea:

i mport static java.util.concurrent. TimeUnit.*;

Now you can write code like this:

try {
SECONDS. sl eep(2);

} catch (InterruptedException ignored) { }

10.5 Separating Thread L ogic from Execution Logic

Suppose you've just spent 6 or 7 hours, heads-down, coming up with 10 or 15 complicated threads,
many of which are interdependent, and finally have the queuing, ordering, and timing all figured out.
Just as you're about to pop the top on a Coke™, your boss comes storming in, asking for more
functionality, and you realize you're going to need to add another thread. While that in itself isn't
hard, fitting them into the timing of the other threadsis, and suddenly, you're looking at a complete
redesign.

Thisisal too familiar for programmers working in multithreaded environments. The problem is that
in Java (at least, pre-Tiger Java), threads execution cycles are tied to the code they actually perform.
Functionality and timing are all tied together. If you've got Tiger, though, you can get around this,
and separate thread functionality from thread execution.

10.5.1 How do | dothat?

One of the coolest new interfacesinthej ava. uti | . concurrent packageisExecutor. This
interface defines a means of supplying threads to an object (which implements the Execut or
interface), and letting that object deal with timing and running of the threads, rather than forcing you
to place thislogic in your threading class. Y ou add your Runnabl e objects to the Execut or (which
generaly adds them to an internal queue), and the Execut or then usesits own threads to peel off the
objects and run them.

While you can create your own implementations of this class, you're better off using one of the pre-
built implementations. These are not classes unto themselves, but pre-configured Execut or
implementations, each returned from afactory method onthej ava. util. concurrent. Executors
class. Here's the basic rundown:

Single thread executor

Obtained with Execut or s. newSi ngl eThr eadExecut or (), thisresultsin apool size of 1, so
tasks are executed one at atime.

Chapter 10. Threading Pagina 17 di 35

Fixed thread executor
Obtained with Execut or s. newFi xedThr eadPool (i nt pool Si ze) , this creates an executor
with the specified number of threads to run the tasks with which you supply it.

Cached thread executor
This executor, obtained with Execut or s. newCachedThr eadPool (), will use as many threads

asit needsto run the objects in its queue. It will reuse threads as they become available, as
well as create new threads.

Scheduled thread executor

This executor is obtained with Execut or s. newSchedul edThr eadPool (), or
Execut or s. newSi ngl eThr eadSchedul edExecut or (), and is detailed in Executing Tasks
Without an ExecutorService.

So what happens when you have just one little Cal | abl e object that you want to execute, and you
don't need the overhead of Exect or Ser vi ce? Well, it seems those Sun guys thought of everything
(except perhaps open-sourcing Java)—Yyou use Fut ur eTask.

10.5.2How do | do that?
java.util.concurrent. FutureTask can bewrapped around Cal | abl e objects, allowing them to

behave like a Fut ur e implementation returned from Execut or Ser vi ce. subnit (). The syntax is
smilar aswell:

Fut ur eTask<Bi gl nt eger> task =

new Fut ureTask<Bi gl nt eger >(new RandonPri neSear ch(512));

new Thread(task).start();

Bi gl nteger result = task.get();

The methods available to Fut ur eTask are similar to Fut ur e, so I'll leaveit to you to check out the
Javadoc. With the details from Using Callable Objects, you shouldn't have any problems.

10.5.3 What about...

...good old Runnabl e? Fortunately, plain old Thr ead and Runnabl e didn't get left out of the mix.

Y ou can wrap aFut ur eTask around a Runnabl e object just as easily as you can around acal | abl e
object, and the same functionality applies. However, since Runnabl e'srun() method doesn't return
aresult, the constructor isabit different:

Fut ureTask<String> task =

new Fut ureTask<String>(new MyRunnabl eObj ect, "Success!");

Chapter 10. Threading Pagina 18 di 35

Y ou have to supply avalue to the constructor, of the type specified by your parameterization (in this
example, astri ng), which isreturned by get () if execution is successful. While the above
exampleisvalid, there arereally only two common variants when using Runnabl e Fut ur eTasks:

Fut ureTask<Cbj ect > task = new Fut ureTask<Obj ect >(runnabl e, null);

Fut ur eTask<Bool ean> task = new FutureTask<Bool ean>(runnabl e, true);

The first allows for discarding the result of get () altogether, and the second provides a true/false
check for the result of get (). You'd do well to use one of these yourself.

