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Preface

Optical imaging techniques are nowadays used not only by the scientific com-
munity but also in our daily life due to an extraordinary development of dig-
ital photo and video cameras, the last generation of cellular telephones, and
so on.

Until very recently optical imaging has been ignoring the quantum nature
of light. The reason for this is very simple: usually the intensity of light used in
optical imaging is so high that quantum fluctuations inherently present in the
light are completely negligible. However, rapid technological progress often
brings us new challenges. For example, charge-coupled devices (CCD) are
currently widely used to capture digital images. In a quest for improvement of
the quality and resolution of captured still images and movies, current optical
sensor technologies are struggling to reduce the pixel size (or to increase the
number of pixels per unit area). As the pixel size decreases, the amount of
light illuminating each individual pixel decreases as well. At low light levels
the quantum nature of light will inevitably manifest itself in the appearance
of photons or shot noise that will ultimately limit the quality of the detected
image. This example gives us an idea of how the quantum nature of light
puts ultimate performance limits on optical imaging.

This is just one example from the new area of quantum imaging that has
as one of its goals investigation of such ultimate performance limits in optical
imaging imposed by the quantum nature of light. Quantum imaging uses the
latest achievements in quantum optics that allow us to tailor the spatial dis-
tribution of quantum fluctuations in the transverse area of light beams and
to reduce these quantum fluctuations below the shot-noise limit. This reduc-
tion of spatial quantum fluctuations brings new opportunities for improving
the performance in recording, storage, and read-out of optical images beyond
the limits set by the spatial shot noise. Moreover, quantum imaging offers
numerous exciting opportunities in the area of quantum information due to
an intrinsic parallelism of optical image processing. This feature of quan-
tum imaging allows us to greatly increase the information capacity of several
quantum information protocols such as, for instance, quantum teleportation
and quantum dense coding.

The area of quantum imaging has been pioneered by the teams in Russia
(St. Petersburg, Moscow), Europe (Como, Paris, Lille), and the United States
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(Boston, Evanston). This book presents the latest results in the area of quan-
tum imaging that have been obtained in the framework of the European
project QUANTIM (“Quantum Imaging”) funded by the European Commu-
nity. I would like to thank all the contributing authors because without their
work this book could not have been written.

Lille, October 2005 Mikhail Kolobov
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1 Quantum Imaging with Continuous Variables

Luigi A. Lugiato, Alessandra Gatti, and Enrico Brambilla

INFM, Dipartimento di Fisica e Matematica, Universitá dell’Insubria, Via
Valleggio 11, 22100, Como, Italy luigi.lugiato@uninsubria.it

1.1 Introduction

A significant fraction of the research activities in the field of quantum imaging
concerns optical Parametric Down-Conversion (PDC). Some basic features of
this phenomenon will be described in this first chapter of the volume, which
deals with the multiphoton regime of the signal–idler field, that one meets in
Optical Parametric Amplifiers (OPA) with medium or high gain or in Optical
Parametric Oscillators (OPO). In this case, the behavior of the system is
naturally described in terms of continuous variables such as field intensity
or field quadratures. On the other hand, in the (very) low gain regime of
the OPA, one detects coincidences between signal and idler photons and a
significant part of the literature on quantum imaging deals with this case, as
illustrated in the review article [1].

The first part of this chapter, which is based on the tutorial delivered by
one of us (L. A. L.) in the Cargèse workshop,1 will introduce some key con-
cepts in the continuous variable description, such as squeezing in quadratures
and in photon number difference, or entanglement between quadratures, and
the basic connection between this entanglement and squeezing. This will be
done with the help of two paradigmatic models, one including a single radia-
tion mode and the other with two modes. The second part of this chapter will
be devoted to the spatially multimode configuration that one meets in OPAs
and in degenerate OPOs. We will discuss the topic of spatially multimode
squeezing or local squeezing and of spatial correlations, with the related near-
field/far-field interest for quantum imaging, namely the detection of weak
amplitude or phase objects duality in type-I OPA/OPO. Then we will turn
our attention to two subjects of direct detection beyond the standard quan-
tum limit and the image amplification by parametric down-conversion. The
results illustrated in this chapter have been obtained prior to QUANTIM,
whereas new results are included in Chapter 2 and Chapter 5.

1 “Imaging at the Limits,” ESF/PESC Exploratory Workshop, Cargèse (Corsica),
France, 5-11 September 2004.
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1.2 The Concepts of Squeezing and of Entanglement
with Continuous Variables, and Their Intrinsic
Connection

1.2.1 Prototype Model I

ina outa

Fig. 1.1. “Input-output box” for an OPA (or an OPO below threshold) in the
degenerate single-mode configuration.

Let us consider the “black box” in Fig. 1.1, with an input mode and an
output mode associated with annihilation and creation operators âin and â†

in

and âout, â†
out, respectively, with[

âin, â†
in

]
= 1 ,

[
âout, â

†
out

]
= 1 . (1.1)

Let us assume the input-output relation

âout = Uâin + V â†
in, (1.2)

with coefficients U and V obeying the condition

|U |2 − |V |2 = 1, (1.3)

which ensures the unitarity of transformation (1.2). In the following we take
for definiteness

U = cosh g , V = sinh g . (1.4)

A concrete realization of (1.2) is given, for example, by a degenerate OPA
(or OPO below threshold) in the single-mode configuration.

Case 1

If âin is in a coherent state | α〉, so that the mean value of âin is 〈âin〉 = α,
one has from (1.2)

〈âout〉 = Uα + V α∗ . (1.5)

Hence the system behaves as a phase-sensitive amplifier/deamplifier; for ex-
ample, if α is real one has amplification:

|〈âout〉|2 = |U + V |2 |α|2 = e2g |〈âin〉|2 , (1.6)

whereas if α is imaginary one has deamplification:

|〈âout〉|2 = |U − V |2 |α|2 = e−2g |〈âin〉|2 . (1.7)
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Case 2

Let us focus, instead, on the case that âin is in the vacuum state | 0〉. If we
consider the quadrature components of the input and output modes

X̂in =
âin + â†

in

2
, Ŷin =

âin − â†
in

2i
, (1.8)

X̂out =
âout + â†

out

2
, Ŷout =

âout − â†
out

2i
, (1.9)

the input-output relation (1.2) can be rephrased in the following form,

X̂out = egX̂in , Ŷout = e−gŶin , (1.10)

hence the quadrature component X̂ is amplified whereas the quadrature com-
ponent Ŷ is deamplified, and from Fig. 1.2 one sees that the input vacuum
state is transformed into a squeezed vacuum state, with squeezing in the
quadrature component Ŷ . By varying the phase of the coefficients U and V
with respect to the choice (1.4), the squeezing can be produced in an ar-
bitrary quadrature component X̂θ = 1/2(âe−iθ + â†eiθ), for any value of θ.

in

Xin

out

Xout

Fig. 1.2. The input-output relation (1.2) with (1.4) transforms the vacuum state
into a squeezed vacuum state, with squeezing in the quadrature component Ŷ .

1.2.2 Prototype Model II

Let us now consider the black box in Fig. 1.3, with two input and two output
modes such that[

âi,in, â†
j,in

]
= δij ,

[
âi,out, â

†
j,out

]
= δij (i, j = 1, 2) , (1.11)
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and the input-output relations

â1out = U1â1in + V1â
†
2in ,

â2out = U2â2in + V2â
†
1in , (1.12)

with the unitarity condition

|Ui|2 − |Vi|2 = 1 , U1V2 = U2V1 . (1.13)

In the following we take for definiteness

U1 = U2 = U = cosh g , V1 = V2 = V = sinh g . (1.14)

ina1

ina2

outa1

outa2

Fig. 1.3. Input-output box for an OPA (or an OPO below threshold) in the non-
degenerate two-mode configuration.

A realization of (1.14) is given by a nondegenerate OPA (or OPO below
threshold) in the two-mode regime.

Case 1

Let us consider the case when the mode â1in is in a coherent state | α〉,
whereas the mode â2in is in the vacuum state | 0〉. One obtains from (1.12)

〈â1out〉 = U1α, 〈â2out〉 = V2α
∗, (1.15)

so that

|〈â1out〉|2 =
(
cosh2 g

)
|α|2 =

(
cosh2 g

)
|〈â1in〉|2 , (1.16)

|〈â2out〉|2 =
(
sinh2 g

)
|α|2 =

(
sinh2 g

)
|〈â2in〉|2 . (1.17)

Hence mode 1 is amplified in a phase-insensitive way, whereas mode 2 is
generated from the vacuum, and in the large-gain limit, g → ∞, it becomes
equally as strong as mode 1.
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Case 1′

Let us assume that both modes â1in and â2in are in the same coherent state
| α〉. In this case one has from (1.12), (1.14),

〈â1out〉 = 〈â2out〉 = cosh gα + sinh gα∗, (1.18)

so that as in (1.5), one has a phase-sensitive amplification/deamplification.
One can prove that, in general, phase-insensitive amplification degrades the
signal-to-noise ratio at least by a factor 2, whereas phase-sensitive amplifica-
tion can preserve the signal-to-noise ratio (noiseless amplification) [1].

Case 2

Let us consider the case when both â1in and â2in are in the vacuum state.
The most interesting situation is in the limit of large g, in which Ui ≈ Vi ≈
eg/2 (i = 1, 2), so that by indicating U = eg/2 relations (1.12) reduce to

â1out = Uâ1in + Uâ†
2in ,

â2out = Uâ2in + Uâ†
1in , (1.19)

hence by introducing the quadrature components of the input-output modes

X̂j,in =
âj,in + â†

j,in

2
, Ŷj,in =

âj,in − â†
j,in

2i
, j = 1, 2, (1.20)

X̂j,out =
âj,out + â†

j,out

2
, Ŷj,out =

âj,out − â†
j,out

2i
j = 1, 2,

one obtains the relations

X̂2out = X̂1out , Ŷ2out = −Ŷ1out . (1.21)

Therefore, if one measures, for example, X̂1out and Ŷ1out, one can immedi-
ately infer the values of X̂2out and Ŷ2out. This is precisely the phenomenon
of quantum entanglement , and this is completely identical to the original
Einstein–Podolsky–Rosen paradox [2], which was formulated for the position
x and momentum p of two particles. This formulation of the EPR paradox
for continuous variables X̂ and Ŷ (quadrature components) of two radia-
tion modes was introduced in [3] taking into account the uncertainties in the
measurements of X̂ and Ŷ . This was experimentally verified in [4].

1.3 Intrinsic Relation Between Squeezing and
Entanglement

In this section we show that there is a basic connection between the two
paradigmatic models just discussed, which amounts to an intrinsic relation
between entanglement and squeezing.
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Let us consider a 50/50 beamsplitter (Fig. 1.4). One demonstrates that:

— If â1 and â2 are EPR entangled beams (in the sense defined before)
then the beam b̂1 is squeezed in the Ŷ quadrature and the beam b̂2 is squeezed
in the X̂ quadrature.

— And vice versa.

Proof

Let us consider the input-output relations of the beamsplitter

b̂1 =
â1 + â2√

2
, b̂2 =

â2 − â1√
2

. (1.22)

Next, let us assume that â1 and â2 are the entangled output modes â1out and
â2out of model II, so that

â1 = Uâ1in + V â†
2in ,

â2 = Uâ2in + V â†
1in , (1.23)

where â1in and â2in are in the vacuum state. By inserting (1.23) into (1.22)
we obtain

b̂1 = Uf̂1 + V f̂†
1 , (1.24)

b̂2 = Uf̂2 − V f̂†
2 , (1.25)

where modes f̂1 and f̂2 are defined as

f̂1 =
â1in + â2in√

2
, f̂2 =

â2in − â1in√
2

. (1.26)

Because â1 and â2 are in the vacuum state, the same is true for f̂1 and f̂2.
Now one notes immediately that (1.24) is identical to the prototype model
I (1.2), hence we can conclude that b̂1 is squeezed with respect to the Ŷ
quadrature. On the other hand, one sees that (1.25) has the same form of

b2 b1

a1 a2

Fig. 1.4. A 50/50 beamsplitter converts modes a1 and a2 into modes b1 and b2.

model I (1.2) except that V is replaced by −V . One can easily prove that
this feature implies that b̂2 is squeezed with respect to the X̂ quadrature.
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1.4 Spatially Multimode Parametric Down-Conversion:
Some Topics in Quantum Imaging

1.4.1 Spatially Multimode Versus Single-Mode Squeezing: Optical
Parametric Down-Conversion of Type-I

In almost all literature on squeezing one considers single-mode squeezing. If
one wants to detect a good level of squeezing, the local oscillator must be
matched to the squeezed spatial mode and, in addition, it is necessary to
detect the whole beam. If one detects only part of the beam, the squeezing
is immediately degraded, because a portion of a mode necessarily involves
higher-order modes, in which squeezing is absent. What we can call local
squeezing (i.e., squeezing in small regions of the transverse plane) can be ob-
tained only in the presence of spatially multimode squeezing, (i.e., squeezing in
a band of spatial modes). This has been predicted by Sokolov and Kolobov for
a traveling-wave optical parametric amplifier (OPA) [6, 7] and by our group
for an optical parametric oscillator (OPO) [8,9]. Let us dwell a moment, for

Fig. 1.5. (a) Scheme for parametric down-conversion of type-I. (b) Parametric
amplification of a plane-wave; q is the component of the wave-vector in the plane
orthogonal to the direction of propagation of the pump.

example, on the case of the OPA of type-I (Fig. 1.5a), in which one has a
slab of χ(2) material that is pumped by a coherent plane wave of frequency
2ωs. A fraction of the pump photons is down-converted into signal–idler pho-
ton pairs, which are distributed over a broad band of temporal frequencies
around the degenerate frequency ωs. For each fixed temporal frequency, the
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photon pairs are distributed over a band of spatial frequencies labeled by the
transverse component q of the wave-vector.

If, in addition to the pump field, we inject a coherent plane wave with
frequency ωs +Ω and the transverse wave-vector q (Fig. 1.5b), in the output
we have a signal wave that corresponds to an amplified version of the input
wave, and for this reason the system is called an optical parametric amplifier.
Because of the pairwise emission of photons, there is also an idler wave that,
close to degeneracy, is symmetrical with respect to the signal wave. Referring
to the case in which only the pump is injected, two regimes can be distin-
guished. One is that of pure spontaneous parametric down-conversion, as in
the case of a very thin crystal. In this case coincidences between partners of
single photon pairs are detected. The other is that of dominant stimulated
parametric down-conversion, in which a large number of photon pairs at a
time is detected. In this chapter we will focus on the second case, whereas
the first case will be considered in Chapter 2.

On a more formal ground, let us consider the down-converted signal–idler
field emitted close to the degenerate frequency ωs. Let us denote by âin(x, t)
the signal–idler complex amplitude envelope operator at the input endface of
the crystal slab, and by âout(x, t) the envelope operator at the output endface;
t indicates time and x ≡ (x, y) is the coordinate vector in the endfaces. We
expand âin and âout in Fourier modes in space and time:

âin(x, t) =
∫

dq

∫
dΩ âin(q, Ω)eiq·x−iΩt , (1.27)

âout(x, t) =
∫

dq

∫
dΩ âout(q, Ω)eiq·x−iΩt . (1.28)

One can demonstrate that, in the linear regime of an undepleted pump, the
following input-output relations hold [9],

âout(q, Ω) = U(q, Ω)âin(q, Ω) + V (q, Ω)â†
in(−q,−Ω) , (1.29)

âout(−q,−Ω) = U(−q,−Ω)âin(−q,−Ω) + V (−q,−Ω)â†
in(q, Ω) , (1.30)

where the expressions of U(q, Ω) and V (q, Ω) are given in [9]. We can note
immediately that, for each fixed q, Ω, Eqs. (1.29) have the same form of the
prototype model II (1.12). Hence the results of Section 1.2.2 hold for this
case; for example, Fig. 1.5b corresponds to case 1 of Section 1.2.2. The case
of parametric down-conversion of type-II will be considered in Chapter 5.

1.4.2 Near-Field/Far-Field Duality in Type-I OPAs

We want to illustrate the key spatial quantum properties of the field emitted
by an OPA of type-I, in the linear regime of negligible pump depletion, or by
an OPO below threshold.

In the near field (see Fig. 1.6) one has the phenomenon of spatially multi-
mode squeezing or local squeezing discussed in Section 1.4.1. A good level of
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squeezing is found, provided the region that is detected has a linear size not
smaller than the inverse of the spatial bandwidth of emission in the Fourier
plane. If, on the other hand, one looks at the far field (which can be reached,
typically, by using a lens as shown in Fig. 1.6) one finds the phenomenon
of spatial entanglement between small regions located symmetrically with re-
spect to the center. Precisely, if one considers two symmetrical pixels 1 and
2 (Fig. 1.7a), the intensity fluctuations in the two pixels are very well cor-
related or, equivalently, the fluctuations in the intensity difference between
the two pixels are very much below the shot-noise level [10, 11]. Precisely,

δr
∆ra

f f

Fig. 1.6. Illustration of the near-field far-field duality; f is the focal plane of the
lens. Not shown is the pump field of frequency 2ωs and the nonlinear slab.

let us consider the number of photons N̂1 and N̂2 detected in pixel 1 and 2,
respectively, and the associated fluctuations δN̂i = N̂i − 〈N̂i〉 (i = 1, 2). For
symmetry reasons one has that 〈N̂1〉 = 〈N̂2〉, 〈(δN̂1)2〉 = 〈(δN̂2)2〉. In the
limit of the plane-wave pump, the photon number difference N̂− = N̂1 − N̂2

turns out to be fluctuationless [10]; that is,

〈(δN̂−)2〉 = 0 . (1.31)

Basically, one has that N̂1 = N̂2; that is, by measuring N̂1 one can infer the
value of N̂2 (entanglement). This result expresses in the most emphatic way
the emission of signal and idler photons in pairs, and follows from the perfect
correlation between the photons in 1 and 2. As a matter of fact one has

〈(δN̂−)2〉 = 〈(δN̂1)2〉 + 〈(δN̂2)2〉 − 2〈δN̂1δN̂2〉 ; (1.32)

because 〈(δN̂1)2〉 = 〈(δN̂2)2〉 one has from (1.31) that the normalized corre-
lation

C ≡ 〈δN̂1δN̂2〉√
〈(δN̂1)2〉〈(δN̂2)2〉

= 1 , (1.33)

which means perfect correlation. For the realistic case of a Gaussian pump,
the fluctuations of N̂− are below the shot-noise level; [10] that is

〈(δN̂−)2〉 < 〈N̂+〉 = 〈N̂1〉 + 〈N̂2〉 . (1.34)
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N1, X1 , Y1

N2, X2 , Y2

±

(a) (b)

Fig. 1.7. Intensity distribution in the far field for a single shot of the pulsed pump
field. (a) Numerical simulations. The waist of the pump beam is 1000 µm, 300 µm,
150 µm in the three frames from the top to the bottom, respectively. Ni, Xi, Yi,
(i = 1, 2) denote the photon numbers and the quadrature component measured in
the two pixels 1 and 2, respectively. (b) Experimental observation by Devaux and
Lantz at University of Besançon (see [13]).

Because this phenomenon arises for any pair of symmetrical pixels, we call it
spatial entanglement. The same effect occurs also for quadrature components,
because in the two pixels the fluctuations of the quadrature component X̂
are almost exactly correlated, and those of the quadrature component Ŷ are
almost exactly anticorrelated [12]. The case of perfect correlation/anticorrela-
tion occurs in the limit of the plane-wave pump, in which relations (1.21)
hold.

The minimum size of the symmetrical small regions, among which one
finds spatial entanglement, is determined by the finite aperture of optical
elements, and is given, in the paraxial approximation, by λf/a, where λ is
the wavelength, f is the focal length of the lens and a is the aperture of
optical elements (e.g., the lens aperture; Fig. 1.6). In a more realistic model
of the OPA, the finite waist of the pump field must be taken into account. In
this case the minimum size of the regions where entanglement is detectable
in the far field is determined by the pump waist.

The spatial entanglement of intensity fluctuations in the far field is quite
evident even in single shots (the pump field is typically pulsed). Figure 1.7a
shows a numerical simulation in a case of noncollinear phase matching at the
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degenerate frequency. One observes the presence of symmetrical intensity
peaks, which become broader and broader as one reduces the waist of the
pump field. A similar situation is observed in an experiment performed using
a LBO crystal [13] (see Fig. 1.7b). We observe finally that the near-field/far-
field duality (i.e., squeezing in the near field, entanglement in the far field)
can be understood on the basis of the intrinsic connection between squeezing
and quantum entanglement. The spatial entanglement in the far field arises
from the correlation between the modes âout(q) ∼ exp[iq · x] and âout(q) ∼
exp[−iq · x], which in the far field gives rise to two separated and opposite
spots in the transverse plane.

On the other hand, in the near field there is no squeezing in modes â(q)
and â(−q) separately, whereas there is large squeezing in the combination
modes b̂(q) = (â(q) + â(−q)) /

√
2 and b̂(−q) = (â(q) − â(−q)) /

√
2 , which

annihilate photons in spatial modes ∼cos(q ·x) and ∼sin(q · x). In the near
field it is possible to observe this squeezing by using a local oscillator with a
cos(q ·x) or sin(q ·x) spatial configuration [8]. One notices immediately that
the relation between modes â(q), â(−q) and modes b̂(q), b̂(−q) coincides
with Eq. (1.22), which, as we have seen, transforms entangled beams into
squeezed beams, and vice versa.

1.4.3 Detection of Weak Amplitude or Phase Objects Beyond the
Standard Quantum Limit

Let us consider first the case of a weak amplitude object that is located, say,
in the signal part of the field emitted by an OPA (Fig. 1.8). Both signal and
idler are very noisy and therefore, in the case of a large photon number, if
the object is weak and we detect only the signal field, the signal-to-noise
ratio for the object is low. But, because of the spatial entanglement, the

OPA

I1

I2

Fig. 1.8. Detection of a weak amplitude object by measuring the intensity differ-
ence I1 − I2.

fluctuations in the intensity difference between the signal and idler are small.
Hence if we detect the intensity difference, the signal-to-noise ratio for the
object becomes much better. This scheme is the generalization to the spatially
multimode configuration of a single-mode scheme utilized to detect a weak
absorption [14]. Next, let us pass to the case of a weak phase object in which
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multimode squeezed light

weak phase object

photodetector
arrays

coherent light

Fig. 1.9. Detection of a weak phase object.

one can exploit, instead, the property of spatially multimode squeezing. The
configuration is the standard one of a Mach–Zehnder interferometer in which,
as is well known, one can detect a small phase shift with a sensitivity beyond
the standard quantum limit by injecting a squeezed beam in the port through
which usually normal vacuum enters. If we have a weak phase image (Fig. 1.9)
we can obtain the same result by injecting spatially multimode squeezed
light [15].

1.4.4 Image Amplification by Parametric Down-Conversion
(Type-I)

Let us come back to the configuration of Fig. 1.5b. Let us assume that now,
instead of a plane wave at frequency close to ωs, we inject a coherent mono-
chromatic image (Fig. 1.10) of frequency ωs. Parametric image amplification
has been extensively studied from a classical viewpoint (see, e.g., [13]). A
basic point in Fig. 1.10 is that, if the image is injected off axis, one obtains
in the output a signal image that represents an amplified version of the input
image, and also a symmetrical idler image. An interesting situation arises if
one has, in addition to the amplifier, a pair of lenses located at focal dis-
tances with respect to the object plane, to the amplifier, and to the image
plane (Fig. 1.11). As was shown by our group [11,12,16], in the limit of large
amplification the two output images can be considered twins of each other
even from a quantum-mechanical viewpoint. As a matter of fact, they do not
only display the same intensity distribution but also the same local quantum
fluctuations. Precisely, let us consider two symmetrical pixels in the two im-
ages (Fig. 1.12). It turns out that the intensity fluctuations in the two pixels
are identical, that is, exactly correlated/synchronized. On the other hand, the
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Fig. 1.11. A possible scheme of the parametric optical image amplifier.

is, however, a negative point that concerns the signal-to-noise ratio. When
the input image is injected off axis, this mechanism of amplification is phase-
insensitive and therefore, as is well known, it adds 3 dB of quantum noise in

±

111 ,, YXI

222 ,, YXI
Fig. 1.12. The spatial entanglement between the two output images concerns in-
tensity and phase fluctuations, and also the fluctuations of quadrature components.
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Fig. 1.13. Symmetrical injection of an image.

the output [17]. In order to have noiseless amplification (i.e., amplification
that preserves the signal-to-noise ratio) one must inject two coherent images
symmetrically (Fig. 1.13) [16]. In this case one has in the input two identi-
cal, but uncorrelated images, and in the output two amplified images in a
state of spatial quantum entanglement. One can prove that this symmetrical
configuration is phase-sensitive (compare with Case 1′ of Section 1.2.2) and,
in fact, as shown in [18, 19], the amplification can become noiseless. A few
years ago there was a landmark experiment by Kumar and collaborators [20]
that demonstrated the noiseless amplification of a simple test pattern. This
experiment has a configuration which differs from that of Fig. 1.11 because
it does not include the two lenses. A complete theory for this experimental
configuration is given in [21].
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2.1 Introduction

This chapter and Chapter 5 constitute a direct continuation of Chapter 1,
with a description of the developments in the continuous variable approach
to quantum imaging, achieved in the framework of QUANTIM. Whereas
Chapter 2 treats the traveling-wave configuration for PDC, the discussion
of Chapter 5 focuses on the cavity configuration of optical parametric oscil-
lators. The structure of this chapter is as follows. Section 2.2 presents the
theoretical picture of spatial entanglement in type-II materials. Contrary to
most literature on PDC, the emphasis is on the high-gain regime. Section 2.3
describes the experimental observations of those theoretical predictions out-
lined in Section 2.2, which concern the quantum correlations in the far field,
with an associated phenomenon of photon antibunching in space. In the final
Section 2.4 we illustrate the multiphoton, multimode polarization entangle-
ment in the high-gain PDC. Instead of considering the standard polarization
entanglement in single pairs of signal–idler photons, we focus on collective
polarization entanglement properties at the macroscopic level.

2.2 Simultaneous Near-Field and Far-Field Spatial
Quantum Correlation in the High-Gain Regime of
Type-II Parametric Down-Conversion

This section is based on [1], and we refer the reader to this article for more
details about these results.

2.2.1 Propagation Equations for the Signal–Idler Fields and
Input-Output Relations

We decompose the electric field in the superposition of three quasi-monochro-
matic wavepackets (denoted with E0, E1, and E2) of central frequencies ω0,
ω1, and ω2, corresponding to the pump, the signal, and the idler fields, re-
spectively. These frequencies are taken to satisfy the energy conservation
condition ω1 + ω2 = ω0. Assuming that the mean direction of propagation
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is the z-direction, and denoting with x = (x, y) the coordinate vector in the
transverse plane, we can write

Ej(z,x, t) ∝ Aj(z,x, t) eikjz−iωjt + c.c. (j = 0, 1, 2) , (2.1)

where kj = njωj/c is the wave number of wave j at the carrier frequency
along the z-axis; for an extraordinary wave the refractive index nj depends
on the propagation direction, a property leading to spatial walk-off.

