

Microsoft Visual C++ Windows
Applications by Example

Code and Explanation for Real-World MFC
C++ Applications

Stefan Björnander

 BIRMINGHAM - MUMBAI

Microsoft Visual C++ Windows Applications by Example

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2008

Production Reference: ��������1170608�

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847195-56-2

www.packtpub.com

Cover Image by karl.moore (karl.moore@ukonline.co.uk)

Credits

Author

Stefan Björnander

Reviewer

S. G. Ganesh

Senior Acquisition Editor

David Barnes

Development Editor

Swapna V. Verlekar

Technical Editor

Bhupali Khule

Editorial Team Leader

Akshara Aware

Project Manager

Abhijeet Deobhakta

Project Coordinator

Brinell Catherine Lewis

Indexer

Monica Ajmera

Proofreader

Angie Butcher

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

About the Author

Stefan Björnander is a Ph.D. candidate at Mälardalen University, Sweden. He
has worked as a software developer and has taught as a senior lecturer at Umeå
University, Sweden. He holds a master's degree in computer science and his research
interests include compiler construction, mission-critical systems, and model-driven
engineering. You can reach him at stefan.bjornander@mdh.se.

I dedicate this book to my parents
Ralf and Gunilla, my sister Catharina, her husband Magnus,

and their son Emil

About the Reviewer

S. G. Ganesh is currently working as a research engineer in Siemens Corporate
Technology, Bangalore. He works in the area of Code Quality Management (CQM).
He has good experience in system software development having worked for around
five years in Hewlett-Packard's C++ compiler team in Bangalore. He also represented
the ANSI/ISO C++ standardization committee (JTC1/SC22/WG21) from 2005 to
2007. He has authored several books. The latest one is 60 Tips for Object Oriented
Programming (Tata-McGraw Hill/ISBN-13 978-0-07-065670-3). He has a master's
degree in computer science. His research interests include programming languages,
compiler design and design patterns. If you're a student or a novice developer, you
might find his website www.joyofprogramming.com to be interesting. You can reach
him at sgganesh@gmail.com.

Table of Contents
Preface	 1
Chapter 1: Introduction to C++	 7

The Compiler and the Linker	 8
The First Program	 8
Comments	 9
Types and Variables	 9

Simple Types	 10
Variables	 10
Constants	 11
Input and Output	 12
Enumerations	 12
Arrays	 13
Pointers and References	 13
Pointers and Dynamic Memory	 15
Defining Our Own Types	 18
The Size and Limits of Types	 18
Hungarian Notation	 20

Expressions and Operators	 21
Arithmetic Operators	 21
Pointer Arithmetic	 21
Increment and Decrement	 23
Relational Operators	 23
Logical Operators	 23
Bitwise Operators	 24
Assignment	 25
The Condition Operator	 25
Precedence and Associativity	 26

Statements	 27

Table of Contents

[ii]

Selection Statements	 27
Iteration Statements	 30
Jump Statements	 32
Expression Statements	 32

Functions	 32
Void Functions	 34
Local and Global Variables	 34
Call-by-Value and Call-by-Reference	 36
Default Parameters	 39
Overloading	 40
Static Variables	 40
Recursion	 41
Definition and Declaration	 42
Higher Order Functions	 43
The main() Function	 44

The Preprocessor	 45
The ASCII Table	 47
Summary	 48

Chapter 2: Object-Oriented Programming in C++	 49
The Object-Oriented Model	 50
Classes	 51

The First Example	 52
The Second Example	 55

Inheritance	 58
Dynamic Binding	 60
Arrays of Objects	 65
Pointers and Linked Lists	 65

Stacks and Linked Lists	 66
Operator Overloading	 70
Exceptions	 76
Templates	 77
Namespaces	 80
Streams and File Processing	 82
Summary	 84

Chapter 3: Windows Development	 87
Visual Studio	 88
The Document/View Model	 89
The Message System	 90
The Coordinate System	 93
The Device Context	 94

Table of Contents

[iii]

The Registry	 98
The Cursor	 98
Serialization	 99
Summary	 101

Chapter 4: Ring: A Demonstration Example	 103
The Application Wizard	 104
Colors and Arrays	 109
Catching the Mouse	 110
Drawing the Rings	 112
Setting the Coordinate System and the Scroll Bars	 113
Catching the Keyboard Input	 116
Menus, Accelerators, and Toolbars	 117
The Color Dialog	 123
The Registry	 123
Serialization	 124
Summary	 125

Chapter 5: Utility Classes	 127
The Point, Size, and Rectangle Classes	 128
The Color Class	 129
The Font Class	 130
The Caret Class	 133
The List Class	 136
The Set Class	 137
The Array Class	 140
Error Handling	 140
Summary	 142

Chapter 6: The Tetris Application	 143
The Tetris Files	 144

The Square Class	 146
The Color Grid Class	 146
The Document Class	 147
The View Class	 155

The Figure Class	 160
The Figure Information	 167

The Red Figure	 168
The Brown Figure	 168
The Turquoise Figure	 169
The Green Figure	 169
The Yellow Figure	 170
The Blue Figure	 171

Table of Contents

[iv]

The Purple Figure	 171
Summary	 172

Chapter 7: The Draw Application	 173
The Resource	 177
The Class Hierarchy 	 179
The Figure Class	 180
The TwoDimensionalFigure Class	 183
The LineFigure Class	 185
The ArrowFigure Class	 192
The RectangleFigure Class	 197
The EllipseFigure Class	 200
The TextFigure Class	 204
The FigureFileManager Class	 213
The Document Class	 215
The View Class	 233
Summary	 237

Chapter 8: The Calc Application	 239
The Resource	 242
Formula Interpretation	 243

The Tokens	 244
The Reference Class	 246
The Scanner—Generating the List of Tokens	 248
The Parser—Generating the Syntax Tree	 251
The Syntax Tree—Representing the Formula	 262

The Spreadsheet	 268
The Cell—Holding Text, Value, or Formula	 268
The Cell Matrix—Managing Rows and Columns	 286
The Target Set Matrix Class	 287

The Document/View Model	 291
The Document Class	 291
The View Class	 311

Summary	 328

Table of Contents

[�]

Chapter 9: The Word Application	 329
The Resource	 332

The Line	 332
The Position	 333
The Paragraph	 335

The Page	 360
The Document Class	 361
The View Class	 391
Summary	 409

References	 411
Index	 413

Preface
This is a book about Windows application development in C++. It addresses
some rather difficult problems that occur during the development of advanced
applications. Most books in this genre have many short code examples. This one
has only four main code examples, but rather extensive ones. They are presented
in increasing complexity order. The simplest one is the Tetris application, which
deals with graphics, timing, and message handling. The Draw application adds a
generic coordinate system and introduces more complex applications states. The Calc
application deals with formula interpretation and graph searching. Finally, in the
Word application every character is allowed to hold its own font and size, resulting in
a rather complex size and position calculation.

The book starts with an introduction to object-oriented programming in C++,
followed by an overview of the Visual Studio environment with the Ring
demonstration application as well as a presentation of some basic generic classes.
Then the main applications are presented in one chapter each.

What This Book Covers
Chapter1. Introduction to C++—C++ is a language built on C. It is strongly typed;
it has types for storing single as well as compound values. It supports dynamic
memory management with pointers. It has a large set of operators to perform
arithmetic, logical, and bitwise operations. The code can be organized into functions,
and there is a pre-processor available, which can be used to define macros.

Chapter 2. Object-oriented Programming in C++—C++ is an object-oriented language
that fully supports the object-oriented model. The main feature of the language is
the class, which can be instantiated into objects. A class can inherit another class. The
inheritance can be virtual, which provides dynamic binding. A class can contain an
object or have a pointer to another object. We can overload operators and we can throw
exceptions. We can create generic classes by using templates and we can organize our
classes into namespaces.

Preface

[�]

Chapter 3. Windows Development—The development environment of this book is
Microsoft Visual Studio, which holds several Wizards that generate skeleton code.
With their help, we create a framework which we can add our own application
specific code to. Microsoft Foundation Classes (MFC) is a powerful C++ class library
built upon the Windows 32 bits Application Interface (Win32 API). It holds many
classes to build and modify graphical Windows applications.

When an event occurs in Windows, a message is sent to the application in focus.
When we want to paint or write in a window, we need a device context, which can be
thought of both as painting toolbox and a connection to the painting canvas. When
we develop an application such as a spreadsheet program, we want the users to be
able to save their work. It can easily be obtained by serialization.

Chapter 4. Ring: A Demonstration Example—As an introduction to the main
applications of this book, we go through the step-by-step development process of a
simple application that draws rings on the painting area of a window. The rings can
be painted in different colors. We increase the painting area by using scroll bars. We
increase the user-friendliness by introducing menus, toolbars, and accelerators. The
RGB (Red, Green, Blue) standard can theoretically handle more than sixteen million
colors. We use the Color Dialog to allow the user to handle them. Finally, we add
serialization to our application.

Chapter 5. Utility Classes—There are several generic classes available in MFC, we
look into classes for handling points, sizes, and rectangles. However, some generic
classes we have to write ourselves. We create classes to handle fonts, colors, and the
caret. We also inherit MFC classes to handle lists and sets. Finally, we look into some
appropriate error handling.

Chapter 6. The Tetris Application—Tetris is a classic game. We have seven figures of
different shapes and colors falling down. The player's task is to move and rotate
them into appropriate positions in order to fill as many rows as possible. When a
row is filled it disappears and the player gets credit. The game is over when it is not
possible to add any more figures.

Chapter 7. The Draw Application—In the Draw application, the users can draw lines,
arrows, rectangles, and ellipses. They can move, resize, and change the color of
the figures. They can cut and paste one or more figures, can fill the rectangles and
ellipses, and can load and save a drawing. They can also write and modify text in
different fonts.

Chapter 8. The Calc Application—The Calc application is a spreadsheet program. The
users can input text to the cells and they can change the text's font as well as its
horizontal and vertical alignment. They can also load and save a spreadsheet and can
cut and paste a block of cells. Furthermore, the user can input a formula into a cell.
They can build expressions with the four arithmetic operators as well as parentheses.

Preface

[�]

Chapter 9. The Word Application—The Word application is a word processor program.
The users can write and modify text in different fonts and with different horizontal
alignment. The program has paragraph handling and a print preview function. The
users can cut and paste blocks of text, they can also load and save a document.

What You Need for This Book
In order to execute the code you need Visual C++ 2008, which is included in Visual
Studio 2008.

Who is This Book for
The book is ideal for programmers who have worked with C++ or other Windows-
based programming languages. It provides developers with everything they need to
build complex desktop applications using C++.

If you have already learned the C++ language, and want to take your programming
to the next level, then this book is ideal for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "The
predefined constant NULL (defined in the header file cstdlib) holds the pointer
equivalence of the zero value"

A block of code will be set as follows:

int i = 123;
double x = 1.23;

int j = (int) x;
double y = (double) i;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

// Standard print setup command
 ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)
 ON_COMMAND(ID_APP_EXIT, OnAppExit)
END_MESSAGE_MAP()

Preface

[�]

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"�������������������������� Let us start by selecting New Project in the File menu and choosing Visual C++
Projects and MFC Application with the name Ring and a suitable place on the
hard drive��".

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/5562_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction to C++
C++ is a large object-oriented language that supports many modern features. As the
name implies, it is a further development of the language C. In this chapter, you will
learn the basics of the language. The next chapter deals with the object-oriented parts
of C++. This chapter covers:

An introduction to the languge, how the compiler and linker works, the
overal structure of a program, and comments.
C++ is a typed language, which means that every value stored in the
computer memory is well defined. The type can be an integer, a real value, a
logical value, or a character.
An array is a sequence of values of the same type. Pointers and references
hold the address of a value.
In C++ there are possibilities to calculate values by using the four
fundamental rules of arithmetic. We can also compare values as well as
perform logical and bitwise operations.
The flow of a program can be directed with statements. We can choose
between two or more choices, repeat until a certain condition is fulfilled, and
we can also jump to another location in the code.
A function is a part of the code designed to perform a specific task. It is
called by the main program or by another function. It may take input, which
is called parameters, and may also return a value.
The preprocessor is a tool that performs textual substitution by the means
with macros. It is also possible to include text from other files and to include
or exclude code.

•

•

•

•

•

•

•

Introduction to C++

[�]

The Compiler and the Linker
The text of a program is called its source code. ��������������������������������� The compiler is the program that
translates the source code into target code, and the linker puts several compiled files
into an executable file.

Let us say we have a C++ program in the source code file Prog.cpp and a routine
used by the program in Routine.cpp. Furthermore, the program calls a function in
the standard library. In this case, the compiler translates the source code into object
code and the linker joins the code into the executable file Prog.exe.

If the compiler reports an error, we refer to it as compile-time error. In the same way,
if an error occurs during the execution of the program, we call it a run-time error.

The First Program
The execution of a program always starts with the function main. Below is a program
that prints the text Hello, World! on the screen.

#include <iostream>
using namespace std;

void main()
{
 cout << "Hello, World!" << endl;
}

Chapter 1

[�]

Comments
In C++, it is possible to insert comments to describe and clarify the meaning of the
program. The comments are ignored by the compiler (every comment is replaced by
a single space character). There are two types of comments: line comments and block
comments. Line comments start with two slashes and end at the end of the line.

cout << "Hello, World!" << endl; // Prints "Hello, World!".

Block comments begin with a slash and an asterisk and end with an asterisk and a
slash. A block comment may range over several lines.

/* This is an example of a C++ program.
 It prints the text "Hello, World!"
 on the screen. */

#include <iostream>
using namespace std;

void main()
{
 cout << "Hello, World!" << endl; // Prints "Hello, World!".
}

Block comments cannot be nested. The following example will result in a compile-
time error.

/* A block comment cannot be /* nested */ inside another
 one. */

A piece of advice is that you use the line comments for regular comments, and save
the block comments for situations when you need to comment a whole block of code
for debugging purposes.

Types and Variables
There are several types in C++. They can be divided into two groups: simple and
compounded. The simple types can be further classified into integral, floating, and
logical types. The compunded types are arrays, pointers, and references. They are all
(directly or indirectly) constituted by simple types. We can also define a type with
our own values, called the enumeration type.

Introduction to C++

[10]

Simple Types
There are five simple types intended for storing integers: char, wchar_t, short int, int,
and long int. They are called the integral types. The types short int and long int may be
abbreviated to short and long, respectively. As the names imply, they are designed for
storing characters, small integers, normal integers, and large integers, respectively.
The exact limits of the values possible to store varies between different compilers.

Furthermore, the integral types may be signed or unsigned. An unsigned type must
not have negative values. If the word signed or unsigned is left out, a short int, int,
and long int will be signed. Whether a char will be signed or unsigned is not defined
in the standard, but rather depends on the compiler and the underlying operational
systems. We say that it is implementation-dependent.

However, a character of the type char is always one byte long, which means that it
always holds a single character, regardless of whether it is unsigned or not. The type
wchar_t is designed to hold a character of a more complex sort; therefore, it usually
has a length of at least two bytes.

The char type is often based on the American Standard Code for Information
Exchange (ASCII) table. Each character has a specific number ranging from 0 to 127
in the table. For instance, 'a' has the number 97. With the help of the ASCII table, we
can convert between integers and characters. See the last section of this chapter for
the complete ASCII table.

int i = (int) 'a'; // 97
char c = (char) 97; // 'a'

The next category of simple types is the floating types. They are used to store
real values; that is, numbers with decimal fractions. The types are float, double,
and long double, where float stores the smallest value and long double the largest one.
The value size that each type can store depends on the compiler. A floating type
cannot be unsigned.

The final simple type is bool. It is used to store logical values: true or false.

Variables
A variable can be viewed as a box in memory. In almost every case, we do not need
to know the exact memory address the variable is stored on. A variable always has a
name, a type, and a value. We define a variable by simply writing its type and name.
If we want to, we can initialize the variable; that is, assign it a value. If we do not,
the variable's value will be undefined (it is given the value that happens to be on its
memory location).

Chapter 1

[11]

int i = 123, j;
double d = 3.14;
char c = 'a';
bool b = true;

As a char is a small integer type, it is intended to store exactly one character. A
string stores a (possibly empty) sequence of characters. There is no built-in type
for describing a string; however, there is a library class string with some basic
operations. Note that characters are enclosed by single quotations while strings are
enclosed by double quotations. In order to use strings, we have to include the header
file string and use the namespace std. Header files, classes, and namespaces are
described in the next chapter.

#include <string>
using namespace std;
char c = 'a';
string s = "Hello, World!";

We can transform values between the types by stating the new type within
parentheses. The process of transforming a value from one type to another is called
casting or type conversions.

int i = 123;
double x = 1.23;

int j = (int) x;
double y = (double) i;

Constants
As the name implies, a constant is a variable whose value cannot be altered once it
has been initialized. Unlike variables, constants must always be initialized. Constants
are often written in capital letters.

const double PI = 3.14;

Introduction to C++

[12]

Input and Output
In order to write to the standard output (normally a text window) and read from
standard input (normally the keyboard), we use streams. A stream can be thought of
as a connection between our program and a device such as the screen or keyboard.
There are predefined objects cin and cout that are used for input and output. We
use the stream operators >> and << to write to and read from a device. Similarily
to the strings above, we have to include the header file iostream and use the
namespace std.

We can write and read values of all the types we have gone through so far, even
though the logical values true and false are read and written as one and zero. The
predefined object endl represents a new line.

#include <iostream>
#include <string>
using namespace std;
void main()
{
 int i;
 double x;
 bool b;
 string s;
 cin >> i >> x >> b >> s;
 cout << "You wrote i: " << i << ", x: " << x << ", b: " << b
 << ", s: " << s << endl;
}

Enumerations
An enumeration is a way to create our own integral type. We can define which
values a variable of the type can store. In practice, however, enumerations are
essentially an easy way to define constants.

enum Cars {FORD, VOLVO, TOYOTA, VOLKSWAGEN};

Unless we state otherwise, the constants are assigned to zero, one, two, and so on.
In the example above, FORD is an integer constant with the value zero, VOLVO has the
value one, TOYOTA three, and VOLKSWAGEN four.

We do not have to name the enumeration type. In the example above, Cars can be
omitted. We can also assign an integer value to some (or all) of the constants. In the
example below, TOYOTA is assigned the value 10. The constants without assigned
values will be given the value of the preceding constant before, plus one. This
implies that VOLKSWAGEN will be assigned the value 11.

enum {FORD, VOLVO, TOYOTA = 10, VOLKSWAGEN};

Chapter 1

[13]

Arrays
An array is a variable compiled by several values of the same type. The values
are stored on consecutive locations in memory. An array may be initialized or
uninitiated. An uninitiated array must always be given a size. In the following
example, b is given the size 2 and c is given the size 4, even though only its first two
values are defined, which may cause the compiler to emit a warning.

int a[3] = {11, 12, 13};
double b[2] = {1.2, 3.4};
char c[4] = {'a', 'b'}, d[3];

A value of an array can be accessed by index notation.

int i = a[2];
double x = b[0];
char t = c[1];

13 1.2 'b'

i x t

5562_01_05

Pointers and References
A pointer is a variable containing the address of value. Let us say that the integer i
has the value 999 which is stored at the memory address 10,000. If p is a pointer to i,
it holds the value 10,000.

10000 999

10001

10000

9999

9998

p

Introduction to C++

[14]

A clearer way to illustrate the same thing is to draw an arrow from the pointer to
the value.

In almost all cases, we do not really need to know the address of the value. The
following code gives rise to the diagram above, where the ampersand (&) denotes the
address of the variable.

int i = 999;
int *p = &i;

If we want to access the value pointed at, we use the asterisk (*), which derefers the
pointer, "following the arrow". The address (&) and the dereferring (*) operator can
be regarded as each others reverses. Note that the asterisk is used on two occasions,
when we define a pointer variable and when we derefer a pointer. The asterisk is in
fact used on a third occasion, when multiplying two values.

int i = 999;
int *p = &i;
int j = *p; // 999

A reference is a simplified version of a pointer; it can be regarded as a constant
form of a pointer. A reference variable must be initialized to refer to a value and
cannot be changed later on. A reference is also automatically dereferred when we
access its value. Neither do we need to state the address of the value the reference
variable is initialized to refer to. The address-of (&) and dereferring (*) operators
are only applicable to pointers, not to references. Note that the ampersand has two
different meanings. It used as a reference marker as well as to find the address of an
expression. In fact, it is also used as the bitwise and operator. A reference is usually
drawn with a dashed line in order to distinguish it from a pointer.

int i = 999;
int &r = i;
int j = r; // 999

Chapter 1

[15]

Pointers and Dynamic Memory
Pointers (but not references) can also be used to allocate dynamic memory�������� . There
is a section of the memory called the heap that is used for dynamically allocated
memory blocks. The operators new and delete are used to allocate and deallocate
the memory. Memory not dynamically allocated is referred to as static memory.

int *p = new int;
*p = 123;
delete p;

We can also allocate memory for a whole array. Even though p is a pointer in the
example below, we can use the array index notation to access a value of the array in
the allocated memory block. When we deallocate the array, we have to add a pair of
brackets for the whole memory block of the array to be deallocated. Otherwise, only
the memory of the first value of the array would be deallocated.

int *p = new int[3];
p[0] = 123;
p[1] = 124;
p[2] = 125;
delete [] p;

The predefined constant NULL (defined in the header file cstdlib) holds the pointer
equivalence of the zero value. We say that the pointer is set to null. In the diagram,
we simply write NULL.

#include <cstdlib>
// ...
int *p = NULL;

Introduction to C++

[16]

Sometimes, the electric ground symbol is used to symbolize a null pointer. For this
reason, a null pointer is said to be a grounded pointer.

There is a special type void. It is not really a type, it is rather used to indicate the
absence of a type. We can define a pointer to void. We can, however, not derefer
the pointer. It is only useful in low-level applications where we want to examine a
specific location in memory.

void* pVoid = (void*) 10000;

The void type is also useful to mark that a function does not return a value, see the
function section later in this chapter.

In the example below, the memory block has been deallocated, but p has not been
set to null. It has become a dangling pointer; it is not null and does not really point at
anything. In spite of that, we try to access the value p points at. That is a dangerous
operation and would most likely result in a run-time error.

int *p = new int;
*p = 1;
delete p;
*p = 2

In the example below, we allocate memory for two pointers, p and q. Then we assign
p to q, by doing so we have created a memory leak. There is no way we can access or
deallocate the memory block that was pointed at by p. In fact, we deallocate the same
memory block twice as both pointers by then point at the same memory block. This
dangerous operation will most likely also result in a run-time error.

Chapter 1

[17]

p p

q q

(a) (b)

1

2

1

2

int *p = new int; // (a)
int *q = new int;
*p = 1;
*q = 2;
p = q; // (b)
delete p; // Deallocates the same memory block twice, as p
delete q; // and q point at the same memory block.

As a reference variable must be initialized to refer to a value and it cannot be
changed, it is not possible to handle dynamic memory with references. Nor can a
reference take the value null.

If we continue to allocate dynamic memory from the heap, it will eventually run out
of memory. There are two ways to handle that problem. The simplest one is to mark
the new call with nothrow (defined in namespace std). In that case, new will simply
return a null pointer when it is out of memory.

const int BLOCK_SIZE = 0x7FFFFFFF;
void* pBlock = new (nothrow) char[BLOCK_SIZE];

if (pBlock != NULL)
{
 cout << "Ok.";
 // ...
 delete [] pBlock;
}
else
{
 cout << "Out of memory.";
}

Introduction to C++

[18]

The other way is to omit the nothrow marker. In that case, the new call will throw
the exception bad_alloc in case of memory shortage. We can catch it with a
try-catch block.

using namespace std;
const int BLOCK_SIZE = 0x7FFFFFFF;

try
{
 void* pBlock = new char[BLOCK_SIZE];
 cout << "Ok.";
 // ...
 delete [] pBlock;
}

catch (bad_alloc)
{
 cout << "Out of memory.";
}

See the next chapter for more information on exceptions and namespaces.

Defining Our Own Types
It is possible to define our own type with typedef, which is a great tool for
increasing the readability of the code. However, too many defined types tend to
make the code less readable. Therefore, I advise you to use typedef with care.

int i = 1;

typedef unsigned int unsigned_int;
unsigned_int u = 2;

typedef int* int_ptr;
int_ptr ip = &i;

typedef unsigned_int* uint_ptr;
uint_ptr up = &u;

The Size and Limits of Types
The operator sizeof gives us the size of a type (the size in bytes of a value of the
type) either by taking the type surrounded by parentheses or by taking a value of
the type. The size of a character is always one byte and the signed and unsigned
forms of each integral type always have the same size. Otherwise, the sizes are
implementation-dependent. Therefore, there are predefined constants holding the
minimum and maximum values of the integral and floating types. The operator
returns a value of the predefined type size_t. Its exact definition is implementation-
dependent. However, it is often an unsigned integer.

Chapter 1

[19]

#include <iostream>
using namespace std;

#include <climits> // The integral type limit constants.
#include <cfloat> // The floating type limit constants.

void main()
{
 int iIntSize1 = sizeof (int);
 int iIntSize2 = sizeof iIntSize1;
 cout << "integer size: " << iIntSize1 << " " << iIntSize2
 << endl;

 int* pSize = &iIntSize1;
 int iPtrSize = sizeof pSize;
 cout << "pointer size: " << iPtrSize << endl;

 int array[3] = {1, 2, 3};
 int iArraySize = sizeof array;
 cout << "array size: " << iArraySize << endl << endl;

 cout << "Minimum signed char: " << SCHAR_MIN << endl;
 cout << "Maximum signed char: " << SCHAR_MAX << endl;
 cout << "Minimum signed short int: " << SHRT_MIN << endl;
 cout << "Maximum signed short int: " << SHRT_MAX << endl;
 cout << "Minimum signed int: " << INT_MIN << endl;
 cout << "Maximum signed int: " << INT_MAX << endl;
 cout << "Minimum signed long int: " << LONG_MIN << endl;
 cout << "Maximum signed long int: " << LONG_MAX << endl
 << endl;

 // The minimum value of an unsigned integral type is always
 // zero.
 cout << "Maximum unsigned char: " << UCHAR_MAX << endl;
 cout << "Maximum unsigned short int: " << USHRT_MAX << endl;
 cout << "Maximum unsigned int: " << UINT_MAX << endl;
 cout << "Maximum unsigned long int: " << ULONG_MAX << endl
 << endl;

 // There are no constants for long double.
 ��� cout << "Minimum float: " << FLT_MIN << endl;
 ��� cout << "Maximum float: " << FLT_MAX << endl;
 cout << "Minimum double: " << DBL_MIN << endl;
 cout << "Maximum double: " << DBL_MAX << endl;
}

Introduction to C++

[20]

Hungarian Notation
In order to identify a variable's type and thereby increase the readability of the code,
naming them in accordance with the Hungarian Notation is a good idea. The name
of a variable has one or two initial small letters representing its type. The notation
is named after Microsoft programmer Charles Simonyi, who was born in Budapest,
Hungary.

Letter(s) Type Example
i int int iNum;
d double double dValue;
c char char cInput;
u UINT (unsigned integer) UINT uFlags;
x int, the variable is a position in the x

direction.
int xPos;

y int, the variable is a position in the y
direction.

int yPos;

cx int, the variable is a size in the x direction. int cxSize;
cy int, the variable is a size in the y direction. int cySize;
st string string stName;
cr COLORREF COLORREF crText;
lf LOGFONT LOGFONT lfCurrFont;

Objects of some common classes have in the same manner two initial small letters
representing the class. Note that the C++ class string and the MFC class CString have
the same initial letters. However, the C++ string class will not be used in the MFC
applications of this book.

Letters Class Example
st CString CString stBuffer;
pt CPoint CPoint ptMouse;
sz CSize CSize szText;
rc CRect CRect rcClip;

A pointer to an object has the initial p.

SyntaxTree* pTree;

Chapter 1

[21]

Expressions and Operators
The operations of C++ are divided into the arithmetic, relational, logical, and bitwise
operators as well as simple and compound assignment. Moreover, there is the
conditional operator.

In the figure below, + is an operator, a and b are operands, and the whole term is
an expression.

Arithmetic Operators
The arithmetic operators are addition (+), subtraction (-), multiplication (*), division
(/), and modulo (%). The first four operators are equivalent to the four fundamental
rules of arithmetic. The operators can take operands of integral and floating types.
The last operator—modulo—gives the remainder of integer division. If we mix
integral and floating types in the expression, the result will have floating type. The
modulo operator, however, can only have integral operands. The last assignment in
the following code may give rise to a compiler warning as the result of the division is
a double and is converted into an int.

int a = 10, b = 3, c;
c = a + b; // 13
c = a - b; // 7
c = a * b; // 30
c = a / b; // 3, integer division
c = a % 3; // 1, remainder
double d = 3.0;
c = a / d; // 3.333, floating type

Pointer Arithmetic
The addition and subtraction operators are also applicable to pointers. It is called
pointer arithmetic. An integral value can be added to or subtracted from a pointer. The
value of the pointer is then changed by the integral value times the size of the type
the pointer points at. As the void type is not really a type, but rather the absence of a
type, it has no size. Therefore, we cannot perform pointer arithmetic on pointers
to void.

Introduction to C++

[22]

In the code below, let us assume that iNumber is stored at memory location 10,000
and that the integer type has the size of four bytes. Then the pointer pNumber
will assume the values 10,000, 10,004, 10,008, and 10,012, not the values 10,000,
10,002, 10,003, and 10,013, as pointer arithmetic always take the size of the type
into consideration.

pNumber

103

102

101

100

10012

10008

10004

10000

int iNumber = 100;
int* pNumber = &iNumber;

pNumber = pNumber + 1;
*pNumber = iNumber + 1;

pNumber = pNumber + 1;
*pNumber = iNumber + 2;

pNumber = pNumber + 1;
*pNumber = iNumber + 3;

It is also possible to subtract two pointers pointing at the same type. The result will
be the difference in bytes between their two memory locations divided by the size of
the type.

int array[] = {1, 2, 3};
int* p1 = &array[0];
int* p2 = &array[2];
int iDiff = p2 - p1; // 2

The index notation for arrays is equivalent to the dereferring of pointers together
with pointer arithmetic. The second and third lines of the following code are by
definition interchangeable.

int array[] = {1, 2, 3};
array[1] = array[2] + 1;
*(array + 1) = *(array + 2) + 1;

Chapter 1

[23]

Increment and Decrement
There are two special operators: increment (++) and decrement (--). They add one to
or subtract one from its operand. The operator can be placed before (prefix) or after
(postfix) its operand.

int a = 1, b = 1;
++a; // 2, prefix increment
b++; // 2, postfix increment

However, there is a difference between prefix and postfix increment/decrement.
In the prefix case, the subtraction occurs first and the new value is returned; in the
postfix case, the original value is returned after the subtraction.

int a = 1, b = 1, c, d;
c = --a; // c = 0, prefix decrement
d = b--; // d = 1, postfix decrement

Relational Operators
There are six relational operators: equal to (==), not equal to (!=), less than (<), less
than or equal to (<=), greater than (>), and greater than or equal to (>=). Note that the
equal to operator is constituted by two equals signs rather than one (one equals sign
represents the assignment operator). The operators give a logical value, true or false.
The operands shall be of integral or floating type.

int i = 3;
double x = 1.2;
bool b = i > 0; // true
bool c = x == 2; // false

Logical Operators
There are three logical operators: not (!), or (||), and and (&&). They take and return
logical values of the boolean type.

int i = 3;
bool b, c, d, e;

b = (i == 3); // true
c = !b; // false
d = b || c; // true
e = b && c; // false

Introduction to C++

[24]

C++ applies lazy (also called short-circuit) evaluation, which means that it will
not evaluate more parts of the expression than is necessary to evaluate its value.
In the following example, the evaluation of the expression is completed when the
left expression (i != 0) is evaluated to false. If the left expression is false, the whole
expression must also be false because it needs both the left and right expressions to
be true for the whole expression to be true. This shows that the right expression
(1 / i == 1) will never be evaluated and the division with zero will never occur.

int i = 0;
bool b = (i != 0) && (1 / i == 1); // false;

Bitwise Operators
An integer value can be viewed as a bit pattern. Our familiar decimal system has the
base ten; it can be marked with an index 10.

234 2.100+3.10+4.1=2.10 +3.10 +4.1010
2 1 0

An integer value can also be viewed with the binary system, it has the base two. A
single digit viewed with the base two is called a bit, and the integer value is called a
bit pattern. A bit may only take the values one and zero.

1010 1.2 +0.2 +1.2 +0.2 =1.8+0.4+1.2+0.1=8+2=03 2 1 0
2

There are four bitwise operations in C++: inverse (~), and (&), or (|), and exclusive or
(^). Exclusive or means that the result is one if one of its operand bits (but not both)
is one. They all operate on integral values on bit level; that is, they examine each
individual bit of an integer value.

 10101010
2
 10101010

2
 10101010

2

& 10010110
2
 | 10010110

2
 ^ 10010110

2
 ~ 10010110

2

----------- ------------ ------------ ------------
= 10000010

2
 = 10111110

2
 = 00111100

2
 = 01101001

2

int a = 170; // 10101010
2

int b = 150; // 10010110
2

int c = a & b; // 10000010
2
 = 130

10

int d = a | b; // 10111110
2
 = 190

10

int e = a ^ b; // 00111100
2
 = 60

10

int f = ~b; // 01101001
2
 = 105

10

Chapter 1

[25]

An integer value can also be shifted to the left (<<) or to the right (>>). Do not
confuse these operators with the stream operators; they are different operators
that happen to be represented by the same symbols. Each left shift is equivalent to
doubling the value, and each right shift is equivalent to (integer) dividing the value
by two. Overflowing bits are dropped for unsigned values; the behavior of signed
values is implementation-dependent.

unsigned char a = 172; // 10101100, base 2
unsigned char b = a << 2; // 10110000, base 2 = 160, base 10

unsigned char c = 166; // 10100110, base 2
unsigned char d = c >> 2; // 00101001, base 2 = 41, base 10

cout << (int) a << " " << (int) b << " " << (int) c << " "
 << (int) d << endl;

Assignment
There are two kinds of assignment operators: simple and compound. The simple
variant is quite trivial, one or more variables are assigned the value of an expression.
In the example below, a, b, and c are all assigned the value 123.

int a, b, c, d = 123;
a = d;
b = c = d;

The compound variant is more complicated. Let us start with the additional
assignment operator. In the example below, a's value is increased by the value of b;
that is, a is given the value 4.

int a = 2, b = 4, c = 2;
a += c; // 4, equivalent to a = a + c.
b -= c; // 2, equivalent to a = a - c.

In a similar manner, there are operations -=, *=, /=, %=, |=, &=, and ^= as well as
|=, &=, ^=, <<=, and >>=.

The Condition Operator
The condition operator resembles the if-else statement of the next section. It is
the only C++ operator that takes three operands. The first expression is evaluated.
If it is true, the second expression is evaluated and its value is returned. If the first
expression instead is false, the third expression is evaluated and its value is returned.

int a = 1, b = 2, max;
max = (a > b) ? a : b; // The maximal value of a and b.

Introduction to C++

[26]

Too frequent use of this operator tends to make the code compact and hard to read.
A piece of advice is that to restrict your use of the operator to the trivial cases.

Precedence and Associativity
Given the expression 1 + 2 * 5, what is its value? It is 11 because we first multiply
two with five and then add one. We say that multiplication has a higher precedence
than addition.

What if we limit ourselves to one operator, let us pick subtraction. What is the value
of the expression 8 – 4 – 2? As we first subtract four from eight and then subtract two,
the result is two. As we evaluate the value from left to right, we say that subtraction
is left associative.

Below follows a table showing the priorities and associativities of the operator of
C++. The first operator in the table has the highest priority.

Group Operators Associatively
Brackets and fields () [] -> . Left to Right
Unary operator ! ~ ++ -- + - (type) sizeof Right to Left
Arithmetic operators * / %

+ -
Left to Right

Left to Right
Shift- and streamoperators << >> Left to Right
Relation operators < <= > >=

== !=
Left to Right

Bitwise operators &
^
|

Left to Right

Logical operators &&
||

Left to Right

Conditional operator ?: Right to Left
Assignment operators = += -= */ /= %= &= ^= |= <<= >>= Right to Left
Comma operator , Left to Right

Note that unary +, -, and * have higher priority than their binary forms. Also note
that we can always change the evaluation order of an expression by inserting
brackets at appropriate positition. The expression (1 + 2) * 5 has the value 15.

Chapter 1

[27]

Statements
There are four kinds of statements in C++ : selection, iteration, jump, and expression.

Group Statements
Selection if, if-else, switch
Iteration for, while, do-while
Jump break, continue, goto,

return

Expression expression ;

Selection Statements
The if statement needs, in its simplest form, a logical expression to decide whether
to execute the statement following the if statement or not. The example below means
that the text will be output if i ��������������������� is greater than zero.

if (i > 0)
{
 cout << "i is greater then 0";
}

We can also attach an else part, which is executed if the expression is false.

if (i > 0)
{
 cout << "i is greater then zero";
}
else
{
 cout << "i is not greater than zero";
}

Between the if and else part we can insert one or more else if part.

if (i > 0)
{
 cout << "i is greater then zero";
}
else if (i == 0)
{
 cout << "i is equal to zero";
}
else
{
 cout << "i is less than zero";
}

Introduction to C++

[28]

In the examples above, it is not strictly necessary to surround the output statements
with brackets. However, it would be necessary in the case of several statements.
In this book, brackets are always used. The brackets and the code in between is called
a block.

if (i > 0)
{
 int j = i + 1;
 cout << "j is " << j;
}

A warning may be in order. In an if statement, it is perfectly legal to use one equals
sign instead of two when comparing two values. As one equals sign is used for
assignment, not comparison, the variable i in the following code will be assigned the
value one, and the expression will always be true.

if (i = 1) // Always true.
{
 // ...
}

One way to avoid the mistake is to swap the variable and the value. As a value can
be compared but not assigned, the compiler will issue an error message if you by
mistake enter one equals sign instead of two signs.

if (1 = i) // Compile-time error.
{
 // ...
}

The switch statement is simpler than the if statement, and not as powerful. It
evaluates the switch value and jumps to a case statement with the same value. If
no value matches, it jumps to the default statement, if present. It is important to
remember the break statement. Otherwise, the execution would simply continue
with the code attached to the next case statement. The break statement is used to
jump out of a switch or iteration statement. The switch expression must have an
integral or pointer type and two case statements cannot have the same value. The
default statement can be omitted, and we can only have one default alternative.
However, it must not be placed at the end of the switch statement, even though it is
considered good practice to do so.

switch (i)
{
 case 1:
 cout << "i is equal to 1" << endl;
 break;

Chapter 1

[29]

 case 2:
 cout << "i is equal to 2" << endl;
 break;
 case 3:
 cout << "i is equal to 3" << endl;
 int j = i + 1;
 cout << "j = " << j;
 break;

 default:
 cout << "i is not equal to 1, 2, or 3." << endl;
 break;
}

In the code above, there will be a warning for the introduction of the variable j. As a
variable is valid only in its closest surrounding scope, the following code below will
work without the warning.

switch (i)
{
 // ...

 case 3:
 cout << "i is equal to 3" << endl;
 {
 int j = i + 1;
 cout << "j = " << j;
 }
 break;

 // ...
}

We can use the fact that an omitted break statement makes the execution continue
with the next statement to group several case statements together.

switch (i)
{
 case 1:
 case 2:
 case 3:
 cout << "i is equal to 1, 2, or 3" << endl;
 break;

 // ...
}

Introduction to C++

[30]

Iteration Statements
Iteration statements iterate one statement (or several statements inside a block)
as long as certain condition is true. The simplest iteration statement is the while
statement. It repeats the statement as long as the given expression is true. The
example below writes the numbers 1 to 10.

int i = 1;
while (i <= 10)
{
 cout << i;
 ++i;
}

The same thing can be done with a do-while statement.

int i = 1;
do
{
 cout << i;
 ++i;
}
while (i <= 10);

The do-while statement is less powerful. If the expression is false at the beginning,
the while statement just skips the repetitions altogether, but the do-while statement
must always execute the repetition statement at least once in order to reach the
continuation condition.

We can also use the for statement, which is a more compact variant of the while
statement. It takes three expressions, separated by semicolons. In the code below, the
first expression initializes the variable, the repetition continues as long as the second
expression is true, and the third expression is executed at the end of each repetition.

for (int i = 1; i <= 10; ++i)
{
 cout << i;
}

Similar to the switch statement, the iteration statements can be interrupted by the
break statement.

int i = 1;
while (true)
{
 cout << i;
 ++i;

Chapter 1

[31]

 if (i > 10)
 {
 break;
 }
}

Another way to construct an eternal loop is to omit the second expression of a
for statement.

for (int i = 1; ; ++i)
{
 cout << i;
 if (i > 10)
 {
 break;
 }
}

An iteration statement can also include a continue statement. It skips the rest of
the current repetition. The following example writes the numbers 1 to 10 with the
exception of 5.

for (int i = 1; i <= 10; ++i)
{
 if (i == 5)
 {
 continue;
 }

 cout << i;
}

The following example, however, will not work. Because the continue statement
will skip the rest of the while block, i ��� will never be updated, and we will be stuck in
an infinite loop. Therefore, I suggest you use the continue statement with care.

int i = 1;
while (i <= 10)
{
 if (i == 5)
 {
 continue;
 }

 cout << i;
 ++i;
}

Introduction to C++

[32]

Jump Statements
We can jump from one location to another inside the same function block by marking
the latter location with a label inside the block with the goto statement.

int i = 1;
label: cout << i;

++ i;
if (i <= 10)
{
 goto label;
}

The goto statement is, however, considered to give rise to unstructured code,
so called "spaghetti code". I strongly recommend that you avoid the goto
statement altogether.

Expression Statements
An expression can form a statement.

a = b + 1; // Assignment operator.
cout << "Hello, World!"; // Stream operator.
WriteNumber(5); // Function call.

In the above examples, we are only interested in the side effects; that a is assigned a
new value or that a text or a number is written. We are allowed to write expression
statements without side effects; even though it has no meaning and it will probably
be erased by the compiler.

a + b * c;

Functions
A function can be compared to a black box. We send in information (input) and we
receive information (output). In C++, the input values are called parameters and the
output value is called a return value. The parameters can hold every type, and the
return value can hold every type except the array.

Chapter 1

[33]

To start with, let us try the function Square. This function takes an integer and
returns its square.

int Square(int n)
{
 return n * n;
}

void main()
{
 int i = Square(3); // Square returns 9.
}

In the example above, the parameter n in Square is called a formal parameter, and the
value 3 in Square called in main is called an actual parameter.

Let us try a more complicated function, SquareRoot takes a value of double type
and returns its square root. The idea is that the function iterates and calculates
increasingly better root values by taking the mean value of the original value divided
with the current root value and the previous root value. The process continues
until the difference between two consecutive root values has reached an acceptable
tolerance. Just like main, a function can have local variables. dRoot and dPrevRoot
hold the current and previous value of the root, respectively.

#include <iostream>
using namespace std;

double SquareRoot(double dValue)
{
 const double EPSILON = 1e-12;
 double dRoot = dValue, dOldRoot = dValue;

 while (true)
 {
 dRoot = ((dValue / dRoot) + dRoot) / 2;
 cout << dRoot << endl;

 if ((dOldRoot - dRoot) <= EPSILON)
 {
 return dRoot;
 }

 dOldRoot = dRoot;
 }
}

Introduction to C++

[34]

void main()
{
 double dInput = 16;
 cout << "SquareRoot of " << dInput << ": "
 << SquareRoot(dInput) << endl;
}

Void Functions
A function does not have to return a value. If it does not, we set void as the return
type. As mentioned above, void is used to state the absence of a type rather than a
type. We can return from a void function by just stating return without a value.

void PrintSign(int iValue)
{
 if (iValue < 0)
 {
 cout << "Negative.";
 return;
 }

 if (iValue > 0)
 {
 cout << "Positive.";
 return;
 }

 cout << "Zero";
}

There is no problem if the execution of a void function reaches the end of the code,
it just jumps back to the calling function. However, a non-void function shall always
return a value before reaching the end of the code. The compiler will give a warning
if it is possible to reach the end of a non-void function.

Local and Global Variables
There are four kinds of variables. Two of them are local and global variables, which
we consider in this section. The other two kinds of variables are class fields and
exceptions, which will be dealt with in the class and exception sections of the
next chapter.

Chapter 1

[35]

A global variable is defined outside a function and a local variable is defined inside
a function.

int iGlobal = 1;

void main()
{
 int iLocal = 2;
 cout << "Global variable: " << iGlobal // 1
 << ", Local variable: " << iLocal // 2
 << endl;
}

A global and a local variable can have the same name. In that case, the name in the
function refers to the local variable. We can access the global variable by using two
colons (::).

int iNumber = 1;

void main()
{
 int iNumber = 2;
 cout << "Global variable: " << ::iNumber // 1
 << ", Local variable: " << iNumber; // 2
}

A variable can also be defined in an inner block. As a block may contain another
block, there may be many variables with the same name in the same scope.
Unfortunately, we can only access the global and the most local variable. In the inner
block of the following code, there is no way to access iNumber with value 2.

int iNumber = 1;

void main()
{
 int iNumber = 2;
 {
 int iNumber = 3;
 cout << "Global variable: " << ::iNumber // 1
 << ", Local variable: " << iNumber; // 3
 }
}

Introduction to C++

[36]

Global variables are often preceded by g_ in order to distinguish them from
local variables.

int g_iNumber = 1;

void main()
{
 int iNumber = 2;
 cout << "Global variable: " << g_iNumber // 1
 << ", Local variable: " << iNumber; // 3
}

Call-by-Value and Call-by-Reference
Say that we want to write a function for switching the values of two variables.

#include <iostream>
using namespace std;

void Swap(int iNumber1, int iNumber2)
{
 int iTemp = iNumber1; // (a)
 iNumber1 = iNumber2; // (b)
 iNumber2 = iTemp; // (c)
}

void main()
{
 int iNum1 = 1, iNum2 = 2;
 cout << "Before: " << iNum1 << ", " << iNum2 << endl;
 Swap(iNum1, iNum2);
 cout << "After: " << iNum1 << ", " << iNum2 << endl;
}

Unfortunately, this will not work; the variables will keep their values. The
explanation is that the values of iFirstNum and iSecondNum in main are copied into
iNum1 and iNum2 in Swap. Then iNum1 and iNum2 exchange values with the help if
iTemp. However, their values are not copied back into iFirstNum and iSecondNum
in main.

Chapter 1

[37]

The problem can be solved with reference calls. Instead of sending the values of the
actual parameters, we send their addresses by adding an ampersand (&) to the type.
As you can see in the code, the Swap call in main is identical to the previous one
without references. However, the call will be different.

#include <iostream>
using namespace std;

void Swap(int& iNum1, int& iNum2)
{
 int iTemp = iNum1; // (a)
 iNum1 = iNum2; // (b)
 iNum2 = iTemp; // (c)
}

void main()
{
 int iFirstNum = 1, iSecondNum = 2;
 cout << "Before: " << iFirstNum << ", " << iSecondNum
 << endl;

 Swap(iFirstNum, iSecondNum);
 cout << "After: " << iFirstNum << ", " << iSecondNum
 << endl;
}

Introduction to C++

[38]

In this case, we do not send the values of iFirstNum and iSecondNum, but rather
their addresses. Therefore, iNum1 and iNum2 in Swap does in fact contain the
addresses of iFirstNum and iSecondNum of main. As in the reference section above,
we illustrate this with dashed arrows. Therefore, when iNum1 and iNum2 exchange
values, in fact the values of iFirstNum and iSecondNum are exchanged.

A similar effect can be obtained with pointers instead of references. In that
case, however, both the definition of the function as well as the call from main
are different.

#include <iostream>
using namespace std;

void Swap(int* pNum1, int* pNum2)
{
 int iTemp = *pNum1; // (a)
 *pNum1 = *pNum2; // (b)
 *pNum2 = iTemp; // (c)
}

void main()
{
 int iFirstNum = 1, iSecondNum = 2;

 cout << "Before: " << iFirstNum << ", " << iSecondNum
 << endl;

 Swap(&iFirstNum, &iSecondNum);
 cout << "After: " << iFirstNum << ", " << iSecondNum
 << endl;
}

Chapter 1

[39]

In this case, pNum1 and pNum2 are pointers, and therefore drawn with continuous
lines. Apart from that, the effect is the same.

Default Parameters
A default parameter is a parameter that will be given a specific value if the call does
not include its value. In the example below, all three calls are legitimate. In the first
call, iNum2 and iNum3 will be given the values 9 and 99, respectively; in the second
call, iNum3 will be given the value 99. Default values can only occur from the right
in the parameter list; when a parameter is given a default value, all the following
parameters must also be given default values.

#include <iostream>
using namespace std;

int Add(int iNum1, int iNum2 = 9, int iNum3 = 99)
{
 return iNum1 + iNum2 + iNum3;
}

void main()
{
 cout << Add(1) << endl; // 1 + 9 + 99 = 109
 cout << Add(1, 2) << endl; // 1 + 2 + 99 = 102
 cout << Add(1, 2 ,3) << endl; // 1 + 2 + 3 = 6
}

Introduction to C++

[40]

Overloading
Several different functions may be overloaded, which means that they may have
the same name as long as they do not share exactly the same parameter list. C++
supports context-free overloading, the parameter lists must differ, it is not enough
to let the return types differ. The languages Ada and Lisp support context-dependent
overloading, two functions may have the same name and parameter list as long as
they have different return types.

#include <iostream>
using namespace std;

int Add(int iNum1)
{
 return iNum1;
}

int Add(int iNum1, int iNum2)
{
 return iNum1 + iNum2;
}

int Add(int iNum1, int iNum2, int iNum3)
{
 return iNum1 + iNum2 + iNum3;
}

void main()
{
 cout << Add(1) << endl; // 1
 cout << Add(1, 2) << endl; // 1 + 2 = 3
 cout << Add(1, 2 ,3) << endl; // 1 + 2 + 3 = 6
}

Static Variables
In the function below, iCount is a static local variable, which means that it is
initialized when the execution of the program starts. It is not initialized when the
function is called.

void KeepCount()
{
 static int iCount = 0;
 ++iCount;

 cout << "This function has been called " << iCount
 << "times." << endl;
}

Chapter 1

[41]

If iCount was a regular local variable (without the keyword static), the function
would at every call write that the function has been called once as iCount would be
initialized to zero at every call.

The keyword static can, however, also be used to define functions and global
variables ��� i�� nvisible to the linker and other object files.

Recursion
A function may call itself; it is called recursion. In the following example, the
mathematical function factorial (n!) is implemented. It can be defined in two ways.
The first definition is rather straightforward. The result of the function applied to a
positive integer n is the product of all positive integers up to and including n.

int Factorial(int iNumber)
{
 int iProduct = 1;

 for (int iCount = 1; iCount <= iNumber; ++iCount)
 {
 iProduct *= iCount;
 }

 return iProduct;
}

An equivalent definition involves a recursive call that is easier to implement.

int Factorial(int iNumber)
{
 if (iNumber == 1)
 {
 return 1;
 }

 else
 {
 return iNumber * Factorial(iNumber - 1);
 }
}

Introduction to C++

[42]

Definition and Declaration
It's important to distinguish between the terms definition and declaration. For a
function, its definition generates code while the declaration is merely an item of
information to the compiler. A function declaration is also called a prototype.

When it comes to mutual recursion (two functions calling each other), at least the
second of them must have a prototype to avoid compiler warnings. I recommend
that you put prototypes for all functions at the beginning of the file. In the following
example, we use two functions to decide whether a given non-negative integer is
even or odd according to the following definitions.

bool Even(int iNum);
bool Odd(int iNum);

bool Even(int iNum)
{
 if (iNum == 0)
 {
 return true;
 }

 else
 {
 return Odd(iNum - 1);
 }
}

bool Odd(int iNum)
{
 if (iNum == 0)
 {
 return false;
 }

 else
 {
 return Even(iNum - 1);
 }
}

Chapter 1

[43]

If we use prototypes together with default parameters, we can only indicate the
default value in the prototype, not in the definition.

#include <iostream>
using namespace std;

int Add(int iNum1, int iNum2 = 9, int iNum3 = 99);

void main()
{
 cout << Add(1) << endl; // 1 + 9 + 99 = 109
}

int Add(int iNum1, int iNum2 /* = 9 */, int iNum3 /* = 99 */)
{
 return iNum1 + iNum2 + iNum3;
}

Higher Order Functions
A function that takes another function as a parameter is called a higher order function.
Technically, C++ does not take the function itself as a parameter, but rather a pointer
to the function. However, the pointer mark (*) may be omitted. The following
example takes an array of the given size and applies the given function to each
integer in the array.

#include <iostream>
using namespace std;
void ApplyArray(int intArray[], int iSize, int Apply(int))
{
 for (int iIndex = 0; iIndex < iSize; ++iIndex)
 {
 intArray[iIndex] = Apply(intArray[iIndex]);
 }
}
int Double(int iNumber)
{
 return 2 * iNumber;
}
int Square(int iNumber)
{
 return iNumber * iNumber;
}
void PrintArray(int intArray[], int iSize)
{
 for (int iIndex = 0; iIndex < iSize; ++iIndex)
 {
 cout << intArray[iIndex] << " ";
 }

Introduction to C++

[44]

 cout << endl;
}
void main()
{
 int numberArray[] = {1, 2, 3, 4, 5};
 int iArraySize = sizeof numberArray / sizeof numberArray[0];
 PrintArray(numberArray, iArraySize);

 // Doubles every value in the array.
 ApplyArray(numberArray, iArraySize, Double);//2,4,6,8,10
 PrintArray(numberArray, iArraySize);
 // Squares every value in the array.
 ApplyArray(numberArray, iArraySize, Square);//4,16,36,64,100
 PrintArray(numberArray, iArraySize);
}

One extra point in the example above is the method of finding the size of an array;
we divide the size of the array with the size of its first value. This method only works
on static arrays, not on dynamically allocated arrays or arrays given as parameters to
functions. A parameter array is in fact converted to a pointer to the type of the array.
The following two function definitions are by definition equivalent.

void PrintArray(int intArray[], int iSize)
{
 // ...
}
void PrintArray(int* intArray, int iSize)
{
 // ...
}

The main() Function
The main program is in fact a function; the only special thing about it is that it is
the start point of the program execution. Just like a regular function it can have
formal parameters and return a value. However, the parameter list must have a
special format. The first parameter iArgCount is an integer indicating the number of
arguments given by the system. The second parameter vpValues (vp stands for vector
of pointers) holds the arguments. It is an array of pointers to characters, which can
be interpreted as an array of strings, holding the system arguments. However, the
first value of the array always holds the path name of the program. In some tutorials,
the traditional parameter names argc and argv are used instead iArgCount and
vpValues. The program below writes its path name and its arguments.

#include <iostream>
using namespace std;
int main(int iArgCount, char* vpValues[])
{

Chapter 1

[45]

 cout << "Path name: " << vpValues[0] << endl;
 cout << "Parameters: ";
 for (int iIndex = 1; iIndex < iArgCount; ++iIndex)
 {
 cout << vpValues[iIndex] << " ";
 }
}

The arguments can be input from the command prompt.

The return value of the main function can (besides void) only be signed or unsigned
int. The return value is often used to return an error code to the operating system;
usually, zero indicates ok and a negative value indicates an error. The program
below tries to allocate a large chunk of memory. It returns zero if it turns out well,
minus one otherwise.

#include <cstdlib>
int main()
{
 const int BLOCK_SIZE = 7FFFFFFF;
 void* pBlock = new (nothrow) char[BLOCK_SIZE];
 if (pBlock != NULL)
 {
 // ...
 delete [] pBlock;
 return 0;
 }
 return -1;
}

The Preprocessor
The preprocessor is a tool that precedes the compiler in interpreting the code. The
#include directive is one of its parts. It opens the file and includes its text. So far,
we have only included system header files, whose names are surrounded by arrow
brackets (< and >). Later on, we will include our own header files. Then we will use
parentheses instead of arrow brackets. The difference is that the preprocessor looks
for the system header files in a special system file directory while it looks for our
header files in the local file directory.

Introduction to C++

[46]

Another part of the preprocessor is the macros. There are two kinds: with or without
parameters. A macro without parameters works like a constant.

#define ARRAY_SIZE 256
int arr[ARRAY_SIZE];

The predefined macros __DATE__, __TIME__, __FILE__ , and __LINE__ holds
today's date, the current time, the current line number, and the name of the
file, respectively.

Macros with parameters act like functions with the difference being that they do not
perform any type checking, they just replace the text. A macro is introduced with the
#define directive and is often written with capitals.

#define ADD(a, b) ((a) + (b))
cout << ADD(1 + 2, 3 * 4) << endl; // 15

One useful macro is assert, it is defined in the header file cassert. It takes a
logical parameter and exits the program execution with an appropriate message
if the parameter is false. exit is a standard function that aborts the execution of
the program and returns an integer value to the operating system. When a macro
definition stretches over several lines, each line except the last one must end with
a backslash.

#define assert(test) \
{ \
 if (!(test)) \
 { \
 cout << "Assertion: \"" << #test << "\" on line " \
 << __LINE__ << " in file " << __FILE__ << "."; \
 ::exit(-1); \
 } \
}

In the error handling section of the next chapter, we will define an error checking
macro displaying the error message in a message box.

It is also possible to perform conditional programming by checking the value of
macros. In the following example, we define a system integer according to the
underlying operating system.

#ifdef WINDOWS
 #define SYSINT int
#endif

#ifdef LINUX
 #define SYSINT unsigned int
#endif

Chapter 1

[47]

#ifdef MACHINTOCH
 #define SYSINT long int
#endif

SYSINT iOpData = 0;

The ASCII Table
0 nul \0 26 sub 52 4 78 N 104 h
1 soh 27 esc 53 5 79 O 105 i
2 stx 28 fs 54 6 80 P 106 j
3 etx 29 gs 55 7 81 Q 107 k
4 eot 30 rs 56 8 82 R 108 l
5 enq 31 us 57 9 83 S 109 m
6 ack 32 blank 58 : 84 T 110 n
7 bel \a 33 ! 59 ; 85 U 111 o
8 bs \b 34 " 60 < 86 V 112 p
9 ht \t 35 # 61 = 87 W 113 q
10 lf \n 36 $ 62 > 88 X 114 r
11 vt \vt 37 % 63 ? 89 Y 115 s
12 ff \f 38 & 64 @ É 90 Z 116 t
13 cr \r 39 ' 65 A 91 [Ä 117 u
14 soh 40 (66 B 92 \ Ö 118 v
15 si 41) 67 C 93] Å 119 w
16 dle 42 * 68 D 94 ^ Ü 120 x
17 dc1 43 + 69 E 95 _ 121 y
18 dc2 44 , 70 F 96 ` é 122 z
19 dc3 45 - 71 G 97 a 123 { ä
20 dc4 46 . 72 H 98 b 124 | ö
21 nak 47 / 73 I 99 c 125 } å
22 syn 48 0 74 J 100 d 126 ~ ü
23 etb 49 1 75 K 101 e 127 delete
24 can 50 2 76 L 102 f

25 em 51 3 77 M 103 g

Introduction to C++

[48]

Summary
Let's revise the points quickly in brief as discussed in this chapter:

The text of a program is called its source code. It is translated into target code by
the compiler. The target code is then linked to target code of other programs,
finally resulting in executable code.
The basic types of C++ can be divided into the integral types char, short int,
int, and long int, and the floating types float, double, and long double. The
integral types can also be signed or unsigned.
Values of a type can be organized into an array, which is indexed by an
integer. The first index is always zero. An enum value is an enumeration of
named values. It is also possible to define new types with typedef, though that
feature should be used carefully.
A pointer holds the memory address of another value. There are operators to
obtain the value pointed at and to obtain the address of a value. A reference
is a simpler version of a pointer. A reference always holds the address of a
specific value while a pointer may point at different values. A pointer
can also be used to allocate memory dynamically; that is, during the
program execution.
The operators can be divided into the arithmetic operators addition,
subraction, multiplication, division, and modulo; the relational operators equal to,
not equal to, less than, less than or equal to, greater than, and greater than or equal
to; the logical operators not, and, and or; the bitwise operators inverse, and, or,
and xor; the assignment operators, and the condition operator. There is also
the operator sizeof, which gives the size in bytes of values of a certain type.
The statments of C++ can divided into the selection statements if and switch,
the iteration statements while and for, and the jump statements break, continue,
and goto, even thought goto should be avoided.
A function may take one or more formal parameters as input. When it is called,
a matching list of actual parameters must be provided. A function may also
return a value of arbitrary type, with the exception of array. Two functions
may be overloaded, which means they have the same name, as long as they
differ in their parameter lists. A function may call itself, directly or indirectly;
this is called recursion. A function can also have default parameters, which
means that if the caller does not provide enough parameters, the missing
parameters will be given the default values.
A macro is a textual substitution performed by the preprocessor before the
compilation of the program. Similar to functions, they may take parameters.
We can also include the text of other files into our program. Finally, we can
include and exclude certain parts of the code by conditional programming.

•

•

•

•

•

•

•

•

Object-Oriented
Programming in C++

As C++ is an object-oriented language, it fully supports the object-oriented model.
Even though it is possible to write working programs in C++ only by means of
the techniques presented in the previous chapter, I strongly suggest that you learn
the techniques of this chapter. They are what makes C++ a modern and powerful
language. This chapter covers the following topics:

First, we look into the theoretical foundation of the object-oriented model. It
consists of the three cornerstones and the five relations.
The basic feature of the object-oriented model is the class. A class can be
instanced into an object. A class consists of members, which are functions or
variables. When located inside a class, they are called methods and fields.
A class can inherit another class with its members. A method of the baseclass
can be virtual, resulting in dynamic binding. This means that the methods
connected to an object is bound during the execution of the program rather
than its compilation.
As mentioned in the previous chapter, an array consists of a sequence of
values. However, it can also consist of a sequence of objects. In that case,
there are some restrictions on the class in order to ensure that all objects are
properly initialized.
Also in the previous chapter, we looked at pointers. A pointer can very well
point at an object. The object may hold a pointer of its own that points at
another object of the same class. This will result in a linked list, a very
useful structure.
C++ holds a number of operations that operate on values of basic types.
We can also extend our classes so that objects of the classes are allowed as
operands. It is called operator overloading.

•

•

•

•

•

•

Object-Oriented Programming in C++

[50]

When an error occurs, an elegant solution is to throw an exception with
information about the error to be caught and processed in another part of
the program.
Say that we want a class to hold a list of integers or real values. Do we need
to write two different classes? Not at all. Instead, we write a template class.
Instead of integer or real, we use a generic type, which we replace with a
suitable type when we create an instance of the class.
In the previous chapter, we organized our code in functions. In this chapter,
we organize functions into classes. On top of that, we can place classes and
freestanding functions into namespaces.
Finally, we look into file processing with streams.

The Object-Oriented Model
The object-oriented model is very powerful. An object-oriented application consists
of objects. An object exists in memory during the execution of the application. In
C++, an object is defined by its class. A class can be considered a blueprint for one
or more objects with the same features. A class is defined by methods and fields. A
method is a function enclosed in a class. A field is a variable common to the whole
class. The methods and fields of a class are together referred to as its members.

The foundation of the object-oriented theory rests on three cornerstones: part
of class can be encapsulated, classes can inherit each other, and objects can be
bound dynamically.

There are five relations in the object-oriented model. A class is defined in the source
code, and one or more object of that class is created during the execution, the objects
are instances of the class. A method of one class calls a method of the same class or
another class. A class can inherit one or more other classes to reuse its functionality (a
class cannot inherit itself, neither directly or indirectly). The inheriting class is called
the subclass and the inherited class is called the baseclass. A class may have a member
that is an object of another class; this is called aggregation. A class may also have a
member pointing or referencing to an object of its own class or of another class, this
is called connection.

A member of a class (field or method) may be encapsulated. There are three levels
of encapsulation; public—the member is completely accessible, protected—the
member is accessible by subclasses, and private—the member is only accessible by
the class itself. If we omit the encapsulation indicator, the member will be private. A
struct is a construction very similar to a class. The only difference is that if we omit
the encapsulation indicator, the members will be public.

•

•

•

•

Chapter 2

[51]

Similar to a local variable, a member can also be static. A static method cannot call a
non-static method or access a non-static field. A static field is common to all objects
of the class, as opposed to a regular field where each object has its own version of
the field. Static members are not part of the object-oriented model, a static method
resembles a freestanding function and a static field resembles a global variable. They
are, however, directly accessible without creating any objects.

There is also single and multiple inheritance. Multiple inheritance means that a
subclass can have more than one baseclass. The inheritance can also be public,
protected, and private, which means that the members of the baseclass are public,
protected, and private, respectively, regardless of their own encapsulation indicators.
However, a member cannot become more public by a protected or public inheritance.
We can say the inheritance indicator lowers (straightens) the encapsulation of the
member. Private and protected inheritances are not part of the object-oriented model,
and I recommend that you always use public inheritance. I also recommend that you
use multiple inheritance restrictedly.

A function or a method with a pointer defined to point at an object of a class can
in fact point at an object of any of its subclasses. If it calls a method that is defined
in both the subclass and the baseclass and if the method of the baseclass is marked
as virtual, the method of the subclass will be called. This is called dynamic binding.
The methods must have the same name and parameter lists. We say the method of
the baseclass is overridden by the method of the subclass. Do not confuse this with
overloaded methods of the same class or of freestanding functions.

A method can also be declared as pure virtual. In that case, the class is abstract, which
means that it cannot be instantiated, only inherited. The baseclass that declare's the
pure virtual methods do not define them and its subclasses must either define all of
its baseclasses' pure virtual methods or become abstract themselves. It is not possible
to mark a class as abstract without introducing at least one pure virtual method. In
fact, a class becomes abstract if it has at least one pure virtual method.

Classes
A class is defined and implemented. The definition of the class sets the fields and the
prototypes of the methods, and the implementation defines the individual methods.

The methods can be divided into four categories: constructors, destructors, modifiers,
and inspectors. One of the constructors is called when the object is created and the
destructor is called when it is destroyed. A constructor without parameters is called
a default constructor. A class is not required to have a constructor; in fact, it does not
have to have any members at all. However, I strongly recommend that you include
at least one constructor to your classes. If there is at least one constructor, one of

Object-Oriented Programming in C++

[52]

them has to be called when the object is created, which means that unless the default
constructor is called, parameters have to be passed to the constructor when the object
is created. Methods may be overloaded the same way as freestanding functions and
a class may have several constructors as long as they have different parameter lists.
However, the class can only have one destructor because it cannot have parameters
and can therefore not be overloaded. As the names imply, modifiers modify the
fields of the class and inspectors inspect them.

The First Example
Let us start with a simple example. How about a car? What can we do with a car?
Well, we can increase and decrease the speed, we can turn left and right, and we can
read the speed and the direction of the car (let us assume we have a compass as well
as a speedometer in the car).

Let us define two constructors, one with and one without parameters (default
constructer). Every constructor has the name of the class without a return type (not
even void). The destructor does also have the name of the class preceded by a tilde
(~). In this class, we really do not need a destructor, but let us throw one in anyway.

A field in a class is often preceded by m_, identifying it as a field ('m' stands for
member) in order to distinguish them from local and global variables.

We have two fields for speed and direction: m_iSpeed and m_iDirection. We want
to increase and decrease the speed as well as turn left and right. This gives us four
modifiers: IncreaseSpeed, DecreaseSpeed, TurnLeft, and TurnRight. We also
want to read the speed and direction, which gives us two inspectors: GetSpeed and
GetDirection.

The code is often divided into several files: one header file, often named after the class
with extension .h, containing the class definition, and one implementation file, with
extension .cpp, containing the method definitions. The main function is often placed
in a third file. In this example, the files are named Car.h, Car.cpp, and Main.cpp.

Car.h
class Car
{
 public:
 Car();
 Car(int iSpeed, int iDirection);
 ~Car();

 void IncreaseSpeed(int iSpeed);
 void DecreaseSpeed(int iSpeed);

Chapter 2

[53]

 void TurnLeft(int iAngle);
 void TurnRight(int iAngle);

 int GetSpeed();
 int GetDirection();

 private:
 int m_iSpeed, m_iDirection;
};

In every class implementation file, we have to include the header file. Then we
define the methods, every method must be marked with its class name followed by
two colons (Car:: in this case) in order to distinguish between class methods and
freestanding functions.

In the first constructor, we initialize the fields value to zero with colon notation. The
colon notation can only be used in constructors and is used to initialize the values
of the fields. We have to do that in the constructor. Otherwise, the fields would be
uninitialized, meaning they would be given arbitrary values. The second constructor
initializes the fields with the given parameters. The destructor is usually used to free
dynamically allocated memory or to close opened files. We have nothing of that kind
in this program, so we just leave the destructor empty.

The modifiers take each parameter and update the values of the fields. The inspectors
return the value of one field each.

Car.cpp
#include "Car.h"
Car::Car()
 :m_iSpeed(0),
 m_iDirection(0)
{
 // Empty.
}

Car::Car(int iSpeed, int iDirection)
 :m_iSpeed(iSpeed),
 m_iDirection(iDirection)
{
 // Empty.
}

Car::~Car()
{
 // Empty.
}

Object-Oriented Programming in C++

[54]

void Car::IncreaseSpeed(int iSpeed)
{
 m_iSpeed += iSpeed;
}

void Car::DecreaseSpeed(int iSpeed)
{
 m_iSpeed -= iSpeed;
}

void Car::TurnLeft(int iAngle)
{
 m_iDirection -= iAngle;
}

void Car::TurnRight(int iAngle)
{
 m_iDirection += iAngle;
}

int Car::GetSpeed()
{
 return m_iSpeed;
}

int Car::GetDirection()
{
 return m_iDirection;
}

The main function file must also include the header file. We create an object by
writing the class name followed by the object name. If there is at least one constructor
in the class, we have to call it by sending a list of matching actual parameters (or
no parameters at all in the case of a default constructor). In this case, we can choose
between two integers (speed and direction) or no parameters at all.

One important issue to notice is that if we do not send parameters, we will also omit
the parentheses. If we do add parentheses, it would be interpreted as a function
declaration (prototype). The following line would interpret car3 as a freestanding
function that returns an object of the class Car and take no parameters. As the
function is not defined, it would result in a linking error.

Car car3();

Notice that the fields of the class are private. That means that attempting to the field
m_iSpeed at the last line would result in a compile-time error. We do not have to set
fields to private; however, it is a good practice to do so.

Chapter 2

[55]

Main.cpp
#include <iostream>
using namespace std;

#include "Car.h"

void main()
{
 Car car1(100, 90);

 cout << "Car1: " << car1.GetSpeed() // 100
 << " degrees, " << car1.GetDirection() // 90
 << " miles per hour" << endl;
 Car car2(150, 0);
 car2.TurnRight(180);

 cout << "Car2: " << car2.GetSpeed() // 150
 << " �� degrees��������������������������������� , " << car2.GetDirection() // 180
 << " miles per hour" << endl;

 Car car3;
 car3.IncreaseSpeed(200);
 car3.TurnRight(270);

 cout << "Car3: " << car3.GetSpeed() // 200
 << " �� degrees��������������������������������� , " << car3.GetDirection() // 270
 << " miles per hour" << endl;

// Causes a compiler error as m_iSpeed is a private member.
// cout << "Speed: " << car3.m_iSpeed << endl;
}

The Second Example
Let us go on to the next example, this time we model a bank account. There are a
few new items. As mentioned in the first chapter, we can define a constant inside
a function. We can also define a constant field in a class. It can only be initialized
by the constructors; thereafter, it cannot be modified. In this example, the account
number is a constant. It is written in capital letters, which is an established style.

We can also define methods to be constant. Only inspectors can be constant, as a
constant method cannot modify the value of a field. In this example, the inspectors
GetNumber and GetSaldo are constant. We cannot mark any other methods as
constant, and neither constructors nor the destructor can be constant.

In addition, objects can be constant. A constant object can only call constant methods;
that is inspectors marked as constant. In this way, we assure that the values of the
fields are not altered since the object was created.

Object-Oriented Programming in C++

[56]

We also add a copy constructor to the class, which takes a (possible constant) reference
to another object of the same class. As the name implies, it is used to create a copy of
an object. The new object can be initialized with the parentheses or the assignment
operator. The second and third of the following lines are completely interchangeable.

BankAccount accountOriginal(123);
BankAccount accountCopy1(accountOriginal);
BankAccount accountCopy2 = accountOriginal;

In the same way as a freestanding function, a method may have default parameters.
However, just as is the case of freestanding functions, we can indicate the default
values only in the method declarations. I recommend that you state the value in the
method's declaration in the header file, and surround the values by block comments
in the definition. In this example, the first constructor has a default parameter.

A method (including the constructors and the destructor) can also be inline. That
means that it is defined (not just declared) in the class definition of the header file.
There is a good rule of thumb to limit the inline methods to short ones, preferably
methods whose whole code goes into one row. In this example, the modifiers
Deposit and Withdraw as well as the inspectors GetNumber and GetSaldo are inline.

BankAccount.h
class BankAccount
{
 public:
 BankAccount(int iNumber, double dSaldo = 0);
 BankAccount(const BankAccount& bankAccount);

 void Deposit(double dAmount) {m_dSaldo += dAmount;}
 void Withdraw(double dAmount) {m_dSaldo -= dAmount;}

 int GetNumber() const {return m_iNUMBER;}
 double GetSaldo() const {return m_dSaldo; }

 private:
 const int m_iNUMBER;
 double m_dSaldo;
};

The implementation file is short; it only contains the definitions of the constructors.
Note the comments around the default value in the constructor's parameter list.
It would result in a compile-time error if we indicated the value in the
implementation file.

Chapter 2

[57]

BankAccount.cpp
#include "BankAccount.h"

BankAccount::BankAccount(int iNumber, double dSaldo /* = 0 */)
 :m_iNUMBER(iNumber),
 m_dSaldo(dSaldo)
{
 // Empty.
}

BankAccount::BankAccount(const BankAccount& bankAccount)
 :m_iNUMBER(bankAccount.m_iNUMBER),
 m_dSaldo(bankAccount.m_dSaldo)
{
 // Empty.
}

The main function creates two objects of the BankAccount class. The second one is
constant, which means that the call of the non-constant method Withdraw at the last
line would result in an error.