You essentially just create an Execut or , give it some tasks, and then don't worry about it:

Execut or e = Executors. newri xedThr eadPool (5);

e. execut e(new Runnabl eTask1());
e. execut e(new Runnabl eTask2());

e. execut e(new Runnabl eTask3());

| realize this goes against the nature of control freaks (of which | am one), but the Execut or isquite
competent to handle the running of your tasks.

10.6 Using Executor as a Service

While Execut or on itsown isagreat addition to Java, there are times when you need more control
over how execution occurs, when it stops, and even how it stops. For al of these cases,
Execut or Ser vi ce should be used.

10.6.1 How do | do that?

If you take aclose look at the factory method signatures for Execut or s, you'll note that each returns
an Execut or Ser vi ce, rather than an Executor. java. util.concurrent. ExecutorServiceisa
subinterface of Execut or , and adds a good deal of functionality to the smple execut e() method
you saw in "Separating Thread Logic From Execution.” Two of these are key in allowing you to stop
an Execut or Ser vi ce, either for an error condition or in anormal shutdown situation:

NOTE

Thisisn't afully (or even partially) functional FTP server, and is just used for example purposes.
You won't find it in the sample code, as it doesn't actually work.

Chapter 10. Threading Pagina 19 di 35

public class FtpServer {

private ExecutorService service

public FtpServer(int port) throws | OException {
openSocket (port);

servi ce = Executors. newri xedThr eadPool (100) ;

public void go() {
try {
while (true) {
servi ce. execut e(new Ft pHandl er (get Socket()));
}
} catch (Exception e) {

servi ce. shut downNow();

public void stop() {

try {
servi ce. shut down();
} catch (Exception e) {

/1 report problem

cl ass Ft pHandl er inplenments Runnabl e {

private Socket socket;

Chapter 10. Threading Pagina 20 di 35

public FtpHandl er (Socket socket) {

t his.socket = socket;

public void run() {

// Handl e connection

NOTE

Basically, getSocket() would wait for a client to connect, and return the connection to that client as a
Socket object.

Thisllittle pseudo-class primarily illustrates two methods:

shutdown()

This method stop the service, but first allows the service to attempt to complete al running
and queued tasks. No new tasks are accepted after this call, though.

shutdownNow()

A little more direct, this method stops the service, and does not alow any queued or running
tasks to execute. Currently running tasks are basically tossed, and queued tasks are returned
viaali st <Runnabl e>, for program use (if desired—in the example, | ignored these
completely).

Y ou can choose whichever of these suits you, based on your application needs. There's one other big
advantage of using Execut or Ser vi ce, which the next lab, Using Callable Objects, looks at in detail.

10.7 Using Callable Objects

Javas Thr ead class has been around for awhile, and certainly stood the test of time. However, there
are afew thingsthat Thr ead'srun() method can't do—oneisto throw checked Excepti ons
(exceptionsfromrun() are not checked at compiletime), and the other isto return aresult. Both of
these are things that you can get around with some clever programming, but in Tiger, you no longer
haveto. Instead, usethe new j ava. util . concurrent. Cal | abl e class.

10.7.1 How do | dothat?

An object that implements the Cal | abl e interface only needs to implement one method: cal I ().
The interface is a generic type, and the parameter you supply to the interface is the type returned by

Chapter 10. Threading Pagina 21 di 35

call ().Sothecal I () method for aclassthat implements Cal | abl e<Stri ng> returnsastri ng.

Like Thread'srun() method, you caninvokecal | () directly—but it's better to et an

Execut or Ser vi ce handle execution, by passing it to the subni t () method of Execut or Servi ce.
Let's put these concepts to work, so you can get a better idea of how thisfits together. Example 10-5
isacal | abl e implementation that computes random prime numbers.

NOTE

Thanks to David Flanagan for another nice bit of example code.

Example 10-5. A Callableimplementation

package comoreilly.tiger.chl0;

i mport java. math. Bi gl nt eger;
i mport java.security. SecureRandom
i mport java.util.Random

i mport java.util.concurrent. Call able;

public class RandonPri neSearch i npl enents Call abl e<Bi gl nt eger > {

private static final Random prng = new SecureRandom);

private int bitSize;
publ i c RandonPri meSearch(int bitSize) {

this.bitSize = bitSize;

public Biglnteger call() {

return Biglnteger. probabl ePrime(bitSize, prng);

Now you can pass one or more of these objectsto submit():

Execut or Servi ce service = Executors. newFi xedThr eadPool (5);

Chapter 10. Threading Pagina 22 di 35

Fut ure<Bi gl nteger> prinmel = service.submt(new RandonPri neSear ch(512));