In a single-pass configuration with crystal length on the order of a few
millimeters, the pump depletion due to down-conversion is indeed a small
entity, unless extremely high intensity laser sources are used. We shall there-
fore work within the parametric approximation, which treats the pump as
a known classical field that propagates linearly inside the crystal, while the
down-converted fields are quantized. Making the formal substitution for the
signal–idler (S–I) field envelopes Aj(z,x, t) → âj(z,x, t) , (j = 1, 2), we im-
pose the following commutation rules at equal z [2],[

âi(z,x, t), â†
j(z,x ′, t′)

]
= δij δ(x − x ′)δ(t − t′) , (2.2)

[âi(z,x, t), âj(z,x ′, t′)] = 0 (i, j = 1, 2) ,

valid within the framework of the paraxial and quasi-monochromatic approx-
imations. With this definition

Îj(z,x, t) = â†
j(z,x, t)âj(z,x, t) (j = 1, 2), (2.3)

is the photon flux density operator associated with the wave j: its expectation
value gives the mean number of photons crossing a region of unit area in
the transverse plane. In the linear regime the field operators obey the same
equations as the corresponding classical quantities. For our purposes, it is
useful to introduce the Fourier transforms of the field envelopes with respect
to time and to the transverse plane coordinates:

âj(z, q, Ω) =
∫

dx

2π

∫
dt√
2π

âj(z,x, t)e−iq·x+iΩt (j = 1, 2) . (2.4)

A similar definition holds also for the Fourier component A0(z, q, Ω) of the
classical pump field envelope. The propagation equations then take the form

∂âj(z, q, Ω)
∂z

= iδj(q, Ω)âj(z, q, Ω) (2.5)

+σe−i∆0z

∫
dq ′

2π

∫
dΩ′
√

2π
A0(z, q − q′, Ω−Ω′)â†

l (z,−q′,−Ω′)

(j, l = 1, 2; j 
= l) ,

where the coupling constant σ is proportional to the effective second-order
susceptibility χ

(2)
eff characterizing the down-conversion process, and
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δj(q, Ω) = k′
jΩ +

1
2
k′′

j Ω2 + �jqy − 1
2kj

(q2
x + q2

y) , (j = 1, 2), (2.6)

is the quadratic expansion of kjz(ωj + Ω, q) − kj around q = 0, Ω = 0,

and kjz(ωj + Ω, q) =
√

k2
j (ωj + Ω, q) − q2 denotes the z-component of the

k-vector associated with the (q, Ω)j plane-wave mode. In particular the walk-
off angle �j can be identified as ∂kj/∂qy calculated for q = 0, Ω = 0. A more
detailed derivation can be found in [1–4].

Equations (2.5) contain the convolution integral in Fourier space of the
S/I field envelope with the pump field envelope. Within the undepleted pump
approximation, the latter can be expressed as

A0(z, q, Ω) = eiδ0(q,Ω)zA0(z = 0, q, Ω) , (2.7)

δ0(q, Ω) = k′
0Ω +

1
2
k′′
0Ω2 + �0qy − 1

2k0
(q2

x + q2
y) , (j = 1, 2), (2.8)

the z = 0 plane being taken at the input face of the slab. In the following we
shall assume that the pump pulse has a Gaussian profile both in space and
time, of beam waist w0 and time duration τ0 at z = 0:

A0(z = 0,x, t) = (2π)3/2Ape−(x2+y2)/w2
0e−t2/τ2

0 . (2.9)

In Fourier space we have then the expression

A0(z = 0, q, Ω) = 2
√

2
Ap

δq2
0δω0

e−(q2
x+q2

y)/δq2
0e−Ω2/δω2

0 , (2.10)

where
δq0 = 2/w0 , δω0 = 2/τ0, (2.11)

denote the bandwidths of the pump in the spatial frequency domain and in
the temporal frequency domain, respectively.

Let us now consider the limit of the stationary and plane-wave pump
approximation (PWPA), in which w0 and τ0 tend to infinity and

A0(z, q, Ω) → (2π)3/2Ap δ(q)δ(Ω) . (2.12)

Under this condition Eqs. (2.5) couple only pairs of phase-conjugated modes
(q, Ω)1 and (−q,−Ω)2 and can be solved analytically. The unitary input-
output transformations relating the field operators at the output face of the
slab of thickness lc, âj,out(q, Ω) ≡ âj(z = lc, q, Ω), to those at the input face,
âj,in(q, Ω) ≡ âj(z = 0, q, Ω), take the following form.

â1out(q, Ω) = U1(q, Ω)â1in(q, Ω) + V1(q, Ω)â†
2in(−q,−Ω) , (2.13)

â2out(q, Ω) = U2(q, Ω)â2in(q, Ω) + V2(q, Ω)â†
1in(−q,−Ω) ,

with
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U1(q, Ω) = exp
[
i
δ1(q, Ω) − δ2(−q,−Ω) − ∆0

2
lc

]
(2.14)

×
[
cosh(Γ (q, Ω)lc) + i

∆(q, Ω)
2Γ (q, Ω)

sinh(Γ (q, Ω)lc)
]

,

V1(q, Ω) = exp
[
i
δ1(q, Ω) − δ2(−q,−Ω) − ∆0

2
lc

]
(2.15)

× σp

Γ (q, Ω)
sinh(Γ (q, Ω)lc) ,

U2(q, Ω) = exp
[
i
δ2(q, Ω) − δ1(−q,−Ω) − ∆0

2
lc

]
(2.16)

×
[
cosh(Γ (−q,−Ω)lc) + i

∆(−q,−Ω)
2Γ (−q,−Ω)

sinh(Γ (−q,−Ω)lc)
]

,

V2(q, Ω) = exp
[
i
δ2(q, Ω) − δ1(−q,−Ω) − ∆0

2
lc

]
(2.17)

× σp

Γ (−q,−Ω)
sinh(Γ (−q,−Ω)lc) ,

where ∆0 = k1 + k2 − k0 is the collinear phase mismatch of the central
frequency components, and

Γ (q, Ω) =

√
σ2

p − ∆(q, Ω)2

4
, σp = σAp , (2.18)

∆(q, Ω) = ∆0 + δ1(q, Ω) + δ2(−q,−Ω) (2.19)
≈ k1z(q, Ω) + k2z(−q,−Ω) − k0 .

It is important to note that the gain functions Uj and Vj given by Eq. (2.14)
satisfy the following unitarity conditions,

|Uj(q, Ω)|2 − |Vj(q, Ω)|2 = 1 (j = 1, 2) (2.20)
U1(q, Ω)V2(−q,−Ω) = U2(−q,−Ω)V1(q, Ω) , (2.21)

which guarantee the conservation of the free-field commutation relations (2.2)
after propagation. In the following we shall consider measurements either in
the near-field or in the far-field zones of the nonlinear crystal. In order to
simplify the notation we shall omit the explicit dependence of the fields on the
z-coordinate: when specification is explicitly needed, the measured quantities
will be labeled with π or π′, which will denote the near-field and the far-field
detection planes, respectively (see the scheme of Fig. 2.1).

In the following, we focus on the frequency-degenerate case ω1 = ω2,
k1 = k2 = k, even if k′

1 
= k′
2 (see Eq. (2.6)). In this case, the phase mismatch

accumulated during propagation is given, using (2.19) and (2.6), by

∆(q, Ω)lc = ∆0lc + sign[k′
1 − k′

2]
Ω

Ω0
− �2qy −

q2
x + q2

y

q2
0

, (2.22)
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PUMP

χ(2) signal-idler 
emission cones

0 lc+2flc

z

Fig. 2.1. Scheme for the observation of down-conversion in the far-field zone. The
lens used to reach the far field (not shown in the figure) is located at z = lc + f .

where we neglected the terms ∝ Ω2, we assumed that the signal wave is
ordinarily polarized so that �1 = 0, and we denoted

q0 =
√

k

lc
, Ω0 =

1
|k′

1 − k′
2|lc

. (2.23)

The parameters Ω0 and q0 are the characteristic bandwidths of parametric
down-conversion (PDC) in the spatial frequency and the temporal frequency
domain, respectively.

Figure 2.2 illustrates the kind of far-field patterns that can be obtained
from a single pump pulse at frequency degeneracy in a type-II crystal. They
are obtained by numerical integration of the classical-looking field equations
(2.5), with a white input noise that simulates the vacuum fluctuations that
trigger the process, as will be described in Section 2.2.3. The pump pulse
duration is 1.5 ps and the large waist condition δq0 � q0 is fulfilled. The
width of the rings is determined by the interval of frequencies of the numerical
grid. In the examples shown in Fig. 2.2 the grid acts as a 15 nm box-shaped
interference filter. The intensity peaks (white spots in the figure) become
broader and broader as the beam waist w0 is reduced, because their size is
on the order of the resolution length imposed by the transverse size of the
pump beam waist; that is, xdiff = (λf/2π)δq0. One notes that, whenever
one has an intensity peak in the signal ring (Fig. 2.2a,b) or circle (Fig. 2.2c),
one has a symmetrical intensity peak in the idler ring or circle. This feature
will be confirmed by the experimental results discussed in Section 2.3.
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Fig. 2.2. Typical far-field pattern from the down-conversion in a type-II crystal,
assuming that the observation is performed at the degenerate frequency (i.e., at
ω1 = ω2). They are obtained for decreasing values of the collinear phase-mismatch
parameter ∆0, which makes the radius of the rings shrink to zero. The pump pulse
duration is τ0 = 1.5 ps, the pump beam waist is w0 = 664 µm (δq0/q0 = 0.05), and
the parametric gain is σplc = 4.

2.2.2 Near- and Far-Field Correlations in the Stationary and
Plane-Wave Pump Approximation

Let us consider first the far-field correlations, which find their origin in the
conservation of the transverse momentum in the generated photon pairs.
Therefore, we consider two pointlike detectors, located symmetrically with
respect to the axis of the system. One of them detects the signal photons,
the other the idler photons (if necessary, signal and idler photons can be sep-
arated with the help of a polarizing beamsplitter because they are polarized
in orthogonal directions).

If the detectors are the pixels of a CCD camera, they do not allow any
spectral measurement due to the very low resolution power of the device
in the time domain. They simply measure the total number of incoming
photons down-converted in each single pump shot and the measurement time
can be identified with the pump pulse duration. Hence we introduce two
operators N̂1 and N̂2 which correspond to the number of photons detected
in the two pixels during the whole pump pulse duration, and the associated
fluctuations δN̂i = N̂i − 〈N̂i〉, (i = 1, 2). In the PWPA limit, it can be
analytically proven [1] that the fluctuations in the photon number difference
N̂− = N̂1 − N̂2 vanish exactly; that is,

〈(δN̂−)2〉 = 0 , (2.24)
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as in the case of type-I PDC (see Eq. (1.31) of Chapter 1). Let us now turn to
the near-field correlation. In this case, the separation between the signal and
idler photons due to the walk-off is small. Near-field correlations between the
signal and the idler photons arise from the fact that they are generated in the
same spatial position, hence in this case we consider two pointlike detectors
that occupy the same region in the near-field plane. In order to perform the
measurement with physically separated pixels, the signal and idler beams
can be separated by using a polarizing beamsplitter (see Section 2.2.3). In
the near-field case, the result (2.24) holds only asymptotically in the limit
lc → 0 [1] or, more physically, when the transverse area of the detector pixel
is larger than the coherence area x2

coh, where

xcoh ≡ 1
q0

=

√
lc
k

. (2.25)

This finite correlation length comes from the spread-out of the generated
photons due to diffraction, which increases proportionally to the square root
of the propagation distance.

We note that if the losses of the detection process are taken into account,
the ideal result 〈(δN̂−)2〉 = 0 must be replaced with

〈(δN̂−)2〉 = η(1 − η)〈N̂+〉 , 〈N̂+〉 = 〈N̂1〉 + 〈N̂2〉, (2.26)

η denoting the finite quantum efficiency of the detectors.
In order to understand the spatial entanglement properties of the signal–

idler fields, it is convenient to use the Schrödinger picture instead of the
Heisenberg picture we utilized up to now. For simplicity, we ignore the time
and the frequency variables t and Ω in the remainder of this section. In the
Schrödinger picture, the state at the input face of the slab is the vacuum
state for all modes; that is,

|ψ〉in =
∏
q

|0, q〉1|0, q〉2 , (2.27)

where we indicate by |n, q〉i the Fock state with n photons in mode q; i = 1(2)
indicates the signal (idler) as usual. On the other hand, in the PWPA the
state of the signal–idler field at the output face of slab given by [3, 5],

|ψ〉out =
∏
q

{ ∞∑
n=0

cn(q)|n, q〉1|n,−q〉2

}
, (2.28)

where cn(q) = {U1(q)V2(−q)}n |U1(q)|−(2n+1). Equation (2.28) is a super-
position of states with the same number of photons in the mode q for the
signal field and in the mode (−q) for the idler field. This expresses in a very
emphatic way the momentum entanglement between the signal and idler pho-
tons which, in the far field, gives rise to the spatial entanglement between
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positions x and (−x). Equation (2.28) is an eigenstate of N̂− = N̂1−N̂2 with
the eigenvalue zero, which explains why N− is fluctuationless. Two remarks
are in order. The first is that, if only one of the two fields is detected (e.g., the
signal field) and the idler is disregarded, the output state of the signal field,
obtained by tracing away the degrees of freedom of the idler, is described by
the density matrix

�1out =
∏
q

{ ∞∑
n=0

|cn(q)|2|n, q〉11〈n, q|
}

. (2.29)

It can be verified that

|cn(q)|2 =
〈n̂(q)〉n

[1 + 〈n̂(q)〉]n+1 , (2.30)

where 〈n̂(q)〉 is the average number of photons in mode q, so that the photon
statistics of the signal field is thermal for all modes q. The same is true for the
idler. Hence when 〈n̂(q)〉 � 1, both the signal and the idler photon numbers
undergo large fluctuations.

The second remark is that almost all literature on PDC is limited to the
case 〈n̂(q)〉 � 1, in which the state |ψ〉out reduces to

|ψ〉out ≈
∏
q

c0(q)|0, q〉1|0,−q〉2 (2.31)

+
∑

q

c1(q)|1, q〉1|1,−q〉2 ×
∏

q′ �=q

c0(q′)|0, q′〉1|0,−q′〉2

 .

In this case, coincidences of single photon pairs are detected. We focus, in-
stead, on the case that 〈n̂(q)〉 is not negligible, so that a large number of
terms in the expression (2.28) are relevant (macroscopic case).

The position entanglement between signal and idler photons in the near
field can be retrieved in the following way. In the short crystal limit, where
diffraction and walk-off along the crystal are negligible, the coefficients Ui(q)
and Vi(q) in (2.13) become practically constant with respect to q and can
be replaced with their values for q = 0. Back-transforming Eqs. (2.13) to the
real space x, they become

â1out(x) = U1(q = 0)â1in(x) + V1(q = 0)â†
2in(x) , (2.32)

â2out(x) = U2(q = 0)â2in(x) + V2(q = 0)â†
1in(x) ,

where, as we said, we ignore the frequency variable Ω. The input-output
relations (2.32) are local in the position x in the crystal output plane (“near
field”), and the corresponding output state reads

|ψ〉 =
∏
x

{ ∞∑
n=0

cn(q = 0)|n,x〉1|n,x〉2

}
, (2.33)
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where |n,x〉 is the Fock state with n photons at point x. In this limit, there
is ideally a perfect correlation in the number of signal–idler photons at the
same near-field position (position entanglement).

2.2.3 Near- and Far-Field Correlations: Numerical Results in the
General Case

We now present the results obtained from the numerical model that includes
the effects of the finite pump. The quantum averages in which we are inter-
ested (i.e., photon number correlations) are evaluated through a stochastic
method based on the Wigner representation. With respect to other repre-
sentations in phase space, the Wigner representation presents the advantage
that the c-number stochastic equations equivalent to the equations for the
field operators (2.5) do not contain Langevin noise terms (because of linearity
and absence of dissipation) and are therefore identical to the classical propa-
gation equations. The statistical character of the quantum fields is therefore
wholly contained in the stochastic input field (see e.g., [6] for a more detailed
discussion). We generate the input field with the appropriate phase-space
probability distribution, that is a Gaussian white noise with zero mean, cor-
responding to the vacuum state in the Wigner representation [7]. With such
an input field, we perform the numerical integration of Eqs. (2.5). We use a
split-step algorithm [8] that integrates separately the terms describing linear
propagation and the term describing the wave-mixing process: the former are
integrated in the Fourier space, the latter in the real space. The obtained
output fields are used to evaluate the correlation functions of interest. The
procedure must be reiterated a sufficiently large number of times, so that
the stochastic averages performed become good approximations to the cor-
responding quantum expectation values. Furthermore, some corrections are
necessary in order to convert them to the desired operator ordering (the
Wigner representation yields quantum expectation values of symmetrized
operator products).

2.2.4 Far-Field Correlations

We shall consider explicitly the system described in [10]: a 1.5 ps high-
intensity laser pulse is injected in a 4 mm long beta barium borate (BBO)
crystal cut for type-II phase-matching. In the example we consider the pump
oriented at an angle close to 48.2o with respect to the crystal axis and PDC is
observed around the degenerate wavelength λ1 = λ2 = 704 nm with a 10 nm
interference filter. We investigated the momentum correlation that can be
observed in the far-field plane π′, by considering two symmetrical detection
areas. The variance of N̂− normalized to the shot noise is plotted in Fig. 2.3
as a function of the detector size d, normalized to the spatial scale of the
photon number distribution in the far-field plane xcoh = (λf/2π)q0, for dif-
ferent values of the pump-beam waist. Fluctuations are well below shot noise
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Fig. 2.3. Far-field correlation: the ratio 〈(δN̂−)2〉π′/〈N̂+〉π′ is plotted as a function
of the detector size d for increasing value of the ratio δq0/q0. The parametric gain
is σplc = 4, the negative value of the collinear phase mismatch is ∆0lc = −q2

C/q2
0 =

−74.4, and the corresponding field intensity pattern is of the kind shown in Fig. 2.2c.

only if the detection size d is larger than the characteristic resolution length
of the system xdiff = (λf)/(2π)δq0, that is, for d/xcoh > δq0/q0.

2.2.5 Near-Field Correlations

A main advantage of the type-II configuration lies in the fact that the signal
and the idler fields have different polarizations and can therefore be ma-
nipulated more easily. In particular, it is possible to measure their mutual
correlation in the near field after they have been physically separated by a
polarizing beamsplitter, as shown schematically in Fig. 2.4. The lenses L and
L′ shown in the figure simply perform the 2f − 2f imaging of the “near-field
plane” π onto the two detection planes. For the moment, we only assume
that the plane π is located at some coordinate z inside the crystal. The S–I
field correlation functions display pronounced peaks for x ′ = x describing
the position entanglement of the S/I photons, which are generated in pairs
in the same region of the crystal. The width of the peaks is on the order of
the coherence length xcoh = 1/q0. In the simulation illustrated in Fig. 2.5,
we consider the type-II BBO crystal in the same conditions described before.
The near-field coherence length is xcoh = 16.6µm. The plot displays the noise
reduction factor 〈(δN̂−)2〉π/〈N̂+〉π, evaluated numerically as a function of the
1D detector size d normalized to xcoh. If the near-field observation plane π
coincides with the output face of the crystal at z = lc (triangles), we see
that the fluctuations are significantly reduced only when d is about 15 times
larger than xcoh. The improved result (black squares) has been obtained by
imaging onto the detection planes of a plane inside the crystal at z = lc−∆z,
rather than the crystal output face (see Fig. 2.4). Furthermore, the arrays of
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Fig. 2.4. Detection scheme to measure spatial correlations in the near field. A
polarizing beamsplitter (PBS) separates the S/I beams. Their near fields, at the
plane π : z = lc −∆z, are imaged by two lenses (L and L′) onto the pixel detectors
R1 and R2, which are in the plane conjugate to plane π; ∆z and ∆y indicate
the spatial shifts applied to the optical devices that are necessary to optimize the
measurement.
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Fig. 2.5. Near-field correlations: the ratio 〈(δN̂−)2〉π/〈N̂+〉π is plotted as a function
of the detector size. The parameters of the pulsed Gaussian pump are w0 = 332µm
(δq0/q0 = 0.1) and τ0 = 1.5 ps (δω0/Ω0 = 1.14); the gain is σplc = 3 and
qR = 0. The simulations performed applying diffraction and walk-off compensation
(squares) are well below the one performed without optimization (white triangle).
The dashed line corresponds to the analytical solution obtained in the PWPA.

pixel detectors in the signal and idler arms are shifted with respect to each
other by a distance ∆y in the transverse direction of walk-off (see Fig. 2.4).
This optimization procedure, which takes carefully into account the effects
of walk-off and diffraction along the crystal, is described in detail in [1].
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2.3 Detection of Sub-Shot-Noise Spatial Correlations in
High-Gain Parametric Down-Conversion

In this section we describe the first experimental observation of spatial en-
tanglement in the far field, as theoretically and numerically described in
Sections 2.2.2 and 2.2.3. The experiment utilizes a high-efficiency scientific
CCD camera with the pixel area on the order of the characteristic resolution
area (or coherence area in the far field) x2

diff , with xdiff = (λf/2π)δq0.
The results of this section are based on Refs. [11, 12].
There is now a large literature on spatial effects in the low-gain regime,

where photon pairs are detected via coincidence counting [13]. This litera-
ture includes several imaging experiments (e.g., ghost interference [14]) that
exploit the spatial correlation of twin photons, although recent investiga-
tions [15, 16] have shown that some of these experiments can be reproduced
with classically correlated photons. Genuine spatial quantum effects have
been shown in [17], which demonstrates spatial antibunching, and in [18],
which reports on realization of an EPR paradox regarding the position-
momentum uncertainty relation for photons.

Recent theoretical investigations done for arbitrary gains [1,19] have pre-
dicted multimode spatial correlations below shot noise between different por-
tions of the signal and the idler emission cones that correspond to the phase-
conjugate modes. This kind of k-vector (i.e., far-field) correlation amounts
to the multimode version of the well-known twin-beam effect, that is, a sub-
shot-noise correlation between the whole signal and idler beams which was
evidenced, for example, in [20] in the medium-gain regime of PDC. These spa-
tial correlations have also been investigated in the low-gain regime in [21,22]
with a high-sensitive CCD camera, although it was not possible to determine
its quantum nature quantitatively. More recently, the measurement of small
displacements beyond the Rayleigh limit [23] and the realization of noise-
less amplification of optical images [24] put in evidence the potentiality of
such multimode quantum correlations in the large photon number regime for
potential applications. The aim of our experiment is to demonstrate the pre-
dicted quantum character of the correlation that can be observed in the far
field of PDC.

In the following we present a description of the far-field detection of the
PDC radiation emitted by a β-barium borate nonlinear crystal pumped by a
low-repetition rate (2 Hz) pulsed high-power laser (1 GW–1 ps).

The use of the pulsed high-power laser enables us to tune the PDC to
the high-gain regime while keeping a large pump beam size (of the order of
∼1 mm). Thanks to the huge number of radiation transverse modes, we can
concentrate on a portion of the parametric fluorescence close to the collinear
direction and within a narrow frequency bandwidth around the degeneracy.
This portion still contains a large (>1000) number of pairs of signal/idler cor-
related phase-conjugate modes, propagating in symmetrical directions with
respect to the pump in order to fulfill the phase-matching constraints. In the
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far field, where the measurement is performed, the couples of modes corre-
spond to pairs of symmetrical spots, which can be considered as independent
and equivalent spatial replicas of the same quantum system. Thanks to the
very large number of these, the statistical ensemble averaging necessary for
the quantum measurement can be solely done over the spatial replicas for
each, single, pump-laser pulse. Thus, differently from the experiment in [20],
where the statistics was performed over different temporal replicas of the
system, here no temporal averages over successive laser shots are considered.
In our experiment the single-shot measurements reveal sub-shot-noise spa-
tial correlations for a PDC gain corresponding to detection of up to 100
photoelectrons per mode [11].

2.3.1 Detection of the Spatial Features of the Far-Field PDC
Radiation by Means of the CCD

Before going to the quantitative investigation of existence of the spatial
correlations between the signal and the idler beams, we perform a prelim-
inary characterization of the generated parametric radiation. The type-II
5 × 7 × 4 mm3 BBO nonlinear crystal, operated in the regime of paramet-
ric amplification of the vacuum-state fluctuations, is pumped by the third
harmonic (352 nm) of a 1 ps pulse from a chirped-pulse amplified Nd:glass
laser (TWINKLE, Light Conversion Ltd.). The input and output facets of
the crystal are anti-reflection-coated at 352 nm and 704 nm, respectively. The
pump beam (vertically polarized (e)) is spatially filtered and collimated to a
beam waist characterized by a full width at half maximum (FWHM) of ap-
proximately 1 mm at the crystal input facet. The energy of the 352 nm pump
pulse can be continuously tuned in the range 0.1–0.4 mJ by means of suitable
attenuating filters and by changing the energy of the 1055 nm pump laser
pulse, allowing a gain G (representing the intensity amplification factor) in
the range 10 ≤ G ≤ 103. The parametric fluorescence of the horizontally po-
larized signal (o) and vertically polarized (e) idler modes is emitted over two
cones, whose apertures depend on the specific wavelengths (see, e.g., [10]).
The BBO crystal (θ = 49.05◦, φ = 0) is oriented in order to generate signal
and idler radiation cones tangent to the collinear direction at the degenerate
wavelength ωs = ωi = ωp/2 (s, i, and p referring to signal, idler, and pump,
respectively).

A simple far-field detection set-up is initially mounted as shown in Fig. 2.6.
A deep-depletion back-illuminated charged coupled device (CCD) camera [25]
(Roper Scientific, NTE/CCD-400EHRBG1, with quantum efficiency η ≈ 89%
at 704 nm) triggered by a pulse from the laser system, is placed in the focal
plane of a single large-diameter lens (f = 5 cm), which collects at a distance f
the far-field PDC radiation emitted by the BBO. The CCD detection array
has 1340× 400 pixels, with a pixel size of 20 µm×20 µm. The pump-frequency
contribution is removed by using a normal incidence high-reflectivity (HR)
mirror coated for 352 nm placed after the BBO. By using a 10 nm broad
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Fig. 2.6. (a) Scheme of the diagnostics for the far-field detection of the degenerate
signal and idler ring-type modes. (b) Detailed scheme of the experimental set-up
used for the spatial-correlations measurements. The third harmonic of the Nd:Glass
laser is used to pump at 352 nm the BBO crystal which is cut for degeneracy at
704 nm (θ = 49.05◦, φ = 0).

interferential filter (IF), centered at 704 nm, we are able to visualize the
degenerate signal and idler far-field beams emitted in the parametric process.
It is worth pointing out that without any spectral filtering, emission occurs
on a very wide range of wavelengths and emission angles (see, e.g., [10]).
Typical far-field images recorded at degeneracy in a single shot (for 1 ps pump
pulse) are shown in Fig. 2.7a,b for two different values of the pump intensity
and, in the particular cases illustrated, for two different pump beam sizes.
The ring-shaped angular distribution is determined by the phase-matching
conditions [10], and the rings at degeneracy are characterized by an angular
width of about 8◦ each. Note that with this set-up the two rings, which are
emitted along the vertical direction, are recorded by rotating the CCD by 90◦

in order to fit the entire ring pattern inside the rectangular chip. The shape of
the rings is similar to the numerical Fig. 2.2b. A detailed comparison between
theory and experiment as well as a discussion of the photon distribution over
the rings, is given in [12].