Main.cpp
#include <iostream>
using namespace std;

#include "BankAccount.h"

void main()
{
 BankAccount account1(123);
 account1.Deposit(100);
 cout << "Account1: number " << account1.GetNumber() // 123
 << ", $" << account1.GetSaldo() << endl; // 100

 account1.Withdraw(50);
 cout << "Account1: number " << account1.GetNumber() // 123
 << ", $" << account1.GetSaldo() << endl; // 50

 BankAccount copyAccount(account1);
 cout << "Copy Account: number " << copyAccount.GetNumber()
 << ", $" << copyAccount.GetSaldo() << endl; // 50, 123

 const BankAccount account2(124, 200);
 cout << "Account2: number " << account2.GetNumber() // 124
 << ", $" << account2.GetSaldo() << endl; // 200
// Would cause a compiler error.
// account2.Withdraw(50);
}

Object-Oriented Programming in C++

[58]

Inheritance
So far, we have only dealt with freestanding classes, let us now put three classes
together in a class hierarchy. We start with the baseclass Person, which has a
constructor that initializes the field m_stName, and a method Print that writes the
name. Print is marked as virtual; this means that dynamic binding will come into
effect when we, in the main function, define a pointer to an object of this class. We
do not have to mark the methods as virtual in the subclasses, it is sufficient to do so
in the baseclass. The constructors of a class cannot be virtual. However, every other
member, including the destructor, can be virtual and I advise you to always mark
them as virtual in your baseclass. Non-virtual methods are not a part of the object-
oriented model and were added to C++ for performance reasons only.

Person.h
class Person
{
 public:
 Person(string stName);
 virtual void Print() const;
 private:
 string m_stName;
};

Person.cpp
#include <iostream>
#include <string>

using namespace std;
#include "Person.h"

Person::Person(string stName)
 :m_stName(stName)
{
 // Empty.
}

void Person::Print() const
{
 cout << "Name: " << m_stName << endl;
}

Student and Employee are subclasses to Person, which means that they inherit all
public members of Person. Generally, they also inherit all protected members, even
though we do not have any of those in the baseclass in this case. They define their
own versions of Print with the same parameter list (in this case no parameters at
all). It is called overriding. This is not to be confused with overloading, which was

Chapter 2

[59]

refers to freestanding functions or methods of the same class. For overriding to
come into effect, the methods must have the same name and parameters list and
the method of the baseclass must be virtual. As constructors cannot be virtual, they
cannot be overridden. Two overridden methods cannot have different return types.

Student.h
class Student : public Person
{
 public:
 Student(string stName, string stUniversity);
 void Print() const;

 private:
 string m_stUniversity;
};

Student.cpp
#include <iostream>
#include <string>
using namespace std;

#include "Person.h"
#include "Student.h"

Student::Student(string stName, string stUniversity)
 :Person(stName),
 m_stUniversity(stUniversity)
{
 // Empty.
}

void Student::Print() const
{
 Person::Print();
 cout << "University: " << m_stUniversity << endl;
}

Employee.h
class Employee : public Person
{
 public:
 Employee(string stName, string stEmployer);
 void Print() const;

 private:
 string m_stEmployer;
};

Object-Oriented Programming in C++

[60]

Employee.cpp
#include <iostream>
#include <string>
using namespace std;

#include "Person.h"
#include "Employee.h"

Employee::Employee(string stName, string stEmployer)
 :Person(stName),
 m_stEmployer(stEmployer)
{
 // Empty.
}

void Employee::Print() const
{
 Person::Print();
 cout << "Company: " << m_stEmployer << endl;
}

Dynamic Binding
In the example above, it really is no problem to create static objects of the classes.
When we call Print on each object, the corresponding version of Print will be
called. It becomes a bit more complicated when we introduce a pointer to a Person
object and let it point at an object of one of the subclasses. As Print in Person is
virtual, dynamic-binding comes into force. This means that the version of Print in
the object the pointer actually points at during the execution will be called. Had it not
been virtual, Print in Person would always have been called. To access a member
of an object given a pointer to the object, we could use the dot notation together
with the dereferring operator. However, the situation is so common that an arrow
notation equivalent to those operations has been introduced. The following two lines
are by definition interchangeable:

pPerson->Print();
(*pPerson).Print();

Main.cpp
#include <iostream>
using namespace std;

#include "Person.h"
#include "Student.h"
#include "Employee.h"

Chapter 2

[61]

void main()
{
 Person person("John Smith");
 person.Print();
 cout << endl;

 ������������������������������������� Student student("Mark Jones", "MIT");
 ����������������student.Print();
 cout << endl;

 Employee employee("Adam Brown", "Microsoft");
 employee.Print();
 cout << endl;

 Person* pPerson = &person;
 pPerson->Print(); // Calls Print in Person.
 cout << endl;

 pPerson = &student;
 pPerson->Print(); // Calls Print in Student.
 cout << endl;

 pPerson = &employee;
 pPerson->Print(); // Calls Print in Employee.
}

Had we omitted the word virtual in the class Person above, we would not have
dynamic-binding, but rather static-binding. In that case, Print in Person would
always be called. As mentioned above, static-binding is present for performance
reasons only and I suggest that you always mark every method of the baseclass in
the class hierarchy as virtual.

Let us take the next logical step and continue with abstract baseclasses and pure
virtual methods. An abstract baseclass cannot be instantiated into an object, but
can be used as a baseclass in a class hierarchy. In the example above, we became
acquainted with virtual methods. In this section, we look into pure virtual methods.

A pure virtual method does not have a definition, just a prototype. A class becomes
abstract if it has at least one pure virtual method, which implies that a class cannot
be abstract without a pure virtual method. A subclass to an abstract class can choose
between defining all pure virtual methods of all its baseclasses, or become abstract
itself. In this manner, it is guaranteed that a concrete (not abstract) subclass always
has definitions of all its methods.

The next example is a slightly different version of the hierarchy of the previous
section. This time, Person is an abstract baseclass because it has the pure virtual
method Print. Its prototype is virtual and succeeded with = 0.

Object-Oriented Programming in C++

[62]

The field m_stName is now protected, which means that it is accessible by
methods in subclasses, but not by methods of other classes or by freestanding
functions. Another difference in these classes is the use of constant references in the
constructor. Instead of sending the object itself as an actual parameter, which might
be time and memory consuming, we can send a reference to the object. To make sure
that the fields of the object are not changed by the method, we mark the reference
as constant. Compare the constructor of Person in this case with the previous case.
The change does not really affect the program, it is just a way to make the program
execute faster and use less memory.

Person.h
class Person
{
 public:
 Person(const string& stName);
 virtual void Print() const = 0;
 protected:
 string m_stName;
};

Person.cpp
#include <string>
using namespace std;

#include "Person.h"

Person::Person(const string& stName)
 :m_stName(stName)
{
 // Empty.
}

As Person is an abstract class, Student must define Print in order not to become
abstract itself.

Student.h
class Student : public Person
{
 public:
 Student(const string& stName, const string& stUniversity);
 void Print() const;

 private:
 string m_stUniversity;
};

Chapter 2

[63]

In the Student class of the previous example, Print called Print in Person. This
time, Person does not have a definition of Print, so there is no method to call.
Instead, we access the Person field m_stName directly; this is allowed because in this
version it is protected in Person.

Student.cpp
#include <string>
#include <iostream>
using namespace std;

#include "Person.h"
#include "Student.h"

Student::Student(const string& stName, const string& stUniversity)
 :Person(stName),
 m_stUniversity(stUniversity)
{
 // Empty.
}

void Student::Print() const
{
 cout << "Name: " << m_stName << endl;
 cout << "University: " << m_stUniversity << endl;
}

Employee works in the same way as Student.

Employee.h
class Employee : public Person
{
 public:
 Employee(const string& stName, const string& stEmployer);
 void Print() const;

 private:
 string m_stEmployer;
};

Employee.cpp
#include <string>
#include <iostream>
using namespace std;

#include "Person.h"
#include "Employee.h"

Object-Oriented Programming in C++

[64]

Employee::Employee(const string& stName,
 const string& stEmployer)
 :Person(stName),
 m_stEmployer(stEmployer)
{
 // Empty.
}

void Employee::Print() const
{
 cout << "Name: " << m_stName << endl;
 cout << "Company: " << m_stEmployer << endl;
}

In the main function, we cannot create an object of the Person class as it is an abstract
class. Neither can we let the pointer pPerson point at such an object. However,
we can let it point at an object of the class Student or Employee. The condition for
Student and Employee being concrete classes was that they defined every pure
virtual method, so we can be sure that there always exists a definition of Print
to call.

Main.cpp
#include <string>
#include <iostream>
using namespace std;

#include "Person.h"
#include "Student.h"
#include "Employee.h"

void main()
{
// Does not work as Person is an abstract class.
// Person person("John Smith");
// person.Print();
// cout << endl;

 Student student("Mark Jones", "Berkeley");
 ����������������student.Print();
 cout << endl;

 Employee employee("Adam Brown", "Microsoft");
 employee.Print();
 cout << endl;

// In this version, there is no object person to point at.
// Person* pPerson = &person;
// pPerson->Print();
// cout << endl;

Chapter 2

[65]

 Person* pPerson = &student;
 pPerson->Print(); // Calls Print in Student.
 cout << endl;

 pPerson = &employee;
 pPerson->Print();// Calls Print in Employee.
}

Arrays of Objects
An array of objects is not really so much different from an array of values. However,
one issue to consider is that there is no way to call the constructor of each object
individually. Therefore, the class must have a default constructor or no constructor
at all. Remember that if a class has one or more constructors, one of them must be
called every time an object of the class is created.

// The default constructor is called for each car object.
Car carArray[3];
carArray[2].IncreaseSpeed(100);
// The default constructor is called for each car object.
Car *pDynamicArray = new Car[5];
pDynamicArray[4].IncreaseSpeed(100);
delete [] pDynamicArray;

Just as for values, we can also initialize an object array with a list. In that case,
we can call constructors other than the default constructor. Note that when we
introduce a new object in an array initialization list and call the default constructor,
we have to add parentheses unlike when creating freestanding objects by calling the
default constructor.

Car carArray[] = {Car(), Car(100, 90)};
carArray[0].TurnLeft(90);

Pointers and Linked Lists
A pointer may point at an object as well as a value, and a class may have a pointer
to another object as a member variable, which in turn points at another object and so
on. In this way, a linked list can be constructed. The list must end eventually, so the
last pointer points at null. A pointer to the next cell in the list is called a link.

1 2 3 NULL

m_pNextm_iValue m_iValue m_pNext m_iValue m_pNext

Object-Oriented Programming in C++

[66]

Stacks and Linked Lists
A stack is very valuable in a number of applications and it can be implemented with
a linked list. We can add a value on top of the stack, we can inspect or remove the
topmost value, and we can check whether the stack is empty. However, we cannot
do anything to the values that are not on top. The method that adds a new value on
top of the stack is called push and the method removing it is called pop. Let us say
that we push our stack three times with the values 1, 2, and 3. Then we can only
access the topmost value, 3, and not the two below, 1 or 2.

An additional point of this example is that the Value method is overloaded. The first
version returns a reference to the value; the second version is constant and returns
the value itself. This implies that the first version can be called to modify the value
of the cell and the second version can be called to inspect the value of a constant
cell object.

Cell cell1(1, NULL);
cell1.Value() = 2;

const cell2(2, NULL);
int iValue = cell2.Value();

Another way to archive the same functionality would be to add a get/set pair.

const int GetValue() const {return m_iValue;}
void SetValue(int iValue) {m_iValue = iValue;}

/// ...

Cell cell1(1, NULL);
cell1.SetValue(2);

const cell2(2, NULL);
int iValue = cell2.GetValue();

Chapter 2

[67]

In order to make the typedef definition below work, we have to declare the class
on the preceding line. It is possible to define a pointer to an unknown type as all
pointers occupy the same amount of memory regardless of what they point at.
However, it is not allowed to define arrays of unknown types or classes with fields of
unknown types.

Cell.h
class Cell;
typedef Cell* Link;

class Cell
{
 public:
 Cell(int iValue, Cell* pNextCell);

 int& Value() {return m_iValue;}
 const int Value() const {return m_iValue;}

 Link& NextLink() {return m_pNextLink;}
 const Link NextLink() const {return m_pNextLink;}

 private:
 int m_iValue;
 Link m_pNextLink;
};

Cell.cpp
#include "Cell.h"

Cell::Cell(int iValue, Link pNextLink)
 :m_iValue(iValue),
 m_pNextLink(pNextLink)
{
 // Empty.
}

Main.cpp
#include <cstdlib>
#include "Cell.h"

void main()
{
 Link pCell3 = new Cell(3, NULL);
 Link pCell2 = new Cell(2, pCell3);
 Link pCell1 = new Cell(1, pCell2);
}

Object-Oriented Programming in C++

[68]

The following structure is created by main above.

1 2 3 NULL

m_pNextm_iValue m_iValue m_pNext m_iValue m_pNext

pCell1 pCell1 pcell3

There is one more thing to think about. What happens if we run out of dynamic
memory or try to access the topmost value of an empty stack? We can deal with
the problem in some different ways, everything from ignoring it to aborting the
execution. In this case, I have limited the handling of memory shortage to the use of
the macro assert, as described in the previous chapter.

Stack.h
class Stack
{
 public:
 Stack();
 ~Stack();

 void Push(int iValue);
 void Pop();

 int Top() const;
 bool IsEmpty() const;

 private:
 Cell* m_pFirstCell;
};

Stack.cpp
#include <cstdlib>
#include <cassert>
#include "..\\LinkedList\\Cell.h"
#include "Stack.h"

Stack::Stack()
 :m_pFirstCell(NULL)
{
 // Empty.
}

Chapter 2

[69]

Stack::~Stack()
{
 Cell* pCurrCell = m_pFirstCell;

 while (pCurrCell != NULL)
 {
 Cell* pRemoveCell = pCurrCell;
 pCurrCell = pCurrCell->NextLink();
 delete pRemoveCell;
 }
}

void Stack::Push(int iValue)
{
 Cell* pNewCell = new Cell(iValue, m_pFirstCell);
 assert(pNewCell != NULL);
 m_pFirstCell = pNewCell;
}

void Stack::Pop()
{
 assert(m_pFirstCell != NULL);
 Cell* pTempCell = m_pFirstCell;
 m_pFirstCell = m_pFirstCell->NextLink();
 delete pTempCell;
}

int Stack::Top() const
{
 assert(m_pFirstCell != NULL);
 return m_pFirstCell->Value();
}

bool Stack::IsEmpty() const
{
 return (m_pFirstCell == NULL);
}

Main.cpp
#include "..\\LinkedList\\Cell.h"
#include "Stack.h"

void main()
{
 Stack stack;
 stack.Push(1);
 stack.Push(2);
 stack.Push(3);
}

Object-Oriented Programming in C++

[70]

The stack in main above gives rise to the following structure. However, when the
stack goes out of scope (at the end of main), the destructor deallocates the allocated
memory. All memory allocated with new must (or at least should) be deallocated
with delete.

3 2 1 NULL

m_pNextm_iValuem_pFirstCell m_iValue m_pNext m_iValue m_pNext

Operator Overloading
C++ supports operator overloading; that is, letting a method of a class be disguised
to look like an operator. The priority and associativity of the operators are unaffected
as well as their number of operands. As an example, let us look at a class handling
rational numbers. A rational number is a number that can be expressed as a quotient
between two integers, for instance 1/2 or 3/4. The integers are called numerator and
denominator, respectively.

Rational.h
class Rational
{
 public:
 Rational(int iNumerator = 0, int iDenominator = 1);
 Rational(const Rational& rational);
 Rational operator=(const Rational& rational);
 bool operator==(const Rational &number) const;
 bool operator!=(const Rational &number) const;
 bool operator< (const Rational &number) const;
 bool operator<=(const Rational &number) const;
 bool operator> (const Rational &number) const;
 bool operator>=(const Rational &number) const;
 Rational operator+(const Rational &number) const;
 Rational operator-(const Rational &number) const;
 Rational operator*(const Rational &number) const;
 Rational operator/(const Rational &number) const;
 friend istream &operator>>(istream &inputStream, Rational &number);
 friend ostream &operator<<(ostream &outputStream,
 const Rational &number);
 private:
 int m_iNumerator, m_iDenominator;
 void Normalize();
 int GreatestCommonDivider(int iNum1, int iNum2);
};

Chapter 2

[71]

In the class, we again use the assert macro in the constructor to avoid division by
zero, every integer is acceptable as numerator and denominator, except that the
denominator cannot be zero. The zero rational number is represented by zero as
numerator and one as denominator.

A rational number can be assigned another number as the class overloads the
assignment operator. The operator works in a way similar to the copy constructor.
One difference, however, is that while the constructor does not return a value, the
assignment operator has to return its own object. One way to solve that problem is to
use the this pointer, which is a pointer to the object. Every non-static method of the
class can access it. As the object itself shall be returned rather than a pointer to the
object, we first derefer the this pointer.

Two rational numbers are equal if their numerators and denominators are equal.
Or are they? How about 1/2 and 2/4? They should be regarded as equal. So let us
refine the rule to be that two rational numbers are equal if their numerators and
denominators in their normalized forms are equal. A normalized rational number is
a number where the numerator and the denominator have both been divided with
their Greatest Common Divider, which is the greatest integer that divides both the
numerator and the denominator. In every equality method of the class, we assume
that the numbers are normalized.

When testing whether two rational numbers are equal or not, we do not have to
re-invent the wheel. We just call the equality operator. The same goes for the
less-than-or-equal-to, greater-than, and greater-than-or-equal-to operators. We just
have to implement the less-than operator.

n1

d1

n2

d2
< n1 d1n2d2

. < .

The four rules of arithmetic are implemented in their traditional mathematical way.
The result of each operation is normalized.

n1 n2

d1 d2
+ n1 d1n2d2

.
d1 d2

.
.+

 and

n1 n2

d1 d2

-
n1 d1n2d2

.
d1 d2

.
.-

n1

d1

n2

d2

. n1 n2.
d1 d2

.
 and

n1

d1

n2

d2 n1 n2.
d1 d2

.

Object-Oriented Programming in C++

[72]

We can also overload the stream operators to read and write whole rational numbers.
The predefined classes istream and ostream are used. We read from the given
input stream and write to the given output stream. In this way, we can read from
and write to different sources, not only the keyboard and screen, but also different
kinds of files. The stream operators are not methods of the class. Instead, they are
freestanding functions. They are, however, friends of the class, which means that
they can access the private and protected members of the class; in this case, the fields
m_iNumerator and m_iDenominator. The friend feature is a rather debated way to
circumvent the encapsulation rules. Therefore, I advise you to use it with care.

The Greatest Common Divider algorithm is known as the world's oldest algorithm,
it was invented by the Greek mathematician Euclid in approximately 300 B.C. It is
often abbreviated gcd.

Rational.cpp
#include <iostream>
using namespace std;

#include <cstdlib>
#include <cassert>

#include "Rational.h"

Rational::Rational(int iNumerator, int iDenominator)
 :m_iNumerator(iNumerator),

 m_iDenominator(iDenominator)
{

 assert(m_iDenominator != 0);
 Normalize();
}

Rational::Rational(const Rational &rational)
 :m_iNumerator(rational.m_iNumerator),

 m_iDenominator(rational.m_iDenominator)
{
 // Empty.
}

Rational Rational::operator=(const Rational &rational)
{
 m_iNumerator = rational.m_iNumerator;

 m_iDenominator = rational.m_iDenominator;

Chapter 2

[73]

 return *this;
}

bool Rational::operator==(const Rational &rational) const
{
 return (m_iNumerator == rational.m_iNumerator) &&
 (m_iDenominator == rational.m_iDenominator);
}

bool Rational::operator!=(const Rational &rational) const
{
 return !operator==(rational);
}

bool Rational::operator<(const Rational &rational) const
{
 return (m_iNumerator * rational.m_iDenominator) <
 (rational.m_iNumerator * m_iDenominator);
}

bool Rational::operator<=(const Rational &rational) const
{
 return operator<(rational) || operator==(rational);
}

bool Rational::operator>(const Rational &rational) const
{
 return !operator<=(rational);
}

bool Rational::operator>=(const Rational &rational) const
{
 return !operator<(rational);
}

Rational Rational::operator+(const Rational &rational) const
{
 int iResultNumerator = m_iNumerator*rational.m_iDenominator
 + rational.m_iNumerator*m_iDenominator;
 int iResultDenominator = m_iDenominator *
 rational.m_iDenominator;

 Rational result(iResultNumerator, iResultDenominator);
 result.Normalize();
 return result;
}

Rational Rational::operator-(const Rational &rational) const
{
 int iResultNumerator = m_iNumerator*rational.m_iDenominator-
 rational.m_iNumerator*m_iDenominator;

Object-Oriented Programming in C++

[74]

 int iResultDenominator = m_iDenominator *
 rational.m_iDenominator;

 Rational result(iResultNumerator, iResultDenominator);
 result.Normalize();
 return result;
}

Rational Rational::operator*(const Rational &rational) const
{
 int iResultNumerator = m_iNumerator * rational.m_iNumerator;
 int iResultDenominator = m_iDenominator *
 rational.m_iDenominator;

 Rational result(iResultNumerator, iResultDenominator);
 result.Normalize();
 return result;
}

Rational Rational::operator/(const Rational &rational) const
{
 assert(rational.m_iNumerator != 0);

 int iResultNumerator=m_iDenominator*rational.m_iDenominator;
 int iResultDenominator=m_iNumerator*rational.m_iNumerator;
 Rational result(iResultNumerator, iResultDenominator);
 result.Normalize();
 return result;
}

istream &operator>>(istream &inputStream, Rational &rational)
{
 inputStream >> rational.m_iNumerator
 >> rational.m_iDenominator;
 return inputStream;
}

ostream &operator<<(ostream &outputStream,
 const Rational &rational)
{
 if (rational.m_iNumerator == 0)
 {
 outputStream << "0";
 }
 else if (rational.m_iDenominator == 1)
 {
 outputStream << "1";
 }

Chapter 2

[75]

 else
 {
 outputStream << "(" << rational.m_iNumerator << "/"
 << rational.m_iDenominator << ")";
 }

 return outputStream;
}

void Rational::Normalize()
{
 if (m_iNumerator == 0)
 {
 m_iDenominator = 1;
 return;
 }

 if (m_iDenominator < 0)
 {
 m_iNumerator = -m_iNumerator;
 m_iDenominator = -m_iDenominator;
 }

 int iGcd = GreatestCommonDivider(abs(m_iNumerator),
 m_iDenominator);

 m_iNumerator /= iGcd;
 m_iDenominator /= iGcd;
}

int Rational::GreatestCommonDivider(int iNum1, int iNum2)
{
 if (iNum1 > iNum2)
 {
 return GreatestCommonDivider(iNum1 - iNum2, iNum2);
 }

 else if (iNum2 > iNum1)
 {
 return GreatestCommonDivider(iNum1, iNum2 - iNum1);
 }

 else
 {
 return iNum1;
 }
}

Object-Oriented Programming in C++

[76]

Main.cpp
#include <iostream>
using namespace std;

#include "Rational.h"

void main()
{
 Rational a, b;
 cout << "Rational number 1: ";
 cin >> a;

 cout << "Rational number 2: ";
 cin >> b;
 cout << endl;

 cout << "a: " << a << endl;
 cout << "b: " << b << endl << endl;

 cout << "a == b: " << (a == b ? "Yes" : "No") << endl;
 cout << "a != b: " << (a != b ? "Yes" : "No") << endl;
 cout << "a < b: " << (a < b ? "Yes" : "No") << endl;
 cout << "a <= b: " << (a <= b ? "Yes" : "No") << endl;
 cout << "a > b: " << (a > b ? "Yes" : "No") << endl;
 cout << "a >= b: " << (a >= b ? "Yes" : "No") << endl
 << endl;
 cout << "a + b: " << a + b << endl;
 cout << "a - b: " << a - b << endl;
 cout << "a * b: " << a * b << endl;
 cout << "a / b: " << a / b << endl;
}

Exceptions
So far, we have handled errors in a rather crude way by using the assert macro.
Another, more sophisticated, way is to use exceptions. The idea is that when an error
occurs, the method throws an exception instead of returning a value. The calling
method can choose to handle the exception or to ignore it, in which case it is in turn
thrown to its calling method and so on. If no method catches the exception, the
execution of the program will finally abort with an error message.

The idea behind exceptions is that the method who discovers the error just throws
an exception. It is the calling method that decides what to do with it. The main
advantage with exceptions is that we do not have to check for errors after every
function call; an exception is thrown at one point in the code and caught at another
point. There is a predefined class exception that can be thrown. It is also possible to
throw exception of other classes, which may be a subclass of exception, but it does
not have to.

Chapter 2

[77]

Exception.cpp
#include <iostream>
#include <exception>
using namespace std;

double divide(double dNumerator, double dDenominator)
{
 if (dDenominator == 0)
 {
 throw exception("Division by zero.");
 }

 return dNumerator / dDenominator;
}

double invers(double dValue)
{
 return divide(1, dValue);
}

void main()
{
 double dValue;
 cout << ": ";
 cin >> dValue;

 try
 {
 cout << "1 / " << dValue << " = " << invers(dValue)
 << endl;
 }

 catch (exception exp)
 {
 cout << exp.what() << endl;
 }
}

Templates
Suppose that we need a stack of integers in an application. We could use the one
in the previous section. Then maybe we also need a stack of characters, and maybe
another one of car objects. It would certainly be a waste of time to repeat the coding
for each type of stack. Instead, we can write a template class with generic types.
When we create an object of the class, we specify the type of the stack. The condition
is that the methods, functions, and operators used are defined on the involved types;
otherwise, a linking error will occur. Due to linking issues, both the definition of
the class and the methods shall be included in the header file. The following is a
template version of the stack.

Object-Oriented Programming in C++

[78]

TemplateCell.h
template <typename Type>
class Cell
{
 public:
 Cell(Type value, Cell<Type>* pNextCell);

 Type& Value() {return m_value;}
 const Type Value() const {return m_value;}
 Cell<Type>*& Next() {return m_pNextCell;}
 const Cell<Type>* Next() const {return m_pNextCell;}

 private:
 Type m_value;
 Cell<Type>* m_pNextCell;
};

template <typename Type>
Cell<Type>::Cell(Type value, Cell<Type>* pNextCell)
 :m_value(value),
 m_pNextCell(pNextCell)
{
 // Empty.
}

TemplateStack.h
template <typename Type>
class TemplateStack
{
 public:
 TemplateStack();
 ~TemplateStack();

 void Push(Type value);
 void Pop();
 Type Top();
 bool IsEmpty();

 private:
 Cell<Type>* m_pFirstCell;
};
template <typename Type>
TemplateStack<Type>::TemplateStack()
 :m_pFirstCell(NULL)
{
 // Empty.
}

Chapter 2

[79]

template <typename Type>
TemplateStack<Type>::~TemplateStack()
{
 Cell<Type>* pCurrCell = m_pFirstCell;
 while (pCurrCell != NULL)
 {
 Cell<Type>* pRemoveCell = pCurrCell;
 pCurrCell = pCurrCell->Next();
 delete pRemoveCell;
 }
}
template <typename Type>
void TemplateStack<Type>::Push(Type value)
{
 Cell<Type>* pNewCell = new Cell<Type>(value,m_pFirstCell);
 assert(pNewCell != NULL);
 m_pFirstCell = pNewCell;
}

template <typename Type>
void TemplateStack<Type>::Pop()
{
 assert(m_pFirstCell != NULL);
 Cell<Type>* pRemoveCell = m_pFirstCell;
 m_pFirstCell = m_pFirstCell->Next();
 delete pRemoveCell;
}

template <typename Type>
Type TemplateStack<Type>::Top()
{
 assert(m_pFirstCell != NULL);
 return m_pFirstCell->Value();
}

template <typename Type>
bool TemplateStack<Type>::IsEmpty()
{
 return m_pFirstCell == NULL;
}

Finally, there is also a freestanding template function, in which case we do not have
to state the type of the parameters before we call the function.

Object-Oriented Programming in C++

[80]

Main.cpp
#include <iostream>
#include <string>
using namespace std;

#include <cstdlib>
#include <cassert>

#include "TemplateCell.h"
#include "TemplateStack.h"

template <typename Type>
Type Min(Type value1, Type value2)
{
 return (value1 < value2) ? value1 : value2;
}

void main()
{
 TemplateStack<int> intStack;
 intStack.Push(1);
 intStack.Push(2);
 intStack.Push(3);

 TemplateStack<double> doubleStack;
 doubleStack.Push(1.2);
 doubleStack.Push(2.3);
 doubleStack.Push(3.4);

 int i1 = 2, i2 = 2;
 ��������������������������������� cout << Min(i1, i2) << endl; // 2

 ������������������������������ string s1 = "abc", s2 = "def";
 cout << Min(s1, s2) << endl; // "def"
}

Namespaces
Code can be placed in functions and functions can be placed in classes as methods.
The next step is to create a namespace that contains classes, functions, and
global variables.

namespace TestSpace
{
 double Square(double dValue);

 class BankAccount
 {
 public:
 BankAccount();

Chapter 2

[81]

 double GetSaldo() const;

 void Deposit(double dAmount);
 void Withdraw(double dAmount);

 private:
 double m_dSaldo;
 };
};

double TestSpace::Square(double dValue)
{
 return dValue * dValue;
}

TestSpace::BankAccount::BankAccount()
 :m_dSaldo(0)
{
 // Empty.
}
// ...

void main()
{
 int dSquare = TestSpace::Square(3.14);
 TestSpace::BankAccount account;
 account.Deposit(1000);
 account.Withdraw(500);
 double dSaldo = account.GetSaldo();
}

We could also choose to use the namespace. If so, we do not have to refer to the
namespace explicitly. This is what we did with the std namespace at the beginning
of Chapter 1.

#include <iostream>
using namespace std;

namespace TestSpace
{
 // ...
};

// ...

using namespace TestSpace;

void main()
{
 cout << square(3.14);
 BankAccount account;
 account.deposit(1000);
 account.withdraw(500);
 cout << account.getSaldo();
}

Object-Oriented Programming in C++

[82]

Finally, namespaces can be nested. A namespace may hold another namespace,
which in turn can hold another namespace and so on.

#include <iostream>
using namespace std;

namespace Space1
{
 namespace Space2
 {
 double Square(double dValue);
 };
};

double Space1::Space2::Square(double dValue)
{
 return dValue * dValue;
}

void main(void)
{
 cout << Space1::Space2::Square(3);
}

Streams and File Processing
We can open, write to, read from, and close files with the help of streams. Streams
are predefined classes. ifstream is used to read from files, and ofstream is used to
write to files. They are subclasses of istream and ostream in the operator overload
section above. The program below reads a series of integers from the text file input.
txt and writes their squares to the file output.txt. The stream operator returns
false when there are no more values to be read from the file. Note that we do not
have to close the file at the end of the program, the destructor will take care of that.

TextStream.cpp
#include <iostream>
#include <fstream>
using namespace std;

void main(void)
{
 ifstream inFile("Input.txt", ios::in);
 ofstream outFile("Output.txt", ios::out);
 int iValue;
 while (inFile >> iValue)
 {
 outFile << (iValue * iValue) << endl;
 }
}

Chapter 2

[83]

The text files are written in plain text and can be viewed by the editor.

Input.txt
1
2
3
4
5

Output.txt
1
4
9
16
25

We can also read and write binary data with the stream classes. The program below
writes the numbers 1 to 10 to the file Numbers.bin and then reads the same series of
values from the file. The methods write and read take the address of the value to be
read or written and the size of the value in bytes. They return the number of bytes
actually read or written. When reading, we can check whether we have reached the
end of the file by counting the number of read bytes; if it is zero, we have reached the
end. Even though we do not have to close the file, it is appropriate to do so when the
file has been written so that the values are safely saved before we open the same file
for reading.

BinaryStreams.cpp
#include <iostream>
#include <fstream>
using namespace std;
void main(void)
{
 ofstream outFile("Numbers.bin", ios::out);
 for (int iIndex = 1; iIndex <= 10; ++iIndex)
 {
 outFile.write((char*) &iIndex, sizeof iIndex);
 }
 outFile.close();
 ifstream inFile("Numbers.bin", ios::in);
 int iValue;
 while (inFile.read((char*) &iValue, sizeof iValue) != 0)
 {
 cout << iValue << endl;
 }
}

Object-Oriented Programming in C++

[84]

The values are stored in compressed form in the binary file Numbers.bin, which is
why they are not readable in the editor. Here is a screen dump of the file:

Even though these file processing techniques are of use in many situations, we will
not use them in the applications of this book. Instead, we will use the technique of
Serialization, described in Chapter 3.

Summary
The object-oriented model rests on the three cornerstones inheritance,
encapsulation, and dynamic binding as well as the five relations instance,
inheritance, aggregation, connection, and call.
An object can be created as an instance of a class. A class consists of two
types of members: methods (member functions) and fields (member variables).
A member can be private, protected, or public. The methods of a class can be
divided into constructors, inspectors, modifications, and one destructor.
A class can inherit one or more, other baseclasses with its members. A
method of the baseclass can be virtual, resulting in dynamic binding.
An array can hold a sequence of objects. The classes of those objects have to
have a default constructor or no constructor at all in order for the objects to
be thoroughly initialized.
With the help of pointers and classes, we can create a linked list, which is a
very useful structure. With its help, we can construct a stack.
We can overload the usual operators so they take objects as operands.
However, we cannot affect the number of operands, nor the precedence or
associativity of the operators.
We can use the this pointer to access our own object and we can define
functions as friends to a class.
Exception handling is an elegant error handling method. When an error
occurs, we throw an exception. The point in the exception may or may not be
handled in another part of the code. In either case, we do not have to worry
about that when the error occurs.

•

•

•

•

•

•

•

•

Chapter 2

[85]

We can define template classes, which are instantiated with suitable types
when we instantiate objects. We can also define template functions that take
parameters of different types.
We can organize our classes, freestanding functions, and global variables
into namespace.
We can read from and write to text and binary files with the predefined
classes ifstream and ofstream.

•

•

•

Windows Development
The development environment of choice in this book is the Visual Studio from
Microsoft. In this chapter we also study the Microsoft Foundation Classes (MFC).

Visual Studio provides us with a few Wizards—tools that help us
generate code. The Application Wizard creates an application ���������framework
(a skeleton application) to which we add the specific logic and behavior
of our application.
When developing a Windows application, the Document/View model comes
in handy. The application is divided into a document object that holds the
data and performs the logic, and one or more views that take care of user
input and display information on the screen.
When an event occurs (the user clicks the mouse, the window is resized) a
message is sent to the application, it is caught by a view object and is passed
on to the document object. There are hundreds of messages in the Windows
system. However, we only catch those that interest us.
The device context can be viewed both as a canvas to paint on and as a
toolbox holding pens and brushes.
When we finish an application, we may want it to occur in the same state
when we launch it the next time. This can be archived by storing vital values
in the registry.
Serialization is an elegant way of storing and loading values to and from a
file. The framework takes care of naming, opening, and closing the file, all we
have to do is to fill in the unique values of the application.
The cursor has different appearances on different occasions. There are several
predefined cursors we can use.

•

•

•

•

•

•

•

Windows Development

[88]

Visual Studio
Visual Studio is an environment for developing applications in Windows. It has
a number of tools, such as an editor, compilers, linkers, a debugger, and a project
manager. It also has several Wizards—tools designed for rapid development. The
Wizard you will first encounter is the Application Wizard. It generates code for an
Application Framework. The idea is that we use the Application Wizard to design a
skeleton application that is later completed with more application-specific code.
There is no real magic about wizards, all they do is generate the skeleton code. We
could write the code ourselves, but it is a rather tedious job. Moreover, an application
can be run in either debug or release mode. In debug mode, additional information is
added in order to allow debugging; in release mode, all such information is omitted
in order to make the execution as fast as possible. The code of this book is developed
with Visual Studio 2008.

The Windows 32 bits Application Programming Interface (Win32 API) is a huge
C function library. It contains a couple of thousand functions for managing the
Windows system. With the help of Win32 API it is possible to totally control the
Windows operating system. However, as the library is written in C, it could be a
rather tedious job to develop a large application, even though it is quite possible.
That is the main reason for the existence of the Microsoft Foundation Classes (MFC).
It is a large C++ class library containing many classes encapsulating the functionality
of Win32 API. It does also hold some generic classes to handle lists, maps, and
arrays. MFC combines the power of Win32 API with the advantages of C++.
However, on some occasions MFC is not enough. When that happens, we can simply
call an appropriable Win32 API function, even though the application is written in
C++ and uses MFC.

Most of the classes of MFC belong to a class hierarchy with CObject at the top. On
some occasions, we have to let our classes inherit CObject in order to achieve some
special functionality. The baseclass Figure in the Draw and Tetris applications
inherits CObject in order to read or write objects of unknown classes. The methods
UpdateAllViews and OnUpdate communicate by sending pointers to CObject
objects. The Windows main class is CWnd.

In this environment, there is no function main. Actually, there is a main, but it is
embedded in the framework. We do not write our own main function, and there is
not one generated by the Application Wizard. Instead, there is the object theApp,
which is an instance of the application class. The application is launched by
its constructor.

Chapter 3

[89]

When the first version of MFC was released, there was no standard logical type in
C++. Therefore, the type BOOL with the values TRUE and FALSE was introduced.
After that, the type bool was introduced to C++. We must use BOOL when dealing
with MFC method calls, and we could use bool otherwise. However, in order to keep
things simple, let us use BOOL everywhere.

In the same way, there is a MFC class CString that we must use when calling MFC
methods. We could use the C++ built-in class string otherwise. However, let us use
CString everywhere. The two classes are more or less equivalent.

As mentioned in Chapter 1, there are two types for storing a character, char
and wchar_t. In earlier version of Windows, you were supposed to use char for
handling text, and In more modern versions you use wchar_t. In order to make
our application independent of which version it is run on, there are two macros
TCHAR and TEXT. TCHAR is the character type that replaces char and wchar_t. TEXT is
intended to encapsulate character and string constants.

 TCHAR *pBuffer;
 stScore.Format(TEXT(“Score: %d."), iScore);

There is also the MFC type BYTE which holds a value of the size of one byte, and
UINT which is shorthand for unsigned integer. Finally, all generated framework
classes have a capital C at the beginning of the name. The classes we write ourselves
do not.

The Document/View Model
The applications in this book are based on the Document/View model. Its main
idea is to have two classes with different responsibilities. Let us say we name the
application Demo, the Application Wizard will name the document class CDemoDoc
and the view class will be named CDemoView. The view class has two responsibilities:
to accept input from the user by the keyboard or the mouse, and to repaint the client
area (partly or completely) at the request of the document class or the system. The
document's responsibility is mainly to manage and modify the application data.

The model comes in two forms: Single Document Interface (SDI) and Multiple
Document Interface (MDI). When the application starts, a document object and a
view object are created, and connected to each other. In the SDI, it will continue that
way. In the MDI form, the users can then add or remove as many views they want
to. There is always exactly one document object, but there may be one or more view
objects, or no one at all.

Windows Development

[90]

The objects are connected to each other by pointers. The document object has a list of
pointers to the associated view objects. Each view object has a field m_pDocument that
points at the document object. When a change in the document's data has occurred,
the document instructs all of its views to repaint their client area by calling the
method UpdateAllViews in order to reflect the change.

Document Object

View Object 1

View Object 3

View Object 2

The Message System
Windows is built on messages. When the users press one of the mouse buttons or
a key, when they resize a window, or when they select a menu item, a message is
generated and sent to the current appropriate class.

The messages are routed by a message map. The map is generated by the Application
Wizard. It can be modified manually or with the Properties Window View (the
Messages or Events button).

The message map is declared in the file class' header file as follows:

DECLARE_MESSAGE_MAP()

The message map is implemented in the class' implementation file as follows:

BEGIN_MESSAGE_MAP(this_class, base_class)
 // Message handlers.
END_MESSAGE_MAP()

Chapter 3

[91]

Each message has it own handle, and is connected to a method of a specific form that
catches the message. There are different handlers for different types of messages.
There are around 200 messages in Windows. Here follows a table with the most
common ones. Note that we do not have to catch every message. We just catch those
we are interested in, the rest will be handled by the framework.

Message Handler/Method Sent
WM_CREATE ON_WM_CREATE/OnCreate When the window is

created, but not yet shown.
WM_SIZE ON_WM_SIZE/OnSize When the window has been

resized.
WM_MOVE ON_WM_MOVE/OnMove When the window has been

moved.
WM_SETFOCUS ON_WM_SETFOCUS/

OnSetFocus
When the window receives
input focus.

WM_KILLFOCUS ON_WM_KILLFOCUS/
OnKillFocus

When the window loses
input focus.

WM_VSCROLL ON_WM_VSCROLL/
OnVScroll

When the user scrolls the
vertical bar.

WM_HSCROLL ON_WM_HSCROLL/
OnHScroll

When the user scrolls the
horizontal bar.

WM_LBUTTONDOWN

WM_MBUTTONDOWN

WM_RBUTTONDOWN

ON_WM_LBUTTONDOWN/
OnLButtonDown

ON_WM_MBUTTONDOWN/

OnMButtonDown

ON_WM_RBUTTONDOWN/

OnRButtonDown

When the user presses the
left, middle, or right mouse
button.

WM_MOUSEMOVE ON_WM_MOUSEMOVE/
OnMouseMove

When the user moves the
mouse, there are flags
available to decide whether
the buttons are pressed.

WM_LBUTTONUP

WM_MBUTTONUP

WM_RBUTTONUP

ON_WM_LBUTTONUP/
OnLButtonUp

ON_WM_MUTTONUP/
OnMButtonUp

ON_WM_RUTTONUP/
OnRButtonUp

When the user releases the
left, middle, or right button.

WM_CHAR ON_WM_CHAR/OnChar When the user inputs a
writable character on the
keyboard.

Windows Development

[92]

Message Handler/Method Sent
WM_KEYDOWN ON_WM_KEYDOWN/

OnKeyDown
When the user presses a key
on the keyboard.

WM_KEYUP ON_WM_KEYUP/
OnKeyUp

When the user releases a
key on the keyboard.

WM_PAINT ON_WM_PAINT/OnPaint When the client area of
the window needs to
be repainted, partly or
completely.

WM_CLOSE ON_WM_CLOSE/OnClose When the user clicks at the
close button in the upper
right corner of the window.

WM_DESTROY ON_WM_DESTROY/
OnDestroy

When the window is to be
closed.

WM_COMMAND ON_COMMAND(Identifier,
Name)/OnName

When the user selects
a menu item, a toolbar
button, or an accelerator
key connected to the
identifier.

WM_COMMAND_

UPDATE

ON_COMMAND_
UPDATE_
UI(Identifier,Name)/
OnUpdateName

During idle time, when the
system is not busy with any
other task, this message
is sent in order to enable/
disable or to check menu
items and toolbar buttons.

When a user selects a menu item, a command message is sent to the application.
Thanks to MFC, the message can be routed to virtually any class in the application.
However, in the applications of this book, all menu messages are routed to the
document class. It is possible to connect an accelerator key or a toolbar button to the
same message, simply by giving it the same identity number.

Moreover, when the system is in idle mode (not busy with any other task) the
command update message is sent to the application. This gives us an opportunity
to check or disable some of the menu items. For instance, the Save item in the File
menu should be grayed (disabled) when the document has not been modified and
does not have to be saved. Say that we have a program where the users can paint in
one of three colors. The current color should be marked by a radio box.

The message map and its methods can be written manually or be generated with the
Resource View (the View menu in Visual Studio) which can help us generate the
method prototype, its skeleton definition, and its entry in the message map.

Chapter 3

[93]

The Resource is a system of graphical objects that are linked to the application. When
the framework is created by the Application Wizard, the standard menu bar and
toolbar are included. We can add our own menus and buttons in Resource Editor, a
graphical tool of Visual Studio.

For more information about creating a framework application and handling
messages, see the Ring Application in the next chapter.

The Coordinate System
In Windows, there are device (physical) and logical coordinates. There are several
logical coordinate mapping systems in Windows. The simplest one is the text system;
it simply maps one physical unit to the size of a pixel, which means that graphical
figures will have different size monitors with different sizes or resolutions. This
system is used in the Ring and Tetris applications.

The metric system maps one physical unit to a tenth of a millimeter (low metric) or
a hundredth of a millimeter (high metric). The Draw, Calc, and Word applications
of this book use the high metric system. There is also the British system that maps
one physical unit to a hundredth of an inch (low English) or a thousandth of an inch
(high English). The British system is not used in this book.

The position of a mouse click is always given in device units. When a part of the
client area is invalidated (marked for repainting), the coordinates are also given
in device units, and when we create or locate the caret, we use device coordinates.
Except for these events, we translate the positions into logical units of our choice. We
do not have to write translation routines ourselves, there are device context methods
LPtoDP (Logical Point to Device Point) and DPtoLP (Device Point to Logical Point) in
the next section that do the job for us. The setting of the logical unit system is done in
OnInitialUpdate and OnPrepareDC in the view classes.

In the Ring and Tetris Applications, we just ignore the coordinates system and
use pixels. In the Draw application, the view class is a subclass of the MFC class
CScrollView. It has a method SetScrollSizes that takes the logical coordinate
system and the total size of the client area (in logical units). Then the mapping
between the device and logical system is done automatically and the scroll bars are
set to appropriate values when the view is created and each time its size is changed.

void SetScrollSizes(int nMapMode, CSize sizeTotal,
 const CSize& sizePage = sizeDefault,
 const CSize& sizeLine = sizeDefault);

Windows Development

[94]

In the Calc and Word Applications, however, we set the mapping between the
device and logical system manually by overriding the OnPrepareDC method. It calls
the method SetMapMode which sets the logical horizontal and vertical units to be
equal. This ensures that circles will be kept round. The MFC device context method
GetDeviceCaps returns the size of the screen in pixels and millimeters. Those values
are used in the call to SetWindowExt and SetViewportExt, so that the logical unit is
one hundredth of a millimeter also in those applications. The SetWindowOrg method
sets the origin of the view's client area in relation to the current positions of the scroll
bars, which implies that we can draw figures and text without regarding the current
positions of the scroll bars.

int SetMapMode(int iMapMode);
int GetDeviceCaps(int iIndex) const;
CSize SetWindowExt(CSize szScreen);
CSize SetViewportExt(CSize szScreen);
CPoint SetWindowOrg(CPoint ptorigin);

The Device Context
The device context can be thought of as a toolbox, equipped with pens and brushes,
as well as a canvas on which we can draw lines, paint figures, and write text. It also
contains methods for converting between device and logical units. Finally, it can be
regarded as a connection between our program and the screen or printer.

In Windows, a window usually has a frame with an icon at the top left corner,
buttons to resize the window at the top right corner and, possibly a menu bar, a
toolbar, and a status bar. the white area inside the frame is called the client area. With
the help of a device context, we can paint the client area.

When the view class is created with the Application Wizard, the method OnDraw is
included. It takes a parameter pCD that is a pointer to a device context. The device
context class CDC is a very central part of a Windows application. However, CDC is an
abstract class, a device context object is instantiated from the subclass ClientDC. In
order to draw lines or paint areas we need a pen and a brush.

CPen(int iPenStyle, int iWidth, COLORREF crColor);
CBrush(COLORREF crColor);

Chapter 3

[95]

The pen style can be solid, dashed, or dotted. However, in the applications of this
book, we settle with the solid style. If the width of the line is set to zero, the line will
be drawn as thin as possible (one pixel) on the output device (screen or printer). We
also need to select the pen and brush for the device context, and when we have used
them, we reset the drawing system by returning the previous ones.

void GraphicalClass::Draw(CDC* pDC) const
{
 CPen pen(PS_SOLID, 0, BLACK);
 CBrush brush(WHITE);

 CPen* pOldPen = pDC->SelectObject(&pen);
 CBrush* pOldBrush = pDC->SelectObject(&brush);

 // Painting the client area.

 pDC->SelectObject(&pOldBrush);
 pDC->SelectObject(&pOldPen);
}

For drawing and painting, there are a number of methods to call.

BOOL MoveTo(int x, int y);
BOOL LineTo(int x, int y);
BOOL Rectangle(int x1, int y1, int x2, int y2);
BOOL Ellipse(int x1, int y1, int x2, int y2);

When we write text, we do not have to select a pen or a brush. Instead, we set the
text and background colors directly by calling the methods below. They return the
previous set text and background color, respectively. We do not have to put back the
previous colors.

COLORREF SetTextColor(COLORREF crColor);
COLORREF SetBkColor(COLORREF crColor);

DrawText does the actual writing of the text. Besides the text, it takes the rectangle
where the text will be written inside. It also takes a number of flags to align the text
in the rectangle. Possible flags for horizontal alignment are DT_LEFT, DT_CENTER,
and DT_RIGHT, possible flags for vertical alignment are DT_TOP, DT_VCENTER, and
DT_BOTTOM. If there is not enough room for the text in the given rectangle, the
text is wrapped. That can be avoided with the DT_SINGLE_LINE flag. TextOut is a
simpler version of DrawText. It takes a position and text that are by default written
with the position at its top left corner. It can be combined with a preceding call to
SetTextAlign that sets the horizontal and vertical alignment of the written text.

int DrawText(const CString& stText, LPRECT pRect,
 UINT uFormat);
BOOL TextOut(int xPos, int yPos, const CString& stText);
UINT SetTextAlign(UINT uFlags);

Windows Development

[96]

SetTextJustification is a rather special method that is used in the Calc
application to write the values of cells. It ensures that the following calls to DrawText
insert extra long spaces between the words in order to display the text in justified
horizontal alignment. It takes the total width of the spaces and the number of spaces
as parameters. After the writing of the text, we should reset the alignment with
another call to SetTextJustification to prevent succeeding calls to DrawText to
write with justified alignment. The horizontal alignment is irrelevant when the call to
DrawText has been preceded by a call to SetTextJustification.

int SetTextJustification(int iTotalSpaceWidth,
 int iNumberOfSpaces);

However, before we write text, we have to select a font. In the applications of this
book, the font is represented by the Font class later in this chapter. Note that the
font size is stored in typographical points (1/72 inch) and needs to be translated into
logical units.

void GraphicalClass::Draw(CDC* pDC) const
{
 Font font(“Times New Roman", 12);
 CFont cFont;
 cFont.CreateFontIndirect(font.PointsToMeters());
 CFont* pPrevFont = pDC->SelectObject(&cFont);

 pDC->SetTextColor(BLACK);
 pDC->SetBgColor(WHITE);

 pDC->DrawText(“Hello, World!", CRect(0, 0, 1000, 1000),
 DT_SINGLELINE | DT_CENTER | DT_VCENTER);
 pDC->SelectObject(pPrevFont);
}

GetTextMetrics fills a structure with information about the average dimension of a
text written in a specific font. The measured values are given in logical units.

typedef struct tagTEXTMETRIC
{
 LONG tmHeight; // Height of the text.
 LONG tmAscent; // Ascent line of the text.
 LONG tmAveCharWidth; // Average width of the text, roughly
 // equal to the width of the character
 // 'z'.
 LONG tmDescent;
 LONG tmInternalLeading;
 LONG tmExternalLeading;
 LONG tmMaxCharWidth;
 LONG tmWeight;

Chapter 3

[97]

 LONG tmOverhang;
 LONG tmDigitizedAspectX;
 LONG tmDigitizedAspectY;
 TCHAR tmFirstChar;
 TCHAR tmLastChar;
 TCHAR tmDefaultChar;
 TCHAR tmBreakChar;
 BYTE tmItalic;
 BYTE tmUnderlined;
 BYTE tmStruckOut;
 BYTE tmPitchAndFamily;
 BYTE tmCharSet;
} TEXTMETRIC, *PTEXTMETRIC;

BOOL GetTextMetrics(TEXTMETRIC* pTextMetrics) const;

Of the fields above, we will only use the first three ones in the applications of this
book. This method will be called when we actually do not have any text to write (an
empty cell or an empty paragraph), but when we, nevertheless, need information
about the width, height, and ascent line of text in a particular font. See The Word
Application chapter for a description of the ascent line.

When we have a text to write, we can use GetTextExtent instead. It takes a text and
returns the size of it in the selected font in logical units.

CSize GetTextExtent(const CString& stText) const;

When the user clicks the mouse on a certain position, the position is given in device
coordinates that need to be translated into logical coordinates. When a part of the
client area is to be marked for repainting (invalidated), the area should be given in
device coordinates. DPtoLP (Device Coordinates to Logical Coordinates) and LPtoDP
(Logical Coordinates to Device Coordinates) translates MFC class objects CSize, and
CRect, and (one or more) CPoint objects between logical and device coordinates.

void DPtoLP(CSize* pSize) const;
void DPtoLP(CRect* pRect) const;
void DPtoLP(CPoint* pPoints, int iNumberofPoints = 1) const;

void LPtoDP(CSize* pSize) const;
void LPtoDP(CRect* pRect) const;
void LPtoDP(CPoint* pPoints, int iNumberOfPoints = 1) const;

IntersectClipRect limits the invalidated area (the part of the client area that is to
be repainted).

int IntersectClipRect(CRect* pRect);

Windows Development

[98]

All of the methods above return true if the operation was successful.

The Registry
The registry is a series of files, stored on the local hard drive, that stores application
specific information. The MFC application class CWinApp has a number of methods
to communicate with the registry. It is possible to read or write an integer, a block
of memory, or a string. The global MFC function AfxGetApp returns a pointer to the
application class object. There can only be one such object. The stSection in the
methods below is usually the name of the application and the stEntry is the name of
the value.

GetProfileBinary returns true if the reading was successful. GetProfileInt and
GetProfileString take a default value that is returned if the entry was not found.
WriteProfileBinary, WriteProfileInt, and WriteProfileString all return true
on successful writing.

UINT GetProfileInt(CString stSection, CString stEntry, int iDefault);
CString GetProfileString(CString stSection, CString stEntry,
 CString stDefault);
BOOL GetProfileBinary(CString stSection, CString stEntry,
 LPBYTE* ppData, UINT* pBytes);

BOOL WriteProfileInt(CString stSection, CString stEntry, int nValue);
BOOL WriteProfileString(CString stSection, CString stEntry,
 CString stValue);
BOOL WriteProfileBinary(CString stSection, CString stEntry,
 LPBYTE pData, UINT nBytes);

The Cursor
The message WM_CURSOR is sent to the view class when the application is in idle mode
(not busy with anything else). The answer to the message is handled to the preferred
cursor. There are a number of standard cursors that are returned by the CWinApp
method LoadStandardCursor. The global function AfxGetApp returns a pointer to
the application object (there is only one). The cursor is set in the view class by the
SetCursor Win32 API function.

CWinApp* AfxGetApp();
HCURSOR LoadStandardCursor(CString stCursorName) const;
HCURSOR SetCursor(HCURSOR hCursor);

Chapter 3

[99]

The parameter stCursorName could be any of the following predefined constants.

IDC_ARROW Standard arrow cursor.
IDC_IBEAM Standard text-insertion cursor.
IDC_CROSS Cross-hair cursor for selection.
IDC_SIZEALL A four-pointed arrow, the cursor used to resize a window.
IDC_SIZEWE Horizontal two-headed arrow.
IDC_SIZENS Vertical two-headed arrow.
IDC_SIZENWSE Two-headed arrow aimed at the upper left and lower right corner.
IDC_SIZENESW Two-headed arrow aimed at the upper right and lower left corner.

Serialization
Serialization is the process of writing to and reading from a file. When the user
chooses to open or save a file, the framework calls the method Serialize of
the document class. Every serialized class must have a default constructor and
implement the serial macro. If we read an object of an unknown class, which we do
in the Tetris and Draw applications, the class must be a subclass of the MFC root
class CObject.

We can store or load values in three ways. If we want to read or write a block of
memory (such as an array), we can use the CArchive methods Write and Read to
transfer a block between the file and the memory. Read takes the maximum number
of bytes (the buffer size) to be read to the buffer and returns the number of bytes
actually read.

void Write(const void* pBuffer, UINT uSize);
UINT Read(void* pBuffer, UINT uMaxSize);

For the basic types of C++, the stream operators are overloaded. Many classes define
their own Serialize; in that case, we just have to call it with the archive object as
parameter. The following code comes from the Tetris application.

void CRingDoc::Serialize(CArchive& archive)
{
 if (archive.IsStoring())
 {
 archive << m_iRow << m_iCol;
 archive.Write(&m_northArray, sizeof m_northArray);
 }

Windows Development

[100]

 if (archive.IsLoading())
 {
 archive >> m_iRow >> m_iCol;
 archive.Read(&m_northArray, sizeof m_northArray);
 }

 m_font.Serialize(archive);
}

On some occasions, we do not know which class the object to be read or written
is an instance of. In those cases, we can use the methods WriteClass, ReadClass,
WriteObject, and ReadObject. When writing an object, we first write information
about its class. We can extract that information with the CObject method
GetRuntimeClass that returns a pointer to an object of CRuntimeClass. As
GetRuntimeClass is a method of CObject, the class of the object to be read or
written must be a (direct or indirect) subclass of CObject.

CRuntimeClass* GetRuntimeClass() const;
void WriteClass(const CRuntimeClass* pClass);
void WriteObject(const CObject* pObject);
CRuntimeClass* ReadClass(const CRuntimeClass* pClass);
CObject* ReadObject(const CRuntimeClass* pClass);

When writing an object, we first call WriteClass to store information about the
object, and then we call WriteObject to store the object itself. Likewise, when
reading an object, we first call ReadClass to read information about the next object in
the file, and then we call ReadObject to read the actual object. This technique is used
in the Tetris and Draw applications, the following code is from the Draw application.
Figure is an abstract baseclass and we store and load objects of subclasses to Figure.
In each case, we do not know which subclass, we only know that it is a subclass of
Figure.

Figure* pFigure = m_figurePtrList.GetAt(position);
archive.WriteClass(pFigure->GetRuntimeClass());
archive.WriteObject(pFigure);

CRuntimeClass* pClass = archive.ReadClass();
Figure* pFigure = (Figure*) archive.ReadObject(pClass);
m_figurePtrList.AddTail(pFigure);

Chapter 3

[101]

Summary
The Application Wizard creates an application framework that we extend
with code specific for the application. The Class Wizard helps us catch and
handle messages.
The document/view model consists of one document object, handling the
application logic, and one or several view objects, handling user input and
data presentation.
Every time an event occurs, a message is sent to the application in focus. We
can generate handling code with Class Wizard.
The device context can be viewed both as a canvas to paint on, a toolbox
holding pens and brushes, and a connection to the screen and printer.
Between executions, we can store the state of the application in the registry.
The cursor can be set to standard representations.
We can save and load document data by the means of Serialization.

•

•

•

•

•

•

•

 Ring: A Demonstration
Example

This chapter presents a simple Windows application, with the purpose of
introducing the features of MFC. When the user clicks the left mouse button, a ring
is drawn. The user can choose the color of the next ring as well as save and load the
set of rings. We will start by creating the framework with the help of the Application
Wizard, and then add application specific code.

We store the colors and positions of the ring in an array. There is a
predefined type COLORREF holding a color.
When the user presses or releases the mouse, messages are sent to
the application. We use the Class Wizard to create methods that detect
the messages.

•

•

Ring: A Demonstration Example

[104]

We can paint the rings by overriding the Draw method and using the
methods of the Device Context.
The paint area may not fit into the window. We can add scroll bars and
define the size of the underlying canvas.
As well as detecting mouse clicks, we can also write methods that detect
when the user presses a keyboard key.
In order to increase the user-friendliness of the application, we can add
menus, accelerators, and toolbars.
Using the RGB standard, we can theoretically handle more than 16 million
colors. These colors are easier to handle with a Color Dialog.
When finishing the application, we can store the latest used color in the
registry. When starting the application, we read the state from the registry.
Finally, we save and load the colors and positions of the rings by
using Serialization.

The Application Wizard
Let us start by selecting New Project in the File menu and choosing Visual C++
Projects����� and MFC Application with the name Ring and a suitable place on the
hard drive.

•

•

•

•

•

•

•

Chapter 4

[105]

Then we get the first of several Application Wizard dialogs.

We select Application Type and accept the default settings.

Ring: A Demonstration Example

[106]

The same goes for Compound Document Support.

When we come to Document Template Strings we add Rng for the File extension.
Otherwise, we accept the default settings.

Chapter 4

[107]

We have no Database Support in this application, so we accept the default settings.

In User Interface Features, we accept the default settings.

Ring: A Demonstration Example

[108]

The same goes for Advanced Features.

We change the base class of CRingView �����from� CView to CScrollView.

Chapter 4

[109]

We finally choose Finish, and a fully functional application is generated. We can
now compile and run this generated application code. Here is a snapshot of
the application.

This is the main idea of the Application Framework and the Application Wizard.
By now, we have generated a framework to which we will add application-specific
functionality. We will only modify the classes CRingDoc and CRingView. We will not
change anything in the other classes generated by the Application Wizard.

Colors and Arrays
Let us first look at CRingDoc. We start by adding two types, ColorArray and
PointArray. As the names implies, they are arrays of colors and points. The Win32
API type COLORREF stores a color according to the RGB (Red, Green, Blue) standard.
There is also a class CPoint defined in MFC; it handles a point in a two-dimensional
coordinate system. In order to create an array, we can use the MFC template class
CArray. To do so, we have to include the header file AfxTempl.h.

We will need three colors: WHITE, GREY, and BLACK. We can use the RGB macro to
define them as static constants. Let us finally add two private fields to the class:
m_colorArray and m_pointArray.

Ring: A Demonstration Example

[110]

RingDoc.h
// RingDoc.h : interface of the CRingDoc class
//
#include <AfxTempl.h>
typedef CArray<CPoint> PointArray;
typedef CArray<COLORREF> ColorArray;
static const COLORREF WHITE = RGB(255, 255, 255);
static const COLORREF GREY = RGB(128, 128, 128);
static const COLORREF BLACK = RGB(0, 0, 0);
class CRingDoc : public CDocument
{
protected: // create from serialization only
 CRingDoc();
 DECLARE_DYNCREATE(CRingDoc)
// Attributes
public:
// Operations
public:
// Overrides
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
// Implementation
public:
 virtual ~CRingDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif
protected:

// Generated message map functions
protected:
 DECLARE_MESSAGE_MAP()

private:
 PointArray m_pointArray;
 ColorArray m_colorArray;
};

Catching the Mouse
When the user clicks the left mouse button, a message is sent from Windows to the
application. We can catch the message by opening the file RingView.cpp, choosing
View and Properties Window, and the Message button. Then we connect the
function OnLeftButtonDown to the message WM_LBUTTONDOWN.

Chapter 4

[111]

Then we have a function prototype in the RingView.h file and a skeleton function
definition in the RingView.cpp file.

RingView.cpp
void CRingView::OnLButtonDown(UINT nFlags, CPoint point)
{
 // TODO: Add your message handler code here and/or call
 // default.
 CScrollView::OnLButtonDown(nFlags, point);
}

We modify the function by sending the message from the view to the document.

RingView.cpp
void CRingView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRingDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 pDoc->MouseDown(point);

 CScrollView::OnLButtonDown(nFlags, point);
}

Ring: A Demonstration Example

[112]

After that, we have to add the function MouseDown to the document class. We do also
add two functions for accessing the point and color arrays.

RingDoc.h
class CRingDoc : public CDocument
{
// ...

public:

 void MouseDown(CPoint point);

 PointArray& GetPointArray() {return m_pointArray;}

 ColorArray& GetColorArray() {return m_colorArray;}

};

UpdateAllViews indirectly calls OnUpdate in the view class, which in turns
calls OnDraw.

RingDoc.cpp
void CRingDoc::MouseDown(CPoint point) // CRingDoc.cpp
{
 m_pointArray.Add(point);
 m_colorArray.Add(WHITE);
 UpdateAllViews(NULL);
}

Drawing the Rings
So far, we cannot see any rings when we execute the program. The missing piece is
the drawing function. Its name is OnDraw and it is already defined in CRingView, all
we have to do is to add some painting code.

We create a pen with a one-pixel-width solid black line, and a brush with the
specified color. The color of the brush is white. However, we will change that later on
in the application. We use the device context to add the pen and brush; afterwards,
we have to restore the old pen and brush. We also use the device context to draw
the rings.

RingView.cpp
void CRingView::OnDraw(CDC* pDC)
{
 CRingDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 if (!pDoc)

Chapter 4

[113]

 return;
 PointArray& pointArray = pDoc->GetPointArray();
 ColorArray& colorArray = pDoc->GetColorArray();
 int iSize = (int) pointArray.GetSize();
 for (int iIndex = 0; iIndex < iSize; ++iIndex)
 {
 CPoint point = pointArray[iIndex];
 COLORREF color = colorArray[iIndex];
 CPen pen(PS_SOLID, 0, BLACK);
 CBrush brush(color);
 pDC->Ellipse(point.x - 10, point.y - 10,
 point.x + 10, point.y + 10);
 CPen* pOldPen = pDC->SelectObject(&pen);
 CBrush* pOldBrush = pDC->SelectObject(&brush);
 }
}

Now, the f﻿irst version of the application is finished. Please feel free to test it.

Setting the Coordinate System and the
Scroll Bars
So far, the rings are drawn with a radius of 10 pixels, which means that we cannot
define an exact radius measured in inches or meters (or at least not without research,
the pixel size of every screen we execute the application on). We can address the
problem by modifying OnInitialUpdate.

Ring: A Demonstration Example

[114]

RingView.cpp
void CRingView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal;
 // TODO: calculate the total size of this view
 sizeTotal.cx = sizeTotal.cy = 100;
 SetScrollSizes(MM_TEXT, sizeTotal);
}

The function SetScrollSizes sets the scroll bars to reflect the chosen coordinate
system. Let us chose the metric system with high resolution: MM_HIMETRIC; one
logical unit is a hundredth of a millimeter. We set the page to correspond to a letter
with a width of 216 millimetres and a height of 279 millimetres; we set the height of a
line to 5 millimeters and the height of a page to 50 millimeters.

RingView.cpp
void CRingView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal;
 CSize sizeLine(500, 500);
 CSize sizePage(5000, 5000);
 CSize sizeTotal(216000, 27900);
 SetScrollSizes(MM_HIMETRIC, sizeTotal, sizePage, sizeLine);
}

We have now two problems: the first one is that the mouse handler function
OnLButtonDown receives its position in physical coordinates. It must be transformed
into logical coordinates. In order to do so, we first need to create and prepare our
own device context. That is, an object of the class CClientDC, and call the function
DPtoLP (Device Point at Logical Point).

RingView.cpp
void CRingView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRingDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 CClientDC dc(this);

 OnPrepareDC(&dc);

 dc.DPtoLP(&point);

 pDoc->MouseDown(point);
 CScrollView::OnLButtonDown(nFlags, point);
}

Chapter 4

[115]

The second problem is that we have still specified the radius of the circles to 10 units.
Those units are now hundredths of millimeters, which means that the circles are
hardly visible. We need to increase the radius in OnDraw. Let us define a constant for
that purpose.

RingDoc.h
static const int RADIUS = 500;

class CRingDoc : public CDocument
{
 // ...
};

RingView.cpp
void CRingView::OnDraw(CDC* pDC)
{
 CRingDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 if (!pDoc)
 return;
 PointArray& pointArray = pDoc->GetPointArray();
 ColorArray& colorArray = pDoc->GetColorArray();
 int iSize = (int) pointArray.GetSize();
 for (int iIndex = 0; iIndex < iSize; ++iIndex)
 {
 CPoint point = pointArray[iIndex];
 COLORREF color = colorArray[iIndex];

 CPen pen(PS_SOLID, 0, BLACK);
 CBrush brush(color);

 pDC->Ellipse(point.x - RADIUS, point.y - RADIUS,

 point.x + RADIUS, point.y + RADIUS);

 CPen* pOldPen = pDC->SelectObject(&pen);
 CBrush* pOldBrush = pDC->SelectObject(&brush);
 }
}

Ring: A Demonstration Example

[116]

Catching the Keyboard Input
When the user presses a key on the keyboard, a message is sent to the view. We can
catch that message in the same manner as we caught the mouse click.

Let us use the keyboard to simulate scroll movements.

RingView.cpp
void CRingView::OnKeyDown(UINT nChar, UINT nRepCnt,
 UINT nFlags)
{
 switch (nChar)
 {
 case VK_UP:
 OnVScroll(SB_LINEUP, 0, NULL);
 break;

 case VK_DOWN:
 OnVScroll(SB_LINEDOWN, 0, NULL);
 break;

 case VK_PRIOR:
 OnVScroll(SB_PAGEUP, 0, NULL);
 break;

Chapter 4

[117]

 case VK_NEXT:

 OnVScroll(SB_PAGEDOWN, 0, NULL);

 break;

 case VK_LEFT:

 OnHScroll(SB_LINELEFT, 0, NULL);

 break;

 case VK_RIGHT:

 OnHScroll(SB_LINERIGHT, 0, NULL);

 break;

 case VK_HOME:

 OnHScroll(SB_LEFT, 0, NULL);

 break;

 case VK_END:

 OnHScroll(SB_RIGHT, 0, NULL);

 break;

 }

 CScrollView::OnKeyDown(nChar, nRepCnt, nFlags);
}

Menus, Accelerators, and Toolbars
So far, we could only paint rings in one color, now it is time to change that. Let us
add a field m_nextColor to the document class and initialize it with the white color.
We also modify the function MouseDown and OnDraw.

RingDoc.h
class CRingDoc : public CDocument
{
// ...

private:

 COLORREF m_nextColor;

};

Ring: A Demonstration Example

[118]

RingDoc.cpp
CRingDoc::CRingDoc()
 : m_nextColor(WHITE)

{
 // Empty.
}

void CRingDoc::MouseDown(CPoint point)
{
 m_pointArray.Add(point);
 m_colorArray.Add(m_nextColor);

 UpdateAllViews(NULL);
}

When we created the application with theApplication Wizard, we got a standard
menu bar. We can modify it by editing the resource file resource.rc manually, or
we can use the tool Resource View.

Chapter 4

[119]

We can add mnemonic markers for the menus and items by preceding the character
with an ampersand (&), and we can set a tabulator between words with \t. Then we
pick a name for the menu items, lets us choose ID_COLOR_WHITE, ID_COLOR_
GREY, and ID_COLOR_BLACK.

We can also set a corresponding accelerator for each of the items. However, we have
to reuse the menu identities.

Ring: A Demonstration Example

[120]

Finally, we can add buttons to the toolbar. Again, we have to reuse the
menu identities.

Chapter 4

[121]

When we execute the program, we will notice that our new menu items and toolbar
buttons are disabled and greyed. In order to make it work, we have to catch the
messages in a manner similar to the way we caught mouse clicks and keyboard
inputs. We can do that rather easily by using the Properties window, this time we
choose the Events option. We choose to attach a new method OnColorWhite to
ID_COLOR_WHITE. Then we do the same with ID_COLOR_BLACK and
ID_COLOR_GREY.

When this is done, three functions are added to the document class. We simply let
them update the field m_nextColor.

RingDoc.cpp
void CRingDoc::OnColorWhite()
{
 m_nextColor = WHITE;

}

void CRingDoc::OnColorGray()
{
 m_nextColor = GREY;

}

Ring: A Demonstration Example

[122]

void CRingDoc::OnColorBlack()
{
 m_nextColor = BLACK;

}

There is one more thing we can do. Suppose we want to see the color currently
chosen. We can do that by attaching the method OnUpdateColorWhite to
UPDATE_COMMAND_UI. The same goes with the grey and black colors.

Then we have three more functions which we can modify. The function SetRadio
takes a logical value and sets a radio marker (a small filled circle) at the chosen menu
item; it also makes the toolbar button look pushed. A similar function is SetCheck, it
sets a tick at the menu item instead of a radio button. SetRadio and SetCheck mark
a toolbar button the same way. Finally, the function Enable sets the menu item or
toolbar button to be enabled or disabled (greyed).

RingDoc.cpp
void CRingDoc::OnUpdateColorWhite(CCmdUI *pCmdUI)
{
 pCmdUI->SetRadio(m_nextColor == WHITE);

}

void CRingDoc::OnUpdateColorGray(CCmdUI *pCmdUI)

Chapter 4

[123]

{
 pCmdUI->SetRadio(m_nextColor == GREY);
}
void CRingDoc::OnUpdateColorBlack(CCmdUI *pCmdUI)
{
 pCmdUI->SetRadio(m_nextColor == BLACK);
}

The Color Dialog
Suppose we would like to increase the color palette from three colors to every color
available in the RGB standard (more than 16 millions). We can do so by adding
another menu item and letting it launch the MFC color dialog.

RingDoc.cpp
void CRingDoc::OnColorDialog()
{
 CColorDialog colorDialog(m_nextColor);

 if (colorDialog.DoModal() == IDOK)
 {
 m_nextColor = colorDialog.GetColor();
 }
}

When the user chooses the color dialog menu item, the color dialog will launch.

The Registry
Suppose that we would like the current color to be saved between executions of our
application. We can make that happen by calling the registry in the constructor and
destructor of the document class.

RingDoc.cpp
CRingDoc::CRingDoc()
{
 m_nextColor = (COLORREF) AfxGetApp()->GetProfileInt
 (TEXT(“Ring”), TEXT(“Color”), WHITE);
}

CRingDoc::~CRingDoc()
{
 AfxGetApp()->WriteProfileInt(TEXT(“Ring”), TEXT(“Color”),
 m_nextColor);
}

Ring: A Demonstration Example

[124]

Serialization
When the users choose the File | Open item, a file should be opened and read, when
they choose the File | Save item, it should be written. Let us implement functions
for loading and storing the rings. It is actually quite easy because the framework
has already made most of the work. There is a function Serialize in the document
class, the framework will call it for reading or writing data. We just have to add a
few lines of code to Serialize in the document class. The MFC class CArray has
built-in functionality to load and save the points and colors.

RingDoc.cpp
void CRingDoc::Serialize(CArchive& ar)
{
 m_pointArray.Serialize(ar);

 m_colorArray.Serialize(ar);

 if (ar.IsStoring())
 {
 ar << m_nextColor;

 }

 else
 {
 ar >> m_nextColor;

 }
}

Finally, we also ought to call the MFC method SetModifiedFlag in MouseDown
in order to make sure the user cannot end the program without a warning about
unsaved data.