Fut ur e<Bi gl nteger> prime2 = service.submt(new RandonPri neSear ch(512));

Fut ur e<Bi gl nteger> prime3 = service. submt(new RandonPri neSear ch(512));

This should all make sense, except for the addition of anew class. j ava. util.concurrent. Future.
Here'sthedeal: likea Thr ead, aCal | abl e object runs happily in the background, and your
application won't wait for it to finish. However, ascal | () returnsavalue, there hasto be away to
obtain that value, without having to have it right away (and forcing your program to wait around).
Thisiswhere Fut ur e comes in—it allows you to operate upon the Cal | abl e object, including
getting the value of cal | () and stopping its execution, without causing your entire program to
block. Here are the methods of Fut ur e you want to be familiar with:
boolean cancel (boolean may!nterruptIfRunning)
This attempts to cancel execution of the task. If the task has not started, it is cancelled; if it has
started, may| nt errupt | f Runni ng determinesif it is cancelled.
V get()

This parameterized method returns the result of the task, waiting for completion if needed.

V get(long timeout, TimeUnit unit)
This parameterized method returns the result of the task, if it completes within the specified
waiting period.

boolean isCancelled()

Thisindicatesif the task was cancelled before norma completion.

boolean isDone()
Thisindicatesif the task is complete.

In most cases, you'll simply call get () and wait for the result:

Execut or Servi ce service = Executors. newFi xedThr eadPool (5);

Fut ure<Bi gl nteger> prinmel = service.submt(new RandonPri neSear ch(512));

Fut ur e<Bi gl nteger> prime2 = service.submt(new RandonPri neSear ch(512));

Fut ur e<Bi gl nt eger > prinme3 = service. subm t(new RandonPri neSearch(512));

file://C:\Documents%20and%20Setti ngs\l of rumen\Impostazioni %20l ocali\Temp\~hh... 31/08/2004

Chapter 10. Threading Pagina 23 di 35

try {
Bi gl nteger bigger = (primel.get().multiply(prime2.get())).
mul tiply(prinme3.get());
out. println(bigger);
} catch (InterruptedException e) {
e.printStackTrace(out);
} catch (ExecutionException e) {

e.printStackTrace(out);

The other methods are typically useful when you have more of a daemon and need to cleanly cancel
or shut down tasks yet to be executed.

NOTE

Y ou don't need to call isDone() and then call get(); get() will wait for a completed result before
returning.

10.8 Executing Tasks Without an Executor Service

So what happens when you just have one little Cal | abl e object that you want to execute, and you
don't need the overhead of Exect or Ser vi ce? Well, it seems those Sun guys thought of everything
(except perhaps open sourcing Java)—Yyou use Fut ur eTask.

10.8.1 How do | dothat?
java.util.concurrent. FutureTask can bewrapped around Cal | abl e objects, alowing them to

behave like a Fut ur e implementation returned from Execut or Servi ce. subni t (). Thesyntax is
similar as well:

Fut ur eTask<Bi gl nt eger> task =

new Fut ureTask<Bi gl nt eger >(new RandonPri neSear ch(512));

new Thread(task).start();

Bi gl nteger result = task.get();

The methods available to Fut ur eTask are similar to Fut ur e, so I'll leaveit to you to check out the
Javadoc. With the details from Using Callable Objects, you shouldn't have any problems.

Chapter 10. Threading Pagina 24 di 35

10.8.2 What about...

...good old Runnabl e? Fortunately, plain old Thr ead and Runnabl e didn't get left out of the mix.

Y ou can wrap aFut ur eTask around a Runnable object just as easily as you can around aCal | abl e
object, and the same functionality applies. However, since Runnabl e'srun() method doesn't return
aresult, the constructor isabit different:

Fut ureTask<String> task =

new Fut ureTask<String>(new MyRunnabl eObj ect, "Success!");

Y ou have to supply avalue to the constructor, of the type specified by your parameterization (in this
example, astri ng), which isreturned by get () if execution is successful. While the above
exampleisvalid, there arerealy only two common variants when using Runnabl e Fut ur eTasks:

Fut ureTask<Cbj ect > task = new Fut ureTask<Obj ect >(runnabl e, null);

Fut ur eTask<Bool ean> task = new FutureTask<Bool ean>(runnabl e, true);

The first allows for discarding the result of get () altogether, and the second provides a true/false
check for the result of get (). You'd do well to use one of these yourself.

10.9 Scheduling Tasks

Along with the ability to separate the logic of atask (inacal | abl e, Runnabl e, or Thr ead object)
from its execution, Tiger allows you to schedule execution at specific times.