2.3.2 Experimental Set-Up for Spatial-Correlations Measurements

The existence of spatial correlations already appears from the symmetrical
properties of the signal and the idler patterns recorded experimentally and
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Fig. 2.7. Experimental far-field images of the degenerate signal (left ring) and
idler (right ring) beams recorded in single shot by the CCD placed in the focal
place of a single lens (f = 50 cm), with pump intensity (a) I ≈ 30 GW/cm2, and
(b) I ≈ 50 GW/cm2, and FWHM pump beam size of 1mm (a) and 0.4 mm (b)
respectively.

shown in Fig. 2.7. However, to investigate and reveal the quantum character of
the correlations we use the experimental set-up illustrated in Fig. 2.6b where,
with respect to Fig. 2.6a, a different diagnostics configuration is adopted. We
consider a pump beam size of 1 mm and we now select the fluorescence around
the collinear direction by means of a 5mm × 8 mm aperture placed 15 cm
from the output facet of the BBO. The radiation is then transmitted through
a polarizing beamsplitter (PBS) that separates the signal and idler beams.
The aperture prevents beam clipping by the PBS and thereby reduces sub-
stantially scattered radiation. The beams are finally sent onto two separate
regions of the CCD, which is placed in the common focal plane of two lenses
(f = 10 cm) used to image the signal and idler far fields. In this set-up the
correlation measurements are performed without using any narrowband IFs,
because these unavoidably introduce relevant transmission losses reducing the
visibility of sub-shot-noise correlations, and could also introduce distortion or
even attenuation effects. Here the pump-frequency contribution is removed
by using normal incidence (M5) and at 45◦ (M4) high-reflectivity (HR) mir-
rors coated for 352 nm placed before and after the PBS, respectively, and a
low-bandpass color filter (90% transmission around 704 nm) placed in front
of the CCD. Note that a second PBS (not shown in the figure) is placed in
the arm of the (e) idler beam to remove the residual contribution of ordinary
(o) radiation reflected by the first PBS (3%), and a further HR@352 nm mir-



32 A. Gatti, E. Brambilla, O. Jedrkiewicz, and L. A. Lugiato

ror (M ′
4) is placed in the signal arm at a suitable angle in order to balance

the unequal transmission of radiation in the two arms. All the optical com-
ponents (except the color filter) have antireflection coatings at 704 nm. The
estimated quantum efficiency of each detection line, which accounts for both
the transmission losses and the detector efficiency, is ηtot 75%.

It is worth pointing out that prior to the experiment for the detection
of quantum spatial correlations, we performed a test of the capabilities of
the scientific CCD camera to perform spatially resolved measurements of
the photon shot noise. The CCD used for the diagnostic has in fact been
calibrated pixel by pixel to compensate for the gain inhomogeneity of the
pixels on the CCD chip, allowing the retrieval of the Poissonian statistics
of the spatial fluctuations of a uniform enlightening in the full range of the
camera dynamics [26]. Retrieving the shot noise in the CCD full dynamic
range using classical sources paved the way to spatially resolved photon noise
measurements at the sub-shot-noise level (SNL), and turned out to be a
necessary step to demonstrate quantum properties of images by means of a
CCD diagnostic.

Fig. 2.8. (a) Single-shot far-field image recorded by the CCD for a pump intensity
I � 30 GW/cm2. The spatial areas for statistics are delimited by the black boxes
selected within the degenerate signal and idler modes, spatially localized from the
single-shot image recorded with the 10 nm broad IF (b). (c) Zoom of two symmet-
rical areas of the signal and the idler far fields.

Figure 2.8a shows a typical far-field image recorded in a single shot in the
experimental configuration of Fig. 2.6b, where a fairly broadband radiation
(i.e., the one transmitted by the rectangular aperture) is acquired in the signal
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(left) and idler (right) branches. Selection of the desired temporal and angular
bandwidths around the degeneracy is made by inserting in front of the CCD a
10 nm wide IF around 704 nm, allowing us to locate the collinear degeneracy
point (see Fig. 2.8b). The data analysis is limited within two rectangular
boxes (black frames in Fig. 2.8a) corresponding to an angular bandwidth of
20 mrad × 8 mrad and to a temporal bandwidth smaller than 10 nm. The
selected regions respectively contain 4000 pixels over which the mean number
of photons is approximately uniform so that spatial averages are performed
over identical replicas. Because the aim of this work is to investigate pixel-pair
correlation, and because the size of the CCD pixel approximately corresponds
to the physical size of a replica (coherence area in the far field), the ensemble
is large enough to perform the desired statistics. A zoom of the selected
areas is presented in Fig. 2.8c, where the rather spectacular symmetry of the
intensity distribution in the signal and idler branches shows the twin-beam
character of the phase-conjugate modes.

2.3.3 Detection of Quantum Spatial Correlations: Spatial
Analogue of Photon Antibunching in Time

Each of the signal and idler far-field patterns taken separately looks like a
speckle pattern produced by a pseudo-thermal source, such as, for instance, a
ground glass illuminated by a laser beam. When this thermal light is split by
a macroscopic device such as a beamsplitter, the two resulting beams show a
high level of spatial correlation, which is, however, limited by the shot noise.
The spatial correlations of the signal and idler beams generated by PDC are,
instead, of microscopic origin, and are not limited by the shot noise. The aim
of this experiment is just to show the sub-shot-noise nature of the spatial
correlation of the PDC beams. We are first interested in the symmetrical
pixel-pair correlations, which are evaluated experimentally by measuring the
variance σ2

s−i of the PDC photoelectrons (pe) difference ns − ni of the sig-
nal/idler pixel-pair versus the mean total number of down-converted pe of
the pixel-pair. This variance is

σ2
s−i = 〈(ns − ni)2〉 − 〈ns − ni〉2 . (2.34)

In the experiment these averages are evaluated as spatial averages performed
over the set of equivalent symmetrical pixel-pairs contained in the chosen sam-
ple regions, on which the mean photon number distribution is nearly uniform
(see Fig. 2.8a,c). Each single shot of the laser provides a different ensemble,
characterized by its pixel-pair average pe number 〈ns + ni〉, in turn related
to the parametric gain. In the experiment, ensembles corresponding to differ-
ent gains are obtained by varying the pump-pulse energy. We note that the
read-out noise of the detector, its dark current, and some unavoidable light
scattered from the pump, signal, and idler fields contribute with a nonnegli-
gible background noise to the process. This is taken into account by applying
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a standard correction procedure (see, e.g., [27]), by subtracting the back-
ground fluctuations σ2

b from the effectively measured variance σ2
(s+b)−(i+b)

of the total intensity difference (signal +background) – (idler +background)
obtaining σ2

s−i = σ2
(s+b)−(i+b) − 2σ2

b .
Figure 1.9 shows the experimental results where each point is associated

with a different laser shot. The data are normalized to the shot-noise level,
and their statistical spread accounts for the background correction. Although
the noise on the individual signal and idler beams is found to be very high
and much greater than their shot-noise level (given by 〈ns〉 and 〈ni〉, respec-
tively), we observe an evident sub-shot-noise pixel-pair correlation up to the
gains characterized by 〈ns + ni〉≈ 15 − 20. Because in that regime the ob-
served transverse size of the coherence areas (i.e., of the modes) is about 2–4
pixels, this approximately corresponds to 100 pe per mode. The maximum
level of noise reduction observed experimentally agrees with the theoretical
limit (dotted line in Fig. 2.9) determined by the total losses of the system
(∼ 1 − ηtot [1]).

Fig. 2.9. Intensity difference variance σ2
s−i normalized to the SNL 〈ns + ni〉. Each

point (white circle) corresponds to a single-shot measurement where the spatial
ensemble statistics has been performed over a 100 × 40 pixel region. The triangles
(each one obtained by averaging the experimental points corresponding to a certain
gain) and their linear fit illustrate the trend of the data in the region between
〈ns + ni〉 = 8 and 20.

We can have an idea of the transverse size of the mode by looking at the
standard two-dimensional cross-correlation degree,

γ =
〈nsni〉 − 〈ns〉〈ni〉√

σ2
sσ2

i

, (2.35)
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Fig. 2.10. Correlation degree profiles (a)–(d) plotted for four different gain values;
(e) displays the full 3D plot of the correlation function surface corresponding to
case (a) and obtained as a function of both the horizontal and vertical shifts of the
recorded image on the CCD.

between all the angularly symmetrical signal and idler pixels contained within
the black boxes (see Fig. 2.8). This can be plotted, for instance, as a function
of the horizontal and vertical shifts of the recorded image on the CCD, keeping
fixed the position of the boxes. In general | γ |≤ 1 with γ = 1 for perfect
correlations. The transverse section of the correlation function γ plotted as
a function of the horizontal shift x (in pixel units) and obtained from four
single-shot images corresponding to different gains is presented in Fig. 2.10a–
d. Figure 2.10e shows the full 3D plot of the correlation function for the same
gain of Fig. 2.10a. We can notice how the FWHM of the curves increases for
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increasing gain, clearly reflecting the increment of the speckle size (and thus of
the transverse mode size) already observed in Fig. 2.7. As expected, virtually
perfect correlation (in our case we have peak values of γ up to  0.99) is
obtained for perfect determination (i.e., within one pixel) of the center of
symmetry between the signal and the idler regions.

It is interesting to note that the quantum nature of the correlation can
also be estimated from the peak value of the correlation degree. As a matter
of fact, because

σ2
s−i = 〈(ns − ni − 〈ns〉 − 〈ni〉)2〉 = σ2

s + σ2
i − 2(〈nsni〉 − 〈ns〉〈ni〉), (2.36)

the sub-shot-noise condition for the intensity difference variance,

σ2
s−i < 〈ns + ni〉, (2.37)

can be rephrased in the form

γ > 1 − 〈ns,i〉
σ2

s,i

, (2.38)

if we use (2.35) and assume that

〈ns〉  〈ni〉 ≡ 〈ns,i〉 and σ2
s  σ2

i ≡ σ2
s,i, (2.39)

as also confirmed experimentally within a good approximation. We can
rewrite (2.38) further by taking into account that, as is well known, the
signal and idler beams taken alone display a thermallike statistics. There-
fore, σ2

s ≈ σ2
i ≡ σ2

s,i ≈ 〈ns,i〉(1 + 〈ns,i〉/M) [28], where M is the degeneracy
factor representing the number of spatial and temporal modes intercepted by
the pixel detectors. In the condition of the experiment the pump duration is
slightly longer than the PDC coherence time whereas the pixel area is smaller
than the coherence area, so that M is expected to be only slightly larger than
unity [27]. Using this, (2.38) becomes

γ >
〈ns,i〉

M + 〈ns,i〉
. (2.40)

Figure 2.11 illustrates the trend of the peak value of γ for different gains
(black triangles), extracted from the six images. The dashed curve corre-
sponds to the classical boundary γb obtained by interpolation of the function
γb = 1 − 〈ns,i〉/σ2

s,i, calculated for different gains using the values for the
mean and variance obtained from the experimental far-field patterns con-
sidered. The full line is the theoretical limit obtained from (2.40) by using
M = 2.4 as a fitting parameter. We thus observe spatial quantum correlations
whenever the value of γ lies in the region above the theoretical quantum limit.
This limit becomes more demanding as the gain increases. The experimental
values obtained are, as expected, compatible with the trend of the data plot-
ted in Fig. 2.9, and highlight a quantum-correlations region up to the values
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of 〈ns + ni〉 of about 20 pe. For instance, the first three triangles on the left
correspond to three images characterized by an intensity difference variance
that is clearly below the SNL in Fig. 2.9, and the other three triangles corre-
spond to the images that are characterized by an intensity difference variance
above the SNL.

Fig. 2.11. Experimental correlation degree (triangles) measured from six sig-
nal/idler far-field images for different values of the gain.

Finally we note that if we multiply Eq. (2.38) by σ2
s−i, with the help of

(2.35) and (2.39) we obtain

〈nsni〉 − 〈ns〉〈ni〉 > σ2
s,i − 〈ns,i〉; (2.41)

that is; by defining

〈δnsδni〉 ≡ 〈nsni〉 − 〈ns〉〈ni〉, (2.42)

and
〈: δn2

s,i :〉 ≡ σ2
s,i − 〈ns,i〉, (2.43)

where the symbol : : indicates the normal ordering, we find the following
inequality condition

〈: δnsδni :〉 >= 〈δnsδni〉 > 〈: δn2
s,i :〉 = [〈: δn2

s :〉〈: δn2
i :〉]1/2, (2.44)

equivalent to the sub-shot-noise level condition (2.38), and which states that
the cross-correlations between the signal and the idler are larger than the
(normally ordered) self-correlation. This corresponds to an apparent viola-
tion of the Cauchy–Schwartz inequality. This effect was predicted in [31–33]
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for the case of an optical parametric oscillator and then generalized [19] to
the case of a traveling-wave degenerate optical parametric amplifier. It repre-
sents a spatial analogue of the phenomenon of photon antibunching in time
and was experimentally demonstrated in the coincidence regime in [17]. Our
experiment provides the first evidence of this phenomenon in the high-gain
regime.

In our experiment we found a transition from the quantum to the classical
regime with increasing gain, similar to the scenario of [20]. Reference [12]
includes a discussion of such a transition, as well as of the effects arising
from the inaccuracy in the determination of the center of symmetry in the
signal–idler field.

2.4 Multiphoton, Multimode Polarization Entanglement
in Parametric Down-Conversion

In this section we turn our attention to polarization degrees of freedom of
down-converted beams together with the spatial ones. The results reported
here are based on [3], where more details can be found.

The quantum properties of light polarization have been widely studied in
the regime of single photon counts. In comparison, only recently has there
been a rise of interest in the quantum properties of the polarization of macro-
scopic light beams [34, 35], mainly due to their potential applications in the
field of quantum information with continuous variables and to the possibility
of mapping the quantum state from light to atomic media [36]. Paramet-
ric down-conversion in a type-II crystal probably represents the most well-
known source of polarization-entangled photons. Due to spatial walk-off in
the crystal, the two emission cones corresponding to the horizontally and ver-
tically polarized beams are slightly displaced, one with respect to the other
(see Fig. 2.1), and the far-field intensity distribution has the shape of two
rings, whose centers are displaced along the walk-off direction (Fig. 2.2). For
certain orientations of the crystal axis, the far-field rings intersect, as, for
example, shown in Fig. 2.2b, and the two regions at the ring intersection
have a very special role. In the regime of single-photon-pair detection, the
polarization of a photon detected in one of these regions is completely unde-
termined. However, once the polarization of one photon has been measured,
the polarization of the other photon, which propagates at the symmetric
position, is exactly determined. In other words, when considering photode-
tection from these regions, the two-photon state can be described as the
ideal polarization-entangled state [37]. Photons produced by this process have
become an essential ingredient in many recent implementations of quantum
information schemes [38,39].

The question that we address here is whether this microscopic photon
polarization entanglement leaves any trace in the regime of high-parametric
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down-conversion efficiency, where a rather large number of photons are pro-
duced, and in which form.

Quantum-optical polarization properties of light are conveniently de-
scribed within the formalism of Stokes operators, which represent the quan-
tum counterparts of the Stokes vectors of classical optics. These operators
obey angular momentumlike commutation rules, and the associated observ-
ables are in general noncompatible. Our goal is to study the quantum corre-
lations between the Stokes operators measured from symmetric portions of
the far-field beam cross-section. To this end, we consider a measurement of
the Stokes operators over a small region D(x) centered around the position
x in the far-field plane of the down-converted field, and over the detection
time T (typically T is much larger than the crystal coherence time):

Ŝi(x) =
∫

T

dt′
∫

D(x)

dx′ŝi(x′, t′) . (2.45)

By denoting with âH , âV the field operators of the horizontally and vertically
polarized field components,

ŝ0(x, t) = â†
H(x, t)âH(x, t) + â†

V (x, t)âV (x, t) , (2.46)

ŝ1(x, t) = â†
H(x, t)âH(x, t) − â†

V (x, t)âV (x, t) , (2.47)

ŝ2(x, t) = â†
H(x, t)âV (x, t) + â†

V (x, t)âH(x, t) , (2.48)

ŝ3(x, t) = −i
[
â†

H(x, t)âV (x, t) − â†
V (x, t)âH(x, t)

]
. (2.49)

The first two operators represent the sum and the difference between the
number of horizontal and vertical photons. In the limit of the pump trans-
verse waist much larger than the coherence area of the amplifier and of a pulse
duration much longer than the crystal coherence time, the analytical calcu-
lations described in Section 2.2.2 show that the number of H and V photons
collected from any two symmetric portions of the far-field plane are perfectly
correlated observables. This implies ideally perfect correlations, both between
Ŝ0(x), Ŝ0(−x), and between Ŝ1(x), −Ŝ1(−x) for any choice of the position
x in the far field [3] (notice that Ŝ0(x) commutes with Ŝ1(x′)). This result
is a direct consequence of the pairwise emission of photons with vertical and
horizontal polarizations propagating in symmetric directions, as required by
the conservation of the transverse momentum. In the more sophisticated nu-
merical model of Section 2.2.3, the finite width of the pump profile introduces
an uncertainty in the directions of propagation of the down-converted pho-
tons, so that the correlations in the Stokes operators Ŝ0, Ŝ1 well beyond the
shot-noise level are recovered when photons are collected from the regions
larger than the resolution area xdiff .

Quite different is the situation concerning the other two Stokes operators
that involve measurements of the photon number in the oblique and circular
polarization basis. Part (b) of Fig. 2.12 shows a typical result for the noise in
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Fig. 2.12. (a) Far-field intensity distribution of the down-converted field. (b) Distri-
bution of the noise in the difference between Ŝ2 measured from symmetric portions
of the beam cross-section, scaled to the shot-noise level. The distribution for Ŝ3 is
identical.

the difference between the Stokes operators measured from small (but larger
than xdiff ) symmetric portions of the far field. Precisely, the figure shows

〈
[
Ŝ2(x) − Ŝ2(−x)

]2
〉 = 〈

[
Ŝ3(x) − Ŝ3(−x)

]2
〉, scaled to the shot-noise level,

represented by 〈
[
Ŝ0(x) + Ŝ0(−x)

]
〉, as a function of the transverse coordinate

x = (x, y) scaled to x0. Parameters in this plot are those of a 2 mm long BBO
crystal, cut at 49.6 degrees for degenerate type-II phase matching at 702 nm.
For comparison, part (a) of the figure shows the mean intensity distribution
in the far field (precisely, the numbers associated with the color scale in
(a) represent the number of photons detected over the resolution area xdiff

and over the crystal coherence time). In plot (b) we see clearly two large
blue zones, in correspondence with the intersections of the rings, where the
Stokes-operator correlation are almost perfect. Out of these regions, basically
no spatial correlation at the quantum level exists for the Stokes operator Ŝ2

and Ŝ3.
These results were obtained by exploiting a trick similar to that used

in the experiment of [37], in order to partially compensate for the tempo-
ral and the spatial walk-off of the down-converted beams. In the regime of
single-photon-pair production, the horizontal (ordinary) and vertical (extra-
ordinary) photons can be in principle distinguished because of their different
group velocities inside the crystal, and because of their offsets in propagation
directions due to walk-off effects inside the crystal. The mere existence of
this possibility is detrimental for the entanglement of the state. In the gen-
eral case (arbitrary number of down-converted photons), it can be shown [3]
that the group velocity mismatch and the spatial walk-off are responsible for
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the appearance of a propagation phase factor that lowers the value of the
correlation function between the Stokes operators measured from symmet-
ric regions. In principle this problem can be solved by using an extremely
narrow frequency filter, and by performing the measurement over very nar-
row regions centered around the ring intersections. However, this deteriorates
the efficiency of the set-up. Another possibility is to insert a second crystal,
after the pump beam has been removed, and after the field polarization has
been rotated by 90◦. In this way, the slow and fast waves in the first crystal
become the fast and the slow waves, respectively, in the second crystal, and
the direction of the walk-off is reversed. It can be shown that, differently
from the single-photon-pair regime, the correlations are optimized when the
length of this second crystal is chosen as lc tanhσ/(2σ), where σ is the linear
gain parameter, proportional to the pump amplitude. When this kind of opti-
mization is not possible, our calculations [3] show that similar results can be
obtained by a narrowband temporal and spatial filtering, and/or by using
crystals that exhibit a smaller amount of walk-off. Figure 2.12 was obtained
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Fig. 2.13. Effect of frequency filtering. Distribution of the noise in the difference
between Ŝ2 (Ŝ3) measured from symmetric portions of the beam cross-section,
scaled to the shot-noise level. In part (a) a frequency filter ∆λ = 20nm wide,
centered around the degenerate frequency is used; in (b) ∆λ = 60nm.

by using a relatively narrow frequency filter (8 nm). Remarkably, when a
broader frequency filter is employed, the regions where the Stokes parame-
ters are correlated stretch to form a ring-shaped region around the pump
direction (Fig. 2.13). This kind of shape can be understood by considering
the geometry of the down-conversion cones emitted at the various frequencies
by a BBO crystal. Figure 2.14 is a polar plot of the phase-matching curves
(geometrical loci of the phase-matched modes), with θ being the polar angle
from the pump direction of propagation (z-axis) and φ the azimuthal angle
around z. In this plot the same color identifies the same emission wavelength;
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Fig. 2.14. Polar plot of phase-matching curves in a 2mm BBO crystal cut at
49.6 degrees; θ is the polar angle from the pump direction of propagation, and
corresponds to the radial position in the far field; φ is the azimuthal angle around
the pump. Black curves: λsignal = λidler = 702 nm; red curves: λsignal = λidler =
692 nm; blue curves: λsignal = λidler = 712.29 nm. The signal is an ordinary (slow)
wave, and corresponds to the curves in the upper half of the plot. The idler is an
extraordinary (fast) wave.

blue/red curves correspond to two conjugate wavelengths, and black curves
are the two emission cones at the degenerate wavelength. The horizontally
polarized (signal, ordinary) wave emission curves are those in the upper half
of the plot. When considering the intersection points of a red circle with a
blue circle, which correspond to two conjugate wavelengths, we cannot ex-
pect any kind of entanglement, because photons arriving in these positions are
clearly distinguishable by their different frequencies. Let us consider, instead,
one of the intersections of the two red curves (e.g., the one pointed by the
black arrow in the plot). Here horizontally and vertically polarized photons
arrive with identical probability, and have the same wavelength. As a conse-
quence, the photon polarization is undetermined, and the light is completely
unpolarized. However, each time a horizontal (vertical) photon arrives at this
position, a vertical (horizontal) photon, at the conjugate wavelength, will be
found at the symmetric position, that corresponds to the intersection of the
two blue curves, indicated in the plot by the arrow. Hence, when consider-
ing photodetection from the two positions indicated by the arrows we can
expect a high degree of polarization entanglement. The same reasoning can
be made for any intersection of circles corresponding to the same wavelength
(red with red, blue with blue, and black with black). By connecting these
points , we can, for example, recognize the geometrical shape of the blue
regions in Fig. 2.13a, where a high degree of correlations in all the Stokes
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parameters exists. By including more frequencies, the ring-shaped region of
Fig. 2.13b shows up.

We hence conclude that the polarization entanglement of photon pairs
emitted in parametric down-conversion survives in high-gain regimes, where
the number of converted photons can be rather large. In this regime it takes
the form of nonclassical spatial correlations of all Stokes operators associated
with the polarization degrees of freedom. In the regions where the two rings
intersect (in a ring-shaped region around the pump direction when a broad
frequency filter is employed) all the Stokes operators are highly correlated
at the quantum level, realizing in this way a macroscopic polarization en-
tanglement. Although Stokes parameters are extremely noisy (the state is
unpolarized), measurement of a Stokes parameter in any polarization basis
in one far-field region determines the Stokes parameter collected from the
symmetric region, within an uncertainty much below the standard quantum
limit.

We believe that this form of entanglement, with its increased complex-
ity in terms of degrees of freedom (photon number, polarization, frequency,
and spatial degrees of freedom) can be quite promising for new quantum
information schemes.
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39. A. V. Sergienko, M. Atatüre, Z. Walton, G. Jaeger, B. E. A. Saleh, and
M. C. Teich, Phys. Rev. A 60, R2622 (1999); T. Jennewein, C. Simon,
G. Weihs, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 84, 4729 (2000).



3 Quantum Imaging in the Continuous-Wave
Regime Using Degenerate Optical Cavities
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3.1 Introduction

Images carry a lot of information, contained in the local intensity of the mil-
lions of pixels composing the image. From a quantum point of view, they must
be described by a quantum state that spans over as many transverse modes
as pixels. Quantum imaging is therefore the archetype of highly multimode
quantum optics.

Over the last two decades, theoretical and experimental studies have
shown that resonant optical cavities are one of the most efficient devices
to generate nonclassical states of light, such as squeezed, correlated, or en-
tangled states. However, these states are actually single-mode nonclassical
states, because the optical cavity imposes the transverse variation of the field
to be one of its eigenmodes, generally the TEM00 mode. In order to produce
the multimode nonclassical fields that are needed in quantum imaging, one
must use special kinds of cavities: the degenerate optical cavities, in which a
great number of transverse modes are likely to simultaneously oscillate.

In this chapter, we will give a brief account of the domain of multimode
quantum imaging using degenerate optical cavities. We will begin by a study
at the classical level of the imaging properties of such cavities, then give
the main results of the various theoretical studies that have been conducted
to show that these devices were indeed interesting for the generation of local
squeezing and spatial quantum correlations and entanglement. We will finally
describe some recent experiments aimed at showing these effects.

3.2 Classical Imaging Properties of Degenerate Optical
Cavities

3.2.1 Introduction

Optical cavities have been widely used in optics for various reasons: they
enhance the intracavity field by a large factor at exact resonance, they enable
optical feedback in devices inserted in the cavity (as in optical amplifiers
inserted in a laser cavity), and they are able to select well-defined modes
of the electromagnetic field, thus simplifying the analysis of the system, for
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example, in quantum optics. This last property seems to be contradictory
to what is needed in optical imaging, namely highly multimode, nonfiltering
systems. However, as we will see, cavities with degenerate transverse modes
are multimode devices that provide useful field enhancement and feedback
for a large set of image shapes, because in such cavities an infinite number of
modes resonate at the same cavity length. Degenerate optical cavities should
thus allow us to observe interesting quantum imaging effects even at the low
intensities produced by usual continuous-wave (c.w.) lasers.

Optical cavities have been used and studied in optics for a long time.
Let us quote, among others, the spectroscopic studies with the Fabry–Perot
resonator [1,2], and the design of laser cavities [3,4]. They are at the same time
filters of temporal frequencies and filters of spatial frequencies. An optical
cavity is characterized by an eigenmode basis, that is, a family of modes
that superimpose onto themselves after a round-trip inside the cavity. Only
fields belonging to an eigen subspace can be transmitted through the cavity
at resonance: if this subspace contains a single transverse mode, the optical
cavity acts as a perfect spatial filter. It has been actually used as such in
many experiments (see, e.g., [5]). In degenerate cavities the eigen subspace
has an infinite dimension: the filtering effect is partial, and a part of the
information conveyed by the image is transmitted through it. The classical
imaging properties of these cavities have been envisioned first in [6], and
studied in more detail in [7]. We will just recall here the main properties,
which are detailed in this latter paper.