RingDoc.cpp
void CRingDoc::MouseDown(CPoint point)
{
 m_pointArray.Add(point);
 m_colorArray.Add(m_nextColor);

 SetModifiedFlag(TRUE);

 UpdateAllViews(NULL);
}

Chapter 4

[125]

Summary
In this chapter, we have gradually built a complete Windows application.

We caught the mouse clicks and the keyboard inputs.
We painted the rings.
We added scroll bars and defined the size of the underlying canvas.
We can add menus, accelerators, toolbars, and the color dialog.
The state of the application was stored in the registry.
Finally, we saved and loaded the rings by using Serialization.

•

•

•

•

•

•

Utility Classes
In the application of the following chapters, we will need some general container
classes. MFC has many classes for developing graphical interfaces. It also has
some general container classes for list and arrays. However, in some cases, a better
solution is to build our own classes.

It shall also be mentioned that the Standard Template Library (STL) is a part of
standard C++. It holds several generic container classes such as pairs, lists, and
vectors. However, I found many of those classes to be rather clumsy to use, I have
also found that it is not a good idea to mix MFC and STL container classes. Therefore,
in this chapter we use the MFC classes useful to us, and write our own ones
when necessary.

We look at the MFC classes CPoint, CSize, and CRect. They hold a point,
size, and rectangle, respectively, and they will come in handy in the
following chapters.
There is a structure LOGFONT, representing a font. However, we build the
class Font to encapsulate it. In the same way, COLORREF holds a color, and we
build the class Color to encapsulate it.
When displaying text, we need to display a caret (the vertical blinking bar
guiding the user when entering the next character). There is a set of functions
for that purpose, which we combine into the class Caret.
We inherit the MFC class CList to create lists and sets. The set class supports
the mathematical operations union, intersection, and difference.
Finally, we handle errors with the check and check_memory macros.

•

•

•

•

•

Utility Classes

[128]

The Point, Size, and Rectangle Classes
MFC has three classes—point, size, and rectangle. The first one is the CPoint class.
It holds x- and y-position. There are two constructors taking a position or another
point. The x- and y-position can be extracted by accessing the public fields x and y.

CPoint ptMouse1(1, 2);
CPoint ptMouse2(ptMouse1);
int xMouse = ptMouse1.x, yMouse = ptMouse2.y;

The second class is CSize, it holds width and height. Simil������ ar to CPoint, it has tw��o
constructors and the width and height can be extracted by accessing the public fields
cx and cy.

CSize szText1(1, 2);
CSize szText2(szText1);
int iTextWidth = szText1.cx, iTextHeight = szText2.cy;

The third class is CRect, it holds the dimensions of a rectangle. Its first constructor
takes the positions of the four corners, the second one takes another rectangle, the
third one takes two points (the top left and bottom right positions), and the fourth
one takes a point (the top left position) and a size (the width and height). The
width and height of the rectangle are given by the methods Width and Height.
The four corners of the rectangle can be accessed by the public fields left, top,
right, and bottom.

int xLeft = 100, xRight = 300, yTop = 200, yBottom = 500;
CRect rcArea1(xLeft, yTop, xRight, yBottom);
CRect rcArea2(rcArea1);

CPoint ptTopLeft(xLeft, yTop), ptBottomRight(xRight, yBottom);
CRect rcArea3(ptTopLeft, ptBottomRight);

CSize szArea(xRight - xLeft, yBottom - yTop);
CRect rcArea4(ptTopLeft, szArea);

int iWidth = rcArea1.Width();
int iHeight = rcArea2.Height();

xLeft = rcArea1.left;
yTop = rcArea2.top;
xRight = rcArea3.right;
yBottom = rcArea4.bottom;

Chapter 5

[129]

Sometimes when we use CRect objects as parameters it is understood that the
rectangle is normalized for the fourth-quadrant. That is, the left side is less than or
equal to the right side and the top side is less than or equal to the bottom side. The
CRect method NormalizeRect takes care of that.

CRect rcInverted(200, 500, 100, 300);
rcInverted.NormalizeRect();

The Color Class
In the Ring and Tetris applications, we used the type COLORREF, which manages
a color according to the RGB standard. However, it would be nice to have a class
encapsulating it, so let us write the Color class. COLORREF is a 32 bit value, even
thought it only uses the lower 24 bits. A color consists of the three basic colors red
(bits 0 – 7), green (bits 8 – 15), and blue (bits 16 – 23). The macro RGB puts together
a COLORREF value given its red, green, and blue portions. There are also macros
GetRValue, GetGValue, and GetBValue that extract the red, green, and blue parts of
the color, respectively.

In the Ring and Tetris applications of this book, the type COLORREF is used. In the
Draw, Calc, and Word applications, the class Color is used.

As object of this class will be serialized. The class must include a default constructor.
The constructor sets the color to zero, which represents black. Moreover, there is
a copy constructor, a constructor taking a COLORREF value, and the overloaded
assignment operator. They all initialize the field m_crRedGreenBlue that holds the
actual color.

Color.h
class Color
{
 public:
 Color();
 Color(const COLORREF crRedGreenBlue);
 Color(const Color& color);

 operator COLORREF() const;
 Color& operator=(const Color& color);

 void Serialize(CArchive& archive);
 Color Inverse() const;

 private:
 COLORREF m_crRedGreenBlue;
};

Utility Classes

[130]

There is one rule in MFC we have to follow. When we add our own files to the
project, the implementation files must begin with the inclusions of the header file
StdAfx.h; otherwise, it will not work.

The Inverse method inverts the color by extracting the red, green, and blue values
of the color. Then it subtracts the values from 255, and merges the modified values
into the resulting color.

Color.cpp
#include "StdAfx.h"
#include "Color.h"

// ...
Color Color::Inverse() const
{
 int iRed = GetRValue(m_crRedGreenBlue);
 int iGreen = GetGValue(m_crRedGreenBlue);
 int iBlue = GetBValue(m_crRedGreenBlue);

 return Color(RGB(255 - iRed, 255 - iGreen, 255 - iBlue));
}

The Font Class
The Win32 structure LOGFONT below represents a logical font in Windows.

typedef struct tagLOGFONT
{
 LONG lfHeight;
 LONG lfWidth;
 LONG lfEscapement;
 LONG lfOrientation;
 LONG lfWeight;
 BYTE lfItalic;
 BYTE lfUnderline;
 BYTE lfStrikeOut;
 BYTE lfCharSet;
 BYTE lfOutPrecision;
 BYTE lfClipPrecision;
 BYTE lfQuality;
 BYTE lfPitchAndFamily;
 TCHAR lfFaceName[LF_FACESIZE];
}
LOGFONT, *PLOGFONT;

Chapter 5

[131]

It might seem like a complicated task to set all the fields to their correct values.
However, one benefit with the structure is that we really just have to set the
lfFaceName and the lfHeight fields. If we set the rest of the fields to zero, they will
be adjusted automatically. One convenient way to do is that to call the C standard
function memset. In a similar manner, we can use memcmp to compare whether two
fonts are equal. There is also a function memcpy to copy a memory block between
two locations.

void *memset(void* pDestination, int iValue, size_t iSize);
void *memcpy(void* pDestination, const void* pSource,
 size_t iSize);
int memcmp(const void *pBlock1, const void *pBlock2,
 size_t iSize);

Let us write our own class Font, its main purpose is to wrap the functionality of
the structure LOGFONT. The default constructor is necessary because the font object
is loaded and stored on a CArchive stream. It is quite easy to load or save a font in
Serialize, we call the CArchive methods Read and Write, respectively.

A point is defined as 1/72 inch. However, the logical coordinate system of choice
in the applications of this book is MM_HIMETRIC, hundredths of millimetres. That
is, when we draw text or calculate its size, the size of a font must be recalculated
from points to hundredths of millimeters. PointsToMeters takes care of that task, it
creates and returns a new CSize object with the dimensions recalculated.

The constructors of the MFC classes CFont and CFontDialog want pointers to
LOGFONT structures. For convenience, we have the LOGFONT operator (which returns a
LOGFONT structure) and the PLOGFONT operator (which returns a pointer to a LOGFONT
structure). Technically, we would manage with one of them but the code will be
clearer with both of them.

Font.h
class Font
{
 public:
 Font();
 Font(CString stName, int iSize);
 Font(const LOGFONT& logFont);
 Font(const Font& font);

 operator LOGFONT() {return m_logFont;}
 operator PLOGFONT() {return &m_logFont;}
 Font PointsToMeters() const;

 Font& operator=(const Font& font);
 BOOL operator==(const Font& font) const;

Utility Classes

[132]

 BOOL operator!=(const Font& font) const;

 void Serialize(CArchive& archive);
 BOOL IsItalic() const {return m_logFont.lfItalic;}

 private:
 LOGFONT m_logFont;
};

In order to reset the LOGFONT structure we use the C standard memset function. With
the parameter zero, it sets all bytes in the structure to zero. Then we just copy the
name and set the size.

There are two C standard functions for copying string. The function strcpy takes
pointers to char and wcscpy takes pointers to wchar_t. However, wcscpy_s is the
type safe version. It is a macro that choose the correct type.

Font.cpp
Font::Font(CString stName, int iSize)
{
 ::memset(&m_logFont, 0, sizeof m_logFont);
 wcscpy_s(m_logFont.lfFaceName, stName);
 m_logFont.lfHeight = iSize;
}

The size of a font is normally given in typographical points. However, in order to
calculate the screen size of text written in a certain font, we need to calculate its size
in hundredths of millimeters. As an inch is defined to be 25.4 millimeters, to translate
a point into hundredths of millimeters we multiply it with 2540 and divide by 72.

Font Font::PointsToMeters() const
{
 LOGFONT logFont = m_logFont;

 logFont.lfWidth = (int) ((double) 2540*logFont.lfWidth/72);
 logFont.lfHeight = (int)((double) 2540*logFont.lfHeight/72);
 return Font(logFont);
}

The C standard function memcmp works in a way similar to memset. It takes memory
blocks of equal sizes and compares them byte by byte.

BOOL Font::operator==(const Font& font) const
{
 return (::memcmp(&m_logFont, &font.m_logFont,
 sizeof m_logFont) == 0);
}

Chapter 5

[133]

When it comes to serializing, the CArchive class has two methods: Write and Read.
They take the address and size of a memory block, in this case the LOGFONT structure
m_logfont.

void Font::Serialize(CArchive& archive)
{
 if (archive.IsStoring())
 {
 archive.Write(&m_logFont, sizeof m_logFont);
 }

 if (archive.IsLoading())
 {
 archive.Read(&m_logFont, sizeof m_logFont);
 }
}

The Caret Class
In Windows, we have two small markers that tell us the location of the mouse
pointer and where the next character is going to be inserted. They are called the
cursor and the caret, respectively.

The keyboard input has to be directed to one specific application, that application
has input �����focus. Only one application may have focus at a time. The application
receives the message WM_SETFOCUS when it gain focus and WM_KILLFOCUS when it
is lost.

Caret is a class (written by us) that manages the caret. It has to address two issues.
First, it has to keep track of whether the application has focus. It also has to keep
track of whether the caret is visible. It has three fields: m_bVisible that decides
whether the caret is visible, m_pFocusView that is a pointer to the view having the
focus, and m_rcCaret that holds the dimensions of the caret (in logical units).

The functions OnSetFocus and OnKillFocus are called when the view having the
focus receives the corresponding messages. Even though an application has input
focus, it might not want to show the caret. For instance, in the case when text is
marked in a word processor or when several cells are marked in a spreadsheet
program. SetAndShowCaret shows the caret only when the field m_bVisible is
true.HideCaret hides the care; however, when m_bVisible is false, it does in effect
nothing. The methods of the class are calling MFC CWnd functions to create, locate,
and show the caret. However, there is no MFC function to destroy the Caret.
instead, we call the Win32 API function DestroyCaret. Moreover, there is not a
function for hiding the caret. Therefore, we have to create a new caret and destroy
the caret every time we want to show or hide it.

Utility Classes

[134]

One final detail is that the applications using the Caret give the coordinates in
logical units, units that have to be translated into device units before the actual Caret
is created.

Caret.h
class Caret
{
 public:
 Caret();

 void SetAndShowCaret(const CRect rcCaret);
 void HideCaret();

 void OnSetFocus(CView* pView);
 void OnKillFocus();

 CView* GetView() const {return m_pFocusView;}

 private:
 BOOL m_bVisible;
 CView* m_pFocusView;
 CRect m_rcCaret;
};

When the Caret needs to be updated due to the user’s action, SetAndShowCaret
is called. It receives the new position and size of the Caret, translates the values
into device coordinates, and shows the Caret by calling CreateSolidCaret,
SetCaretPos, ShowCaret.

When the Caret is to be hidden, HideFocus is called, which in turn calls the Win32
API function DestroyCaret.

Caret.cpp
void Caret::SetAndShowCaret(const CRect rcCaret)
{
 m_rcCaret = rcCaret;

 CClientDC dc(m_pFocusView);
 m_pFocusView->OnPrepareDC(&dc);

 dc.LPtoDP(m_rcCaret);
 m_rcCaret.left = min(m_rcCaret.left, m_rcCaret.right - 1);

 if (m_rcCaret.left < 0)
 {
 m_rcCaret.right += abs(m_rcCaret.left);
 m_rcCaret.left = 0;
 }

Chapter 5

[135]

 m_pFocusView->CreateSolidCaret(m_rcCaret.Width(),
 m_rcCaret.Height());
 m_pFocusView->SetCaretPos(m_rcCaret.TopLeft());
 m_bVisible = TRUE;
 m_pFocusView->ShowCaret();
}

void Caret::HideCaret()
{
 if (m_pFocusView != NULL)
 {
 m_bVisible = FALSE;
 ::DestroyCaret();
 }
}

Each application holds one Caret object, and when the application receives or loses
the input focus the Caret is notified.

void Caret::OnSetFocus(CView* pView)
{
 m_pFocusView = pView;

 if (m_bVisible)
 {
 m_pFocusView->CreateSolidCaret(m_rcCaret.Width(),
 m_rcCaret.Height());
 m_pFocusView->SetCaretPos(m_rcCaret.TopLeft());
 m_pFocusView->ShowCaret();
 }
}

Note that we cannot make the Caret invisible when we lose focus. As there is only
one caret to be shared by several applications, we must destroy it. When we gain
focus, we have to create a new caret.

void Caret::OnKillFocus()
{
 m_pFocusView = NULL;
 ::DestroyCaret();
}

Utility Classes

[136]

The List Class
List is a sub class of the MFC class CList. It uses the functionality of CList with
some improvements. The default constructor does nothing but call the matching
constructor of the base class. CList has no copy constructor, so the copy constructor
of List adds the given list to its own. Nor does CList have a method Remove which
takes a value and removes it from the list if it finds it.

List.h
template<typename T>
class List : public CList<T>
{
 public:
 List();
 List(const List<T>& list);

 void Remove(T value);
 List<T> FilterIf(BOOL Predicate(T value)) const;
 int CountIf(BOOL Predicate(T value)) const;
};

FilterIf takes a function Predicate that returns a logical value as parameter,
applies it to every element in the list, and returns a list containing every element that
satisfies Predicate (every element in the list for which Predicate returns true).
CountIf does the same thing, but returns just the number of satisfied elements.

template<typename T>
List<T> List<T>::FilterIf(BOOL Predicate(T value)) const
{
 List<T> result;

 for (POSITION position = GetHeadPosition();
 position != NULL; GetNext(position))
 {
 T value = GetAt(position);

 if (Predicate(value))
 {
 result.AddTail(value);
 }
 }

 return result;
}

Chapter 5

[137]

The Set Class
There is no MFC class CSet, so we have to write our own. Similar to List, Set is a
sub class to CList. It has a default constructor and a copy constructor, two methods
Add and AddAll which add a value or another set, methods Remove and Exists
which remove a given element from the set and decide whether a given value is a
member of the set.

Set.h
template<typename T>
class Set : public CList<T>
{
 public:
 Set();
 Set(const Set<T>& set);
 Set<T>& operator=(const Set<T>& set);

 void Add(T value);
 void AddAll(Set<T>& set);

 void Remove(T value);
 BOOL Exists(T value) const;

 static Set<T> Merge(Set<T> leftSet, Set<T> rightSet,
 BOOL bAddEQ, BOOL bAddLT,BOOL bAddGT,
 BOOL bAddLeft, BOOL bAddRight);

 static Set<T> Union(Set<T> leftSet, Set<T> rightSet);
 static Set<T> Intersection(Set<T> leftSet,
 Set<T> rightSet);
 static Set<T> Difference(Set<T> leftSet, Set<T> rightSet);
 static Set<T> SymmetricDifference(Set<T> leftSet,
 Set<T> rightSet);
};

Merge merges two sets in different manners depending on its given parameters; it is
called Union, Intersection, Difference, and SymmetricDifference. In order for
it��� to work properly, the sets have to be ordered. Therefore, Add takes care to add the
new values in their correct positions. AddAll simply calls Add for each value in the
new set. Note that Add does nothing if the values already exist in the set.

Utility Classes

[138]

Set.cpp
template<typename T>
void Set<T>::Add(T newValue)
{
 for (POSITION position = GetHeadPosition();
 position != NULL; GetNext(position))
 {
 T value = GetAt(position);

 if (value == newValue)
 {
 return;
 }

 else if (newValue < value)
 {
 InsertBefore(position, newValue);
 return;
 }
 }

 AddTail(newValue);
}

The methods Union, Intersection, Difference, and SymmetricDifference work
the same as their mathematical counterparts. They all take two sets and return a new
one. Union returns a set containing elements occurring in at least one of the sets,
without duplicates. Intersection returns the set containing elements occurring
in both sets. Difference returns the set containing elements occurring in the first
set but not in the second set. Finally, SymmetricDifference returns the elements
occurring in one of the two sets, but not in both of them.

The methods above all call Merge, whose task is to merge two given sets into one.
Merge traverses the two sets and takes action according to the parameters bAddEQ,
bAddLT, and bAddGT. If bAddEQ is true and the left element is equal to the right
one, the left element is added to the result (we could have added the right element
instead, it does not matter since they are the same). If bAddLT is true and the left
element is less that the right one, the left element is added to the result. If bAddGT is
true and the left element is greater than the right one, the right element is added to
the result. The traverse continues until the end of (at least) one of the sets. Thereafter,
the remaining part of the left set (if it is not empty) is added if to the result if
bAddLeft is true and the remaining part of the right set (if it is not empty) is added if
bAddRight is true.

Chapter 5

[139]

Set.h
template<typename T>
Set<T> Set<T>::Merge(Set<T> leftSet, Set<T> rightSet,
 BOOL bAddEQ, BOOL bAddLT, BOOL bAddGT,
 BOOL bAddLeft, BOOL bAddRight)
{
 Set<T> resultSet;

 while (!leftSet.IsEmpty() && !rightSet.IsEmpty())
 {
 T leftValue = leftSet.GetHead();
 T rightValue = rightSet.GetHead();

 if (leftValue == rightValue)
 {
 if (bAddEQ)
 {
 resultSet.AddTail(leftValue);
 }

 leftSet.RemoveHead();
 rightSet.RemoveHead();
 }

 else if (leftValue < rightValue)
 {
 if (bAddLT)
 {
 resultSet.AddTail(leftValue);
 }

 leftSet.RemoveHead();
 }

 else
 {
 if (bAddGT)
 {
 resultSet.AddTail(rightValue);
 }

 rightSet.RemoveHead();
 }
 }

 if (bAddLeft)
 {
 resultSet.AddAll(leftSet);
 }

Utility Classes

[140]

 if (bAddRight)
 {
 resultSet.AddAll(rightSet);
 }

 return resultSet;
}

By calling Merge with appropriate values, all four of the set methods above can
be implemented.

bAddEQ bAddLT bAddGT bAddLeft bAddRight

Union true true true true true
Intersection true false false false false
Difference false true false true false
SymmetricDifference false true true true true

As noted in the table, Union really wants all values, regardless of whether they are
located in one of the sets or both of them. On the other hand, Intersection is only
interested in values located in both sets. Difference is the only unsymmetrical method,
it wants the values of the left set, but not the right. Finally, SymmetricDifference is
really symmetric, it keeps all values except the ones located in both sets.

The Array Class
Actually, there is no Array class. However, there is a MFC template class CArray,
which we use.

Error Handling
The check macro below comes in handy on several occasions. The macro is
given a test parameter and, it displays a message box with an appropriate error
message and exits the program execution. It works similarly to the assert macro,
however, assert only works in debug mode while check works in both debug and
release mode.

Check.h
#define check(test) \
{ \
 if (!(test)) \
 { \
 CString stMessage; \
 stMessage.Format(TEXT("\"%s\" on line %d in file %s"), \

Chapter 5

[141]

 TEXT(#test), __LINE__, TEXT(__FILE__)); \
 ::MessageBox(NULL, stMessage, TEXT("Assertion"), MB_OK); \
 ::exit(-1); \
 } \
}

It is used all over the code in this book for two kinds of situations. At the end of a
method when the end point is not supposed to be reached.

 // ...
 check(FALSE);
 return 0;
}

When a row and a column is given in order to look up an object in a matrix.

ReferenceSet* TSetMatrix::Get(int iRow, int iCol) const
{
 check((iRow >= 0) && (iRow < ROWS));
 check((iCol >= 0) && (iCol < COLS));
 // ...

These checks are introduced for debugging purposes only. They are not supposed
to occur.

Moreover, there is a MFC macro ASSERT_VALID that checks that a given MFC class
object has been properly initialized. In this book, it is used to check the document
class object in the view class of each application.

CRingDoc* pDoc = GetDocument();
check(pDoc != NULL);
ASSERT_VALID(pDoc);

If we run out of dynamic memory, new throws an exception. The check_memory
macro catches it and aborts the execution with an error message.

Check.h
#define check_memory(alloc_code)
{
 try
 {
 alloc_code;
 }
 catch (CException*)
 {
 CString stMessage;
 stMessage.Format(TEXT("Out of memory \"%s\" ")
 TEXT("on line %d in file %s"),

Utility Classes

[142]

 TEXT(#alloc_code), __LINE__,
 TEXT(__FILE__));
 ::MessageBox(NULL,stMessage,TEXT("Memory Check"),MB_OK);
 ::exit(-1);
 }
}

The check_memory macro is used every time we try to allocate dynamic memory.

check_memory(m_pFigure = new LineFigure());

However, if the user makes a mistake we cannot just abort the execution. Instead, we
use exceptions that are thrown and caught. They are used on two occasions in The
Calc Application. When the user inputs an invalid formula, then a message box with
an error message is displayed, and when the value of a formula cannot be evaluated,
then a message is displayed in the cell.

Summary
There are small MFC classes CPoint, CSize, and CRect holding a point
(x and y), a size (width and height), and a rectangle (the four corners of).
These classes will be thoroughly used in the following chapters.
We build our own classes Color and Font based upon the Win32 API types
COLORREF and LOGFONT.
In every application, except Tetris, we display text. In order for the user to
know where to enter the next character, we need a caret (a blinking vertical
bar). The class Caret handles that.
The classes List and Set inherit the MFC class CList to handle list and sets,
respectively. The Set class supports the mathematical operations union,
intersection, and difference.
In the application of this book, two kinds of errors may occur: internal
errors, such as an index out of bounds, or a user errors, such as entering
an incorrect formula. In the former case, we use the check macro to stop
the execution with an error message; in the latter case, we throw an error
exception that eventually will be displayed for the user in a cell or a message
box. The check_memory macro handles allocation of dynamic memory in a
similar way.

•

•

•

•

•

The Tetris Application
Tetris is a classic game. In this chapter, we will develop a version very similar to
the original version. Seven figures of different shapes and colors fall down and
the player's job is to move and rotate them into positions so that as many rows as
possible are completely filled. When a row is filled, it disappears. Every removed
row gives one point.

This application is the only one in this book that supports the single document
interface, which implies that we have one document class object and one view
class object. The other applications support the multiple document interface, they
have one document class object and zero or more view class objects. The following
screenshot depicts a classic example of the Tetris Application:

We start by generating the application's skeleton code with The Application
Wizard. The process is similar to the Ring application code.
There is a small class Square holding the position of one square and a class
ColorGrid managing the game grid.

•

•

The Tetris Application

[144]

The document class manages the data of the game and handles the
active (falling down) figure and the next (shown to the right of the game
grid) figure.
The view class accepts input from the keyboard and draws the figures and
the game grid.
The Figure class manages a single figure. It is responsible for movements
and rotations.
There are seven kinds of figures. The Figure Info files store information
pertaining to their colors and shapes.

The Tetris Files
We start by creating a MFC application with the name Tetris and follow the
steps of the Ring application. The classes CTetrisApp, CMainFrame, CTetrisDoc,
CTetrisView, and CAboutDlg are then created and added to the project.

There are only two differences. We need to state that we are dealing with a "Single
Document Application Type", that the file extension is "Trs" and that the file type
long name is "A Game of Tetris". Otherwise, we just accept the default settings. Note
that in this application we accept the CView base class instead of the CScrollView
like we did in the Ring application.

•

•

•

•

Chapter 6

[145]

The Tetris Application

[146]

We add the marked lines below. In all other respects, we leave the file unmodified.
We will not need to modify the files Tetris.h, MainFrm.h, MainFrm.cpp, StdAfx.h,
StdAfx.cpp, Resource.h, and Tetris.rc.

#include "stdafx.h"

#include "Square.h"
#include "Figure.h"
#include "ColorGrid.h"

#include "Tetris.h"
#include "MainFrm.h"
#include "TetrisDoc.h"
#include "TetrisView.h"

// ...

The Square Class
Square is a small class holding a row and column position. It is used by the
figureInfo class in this application.

Square.h
class Square
{
 public:
 Square();
 Square(int iRow, int iCol);

 int Row() const {return m_iRow;}
 int Col() const {return m_iCol;}

 private:
 int m_iRow, m_iCol;
};

The Color Grid Class
The ColorGrid handles the background game grid of twenty rows and twenty
columns. Each square can have a color. At the beginning, every square is initialized
to the default color white. The Index method is overloaded with a constant version
that returns the color of the given square, and a non-constant version that returns a
reference to the color. The latter version makes it possible to change the color of
a square.

Chapter 6

[147]

ColorGrid.h
const int ROWS = 20;
const int COLS = 10;

class ColorGrid
{
 public:
 ColorGrid();
 void Clear();

 COLORREF& Index(int iRow, int iCol);
 const COLORREF Index(int iRow, int iCol) const;

 void Serialize(CArchive& archive);

 private:
 COLORREF m_buffer[ROWS * COLS];
};

There are two Index methods, the second one is intended to be called on a constant
object. Both methods check that the given row and position have valid values. The
checks are, however, for debugging purposes only. The methods are always called
with valid values. Do not forget to include the file StdAfx.h.

ColorGrid.cpp
#include "StdAfx.h"

COLORREF& ColorGrid::Index(int iRow, int iCol)
{
 check((iRow >= 0) && (iRow < ROWS));
 check((iCol >= 0) && (iCol < COLS));
 return m_buffer[iRow * COLS + iCol];
}

const COLORREF ColorGrid::Index(int iRow, int iCol) const
{
 check((iRow >= 0) && (iRow < ROWS));
 check((iCol >= 0) && (iCol < COLS));
 return m_buffer[iRow * COLS + iCol];
}

The Document Class
CTetrisDoc is the document class of this application. When created, it overrides
OnNewDocument and Serialize from its base class CDocument.

The Tetris Application

[148]

We add to the CTetrisDoc class a number of fields and methods. The field
m_activeFigure is active figure, that is the one falling down during the game. The
field m_nextFigure is the next figure, that is the one showed in the right part of the
game view. They both are copies of the objects in the m_figureArray, which is an
array figure object. There is one figure object of each kind (one figure of each color).
The integer list m_scoreList holds the ten top list of the game. It is loaded from
the file ScoreList.txt by the constructor and saved by the destructor. The integer
field m_iScore holds the score of the current game. GetScore, GetScoreList,
GetActiveFigure, GetNextFigure, and GetGrid are called by the view class in order
to draw the game grid. They simply return the values of the corresponding fields.

The field m_colorGrid is an object of the class ColorGrid, which we defined in the
previous section. It is actually just a matrix holding the colors of the squares of the
game grid. Each square is intialized to the color white and a square is considered to
be empty as long as it is white.

When the application starts, the constructor calls the C standard library function
srand. The name is an abbreviation for sowing a random seed. By calling srand with
an integer seed, it will generate a series of random number. In order to find a new
seed every time the application starts, the C standard library function time is called,
which returns the number of seconds elapsed since January 1, 1970. In order to
obtain the actual random number, we call rand that returns a number in the interval
from zero to the predefined constant RAND_MAX. The prototypes for these functions
are defined in time.h (time) and stdlib.h (rand and srand), respectively.

#include <time.h>
#include <stdlib.h>

time_t time(time_t *pTimer);
void srand(unsigned int uSeed);
int rand();

When the user presses the space key and the active figure falls down or when a
row is filled and is flashed, we have to slow down the process in order for the
user to apprehand the event. There is a Win32 API function Sleep that pauses the
application for the given amount of milliseconds.

void Sleep(int iMilliSeconds);

The user can control the horizontal movement and rotation of the falling figures
by pressing the arrow keys. Left and right arrow keys move the figure to the left or
right. The up and down arrow key rotates the figure clockwise or counterclockwise,
respectively. Every time the user presses one of those keys, a message is sent to the
view class object and caught by the method OnKeyDown, which in turn calls one of the

Chapter 6

[149]

methods LeftArrowKey, RightArrowKey, UpArrowKey, DownArrowKey to deal with
the message. They all work in a similar fashion. They try to execute the movement or
rotation in question. If it works, both the old and new area of the figure is repainted
by making calls to UpdateAllViews.

The view class also handles a timer that sends a message every second the view is
in focus. The message is caught by the view class method OnTimer that in turn calls
Timer. It tries to move the active figure one step downwards. If that is possible, the
area of the figure is repainted in the same way as in the methods above. However, if it
is not possible, the squares of the figure are added to the game grid. The active figure
is assigned to the next figure, and the next figure is assigned a copy of a randomly
selected figure in m_figureArray. We also check whether any row has been filled. In
that case, it will be removed and we will check to see if the game is over.

The user can speed up the game by pressing the space key. The message is caught
and sent to SpaceKey. It simply calls OnTimer as many times as possible at intervals
of twenty milliseconds in order to make the movement visible to the user.

When a figure has reached its end position and any full rows have been removed,
the figure must be valid. That is, its squares are not allowed to occupy any already
colored position. If it does, the game is over and GameOver is called. It starts by
making the game grid gray and asks the users whether they want to play another
game. If they do, the game grid is cleared and set back to colored mode and a new
game starts. If they do not, the application exits.

NewGame informs the players whether they made to the top ten list and inquires
about another game by displaying a message box. AddToScore examines whether the
player has made to the ten top list. If so, the score is added to the list and the ranking
is returned, if not, zero is returned.

DeleteFullRows traverses the game grid from top to bottom flashing and removing
every full row. IsRowFull traverses the given row and returns true if no square
has the default color (white). FlashRow flashes the row by showing it three times
in grayscale and color at intervals of twenty milliseconds. DeleteRow removes the
row by moving all rows above one step downwards and inserting an empty row (all
white squares) at top.

The next figure and the current high score are painted at specific positions on the
client area, the rectangle constants NEXT_AREA and SCORE_AREA keep track of
those positions.

The Tetris Application

[150]

TetrisDoc.h
typedef CList<int> IntList;

const int FIGURE_ARRAY_SIZE = 7;

class CTetrisDoc : public CDocument
{
 protected:
 CTetrisDoc();

 public:
 virtual ~CTetrisDoc();
 void SaveScoreList();

 protected:
 DECLARE_MESSAGE_MAP()
 DECLARE_DYNCREATE(CTetrisDoc)

 public:
 virtual void Serialize(CArchive& archive);

 int GetScore() const {return m_iScore;}
 const IntList* GetScoreList() {return &m_scoreList;}

 const ColorGrid* GetGrid() {return &m_colorGrid;}

 const Figure& GetActiveFigure() const {return
 m_activeFigure;}
 const Figure& GetNextFigure() const {return m_nextFigure;}

 public:
 void LeftArrowKey();
 void RightArrowKey();
 void UpArrowKey();
 void DownArrowKey();

 BOOL Timer();
 void SpaceKey();

 private:
 void GameOver();
 BOOL NewGame();
 int AddScoreToList();
 void DeleteFullRows();
 BOOL IsRowFull(int iRow);

 void FlashRow(int iFlashRow);
 void DeleteRow(int iDeleteRow);

 private:
 ColorGrid m_colorGrid;
 Figure m_activeFigure, m_nextFigure;

 int m_iScore;
 IntList m_scoreList;

Chapter 6

[151]

 const CRect NEXT_AREA, SCORE_AREA;
 static Figure m_figureArray[FIGURE_ARRAY_SIZE];
};

The field m_figureArray holds seven figure objects, one of each color. When we
need a new figure, we just randomly copy one of them.

TetrisDoc.cpp
Figure redFigure(NORTH, RED, RedInfo);
Figure brownFigure(EAST, BROWN, BrownInfo);
Figure turquoiseFigure(EAST, TURQUOISE, TurquoiseInfo);
Figure greenFigure(EAST, GREEN, GreenInfo);
Figure blueFigure(SOUTH, BLUE, BlueInfo);
Figure purpleFigure(SOUTH, PURPLE, PurpleInfo);
Figure yellowFigure(SOUTH, YELLOW, YellowInfo);

Figure CTetrisDoc::m_figureArray[] = {redFigure, brownFigure,
 turquoiseFigure, greenFigure, yellowFigure,
 blueFigure, purpleFigure};

When the user presses the left arrow key, the view class object catches the message
and calls LeftArrowKey in the document class object. We try to move the active
figure one step to the left. It is not for sure that we succeed. The figure may already
be located at the left part of the game grid. However, if the movement succeeds, the
figure's position is repainted and true is returned. In that case, we repaint the figure's
old and new graphic areas in order to repaint the figure. Finally, we set the modified
flag since the figure has been moved. The method RightArrowKey works in a
similar way.

void CTetrisDoc::LeftArrowKey()
{
 CRect rcOldArea = m_activeFigure.GetArea();

 if (m_activeFigure.MoveLeft())
 {
 CRect rcNewArea = m_activeFigure.GetArea();
 UpdateAllViews(NULL, COLOR, (CObject*) &rcOldArea);
 UpdateAllViews(NULL, COLOR, (CObject*) &rcNewArea);
 SetModifiedFlag();
 }
}

The Tetris Application

[152]

Timer is called every time the active figure is to moved one step downwards. That is,
each second when the application has focus. If the downwards movement succeeds,
then the figure is repainted in a way similar to LeftArrowKey above. However, if the
movement does not succeed, the movement of the active figure has come to an end.
We call AddToGrid to color the squares of the figure. Then we copy the next figure
to the active figure and randomly copy a new next figure. The next figure is the one
shown to the right of the game grid.

However, the case may occur that the game grid is full. That is the case if the new
active figure is not valid, that is, the squares occupied by the figure are not free. If so,
the game is over, and the user is asked whether he wants a new game.

BOOL CTetrisDoc::Timer()
{
 SetModifiedFlag();
 CRect rcOldArea = m_activeFigure.GetArea();

 if (m_activeFigure.MoveDown())
 {
 CRect rcNewArea = m_activeFigure.GetArea();

 UpdateAllViews(NULL, COLOR, (CObject*) &rcOldArea);
 UpdateAllViews(NULL, COLOR, (CObject*) &rcNewArea);

 return TRUE;
 }
 else
 {
 m_activeFigure.AddToGrid();
 m_activeFigure = m_nextFigure;
 CRect rcActiveArea = m_activeFigure.GetArea();
 UpdateAllViews(NULL, COLOR, (CObject*) &rcActiveArea);
 m_nextFigure = m_figureArray[rand() % FIGURE_ARRAY_SIZE];
 UpdateAllViews(NULL, COLOR, (CObject*) &NEXT_AREA);
 DeleteFullRows();

 if (!m_activeFigure.IsFigureValid())
 {
 GameOver();
 }
 return FALSE;
 }
}

Chapter 6

[153]

If the user presses the space key, the active figure falling will fall faster. The Timer
method is called every 20 milisseconds.

void CTetrisDoc::SpaceKey()
{
 while (Timer())
 {
 Sleep(20);
 }
}

When the game is over, the users are asked whether they want a new game. If so, we
clear the grid, randomly select the the next active and next figure, and repaint the
whole client area.

void CTetrisDoc::GameOver()
{
 UpdateAllViews(NULL, GRAY);
 if (NewGame())
 {
 m_colorGrid.Clear();
 m_activeFigure = m_figureArray[rand() %FIGURE_ARRAY_SIZE];
 m_nextFigure = m_figureArray[rand() % FIGURE_ARRAY_SIZE];
 UpdateAllViews(NULL, COLOR);
 }
 else
 {
 SaveScoreList();
 exit(0);
 }
}

Each time a figure is moved, one or more rows may be filled. We start by checking
the top row and then go through the rows downwards. For each full row, we first
flash it and then remove it.

void CTetrisDoc::DeleteFullRows()
{
 int iRow = ROWS - 1;

 while (iRow >= 0)
 {
 if (IsRowFull(iRow))
 {
 FlashRow(iRow);
 DeleteRow(iRow);

 ++m_iScore;
 UpdateAllViews(NULL, COLOR, (CObject*) &SCORE_AREA);

The Tetris Application

[154]

 }
 else
 {
 --iRow;
 }
 }
}

When a row is completely filled, it will flash before it is removed. The flash effect is
executed by redrawing the row in color and in grayscale three times with an interval
of 50 milliseconds.

void CTetrisDoc::FlashRow(int iRow)
{
 for (int iCount = 0; iCount < 3; ++iCount)
 {
 CRect rcRowArea(0, iRow, COLS, iRow + 1);

 UpdateAllViews(NULL, GRAY, (CObject*) &rcRowArea);
 Sleep(50);

 CRect rcRowArea2(0, iRow, COLS, iRow + 1);
 UpdateAllViews(NULL, COLOR, (CObject*) &rcRowArea2);
 Sleep(50);
 }
}

When a row is removed, we do not really remove it. If we did, the game grid would
shrink. Instead, we copy the squares above it and clear the top row.

void CTetrisDoc::DeleteRow(int iMarkedRow)
{
 for (int iRow = iMarkedRow; iRow > 0; --iRow)
 {
 for (int iCol = 0; iCol < COLS; ++iCol)
 {
 m_colorGrid.Index(iRow, iCol) =
 m_colorGrid.Index(iRow - 1, iCol);
 }
 }

 for (int iCol = 0; iCol < COLS; ++iCol)
 {
 m_colorGrid.Index(0, iCol) = WHITE;
 }

 CRect rcArea(0, 0, COLS, iMarkedRow + 1);
 UpdateAllViews(NULL, COLOR, (CObject*) &rcArea);
}

Chapter 6

[155]

The View Class
CTetrisView is the view class of the application. It receives system messages and
(completely or partly) redraws the client area.

The field m_iColorStatus holds the painting status of the view. Its status can be
either color or grayscale. The color status is the normal mode, m_iColorStatus is
initialized to color in the constructor. The grayscale is used to flash rows and to set
the game grid in grayscale while asking the user for another game.

OnCreate is called after the view has been created but before it is shown. The field
m_pTetrisDoc is set to point at the document class object. It is also confirmed to be
valid. OnSize is called each time the size of the view is changed. It sets the global
variables g_iRowHeight and g_iColWidth (defined in Figure.h), which are used by
method of the Figure and ColorGrid classes to paint the squares of the figures and
the grid.

OnSetFocus and OnKillFocus are called when the view receives and loses the input
focus. Its task is to handle the timer. The idea is that the timer shall continue to send
timer messages every second as long as the view has the input focus. Therefore,
OnSetFocus sets the timer and OnKillFocus kills it. This arrangement implies that
OnTimer is called each second the view has input focus.

In Windows, the timer cannot be turned off temporarily; instead, we have to set and
kill it. The base class of the view, CWnd, has two methods: SetTimer that initializes a
timer and KillTimer that stops the timer. The first parameter is a unique identifier
to distinguish this particular timer from any other one. The second parameter gives
the time interval of the timer, in milliseconds. When we send a null pointer as the
third parameter, the timer message will be sent to the view and caught by OnTimer.
KillTimer simply takes the identity of the timer to finish.

UINT_PTR SetTimer(UINT_PTR iIDEvent, UINT iElapse,
 void (CALLBACK* lpfnTimer)
 (HWND, UINT, UINT_PTR, DWORD));
BOOL KillTimer(UINT_PTR nIDEvent);

OnKeyDown is called every time the user presses a key on the keyboard. It analizes the
pressed key and calls suitable methods in the document class if the left, right, up, or
down arrow key or the space key is pressed.

The Tetris Application

[156]

When a method of the document class calls UpdateAllViews, OnUpdate of the
view class object connected to the document object is called. As this is a single view
application, the application has only one view object on which OnUpdate is called.
UpdateAllViews takes two extra parameters, hints, which are sent to OnUpdate. The
first hint tells us whether the next repainting shall be done in color or in grayscale,
the second hint is a pointer to a rectangle holding the area that is to be repainted.
If the pointer is not null, we calculate the area and repaint it. If it is null, the whole
client area is repainted.

OnUpdate is also called by OnInitialUpdate of the base class CView with both hints
set to zero. That is not a problem because the COLOR constant is set to zero. The effect
of this call is that the whole view is painted in color.

OnUpdate calls UpdateWindow in CView that in turn calls OnPaint and OnDraw with
a device context. OnPaint is also called by the system when the view (partly or
completely) needs to be repainted. OnDraw loads the device context with a black pen
and then draws the grid, the score list, and´the active and next figures.

TetrisView.h
const int TIMER_ID = 0;
enum {COLOR = 0, GRAY = 1};

class CTetrisDoc;
COLORREF GrayScale(COLORREF rfColor);
class CTetrisView : public CView
{
 protected:
 CTetrisView();

 DECLARE_DYNCREATE(CTetrisView)
 DECLARE_MESSAGE_MAP()

 public:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnSize(UINT nType, int iClientWidth,
 int iClientHeight);

 afx_msg void OnSetFocus(CWnd* pOldWnd);
 afx_msg void OnKillFocus(CWnd* pNewWnd);
 afx_msg void OnKeyDown(UINT nChar, UINT nRepCnt,
 UINT nFlags);
 afx_msg void OnTimer(UINT nIDEvent);

 void OnUpdate(CView* /* pSender */, LPARAM lHint,
 CObject* pHint);
 void OnDraw(CDC* pDC);

Chapter 6

[157]

 private:
 void DrawGrid(CDC* pDC);

 void DrawScoreAndScoreList(CDC* pDC);
 void DrawActiveAndNextFigure(CDC* pDC);

 private:
 CTetrisDoc* m_pTetrisDoc;
 int m_iColorStatus;
};

TetrisView.cpp
This application catches the messsages WM_CREATE, WM_SIZE, WM_SETFOCUS,
WM_KILLFOCUS, WM_TIMER, and WM_KEYDOWN.

BEGIN_MESSAGE_MAP(CTetrisView, CView)
 ON_WM_CREATE()
 ON_WM_SIZE()
 ON_WM_SETFOCUS()
 ON_WM_KILLFOCUS()
 ON_WM_TIMER()
 ON_WM_KEYDOWN()
END_MESSAGE_MAP()

When the view object is created, is connected to the document object by the pointer
m_pTetrisDoc.

int CTetrisView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 // We check that the view has been correctly created.
 if (CView::OnCreate(lpCreateStruct) == -1)
 {
 return -1;
 }
 m_pTetrisDoc = (CTetrisDoc*) m_pDocument;
 check(m_pTetrisDoc != NULL);
 ASSERT_VALID(m_pTetrisDoc);
 return 0;
}

The Tetris Application

[158]

The game grid is dimensioned by the constants ROWS and COLS. Each time the user
changes the size of the application window, the global variables g_iRowHeight and
g_iColWidth, which are defined in Figure.h, store the height and width of one
square in pixels.

void CTetrisView::OnSize(UINT /* uType */,int iClientWidth,
 int iClientHeight)
{
 g_iRowHeight = iClientHeight / ROWS;
 g_iColWidth = (iClientWidth / 2) / COLS;
}

OnUpdate is called by the system when the window needs to be (partly or
completely) repainted. In that case, the parameter pHint is zero and the whole client
area is repainted. However, this method is also indirectly called when the document
class calls UpdateAllView. In that case, lHint has the value color or gray, depending
on whether the client area shall be repainted in color or in a grayscale.

If pHint is non-zero, it stores the coordinates of the area to be repainted. The
coordinates are given in grid coordinates that have to be translated into pixel
coordinates before the area is invalidated.

The method first calls Invalidate or InvalidateRect to define the area to be
repainted, then the call to UpdateWindow does the actual repainting by calling
OnPaint in CView, which in turn calls OnDraw below.

void CTetrisView::OnUpdate(CView* /* pSender */, LPARAM lHint,
 CObject* pHint)
{
 m_iColorStatus = (int) lHint;
 if (pHint != NULL)
 {
 CRect rcArea = *(CRect*) pHint;

 rcArea.left *= g_iColWidth;
 rcArea.right *= g_iColWidth;
 rcArea.top *= g_iRowHeight;
 rcArea.bottom *= g_iRowHeight;

 InvalidateRect(&rcArea);
 }

 else
 {
 Invalidate();
 }

 UpdateWindow();
}

Chapter 6

[159]

OnDraw is called when the client area needs to be repainted, by the system or by
UpdateWindow in OnUpdate. It draws a vertical line in the middle of the client area,
and then draws the game grid, the high score list, and the current figures.

void CTetrisView::OnDraw(CDC* pDC)
{
 CPen pen(PS_SOLID, 0, BLACK);
 CPen* pOldPen = pDC->SelectObject(&pen);

 pDC->MoveTo(COLS * g_iColWidth, 0);
 pDC->LineTo(COLS * g_iColWidth, ROWS * g_iRowHeight);

 DrawGrid(pDC);
 DrawScoreAndScoreList(pDC);
 DrawActiveAndNextFigure(pDC);

 pDC->SelectObject(&pOldPen);
}

DrawGrid traverses through the game grid and paints each non-white square.
If a square is not occupied, it has the color white and it not painted. The field
m_iColorStatus decides whether the game grid shall be painted in color or in
grayscale.

void CTetrisView::DrawGrid(CDC* pDC)
{
 const ColorGrid* pGrid = m_pTetrisDoc->GetGrid();

 for (int iRow = 0; iRow < ROWS; ++iRow)
 {
 for (int iCol = 0; iCol < COLS; ++iCol)
 {
 COLORREF rfColor = pGrid->Index(iRow, iCol);
 if (rfColor != WHITE)
 {
 CBrush brush((m_iColorStatus == COLOR)
 ? rfColor :GrayScale(rfColor));
 CBrush* pOldBrush = pDC->SelectObject(&brush);
 DrawSquare(iRow, iCol, pDC);
 pDC->SelectObject(pOldBrush);
 }
 }
 }
}

The Tetris Application

[160]

GrayScale returns the grayscale of the given color, which is obtained by mixing the
average of the red, blue, and green component of the color.

COLORREF GrayScale(COLORREF rfColor)
{
 int iRed = GetRValue(rfColor);
 int iGreen = GetGValue(rfColor);
 int iBlue = GetBValue(rfColor);

 int iAverage = (iRed + iGreen + iBlue) / 3;
 return RGB(iAverage, iAverage, iAverage);
}

The active figure (m_activeFigure) is the figure falling down on the game grid.
The next figure (m_nextFigure) is the figure announced at the right side of the
client area. In order for it to be painted at the right-hand side, we alter the origin
to the middle of the client area, and one row under the upper border by calling
SetWindowOrg.

void CTetrisView::DrawActiveAndNextFigure(CDC* pDC)
{
 const Figure activeFigure = m_pTetrisDoc->GetActiveFigure();
 activeFigure.Draw(m_iColorStatus, pDC);

 const Figure nextFigure = m_pTetrisDoc->GetNextFigure();
 CPoint ptOrigin(-COLS * g_iColWidth, -g_iRowHeight);
 pDC->SetWindowOrg(ptOrigin);
 nextFigure.Draw(m_iColorStatus, pDC);
}

The Figure Class
All figures can be moved to the left or the right as well as be rotated clockwise
or counterclockwise as a response to the user's requests. They can also be moved
downwards as a response to the timer. The crossed square in the figures of this
section marks the center of the figure, that is, the position the fields m_iRow and
m_iCol of the Figure class refer to.

All kinds of figures are in fact objects of the Figure class. What differs between the
figures are their colors and their shapes. The files FigureInfo.h and FigureInfo.
cpp holds the information specific for each kind of figure, see the next section.

Chapter 6

[161]

The field m_rfColor holds the color of the figure, m_pColorGrid is a pointer to the
color grid of the game grid, m_iRow, m_iCol, and m_iDirection are the positions
and the directions of the figure, respectively. The figure can be rotated into the
directions north, east, south, and west. However, the red figure is a square, so it
cannot be rotated at all. Moreover, the brown, turquoise, and green figures can only
be rotated into vertical and horizontal directions, which implies that the north and
south directions are the same for these figures, as are the east and west directions.

The second constructor takes a parameter of the type FigureInfo, which holds the
shape of the figure in all four directions. They hold the position of the squares of
the figure relative to the middle squares referred to by m_iRow and m_iCol for each
of the four directions. The FigureInfo type consists of four arrays, one for each
direction. The arrays in turn hold four positions, one for each square of the figure.
The first position is always zero since it refers to the center square. For instance, let
us look at the yellow figure in south direction.

(row 0, col1)(row 0, col -1)

(row 1, col 0)

The crossed square above is the one referred to by m_iRow and m_iCol. The south
array for the yellow figure is initialized as follows.

SquareArray YellowSouth = {Square(0, 0), Square(0, -1),
 Square(1, 0), Square(0, 1)};

The first square object refers to the center square, so it always holds zero. The other
square objects holds the position of one square each relative to the center square. The
second square object refers to the square to the left of the center square in the figure.
Note that the row numbers increase downward and the column numbers increase
to the right. Therefore, the relative column is negative. The third square object refers
to the square below the crossed one, one row down and the same column, and the
fourth square object refers to the square to the right, the same row and one column to
the right.

The methods RotateClockwiseOneQuarter and
RotateCounterclockwiseOneQuarter move the direction 90 degrees. MoveLeft,
MoveRight, RotateClockwise, RotateCounterclockwise, and MoveDown all works
in the same way. They execute the operation in question, test whether the figure is
still valid (its squares are not already occupied), and return true if it is. Otherwise,
they undo the operation and return false. Again, note that row numbers increase
downwards and column numbers increase to the right.

The Tetris Application

[162]

IsSquareValid tests whether the given position is on the game grid and not
occupied by a color other then white. IsFigureValid tests whether the four squares
of the whole figure are valid at their current position and in their current direction.

GetArea returns the area currently occupied by the figure. Note that the area
is returned in color grid coordinates (rows and columns). The coordinates are
translated into pixel coordinates by OnUpdate in the view class before the figure
is repainted.

When a figure is done falling, its squares shall be added to the grid. AddToGrid takes
care of that, it sets the color of this figure to the squares currently occupied of the
figure in the color grid.

Draw is called by the view class when the figure needs to be redrawn. It draws the
four squares of the figure in color or grayscale. DrawSquare is called by Draw and
does the actual drawing of each square. It is a global function because it is also
called by the ColorGrid class to draw the squares of the grid. The global variables
g_iRowHeight and g_iColWidth are set by the view class method OnSize every time
the user changes the size of the view. They are used to calculate the positions and
dimensions of the squares in DrawSquare.

Serialize stores and loads the current row, column, and direction of the figure as
well as its color. It also writes and reads the four direction arrays.

The two global C standard library methods memset and memcpy come in handy when
we want to copy a memory block or turn it to zero. They are used by the constructors
to copy the directions arrays and turn them to zero.

void *memset(void* pDestination, int iValue, size_t iSize);
void *memcpy(void* pDestination, const void* pSource,
 size_t iSize);

Figure.h
const COLORREF BLACK = RGB(0, 0, 0);
const COLORREF WHITE = RGB(255, 255, 255);
const COLORREF DEFAULT_COLOR = WHITE;

class ColorGrid;
extern int g_iRowHeight, g_iColWidth;
enum {NORTH = 0, EAST = 1, SOUTH = 2, WEST = 3};

const int SQUARE_ARRAY_SIZE = 4;
const int SQUARE_INFO_SIZE = 4;

typedef Square SquareArray[SQUARE_ARRAY_SIZE];
typedef SquareArray SquareInfo[SQUARE_INFO_SIZE];

Chapter 6

[163]

class Figure
{
 public:
 Figure();
 Figure(int iDirection, COLORREF rfColor,
 const SquareInfo& squareInfo);

 Figure operator=(const Figure& figure);
 void SetColorGrid(ColorGrid* pColorGrid) {m_pColorGrid =
 pColorGrid;};

 private:
 BOOL IsSquareValid(int iRow, int iCol) const;

 public:
 BOOL IsFigureValid() const;

 BOOL MoveLeft();
 BOOL MoveRight();
 private:
 void RotateClockwiseOneQuarter();

 void RotateCounterclockwiseOneQuarter();

 public:
 BOOL RotateClockwise();

 BOOL RotateCounterclockwise();
 BOOL MoveDown();

 void AddToGrid();
 CRect GetArea() const;

 public:
 void Draw(int iColorStatus, CDC* pDC) const;
 friend void DrawSquare(int iRow, int iCol, CDC* pDC);

 public:
 void Serialize(CArchive& archive);

 private:
 COLORREF m_rfColor;
 ColorGrid* m_pColorGrid;
 int m_iRow, m_iCol, m_iDirection;
 SquareInfo m_squareInfo;
};

typedef CArray<const Figure> FigurePtrArray;

The Tetris Application

[164]

Figure.cpp
Figure.cpp the main constructor. It initializes the direction (north, east, south, or
west), the color (red, brown, turquoise, green, yellow, blue, or purple), the pointer
to ColorGrid, and the specific figure information. The red figure sub class will
initialize all four direction arrays with the same values because it cannot be rotated.
The brown, turquoise, and green figure sub classes will initialize both the north
and south arrays to its vertical direction as well as the east and west directions to
its horizontal direction. Finally, the yellow, blue, and purple figure sub classes will
initialize all four arrays with different values because they can be rotated in all
four directions.

The C standard funtion memcpy is used to copy the figure specific information.

Figure::Figure(int iDirection, COLORREF rfColor,
 const SquareInfo & squareInfo)
 :m_iRow(0),
 m_iCol(COLS / 2),
 m_iDirection(iDirection),
 m_rfColor(rfColor),
 m_pColorGrid(NULL)
{
 ::memcpy(&m_squareInfo, &squareInfo, sizeof m_squareInfo);
}

IsSquareValid is called by IsFigureValid below. It checks whether the given
square is on the grid and that it is not already occupied by another color.

BOOL Figure::IsSquareValid(int iRow, int iCol) const
{
 return (iRow >= 0) && (iRow < ROWS) &&
 (iCol >= 0) && (iCol < COLS) &&
 (m_pColorGrid->Index(iRow, iCol) == DEFAULT_COLOR);
}

IsFigureValid checks whether the figure is at a valid position by examining
the four squares of the figure. It is called by MoveLeft, MoveRight, Rotate, and
MoveDown below:

BOOL Figure::IsFigureValid() const
{
 SquareArray* pSquareArray = m_squareInfo[m_iDirection];

 for (int iIndex = 0; iIndex < SQUARE_ARRAY_SIZE; ++iIndex)
 {
 Square& square = (*pSquareArray)[iIndex];

 if (!IsSquareValid(m_iRow + square.Row(), m_iCol + square.Col()))

Chapter 6

[165]

 {
 return FALSE;
 }
 }

 return TRUE;

}

RotateClockwiseOneQuarter rotates the direction clockwise one quarter of a
complete turn. RotateCounterclockwiseOneQuarter works in a similar way.

void Figure::RotateClockwiseOneQuarter()
{
 switch (m_iDirection)
 {
 case NORTH:
 m_iDirection = EAST;
 break;

 case EAST:
 m_iDirection = SOUTH;
 break;

 case SOUTH:
 m_iDirection = WEST;
 break;
 case WEST:
 m_iDirection = NORTH;
 break;
 }
}

MoveLeft moves the figure one step to the left. If the figure then is valid it returns
true. If it is not, it puts the figure to back in origional position and returns false.
MoveRight, RotateClockwise, RotateCounterclockwise, and MoveDown work in a
similar way. Remember that the rows increase downwards and the columns increase
to the right.

BOOL Figure::MoveLeft()
{
 --m_iCol;

 if (IsFigureValid())
 {
 return TRUE;
 }

 else
 {

The Tetris Application

[166]

 ++m_iCol;
 return FALSE;
 }
}

AddToGrid is called by the document class when the figure cannot be moved another
step downwards. In that case, a new figure is introduced and the squares of the
figure are added to the grid, that is, the squares currently occupied by the figure are
the to the figure's color.

void Figure::AddToGrid()
{
 SquareArray* pSquareArray = m_squareInfo[m_iDirection];

 for (int iIndex = 0; iIndex < SQUARE_ARRAY_SIZE; ++iIndex)
 {
 Square& square = (*pSquareArray)[iIndex];
 m_pColorGrid->Index(m_iRow + square.Row(),
 m_iCol + square.Col()) = m_rfColor;
 }

}

When a figure has been moved and rotated, it needs to be repainted. In order to
do so without having to repaint the whole game grid we need the figures area.
We calculate it by comparing the values of the squares of the figure in its current
direction. The rectangle returned holds the coordinates of the squares, not pixel
coordinates. The translation is done by OnUpdate in the view class.

CRect Figure::GetArea() const
{
 int iMinRow = 0, iMaxRow = 0, iMinCol = 0, iMaxCol = 0;
 SquareArray* pSquareArray = m_squareInfo[m_iDirection];

 for (int iIndex = 0; iIndex < SQUARE_ARRAY_SIZE; ++iIndex)
 {
 Square& square = (*pSquareArray)[iIndex];

 int iRow = square.Row();
 iMinRow = (iRow < iMinRow) ? iRow : iMinRow;
 iMaxRow = (iRow > iMaxRow) ? iRow : iMaxRow;

 int iCol = square.Col();
 iMinCol = (iCol < iMinCol) ? iCol : iMinCol;
 iMaxCol = (iCol > iMaxCol) ? iCol : iMaxCol;
 }

 return CRect(m_iCol + iMinCol, m_iRow + iMinRow,
 m_iCol + iMaxCol + 1, m_iRow + iMaxRow + 1);

}

Chapter 6

[167]

Draw is called when the figure needs to be repainted. It selects a black pen and
a brush with the figure's color. Then it draws the four squares of the figure. The
iColorStatus parameter makes the figure appear in color or in grayscale.

void Figure::Draw(int iColorStatus, CDC* pDC) const
{
 CPen pen(PS_SOLID, 0, BLACK);
 CPen* pOldPen = pDC->SelectObject(&pen);

 CBrush brush((iColorStatus == COLOR) ? m_rfColor : GrayScale(
 m_rfColor));
 CBrush* pOldBrush = pDC->SelectObject(&brush);

 SquareArray* pSquareArray = m_squareInfo[m_iDirection];

 for (int iIndex = 0; iIndex < SQUARE_ARRAY_SIZE; ++iIndex)
 {
 Square& square = (*pSquareArray)[iIndex];
 DrawSquare(m_iRow + square.Row(), m_iCol + square.Col(), pDC);
 }

 pDC->SelectObject(&pOldBrush);
 pDC->SelectObject(&pOldPen);

}

The Figure Information
There are seven figures, each of them has their own color: red, brown, turquoise,
green, yellow, blue, and purple. Each of them also has a unique shape. However,
they all consist of four squares. They can further be divided into three groups based
on the ability to rotate. The red figure is the simplest one, as it does not rotate at all.
The brown, turquoise, and green figures can be rotated in vertical and horizontal
directions while the yellow, blue, and purple figures can be rotated in north, east,
south, and west directions.

As seen above, the document class creates one object of each figure. When doing so,
it uses the information stored in FigureInfo.h and FigureInfo.cpp.

In this section, we visualize every figure with a sketch like the one in the previous
section. The crossed square is the center position referred to by the fields m_iRow and
m_iCol in Figure. The positions of the other squares relative to the crossed one are
given by the integer pairs in the directions arrays.

First of all, we need do define the color of each figure. We do so by using the
COLORREF type.

The Tetris Application

[168]

FigureInfo.cpp
const COLORREF RED = RGB(255, 0, 0);
const COLORREF BROWN = RGB(255, 128, 0);
const COLORREF TURQUOISE = RGB(0, 255, 255);
const COLORREF GREEN = RGB(0, 255, 0);
const COLORREF BLUE = RGB(0, 0, 255);
const COLORREF PURPLE = RGB(255, 0, 255);
const COLORREF YELLOW = RGB(255, 255, 0);

The Red Figure
The red figure is one large square, built up by four regular squares. It is the simplest
figure of the game since it does not change shape when rotating. This implies that we
just need to look at one figure.

(row 0, col 1)

(row 1, col 0) (row 1, col 1)

In this case, it is enough to define the squares for one direction and use it to define
the shape of the figure in all four directions.

SquareArray RedGeneric = {Square(0, 0), Square(0, 1),
 Square(1, 1), Square(1, 0)};
SquareInfo RedInfo = {&RedGeneric, &RedGeneric,
 &RedGeneric, &RedGeneric};

The Brown Figure
The brown figure can be oriented in horizontal and vertical directions. It is
initialized by the constructor to a vertical direction. As it can only be rotated into two
directions, the north and south array will be initialized with the vertical array and
the east and west array will be initialized with the horizontal array.

(row -1, col 0)
(row 0, col -1)

(row 0, col 1)
(row 1, col 0)
(row 2, col 0)

(row 0, col 2)

Vertical direction Horizontal direction

Chapter 6

[169]

SquareArray BrownVertical = {Square(0, 0), Square(-1, 0),
 Square(1, 0), Square(2, 0)};
SquareArray BrownHorizontal = {Square(0, 0), Square(0, -1),
 Square(0, 1), Square(0, 2)};
SquareInfo BrownInfo = {&BrownVertical, &BrownHorizontal,
 &BrownVertical, &BrownHorizontal};

The Turquoise Figure
Similar to the brown figure, the turquoise figure can be rotated in the vertical and
horizontal directions.

(row -1, col 0)

(row 0, col 1)

(row 1, col 1)

Vertical direction Horizontal direction

(row 1, col 0)

(row 1, col -1)
(row 0, col 1)

SquareArray TurquoiseVertical = {Square(0, 0), Square(-1, 0),
 Square(0, 1), Square(1, 1)};
SquareArray TurquoiseHorizontal = {Square(0, 0), Square(1, -1),
 Square(1, 0), Square(0, 1)};
SquareInfo TurquoiseInfo = {&TurquoiseVertical, &TurquoiseHorizontal,
 &TurquoiseVertical,&TurquoiseHorizontal};

The Green Figure
The green figure is a mirror image of the turquoise figure.

(row 0, col -1)

(row -1, col 0)

(row 1, col -1)

Vertical direction Horizontal direction

(row 1, col 0)
(row 0, col -1)

(row 1, col 1)

The Tetris Application

[170]

SquareArray GreenVertical = {Square(0, 0), Square(1, -1),
 Square(0, -1), Square(-1, 0)};
SquareArray GreenHorizontal = {Square(0, 0), Square(0, -1),
 Square(1, 0), Square(1, 1)};

SquareInfo GreenInfo = {&GreenVertical, &GreenHorizontal,
 &GreenVertical, &GreenHorizontal};

The Yellow Figure
The yellow figure can be rotated in the north, east, south, and west directions. It is
initialized by the Figure class constructor to the south direction.

Northwards Eastwards

(row -1, col 0)

(row 1, col 0)
(row 0, col 1)

(row 0, col -1)

(row -1, row 0)

(row 0, col 1)

Westwards

(row -1, col 0)

(row 1, col 0)
(row 0, col -1)

Southwards

(row 0, col -1)

(row 1, col 0)

(row 0, col 1)

SquareArray YellowNorth = {Square(0, 0), Square(0, -1),
 Square(-1, 0), Square(0, 1)};
SquareArray YellowEast = {Square(0, 0), Square(-1, 0),
 Square(0, 1), Square(1, 0)};
SquareArray YellowSouth = {Square(0, 0), Square(0, -1),
 Square(1, 0), Square(0, 1)};
SquareArray YellowWest = {Square(0, 0), Square(-1, 0),
 Square(0, -1), Square(1, 0)};
SquareInfo YellowInfo = {&YellowNorth, &YellowEast,
 &YellowSouth, &YellowWest};

Chapter 6

[171]

The Blue Figure
The blue figure can also be in all four directions. It is initialized to the south direction.

Eastwards

(row -2, col 0)
(row -1, col 0)

(row 0, col 1)

Northwards

(row 0, col -2)

(row 0, col -1)

(row -1, col 0)

Westwards

(row 0, col -1)
(row 1, col 0)
(row 2, col 0)

Southwards

(row 1, col 0)

(row 0, col 1)

(row 0, col 2)

SquareArray BlueNorth = {Square(0, 0), Square(0, -2),
 Square(0, -1),Square(-1, 0)};
SquareArray BlueEast = {Square(0, 0), Square(-2, 0),
 Square(-1, 0), Square(0, 1)};
SquareArray BlueSouth = {Square(0, 0), Square(1, 0),
 Square(0, 1), Square(0, 2)};
SquareArray BlueWest = {Square(0, 0), Square(0, -1),
 Square(1, 0), Square(2, 0)};
SquareInfo BlueInfo = {&BlueNorth, &BlueEast,
 &BlueSouth, &BlueWest};

The Purple Figure
The purple figure, finally, is a mirror image of the blue figure, it is also initialized
into the south direction.

Northwards Eastwards

(row 1, col 0)
(row 0, col 1)

(row 2, col 0)

(row -1, col 0)

(row 0, col 1)

(row 0, col 2)

The Tetris Application

[172]

Southwards Westwards

(row 0, col -2)

(row 0, col -1)

(row 1, col 0)
(row -1, col 0)
(row -2, col 0)

(row 0, col -1)

InPair(0,1)

SquareArray PurpleNorth = {Square(0, 0), Square(-1, 0),
 Square(0, 1), Square(0, 2)};
SquareArray PurpleEast = {Square(0, 0), Square(1, 0),
 Square(2, 0), Square(0, 1)};
SquareArray PurpleSouth = {Square(0, 0), Square(0, -2),
 Square(0, -1), Square(1, 0)};
SquareArray PurpleWest = {Square(0, 0), Square(0, -1),
 Square(-2, 0), Square(-1, 0)};
SquareInfo PurpleInfo = {&PurpleNorth, &PurpleEast,
 &PurpleSouth, &PurpleWest};

Summary
We have generated a framework for the application with
the Application Wizard.
We added the classes Square and ColorGrid that keep track of the game grid.
We defined the document class. It holds the data of the game and keeps track
of when the game is over.
We defined the view class, it accepts keyboard input and draws the figures
and the game grid.
The Figure class manages a single figure, it keeps track of its position and
decides whether it is valid to move it into another position.
The Figure info files store information of the seven kinds of figures.

•

•

•

•

•

•

The Draw Application
In this chapter, we will deal with a drawing program. It is capable of drawing
lines, arrows, rectangles, and ellipses. It is also capable of writing and editing text,
cut-and-paste figures as well as saving and loading the drawings. The following
screenshot depicts a classic example of the Draw Application:

We start by generating the application's skeleton code with the Application
Wizard. The process is similar to the Ring application code.
The figures are represented by a class hierarchy. The root class is Figure. It is
abstract and has a set of pure virtual methods that are to be defined by its sub
classes. It has one abstract sub class TwoDimensionalFigure.

•

•

The Draw Application

[174]

There are five concrete sub classes in the hierarchy: LineFigure,
ArrowFigure, RectangleFigure, EllipseFigure, and TextFigure. There
is also the class FigureFileManager that handles the file management of
the figures.
The document class manages the data of the drawing. It has a list to keep
track of the figure objects and several fields to keep track of the state of
the application.
The view class accepts input from the mouse and keyboard and draws
the figures.

The Application Wizard process generates the classes CDrawApp, CMainFrame,
CAboutDlg, CDrawDoc, and CDrawView. The skeleton source code for these classes
is automatically generated by Visual Studio. As before, among these classes we will
only modify CDrawDoc and CDrawView. However, we will create and add the class
Figure, which is an abstract base class handling general functionality of the figures.
The classes LineFigure, ArrowFigure, RectangleFigure, EllipseFigure, and
TextFigure define the functionality of the figures. TwoDimensionalFigure is an
abstract help class. The classes Color, Font, and Caret from Chapter 5 will also be
used in this application.

Let us start by creating the application with the Application Wizard. The generation
process is almost identical to the one of the Ring application in Chapter 4. The
only difference is the Document Template Strings option; we state drw as the
File extension, and A Draw Application Document as File type long name. This
implies that we can start the application in Windows Explorer by choosing the
application, or by choosing one of the documents (a file with the extension .drw) of
the application. The application will be launched and (in the latter case) open
the document.

•

•

•

Chapter 7

[175]

Similar to the Ring application, but unlike the Tetris application, we choose
CSCrollView as the view base class.

The Draw Application

[176]

When the generation process is finished, it has generated the classes CDrawApp,
CMainFrame, CChildFrame, CDrawDoc, CDrawView, and CAboutDlg. We add a
few include lines to Draw.cpp below. Otherwise, we will only modify CDrawDoc
and CDrawView as we develop the application, the rest of the classes will
remain unmodified.

Draw.cpp
#include "MainFrm.h"
#include "ChildFrm.h"
#include "..\\List.h"
#include "..\\Color.h"
#include "..\\Font.h"
#include "..\\Caret.h"
#include "Figure.h"
#include "TwoDimensionalFigure.h"
#include "RectangleFigure.h"

#include "TextFigure.h"

Chapter 7

[177]

The Resource
The Application Wizard creates a basic set of menus, which are used by the
Application Framework. We add the menus Add and Format to the resource with
the help of the Resource Editor.

It is also possible to use the Resource Editor to add accelerators. The Application
Wizard has already added accelerators to some of the menu items it generated. We
will add accelerators to the menu item we have added. One advantage is that we
can reuse the menu item identifiers above to represent accelerators. This means that
the Application Framework will call the same method, no matter if the user has
selected the menu item or the accelerator. We can also reuse the same identifiers to
represent a button in a toolbar. The Application Wizard creates a default toolbar we
can increase.

The Draw Application

[178]

We can also add a status line and a tool tip with the help of the string table. The
string connected to the identifier is divided into two parts by a new line (\n). The
first part is the status line and the second part is the tool tip. A status line is shown at
the lower edge of the window when the user selects a menu item or holds the mouse
pointer at a toolbar button. A tool tip is shown as a little box when the user holds the
mouse pointer at a toolbar button.

Here is a summarization of the added menus, accelerators, toolbar buttons,
and strings.

Id Menu Item Accelerator
Toolbar

String Table

ID_EDIT_CUT Edit\Cut Ctrl-X Cut the selection and put it
on the Clipboard \nCut

ID_EDIT_COPY Edit\Copy Ctrl-C Copy the selection and
put it on the Clipboard
\nCopy

ID_EDIT_PASTE Edit\Paste Ctrl-V Insert Clipboard contents\
nPaste

ID_EDIT_DELETE Edit\Delete Delete Delete a Figure in the
Drawing\nDelete Figure

ID_ADD_LINE Add\Line Ctrl-L Add a Line to the
Drawing\nAdd Line

ID_ADD_ARROW Add\Arrow Ctrl-A Add an Arrow to the
Drawing\nAdd Arrow

ID_ADD_RECTANGLE Add\Rectangle Ctrl-R Add a Rectangle to the
Drawing\nAdd Rectangle

ID_ADD_ELLIPSE Add\Ellipse Ctrl-E Add an Ellipse to the
Drawing\nAdd Ellipse

ID_ADD_TEXT Add\TextFigure Ctrl-T Add a TextFigure to the
Drawing\nAdd TextFigure

ID_FORMAT_MODIFY Format\Modify Ctrl-M Modify a Figure in the
Drawing\nModify Figure

ID_FORMAT_COLOR Format\Color Alt-C Set the Color of a Figure\
nFigure

ID_FORMAT_FONT Format\Font Ctrl-F Set the Font of a
TextFigure\nFont

ID_FORMAT_FILL Format\Fill Alt-I Fill a Figure\nFill

Chapter 7

[179]

The underlines in the menu items are designated by an ampersand (&) before the
underlined letter. For instance, Arrow is written as &Arrow. They are used as
shortcut commands. The Edit menu is generated by the Application Wizard and is
included in the table because we will use it in the document class. These items will
be caught with the help of a message map.

There is an important identifier IDR_DRAWTYPE. It reflects the information we added
when we created the project.

\nDraw\nDraw\nDraw Files (*.drw)\n.drw\nDraw.Document\n
A Draw Application Document

We can also use the Version Resource to define the name of the application.

The Class Hierarchy
Now we are ready to start building the real application. We are going to construct
a drawing program. The user will be able to draw lines, arrows, rectangles, ellipses,
and will be able to write text. Do not confuse the Figure class of this application
with the Figure class of the Tetris application. In this application, Figure is an
abstract base class, it works as a blue print for the sub classes. Figure only handles
the color and mark status of the figure. Otherwise, it consists of pure virtual methods
that are to be defined by the sub classes.

The Draw Application

[180]

Cobject

Figure

ArrowFigure RectangleFigure

EllipseFigure

LineFigure TextFigureTwoDimensionalFigure

As is custom in MFC, we let CObject to be the root class of the hierarchy. The
dashed lines in the diagram denote private inheritance, which means that all public
and protected members in the base class become private in the sub class. Private
inheritance is not a part of the object-oriented model, but it comes in handy when we
want to reuse code in the base class.