10.9.1 How do | dothat?

Earlier, you saw how the Execut or s class was used to obtain several Execut or Ser vi ces. Two
methods that were brushed over were newSchedul edThr eadPool () and

newSi ngl eThr eadSchedul edExecut or () . Both of these return instances of

Schedul edExecut or Ser vi ce, which adds severa features to the basic Execut or Ser vi ce interface.
The simplest to use is schedul eAt Fi xedRat e(), shown in action in Example 10-6.

Example 10-6. Using scheduled tasks

package comoreilly.tiger.chl0;

i nport java.io. | OException;
i nport java.io.PrintStream
i mport java.util.Date;

i mport java.util.concurrent. Executors;

Chapter 10. Threading Pagina 25 di 35

i mport java.util.concurrent. Schedul edExecut or Servi ce;

i mport java.util.concurrent. Schedul edFuture;
i mport static java.util.concurrent. TimeUnit.*;
public class Schedul eTester {
public static void main(String[] args) {
/1 Get the schedul er
Schedul edExecut or Servi ce schedul er =
Execut or s. newSi ngl eThr eadSchedul edExecut or () ;
/1 Get a handle, starting now, with a 10 second del ay
final Schedul edFuture<?> tineHandl e =
schedul er. schedul eAt Fi xedRat e(new Ti nePrinter(Systemout), 0, 10, SECONDS);
/1 Schedul e the event, and run for 1 hour (60 * 60 seconds)
schedul er. schedul e(new Runnabl e() {
public void run() {

ti meHandl e. cancel (fal se);

}, 60*60, SECONDS);

class TimePrinter inplenents Runnable {

private PrintStream out

public TinmePrinter(PrintStreamout) {

Chapter 10. Threading Pagina 26 di 35

this.out = out;

public void run() {

out.printf("Current tine: %r%", new Date());

Here's some output from this class:

[echo] Runni ng Schedul eTester. ..

[java] Current time: 09:17:04 AM
[java] Current time: 09:17:14 AM
[java] Current time: 09:17:24 AM

[java] Current time: 09:17:34 AM

This code is actually every bit as ssimple asit looks. Y ou obtain a new Schedul edExecut or Ser vi ce
from Execut or s, and usethe schedul eAt Fi xedRat e() method to initiate a task. This method
takes the task to run (either aRunnabl e or Cal | abl e implementation, then takes a delay (how long
to wait before beginning execution), the period between executions, and the Ti neuni t that these
durations are expressed in. In the example, the Ti nePri nt er thread is set up to run immediately, and
then every 10 seconds thereafter.

Theschedul eAt Fi xedRat e() method returns a Schedul edFut ur e instance, which extends both
the Fut ur e interface (detailed in Using Callable Objects), and the Del ayed interface, which | haven't
mentioned yet. Del ayed is used for objects that are acted upon after a certain delay. Itsget Del ay()
method, in the context of a Schedul edFut ur e, allows you to determine how much timeisleft before
subsequent executions of your task.

The fina piece of the puzzle isthe schedul e() invocation, which at first glance may confuse you.
schedul e() worksjust like schedul eAt Fi xedRat e(), but sets up a single execution, rather than
multiple ones. In the example, it's used to initiate a thread that will cancel the execution of

Ti mePri nt er , after an hour (60* 60 seconds). Thisis an important part of scheduling—otherwise the
thread printing the date would run on infinitely. It also makes the Schedul edFut ur e object
important —it provides the only means of canceling the task's execution.

10.9.2 What about...
..that fi nal declaration on the Schedul edFut ur e object? Because the inner class passed to the

scheduler has to access the Fut ur e object, you've got to mark it asf i nal . Otherwise, you'll get this
error:

Chapter 10. Threading Pagina 27 di 35

[javac] code\src\comoreilly\tiger\chlO\Schedul eTester.java: 26:
| ocal variable timeHandl e is accessed fromwi thin inner class;
needs to be declared fina

[j avac] ti meHandl e. cancel (true);

[j avac] n

[javac] 1 error

You'll runinto thiswith all your scheduling programs, so you might want to keep thisin mind.
NOTE

For alengthy discussion on the "final" keyword, you might want to check out Hardcore Java
(O'Relilly).

10.10 Advanced Synchronizing

If you've not begun to spew out syncr honi zed statements by this point in the chapter, you are
probably the type of programmer that would be into the new synchronizers available in the
java.util.concurrent package. Unfortunately, the intimate details are beyond thisbook (it'sa
notebook, not an encyclopedia); till, here are some basics to get you pointed in the right direction.