3.2.2 Cavity Round-Trip Transform

We consider a monochromatic electromagnetic field E (r, t) at frequency ω
propagating along a direction Oz of space within the paraxial approximation.
At point r = (x, y) in an arbitrary transverse plane of position z inside the
cavity, that will be used as a reference plane, it can be written as

E (r, z, t) = Re[E (r, z) e−iωtu], (3.1)

where u is the polarization unit vector. We will call “complex image”, or
more simply “image”, such a transverse distribution of the field amplitude.

The round-trip propagation of the field in an empty optical cavity is
characterized by a linear integral transform that we denote T , more precisely:

Ert (r) = eikLT [Ein (r)], (3.2)

where Ein(r) and Ert(r) are, respectively, the fields in the reference plane
before and after one cavity round-trip, and L is the cavity round-trip optical
length. If the cavity is made of lenses, curved mirrors, but has no sharp-
edge irises diffracting the beam, T depends only on the coefficients of the
Gauss matrix Tcav describing the round-trip geometrical-optics properties of
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the cavity (see, e.g., Ref. [4], p. 781). All the properties of the cavity can be
inferred from Tcav and L (with Det(Tcav) = 1). Eigenmodes of such cavities
that are localized around the cavity axis only exist when |Trace(Tcav)| < 2.
They are the well-known Hermite–Gauss modes TEMmn, which have the
following z-dependence on the cavity axis,

Emn(r = 0, z) = E0
w0

w(z)
e−i(n+m+1)φG(z)eikz, (3.3)

where φG(z) is the TEM00 mode Gouy phase at position z, given by

φG(z) = tan−1(
z

zR
), (3.4)

w(z) and w0 are, respectively, the waist size at position z and position 0, and
zR is the Rayleigh length.

The on-axis phase shift of such a mode over one cavity round-trip is equal
to kL + (m + n + 1)φGrt, where φGrt is the round-trip Gouy phase shift, and
will play an important role in the discussion. In the case of a simple linear
cavity of length Lc closed by two identical spherical mirrors with the radius
of curvature R, it is given by:

φGrt = cos−1

(
1 − Lc

R

)
. (3.5)

In the general case, it is related to the round-trip Gauss matrix Tcav by the
simple relation [6, 7]:

e±iφGrt = eigenvalues(Tcav). (3.6)

The cavity eigenmodes are the Hermite–Gauss modes that have a total round-
trip phase shift equal to 2pπ, with p being an integer. This occurs only for a
comb of cavity length values Lmnp given by

Lmnp =
λ

2

(
p + (n + m + 1)

φGrt

2π

)
. (3.7)

One finds a first kind of degeneracy: all the modes TEMmn with the same
value of m+n resonate at the same cavity length. This is to be related to the
cylindrical symmetry of the system: if an image is transmitted through the
cavity, the same image rotated around the Oz axis by any angle will also be
transmitted. The cavity will be “transverse degenerate” when there exists a
larger degeneracy than the one related to this symmetry. This occurs when
φGrt is a rational fraction of 2π:

φGrt = 2π
K

N
[2π], (3.8)

in which K and N are integers and 0 < K/N < 1 is an irreducible fraction.
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It is well known that the free spectral range for longitudinal modes (p
periodicity) is equal to λ/2. But when one scans the cavity length, one finds
equally spaced resonances, distant from λ/2N : there exist N families of modes
within a spectral range, corresponding to different values of s = m + n + 1.
In terms of the ray optics, Eqs. (3.6) and (3.8) imply that [8],

(Tcav)N = I, (3.9)

where I is the identity 2 × 2 matrix. This relation means that any incoming
ray, whatever its position and tilt, will retrace back onto itself after N round-
trips, forming a closed trajectory, or orbit.

3.2.3 Image Transmission Through an Optical Cavity

We can now determine the fields that can be transmitted through an optical
cavity of length Lmnp corresponding to one of its resonance peaks. The input
field is imaged on the intracavity reference plane, and we call Ein(r) the
input image defined in this plane. In the same way, the output field is the
image of the field distribution in the same intracavity reference plane that we
call Eout(r). Eout results from the interference between all the fields created
after 1, 2, . . . trips. If the cavity is not a transverse degenerate one, Eout is,
as is well known, the fundamental Gaussian mode TEM00, or a combination
of TEMmn modes with a fixed value of s = m + n + 1, depending on the
chosen length Lmnp. If the cavity is transverse degenerate with degeneracy
order K/N , one has:

Eout(r) =
∞∑

n=0

(
r1r2e

−2iπsK/NTcav

)n

Ein(r), (3.10)

where r1 and r2 are the amplitude reflection coefficients of the two mirrors
limiting the cavity. Using the fact that

(
e−2iπsK/NTcav

)N
Ein(r) = Ein(r),

we can rewrite the output field of Eq. (3.10) as

Eout(r) =
1

1 − (r1r2)N

N−1∑
n=0

(
r1r2e

−2iπsK/NTcav

)n

Ein(r). (3.11)

The field Eout(r) given by Eq. (3.11) has an important property: TcavEout(r)
is proportional to Eout(r). Consequently if it is used as an input field of
the cavity, it is transmitted without distortion through it. It is called for
this reason a self-transform field for Tcav [9]. Let us also note that Eout(r)
depends on s (s = 0, . . ., N − 1), and therefore is different for the different
families of modes.

To simplify the following discussion, we will assume that the cavity mirrors
have good reflectivities, so that r1 and r2 can be approximated by 1 in all
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terms of the sum in expression (3.11). We can now give three examples of
degenerate cavities.

— The confocal cavity (two identical mirrors separated by a distance
equal to their radius of curvature) has a Gauss matrix equal to −I2 when one
takes its symmetry plane as the reference plane. It has therefore a round-trip
Gouy phase equal to π (K = 1, N = 2). The round-trip field transformation
TcavE(r) gives the field at the symmetrical point E(−r). Hence the trans-
mitted field is the the sum E(r) + e−iπsE(−r), that is, the odd or even part
of the input field, depending on s.

— The hemi-confocal cavity (a plane mirror and a curved mirror separated
by a distance equal to half its radius of curvature R) has a Gauss matrix,
referenced to the plane mirror, equal to:

Tcav =
[

0 R/2
−2/R 0

]
. (3.12)

Two round-trips give, as expected, the matrix of the confocal cavity. The
hemi-confocal cavity round-trip Gouy phase is equal to π/2 (K = 1, N = 4).
The round-trip transformed field TcavE(r) can be shown to be Ẽ(4πr/λR),
where Ẽ(q) is the spatial Fourier transform of E(r). One finds that the
transmitted field is equal to E(r) + e−iπs/2Ẽ(4πr/λR) + e−iπsE(−r) +
e−3iπs/2Ẽ(−4πr/λR). Depending on s = 1, 2, 3, 4, it is a combination of the
even or odd part of the input field and of the even or odd part of its Fourier
transform.

— The “self-imaging cavity” has a Gauss matrix equal to the identity
and a Gouy phase equal to zero: any intracavity ray is retraced onto itself
after one round-trip; any field configuration, whatever its shape, is perfectly
transmitted, and still benefits from the build-up effect of cavity. It is thus an
ideal cavity for studies of cavity-enhanced imaging. Self-imaging cavities have
been extensively studied in [6]. They cannot be built using only two spherical
mirrors, and can consist, for example, of a plane end-mirror, an intracavity
lens, and a curved end-mirror, separated by appropriate distances. They have
been used in experiments on generation of optical patterns [10].

In contrast, the planar cavity, limited by two plane mirrors, a configura-
tion widely studied theoretically and used in some experiments with pulsed
lasers, is described by the Gauss matrix of a mere length interval of value
L, which therefore does not fulfill condition (3.9) for any N value. A planar
cavity is not a transverse degenerate cavity. The transmitted fields will be
cones of tilted plane waves making angles with Oz that are selected by the
cavity length: as is well known, rings will be observed at the output.

In an analogous way, the concentric cavity (two curved mirrors sharing
the same center of curvature) is described by a round-trip Gauss matrix,
referenced to the symmetry plane of the cavity, equal to that of a diverging
thin lens of focal length −R/2. None of its powers is equal to the identity,
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and therefore a concentric cavity is not a transverse degenerate cavity either,
though, as the previous one, its round-trip Gouy phase shift is zero. Only
one class of rays retraces onto itself in these cavities: the rays parallel to the
optical axis for the planar cavity, the rays passing through the cavity center
for the concentric cavity. All other light rays diverge after many reflections:
they go further and further from the cavity axis in the planar cavity case,
and are more and more tilted in the concentric cavity case. In both cases
the problem cannot be treated properly within the paraxial approximation,
where the Gouy phase is defined.

3.3 Theory of Optical Parametric Oscillation in a
Degenerate Cavity

Nonclassical states of light are generated when one inserts a nonlinear element
in a resonant or quasi-resonant optical cavity. We will not treat here the cases
of the second-harmonic generation, Kerr effect, or four-wave mixing, in spite
of their interest. We will rather concentrate on the case of intracavity para-
metric coupling, as most of the studies in quantum imaging have considered
this configuration.

3.3.1 Classical Behavior

In a first step, one needs to know the classical behavior of an Optical Para-
metric Oscillator (OPO) when a nonlinear crystal is inserted in a degenerate
cavity, which makes it possible to simultaneously oscillate on different trans-
verse modes. This problem has been considered, for example, in [11–13], where
the intracavity field is expanded on the basis of transverse Gaussian modes:

E(r, t) =
√

h̄ω

2niε0V

∑
m,n

αm,n(t)Em,n(r), (3.13)

the scaling coefficient in Eq. (3.13) being chosen so that |αm,n|2 is a photon
number. The evolution equations of the system appear as coupled dynamical
equations for the coefficients αm,n

s (t) of the signal wave and αm,n
i (t) of the

idler wave expansion. Let us give here as an example the equations for a
doubly resonant, nonfrequency-degenerate OPO in the simple case where the
modes involved are only two modes at the signal frequency (e.g., TEM00 and
TEM01), characterized by amplitudes α0

s and α1
s, and two modes at the idler

frequency characterized by amplitudes α0
i , α1

i . These equations read:

L

c

dα0
s

dt
= −α0

s(κ − iδ0
s) + χ00α

0
pα

0∗
i + χ01αpα

1∗
i ,

L

c

dα0
i

dt
= −α0

i (κ − iδ0
i ) + χ00αpα

0∗
s + χ10αpα

1∗
s ,
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L

c

dα1
s

dt
= −α1

s(κ − iδ1
s) + χ11αpα

1∗
i + χ10αpα

0∗
i , (3.14)

L

c

dα1
i

dt
= −α1

i (κ − iδ1
i ) + χ11αpα

1∗
s + χ01αpα

0∗
s ,

αp = αin
p − 1

2
(
χ00α

0
sα

0
i + χ11α

1
sα

1
i + χ01α

0
sα

1
i + χ10α

1
sα

0
i

)
,

where αp is the pump field amplitude in the middle plane of the crystal and
αin

p the pump field amplitude at the entrance of the crystal; κ = 1− r, where
r is the amplitude reflection coefficient of the output mirror, and is the cavity
loss coefficient, supposed to be equal for all the signal and the idler modes.
The various δ are the cavity detunings for different modes. The value of the
coupling coefficients χij (i, j = 0, 1) can be found, for example, in [11] for
a TEM00 pump, together with a general stability analysis of the solutions.
When the cavity is not degenerate, the detunings are different for different
modes. Only one pair of the signal and the idler mode can resonate at a given
length. The OPO oscillates on the single pair of signal–idler modes that has
the lowest threshold. The OPO behaves in this case as a homogeneously
broadened laser, and the first mode that oscillates depletes the pump and
prevents the other modes from oscillating. When the cavity is degenerate, all
the involved modes can be simultaneously resonant. One finds that in this
case the OPO oscillates on a well-defined linear combination of the transverse
modes [11]: the OPO therefore remains in a single-mode configuration for
the signal and the idler, but this mode is different from the usual Gaussian
modes. When an infinite number of modes are coupled together, the problem
is more difficult to solve, but the behavior is roughly the same: the OPO
oscillates on a well defined linear combination of all these modes, giving
rise to optical patterns, which have been the subject of many studies. For
example, a frequency-degenerate OPO with a planar cavity which is detuned
from resonance with a signal-wave propagating perpendicularly to the mirrors
generates above threshold a “roll pattern” [14], that is, a field having the
shape of interference fringes in the reference plane situated inside the cavity
(called “near-field” pattern). To determine the pattern generated in more
complex situations, instead of a modal analysis, a “local” analysis can also
be used, consisting of direct calculation of the signal and the idler field slowly
varying envelope E(r,t) in a given intracavity transverse plane, in the paraxial
and the mean-field approximation [15]. For example, one finds the following
evolution equation for the signal mode Es(r),

L

c

∂

∂t
Es(r, t) = −(κ + iδs − iξLs)Es(r, t) + χEp(r, t)E∗

i (r, t), (3.15)

where δs is the detuning with respect to the closest TEM00 mode, ξ is related
to the transverse mode spacing (and equal to φGrt/2π in our notations, where
φGrt is defined in Eq. (3.6), and Ls the diffraction operator:
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Fig. 3.1. Numerical calculation of the pattern generated by a frequency-degenerate
OPO operating in a detuned quasi-confocal cavity (δs = −1.5κ, ξ = 0.25κ), 70 times
above threshold, and with a strongly focused pump field (wpump = 0.25w0).

Ls =
w2

0

4

(
∂2

∂x2
+

∂2

∂y2

)
− x2 + y2

w2
0

+ 1, (3.16)

w0 being the TEM00 waist size in the OPO cavity. Equation (3.15), together
with similar equations for the idler and the pump modes, can be solved
numerically in various configurations. Numerous studies have been devoted
to the generation of optical patterns in OPOs [16–24]. They can be, according
to the operating conditions, either stationary or evolving in time. Figure 3.1
gives an example of the output field intensity calculated in the case of a quasi-
confocal frequency-degenerate OPO pumped well above the threshold. The
solution is in this case nonstationary (the movie can be seen online in [13]).

3.3.2 Quantum Properties

It is well known that the phenomenon of the parametric down-conversion,
either spontaneous or stimulated by an input wave, gives rise to the signal
and the idler photons that are quantum-correlated both in the time domain
and in the space domain: if the pump is a plane wave, because of translational
invariance in the plane perpendicular to the propagation, the transverse total
momentum is exactly conserved in the process, and consequently the direc-
tions of emission of the signal and the idler photons are perfectly correlated
at the quantum level (see Fig. 3.2). This property has been widely used in the
case of spontaneous down-conversion and is at the root of phenomena such
as ghost imaging, or spatial pixel-to-pixel correlations, which are described in



3 Quantum Imaging with Degenerate Cavities 55

Chapters 5 and 2 of this book. Because of the very low efficiency of the para-
metric down-conversion effect with the presently available nonlinear crystals,
one is restricted to work in the photon-counting regime in the case of spon-
taneous parametric down-conversion, or to use high peak power pulsed lasers
with poor pulse-to-pulse stability in order to reach the high-parametric-gain
regime. The use of an optical cavity is then of high interest to enhance the ef-
ficiency of the parametric effect, so that one can generate highly non-classical
fields using as a pump simple and highly stable c.w. solid-state lasers of mod-
erate power. When the parametric crystal is inserted in a cavity, the temporal

pump

signal

idler

Fig. 3.2. The signal and the idler photons produced by parametric down-conversion
are emitted in directions that are perfectly quantum-correlated if the pump is a
plane wave.

quantum correlation remains for the Fourier noise temporal frequencies lying
within the cavity bandwidth, and the spatial correlations are projected onto
the subspace spanned by the transverse modes that are resonant for a given
length of the cavity. If this one is a single-mode, all the transverse informa-
tion is lost. If it is multimode, the situation is more complex to study, and
strongly depends on the properties of the cavity.

Let us take first the seemingly simple case where the cavity is simultane-
ously resonant only for two signal modes and for two idler modes that was
outlined previously (Eq. (3.14)). The system is described at the quantum
level by four processes where a pump photon is split into twin-photons either
in the modes (α0

s, α
0
i ),(α

1
s, α

1
i ),(α

1
s, α

0
i ), or (α0

s, α
1
i ), and the reverse processes.

It corresponds to the interaction Hamiltonian:

Ĥint ∝ âp(χ00â
0†
s â0†

i + χ11â
1†
s â1†

i + χ01â
0†
s â1†

i + χ10â
1†
s â0†

i ) + h.c., (3.17)
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where, for example, â0†
s is the photon creation operator in the mode labeled

0 at the signal frequency. This complex interaction creates a multipartite
quantum entanglement between these four modes, which in turn produces
quantum spatial correlations between the output signal and idler fields re-
sulting from the superposition of these different modes. When the cavity is
simultaneously resonant for an infinite number of transverse modes, the prob-
lem is even more complicated. It is generally solved using quantum equations
in the Wigner representation [25] analogous to the classical Eq. (3.15), with
input quantum-noise terms, to determine the correlation functions between
the quantum fluctuations at two different points of a given transverse plane.

The first studies made in the ’90s dealt with the “spatial structure of
squeezed vacuum” in the regular Degenerate Optical Parametric Amplifier
(DOPA), just below threshold. They determine a global property of the sys-
tem containing spatial information, namely the amount of squeezing as a
function of the transverse shape of the local oscillator mode used in the ho-
modyne detection measuring the squeezing [26], in the case of a cavity with
planar or spherical mirrors. Later, the spatial spectrum of squeezing was
investigated, which yields more detailed information on the spatial distribu-
tion of quantum fluctuations in the system [27]. The authors introduced the
concept of the quantum image, that is, an inhomogeneous field distribution
purely generated by the quantum fluctuations. Below the threshold for para-
metric oscillation, where the near-field distributions are homogeneous both
in intensity and phase, appropriate spatial correlation functions anticipate at
the level of quantum fluctuations the transverse spatial pattern that appears
above the threshold. The concept was later extended to the nonfrequency-
degenerate OPO case [28].

Strong quantum correlations were predicted in the DOPA in planar or
quasi-planar cavities. They exist in the far field (reference plane at an in-
finite distance from the cavity) between the quantum intensity fluctuations
measured in small areas symmetrical with respect to the cavity optical axis
[25,29,30]. Later, it was found that the same device was also able to produce
spatial entanglement : between the fields measured at symmetrical points in
the far-field image, anticorrelations are present in a given field quadrature at
the same time as correlations in the conjugate quadrature [31]. This striking
property is the starting resource for parallel quantum information processing
in images, which represents a promising extension of the regular single-mode
EPR entanglement used in various information protocols of quantum infor-
mation processing. All these properties appear to be robust with respect to
the inevitable imperfections of an experimental set-up: slight departure from
the planar case and effect of a finite size pump.

The case of an exact confocal cavity pumped by a plane wave pump field
turns out to be rather easy to treat. This simplification is related to the
fact that, as stated in Section 3.2, the confocal cavity is a true degenerate
cavity, which is not the case for the planar cavity. Decomposing the field
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on the basis of the Laguerre–Gauss modes of a given parity, one finds that
in this case there is no cross-coupling between the different Laguerre–Gauss
modes TEMp,	, so that the system behaves as a superposition of independent
degenerate parametric interactions, governed by the Hamiltonian:

Ĥint ∝ âp

∑
p,	

χp,	(â
†
p,	)

2 + h.c., (3.18)

which is much simpler than the Hamiltonian given by Eq. (3.17). It was
predicted that a confocal DOPA pumped by a plane wave produces below
threshold a highly multimode squeezed field: strong squeezing can be actually
measured whatever the transverse shape of the Local Oscillator field (LO) [32]
provided that it is symmetrical with respect to the cavity axis. In particular,
using LO with a very small transverse extension, the device produces local
squeezing, which can be very useful to reduce the quantum noise in applica-
tions using pixelized detectors such as CCD cameras. This important result
was later extended to more realistic cases, including quasi-confocal cavities,
Gaussian pump [33], and long crystals, inside which the diffraction effects
can no longer be neglected [7].

There is another very interesting quantum property that has been pre-
dicted in these intracavity devices: it is the possibility of noiseless amplifi-
cation of images, which is the object of Chapter 7 of this book in the case
of traveling-wave parametric amplification. The gain reaches very high val-
ues when one approaches the oscillation threshold from below, whereas one
needs a much higher pump power to get the same gain values in the case of
traveling-wave parametric amplification. It has been theoretically shown that
a DOPA operating in a planar ring cavity can amplify, in a phase-sensitive
way, a small portion of the input image without degradation of the signal-to-
noise ratio [35]. If the cavity is confocal, it can simultaneously amplify in a
noiseless way all the points of the input image, provided that the input image
field is symmetrical with respect to the cavity axis [36].

3.4 Experimental Results

The previous section has shown that many interesting quantum effects are
likely to be observed in OPOs contained in degenerate cavities and, more
precisely, in confocal cavities. Figure 3.3 gives a general sketch of the experi-
mental set-up used to observe such effects. The parametric crystal, a type-II
KTP crystal formed of two optically cemented pieces in order to compensate
the walk-off effects, is temperature and angle controlled. It is inserted in a
cavity made of two identical spherical mirrors with two different controls of
the cavity length: a coarse control, with the help of a micrometric screw, is
used to tune the cavity to the confocal point; a fine control, with the help of
a PZT stack, is used to put the cavity to exact resonance with the different
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modes. The pump waist size can be varied, and is usually bigger than the
TEM00 fundamental cavity mode in order to excite many transverse signal
and idler modes. Because the pump is not optimally focused in the cavity,
the oscillation threshold is higher than in a single-mode OPO. This is the
reason why in most cases a triply resonant configuration is adopted (cavity
resonant for signal, idler, and pump fields). The “infrared injection” channel,
on the right, is used for experiments on parametric amplification.

Fig. 3.3. Experimental set-up.

3.4.1 Classical Effects: Observation of Optical Patterns

In a first set of experiments [37, 38], the transverse shape of the fields gen-
erated by the system operating above threshold, both in the near-field and
in the far-field configuration, was recorded on a CCD camera. The signal
and the idler beams, which have different frequencies, were separated by a
polarizing beamsplitter. Simple TEM00 modes were generated when the cav-
ity length L was larger than Lconf , corresponding to exact confocality, by a
fraction of a millimeter. Complex patterns could be observed at exact con-
focality L = Lconf , but also when L < Lconf for higher pump powers. This
feature can be explained by a thermal intracavity lensing effect that reduces
the actual value of Lconf in the presence of an intense pump beam.

Figure 3.4 gives an example of recorded patterns at high pump intensity.
One can observe in the center of the generated signal beam, features that
are very small compared to the TEM00 waist size, and depend on the fine-
tuning of the cavity around the resonance length. They require at least 25
Gaussian modes TEMpq in order to be reconstructed. Note that the patterns
appearing on the signal and the idler beams are in general different. It is
difficult to compare them with the theoretical predictions such as the one
given in Fig. 3.1, because many effects present in the experiment are not
taken into account in the existing theories: thermal lensing effects, residual
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walk-off effects in the crystal, diffraction effects in the crystal, and so on.
Computer simulations have been nevertheless able to yield patterns with
similar features [41]. The same patterns have been also observed later in
Ref. [42].

Fig. 3.4. Center of the signal intensity distribution in the far field for a pump
power of 360 mW and a coarse length change of (a) Lconf , 0.5 mm; (b) Lconf , 0.4
mm; (c) and (d ): Lconf , 1 mm. The cases (c) and (d) correspond to different fine
tunings of the cavity.

3.4.2 Observation of Quantum Correlations in Images

The previous investigations showed that it was possible to find experimental
conditions where the cavity could be considered as degenerate, meaning that
the separation between the different transverse modes could be experimen-
tally adjusted in order to be much smaller than the cavity linewidth, which is
a prerequisite for observing quantum spatial effects. A first experiment was
devoted to investigation of the spatial distribution of the quantum intensity
correlations between the signal and the idler beams [39]. For this purpose
an iris of variable diameter was inserted at the output of the OPO (left side
of Fig. 3.3). The signal and the idler beams were separated as before by a
polarizing beamsplitter after the iris, and the noise Nd of the intensity differ-
ence between the two beams was measured while the diameter of the iris was
varied. The experimental values of this noise normalized to shot noise are



60 Agnès Mâıtre, Nicolas Treps, and Claude Fabre

Fig. 3.5. Spatial distribution of the normalized intensity difference noise Nd as
a function of the iris transmittance T. Points: values of Nd for a cavity length L
beyond the confocality range (upper part) and inside the confocality range (lower
part). Straight line: values of Nd that would be obtained with a single-mode beam
having the same squeezing when the iris is fully open.

given in Fig. 3.5 as a function of the intensity transmission factor (transmit-
tance) of the iris. A value Nd smaller than unity indicates that there exists
a quantum correlation between the corresponding transmitted parts of the
signal and the idler beams. The top part of Fig. 3.5 has been recorded for
a cavity that was not confocal. The generated signal and idler beams were
in this configuration almost perfect TEM00 beams. One observes in this case
a quantum correlation of 20% (Nd = 0.8) between the total intensities of
the signal beams (transmittance equal to 1). When the iris is progressively
closed, one observes a linear variation of Nd as a function of transmittance:
interception of light by the iris is a loss mechanism that destroys the quan-
tum effect just as any other kind of loss. One can describe the nondegenerate
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OPO in this case as consisting of the signal and the idler beams composed
of time-correlated photons that are spatially randomly distributed in both
beams. The bottom part of Fig. 3.5 has been recorded for a cavity that is
confocal. The signal and the idler beams now exhibit patterns in the mean
field, which are different from each other. In spite of this difference, the two
beams are still “twin beams”: one indeed measures a quantum correlation of
almost 20% between the total intensities of the signal beams. But the be-
havior now changes when the iris is progressively closed, and the variation of
Nd as a function of transmittance is no longer linear. A detailed analysis of
the concept of the multimode quantum field [43] shows that this nonlinear
behavior is a proof that the generated field cannot be described by a single-
mode nonclassical quantum state of light. If the two beams were composed
of perfectly spatially correlated photons as in Fig. 3.2, one should observe
a value of Nd independent of the transmittance of the iris. This is not at
all the case in the present experiment, where it seems that the photons are
spatially correlated only in the outer part of the signal and idler beams, and
randomly distributed in their central part, a feature that has so far received
no theoretical explanation.