The Figure Class
The default constructor of Figure is used only in connection with serialization. The
second constructor is called by the sub classes in order to initialize the figure's color
and mark status. The third constructer is called by the Copy function, which in turn
is called by the document class when the user wants to copy or paste a figure. It
returns a pointer to a copy of the figure object. It is defined in each sub class in such
a way that Copy calls the copy constructor. The copy constructor itself would not be
sufficient because we want to copy a figure given only a pointer to a Figure object;
that is, without knowing the class of the object.

Chapter 7

[181]

All figures have two things in common: they have a color, and they may be marked.
The class has two fields m_bMarked and m_figureColor reflecting these features.
It also has the functions IsMarked, Mark, SetColor, and GetColor to inspect and
modify the fields.

Serialize is called by the framework when a user chooses to save or open a
drawing. The framework creates a CArchive object and connects it to the file. Our
function just has to read or write the values of its fields. In the Figure case, we
just have to deal with the color of the figure, we do not serialize the mark status.
The Serialize versions of the sub class functions work similar ways, they call
Serialize of the nearest base class, and then serialize their own values.

Then we have the two pure virtual functions Click and DoubleClick. They are
called by the document object when a user clicks or double-clicks with the mouse.
Their task is first to decide whether a user has clicked on the figure and secondly
to decide if the user has hit one of the modified squares. Exactly where those
squares are located relative to the figure varies between the figures. Besides, the
class TextFigure has no such squares, even though they are drawn when the text
is marked. Inside is a similar function. It takes a rectangle object and decides if the
figure is completely enclosed by the rectangle. It is called when the user wants to
mark an area. Each class sets internal fields in accordance to these findings, in order
to modify the position, size, and color of the figure when MoveOrModify and Move
is called.

MoveOrModify is called by the document class when the user has marked a figure
and moves it. As the name implies, the figure is either moved or modified depending
on the preceding calls to Click, DoubleClick, or Inside. Move is a simpler version;
it does always move the figure, regardless of what the call to the preceding function
has decided. It is called when the user moves several figures.

Draw is called by the view class for each figure to draw their physical shape. It is
given a device context connected to the calling view object. GetArea returns a CRect
object containing the figure's physical measurements in logical units.

Finally, we have the constant SQUARE_SIDE that defines the size of the black squares
marking the figures. It is initialized to the value of 200. The measurement given
in logical coordinates. As 200 logical units is equivalent to 200 hundredths of a
millimeter, each square will have a side of two millimeters.

The Draw Application

[182]

Figure.h
class Figure : public CObject
{
 public:
 Figure();
 Figure(const Color& color, BOOL bMarked = FALSE);

 Figure(const Figure& figure);
 virtual Figure* Copy() const = 0;

 BOOL IsMarked() const {return m_bMarked;}
 void Mark(const BOOL bMarked) {m_bMarked = bMarked;}

 Color GetColor() const {return m_figureColor;}
 void SetColor(const Color& color) {m_figureColor = color;}

 virtual void Serialize(CArchive& archive);
 virtual HCURSOR GetCursor() const = 0;

 virtual BOOL Click(const CPoint& ptMouse) = 0;
 virtual BOOL DoubleClick(const CPoint& ptMouse) = 0;
 virtual BOOL Inside(const CRect& rcInside) const = 0;

 virtual void MoveOrModify(const CSize& szDistance) = 0;
 virtual void Move(const CSize& szDistance) = 0;

 virtual void Draw(CDC* pDC) const = 0;
 virtual CRect GetArea() const = 0;

 private:
 BOOL m_bMarked;
 Color m_figureColor;

 protected:
 static const int SQUARE_SIDE = 200;
};

typedef List<Figure*> FigurePointerList;

In this application, we use our generic list class List. We define the type
FigurePointerList from it. A figure list will be added to and removed from as the
user adds or removes figures from the drawing. We also need means to iterate the
list in both directions.

Figure.cpp
#include "StdAfx.h"

#include "..\\List.h"
#include "..\\Color.h"
#include "..\\Font.h"

#include "Figure.h"

Chapter 7

[183]

Figure::Figure()
 :m_figureColor(0),
 m_bMarked(FALSE)
{
 // Empty.
}

Figure::Figure(const Figure& figure)
 :m_figureColor(figure.m_figureColor),
 m_bMarked(figure.m_bMarked)
{
 // Empty.
}

Figure::Figure(const Color& color, BOOL bMark /* = FALSE */)
 :m_figureColor(color),
 m_bMarked(bMark)
{
 // Empty.
}

void Figure::Serialize(CArchive& archive)
{
 CObject::Serialize(archive);
 m_figureColor.Serialize(archive);
}

The TwoDimensionalFigure Class
TwoDimensionalFigure is a sub class of Figure and the base class of
RectangleFigure and EllipseFigure. A two-dimensional figure can be filled or
unfilled. TwoDimensionalFigure has the field m_bFilled with their methods Fill
and IsFilled to keep track of the fill status.

TwoDimensionalFigure.h
class TwoDimensionalFigure : public Figure
{
 public:
 TwoDimensionalFigure();
 TwoDimensionalFigure(const Color& color, BOOL bFilled);

 BOOL IsFilled() const {return m_bFilled;}
 void Fill(const BOOL bFill) {m_bFilled = bFill;}
 void Serialize(CArchive& archive);

 private:
 BOOL m_bFilled;
};

The Draw Application

[184]

The implementation of Figure is rather straightforward. Remember that each
time we introduce a new class to the application we have to include the header file
StdAfx.h at the beginning of the implementation file. Otherwise, the application will
not work.

TwoDimensionalFigure.cpp
#include "StdAfx.h"

#include "..\\List.h"
#include "..\\Color.h"
#include "..\\Font.h"

#include "Figure.h"
#include "TwoDimensionalFigure.h"

TwoDimensionalFigure::TwoDimensionalFigure() :m_bFilled(FALSE)
{
 // Empty.
}

TwoDimensionalFigure::TwoDimensionalFigure(const Color& color,
 BOOL bFilled)
 :Figure(color),
 m_bFilled(bFilled)
{
 // Empty.
}

void TwoDimensionalFigure::Serialize(CArchive& archive)
{
 Figure::Serialize(archive);

 if (archive.IsStoring())
 {
 archive << m_bFilled;
 }

 if (archive.IsLoading())
 {
 archive >> m_bFilled;
 }
}

Chapter 7

[185]

The LineFigure Class
LineFigure is a direct sub class of Figure. Its task is to draw a line between two
points, represented by m_ptFirst to m_ptLast. The fields are protected as they are
reused by the ArrowFigure, which privately inherits LineFigure.

m_ptLast

m_ptFirst

The default constructor is necessary due to serialization. The second constructor
initializes the object when the user adds a new line to the drawing. The line's color is
given, and so is its start point. Both the fields m_ptFirst and m_ptLast are set to the
start point. When the line is created, it has the same start and end point.

The field m_eDragMode is originally set to CREATE_LINE by the constructor and to
MODIFY_FIRST, MODIFY_LAST, or MOVE_LINE by Click, DoubleClick, or Inside
depending whether the user clicks on one of the end points of the line or on the
line itself. Observe that there is no enumeration constant for the case when the user
misses the line. In that case, the functions simply return false and ModifyOrMove or
Move will not be called.

As both LineFigure and ArrowFigure are direct sub classes of Figure and
ArrowFigure inherits LineFigure privately, a repeated inheritance has occurred.
An object of ArrowFigure would have two instances of Figure's field m_rfColor. It
is called redundancy, which is something we should avoid. The solution is virtual
inheritance. It gives the effect that there is only way from ArrowFigure to Figure.
The way over LineFigure is in effect cut off. In order for this to work, we have to let
LineFigure inherit Figure virtually.

Figure

LineFigure

ArrowFigure

The Draw Application

[186]

In the next section, we will also see that ArrowFigure inherits Figure virtually.

LineFigure.h
class LineFigure: public virtual Figure
{
 public:
 LineFigure();
 LineFigure(const Color& color, const CPoint& ptMouse);
 LineFigure(const LineFigure& line);
 Figure* Copy() const;

 void Serialize(CArchive& archive);
 HCURSOR GetCursor() const;

 BOOL Click(const CPoint& ptMouse);
 BOOL DoubleClick(const CPoint& ptMouse);
 BOOL Inside(const CRect& rcInside) const;

 void MoveOrModify(const CSize& szDistance);
 void Move(const CSize& szDistance);

 void Draw(CDC* pDC) const;
 CRect GetArea() const;

 protected:
 CPoint m_ptFirst, m_ptLast;
 enum {CREATE_LINE, MODIFY_FIRST, MODIFY_LAST, MOVE_LINE}
 m_eDragMode;
};

Click is a rather complicated function that decides whether the user has clicked on
the line. First, we examine whether the user has hit the start point by defining a small
square centered around the start point of the line. We use SQUARE_SIDE in Figure to
define the square. This means that a mouse click one millimeter away from the actual
start point counts as a hit. If we have a hit, we know that the user wants to modify
the start point of the line, and we set m_eDragMode to MODIFY_FIRST in accordance to
this. If it does not work, we try the same process with the end point.

Chapter 7

[187]

If the mouse click does not hit the start or end point, we continue by investigating
if the user instead has hit the actual line between the points. First, we have to
investigate whether the line is vertical (m_ptFirst.x == m_ptLast.x). If it is, we
have a special case. Then we construct a small rectangle around the line and test
whether the mouse position is in it.

m_ptFirst

m_ptLast

If the line is not vertical, we start by constructing a surrounding rectangle and test if
the mouse point is on it. If it is, we let the leftmost point of m_ptFirst and m_ptLast
equal ptMin and the rightmost point equal ptMax. Then we calculate the width
(cxLine) and height (cyLine) of the surrounding rectangle as well as the distance
between the ptMin and ptMouse in x- and y-direction (cxMouse and cyMouse).

ptMax

ptMin

cyMouse

cxMouse

cyLine

cxLine

Due to uniformity, the following equation is true if the mouse point hits the line.
cyMouse
cxMouse

cyLine
cxLine=

This implies that

cyMouse cxMousecyLine
cxLine=

The Draw Application

[188]

And that

cyMouse cxMousecyLine
cxLine- = 0.

Let us allow for a small tolerance, say that the user is allowed to miss the line by a
millimeter. If we reuse the SQUARE_SIDE constant, as the side of the square is two
millimeters, it would change the last equation to:

cyMouse cxMousecyLine
cxLine- < SQUARE_SIDE

2

LineFigure.cpp
BOOL LineFigure::Click(const CPoint& ptMouse)
{
 // Did the user click on the first end point?

 CRect rcFirst(m_ptFirst.x - (SQUARE_SIDE / 2),
 m_ptFirst.y - (SQUARE_SIDE / 2),
 m_ptFirst.x + (SQUARE_SIDE / 2),
 m_ptFirst.y + (SQUARE_SIDE / 2));

 if (rcFirst.PtInRect(ptMouse))
 {
 m_eDragMode = MODIFY_FIRST;
 return TRUE;
 }

 // Or the second one?

 CRect rcLast(m_ptLast.x - (SQUARE_SIDE / 2),
 m_ptLast.y - (SQUARE_SIDE / 2),
 m_ptLast.x + (SQUARE_SIDE / 2),
 m_ptLast.y + (SQUARE_SIDE / 2));

 if (rcLast.PtInRect(ptMouse))
 {
 m_eDragMode = MODIFY_LAST;
 return TRUE;
 }

 m_eDragMode = MOVE_LINE;

 // If the line completely vertical?

 if (m_ptFirst.x == m_ptLast.x)
 {
 CRect rcLine(m_ptFirst.x - (SQUARE_SIDE / 2), m_ptFirst.y,
 m_ptLast.x + (SQUARE_SIDE / 2), m_ptLast.y);

Chapter 7

[189]

 rcLine.NormalizeRect();
 return rcLine.PtInRect(ptMouse);
 }

 // Or not?

 else
 {
 CRect rcLine(m_ptFirst, m_ptLast);
 rcLine.NormalizeRect();

 if (rcLine.PtInRect(ptMouse))
 {
 CPoint ptMin = (m_ptFirst.x < m_ptLast.x)
 ? m_ptFirst : m_ptLast;
 CPoint ptMax = (m_ptFirst.x < m_ptLast.x)
 ? m_ptLast : m_ptFirst;

 int cxLine = ptMax.x - ptMin.x;
 int cyLine = ptMax.y - ptMin.y;

 int cxMouse = ptMouse.x - ptMin.x;
 int cyMouse = ptMouse.y - ptMin.y;

 return fabs(cyMouse - cxMouse * (double) cyLine /
 cxLine) <= (SQUARE_SIDE / 2);
 }

 return FALSE;
 }
}

When the user drags the mouse over a marked figure, it is supposed to be moved
or modified. The document class calls MoveOrModify, but it does not really know
whether the user has hit on the endpoints (modify) or the line itself (move), that
information is stored locally by the line object. The document class just calls
MoveOrModify, and the line object takes care of the rest.

MoveOrModify takes the distance of the mouse transfer since the previous call. If we
are in the process of creating the line, the distance shall affect the last end point of the
line. If the users clicked on one of the end points, we modify that end point. If they
click on the line, it moves the line by calling Move, which is easy to define, we just
modify both the end points.

void LineFigure::MoveOrModify(const CSize& szDistance)
{
 switch (m_eDragMode)
 {

 case CREATE_LINE:
 m_ptLast += szDistance;

The Draw Application

[190]

 break;

 case MODIFY_FIRST:
 m_ptFirst += szDistance;
 break;

 case MODIFY_LAST:
 m_ptLast += szDistance;
 break;

 case MOVE_LINE:
 Move(szDistance);
 break;
 }
}

void LineFigure::Move(const CSize& szDistance)
{
 m_ptFirst += szDistance;
 m_ptLast += szDistance;
}

Draw is called every time the figure needs to be repainted, partly or completely. If
the line is unmarked, we just select our pen and draw the line. When we select a
new pen we save the old one, which is to be later restored. If the line is marked, we
add two squares at each end point. For that, we need a brush. We create and select
our brush in a way similar to the pen. We create and paint the squares by calling
Rectangle, there is no function in the CDC class to paint a square.

LineFigure.cpp
void LineFigure::Draw(CDC *pDC) const
{
 CPen pen(PS_SOLID, 0, (COLORREF) GetColor());
 CPen* pOldPen = pDC->SelectObject(&pen);

 pDC->MoveTo(m_ptFirst.x, m_ptFirst.y);
 pDC->LineTo(m_ptLast.x, m_ptLast.y);
 pDC->SelectObject(pOldPen);

 if (IsMarked())
 {
 CPen pen(PS_SOLID, 0, BLACK);
 CPen* pOldPen = pDC->SelectObject(&pen);

 CBrush brush(BLACK);
 CBrush* pOldBrush = pDC->SelectObject(&brush);

 CRect rcFirst(m_ptFirst.x - (SQUARE_SIDE / 2),
 m_ptFirst.y - (SQUARE_SIDE / 2),
 m_ptFirst.x + (SQUARE_SIDE / 2),

Chapter 7

[191]

 m_ptFirst.y + (SQUARE_SIDE / 2));
 pDC->Rectangle(rcFirst);

 CRect rcLast(m_ptLast.x - (SQUARE_SIDE / 2),
 m_ptLast.y - (SQUARE_SIDE / 2),
 m_ptLast.x + (SQUARE_SIDE / 2),
 m_ptLast.y + (SQUARE_SIDE / 2));
 pDC->Rectangle(rcLast);

 pDC->SelectObject(pOldPen);
 pDC->SelectObject(pOldBrush);
 }
}

GetArea calculates the area of the line by creating a rectangle with the end points
of the line as opposite corners. If the line is marked, we need to slightly increase the
rectangle in order to fit in the squares at the end points.

m_ptLast m_ptLast

m_ptFirst m_ptFirst

LineFigure.cpp
CRect LineFigure::GetArea() const
{
 CRect rcLine(m_ptFirst, m_ptLast);
 rcLine.NormalizeRect();

 if (IsMarked())
 {
 rcLine.left -= (SQUARE_SIDE / 2);
 rcLine.right += (SQUARE_SIDE / 2);
 rcLine.top -= (SQUARE_SIDE / 2);
 rcLine.bottom += (SQUARE_SIDE / 2);
 }

 return rcLine;
}

The Draw Application

[192]

The ArrowFigure Class
ArrowFigure is a direct sub class of Figure and it inherits LineFigure privately,
and reuses most of the functionality. Similar to LineFigure, it draws a line, and
then adds the extension of two extra lines that constitutes an arrowhead. The class
has two fields of its own, m_ptLeft and m_ptRight, which holds the end points of
the arrowhead. It also reuses the fields m_ptFirst and m_ptLast of LineFigure.
Moreover, it has a constant ARROW_LENGTH; it is initialized to 500, which means that
the extra lines constituting the arrowhead are five millimeters long, regardless of the
length of the arrow itself.

The constructors just call the corresponding constructors in their base class
LineFigure. GetArea calculates the area of the arrow by calling its analogous
function in LineFigure. In addition to that, it also calculates the area of the
arrowhead. The resulting area is the smallest rectangle containing the whole arrow.

Copy creates and returns a pointer to an identical arrow object. ModifyOrMove and
Move calls their matching functions in LineFigure, and then calls SetArrowPoints
in order to evaluate the positions of the arrowhead. Draw also has a rather simple
implementation as we just have to draw three straight lines and, in case the arrow is
marked, draw the squares at the arrowhead's end points. DoubleClick switches the
endpoints of the arrow, so it points in the opposite direction.

In the previous section, we let LineFigure inherit Figure virtually. In this section,
we also let ArrowFigure inherit Figure virtually. In that way, the real base class of
ArrowFigure is Figure. The only purpose behind the private inheritance between
ArrowFigure and LineFigure is to let ArrowFigure reuse LineFigure's code. As
you can see in the class definition below, GetCursor, Click, and Inside just call
their counterparts in LineFigure.

ArrowFigure.h
class ArrowFigure: public virtual Figure, private LineFigure
{
 public:
 ArrowFigure();
 ArrowFigure(const Color& color, const CPoint& ptMouse);
 ArrowFigure(const ArrowFigure& arrow);
 Figure* Copy() const;

 void Serialize(CArchive& archive);
 HCURSOR GetCursor() const
 {return LineFigure::GetCursor();}

 BOOL Click(const CPoint& ptMouse)
 {return LineFigure::Click(ptMouse);}
 BOOL DoubleClick(const CPoint& ptMouse);

Chapter 7

[193]

 BOOL Inside(const CRect& rcInside) const
 {return LineFigure::Inside(rcInside);}

 void MoveOrModify(const CSize& szDistance);
 void Move(const CSize& szDistance);

 void Draw(CDC *pDC) const;
 CRect GetArea() const;

 private:
 void SetArrowPoints();

 CPoint m_ptLeft, m_ptRight;
 static const int ARROW_LENGTH = 500;
};

As ArrowFigure inherits Figure virtually, its constructor must call Figure's
constructor directly as well as LineFigure's constructor.

ArrowFigure.cpp
ArrowFigure::ArrowFigure(const ArrowFigure& arrow)
 :Figure(arrow),
 LineFigure(arrow)
{
 m_ptLeft = arrow.m_ptLeft;
 m_ptRight = arrow.m_ptRight;
}

When the user double-clicks on a line, nothing happens. However, when they
double-click on an arrow, its head is reversed.

BOOL ArrowFigure::DoubleClick(const CPoint& ptMouse)
{
 if (LineFigure::Click(ptMouse))
 {
 CPoint ptTemp = m_ptFirst;
 m_ptFirst = m_ptLast;
 m_ptLast = ptTemp;

 SetArrowPoints();
 return TRUE;
 }

 return FALSE;
}

The Draw Application

[194]

Most of the drawing is done in LineFigure. The ArrowFigure method just adds the
arrow head.

void ArrowFigure::Draw(CDC *pDC) const
{
 LineFigure::Draw(pDC);

 CPen pen(PS_SOLID, 0, (COLORREF) Figure::GetColor());
 CPen* pOldPen = pDC->SelectObject(&pen);

 pDC->MoveTo(m_ptLast);
 pDC->LineTo(m_ptLeft);

 pDC->MoveTo(m_ptLast);
 pDC->LineTo(m_ptRight);

 pDC->SelectObject(pOldPen);
}

In the same way, the area of the line is calculated in LineFigure. The GetArea
method of this class just adds the area of the arrow head. The method UnionRect
takes two rectangles and returns the smallest rectangle surronding them both. In
order for that to work, the rectangles have to be normalized. This means that this left
corner must be less than or equal to the right one and the top corner has to be less
than or equal to the bottom one. Normalize takes care of that.

m_ptLast

m_ptRight

m_ptLeft

m_ptFirst

CRect ArrowFigure::GetArea() const
{
 CRect rcLine = LineFigure::GetArea();

 CRect rcLeftArrow(m_ptLast, m_ptLeft);
 rcLeftArrow.NormalizeRect();
 rcLine.UnionRect(rcLine, rcLeftArrow);

Chapter 7

[195]

 CRect rcRightArrow(m_ptLast, m_ptRight);
 rcRightArrow.NormalizeRect();
 rcLine.UnionRect(rcLine, rcRightArrow);

 return rcLine;
}

SetArrowPoints is a private help method, called by DoubleClick, MoveOrModify,
and Move. Its task is to calculate the positions of the head of the arrow when it has
been modified. We will use the following relations to calculate the fields m_ptLeft
and m_ptRight.

radius

height

alpha

width

sin angle = height
radius

cos angle = radius
Width

width = radius cos angle
height = radius sin angle

radius = width + height2 2

angle = arctan height
width

The calculation is performed in three steps. First we calculate the dAlpha and dBeta
angles illustrated in the figure on next page.
iHeight = m_ptLast.y - m_pt.First.y

iWidth = m_ptLast.x - m_ptFirst.x

dAlpha = arctan iHeight
iwidth

dBeta = dAlpha +

Then we calculate dLeftAngle and dRightAngle and use their values to calculate
the value of m_ptLeft and m_ptRight. The angle between the line and the arrow
head parts is 45 degrees, which is equivalent to p/2 radians. So in order to determine
the angles for the arrow head parts, we simply subtract and add p/2 to dBeta,
respectively.

dLeftAngle = dBeta - 2

dRightAngle = dBeta + 2

The Draw Application

[196]

dRightAngle

dBeta

dLeftAngle

m_ptLast
m_ptLeft

m_ptFirst

dAlpha

m_ptRight

Then we use the formulas below to finally determine m_ptLeft and m_ptRight.
m_ptLeft.x = m_ptLast.x + ARROW_LENGTH cos dLeftAngle
m_ptLeft.y = m_ptLast.y + ARROW_LENGTH sin dLeftAngle

m_ptRight.x = m_ptLast.x + ARROW_LENGTH cos dRightAngle
m_ptRight.y = m_ptLast.y + ARROW_LENGTH sin dRightAngle

The trigonometric functions are available in the C standard library (include file
cmath). However, we need to define our value for p. The function atan2 calculates
the tangent value for the quota of iHeight and iWidth, and takes into consideration
the possibility that iWidth might be zero.

void ArrowFigure::SetArrowPoints()
{
 int iHeight = m_ptLast.y - m_ptFirst.y;
 int iWidth = m_ptLast.x - m_ptFirst.x;

 const double PI = 3.14159265;

Chapter 7

[197]

 double dAlpha = atan2((double) iHeight, (double) iWidth);
 double dBeta = dAlpha + PI;

 double dLeftAngle = dBeta - PI / 4;
 double dRightAngle = dBeta + PI / 4;

 m_ptLeft.x = m_ptLast.x +
 (int) (ARROW_LENGTH * cos(dLeftAngle));
 m_ptLeft.y = m_ptLast.y +
 (int) (ARROW_LENGTH * sin(dLeftAngle));

 m_ptRight.x = m_ptLast.x +
 (int) (ARROW_LENGTH * cos(dRightAngle));
 m_ptRight.y = m_ptLast.y +
 (int) (ARROW_LENGTH * sin(dRightAngle));
}

The RectangleFigure Class
RectangleFigure manages a rectangle. It is a direct sub class of
TwoDimensionalFigure. It has two fields m_ptTopLeft and m_ptBottomRight
for the opposite corners. The fields are protected as they are accessed by
EllipseFigure, which privately inherits RectangleFigure. RectangleFigure
inherits TwoDimensionalFigure virtually in the same way as LineFigure inherits
Figure virtually.

RectangleFigure.h
class RectangleFigure: public virtual TwoDimensionalFigure
{
 public:
 RectangleFigure();
 RectangleFigure(const Color& color, const CPoint&
 ptTopLeft, BOOL bFilled);
 RectangleFigure(const RectangleFigure& rectangle);
 Figure* Copy() const;
 void Serialize(CArchive& archive);
 HCURSOR GetCursor() const;
 BOOL Click(const CPoint& ptMouse);
 BOOL DoubleClick(const CPoint& ptMouse);
 BOOL Inside(const CRect& rcInside) const;
 void MoveOrModify(const CSize& szDistance);
 void Move(const CSize& szDistance);
 void Draw(CDC* pDC) const;
 CRect GetArea() const;
 private:
 enum {CREATE_RECTANGLE, MODIFY_TOPLEFT, MODIFY_TOPRIGHT,
 MODIFY_BOTTOMRIGHT, MODIFY_BOTTOMLEFT,

The Draw Application

[198]

 MOVE_RECTANGLE} m_eDragMode;
 protected:
 CPoint m_ptTopLeft, m_ptBottomRight;
};

When the user clicks on a rectangle, Click is called. The user may hit one of the four
corners of the rectangle, the borders of the rectangle, or, if the rectangle is filled, the
interior of the rectangle. The field m_eDragMode is set to an appropriate value.

Click works in a way similar to its equivalent function in the line class. It tests in
turn the four corners of the rectangle. If that fails and if the rectangle is filled, it
tests if the user has clicked in the rectangle. If the rectangle is unfilled, it tests if the
user has clicked on any of the four lines constituting the rectangle by constructing a
slightly small rectangle and a slightly larger one. If the mouse position is included in
the larger rectangle but not in the smaller one, the user has hit the rectangle.

m_ptTopLeft

m_ptBottomRight

RectangleFigure.cpp
BOOL RectangleFigure::Click(const CPoint& ptMouse)
{
 // Did the user click on the top left corner?

 CRect rcTopLeft(m_ptTopLeft.x - (SQUARE_SIDE / 2),
 m_ptTopLeft.y - (SQUARE_SIDE / 2),
 m_ptTopLeft.x + (SQUARE_SIDE / 2),
 m_ptTopLeft.y + (SQUARE_SIDE / 2));
 if (rcTopLeft.PtInRect(ptMouse))
 {
 m_eDragMode = MODIFY_TOPLEFT;
 return TRUE;
 }
 // Or the top right corner?
 CRect rcTopRight(m_ptBottomRight.x - (SQUARE_SIDE / 2),
 m_ptTopLeft.y - (SQUARE_SIDE / 2),

Chapter 7

[199]

 m_ptBottomRight.x + (SQUARE_SIDE / 2),
 m_ptTopLeft.y + (SQUARE_SIDE / 2));
 if (rcTopRight.PtInRect(ptMouse))
 {
 m_eDragMode = MODIFY_TOPRIGHT;
 return TRUE;
 }
 // Or the bottom right corner?
 CRect rcBottomRight(m_ptBottomRight.x - (SQUARE_SIDE / 2),
 m_ptBottomRight.y - (SQUARE_SIDE / 2),
 m_ptBottomRight.x + (SQUARE_SIDE / 2),
 m_ptBottomRight.y + (SQUARE_SIDE / 2));
 if (rcBottomRight.PtInRect(ptMouse))
 {
 m_eDragMode = MODIFY_BOTTOMRIGHT;
 return TRUE;
 }
 // Or the bottom left corner?
 CRect rcBottomLeft(m_ptTopLeft.x - (SQUARE_SIDE / 2),
 m_ptBottomRight.y - (SQUARE_SIDE / 2),
 m_ptTopLeft.x + (SQUARE_SIDE / 2),
 m_ptBottomRight.y +(SQUARE_SIDE / 2));
 if (rcBottomLeft.PtInRect(ptMouse))
 {
 m_eDragMode = MODIFY_BOTTOMLEFT;
 return TRUE;
 }
 CRect rcArea(m_ptTopLeft, m_ptBottomRight);
 rcArea.NormalizeRect();
 // Is the rectangle filled?
 if (IsFilled())
 {
 m_eDragMode = MOVE_RECTANGLE;
 return rcArea.PtInRect(ptMouse);
 }
 // Or is it unfilled?
 else
 {
 CSize szMargin((SQUARE_SIDE / 2), (SQUARE_SIDE / 2));
 CRect rcSmallArea(rcArea.TopLeft() + szMargin,
 rcArea.BottomRight() - szMargin);
 CRect rcLargeArea(rcArea.TopLeft() - szMargin,
 rcArea.BottomRight() + szMargin);
 m_eDragMode = MOVE_RECTANGLE;
 return rcLargeArea.PtInRect(ptMouse) &&
 !rcSmallArea.PtInRect(ptMouse);
 }
}

The Draw Application

[200]

GetArea simply creates and returns a CRect object with m_ptTopLeft and
m_ptBottomRight as its corners. If the rectangle is marked, we increase the
surrounding area in order to include the four squares.

m_ptTopLeft

m_ptLast

m_ptTopLeft

m_ptBottomRight

RectangleFigure.cpp
CRect RectangleFigure::GetArea() const
{
 CRect rcRectangle(m_ptTopLeft, m_ptBottomRight);
 rcRectangle.NormalizeRect();

 if (IsMarked())
 {
 rcRectangle.left -= (SQUARE_SIDE / 2);
 rcRectangle.right += (SQUARE_SIDE / 2);
 rcRectangle.top -= (SQUARE_SIDE / 2);
 rcRectangle.bottom += (SQUARE_SIDE / 2);
 }

 return rcRectangle;
}

The EllipseFigure Class
EllipseFigure manages an ellipse and is a direct sub class of
TwoDimensionalFigure. It also privately inherits RectangleFigure, from which it
reuses a large part of functionality. The user may re-shape the ellipse by seizing the
ellipse at its leftmost, rightmost, uppermost, or lowermost point. The class reuses
the fields m_ptTopLeft and m_ptBottomRight from RectangleFigure. Serialize,
DoubleClick, Inside and GetArea simply call their counterparts in RectangleClass.

EllipseFigure.h
class EllipseFigure: public virtual TwoDimensionalFigure,
 private RectangleFigure
{
 public:
 EllipseFigure();

Chapter 7

[201]

 EllipseFigure(const Color& color, const CPoint& ptTopLeft,
 BOOL bFilled);

 EllipseFigure(const EllipseFigure& ellipse);
 Figure* Copy() const;

 void Serialize(CArchive& archive)
 {return RectangleFigure::Serialize(archive);}
 HCURSOR GetCursor() const;

 BOOL Click(const CPoint& ptMouse);
 BOOL DoubleClick(const CPoint& ptMouse)
 {return RectangleFigure::DoubleClick(ptMouse);}
 BOOL Inside(const CRect& rcInside) const
 {return RectangleFigure::Inside(rcInside);}

 void MoveOrModify(const CSize& szDistance);
 void Move(const CSize& szDistance)
 {return RectangleFigure::Move(szDistance);}

 void Draw(CDC* pDC) const;
 CRect GetArea() const
 {return RectangleFigure::GetArea();}

 private:
 enum {CREATE_ELLIPSE, MODIFY_LEFT, MODIFY_RIGHT,
 MODIFY_TOP, MODIFY_BOTTOM, MOVE_ELLIPSE}
 m_eDragMode;
};

Just as in the rectangle case, Click first decides if the user has clicked on one of the
four end points, the only difference is that the positions are different in relation to
the figure.

m_ptTopLeft

m_ptBottomRight

The Draw Application

[202]

If the user has not clicked on one of the modifying positions, we have to decide if the
user has clicked on the ellipse itself. It is rather easy if the ellipse is filled, we create
an elliptic region by using the MFC class CRgn and test if the mouse position is in it.
If the ellipse is not filled, we create two regions, one slightly smaller than the ellipse
and on slightly larger. If the mouse position is included in the larger region but not
in the smaller one, we have a hit.

m_ptTopLeft

m_ptBottomRight

EllipseFigure.cpp
BOOL EllipseFigure::Click(const CPoint& ptMouse)
{
 int xCenter = (m_ptTopLeft.x + m_ptBottomRight.x) / 2;
 int yCenter = (m_ptTopLeft.y + m_ptBottomRight.y) / 2;

 // Has the user clicked at the leftmost point?

 CRect rcLeft(m_ptTopLeft.x - (SQUARE_SIDE / 2),
 yCenter - (SQUARE_SIDE / 2),
 m_ptTopLeft.x + (SQUARE_SIDE / 2),
 yCenter + (SQUARE_SIDE / 2));

 if (rcLeft.PtInRect(ptMouse))
 {
 m_eDragMode = MODIFY_LEFT;
 return TRUE;
 }

 // Or the rightmost point?

 CRect rcRight(m_ptBottomRight.x - (SQUARE_SIDE / 2),
 yCenter - (SQUARE_SIDE / 2),
 m_ptBottomRight.x + (SQUARE_SIDE / 2),
 yCenter + (SQUARE_SIDE / 2));

 if (rcRight.PtInRect(ptMouse))
 {
 m_eDragMode = MODIFY_RIGHT;
 return TRUE;
 }

Chapter 7

[203]

 // Or the topmost point?

 CRect rcTop(xCenter - (SQUARE_SIDE / 2),
 m_ptTopLeft.y - (SQUARE_SIDE / 2),
 xCenter + (SQUARE_SIDE / 2),
 m_ptTopLeft.y + (SQUARE_SIDE / 2));

 if (rcTop.PtInRect(ptMouse))
 {
 m_eDragMode = MODIFY_TOP;
 return TRUE;
 }

 // Or the bottommost point?

 CRect rcBottom(xCenter - (SQUARE_SIDE / 2),
 m_ptBottomRight.y - (SQUARE_SIDE / 2),
 xCenter + (SQUARE_SIDE / 2),
 m_ptBottomRight.y + (SQUARE_SIDE / 2));

 if (rcBottom.PtInRect(ptMouse))
 {
 m_eDragMode = MODIFY_BOTTOM;
 return TRUE;
 }

 CRgn rgArea;
 rgArea.CreateEllipticRgn(m_ptTopLeft.x, m_ptTopLeft.y,
 m_ptBottomRight.x,
 m_ptBottomRight.y);

 // Is the ellipse filled?

 if (IsFilled())
 {
 m_eDragMode = MOVE_ELLIPSE;
 return rgArea.PtInRegion(ptMouse);
 }

 // Or unfilled?

 else
 {
 int xMin = min(m_ptTopLeft.x, m_ptBottomRight.x);
 int xMax = max(m_ptTopLeft.x, m_ptBottomRight.x);

 int yMin = min(m_ptTopLeft.y, m_ptBottomRight.y);
 int yMax = max(m_ptTopLeft.y, m_ptBottomRight.y);

 CRgn rgSmallArea, rgLargeArea;
 rgSmallArea.CreateEllipticRgn(xMin + (SQUARE_SIDE / 2),
 yMin + (SQUARE_SIDE / 2),

The Draw Application

[204]

 xMax - (SQUARE_SIDE / 2),
 yMax - (SQUARE_SIDE / 2));
 rgLargeArea.CreateEllipticRgn(xMin - (SQUARE_SIDE / 2),
 yMin - (SQUARE_SIDE / 2),
 xMax + (SQUARE_SIDE / 2),
 yMax + (SQUARE_SIDE / 2));

 m_eDragMode = MOVE_ELLIPSE;
 return rgLargeArea.PtInRegion(ptMouse) &&
 !rgSmallArea.PtInRegion(ptMouse);
 }
}

The TextFigure Class
TextFigure is a direct sub class of Figure. It manages the text. The users can move
and edit the text, they can also change the font of the text.

The field m_ptText represents the upper left corner of the text, in logical units.
m_szText is the size of the text, also in logical units. The field m_stText is the actual
text; m_stPreviousText is used to resume the original text in case the user aborts
the editing by pressing the Esc key. GenererateCaretArray is called every time the
text is changed (change of font or addition or removal of a character) and calculates
the size and position for each character in the text. The horizontal positions (x values)
relative to the beginning of the text are stored in m_caretArray. The field m_font
is the font of the text and m_iAverageWidth holds the average width of the font,
roughly the width of the z character. It is used by the caret in the keyboard overwrite
state. Finally, m_eDragMode is used to give the cursor the correct form.

TextFigure.h
typedef CArray<int> IntArray;
enum KeyboardState {KS_INSERT, KS_OVERWRITE};
class TextFigure: public Figure
{
 public:
 TextFigure();
 TextFigure(const Color& color, const CPoint& ptMouse,
 const Font& font, CDC* pDC);
 TextFigure(const TextFigure& text);
 Figure* Copy() const;

 void Serialize(CArchive& archive);

 BOOL Click(const CPoint& ptMouse);
 BOOL DoubleClick(const CPoint& ptMouse);

Chapter 7

[205]

 BOOL Inside(const CRect& rcInside) const;

 void MoveOrModify(const CSize& szDistance);
 void Move(const CSize& szDistance);

 BOOL KeyDown(UINT uChar, CDC* pDC);
 void CharDown(UINT uChar, CDC* pDC,
 KeyboardState eKeyboardState);
 void SetPreviousText(CDC* pDC);

 void Draw(CDC* pDC) const;
 CRect GetArea() const;

 Font* GetFont();
 void SetFont(const Font& font, CDC* pDC);

 private:
 void GenerateCaretArray(CDC* pDC);

 public:
 CRect GetCaretArea(KeyboardState eKeyboardState);
 HCURSOR GetCursor() const;

 private:
 enum {CREATE_TEXT, MOVE_TEXT, EDIT_TEXT, NONE_TEXT}
 m_eDragMode;

 CPoint m_ptText;
 CSize m_szText;

 CString m_stText, m_stPreviousText;
 int m_iAverageWidth;

 Font m_font;
 int m_iEditIndex;
 IntArray m_caretArray;
};

TextFigure.cpp
Serialize loads and stores the position of the text and the text itself as well as the
size of the text. Storing and saving the size of the text may seem as an unnecessary
measure as we can calculate the size of the given text and its font. However, that
requires access to a device context, which Serialize does not have. So, instead of
a rather complicated process of letting the document class create a device context
without access to a view object, we just load and store the size of the text. Remember
that the size is given in logical units, so the text will have the same size on screens
with different size and resolution.

The Draw Application

[206]

We have to call Serialize in Figure to store and load the color of the figure. It is
possible to serialize m_caretArray since it holds objects. It would not be possible if it
held pointers to objects.

void TextFigure::Serialize(CArchive& archive)
{
 Figure::Serialize(archive);
 m_font.Serialize(archive);
 m_caretArray.Serialize(archive);

 if (archive.IsStoring())
 {
 archive << m_ptText << m_stText << m_szText
 << m_iAverageWidth;
 }

 if (archive.IsLoading())
 {
 archive >> m_ptText >> m_stText >> m_szText
 >> m_iAverageWidth;
 m_iEditIndex = 0;
 }
}

Click is rather straightforward as we do not have to check whether the user has
clicked at any of the text's squares or on the text itself. We just create a CRect object
with the text's coordinates and check if the mouse click position fits inside it. Inside
is also quite straightforward, we just check if the top-left and bottom-right corner of
the text is enclosed by the given rectangle.

BOOL TextFigure::Click(const CPoint& ptMouse)
{
 m_eDragMode = MOVE_TEXT;
 CRect rcText(m_ptText, m_szText);
 return rcText.PtInRect(ptMouse);
}

BOOL TextFigure::Inside(const CRect& rcInside) const
{
 CRect rcText(m_ptText, m_szText);
 rcText.NormalizeRect();

 return rcInside.PtInRect(rcText.TopLeft()) &&
 rcInside.PtInRect(rcText.BottomRight());
}

Chapter 7

[207]

DoubleClick, on the other hand, is more complicated. First, we decide if the user
has clicked on the text at all. In that case, we have to find out where in the text the
user has clicked in order to set the caret marker at the correct position. The vector
m_caretArray has been initialized to the start positions of characters in the text by
a previous call to GenerateCaretArray. We traverse that vector and define the start
and end position (iFirstPos and iLastPos) of every character. When we find the
correct character (the character the user has clicked on), we have to decide if the user
has clicked on its left or right side. If they have clicked on the left side, we return the
characters position, if they have clicked on the right side, we return the position of
the character on the right. Since we know that the user has clicked on the text, we do
not have to consider any case where the user has clicked on the left of the leftmost
character or on the right of the rightmost character.

BOOL TextFigure::DoubleClick(const CPoint& ptMouse)
{
 CRect rcText(m_ptText, m_szText);

 if (rcText.PtInRect(ptMouse))
 {
 CPoint ptTextMouse = ptMouse - m_ptText;
 int iSize = m_stText.GetLength();

 for (int iIndex = 0; iIndex < iSize; ++iIndex)
 {
 int iFirstPos = m_caretArray[iIndex];
 int iLastPos = m_caretArray[iIndex + 1] - 1;

 if ((ptTextMouse.x >= iFirstPos) &&
 (ptTextMouse.x <= iLastPos))
 {
 if ((ptTextMouse.x - iFirstPos) <
 (iLastPos - ptTextMouse.x))
 {
 m_iEditIndex = iIndex;
 }
 else
 {
 m_iEditIndex = iIndex + 1;
 }

 break;
 }
 }

 m_eDragMode = EDIT_TEXT;
 m_stPreviousText = m_stText;
 return TRUE;
 }

The Draw Application

[208]

As we always find the character clicked on this point of the method is never reached.
The check is for debugging purposes only.

 check(FALSE);
 return FALSE;
}

KeyDown and CharDown are called by one of the view objects as a response to the
WM_KEYDOWN and WM_CHAR messages. As the name implies, WM_CHAR is called when
the user presses a non-system character (writable character with ASCII number
32 – 122), while WM_KEYDOWN is sent for every key on the keyboard. There is also a
message WM_KEYUP that is sent when the user releases the key. We have, however, no
need for that message.

KeyDown catches the Home and End keys as well as the left and right arrow keys.
These keys all set the carat index to an appropriate value. Furthermore, KeyDown
catches the Delete key, which, unless the caret index is already at the end of the text,
erases the current character (the character after the caret index) and re-calculates
the size of the text and the start position of every character in the text by calling
GenerateCaretArray. KeyDown also catches the Backspace key in a similar manner;
it erases the character at the left of the caret index and re-calculates the text calling
GenerateCaretArray unless the caret index is already at the beginning of the text.

BOOL TextFigure::KeyDown(UINT uChar, CDC* pDC)
{
 int iLength = m_stText.GetLength();

 switch (uChar)
 {
 case VK_HOME:
 if (m_iEditIndex > 0)
 {
 m_iEditIndex = 0;
 }
 break;

 // ...
 }

 return FALSE;
}

Chapter 7

[209]

CharDown is called by one of the view objects when the user presses a regular key.
We restrict the acceptable set of keys to the printable characters. If the caret index is
located at the end of the text, we just add the character to the text regardless of the
keyboard input state. Otherwise, we insert or overwrite the character at the caret
position. In either case, we increment the caret index by one and re-calculate the text
by calling GenerateCaretArray.

void TextFigure::CharDown(UINT uChar, CDC* pDC,
 KeyboardState eKeyboardState)
{
 if (m_iEditIndex == m_stText.GetLength())
 {
 m_stText.AppendChar((TCHAR) uChar);
 }
 else
 {
 switch (eKeyboardState)
 {
 case KS_INSERT:
 m_stText.Insert(m_iEditIndex, (TCHAR) uChar);
 break;

 case KS_OVERWRITE:
 m_stText.SetAt(m_iEditIndex, (TCHAR) uChar);
 break;
 }
 }

 ++m_iEditIndex;
 GenerateCaretArray(pDC);
}

Draw writes the text by calling the CDC method TextOut. It writes the text with
its top-left corner at the given position. When it comes to writing text, we do not
have to select a pen, we just set the color by calling SetTextColor. However, we
need to select a font. The font is stored as points (1 point = 1/72 inch, 1 inch = 25.4
millimeters), so we convert the size of the font to hundredths of millimeters by
calling PointToMeters in the Font class.

Finally, if the text is marked, we need to calculate, create, and paint the squares
marking the text. We create four rectangles centered on each of the four corners and
paint them by calling Rectangle.

void TextFigure::Draw(CDC* pDC) const
{
 CFont cFont;
 cFont.CreateFontIndirect(m_font.PointsToMeters());

The Draw Application

[210]

 CFont* pPrevFont = pDC->SelectObject(&cFont);

 pDC->SetTextColor((COLORREF) GetColor());
 pDC->TextOut(m_ptText.x, m_ptText.y + m_szText.cy,
 m_stText);

 pDC->SelectObject(pPrevFont);

 if (IsMarked())
 {
 CPen pen(PS_SOLID, 0, BLACK);
 CPen* pOldPen = pDC->SelectObject(&pen);

 CBrush brush(BLACK);
 CBrush* pOldBrush = pDC->SelectObject(&brush);

 int xLeft = m_ptText.x;
 int xRight = m_ptText.x + m_szText.cx;

 int yTop = m_ptText.y;
 int yBottom = m_ptText.y + m_szText.cy;
 int xCenter = m_ptText.x + m_szText.cx / 2;
 int yCenter = m_ptText.y + m_szText.cy / 2;

 CRect rcLeft(xLeft - (SQUARE_SIDE / 2),
 yCenter - (SQUARE_SIDE / 2),
 xLeft + (SQUARE_SIDE / 2),
 yCenter + (SQUARE_SIDE / 2));

 CRect rcRight(xRight - (SQUARE_SIDE / 2),
 yCenter - (SQUARE_SIDE / 2),
 xRight + (SQUARE_SIDE / 2),
 yCenter + (SQUARE_SIDE / 2));

 CRect rcTop(xCenter - (SQUARE_SIDE / 2),
 yTop - (SQUARE_SIDE / 2),
 xCenter + (SQUARE_SIDE / 2),
 yTop + (SQUARE_SIDE / 2));

 CRect rcBottom(xCenter - (SQUARE_SIDE / 2),
 yBottom - (SQUARE_SIDE / 2),
 xCenter + (SQUARE_SIDE / 2),
 yBottom + (SQUARE_SIDE / 2));

 pDC->Rectangle(rcLeft);
 pDC->Rectangle(rcRight);
 pDC->Rectangle(rcTop);
 pDC->Rectangle(rcBottom);

 pDC->SelectObject(pOldPen);
 pDC->SelectObject(pOldBrush);
 }
}

Chapter 7

[211]

GetArea starts by calculating the unmarked size. It is an easy task to create a
CRect object because we already have to top left position (m_ptText) and its size
(m_szText). In case the text is marked, we add margins for the squares.

CRect TextFigure::GetArea() const
{
 CRect rcText(m_ptText, m_szText);
 rcText.NormalizeRect();

 if (IsMarked())
 {
 rcText.left -= (SQUARE_SIDE / 2);
 rcText.right += (SQUARE_SIDE / 2);

 rcText.top -= (SQUARE_SIDE / 2);
 rcText.bottom += (SQUARE_SIDE / 2);
 }

 return rcText;
}

SetFont sets the font of the text. We need to recalculate the characters positions by
calling GenerateCaretArray.

void TextFigure::SetFont(const Font& font, CDC* pDC)
{
 m_font = font;
 GenerateCaretArray(pDC);
}

GenerateCaretArray determines the size and position of each character in the text.
The positions relative the beginning of the text (the x-position) for each character is
stored in m_caretArray. The size of the text is stored in m_szText and the average
character width with the given font is stored in m_iAverageWidth.

First, we need to select a font with coordinates given in logical units. The
translation from typographical points to hundredths of millimeters is done by
PointsToMetrics in the Font class.

To find the size of the text we need to consider two cases. If the text is non-empty,
we call GetTextExtent to receive the size of the text. If the text is empty, we use
the field tmHeight of the TEXTMETRIC structure and set the width of the text to zero.
A call to GetTextExtent in this case would return a zero size. The size is given in
logical units because the function calling GenerateCaretArray has initialized the
device context with the logical coordinate system.

The Draw Application

[212]

After the size of the whole text is set, we need to find the horizontal starting position
(the x-position) of each character in the text. We traverse through the text and find
the width of each character by calling GetTextExtent. We set the size of the vector
m_caretArray to one more than the size of the text, in order to be able to store the
rightmost position of the text.

void TextFigure::GenerateCaretArray(CDC* pDC)
{
 CFont cFont;
 cFont.CreateFontIndirect(m_font.PointsToMeters());
 CFont* pPrevFont = pDC->SelectObject(&cFont);

 TEXTMETRIC textMetric;
 pDC->GetTextMetrics(&textMetric);
 m_iAverageWidth = textMetric.tmAveCharWidth;

 if (!m_stText.IsEmpty())
 {
 m_szText = pDC->GetTextExtent(m_stText);
 }

 else
 {
 m_szText.SetSize(0, textMetric.tmHeight);
 }

 int iWidth = 0, iSize = m_stText.GetLength();
 m_caretArray.SetSize(iSize + 1);

 for (int iIndex = 0; iIndex < iSize; ++iIndex)
 {
 CSize szChar = pDC->GetTextExtent
 (m_stText.Mid(iIndex, 1));
 m_caretArray[iIndex] = iWidth;
 iWidth += szChar.cx;
 }

 m_caretArray[iSize] = m_szText.cx;
 pDC->SelectObject(pPrevFont);
}

GetCaretArea calculates and returns the size and position of the caret. First we
define the top-left position of the character the caret marker is set to. Then we have
two cases to consider depending on the input state of the keyboard. In an insert state,
the caret shall be a thin vertical blinking line. We set the width to one and the height
to the height of the text. Remember that we are dealing with logical coordinates
(hundredths of millimeters), so the width will most likely be rounded down to zero
when translated to device coordinates. However, the function OnUpdate in the view
class will take this into consideration and set the width to at least one device

Chapter 7

[213]

unit. If the keyboard is set to overwrite the input state, the caret marker should be a
small blinking rectangle whose width should be the width of an average character
in the current font. We use the value of m_iAverageWidth, which was assessed by a
previous call to GenerateCaretArray.

CRect TextFigure::GetCaretArea(KeyboardState eKeyboardState)
{
 CPoint ptCaret(m_ptText.x + m_caretArray[m_iEditIndex],
 m_ptText.y);

 switch (eKeyboardState)
 {
 case KS_INSERT:
 {
 CSize szCaret(1, m_szText.cy);
 return CRect(ptCaret, ptCaret + szCaret);
 }
 break;

 case KS_OVERWRITE:
 {
 CSize szCaret(m_iAverageWidth, m_szText.cy);
 return CRect(ptCaret, ptCaret + szCaret);
 }
 break;
 }

 return CRect();
}

The FigureFileManager Class
Since the user can save and load drawings, we need to manage the saving and
loading of figure class objects. There is really no problem in saving them, we just
call Serialize for each figure class object. However, when it comes to loading
figures, we must know which concrete class has been saved. Here is where
FigureFileManager comes into the picture. Before the figure object is saved, a
FigureFileManager is created, it saves an identity value connected to the figure
class before the contents of the figure are saved. When a file is loaded, first the
identity value is read by the FigureFileManager. It then creates an object of the
class connected to the identity value. After that, we just serialize the object.

The Draw Application

[214]

One advantage of this system is that if we would like to add another figure to our
drawing program, we just need to modify this class, figure classes do not need to
be modified. A similar effect can be archived by the use of the CArchive classes
WriteClass, WriteObject, ReadClass, and ReadObject. However, they do not
work well together with repeated inheritance.

FigureFileManager.h
class FigureFileManager : public CObject
{
 public:
 FigureFileManager(Figure* pFigure = NULL);
 Figure* GetFigure() const {return m_pFigure;}

 private:
 int GetId() const;
 void CreateFigure(int iId);

 public:
 void Serialize(CArchive& archive);

 private:
 enum {LINE, ARROW, RECTANGLE, ELLIPSE, TEXT};
 Figure* m_pFigure;
};

The FigureFileManager uses the language construct dynamic_cast to decide the
class the object is an instanse of. We can use dynamic_cast to perform safe pointer
type conversion. If m_pFigure points at an ArrowFigure object, the address of that
object will be returned in a pointer to ArrowFigure. If it does not, null is returned.

Note the reversed order of GetId. If we first tried dynamic cast with LineFigure, it
would also catch the case of ArrowFigure, as it is a private sub class of LineFigure.

FigureFileManager.cpp
int FigureFileManager::GetId() const
{
 if (dynamic_cast<ArrowFigure*>(m_pFigure) != NULL)
 {
 return ARROW;
 }

 else if (dynamic_cast<LineFigure*>(m_pFigure) != NULL)
 {
 return LINE;
 }

 // ...

Chapter 7

[215]

 else
 {
 check(FALSE);
 return 0;
 }
}

void FigureFileManager::CreateFigure(int iId)
{
 case LINE:
 check_memory(m_pFigure = new LineFigure());
 break;

 // ...

 default:
 check(FALSE);
 }
}

void FigureFileManager::Serialize(CArchive& archive)
{
 CObject::Serialize(archive);

 if (archive.IsStoring())
 {
 archive << GetId();
 }

 if (archive.IsLoading())
 {
 int iId;
 archive >> iId;
 CreateFigure(iId);
 }
}

The Document Class
CDrawDoc is the document class. Its task is to accept mouse and keyboard input
from the CDrawView view objects, to manage the document's data, to load and save
data, to alert the view object about changes in the data, and to accept input from the
menus. This implies that the class is rather large.

The Draw Application

[216]

One central point of this application is its states. The application can be in a number
of different states. For the application to keep up with them there is a set of fields.
First, we have m_eNextActionState. It keeps track of the user's next move. It can be
set to adding a line, adding an arrow, adding a rectangle, adding an ellipse, adding
text, or modifying a figure. It has the enumeration type NextActionState.

 enum NextActionState {ADD_LINE, ADD_ARROW, ADD_RECTANGLE,
 ADD_ELLIPSE, ADD_TEXT, MODIFY_FIGURE};

The constructor and destructor access its current value from the registry. The last
parameter to GetProfileInt is the default value in case the value is not stored in
the registry.

CDrawDoc::CDrawDoc()
{
 m_eNextActionState = (NextActionState) AfxGetApp()->
 GetProfileInt(TEXT("Draw"),
 TEXT("ActionMode"), MODIFY_FIGURE);
 // ...
}
CDrawDoc::~CDrawDoc()
{
 AfxGetApp()->WriteProfileInt(TEXT("Draw"),
 TEXT("ActionMode"), (int) m_eNextActionState);
 // ...
}

Second, we have m_eApplicationState. It keeps track of the user's activity. The
user may be involved in moving or modifying a single figure, moving several
figures, surrounding figures inside a rectangle, editing text, or doing nothing at all.
m_eApplicationState has the enumeration type ApplicationState.

enum ApplicationState {SINGLE_DRAG, MULTIPLE_DRAG,
 RECTANGLE_DRAG, EDIT_TEXT, IDLE};

m_eApplicationState is initialized to the idle state by the constructor. When
m_eApplicationState is in the edit-text state, m_pEditText points at the text
being edited. The caret class object m_caret keeps track of the caret. When
m_eApplicationState is in single-drag state m_pSingleFigure points at the figure
being dragged, and when it is in rectangle-drag state, m_pDragRectangle points at
the surrounding rectangle.

As the user adds figure to and removes figure from the drawing, the figure objects
are dynamically created and pointers to them are stored in m_figurePtrList. When
the user marks and copies a set of figures, the figures are copied with the Copy of the
Figure class in question, and the pointers are stored in m_copyPtrList.

Chapter 7

[217]

The field m_nextColor stores the color of the next figure to be added to the drawing,
m_nextFont stores the font of the next text, and m_bNextFill stores the fill status
of the next two-dimensional figure (rectangle or ellipse). The fields are set by
the user and are used when a new figure is added to the drawing. Similar to
m_iApplicationState, the values of m_nextColor and m_bNextFill are accessed
by the constructor and destructor from the registry.

CDrawDoc::CDrawDoc()
{
 // ...
 m_nextColor = (COLORREF) AfxGetApp()->GetProfileInt
 (TEXT("Draw"), TEXT("CurrentColor"), BLACK);
 m_bNextFill = (BOOL) AfxGetApp()->GetProfileInt
 (TEXT("Draw"),TEXT("CurrentFill"), TRUE);
}

CDrawDoc::CDrawDoc()
{
 // ...
 m_nextColor = (COLORREF) AfxGetApp()->GetProfileInt
 (TEXT("Draw"), TEXT("CurrentColor"), BLACK);
 m_bNextFill = (BOOL) AfxGetApp()->GetProfileInt
 (TEXT("Draw"), TEXT("CurrentFill"), TRUE);
}

If one figure is marked, it is moved or modified depending on how it was marked.
If several figures a marked, they are always moved. Each time the user moves the
mouse the WM_MOUSEMOVE message is sent to the view object and transferred to the
document class object. In order to determine the distance between two consecutive
mouse movements, we need to compare the position of the current mouse position to
the position of the mouse pointer when the previous message was sent. The previous
position is stored in m_ptPrevMouse.

When the user types text on the keyboard, the keyboard may be in insert or overwrite
state. Unfortunately, there is no way to find out which one by calling some system
function, so the application must keep track of it. It uses m_eKeyboardMode of the
enumeration type KeyboardState.

 enum KeyboardState {KS_INSERT, KS_OVERWRITE};

As KeyboardState is used by the text figure, it is defined in TextFigure.h.

Finally, the two constants TOTAL_WIDTH and TOTAL_HEIGHT holds the dimensions
of a letter (216 millimeters width and 297 millimeters height) in logical units
(hundredths of millimeters).

The Draw Application

[218]

DrawDoc.h
const int TOTAL_WIDTH = 21600, TOTAL_HEIGHT = 27900;

enum ApplicationState {SINGLE_DRAG, MULTIPLE_DRAG,
 RECTANGLE_DRAG, EDIT_TEXT, IDLE};
enum NextActionState {ADD_LINE, ADD_ARROW, ADD_RECTANGLE,
 ADD_ELLIPSE, ADD_TEXT, MODIFY_FIGURE};

class CDrawDoc: public CDocument
{
 private:
 DECLARE_DYNCREATE(CDrawDoc)
 DECLARE_MESSAGE_MAP()

 CDrawDoc();
 ~CDrawDoc();

 public:
 void Serialize(CArchive& ar);

 void MouseDown(CPoint ptMouse, BOOL bControlKeyDown,
 CDC* pDC);
 void MouseDrag(const CPoint& ptMouse);
 void MouseUp();

 void DoubleClick(const CPoint& ptMouse);
 BOOL KeyDown(UINT cChar, CDC* pDC);
 void CharDown(UINT cChar, CDC* pDC);

 const FigurePointerList* GetFigurePtrList() const
 {return &m_figurePtrList;}
 const RectangleFigure* GetInsideRectangle() const
 {return m_pDragRectangle;}

 Caret* GetCaret() {return &m_caret;}
 const HCURSOR GetCursor() const;

 afx_msg void OnUpdateAddLine(CCmdUI *pCmdUI);
 afx_msg void OnUpdateAddArrow(CCmdUI *pCmdUI);
 afx_msg void OnUpdateAddRectangle(CCmdUI *pCmdUI);
 afx_msg void OnUpdateAddEllipse(CCmdUI *pCmdUI);
 afx_msg void OnUpdateAddText(CCmdUI *pCmdUI);
 afx_msg void OnUpdateModifyFigure(CCmdUI *pCmdUI);

 afx_msg void OnAddLine();
 afx_msg void OnAddArrow();
 afx_msg void OnAddRectangle();
 afx_msg void OnAddEllipse();
 afx_msg void OnAddText();
 afx_msg void OnModifyFigure();

 afx_msg void OnUpdateCut(CCmdUI *pCmdUI);

Chapter 7

[219]

 afx_msg void OnCut();

 afx_msg void OnUpdateCopy(CCmdUI *pCmdUI);
 afx_msg void OnCopy();
 afx_msg void OnUpdatePaste(CCmdUI *pCmdUI);
 afx_msg void OnPaste();

 afx_msg void OnUpdateDelete(CCmdUI *pCmdUI);
 afx_msg void OnDelete();

 afx_msg void OnUpdateColor(CCmdUI *pCmdUI);
 afx_msg void OnColor();

 afx_msg void OnUpdateFont(CCmdUI *pCmdUI);
 afx_msg void OnFont();

 afx_msg void OnUpdateFill(CCmdUI *pCmdUI);
 afx_msg void OnFill();

 private:
 static BOOL IsMarked(Figure* pFigure);
 static BOOL IsMarkedText(Figure* pFigure);
 static BOOL IsMarkedAndFilled(Figure* pFigure);
 static BOOL IsMarkedAndNotFilled(Figure* pFigure);

 void UnmarkAllFigures();
 void ClearCopyList();

 private:
 Caret m_caret;

 ApplicationState m_eApplicationState;
 NextActionState m_eNextActionState;
 KeyboardState m_eKeyboardState;

 Color m_nextColor;
 Font m_nextFont;
 BOOL m_bNextFill;

 Figure *m_pSingleFigure;
 TextFigure* m_pEditText;
 RectangleFigure *m_pDragRectangle;
 FigurePointerList m_figurePtrList, m_copyPtrList;
 CPoint m_ptPrevMouse;
};

Serialize loads and stores the figures in m_figurePtrList. We cannot serialize the
list itself because it contains pointers to the figure objects, not the objects themselves.
Therefore, we have to traverse the list and store the objects one by one. In order for
the function to correctly read the objects, we also have to store information about
the class. We know that the class is a sub class of Figure, but we do not know
which one.

The Draw Application

[220]

This is when the FigureFileManager class steps into action. When storing, before
serializing each Figure class object, we first create a FigureFileManager object that
looks up and saves the identity value of the figure. When loading, we also create
a FigureFileManager that reads the identity value and dynamically creates an
appropriate Figure class object by calling its default constructor. Then we serialize
the fields of the figure.

DrawDoc.cpp
void CDrawDoc::Serialize(CArchive& archive)
{
 CDocument::Serialize(archive);

 if (archive.IsStoring())
 {
 archive << (int) m_figurePtrList.GetSize();

 for (POSITION position =m_figurePtrList.GetHeadPosition();
 position != NULL; m_figurePtrList.GetNext(position))
 {
 Figure* pFigure = m_figurePtrList.GetAt(position);
 FigureFileManager manager(pFigure);
 manager.Serialize(archive);
 pFigure->Serialize(archive);
 }
 }

 if (archive.IsLoading())
 {
 int iSize;
 archive >> iSize;

 for (int iIndex = 0; iIndex < iSize; ++iIndex)
 {
 FigureFileManager manager;
 manager.Serialize(archive);
 Figure* pFigure = manager.GetFigure();
 pFigure->Serialize(archive);
 m_figurePtrList.AddTail(pFigure);
 }
 }
}

MouseDown can together with MouseMove and MouseUp be considered the heart of
the application. It is called by OnLButtonDown in the view class when it receives the
WM_LBUTTONDOWN message.

Chapter 7

[221]

We start by storing the mouse position, because we will need to keep track of mouse
movements. In case the application is in the state of editing a text, we finish that
process by simulating a Return key.

void CDrawDoc::MouseDown(CPoint ptMouse, BOOL bControlKeyDown,
 CDC* pDC)
{
 m_ptPrevMouse = ptMouse;

 if (m_eApplicationState == EDIT_TEXT)
 {
 KeyDown(VK_RETURN, pDC);
 }

If m_eNextActionState is set to add a figure, we simply add the figure in question.
We create the figure object and add its address to the figure list. In every case, except
text, we set m_eApplicationState to the drag-mouse state, which it will remain
in as long as the user is holding the mouse button down (MouseUp is called when
the user releases the mouse button). In these cases, we also set m_eDragState to
the single-drag state, as we only operate on one new figure. Note that we check the
allocated memory with the check_memory macro.

 switch (m_eNextActionState)
 {
 case ADD_LINE:
 check_memory(m_pSingleFigure =
 new LineFigure(m_nextColor, ptMouse));
 m_figurePtrList.AddTail(m_pSingleFigure);
 m_eApplicationState = SINGLE_DRAG;
 SetModifiedFlag();
 break;

 case ADD_ARROW:
 // ...

In the case of adding text, we set m_eApplicationState to the edit-text state. It will
remain in that state until the user types the Return or Escape. It will also exit that state
if the user clicks the mouse, in which case we simulate a Return key, see the beginning
of this method. In the case of creating text, we also set and show the caret marker at an
appropriate size and position by calling GetCaretArea on the text object.

 case ADD_TEXT:
 {
 check_memory(m_pEditText = new TextFigure(m_nextColor,
 ptMouse, m_nextFont, pDC));
 m_figurePtrList.AddTail(m_pEditText);
 m_eApplicationState = EDIT_TEXT;

The Draw Application

[222]

 CRect rcCaret = m_pEditText->GetCaretArea
 (m_eKeyboardState);
 m_caret.SetAndShowCaret(rcCaret);
 SetModifiedFlag();
 }
 break;

In the case of modifying a figure, we have two different situations. If the control
key(Ctrl) is pressed, we will mark the figure pointed as if it is unmarked, and
vice versa. If the control key(Ctrl) is not pressed, we will mark the figure pointed
regardless of whether it is already marked and unmarked for all other figures.

So, if the control key(Ctrl) is not pressed, we start by unmarking all figures. Then we
traverse the figure list and break if we find a figure hit by the click. We traverse the
list from start to end, which corresponds to examining the topmost figure first. Note
that we need not know which kind of figure we are testing, its up to the sub classes
of Figure to implement the pure virtual method Click.

 case MODIFY_FIGURE:
 if (!bControlKeyDown)
 {
 UnmarkAllFigures();
 }
 Figure* pClickedFigure = NULL;
 for (POSITION position =
 m_figurePtrList.GetTailPosition();
 position != NULL;m_figurePtrList.GetPrev(position))
 {
 Figure* pFigure = m_figurePtrList.GetAt(position);
 if (pFigure->Click(ptMouse))
 {
 pClickedFigure = pFigure;
 break;
 }
 }

If we find a figure, we have two cases to consider. If the Ctrl key is pressed, we mark
or unmark the figure depending on its current mark status. If the figure is already
marked, we unmark it and put the application in the idle state. If the figure is not
already marked, we mark it and move it to the end of the figure list (which makes it
appear on top of the other figures). We then put the application in the multiple-drag
state, which means that one or more figures are marked and ready to be moved, but
not modified.

 if (pClickedFigure != NULL)
 {
 CRect rcOldFigure = pClickedFigure->GetArea();
 if (bControlKeyDown)

Chapter 7

[223]

 {
 if (pClickedFigure->IsMarked())
 {
 pClickedFigure->Mark(FALSE);
 m_eApplicationState = IDLE;
 }
 else
 {
 pClickedFigure->Mark(TRUE);
 m_figurePtrList.Remove(pClickedFigure);
 m_figurePtrList.AddTail(pClickedFigure);

 m_eApplicationState = MULTIPLE_DRAG;
 SetModifiedFlag();
 }
 }

If the Ctrl key is not pressed, we mark the figure (all figures have been unmarked if
the control key is not pressed, see the beginning of this case statement) and set the
field m_pSingleFigure to point at it. We put it last in the figure list (which makes it
appear on top of the other figures), and put the application in the single-drag state.
Finally, we update the views by calling UpdateAllFigures.

 else
 {
 m_pSingleFigure = pClickedFigure;
 m_pSingleFigure->Mark(TRUE);
 m_figurePtrList.Remove(m_pSingleFigure);
 m_figurePtrList.AddTail(m_pSingleFigure);
 CRect rcFigure = m_pSingleFigure->GetArea();
 UpdateAllViews(NULL, (LPARAM) &rcFigure);
 m_eApplicationState = SINGLE_DRAG;
 SetModifiedFlag();
 }
 CRect rcNewFigure = pClickedFigure->GetArea();
 UpdateAllViews(NULL, (LPARAM) &rcOldFigure);
 UpdateAllViews(NULL, (LPARAM) &rcNewFigure);
 }

If we did not find a figure, we initialize the inside rectangle and and put the
application in the rectangle-drag state.

 else
 {
 check_memory(m_pDragRectangle = new
 RectangleFigure(GRAY, ptMouse, FALSE));
 m_eApplicationState = RECTANGLE_DRAG;
 }
 break;
 }
}

The Draw Application

[224]

MouseDrag is called when the user moves the mouse with the left button pressed.
The distance since the last call to MouseDown or MouseDrag is stored in szDistance.

void CDrawDoc::MouseDrag(const CPoint& ptMouse)
{

 CSize szDistance = ptMouse - m_ptPrevMouse;
 m_ptPrevMouse = ptMouse;

If the application is in the single-drag state, we call MoveAndModify on the single
figure. Whether the figure will be moved of modified depends on the setting of the
previous call to Click. We do not really need to know, as the information is stored
in the figure object. When the figure has been moved or modified, we update its old
and new area by calling UpdateAllViews.

 switch (m_eApplicationState)
 {
 case SINGLE_DRAG:
 {
 CRect rcOldFigure = m_pSingleFigure->GetArea();
 m_pSingleFigure->MoveOrModify(szDistance);
 CRect rcNewFigure = m_pSingleFigure->GetArea();
 UpdateAllViews(NULL, (LPARAM) &rcOldFigure);
 UpdateAllViews(NULL, (LPARAM) &rcNewFigure);
 }
 break;

If the application is in the multiple-drag state, we traverse the figure list and for each
marked figure, we call Move on the figure. Note that we do not modify the figures in
this case. It would be illogical to modify several figures at the same time.

 case MULTIPLE_DRAG:
 {
 for (POSITION position = m_figurePtrList.
 GetHeadPosition(); position != NULL;
 m_figurePtrList.GetNext(position))
 {
 Figure* pFigure = m_figurePtrList.GetAt(position);

 if (pFigure->IsMarked())
 {
 CRect rcOldFigure = pFigure->GetArea();
 pFigure->Move(szDistance);
 CRect rcNewFigure = pFigure->GetArea();
 UpdateAllViews(NULL, (LPARAM) &rcOldFigure);

Chapter 7

[225]

 UpdateAllViews(NULL, (LPARAM) &rcNewFigure);
 }
 }
 }
 break;

If the application is in the rectangle-drag state, we modify the rectangle. Even though
we call MoveOrModify, the rectangle will be modified (not moved) because it was
created by the call to MouseDown above, which puts the rectangle in the modify state.

 case RECTANGLE_DRAG:
 {
 CRect rcOldInside = m_pDragRectangle->GetArea();
 m_pDragRectangle->MoveOrModify(szDistance);
 CRect rcNewInside = m_pDragRectangle->GetArea();
 UpdateAllViews(NULL, (LPARAM) &rcOldInside);
 UpdateAllViews(NULL, (LPARAM) &rcNewInside);
 }
 break;

If the application is in the edit-text or in the idle state, we do nothing.

 case EDIT_TEXT:
 case IDLE:
 break;
 }
}

In MouseUp, we only do something if the application is in the rectangle-drag state. If
it is, we have to find the figures enclosed by the rectangle. We do that by traversing
the figure list and calling Inside on every figure. The figures found are marked and
put at the end of the figure list (on top of the non-marked figures). The surrounding
rectangle is deleted and the application is set to the idle state.

Note that the application can be set in the rectangle-drag state only if the Ctrl
key was not pressed. If it was not, all figures were unmarked at the beginning
of MouseDown.

void CDrawDoc::MouseUp()
{
 switch (m_eApplicationState)
 {
 case RECTANGLE_DRAG:
 CRect rcArea = m_pDragRectangle->GetArea();
 rcArea.NormalizeRect();

 POSITION position = m_figurePtrList.GetTailPosition();

The Draw Application

[226]

 while (position != NULL)
 {
 Figure* pFigure = m_figurePtrList.GetPrev(position);

 if (pFigure->Inside(rcArea))
 {
 pFigure->Mark(TRUE);

 m_figurePtrList.Remove(pFigure);
 m_figurePtrList.AddTail(pFigure);
 }
 }

 delete m_pDragRectangle;
 m_pDragRectangle = NULL;

 UpdateAllViews(NULL, (LPARAM) &rcArea);
 m_eApplicationState = IDLE;
 break;

If the application is in the single-drag or the multiple-drag state, we just set the
application to the idle state. Otherwise, we are done because the movement or
modification of the figures has been made by the call to MouseMove.

 case SINGLE_DRAG:
 case MULTIPLE_DRAG:
 m_eApplicationState = IDLE;
 break;
 case EDIT_TEXT:
 case IDLE:
 break;

 }
}

DoubleClick is called by OnLDblClick in the view class when it receives the WM_
LDBLCLICK message. This call is only interesting when then application state is in the
modify-figure state. If it is not, we do nothing.

However, if it is in the modify-figure state, we first unmark all figures, then we
traverse the figure list backwards trying to find a figure that is hit by the mouse by
calling DoubleClick on each figure.

void CDrawDoc::DoubleClick(const CPoint& ptMouse)
{
 switch (m_eNextActionState)
 {
 // ...

Chapter 7

[227]

 case MODIFY_FIGURE:
 UnmarkAllFigures();
 m_eApplicationState = IDLE;
 CRect rcOldArea;
 Figure* pClickedFigure = NULL;
 for (POSITION position = m_figurePtrList.
 GetTailPosition(); position != NULL;
 m_figurePtrList.GetPrev(position))
 {
 Figure* pFigure = m_figurePtrList.GetAt(position);
 rcOldArea = pFigure->GetArea();

 if (pFigure->DoubleClick(ptMouse))
 {
 pClickedFigure = pFigure;
 break;
 }
 }

If we find a figure, we place the figure on top of the other figures by placing it at the
end of the figure list. Then we have two cases depending on whether it is text or not.
If it is text, we set the edit-text pointer to the figure and set the caret. Then we set the
application state to the edit-text state.