10.10.1 How do | do that?

Tiger introduces four synchronizer classes. They al allow you to force threads to wait for a specific
condition before continuing execution:

NOTE

All four of these classes are in the java.util.concurrent package.

Semaphore

The term semaphore has actually been around as long as concurrent programming. A
semaphore represents one or more permits. Threads call acqui re() to obtain a permit from
the semaphore, and r el ease() when done with the permit. If no permits are available,
acqui re() blocks, waiting for one to become available. In other words, a semaphore acts
like a bouncer, only allowing so many people into the party at one time.

Variantson acqui re(), which allow some control over what happens when ablock is
encountered, includet ryAcqui re(), which either never blocks or blocks for a specified
timeout, and acqui reUni nterrupti bl y(), whichwon't let go evenif an

I nterrupti onExcepti on OCCUrS.

CountDownL atch

Chapter 10. Threading Pagina 28 di 35

A Count DownLat ch is used to block threads until a certain set of operations is complete. When
alatch is created, it is closed—any thread that calls the latch's awai t () method will block
until the latch is opened. This alows threads to wait on the latch, ensuring that all operations
are compl ete before continuing.

Threads that are performing those required operations can call count Down() to decrement the
counter supplied to a Count DownLat ch at its construction. When the latch's counter reaches 0,
the latch opens, and all threads sitting in awai t () become unblocked and continue execution.

Exchanger

An Exchanger provides for thread rendezvous for two threads, typically in a consumer-
producer relationship. At some point these threads must "synch up,” and possibly exchange the
results of their individual tasks.

The most common use of an Exchanger iswhen aproducer fills a buffer with data, and a
consumer drains data from another source. Once the producer hasfilled its buffer, and the
consumer drained its buffer, the two can swap buffers, and continue operation. However, both
threads must complete their tasks before swapping. Exchanger . exchange() doesthe work
here, as you might expect.

CyclicBarrier

CyclicBarrier isanother thread rendezvous facility. However, this handles the case where
multiple threads (generally more than two) must all rendezvous at a specified point. Y ou
specify the number of threads when you create the barrier, and then each thread calls awai t

() when it reachesthe point whereit's ready to rendezvous. That blocks the thread until all
related threads reach the barrier.

Once dl the threads have called awai t (), the blocking stops, and all the threads can continue
(and often interact). Additionaly, the barrier is al-or-none: if one thread fails abnormally, and
leaves a barrier point prematurely, all threads leave abnormally.

All of these are covered in detail in the newest edition of Java Threads (O'Reilly), which should be
showing up on bookshelves in mid- to latesummer, 2004. If you're into mutexes, semaphores, and
latches, that's the place to go. They'll also be covered in the upcoming Javain a Nutshell, Fifth
Edition (O'Reilly).

10.11 Using Atomic Types

Another advanced threading feature introduced in Tiger is that of atomic type. An atomic operation
isonethat isindivisible: no other threads can interrupt or examine a variable in the middle of an
atomic operation. There's the beginning state, the end state, and (for all other threads) nothing in
between. An atomic typeis smply atype that has atomic operations available to it—it manages to be
thread-safe despite being essentially lock-free.

10.11.1 How do | dothat?

All atomic types are defined in thej ava. uti | . concurrent. at on ¢ package. There are a number of

Chapter 10. Threading Pagina 29 di 35

types, revolving around Bool ean, Long, | nt eger, and obj ect ref erences. Thisallowsyou to
perform atomic operations on these types, using At oni cBool ean, At ori cLong, At oni cl nt eger , and
At oni cRef er ence, respectively.

Each type providesaget () andset () method, which do what you would expect (get and set the
type's value, using an atomic operation). They also offer get AndSet () , which sets the value,
returning the previous value, aswell asconpar eAndSet (), which checks the value, and if it
matches the supplied value, setsit to a new value. Additionally, At oni ¢l nt eger and At oni cLong
provide for atomic versions of ++ and - - , through variations on decrenent () andi ncrement ()
methods. For example, decr ement AndGet () decrements the vaue of the atomic type, and returns
the update value; get Andl ncrenent () returns the current value, and then increments it in the type.
Here are severd different ways to write a thread-safe counter, lifted straight out of Javain a
Nutshell, Fifth Edition (O'Reilly):

NOTE

There are some variations on these types, with additional features, that you can check out in the
Tiger Javadocs.