The second experiment concerned the frequency-degenerate OPA, below
the threshold of oscillation, for which we have seen that many spatial quan-
tum effects are predicted. It studied more precisely the phenomenon of c.w.
intracavity parametric amplification of images [40]. It was shown in [44] that
parametric amplification using a pump at frequency 2ω, an input signal wave
at frequency ω, and a type-II crystal offers interesting possibilities: when
the input signal is polarized parallel to the direction of polarization of the
signal or the idler, it acts as a phase-insensitive amplifier; when the input
signal is polarized at π/4 from these directions, it acts as a phase-sensitive
and, therefore, possibly noiseless amplifier. Furthermore, in the latter con-
figuration at high gain the two projections of the amplified idler wave on
the signal and idler polarizations are the “quantum clones” [45]. Noiseless
operation of parametric image amplification using powerful pulsed lasers has
already been observed in parametric amplification without cavities for tem-
poral fluctuations [46], and more recently for pure spatial fluctuations [47], as
described in Chapter 7 of this book. In the experiment described here, using
degenerate cavities, we were able to observe large gains, of the order of 23
dB, with a pump power of only 20 mW. Stable phase-sensitive amplification
turned out to be difficult to achieve in a regular confocal cavity, which has
to be furthermore simultaneously resonant for the pump, the signal, and the
idler modes in order to reach a very low oscillation threshold. To solve this
problem, a “dual” cavity was used (see Fig. 3.6), for which it is possible to
independently tune to resonance the pump mode, by acting on the mirror
M1 position, and the signal and the idler modes, by acting on the mirror
M4 position and the crystal temperature. The fact that the crystal face M2

was plane prevented us from using a confocal cavity for the signal and the
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Fig. 3.7. Left side: pump, signal, and idler total intensities as a function of the
relative phase between the injected mode and the pump mode. A maximum of
signal and idler (amplification) appears when the relative phase is zero, whereas
a minimum (deamplification) is present when the relative phase is π. The dashed
line is an estimation of the signal and the idler intensity without amplification.
Right side: transverse profile of the signal beam at the maximum and minimum
amplification.

when a double slit is used as an input image. As explained in Section 3.3,
a hemi-confocal cavity transmits the even part of the input image (i.e., the
double slit itself), plus the even part of its Fourier transform. This latter part
is actually what can be seen more easily in the two rectangles on the right
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of Fig. 3.7, as it turns out to have more intense central features than the
transmitted double slit. The left part of the figure gives the total intensity of
the output signal and the idler modes as a function of the phase difference
between the pump and the input signal waves. It clearly shows the regime
of phase-sensitive amplification of an image, with a maximum gain of 5 dB
which is roughly constant over a large area of the input field. The noise fig-
ure could not be measured in the present state of the experiment, so that
the noiseless character of the amplification remains to be shown. Quantum
correlations were proven to be present in the amplified field: noise reduction
of 12% below the shot-noise limit was observed between the total intensities
of the projections of the output field on the signal and the idler polarizations.
The regime of “quantum cloning” of the two polarization components of the
amplified image was thus reached in the experiment.

3.5 Conclusion

Pure quantum spatial effects, predicted in OPOs using degenerate optical
cavities, have been experimentally demonstrated. The experiments turn out
to be rather difficult, as many stringent conditions must be fulfilled and opti-
mized at the same time. This is the reason why, so far, the observed quantum
effects are small, and no local squeezing or local quantum entanglement has
been observed.

These first c.w. quantum imaging effects are nevertheless encouraging,
and will be undoubtedly improved in the years to come. Let us also mention
that preliminary experiments seem to show that the “self-imaging cavity,”
described in Section 3.3, has very promising potential for intracavity quantum
imaging. This system will be actively studied in the near future.

References

1. R. Boulouch, Journal de Physique Théorique et Appliquée 2, 316 (1893).
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38. S. Ducci, N. Treps, A. Mâıtre, and C. Fabre, Phys. Rev. A 64, 023803 (2001).
39. M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Mâıtre, and C. Fabre,
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41. M. Le Berre, E. Ressayre, and A. Tallet, Phys. Rev. E 67, 066207 (2003).
J. Mod. Opt., 53, 809 (2006). 

D. Leduc, Opt., Express 3, 71 (1998).

J. Mod. Opt., 41, 1151 (1994).



3 Quantum Imaging with Degenerate Cavities 65

42. M. Lassen, P. Tidemand-Lichtenberg, and P. Buchhave, Phys. Rev. A 72,
023817 (2005).
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4.1 Introduction

An optical image can contain a wealth of information frequently amounting
to the equivalence of millions of pixels. From a quantum-mechanical point of
view, such images can be described by a quantum state that spans as many
transverse modes as pixels [1]. Quantum imaging is therefore the archetype
of highly multimode quantum optics. To date, most of the quantum imaging
ideas and experiments aim to produce light that is at the same time nonclas-
sical and highly multimode [2, 3]. These fascinating multimode features can
be a source of theoretical complications and experimental difficulties.

When dealing with specific applications such as the positioning of a laser
beam or the reading of information from a sample by optical means, however,
the quantity of information to be extracted from the image can at times be
very modest. In many situations, one can safely assume that the image only
undergoes changes that are related to the variation of a few parameters, and
considerable a priori information about the image is available. We will show
that in these situations the highly multimode feature of quantum imaging
can be reduced to a tractable problem with only few modes.

When the transverse shape of an unperturbed image is known, each mea-
surement of the image to be performed is associated exactly with one specific
transverse mode that is responsible for the noise affecting this measurement.
We show that shaping the fluctuations of the incoming light in such a way
that they match this transverse mode will allow measurements with preci-
sion below the quantum noise limit, thereby increasing the sensitivity in the
determination of the relevant parameters. In particular, it will be shown that
in order to simultaneously measure N parameters below the shot-noise limit,
one needs to use nonclassical multimode light that is the tensor product of
N + 1 modes, of which N must be in a squeezed state.

The general logic of the above argument evokes a new experimental proto-
col, which we call the modal synthesis of spatially nonclassical light. This pro-
tocol requires the coherent interference of carefully chosen transverse mode
beams to produce a composite spatially nonclassical beam of light that is
suitable for a specific task. In the following sections, we will briefly review
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the theoretical background, and focus on the experimental techniques associ-
ated with modal synthesis quantum imaging. We will also discuss applications
concerned with quantum laser pointing and the optical read-out of quantum
information.

4.2 Quantum Noise in an Arraylike Detection

Let us consider a beam of monochromatic light of frequency ω0 that is prop-
agating along the z-direction. By using the paraxial and slowly varying en-
velope approximations, the positive-frequency electric field operator can be
expressed as

Ê(+)(r, z) =
√

h̄ω0

2ε0cT
Â(r, z), (4.1)

where r = (x, y) is the coordinate in the transverse plane, T is the integration
time of the detector, and

Â(r, z) =
∑

i

âi(z)ui(r, z). (4.2)

In the above expression, an orthonormal transverse mode basis {ui(r, z)} is
introduced and âi(z) is the annihilation operator of a photon in the mode
ui(r, z). The field of each mode has to satisfy the free propagation equation in
the vacuum [4]. We will henceforth omit the z-dependence of the field mode
in the following analysis.

Let us now define what we call a measurement. We consider a beam
incident on an array detector, with each pixel of this detector occupying a
transverse area Di. The different pixels do not overlap each other and all
light is incident on the detector. Using Eq. (4.2) one finds that the number
of photons (and for a detector of unity quantum efficiency the number of
electrons) accumulated on each pixel during the integration time T is given
by

N̂(Di) =
∫

Di

Â†(r)Â(r)d2r. (4.3)

Extracting information from an array detector consists of determining, by
analogue or digital means, a linear combination of the signals delivered by
all pixels. We model the image-processing protocol by introducing a gain σi,
which can be positive or negative, for each pixel. The resulting signal is then
represented by the operator

N̂σ =
∑

i

σiN̂(Di), (4.4)

where N̂σ is a quantity that depends both on the image properties and the
choice of the gains. The mean value of N̂σ is proportional to the quantity
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to be measured:the signal. On can show that, as we are performing a single
measurement, the modification of the image to which it is sensitive, can be
described by a single parameter p (for instance, the value of the displacement
in the case of a displacement measurement). We shall call p the signal and
its variance the noise of the measurement. In many practical instances we
may wish to perform a differential measurement where p is zero (i.e., where
the mean value of the signal is zero). In these situations, any common-mode
fluctuations, for example, fluctuations in the total intensity of light, will not
affect the measurement of small variations of p around zero. The present
analysis, however, can be adapted to the cases where the signal is nonzero.

In order to simplify the analysis, we will choose the first mode u0(r) of the
transverse mode basis to match the mean electric field transverse distribution
when p = 0, so that u0(r) = 1/

√
N0, 〈Â(r)〉, where N0 is the mean total

number of photons in the beam. This implies that the field of all the other
modes has a zero mean value, whereas it can still have a variance different
from the vacuum fluctuations in the case of a nonclassical mode. The variance
of the measurement can then be calculated exactly and one finds that [4]

〈∆N̂2
σ〉 = f2N0〈∆X̂+2

w 〉, (4.5)

where f is a normalization factor given byf2 =
∑

i σ2
i

∫
Di

u∗
0(r)u0(r)d2r, and

X̂+
w is the quadrature amplitude operator of the transverse detection mode,

w(r), defined by

∀ r, r ∈ Di ⇒ w(r) =
1
f

σiu0(r). (4.6)

This mode is the mean-field mode u0 weighted by the gains. For differential
measurement (i.e., when Nσ(p = 0) = 0), the detection mode is orthogonal to
u0. Equation (4.6) deserves some comments: in the case of a coherent field,
with u0 carrying the mean field, all other modes are in the vacuum state.
In particular the variance 〈(∆X̂+2

w )〉 is equal to 1. We find that the noise in
a measurement performed with a coherent field is proportional to the mean
number of photons. Furthermore, we find that in order to reduce this noise,
the only possibility is to act on the detection mode. Populating this mode
with squeezed vacuum, for example, will reduce the noise of the measurement.

Finally, we note that it is possible to perform simultaneously several mea-
surements of the kind described by Eq. (4.4). Provided that these measure-
ments are “orthogonal” to each other (i.e., lead to linearly independent quan-
tities of Nσ), it is possible to have all these measurement noises be below the
standard quantum limit. For each of them we can define the detection modes
w1, w2, . . . . The noise variances of these signals are thus proportional to the
quadrature-amplitude noise in each of the detection modes. To reduce them
simultaneously, one needs to fill all these modes with vacuum squeezing in the
appropriate quadrature. Therefore, the superposition of N well-defined mul-
timode squeezed states and one coherent state is sufficient to simultaneously
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improve the measurement of N parameters beyond the standard quantum
noise limit. In the next section, we will show how this can be done experi-
mentally.

4.3 Implementing a Sub-Shot-Noise Array Detection

We have shown that the result of a measurement performed on an image with
an array detector is affected by the noise whose origin is perfectly identifiable.
This noise arises from quantum fluctuations of the detection mode, a trans-
verse mode that is dependent on the image and on the detectors. In order to
reduce this noise, it is necessary to use squeezed light with the proper mode
shape. To perform such an experiment, one has to interfere with the mean
field by squeezed vacuum states in the proper modes with high efficiencies.
The light is then incident on a sample under investigation. This produces
some variation of the beam parameter(s). Finally, the beam is detected by
an array detector with the proper gains.

Some key ingredients are required in order to perform this kind of exper-
iment. First, single-mode vacuum squeezed states from, for example, opti-
cal parametric amplifiers operating close to the parametric oscillator thresh-
old are required in order to produce strong and stable squeezing. Second,
these squeezed vacuum beams have to be produced or manipulated into the
proper transverse mode efficiently. One could think of directly producing
the squeezed state using an appropriate cavity. The fragility of squeezed
light, however, makes this technique an experimental challenge. The easi-
est way is to find an efficient method to transform TEM00 squeezed beams
into the required transverse mode. This can be achieved with many devices,
such as a spatial light modulator, holographic masks, or arrays of MEMS
(Micro-Electro-Mechanical Systems). The technique used in the experiment
presented in this chapter is based on specially fabricated optical half-wave
plates that introduce different phase shifts on different parts of a light beam.
Finally, the last requisite to our experiment is a method to interfere with
and combine all the squeezed beams and the mean field efficiently. Given two
optical beams with transverse shapes w1 and w2 that are orthogonal, the
practical problem is to coherently mix and co-propagate them with minimal
losses.

In this chapter, we introduce two transverse mode combination tech-
niques. The first technique depends on the symmetry properties of the con-
stituent modes. Assume that there exists a transverse axis such that, respec-
tive to it, w1 is an even mode and w2 is odd. An apparatus to mix these
two modes can then be a modified Mach–Zehnder interferometer. The modi-
fication from the usual Mach–Zehnder interferometer needed, is to make one
arm with an even number of reflections, and the other with an odd number
of reflections. For any even mode the effect of a reflection is null, whereas for
any odd mode each reflection is equivalent to a π phase shift. When the two
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modes are injected into both input ports of the beamsplitter, the interferom-
eter path-length difference can be adjusted to make both modes exit through
the same output port (see Fig. 4.1). However, it is not always possible to

Odd mode

Even 
mode

Even + Odd modes

Fig. 4.1. Mode mixing with a modified Mach–Zehnder interferometer.

use such an apparatus and a more general solution is required. Our second
technique uses an impedance-matched optical cavity whose resonances are
transverse-mode selective. Having a cavity resonant for an arbitrary trans-
verse would be a difficult, but not impossible, task. For a concise discussion,
let us assume that the detection mode w1 is the fundamental TEM00 mode
and that the cavity has higher-order transverse mode resonances, which are
well separated in the resonance frequencies. Let us inject the squeezed TEM00

vacuum and adjust the cavity length such that the TEM00 mode is in reso-
nance. The squeezed field will then be fully transmitted (at least in the perfect
case) through the cavity. All modes w2 orthogonal to the TEM00 mode, on
the other hand, will be reflected. A squeezed field in mode w2 which is inci-
dent on the output mirror of the cavity will also be perfectly reflected, and
therefore perfectly mixed with the transmitted TEM00. The detailed scheme,
in the general case of two orthogonal modes w1 and w2, is shown in Fig. 4.2.

4.4 The Quantum Laser Pointer

The first example of applications of the modal synthesis quantum imaging
is the so-called quantum laser pointer. We consider a laser beam incident on
a quadrant detector. This detector allows the measurement of the position
of the laser beam in two transverse dimensions with very high accuracies, as
shown in Fig. 4.3. For instance, the difference between the sums of two quad-
rants a+b and c+d gives a signal proportional to the horizontal displacement
of the beam. With N̂a, N̂b, N̂c, and N̂d being the photon numbers delivered by
the four quadrants, the horizontal signal is given by N̂ = N̂a + N̂b − N̂c − N̂d,
which is of the form of Eq.( 4.4) with the gain values of ±1. The detection
mode, given by Eq.( 4.6) is then reduced to a flipped version of the mean-field
mode (due to the minus sign) as shown in Fig. 4.3. This figure represents the
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TEM00

W1

W1
Mode-mixing
cavity

Spatial mode
orthogonal to W1

Fig. 4.2. Mixing two modes with an impedance-matched optical cavity. W1 is a
waveplate that transfer the TEM00 into mode w1 and W1 does the opposite.

mean-field mode as a TEM00 mode, and the detection modes for both mea-
surements are the flipped version of this TEM00. In our experiment [5], we
take a laser beam with a Gaussian mode shape and independently prepare
two squeezed vacuum beams. These two beams are converted into flipped
modes by means of special waveplates. The beams are then coherently mixed
using a ring cavity, as described in the previous section. Because small dis-
placement of a light beam can be overwhelmed by classical fluctuations due
to vibrations and the air-index fluctuations, the very small amplitude sig-
nal (smaller than a nanometer) was chosen to be an oscillation of the beam
measured at 4 MHz. This displacement modulation was induced by a mirror
mounted on a piezo-electric actuator. Two sets of measurements have been

a

d

c
b

y

x

0

0

x

Ix

dQNL

σI
Quadrant Detector

Laser beam

Signal

TEM00

FL01 FL10

x

y

amplitude

a) b)

Fig. 4.3. Experimental scheme of the quantum laser pointer.
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performed. First, we looked at the fluctuations of the position at the detec-
tion frequency of this beam induced by the quantum nature of light. This is
displayed in Fig. 4.4. In this graph, each point can be interpreted as an in-
stantaneous measurement of the oscillation amplitude in two dimensions [6].
This plot was recorded with a constant displacement and the fluctuations sta-
tistics form a Gaussian distribution around the means value. The left graph
shows the two-dimensional noise of a coherent laser beam, whereas the right
one shows the fluctuations of the nonclassical multimode beam. Clearly, the
pointing noise is reduced in both directions, and we could say that the non-
classical beam propagates in a straighter line than a coherent state beam.
Such a spatial noise reduction allows us to improve the sensitivity of the
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Fig. 4.4. Localization of the quantum laser pointer.

apparatus. In Fig. 4.5 we have introduced a displacement modulation, and
increased the amplitude of this oscillation linearly, from 0 to a few angstroms.
The results show the signal measured by the quadrant photodetector plotted
against the modulation amplitude. We can see that it is not possible to make
a distinction between the signal and the noise in the case of a coherent laser
beam with small displacement modulations. At larger oscillations the signal
and the noise can be distinguished. When squeezed light is used, the signal
for a small displacement modulation emerges earlier from the noise floor, thus
demonstrating the improvement of the sensitivity of the measurement.

4.5 Optical Read-Out

The second example that we shall consider as an illustration of the theory
of the modal synthesis quantum imaging is the issue of the optical read-out.
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Fig. 4.5. Sensitivity to small displacement measurement is improved with spatial
squeezing.

This section is purely theoretical with the aim to demonstrate that it is
possible, using mode synthesis, to improve the density of information that
can be read by a laser beam. Let us consider as a model system the read-out
of information performed on a compact disc. On such a system, information
is encoded on the disc by a surface change that induces a π phase shift on the
reflected light. The reflected field can look like the flipped mode, introduced
in the previous section. Having high spatial frequency components, flipped
mode diffracts more than the TEM00 mode. A single-pixel detector, placed
in the far field of the disk surface, will measure only the central part of the
image. The record intensity difference between a flat surface and a surface
edge is then used to represent “0” and “1”. Only one bit of information can be
encoded in a focal area of the laser beam. The density of information is then
limited by the wavelength of the light. This is why the CD manufacturers are
developing devices that operate with shorter and shorter wavelengths (400 nm
for the next generation of CDs). It will be more and more difficult, however,
to generate light at the UV region. Alternative ways of storing more than one
bit of information per focal area must therefore be seriously investigated.

Having this goal in mind, we propose to extend the use of the super-
resolution techniques [7, 8]. Instead of detecting the reflected light with a
single-pixel detector, one can use an array detector. In super-resolution meth-
ods, having a high number of pixels is very important for fine reconstruction
of the field shape. However, in the present case, we know that there are
only 2n possibilities for the shape of the reflected light if we place n bits of
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information within a focal spot. This matches the assumption of the modal
synthesis, where considerable a priori information is available. Hence, it is
sufficient to use a finite number of pixels to record the field in order to dif-
ferentiate among all these possibilities. A sketch of the proposed scheme is

σ1

σ2

σ1

σ1

σ1

Σ

Fig. 4.6. Read-out of a Gaussian beam after interacting with the CD surface and
going through the aperture with an array detector.

given in Fig. 4.6. We consider a standard optical disc read-out system, where
the input beam is strongly focused on the disc with a high numerical aper-
ture. Several bits of information are placed on the disc within the focal spot.
Hence, a complex phase pattern is imprinted onto the beam when it is re-
flected by the disc. The light is then propagated onto the detector. Due to
the high numerical aperture and the small details, the calculation of the field
shape after propagation to the detector plane cannot be performed within
the paraxial approximation and more sophisticated integration techniques
have to be used [9]. Indeed, if we continue with the example of three bits of
information per focal point, there are only eight possible field shapes inci-
dent on the detector. One then has to design an array detector that allows
us, by using appropriate sets of gains on the different pixels, to differentiate
efficiently among these eight possibilities. The figure arbitrarily displays a
five-pixel detector only as an example.

Each time a measurement is performed, one has to test, in parallel, the
eight possible sets of gains that correspond to each sequence of bits. The set
that gives the results closest to zero, corresponds to the preferred sequence.
However, such a reconstruction technique is very sensitive to noise due to the
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spatial frequency bandwidth of the optical apparatus. This practical situation
is within the framework of the theory presented above. To each of the possible
measurements there corresponds a detection mode that is responsible for
the noise. This mode is well defined because both the mean field shape and
the detector gains are known. Thus it is possible to improve the signal-to-
noise ratio of the detection process by injecting squeezed vacuum light with
the proper mode shape. Such a system would yield an increase of the density
of information encoded on an optical disc. We note that this approach can
potentially improve any storage technology, because it is independent of the
technical parameters such as wavelength, numerical aperture, and the like.

4.6 Measuring a Signal in an Optimal Way

In this last section, we would like to complete the optical read-out analysis
by determining the optimum detection system for a given measurement. So
far we have restricted ourselves to an array detector that only measures local
intensities in an optical image. In some cases, this may not be the best detec-
tion strategy. We should then identify where the information comes from and
optimize the detection system accordingly. Let us consider again the small
displacement problem. Assume that a beam of light, with Gaussian transverse
shape E(r) = αu0(r), is displaced by a distance d along the x-direction. The
shape of the displaced beam can be written, to the first order in d, as

Ed(r) = E(r) + d
∂E(r)

∂x

= α

(
u0(r) +

d

w0
u1(r)

)
, (4.7)

where u1 is the TEM01 mode. This equation is valid because the TEM01 mode
is proportional to the first derivative of the TEM00 mode. Consequently, one
sees that on a Gaussian beam the size of the displacement is characterized
by the amount of TEM01 mode in the displaced image. In order to optimally
measure a displacement one must therefore measure the projection of the
image onto this mode. Using a homodyne detection whose local oscillator
is a TEM01 mode, we measure the fluctuations of the TEM01 mode of the
signal beam. One can show that this system is 100% efficient for detecting
displacement, whereas the quadrant detector system is only 80% efficient [10].
In Fig. 4.7, we present the results of such an experiment. As in the previous
experiment, a Gaussian beam of light is mixed with negligible losses with
a TEM01 squeezed vacuum detection mode by means of a modified Mach–
Zehnder interferometer. A modulation is induced on the beam by means of
a mirror mounted on a piezo-electric actuator. The beam is then detected
using the previously described spatial homodyne detector. The figure plots
the recorded signal versus the phase of the local oscillator. The blue curve
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Fig. 4.7. Spatial homodyne to measure a small displacement with squeezed TEM01

light.

is obtained with a coherent detection state. The displacement signal appears
when the relative phase at the homodyne wave plate is zero, corresponding to
the dip of the blue curve where there is no observable signal. The maximum
of the blue curve, at π/2 phase shift, can be shown to correspond to the
amplitude of the tilt induced onto the beam [11]. Indeed, one can show that
the tilt and the displacement are a pair of the conjugated variables.

For the displacement measurement, one can study the red curve that cor-
responds to a beam mixed with a squeezed vacuum detection mode. The
displacement signal dip is lower than in the previous case. However, this dip
does not reach the quantum noise floor suggesting that there is a displace-
ment signal that could not be measured with a coherent beam. Hence this
graph has demonstrated the method and its efficiency at detecting very week
displacement modulation amplitudes.

4.7 Conclusion

In this chapter we have shown that multimode quantum light can be pro-
duced by the synthesis of many single-mode nonclassical beams. The modal
synthesis of images can be applied to problems where considerable a pri-
ori information is available, thus allowing the improvement of the detection
sensitivity below the quantum noise limit.
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We have shown that techniques in quantum imaging can be applied to im-
prove the optical read-out, either using array detectors or detection schemes,
such as the homodyne detector, fitted to the parameters to be measured. Us-
ing this last method we can also access the conjugate variable of the detected
parameter, which then leads to the possibility of spatial entanglement.

Finally, let us mention that this work, developed within the frame of the
quantum imaging formalism, can also be applied to many other systems.
As soon as several modes of some physical parameters—spatial, temporal,
frequency, polarization, or others—are present, quantum modal synthesis is
applicable. Hence, any measurement that is multimode and is limited by
quantum noise can have its sensitivity improved using the techniques derived
from this chapter.
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Valleggio 11, 22100, Como, Italy
luigi.lugiato@uninsubria.it

2 Optical Fiber Group, Research Center COM, Technical University of Denmark,
DK-2800 Lyngby, Denmark

5.1 Introduction

The topic of ghost imaging (GI) has attracted noteworthy attention in re-
cent years [1–26]. Invented by Klyshko many years ago [1] with the idea of
exploiting the quantum entanglement in photon pairs generated by Para-
metric Down-Conversion (PDC), this technique was also called entangled
(two-photon) imaging until recently [1–11]. It is by now clear that appropri-
ate classically correlated beams also can be used to implement such a tech-
nique [12–25]; the interesting relation between the two kinds of approaches
will be discussed in the last two sections of this chapter.

In a standard imaging configuration one has a source that illuminates
the object, an imaging system, and a detection system. In GI, instead, one
exploits the correlation between two beams to retrieve information about
an unknown object. Let us describe this technique in the case of entangled
photon pairs as originally conceived by Klyshko [1] and later systematized
in [5–7]. The photons of a pair are spatially separated and each propagates
through a distinct imaging system, usually called the test and the reference
arms (Fig. 5.1a). Information is not obtained by direct measurement of pho-
ton 1, because, for example, detector D1 is pointlike and is held fixed (i.e., it
is not scanned in the transverse plane), or D1 is a “bucket” detector that mea-
sures total intensity of beam 1 and is therefore unable to reveal the transverse
position of photon 1. Information is retrieved, instead, from the coincidences
of signal–idler photon pairs as a function of the transverse position of the
photon 2, because detector 2 is pointlike and is scanned in the transverse
plane. The name “ghost imaging” just originates from the fact that the re-
sult is obtained by scanning the position of the photon which never passed
through the object.

By changing the optical elements in the two arms, one can obtain a dif-
ferent kind of information about the object, for example., the intensity dis-
tribution of the object (ghost image) or the modulus square of the Fourier
transform of the object (ghost diffraction).

The GI technique can find its applications in such situations where it
is not easy to act on the test arm and/or to locate in that arm an array
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Fig. 5.1. Ghost imaging with entangled photon pairs. The object, about which
information must be retrieved, is located in test arm 1. The functions h1 and h2

are the impulse response functions that take into account the propagation of light,
the presence of optical elements (e.g., lenses, apertures), and the object. (a) The
case of extremely low gain, in which one detects coincidences between the signal
and the idler photons. The information is obtained by scanning the pointlike de-
tector D2 in the transverse plane x2 of the reference arm, whereas D1 is fixed. (b)
The case of high gain. The information is obtained from the intensity correlation
function 〈Î1(x1)Î2(x2)〉 as a function of x2 by keeping D1 fixed and using an array
of pointlike detectors in the reference arm.

of pointlike detectors (e.g., when we wish to keep the detection hidden),
hence we wish to keep the configuration of the optical elements and of the
detection system in the test arm as simple as possible and fixed once forever,
whereas we have full ease of acting on the reference arm (e.g., of scanning
detector D2 or, equivalently, of locating an array of pointlike detectors in arm
2, or of modifying arm 2 to pass from a ghost image to a ghost diffraction
configuration).

Such a two-arm configuration provides more flexibility in comparison with
standard imaging procedures. For example, there is a possibility of illuminat-
ing the object at a given light frequency in the test arm and of performing a
spatially resolved detection in the other arm with a different light frequency,
or of processing the information from the object by only operating on the
imaging system of the reference arm [11]. In addition, it opens a possibility
for performing coherent imaging by using, in a sense, spatially incoherent



5 Ghost Imaging 81

light, because each of the two down-converted beams taken separately is de-
scribed by a thermallike mixture and only the two-beam state is pure (see
Section 2.2.2 of Chapter 2).