We can use dynamic_cast to perform safe pointer type conversion between Figure
and TextFigure. If pClickedFigure points at a TextFigure object, the address
of that object will be returned in a pointer to TextFigure, on which we can call
TextFigure specific methods. If it does not point at a TextFigure object, null
is returned.

 if (pClickedFigure != NULL)
 {

 m_figurePtrList.Remove(pClickedFigure);
 m_figurePtrList.AddTail(pClickedFigure);

 m_pEditText = dynamic_cast<TextFigure*>
 (pClickedFigure);
 if (m_pEditText != NULL)
 {
 CRect rcCaret = m_pEditText->GetCaretArea
 (m_eKeyboardState);
 m_caret.SetAndShowCaret(rcCaret);
 m_eApplicationState = EDIT_TEXT;
 }

The Draw Application

[228]

If the figure is not text, we settle with putting it on top and updating its area as the
modification of the figure has taken place in the call to DoubleClick.

 else
 {
 CRect rcNewArea = pClickedFigure->GetArea();
 UpdateAllViews(NULL, (LPARAM) &rcOldArea);
 UpdateAllViews(NULL, (LPARAM) &rcNewArea);
 }
 }
 break;
 }
}

When the user presses and releases a key, the two messages WM_KEYDOWN and
WM_KEYUP are sent. They are sent for every key, including Insert, Delete, Home, End,
PageUp, PageDown, and the arrow keys. In addition to that, WM_CHAR is sent between
them for every writeable key (ASCII table value 32 – 122).

First, if the Insert is pressed, we set m_eKeyboardState to its reverse value. If the
application is in the edit-text state, we update the caret marker.

Otherwise, if the application is in the edit-text state we examine the input character.
If there is an editing (Left Arrow, Right Arrow, Home, End, Delete, or Backspace)
character, we edit the text and set the modified flag if the KeyDown method to
return true.

In case the Return key is pressed, we finish the editing process by unmarking and
updating the text. Then we set the application to the idle state. In case the Esc key is
pressed, we resume the original text and simulate a Return key.

BOOL CDrawDoc::KeyDown(UINT uChar, CDC* pDC)
{
 // ...

 int iMarked = m_figurePtrList.CountIf(IsMarked);

 if ((uChar == VK_DELETE) && (iMarked > 0))
 {
 OnDelete();
 return TRUE;
 }

 return FALSE;
}

Chapter 7

[229]

Finally, if the Delete key is pressed, the application is in the modifying state and at
least one figure is marked, we simulate the menu option Delete. We determine the
number of marked figures by calling CountIf on the figure pointer list. CountIf is a
higher ordered method, which means it takes a function as parameter. In this case it
takes IsMarked, which returns true if a given figure is marked.

BOOL CDrawDoc::IsMarked(Figure* pFigure)
{
 return pFigure->IsMarked();
}

CharDown checks that the state of the application is in the text-edit state and that the
character is printable. If it is, it adds the character to the text currently being edited
and sets the modified flag.

void CDrawDoc::CharDown(UINT uChar, CDC* pDC)
{
 if ((m_eApplicationState == EDIT_TEXT) && isprint(uChar))
 {
 m_pEditText->CharDown(uChar, pDC, m_eKeyboardState);
 CRect rcText = m_pEditText->GetArea();
 UpdateAllViews(NULL, (LPARAM) &rcText);

 CRect rcCaret = m_pEditText->GetCaretArea
 (m_eKeyboardState);
 m_caret.SetAndShowCaret(rcCaret);
 SetModifiedFlag();
 }
}

OnUpdateAddLine is called when the application receives the ON_UPDATE_COMMAND_
UI message, which happens when the application is not busy doing something else.
In this way, we can prepare the menu items, toolbar buttons, and accelerators before
the user chooses them.

It is possible for the user to choose to add a line if the application is in the idle state.
The Add | Line menu item is radio checked if this action is chosen.

void CDrawDoc::OnUpdateAddLine(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_eApplicationState == IDLE);
 pCmdUI->SetRadio(m_eNextActionState == ADD_LINE);
}

The Draw Application

[230]

If the user choses the add-line state, all figures will be unmarked and the next-action
state is set to the add-line state.

void CDrawDoc::OnAddLine()
{
 UnmarkAllFigures();
 m_eNextActionState = ADD_LINE;
}

It is possible for the user to cut or copy if the application is in the idle state and at
least one figure is marked.

void CDrawDoc::OnUpdateCut(CCmdUI *pCmdUI)
{
 int iMarked = m_figurePtrList.CountIf(IsMarked);
 pCmdUI->Enable((m_eApplicationState == IDLE) &&
 (iMarked > 0));
}

void CDrawDoc::OnUpdateCopy(CCmdUI *pCmdUI)
{
 int iMarked = m_figurePtrList.CountIf(IsMarked);
 pCmdUI->Enable((m_eApplicationState == IDLE) &&
 (iMarked > 0));
}

OnCut is quite easy, it just calls OnCopy and OnDelete. OnCopy clears the copy list and
copies the marked figures in the figure list.

void CDrawDoc::OnCut()
{
 OnCopy();
 OnDelete();
}
void CDrawDoc::OnCopy()
{
 ClearCopyList();
 for (POSITION position = m_figurePtrList.GetHeadPosition();
 position != NULL; m_figurePtrList.GetNext(position))
 {
 Figure* pFigure = m_figurePtrList.GetAt(position);
 if (pFigure->IsMarked())
 {
 Figure* pCopiedFigure = pFigure->Copy();
 m_copyPtrList.AddTail(pCopiedFigure);
 }
 }
}

Chapter 7

[231]

It is possible for the user to paste if at least one figure has been copied and the
application is in the idle state. The OnPaste method copies the figures in the copy list
and adds the copies to the figure list. It also moves them ten millimeters (1000 logical
units is eqivialent to 1000 hundredths of millimeters).

void CDrawDoc::OnUpdatePaste(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(!m_copyPtrList.IsEmpty() &&
 (m_eApplicationState == IDLE));
}

void CDrawDoc::OnPaste()
{
 CSize szDistance(1000, -1000);

 for (POSITION position = m_copyPtrList.GetHeadPosition();
 position != NULL; m_copyPtrList.GetNext(position))
 {
 Figure* pCopiedFigure = m_copyPtrList.GetAt(position);
 pCopiedFigure->Move(szDistance);

 Figure* pPastedFigure = pCopiedFigure->Copy();
 m_figurePtrList.AddTail(pPastedFigure);

 CRect rcFigure = pPastedFigure->GetArea();
 UpdateAllViews(NULL, (LPARAM) &rcFigure);
 }

 SetModifiedFlag();
}

If the next-action state is in the modify-figure state, then it is possible for the user
to update the color if the application is in the idle state and at least one figure is
marked. If the next-action state is not in the modify-figure state, it is enough if the
application is in the idle state.

The same goes for the font update method, with the only difference being that at
least one of the marked figures should be text. In the case of updating the fill status,
at least one of the marked figures should be two-dimensional.

The OnColor and OnFont methods use the MFC color dialog and font dialog classes
to let the user chose a color or font, respectively. If the next-action state is the
modify-figure state, the marked figures are affected. If it is another state, the fields
m_nextColor or m_nextFont are updated. Note that it is possible to modify the color
of a font in the font dialog.

The Draw Application

[232]

If the next-action state is the modify-figure state, the majority rules when it comes
to the fill status. That is, if at least half of the marked two-dimensional figures are
filled, the fill menu option will be checked. The option is enabled if at least one
two-dimensional figure is marked.

void CDrawDoc::OnUpdateFill(CCmdUI *pCmdUI)
{
 switch (m_eNextActionState)
 {
 // ...
 case MODIFY_FIGURE:
 int iFilled = m_figurePtrList.CountIf
 (IsMarkedAndFilled);
 int iNotFilled = m_figurePtrList.CountIf
 (IsMarkedAndNotFilled);
 BOOL bAtLeastOne = ((iFilled > 0) || (iNotFilled > 0));
 pCmdUI->Enable(bAtLeastOne);
 pCmdUI->SetCheck(bAtLeastOne &&
 (iFilled >= iNotFilled));
 break;
 }
}

GetCursor is called when the application is not busy doing something else. Its task
is to make sure the cursor has the correct appearance. If one single figure is being
dragged, we let it pick the cursor by calling GetCursor in the figure class pointed at.
If there are several figures being dragged, we pick the size all cursor (four arrows).
If the surrounding rectangle is being dragged, we pick the hair cross. If text is being
edited, we pick the hair vertical line. Finally, if the application is in idle mode, we
pick the regular arrow cursor.

const HCURSOR CDrawDoc::GetCursor() const
{
 switch (m_eApplicationState)
 {
 case SINGLE_DRAG:
 return m_pSingleFigure->GetCursor();
 case MULTIPLE_DRAG:
 return AfxGetApp()->LoadStandardCursor(IDC_SIZEALL);
 case RECTANGLE_DRAG:
 return AfxGetApp()->LoadStandardCursor(IDC_CROSS);
 case EDIT_TEXT:
 return AfxGetApp()->LoadStandardCursor(IDC_IBEAM);
 case IDLE:
 return AfxGetApp()->LoadStandardCursor(IDC_ARROW);
 }

Chapter 7

[233]

As all possible cases have been covered above, this point of the code will never be
reached. The check is for debugging purposes only.

 check(FALSE);
 return NULL;
}

The View Class
The class CDrawView is a direct sub class of the MFC class CScrollView. Its task is
to alert the document object about mouse and keyboard input from the user, and to
(partly or completely) repaint the client area at the request of the document object or
the system as well as handle scroll movements. Its only field m_pDrawDoc is a pointer
to the document class object. It is initialized by OnCreate.

DrawView.h
class CDrawDoc;

class CDrawView: public CScrollView
{

 private:
 DECLARE_DYNCREATE(CDrawView)
 DECLARE_MESSAGE_MAP()
 CDrawView();

 public:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

 afx_msg void OnSetFocus(CWnd* pOldWnd);
 afx_msg void OnKillFocus(CWnd* pNewWnd);
 afx_msg BOOL OnSetCursor(CWnd* pWnd, UINT nHitTest,
 UINT message);

 afx_msg void OnLButtonDown(UINT uFlags, CPoint ptMouse);
 afx_msg void OnMouseMove(UINT uFlags, CPoint ptMouse);
 afx_msg void OnLButtonUp(UINT uFlags, CPoint ptMouse);
 afx_msg void OnLButtonDblClk(UINT uFlags, CPoint ptMouse);

 afx_msg void OnChar(UINT uChar, UINT nRepCnt,UINT uFlags);
 afx_msg void OnKeyDown(UINT uChar, UINT nRepCnt,
 UINT uFlags);

 void OnUpdate(CView* pSender, LPARAM lHint,
 CObject* pHint);
 void OnDraw(CDC* pDC);

 private:
 CDrawDoc* m_pDrawDoc;
};

The Draw Application

[234]

OnCreate is called after the view is created but before it is shown. It sets and checks
the m_pDrawDoc field. It also loads the scroll view with the logical coordinates
of a letter (216 millimeters width and 279 millimeters height). The TOTAL_WIDTH
and TOTAL_HEIGHT constants was initialized to 21600 and 27900 hundredths of
millimeters in DrawDoc.h

CDrawView.cpp
int CDrawView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 // We check that the view has been correctly created.
 if (CScrollView::OnCreate(lpCreateStruct) == -1)
 {
 return -1;
 }
 m_pDrawDoc = (CDrawDoc*) m_pDocument;
 ASSERT_VALID(m_pDrawDoc);
 CSize szTotal(TOTAL_WIDTH, TOTAL_HEIGHT);
 SetScrollSizes(MM_HIMETRIC, szTotal);
 return 0;
}

The methods OnLButtonDown, OnMouseMove, OnLButtonUp, and OnLButtonDblClk
call MouseDown, MouseMove, MouseUp, and DoubleClick of the document class.

The mouse point is given in device coordinates. We need to translate it into logical
coordinates by creating and preparing a device context and calling DPtoLP. The flags
hold information about the mouse clicks. The constant MK_CONTROL is useful for
checking whether the user is pressing the Ctrl key.

void CDrawView::OnLButtonDown(UINT uFlags, CPoint ptMouse)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DPtoLP(&ptMouse);
 BOOL bControlKeyDown = (uFlags & MK_CONTROL);
 m_pDrawDoc->MouseDown(ptMouse, bControlKeyDown, &dc);
}

OnKeyDown is called when the user presses a key on the keyboard. First it is sent
to the document class method KeyDown. If it has no use for the character, false is
returned and we can instead use it for scrolling.

void CDrawView::OnKeyDown(UINT uChar, UINT /* uRepCnt */,
 UINT /* uFlags */)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);

Chapter 7

[235]

 switch (uChar)
 {

 case VK_HOME:
 if (!m_pDrawDoc->KeyDown(VK_HOME, &dc))
 {
 OnVScroll(SB_TOP, 0, NULL);
 OnHScroll(SB_LEFT, 0, NULL);
 }
 break;

 // ...
 }
}

The methods OnSetFocus and OnKillFocus are called when the input view gains
or looses the focus. They notify the caret object of the document class object about
the change.

void CDrawView::OnSetFocus(CWnd* /* pOldWnd */)
{
 Caret* pCaret = m_pDrawDoc->GetCaret();
 pCaret->OnSetFocus(this);
}

void CDrawView::OnKillFocus(CWnd* /* pNewWnd */)
{
 Caret* pCaret = m_pDrawDoc->GetCaret();
 pCaret->OnKillFocus();
}

OnUpdate is indirectly called by UpdateAllViews in the document class. If the
first parameter lHint is not null, it is a pointer to a rectangle containing the area
to update. It is given in logical coordinates that need to be translated into device
coordinates. In order to be sure the area is properly updated, we add a small margin.

void CDrawView::OnUpdate(CView* /* pSender */, LPARAM lHint,
 CObject* /* pHint */)
{
 if (lHint != NULL)
 {
 CRect rcClip = *(CRect*) lHint;

 int cxMargin = (int) (0.05 * rcClip.Width());
 int cyMargin = (int) (0.05 * rcClip.Height());

 rcClip.left -= cxMargin;
 rcClip.right += cxMargin;
 rcClip.top -= cyMargin;
 rcClip.bottom += cyMargin;

The Draw Application

[236]

 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.LPtoDP(rcClip);

 InvalidateRect(rcClip);
 }

OnUpdate is also called by OnIntialUpdate in CScrollView with a zero hint, in
which case we invalidate the whole client area before we update the window by
calling UpdateWindow, which in turn indirectly calls OnDraw.

 else
 {
 Invalidate();
 }
 UpdateWindow();
}

OnDraw traverses the figure list and draws the figures. It also draw the inside
rectangle unless its pointer is null.

void CDrawView::OnDraw(CDC* pDC)
{
 const FigurePointerList* pFigurePtrList =
 m_pDrawDoc->GetFigurePtrList();
 for (POSITION position = pFigurePtrList->GetHeadPosition();
 position != NULL; pFigurePtrList->GetNext(position))
 {
 Figure* pFigure = pFigurePtrList->GetAt(position);
 CRect rcFigure = pFigure->GetArea();
 pFigure->Draw(pDC);
 }

 const RectangleFigure* pInsideRectangle =
 m_pDrawDoc->GetInsideRectangle();
 if (pInsideRectangle != NULL)
 {
 pInsideRectangle->Draw(pDC);
 }
}

Chapter 7

[237]

Summary
We started by generating the application's skeleton code with The
Application Wizard.
Figure is the root class of our class hierarchy. It is abstract and has the
abstract sub class TwoDimensionalFigure.
It also has five concrete sub classes: LineFigure, ArrowFigure,
RectangleFigure, EllipseFigure, and TextFigure. There is also the class
FigureFileManager that handles the file management of the figures.
The document class manages the data of the drawing. Its most central part
is the MouseDown, MouseDrag, and MouseUp methods that keep track of the
user's mouse movements.
The view class accepts mouse keyboard inputs. It also draws the figures and
the surrounding rectangle when the user is marking figures.

•

•

•

•

•

The Calc Application
Calc is��� a spreadsheet program. The code is divided into several classes. It has the
functionality to handle text, numerical values, and formulas composed by the four
arithmetic operators. It also has the ability to change the font and color and the
horizontal and vertical alignment. It also supports cut and paste as well as load and
save. The references of a formula are relative, which means they are updated when
the user cuts and pastes a block of cells to another location. The following screenshot
depicts a classic example of the Calc Application:

We start by generating the code with the help of the Application Wizard.
We need the class Reference to keep track of references in the spreadsheet.
Then we look into formula generation. First we write the scanner, whose task
is to put together sequences of characters into tokens, the smallest significant
part of the formula.
Then we write the parser. Given a list of tokens, its task is to determine
whether the formula is correct and to generate a syntax tree.
Then we continue to define the class for the spreadsheet cell. It shall hold
functionality to handle and display user input and formula values.

•

•

•

•

•

The Calc Application

[240]

The cells are organized in a matrix. The size of a matrix is statically set to ten
rows and five columns. It can be altered. However, the logical limit of the
number of columns is 26, the number of letters in the alphabet.
When a formula is input into a cell, the formula is assigned a set of sources
and targets. The sets form a directed acyclic graph. It would be illogical to
introduce cycles into the graph. So, every time a formula is altered, we check
that no cycles are introduced.
The document class handles the logic of the spreadsheet, such as cut and
paste and re-evaluations of affected cells.
Finally, the view class handles the user input as well as the scrolling and
displaying of the spreadsheet.

We use the Application Wizard to generate the classes CCalcApp, CMainFrame,
CChildFrame, CCalcDoc, CCalcView, and CAboutDlg. We will modify CCalcDoc
and CCalcView as we develop the application, the rest of the classes will be left
unmodified. The process is very similar to those of previous chapters. The only
difference is that we set the File extension to Clc and the File type long name to A
Calc Document. In this application, we use CView as the base class of our view class.

•

•

•

•

Chapter 8

[241]

We leave CMainFrame and CChildFrame unmodified. CCalcDoc and CCalcView will
be modified later on. Regarding CCalcApp, we only add the following include lines.

Calc.cpp
#include "MainFrm.h"
#include "ChildFrm.h"

#include "..\\Set.h"
#include "..\\List.h"
#include "..\\Color.h"
#include "..\\Font.h"
#include "..\\Caret.h"

#include "Reference.h"
#include "SyntaxTree.h"

#include "Cell.h"
#include "CellMatrix.h"
#include "TSetMatrix.h"

#include "CalcDoc.h"
#include "CalcView.h"

The Calc Application

[242]

The Resource
The Application Wizard creates the basic set of menus, which are used by the
Application Framework. We add the menu Format to the resource with the help of
the Resource Editor. Here follows a summarization of the added menus, accelerators,
toolbar buttons, and strings.

Id Menu Item Accelerator
Toolbar

String Table

ID_EDIT_CUT Edit | Cut Ctrl-X Cut the selection and put
it on the Clipboard \nCut

ID_EDIT_COPY Edit | Copy Ctrl-C Copy the selection and
put it on the Clipboard
\nCopy

ID_EDIT_PASTE Edit | Paste Ctrl-V Insert Clipboard
contents\nPaste

ID_FORMAT_FONT Format | Font Ctrl-F Set the Font\nFont
ID_ALIGN_HORZ_
LEFT

Format | Align-ment
| Horizontal | Left

Horizontal Alignment
Left\nLeft

ID_ALIGN_HORZ_
CENTER

Format | Align-
ment | Horizontal |
Center

Horizontal Alignment
Center\nCenter

ID_ALIGN_HORZ_
RIGHT

Format | Align-ment
| Horizontal | Right

Horizontal Alignment
Right\n Right

ID_ALIGN_HORZ_
JUSTIFIED

Format | Align-
ment | Horizontal |
Justified

Horizontal Alignment
Justified\nJustified

ID_ALIGN_VERT_ TOP Format | Align-ment
| Vertical | Top

Vertical Alignment Top
\nTop

ID_ALIGN_VERT_
CENTER

Format | Align-ment
| Vertical | Center

Vertical Alignment
Center\nCenter

ID_ALIGN_VERT_
BOTTOM

Format | Align-ment
| Vertical | Bottom

Vertical Alignment
Bottom\nBottom

ID_COLOR_TEXT Format | Color |
Text

Set the Text Color\nText
Color

ID_COLOR_
BACKGROUND

Format | Color |
Background

Set the Background
Color\nBackground
Color

Chapter 8

[243]

Formula Interpretation
The core of a spreadsheet program is its ability to interpret formulas. When the user
inputs a formula in a cell, it has to be interpreted and its value has to be evaluated.
The process is called formula interpretation, and is divided into three separate steps.
First, given the input string, the scanner generates a list of tokens, then the parser
generates a syntax tree, and, finally, the evaluator determines the value of the formula.

String Token
List

Syntax
Tree Evaluator ValueParserScanner

A token is the smallest significant part of the formula. For instance, the text "a1" is
interpreted as a token representing a reference, the text "1.2" is interpreted as the
value 1.2. Assume that the cells have values according the sheet below, the formula
interpretation process will be as follows.

5.6 * (a1+b1)

Scanner [(T_VALUE, 5.6), (T_MUL), (T_LEFT_PAREN), (T_REFERENCE, row 0, col 0),
(T_PLUS), (T_REFERENCE, row 0, col 1), EOL]

The Calc Application

[244]

Evaluator

Parser

5.6 * (1.2 + 3.4)=25.76

*

5.6 +

a1 b1

The Tokens
The scanner takes a string as input, traverses it, and finds its least significant parts,
its tokens. Blanks are ignored, and the scanner sees no difference between capital and
small letters. The token T_VALUE needs an extra piece of information to keep track of
the actual value; it is called an attribute. T_REFERENCE also needs an attribute to keep
track of its row and column. In this application, there are ten different tokens:

Chapter 8

[245]

T_ADD, T_SUB,
T_MUL, T_DIV

The four arithmetic operators: '+', '-', '*', and '/'.

T_LEFT_PAREN,
T_RIGHT_PAREN

Left and right parenthesis: '(' and ')'.

T_VALUE A numerical value, for instance: 123, -3.14, or +0.45. It does
not matter whether the value is integral or decimal. Nor
does it matter if the decimal point (if present) is preceded
or succeeded by digits. However, the value must contain at
least one digit.
Attribute: a value of type double.

T_REFERENCE Reference, for instance: a12, b22.
Attribute: an object of the Reference class.

T_EOL The end of the line, there is no more characters in the string.

As stated above, the string "2 * (a1 + b1)" generates the tokens in the table on the next
page. The end-of-line token is added to the list.

Text Token Attribute
2.5 T_VALUE 2.5
* T_MUL

(T_LEFT_PAREN

a1 T_REFERENCE row 0, col 0
+ T_ADD

b1 T_REFERENCE row 0, col 1
) T_RIGHT_PAREN

T_EOL

The class Token handles a token TokenIdentity which is an enumeration of the
tokens in the table above. The token is identified by m_eTokenId. The class also has
attribute fields m_dValue and m_reference. As we do not differ between integral
and decimal values, the value has double type. The reference is stored in an object of
the Reference class, see the next section.

The Calc Application

[246]

There are five constructors altogether. The default constructor is necessary because
we store tokens in a list,which requires a default constructor. The other three
constructors are used by the scanner to create tokens with or without attributes.

Token.h
enum TokenIdentity {T_ADD, T_SUB, T_MUL, T_DIV, T_LEFT_PAREN,
 T_RIGHT_PAREN, T_REFERENCE,T_VALUE,T_EOL};

class Token
{
 public:
 Token();
 Token(const Token& token);
 Token operator=(const Token& token);

 Token(double dValue);
 Token(Reference reference);
 Token(TokenIdentity eTokenId);

 TokenIdentity GetId() const {return m_eTokenId;}
 double GetValue() const {return m_dValue;}
 Reference GetReference() const {return m_reference;}

 private:
 TokenIdentity m_eTokenId;
 double m_dValue;
 Reference m_reference;
};
typedef List<Token> TokenList;

The Reference Class
The class Reference identifies the cell's position in the spreadsheet. It is also used by
the scanner, parser, and syntax tree classes to identify a reference of a formula.

The row and column of the reference are zero-based value integers. The column 'a'
corresponds to row 0, 'b' to 1, and so on. For instance, the reference "b3" will generate
the fields m_iRow = 2, m_iCol = 1, and the reference "c5" will generate the fields
m_iRow = 4, m_iCol = 2.

The default constructor is used for serialization purposes and for storing references
in sets. The copy constructor and the assignment operator are necessary for the same
reason. The second constructor initializes the field with the given row and column.

Chapter 8

[247]

Reference.h
class Reference
{
 public:
 Reference();
 Reference(int iRow, int iCol);

 Reference(const Reference& reference);
 Reference operator=(const Reference& reference);

 int GetRow() const {return m_iRow;}
 int GetCol() const {return m_iCol;}

 void SetRow(int iRow) {m_iRow = iRow;}
 void SetCol(int iCol) {m_iCol = iCol;}

 friend BOOL operator==(const Reference &ref1,
 const Reference &ref2);
 friend BOOL operator<(const Reference& ref1,
 const Reference& ref2);

 CString ToString() const;
 void Serialize(CArchive& archive);

 private:
 int m_iRow, m_iCol;
};

typedef Set<Reference> ReferenceSet;

The equality operator regards the left and right references to be equal if their rows
and columns are equal. The left reference is less than the right reference if its row is
less than the right ones, or if the rows are equal the left column is less than the right
one. The method ToString returns the reference as a string. The zero row is written
as one and the zero column is written as a small 'a'.

Reference.cpp
BOOL operator==(const Reference& rfLeft,
 const Reference& rfRight)
{
 return (rfLeft.m_iRow == rfRight.m_iRow) &&
 (rfLeft.m_iCol == rfRight.m_iCol);
}
BOOL operator<(const Reference& rfLeft,
 const Reference& rfRight)
{
 return (rfLeft.m_iRow < rfRight.m_iRow) ||
 ((rfLeft.m_iRow == rfRight.m_iRow) &&
 (rfLeft.m_iCol < rfRight.m_iCol));
}

The Calc Application

[248]

CString Reference::ToString() const
{
 CString stBuffer;
 stBuffer.Format(TEXT("%c%d"), (TCHAR) (TEXT('a') + m_iCol),
 m_iRow + 1);
 return stBuffer;
}

The Scanner—Generating the List of Tokens
The Scanner class handles the scanning. Its task is to group together characters into
a token. For instance, the text "12.34" is interpreted as the value 12.34.

Scanner.h
class Scanner
{
 public:
 Scanner(const CString& stBuffer);
 TokenList* GetTokenList() {return &m_tokenList;}
 private:
 Token NextToken();
 BOOL ScanValue(double& dValue);
 BOOL ScanReference(Reference& reference);
 private:
 CString m_stBuffer;
 TokenList m_tokenList;
};

The constructor takes a string as parameter and generates m_tokenList by
repeatedly calling NextToken until the input string is empty. A null character (\0) is
added to the string by the constructor in order not to have to check for the end of the
text. NextToken returns EOL (End of Line) when it encounters the end of the string.

Scanner.cpp
Scanner::Scanner(const CString& m_stBuffer)
 :m_stBuffer(m_stBuffer + TEXT('\0'))
{
 Token token;
 do
 {
 token = NextToken();
 m_tokenList.AddTail(token);
 }
 while (token.GetId() != T_EOL);
}

Chapter 8

[249]

NextToken does the actual work of the scanner and divides the text into token, one
by one. First, we skip any preceding blanks and tabulators (tabs), these are known
as white spaces. It is rather simple to extract the token regarding the arithmetic
symbols and the parentheses. We just have to check the next character of the buffer.

It becomes more difficult when it comes to numerical values, references, or text. We
have two auxiliary functions for that purpose, ScanValue and ScanReference.

Token Scanner::NextToken()
{
 while ((m_stBuffer[0] == TEXT(' ')) ||
 (m_stBuffer[0] == TEXT('\t')))
 {
 m_stBuffer.Delete(0);
 }
 switch (m_stBuffer[0])
 {
 case TEXT('\0'):
 return Token(T_EOL);
 case TEXT('+'):
 {
 double dValue;
 if (ScanValue(dValue))
 {
 return Token(dValue);
 }
 else
 {
 m_stBuffer.Delete(0);
 return Token(T_ADD);
 }
 }
 // ...

If none of the above cases apply, the token may be a value or a reference. The two
methods ScanValue and ScanReference find out if that is the case. If not, the
scanner has encountered an unknown character and an exception is thrown.

 default:
 double dValue;
 Reference reference;
 if (ScanValue(dValue))
 {
 return Token(dValue);
 }
 else if (ScanReference(reference))
 {
 return Token(reference);
 }

The Calc Application

[250]

 else
 {
 CString stMessage;
 stMessage.Format(TEXT("Unknown character: \"%c\"."),
 m_stBuffer[0]);
 throw stMessage;
 }
 break;
 }
}

ScanValue first scans for a possible plus or minus sign and then for digits. If the
last digit is followed by a decimal point it scans for more digits. Thereafter, if it has
found at least one digit, its value is converted into a double and true is returned.

BOOL Scanner::ScanValue(double& dValue)
{
 CString stValue = ScanSign();
 stValue.Append(ScanDigits());

 {
 m_stBuffer.Delete(0);
 stValue += TEXT('.') + ScanDigits();
 }

 if (stValue.FindOneOf(TEXT("0123456789")) != -1)
 {
 dValue = _tstof(stValue);
 return TRUE;
 }
 else
 {
 m_stBuffer.Insert(0, stValue);
 return FALSE;
 }
}

ScanReference checks that the next character is a letter and that the characters
thereafter are a sequence of at least one digit. If so, we extract the column and the
row of the reference.

BOOL Scanner::ScanReference(Reference& reference)
{
 if (isalpha(m_stBuffer[0]) && isdigit(m_stBuffer[1]))
 {
 reference.SetCol(tolower(m_stBuffer[0]) - TEXT('a'));
 m_stBuffer.Delete(0);

Chapter 8

[251]

 CString stRow = ScanDigits();
 reference.SetRow(_tstoi(stRow) - 1);
 return TRUE;
 }

 return FALSE;
}

The Parser—Generating the Syntax Tree
The users write a formula by beginning the input string with an equals sign (=). The
parser's task is to translate the scanner's token list into a syntax tree, or, more exactly,
to check the formula's syntax and to generate an object of the class SyntaxTree. The
expression's value will be evaluated when the cell's value needs to be re-evaluated.

The syntax of a valid formula may be defined by a grammar. Let us start with one that
handles expressions that make use of the basic rules of arithmetic operators:

1. Formula Expression EOL

2. Expression

3. Expression

4. Expression

5. Expression

8. Expression
9. Expression

7. Expression

Expression+ Expression

Expression- Expression

Expression* Expression

Expression / Expression

REFERENCE
VALUE

(Expression)

A grammar is a set of rules. In the grammar above, each line represents a rule.
Formula and Expression in the grammar are called non-terminals. EOL, VALUE and
the characters '+', '-', '*', and '/'are called terminals. Terminals and non-terminals are
called symbols. One of the rules is defined as the grammar's start rule, in our case the
first rule. The symbol on the start rule's left side is called the grammar's start symbol,
in our case Formula.

The arrow can be read as is. The grammar above can be read as:

A formula is an expression followed by end of line. An expression is the sum of two
expressions, the difference of two expressions, the product of two expressions, the
quotient of two expressions, an expression surrounded by parentheses, an reference,
or a numerical value.

The Calc Application

[252]

This is a good start, but there are a few problems. Let us test if the string "1 * 2 + 3" is
accepted by the grammar. We can test that by doing a derivation, where we start with
the start symbol (Formula) and apply rules until we have only terminals. The digits in
the following derivation refer to the grammar rules.

Formula Expression EOL Expression Expression EOL1 2 + 4

Expression* Expression + Expression EOL VALUE(1)* Expression + Expression EOL9 9

9VALUE(1)* VALUE(2) + Expression EOL VALUE(1)* VALUE(2) + VALUE(3) EOL

The derivation can be illustrated by the development of a parse tree.

Formula

Expression EOL

Formula

Expression

Expression Expression

EOL

+

Formula

Expression

Expression Expression

EOL

+

*Expression Expression

Formula

Expression

Expression Expression

EOL

+

*Expression Expression

VALUE(1)

Formula

Expression

Expression Expression

EOL

+

*Expression Expression

VALUE(1) VALUE(2)

Formula

Expression

Expression Expression

EOL

+

*Expression Expression

VALUE(1) VALUE(2)

VALUE(3)

Let us try another derivation of the same string, with the rules applied in a
different order.

9VALUE(1)* VALUE(2) + Expression EOL VALUE(1)* VALUE(2) + VALUE(3) EOL

Expression* Expression + Expression EOL VALUE(1) Expression + Expression EOL9 9
Formula Expression EOL Expression Expression EOL1 4 2

Chapter 8

[253]

This derivation will generate a different parse tree.

Formula

Expression

Expression

Expression Expression

Expression

EOL

*

VALUE(1)

VALUE(2) VALUE(3)

+

A grammar is said to be ambiguous if it can generate two different parse trees for the
same input string, which is something we should avoid. The second tree above is of
course a violation of the laws of mathematics, which says that multiplication should
be evaluated before addition, that multiplication has a higher priority than addition.
However, the grammar does not know that. One way to avoid ambiguity is to
introduce one new set of rules in the grammar for each priority level:

1. Formula Expression EOL

2. Expression Expression + Term

3. Expression Expression - Term

4. Expression Term

5. Term Term Factor

7. Term Factor

6. Term Term Factor/

8. Factor VALUE

9. Factor REFERENCE

10. Factor (Expression)

The Calc Application

[254]

This new grammar is not ambiguous, if we try our string with this grammar, we can
only generate one parse tree, regardless of which order we choose to apply the rules.

Formula Expression EOL Expression + Term EOL Term + Term EOL
1 2 4 5

Term+Term Factor EOL Factor+Term Factor EOL VALUE(1)+Term Factor EOL
7 8 7

88
VALUE(1)+Factor Factor EOL VALUE(1)+VALUE(2) Factor EOL

VALUE(1)+VALUE(2) VALUE(3)

This derivation gives the following tree. It is not possible to derivate a different tree
from the same input string.

Formula

Expression

Expression Term

EOL

+

Factor

VALUE(3)

Term

Term Factor

Factor VALUE(2)

VALUE(1)

*

Now we are ready to write a parser. Essentially, there are two types of parsers:
top-down and bottom-up. As the terms imply, a top-down parser starts by the
grammar's start symbol together with the input string, and tries to apply rules until
we have only terminals left. A bottom-up parser starts by the input strings and tries
to apply rules backward, reduce the rules, until we reach the start symbol.

It is a complicated matter to construct a bottom-up parser. It is usually not done by
hand; instead, there are parser generators that construct a parser table for the given
grammar and the skeleton of the implementation of the parser. However, the theory
of bottom-up passing is outside the scope of this book.

Chapter 8

[255]

One way to construct a very simple, but unfortunately also a very inefficient, top-
down parser would be to apply all possible rules in random order. If we reach a
dead end, we simply backtrack and try another rule. A more efficient, but still rather
simple, parser would be a look-ahead parser. Given a suitable grammar, we only
need to look at the next token in order to uniquely determine which rule to apply.
If we reach a dead end, we do not have to backtrack; we simply state that the input
string is incorrect according to the grammar.

A first attempt to implement a look-ahead parser could be to write a method for each
rule in the grammar. Unfortunately, we cannot do that quite yet, because that would
result in a method Expression like:

CSyntaxTree* CSyntaxTree::Expression()
{
 switch (nextToken.GetId())
 {
 case PLUS:
 Expression();
 break;

 // ...
 }
}

Do you see the problem? The method calls itself without any change of the input
stream, which would result in an infinitive loop. This is called left recursion. We can
solve the problem, however, with the help of a simple translation. The rules:

Expression Expression+Term

Expression Expression-Term

Expression Term

Can be translated to the equivalent set of rules:

Expression Term NextExpression

NextExpression +Term NextExpression

NextExpression -Term NextExperssion

NextExpression

The Calc Application

[256]

Epsilon e denotes the empty string. If we apply this transformation to the Expression
and Term rules in the grammar above, we receive the following grammar:

2. Expression Term NextExpression

3. NextExpression +Term NextExpression

4. NextExpression -Term NextExperssion

5. NextExpression

1. Formula Expression EOL

7. NextTerm +Factor NextTerm

8. NextTerm -Factor NextTerm

6. Term Factor NextTerm

9. NextTerm

11. Factor REFERENCE

12. Factor (Expression)

10. Factor VALUE

Let us try this new grammar with our string "1 * 2 + 3":

Formula Expression EOL Term NextExpression EOL Term + Term NextExpression EOL1 2 3

Term + Term EOL Factor NextTerm + Term EOL Factor* Factor NextTerm + Term EOL
5 6 97

10 10
Factor* Factor + Term EOL VALUE(1)* Factor + Term EOL VALUE(1)* VALUE(2) + Term

6 109
EOL VALUE(1)* VALUE(2) + Factor NextTerm EOL VALUE(1)* VALUE(2) + Factor EOL

VALUE(1)* VALUE(2) + VALUE(3) EOL

Chapter 8

[257]

This will generate the following parse tree.

Formula

Expression

NextExpression

EOL

Term

Factor NextTerm

FactorVALUE(1) * NextTerm

VALUE(2)

+ Term NextExpression

Factor NextTerm

VALUE(3)

The requirement for a grammar to be suitable for a look-ahead parser is that every
set of rules with the same left-hand side symbol must have at most one empty rule or
at most one rule with a non-terminal as the first symbol on the right-hand side. Our
grammar above meets those requirements.

Now we are ready to write the parser. The parser should also generate some kind
of output, representing the string. One such representation is the syntax tree.
A syntax tree can be viewed as an abstract parse tree; we keep only the essential
information. For instance, the parse tree above has a matching syntax tree on the
text page.

The idea is that we write a method for every set of rules with the same left hand
symbol, each such method generates a part of the resulting syntax tree. For this
purpose, we create the class Parser. Formula takes the text to parse, places it in
m_stBuffer, generates a list of token with the Scanner class, starts the parsing
process, and returns the generated syntax tree. If an error occurs during the
parsing process, an exception is thrown. The message of the exception is eventually
displayed to the user by a message box

The field m_ptokenList is generated by the scanner. The field m_nextToken is the
next token, we need it to decide which grammar rule to apply. As constructors
cannot return a value, they are omitted in this class. In this class, Formula does the job
of the constructor.

The Calc Application

[258]

Formula

Expression

NextExpression

EOL

Term

Factor NextTerm

FactorVALUE(1) * NextTerm

VALUE(2)

+ Term NextExpression

Factor NextTerm

VALUE(3)

+

* VALUE(3)

VALUE(1) VALUE(2)

Parser.h
class Parser
{
 public:
 SyntaxTree Formula(const CString& stBuffer);

 private:
 void Match(TokenIdentity eTokenId);

 SyntaxTree* Expression();
 SyntaxTree* NextExpression(SyntaxTree* pLeftTerm);
 SyntaxTree* Term();
 SyntaxTree* NextTerm(SyntaxTree* pLeftFactor);
 SyntaxTree* Factor();

 private:
 CString m_stBuffer;
 Token m_nextToken;
 TokenList* m_ptokenList;
};

Parser.cpp
Formula is the start method of the class. It is called in order to interpret the text the
user has input. The input string is saved in case we need it in an error messages. We
scan the input string, receive the token list, and initialize the first token in the list.
Even if the input string is completely empty, there is still the token T_EOL in the list.

Chapter 8

[259]

We parse the token list and receive a pointer to a syntax tree. If there was a parse
error, an exception is thrown instead. When the token list has been parsed, we have
to make sure there are no extra tokens left in the list except the end-of-line token.

For the purpose of avoiding a classic mistake (dangling pointers), we create and
return a static syntax tree, which is initialized with the pointer generated from the
parsing. We also delete the generated syntax tree in order to avoid another classic
mistake (memory leaks).

SyntaxTree Parser::Formula(const CString& stBuffer)
{
 m_stBuffer = stBuffer;

 Scanner scanner(m_stBuffer);
 m_ptokenList = scanner.GetTokenList();
 m_nextToken = m_ptokenList->GetHead();

 SyntaxTree* pExpr = Expression();
 Match(T_EOL);

 SyntaxTree syntaxTree(*pExpr);
 delete pExpr;
 return syntaxTree;
}

Match is used to match the next token with the expected one. If they do not match, an
exception is thrown. Otherwise, the next token is removed from the list and if there is
another token in the list, is becomes the next one.

void Parser::Match(TokenIdentity eTokenId)
{
 if (m_nextToken.GetId() != eTokenId)
 {
 CString stMessage;
 stMessage.Format(TEXT("Invalid Expression: \"") +
 m_stBuffer + TEXT("\"."));
 throw stMessage;
 }

 m_tokenList->RemoveHead();

 if (!m_ptokenList->IsEmpty())
 {
 m_nextToken = m_ptokenList->GetHead();
 }
}

The Calc Application

[260]

The rest of the methods implement the grammar above. There is one function for
each for the symbols Formula, Expression, NextExpression, Term, NextTerm,
and Factor.

SyntaxTree* Parser::Expression()
{
 SyntaxTree* pTerm = Term();
 SyntaxTree* pNextExpression = NextExpression(pTerm);
 return pNextExpression;
}

The method NextExpression takes care of addition and subtraction. If the next
token is T_ADD or T_SUB, we match the operator and parse its right operand. Then we
create and return a new syntax tree with the operator in question. If the next token is
neither T_ADD nor T_SUB, we just assume that this rule does not apply and return the
given left syntax tree.

SyntaxTree* Parser::NextExpression(SyntaxTree* pLeftTerm)
{
 switch (m_nextToken.GetId())
 {
 case T_ADD:
 {
 Match(T_ADD);
 SyntaxTree *pRightTerm = Term(), *pResult;
 check_memory(pResult = new
 SyntaxTree(ST_ADD,pLeftTerm,pRightTerm));
 SyntaxTree* pNextExpression = NextExpression(pResult);
 return pNextExpression;
 }
 break;

 case T_SUB:
 // ...

 default:
 return pLeftTerm;
 }
}

The method Factor parses values, references, and expression surrounded by
parentheses. If the next token is a left parenthesis, we match it and parse the
following expression as well as the closing right parenthesis. If the next token is a
reference or a value, we match it.

Chapter 8

[261]

We receive the reference attribute with its row and column and match the reference
token. If the user has given a reference outside the spreadsheet, an exception
is thrown.

We create and return a new syntax tree holding the reference. If none of the tokens
above applies, the user has input an invalid expression.

SyntaxTree* Parser::Factor()
{
 switch (m_nextToken.GetId())
 {
 case T_LEFT_PAREN:
 // ...

 case T_REFERENCE:
 {
 Reference reference = m_nextToken.GetReference();
 Match(T_REFERENCE);

 int iRow = reference.GetRow();
 int iCol = reference.GetCol();

 if ((iRow < 0) || (iRow >= ROWS) ||
 (iCol < 0) || (iCol >= COLS))
 {
 CString stMessage=TEXT("Reference Out Of Range: \"")
 + m_stBuffer + TEXT("\".");
 throw stMessage;
 }

 check_memory(return (new SyntaxTree(reference)));
 }
 break;

 case T_VALUE:
 {
 double dValue = m_nextToken.GetValue();
 Match(T_VALUE);

 check_memory(return (new SyntaxTree(dValue)));
 }
 break;

 default:
 CString stMessage = TEXT("Invalid Expression: \"") +
 m_stBuffer + TEXT("\".");
 throw stMessage;
 break;
 }
}

The Calc Application

[262]

The Syntax Tree—Representing the Formula
The class SyntaxTree is used to build a syntax tree and to evaluate its value. For
instance, the formula "a1 / (b2 - 1.5) + 2.4 + c3 * 3.6" generates the syntax tree on the
next page.

The class SyntaxTree manages a syntax tree. There are seven different types of trees,
and the enumeration type SyntaxTreeIdentity keeps track of them. First, we have
the four arithmetic operators, then the case of an expression in brackets, and finally
the reference and the numerical value. We do not really need the parentheses sub
tree as the priority of the expression is stored in the syntax tree itself. However, we
need it to generate the original string from the syntax tree when written in the cell.

The field m_eTreeId is used to identify the class of the tree in accordance with the
classes above. The fields m_pLeftTree and m_pRightTree are used to store sub trees
for the arithmetic operators. In the case of surrounding parentheses, only the left
tree is used. The fields m_reference and m_dValue are used for references and
values, respectively.

+

/ +

REFERENCE

REFERENCE

0
(row 0, col 0)

(row 1, col 1)

–

VALUE
(2.4)

VALUE

REFERENCE

*
(2.4)

(row 2, col 2)
VALUE
(3.6)

SyntaxTree.h
class CellMatrix;
enum SyntaxTreeIdentity {ST_EMPTY, ST_ADD, ST_SUB, ST_MUL,
 ST_DIV, ST_PARENTHESES,
 ST_REFERENCE, ST_VALUE};

class SyntaxTree
{
 public:
 SyntaxTree();

Chapter 8

[263]

 SyntaxTree(const SyntaxTree& syntaxTree);
 SyntaxTree& operator=(const SyntaxTree& syntaxTree);
 void CopySyntaxTree(const SyntaxTree& syntaxTree);
 SyntaxTree(SyntaxTreeIdentity eTreeId,
 SyntaxTree* pLeftTree,
 SyntaxTree* pRightTree);
 SyntaxTree(double dValue);
 SyntaxTree(Reference& reference);
 ~SyntaxTree();
 double Evaluate(BOOL bRecursive,
 const CellMatrix* pCellMatrix) const;
 ReferenceSet GetSourceSet() const;
 void UpdateReference(int iRows, int iCols);
 CString ToString() const;
 void Serialize(CArchive& archive);
 private:
 SyntaxTreeIdentity m_eTreeId;
 double m_dValue;
 SyntaxTree *m_pLeftTree, *m_pRightTree;
 Reference m_reference;
};

The SyntaxTree must have a default constructor as it is serialized. The identity ST_
EMPTY is not used in any other part of the application. Its only purpose is to represent
an empty syntax tree in the case of a cell holding a text or value instead of a formula.
As the syntax tree is dynamically created, the destructor de-allocates all memory of
the tree.

SyntaxTree.cpp
SyntaxTree::SyntaxTree(int eTreeId, SyntaxTree* pLeftTree,
 SyntaxTree* pRightTree)
 :m_eTreeId(eTreeId),
 m_pLeftTree(pLeftTree),
 m_pRightTree(pRightTree)
{
 // Empty.
}
SyntaxTree::~SyntaxTree()
{
 switch (m_eTreeId)
 {
 case ST_ADD:
 case ST_SUB:
 case ST_MUL:
 case ST_DIV:
 delete m_pLeftTree;
 delete m_pRightTree;

The Calc Application

[264]

 break;
 case ST_PARENTHESES:
 delete m_pLeftTree;
 break;
 }
}

When the user inputs new data into a cell, the values of the cells referring to that
cell (its target set) need to be evaluated. Evaluate is called on each referring cell. It
calculates the value depending on the structure of the tree. If the formula of the cell
has a reference, we need to look up its value. That's why pCellMatrix is given as a
parameter. If the cell referred to does not have a value, an exception is thrown. An
exception is also thrown in the case of division by zero. If the parameter bRecursive
is true, the user has cut and pasted a block of cells, in which case we have to
recursively evaluate the values of the cells referred to by this syntax tree to catch the
correct values. In the case of addition, subtraction, or multiplication, we extract the
values of the left and right operand by calling Evaluate on one the sub trees. Then
we carry out the operation and return the result.

double SyntaxTree::Evaluate(BOOL bRecursive,
 const CellMatrix* pCellMatrix) const
{
 switch (m_eTreeId)
 {
 case ST_ADD:
 {
 double dLeftValue =
 m_pLeftTree->Evaluate(bRecursive, pCellMatrix);
 double dRightValue=
 m_pRightTree->Evaluate(bRecursive,pCellMatrix);
 return dLeftValue + dRightValue;
 }
 break;
 // ...
 case ST_DIV:
 {
 double dLeftValue =
 m_pLeftTree->Evaluate(bRecursive, pCellMatrix);
 double dRightValue=
 m_pRightTree->Evaluate(bRecursive,pCellMatrix);
 if (dRightValue != 0)
 {
 return dLeftValue / dRightValue;
 }

Chapter 8

[265]

 else
 {
 CString stMessage = TEXT("#DIVISION_BY_ZERO");
 throw stMessage;
 }
 }
 break;

In the case of parenthesis, we just return the value. However, we still need the
parentheses case in order to generate the string of the syntax tree.

 case ST_PARENTHESES:
 return m_pLeftTree->Evaluate(bRecursive, pCellMatrix);

If the referred cell has a value, it is returned. If not, an exception is thrown.

 case ST_REFERENCE:
 {
 int iRow = m_reference.GetRow();
 int iCol = m_reference.GetCol();

 Cell* pCell = pCellMatrix->Get(iRow, iCol);

 if (pCell->HasValue(bRecursive))
 {
 return pCell->GetValue();
 }

 else
 {
 CString stMessage = TEXT("#MISSING_VALUE");
 throw stMessage;
 }
 }
 break;

 case ST_VALUE:
 return m_dValue;
 }

As all possible cases have been covered above, this point of the code will never be
reached. The check is for debugging purposes only.

 check(FALSE);
 return 0;
}

The Calc Application

[266]

The source set of a formula is the union of all its references. In the case of addition,
subtraction, multiplication, and division, we return the union of the source sets of the
two sub trees.

ReferenceSet SyntaxTree::GetSourceSet() const
{
 switch (m_eTreeId)
 {
 case ST_ADD:
 case ST_SUB:
 case ST_MUL:
 case ST_DIV:
 {
 ReferenceSet leftSet = m_pLeftTree->GetSourceSet();
 ReferenceSet rightSet = m_pRightTree->GetSourceSet();
 return ReferenceSet::Union(leftSet, rightSet);
 }

 case ST_PARENTHESES:
 return m_pLeftTree->GetSourceSet();

 case ST_REFERENCE:
 {
 ReferenceSet resultSet;
 resultSet.Add(m_reference);
 return resultSet;
 }

 default:
 ReferenceSet emptySet;
 return emptySet;
 }
}

When the user cuts or copies a block of cells, and pastes it at another location in
the spreadsheet, the references shall be updated as they are relative. The method
UpdateReference takes care of that task. When it comes to the arithmetic operators,
it just calls itself recursively on the left and right tree. The same goes for the
expression surrounded by brackets, with the difference that it only examines the left
tree. In the case of a reference, the row and column are updated and then the method
checks than the reference remains inside the spreadsheet.

void SyntaxTree::UpdateReference(int iRows, int iCols)
{
 switch (m_eTreeId)
 {
 case ST_ADD:

Chapter 8

[267]

 case ST_SUB:
 case ST_MUL:
 case ST_DIV:
 m_pLeftTree->UpdateReference(iRows, iCols);
 m_pRightTree->UpdateReference(iRows, iCols);
 break;

 case ST_PARENTHESES:
 m_pLeftTree->UpdateReference(iRows, iCols);

 case ST_REFERENCE:
 int iRow = m_reference.GetRow();
 int iCol = m_reference.GetCol();

 int iNewRow = iRow + iRows;
 int iNewCol = iCol + iCols;

 if ((iNewRow < 0) || (iNewRow >= ROWS) ||
 (iNewCol < 0) || (iNewCol >= COLS))
 {
 CString stMessage;
 stMessage.Format(TEXT("Invalid reference: \"%c%d\"."),
 (TCHAR) (TEXT('a') + iNewCol),
 iNewRow + 1);
 throw stMessage;
 }

 m_reference.SetRow(iNewRow);
 m_reference.SetCol(iNewCol);
 break;
 }
}

When the user has cut and pasted a cell, and by that action updated the rows and
columns of the references in the formula of the cell, we need to generate a new string
representing the formula. That is the task of ToString. It traverses the tree and
generates a string for each part tree, which are joined into the final string.

CString SyntaxTree::ToString() const
{
 CString stResult;
 switch (m_eTreeId)
 {
 case ST_ADD:
 {
 CString stLeftTree = m_pLeftTree->ToString();
 CString stRightTree = m_pRightTree->ToString();
 stResult.Format(TEXT("%s+%s"), stLeftTree,
 stRightTree);

The Calc Application

[268]

 }
 break;
 case ST_REFERENCE:
 stResult = m_reference.ToString();
 break;
 case ST_VALUE:
 {
 stResult.Format(TEXT("%f"), m_dValue);
 stResult.TrimRight(TEXT('0'));
 stResult.TrimRight(TEXT('.'));
 }
 break;
 }
 return stResult;
}

The Spreadsheet
The spreadsheet of the application is represented by the classes Cell, CellMatrix,
and TSetMatrix.

The Cell—Holding Text, Value, or Formula
The information of a spreadsheet is organized in cells. Each cell contains a text
representing a numerical value, a formula, or (possibly empty) plain text. The value
of the cell may affect the values in other cells. If the cell contains a formula, its value
may depend on the values in other cells. This implies that each cell has a set of cells
whose values it depends on, a source set, and a set of cells. The set's values depend on
the cell's value and are called its target set.

There are three classes in this section: Cell, which handles a single cell, CellMatrix,
which handles the whole spreadsheet, and TSetMatrix, which handles the target
set for all cells. You may wonder why there is a matrix for the target sets, but not for
the source sets. The answer is that the cell itself decides its source set. Only formulas
have a source set, texts and values do not, and the source set is the union of all
references of the formula.

The target set, on the other hand, is more complicated. The cell does not decide its
own target set, it is set indirectly by the formulas of another cells. Lifting the target
set out of the cell and storing it in a target set matrix of its own simplifies the matter,
especially when it comes to cut and paste.

Chapter 8

[269]

To put it in mathematical terms, the cells and its sets constitute a directed graph. When
the user inputs a formula, we have to a check that the formula does not give rise to
a circular reference. This implies that the graph never contains a cycle, meaning the
graph is acyclic.

For instance, in the screenshot below the source set of c2 holds b1 and a2 because
the formula of c2 includes b1 and b2. In the same way, the source set of b3 holds a2
because the formula of b3 includes a2. The source set of b1 and a2 are empty because
they do not hold formulas.

As a2 is included in both the formulas of b3 and c2, the value of a2 affects the values
of b3 and c2. This implies that the target set of a2 holds b3 and c2. In the same way,
as a2 is included in the formula of b3, the target set of b3 holds a2. As the values of b3
and c2 do not affect the values of any other cells, their target sets are empty.

The Calc Application

[270]

The first of the following diagrams shows the acyclic graph of the source sets of the
spreadsheet above, the second diagram shows the acyclic graph of the target sets. As
shown by the graphs, the source and targets sets are actually inverses of each other.
Technically, we could manage with only one of the sets. However, as the sets are
needed on different occasions the code will be clearer.

a2

a2

c2

c2

b1

b3

b1

b3

source
source
source
source

(a2) = {}
(b1) = {}
(b3) = {a2}
(c2) = {a2, b1}

target
target
target
target

(a2) = {b3, c2}
(b1) = {c2}
(b3) = {}
(c2) = {}

When the value of a cell is changed, its target set is traversed and the values of those
cells are updated. Thereafter the target sets of these cells are traversed, and so on.
The traversal is executed in a breadth-first manner, see the EvaluateTargets method
in the TSetMatrix class. As there are no circular references in the spreadsheet, the
search will always terminate.

Cell.h
static const int CELL_MARGIN = 100;
enum CellState {CELL_TEXT, CELL_VALUE, CELL_FORMULA};

typedef CArray<CRect> RectArray;

enum Alignment {HALIGN_LEFT = DT_LEFT,
 HALIGN_CENTER = DT_CENTER, HALIGN_RIGHT = DT_RIGHT,
 HALIGN_JUSTIFIED = DT_LEFT + DT_CENTER + DT_RIGHT,
 VALIGN_TOP = DT_TOP, VALIGN_CENTER = DT_VCENTER,
 VALIGN_BOTTOM = DT_BOTTOM};

enum KeyboardState {KM_INSERT, KM_OVERWRITE};
enum Direction {HORIZONTAL, VERTICAL};
enum ColorStatus {TEXT, BACKGROUND};

class CellMatrix;
class TSetMatrix;
class CCalcDoc;

Chapter 8

[271]

class Cell
{
 public:
 Cell();
 Cell(const Cell& cell);
 Cell& operator=(const Cell& cell);
 void CopyCell(const Cell& cell);

 void SetCellMatrix(CellMatrix* pCellMatrix)
 {m_pCellMatrix = pCellMatrix;}
 void SetTargetSetMatrix(TSetMatrix* pTargetSetMatrix)
 {m_pTargetSetMatrix = pTargetSetMatrix;}
 BOOL IsEmpty() const
 {return (m_eCellState == CELL_TEXT) &&
 m_stText.IsEmpty();}

 void Clear(Reference home);
 void Serialize(CArchive& archive);

 void CharDown(UINT cChar, int iEditIndex,
 KeyboardState eKeyBoardMode);
 void GenerateCaretArray(CDC* pDC);

 CString GetInputText() {return m_stInput;}
 void SetInputText(CString stInput) {m_stInput = stInput;}
 int MouseToIndex(CPoint ptMouse);
 CRect IndexToCaret(int iIndex);

 void Draw(CPoint ptTopLeft, BOOL bEdit, BOOL bMarked,
 CDC *pDC);

 Font GetFont() const {return m_font;}
 void SetFont(const Font& font) {m_font = font;}

 Color GetColor(int iColorType) const;
 void SetColor(int iColorType, const Color& textColor);

 Alignment GetAlignment(Direction eDirection) const;
 void SetAlignment(Direction eDirection,
 Alignment eAlignment);

 void GenerateInputText();
 void EndEdit(Reference home);
 BOOL IsNumeric(CString stText);

 BOOL HasValue(BOOL bRecursive);
 double GetValue() const {return m_dValue;}

 void EvaluateValue(BOOL bRecursive);
 void UpdateSyntaxTree(int iAddRows, int iAddCols);

 ReferenceSet GetSourceSet() const {return m_sourceSet;};

 private:
 CellState m_eCellState;

 CString m_stText;

The Calc Application

[272]

 double m_dValue;
 SyntaxTree m_syntaxTree;
 BOOL m_bHasValue;
 RectArray m_caretRectArray;
 CString m_stInput, m_stOutput;
 Font m_font;
 Color m_textColor, m_backgroundColor;
 Alignment m_eHorizontalAlignment, m_eVerticalAlignment;
 ReferenceSet m_sourceSet;
 CellMatrix* m_pCellMatrix;
 TSetMatrix* m_pTargetSetMatrix;
};

The user inputs a (possible empty) text, and the text is interpreted as a (possible
empty) plain text, a numerical value, or a formula. The interpretation is saved in
m_eCellState, the possible state of the cell is text, value, or formula.

When the user inputs plain text (m_eCellState == CS_TEXT), the text is stored in
m_stText. If the user inputs a numerical value (m_eCellState == CS_VALUE), the
value is stored in m_dValue, and if the user inputs a formula beginning with an equal
sign (m_eCellState == CS_FORMULA), the formula is scanned, parsed, and stored in
m_syntaxTree.

When a text is inserted or edited, it is stored in m_stInput. When the input process
is finished (the user presses the return or escape key (Esc) or clicks with the mouse)
the text is interpreted and stored in the fields described above. The field m_stOutput
holds a string representation of the cell contents (a possibly empty text, a numerical
value, or a formula).

The field m_bHasValue is true if the cell contains a numerical value
(m_eCellState == CS_VALUE) or a formula (m_eCellState == CS_FORMULA)
that has been successfully evaluated (without throwing an exception) to a numerical
value. If so, m_dValue holds the actual value that can be accessed by other formulas
to evaluate their values.

When the user inputs text, the caret marks the place of insertion in the text. Every
time the user adds or removes a character, m_caretRectArray is recalculated. It
contains a rectangle for each character in the text (m_stInput) as well as an extra
rectangle for the case when the user places the caret at the end of the text. If the cell
contains a formula which is not correctly evaluated (an exception has been thrown),
the error message will be stored in m_stDisplay.

If the application is in the edit state (m_eCalcStatus == CS_EDIT) and
this particular cell is being edited, m_stInput is displayed. Otherwise
(m_eCalcStatus == CS_MARK or another cell is being edited), m_stOutput
is displayed.

Chapter 8

[273]

The text may be aligned in both horizontal and vertical directions. The fields
m_eHorizontalAlignment and m_eVerticalAlignment have the enumeration
type Alignment. The DT values below refer to alignment in call to CDC text
printing methods.

enum Alignment {HALIGN_LEFT = DT_LEFT,
 HALIGN_CENTER = DT_CENTER, ALIGN_RIGHT = DT_RIGHT,
 HALIGN_JUSTIFIED = DT_LEFT + DT_CENTER + DT_RIGHT,
 VALIGN_TOP = DT_TOP, VALIGN_CENTER = DT_VCENTER,
 VALIGN_BOTTOM = DT_BOTTOM};

The text may be set to a specific font as well as foreground and background colors.
The fields m_font, m_textColor, and m_backgroundColor store the current settings.
This goes for the whole of the text of the cell. It is not possible to set a font or a color
for an individual character in the text. However, it is possible to set the size and font
of a single character in The Word Application of the next chapter.

If the cell holds a formula with references to other cells, the references are stored in
m_sourceSet. Each cell in the set has the cell in question as a target, which means it
will notify the cell when a change has occurred, so that the value of the cell can be re-
evaluated. When the contents of the cell are changed, the source cells are notified that
they should remove the cell from their target sets. Then a new source set is generated
and the sources in the new set are notified that they should add this cell as a target.

For each spreadsheet, there is a cell matrix and a target set matrix. Each cell has the
pointers m_pCellMatrix and m_pTargetSetMatrix to keep track of them.

The constructor initializes the fields to the appropriate values. Before the cell is used,
m_pCellMatrix and m_pTargetSetMatrix will be set by a call to SetCellMatrix
and SetTargetSetMatrix, respectively. An empty rectangle is added to
m_caretRectArray as we need an extra caret for the position to the right of the
text. Before the cell is edited, m_caretRectArray will be initialized by a call to
GenerateCaretArray.

The copy constructor just calls the assignment operator, which copies the values of
the fields. The process of copying and serialization is quite straightforward as no
fields are pointers to dynamically allocated memory.

The method Clear is called by OnDelete in the document class. The cell is set to an
empty text. The parameter home is a reference representing the cell's position in the
spreadsheet. Every cell has the (possibly empty) set or sources m_sourceSet. The
set is generated from the syntax tree if the cell has a formula; otherwise, it is empty.
RemoveTargets in TSetMatrix goes through the set and for each source it removes
the target, which is the cell in question.

The Calc Application

[274]

The method Serialize is called for each cell in the cell matrix when the user saves
or loads the spreadsheet. The method CharDown is called as a response to the WM_
CHAR message. It inserts or overwrites a character depending on the caret position
and the keyboard state.

The method GenerateCaretArray generates the caret array in order for the caret to
appear at the correct position when the user edits the text of the cell.

The method MouseToIndex takes a mouse position and decides which character is
hit by the mouse. The x position of the mouse can be to the left of the text (zero is
returned), at the text, or to the right of the text (the length of the text is returned).
IndexToCaret works in an opposite manner, it takes a text index and returns the
caret rectangle.

The method Draw is called when the contents of the cell are to be drawn. The cell
may be edited or marked; the parameters bEdit and bMarked indicate that. If the cell
is edited or marked the pen and brush color are inverted.

The method GetAlignment and SetAlignment return and set the horizontal or
vertical alignment. The method GetColor and SetColor return and set the text and
background color. The method GenerateInputText is called when the user want to
input or edit text in this cell. It prepares m_stInput to hold a string representation
of the cell.

The method EndEdit is called when the user presses return or clicks in a cell. The
field m_stText is interpreted as a text, a numerical value (an integer or a decimal
number) and m_stOutput is set to represent the value of the cell.

The method IsNumeric returns true if the given text can be interpreted as a
numerical value (a possible plus or minus sign, a possible empty sequence of digits,
a possible decimal point, a possible empty sequence of digits, at least one digit
altogether).

The method HasValue returns true if the cell has a valid value (a numerical value or
a formula correctly evaluated). The method EvaluateValue is called when the value
of the cell needs to be re-evaluated; that is, when the value of a cell in the source
set has been changed. For every cell in the cell's source set, the cell in question is
included in the cell's target set.

The references in a formula of a cell are relative. This means that when the user cuts
or copies and then pastes a block of cells, the references are updated. This is taken
care of by UpdateReferences in the syntax tree. It returns true if all goes well and
false if any reference is placed outside the spreadsheet. The source set is also updated
by a call to GetSourceSet.

Chapter 8

[275]

A newly created cell is empty, has cell style text, is centered both in the horizontal
and vertical view, and has black text color on white background. Remember that
the caret array contains one rectangle for each character together with one extra for
the caret position one step to the right of the text. So even though the text is empty,
we add one empty rectangle to the caret array. The cell font's default constructor is
called, which loads the font with the system font.

Cell.cpp
Cell::Cell()
 :m_eCellState(CELL_TEXT),
 m_eHorizontalAlignment(DT_CENTER),
 m_eVerticalAlignment(DT_VCENTER),
 m_textColor(BLACK),
 m_backgroundColor(WHITE),
 m_pCellMatrix(NULL),
 m_pTargetSetMatrix(NULL)
{
 m_caretRectArray.Add(CRect(0, 0, 0, 0));
}

The copy constructor and the assignment operator simply call the copy method,
which copies every field. As every field is static (there are no pointers in this
class and there is no need for dynamically created memory) we can just copy the
fields one by one. The MFC class CArray, however, does not have an overloaded
assignment operator. Instead, we call Copy, which copies the array.

void Cell::CopyCell(const Cell& cell)
{
 m_eCellState = cell.m_eCellState;

 m_syntaxTree = cell.m_syntaxTree;
 m_sourceSet = cell.m_sourceSet;

 m_stText = cell.m_stText;
 m_dValue = cell.m_dValue;
 m_stInput = cell.m_stInput;
 m_stOutput = cell.m_stOutput;

 m_eHorizontalAlignment = cell.m_eHorizontalAlignment;
 m_eVerticalAlignment = cell.m_eVerticalAlignment;

 m_textColor = cell.m_textColor;
 m_backgroundColor = cell.m_backgroundColor;

 m_font = cell.m_font;
 m_caretRectArray.Copy(cell.m_caretRectArray);
}

The Calc Application

[276]

The method Clear clears the cell. It is called when the user deletes one or more cells.
If the cell contains a formula, we first have to go through its source set and, for each
source cell in the set, remove this cell as a target by calling RemoveTargets.

void Cell::Clear(Reference home)
{
 if (m_eCellState == CELL_FORMULA)
 {
 m_pTargetSetMatrix->RemoveTargets(home);
 }

 m_eCellState = CELL_TEXT;
 m_stText = TEXT("");
 m_stOutput = TEXT("");
}

The method CharDown is called every time the user presses a printable character. If
the input edit index is at the end of the text (that is, one step to the right of the text),
we just add the character. If not, we have to take into consideration the keyboard
state. It can be in either insert or the overwrite state. In the case of the insert state, we
insert the character. In case of the overwrite state, we overwrite the old character at
the edit index by calling SetAt.

void Cell::CharDown(UINT uNewChar, int iInputIndex,
 KeyboardState eKeyBoardMode)
{
 if (iInputIndex == m_stInput.GetLength())
 {
 m_stInput.AppendChar((TCHAR) uNewChar);
 }

 else
 {
 switch (eKeyBoardMode)
 {
 case KM_INSERT:
 m_stInput.Insert(iInputIndex, (TCHAR) uNewChar);
 break;

 case KM_OVERWRITE:
 m_stInput.SetAt(iInputIndex, (TCHAR) uNewChar);
 break;
 }
 }
}

Chapter 8

[277]

The method GenerateCaretArray is a central method to the application. When the
user adds or removes a character of the text of a cell, the position of the caret must
be updated. GenerateCaretArray takes care of that, it is a more advanced version
of GenerateCaretArray in the Draw application. Note that this is necessary only
when the cell has input focus. We create, initialize, and select the font of the cell text.
Remember that the font is stored in typographical point, which have to be converted
to logical units (hundredths of millimeters) by calling PointsToMeters.

First, we need the width and height of the text (in logical units). If the text is
non-empty, we call GetTextExtent to measure the input text. If the text is empty, the
width is zero and the height is set to the height of the font by calling GetTextMetric.

void Cell::GenerateCaretArray(CDC* pDC)
{
 CFont cFont;
 cFont.CreateFontIndirect(m_font.PointsToMeters());
 CFont* pPrevFont = pDC->SelectObject(&cFont);
 int iTextWidth, iTextHeight;
 if (!m_stInput.IsEmpty())
 {
 CSize szText = pDC->GetTextExtent(m_stInput);
 iTextWidth = szText.cx;
 iTextHeight = szText.cy;
 }
 else
 {
 TEXTMETRIC textMetric;
 pDC->GetTextMetrics(&textMetric);
 iTextWidth = 0;
 iTextHeight = textMetric.tmHeight;
 }

The writable part of the cell area is slightly smaller than the cell area in order to
prevent the text from overwriting the cell borders. The margin is subtracted from the
width and height of the cell.

 const int CELL_WIDTH = COL_WIDTH - 2 * CELL_MARGIN;
 const int CELL_HEIGHT = ROW_HEIGHT - 2 * CELL_MARGIN;

The beginning of the text (xLeftPos) should be decided. The horizontal alignment
can be set in four different states: left, centered, right, and justified state. The
variables are initialized in order to avoid compiler warnings.

 int xLeftPos = 0; // The start position of the text in
 // horizontal direction.

The Calc Application

[278]

 int iSpaceWidth = 0; // The width of a space in justified
 // horizontal alignment.
 int yTopPos = 0; // The start position of the text in
 // vertical direction.

In the case of left alignment, the text starts at the beginning of the cell; so the position
is set to zero. In the case of centered alignment, the text should be placed in the
middle of the cell. In case of right alignment, the text should be placed at the end of
the cell.

 switch (m_eHorizontalAlignment)
 {
 case DT_LEFT:
 xLeftPos = 0;
 break;
 case DT_CENTER:
 xLeftPos = (CELL_WIDTH - iTextWidth) / 2;
 break;
 case DT_RIGHT:
 xLeftPos = CELL_WIDTH - iTextWidth;
 break;

In the case of justified alignment, the text should be equally divided along the cell by
stretching the spaces in the text. For that purpose, we need to count the number of
spaces in the text by calling Remove.

If there is at least one space in the text, we decide the width of each space by
subtracting the width of the text without spaces from the area width and then
dividing it by the number of spaces. If there are no spaces in the text, we regard the
alignment to be left, so the start position is zero.

 case DT_JUSTIFIED:
 CString stInputNoSpaces = m_stInput;
 int iSpaceCount = stInputNoSpaces.Remove(TEXT(' '));

 if (iSpaceCount > 0)
 {
 xLeftPos = 0;
 CSize szInputNoSpaces =
 pDC->GetTextExtent(stInputNoSpaces);
 iSpaceWidth = (CELL_WIDTH - szInputNoSpaces.cx) /
 iSpaceCount;
 }
 else
 {
 xLeftPos = 0;
 }
 break;
 }

Chapter 8

[279]

The top position of the text (yTopPos) is assessed in a way similar to the horizontal
alignment. The vertical alignment can be set in three different states: top, centered,
and bottom state. In case of top alignment, the text starts at the beginning of the cell,
so the position is set to zero.

 switch (m_eVerticalAlignment)
 {
 case DT_TOP:
 yTopPos = 0;
 break;

 case DT_VCENTER:
 yTopPos = (CELL_HEIGHT - iTextHeight) / 2;
 break;

 case DT_BOTTOM:
 yTopPos = CELL_HEIGHT - iTextHeight;
 break;
 }

The text is traversed and the rectangle for each character is calculated. The start
position in the y direction and the height of the text is the same for all characters.
The position in the x direction starts by the position calculated above, and is
increased for each character. If the character is a space and the text has justified
horizontal alignment, we use the space width calculated above. Otherwise, we call
GetTextExtent to get the size width of the character.

 int xPos = xLeftPos;
 int iLength = m_stInput.GetLength();
 m_caretRectArray.SetSize(iLength + 1);
 for (int iIndex = 0; iIndex < iLength; ++iIndex)
 {
 CString stChar = m_stInput.Mid(iIndex, 1);
 int iCharWidth;
 if ((stChar == TEXT(" ")) &&
 (m_eHorizontalAlignment == DT_JUSTIFIED))
 {
 iCharWidth = iSpaceWidth;
 }
 else
 {
 iCharWidth = pDC->GetTextExtent(stChar).cx;
 }
 CRect rcChar(xPos, yTopPos, xPos + iCharWidth,
 yTopPos + iTextHeight);
 m_caretRectArray[iIndex] = rcChar;
 xPos += iCharWidth;
 }

The Calc Application

[280]

Finally, we add the size of a character of average size because the user may put the
caret marker to the right of the last character.

 TEXTMETRIC textMetric;
 pDC->GetTextMetrics(&textMetric);
 int iAverageCharWidth = textMetric.tmAveCharWidth;

 CRect rcLastChar(xPos, yTopPos, xPos + iAverageCharWidth,
 yTopPos + iTextHeight);
 m_caretRectArray[iLength] = rcLastChar;
 pDC->SelectObject(pPrevFont);
}

The method MouseToIndex examines the text of the cell with the help of the caret
array and finds the index of the matching character. If the mouse position in the x
direction is to the left of the leftmost character, we return index zero. We traverse
the rectangle array of the text, and return the index for the character whose rectangle
includes the x position of the mouse. If we have not found the index so far, it is
located to the right of the text, so we return the length of the text (the position to the
right of the text).

int Cell::MouseToIndex(CPoint ptMouse)
{
 ptMouse -= CSize(CELL_MARGIN, CELL_MARGIN);
 int iLength = m_stInput.GetLength();
 if (ptMouse.x < m_caretRectArray[0].left)
 {
 return 0;
 }
 for (int iIndex = 0; iIndex < iLength; ++iIndex)
 {
 if ((ptMouse.x >= m_caretRectArray[iIndex].left) &&
 (ptMouse.x < m_caretRectArray[iIndex].right))
 {
 return iIndex;
 }
 }
 return iLength;
}

The drawing of the text is rather straightforward, we just simply state the
horizontal and vertical alignment together with the dimensions of the cell when
we call DrawText. However, there is one exception—the justified alignment. In
order to obtain justified horizontal alignment, we call the device context method
SetTextJustification that makes the text in the DrawText call be equally
distributed in the cell.