/1 Rely on locking to prevent concurrent access
int countl = O;
public synchronized int count1() {

return count 1++;

/1 Rely on the atom c operations to prevent concurrent access
At om cl nteger count2 = new Atoniclnteger(0);
public int count2() {

return count 2. get Andl ncrenent () ;

/1 Optimstic |locking -- conpare the result, to mnimze overhead,
/1 and only correct if needed
At om cl nteger count3 = new Atoniclnteger(0);
public int count3() {

int result;

do {

result = count3.get();
} while (!count3.conpareAndSet (result, result+1));

return result;

Chapter 10. Threading Pagina 30 di 35

If you're not familiar with object references, it's simply the reference to an object.

At omi cRef er ence, then, allows you to work with an object atomically, by getting and setting the
reference in an indivisible manner. The most useful method on At oni cRef er ence is probably
conpar eAndSet (), which lets you change an object reference if it doesn't match the supplied value.

NOTE
"compareAndSet" is the canonical atomic operation.

Likethelab "Advanced Synchronizing," getting too much further into atomic types would have us
well into the ground covered by Java Threads (O'Relilly), so I'll refer you to that work if you need to
get further detail on atomic types.

10.11.2 What about...

...typeslike byt e, short , and char ? These (and their wrapper types) can all be stored in an
At oni cl nt eger , providing you the same functionality. You'll just have to do alittle conversion on
the object's return values, which are almost awaysanii nt .

Y ou can also use these atomic operations on arrays of the | nt eger , Long, and reference types (but
not Bool ean). j ava. util.concurrent. atoni c definesAt oni cl nt eger Array, At omi cLongArr ay,
and At oni cRef er enceAr ray for just these occasions. They provide all the methods of their non-
array counterparts, but each method takes an int index to indicate which item in the array you want
to operate upon.

10.12 L ocking Versus Synchronization

The final topic | want to addressisthe new Lock interface that Tiger provides, along with its
companion interface, Condi ti on. If you're happy using the synchr oni zed keyword, then this
section might not really interest you. However, if you find synchr oni zed limiting, using Lock might
solve your problems.

10.12.1 How do | do that?

Tiger introducesthej ava. util . concurrent.| ocks packageto add more flexible and extensive
locking than available with the synchr oni zed keyword. At its simplest, the Lock class can be made
to emulate asynchr oni zed block by calling | ock(), and then unl ock() when done. However,
it'sin going beyond these basics that things get interesting.

Lock providesal ockl nterruptibly() method, which obtainsalock but alows for
interruptions—this is something asynchr oni zed block can't offer. ThereareasotryLock()
methods that attempt to get alock, but will not wait (or will wait for a specified duration)—another
feature not available through use of asynchr oni zed block. If athread iswaiting for alock on a
synchr oni zed method or code block, it will happily (and quietly) wait forever.

To add to the fun, thej ava. uti | . concurrent. | ocks. Condi ti on interface provides for multiple

Chapter 10. Threading Pagina 31 di 35

wait-sets per object. This allows conditions to keep threads waiting, and for releasing threads from a
wait state based on specific (and even multiple) conditions. So a thread waiting to write, and only
then if avalueis changed, can be handled differently than a thread that is waiting to write without
needing a value to be changed.

NOTE
Can you tell David Flanagan helped out alot on this chapter? Thanks, David!

Example 10-7 (borrowed from Javain a Nutshell, Fifth Edition (O'Rellly)) demonstrates the most
common use of explicit locking, something called hand-over-hand locking. In this scenario, alinked
list is used: alock is obtained on one node, and then the next node, and traversed one node at atime.
However, at each stage, the prior node is released, so only two nodes (at most) in the list are ever
locked at once. There's smply no way to simulate this functionality without explicit locking.

NOTE

As David pointsout in Javain aNutshell, thisis a pretty useless list, functionally, although it'sa
great example.

Example 10-7. Contrived linked list example

package comoreilly.tiger.chl0;

i mport java.util.concurrent.| ocks. Condition

i mport java.util.concurrent. | ocks. Lock

i mport java.util.concurrent.| ocks. ReentrantLock

public class LinkList<E> {

/] The value of this node

E val ue;

/] The rest of the |ist

Li nkLi st <E> rest;

/1 A lock for this node

Lock | ock;

/1 Signals when the value of this node changes

Condi ti on val ueChanged;

Chapter 10. Threading Pagina 32 di 35

/1 Signals when the node this is connected to changes

Condi tion |inkChanged;

public LinkList(E value) {
this.val ue = val ue

rest = null

| ock new ReentrantLock();
val ueChanged = | ock. newCondition();