In the high-gain regime of a large number of photon pairs, which has
been already considered in Chapter 2, this technique is generalized to the
measurement of the signal–idler correlation function of the intensity fluctua-
tions [8,9,16,17] as a function of position x2 in the reference arm (Fig. 5.1b).
The general theory, spanning from the extremely low-gain regime in which
one detects coincidences to the high-gain regime, will be described in Sec-
tion 5.2. The other sections, in which we discuss GI with entangled beams,
are Section 5.3 (wave-particle aspects associated with ghost imaging), Sec-
tion 5.4 (spatial averaging technique that enhances the speed of retrieval and
increases the spatial bandwidth of the system in ghost diffraction), and Sec-
tion 5.5 (ghost imaging with homodyne detection instead of direct intensity
detection).

The “quantum” and the “classical” parts of this chapter are divided in
Section 5.6, which illustrates the debate on whether quantum entanglement is
necessary in GI. In the last two sections, we discuss the case of GI obtained by
using splitt thermallike beams, first from a theoretical viewpoint (Section 5.7)
and, next from an experimental standpoint (Section 5.8).

The use of thermallike light in GI schemes also inspired a topic that
became of a certain interest, known as “quantum lithography with classical
beams,” or “sub-wavelength interference with classical beams.” The quantum
version of this started with a paper by Boto et al. [27] claiming that N-photon
entangled states could be used for improving the resolution of lithography by
a factor of N. A proof-of-principle experiment using N = 2 in the PDC case
was provided by [28] where a halving of the period of the interference fringes
was observed in a “ghost diffraction” pattern. In [8] we observed that the
same effect may be observed when thermallike beams are used, and that
in both the entangled and the thermal case the subwavelength interference
relies on a simple geometrical artifact. We therefore questioned whether the
experiment [28] really proves the entangled protocol of [27]. Subwavelength
interference using thermal beams was then theoretically discussed in [29], and
experimentally demonstrated in [30,31].

5.2 General Theory of Ghost Imaging with Entangled
Beams

In the analytical treatment of this section we consider for simplicity only
spatial variables and ignore the time argument, which corresponds to using
a narrow frequency filter. A theory that includes time and frequency can be
found in [9]. In addition, we assume translational invariance in the transverse
plane, which amounts to requiring that the cross-section of the source is much
larger than the object and all the optical elements.
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In the entangled case, the signal and the idler fields are generated in a
type-II χ(2) crystal by a PDC process. Our starting point is the input-output
relations of the crystal, which in the plane-wave pump approximation reads
(see [8, 9] and references quoted therein)

âi,out(q) = Ui(q)âi,in(q) + Vi(q)â†
j,in(−q), i 
= j = 1, 2 , (5.1)

which coincides with Eqs. (2.13) in Chapter 2 provided Ui(q) and Vi(q) are
identified with Ui(q, Ω = 0) and Vi(q, Ω = 0) in Eqs. (2.14–2.17) of Chapter
2. As usual in type-II media, the signal field â1 and the idler field â2 are
distinguished by their orthogonal polarization.

Each of the two outgoing beams travels through a distinct imaging sys-
tem, described by its impulse response functions h1(x1,x

′
1) and h2(x2,x

′
2),

respectively (see Fig. 5.1). The fields at the detection planes are given by

ĉi(xi) =
∫

dx′
ihi(xi,xi

′)âi,out(xi
′) + L̂i(xi), i = 1, 2 , (5.2)

where L̂1, L̂2 account for possible losses in the imaging systems, and depend
on vacuum field operators uncorrelated from âi,out. Information about the
object is extracted by measuring the spatial correlation function of the in-
tensities detected by D1 and D2, as a function of the position x2 of the pixel
of D2:

〈Î1(x1)Î2(x2)〉 = 〈ĉ†1(x1)ĉ1(x1)ĉ
†
2(x2)ĉ2(x2)〉 . (5.3)

All the object information is concentrated in the correlation function of in-
tensity fluctuations:

G(x1,x2) = 〈Î1(x1)Î2(x2)〉 − 〈Î1(x1)〉〈Î2(x2)〉 , (5.4)

where 〈Îi(xi)〉 = 〈ĉ†i (xi)ĉi(xi)〉 is the mean intensity of the ith beam. When
using a bucket detector in arm 1, the measured quantity corresponds to the
integral over x1 of both sides of Eq. (5.4). Because ĉ1 and ĉ†2 commute, all the
terms in Eqs. (5.3), (5.4) are normally ordered and L̂1, L̂2 can be neglected,
thus obtaining

G(x1,x2) =
∫

dx′
1

∫
dx′′

1

∫
dx′

2

∫
dx′′

2 h∗
1(x1,x

′′
1)h1(x1,x

′
1)

× h∗
2(x2,x

′′
2)h2(x2,x

′
2)
[
〈â†

1out(x
′′
1)â1out(x′

1)â
†
2out(x

′′
2)â2out(x′

2)〉

− 〈â†
1out(x

′′
1)â1out(x′

1)〉 〈â†
2out(x

′′
2)â2out(x′

2)〉
]

. (5.5)

The four-point correlation function in Eq. (5.5) has special factorization prop-
erties. As can be obtained from Eq. (5.1) (see also [1] in Chapter 2),

〈â†
1out(x

′′
1)â1out(x′

1)â
†
2out(x

′′
2)â2out(x′

2)〉 (5.6)

= 〈â†
1out(x

′′
1)â1out(x′

1)〉 〈â†
2out(x

′′
2)â2out(x′

2)〉
+ 〈â†

1out(x
′′
1)â†

2out(x
′′
2)〉 〈â1out(x′

1)â2out(x′′
2)〉 .
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By inserting this result in Eq. (5.5), one obtains

GPDC(x1,x2) =
∣∣∣∣∫ dx′

1

∫
dx′

2 h1(x1,x
′
1)h2(x2,x

′
2)〈â1out(x′

1)â2out(x′
2)〉
∣∣∣∣2 ,

(5.7)
where by using relations (5.1) and taking into account that the fields âi,in are
in the vacuum state,

〈â1out(x′
1)â2out(x′

2)〉 =
∫

dq

(2π)2
eiq·(x′

1−x′
2)U1(q)V2(−q) . (5.8)

The correlation length, or transverse coherence length xcoh, is determined by
the inverse of the bandwidth of the function U1(q)V2(−q) (see Eq. (1.23) in
Chapter 1). An essential feature is that in Eq. (5.7) the modulus is outside
the integral, which ensures the possibility of coherent imaging via correlation
measurement.

5.2.1 Specific Imaging Schemes

There is an infinity of choices for the configuration of the optical elements in
the test and reference arms, that is, for the functions h1 and h2.

Let us now analyze two paradigmatic examples of imaging systems
sketched in Fig. 5.2. In both examples the set-up of arm 1 is fixed, and con-
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Fig. 5.2. Imaging scheme: L denotes two identical lenses of focal length f ; D1 is a
pointlike detector. The distance z is either z = f or z = 2f .

sists of an object, described by a complex transmission function T (x), and a
lens located at the focal distance f from the object and from the detection
plane. Hence,

h1(x1,x
′
1) = − i

λf
exp
(
−2πi

λf
x1 · x′

1

)
T (x′

1) , (5.9)

with λ being the wavelength. In arm 2 there is a single lens placed at a
distance z both from the source and from detection plane 2; for simplicity we
take the two lenses to be identical.
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Example 1: Ghost Diffraction Scheme

In the first example we assume z = f so that

h2(x2,x
′
2) = − i

λf
exp
(
−2πi

λf
x2 · x′

2

)
.

By inserting these propagators into Eq. (5.7) and taking into account Eq. (5.9),
we obtain

GPDC(x1,x2) ∝
∣∣∣∣U1(−x2

2π

λf
)V2(x2

2π

λf
) T̃

(
(x2 + x1)

2π

λf

)∣∣∣∣2 , (5.10)

where T̃ (q) =
∫

dx/2πe−iq·xT (x) is the amplitude of the diffraction pattern
from the object. Note that a shift of position x1 of the detector D1 produces
a translation of the pattern. The whole diffraction pattern from the object
can be reconstructed via the correlation function provided that the spatial
bandwidth q0 is larger than the maximal transverse wave-number q in the
diffraction pattern, or equivalently, provided that xcoh < lo, where lo is the
smallest scale of variation of the object spatial distribution. In contrast, when
xcoh < lo no information about the diffraction pattern of the object can be
obtained without the correlations, that is, if we detect the light intensity
distribution in arm 1 with an array of pixels. In fact, one can easily obtain
that

〈Î1(x1)〉 ∝
∫

dq

(λf)2

∣∣∣∣T̃ (x1
2π

λf
− q)
∣∣∣∣2 U1(q)V2(−q) . (5.11)

For xcoh < lo, U1(q)V2(−q) can be taken out of the integral, and the resulting
expression does not depend on x1 any more.

Example 2: Ghost Image Scheme

In the second example, we set z = 2f , so that

h2(x2,x
′
2) = δ(x2 + x′

2)exp
(
−i|x2|2

π

λf

)
.

Inserting this in Eq. (5.7) and taking into account Eq. (5.9), we get

GPDC(x1,x2) ∝
∣∣∣∣∫ dx′

1〈â1(x′
1)â(−x2)〉T ∗ (x′

1) ei2π/λfx′
1·x1

∣∣∣∣2 (5.12)

∝
∣∣∣∣U1

(
2πx1

λf

)
V2

(
−2πx1

λf

)∣∣∣∣2 |T (−x2)|2 , (5.13)

where in the second line xcoh < lo was assumed. Because the correlation func-
tion 〈â1(x′

1)â(−x2)〉, which depends on x′
1 + x2 (see Eq. (5.8)), is nonzero
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in a region of size xcoh around x′
1 = −x2, this condition ensures that T (x′

1)
is roughly constant in this region and it can be taken out from the integral
in Eq. (5.12), thus obtaining Eq. (5.13). In this example the intensity cor-
relation function provides information about the image of the object. In the
general case (5.12), the image reconstructed via the correlation function is
a convolution of the object image with the second-order correlation function
(5.8); therefore, the thermal coherence length xcoh fixes the resolution of the
imaging scheme.

Hence, we have shown that the cross-correlation of the two beams allows
us to reconstruct both the image and the diffraction pattern of an object and
we can pass from one to the other by only operating on the optical set-up in
the reference arm.

For the ghost image scheme if, instead of a pointlike detector, in arm 1
one uses a “bucket” detector that collects all the radiation in arm 1, one
measures the quantity

∫
dx1GPDC(x1,x2) and one obtains, for xcoh < lo,∫

dx1GPDC(x1,x2) ∝ |T (−x2)|2, (5.14)

which, again, provides the image of the object. An advantage of the bucket
detector case is that the lens in the test arm can be avoided and the relative
position of the detection plane and the object in the test arm become imma-
terial (provided the detection plane is beyond the object). In this case, one
can vary at will the position of the object in the test arm and the position of
the lens in the reference arm and achieve the reconstruction of the image of
the object provided that the distance p1 between the object and the lens in
the reference arm (calculated as the sum of the distance between the object
and the χ(2) slab along the test arm and the distance between the slab and
the lens along the reference arm) and the distance p2 between the lens and
the detection plane in the reference arm obey the thin lens law [1,4]:

1
p1

+
1
p2

=
1
f

. (5.15)

We observe finally that, if we start from the general expression (5.12) and
integrate over x1, we obtain∫

dx1GPDC(x1,x2) =
∫

dx′
1|〈â1out(x′

1)â2out(−x2)〉|2|T (x′
1)|2, (5.16)

which shows that using a bucket detector the imaging becomes incoherent
(the modulus square is inside the integral).

5.3 Wave-Particle Aspect

In this section we discuss some fundamental aspects. Together with the
scheme in Fig. 5.2, we can consider the alternative scheme in Fig. 5.3, which
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is used in [31] in the coincidence regime, using a double slit as an object.
In this case, contrary to Fig. 5.2, in the test arm there is an array of point-
like detectors, and in the reference arm a pointlike detector. The information
about the object is still contained in G(x1,x2), but in this case one keeps
x2 fixed and varies x1. Let us first consider the case z = f in Fig. 5.3. If
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rr
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2 D2

D1

z
z

f
f
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slit

a1out

a2out c2

L

L

Fig. 5.3. Imaging scheme: L denotes two identical lenses of focal length f ; D1 is
an array of pointlike detectors. The distance z is either z = f or z = 2f .

the I reference field is not detected, there is no possibility of observing the
interference fringes by direct measurement of the reference arm as shown
by Eq. (5.11). In the coincidence regime it was argued [32] that in principle
one could detect the I photon, and obtain “which-path” information on the
S photon, and this is enough to cancel the fringes. We argue more gener-
ally that because the S beam alone is in an incoherent thermal mixture (see
Eq. (2.29) in Chapter 2), the interference fringes are not visible due to the
lack of coherence. However, in order to make fringes visible, it is enough to
condition the S beam measurement to a measurement of the I beam by a
single pointlike detector.

As a matter of fact, the result is given by Eq. (5.10) and, as we have shown
in Section 5.2.1, one detects the whole interference pattern in the case of the
scheme of Fig. 5.2, provided xcoh < lo. For the scheme of Fig. 5.3, x2 is kept

constant and the function
∣∣∣T̃ (x2 + x1)2π/λf

∣∣∣2 is symmetrical with respect
to x1 and x2, hence the interference pattern is visible in the same way (by
scanning x1 instead of x2), even independently of the condition xcoh < lo.

In the coincidence regime the fringes become visible, as explained in [1],
because detection of the I photon in the far field determines the S photon
momentum before the double slit, due to momentum entanglement, providing
a quantum erasure [33] of any which-path information. In the macroscopic
high-gain regime the fringes remain visible in the same way.

Consider now the scheme of Fig. 5.3 in the z = 2f case, in which the D2

detector is in the image plane with respect to the object, and the measurement
exploits the S/I spatial correlation in the near field. In the coincidence regime
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fringes are not visible because the detection of the I photon in the near field,
due to position entanglement, provides perfect which-path information about
the S photon [32]. Our general result is given by Eq. (5.13). If we keep x2

fixed and vary x1, as is the case in the scheme of Fig. 5.3, we do not obtain
any information about the object.

As a general conclusion from Sections 5.2.1 and 5.3 we can say that the
results for imaging and the wave-particle duality features, which have been
demonstrated in the microscopic case (coincidence regime) persist in the
macroscopic case (high-gain regime of PDC). A more complete discussion
on this point can be found in Ref. [8].

5.4 Spatial Average in Ghost Diffraction: Increase of
Spatial Bandwidth and of Speed in Retrieval

This section is based on Ref. [11]. From Eq. (5.10) we see that the correlation
provides information about the diffraction pattern of the object if we fix x1

and scan x2, but because the gain also depends on x2 there is a limit to the
information we can extract. Precisely, the gain

γ(x2) = U1

(
−x2

2π

λf

)
V2

(
x2

2π

λf

)
, (5.17)

introduces a cutoff of the reproduced spatial Fourier frequencies at the imag-
ing bandwidth of the PDC source q0.

We showed in [11] how to circumvent this source-related limitation on the
imaging bandwidth. We may in a suitable way average over the position of the
test-arm detector x1: first, a change of variables is introduced as x ≡ x1 + x2,
and then an average over x1 is performed. We then obtain

GSA
PDC(x) ≡

∫
dx1GPDC(x1,x − x1) ∝

∫
dx1

∣∣∣∣γ(x1 − x)Tobj

(
x

2π

λf

)∣∣∣∣2
= |T̃obj

(
x

2π

λf

)
|2
∫

dx1 |γ(x1 − x)|2 (5.18)

 const × |T̃obj(x
(

2π

λf

)
)|2, (5.19)

where the superscript SA indicates that a spatial average has been carried
out. The final approximation in Eq. (5.19) is that |γ(x)|2 is a bound function
inside the detection range of x1 implying that the integral evaluates to a
constant. Thus, there is now no gain cutoff of the diffraction pattern, so the
imaging bandwidth is substantially increased. Note that this average over x1

does not correspond to D1 being a bucket detector. Instead, the change in
variables x ≡ x1 + x2 implies that the resulting correlation GSA

PDC(x) is a
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convolution of the signal and the idler intensity fluctuations, which in the
numerics is easily calculated using the fast Fourier transforming technique.

In [11] one can find the interpretation of this average in terms of Klyshko’s
time-reversed picture [1] and several examples that illustrate the benefit of
this bandwidth increase.

The spatial average technique works particularly well in the high-gain
regime where many photon pairs are generated in each pump pulse. Thus the
test arm has many photons per pulse transmitted by the object (in contrast,
in the low-gain coincidence counting regime only one photon at a time is
impinging on the object, and either it is transmitted or it is not), and therefore
at the measurement plane they are scattered over the entire transverse plane.
Because the spatial average technique employs an average over the position
of the test detector, within a single shot we can get information about the
image from all the test detector positions in the transverse plane containing
photons. This implies that in the high-gain regime a much faster convergence
rate is obtained using the spatial average technique, which represents another
benefit in addition to the hugely improved bandwidth.

In reconstructing the image of the object a technique corresponding to the
spatial average done for reconstructing the diffraction pattern would result
in a largely increased image resolution. Unfortunately, it is not possible to
carry out such a spatial average to achieve this.

In [11] it is shown that by using a bucket detector instead of a pointlike
detector in the test arm one increases the speed of retrieval of the image, but
no increase of image resolution is achieved. In addition, it is necessary to use
a narrowband interference filter, otherwise significant degrading in resolution
is observed.

The spatial averaging technique works in basically the same way in the
case of ghost imaging with thermallike beams discussed later in this chapter.

5.5 Ghost Imaging with Homodyne Detection

In Ref. [10] we analyzed the scheme of Fig. 5.2 with the important differ-
ence that, in both the test and the reference arm, instead of performing a
direct intensity detection, one performs a homodyne detection by introducing
50/50 beamsplitters and appropriate local oscillators, which select the phases
of the observed quadrature components. In the case of ghost image detection,
in the reference arm one must use a telescopic two-lens configuration instead
of the single lens z = 2f configuration shown in Fig. 5.2, whereas in the
case of ghost diffraction the configuration remains as in Fig. 5.2 with z = f .
An initial motivation for using a homodyne scheme for ghost imaging came
from the need to circumvent the problems related to information visibility in
the macroscopic regime. Specifically, when intensity detection is performed,
the measured quantity 〈Î1(x1)Î2(x2)〉 includes the homogeneous background
term 〈Î1(x1)〉〈Î2(x2)〉. This term, which can be rather large, does not contain
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any information about the object and lowers the image visibility. Instead, by
using homodyne detection the signal–idler correlation becomes second order
instead of fourth order in the fields, and hence this background term is ab-
sent. Another advantage of homodyne detection is that arbitrary quadrature
components of the test and the reference beams can be measured, which
means that the homodyne detection scheme allows for both amplitude and
phase measurements of the object. Figure 5.4 shows the result for the case

(a) Real part

(b) Imaginary part

(c) Real part (d) Imaginary part

Fig. 5.4. Frames (a) and (b) show the real and the imaginary part of the Fourier
transform of the double slit obtained using homodyne detection, spatial averages,
and average over 200 pump pulses. The thin lines display the analytical Fourier
transform. Frames (c) and (d) are obtained from (a) and (b) by taking the inverse
Fourier transform.

in which the object is a double slit. In the frames (a) and (b), by adjusting
the phases of the local oscillators, one detects the real and imaginary parts of
the Fourier transform of the object. Owing to the use of the spatial average
illustrated in Section 5.4, the convergence rate of the retrieval increases by
a factor 10 and, in addition, because of the large bandwidth available one is
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capable of reproducing the Fourier pattern very precisely even far away from
the central part of the pattern.

Another very interesting point about homodyne detection is that by mea-
suring both quadratures in the the far-field distribution, we may reconstruct
the complete near-field object distribution from this information by using
the inverse Fourier transform. We have done this for the data in Fig. 5.4a,b
and the result is shown in Fig. 5.4c,d. The real part (c) follows the object
profile very precisely. This is because we now have access to high-frequency
components. Consequently, as the far-field imaging bandwidth is large, the
near-field resolution in the ghost image obtained using the inverse Fourier
transform turns out to be much better than when one observes the ghost
image directly in the near field using homodyne detection with a telescopic
configuration in the reference arm (or using direct detection as in Fig. 5.2
with z = 2f).

In two dimensions these features become even more impressive. In Fig. 5.5
we used two different objects: (a) an amplitude transmission mask with the
letters INFM, and (b) a more complicated amplitude transmission mask
showing a picture of a wolf. We show the ghost images obtained by inverse
Fourier transforms for different numbers of shots, and evidently the simple
mask (a) converges faster than the more complicated mask (b). Nevertheless,
in both cases a good sharp image is obtained after very few shot repetitions,
implying that the corresponding far-field diffraction patterns converge very
fast and with a very large bandwidth. After additional averaging over shots
(using here 500 shots, as shown in the last frames) the irregularities gradually
disappear.

Many more details and results can be found in [10].

5.6 Debate: Is Quantum Entanglement Really Necessary
for Ghost Imaging?

The question was addressed rather early [4]. A more recent theoretical analy-
sis [5] gave arguments that the ghost imaging scheme truly requires entan-
glement. The topic became hot after the ghost image experiment of Ref. [4]
was successfully reproduced using classically correlated beams [12]. In this
experiment a classical source produced pairs of single-mode angularly corre-
lated pulses that served as classical analogues of momentum-correlated pairs
of photons produced by PDC. In the accompanying theoretical discussion,
the authors presented arguments that although the results of any single ex-
periment in quantum imaging could be reproduced by classical sources with
proper statistical correlation, a given classical source cannot emulate the be-
havior of a quantum entangled source for any arbitrary test and reference
systems.

In [8] we addressed this question starting from the consideration that
a key feature of the entangled state produced by PDC is the simultaneous
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1

10

100

500

(a) (b)

Fig. 5.5. Using the spatial average technique in an f–f setup with two different
objects (a) and (b) to obtain the ghost image via the inverse Fourier transform. The
correlations are calculated from a full 3 + 1D simulation, and averaging additionally
over the number of repeated pump shots shown on the right.

presence of (ideally) perfect spatial correlation in the near field and the far
field of the signal–idler beams (see, e.g., [1] in Chapter 2). Let us see what
happens if we replace the pure entangled state (see Eqs. (2.28) in Chapter 2)
by a classical mixture. It is natural to focus on the two mixtures:

W =
∏

q

{∑∞
n=0 |cn(q)|2|n, q〉1|n,−q〉22〈n, q|1〈n,−q|

}
, (5.20)

W ′ =
∏

x

{∑∞
n=0 |cn(q = 0)|2|n,x〉1|n,x〉22〈n,x|1〈n,x|

}
. (5.21)

The mixture (5.20) preserves the local S/I spatial intensity correlations in
the far field, and the intensity correlation function is completely delocalized
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in the near field. As shown in Ref. [8], by using the mixture (5.20) instead
of the pure state (2.28) of Chapter 2, one obtains the same result (5.10) for
the diffraction pattern in the z = f configuration of Fig. 5.2, whereas in the
z = 2f ghost image configuration one obtains no information at all about
the object (contrary to the result (5.13) of the pure state, which provides the
image of the object). Conversely, the mixture (5.21) preserves the S/I local
intensity correlations only in the near field. Not surprisingly, in this case the
z = 2f scheme provides the image of the object, as with the pure state, but in
the z = f case the diffraction pattern is not visible. The key point is that only
the pure EPR state displays perfect S/I spatial correlation both in the near
and in the far field. This analysis agrees with the basic conclusion of Ref. [12],
that the result of each single experiment in entangled photon imaging can be
reproduced by a classically correlated source. On the basis of these results,
in Ref. [8] we argued that only in the presence of quantum entanglement is it
possible to produce both the image and the diffraction pattern of an object
by using a single source and by solely operating on the reference arm. We
also pointed out the importance of performing in combination the two exper-
iments with z = f and z = 2f in Fig. 5.2. This interpretation was received
rather well in the quantum imaging community and was generally viewed as a
possibility for discriminating between the presence of quantum entanglement
and classical correlations in the source. In particular, in Refs. [13] and [14]
combined experiments for ghost diffraction and ghost image with entangled
beams were carried out successfully.

However, in later works [15–17] we found a basic counterexample, which
partially contradicts the picture emerging from Refs. [8,12]. Namely, we pre-
dicted that by exploiting the classical correlations between the two beams
obtained by dividing a thermallike beam with the help of a beamsplitter,
it is possible to perform in combination both experiments with z = f and
z = 2f . This is illustrated in the following section in which we will show, first
of all, that there is a profound analogy in ghost imaging between the case of
entangled beams from PDC and of the split thermallike beam. In the latter
case, the correlation between the two beams is not perfect in the near nor in
the far field, but it is enough to perform ghost imaging very well.

We have also demonstrated thermallike ghost imaging experimentally
[23,24] (see also [22]), and this concludes the debate in the sense that quan-
tum entanglement is not necessary for ghost imaging, even if it bears an
important advantage in special situations as discussed in the next sections.

5.7 Ghost Imaging by Split Thermallike Beams: Theory
[15–17]

As we mentioned already, ghost imaging with PDC beams offers a possibility
of performing coherent imaging using, in a sense, incoherent beams, because
both the signal and the idler beams, taken separately, are incoherent. In this
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Fig. 5.6. Ghost imaging with incoherent thermal light. The thermal beam a at
the beamsplitter BS is divided into two beams, b1 and b2, which travel through,
respectively, a test and a reference system. The rest of the figure is identical to
Fig. 5.1b.

section we show that ghost imaging can be implemented using truly inco-
herent light, as the radiation produced by a thermal (or thermallike) source.
Here we consider a scheme (Fig. 5.6) appropriate for correlated imaging, in
which a thermal beam is divided by a beamsplitter (BS) and the two out-
going beams are handled in the same way as the PDC beams in entangled
imaging.

5.7.1 Analogy Between Thermal and Entangled Beams in Ghost
Imaging [15–17]

In the thermal case, we start from the input-output relations of a beamsplitter

b̂1(x) = râ(x) + tv̂(x) , b̂2(x) = tâ(x) + rv̂(x) , (5.22)

where t and r are the complex transmission and reflection coefficients of the
mirror, â is a thermal field, and v̂ is a vacuum field uncorrelated with â.
Equation (5.22) coincides with Eq. (1.22) of Chapter 1, except that here
we indicate â and v̂ instead of â1 and â2, and the beamsplitter in general
is not 50/50. We assume that the thermal state â(x) is characterized by a
Gaussian field statistics, in which any correlation function of arbitrary order
is expressed via the second-order correlation function [34]:

Γ (x,x′) = 〈â†(x)â(x′)〉

=
∫

dq

(2π)2
e−iq·(x−x′)〈n(q)〉th . (5.23)

Here 〈n̂(q)〉th denotes the expectation value of the photon number in mode q
in the thermal state. In writing the second line of this equation, we implicitly
used the hypothesis of translational invariance of the source, under which
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Γ (x,x′) = Γ (x − x′). In particular, the following factorization property
holds [34].