Chapter 8

[281]

In order not to overwrite the border of the cell, we introduce a cell margin. The pen
and brush are selected and attached to the device context, and the cell is painted. The
pen and background colors are inversed if the cell is in the edit state (the application
is in the edit state and this particular cell is being edited, m_rfEditCell referees to
this cell) or the mark state (the application is in the mark state and this particular cell
is marked, it is inside the block referred to by m_rfFirstMark and m_rfLastMark).
When the pen and brush have been used, we will select the previous pen and brush
to the device context.

void Cell::Draw(CPoint ptTopLeft, BOOL bEdit, BOOL bMarked,
 CDC *pDC)
{
 CRect rcCell(ptTopLeft, CSize(COL_WIDTH, ROW_HEIGHT));
 CRect rcMargin(rcCell.left + CELL_MARGIN,
 rcCell.top + CELL_MARGIN,
 rcCell.right - CELL_MARGIN,
 rcCell.bottom - CELL_MARGIN);

 Color penColor = (bEdit || bMarked) ? m_textColor.Inverse()
 : m_textColor;
 Color brushColor = (bEdit || bMarked)
 ? m_backgroundColor.Inverse()
 : m_backgroundColor;

 CPen pen(PS_SOLID, 0, penColor);
 CPen* pPrevPen = pDC->SelectObject(&pen);

 CBrush brush(brushColor);
 CBrush* pPrevBrush = pDC->SelectObject(&brush);

 pDC->Rectangle(rcCell);

 pDC->SelectObject(pPrevPen);
 pDC->SelectObject(pPrevBrush);

In order to draw the text we set the text and background color instead of selecting a
pen and brush. We also need to set the text font. As the size of the font is stored in
typographical points, we convert the size to logical units (hundredths of millimeters)
by calling PointsToMeters before we select the font to the device context. If the cell
is in the edit state, we choose to display the input text; otherwise, we display the
output text.

 pDC->SetTextColor(penColor);
 pDC->SetBkColor(brushColor);

 CFont cFont;
 cFont.CreateFontIndirect(m_font.PointsToMeters());
 CFont* pPrevFont = pDC->SelectObject(&cFont);

 CString stDisplay = bEdit ? m_stInput : m_stOutput;

The Calc Application

[282]

If the text has justified horizontal alignment, we have to set the space distribution
by calling SetTextJustification. After the call to DrawText, we should reset the
space distribution. If the cell has left, center, or right horizontal alignment, we just
draw the text with the horizontal and vertical alignment of the cell. Similar to the pen
and brush above, we finally select the previous font.

 if (m_eHorizontalAlignment == DT_JUSTIFIED)
 {
 CString stTemp = stDisplay;
 int iSpaceCount = stTemp.Replace(TEXT(' '), TEXT('.'));
 CSize szDisplay = pDC->GetTextExtent(stDisplay);

 pDC->SetTextJustification(rcMargin.Width() - szDisplay.cx,
 iSpaceCount);
 pDC->DrawText(stDisplay, &rcMargin,
 DT_SINGLELINE | m_eVerticalAlignment);
 pDC->SetTextJustification(0, 0);
 }
 else
 {
 pDC->DrawText(stDisplay, &rcMargin, DT_SINGLELINE |
 m_eHorizontalAlignment |
 m_eVerticalAlignment);
 }

 pDC->SelectObject(pPrevFont);
}

The method GenerateInputText is called by the document class when the user
wants to start editing a cell. We have to find the input text of the cell, which we
store in the field m_stInput. If the cell is in the text state, we just use the value of
m_stText. If it is in the value state, we convert the value to a text by calling Format
in the MFC CString class. We also remove ending zeros and the decimal point if
there are no significant decimals. If the cell is in the formula state, we call the syntax
tree to evaluate a string matching the formula. We also introduce an equals sign.

void Cell::GenerateInputText()
{
 switch (m_eCellState)
 {
 case CELL_TEXT:
 m_stInput = m_stText;
 break;

 case CELL_VALUE:
 m_stInput.Format(TEXT("%f"), m_dValue);
 m_stInput.TrimRight(TEXT('0'));

Chapter 8

[283]

 m_stInput.TrimRight(TEXT('.'));
 break;

 case CELL_FORMULA:
 m_stInput = TEXT("=") + m_syntaxTree.ToString();
 break;
 }
}

The method EditEnd is called by the document class when the user presses the
return or Tab key, or presses the mouse (it does not matter whether the user presses
the mouse on this cell or any other position in the spreadsheet). We then interpret the
input text of the cell. Depending on the text, the input cell may be set to text, value,
or formula state. First, we get rid of trailing blanks in order to decide whether the
first character is an equals sign. If the text without trailing blanks is non-empty and
begins with an equals sign, we treat it as a formula.

void Cell::EndEdit(Reference home)
{
 CString stTrimInput = m_stInput;
 stTrimInput.Trim();
 if ((!stTrimInput.IsEmpty()) &&
 (stTrimInput[0] == TEXT('=')))
 {
 Parser parser;
 SyntaxTree newSyntaxTree =
 parser.Formula(stTrimInput.Mid(1));
 ReferenceSet newSourceSet = newSyntaxTree.GetSourceSet();
 m_pTargetSetMatrix->CheckCircular(home, newSourceSet);
 m_eCellState = CELL_FORMULA;
 m_pTargetSetMatrix->RemoveTargets(home);
 m_syntaxTree = newSyntaxTree;
 m_sourceSet = newSourceSet;
 m_pTargetSetMatrix->AddTargets(home);
 }
 else if (IsNumeric(stTrimInput))
 {
 m_eCellState = CELL_VALUE;
 m_dValue = _tstof(stTrimInput);
 m_stOutput.Format(TEXT("%f"), m_dValue);
 m_stOutput.TrimRight(TEXT('0'));
 m_stOutput.TrimRight(TEXT('.'));

 m_pTargetSetMatrix->RemoveTargets(home);
 m_sourceSet.RemoveAll();
 }

The Calc Application

[284]

 else
 {
 m_eCellState = CELL_TEXT;
 m_stText = m_stInput;
 m_stOutput = m_stText;
 m_pTargetSetMatrix->RemoveTargets(home);
 m_sourceSet.RemoveAll();
 }
}

The method HasValue is called when the value of a formula in another cell is to be
evaluated. A cell has a value, it holds a numerical value of a formula that has been
successfully evaluated (m_bHasValue is true).

This method is called on two occasions. The first case is when the user ends editing
a cell either by pressing return or Tab, or by pressing the mouse. In that case, we do
only have to evaluate the value of this cell because no other cell has been updated
(bRecursive is false). However, it is also called when the user has pasted a block
of cells. In that case, we have to evaluate the values of the cells in the source set
recursively because their values might have been updated too (bRecursive is true).

Naturally, a text is never interpreted as a value and a value is always interpreted
as a value. A cell in formula state may or may not have a valid value depending on
whether the formula was correctly evaluated; m_bHasValue holds the status of
the evaluation.

BOOL Cell::HasValue(BOOL bRecursive)
{
 switch (m_eCellState)
 {
 case CELL_TEXT:
 return FALSE;
 case CELL_VALUE:
 return TRUE;
 case CELL_FORMULA:
 if (bRecursive)
 {
 EvaluateValue(TRUE);
 }
 return m_bHasValue;
 }

As the cell always is in text, value, or formula state, this part of the method will
never be reached. However, in order to avoid compilation warnings, we return false.

 return FALSE;
}

Chapter 8

[285]

The method EvaluateValue is called when some of the source cell of the call has
been altered. If the cell holds a formula, its value is evaluated by calling Evaluate
method of its syntax tree. If the value of the formula is successfully evaluated, the
value flag (m_bHasValue) is set to true and the evaluated value is converted to the
output text (m_stOutput).

If the text cannot be evaluated due to division by zero or a missing value, an
exception is thrown. The output text (m_stOutput) is set to the error message and the
value flag (m_bHasValue) is set to false.

void Cell::EvaluateValue(BOOL bRecursive)
{
 if (m_eCellState == CELL_FORMULA)
 {

 try
 {
 m_dValue = m_syntaxTree.
 Evaluate(bRecursive, m_pCellMatrix);
 m_bHasValue = TRUE;

 m_stOutput.Format(TEXT("%f"), m_dValue);
 m_stOutput.TrimRight(TEXT('0'));
 m_stOutput.TrimRight(TEXT('.'));
 }

 catch (const CString& stMessage)
 {
 m_bHasValue = FALSE;
 m_stOutput = stMessage;
 }
 }
}

Finally, UpdateSyntaxTree is called when a block of cells has been copied and
pasted into another location in the spreadsheet. If the cell holds a formula, it calls the
UpdateReference method of its syntax tree and sets a new source set.

void Cell::UpdateSyntaxTree(int iRows, int iCols)
{
 if (m_eCellState == CELL_FORMULA)
 {
 m_syntaxTree.UpdateReference(iRows, iCols);
 m_sourceSet = m_syntaxTree.GetSourceSet();
 }
}

The Calc Application

[286]

The Cell Matrix—Managing Rows and Columns
The cells of the spreadsheet are organized in a matrix. The size of the matrix
is determined by the constants ROWS and COLS. The fields m_buffer is a
two-dimensional array holding the cells.

The default constructor sets the pointer to this cell matrix for each cell. The copy
constructor and the assignment operator copy the cells one by one and set the cell
matrix pointer for each cell. This shows that every cell has a pointer to the matrix it
belongs to as well as the associated target set matrix.

Serialize is called when the user chooses the save or open menu item. It serializes
the matrix, one cell at a time. In the case of loading, it also sets the cell matrix pointer
of the cell.

CellMatrix.h
class TSetMatrix;

const int ROWS = 10;
const int COLS = 5;

class CellMatrix
{
 public:
 CellMatrix();
 CellMatrix(const CellMatrix& cellMatrix);
 CellMatrix operator=(const CellMatrix& cellMatrix);
 void SetTargetSetMatrix(TSetMatrix* pTargetSetMatrix);

 Cell* Get(int iRow, int iCol) const;
 Cell* Get(Reference home) const;

 void Serialize(CArchive& archive);

 private:
 Cell m_buffer[ROWS][COLS];
};

The copy constructor copies the cells one by one and sets the cell matrix pointer for
each cell. This shows that every cell has a pointer to the matrix it belongs to.

CellMatrix.cpp
CellMatrix::CellMatrix(const CellMatrix& cellMatrix)
{
 for (int iRow = 0; iRow < ROWS; ++iRow)
 {
 for (int iCol = 0; iCol < COLS; ++iCol)
 {

Chapter 8

[287]

 m_buffer[iRow][iCol] = cellMatrix.m_buffer[iRow][iCol];
 m_buffer[iRow][iCol].SetCellMatrix(this);
 }
 }
}

The method Get comes in two forms, it returns a pointer to the cell indicated by the
given row and column or by the given reference. The row and column are checked to
be inside the limits of the matrix. However, the check is for debugging purpose only,
the method will never be called with invalid parameters.

Cell* CellMatrix::Get(int iRow, int iCol) const
{
 check((iRow >= 0) && (iRow < ROWS));
 check((iCol >= 0) && (iCol < COLS));
 return (Cell*) &m_buffer[iRow][iCol];
}
Cell* CellMatrix::Get(Reference home) const
{
 return Get(home.GetRow(), home.GetCol());
}

The Target Set Matrix Class
The TSetMatrix class keeps track of the target set for each cell. It is connected to
a cell matrix by m_pCellMatrix, and m_pBuffer stores the target set for each cell.
Note the difference between source and target sets. While only formula cells can
have non-empty source sets, all kinds of cells (even empty cells) can have non-empty
target sets. Another difference between the two sets is that the target sets are defined
indirectly by a formula in another set. If a formula of another cell holds a reference
to a particular cell, the reference to the formula cell is added to the target set of the
original cell. In the same way, when a formula is altered or cleared, the reference
to the formula cell is removed from the target set of all its source cells. When a cell
is updated, all its targets are evaluated, either recursively (the targets cells are re-
evaluated, and before that their target cell are re-evaluated, and so on) when a block
of cells are pasted or not (only the evaluated values of the target cells are interesting)
when a single cell is modified.

The sources and targets are searched and evaluated in two ways: depth-first and
breadth-first. As the name implies, depth-first tries to search as deep as possible.
When it has reached a dead end, it backtracks and tries another way, if there is one.
Breadth-first on the other hand, evaluates all cells at the same distance from the start
cell. Not until then, it examines cells at a larger distance. The following pseudo code
illustrates the search algorithms. The depth-first algorithm is simpler as we can take

The Calc Application

[288]

advantage of recursive calls. It is implemented in the CheckCircular method. The
breadth-first algorithm is on the other hand necessary in order to evaluate the targets
of a modified cell. It is implemented in the EvaluateTargets method.

Depth-First(Set sourceSet)
{
 Set resultSet = sourceSet;
 for (each cell in the source set)
 {
 resultSet = union(resultSet,
 Depth-First(the source set of the cell))
 }

 return resultSet;
}

Breadth-First(Set sourceSet)
{
 Set resultSet = sourceSet;

 while (!resultSet.isEmpty())
 {
 extract and remove a cell from the search set
 add its source set to the result set
 }
 return resultSet;
}

TSetMatrix.h
class TSetMatrix
{
 public:
 TSetMatrix();
 TSetMatrix(const TSetMatrix& tSetMatrix);
 TSetMatrix operator=(const TSetMatrix& tSetMatrix);

 void SetCellMatrix(CellMatrix* pCellMatrix);
 void Serialize(CArchive& archive);

 ReferenceSet* Get(int iRow, int iCol) const;
 ReferenceSet* Get(Reference home) const;

 void CheckCircular(Reference home,
 ReferenceSet sourceSet);
 ReferenceSet EvaluateTargets(Reference home);

 void AddTargets(Reference home);
 void RemoveTargets(Reference home);

 private:
 ReferenceSet m_buffer[ROWS][COLS];
 CellMatrix* m_pCellMatrix;
};

Chapter 8

[289]

TSetMatrix.cpp
Similar to the CellMatrix case, Get comes in two forms. It returns a pointer to the
target set indicated by the given row and column or by the given reference. The row
and column are checked to be inside the limits of the matrix. However, again similar
to the CellMatrix above, the check is for debugging purposes only. The method will
never be called with invalid parameters.

ReferenceSet* TSetMatrix::Get(int iRow, int iCol) const
{
 check((iRow >= 0) && (iRow < ROWS));
 check((iCol >= 0) && (iCol < COLS));

 return (ReferenceSet*) &m_buffer[iRow][iCol];
}

ReferenceSet* TSetMatrix::Get(Reference home) const
{
 return Get(home.GetRow(), home.GetCol());
}

When the user adds or alters a formula, it is essential that no cycles are added to
the graph. CheckCircular throws an exception when it finds a cycle. It performs a
depth-first search backwards by following the source set.

void TSetMatrix::CheckCircular(Reference home,
 ReferenceSet sourceSet)
{
 for (POSITION position = sourceSet.GetHeadPosition();
 position != NULL; sourceSet.GetNext(position))
 {
 Reference source = sourceSet.GetAt(position);

 if (source == home)
 {
 CString stMessage = TEXT("Circular Reference.");
 throw stMessage;
 }

 Cell* pCell = m_pCellMatrix->Get(source);
 ReferenceSet nextSourceSet = pCell->GetSourceSet();
 CheckCircular(home, nextSourceSet);
 }
}

The Calc Application

[290]

When the value of a cell is modified, it is essential that the formulas having
references to the cell are notified and that their values are re-evaluated. The method
EvaluateTargets performs a breadth-first search by following the target sets
forward. Unlike the check for circular cycles above, we cannot perform a depth-first
search. That would introduce the risk of the cells being evaluated in the wrong order.

ReferenceSet TSetMatrix::EvaluateTargets(Reference home)
{
 Cell* pHome = m_pCellMatrix->Get(home);
 pHome->EvaluateValue(FALSE);

 ReferenceSet resultSet;
 resultSet.Add(home);

 ReferenceSet* pTargetSet = Get(home);
 ReferenceSet updateSet = *pTargetSet;

 while (!updateSet.IsEmpty())
 {
 Reference target = updateSet.GetHead();
 resultSet.Add(target);
 updateSet.Remove(target);

 Cell* pTarget = m_pCellMatrix->Get(target);
 pTarget->EvaluateValue(FALSE);
 ReferenceSet* pNextTargetSet = Get(target);
 updateSet.AddAll(*pNextTargetSet);
 }

 return resultSet;
}

The method AddTargets traverses the source set of the cell with the given reference
in the cell matrix and, for each source cell, adds the given cell as a target in the target
set of the source cell.

void TSetMatrix::AddTargets(Reference home)
{
 Cell* pCell = m_pCellMatrix->Get(home);
 ReferenceSet sourceSet = pCell->GetSourceSet();

 for (POSITION position = sourceSet.GetHeadPosition();
 position != NULL; sourceSet.GetNext(position))
 {
 Reference source = sourceSet.GetAt(position);
 ReferenceSet* pTargetSet = Get(source);
 pTargetSet->Add(home);
 }
}

Chapter 8

[291]

RemoveTargets traverses the source set of the cell with the given reference in the cell
matrix and, for each source cell, removes the given cell as a target in the target set of
the source cell.

void TSetMatrix::RemoveTargets(Reference home)
{
 Cell* pCell = m_pCellMatrix->Get(home);
 ReferenceSet sourceSet = pCell->GetSourceSet();

 for (POSITION position = sourceSet.GetHeadPosition();
 position != NULL; sourceSet.GetNext(position))
 {
 Reference source = sourceSet.GetAt(position);
 ReferenceSet* pTargetSet = Get(source);
 pTargetSet->Remove(home);
 }
}

The Document/View Model
This application supports the Document/View model. CCalcDoc is the document
class and CCalcView is the view class.

The Document Class
The class CCalcDoc is generated by the Application Wizard. We add the document's
data and methods to handle the data. The class is inherited from the MFC
class CDocument.

The field m_CalcState represents the status of the current spreadsheet. The user can
choose to edit a specific cell or to mark one or more cells. The application always
has to be in one of the two modes. When in the mark state, at least one cell is always
marked. When the application starts, it is in the mark state and the top left cell
is marked.

There is also the field m_iKeyboardState. It keeps track of the insert state of the
keyboard. It can hold the insert and overwrite state. The fields have the enumeration
types CalcState and KeyboardState. As KeyboardState is used by the cell class, it
is defined in Cell.h.

enum CalcState {CS_MARK, CS_EDIT};
enum KeyboardState{KM_INSERT, KM_OVERWRITE};

The Calc Application

[292]

If the users edit one cell, the cell's coordinates are placed in the CReference field
m_rfEdit. The index of the character being edited is placed in m_iEditIndex. If the
users choose to mark a block of cells, the coordinates of the block's first corner are
placed in m_rfFirstMark and the coordinates of the block's last corner are placed in
m_rfLastMark. Note that we do not know these references relation to each other.
On several occasions, we have to find the top-left and bottom-right corner of the
marked block.

The field m_cellMatrix contains all cells of the spreadsheet. If the user marks and
copies a block of cells, the block will be placed in m_copyMatrix, and the coordinates
of the marked block's top-left corner are placed in m_rfMinCopy. Its bottom-right
corner is placed in m_rfMaxCopy. Note the difference between m_rfFirstMark/
m_rfLastMark and m_rfMinCopy/m_rfMaxCopy. In the m_rfMinCopy/m_rfMaxCopy
case, we know that m_rfMinCopy holds the top-left corner and m_rfMaxCopy holds
the bottom-right corner.

The field m_tSetMatrix holds the target set matrix of the spreadsheet. The field
m_caret keeps track of the caret of the application. The caret is visible in the edit
state if the cell is visible in the view and the view has input focus. It is never visible
in the mark state.

The size of a cell is given by the constants ROW_HEIGHT and COL_WIDTH; all cells
have the same size. The user cannot change the size of a cell nor the number of cells.
The application is in the mark state when one or more cells are marked. It is in the
edit state when the user edit the input text of a cell. The fields HEADER_WIDTH and
HEADER_HEIGHT hold the size of the row and column bars. The fields TOTAL_WIDTH
and TOTAL_HEIGHT give the total size of the spreadsheet, including the size of
the headers.

As this is a multiple view application, the same spreadsheet may be visible in several
views. However, the caret can only be visible in one view at a time. Therefore,
m_caret needs to be notified of the current view focus status. The methods
OnSetFocus and OnKillFocus notify the caret, which is used to create device
contexts and to check whether the current cell is visible in its current view.

CalcDoc.h
const int HEADER_WIDTH = 1000;
const int HEADER_HEIGHT = 500;
const int COL_WIDTH = 4000;
const int ROW_HEIGHT = 1000;
const int TOTAL_WIDTH = HEADER_WIDTH + COLS * COL_WIDTH;
const int TOTAL_HEIGHT = HEADER_HEIGHT + ROWS * ROW_HEIGHT;
enum CalcState {CS_MARK, CS_EDIT};

Chapter 8

[293]

class CCalcDoc : public CDocument
{
 protected:
 DECLARE_DYNCREATE(CCalcDoc)
 DECLARE_MESSAGE_MAP()
 CCalcDoc();

 public:
 virtual void Serialize(CArchive& archive);
 CellMatrix* GetCellMatrix() {return &m_cellMatrix;}

 int GetCalcStatus() {return m_eCalcStatus;}
 Caret* GetCaret() {return &m_caret;}

 Reference GetEdit() const {return m_rfEdit;}
 Reference GetFirstMark() const {return m_rfFirstMark;}
 Reference GetLastMark() const {return m_rfLastMark;}

 void RepaintEditArea();
 void RepaintMarkedArea();
 void RepaintSet(const ReferenceSet& referenceSet);

 void DoubleClick(Reference rfCell, CPoint ptMouse,
 CDC* pDC);
 void MakeCellVisible(Reference rfCell);
 void MakeCellVisible(int iRow, int iCol);
 void UpdateCaret();

 void UnmarkAndMark(int iMinRow, int iMinCol,
 int iMaxRow, int iMaxCol);

 void KeyDown(UINT uChar, CDC* pDC, BOOL bShiftKeyDown);
 void CharDown(UINT uChar, CDC* pDC);

 void LeftArrowKey(BOOL bShiftKeyDown);
 void RightArrowKey(BOOL bShiftKeyDown);
 void UpArrowKey(BOOL bShiftKeyDown);
 void DownArrowKey(BOOL bShiftKeyDown);
 void HomeKey(BOOL bShiftKeyDown);
 void EndKey(BOOL bShiftKeyDown);

 void DeleteKey(CDC* pDC);
 void BackspaceKey(CDC* pDC);

 afx_msg void OnUpdateCopy(CCmdUI *pCmdUI);
 afx_msg void OnCopy();

 afx_msg void OnUpdateCut(CCmdUI *pCmdUI);
 afx_msg void OnCut();

 afx_msg void OnUpdatePaste(CCmdUI *pCmdUI);
 afx_msg void OnPaste();
 afx_msg void OnUpdateDelete(CCmdUI *pCmdUI);
 afx_msg void OnDelete();

The Calc Application

[294]

 afx_msg void OnUpdateAlignmentHorizontalLeft
 (CCmdUI *pCmdUI);
 afx_msg void OnUpdateAlignmentHorizontalCenter
 (CCmdUI *pCmdUI);
 afx_msg void OnUpdateAlignmentHorizontalRight
 (CCmdUI *pCmdUI);
 afx_msg void OnUpdateAlignmentHorizontalJustified
 (CCmdUI *pCmdUI);

 afx_msg void OnUpdateAlignmentVerticalTop(CCmdUI *pCmdUI);
 afx_msg void OnUpdateAlignmentVerticalCenter
 (CCmdUI *pCmdUI);
 afx_msg void OnUpdateAlignmentVerticalBottom
 (CCmdUI *pCmdUI);

 void UpdateAlignment(Direction eDirection, Alignment
 eAlignment, CCmdUI *pCmdUI);
 BOOL IsAlignment(Direction eDirection,
 Alignment eAlignment);

 afx_msg void OnAlignmentHorizontalLeft();
 afx_msg void OnAlignmentHorizontalCenter();
 afx_msg void OnAlignmentHorizontalRight();
 afx_msg void OnAlignmentHorizontalJustified();

 afx_msg void OnAlignmentVerticalTop();
 afx_msg void OnAlignmentVerticalCenter();
 afx_msg void OnAlignmentVerticalBottom();

 void SetAlignment(Direction eDirection,
 Alignment eAlignment);

 afx_msg void OnUpdateColorText(CCmdUI *pCmdUI);
 afx_msg void OnUpdateColorBackground(CCmdUI *pCmdUI);

 afx_msg void OnTextColor();
 afx_msg void OnBackgroundColor();
 void OnColor(int iColorType);

 afx_msg void OnUpdateFont(CCmdUI *pCmdUI);
 afx_msg void OnFont();
 private:
 Caret m_caret;

 CalcState m_eCalcStatus;
 KeyboardState m_eKeyboardState;

 int m_iInputIndex;
 Reference m_rfEdit, m_rfFirstMark, m_rfLastMark,
 m_rfMinCopy, m_rfMaxCopy;
 CellMatrix m_cellMatrix, m_copyMatrix;
 TSetMatrix m_tSetMatrix;
};

Chapter 8

[295]

When a new spreadsheet is created, the application is in the mark state and the
keyboard is in the insert state. The upper left cell (row 0 and column 0) is marked.
The cell matrix and the target set matrix are connected to each other.

CalcDoc.cpp
CCalcDoc::CCalcDoc()
 :m_eCalcStatus(CS_MARK),
 m_iKeyboardState(KM_INSERT),
 m_rfMinCopy(-1, -1),
 m_rfMaxCopy(-1, -1)
{
 m_cellMatrix.SetTargetSetMatrix(&m_tSetMatrix);
 m_tSetMatrix.SetCellMatrix(&m_cellMatrix);
}

The methods RepaintEditArea, RepaintMarkedArea, and RepaintSet all update
one or more cells of the spreadsheet. That is, the views are instructed to repaint the
client area of the cells. When the user has modified the text of a cell, the cell has to
be updated.

void CCalcDoc::RepaintEditArea()
{
 CPoint ptTopLeft(m_rfEdit.GetCol() * COL_WIDTH,
 m_rfEdit.GetRow() * ROW_HEIGHT);
 CSize szEditCell(COL_WIDTH, ROW_HEIGHT);

 CRect rcEditCell(ptTopLeft, szEditCell);
 UpdateAllViews(NULL, (LPARAM) &rcEditCell);
}

Similar to the RepaintEditArea method above, we must repaint the client area of
the marked cells when their mark status has changed. Remember that m_rdEdit
only represents one cell while m_rfFirstMark and m_rfLastMark represent a
block of cells.

void CCalcDoc::RepaintMarkedArea()
{
 int iMinMarkedRow = min(m_rfFirstMark.GetRow(),
 m_rfLastMark.GetRow());
 int iMaxMarkedRow = max(m_rfFirstMark.GetRow(),
 m_rfLastMark.GetRow());

 int iMinMarkedCol = min(m_rfFirstMark.GetCol(),
 m_rfLastMark.GetCol());
 int iMaxMarkedCol = max(m_rfFirstMark.GetCol(),
 m_rfLastMark.GetCol());

The Calc Application

[296]

 CPoint ptTopLeft(iMinMarkedCol * COL_WIDTH,
 iMinMarkedRow * ROW_HEIGHT);
 CPoint ptBottomRight((iMaxMarkedCol + 1) * COL_WIDTH,
 (iMaxMarkedRow + 1) * ROW_HEIGHT);

 CRect rcMarkedBlock(ptTopLeft, ptBottomRight);
 UpdateAllViews(NULL, (LPARAM) &rcMarkedBlock);
}

When the user modifies the value of a cell, its target needs to be notified,
re-evaluated, and updated. Even though the set might hold many cells, they are not
bound in a block. Therefore, we have to repaint the areas of the cells one by one.

void CCalcDoc::RepaintSet(const ReferenceSet& repaintSet)
{
 for (POSITION position = repaintSet.GetHeadPosition();
 position != NULL; repaintSet.GetNext(position))
 {
 Reference reference = repaintSet.GetAt(position);

 int iRow = reference.GetRow();
 int iCol = reference.GetCol();

 CPoint ptCell(iCol * COL_WIDTH, iRow * ROW_HEIGHT);
 CSize szCell(COL_WIDTH, ROW_HEIGHT);
 CRect rcCell(ptCell, szCell);

 UpdateAllViews(NULL, (LPARAM) &rcCell);
 }
}

The method DoubleClick is called by the view class when the user double-clicks
with the left mouse button. We start by setting the application in the edit state, and
generate the input text of the cell in question. We also determine the index of the
current character by subtracting the mouse position from the upper left corner of the
cell. Finally, we generate the caret array of the cell and update the caret.

void CCalcDoc::DoubleClick(Reference rfCell, CPoint ptMouse,
 CDC* pDC)
{
 UnmarkAndMark(rfCell.GetRow(), rfCell.GetCol(),
 rfCell.GetRow(), rfCell.GetCol());

 m_eCalcStatus = CS_EDIT;
 m_rfEdit = rfCell;

 Cell* pEditCell = m_cellMatrix.Get(m_rfEdit.GetRow(),
 m_rfEdit.GetCol());
 pEditCell->GenerateInputText();

Chapter 8

[297]

 CPoint ptTopLeft(m_rfEdit.GetCol() * COL_WIDTH,
 m_rfEdit.GetRow() * ROW_HEIGHT);
 m_iInputIndex = pEditCell->MouseToIndex
 (ptMouse - ptTopLeft);

 pEditCell->GenerateCaretArray(pDC);
 RepaintEditArea();
 UpdateCaret();
}

When the user starts to edit a cell, the cell might be outside the visible part of the
view of the spreadsheet due to scrolling or resizing of the window. The two
versions of MakeCellVisible take care of that by notifying the current view about
the cell's area.

void CCalcDoc::MakeCellVisible(Reference rfCell)
{
 MakeCellVisible(rfCell.GetRow(), rfCell.GetCol());
}

void CCalcDoc::MakeCellVisible(int iRow, int iCol)
{
 CPoint ptTopLeft(iCol * COL_WIDTH, iRow * ROW_HEIGHT);
 CRect rcCell(ptTopLeft, CSize(COL_WIDTH, ROW_HEIGHT));

 CCalcView* pCalcView = (CCalcView*) m_caret.GetView();
 pCalcView->MakeCellVisible(rcCell);
}

When the application is in the edit state and the edited cell is visible in the view, the
caret should be visible too. If the keyboard is in the overwrite state, the caret is given
the size of the current character. If it is in the insert state, the caret is a vertical line.

The caret marker is never visible when the application is in the mark state. In the
edit state, the caret is visible if the cell currently being edited is visible in the view
currently holding the input focus. If it is visible, we need the rectangle of the caret
relative its top left corner.

void CCalcDoc::UpdateCaret()
{
 switch (m_eCalcStatus)
 {
 case CS_MARK:
 m_caret.HideCaret();
 break;

 case CS_EDIT:
 CCalcView* pCalcView = (CCalcView*) m_caret.GetView();

The Calc Application

[298]

 if (pCalcView->IsCellVisible(m_rfEdit.GetRow(),
 m_rfEdit.GetCol()))
 {
 Cell* pEditCell = m_cellMatrix.Get(m_rfEdit);
 CPoint ptTopLeft(m_rfEdit.GetCol() * COL_WIDTH,
 m_rfEdit.GetRow() * ROW_HEIGHT);
 CRect rcCaret = ptTopLeft + pEditCell->
 IndexToCaret(m_iInputIndex);

If the keyboard is in the insert state, we trim the caret to a vertical line. We need to
transform the coordinates of the caret to sheet point coordinates in case the view has
been scrolled. Finally, we show the caret.

 if (m_iKeyboardState == KM_INSERT)
 {
 rcCaret.right = rcCaret.left + 1;
 }

 pCalcView->SheetPointToLogicalPoint(rcCaret);
 m_caret.SetAndShowCaret(rcCaret);
 }

If the current cell is not visible in the view, we hide the caret.

 else
 {
 m_caret.HideCaret();
 }
 break;
 }
}

The method UnmarkAndMark is a central and rather complex method. Its purpose
is to unmark the marked cells and to mark the new block given by the parameters
without any unnecessary updating. That is, new cells already marked will not be
updated. Note that the first and last marked cells refer to when they were marked
rather than their positions in the spreadsheet. The last row or column may be less
than the first one. Therefore, we need to find the minimum and maximum value in
order to traverse through the block.

void CCalcDoc::UnmarkAndMark(int iNewFirstMarkedRow,
 int iNewFirstMarkedCol,
 int iNewLastMarkedRow,
 int iNewLastMarkedCol)
{
 int iOldMinMarkedRow = min(m_rfFirstMark.GetRow(),
 m_rfLastMark.GetRow());

Chapter 8

[299]

 int iOldMaxMarkedRow = max(m_rfFirstMark.GetRow(),
 m_rfLastMark.GetRow());
 int iOldMinMarkedCol = min(m_rfFirstMark.GetCol(),
 m_rfLastMark.GetCol());
 int iOldMaxMarkedCol = max(m_rfFirstMark.GetCol(),
 m_rfLastMark.GetCol());
 int iNewMinMarkedRow = min(iNewFirstMarkedRow,
 iNewLastMarkedRow);
 int iNewMaxMarkedRow = max(iNewFirstMarkedRow,
 iNewLastMarkedRow);
 int iNewMinMarkedCol = min(iNewFirstMarkedCol,
 iNewLastMarkedCol);
 int iNewMaxMarkedCol = max(iNewFirstMarkedCol,
 iNewLastMarkedCol);
 m_rfFirstMark.SetRow(iNewFirstMarkedRow);
 m_rfLastMark.SetRow(iNewLastMarkedRow);
 m_rfFirstMark.SetCol(iNewFirstMarkedCol);
 m_rfLastMark.SetCol(iNewLastMarkedCol);

If the application is in the edit state, we need to finish the editing and evaluate the
value of the cell. After the editing has been finished, we need to evaluate and repaint
all targets of the cell by calling EvaluateTargets and RepaintSet.

 switch (m_eCalcStatus)
 {
 case CS_EDIT:
 {
 Cell* pCell = m_cellMatrix.Get(m_rfEdit);
 m_eCalcStatus = CS_MARK;
 try
 {
 pCell->EndEdit(m_rfEdit);
 pCell->EvaluateValue(FALSE);
 ReferenceSet repaintSet =
 m_tSetMatrix.EvaluateTargets(m_rfEdit);
 RepaintSet(repaintSet);
 SetModifiedFlag();
 }
 catch (const CString stMessage)
 {
 AfxGetApp()->GetMainWnd()->
 MessageBox(stMessage, TEXT("Parse Error."));
 RepaintEditArea();
 }

 UpdateCaret();
 }
 break;

The Calc Application

[300]

If the application is in the mark state, we need to unmark the cells not included in the
new marked cell block.

 case CS_MARK:
 for (int iRow = iOldMinMarkedRow;
 iRow <= iOldMaxMarkedRow; ++iRow)
 {
 for (int iCol = iOldMinMarkedCol;
 iCol <= iOldMaxMarkedCol; ++iCol)
 {
 if ((iRow < iNewMinMarkedRow) ||
 (iRow > iNewMaxMarkedRow) ||
 (iCol < iNewMinMarkedCol) ||
 (iCol > iNewMaxMarkedCol))
 {
 CPoint ptTopLeft(iCol * COL_WIDTH,
 iRow * ROW_HEIGHT);
 CRect rcCell(ptTopLeft,
 CSize(COL_WIDTH, ROW_HEIGHT));
 UpdateAllViews(NULL, (LPARAM) &rcCell);
 }
 }
 }
 break;
 }

Finally, we traverse the new marked cell block and repaint all cells not already
marked in the previous marked cell block.

 for (int iRow = iNewMinMarkedRow;
 iRow <= iNewMaxMarkedRow; ++iRow)
 {
 for (int iCol = iNewMinMarkedCol;
 iCol <= iNewMaxMarkedCol; ++iCol)
 {
 if ((iRow < iOldMinMarkedRow) ||
 (iRow > iOldMaxMarkedRow) ||
 (iCol < iOldMinMarkedCol) ||
 (iCol > iOldMaxMarkedCol))
 {
 CPoint ptTopLeft(iCol * COL_WIDTH, iRow * ROW_HEIGHT);
 CRect rcCell(ptTopLeft,
 CSize(COL_WIDTH, ROW_HEIGHT));
 UpdateAllViews(NULL, (LPARAM) &rcCell);
 }
 }
 }
}

Chapter 8

[301]

The method KeyDown is called when the user presses a special character, regular
characters are handled by CharDown below. The method InsertKey simply changes
the state of the keyboard.

void CCalcDoc::KeyDown(UINT uChar, CDC* pDC, BOOL bShiftKeyDown)
{
 switch (uChar)
 {
 case VK_LEFT:
 LeftArrowKey(bShiftKeyDown);
 break;

 // ...

 case VK_INSERT:
 m_iKeyboardState = (m_iKeyboardState == KM_INSERT) ?
 KM_OVERWRITE : KM_INSERT;
 break;

The return key finishes the editing session. The user can also finish by pressing the
Tab key or pressing the mouse. In either case, MarkAndUnmark above takes care of
finishing the editing process. When the editing is finished, we try to mark the cell
below. The Tab key does almost the same thing as the return key. The difference is
that the next marked cell is, if possible, the cell to right, or the cell to the left if the
user pressed the Shift key.

 case VK_RETURN:
 {
 int iNewFirstMarkedRow =
 min(m_rfFirstMark.GetRow() + 1, ROWS - 1);
 UnmarkAndMark(iNewFirstMarkedRow,
 m_rfFirstMark.GetCol(),
 iNewFirstMarkedRow,
 m_rfFirstMark.GetCol());
 MakeCellVisible(iNewFirstMarkedRow,
 m_rfFirstMark.GetCol());
 }
 break;
 }
 UpdateCaret();
}

The method CharDown is called when the user presses a regular key (ASCII number
between 32 and 122). If the application is in the mark state, we mark the first marked
cell, change to the edit state, and clear the input text before adding the character. We
make sure the edited cell is visible. We add the character and generate a new caret
array. Finally, we repaint the edit area (the cell being edited) and the caret.

The Calc Application

[302]

void CCalcDoc::CharDown(UINT uChar, CDC* pDC)
{

 if (m_eCalcStatus == CS_MARK)
 {
 UnmarkAndMark(m_rfFirstMark.GetRow(),
 m_rfFirstMark.GetCol(),
 m_rfFirstMark.GetRow(),
 m_rfFirstMark.GetCol());

 m_eCalcStatus = CS_EDIT;
 m_rfEdit = m_rfFirstMark;
 m_iInputIndex = 0;

 Cell* pCell = m_cellMatrix.Get(m_rfEdit);
 pCell->SetInputText(TEXT(""));
 }

 MakeCellVisible(m_rfEdit);

 Cell* pCell = m_cellMatrix.Get(m_rfEdit);
 pCell->CharDown(uChar, m_iInputIndex++, m_iKeyboardState);
 pCell->GenerateCaretArray(pDC);

 RepaintEditArea();
 UpdateCaret();
}

LeftArrowKey is called when the user presses the Left Arrow key. We have three
different cases to consider, depending on whether the application is in the edit or the
mark state and on whether the user pressed the Shift key.

If the application is in the edit state, we make sure the current cell is visible, move the
current index one step to the left if it is not already at the leftmost index, and update
the caret.

void CCalcDoc::LeftArrowKey(BOOL bShiftKeyDown)
{
 switch (m_eCalcStatus)
 {
 case CS_EDIT:
 MakeCellVisible(m_rfEdit);
 m_iInputIndex = max(0, m_iInputIndex - 1);
 UpdateCaret();
 break;

Chapter 8

[303]

If the application is in the mark state, we have to take into consideration whether the
Shift key was pressed at the same time. If it was not, we place the marked block one
step to the left of the first marked cell if it is not already at the leftmost column. In
that case, we place the marked block at the first marked cell.

 case CS_MARK:
 if (!bShiftKeyDown)
 {
 int iNewFirstMarkedCol =
 max(0, m_rfFirstMark.GetCol() - 1);
 MakeCellVisible(m_rfFirstMark.GetRow(),
 iNewFirstMarkedCol);
 UnmarkAndMark(m_rfFirstMark.GetRow(),
 iNewFirstMarkedCol,
 m_rfFirstMark.GetRow(),
 iNewFirstMarkedCol);
 }

If the Shift key was pressed, we move the last marked cell one step to the left unless it
is already at the leftmost position. The first marked cell is not affected.

 else
 {
 int iNewLastMarkedCol =
 max(0, m_rfLastMark.GetCol() - 1);
 MakeCellVisible(m_rfLastMark.GetRow(),
 iNewLastMarkedCol);
 UnmarkAndMark(m_rfFirstMark.GetRow(),
 m_rfFirstMark.GetCol(),
 m_rfLastMark.GetRow(),
 iNewLastMarkedCol);
 }
 break;
 }
}

The method DeleteKey is called when the user presses the Delete key to delete a
character in the edit state or, in the mark state, the contents of a block of one or
several cells in the marked block. In the edit state, we delete the character on the edit
index unless it is at the end of the text.

void CCalcDoc::DeleteKey(CDC* pDC)
{
 switch (m_eCalcStatus)
 {

The Calc Application

[304]

 case CS_EDIT:
 {
 Cell* pCell = m_cellMatrix.Get(m_rfEdit);
 CString stInput = pCell->GetInputText();

 if (m_iInputIndex < stInput.GetLength())
 {
 stInput.Delete(m_iInputIndex);
 pCell->SetInputText(stInput);
 pCell->GenerateCaretArray(pDC);
 RepaintEditArea();
 SetModifiedFlag();
 }
 }

 break;

If the application is in the mark state, we just call OnDelete to remove the
marked cells.

 case CS_MARK:
 OnDelete();
 break;
 }
}

The copy menu item, toolbar button, and accelerator are enabled when the
application is in the mark state, and disabled in the edit state.

void CCalcDoc::OnUpdateCopy(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_eCalcStatus == CS_MARK);
}

The method OnCopy is called when the user chooses the Copy menu item or Copy
button on the toolbar. It copies the marked block into the copy cell matrix.

void CCalcDoc::OnCopy()
{
 m_rfMinCopy.SetRow(min(m_rfFirstMark.GetRow(),
 m_rfLastMark.GetRow()));
 m_rfMinCopy.SetCol(min(m_rfFirstMark.GetCol(),
 m_rfLastMark.GetCol()));
 m_rfMaxCopy.SetRow(max(m_rfFirstMark.GetRow(),
 m_rfLastMark.GetRow()));
 m_rfMaxCopy.SetCol(max(m_rfFirstMark.GetCol(),
 m_rfLastMark.GetCol()));

Chapter 8

[305]

 for (int iRow = m_rfMinCopy.GetRow();
 iRow <= m_rfMaxCopy.GetRow(); ++iRow)
 {
 for (int iCol = m_rfMinCopy.GetCol();
 iCol <= m_rfMaxCopy.GetCol();++iCol)
 {
 *m_copyMatrix.Get(iRow, iCol) =
 *m_cellMatrix.Get(iRow, iCol);
 }
 }
}

The Cut menu item, toolbar button, and accelerator are enabled when the application
is in the mark state, similar to OnUpdateCopy above. OnCut simply calls OnCopy
and OnDelete.

void CCalcDoc::OnUpdateCut(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_eCalcStatus == CS_MARK);
}

void CCalcDoc::OnCut()
{
 OnCopy();
 OnDelete();
}

The Paste menu item, toolbar button, and accelerator are disabled when the
application is in the edit state. In the mark state, it is enabled if there is a block of
cells copied (m_rfMinCopy.GetRow() != -1) and if exactly one cell is marked or if a
block of the same size as the copied block is marked.

void CCalcDoc::OnUpdatePaste(CCmdUI *pCmdUI)
{
 switch (m_eCalcStatus)
 {
 case CS_EDIT:
 pCmdUI->Enable(FALSE);
 break;

 case CS_MARK:
 if (m_rfMinCopy.GetRow() != -1)
 {
 int iCopiedRows = abs(m_rfMaxCopy.GetRow() –
 m_rfMinCopy.GetRow()) + 1;
 int iCopiedCols = abs(m_rfMaxCopy.GetCol() –
 m_rfMinCopy.GetCol()) + 1;

The Calc Application

[306]

 if ((m_rfFirstMark.GetRow()==m_rfLastMark.GetRow())&&
 (m_rfFirstMark.GetCol() == m_rfLastMark.GetCol()))
 {
 int iMinMarkedRow = min(m_rfFirstMark.GetRow(),
 m_rfLastMark.GetRow());

 int iMinMarkedCol = min(m_rfFirstMark.GetCol(),
 m_rfLastMark.GetCol());

 pCmdUI->Enable
 (((iMinMarkedRow + iCopiedRows) <= ROWS) &&
 ((iMinMarkedCol + iCopiedCols) <= COLS));
 }

 else
 {
 int iMarkedRows = abs(m_rfLastMark.GetRow() –
 m_rfFirstMark.GetRow()) + 1;
 int iMarkedCols = abs(m_rfLastMark.GetCol() –
 m_rfFirstMark.GetCol()) + 1;

 pCmdUI->Enable((iMarkedRows == iCopiedRows) &&
 (iMarkedCols == iCopiedCols));
 }
 }

 else
 {
 pCmdUI->Enable(FALSE);
 }
 break;
 }
}

When we paste a cell block into the spreadsheet, we have to check that it does not
introduce a cycle into the cell matrix. Then we paste and parse the cells one by one.
We start by defining a test cell matrix and a test target set matrix, which are copies of
the document fields m_cellMatrix and m_tSetMatrix.

Then we paste the cells one by one. Before we paste a cell, we have to remove it as
a target for each of its sources. For each pasted cell, we adjust its references, check
for cycles, and evaluates its value recursively. That is, each time we find a reference
in a formula, we evaluate that reference and if it is a formula itself, its references
are evaluated, and so on. As we do not have any cyclic references, the recursive
evaluation has to terminate. This is necessary in order for the cells in the pasted
block to receive their correct values. Otherwise, we cannot be sure that the value of a
reference is the correct one or if it is the previous value of the cell, before the paste.

Chapter 8

[307]

If there are any problems, an exception is thrown, a message box reports the error to
the user, and the method returns. The cell and target set matrices are only set at the
end of the method if every cell has been pasted without any problems.

First, we need to find the difference between the copy and paste location of
the block in order to update the references of the block. We also introduce test
matrices to protect the original ones in case of cyclic references.

void CCalcDoc::OnPaste()
{
 int iMinMarkedRow = min(m_rfFirstMark.GetRow(),
 m_rfLastMark.GetRow());
 int iMinMarkedCol = min(m_rfFirstMark.GetCol(),
 m_rfLastMark.GetCol());

 int iRowDiff = iMinMarkedRow - m_rfMinCopy.GetRow();
 int iColDiff = iMinMarkedCol - m_rfMinCopy.GetCol();

 TSetMatrix testTSetMatrix(m_tSetMatrix);
 CellMatrix testCellMatrix(m_cellMatrix);

 testTSetMatrix.SetCellMatrix(&testCellMatrix);
 testCellMatrix.SetTargetSetMatrix(&testTSetMatrix);

 ReferenceSet totalRepaintSet;
 BOOL bModified = FALSE;
 for (int iSourceRow = m_rfMinCopy.GetRow();
 iSourceRow <= m_rfMaxCopy.GetRow(); ++iSourceRow)
 {
 for (int iSourceCol = m_rfMinCopy.GetCol();
 iSourceCol <= m_rfMaxCopy.GetCol();++iSourceCol)
 {
 int iTargetRow = iSourceRow + iRowDiff;
 int iTargetCol = iSourceCol + iColDiff;

 Reference mark(iTargetRow, iTargetCol);
 testTSetMatrix.RemoveTargets(mark);

 Cell* pSourceCell =
 m_copyMatrix.Get(iSourceRow, iSourceCol);
 Cell* pTargetCell =
 testCellMatrix.Get(iTargetRow, iTargetCol);

 *pTargetCell = *pSourceCell;

 if (!pSourceCell->IsEmpty() && !pTargetCell->IsEmpty())
 {
 bModified = TRUE;
 }

The Calc Application

[308]

We update the references of the cell's formula, if it has one. Then we check for cyclic
references. If it goes well, we add the cell as a target for each cell in its source set
by calling AddTargets and adding its area to the total set of cell client areas to
be updated.

 try
 {
 pTargetCell->UpdateSyntaxTree(iRowDiff, iColDiff);
 testTSetMatrix.CheckCircular(mark,
 pTargetCell->GetSourceSet());
 testTSetMatrix.AddTargets(mark);

 pTargetCell->EvaluateValue(TRUE);
 ReferenceSet repaintSet =
 testTSetMatrix.EvaluateTargets(mark);
 totalRepaintSet.AddAll(repaintSet);
 }

If we find a cyclic reference, an exception is thrown. We report the error and return
the method. Note that as we have been working on copies of the original cell and
target set matrix, nothing has actually been pasted.

 catch (const CString stMessage)
 {
 AfxGetApp()->GetMainWnd()->MessageBox(stMessage,
 TEXT("Parse Error."));
 return;
 }
 }
 }

If everything worked and at least one cell has been changed, we set the modified
flag. Note that we could not set the flag immediately as we did not know if the block
really was to be pasted.

 if (bModified)
 {
 SetModifiedFlag();
 }

Finally, if we make it this far without finding any cyclic references, we replace the
original cell and target set matrices and repaint the client areas of the pasted cells.

 m_cellMatrix = testCellMatrix;
 m_tSetMatrix = testTSetMatrix;
 RepaintSet(totalRepaintSet);
}

Chapter 8

[309]

The update alignment methods are called during the process idle time. They simply
call UpdateAlignment below. The alignments are enabled if the application is in the
mark state and if not all the marked cells already have the alignment in question. If
all cells have the alignment, the menu item is also marked with a radio dot.

void CCalcDoc::OnUpdateAlignmentHorizontalLeft(CCmdUI *pCmdUI)
{
 UpdateAlignment(HORIZONTAL, DT_LEFT, pCmdUI);
}

// ...

void CCalcDoc::UpdateAlignment(Direction eDirection, Alignment
 eAlignment, CCmdUI *pCmdUI)
{
 switch (m_eCalcStatus)
 {
 case CS_MARK:
 pCmdUI->Enable(!IsAlignment(eDirection, eAlignment));
 pCmdUI->SetRadio(IsAlignment(eDirection, eAlignment));
 break;
 case CS_EDIT:
 pCmdUI->Enable(FALSE);
 pCmdUI->SetRadio(FALSE);
 break;
 }
}

The method IsAlignment goes through all the marked cells and returns false if at
least one of them does not have the given alignment. It returns true only if all cells in
the marked block have the alignment. If we find one cell without the alignment, we
return false.

BOOL CCalcDoc::IsAlignment(Direction eDirection,
 Alignment eAlignment)
{
 int iMinMarkedRow = min(m_rfFirstMark.GetRow(),
 m_rfLastMark.GetRow());
 int iMaxMarkedRow = max(m_rfFirstMark.GetRow(),
 m_rfLastMark.GetRow());
 int iMinMarkedCol = min(m_rfFirstMark.GetCol(),
 m_rfLastMark.GetCol());
 int iMaxMarkedCol = max(m_rfFirstMark.GetCol(),
 m_rfLastMark.GetCol());
 for (int iRow = iMinMarkedRow; iRow <= iMaxMarkedRow;
 ++iRow)
 {

The Calc Application

[310]

 for (int iCol = iMinMarkedCol; iCol <= iMaxMarkedCol;
 ++iCol)
 {
 Cell* pCell = m_cellMatrix.Get(iRow, iCol);

If one of the cells does not have the given alignment, we return false.

 if (eAlignment != pCell->GetAlignment(eDirection))
 {
 return FALSE;
 }
 }
 }

If all cells have the given alignment, we return true.

 return TRUE;
}

The alignment methods simply call SetAlignment, which sets the given alignment
for all cells in the marked block. Remember that SetAlignment is called only if
the application is in the mark state and at least one cell does not already have the
alignment in question.

void CCalcDoc::OnAlignmentHorizontalLeft()
{
 SetAlignment(HORIZONTAL, DT_LEFT);
}

// ...

void CCalcDoc::SetAlignment(Direction eDirection,
 Alignment eAlignment)
{
 int iMinMarkedRow = min(m_rfFirstMark.GetRow(),
 m_rfLastMark.GetRow());
 int iMaxMarkedRow = max(m_rfFirstMark.GetRow(),
 m_rfLastMark.GetRow());
 int iMinMarkedCol = min(m_rfFirstMark.GetCol(),
 m_rfLastMark.GetCol());
 int iMaxMarkedCol = max(m_rfFirstMark.GetCol(),
 m_rfLastMark.GetCol());

 for (int iRow = iMinMarkedRow; iRow <= iMaxMarkedRow;
 ++iRow)
 {
 for (int iCol = iMinMarkedCol; iCol <= iMaxMarkedCol;
 ++iCol)
 {

Chapter 8

[311]

 Cell* pCell = m_cellMatrix.Get(iRow, iCol);
 pCell->SetAlignment(eDirection, eAlignment);
 }
 }

 RepaintMarkedArea();
 SetModifiedFlag();
}

The View Class
CCalcView is the view class of the Calc application. It handles messages (mouse and
keyboard) and repainting of the client area.

The field m_pCalcDoc is a pointer to the document class object that is initialized and
tested in OnCreate. We also need the field m_bDoubleClick to distinguish between
single and double-clicks. When the user releases the mouse key, we mark the cell if
they have not double-clicked. If they have double-clicked, we shall just leave the cell
in the edit state.

The user may mark one or more positions of the spreadsheet. If they mark all the
area at the top left corner of the spreadsheet, all cells are marked (MS_ALL). If they
mark at the row header, all columns on that row are marked (MS_ROW). If they mark
the column header, all rows at that column are marked, and if they mark a cell, that
cell is marked. The field m_rfFirstCell keeps track of the cells first marked by the
user. In this way, we can build a marked block and not notify the document class
until the user release the mouse button.

CalcView.h
enum SpreadSheetArea {MS_ALL, MS_ROW, MS_COL, MS_SHEET};

class CCalcView : public CView
{
 protected:
 DECLARE_DYNCREATE(CCalcView)
 DECLARE_MESSAGE_MAP()

 CCalcView();

 public:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 virtual void OnInitialUpdate();

 afx_msg void OnSize(UINT nType, int cx, int cy);
 virtual void OnPrepareDC(CDC* pDC,
 CPrintInfo* pInfo = NULL);

 afx_msg void OnSetFocus(CWnd* pOldWnd);

The Calc Application

[312]

 afx_msg void OnKillFocus(CWnd* pNewWnd);

 void LogicalPointToSheetPoint(CPoint& ptPoint);
 void LogicalPointToSheetPoint(CRect& rcRect);

 void SheetPointToLogicalPoint(CPoint& ptPoint);
 void SheetPointToLogicalPoint(CRect& rcRect);

 void MakeCellVisible(CRect rcArea);
 BOOL IsCellVisible(int iRow, int iCol);

 afx_msg void OnVScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar);
 afx_msg void OnHScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar);

 private:
 SpreadSheetArea GetMouseLocation(CPoint ptMouse,
 Reference& rcCell);

 public:
 afx_msg void OnLButtonDown(UINT uFlags, CPoint ptMouse);
 afx_msg void OnMouseMove(UINT uFlags, CPoint ptMouse);
 afx_msg void OnLButtonDblClk(UINT nFlags, CPoint ptMouse);

 afx_msg void OnKeyDown(UINT uChar, UINT nRepCnt,
 UINT uFlags);
 afx_msg void OnChar(UINT uChar, UINT nRepCnt,
 UINT uFlags);

 virtual void OnUpdate(CView* pSender, LPARAM lHint,
 CObject* pHint);
 virtual void OnDraw(CDC* pDC);
 private:
 CCalcDoc* m_pCalcDoc;
 BOOL m_bDoubleClick;
 Reference m_rfFirstCell;
};

The method OnCreate is called when a view is created, but before it is visible. It
sets the value of m_pCalcDoc, the pointer to the document object. Remember that an
application may have several view objects, but only one document object.

CalcView.cpp
int CCalcView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 // We check that the view has been correctly created.
 if (CView::OnCreate(lpCreateStruct) == -1)
 {
 return -1;
 }

Chapter 8

[313]

 m_pCalcDoc = (CCalcDoc*) m_pDocument;
 ASSERT_VALID(m_pCalcDoc);

 return 0;
}

The method OnInitialUpdate is called when the view is first visible. It sets the
scroll views. It is slightly complicated as we have to take the row and column
headers into consideration.

void CCalcView::OnInitialUpdate()
{
 CClientDC dc(this);
 OnPrepareDC(&dc);

We convert the device coordinates (pixels) of the client area to logical coordinates
(hundredths of millimeters).

 CRect rcClient;
 GetClientRect(rcClient);
 dc.DPtoLP(&rcClient);

The width and height of the client area that is to the cells disposal are the size of the
client area minus the size of the row and column headers.

 int iPageWidth = rcClient.right - HEADER_WIDTH;
 int iPageHeight = rcClient.bottom - HEADER_HEIGHT;

The size of the horizontal scroll bar is the size of the columns plus the rest between
the page and column width. This make sure the cells will fit nicely into the
client area.

 SCROLLINFO scrollInfo;
 scrollInfo.fMask = SIF_ALL;
 scrollInfo.nPos = 0;
 scrollInfo.nMin = 0;
 scrollInfo.nPage = rcClient.right - HEADER_WIDTH;
 scrollInfo.nMax = COLS * COL_WIDTH +
 iPageWidth % COL_WIDTH - 1;
 SetScrollInfo(SB_HORZ, &scrollInfo);

In the same way, the size of the scroll bar is the size of the rows plus the rest between
the page and row height.

 scrollInfo.fMask = SIF_ALL;
 scrollInfo.nPos = 0;
 scrollInfo.nMin = 0;

The Calc Application

[314]

 scrollInfo.nPage = rcClient.bottom - HEADER_HEIGHT;
 scrollInfo.nMax = ROWS * ROW_HEIGHT +
 iPageHeight % ROW_HEIGHT - 1;
 SetScrollInfo(SB_VERT, &scrollInfo);

 m_pCalcDoc->UpdateCaret();
}

The method OnSize is called every time the user changes the size of the window. It
sets the scroll bars to reflect the new size. We convert the device coordinates (pixels)
of the client area to logical coordinates (hundredths of millimeters).

void CCalcView::OnSize(UINT /* uType */, int cxClient,
 int cyClient)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);

 CRect rcClient(0, 0, cxClient, cyClient);
 dc.DPtoLP(&rcClient);

 SCROLLINFO scrollInfo;
 scrollInfo.fMask = SIF_PAGE;
 scrollInfo.nPage = rcClient.right - HEADER_WIDTH;
 SetScrollInfo(SB_HORZ, &scrollInfo);

 scrollInfo.fMask = SIF_PAGE;
 scrollInfo.nPage = rcClient.bottom - HEADER_HEIGHT;
 SetScrollInfo(SB_VERT, &scrollInfo);

 m_pCalcDoc->UpdateCaret();
}

The method OnPrepareDC is called directly after a device context has been created.
It sets the coordinate mapping of the application. The isotropic mode means that the
horizontal and vertical units are equal (circles are round). GetDeviceCaps gives the
size of the screen in pixels and millimeters. With that information, we set the logical
unit to one hundredth millimeters.

void CCalcView::OnPrepareDC(CDC* pDC, CPrintInfo* /* pInfo */)
{
 pDC->SetMapMode(MM_ISOTROPIC);

 CSize szWindow(100 * pDC->GetDeviceCaps(HORZSIZE),
 100 * pDC->GetDeviceCaps(VERTSIZE));
 CSize szViewport(pDC->GetDeviceCaps(HORZRES),
 pDC->GetDeviceCaps(VERTRES));

 pDC->SetWindowExt(szWindow);
 pDC->SetViewportExt(szViewport);
}

Chapter 8

[315]

The method LogicalPointToSheetPoint translates a logical point to a logical point
with regards to the scrollbars' current positions.

void CCalcView::LogicalPointToSheetPoint(CPoint& ptPoint)
{
 ptPoint.x += GetScrollPos(SB_HORZ) - HEADER_WIDTH;
 ptPoint.y += GetScrollPos(SB_VERT) - HEADER_HEIGHT;
}

void CCalcView::LogicalPointToSheetPoint(CRect& rcRect)
{
 LogicalPointToSheetPoint(rcRect.TopLeft());
 LogicalPointToSheetPoint(rcRect.BottomRight());
}

The method SheetPointToLogicalPoint translates a logical point with regards
to the scrollbars' current positions to a regular logical point. That is, a logical point
without regards to the scroll bars.

void CCalcView::SheetPointToLogicalPoint(CPoint& ptPoint)
{
 ptPoint.x += HEADER_WIDTH - GetScrollPos(SB_HORZ);
 ptPoint.y += HEADER_HEIGHT - GetScrollPos(SB_VERT);
}

void CCalcView::SheetPointToLogicalPoint(CRect& rcRect)
{
 SheetPointToLogicalPoint(rcRect.TopLeft());
 SheetPointToLogicalPoint(rcRect.BottomRight());
}

The method OnSetFocus and OnKillFocus are called when the view receives or
loses the input focus, respectively. They notify the caret connected to the document
about the event.

void CCalcView::OnSetFocus(CWnd* /* pOldWnd */)
{
 Caret* pCaret = m_pCalcDoc->GetCaret();
 pCaret->OnSetFocus(this);
}

void CCalcView::OnKillFocus(CWnd* /* pNewWnd */)
{
 Caret* pCaret = m_pCalcDoc->GetCaret();
 pCaret->OnKillFocus();
}

The Calc Application

[316]

The method IsCellVisible decides whether the given cell is located in the part of
the spreadsheet visible in the client area. With the scroll bar settings we find the first
and last visible row and column in the client area and compare them to the given
row and column.

BOOL CCalcView::IsCellVisible(int iRow, int iCol)
{
 SCROLLINFO scrollInfo;
 GetScrollInfo(SB_VERT, &scrollInfo, SIF_POS | SIF_PAGE);
 int iFirstVisibleRow = scrollInfo.nPos / ROW_HEIGHT;
 int iLastVisibleRow = iFirstVisibleRow +
 scrollInfo.nPage / ROW_HEIGHT;
 GetScrollInfo(SB_HORZ, &scrollInfo, SIF_POS | SIF_PAGE);
 int iFirstVisibleCol = scrollInfo.nPos / COL_WIDTH;
 int iLastVisibleCol = iFirstVisibleCol +
 scrollInfo.nPage / COL_WIDTH;
 return ((iRow >= iFirstVisibleRow) &&
 (iRow <= iLastVisibleRow) &&
 (iCol >= iFirstVisibleCol) &&
 (iCol <= iLastVisibleCol));
}

OnVScroll is called when the user scrolls vertically directly with the mouse, or
indirectly with the Up Arrow, Down Arrow, Home, End, Page Up, and Page Down
keys. First, we extract all information about the vertical scroll bar and find the
current scroll position and the current top row.

void CCalcView::OnVScroll(UINT uSBCode, UINT /* yThumbPos */,
 CScrollBar* /* pScrollBar */)
{
 SCROLLINFO scrollInfo;
 GetScrollInfo(SB_VERT, &scrollInfo);
 int yPos = scrollInfo.nPos;
 int iOldRow = yPos / ROW_HEIGHT;

We increase or decrease the line and check that the scroll position has not exceeded
the scroll limits. The scroll position cannot be less than zero and it cannot be greater
than the height of the spreadsheet minus the height of the client area.

 switch (uSBCode)

 {
 case SB_LINEUP:
 yPos = max(0, yPos - ROW_HEIGHT);
 break;
 case SB_LINEDOWN:
 yPos = min(yPos + ROW_HEIGHT, scrollInfo.nMax);
 break;

Chapter 8

[317]

We scroll one page up or down. Note the difference between scrolling a line. A line
always has the same height (ROW_HEIGHT), but a page is defined by the current size of
the client area (scrollInfo.nMax), excluding the headers.

 case SB_PAGEUP:
 yPos = max(0, yPos - (int) scrollInfo.nPage);
 break;

 case SB_PAGEDOWN:
 yPos = min(yPos + (int) scrollInfo.nPage,
 scrollInfo.nMax);
 break;

 case SB_THUMBPOSITION:
 yPos = scrollInfo.nTrackPos;
 break;
 }

 int iNewRow = (int) ((double) yPos / ROW_HEIGHT + 0.5);

If the top visible row has been altered, we need to repaint the client area. We need
a device context to transform the headers to device coordinates. We invalidate the
client area in device coordinates, excluding the header. Finally, we update the caret
as the scroll position has been altered.

 if (iOldRow != iNewRow)
 {
 SetScrollPos(SB_VERT, iNewRow * ROW_HEIGHT);

 CRect rcClient;
 GetClientRect(&rcClient);

 CClientDC dc(this);
 OnPrepareDC(&dc);

 CSize szHeader(HEADER_WIDTH, HEADER_HEIGHT);
 dc.LPtoDP(&szHeader);

 CRect rcUpdate(0, szHeader.cy, rcClient.right,
 rcClient.bottom);
 InvalidateRect(rcUpdate);

 m_pCalcDoc->UpdateCaret();
 }
}

The method GetMouseLocation takes the position of a mouse click (in device
coordinates) and returns one of four areas of the client window: the top left corner,
the row header, the column header, or a cell in the spreadsheet.

The Calc Application

[318]

Below is an outline of the different parts of the spreadsheet.

SpreadSheetArea CCalcView::GetMouseLocation(CPoint ptMouse,
 Reference& rfCell)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DPtoLP(&ptMouse);

 // Is the mouse if the top left header box?
 if ((ptMouse.x <= HEADER_WIDTH) &&
 (ptMouse.y <= HEADER_HEIGHT))
 {
 rfCell.SetRow(0);
 rfCell.SetCol(0);

 return MS_ALL;
 }

 // Or is it in the row header?
 else if (ptMouse.x <= HEADER_WIDTH)
 {
 LogicalPointToSheetPoint(ptMouse);

Chapter 8

[319]

 rfCell.SetRow(min(ROWS - 1, ptMouse.y / ROW_HEIGHT));
 rfCell.SetCol(0);
 return MS_ROW;
 }

 // Or is it in the column header?
 else if (ptMouse.y <= HEADER_HEIGHT)
 {
 LogicalPointToSheetPoint(ptMouse);

 rfCell.SetRow(0);
 rfCell.SetCol(min(COLS - 1, ptMouse.x / COL_WIDTH));

 return MS_COL;
 }

 // If not, is has to be in the actual cell space.
 else
 {
 LogicalPointToSheetPoint(ptMouse);

 rfCell.SetRow(min(ROWS - 1, ptMouse.y / ROW_HEIGHT));
 rfCell.SetCol(min(COLS - 1, ptMouse.x / COL_WIDTH));

 return MS_SHEET;
 }
}

When the user clicks the mouse, two messages are sent: WM_LBUTTONDOWN followed
by WM_LBUTTONUP. In practice, however, it is virtually impossible for the user to
press and release the button without moving the mouse at least one pixel first,
WM_LBUTTON is sent, which is caught by OnLButtonDown, then one or more
WM_MOUSEMOVE messages are sent, which are caught by OnMouseMove. Finally
WM_LBUTTONDOWN is sent, which is ignored in this application.

When we catch the mouse click, we have to find out where it hit. We have five parts
of the client area to examine: the top left corner, the row header, the column header,
and the cell space. If user clicks in the top left corner, all cells in the spreadsheet are
marked. If they click in the row header, the whole row is marked. If they click in the
column header, the whole column is marked. If they click in a cell in the cell space,
that particular cell is marked.

void CCalcView::OnLButtonDown(UINT /* uFlags */,
 CPoint ptMouse)
{
 m_bDoubleClick = FALSE;
 SpreadSheetArea eArea = GetMouseLocation
 (ptMouse, m_rfFirstCell);

 switch (eArea)
 {

The Calc Application

[320]

 case MS_ALL:
 m_pCalcDoc->UnmarkAndMark(0, 0, ROWS - 1, COLS - 1);
 break;

 case MS_ROW:
 m_pCalcDoc->UnmarkAndMark(m_rfFirstCell.GetRow(), 0,
 m_rfFirstCell.GetRow(), COLS - 1);
 break;

 case MS_COL:
 m_pCalcDoc->UnmarkAndMark(0, m_rfFirstCell.GetCol(),
 ROWS - 1, m_rfFirstCell.GetCol());
 break;

 case MS_SHEET:
 m_pCalcDoc->UnmarkAndMark(m_rfFirstCell.GetRow(),
 m_rfFirstCell.GetCol(),
 m_rfFirstCell.GetRow(),
 m_rfFirstCell.GetCol());
 break;
 };

 m_pCalcDoc->UpdateCaret();
}

One important detail is the m_bDoubleClick field. It is set to false in OnLButtonDown
above simply because the user has not yet double-clicked. However, if the user
double-clicks and move the mouse, it will be ignored. This is due to the fact that the
user pressing and dragging the mouse causes one or more cells to become marked.
However, when the user double-clicks, the application should enter the edit state.
Therefore, m_bDoubleClick is set to true in OnLDoubleClick below.

void CCalcView::OnMouseMove(UINT uFlags, CPoint ptMouse)
{
 BOOL bLeftButtonDown = (uFlags & MK_LBUTTON);

 if (bLeftButtonDown && !m_bDoubleClick)
 {
 Reference rcCurrCell;
 SpreadSheetArea eArea = GetMouseLocation
 (ptMouse, rcCurrCell);

 switch (eArea)
 {
 case MS_ALL:
 m_pCalcDoc->UnmarkAndMark(0, 0, ROWS - 1, COLS - 1);
 break;

 case MS_ROW:
 m_pCalcDoc->UnmarkAndMark(rcCurrCell.GetRow(), 0,
 rcCurrCell.GetRow(), COLS - 1);

Chapter 8

[321]

 break;

 case MS_COL:
 m_pCalcDoc->UnmarkAndMark(0, rcCurrCell.GetCol(),
 ROWS - 1, rcCurrCell.GetCol());
 break;

 case MS_SHEET:
 m_pCalcDoc->UnmarkAndMark(m_rfFirstCell.GetRow(),
 m_rfFirstCell.GetCol(),
 rcCurrCell.GetRow(),
 rcCurrCell.GetCol());
 break;
 }
 }
}

OnLButtonDblClk is called when the user double-clicks the left mouse button.

void CCalcView::OnLButtonDblClk(UINT /* nFlags */,
 CPoint ptMouse)
{
 m_bDoubleClick = TRUE;

 Reference rfCell;
 SpreadSheetArea eArea = GetMouseLocation(ptMouse, rfCell);

 if (eArea == MS_SHEET)
 {
 CClientDC dc(this);
 OnPrepareDC(&dc);

 dc.DPtoLP(&ptMouse);
 LogicalPointToSheetPoint(ptMouse);

 m_pCalcDoc->DoubleClick(rfCell, ptMouse, &dc);
 }
}

OnKeyDown is called every time the user presses a keyboard key, and in the case of
Left Arrow, Right Arrow, Page Up, Page Down, Home, End, Return, Tab, Insert, Delete,
or Backspace keys the document class object is notified. We need not create a device
context as the character may alter the text of a cell, which results in regeneration of
the caret array for that cell.