I i nkChanged = | ock. newCondition();

public void setVal ue(E val ue) {
 ock.l ock();

try {

this.value = val ue

/1 Let waiting threads that the val ue has changed
val ueChanged. si gnal ALl ();

} finally {

[ock. unl ock();

public void executeOnVal ue(E desiredVal ue, Runnabl e task)

throws | nterruptedException {

l ock.lock();

try {
/1l Checks the value agai nst the desired val ue
whil e (!val ue. equal s(desiredVal ue)) {

/1 This will wait until the value changes

Chapter 10. Threading Pagina 33 di 35

val ueChanged. awai t ();

/1 When we get here, the value is correct -- Run the task
task.run();

} finally {

[ock. unl ock();

public void append(E val ue) {
/1 Start the pointer at this node
Li nkLi st <E> node = this;

node. | ock. | ock();

while (node.rest !'= null) {

Li nkLi st <E> next = node.rest;

/1 Here's the hand-over-hand | ocking
try {
/1 Lock the next node
next. |l ock.l ock();
} finally {
/1 unlock the current node

node. | ock. unl ock();

/] Traverse

node = next;

/1 W're at the final node, so append and then unl ock

try {

Chapter 10. Threading Pagina 34 di 35

node. rest = new Li nkLi st <E>(val ue);

/1 Let any waiting threads know that this node's Iink has changed
node. | i nkChanged. signal Al I ();

} finally {

node. | ock. unl ock();

public void printUntillnterrupted(String prefix) {
/1 Start the pointer at this node
Li nkLi st <E> node = this;

node. | ock. | ock();

while (true) {
Li nkLi st <E> next;

try {

Systemout.println(prefix + ": " + node.val ue);

// Wait for the next node if not avail able
while (node.rest == null) {

node. | i nkChanged. awai t ();

/1l Get the next node

next = node.rest;

/1 Lock it - nore hand-to-hand | ocking
next. | ock.l ock();

} catch (InterruptedException e) {
/1 reset the interrupt status

Thread. current Thread().interrupt();

Chapter 10. Threading Pagina 35 di 35

return;

} finally {

node. | ock. unl ock();

/] Traverse

node = next;

NOTE

If you can use synchronized blocks or methods instead of an explicit Lock object, you don't have to
worry about unlocking; Java takes care of it for you.

Take special notice that you never seeacall tol ock() without animmediatetry/final I'y bock in
which unl ock() iscaled. Thisis something you need to lock (no pun intended) into your own
head—otherwise you'll eventually make a mistake somewhere, and leave an object infinitely locked.

The rest of the code turns out to be pretty straightforward. Walk through it dowly, and | trust you'll
have a good overview of both the Lock and Condi t i on interface.

10.12.2 What about...

...other types of locks? Tiger provides Reent r ant Lock (used in this code), which most closely
approximates asynchr oni zed block, albeit with the extrafeatures of aLock. Tiger also defines a
ReadW i t eLock, which maintains a separate lock for reading than for writing. Multiple threads may
hold ther ead lock, asreading is typically a safe concurrent operation, but only one thread may hold
the wr i t e lock. Implementations of this class (such as Reent r ant ReadW i t eLock) are best used for
large sets of data, where reading happens often and writing occurs for small sections of data.

Day Day Up Paginaldi 1

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The Developer's Notebook series is modeled on the tradition of laboratory notebooks.
Laboratory notebooks are an invaluable tool for researchers and their successors.

The purpose of a laboratory notebook is to facilitate the recording of data and conclusions as
the work is being conducted, creating a faithful and immediate history. The notebook begins
with a title page that includes the owner's name and the subject of research. The pages of the
notebook should be numbered and prefaced with a table of contents. Entries must be clear,
easy to read, and accurately dated; they should use simple, direct language to indicate the
name of the experiment and the steps taken. Calculations are written out carefully and relevant
thoughts and ideas recorded. Each experiment is introduced and summarized as it is added to
the notebook. The goal is to produce comprehensive, clearly organized notes that can be used
as a reference. Careful documentation creates a valuable record and provides a practical guide
for future developers.

Reg Aubry was the production editor and copyeditor for Java 1.5 Tiger: A Developer's
Notebook. Sada Preisch was the proofreader. Sada Preisch, Colleen Gorman, and Claire Cloutier
provided quality control. Johnna and Tom Dinse wrote the index.

Edie Freedman designed the cover of this book. Emma Colby produced the cover layout with
QuarkXPress 4.1 using the Officina Sans and JuniorHandwriting fonts.