〈: â†(x)â(x′)â†(x′′)â(x′′′) :〉 =
〈â†(x)â(x′)〉〈â†(x′′)â(x′′′)〉 + 〈 â†(x)â(x′′′)〉〈â†(x′′)â(x′) 〉 . (5.24)

By using Eq. (5.22) with âi,out replaced by b̂i, (i = 1,2), Eqs. (5.3) and (5.4),
we arrive again at Eq. (5.7), with âi,out replaced by b̂i. Hence, by taking into
account the transformation (5.22) and that v̂ is in the vacuum state, b̂1 and
b̂2 in Eq. (5.5) can be simply replaced by râ and tâ, respectively. Hence, by
using Eq. (5.24), we arrive at the final result

Gth(x1,x2) = |tr|2
∣∣∣∣∫ dx′

1

∫
dx′

2h
∗
1(x1,x

′
1)h2(x2,x

′
2)〈â†(x′

1)â(x′
2)〉
∣∣∣∣2 ,

(5.25)
where 〈â†(x′

1)â(x′
2)〉 is given by Eq. (5.23). At this point the analogy between

the results in the two cases of entangled beams and split thermal beams
clearly emerges. Apart from the numerical factor |tr|2 and the presence of h∗

1

instead of h1, the thermal second-order correlation function 〈â†(x)â(x′)〉 in
Eq. (5.25) plays the same role as the PDC signal–idler correlation function
〈â1out(x)â2out(x′)〉 in Eq. (5.7). Consequently, from Eqs. (5.23) and (5.8), the
thermal mean photon number 〈n̂(q)〉th plays the same role as U1(q)V2(−q)
in the PDC case. The correlation function 〈â†(x)â(x′)〉 governs the proper-
ties of spatial coherence of the thermal source [10, 34, 35]. The correlation
length, or transverse coherence length xcoh, is determined by the inverse of
the bandwidth q0 of the function 〈n̂(q)〉th. The same comments hold for the
correlation function 〈â1out(x)â2out(x′)〉 and the function U1(q)V2(−x) in the
entangled case. On the basis of this precise analogy, referring to the imaging
scheme of Fig. 5.2, we can expect that all the results for the detection of
the diffraction pattern of the object (see Eqs. (5.10) and (5.11)), as well as
the result for the ghost image case (see Eq. (5.13)) still hold provided we
replace U1V2with 〈n̂〉th. This is true apart from the important feature that in
the diffraction pattern result (5.10) the argument of T̃ is (x1 −x2)2π/λf in-
stead of (x1 +x2)2π/λf as a consequence of the fact that in Eq. (5.24) there
is 〈â†(x′

1)â(x′
2)〉, whereas in Eq. (5.7) one has 〈â1out(x′

1)â2out(x′
2)〉. Hence,

instead of Eq. (5.10) we have

Gth(x1,x2) ∝
∣∣∣∣〈n̂(−x2

2π

λf

)
〉thT̃

(
(x1 − x2)

2π

λf

)∣∣∣∣2 . (5.26)

In Eq. (5.12) 〈â1out(x′
1)â2out(−x′

2)〉 is obviously replaced by Γ (x′
1,−x′

2) given
by Eq. (5.24). In both cases of PDC beams and thermallike beams, the reso-
lution in the ghost image retrieval is determined by the transverse coherence
length xcoh. In addition to the difference between Eq. (5.10) and Eq. (5.26),
the replacement of â1out in Eq. (5.7) by in Eq. (5.25) brings anothera†ˆ
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difference: in the thin lens law (5.15), in the thermal case, p1 is calculated as
the difference, instead of the sum, of the distance between the beamsplitter
and the lens along the reference arm and the distance of the object and the
beamsplitter along the reference arm [19,22,23].

In conclusion, the classical correlation of the thermal beams offers imaging
capabilities similar to those of the entangled PDC beams; both the image and
the diffraction pattern of an object can be reconstructed and we can pass from
one to the other by only operating on the optical set-up in the reference arm.

As a special example of thermal source, in [15–17] we considered the signal
field generated by PDC. In [15,17] one finds a detailed numerical comparison
between the results obtained by exploiting entanglement of the two PDC
beams, and the classical correlation of the two beams obtained by splitting
the signal beam symmetrically on the other hand. The object is a double
slit, and the simulation takes into account the finite transverse size of the
pump beam and its pulsed character, and it includes the temporal variable.
The parameters in the two cases are the same, apart from the fact that it
is ensured that the mean photon number of the two correlated beams are
approximately identical in the two simulations. The results turn out to be
close to each other for both ghost diffraction and ghost image, when the
statistics for the correlation function G is obtained from the same number of
pump pulses.

5.7.2 Resolution Aspects

As we noted in the previous section, the resolution in the near field (ghost im-
age retrieval) is determined by the transverse coherence length xcoh (i.e., the
speckle size), exactly as in the case of PDC beams. Hence, the more inco-
herent is the thermallike beam, the better is the resolution. An example of
the “thermal” light whose coherence properties can be engineered is offered
by, for example, chaotic radiation obtained by scattering laser light through
random media [36].

On the other hand, in the far field (ghost diffraction retrieval) the res-
olution is determined by the transverse coherence length (or speckle size)
x′

coh ∝ λf/ws in the far field, where ws is the transverse size of the thermallike
source [23]. In the PDC case it is the same with ws given by the transverse
size of the pump. Note that in the idealized case of translational invariance
considered in our analytical formulas one has wS = ∞ and x′

coh = 0. In any
realistic case the transverse coherence length is, of course, finite.

5.7.3 Relations with the Classic Hanburry–Brown and Twiss
Correlation Technique [37]

The approach of [15–17] is reminiscent of the Hanburry–Brown and Twiss
(HBT) interferometric method for determining the stellar diameter [34, 37].
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However, a basic difference is that the measurement of the stellar diameter
relies on the coherence acquired by thermal radiation emitted by the star
during the propagation to the earth. On the contrary in our “thermal” ghost
imaging approach we exploit just the incoherence of the thermal radiation,
and the light that illuminates the object must have a transverse coherence
length xcoh smaller than the smallest scale of variation lo of the object spatial
distribution.

In such a way

— In the ghost image experiment, one can detect the image of the object
with a good resolution.
— For the observation of the diffraction pattern of the object, a direct detec-
tion scheme does not work because the illumination is spatially incoherent
with respect to the object (see the equivalent of Eq. (5.11) in the thermal
case), whereas the ghost diffraction scheme works perfectly (see Eq. (5.26)).

Another fundamental difference is the following. In a standard HBT
scheme the object is placed in the thermal beam before the beamsplitter,
and not in the test arm as in our case and as suggested by the ghost imaging
approach. This feature introduces a basic difference: in the HBT configura-
tion one would retrieve the Fourier transform of the modulus square of the
object transmission function instead of the Fourier transform of the object,
thus losing any phase information. In our scheme instead, where the object
is located in only one arm of the two, phase information about the object
can be extracted and, for example, the diffraction pattern from a pure phase
object can be reconstructed.

In [16] we show the numerical simulation for the case of a pure phase
object.

5.7.4 Correlation Aspects

The imaging schemes described in Fig. 5.2 and Fig. 5.7 have a peculiar fea-
ture. In the z = f scheme the diffraction pattern reconstruction is made
possible by the presence of spatial correlations in the far field of the corre-
lated beams (momentum correlations of the photons). In the z = 2f scheme,
it is the presence of spatial correlations in the near field (position correlations
of the photons) that ensures the possibility of reconstructing the image. Our
results for the thermal case may hence appear surprising if one has in mind
the case of a coherent beam impinging on a beamsplitter, where the two out-
going fields are uncorrelated (i.e., G(x1,x2) = 0). However, when the input
field is an intense thermal beam, that is, the photon number per mode is not
too small, the two outgoing beams are well correlated in space both in the
near-field and in the far-field planes.

To prove this point, let us consider the number of photons detected in two
small identical portions S (“pixels”) of the thermal beams in the near field
immediately after the beamsplitter, N̂i =

∫
S

dx b̂†i (x)b̂i(x) , i = 1, 2, and the
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difference N̂− = N̂1 − N̂2. Using Eq. (5.22), for |r|2 = |t|2 = 1/2 it can be
proven that the variance 〈(δN̂−)2〉 = 〈N̂2

−〉 − 〈N̂−〉2 is given by

〈(δN̂−)2〉 = 〈N̂1〉 + 〈N̂2〉 , (5.27)

which corresponds exactly to the shot-noise level. Remarkably, Eq. (5.27)
holds regardless of statistical properties of the input beam â provided that
in the other input port there is the vacuum. On the other hand, by using
the identity 〈(δN̂−)2〉 = 〈(δN̂1)2〉 + 〈(δN̂2)2〉 − 2〈δN̂1δN̂2〉, and taking into
account that 〈(δN̂1)2〉 = 〈(δN̂2)2〉 for |r|2 = |t|2, the degree of spatial corre-
lations is described by

C
def=

〈δN̂1δN̂2〉√
〈(δN̂1)2〉

√
〈(δN̂2)2〉

= 1 − 〈N̂1〉
〈(δN̂1)2〉

. (5.28)

For any state 0 ≤ |C| ≤ 1, where the upper bound is imposed by the Cauchy–
Schwarz inequality. The lower bound corresponds to the coherent state, for
which 〈(δN̂1)2〉 = 〈N̂1〉 . For the thermal state, there is always some excess
noise with respect to the coherent state 〈(δN̂1)2〉 > 〈N̂1〉, so that the corre-
lation (5.28) never vanishes. Remarkably, a high degree of spatial correlation
between the beams b̂1 and b̂2 is ensured by the presence of a high level of
excess noise in the input beam. As shown in detail in the Appendix of [17],
for thermal systems with a large number of photons, provided that the pixel
size is on the order of xcoh or larger, 〈N̂1〉/〈(δN̂1)2〉 � 1, and C can be made
close to its maximum value (see Fig. 5.7).
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Fig. 5.7. Degree of spatial correlations C between two identical detection regions of
the beams obtained by splitting thermal light, as a function of the ratio δ between
the pixel size and the coherence length; nmax is the mean photon number in the
most intense mode; C = 1 represents the maximum degree of correlation.
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Even more important, in the absence of losses it is not difficult to show
that Eqs. (5.27) and (5.28) hold in any plane linked to the near-field plane by
a Fresnel transformation. Let us assume that the propagation of beams b̂1, b̂2

is described by a linear and unitary kernel H, b̂H,i(x) =
∫

dx′H(x,x′)b̂i(x′),
i = 1, 2. Then the form of the beamsplitter transformation (5.22) is preserved
during the propagation, provided that the thermal field â is substituted by
the propagated field âH(x) =

∫
dx′H(x,x′) (x′). Hence, Eqs. (5.27) and

(5.28) also hold for b̂H,1 and H,2, because these equations are just a con-
sequence of the beamsplitter transformation (5.22) with |r|2 = |t|2 = 1/2.
Moreover, the field âH after propagation is still described by a thermal sta-
tistics, because the Gaussian statistics and the factorization property (5.24)
of the fourth-order correlation function are preserved by a linear unitary
transformation. Therefore also in the far field the correlation can be very
good, provided that the size of the detection region is on the order of x′

coh or
larger and the thermal beam is intense enough.

We remark that despite the fact that C can be made close to 1 by in-
creasing the mean number of photons, it never reaches the quantum level, as
shown by Eq. (5.27).

5.7.5 Visibility Aspects

An important issue is the visibility of the information in the PDC and the
thermal regimes. The information about the object is retrieved by subtracting
the background term 〈Î1(x1)〉〈Î2(x2)〉 from the measured correlation func-
tion (5.3), as indicated in Eq. (5.4). A measure of this visibility is given by
evaluating the following quantity in relevant positions,

V =
G(x1,x2)

〈Î1(x1)Î2(x2)〉
=

G(x1,x2)
〈Î1(x1)〉〈Î2(x2)〉 + G(x1,x2)

, (5.29)

with 0 ≤ V ≤ 1.
A first remark concerns the presence of 〈 (q)〉th in Eq. (5.25) in

place of U1(q)V2(−q) in Eq. (5.7). As a consequence, in the thermal case
Gth(x1,x2) scales as 〈 (q)〉2th. In the entangled case, GPDC(x1,x2) scales
as |U1(q)V2(−q)|2 = 〈n̂(q)〉PDC+〈n̂(q)〉2PDC, where 〈n̂(q)〉PDC = |V2(−q)|2 =
|V1(q)|2 is the mean number of photons per mode in the PDC beams, and
|U1(q)|2 = 1 + |V1(q)|2 (see, e.g., Ref. [1] of Chapter 2). The difference be-
tween the two cases is immaterial when the mean photon number is large,
whereas it emerges clearly in the small photon number regime, 〈n̂(q)〉 � 1.
Actually, in the thermal case the visibility does not exceed the value 1/2,
whatever the value of 〈n̂(q)〉th, because Gth(x1,x2) scales in the same way
as the background term. On the contrary, in the PDC case the visibility can
approach the value 1 in the small photon number regime, because in this case
the leading scale of GPDC(x1,x2) is 〈n̂(q)〉PDC and this term becomes domi-
nant with respect to the background 〈Î1(x1)〉〈Î2(x2)〉 ∝ 〈n̂(q)〉2PDC. Hence, in

b̂

â

n̂

n̂
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the regime of single photon-pair detection the entangled case presents much
better visibility of the information with respect to classically correlated ther-
mal beams (see also [38]).

In addition, very important for the visibility are the duration time and the
size of the detection pixel. Standard calculations [34] show that the visibility
scales as the ratio of the coherence time of the source τcoh to the detection
time (see also [5, 9]). This implies that conventional thermal sources with
very small coherence times are not suitable for the schemes studied here.
A suitable source should present a relatively long coherence time, as, for
example, a sodium lamp, for which τcoh ≈ 10−10 s [38], or the chaotic light
produced by scattering a laser beam through a random medium [36].
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Fig. 5.8. Visibility VS of the spatial correlation between two identical detection
regions of the beams obtained by splitting thermal light, as a function of the ratio
δ of the pixel size to the coherence length.

Similarly, the visibility scales as the ratio of the transverse coherence
length to the detected pixel size [5, 24] (see also Fig. 5.8), and this feature
points to the same conclusions as inferred from the temporal scaling.

We note that the comparison of Fig. 5.7 and Fig. 5.8 shows the presence of
a trade-off between the correlation and the visibility concerning the pixel size.
In the same way, by decreasing the coherence length the resolution improves,
but the visibility deteriorates, hence there is a trade-off also between the
resolution and the visibility [17,20,24], and this feature arises in the same way
in the near field (ghost image retrieval) and in the far field (ghost diffraction
retrieval).

Pseudo-thermal sources [36] appear as the best candidates to overcome
major visibility problems, because of the possibility of engineering the speckle
size independently in the near and in the far field.
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5.7.6 Some Historical Considerations

An important precursor of our works [15–17] is represented by Ref. [5], which
identifies some fundamental relations between the case of PDC beams and
that of a thermal beam. It is important to remark, in this connection, that [5]
did not introduce an essential ingredient for the analogy between ghost imag-
ing with PDC beams and with split thermal beams, that is, the beamsplitter
in Fig. 5.6. Without the beamsplitter, the configuration becomes equivalent
to that of HBT (see Section 5.7.3), in which the object is located in the ther-
mal beam before the beamsplitter. In this case, as shown in Section 5.7.3 one
cannot detect, for example, a pure phase object.

The analysis of [5] focuses on the existence of a duality, rather than anal-
ogy, between the PDC and the thermal case. In addition, the authors of [5]
pointed out the visibility problem of the thermal case associated with the
detection time and the detection size (see Section 5.7.5). In conclusion, their
analysis does not suggest that the thermal case can be an alternative to the
PDC case.

After the appearance of the e-print [15] (which led to both publications
[16, 17]), a lively interest arose on the topic of “thermal” ghost imaging,
with a number of important theoretical [18–20] and experimental [21–25]
contributions.

5.7.7 Rule-of-Thumb Comparison Between Entangled and
“Thermal” Ghost Imaging

In Section 5.7.5 we illustrated extensively the visibility problems in the “ther-
mal” configuration and pointed out, as already done in [5], that such problems
do not affect the PDC case, in which the visibility can approach the level of
unity in the coincidence regime. The fact that the quantum configuration
turns out to be superior is certainly not a surprise. In this section we try, on
the basis of qualitative arguments, to identify the situations in which such a
superiority becomes significant. At the same time, we point out that in other
situations the “thermal” approach can be more convenient.

The visibility problems related to the detection time and the pixel detec-
tion area can be completely circumvented by using pseudo-thermal light [36],
due to the fact that one can easily engineer the coherence time as well as the
transverse coherence length in both the near and the far field. However, as
observed in Section 5.7.5, in the thermal case the visibility is always smaller
than 0.5 and, in almost all cases, is much smaller than unity. In this problem,
the signal-to-noise ratio basically coincides with the visibility. It is important
to note, on the other hand, that despite this small visibility it is perfectly
possible to retrieve the image or the diffraction pattern of the object provided
that a large number of measurements are done in order to obtain the corre-
lation function G(x1,x2). In addition, in some cases it is possible to reduce
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the number of measurements by employing the spatial averaging technique
described in Section 5.4.

In the case of ghost imaging with entangled PDC beams in the coinci-
dence regime, the main problem is represented by the long time necessary to
retrieve the information, because coincidences are rare and a huge number of
measurements are necessary.

As we said before, the visibility problem in the thermal case also even-
tually becomes a problem for the time necessary to retrieve the information.
Therefore, the comparison between the PDC and the thermal approach is
best done in terms of time.

When the (amplitude or phase) modulation of the object is macroscopic,
we expect that the procedure can be faster when one uses a pseudo-thermal
source. Additional advantages are that one can easily achieve a high resolution
and that the experimental apparatus is much cheaper.

On the other hand, when the modulation is greatly reduced, the signal-to-
noise ratio issue becomes dominant and one can expect a crossover between
the retrieval times in the two approaches. In the limit where high precision
measurements are necessary, the “thermal” approach becomes impractical
and the superiority of the quantum configuration becomes manifest. Other
cases of superiority arise when the ghost imaging technique should be applied
to quantum information schemes, for example, when the information needs
to be hidden from a third party.

5.8 Ghost Imaging with Split Thermal Beams:
Experiment

In this section we illustrate some of the experimental results reported in
[23,24].

The experimental set-up is sketched in Fig. 5.9. The source of pseudo-
thermal light is provided by a scattering medium illuminated by a He–Ne or
ND–Yag laser beam. The medium is a slowly rotating ground glass placed in
front of a scattering cell containing a turbid solution of 3µm latex spheres.
When this is illuminated with a large collimated He–Ne laser beam (λ =
0.6328µm, diameter D0 ≈ 10 mm), the stochastic interference of the waves
emerging from the source produces at large distance (z ≈ 600 mm) a time-
dependent speckle pattern, characterized by a chaotic statistics and by a
correlation time τcoh on the order of 0.5 s (for an introduction to laser speckle
statistics, see, e.g., [39]). Notice that the ground glass can be used alone to
produce chaotic speckles, whose correlation time depends on the speed of
rotation of the ground-glass disk and on the laser diameter, as in classical
experiments with pseudo-thermal light [36, 40]. Indeed, in some part of the
experiments described in the following it will be used alone. This, however,
presents a problem that the generated speckle patterns reproduce themselves
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after a whole tour of the disk, which can be partially avoided by shifting
the disk laterally at each tour. The turbid solution provides an easy way to
generate a truly random statistics of light, because of the random motion of
particles in the solution, allowing a huge number of independent patterns to
be generated and used for statistics. Notice that the turbid medium cannot be
used alone, because a portion of the laser light would not be scattered, thus
leaving a residual coherent contribution. At a distance z0 = 400 mm from

CCD

He-Ne LASER

BSRotating
ground glass 'F

object
1d 1p

2p Fq =2

Fq =1

F

D

near-field
plane

Turbid
medium

mm400

test

reference

Fig. 5.9. Scheme of the experimental set-up (see the text for details).

the thermal source, a diaphragm of diameter D = 3 mm selects an angular
portion of the speckle pattern, allowing the formation of an almost collimated
speckle beam characterized by a huge number (on the order of 104) of speckles
of the size ∆x ≈ λz0/D0 ≈ 25µm [39]. The speckle beam is separated by the
beamsplitter into two “twin” speckle beams that exhibit a high (although
classical) level of spatial correlations. The two beams emerging from the BS
have slightly noncollinear propagation directions, and illuminate two different
nonoverlapping portions of the CCD camera. The data are acquired with an
exposure time (1–3 ms) much shorter than τcoh, allowing the recording of
high-contrast speckle patterns. The frames are taken at a rate of 1 Hz, so
that each data acquisition corresponds to uncorrelated speckle patterns.

5.8.1 High-Resolution Ghost Imaging [23]

In [23] we performed a reconstruction of both the image (Fig. 5.10) and the
diffraction pattern (Fig. 5.11) of the object by operating only on the optical
set-up of the reference arm and by using a single classical source. The optical
set-up of object arm 1 is fixed. An object, consisting of a thin needle of
160 µm diameter inside a rectangular aperture 690 µm wide, is placed in this
arm at a distance d1 from the BS.

The object plane, located at a distance ≈200 mm from the BS, will be
taken as the reference plane, and referred to as the near-field plane (this
is not to be confused with the source near field, as the object plane is in
the far zone with respect to the source). A single lens of the focal distance
F = 80 mm is placed after the object, at a distance p1 from the object and
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Fig. 5.10. Reconstruction of the object: (a) correlations of the intensity fluctu-
ations; (b) image observed using laser light; (c) averages of 500 horizontal data
sections from (a) and (b); (d) the same as (a) but with 30,000 data acquisitions
instead of 5000.

q1 = F from the CCD. Hence, the CCD is in the far-field plane with respect
to the object. However, because the light is incoherent, the diffraction pattern
of the object is not visible on the CCD camera, as shown in Fig. 5.11a. We
consider two different setups for reference arm 2. In the first one, an additional
lens of the focal distance F ′ is inserted in arm 2 immediately before the
lens F . The equivalent focal distance F2 of the two-lens system is smaller
than its distance from the CCD camera q2 = F , being 1/F2 = 1/F + 1/F ′.
This allowed us to locate the position of the plane conjugate to the CCD
plane, by temporarily inserting the object in arm 2 and determining the
position that produced a well-focused image on the CCD camera with laser
illumination (Fig. 5.10b). The object was then translated into the object arm.
The distances in the reference arm approximately obey a thin-lens equation
of the form 1/(p2−d1)+1/q2 ≈ 1/F2, providing a demagnification factor m ≈
1.2. The data of the intensity distribution of the reference arm are acquired,
and each pixel is correlated with the total photon counts of arm 1, which
corresponds to having a bucket detector there. Averages performed over 5000
data acquisitions show a well-resolved image of the needle (Fig. 5.10a) that
can be compared with the image obtained with laser illumination (Fig. 5.10b).
Figure 5.10c compares the corresponding horizontal sections, averaged over
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Fig. 5.11. Reconstruction of the diffraction pattern: (a) single-shot intensity dis-
tribution in the arm 1; (b) correlation function G(x2 − x1); (c) object diffraction
pattern observed using laser light; (d) horizontal cut of (b) and (c).

500 pixels in the vertical direction. The spatial resolution shown by correlated
imaging with incoherent light is comparable with that obtained via coherent
illumination. When the average is performed over 30,000 data acquisitions,
the contrast increases significantly (Fig. 5.10d).

In the second set-up the lens F ′ is simply removed from the scheme of
Fig. 5.9, so that the CCD camera is in the focal plane of the lens F also in arm
2. The spatial cross-correlation of the intensities is calculated as a function
of the displacement x2 − x1 between the pixel positions in the two arms,
by making an additional average over pixel positions at each fixed x2 − x1

[10,11]. Thus, averages over only 500 independent frames are enough to show
a sharp reproduction of the diffraction pattern of the object (Fig. 5.11). This
is comparable with the diffraction pattern obtained by laser illumination
(Fig. 5.11c). Horizontal sections of the two patterns display a very good
agreement (Fig. 5.11b,d).

As shown in Section 5.7.2, relevant to the resolution of the ghost im-
age and ghost diffraction schemes are the speckle sizes in the near and far
fields. These spatial coherence properties can be investigated by measur-
ing the fourth-order correlation functions in the absence of the object. The
autocorrelation function of the reference beam 〈Î2(x)Î2(x′)〉 was first mea-
sured in the set-up with the lens F ′ inserted, so that the reference beam
recorded by the CCD is the (demagnified) image of the near field. This is
plotted in Fig. 5.12 (squares) as a function of |x − x′|. Neglecting the shot-
noise contribution at x = x′, and using the Siegert formula for Gaussian
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Fig. 5.12. Normalized fourth-order autocorrelation function in the near-field and
far-field planes. The full lines are Gaussian fits of the correlation peaks.

statistics, we get

〈Î2(x)Î2(x′)〉 = 〈Î2(x)〉〈Î2(x′)〉 + |r|4 |Γn(mx,mx′)|2 , (5.30)

where Γn is the correlation function (5.23) in the near field. The baseline
in Fig. 5.12 corresponds to the product of the mean intensities, and the
narrow peak around x = x′ is the second term at the r.h.s. of Eq. (5.30). A
Gaussian fit of this peak gave a variance σn = (14.3 ± 0.2)µm, implying a
coherence length in the near-field plane ∆xn ≈ 2mσn = (34.3 ± 0.6)µm. The
triangles in Fig. 5.12 plot the intensity correlation function in the far-field
plane, obtained by measuring the autocorrelation function of beam 1 in the
focal plane of the lens F . A Gaussian fit gave σf = (7.8 ± 0.3)µm, from which
we infer a far-field coherence length ∆xf ≈ 2σf = (15.6 ± 0.6)µm. This in
turn corresponds to a spread in transverse wave vectors ∆q = (2π/λF )∆xf =
(1.94 ± 0.07) × 10−3 µm−1. Hence we find for our classical beams

∆xn∆q = 0.066 ± 0.003 , (5.31)

whereas previously it was believed that the bound ∆xn∆q > 1 could be over-
come only using entangled beams (see, e.g., [13,14]). In addition, the result
(5.31) is roughly four times smaller than the results reported in Refs. [13,14],
where entangled photons were used. Notice that Eq. (5.31) is not violating
any EPR bound, contrary to the experiments carried out with single photon
pairs [14, 41]. In fact, in any plane, the probability of detecting a photon at
position x2 in beam 2 conditioned to the detection of a photon at x1 in the
beam 1 is:

P (x2|x1) ∝ 〈Î2(x2)Î1(x1)〉/〈Î1(x1)〉
= 〈Î2(x2)〉 + |rt|2 |Γ (x1,x2)|2 /〈Î1(x1)〉 . (5.32)

The two terms in Eq. (5.32) have roughly the same height (see Fig. 5.12),
but the first one, originating from the background, is much broader than
the second, because the beam diameter is much larger than the coherence
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length. Hence in good approximation the conditional variance in the position
is the beam spot size. The product of the variances in the near and the
far zones satisfies a Fourier relation in accordance with the bound derived
in [13]. The crucial point is that the conditional variance and the resolution of
ghost imaging do not coincide in general, because the resolution is determined
by the coherence length of the field correlation function Γ (x,x′). They do
coincide only in the special case where the background is negligible, as, for
example, in the coincidence-count regime of PDC considered by [13,14]. Only
in this case, which in principle corresponds to 100% visibility, the bound
of [13] holds also for resolutions.