The Calc Application

[322]

We do also need to find out whether the Shift key was pressed at the same time as
the keyboard key. The Win32 API function GetKeyState called with the parameter
VK_SHIFT returns a negative value if the Shift key is pressed. It can also be called
with the parameters VK_CONTROL (Ctrl key) and VK_MENU (Menu key). If we would
need more specific information about which key is pressed, we can also use
VK_LSHIFT (Left Shift key), VK_RSHIFT (Right Shift key), VK_LCONTROL (Left Ctrl key),
VK_RCONTROL (Right Ctrl key), VK_LMENU (Left Menu key), and VK_RMENU
(Right Menu key).

void CCalcView::OnKeyDown(UINT uChar, UINT /* uRepCnt */,
 UINT /* uFlags*/)
{
 switch (uChar)
 {
 case VK_LEFT:
 case VK_RIGHT:
 case VK_UP:
 case VK_DOWN:
 case VK_HOME:
 case VK_END:
 case VK_RETURN:
 case VK_ESCAPE:
 case VK_TAB:
 case VK_INSERT:
 case VK_DELETE:
 case VK_BACK:
 CClientDC dc(this);
 OnPrepareDC(&dc);
 BOOL bShiftKeyDown = (::GetKeyState(VK_SHIFT) < 0);
 m_pCalcDoc->KeyDown(uChar, &dc, bShiftKeyDown);
 break;
 }
}

The method OnChar is called every time the user presses a key at the keyboard.
If the character is printable it notifies the document class. A character is printable
if its ASCII value is between 32 and 122; that is, if it is letter, a digit, an arithmetic
character, or a punctuation mark.

void CCalcView::OnChar(UINT uChar, UINT /* uRepCnt */,
 UINT /* uFlags */)
{
 if (isprint(uChar))
 {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 m_pCalcDoc->CharDown(uChar, &dc);
 }
}

Chapter 8

[323]

The method MakeCellVisible is called by the document class on several occasions.
Its task is to make the given area visible.

void CCalcView::MakeCellVisible(CRect rcArea)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);

 SCROLLINFO scrollInfo;
 GetScrollInfo(SB_HORZ, &scrollInfo);

 int xFirst = scrollInfo.nPos;
 int xPage = scrollInfo.nPage;
 int xLast = xFirst + xPage;

If the cell is to the left of the first visible cell, we scroll the horizontal bar to the left
border of the cell and repaint the window and the caret.

 if (rcArea.left < xFirst)
 {
 SetScrollPos(SB_HORZ, rcArea.left);

 CRect rcUpdate(HEADER_WIDTH, 0, TOTAL_WIDTH,
 TOTAL_HEIGHT);
 dc.LPtoDP(rcUpdate);
 InvalidateRect(rcUpdate);
 UpdateWindow();

 m_pCalcDoc->UpdateCaret();
 }

If the cell is to the right of the last visible cell, we scroll the horizontal bar to the
first visible cell added with the distance between the given cell and the last cell and
repaint the window and the caret.

 if (rcArea.right > xLast)
 {
 int iDistance = rcArea.right - xLast;
 iDistance += COL_WIDTH - iDistance % COL_WIDTH;
 SetScrollPos(SB_HORZ, xFirst + iDistance);

 CRect rcUpdate(HEADER_WIDTH, 0, TOTAL_WIDTH,
 TOTAL_HEIGHT);
 dc.LPtoDP(rcUpdate);
 InvalidateRect(rcUpdate);
 UpdateWindow();

 m_pCalcDoc->UpdateCaret();
 }

 GetScrollInfo(SB_VERT, &scrollInfo);

The Calc Application

[324]

 int yFirst = scrollInfo.nPos;
 int yPage = scrollInfo.nPage;
 int yLast = yFirst + yPage;

If the cell is above the top visible cell, we scroll the vertical bar to the top border of
the cell and repaint the window and the caret.

 if (rcArea.top < yFirst)
 {
 SetScrollPos(SB_VERT, rcArea.top);
 CRect rcUpdate(0, HEADER_HEIGHT, TOTAL_WIDTH,
 TOTAL_HEIGHT);
 dc.LPtoDP(rcUpdate);
 InvalidateRect(rcUpdate);
 UpdateWindow();
 m_pCalcDoc->UpdateCaret();
 }

If the cell is below the last visible cell, we scroll the vertical bar to top visible cell
added with the distance between the given cell and the bottom cell and repaint the
window and the caret.

 if (rcArea.bottom > yLast)
 {
 int iDistance = rcArea.bottom - yLast;
 iDistance += ROW_HEIGHT - iDistance % ROW_HEIGHT;
 SetScrollPos(SB_VERT, yFirst + iDistance);

 CRect rcUpdate(0, HEADER_HEIGHT, TOTAL_WIDTH,
 TOTAL_HEIGHT);
 dc.LPtoDP(rcUpdate);
 InvalidateRect(rcUpdate);
 UpdateWindow();
 m_pCalcDoc->UpdateCaret();
 }
}

The method OnUpdate is indirectly called by UpdateAllViews in the document class
when one or more cells need to be repainted. It is called on two occasions. It is called
indirectly by UpdateAllViews in the document class with lHint pointed to a CRect
object holding the area to be updateed in the client area of the view. It is also called
by OnInitialUpdate in the MFC class CView with lHint set to null. In that case, we
do nothing.

void CCalcView::OnUpdate(CView* /* pSender */, LPARAM lHint,
 CObject* /* pHint */)
{

Chapter 8

[325]

 if (lHint != NULL)
 {
 CClientDC dc(this);
 OnPrepareDC(&dc);

 CRect rcUpdate = *(CRect*) lHint;
 SheetPointToLogicalPoint(rcUpdate);
 dc.LPtoDP(&rcUpdate);
 InvalidateRect(&rcUpdate);
 UpdateWindow();
 }
}

The method OnDraw is called when the view needs to be re-painted, partly or
completely. Several areas will need to be repainted. The client area can be divided
into five parts: the top left corner, the row header, the column header, the cell space,
and the area outside the spreadsheet (which is visible if the window is maximized on
a large screen).

void CCalcView::OnDraw(CDC* pDC)
{
 CRect rcClient;
 GetClientRect(&rcClient);
 pDC->DPtoLP(&rcClient);

 CPen pen(PS_SOLID, 0, LIGHT_GRAY);
 CPen *pOldPen = pDC->SelectObject(&pen);
 CBrush grayBrush(LIGHT_GRAY);
 CBrush *pOldBrush = pDC->SelectObject(&grayBrush);

 int iTotalWidth = HEADER_WIDTH + COLS * COL_WIDTH;
 int iTotalHeight = HEADER_HEIGHT + ROWS*ROW_HEIGHT;

 // The area outside the spreadsheet.
 pDC->Rectangle(iTotalWidth, 0, rcClient.right,
 iTotalHeight);
 pDC->Rectangle(0, iTotalHeight,
 rcClient.right,rcClient.bottom);

 // The headers have white background color.
 CBrush whiteBrush(WHITE);
 pDC->SelectObject(&whiteBrush);

 // Top left corner of the spreadsheet (the all button).
 pDC->Rectangle(0, 0, HEADER_WIDTH, HEADER_HEIGHT);

 // The row header of the spreadsheet.
 int xScrollPos = GetScrollPos(SB_HORZ);
 int yScrollPos = GetScrollPos(SB_VERT);

 int iStartRow = yScrollPos / ROW_HEIGHT;
 int iStartCol = xScrollPos / COL_WIDTH;

The Calc Application

[326]

 for (int iRow = iStartRow; iRow < ROWS; ++iRow)
 {
 int yPos = iRow * ROW_HEIGHT;
 yPos += HEADER_HEIGHT - yScrollPos;

 CString stBuffer;
 stBuffer.Format(TEXT("%d"), iRow + 1);

 CRect rcHeader(0, yPos, HEADER_WIDTH, yPos + ROW_HEIGHT);
 pDC->Rectangle(&rcHeader);
 pDC->DrawText(stBuffer, &rcHeader, DT_SINGLELINE |
 DT_CENTER |DT_VCENTER);
 }
 // The column header of the spreadsheet.

 for (int iCol = iStartCol; iCol < COLS; ++iCol)
 {
 int xPos = iCol * COL_WIDTH;
 xPos += HEADER_WIDTH - xScrollPos;

 CString stBuffer;
 stBuffer.Format(TEXT("%c"), (TCHAR) (TEXT('A') + iCol));

 CRect rcHeader(xPos, 0, xPos + COL_WIDTH, HEADER_HEIGHT);
 pDC->Rectangle(&rcHeader);
 pDC->DrawText(stBuffer, &rcHeader, DT_SINGLELINE |
 DT_CENTER |DT_VCENTER);
 }

 pDC->SelectObject(pOldPen);
 pDC->SelectObject(pOldBrush);

 CPoint ptScroll(xScrollPos, yScrollPos);
 CSize szHeader(HEADER_WIDTH, HEADER_HEIGHT);
 pDC->SetWindowOrg(ptScroll - szHeader);

 int iCellStatus = m_pCalcDoc->GetCalcStatus();
 CellMatrix* pCellMatrix = m_pCalcDoc->GetCellMatrix();

 Reference rfEdit = m_pCalcDoc->GetEdit();
 Reference rfFirstMark = m_pCalcDoc->GetFirstMark();
 Reference rfLastMark = m_pCalcDoc->GetLastMark();

 // The cell space.

 int iMinRow = min(rfFirstMark.GetRow(),
 rfLastMark.GetRow());
 int iMaxRow = max(rfFirstMark.GetRow(),
 rfLastMark.GetRow());
 int iMinCol = min(rfFirstMark.GetCol(),
 rfLastMark.GetCol());
 int iMaxCol = max(rfFirstMark.GetCol(),
 rfLastMark.GetCol());

Chapter 8

[327]

The variables bEdit and bMark are initalized to avoid compiler warnings. The cell is
in the edit state if the application is in the edit state and this particular cell is being
edited. The cell is in the mark state if the application is in the mark state and the cell
is inside the marked block. Finally, the cell is drawn relative the top left corner of
the cell.

 for (int iRow = iStartRow; iRow < ROWS; ++iRow)
 {
 for (int iCol = iStartCol; iCol < COLS; ++iCol)
 {
 BOOL bEdit = FALSE, bMark = FALSE;

 switch (iCellStatus)
 {

 case CS_EDIT:
 bEdit = (iRow == rfEdit.GetRow()) &&
 (iCol == rfEdit.GetCol());
 bMark = FALSE;
 break;

 case CS_MARK:
 bEdit = FALSE;
 bMark = (iRow >= iMinRow) && (iRow <= iMaxRow) &&
 (iCol >= iMinCol) && (iCol <= iMaxCol);
 break;
 }

 CPoint ptTopLeft(iCol * COL_WIDTH, iRow * ROW_HEIGHT);
 Cell* pCell = pCellMatrix->Get(iRow, iCol);
 pCell->Draw(ptTopLeft, bEdit, bMark, pDC);
 }
 }
}

The Calc Application

[328]

Summary
We generated the code with the Application Wizard.
The Reference class keeps track of references in the spreadsheet.
The Scanner class group characters together into tokens, the least significant
parts of the formula. The Token class represents the tokens.
The Parser class parses the tokens given by the scanner and generates a
syntax tree (an object of the SyntaxTree class).
The Cell class handles a single class in the spreadsheet. A cell can hold a
test, a value, or a formula. The CellMatrix and TSetMatrix methods handle
the cells and the target sets of the spreadsheet.
CCalcDoc manages the internal logic of the application. The application is
always in the edit or mark state. In the edit state, a caret is visible. In the
mark state, one or more cells are marked.
CCalcView handles the input and display of the application. In this case, the
view class handles the marking of cells by itself.

•

•

•

•

•

•

•

The Word Application
The Word application is a word processor program. It is capable of handling text on
the character level. That is, unlike the Draw and Calc applications, single characters
can have their own font, size, and style. The application also supports paragraph
management with left, center, right, and justified alignment, cut and paste, load and
save as well as print preview. The following screenshot depicts a classic example of
the Word Application:

In this application we have five classes to work with. Line is a small class
that keeps track of the first and last characters as well as the height of a line
in a paragraph.
Position is also a small class, it handles a position in a document. It has two
fields to keep track of the paragraph and character positions.
A Word document consists of one or more paragraphs. A paragraph may
span one or more lines. The Paragraph class handles one paragraph. It has
methods for splitting and merging paragraphs.

•

•

•

The Word Application

[330]

Page is another small class, it keeps track of the first and last paragraphs on
a page. A paragraph is never split into two pages. If a paragraph does not fit
on the rest of the page, it is moved in full to the next page.
The CWordDoc class handles the internal logic of the application. It manages
the paragraphs of the document. A document always has at least one
paragraph. It also keeps track of the pages of the document.
The CWordView class accepts input from the mouse and keyboard. It also
displays text in the window client area.

We use the Application Wizard to generate the classes CWordApp, CMainFrame,
CChildFrame, CWordDoc, CWordView, and CAboutDlg. We follow the default settings
with the exception of the File extension and File type long name, let us set it to Wrd
and A Word Document.

•

•

•

Chapter 9

[331]

We will modify CWordDoc and CWordView as we develop the application. Similar to
the earlier applications, we need to add some include lines to Word.cpp. Otherwise,
we will not alter the classes.

Word.cpp
#include "stdafx.h"
#include "Word.h"
#include "MainFrm.h"
#include "ChildFrm.h"

#include "..\\Set.h"
#include "..\\Font.h"
#include "..\\Caret.h"

#include "Line.h"
#include "Position.h"
#include "Paragraph.h"

#include "Page.h"
#include "WordView.h"
#include "WordDoc.h"

The Word Application

[332]

The Resource
Here follows a summary of the added menus, accelerators, toolbar buttons,
and strings.

Id Menu Item Toolbar
Accelerator

String Table

ID_EDIT_CUT Edit\Cut Ctrl-X Cut the selection and put it
on the Clipboard\nCut

ID_EDIT_COPY Edit\Copy Ctrl-C Copy the selection and put
it on the Clipboard\nCopy

ID_EDIT_PASTE Edit\Paste Ctrl-V Insert Clipboard contents\
nPaste

ID_ALIGN_LEFT Alignment\Left Horizontal Alignment
Left\n Left Alignment

ID_ALIGN_CENTER Alignment\Center Horizontal Alignment
Center\n Center Alignment

ID_ALIGN_RIGHT Alignment\Right Horizontal Alignment
Right\n Right Alignment

ID_ALIGN_
JUSTIFIED

Alignment\Justified Horizontal Alignment
Justified \nJustified
Alignment

ID_FORMAT_FONT Format\Center Choose a Font\nFont

The Line
As a paragraph can be split over several lines, the Line class keeps track of the first
and last character index of the line as well as the height (in logical devices) of a line.

Line.h
class Line
{
 public:
 Line();
 Line(int iFirstChar, int iLastChar, int iHeight);
 int GetFirstChar() const {return m_iFirstChar;}
 int GetLastChar() const {return m_iLastChar;}
 int GetHeight() const {return m_iHeight;}
 void Serialize(CArchive& archive);
 private:
 int m_iFirstChar, m_iLastChar, m_iHeight;
};

Chapter 9

[333]

Line needs a default constructor because its objects are stored in a m_lineArray
—the paragraph class.

Line.cpp
Line::Line()
 :m_iFirstChar(0),
 m_iLastChar(0),
 m_iHeight(0)
{
 // Empty.
}
Line::Line(int iFirstChar, int iLastChar, int iHeight)
 :m_iFirstChar(iFirstChar),
 m_iLastChar(iLastChar),
 m_iHeight(iHeight)
{
 // Empty.
}
void Line::Serialize(CArchive& archive)
{
 if (archive.IsStoring())
 {
 archive >> m_iFirstChar >> m_iLastChar >> m_iHeight;
 }
 if (archive.IsLoading())
 {
 archive >> m_iFirstChar >> m_iLastChar >> m_iHeight;
 }
}

The Position
Position is a rather simple class that handles the position of a character in a
paragraph. The fields m_iParagraph and m_iChar store the paragraph and character
number of the position.

Position.h
class Position
{
 public:
 Position(int iParagraph, int iCharacter);
 Position(const Position& position);
 Position& operator=(const Position& position);

 BOOL operator==(const Position& position) const;
 BOOL operator!=(const Position& position) const;
 BOOL operator<(const Position& position) const;

The Word Application

[334]

 BOOL operator>(const Position& position) const;

 int Paragraph() const {return m_iParagraph;}
 int& Paragraph() {return m_iParagraph;}

 int Character() const {return m_iCharacter;}
 int& Character() {return m_iCharacter;}

 private:
 int m_iParagraph, m_iCharacter;
};

In the class definition, the methods Paragraph and Character are overloaded.
The constant version returns the value itself. This implies that the fields of the class
(m_iParagraph or m_iCharacter) cannot be changed and the methods are allowed
to be constant. The second version returns a reference to the field. This implies that
the value of the field can be changed by assigning the result of a call to the method.
The following statement is correct if pos is not a constant object. In that case, the
method referring a reference is called.

 pos.Character() = 0;

Assignment of function calls are only allowed when the function returns a reference.
If pos is a constant object, the second method is called. As it returns a regular integer,
the previous statement is not allowed. However, the following statement is allowed.

 int ichar = pos.Character();

Two positions are equal if they have the same paragraph and character. In order to
test whether two positions are equal or not, we can call the equality operator. This
position is less than the given one if the paragraph is less than the given one, or if the
paragraphs are equal and the character is less the given one.

Position.cpp
BOOL Position::operator==(const Position& position) const
{
 return (m_iParagraph == position.m_iParagraph) &&
 (m_iCharacter == position.m_iCharacter);
}

BOOL Position::operator!=(const Position& position) const
{
 return !(*this == position);
}

Chapter 9

[335]

BOOL Position::operator<(const Position& position) const
{
 return (m_iParagraph < position.m_iParagraph) ||
 ((m_iParagraph == position.m_iParagraph) &&
 (m_iCharacter < position.m_iCharacter));
}

The Paragraph
Paragraph is the class that handles one paragraph of the document. It has methods
for adding characters, for cutting and pasting a block of text, as well as merging and
splitting paragraphs.

The classes IntArray, SizeArray, RectArray, FontArray, LineArray, and RectSet
are implemented with the template MFC class CArray, the utility classes Font and
Set from Chapter 5 Utility Classes and Line from this chapter. ParagraphPtrArray
holds an array of pointers to paragraphs. It is used by the document class.

A paragraph can be left, right, centered, and justified aligned, m_eAlignment holds
the current setting. It has the enumeration type Alignment.

enum Alignment {ALIGN_LEFT, ALIGN_RIGHT, ALIGN_CENTER,
 ALIGN_JUSTIFIED};

Justified alignment means that the text is spread over the width of the page. In this
cases the spaces of the line are increased in order to allow the text to fit the page. A
paragraph cannot be vertical aligned.

The field m_stText holds the actual text of the paragraph. m_fontArray holds the
font for every character in m_stText. The two arrays have the same size. When a
new character is entered in the paragraph, it normally gets the font of the preceding
character. However, if it is inserted at the beginning of the paragraph, it receives the
font of the first character unless the paragraph is empty. If it is empty, m_emptyFont
is used. See the method AddChar that follows this section.

The field m_rectArray is an array of rectangles, representing the graphical areas
(in logical units) of the characters in the paragraph relative the upper left corner of
the paragraph. The size of the array is one more than the size of m_stText and
m_fontArray because the user may put the caret one step beyond the last character
in the paragraph.

A paragraph can be divided into several lines. The field m_lineArray is an array of
Line objects holding indexes of the first and last characters of the line as well as the
height (in logical units) of the line. The method Recalculate is called every time the
paragraph is modified. It generates the values of m_lineArray and m_rectArray.

The Word Application

[336]

The field m_yStartPos is the position (in logical units) of the paragraph's upper
border relative to the beginning of the document; m_iHeight is the height of
the paragraph (in logical units). If the paragraph is empty and marked,
m_iEmptyAverageWidth is used to decide the size of the marked area.

The methods GetAlignment and SetAlignment return and set the alignment of the
paragraph, respectively. GetLength returns the number of characters in the paragraph
and GetHeight returns the paragraph's height in logical units. Note that we do not
need a method returning the width of the paragraph because all paragraphs have the
same width, given by the constant PAGE_WIDTH in the document class.

The document method UpdateParagraphAndPageArray traverses and re-calculates
the start position of all paragraphs. It compares the new positions with the old ones
by calling GetStartPos. If they differ, SetStartPos is called and the paragraph
is repainted.

Paragraph.h
typedef CArray<int> IntArray;
typedef CArray<CSize> SizeArray;
typedef CArray<CRect> RectArray;
typedef CArray FontArray;
typedef CArray<Line> LineArray;
typedef Set<CRect> RectSet;

enum Alignment {ALIGN_LEFT, ALIGN_RIGHT, ALIGN_CENTER,
 ALIGN_JUSTIFIED};
enum KeyboardState {KM_INSERT, KM_OVERWRITE};

class CWordDoc;

class Paragraph
{
 public:
 Paragraph();
 Paragraph(Font emptyFont, Alignment eAlignment);
 Paragraph(const Paragraph& paragraph);
 void Serialize(CArchive& archive);

 void Draw(CDC* pDC, int iFirstMarkedChar,
 int iLastMarkedChar) const;
 int GetLength() const {return m_stText.GetLength();}
 int GetHeight() const {return m_iHeight;}

 void SetStartPos(int yPos) {m_yStartPos = yPos;}
 int GetStartPos() const {return m_yStartPos;}

 void AddChar(int iChar, UINT cChar, Font* pNextFont,
 KeyboardState eKeyboardState);

Chapter 9

[337]

 void DeleteText(int iFirstIndex = 0, int iLastIndex = -1);

 Alignment GetAlignment() const {return m_eAlignment;}
 void SetAlignment(Alignment eAlignment)
 {m_eAlignment = eAlignment;}

 Font GetFont(int iChar) const;
 void SetFont(Font font, int iFirstIndex = 0,
 int iLastindex = -1);

 void GetRepaintSet(RectSet& repaintSet,
 int iFirstIndex = 0, int iLastIndex=-1);
 BOOL GetWord(int iEditChar, int& iFirstChar,
 int& iLastChar);

 int GetHomeChar(int iChar) const;
 int GetEndChar(int iChar) const;

 Paragraph* ExtractText(int iFirstIndex = 0,
 int iLastIndex = -1) const;
 void Insert(int iChar, Paragraph* pInsertParagraph);

 void Append(Paragraph* pSecondParagraph);
 Paragraph* Split(int iChar);

 int PointToChar(CPoint ptMouse);
 CRect CharToRect(int iChar);
 CRect GetCaretRect(int iChar);
 CRect CharToLineRect(int iChar);

 void Recalculate(CDC* pDC, RectSet*
 pRepaintSet = NULL);
 void ClearRectArray();

 private:
 void GenerateSizeArray(SizeArray& sizeArray, CDC* pDC);
 void GenerateAscentArray(IntArray& ascentArray, CDC* pDC);
 void GenerateLineArray(SizeArray& sizeArray);
 void GenerateRectArray(SizeArray& sizeArray,
 IntArray& ascentArray);
 void GenerateRepaintSet(RectArray& oldRectArray,
 RectSet* pRepaintSet);
 private:
 CString m_stText;
 Font m_emptyFont;
 int m_yStartPos, m_iEmptyAverageWidth, m_iHeight;
 Alignment m_eAlignment;

 FontArray m_fontArray;
 LineArray m_lineArray;
 RectArray m_rectArray;
};

typedef CArray<Paragraph*> ParagraphPtrArray;

The Word Application

[338]

Paragraph needs a default constructor because it is serialized. When the user
hits the return key a new paragraph object is created. It is given the alignment of
the preceding paragraph. It is given the font of the last character of the preceding
paragraph or, if it is empty, its empty font. One or more new paragraphs can also
be created by the paste command. In that case, they are given the same empty font
and alignment as the copied paragraphs. The height (m_iHeight) of the paragraph is
determined by Recalculate, which also determines m_lineArray and m_rectArray.
The start position (m_yStartPos) is determined by UpdatePageAndParagraphArray
in the document class.

Paragraph.cpp
A new paragraph has left alignment. Before it is displayed, a call to Recalculate
will initialize its start position and height. The copy constructor initializes the
fields of the class. It is called when a paragraph is copied or pasted. Note that the
assignment operator is not defined on the MFC class CArray, which means Copy
must be called instead.

Paragraph::Paragraph(const Paragraph ¶graph)
 :m_stText(paragraph.m_stText),
 m_yStartPos(paragraph.m_yStartPos),
 m_iHeight(paragraph.m_iHeight),
 m_eAlignment(paragraph.m_eAlignment),
 m_emptyFont(paragraph.m_emptyFont),
 m_iEmptyAverageWidth(paragraph.m_iEmptyAverageWidth)
{
 m_fontArray.Copy(paragraph.m_fontArray);
 m_lineArray.Copy(paragraph.m_lineArray);
 m_rectArray.Copy(paragraph.m_rectArray);
}

Draw is called by the view class every time it needs to be re-drawn, partly or
completely. Some part of the document may be marked. If a particular paragraph
is marked, the parameters iFirstMarkedChar and iLastMarkedChar hold the first
and last position of the marked area of the paragraph. Note that it only applies to
that paragraph; other paragraphs may also be marked. If the paragraph is completely
unmarked, the view class calls this method with the values 0 and -1, respectively. Draw
also needs a pointer to a device context in order to write the characters. If the character
is located inside the marked area, we inverse the text and background colors.

void Paragraph::Draw(CDC* pDC, int iFirstMarkedChar,
 int iLastMarkedChar)const
{
 CSize szUpperLeft(0, m_yStartPos);
 int iSize = m_stText.GetLength();

Chapter 9

[339]

 if (!m_stText.IsEmpty())
 {
 for (int iChar = 0; iChar < iSize; ++iChar)
 {
 if ((iChar >= iFirstMarkedChar) &&
 (iChar < iLastMarkedChar))
 {
 pDC->SetTextColor(WHITE);
 pDC->SetBkColor(BLACK);
 }

 else
 {
 pDC->SetTextColor(BLACK);
 pDC->SetBkColor(WHITE);
 }

We select the font of the character. Every character of the paragraph has its own
font. We have to translate the size of the font from typographical points to logical
units (hundredths of millimeters). The characters are written relative to their top
left corner.

 CFont cFont;
 Font font = m_fontArray[iChar];
 cFont.CreateFontIndirect(font.PointsToMeters());
 CFont* pPrevFont = pDC->SelectObject(&cFont);

 CString stChar = m_stText.Mid(iChar, 1);
 ��� pDC->DrawText(stChar, m_rectArray[iChar] + szUpperLeft,
 TA_LEFT|TA_TOP);

 pDC->SelectObject(pPrevFont);
 }
 }

If the text is empty and the paragraph is marked, we paint a black rectangle of
average width and height. If the paragraph is empty and unmarked, we do nothing.

 else if ((iFirstMarkedChar != 0) && (iLastMarkedChar != 0))
 {
 CPen pen(PS_SOLID, 0, BLACK);
 CBrush brush(BLACK);

 CPen* pOldPen = pDC->SelectObject(&pen);
 CBrush* pOldBrush = pDC->SelectObject(&brush);

 CRect rcChar = CRect(0, 0, m_iEmptyAverageWidth,
 m_iHeight) + szUpperLeft;
 pDC->Rectangle(rcChar);

The Word Application

[340]

 pDC->SelectObject(pOldPen);
 pDC->SelectObject(pOldBrush);
 }
}

AddChar is called every time the user adds a character to this particular paragraph.
Its first task is to decide the font of the new character. The document class has a field
m_pNextFont, which is set to a new font when the user chooses a new font. If the
user moves the caret or pastes a text block, m_pNextFont is set to null. The value of
the document class field m_pNextFont is passed on to the parameter pNextFont.

If the pointer is not null, we simply set the font of the new character to that value.
Otherwise, we have to examine the text. If the paragraph lacks text (m_stText.
IsEmpty() returns true) we use the empty font (m_emptyFont). If it has a text, but
the new character is to be inserted at the beginning of the paragraph (iIndex == 0),
we use the font of the first character. Finally, if the paragraph has text and the new
character is not to be inserted at the beginning of the paragraph we use the font of
the preceding character.

In the document class, there is the field m_eKeyboardState. It holds the state of
the keyboard, which can be either insert or overwrite. Its value is passed as the
parameter eKeyboardState. The character and its font are inserted if the keyboard
is in the insert state. If it is in the overwrite state, they are overwritten unless the add
position is at the end of the text.

void Paragraph::AddChar(int iIndex, UINT uNewChar,
 Font* pNextFont, KeyboardState eKeyboardState)
{
 Font newFont;
 if (pNextFont != NULL)
 {
 newFont = *pNextFont;
 }
 else if (m_stText.IsEmpty())
 {
 newFont = m_emptyFont;
 }
 else if (iIndex == 0)
 {
 newFont = m_fontArray[0];
 }
 else
 {
 newFont = m_fontArray[iIndex - 1];
 }

 CRect emptyRect(0, 0, 0, 0);

Chapter 9

[341]

If the keyboard is in the insert state, we insert the character at the given index. The
InsertAt method works even if the input index is one step to the right of the text. In
the overwrite state, we overwrite the character at the input index with SetAt if it is
not at the end of the text. In that case, we use AppendChar and Add instead.

 switch (eKeyboardState)
 {
 case KM_INSERT:
 m_stText.Insert(iIndex, (TCHAR) uNewChar);
 m_fontArray.InsertAt(iIndex, newFont);
 m_rectArray.InsertAt(iIndex, emptyRect);
 break;

 case KM_OVERWRITE:
 if (iIndex < m_stText.GetLength())
 �{
 m_stText.SetAt(iIndex, (TCHAR) uNewChar);
 m_fontArray.SetAt(iIndex, newFont);
 ������������������������������������� m_rectArray.SetAt(iIndex, emptyRect);
 �}

 else
 {
 m_stText.AppendChar((TCHAR) uNewChar);
 �������������������������m_fontArray.Add(newFont);
 m_rectArray.Add(emptyRect);
 }
 break;
 }
}

GetRepaintSet is called when a part of the text is to be marked or unmarked. It
adds to repaintSet the rectangles (from m_rectArray) of the characters in question.
The index parameters have default values 0 and -1. If the last index is -1, the rest of
the paragraph's rectangles shall be included in the set. In that case, it is set to the
length of the text.

void Paragraph::GetRepaintSet(RectSet& repaintSet, int
 iFirstIndex /*= 0*/, int iLastIndex /*= -1*/)
{
 if (iLastIndex == -1)
 {
 iLastIndex = m_stText.GetLength();
 }

 CSize szUpperLeft(0, m_yStartPos);

 for (int iIndex = iFirstIndex; iIndex < iLastIndex;

The Word Application

[342]

 ++iIndex)
 {
 CRect rcChar = m_rectArray[iIndex];
 repaintSet.Add(rcChar + szUpperLeft);
 }
}

DeleteText is called when the one or more (possibly all) characters of the paragraph
are to be deleted. The index parameters indicate the first and last index of the part of
the text. They can be omitted in the call because they are default parameters. If the
last parameter is omitted, the rest of the text will be deleted and the parameter is set
to the length of the text.

If the whole of the text is to be deleted, we set the empty font (m_emptyFont) to
the one in the first character. Note that this method is not called if the paragraph is
empty. Also, note the difference between deleting the whole text of the paragraph
and deleting the paragraph itself. In the first case, the paragraph is a part of the
document. In the second case, the paragraph object is de-allocated and removed from
the paragraph array (m_paragraphArray) of the document class and this method is
not called.

void Paragraph::DeleteText(int iFirstIndex /* = 0 */,
 int iLastIndex /* = -1 */)
{
 int iLength = m_stText.GetLength();

 if (iLastIndex == -1)
 {
 iLastIndex = iLength;
 }
 if ((iFirstIndex == 0) && (iLastIndex == iLength))
 {
 m_emptyFont = m_fontArray[0];
 }
 m_stText.Delete(iFirstIndex, iLastIndex - iFirstIndex);
 m_fontArray.RemoveAt(iFirstIndex, iLastIndex - iFirstIndex);
 m_rectArray.RemoveAt(iFirstIndex, iLastIndex - iFirstIndex);
}

GetFont is called by the document class in order to set the default font in the font
dialog that appears when the user wants to set the font. If the text is empty, we
return the empty font. If the iCaretIndex is zero, we return the font of the first
character. Otherwise, we return the font of the position preceding that of the caret.

Font Paragraph::GetFont(int iCaretIndex) const
{
 if (m_stText.IsEmpty())

Chapter 9

[343]

 {
 return m_emptyFont;
 }
 else if (iCaretIndex == 0)
 {
 return m_fontArray[0];
 }
 else
 {
 return m_fontArray[iCaretIndex - 1];
 }
}

SetFont is called when one or more characters of the paragraph are given a new
font. Unlike GetFont above, SetFont may affect more than one character if the user
has marked a portion of the text and then changed the font. Like GetRepaintSet
above, the two index parameters are default parameters. If the second of them is
omitted in the call, the rest of the text is updated with the new font.

void Paragraph::SetFont(Font newFont, int iFirstIndex/* =0 */,
 int iLastIndex /* = -1 */)
{
 if (iLastIndex == -1)
 {
 iLastIndex = m_stText.GetLength();
 }
 for (int iIndex = iFirstIndex; iIndex < iLastIndex;
 ++iIndex)
 {
 m_fontArray[iIndex] = newFont;
 }
}

GetWord is called when the user double-clicks on a word. It starts at the character
that is edited (iEditChar) and traverses to the left and to the right until it finds
a space character or the beginning or end of the paragraph. The parameters
iFirstChar and iLastChar are reference parameters, which implies that their
values can be obtained by the calling method. Finally, the method returns true if it
finds a word to be marked. That is, if the index of the first character is less than the
index of the last one.

BOOL Paragraph::GetWord(int iEditChar, int& iFirstChar,
 int& iLastChar)
{
 int iChar;

 for (iChar = iEditChar; (iChar >= 0) &&
 isalnum(m_stText[iChar]); --iChar)
 {

The Word Application

[344]

 // Empty.
 }

 iFirstChar = (iChar + 1);
 int iLength = m_stText.GetLength();

 for (iChar = iEditChar; (iChar < iLength) &&
 isalnum(m_stText[iChar]); ++iChar)
 {
 // Empty.
 }

 iLastChar = iChar;
 return (iFirstChar < iLastChar);
}

GetHomeChar is called when the user presses the Home key. First we find out which
line the current index holds. Then it returns the index of the first key on that line.
GetEndChar is defined in a similar manner.

int Paragraph::GetHomeChar(int iChar) const
{
 int iLines = (int) m_lineArray.GetSize();

 for (int iIndex = 0; iIndex < iLines; ++iIndex)
 {
 Line line = m_lineArray[iIndex];
 int iFirstChar = line.GetFirstChar();
 int iLastChar = line.GetLastChar();

 if (iChar <= (iLastChar + 1))
 {
 return iFirstChar;
 }
 }

As the loop above always will find the correct index (every character belongs to a
line of the paragraph), this point of the code will never be reached. The check is for
debugging purposes only.

 check(FALSE);
 return 0;
}

ExtractText is called when the user marks one portion of the document's text and
then copies it. It creates a new paragraph and fills it with the text and fonts of the
marked area. Like GetRepaintSet and SetFont above, its two indexes are default
parameters. If the last index is -1, the rest of the text will be extracted. The text is easy
to extract with CString's Mid method. Unfortunately, there is no similar method
for arrays. So, we must traverse the font array and add fonts one by one to the new
paragraph. We also need to set the empty font of the paragraph. If the first index of

Chapter 9

[345]

the extracted text is less than the length of the text, we set the font of the first marked
character. Otherwise, we use the font of the character preceding the first one. If the
text is empty, we just copy the empty font.

Paragraph* Paragraph::ExtractText(int iFirstIndex /* = 0 */,
 int iLastIndex /* = -1 */) const
{
 Paragraph* pNewParagraph;
 check_memory(pNewParagraph = new Paragraph(*this));

 if (!m_stText.IsEmpty())
 {
 int iLength = m_stText.GetLength();

 if (iLastIndex == -1)
 {
 iLastIndex = iLength;
 }

 pNewParagraph->m_stText =
 m_stText.Mid(iFirstIndex, iLastIndex - iFirstIndex);
 CRect rcEmpty(0, 0, 0, 0);
 for (int iChar = iFirstIndex; iChar < iLastIndex; ++iChar)
 {
 pNewParagraph->m_fontArray.Add(m_fontArray[iChar]);
 pNewParagraph->m_rectArray.Add(rcEmpty);
 }

The empty font is set to the one of the first index, unless the first index is at the end
of the text; in that case, it is set to the font of the last character. If the text is empty, we
just copy the empty font. A succeeding call to Recalculate will initialize the rest of
the fields.

 if (iFirstIndex < iLength)
 {
 pNewParagraph->m_emptyFont = m_fontArray[iFirstIndex];
 }
 else
 {
 pNewParagraph->m_emptyFont = m_fontArray[iFirstIndex-1];
 }
 }
 else
 {
 pNewParagraph->m_emptyFont = m_emptyFont;
 }
 return pNewParagraph;
}

The Word Application

[346]

Insert inserts a character in the paragraph. Unless the paragraph to insert is empty,
we just insert its text and font array. If it is empty, we do nothing. Append adds a
paragraph to the end of the paragraph simply by calling Insert.

void Paragraph::Insert(int iChar, Paragraph* pInsertParagraph)
{
 int iInsertLength = pInsertParagraph->GetLength();

 if (iInsertLength > 0)
 {
 m_stText.Insert(iChar, pInsertParagraph->m_stText);
 m_fontArray.InsertAt(iChar,
 &pInsertParagraph->m_fontArray);

 CRect rcEmpty(0, 0, 0, 0);
 m_rectArray.InsertAt(iChar, rcEmpty, iInsertLength);
 }
}
void Paragraph::Append(Paragraph* pAppendParagraph)
{
 Insert(GetLength(), pAppendParagraph);
}

When the user presses the return key inside a paragraph, it is split into two parts.
Split returns a new paragraph containing the second half of the split paragraph and
deletes it from the paragraph.

Paragraph* Paragraph::Split(int iChar)
{
 Paragraph* pNewParagraph;
 check_memory(pNewParagraph = new Paragraph());

 pNewParagraph->m_stText = m_stText.Mid(iChar);
 m_stText = m_stText.Left(iChar);

 pNewParagraph->m_fontArray.Copy(m_fontArray);
 pNewParagraph->m_fontArray.RemoveAt(0, iChar);
 m_fontArray.SetSize(iChar);
 pNewParagraph->m_eAlignment = m_eAlignment;
 pNewParagraph->m_emptyFont = GetFont(iChar);
 return pNewParagraph;
}

When the user clicks the mouse, we have to decide which paragraph and character
they clicked at. The mouse position in device units is caught by the view classes,
converted to logical units, and sent to the document class. The document class first
finds the paragraph in question and then finally calls PointToChar in order to find
the position in the paragraph.

Chapter 9

[347]

If the text is empty, we just return index 0. Otherwise, we traverse the lines of the
paragraph one by one in order to find the correct line. Then we traverse the line in
order to find the correct character. To start with, we subtract the start position of the
paragraph from the mouse position, which origionally is relative to the beginning of
the document.

int Paragraph::PointToChar(CPoint ptMouse)
{
 if (m_stText.IsEmpty())
 {
 return 0;
 }

 ptMouse.y -= m_yStartPos;

If the document is large enough, it will be divided into several pages. In that case,
there will be a check that each page begins with a whole paragraph. This might
give the result that the user clicks at the end of a page (or at the end of the whole
document) where there is no paragraph. If that happens, the correct character will be
the one above the mouse click. That is why we have to make sure that the position of
the mouse does not exceed the height of the paragraph.

 ptMouse.y = min(ptMouse.y, m_iHeight - 1);
 int iLines = (int) m_lineArray.GetSize();
 int iParagraphHeight = 0;
 for (int iLine = 0; iLine < iLines; ++iLine)
 {
 Line line = m_lineArray[iLine];
 int iLineHeight = line.GetHeight();
 iParagraphHeight += iLineHeight;

When we find the right line, the search continues for the right character. We cannot
fail in finding the right line. Therefore, there is a check watch at the end of the
method. When we look for the correct character, we first check if the mouse position
is to the left of the first character of the line. In that case, we return the first index of
the first character of the line. If instead it is to the right of the last character of the
line, we return the index of the character to the right of the last character.

 if (ptMouse.y < iParagraphHeight)
 {
 int iFirstChar = line.GetFirstChar();
 int iLastChar = line.GetLastChar();
 CRect rcFirstChar = m_rectArray[iFirstChar];
 CRect rcLastChar = m_rectArray[iLastChar];
 if (ptMouse.x <= rcFirstChar.left)
 {
 return iFirstChar;
 }

The Word Application

[348]

 else if (ptMouse.x >= rcLastChar.right)
 {
 return (iLastChar + 1);
 }

If none of the above cases applied, we traverse through the line until we find the
correct character. Then we have to decide whether the mouse cursor hits the left or
right part of the character. If the cursor hits the left part we return the index of the
character. If it hits the right part, we return the index of the next character. This will
work even if the character is the last one in the paragraph since there is an extra
rectangle in m_rectArray for this case, that the user places the carat to the right of
the last character in the paragraph.

We cannot fail in finding the correct character once we have found the correct line.
Therefore, we have a check watch at the end of the character search for debugging
purposes only.

 else
 {
 for (int iChar = iFirstChar; iChar <= iLastChar;
 ++iChar)
 {
 CRect rcChar = m_rectArray[iChar];
 if (ptMouse.x < rcChar.right)
 {
 int cxLeft = ptMouse.x - rcChar.left;
 int cxRight = rcChar.right - ptMouse.x;
 if (cxLeft < cxRight)
 {
 return iChar;
 }
 else
 {
 return iChar + 1;
 }
 }
 }
 check(FALSE);
 return 0;
 }
 }
 }
 check(FALSE);
 return 0;
}

Chapter 9

[349]

CharToRect returns the rectangle of the character at the given index in the
paragraph. We have two special cases. First, the paragraph may be empty. In that
case, we use the average size of the paragraph's empty font.

CRect Paragraph::CharToRect(int iChar)
{
 CSize szUpperLeft(0, m_yStartPos);

 if (m_stText.IsEmpty())
 {
 return szUpperLeft + CRect(0, 0, m_iEmptyAverageWidth,
 m_iHeight);
 }

Second, the given index may be outside the text. That is one step to the right of
the last character. In that case, we return a rectangle holding the dimensions of the
characters beyond the text using the size of the last character. Otherwise, we just
return the rectangle of the given character.

 else if (iChar == m_stText.GetLength())
 {
 CRect rcChar = m_rectArray[iChar - 1];
 CRect rcCaret(rcChar.right, rcChar.top, rcChar.right +
 rcChar.Width(), rcChar.bottom);
 return szUpperLeft + rcCaret;
 }
 else
 {
 return szUpperLeft + m_rectArray[iChar];
 }
}

The method GetCaretRect returns the rectangle of the given character. If the text is
empty, we return a caret rectangle based on the empty font. If the text is non-empty
but the given character is at index zero, we return the caret rectangle of the first
character. If the character is a "home character"; that is, if it is the first on its line, then
we return its rectangle. Otherwise, we find the preceding character and return a caret
rectangle based on its size.

CRect Paragraph::GetCaretRect(int iChar)
{
 CSize szUpperLeft(0, m_yStartPos);
 int iSize = m_stText.GetLength();
 if (iSize == 0)
 {
 return szUpperLeft + CRect(0, 0, m_iEmptyAverageWidth,
 m_iHeight);
 }

The Word Application

[350]

 else if (iChar == 0)
 {
 return szUpperLeft + m_rectArray[0];
 }
 else if (isHomeChar(iChar))
 {
 CRect rcChar = m_rectArray[iChar];
 CRect rcCaret(rcChar.left, rcChar.top,
 rcChar.right, rcChar.bottom);
 return szUpperLeft + rcCaret;
 }
 else
 {
 CRect rcChar = m_rectArray[iChar - 1];
 CRect rcCaret(rcChar.right, rcChar.top, rcChar.right +
 rcChar.Width(), rcChar.bottom);
 return szUpperLeft + rcCaret;
 }
}

When the user scrolls up and down through the document with the up and down
arrows, we need to know the size of the current line. The method CharToLineRect
returns a rectangle holding the dimensions of the line. Like CharToRect above, we
cannot fail in finding the correct line, so we have a check watch at the end of
the method.

CRect Paragraph::CharToLineRect(int iChar)
{
 int iParagraphHeight = 0;
 int iLines = (int) m_lineArray.GetSize();
 for (int iIndex = 0; iIndex < iLines; ++iIndex)
 {
 Line line = m_lineArray[iIndex];
 int iLastChar = line.GetLastChar();
 int iLineHeight = line.GetHeight();
 if (iChar <= (iLastChar + 1))
 {
 return CRect(0, m_yStartPos + iParagraphHeight,
 PAGE_WIDTH, m_yStartPos + iParagraphHeight
 + iLineHeight);
 }
 iParagraphHeight += iLineHeight;
 }
 check(FALSE);
 return CRect();
}

Chapter 9

[351]

The Recalculate method is called in order to recalculate the rectangle
(m_rectArray) and line (m_lineArray) arrays every time one or more characters
have be added or removed, or when the font or alignment have been changed.
The Recalculate method can be regarded as a more complicated version of the
GenerateCaretIndex method of the Draw and Calc applications. It is rather
complex, and its functionality is divied into the rest of the methods of this class.

void Paragraph::Recalculate(CDC* pDC, RectSet* pRepaintSet
 /* = NULL */)
{
 RectArray oldRectArray;
 if (pRepaintSet != NULL)
 {
 oldRectArray.Copy(m_rectArray);
 }
 m_iHeight = 0;
 m_lineArray.RemoveAll();
 m_rectArray.RemoveAll();

If the paragraph is empty, we find the height and average width of a character of the
empty font.

 if (m_stText.IsEmpty())
 {
 CFont cFont;
 cFont.CreateFontIndirect(m_emptyFont.PointsToMeters());
 CFont* pPrevFont = pDC->SelectObject(&cFont);
 TEXTMETRIC textMetric;
 pDC->GetTextMetrics(&textMetric);
 pDC->SelectObject(pPrevFont);
 m_iHeight = textMetric.tmHeight;
 m_iEmptyAverageWidth = textMetric.tmAveCharWidth;
 Line line(0, 0, 0);
 m_lineArray.Add(line);
 }

If the paragraph is not empty, we generate arrays of size and ascent lines for every
character as well as the line and rectangle array by calling GenerateSizeArray,
GenerateAscentArray, GenerateLineArray, and GenerateRectArray.

 else
 {
 SizeArray sizeArray;
 GenerateSizeArray(sizeArray, pDC);
 IntArray ascentArray;
 GenerateAscentArray(ascentArray, pDC);
 GenerateLineArray(sizeArray);
 GenerateRectArray(sizeArray, ascentArray);
 }

The Word Application

[352]

Finally, if the pointer to the re-paint set is not null, we also call
GenerateRepaintSet.

 if (pRepaintSet != NULL)
 {
 GenerateRepaintSet(oldRectArray, pRepaintSet);
 }
}

The ClearRectArray method sets each rectangle of the rectangle array of the
empty rectangle.

void Paragraph::ClearRectArray()
{
 CRect emptyRect(0, 0, 0, 0);
 int iSize = (int) m_rectArray.GetSize();

 for (int iIndex = 0; iIndex < iSize; ++iIndex)
 {
 m_rectArray[iIndex] = emptyRect;
 }
}

The GenerateSizeArray method fills the given array with the size (width and
height) of each character in the paragraph (in logical units). For each character, we
load the device context with the font. Note that we need to translate the font from
typographical points at hundredths of millimeters by calling PointToMeters.

void Paragraph::GenerateSizeArray(SizeArray& sizeArray,
 CDC* pDC)
{
 int iLength = m_stText.GetLength();
 for (int iChar = 0; iChar < iLength; ++iChar)
 {
 CFont cFont;
 Font font = m_fontArray[iChar];
 cFont.CreateFontIndirect(font.PointsToMeters());
 CFont* pPrevFont = pDC->SelectObject(&cFont);

 �� CString stChar = m_stText.Mid(iChar, 1);
 �� CSize szChar = pDC->GetTextExtent(stChar);

Chapter 9

[353]

Experience has shown that characters written in italic style tend to request slightly
more space than GetTextExtent returns, so we increase the size by 20 percent.
Plain text also tends to need a little bit more space, thats why we increase the size by
10 percent.

 szChar.cx = (int) ((font.IsItalic() ? 1.2 : 1.1) *
 szChar.cx);
 szChar.cy = (int) ((font.IsItalic() ? 1.2 : 1.1) *
 szChar.cy);

 sizeArray.Add(szChar);
 pDC->SelectObject(pPrevFont);
 }
}

The ascent line is separating the upper and lower part of the versals.

Ascent

Height

The GenerateAscentArray method fills the given array with the ascent line (the
distance between the ascent line and the bottom of the character) of every character
in the paragraph (in logical units). For every character, we load the device context
with the font. Note that we have to translate the font from typographical points at
hundredths of millimeters by calling PointToMeters.

void Paragraph::GenerateAscentArray(IntArray& ascentArray,
 CDC* pDC)
{
 int iSize = (int) m_fontArray.GetSize();
 for (int iIndex = 0; iIndex < iSize; ++iIndex)
 {
 CFont cFont;
 Font font = m_fontArray[iIndex];
 cFont.CreateFontIndirect(font.PointsToMeters());
 CFont* pPrevFont = pDC->SelectObject(&cFont);

 TEXTMETRIC textMetric;
 pDC->GetTextMetrics(&textMetric);
 pDC->SelectObject(pPrevFont);

 ascentArray.Add(textMetric.tmAscent);
 }
}

The Word Application

[354]

The GenerateLineArray method generates the line array. That is, for each line we
find the indexes of its first and last characters as well as the height of the line (in
logical units). We have to decide how many words each line can hold. We traverse
through the text, calculate the size of each word. When the next word does not fit on
the line, we start a new line and save the index of the first and last character on the
line as well as the height of the line which is the height of its highest character.

void Paragraph::GenerateLineArray(SizeArray& sizeArray)
{
 BOOL bSpace = FALSE;
 int iSpaceIndex = 0, iStartIndex = 0, iLineWidth = 0,
 iLineHeight = 0, iSpaceLineHeight = 0;
 int iSize = m_stText.GetLength(), iIndex = 0;

 while (iIndex < iSize)
 {
 CSize szChar = sizeArray[iIndex];
 iLineHeight = max(iLineHeight, szChar.cy);

As we try to avoid splitting words over lines, but rather to break the line after the
last full word, we save the position of the last space.We will need it when we reach
the end of the line.

The latest space is a suitable point to put a line break. We save the index to use it
when we reach the end of the line.

 if (m_stText[iIndex] == TEXT(' '))
 {
 bSpace = TRUE;
 iSpaceIndex = iIndex;
 iSpaceLineHeight = iLineHeight;
 }

 iLineWidth += szChar.cx;

When there is no more room for the next characters, we insert a line break and look
up the latest space. If there is one, we add the start index (iStartIndex) of the index
before the latest space together with the line height of the line array (m_lineArray).
We then set the new start index to the index after the latest space. Note that the index
of the space—breaking the line—is not part of any line in m_lineArray. Each line
starts and ends with the indexes of the first and last non-blank character.

 if (iLineWidth > PAGE_WIDTH)
 {
 if (bSpace)
 {
 Line line(iStartIndex, iSpaceIndex - 1, ilineHeight);

Chapter 9

[355]

 iSpaceLineHeight);
 m_lineArray.Add(line);

 iStartIndex = iSpaceIndex + 1;
 iLineWidth = 0;
 iLineHeight = 0;

 bSpace = FALSE;
 iIndex = iStartIndex;
 }

If there is no latest space, the word is wider than the page. In that case, we check that
the word holds at least one character. If so, we just split the word, so the next line
starts with the first character that does not fit on the line.

 else if (iStartIndex < iIndex)
 {
 Line line(iStartIndex, iIndex - 1, iLineHeight);
 iSpaceLineHeight);
 m_lineArray.Add(line);

 iStartIndex = iIndex;
 iLineWidth = 0;
 iLineHeight = 0;
 }

In the rare event that there is a character wider than the page, we add it to the line
and set the next start index to the next index.

 else
 {
 Line line(iStartIndex, iIndex,
 iSpaceLineHeight);
 m_lineArray.Add(line);

 ++iIndex;
 iStartIndex = iIndex;
 iLineWidth = 0;
 iLineHeight = 0;
 }
 }

 else
 {
 ++iIndex;
 }
 }

 if (iStartIndex < iSize)
 {

The Word Application

[356]

 Line line(iStartIndex, iSize – 1, iLineHeight);
 m_lineArray.Add(line);
 }
}

The method GenerateRectArray generates the rectangle array. With the size, ascent,
and line arrays, we calculate the rectangle of each character. First, we traverse the
lines of the paragraph, one by one.

void Paragraph::GenerateRectArray(SizeArray& sizeArray,
 IntArray& ascentArray)
{
 int iLines = (int) m_lineArray.GetSize();
 Line line = m_lineArray[0];
 int iFirstChar = line.GetFirstChar();
 int iLastChar = line.GetLastChar();

 for (int iLineIndex = 0; iLineIndex < iLines; ++iLineIndex)
 {

For each line, we look up its first and last character. Then we need to find the height,
ascent line, and width of the line.

 int iLineWidth = 0, iLineHeight = 0, iLineAscent = 0;
 for (int iIndex = iFirstChar; iIndex <= iLastChar;
 ++iIndex)
 {
 TCHAR cChar = m_stText[iIndex];
 CSize szChar = sizeArray[iIndex];

The width of the line is the sum of the width of all characters. If the character is a
space and the paragraph has justified alignment, we do not include its width into the
total width because later on we need the width of the line without the spaces.

 if (!((cChar==TEXT(' ')) &&
 (m_eAlignment==ALIGN_JUSTIFIED)))
 {
 iLineWidth += szChar.cx;
 }

The height of the line is the height of its highest character. The accent line of the line
is the ascent line of the character with the highest ascent.

 iLineHeight = max(iLineHeight, szChar.cy);
 iLineAscent = max(iLineAscent, ascentArray[iIndex]);
 }

Chapter 9

[357]

We find the start position of the line by considering the alignment of the paragraph
and the width of the line.

 int xStartPos = 0, iSpaceWidth = 0;
 switch (m_eAlignment)
 {

In left alignment, the line starts at the left side. In center and right alignment, we
compute the start position by comparing the width of the line with the width of
the page.

 case ALIGN_LEFT:
 xStartPos = 0;
 break;

 case ALIGN_CENTER:
 xStartPos = (PAGE_WIDTH - iLineWidth) / 2;
 break;

 case ALIGN_RIGHT:
 xStartPos = PAGE_WIDTH - iLineWidth;
 break;

In justified alignment, we need to find the number of spaces on the line and calculate
the width of each space in order for the line to completely fill the width of the
page. If there are no spaces in the line, the effect will be equivalent to left alignment
because the start x position is at the left side of the page and the only word of the line
will be written to the left.

 case ALIGN_JUSTIFIED:
 xStartPos = 0;
 CString stTemp = m_stText.Mid(iFirstChar, iLastChar –
 iFirstChar + 1);
 int iSpaces = stTemp.Remove(TEXT(' '));
 if (iSpaces > 0)
 {
 iSpaceWidth = (PAGE_WIDTH - iLineWidth) / iSpaces;
 }
 break;
 }

Finally, we calculate the rectangle for each character. We traverse the line and with
the sizes of the characters and the height and ascent line of the line we find each
rectangle. We begin by the start position we found above and increase the position
for each character on the line.

 int xLeftPos = xStartPos,iWidth = 0,yTopPos = 0,iHeight=0;
 for (int iIndex = iFirstChar; iIndex <= iLastChar;

The Word Application

[358]

 ++iIndex)
 {
 CSize szChar = sizeArray[iIndex];
 int iAscent = ascentArray[iIndex];

If the paragraph has justified alignment and the character is a space, we use the space
width calculated as above.

 if ((m_stText[iIndex] == TEXT(' ')) &&
 (m_eAlignment == ALIGN_JUSTIFIED))
 {
 iWidth = iSpaceWidth;
 }

 else
 {
 iWidth = szChar.cx;
 }

 yTopPos = m_iHeight + iLineAscent - iAscent;
 iHeight = szChar.cy;

 CRect rcChar(xLeftPos, yTopPos, xLeftPos + iWidth,
 yTopPos + iHeight);
 m_rectArray.Add(rcChar);
 xLeftPos += iWidth;
 }

If we are not on the last line of the paragraph, we add a rectangle for the space thus
dividing the line with the next one, if there is one.

 if (iLineIndex < (iLines - 1))
 {
 Line line = m_lineArray[iLineIndex + 1];
 iFirstChar = line.GetFirstChar();
 if (iFirstChar > (iLastChar + 1))
 {
 CSize szChar = sizeArray[iLastChar + 1];
 CRect rcChar(xLeftPos, yTopPos, xLeftPos + szChar.cx,
 yTopPos + iHeight);
 m_rectArray.Add(rcChar);
 }
 iLastChar = line.GetLastChar();
 }

Finally, the height of the paragraph is increased with the height of the line.

 m_iHeight += iLineHeight;
 }
}

Chapter 9

[359]

When a paragraph has been altered, we have to repaint the altered area of the client
area. However, we do not want to repaint the whole paragraph, just the characters
that have been altered. The GenerateRepaintSet method compares the original
rectangle array with the newly generated one and fills the re-paint set with every
rectangle that differs (both the old and new rectangle are added).

Remember that the position of each character is relative to its own paragraph, so we
start by defining the top left corner of the paragraph relative to the document. Then
we traverse the characters and add those that have been given new dimensions.

void Paragraph::GenerateRepaintSet(RectArray& oldRectArray,
 RectSet* pRepaintSet)
{
 CSize szUpperLeft(0, m_yStartPos);
 int iSize = (int) m_rectArray.GetSize();
 for (int iIndex = 0; iIndex < iSize; ++iIndex)
 {
 CRect rcOldChar = oldRectArray[iIndex];
 CRect rcNewChar = m_rectArray[iIndex];
 if (rcOldChar != rcNewChar)
 {
 if (!rcOldChar.IsRectEmpty())
 {
 pRepaintSet->Add(rcOldChar + szUpperLeft);
 }
 if (!rcNewChar.IsRectEmpty())
 {
 pRepaintSet->Add(rcNewChar + szUpperLeft);
 }
 }
 }

If the paragraph is non-empty, we add, for each line, the area to the left and to the
right of the line.

 if (!m_stText.IsEmpty())
 {
 int iTotalHeight = 0;
 int iLines = (int) m_lineArray.GetSize();

We traverse the lines and for each line find the old and new area. We need the height
and the position of the first character of the line. So we create and add the left area
shown as follows:

 for (int iLineIndex = 0; iLineIndex < iLines;
 ++iLineIndex)
 {
 Line line = m_lineArray[iLineIndex];
 int iFirstChar = line.GetFirstChar();

The Word Application

[360]

 int iHeight = line.GetHeight();
 CRect rcFirstChar = m_rectArray[iFirstChar];
 CRect rcLeftBlock(0, iTotalHeight, rcFirstChar.left,
 iTotalHeight + iHeight);
 if (!rcLeftBlock.IsRectEmpty())
 {
 pRepaintSet->Add(rcLeftBlock + szUpperLeft);
 }

Finally, we look up at the position of the first character of the line. Then we create
and add the right area.

 int iLastChar = line.GetLastChar();
 CRect rcLastChar = m_rectArray[iLastChar];
 CRect rcRightBlock(rcLastChar.right, iTotalHeight,
 PAGE_WIDTH, iTotalHeight + iHeight);
 if (!rcRightBlock.IsRectEmpty())
 {
 pRepaintSet->Add(rcRightBlock + szUpperLeft);
 }
 iTotalHeight += iHeight;
 }
 }

If the paragraph is empty, we just create and add an area holding the whole
paragraph. Remember that even though the paragraph is empty, it still holds a height.

 else
 {
 CRect rcTotalBlock(0, 0, PAGE_WIDTH, m_iHeight);
 pRepaintSet->Add(rcTotalBlock + szUpperLeft);
 }
}

The Page
A document can be divided into several pages. A paragraph is never split over two
pages. If there is not enough room for it in the rest of the page, it is moved in full
to the next page. Page is a small class. Its task is to keep track of the first and last
paragraph of a page.

Page.h
class Page
{
 public:
 Page();
 Page(int iFirstParagraph, int iLastParagraph);

Chapter 9

[361]

 int GetFirstParagraph() const {return m_iFirstParagraph;}
 int GetLastParagraph() const {return m_iLastParagraph;}

 void Serialize(CArchive& archive);
 private:
 int m_iFirstParagraph, m_iLastParagraph;
};

Page needs a default constructor beacuse its objects are stored in m_pageArray in the
document class.

Page.cpp
Page::Page()
 :m_iFirstParagraph(0),
 m_iLastParagraph(0)
{
 // Empty.
}

Page::Page(int iFirstParagraph, int iLastParagraph)
 :m_iFirstParagraph(iFirstParagraph),
 m_iLastParagraph(iLastParagraph)
{
 // Empty.
}
void Page::Serialize(CArchive& archive)
{
 if (archive.IsStoring())
 {
 archive >> m_iFirstParagraph >> m_iLastParagraph;
 }

 if (archive.IsLoading())
 {
 archive >> m_iFirstParagraph >> m_iLastParagraph;
 }

}

The Document Class
The document class CWordDoc handles the pages and paragraphs of the document. It
receives input from the view class CWordView, to which it also sends notification
of repainting.

The Word Application

[362]

The unit of choice in this application is hundredths of millimeters (MM_HIMETRIC).
As a letter 216 times 297 millimeter, its total width and height are 21,600 and 27,900
logical units. The paper has, however, a margin of 25 millimeters, or 2,500 logical
units, which implies that the actual width and height are the dimensions of the pages
subtracted from the margins. The constants PAGE_WIDTH and PAGE_HEIGHT hold
those values.

The application can be in edit or the mark state and the keyboard can be in the insert
or overwrite state. The fields m_eWordState and m_eKeyboardState keep track of
the states. They have the enumeration types WordState and KeyboardState. As
KeyboardState is used by the paragraph class, it is defined in Paragraph.h

enum WordState {WS_EDIT, WS_MARK};
enum KeyboardState {KM_INSERT, KM_OVERWRITE};

The field m_caret is an object of the Caret class from the Utility Classes chapter. It
handles the caret of this application. The field m_pView is a pointer to the view object
in focus. OnSetFocus and OnKillFocus handle the pointer. They also notify the caret
object (m_caret) about a change of view.

There are two paragraph arrays. m_paragraphArray holds all the paragraphs of the
document, and m_copyArray holds the copied paragraphs. When the application
is in the edit state (m_eWordState == WS_EDIT), m_psEdit keeps track of the caret.
When it is in the mark state (m_eWordState == WS_MARK), m_psFirstMark and
m_iLastMark keep track of the first and last positions of the marked area. The
position may refer to the same or different paragraphs. However, they cannot refer
to the same character in the same paragraph. In that case, the word status will be set
to edit, and m_psEdit will be set to the first position.

The field m_pageArray is an array of Page objects holding the index of the first and
last paragraph of each page. It has the type PageArray, which is an implementation
of the MFC class CArray with Page objects.

The user may choose to change the font with a font dialog. In that case, the new font
is saved in m_pNextFont.

Several messages from the menu bar are routed to this class: the alignment messages,
the cut, copy, and paste messages and the font message.

WordDoc.h
static const int PAGE_TOTALWIDTH = 21600;
static const int PAGE_TOTALHEIGHT = 27900;
static const int PAGE_MARGIN = 2500;

static const int PAGE_WIDTH = (PAGE_TOTALWIDTH–2*PAGE_MARGIN);
static const int PAGE_HEIGHT=(PAGE_TOTALHEIGHT–2*PAGE_MARGIN);

Chapter 9

[363]

enum WordState {WS_EDIT, WS_MARK};
typedef CArray<Page> PageArray;

class CWordDoc : public CDocument
{
 private:
 DECLARE_DYNCREATE(CWordDoc)
 DECLARE_MESSAGE_MAP()
 CWordDoc();

 public:
 virtual ~CWordDoc();

 public:
 void Serialize(CArchive& archive);
 virtual BOOL OnNewDocument();

 ParagraphPtrArray* GetParagraphArray()
 {return &m_paragraphArray;}

 void KeyDown(UINT uChar, CDC* pDC);
 void ShiftKeyDown(UINT uChar, CDC* pDC);
 private:
 void EnsureEditStatus();
 void EnsureMarkStatus();

 void LeftArrowKey();
 void ShiftLeftArrowKey();

 void RightArrowKey();
 void ShiftRightArrowKey();

 void UpArrowKey();
 void ShiftUpArrowKey();

 void DownArrowKey();
 void ShiftDownArrowKey();

 void PageUpKey(CDC* pDC);
 void ShiftPageUpKey(CDC* pDC);
 void PageDownKey(CDC* pDC);
 void ShiftPageDownKey(CDC* pDC);

 void HomeKey();
 void ShiftHomeKey();

 void EndKey();
 void ShiftEndKey();

 void DeleteKey(CDC* pDC);
 void BackspaceKey(CDC* pDC);
 void ReturnKey(CDC* pDC);
 void InsertKey();

 public:

The Word Application

[364]

 void CharDown(UINT uChar, CDC* pDC);
 int GetPageNum() const
 {return (int) m_pageArray.GetSize();}

 private:
 int PointToParagraph(const CPoint& ptMouse) const;

 public:
 Position PointToChar(const CPoint& ptMouse) const;

 void MouseDown(const CPoint& ptMouse);
 void MouseDrag(const CPoint& ptMouse);
 void MouseUp();
 void DoubleClick();

 void MakeVisible();
 void UpdateCaret();

 void GetRepaintSet(RectSet& repaintSet, Position
 psFirst, Position psLast);
 void DeleteText(RectSet& repaintSet, CDC* pDC, Position
 psFirst, Position psLast);

 void UpdateParagraphAndPageArray();

 afx_msg void OnUpdateAlignLeft(CCmdUI *pCmdUI);
 afx_msg void OnAlignLeft();

 afx_msg void OnUpdateAlignCenter(CCmdUI *pCmdUI);
 afx_msg void OnAlignRight();

 afx_msg void OnUpdateAlignRight(CCmdUI *pCmdUI);
 afx_msg void OnAlignCenter();

 afx_msg void OnUpdateAlignJustifed(CCmdUI *pCmdUI);
 afx_msg void OnAlignJustified();

 BOOL IsAlignment(Alignment eAlignment) const;
 void SetAlignment(Alignment eAlignment);

 afx_msg void OnUpdateCopy(CCmdUI *pCmdUI);
 void ClearCopyArray();
 afx_msg void OnCopy();

 afx_msg void OnUpdateCut(CCmdUI *pCmdUI);
 afx_msg void OnCut();

 afx_msg void OnUpdatePaste(CCmdUI *pCmdUI);
 afx_msg void OnPaste();

 Font GetFont() const;
 afx_msg void OnFont();

 void OnSetFocus(CWordView* pView)
 {m_pView = pView; m_caret.OnSetFocus(pView);}

Chapter 9

[365]

 void OnKillFocus()
 {m_pView = NULL; m_caret.OnKillFocus();}
 WordState GetWordStatus() {return m_eWordState;}
 Position GetFirstMarked() {return m_psFirstMark;}
 Position GetLastMarked() {return m_psLastMark;}
 private:
 WordState m_eWordState;
 KeyboardState m_eKeyboardState;
 CWordView* m_pView;
 Caret m_caret;
 ParagraphPtrArray m_paragraphArray, m_copyArray;
 PageArray m_pageArray;
 Position m_psEdit, m_psFirstMark, m_psLastMark;
 Font *m_pNextFont;
};

CWordDoc must have a default constructor because it will be created dynamically by
the Application Framework.

CWordDoc.cpp
CWordDoc::CWordDoc()
 :m_eKeyboardState(KM_INSERT),
 m_eWordState(WS_EDIT),
 m_psEdit(0, 0),
 m_psFirstMark(0, 0),
 m_psLastMark(0, 0),
 m_pNextFont(NULL)
{
 // Empty.
}

The destructor deallocates the memory associated with the paragraph and copy
arrays. It also deallocates the memory associated with the next font. This operation is
safe even if the pointer points to null, because the delete operator does nothing in
that case.

CWordDoc::~CWordDoc()
{
 int iParagraphs = (int) m_paragraphArray.GetSize();
 for (int iParagraph = 0; iParagraph < iParagraphs;
 ++iParagraph)
 {
 delete m_paragraphArray[iParagraph];
 }
 ClearCopyArray();
 delete m_pNextFont;
}

The Word Application

[366]

The method OnNewDocument does the work of a constructor. It creates and initializes
the first paragraph with the standard system font and left alignment. The paragraph
is recalculated and added to the paragraph array. The first page is also defined.
It holds the new paragraph as its first and last paragraph (index 0). Note that this
method is only called when the users create a new document, not when they open
an existing document.

BOOL CWordDoc::OnNewDocument()
{
 Font defaultFont;
 Paragraph* pNewParagraph;
 check_memory(pNewParagraph =
 new Paragraph(defaultFont, ALIGN_LEFT));

 CClientDC dc(m_pView);
 m_pView->OnPrepareDC(&dc);

 pNewParagraph->Recalculate(&dc);
 m_paragraphArray.Add(pNewParagraph);
 Page page(0, 0);
 m_pageArray.Add(page);
 return CDocument::OnNewDocument();
}

The Serialize method reads from and writes to the file connected to the parameter
archive of the paragraph array. As this method is called by the Application
Framework every time the user loads or saves a document, we first have to call
Serialize in the MFC base class CDocument.

We cannot serialize the paragraph array itself, as it holds pointers to paragraph
objects, not the object themselves. Instead, we first read or write the size of the array,
and then we serialize the paragraphs one-by-one. When we read from the archive,
we have to create the paragraph first (that is why the paragraph needs a default
constructor), and then serialize it. Finally, we add it to the array.

void CWordDoc::Serialize(CArchive& archive)
{
 CDocument::Serialize(archive);

 if (archive.IsStoring())
 {
 int iSize = (int) m_paragraphArray.GetSize();
 archive << iSize;

 for (int iIndex = 0; iIndex < iSize; ++iIndex)
 {
 m_paragraphArray[iIndex]->Serialize(archive);
 }

Chapter 9

[367]

 }

 if (archive.IsLoading())
 {
 int iSize;
 archive >> iSize;

 for (int iCount = 0; iCount < iSize; ++iCount)
 {
 Paragraph* pParagraph;
 check_memory(pParagraph = new Paragraph());

 pParagraph->Serialize(archive);
 m_paragraphArray.Add(pParagraph);
 }
 }
}
m_pageArray.Serialize(archive);}

The methods KeyDown and ShiftKeyDown are called by the view class when the user
presses any of the special keys. They call the appropriate method to handle the key.

void CWordDoc::KeyDown(UINT uChar, CDC* pDC)
{
 switch (uChar)
 {
 case VK_LEFT:
 LeftArrowKey();
 break;

 case VK_RIGHT:
 RightArrowKey();
 break;

 // ...
 }

If the next font points at an object, we deallocate it. If m_pNextFont points at null, the
delete operator does nothing. We make the edit position of the first marked position
visible and update the caret.

 ������������������� delete m_pNextFont;
 m_pNextFont = NULL;
 MakeVisible();
 UpdateCaret();
}

void CWordDoc::ShiftKeyDown(UINT uChar, CDC* pDC)
{
 switch (uChar)

The Word Application

[368]

 {
 case VK_LEFT:
 ShiftLeftArrowKey();
 break;

 case VK_RIGHT:
 ShiftRightArrowKey();
 break;

 // ...

 }

 ������������������� delete m_pNextFont;
 m_pNextFont = NULL;

 MakeVisible();
 UpdateCaret();
}

When the user presses one of the arrow keys as well as the Page Up or Page Down
key without pressing the Shift key, we must make sure the application is in the edit
state. The method EnsureEditStatus takes care of that. If the user, on the other
hand, presses one of those keys together with the Shift key we must make sure the
application is in the mark state. The method EnsureMarkMode deals with that.

void CWordDoc::EnsureEditStatus()
{
 if (m_eWordState == WS_MARK)
 {
 RectSet repaintSet;
 GetRepaintSet(repaintSet, m_psFirstMark,
 m_psLastMark);
 m_eWordState = WS_EDIT;
 m_psEdit = m_psLastMark;
 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);
 }
}

void CWordDoc::EnsureMarkStatus()
{
 if (m_eWordState == WS_EDIT)
 {
 m_eWordState = WS_MARK;
 m_psFirstMark = m_psEdit;
 m_psLastMark = m_psEdit;
 }
}

Chapter 9

[369]

The method LeftArrowKey is called when the user presses the left arrow key. If
the caret position in not at the beginning of the paragraph, we just move it one step
to the left. If it is at the beginning, we move the caret to the end of the preceding
paragraph. If there is no preceding paragraph, nothing happens.

void CWordDoc::LeftArrowKey()
{
 EnsureEditStatus();

 if (m_psEdit.Character() > 0)
 {
 --m_psEdit.Character();
 }

 else if (m_psEdit.Paragraph() > 0)
 {
 Paragraph* pPreviousParagraph =
 m_paragraphArray[--m_psEdit.Paragraph()];
 m_psEdit.Character() = pPreviousParagraph->GetLength();
 }
}

The method ShiftLeftArrowKey is a bit more complicated than LeftArrowKey
above. First, we make sure the application is in the mark state and we get the set
of marked characters. Then we move the position of the last marked character one
step to the left unless it already is at the beginning of the paragraph. If it is, we set
the position to the last character of the preceding paragraph, if there is one. In both
cases, we need to update the marked area, and we call SymmetricDifference in order
to pick out only the characters that actually have been marked or unmarked. We do
not want to update the characters that were marked before and after the operation.
Finally, if this operation sets the first and last marked character equal, we change to
the edit state.

The methods RightArrowKey, ShiftRightArrowKey, UpArrowKey,
ShiftUpArrowKey, DownArrowKey, ShiftDownArrowKey, PageUpKey,
ShiftPageUpKey, PageDownKey, ShiftPageDownKey, HomeKey, ShiftHomeKey,
EndKey, and ShiftEndKey work in similar manners.

void CWordDoc::ShiftLeftArrowKey()
{
 EnsureMarkStatus();

 RectSet unmarkRepaintSet;
 GetRepaintSet(unmarkRepaintSet, m_psFirstMark,
 m_psLastMark);

 if (m_psLastMark.Character() > 0)
 {
 --m_psLastMark.Character();

The Word Application

[370]

 }
 else if (m_psLastMark.Paragraph() > 0)
 {
 Paragraph* pPreviousParagraph =
 m_paragraphArray[--m_psLastMark.Paragraph()];

 m_psLastMark.Character() =pPreviousParagraph->GetLength();
 }

 RectSet markRepaintSet;
 GetRepaintSet(markRepaintSet, m_psFirstMark,
 m_psLastMark);

 RectSet resultRepaintSet =
 RectSet::SymmetricDifference(unmarkRepaintSet,
 markRepaintSet);
 UpdateAllViews(NULL, 0, (CObject*) &resultRepaintSet);

 if (m_psFirstMark == m_psLastMark)
 {
 m_eWordState = WS_EDIT;
 m_psEdit = m_psFirstMark;
 }
}

The method ReturnKey is called when the user presses the return key. If the
application is in the mark state, we first have to remove the marked area and put
the application in the edit state. Then we split the paragraph and insert the new
paragraph into the paragraph array. Finally, we call UpdateParagraphAndPageArray
that updates the page and paragraph arrays. We do this because the operation
may affect the following paragraph and might move one or more paragraphs to
another page.

void CWordDoc::ReturnKey(CDC* pDC)
{
 if (m_eWordState == WS_MARK)
 {
 m_eWordState = WS_EDIT;
 m_psEdit = min(m_psFirstMark, m_psLastMark);
 RectSet repaintSet;
 DeleteText(repaintSet, pDC, m_psFirstMark,
 m_psLastMark);
 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);
 }
 Paragraph* pParagraph = m_paragraphArray
 [m_psEdit.Paragraph()];
 Paragraph* pNewParagraph =
 pParagraph->Split(m_psEdit.Character());
 pParagraph->Recalculate(pDC);
 pNewParagraph->Recalculate(pDC);

Chapter 9

[371]

 m_paragraphArray.InsertAt(++m_psEdit.Paragraph(),
 pNewParagraph);
 m_psEdit.Character() = 0;
 UpdateParagraphAndPageArray();
}

In the edit state, DeleteKey deletes the key of the current position if it is not at the
end of the paragraph. In that case, it instead merges the current paragraph with the
next one, if there is one. In the mark state, it deletes the marked text, which may
cover several paragraphs.

void CWordDoc::DeleteKey(CDC* pDC)
{
 switch (m_eWordState)
 {
 case WS_EDIT:
 {
 Paragraph* pParagraph = m_paragraphArray
 [m_psEdit.Paragraph()];

 if (m_psEdit.Character() < pParagraph->GetLength())
 {
 pParagraph->DeleteText(m_psEdit.Character(),
 m_psEdit.Character() + 1);

 RectSet repaintSet;
 pParagraph->Recalculate(pDC, &repaintSet);
 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);
 SetModifiedFlag();
 }

 else if (m_psEdit.Paragraph() <
 (m_paragraphArray.GetSize() - 1))
 {
 Paragraph* pNextParagraph = m_paragraphArray
 [m_psEdit.Paragraph() + 1];
 pParagraph->Append(pNextParagraph);

 RectSet repaintSet;
 pParagraph->Recalculate(pDC, &repaintSet);
 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);
 m_paragraphArray.RemoveAt(m_psEdit.Paragraph()+1);
 delete pNextParagraph;
 SetModifiedFlag();
 }
 }
 break;

 case WS_MARK:
 m_eWordState = WS_EDIT;

The Word Application

[372]

 m_psEdit = min(m_psFirstMark, m_psLastMark);
 RectSet repaintSet;
 DeleteText(repaintSet, pDC, m_psFirstMark,
 m_psLastMark);
 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);
 break;
 }

 UpdateParagraphAndPageArray();
}

The method CharDown is called every time the user presses a regular character. If
the character is not printable, nothing happens. Otherwise, if the text is marked, that
text is first removed. Thereafter, the character is added to the current paragraph, the
paragraph array is updated, and the next font is set to null.

void CWordDoc::CharDown(UINT uChar, CDC* pDC)
{
 if (isprint(uChar))
 {
 RectSet repaintSet;

 if (m_eWordState == WS_MARK)
 {
 DeleteText(repaintSet, pDC, m_psFirstMark,
 m_psLastMark);
 m_eWordState = WS_EDIT;
 m_psEdit = min(m_psFirstMark, m_psLastMark);
 }

 Paragraph* pParagraph = m_paragraphArray
 [m_psEdit.Paragraph()];
 pParagraph->AddChar(m_psEdit.Character(), uChar,
 m_pNextFont, m_eKeyboardState);
 pParagraph->Recalculate(pDC, &repaintSet);

 ++m_psEdit.Character();

 ������������������� delete m_pNextFont;
 m_pNextFont = NULL;

 ������������������SetModifiedFlag();
 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);

 UpdateParagraphAndPageArray();
 MakeVisible();
 UpdateCaret();
 }
}

Chapter 9

[373]

When the user clicks with the mouse, we first have to decide which paragraph they
hit. The method PointToParagraph traverses the paragraph array to find the correct
paragraph. If the user clicks beyond the last paragraph, the last one is returned.
Likewise, if the user clicks at the end of a page, beyond the last paragraph of the
page, the last paragraph of that page is returned.

int CWordDoc::PointToParagraph(const CPoint& ptMouse) const
{
 int iParagraphs = (int) m_paragraphArray.GetSize();
 for (int iParagraph = 0; iParagraph < iParagraphs;
 ++iParagraph)
 {
 Paragraph* pParagraph = m_paragraphArray[iParagraph];
 if (ptMouse.y < pParagraph->GetStartPos())
 {
 return iParagraph - 1;
 }
 }
 return iParagraphs - 1;
}

The method PointToChar returns the position of the clicked paragraph and
character index by calling PointToParagraph.