Melanie Wang designed the interior layout, based on a series design by Edie Freedman and
David Futato. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason Mclntosh, Neil Walls, and Mike Sierra that uses Perl
and XML technologies. The text font is Adobe Boton; the heading font is ITC Officina Sans; the
code font is LucasFont's TheSans Mono Condensed, and the handwriting font is a modified
version of JRHand made by Tepid Monkey Fonts and modified by O'Reilly. The illustrations that
appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand 9 and Adobe Photoshop 6. This colophon was written by Colleen Gorman.

The online edition of this book was created by the Safari production group (John Chodacki,
Becki Maisch, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools
written and maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

	Table of Contents
	The Developer's Notebook Series
	Preface
	Organization
	How This Book Was Written
	About the Examples
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments from Brett
	Acknowledgments from David

	Chapter 1. What's New?
	1.1 Working with Arrays
	1.2 Using Queues
	1.3 Ordering Queues Using Comparators
	1.4 Overriding Return Types
	1.5 Taking Advantage of Better Unicode
	1.6 Adding StringBuilder to the Mix

	Chapter 2. Generics
	2.1 Using Type-Safe Lists
	2.2 Using Type-Safe Maps
	2.3 Iterating Over Parameterized Types
	2.4 Accepting Parameterized Types as Arguments
	2.5 Returning Parameterized Types
	2.6 Using Parameterized Types as Type Parameters
	2.7 Checking for Lint
	2.8 Generics and Type Conversions
	2.9 Using Type Wildcards
	2.10 Writing Generic Types
	2.11 Restricting Type Parameters

	Chapter 3. Enumerated Types
	3.1 Creating an Enum
	3.2 Declaring Enums Inline
	3.3 Iterating Over Enums
	3.4 Switching on Enums
	3.5 Maps of Enums
	3.6 Sets of Enums
	3.7 Adding Methods to an Enum
	3.8 Implementing Interfaces with Enums
	3.9 Value-Specific Class Bodies
	3.10 Manually Defining an Enum
	3.11 Extending an Enum

	Chapter 4. Autoboxing and Unboxing
	4.1 Converting Primitives to Wrapper Types
	4.2 Converting Wrapper Types to Primitives
	4.3 Incrementing and Decrementing Wrapper Types
	4.4 Boolean Versus boolean
	4.5 Conditionals and Unboxing
	4.6 Control Statements and Unboxing
	4.7 Method Overload Resolution

	Chapter 5. varargs
	5.1 Creating a Variable-Length Argument List
	5.2 Iterating Over Variable-Length Argument Lists
	5.3 Allowing Zero-Length Argument Lists
	5.4 Specify Object Arguments Over Primitives
	5.5 Avoiding Automatic Array Conversion

	Chapter 6. Annotations
	6.1 Using Standard Annotation Types
	6.2 Annotating an Overriding Method
	6.3 Annotating a Deprecated Method
	6.4 Suppressing Warnings
	6.5 Creating Custom Annotation Types
	6.6 Annotating Annotations
	6.7 Defining an Annotation Type's Target
	6.8 Setting the Retention of an Annotation Type
	6.9 Documenting Annotation Types
	6.10 Setting Up Inheritance in Annotations
	6.11 Refle cting on Annotations

	Chapter 7. The for/in Statement
	7.1 Ditching Iterators
	7.2 Iterating over Arrays
	7.3 Iterating over Collections
	7.4 Avoiding Unnecessary Typecasts
	7.5 Making Your Classes Work with for/in
	7.6 Determining List Position and Variable Value
	7.7 Removing List Items in a for/in Loop

	Chapter 8. Static Imports
	8.1 Importing Static Members
	8.2 Using Wildcards in Static Imports
	8.3 Importing Enumerated Type Values
	8.4 Importing Multiple Members with the Same Name
	8.5 Shadowing Static Imports

	Chapter 9. Formatting
	9.1 Creating a Formatter
	9.2 Writing Formatted Output
	9.3 Using the format() Convenience Method
	9.4 Using the printf() Convenience Method

	Chapter 10. Threading
	10.1 Handling Uncaught Exceptions in Threads
	10.2 Using Thread-Safe Collections
	10.3 Using Blocking Queues
	10.4 Specifying Timeouts for Blocking
	10.5 Separating Thread Logic from Execution Logic
	10.6 Using Executor as a Service
	10.7 Using Callable Objects
	10.8 Executing Tasks Without an ExecutorService
	10.9 Scheduling Tasks
	10.10 Advanced Synchronizing
	10.11 Using Atomic Types
	10.12 Locking Versus Synchronization