Position CWordDoc::PointToChar(const CPoint& ptMouse) const
{
 int iParagraph = PointToParagraph(ptMouse);
 Paragraph* pParagraph = m_paragraphArray[iParagraph];
 int iChar = pParagraph->PointToChar(ptMouse);
 return Position(iParagraph, iChar);
}

When the user presses the left button of the mouse, MouseDown is called. First, we
have to unmark any marked portion of the text. Then we set the application to the
mark state.

void CWordDoc::MouseDown(const CPoint& ptMouse)
{
 if (m_eWordState == WS_MARK)
 {
 m_eWordState = WS_EDIT;
 m_psEdit = m_psFirstMark;
 RectSet repaintSet;
 GetRepaintSet(repaintSet, m_psFirstMark, m_psLastMark);
 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);
 }
 m_eWordState = WS_MARK;
 m_psFirstMark = PointToChar(ptMouse);
 m_psLastMark = m_psFirstMark;

The Word Application

[374]

 ������������������� delete m_pNextFont;
 m_pNextFont = NULL;
 ��������������MakeVisible();
 UpdateCaret();
}

When the user moves the mouse with the left button pressed, MouseDrag is called.
We find the position of the mouse and if it differs from the last one, we update the
marked area.

void CWordDoc::MouseDrag(const CPoint& ptMouse)
{
 Position psNewLastMark = PointToChar(ptMouse);
 if (m_psLastMark != psNewLastMark)
 {
 RectSet unmarkRepaintSet;
 GetRepaintSet(unmarkRepaintSet, m_psFirstMark,
 m_psLastMark);
 m_psLastMark = psNewLastMark;
 RectSet markRepaintSet;
 GetRepaintSet(markRepaintSet, m_psFirstMark,
 m_psLastMark);
 RectSet resultRepaintSet =
 RectSet::SymmetricDifference(unmarkRepaintSet,
 markRepaintSet);
 UpdateAllViews(NULL, 0, (CObject*) &resultRepaintSet);
 MakeVisible();
 }
}

When the user releases the left button of the mouse, we just have to check the last
position. If it is the same as the first one (the user presses and releases the mouse
button on the same character), we change m_eWordState to the edit state.

void CWordDoc::MouseUp()
{
 if (m_psFirstMark == m_psLastMark)
 {
 m_eWordState = WS_EDIT;
 m_psEdit = m_psLastMark;
 }
 else
 {
 m_eWordState = WS_MARK;
 }

 MakeVisible();
 UpdateCaret();
}

Chapter 9

[375]

When the user double-clicks the mouse, the word hit by the mouse is marked.
We know the application is in the edit state and the correct character is noted
because a double-click is always preceded by calls to MouseDown and MouseUp. If the
mouse is on a word, we mark it and update its client area.

void CWordDoc::DoubleClick()
{
 RectSet repaintSet;
 Paragraph* pParagraph = m_paragraphArray
 [m_psEdit.Paragraph()];

 int iFirstChar, iLastChar;
 if (pParagraph->GetWord(m_psEdit.Character(), iFirstChar,
 iLastChar))
 {
 m_eWordState = WS_MARK;

 m_psFirstMark.Paragraph() = m_psEdit.Paragraph();
 m_psFirstMark.Character() = iFirstChar;

 m_psLastMark.Paragraph() = m_psEdit.Paragraph();
 m_psLastMark.Character() = iLastChar;

 RectSet repaintSet;
 GetRepaintSet(repaintSet, m_psFirstMark,
 m_psLastMark);
 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);

 MakeVisible();
 }
 UpdateCaret();
}

The method MakeVisible makes sure the caret (in the edit state) or the last marked
position (in the mark state) is visible in the view window by calling MakeVisible.

void CWordDoc::MakeVisible()
{
 switch (m_eWordState)
 {
 case WS_EDIT:
 {
 Paragraph* pParagraph = m_paragraphArray
 [m_psEdit.Paragraph()];
 CRect rcChar=pParagraph->CharToRect
 (m_psEdit.Character());
 m_pView->MakeVisible(rcChar);
 }
 break;
 case WS_MARK:

The Word Application

[376]

 Paragraph* pParagraph = m_paragraphArray
 [m_psLastMark.Paragraph()];
 CRect rcChar = pParagraph->CharToRect
 (m_psLastMark.Character());
 m_pView->MakeVisible(rcChar);
 break;
 }
}

The method UpdateCaret updates the visibility and position of the caret. In the edit
state, we extract the caret block from the current paragraph. If the keyboard is in the
insert state, the caret is set to a vertical bar with the size of one logical unit. It is later
set to the width of at least one pixel by OnUpdate in the view class. In the mark state,
we just hide the caret.

void CWordDoc::UpdateCaret()
{
 switch (m_eWordState)
 {
 case WS_EDIT:
 {
 Paragraph* pParagraph = m_paragraphArray
 [m_psEdit.Paragraph()];
 CRect rcCaret = pParagraph->GetCaretRect
 (m_psEdit.Character());
 m_pView->MakeVisible(rcCaret);

 if (m_eKeyboardState == KM_INSERT)
 {
 rcCaret.right = rcCaret.left + 1;
 }
 if (rcCaret.right >= PAGE_WIDTH)
 {
 rcCaret.left -= (rcCaret.right - PAGE_WIDTH);
 rcCaret.right = PAGE_WIDTH;
 }

 m_pView->MakeVisible(rcCaret);

 m_caret.SetAndShowCaret(rcCaret);
 }
 break;

 case WS_MARK:
 m_caret.HideCaret();
 }
}

Chapter 9

[377]

When a portion of the area becomes marked or unmarked, we need the areas of the
characters in question in order to repaint them. The method GetRepaintSet collects
the rectangles needed to be repainted. Remember that psFirst ����and psLast refers to
the chronological order they were set, not necessarily their order in the document.
Instead, psMin and psMax refer to their positions in the document.

void CWordDoc::GetRepaintSet(RectSet& repaintSet,
 Position psFirst, ���������������� Position psLast)
{
 Position psMin = min(psFirst, psLast);
 �������������������������������������� Position psMax = max(psFirst, psLast);
 if (psMin.Paragraph() == psMax.Paragraph())
 {
 Paragraph* pParagraph = m_paragraphArray
 [psMin.Paragraph()];
 pParagraph->GetRepaintSet(repaintSet, psMin.Character(),
 psMax.Character());
 }
 else
 {
 Paragraph* pMinParagraph = m_paragraphArray
 [psMin.Paragraph()];
 pMinParagraph->GetRepaintSet(repaintSet,
 psMin.Character());
 for (int iParagraph = psMin.Paragraph() + 1;
 iParagraph < psMax.Paragraph(); ++iParagraph)
 {
 Paragraph* pParagraph = m_paragraphArray[iParagraph];
 pParagraph->GetRepaintSet(repaintSet);
 }
 Paragraph* pMaxParagraph = m_paragraphArray
 [psMax.Paragraph()];
 pMaxParagraph->GetRepaintSet(repaintSet, 0,
 psMax.Character());
 }
}

The method DeleteText removes the text between the two positions. It is quite
complicated as we have several different special cases. Remember that psFirst ����and
psLast refers to the chronological order they were set, not necessarily their order in
the document. Instead, psMin and psMax refer to their positions in the document.

void CWordDoc::DeleteText(RectSet& repaintSet, CDC* pDC,
 Position psFirst, ���������������� Position psLast)
{
 Position psMin = min(psFirst, psLast);
 �������������������������������������� Position psMax = max(psFirst, psLast);

The Word Application

[378]

If both the character positions are at the beginning of their paragraphs (the positions
still refer to different paragraphs), we simply remove the paragraphs in between.

 if ((psMin.Character() == 0) && (psMax.Character() == 0))
 {
 for (int iParagraph = psMin.Paragraph();
 iParagraph < psMin.Paragraph(); ++iParagraph)
 {
 delete m_paragraphArray[iParagraph];
 }

 m_paragraphArray.RemoveAt(psMin.Paragraph(),
 psMax.Paragraph() - psMin.Paragraph());
 }

If the last character position of the last paragraph is zero, and the last paragraph is
the next one, we remove the first up until the last position in the next paragraph.

 else if (psMax.Character() == 0)
 {
 if ((psMin.Paragraph() + 1) == psMax.Paragraph())
 {
 Paragraph* pMinParagraph = m_paragraphArray
 [psMin.Paragraph()];
 pMinParagraph->DeleteText(psMin.Character());

 Paragraph* pMaxParagraph = m_paragraphArray
 [psMax.Paragraph()];
 pMinParagraph->Append(pMaxParagraph);
 m_paragraphArray.RemoveAt(psMax.Paragraph());
 pMinParagraph->Recalculate(pDC, &repaintSet);
 }

If the last character position of the last paragraph is zero, and the last paragraph is
not the next one, we remove from the first position in the first paragraph and up to
the last position in the last paragraph as well as the whole paragraphs in between.

 else
 {
 Paragraph* pMinParagraph = m_paragraphArray
 [psMin.Paragraph()];

 pMinParagraph->DeleteText(psMax.Character());
 pMinParagraph->Recalculate(pDC, &repaintSet);

 for (int iParagraph = psMin.Paragraph() + 1;
 iParagraph <= psMin.Paragraph(); ++iParagraph)
 {
 delete m_paragraphArray[iParagraph];

Chapter 9

[379]

 }

 m_paragraphArray.RemoveAt(psMin.Paragraph() + 1,
 psMax.Paragraph() - psMin.Paragraph() + 1);
 }
 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);
 }

If the marked area does not start at the beginning of the paragraph, and the
marked area is restricted to the same paragraph, we just delete the marked text in
that paragraph.

 else
 {
 if (psMin.Paragraph() == psMax.Paragraph())
 {
 Paragraph* pParagraph = m_paragraphArray
 [psMin.Paragraph()];

 ���pParagraph->DeleteText(psMin.Character(),
 psMax.Character());
 �� pParagraph->Recalculate(pDC, &repaintSet);
 }

If the marked area does not start at the beginning of the paragraph, and the marked
area is not restricted to the same paragraph, we delete the text in the first and last
paragraph as well as the paragraphs in between.

 else
 {
 Paragraph* pMinParagraph = m_paragraphArray
 [psMin.Paragraph()];
 Paragraph* pMaxParagraph = m_paragraphArray
 [psMax.Paragraph()];
 pMinParagraph->DeleteText(psMin.Character());

 if (psMax.Character() == pMaxParagraph->GetLength())
 {
 pMaxParagraph->DeleteText(0, psMax.Character());
 }

 else
 {
 pMaxParagraph->DeleteText(0, psMax.Character() - 1);
 }

 pMaxParagraph->ClearRectArray();

 pMinParagraph->Append(pMaxParagraph);
 pMinParagraph->Recalculate(pDC, &repaintSet);

The Word Application

[380]

 for (int iParagraph = psMin.Paragraph() + 1;
 iParagraph < psMin.Paragraph(); ++iParagraph)
 {
 delete m_paragraphArray[iParagraph];
 }

 m_paragraphArray.RemoveAt(psMin.Paragraph() + 1,
 psMax.Paragraph() - psMin.Paragraph());
 }
 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);
 }
}

When a paragraph has been altered in some way, we need to recalculate and repaint
the altered part of the paragraph. However, we need also check the rest of the
paragraphs and repaint the ones that have been shifted on the page. Moreover, we
need to examine the pages and update the first and last paragraph on each page.

void CWordDoc::UpdateParagraphAndPageArray()
{
 int iOldPages = (int) m_pageArray.GetSize();
 m_pageArray.RemoveAll();

 int iPageHeight = 0, iStartParagraph = 0;
 int iParagraphes = (int) m_paragraphArray.GetSize();

We traverse the paragraphs and divide them into pages of the document to examine
their height.

 for (int iParagraph = 0; iParagraph < iParagraphes;
 ++iParagraph)
 {
 Paragraph* pParagraph = m_paragraphArray[iParagraph];
 int iHeight = pParagraph->GetHeight();

 if ((iPageHeight + iHeight) <= PAGE_HEIGHT)
 {
 iPageHeight += iHeight;
 }

When the current height exceeds the height of the page, we start a new page. If this
page holds at least one paragraph, we add them to the page.

 else if (iStartParagraph < iParagraph)
 {
 Page page(iStartParagraph, iParagraph - 1);
 m_pageArray.Add(page);

 iStartParagraph = iParagraph;
 iPageHeight = iHeight;
 }

Chapter 9

[381]

If a single paragraph is higher than the page, we include it on the page and start the
new page with the next paragraph.

 else
 {
 Page page(iStartParagraph, iStartParagraph);
 m_pageArray.Add(page);

 iStartParagraph = iParagraph + 1;
 iPageHeight = iHeight;
 }
 }
 Page page(iStartParagraph, iParagraphes - 1);
 m_pageArray.Add(page);

The repaint set is used to collect the parts of the documents area that need to be
repainted. For each page, we traverse the paragraphs and set their start position.

 RectSet repaintSet;
 int iNewPages = (int) m_pageArray.GetSize();

 for (int iPage = 0; iPage < iNewPages; ++iPage)
 {
 int iPageHeight = iPage * PAGE_HEIGHT;

 Page page = m_pageArray[iPage];
 int iFirstParagraph = page.GetFirstParagraph();
 int iLastParagraph = page.GetLastParagraph();

 for (int iParagraph = iFirstParagraph;
 iParagraph <= iLastParagraph; ++iParagraph)
 {
 Paragraph* pParagraph = m_paragraphArray[iParagraph];
 int iHeight = pParagraph->GetHeight();
 int yPos = pParagraph->GetStartPos();

If the previous start position of the paragraphs is being updated, we set the new start
position and add the paragraphs' area to the repaint set.

 if (iPageHeight != yPos)
 {
 CRect rcOldParagraph(0, yPos, PAGE_WIDTH,
 yPos + iHeight);
 repaintSet.Add(rcOldParagraph);
 CRect rcNewParagraph(0, iPageHeight, PAGE_WIDTH,
 iPageHeight + iHeight);
 repaintSet.Add(rcNewParagraph);
 pParagraph->SetStartPos(iPageHeight);
 }
 iPageHeight += iHeight;
 }

The Word Application

[382]

For each page, we add the rest of the page to the re-paint set.

 CRect rcPageRest(0, iPageHeight, PAGE_WIDTH,
 (iPage + 1) * PAGE_HEIGHT);
 repaintSet.Add(rcPageRest);
 }

If the number of pages has decreased, we need to repaint the rest of the document.

 if (iNewPages < iOldPages)
 {
 CRect rcRestDocument(0, iNewPages * PAGE_HEIGHT,
 PAGE_WIDTH, iOldPages * PAGE_HEIGHT);
 repaintSet.Add(rcRestDocument);
 }

If the number of pages has been changed, we need to notify OnUpdate in the
view class to reset the vertical scroll bars. In that case, the whole document will
be repainted.

 if (iNewPages != iOldPages)
 {
 UpdateAllViews(NULL, (LPARAM) iNewPages);
 }

If the number of pages are unchanged, we only update the areas of the repaint set.

 else if (!repaintSet.IsEmpty())
 {
 UpdateAllViews(NULL, 0, &repaintSet);
 }
}

The method OnUpdateAlignLeft sets a radio button on the current alignment
menu item. The methods OnUpdateAlignCenter, OnUpdateAlignRight, ����and
OnUpdateAlignJustifed work in the same way. They simply call IsAlignment to
check the current alignment.

void CWordDoc::OnUpdateAlignLeft(CCmdUI *pCmdUI)
{
 pCmdUI->SetRadio(IsAlignment(ALIGN_LEFT));
}

In the edit state, IsAlignment checks whether the current paragraph has the
given alignment. In the mark state, it checks that all partly or completely marked
paragraphs have the given alignment. This implies that if several paragraphs are
marked and not all of them have the same alignment, no menu item is checked.

Chapter 9

[383]

BOOL CWordDoc::IsAlignment(Alignment eAlignment) const
{
 switch (m_eWordState)
 {
 case WS_EDIT:
 {
 Paragraph* pParagraph =
 m_paragraphArray[m_psEdit.Paragraph()];
 return (pParagraph->GetAlignment() == eAlignment);
 }

 case WS_MARK:
 for (int iParagraph = m_psFirstMark.Paragraph();
 iParagraph <= m_psLastMark.Paragraph();
 ++iParagraph)
 {
 Paragraph* pParagraph = m_paragraphArray[iParagraph];

 if (pParagraph->GetAlignment() != eAlignment)
 {
 return FALSE;
 }
 }
 return TRUE;
 }
 return TRUE;
}

The method OnAlignLeft is called when the user choses an alignment. The methods
OnAlignCenter, OnAlignRight, and OnAlignJustified work in the same way.
They all call SetAlignment.

void CWordDoc::OnAlignLeft()
{
 SetAlignment(ALIGN_LEFT);
}

In the edit state, SetAlignment sets the given alignment to the current paragraph.
In the mark state, it traverses through the paragraphs and gives them the given
alignment one by one.

void CWordDoc::SetAlignment(Alignment eAlignment)
{
 CClientDC dc(m_pView);
 m_pView->OnPrepareDC(&dc);
 switch (m_eWordState)
 {

The Word Application

[384]

In the edit state, we just set the alignment of the current paragraph. Remember that
this method can only be called when the paragraph has another alignment due to a
previous call to one of the update methods above.

 case WS_EDIT:
 {
 Paragraph* pParagraph = m_paragraphArray
 [m_psEdit.Paragraph()];

 pParagraph->SetAlignment(eAlignment);
 pParagraph->Recalculate(&dc);

 int iHeight = pParagraph->GetHeight();
 int yPos = pParagraph->GetStartPos();

 CRect rcParagraph(0, yPos, PAGE_WIDTH,
 yPos + iHeight);
 RectSet repaintSet;
 repaintSet.Add(rcParagraph);
 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);

 MakeVisible();
 UpdateCaret();
 }
 break;

In the mark state, we traverse the marked paragraphs and set the alignment for those
who have not already been set to the alignment in question. Remember that this
method can only be called if at least one paragraph is not already set to the alignment
in question.

 case WS_MARK:
 RectSet repaintSet;

 for (int iParagraph = m_psFirstMark.Paragraph();
 iParagraph <= m_psLastMark.Paragraph();
 ++iParagraph)
 {
 Paragraph* pParagraph = m_paragraphArray[iParagraph];
 if (pParagraph->GetAlignment() != eAlignment)
 {
 pParagraph->SetAlignment(eAlignment);
 pParagraph->Recalculate(&dc);
 int iHeight = pParagraph->GetHeight();
 int yPos = pParagraph->GetStartPos();
 CRect rcParagraph(0, yPos, PAGE_WIDTH,
 yPos + iHeight);
 repaintSet.Add(rcParagraph);
 }
 }

Chapter 9

[385]

 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);
 UpdateCaret();
 break;
 }
 SetModifiedFlag();
}

The cut menu item will be enabled when the application is in the edit state; that is,
when the user has marked a portion of the text. The method OnCut is quite simple, it
just copies the marked area into the copy buffer and then deletes it. Note that we do
not have to check whether the application is in the edit or mark state. The cut menu
item can only be chosen when it is enabled, and the condition is that the application
is in the mark state.

void CWordDoc::OnUpdateCut(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_eWordState == WS_MARK);
}

void CWordDoc::OnCut()
{
 OnCopy();

 CClientDC dc(m_pView);
 m_pView->OnPrepareDC(&dc);
 DeleteKey(&dc);
}

The method OnUpdateCopy works in the same way as OnUpdateCut, it enables
the copy menu item when the application is in the mark state. The method
ClearCopyArray deallocates the paragraphs in the copy buffer and clears the
copy array.

void CWordDoc::OnUpdateCopy(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_eWordState == WS_MARK);
}
void CWordDoc::ClearCopyArray()
{
 int iParagraphs = (int) m_copyArray.GetSize();
 for (int iParagraph = 0; iParagraph < iParagraphs;
 ++iParagraph)
 {
 delete m_copyArray[iParagraph];
 }
 m_copyArray.RemoveAll();
}

The Word Application

[386]

Similar to OnCut, OnCopy is called only when the application is in the mark state.
First, we clear the copy buffer array and determine the minimum and maximum of
the first and last marked character. Remember that psFirst ����and psLast refers to the
chronological order they were set, and not necessarily their order in the document.
Instead, psMin and psMax refer to their positions in the document.

Then we have two cases to consider. With only one paragraph marked, we simply
extract the marked text from that paragraph and add it to the copy buffer array. If at
least two paragraphs are marked, we extract the marked text from the first and last
one. The paragraphs in between (if any) are to be completely marked, so we just copy
them into the copy buffer array.

void CWordDoc::OnCopy()
{
 ClearCopyArray();
 Position psMin = min(m_psFirstMark, m_psLastMark);
 Position psMax = max(m_psFirstMark, m_psLastMark);

 CClientDC dc(m_pView);
 m_pView->OnPrepareDC(&dc);

 if (psMin.Paragraph() == psMax.Paragraph())
 {
 Paragraph* pParagraph = m_paragraphArray
 [psMin.Paragraph()];
 Paragraph* pCopyParagraph = pParagraph->ExtractText
 (psMin.Character(), psMax.Character());
 m_copyArray.Add(pCopyParagraph);
 }

 else
 {
 Paragraph* pMinParagraph = m_paragraphArray
 [psMin.Paragraph()];
 Paragraph* pCopyMinParagraph =
 pMinParagraph->ExtractText(psMin.Character());
 m_copyArray.Add(pCopyMinParagraph);
 for (int iParagraph = psMin.Paragraph() + 1;
 iParagraph < psMax.Paragraph(); ++iParagraph)
 {
 Paragraph* pParagraph = m_paragraphArray[iParagraph];
 Paragraph* pCopyParagraph;
 check_memory(pCopyParagraph =
 new Paragraph(*pParagraph));
 m_copyArray.Add(pCopyParagraph);
 }

Chapter 9

[387]

 Paragraph* pMaxParagraph =
 m_paragraphArray[psMax.Paragraph()];
 Paragraph* pCopyMaxParagraph = pMaxParagraph->ExtractText
 (0,psMax.Character());
 m_copyArray.Add(pCopyMaxParagraph);
 }
}

Unlike the cut and copy menu item, the paste menu item can be called when the
application is in the edit as well as the mark state. The only condition is that the copy
buffer array is non-empty.

void CWordDoc::OnUpdatePaste(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(!m_copyArray.IsEmpty());
}

Just as when we copied the text, we have two cases to consider when we paste it. If
the copy buffer array consists of only one paragraph, we just insert it and update the
current caret position. Otherwise, we split the current paragraph into two halves and
insert the copied paragraphs between the halves, merging the first part of the split
paragraph with the first paragraph in the copy list (m_copyArray). In the same way,
we merge the last paragraph in the copy list to the second half of the split paragraph.

void CWordDoc::OnPaste()
{
 CClientDC dc(m_pView);
 m_pView->OnPrepareDC(&dc);

 RectSet repaintSet;

If the application is in the mark state, we delete the marked text and put the
application in the edit state.

 if (m_eWordState == WS_MARK)
 {
 DeleteText(repaintSet, &dc, m_psFirstMark,
 m_psLastMark);

 m_eWordState = WS_EDIT;
 m_psEdit = min(m_psFirstMark, m_psFirstMark);
 }

 Paragraph* pEditParagraph =
 m_paragraphArray[m_psEdit.Paragraph()];
 int iSize = (int) m_copyArray.GetSize();

The Word Application

[388]

If the copy buffer holds only one paragraph, we insert it at the current edit position.

 if (iSize == 1)
 {
 Paragraph* pCopyParagraph = m_copyArray[0];

 pEditParagraph->Insert(m_psEdit.Character(),
 pCopyParagraph);

 pEditParagraph->Recalculate(&dc, &repaintSet);

 m_psEdit.Character() += pCopyParagraph->GetLength();
 }

If the copy buffer holds more than one paragraph, we split the current paragraph
into two halves and insert the copy list between them.

 else
 {
 Paragraph* pLastParagraph =
 pEditParagraph->Split(m_psEdit.Character());
 Paragraph* pCopyParagraph = m_copyArray[0];

 pEditParagraph->Append(pCopyParagraph);
 pEditParagraph->Recalculate(&dc, &repaintSet);

 for (int iParagraph = iSize - 2; iParagraph > 0;
 --iParagraph)
 {
 Paragraph* pCopyParagraph = m_copyArray[iParagraph];
 Paragraph* pInsertParagraph;
 check_memory(pInsertParagraph =
 new Paragraph(*pCopyParagraph));
 m_paragraphArray.InsertAt(m_psEdit.Paragraph() + 1,
 pInsertParagraph);
 }

 pCopyParagraph = m_copyArray[iSize - 1];
 Paragraph* pInsertParagraph;
 check_memory(pInsertParagraph =
 new Paragraph(*pCopyParagraph));

 m_psEdit.Character() = pInsertParagraph->GetLength();
 pInsertParagraph->Append(pLastParagraph);
 pInsertParagraph->Recalculate(&dc);
 delete pLastParagraph;

 m_psEdit.Paragraph() += iSize - 1;
 m_paragraphArray.InsertAt(m_psEdit.Paragraph(),
 pInsertParagraph);
 }

Chapter 9

[389]

Finally, we update the affected characters and the paragraph array. We also make
the current position visible and update the caret.

 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);
 UpdateParagraphAndPageArray();
 MakeVisible();
 UpdateCaret();
}

The method OnFont has no update method because the user can change the font. We
initialize the font dialog with a default font. In the edit state, we initialize the dialog
with m_nextFont. In the mark state, we choose the font of the first marked character.

void CWordDoc::OnFont()
{
 switch (m_eWordState)
 {

 case WS_EDIT:
 {
 Font defaultFont;

 if (m_pNextFont != NULL)
 {
 defaultFont = *m_pNextFont;
 }

 else
 {
 Paragraph* pParagraph =
 m_paragraphArray[m_psEdit.Paragraph()];
 ��������������������������������� defaultFont = pParagraph->GetFont
 (m_psEdit.Character());
 �}

 LOGFONT oldLogFont = (LOGFONT) defaultFont;
 CFontDialog fontDialog(&oldLogFont);

 if (fontDialog.DoModal() == IDOK)
 {
 LOGFONT newLogFont;
 ���������������������������������������fontDialog.GetCurrentFont(&newLogFont);
 delete m_pNextFont;
 ��������������������������������� Font newFont = (Font) newLogFont;
 check_memory(m_pNextFont = new Font(newFont));
 }
 }
 break;

 case WS_MARK:

The Word Application

[390]

 Paragraph* pParagraph =
 m_paragraphArray[m_psFirstMark.Paragraph()];
 ������������������� Font defaultFont =
 pParagraph->GetFont(m_psFirstMark.Character());
 ��� LOGFONT oldLogFont = (LOGFONT) defaultFont;
 CFontDialog fontDialog(&oldLogFont);

 if (fontDialog.DoModal() == IDOK)
 {
 LOGFONT newLogFont;
 fontDialog.GetCurrentFont(&newLogFont);
 ��������������������������������� Font newFont = (Font) newLogFont;
 Position psMin = min(m_psFirstMark, m_psLastMark);
 �� Position psMax = max(m_psFirstMark, m_psLastMark);

 CClientDC dc(m_pView);
 m_pView->OnPrepareDC(&dc);

 RectSet repaintSet;

If only one paragraph is marked, we set the new font on its marked part.

 if (psMin.Paragraph() == psMax.Paragraph())
 {
 Paragraph* pParagraph =
 m_paragraphArray[psMin.Paragraph()];
 ��� pParagraph->SetFont(newFont, psMin.Character(),
 psMax.Character());
 �� pParagraph->Recalculate(&dc, &repaintSet);
 }

If at least two paragraphs are marked, we set the new font on the marked part of the
first and last paragraphs and on the whole paragraphs in between (if any).

 else
 {
 Paragraph* pFirstParagraph =
 m_paragraphArray[psMin.Paragraph()];
 pFirstParagraph->SetFont(newFont,
 psMin.Character());
 pFirstParagraph->Recalculate(&dc, &repaintSet);
 for (int iParagraph = psMin.Paragraph() + 1;
 iParagraph < psMax.Paragraph() - 1;
 ++iParagraph)
 {
 Paragraph* pParagraph =
 m_paragraphArray[iParagraph];
 pParagraph->SetFont(newFont);

Chapter 9

[391]

 pParagraph->Recalculate(&dc, &repaintSet);
 }

 Paragraph* pLastParagraph =
 m_paragraphArray[psMin.Paragraph()];
 ����������������������������������� pLastParagraph->SetFont(newFont, 0,
 psMax.Character());
 �� pLastParagraph->Recalculate(&dc, &repaintSet);
 }

 UpdateAllViews(NULL, 0, (CObject*) &repaintSet);
 UpdateParagraphAndPageArray();
 MakeVisible();
 UpdateCaret();
 }
 break;
 }
}

The View Class
The view class CWordView has only two fields. The field m_pWordDoc is a pointer to
the document class object. Similar to the Calc application, we need to keep track of
double-clicks. The field m_bDoubleclick is first set to false when the user clicks the
mouse key, and then set to true if is followed by a double-click. When the user drags
the mouse, we note the first and last position. However, in the case of a double-click,
a word will be marked, and we should not finish the marking process by calling
MouseUp in the document class.

WordView.h
const int LINE_WIDTH = 500;
const int LINE_HEIGHT = 500;

class CWordView : public CView
{
 private:
 DECLARE_DYNCREATE(CWordView)
 DECLARE_MESSAGE_MAP()
 CWordView();

 public:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

 virtual void OnInitialUpdate();
 virtual void OnPrepareDC(CDC* pDC,
 CPrintInfo* pInfo = NULL);

 afx_msg void OnSize(UINT uType, int cxClient,

The Word Application

[392]

 int cyClient);

 afx_msg void OnSetFocus(CWnd* pOldWnd);
 afx_msg void OnKillFocus(CWnd* pNewWnd);

 afx_msg void OnVScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar);
 afx_msg void OnHScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar);

 afx_msg void OnLButtonDown(UINT uFlags, CPoint ptMouse);
 afx_msg void OnMouseMove(UINT uFlags, CPoint ptMouse);
 afx_msg void OnLButtonUp(UINT uFlags, CPoint ptMouse);
 afx_msg void OnLButtonDblClk(UINT nFlags, CPoint ptMouse);

 void MakeVisible(CRect rcArea);
 afx_msg void OnKeyDown(UINT nChar, UINT nRepCnt,
 UINT nFlags);
 afx_msg void OnChar(UINT nChar, UINT nRepCnt,
 UINT nFlags);
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnUpdate(CView* pSender, LPARAM lHint,
 CObject* pHint);

 afx_msg void OnPaint();
 virtual void OnPrint(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnDraw(CDC* pDC);

 private:
 CWordDoc* m_pWordDoc;
 BOOL m_bDoubleClick;
};

The method OnCreate is called after the view has been created but before it has been
shown. The pointer to the document class object is set and tested. Remember that an
application can have several views, but only one document.

CWordView.cpp
int CWordView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CView::OnCreate(lpCreateStruct) == -1)
 {
 return -1;
 }

 m_pWordDoc = (CWordDoc*) m_pDocument;
 check(m_pWordDoc != NULL);
 ASSERT_VALID(m_pWordDoc);
 m_pWordDoc->OnSetFocus(this);
 return 0;
}

Chapter 9

[393]

The method OnInitialUpdate is called once after the view has been created
and shown. Its task is to initialize the scroll bars. The method GetPageNum in the
document class returns the number of pages of this document. A document always
has at least one page.

void CWordView::OnInitialUpdate()
{
 SCROLLINFO scrollInfo;

 scrollInfo.fMask = SIF_RANGE | SIF_POS;
 scrollInfo.nPos = 0;
 scrollInfo.nMin = 0;
 scrollInfo.nMax = PAGE_WIDTH;
 SetScrollInfo(SB_HORZ, &scrollInfo);

 scrollInfo.fMask = SIF_RANGE | SIF_POS;
 scrollInfo.nPos = 0;
 scrollInfo.nMin = 0;
 scrollInfo.nMax = (m_pWordDoc->GetPageNum()*PAGE_HEIGHT)-1;
 SetScrollInfo(SB_VERT, &scrollInfo);

 m_pWordDoc->UpdateCaret();
 CView::OnInitialUpdate();
}

The method OnPrepareDC is called directly after a device context object has been
created. Its task is to set the relation between the logical and device coordinates. We
choose the isotropic mode. This implies that the units are equal in the horizontal and
vertical directions (otherwise, circles would not be round). We call GetDeviceCaps
to get the size of the screen in millimeters (HORZSIZE and VERTSIZE) and in pixels
(HORZRES and VERTRES).

We then set the screen in hundredths of millimeters to correspond to the screen in
pixels. This gives that one logical unit is one hundredth millimeters. We also set
the origin of the client area to be at the bottom left corner by looking up the current
positions of the scroll bars.

void CWordView::OnPrepareDC(CDC* pDC, CPrintInfo* /* pInfo */)
{
 pDC->SetMapMode(MM_ISOTROPIC);

 CSize szWindow(100 * pDC->GetDeviceCaps(HORZSIZE),
 100 * pDC->GetDeviceCaps(VERTSIZE));
 CSize szViewport(pDC->GetDeviceCaps(HORZRES),
 pDC->GetDeviceCaps(VERTRES));

 pDC->SetWindowExt(szWindow);
 pDC->SetViewportExt(szViewport);

 SCROLLINFO scrollInfo;

The Word Application

[394]

 GetScrollInfo(SB_HORZ, &scrollInfo, SIF_POS);
 int xOrg = scrollInfo.nPos;

 GetScrollInfo(SB_VERT, &scrollInfo, SIF_POS);
 int yOrg = scrollInfo.nPos;
 pDC->SetWindowOrg(xOrg, yOrg);
}

The method OnSize is called every time the user changes the size of the window. We
look up the size of the client area and set the size of the horizontal and vertical scroll
bars to reflect the size of the visible client area compared to the size of the whole
document. First, we translate the size of the client area from device to logical units.
Then we set the size of a page at the scroll bars.

void CWordView::OnSize(UINT /* uType */, int cxClient,
 int cyClient)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);

 CSize szClient(cxClient, cyClient);
 dc.DPtoLP(&szClient);

 SCROLLINFO scrollInfo;
 scrollInfo.fMask = SIF_PAGE;
 scrollInfo.nPage = szClient.cx;
 SetScrollInfo(SB_HORZ, &scrollInfo);
 scrollInfo.fMask = SIF_PAGE;
 scrollInfo.nPage = szClient.cy;
 SetScrollInfo(SB_VERT, &scrollInfo);
}

The method OnVScroll is called every time the user scrolls the vertical bar. It is also
called when the user presses some special key, see OnKeyDown below. The scroll bar
and the client area are updated due to the changes. In order to update the area fast,
we call the MFC method ScrollWindow. It moves a part of the window and repaints
the area. The method OnHScroll works in a similar manner.

Chapter 9

[395]

Area to be moved downwards.

Area to be overpainted.

Area to be repainted.

Moved area.

void CWordView::OnVScroll(UINT uSBCode, UINT /* yThumbPos */,
 CScrollBar* /* pScrollBar */)
{
 SCROLLINFO scrollInfo;
 GetScrollInfo(SB_VERT, &scrollInfo);
 int yScrollPos = scrollInfo.nPos;

 switch (uSBCode)
 {

The Word Application

[396]

The top scroll position is always zero. The bottom position, however, is decided by
the size of the client area (scrollInfo.nPage) because the scroll position is the top
position of the visible part of the document.

 case SB_TOP:
 yScrollPos = 0;
 break;

 case SB_BOTTOM:
 yScrollPos = scrollInfo.nMax - scrollInfo.nPage + 1;
 break;

 case SB_LINEUP:
 yScrollPos -= LINE_HEIGHT;
 break;

 case SB_LINEDOWN:
 yScrollPos += LINE_HEIGHT;
 break;

Note the difference between scrolling a line and a page, the line is of constant
height (LINE_HEIGHT) while the page height depends on the size of the client area
(scrollInfo.nPage).

 case SB_PAGEUP:
 yScrollPos -= scrollInfo.nPage;
 break;

 case SB_PAGEDOWN:
 yScrollPos += scrollInfo.nPage;
 break;

When the user grabs and moves the scroll thumb, we can track the new position with
scrollInfo.nTrackPos.

 case SB_THUMBPOSITION:
 yScrollPos = scrollInfo.nTrackPos;
 break;
 }

We have to check that the new position does not exceed the limits of the
scroll thumb.

 yScrollPos = max(yScrollPos, 0);
 yScrollPos = min(yScrollPos, scrollInfo.nMax –
 (int) scrollInfo.nPage + 1);

Chapter 9

[397]

If the scroll position has been altered, we scroll the window the altered distance.

 if (yScrollPos != scrollInfo.nPos)
 {
 CSize szDistance(0, scrollInfo.nPos - yScrollPos);
 scrollInfo.fMask = SIF_POS;
 scrollInfo.nPos = yScrollPos;
 SetScrollInfo(SB_VERT, &scrollInfo);

We need to translate the distance into device coordinates before we scroll
the window.

 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.LPtoDP(&szDistance);
 ScrollWindow(0, szDistance.cy);
 UpdateWindow();
 }
}

The method OnLButtonDown is called every time the user presses the left button
of the mouse. The position of the mouse is given in device units that have to be
translated into logical units. For that, we need a device context. It is prepared and
then used to translate the device units into logical units. Finally, the document object
is notified.

void CWordView::OnLButtonDown(UINT /* uFlags */,
 CPoint ptMouse)
{
 m_bDoubleClick = FALSE;

 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DPtoLP(&ptMouse);

 m_pWordDoc->MouseDown(ptMouse);
}

The method OnMouseMove first checks whether the user moves the mouse at the same
time as they press the left button. It is called mouse dragging and that is the only
movement that interests us. We must also check that the user has not double-clicked.
In that case, there is a possibility that a word is marked by now, and if we allow the
document to deal with this movement, the word will be partly unmarked.

void CWordView::OnMouseMove(UINT uFlags, CPoint ptMouse)
{
 BOOL bLeftButtonDown = (uFlags & MK_LBUTTON);

The Word Application

[398]

 if (bLeftButtonDown && !m_bDoubleClick)
 {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DPtoLP(&ptMouse);

 m_pWordDoc->MouseDrag(ptMouse);
 }
}

The method OnLButtonUp is called when the user releases the mouse button, and it
calls MouseUp in the document class.

void CWordView::OnLButtonUp(UINT /* uFlags */,
 CPoint /* ptMouse */)
{
 m_pWordDoc->MouseUp();
}

The method OnLButtonDblClk is called when the user double-clicks. It sets the
double-click field and calls DoubleClick in the document class.

void CWordView::OnLButtonDblClk(UINT /* nFlags */,
 CPoint /* ptMouse */)
{
 m_bDoubleClick = TRUE;
 m_pWordDoc->DoubleClick();
}

The method MakeVisible makes sure the given area is visible in the window. If
necessary, it moves the scroll bar positions.

void CWordView::MakeVisible(CRect rcArea)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);

We find the size of the document in device units. If necessary, we will update the
area of the document, not the whole client area, in order to avoid the gray area to the
right of the document being updated.

 int iPageNum = m_pWordDoc->GetPageNum();
 CRect rcDocument(0, 0, PAGE_WIDTH, iPageNum * PAGE_HEIGHT);
 dc.LPtoDP(rcDocument);

We find the first and last position of the visible part of the document in the x
direction. If the given area is to the left of the visible part of the client area, we simply
change the scroll position.

Chapter 9

[399]

 SCROLLINFO scrollInfo;
 GetScrollInfo(SB_HORZ, &scrollInfo);
 int xFirst = scrollInfo.nPos;
 int xPage = scrollInfo.nPage;
 int xLast = xFirst + xPage;

 if (rcArea.left < xFirst)
 {
 SetScrollPos(SB_HORZ, rcArea.left);
 InvalidateRect(rcDocument);
 UpdateWindow();
 }

If the given area is to the right of the visible part of the client area, we also change the
scroll position. We need to add a distance to the scroll bar position. In order to make
that distance as small as possible, we take the difference between the right corner of
the given area and the client area.

 if (rcArea.right > xLast)
 {
 SetScrollPos(SB_HORZ, xFirst + (rcArea.right - xLast));
 InvalidateRect(rcDocument);
 UpdateWindow();
 }

The vertical scroll bar is changed in a way similar to the horizontal bar above.

 GetScrollInfo(SB_VERT, &scrollInfo);
 int yFirst = scrollInfo.nPos;
 int yPage = scrollInfo.nPage;
 int yLast = yFirst + yPage;

 if (rcArea.top < yFirst)
 {
 SetScrollPos(SB_VERT, rcArea.top);
 InvalidateRect(rcDocument);
 UpdateWindow();
 }

 if (rcArea.bottom > yLast)
 {
 SetScrollPos(SB_VERT, yFirst + (rcArea.bottom - yLast));
 InvalidateRect(rcDocument);
 UpdateWindow();
 }
}

The Word Application

[400]

The method OnKeyDown is called every time the user presses a key. The application
behaves differently if the shift or control key is pressed at the same time, so first
we have to decide whether they are pressed by calling the Win32 API function
GetKeyState. It returns a value less than zero if the given key is pressed.

When the control key is pressed, the view is being scrolled by calling OnVScroll or
OnHScroll without notifying the document object. Otherwise, one of the document
class methods KeyDown and ShiftKeyDown are called, depending on whether the
Shift key was pressed.

void CWordView::OnKeyDown(UINT uChar, UINT /* uRepCnt */,
 UINT /* uFlags */)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);

 BOOL bShiftKeyDown = (::GetKeyState(VK_SHIFT) < 0);
 BOOL bControlKeyDown = (::GetKeyState(VK_CONTROL) < 0);

 if (bControlKeyDown)
 {
 switch (uChar)
 {

 case VK_PRIOR:
 OnVScroll(SB_PAGEUP, 0, NULL);
 break;

 case VK_NEXT:
 OnVScroll(SB_PAGEDOWN, 0, NULL);
 break;

 case VK_UP:
 OnVScroll(SB_LINEUP, 0, NULL);
 break;

 case VK_DOWN:
 OnVScroll(SB_LINEDOWN, 0, NULL);
 break;
 case VK_LEFT:
 OnHScroll(SB_LINELEFT, 0, NULL);
 break;

 case VK_RIGHT:
 OnHScroll(SB_LINERIGHT, 0, NULL);
 break;

Chapter 9

[401]

When the Home key is pressed, if the visible part of the document is not already
located at the top left position, we set the scroll position and update the window.

 case VK_HOME:
 if ((GetScrollPos(SB_HORZ) > 0) ||
 (GetScrollPos(SB_VERT) > 0))
 {
 SetScrollPos(SB_HORZ, 0);
 SetScrollPos(SB_VERT, 0);

 Invalidate();
 UpdateWindow();
 }
 break;

When the Bottom key is pressed, if the visible part of the document is not already
located at the right bottom position, we set the scroll position and update the window.

 case VK_END:
 {
 SCROLLINFO scrollInfo;
 GetScrollInfo(SB_HORZ, &scrollInfo,
 SIF_PAGE | SIF_RANGE);
 int xNewPos = scrollInfo.nMax - scrollInfo.nPage;

 GetScrollInfo(SB_VERT, &scrollInfo,
 SIF_PAGE | SIF_RANGE);
 int yNewPos = scrollInfo.nMax - scrollInfo.nPage;

 if ((GetScrollPos(SB_HORZ) != xNewPos) ||
 (GetScrollPos(SB_VERT) != yNewPos))
 {
 SetScrollPos(SB_HORZ, xNewPos);
 SetScrollPos(SB_VERT, yNewPos);

 Invalidate();
 UpdateWindow();
 }
 }
 break;

The rest of the characters are sent to the document object.

 default:
 m_pWordDoc->KeyDown(uChar, &dc);
 break;
 }
 }

The Word Application

[402]

If the Ctrl key is not pressed, we send the key to the document object.

 else if (bShiftKeyDown)
 {
 m_pWordDoc->ShiftKeyDown(uChar, &dc);
 }

 else
 {
 m_pWordDoc->KeyDown(uChar, &dc);
 }

}

The method OnUpdate is called indirectly by the document class when it calls
UpdateAllViews. It takes two parameters, lHint and pHint, that are used to update
the vertical scroll bar (lHint) when the number of pages has been changed and to
partly repaint the view (pHint) when the document text has been changed.

If lHint is not zero, the number of pages has been changed and we change the range
of the vertical scroll bar. Note that the limits of the horizontal scroll bar never change
as the width of the document is constant (stored in PAGE_WIDTH).

void CWordView::OnUpdate(CView* /* pSender */, LPARAM lHint,
 CObject* pHint)
{
 if (lHint != 0)
 {
 int iPages = (int) lHint;
 SetScrollRange(SB_VERT, 0, iPages * PAGE_HEIGHT);

 CClientDC dc(this);
 OnPrepareDC(&dc);

 CRect rcDocument(0, 0, PAGE_WIDTH, iPages * PAGE_HEIGHT);
 dc.LPtoDP(rcDocument);

 InvalidateRect(rcDocument);
 UpdateWindow();
 }

If pHint is not null, the document needs to be repainted. pHint is a pointer to the set
of rectangles to be re-painted. We translate them into device units and repaint them.
Finally, we update the window.

 else if (pHint != NULL)
 {
 RectSet* pRepaintSet = (RectSet*) pHint;

 if (!pRepaintSet->IsEmpty())

Chapter 9

[403]

 {
 CClientDC dc(this);
 OnPrepareDC(&dc);

 for (POSITION position = pRepaintSet->
 GetHeadPosition(); position != NULL;
 pRepaintSet->GetNext(position))
 {
 CRect rcRepaint = pRepaintSet->GetAt(position);
 dc.LPtoDP(&rcRepaint);
 InvalidateRect(rcRepaint);
 }

 UpdateWindow();
 }
 }

If lHint is zero and pHint is null, the window has just been created. OnUpdate is
indirectly called by OnInitialUpdate. In that case, we just repaint the whole
client area.

 else
 {
 Invalidate();
 UpdateWindow();
 }

}

The method OnPaint is called by the system every time the client area of the window
needs to be (partly or completely) repainted or when the client area is re-painted
and UpdateWindow is called. In the applications in the earlier chapters of this book,
OnDraw was called instead. In those cases, OnPaint in CView was called, which in
turns call OnDraw. In this application, there is a difference between whether the text
shall be written in a window on the screen or sent to a printer (or print preview). In
the case of printing, see OnPrint below.

The method OnPaint has two tasks before it finally calls OnDraw. First, we need to
fill the area to the right of the document, if any (rcClient.right > PAGE_WIDTH).
We do that by loading a brush with a light gray color and drawing a rectangle at
the right of the document. Note that we do not need to fill any space below the
document as the vertical scroll bar is set to match the height of the document.

Second, we insert pages breaks in case the document consists of more than one page
(iPageNum > 1). As a document always has one page with at least one paragraph, it
is never completely empty. We pick a black pen and set the text output to be centered
on the x position. The x position is in the middle of the document or in the middle of
the client area, whichever is smaller. The y position is the page height for each page.

The Word Application

[404]

void CWordView::OnPaint()
{
 CPaintDC dc(this);
 OnPrepareDC(&dc);

 CRect rcClient;
 GetClientRect(&rcClient);
 dc.DPtoLP(&rcClient);

 if (rcClient.right > PAGE_WIDTH)
 {
 CBrush brush(LIGHT_GRAY);
 CBrush *pOldBrush = dc.SelectObject(&brush);

 dc.Rectangle(PAGE_WIDTH, 0, rcClient.right,
 rcClient.bottom);
 dc.SelectObject(pOldBrush);
 }

 int iPageNum = m_pWordDoc->GetPageNum();
 if (rcClient.bottom > (iPageNum * PAGE_HEIGHT))
 {
 CBrush brush(LIGHT_GRAY);
 CBrush *pOldBrush = dc.SelectObject(&brush);

 dc.Rectangle(iPageNum * PAGE_HEIGHT, 0, rcClient.right,
 rcClient.bottom);
 dc.SelectObject(pOldBrush);
 }

 if (iPageNum > 1)
 {
 dc.SetTextColor(BLACK);
 dc.SetTextAlign(TA_CENTER | TA_BASELINE);

 int xPos = min(PAGE_WIDTH / 2,
 (rcClient.left + rcClient.right) / 2);
 for (int iPage = 1; iPage < iPageNum; ++iPage)
 {
 int yPos = iPage * PAGE_HEIGHT;
 dc.TextOut(xPos, yPos, TEXT("-- Page Break --"));
 �}

 dc.SetTextAlign(TA_LEFT | TA_TOP);
 �}

Chapter 9

[405]

In order to not write character outside the page, we clip the writing area to match the
document before we call OnDraw to do the actual writing.

 dc.IntersectClipRect(0, 0, PAGE_WIDTH,
 max(1, iPageNum) * PAGE_HEIGHT); OnDraw(&dc);

}

The method OnPreparePrinting is used to set the range of pages to print. The
paragraphs of the document are partitioned into a number of pages. GetPageNum in
the document class returns the number of pages.

BOOL CWordView::OnPreparePrinting(CPrintInfo* pInfo)
{
 pInfo->SetMinPage(1);
 pInfo->SetMaxPage(m_pWordDoc->GetPageNum());
 return DoPreparePrinting(pInfo);
}

The method OnPrint is called by the Application Framework when the user chooses
the file print menu item. First, OnPreparePrinting is called to decide the number of
pages to be printed and then OnPrint is called once for each page to be printed. The
task for OnPrint is to write the file name of the document at the top of the page and
the page number on the bottom of the page as well as drawing a rectangle around
the text. Finally, OnDraw is called to write the actual text. Note that both OnPaint and
OnPrint call OnDraw to draw the actual text of the document.

First, we draw the surrounding rectangle. Second, we write the header with the path
name of the document and the footer with the page number and the total number
of pages. Moreover, we need to set the offset so that this page is printed as the first
page, no matter which page it actually is. Finally, we need to exclude the merging
from the draw area in order for the page not to write outside its area.

void CWordView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{

The initial problem with OnPrint is that pDC has already been set with OnPrepareDC.
We have to start by undoing that operation.

 int xScrollPos = GetScrollPos(SB_HORZ);
 int yScrollPos = GetScrollPos(SB_VERT);
 pDC->OffsetWindowOrg(-xScrollPos, -yScrollPos);

The Word Application

[406]

Next, we draw a rectangle around the text of each document. We define the border of
that rectangle and select a black pen and draw the surrounding rectangle.

 int xLeft = PAGE_MARGIN / 2;
 int xRight = PAGE_TOTALWIDTH - PAGE_MARGIN / 2;
 int yTop = PAGE_MARGIN / 2;
 int yBottom = PAGE_TOTALHEIGHT - PAGE_MARGIN / 2;

 CPen pen(PS_SOLID, 0, BLACK);
 CPen* pOldPen = pDC->SelectObject(&pen);
 pDC->Rectangle(xLeft, yTop, xRight, yBottom);
 pDC->SelectObject(pOldPen);

In order to write the header and footer of the document, we need to select a font. If
we create a font object with the default constructor, the system font will be the result.
It is often the Arial font of size 10 points.

 CFont cFont;
 Font defaultFont;
 cFont.CreateFontIndirect(defaultFont.PointsToMeters());
 CFont* pPrevFont = pDC->SelectObject(&cFont);

We write the path name of the document at the top of the page. The method
GetPathName returns the saved pathname. It returns an empty string if the document
has not yet been saved.

 CString stPath = m_pWordDoc->GetPathName();
 CRect rcHeader(xLeft, 0, xRight, 2 * yTop);
 pDC->DrawText(stPath, rcHeader, DT_SINGLELINE | DT_CENTER |
 DT_VCENTER);

Then we write the page numbers together with the total number of pages at the
bottom of the page.

 CString stPage;
 int iPageNum = pInfo->m_nCurPage - 1;
 stPage.Format("Page %d of %d", iPageNum + 1,
 m_pWordDoc->GetPageNum());
 CRect rcFooter(xLeft, PAGE_TOTALHEIGHT –
 2 * (PAGE_TOTALHEIGHT - yBottom),
 xRight, PAGE_TOTALHEIGHT);
 pDC->DrawText(stPage, rcFooter, DT_SINGLELINE | DT_CENTER |
 DT_VCENTER);
 pDC->SelectObject(pPrevFont);

Chapter 9

[407]

Before we call OnDraw to write the paragraphs, we have to re-do the setting of the
window origin at the beginning of this method.

 int yPagePos = (iPageNum * PAGE_HEIGHT);
 pDC->OffsetWindowOrg(-PAGE_MARGIN, yPagePos - PAGE_MARGIN);

As OnDraw tries to write all paragraphs (not only those on the current page) we have
to exclude the area of the document not on the current page.

 CRect rcPage(0, iPageNum * PAGE_HEIGHT, PAGE_WIDTH,
 (iPageNum + 1) * PAGE_HEIGHT);
 pDC->IntersectClipRect(&rcPage);

Finally, we call OnDraw to do the actual writing of the paragraphs.

 OnDraw(pDC);
}

The method OnDraw is called by both OnPaint and OnPrint to do the actual writing
by calling the Draw of each paragraph. One thing that complicates matters is that
some portion of the text to be written could be marked. If the application is in the
edit state, we just call Draw for each paragraph. If it is in the mark state, we have four
possible cases for the current paragraph. The paragraph may be the only marked
one, it may the first of at least two marked paragraphs, it may be the last of at least
two marked paragraphs, or it may be not marked at all.

void CWordView::OnDraw(CDC* pDC)
{
 int eWordStatus = m_pWordDoc->GetWordStatus();
 ParagraphPtrArray* pParagraphArray =
 m_pWordDoc->GetParagraphArray();
 Position psFirstMarked = m_pWordDoc->GetFirstMarked();
 Position psLastMarked = m_pWordDoc->GetLastMarked();

 Position psMinMarked = min(psFirstMarked, psLastMarked);
 Position psMaxMarked = max(psFirstMarked, psLastMarked);

 int iParagraphs = (int) pParagraphArray->GetSize();
 for (int iParagraph = 0; iParagraph < iParagraphs;
 ++iParagraph)
 {
 Paragraph* pParagraph =
 pParagraphArray->GetAt(iParagraph);

 switch (eWordStatus)
 {

The Word Application

[408]

If the application is in the edit state, we just write the paragraph.

 case WS_EDIT:
 pParagraph->Draw(pDC, 0, -1);
 break;

If the application is in the mark state, we have to check if the paragraph is marked,
partly or completely.

 case WS_MARK:
 int iLength = pParagraph->GetLength();

If this paragraph is the only one marked in the document, we write it and dispatch
the beginning and end of the marked area.

 if ((iParagraph == psMinMarked.Paragraph()) &&
 (iParagraph == psMaxMarked.Paragraph()))
 {
 pParagraph->Draw(pDC, psMinMarked.Character(),
 psMaxMarked.Character());
 }

If the paragraph is at the beginning of the marked area, we write it and dispatch
the beginning and end of the marked area. The end of the marked area for this
paragraph is the end of the paragraph.

 else if (iParagraph == psMinMarked.Paragraph())
 {
 pParagraph->Draw(pDC, psMinMarked.Character(),
 iLength);
 }

If the paragraph is completely inside the marked area, we write it and dispatch the
beginning and end of the paragraph as the limits of the marked area.

 else if ((iParagraph > psMinMarked.Paragraph()) &&
 (iParagraph < psMaxMarked.Paragraph()))
 {
 pParagraph->Draw(pDC, 0, iLength);
 }

If the paragraph is the end of the marked area, we write it and dispatch the
beginning and end of the marked area. The beginning of the marked area for this
paragraph is the beginning of the paragraph.

 else if (iParagraph == psMaxMarked.Paragraph())
 {
 pParagraph->Draw(pDC, 0, psMaxMarked.Character());
 }

Chapter 9

[409]

If the paragraph is not marked at all, we just write it.

 else
 {
 pParagraph->Draw(pDC, 0, -1);
 }
 break;
 }
 }
}

Summary
Line and Page are two small classes of this application. Line holds the
indexes of the first and last characters of a line in a paragraph together with
the height of the line. Page holds the indexes of the first and last paragraph of
a page in the document.
Position is also a small class; it handles a position in a document. It has two
fields for keeping track of the paragraph and character positions.
CWordDoc handles the paragraphs of a class. It accepts input from the view
class and updates the list of paragraphs in response.
Paragraph handles one paragraph. It has methods for splitting and
merging paragraphs.
CWordView accepts input from the mouse and keyboard. It also displays text
in the window client area.

•

•

•

•

•

References
If you want to learn more about C++ programming, I recommend Deitel and Deitel
(2007). They discuss in depth the theory as well as practice of object-oriented
programming in C++, with many clear and comprehensive examples. In Chapter 5,
we constructed a list and a set. If you want to learn more about data structures, you
may read Weiss (2007). He describes data structures such as stacks, queues, trees,
and graphs.

As MFC is built upon the Win32 API, you may want to learn more about it. The
classic book in the field is Petzold (1999). He describes in detail how to develop
Windows application with the Win32 API. The parallel book on MFC is Prosise
(1999). He has a similar disposition as Petzold's book and describes in matching
detail the features of MFC. Feuer (1997) is a shorter version of Prosise's book and
concentrates on the advanced parts of MFC. Shepherd and Wingo (1996) describe the
inside of MFC, how the classes and macros are defined and how they interact with
the underlying Win32 API.

If the scanner and parser of Chapter 8 have made you want to know more about
compilers, Aho el at (2007) is the book for you. It is the second edition of the classic
Dragon Book. They explain the theory and practice of compilers from scanning and
parsing to advanced optimization. If the concept of graphs has gained an interest in
you, I recommend West (2000). He reasons about graphs from a mathematical point
of view.

Aho, A. V. el at. Compilers: Principles, Techniques, and Tools. Second Edition. Boston:
Addison Wesley Publishing Company, 2007, 1009 pages.

Deitel, H. M. and Deitel, P. J. C++ how to Program. Sixth Edi�������������������� tion. Indianapolis:
Prentice Hall, ������ ����������� 2007, 1429 pages.

References

[412]

Feuer, A. R. MFC Programming. Reading: Addison Wesley Developers Press, 1997,
452 pages.

Petzold, C. Windows Programming: The Definitive Guide to the Win32 API. Fifth Edition.
Redmond: Microsoft Press, 1999, 1497 pages.

Prosise, J. Programming Windows with MFC: The Premier Resource for Object-Oriented
Programming on 32-bit Windows Platforms. Second Edition. Redmond: Microsoft Press,
1999, 1337 pages.

Shepherd, G. and Wingo, S. MFC Internals: The Inside the Microsoft Foundation Class
Architecture. �� Reading: Addison-Wesley Professional, 1996, 736 pages.

Weiss, M. A. Data Structures and Algorithm Analysis in C++. Third Edition. ���������Reading:
Addison Wesley, 2007, 586 pages.

West, D. B. Introduction to Graph Theory. Indianapolis: Prentice Hall, 2000, 470 pages.

Index
A
American Standard Code for Information

Exchange Table. See ASCII table
Application Wizard 88
aggregation 50
array 13
array of objects 65
array class, MFC class 140
arrow class, draw application

Arrow.cpp 193-196
Arrow.h 192

ArrowFigure class, draw application 192
ASCII table 47

B
baseclass 50, 51
BOOL 88, 89
break statement 28, 29
british system 93

C
C++

first program 8
functions 32
object-oriented model 50, 51
operators 21
statements 27
types 9

calc, MFC application wizard
about 240, 241
cell class 268, 285
CellMatrix class 286, 287
document/view model 291
document class 291

formula interpretation 243, 244
reference class 246, 248
resource editor 242
scanner class 248, 249, 250
spread sheet 268
SyntaxTree class 262-267
tokens class 244-246
TSetMatrix class 287, 291
view class 327

caret class, MFC class
creating 134
DestroyCaret 134
hiding, HideFocus used 134, 135
updating, SetAndShowCaret used 134

casting 11
class

about 50
bank account, example 55-57
car, example 52-55

CList class, MFC class 136
color class, MFC class

about 129, 130
COLORREF 129

color grid class, tetris application
ColorGrid.cpp 147
ColorGrid.h 147
Index method 147

color dialog
RingDoc.h 123

colors
RingDoc.h 110

comments
block comments 9
line comments 9

complier 8
continue statement 31
connection 50

[414]

constructor 51
coordinate system 94

about 93
british system 93
Device Point to Logical Point (DP to LP 93
logical coordinate 93
Logical Point to Device Point (LP to DP) 93
metric system 93
physical coordinate 93
RingDoc.h 115
RingView.cpp 114, 115
setting 113
text system 93

cursor 98

D
dangling pointer 16
debug mode 88
destructor 51
device context

about 94
CDC 94
Device Coordinates to Logical Coordinates

(DPtoLP) 97
Logical Coordinates to Device Coordinates

(LPtoDP) 97
pDC 95

do-while statement 30
document object 89
document/view model

about 89
multiple document interface (MDI) 89
single doucment interface (SDI) 89

document/view model, calc application
CalcDoc.cpp 295-307
CalcDoc.h 293-295
CalcView.cpp 319-327
document class 291, 292

document class, draw application
CDrawDoc.h 217-219
DrawDoc.cpp 220-233
MouseDown 220
MouseDrag 224
MouseMove 220
MouseUp 221

document class, MFC application

CWordDoc.cpp 365, 390
CWordDoc.h 362, 365

document class, tetris application
TetrisDoc.cpp 151-155
TetrisDoc.h 149, 150

draw, MFC application wizard
about 174-205
arrow class 192-196
ArrowFigure class 192
document class 215-233
ellipse class 200-205
EllipseFigure class 200
FigureFileManager class 213, 215
line class 188-192
rectangle class 197-200
RectangleFigure class 197
resource editor, using 177, 205
TextFigure class 178-213
view class 233-235

dynamic binding
about 60
example 61-64

dynamic memory 15

E
EllipseFigure class, draw application

EllipseFigure.cpp 202-205
EllipseFigure.h 201-205

encapsulation, levels
private 50
protected 50
public 50

error handling, MFC class
assert macro 140
check_memory macro 142
check macro 140

exceptions
about 76
example 77

expressions. See operators
Ellips

F
fields 50
figure class, tetris application

Figure.cpp 164-167

[415]

Figure.h 162, 163
FigureFileManager class, draw application

FigureFileManager.cpp 215
FigureFileManager.h 214

figure information, tetris application
about 167
blue figure 171
brown figure 168
FigureInfo.cpp 168
green figure 169
purple figure 171, 172
red figure 168
turquoise figure 169
yellow figure 170, 171

file processing 83, 84
font class, MFC class

about 130-133
LOGFONT 131

for statement 30
formula interpretation, calc application

about 243, 244
bottom-up parser 254
parser 251-257
parser, types 254
parser.cpp 259-261
parser.h 258
reference.cpp 247
reference.h 247
reference class 246
scanner.cpp 248-250
scanner.h 248
SyntaxTree.cpp 263-268
SyntaxTree.h 262
SyntaxTree class 262
Token.h 246
tokens class 244
top-down parser 254

function
about 32, 33
call-by-reference 36-39
call-by-value 36-39
declaration 42, 43
default parameters 39, 40
definition 42
global variable 34-36
higher order function 43, 44

local varable 34-36
main() function 44
overloading 40
recursion 41, 42
static variables 40, 41
void function 34

G
goto statement 32

H
higher order function 43, 44

I
if-statement 27
if-else statement 27
inheritance 51

about 58
example 58

inspector 52
integral types

signed type 10
unsigned type 10

J
jump statement 32

K
keyboard

catching 116
RingView.cpp 116, 117

L
linker 8
LineFigure class, draw application

LineFigure.cpp 189-192
LineFigure.h 188

LineFigure class, MFC application
line.cpp 333
line.h 333

list class, MFC class 136

[416]

M
macros 46
menus

adding 117
RingDoc.cpp 118
RingDoc.h 117

message map 90
message system 90-93
methods 50
metric system 93
MFC 88, 89
MFC application wizard

about 104-109
calc application 240, 241
color dialog 123
colors 109
coordinate system, setting 113
dialog 105
keyboard, catching 116
menus, adding 117
mouse, catching 110
mouse button, clicking 110
registry 123
rings, drawing 112, 113
scroll bar, setting 114
serialization 124, 125
toolbar, adding 104
word application 329, 331

MFC class 127
Microsoft Foundation Classes. See MFC
modifier 52
model

document/view model 89
mouse

catching 110
RingDoc.h 112
RingView.cpp 111

multiple inheritance 51

N
namespaces 80, 81, 82

O
object-oriented model

about 50, 51

operator overloading
about 70, 71
example 71-76

operators
about 21
arithmetic operator 21
assignment operator 25
associativity operator 26
bitwise operator 24
condition operator 25
decrement operator 23
increment operator 23
logical operator 23, 24
pointer arithmetic 22
precedence operator 26
relational operator 23

P
page class, MFC application

page.cpp 361
page.h 361

paragraph class, MFC application
about 335
paragraph.cpp 338-360
paragraph.h 336, 337

parameter
default parameter 39

pointers 13, 14
pointers and linked lists

about 65
stack and linked lists 66-70

point class, MFC class
CPoint class 128

position class, MFC application
position.cpp 334, 335
position.h 333, 334

preprocessor tool 45-47
private 50
protected 50
public 50
pure virtual method 51

R
RectangleFigure class, draw application

RectangleFigure.cpp 198-200
RectangleFigure.h 197

[417]

rect class, MFC class
CRect class 128

registry 98
RingDoc.cpp 123

release mode 88
resource, word application

line class 332, 333
paragraph class 335-360
position class 333-335

resource editor, calc application 242
resource editor, draw application 177-205
resource editor, word application 332
rings

drawing 112
example 103
RingView.cpp 112, 113

S
scroll bar

setting 114
serialization 99, 100

RingDoc.cpp 124, 125
set class, MFC class

about 137
example 137-140

size class, MFC class
CSize class 128

spread sheet, calc application
cell 268
cell.cpp 275-285
cell.h 270-274
CellMatrix.cpp 287
CellMatrix.h 286
CellMatrix class 286
TSetMatrix.cpp 289-291
TSetMatrix.h 288
TSetMatrix class 287, 288

square class, tetris application
Square.h 146

Standard Template Library. See STL
statements

about 27
expression statement 32
iteration statement 30, 31
jump statement 32
select statement 27-29

static memory 15
switch statement 28
stacks and linked lists

about 66
example 66-70

STL 127
streams

ifstream 82
istream 82
ofstream 82
osstream 82

struct 50
subclass 50

T
templates

about 77, 78
example 78-80

tetris, MFC application wizard
about 144, 146
color grid class 146
document class 147-155
figure class 162-167
figure information 167
square class 146
view class 155

TextFigure class, draw application
TextFigure.cpp 178-213
TextFigure.h 204, 205

text system 93
this pointer 71
toolbars

button, adding 120
RingDoc.cpp 119

TwoDimensionalFigure class,
draw application

TwoDimensionalFigure.cpp 184
TwoDimensionalFigure.h 183

types
about 9
array 13
defining 18
enumeration type 12
hungarian notation 20
input and output 12
integral types 10

[418]

limits 18, 19
pointers and dynamic memory 17
pointers and references 13, 14
simple types 10
size 18, 19

type conversions 11

V
variables. See also types

about 10, 11
constant 11

view class, draw application
CDrawView.cpp 234, 236
CDrawView.h 233

view class, MFC application
CWordView.cpp 393-408
CWordView.h 391

visual studio
about 88, 89
Application Wizard 88

W
windows development

coordinate system 93, 94
cursor 98
device context 94-98
message system 90
registry 98
serialization 99, 100
visual studio 88

while statement 30, 31
word, MFC application wizard

about 329, 331
document class 361-391
line class 332, 333
page class 360, 361
paragraph class 335-360
position class 333-335
resource editor 332
view class 391-408

Win32 API 88
Windows 32 bits Application Programming

Interface. See Win32 API 88

	Microsoft Visual C++ Windows Applications by Example
	Table of Contents
	Preface
	Chapter 1: Introduction to C++
	The Compiler and the Linker
	The First Program
	Comments
	Types and Variables
	Simple Types
	Variables
	Constants
	Input and Output
	Enumerations
	Arrays
	Pointers and References
	Pointers and Dynamic Memory
	Defining Our Own Types
	The Size and Limits of Types
	Hungarian Notation

	Expressions and Operators
	Arithmetic Operators
	Pointer Arithmetic
	Increment and Decrement
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment
	The Condition Operator
	Precedence and Associativity

	Statements
	Selection Statements
	Iteration Statements
	Jump Statements
	Expression Statements

	Functions
	Void Functions
	Local and Global Variables
	Call-by-Value and Call-by-Reference
	Default Parameters
	Overloading
	Static Variables
	Recursion
	Definition and Declaration
	Higher Order Functions
	The main() Function

	The Preprocessor
	The ASCII Table
	Summary

	Chapter 2: Object-Oriented Programming in C++
	The Object-Oriented Model
	Classes
	The First Example
	The Second Example

	Inheritance
	Dynamic Binding
	Arrays of Objects
	Pointers and Linked Lists
	Stacks and Linked Lists

	Operator Overloading
	Exceptions
	Templates
	Namespaces
	Streams and File Processing
	Summary

	Chapter 3: Windows Development
	Visual Studio
	The Document/View Model
	The Message System
	The Coordinate System
	The Device Context
	The Registry
	The Cursor
	Serialization
	Summary

	Chapter 4: Ring: A Demonstration Example
	The Application Wizard
	Colors and Arrays
	Catching the Mouse
	Drawing the Rings
	Setting the Coordinate System and the Scroll Bars
	Catching the Keyboard Input
	Menus, Accelerators, and Toolbars
	The Color Dialog
	The Registry
	Serialization
	Summary

	Chapter 5: Utility Classes
	The Point, Size, and Rectangle Classes
	The Color Class
	The Font Class
	The Caret Class
	The List Class
	The Set Class
	The Array Class
	Error Handling
	Summary

	Chapter 6: The Tetris Application
	The Tetris Files
	The Square Class
	The Color Grid Class
	The Document Class
	The View Class

	The Figure Class
	The Figure Information
	The Red Figure
	The Brown Figure
	The Turquoise Figure
	The Green Figure
	The Yellow Figure
	The Blue Figure
	The Purple Figure

	Summary

	Chapter 7: The Draw Application
	The Resource
	The Class Hierarchy
	The Figure Class
	The TwoDimensionalFigure Class
	The LineFigure Class
	The ArrowFigure Class
	The RectangleFigure Class
	The EllipseFigure Class
	The TextFigure Class
	The FigureFileManager Class
	The Document Class
	The View Class
	Summary

	Chapter 8: The Calc Application
	The Resource
	Formula Interpretation
	The Tokens
	The Reference Class
	The Scanner—Generating the List of Tokens
	The Parser—Generating the Syntax Tree
	The Syntax Tree—Representing the Formula

	The Spreadsheet
	The Cell—Holding Text, Value, or Formula
	The Cell Matrix—Managing Rows and Columns
	The Target Set Matrix Class

	The Document/View Model
	The Document Class
	The View Class

	Summary

	Chapter 9: The Word Application
	The Resource
	The Line
	The Position
	The Paragraph

	The Page
	The Document Class
	The View Class
	Summary

	References
	Index