In our experiment, where the visibility is limited to 50%, the product of
the near- and the far-field resolutions is not bounded, because the coherence
lengths (the speckle sizes) in the two planes are independent quantities. In the
near field, the size of the speckle depends on the laser diameter D0, and on the
distance z from the source, ∆xn ∝ λz/D0 [39]. As we checked, the diaphragm
being close enough to the near field, its diameter D does not much affect ∆xn.
It determines, instead, the speckle size in the far field, roughly given by ∆xf ∝
λF/D [39]. Using the values of our set-up, we find ∆xn ≈ 30µm and ∆xf ≈
17µm, in good agreement with the values estimated from the correlation
(Fig. 5.12). Two aspects of our experiment are crucial: (i) the presence in the
near field of a large number of small speckles inside a broad beam, and (ii)
a measurement time � τcoh. This allows the formation by interference of a
far-field speckle pattern, characterized by a small coherence length, because
∆xf ∝ 1/D. In this respect our source differs from the classical one used
in [12,13], where each shot consists of a single narrow pulse and the product
of resolutions is bounded by the pulse diffraction.

We observe finally that in [26], where the experimental observation of a
pure phase object by entangled beams is reported, in the introduction there
is the erroneous interpretation that the illumination of the object in our
experiment [23] is coherent due to the presence of the diaphragm which selects
a reduced number of speckles. As specified above, the number of speckles in
the beam transmitted by the diaphragm is, instead, huge (104). In addition,
in the object plane (near field) the speckle size is on the order of 30 µm, as
shown above, much less than the spatial scale that characterizes the object
(e.g., the diameter of the needle is 160 µm, as mentioned before). Hence, the
illumination is incoherent, as is clear also from the absence of the interference
pattern in Fig. 5.11a. In the next subsection we will show the changes that
arise when the illumination becomes coherent.

We note that the illumination is incoherent also from a temporal view-
point, even if the acquisition time is smaller than the coherence time. As
a matter of fact, to retrieve the ghost diffraction pattern one averages over
thousands of data acquisitions, that is, over a time interval much longer than
the coherence time. Also this feature will appear clearly in the discussion of
the following subsection.
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5.8.2 The Ghost Diffraction Experiment: Complementarity
Between Coherence and Correlation [24]

In Ref. [24], we used a ND–Yag laser instead of a He–Ne laser, but the geo-
metrical configuration remains the same as in Fig. 5.9 and [23], and the same
is true for the object. Let us focus on the ghost diffraction case (Fig. 5.9
without the lens F ′).

In a first set of measurements the source size is D0 = 10 mm, and the
object is illuminated by a large number of speckles whose size ∆xn = 36
µm is much smaller than the slit separation. The light is spatially incoherent

of Fig. 5.13. The frame (a) is the instantaneous intensity distribution of the
object beam, showing a speckle pattern, with no interference fringes from
the double slit, as expected for incoherent illumination. At closer inspection,

1I

1I1I

1Ia) c)b)

d) e) f)

ncorrelatio

ncorrelatio

Fig. 5.13. Ghost diffraction set-up: transition from incoherent light to partially
coherent light. In the three upper frames (a)–(c) the source size is D0 = 10mm,
with near-field speckles ∆xn = 36 µm. In the three lower frames (d)–(f) the source
size is D0 = 0.1 mm, with ∆xn = 3.2 mm; (a) and (d): instantaneous intensity
distribution I1 of the object beam; (b) and (e): intensity distribution 〈I1〉, averaged
over 350 shots; (c) and (f): correlation function G(x1, x2) as a function of x2, for
a fixed x1, averaged over 20,000 shots.

the shape of the speckles resembles the interference pattern of the double
slit, but because these speckles move randomly in the transverse plane from
shot to shot, an average over several shots displays a homogeneous broad

as described in the previous section. The results are shown in the first row
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spot (Fig. 5.13b). The frame (c) is a plot of G(x1,x2) as a function of the
reference pixel position x2, and shows the result of correlating the intensity
distribution in the reference arm with the intensity collected from a single
fixed pixel in the object arm. Notice that differently from [23], no spatial
average [10, 11] is employed: this makes the convergence rate slower but the
scheme is closer to the spirit of ghost diffraction in which the information is
retrieved by only scanning the reference pixel position. The ghost diffraction
pattern emerges after a few thousands of averages, and is well visible after
20,000 averages. This is confirmed by the data of Fig. 5.14a which compare the
horizontal section of the diffraction pattern from a correlation measurement
to that obtained with laser illumination. In a second set of measurements the
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Fig. 5.14. Horizontal sections of the correlation function G(x1, x2) as a function
of x2, for a fixed x1 (see Fig. 5.13c,f): (a) the case of incoherent light, D0 = 10mm;
the data are obtained with an average over 20,000 shots (triangles) and 50,000
shots (circles); (b) the case of partially coherent illumination, D0 = 0.1 mm (20,000
shots). The light full line is for comparison with the diffraction pattern observed
with a laser.
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Fig. 5.15. Horizontal sections of the average intensity distribution 〈Î1(x1)〉 in the
object arm (see Fig. 5.13b,e): (a) is obtained for incoherent light with D0 = 10 mm
(350 shots), and (b) plots the case of partially coherent illumination, with D0 =
0.1 mm (500 shots). The light full line is for comparison with the diffraction pattern
observed with a laser.
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source size is reduced to D0 = 0.1 mm by inserting a small pinhole after the
ground glass. As a result, the spatial coherence of the light illuminating the
object is increased. As the speckle size at the diaphragm D is now ≈3 mm, on
average the object is illuminated by a single speckle of much larger size than
the slit separation. The results are reported in the second raw of Fig. 5.13.
As expected, the interference fringes are now visible in the instantaneous
intensity distribution of the object beam 1 (frame (d)), and become sharper
after averaging over some hundreds of shots (frame (e)). Notice that the shape
of the interference pattern is now elongated in the vertical direction, because
the light emerging from the small source is not collimated. Horizontal sections
of 〈Î1〉, plotted in Fig. 5.14b, show a very good agreement with the diffraction
pattern from laser illumination. Instead, no interference fringes at all appear
in the correlation function of the intensities in the two arms, when plotted
as a function of x2 (frame (f)). Notice that in this set of measurements the
turbid medium was removed in order to increase the power. This is feasible
in this case, because the very small size of the source allows a large number
of independent patterns to be generated in a single tour of the glass disk.

Figures 5.13–5.15 evidence a remarkable complementarity between the ob-
servation of interference fringes in the correlation function (ghost diffraction),
and in the intensity distribution of the object beam (ordinary diffraction).
They also show the fundamental role played by the spatial incoherence of
the source in producing a ghost diffraction pattern: the more incoherent is
the source, the more the two beams are spatially correlated and the more
information about the object is available in the ghost diffraction pattern.
The more coherent is the source, the flatter is the spatial correlation function
of the two beams and the less information about the object is contained in
the ghost diffraction. This is completely analogous to the complementarity
between the one-photon and two-photon interference in Young’s double-slit
experiments with photons from a PDC source [42], which was explained as
a complementarity between the coherence and the entanglement. In our case
of thermal beams, the complementarity is rather between the coherence and
the spatial correlations, showing that also in this respect the classical spatial
correlation produced by splitting thermal light plays the same role as the
entanglement of PDC photons.

These results can be easily understood by using the formalism developed
in Section 5.7.1, and in particular by inspection of Eq. (5.25) for the correla-
tion function of the intensity fluctuations G(x1,x2). In the limit of spatially
coherent light the field correlation function Γ (x1,x2) = 〈â†(x1)â(x2)〉 be-
comes constant in space in the region of interest, and the two integrals in
Eq. (5.25) factor to the product of two ordinary imaging schemes, showing
the diffraction pattern of the object only in object arm 1. As a result, by
plotting the correlation as a function of x2, no object diffraction pattern can
be observed; that is, no ghost diffraction occurs. The same observation can
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be made with respect to the PDC case, explaining thus the analogy between
the role of the coherence in the PDC and in the thermal case.

We note that, as shown in Fig. 12 of [24], when the incoherence level of the
radiation in the near field is increased, the visibility of the diffraction pattern
increases, contrary to what happens for the ghost image of the object.

We observe finally that an experiment of ghost imaging with standard
thermal light has been realized recently [25].
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6.1 Super-Resolution in Classical Optics

The classical limit of resolution of an optical instrument was formulated in
the well-known works by Abbe and Rayleigh at the end of the nineteenth
century [1]. This classical limit states that the resolution of an optical system
is limited by diffraction on the system pupil. Because of diffraction a point
source at the input of the system creates a diffraction pattern of finite size on
its output. When two point sources are placed closer and closer to each other,
their diffraction patterns start to overlap and it becomes more and more
difficult to discriminate these patterns. The smallest distance between two
input point sources that allows for discrimination depends on many factors
and is difficult to quantify. Several criteria have been proposed for such a
discrimination, and the most famous one is the classical Rayleigh criterion.
According to it, the diffraction patterns of two point sources are considered
to be just resolved if the central maximum of the first one coincides with the
first minimum of the second. For the case of the Airy pattern, corresponding
to the Fraunhofer diffraction of a point source at a circular aperture, this gives
the smallest distance between two input point sources equal to R = 0.61λ/α,
where λ is the wavelength of the light and α is the ratio of the radius of the
system pupil to the distance between the pupil and the image plane. The
distance R is known as the Rayleigh resolution limit.

As follows from this argument, the classical Rayleigh resolution limit is
based on a simple visual observation and presumed resolving capabilities of a
human eye. It is not a fundamental physical limit such as the speed of light or
a Heisenberg uncertainty relation. Today it is recognized that modern CCD
cameras allow us to achieve performance very much exceeding that of a vi-
sual observation. For example, experimental measurements of displacements
in the nanometer range have been performed to detect deflection of glass
fibers [2–4], microscopic phase objects [5], movement of biological subcellular
vesicles [6], measurement of ultraweak absorption using the mirage effect [7],
or in atomic force microscopy [8]. In all these measurements the resolution is
superior to the classical Rayleigh limit and is determined not by diffraction,
but by a different type of fluctuation in the experimental scheme. The pos-
sibility of improving the resolution beyond the diffraction limit is generally
called “super-resolution” and often has different meanings. Below we shall
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give a rigorous definition of the term super-resolution in the sense used in
this chapter.

In modern classical optics the resolution of an optical system is charac-
terized not by the two-point Rayleigh resolution criterion, but in terms of its
spatial transmission bandwidth. A typical optical system has a finite band
of spatial frequencies that are transmitted through the system up to some
cut-off frequency determined by the size of the system pupil. The optical sys-
tem is then said to be bandlimited or diffraction-limited because diffraction
effects on its pupil are responsible for finite resolution.

A coherent diffraction-limited imaging system in classical optics can be
described by a linear equation relating the complex amplitude a(s) of an
input object with the complex amplitude e(s) of the image [9],

e(s) =
∫ ∞

−∞
h(s, s′)a(s′)ds′, (6.1)

The impulse response function h(s, s′) that appears in this integral equation
represents the image at point s in the image plane from a point-source at point
s′ in the object plane. For translationally invariant or isoplanatic systems the
impulse response depends only on the difference s − s′ and the integral in
(6.1) becomes convolution,

e(s) =
∫ ∞

−∞
h(s − s′)a(s′)ds′. (6.2)

In optics, the impulse response h(s − s′) is usually called the point-spread
function (PSF) of the system, and its Fourier transform the transfer func-
tion (TF). For bandlimited optical systems the transfer function is identi-
cally zero outside the transmission band of the system. Super-resolution is
defined as technique of restoring the spatial frequencies of the object out-
side the transmission band, or in other words, enhancing the resolution be-
yond the diffraction limit [9]. It is important to underline that in the case
where the object and the image fields are related by the convolution (6.2),
super-resolution in this sense is impossible. To achieve super-resolution one
needs some a priori information about the input object. In this chapter we
shall use as the a priori information the assumption that the object has fi-
nite spatial size. In this case, the spatial Fourier spectrum of the object is
an entire analytical function and therefore, it can be completely determined
by the analytic continuation from the part of the spectrum transmitted by
the system pupil [10,11]. Such out-of-band extrapolation of the spatial spec-
trum of the object is equivalent to the resolution enhancement beyond the
Rayleigh limit. This idea of super-resolution dates back to the 1960s and has
been intensively discussed in the literature [10–16].

However, it was recognized that such an analytic continuation of the spa-
tial spectrum of the object is extremely sensitive to the presence of noise



6 Quantum Limits of Optical Super-Resolution 115

in the system. In fact, the problem of out-of-band extrapolation of the spa-
tial spectrum is a typical case of the so-called “ill-posed problem” [17]. This
property seriously hampers the potential of super-resolution. In practice, to
achieve super-resolution one has to detect the diffraction-limited image at the
output of the optical system and then try to reconstruct the original object
using specially designed numerical algorithms. In the general case, an at-
tempt to obtain significant super-resolution beyond the Rayleigh limit leads
to a drastic decrease of the signal-to-noise ratio in the reconstructed object
as compared to that in the original one. The main conclusions that one can
derive from the numerous papers on classical super-resolution are [9]:

(i) Significant super-resolution in the sense of out-of-band extrapolation is
possible only in the case when the size of the original object is not too
large compared with the Rayleigh resolution distance;

(ii) The amount of super-resolution increases logarithmically, that is, rather
weakly, with the signal-to-noise ratio in the original object.

6.2 Quantum Theory of Super-Resolution

This and the following sections are based on Refs. [18,19] where the quantum
theory of optical super-resolution was developed. We refer the reader to these
references for further details.

6.2.1 Quantum Theory of Optical Imaging

We shall first review the classical theory of optical imaging and introduce
the basis functions and physical parameters that will be used in its quantum
counterpart.

The optical scheme of diffraction-limited coherent optical imaging is
shown in Fig. 6.1. For simplicity we consider the one-dimensional case. The
object of finite size X is placed in the object plane. The first lens L1 per-
forms the spatial Fourier transform of the object into the pupil plane with
a pupil of finite size d. Diffraction on this pupil is a physical origin of the
finite resolution in our scheme (we neglect diffraction on the imaging lenses).
The second lens L2 performs the inverse Fourier transform and creates a
diffraction-limited image in the image plane.

As mentioned above, to achieve super-resolution one needs some a priori
information about the object. In our case we know a priori that the object
is confined within the area of size X and is identically zero outside. The
spatial Fourier transform of such an object is an entire analytical function.
Therefore, knowing the part of the Fourier spectrum within the area d of the
pupil allows for an analytic continuation of the total spectrum and, therefore,
for unlimited resolution.



116 Mikhail I. Kolobov

Fig. 6.1. Optical scheme of one-dimensional coherent diffraction-limited optical
imaging.

Let us introduce the dimensionless spatial coordinates in the object and
the image plane as s = 2x/X, and in the pupil plane as ξ = 2y/d (see
Fig. 6.1). In terms of dimensionless coordinates s the transformation L of the
classical object amplitude a(s) into the classical image amplitude e(s) reads:

e(s) = (La)(s) =
∫ 1

−1

sin[c(s − s′)]
π(s − s′)

a(s′) ds′, −∞ < s < ∞. (6.3)

Here c = πdX/2λf is the space-bandwidth product.
The problem of reconstruction of the object a(s) from a detected image

e(s) in the absence of noise is equivalent to inversion of the integral operator
L. The operator L� adjoint to L is given by [20]

(L�f)(s) =
∫ ∞

−∞

sin[c(s − s′)]
π(s − s′)

f(s′) ds′, |s| ≤ 1. (6.4)

The product A = L�L is the self-adjoint operator,

(Af)(s) =
∫ 1

−1

sin[c(s − s′)]
π(s − s′)

f(s′) ds′, |s| ≤ 1, (6.5)

studied by Slepian and Pollak [21]. The orthonormal system of eigenfunctions
of A is given by

ϕk(s) =


1√
λk

ψk(s) |s| ≤ 1,

0 |s| > 1,
(6.6)

where ψk(s) are the linear prolate spheroidal functions [16, 21], and λk are
the corresponding eigenvalues. The functions ϕk(s) form a basis in L2(−1, 1)
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and may be considered “elements of information” of the input object. The
eigenvalues λk are an infinite set of real positive numbers obeying 1 ≥ λ0 >
λ1 > · · · > 0. For small k the λk fall off slowly with k until the index reaches
the critical value k = S, called the Shannon number,

S =
2c

π
=

dX

λf
, (6.7)

beyond which the λk rapidly approach zero.
Using the properties of prolate spheroidal functions,∫ 1

−1

sin[c(s − s′)]
π(s − s′)

ψk(s′) ds′ = λkψk(s), (6.8)

∫ ∞

−∞

sin[c(s − s′)]
π(s − s′)

ψk(s′) ds′ = ψk(s), (6.9)

we obtain
Lϕk =

√
λkψk, L�ψk =

√
λkϕk. (6.10)

Expanding the object amplitude over the functions ϕk(s) and the image
amplitude over ψk(s), we can easily find the relation between the expansion
coefficients of the object and the image. Indeed, because the functions ϕk(s)
form a complete orthonormal set in [−1, 1] we can write the object amplitude
as

a(s) =
∞∑

k=0

akϕk(s), |s| ≤ 1, (6.11)

with the coefficients ak given by

ak =
∫ ∞

−∞
a(s)ϕk(s) ds. (6.12)

A similar expansion can be written for the image amplitude in terms of
functions ψk(s),

e(s) =
∞∑

k=0

ekψk(s), −∞ < s < ∞, (6.13)

with the coefficients ek given by

ek =
∫ ∞

−∞
e(s)ψk(s) ds. (6.14)

Substituting these expansions into Eq. (6.3) and using the first of Eqs. (6.10)
we obtain the following relation between ak and ek,

ek =
√

λkak. (6.15)
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In quantum theory the classical object amplitude a(s) becomes the di-
mensionless photon annihilation operator in the object plane â(s) and the
classical image amplitude e(s) the corresponding photon annihilation opera-
tor in the image plane ê(s). These operators obey the standard commutation
relations,

[â(s), â†(s′)] = δ(s − s′), [ê(s), ê†(s)] = δ(s − s′), (6.16)

and are normalized so that 〈â†(s)â(s)〉 gives the mean photon number per
unit dimensionless length in the object plane and 〈ê†(s)ê(s)〉 in the image
plane.

In the quantum theory we can use Eqs. (6.11),(6.13) now treating the
expansion coefficients ak and ek as photon annihilation operators âk and
êk. Using the properties of the prolate spheroidal functions it can be shown
that the operators âk in the object plane obey the following commutation
relations,

[âk, â†
l ] = δkl, [âk, âl] = 0. (6.17)

The same commutation relations must be satisfied by the photon annihilation
operators êk in the image plane. However, Eq. (6.15) does not preserve the
commutation relations (6.17). The reason for this is that the classical imaging
equation (6.3) takes into account only nonzero field amplitude in the region
|s| ≤ 1 of the object plane. The rest of this plane |s| > 1 is ignored because
there the classical field amplitude is zero. In quantum theory this region
must be taken into account to guarantee the conservation of the commutation
relations.

To obtain the canonical transformation of photon annihilation and cre-
ation operators from the object into the image plane we shall split the coor-
dinate s into two regions, the “core”, |s| ≤ 1, corresponding to the area of
localization of the classical object, and the “wings”, |s| > 1, outside this area.
The orthonormal bases in these areas of the object plane are given by [18]

ϕk(s) =


1√
λk

ψk(s) |s| ≤ 1,

0 |s| > 1,
χk(s) =

 0 |s| ≤ 1,
1√

1 − λk

ψk(s) |s| > 1.

(6.18)
In terms of two sets {ϕk(s)} and {χk(s)} we can write the annihilation

operators in the object plane as

â(s) =
∞∑

k=0

âkϕk(s) +
∞∑

k=0

b̂kχk(s). (6.19)

Here b̂k are the annihilation operators of the prolate modes χk in the wings
region, expressed through the field operator â(s) by

b̂k =
∫ ∞

−∞
â(s)χk(s)ds. (6.20)
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Substituting the expansion (6.19) into Eq. (6.3) we obtain the following rela-
tion between the photon annihilation operators in the object and the image
plane,

êk =
√

λkâk +
√

1 − λk b̂k. (6.21)

It is easy to verify that this transformation preserves the commutation rela-
tions of the operators, [âk, â†

l ] = [b̂k, b̂†l ] = [êk, ê†l ] = δkl.
Equation (6.21) is completely equivalent to the transformation performed

by a beamsplitter. Indeed, if we consider the operators âk and b̂k as the pho-
ton annihilation operators in the modes defined by prolate spheroidal waves
incoming to the beamsplitter with the amplitude transmission coefficient

√
λk

and the reflection coefficient
√

1 − λk, then ek is the photon annihilation op-
erator in the kth mode of the transmitted wave.

From Fig. 1 one may think that the vacuum fluctuations coming into
the image plane from the region |ξ| > 1 of the Fourier plane outside the
pupil should also be taken into account. Indeed, when treating the field in
the Fourier plane as an operator we must include the contribution from this
region into the resulting field in the image plane. However, the advantage
of expansion (6.13) is that the field from this region does not contribute to
the expansion coefficients êk of the image because it is orthogonal to the
prolate spheroidal wave functions. This property was pointed out by Bertero
and Pike in [20] for out-of-band classical noise and remains valid in quantum
theory.

6.2.2 Quantum Theory of Optical Fourier Microscopy

One can decompose the input object and the output image over these eigen-
functions and obtain the relation between the decomposition coefficients.
Then detecting the output image with, for example, a sensitive CCD camera,
one can evaluate the decomposition coefficients of the image. Using the rela-
tion between the decomposition coefficients of the image and the object one
can reconstruct the latter with resolution better than the classical diffraction
limit.

Our numerical simulations in Ref. [23] have shown, however, that for eval-
uation of the decomposition coefficients one has to detect the output image
over an unrealistically large area in the image plane due to the oscillating
behavior of the prolate functions. That is why in Ref. [22] we have proposed
a modified version of the scheme where the CCD camera is placed in the
pupil plane instead of the image plane, and one detects the spatial Fourier
spectrum. We have called this modified scheme super-resolving Fourier mi-
croscopy. The advantage of this set-up is that now the spatial Fourier spec-
trum is measured over the finite region within the pupil. To understand the
role of the quantum fluctuations on the resolution of Fourier microscopy we
need to formulate the quantum theory of this modified scheme.
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The dimensionless photon annihilation and creation operators in the pupil
plane will be denoted as f̂(ξ) and f̂†(ξ). These operators obey the standard
commutation relations,

[f̂(ξ), f̂†(ξ′)] = δ(ξ − ξ′), (6.22)

and are normalized so that 〈f̂†(ξ)f̂(ξ)〉 gives the mean photon number per
unit dimensionless length in the pupil plane. The spatial Fourier transform
(T â)(ξ) performed by lens L1, in terms of these dimensionless variables reads
as follows,

f̂(ξ) = (T â)(ξ) =
√

c

2π

∫ ∞

−∞
â(s)e−icsξds. (6.23)

It is important to note that the limits of integration in this equation are over
the whole object plane because it concerns operators and not the classical
c-numbers.

In terms of two sets {ϕk(s)} and {χk(s)} we can write the annihilation
operators in the pupil plane as

f̂(ξ) =
∞∑

k=0

f̂kϕk(ξ) +
∞∑

k=0

ĝkχk(ξ). (6.24)

Here f̂k are the annihilation operators of the prolate modes ϕk in the core
region of the pupil plane, and ĝk are the annihilation operators of the prolate
modes χk in the wings region.

In our analysis we shall use the following properties of prolate spheroidal
functions [16], ∫ 1

−1

ϕk(s)e−icsξds = (−i)k

√
2π

c
ψk(ξ), (6.25)

∫ ∞

−∞
ψk(s)e−icsξds = (−i)k

√
2π

c
ϕk(ξ). (6.26)

Using (6.18), the field transform (6.23) between the object and the pupil
plane and these properties, we find the following propagation relations for
the core and wings of the light wave,

(Tϕk) (ξ) = (−i)k
[√

λkϕk(s) +
√

1 − λkχk(s)
]
, (6.27)

(Tχk) (ξ) = (−i)k
[√

1 − λkϕk(s) −
√

λkχk(s)
]
. (6.28)

Substituting Eqs. (6.19) and (6.24) into the field transform (6.23) and using
Eqs. (6.27) and (6.28), we arrive at the following relations between the photon
annihilation operators of the prolate modes in the object and the pupil planes,

f̂k = (−i)k(
√

λkâk +
√

1 − λk b̂k), (6.29)
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ĝk = (−i)k(
√

1 − λkâk −
√

λk b̂k). (6.30)

These relations are similar to the transformation performed by a beamsplit-
ter with the amplitude transmission coefficients (−i)k

√
λk and the reflection

coefficients (−i)k
√

1 − λk, and preserve the commutation relation of the an-
nihilation and creation operators in the pupil plane.

Let us assume that we can detect the spatial Fourier amplitudes f̂(ξ) in
the pupil plane within the transmission area of the pupil using a sensitive
CCD camera. This transmitted part of the spatial Fourier spectrum is given
by the first sum in Eq. (6.24); the term given by the second sum is absorbed
by the opaque area of the pupil. It should be emphasized that, because we
need the complex field amplitudes and not the intensities, one should use
the homodyne detection scheme with a local oscillator. Using Eqs. (6.24),
(6.20), and(6.29) we can calculate the operator-valued coefficients â

(r)
k of the

reconstructed object as

â
(r)
k =

f̂k

(−i)k
√

λk

= âk +
√

1 − λk

λk
b̂k, (6.31)

where the superscript (r) stands for “reconstructed.” As follows from
Eq. (6.31), the reconstruction of the input object is not exact because of
the second term in Eq. (6.31). This term contains the annihilation opera-
tors b̂k responsible for the vacuum fluctuations of the electromagnetic field
in the area outside the object. It is important to notice that these vacuum
fluctuations prevent reconstruction of the higher and higher coefficients âk

in the object because of the multiplicative factor
√

(1 − λk)/λk. Indeed, the
eigenvalues λk rapidly become very small after the index k has attained some
critical value. This leads to rapid “amplification” of the vacuum fluctuations
in the reconstructed object that limits the number of the reconstructed co-
efficients âk.

6.3 Quantum Limits in Reconstruction of Optical
Objects

6.3.1 Reconstruction of Classical Noise-Free Objects

In this section we shall illustrate numerically the role of quantum fluctuations
on the reconstruction of simple objects with super-resolution beyond the clas-
sical diffraction limit. However, before taking into account quantum fluctu-
ations of light in the input object, we first demonstrate the potential of the
super-resolution technique with prolate spheroidal functions for reconstruc-
tion of noise-free classical objects, that is, when the quantum fluctuations
are neglected. This case corresponds to the classical limit of quantum theory
developed in the previous section and can be simply obtained by taking mean
values of the operators.
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In what follows we shall denote the classical complex amplitudes corre-
sponding to the quantum-mechanical operators by the same letters without
carets; for example, a(s) = 〈â(s)〉, ak = 〈âk〉, and so on. Because the classical
complex amplitude of the object is zero outside the area |s| ≤ 1, we have
〈b̂k〉 = 0. Using Eq. (6.19) we can write this classical amplitude as

a(s) =
∞∑

k=0

akϕk(s). (6.32)

The classical complex amplitude f(ξ) of the field in the pupil plane is obtained
from Eq. (6.23),

f(ξ) =
√

c

2π

∫ 1

−1

a(s)e−icsξds, (6.33)

with the integration limits over the object area, |s| ≤ 1. Taking into account
the property of the prolate functions given by Eq. (6.25), we can write the
spatial Fourier spectrum f(ξ) as the following decomposition,

f(ξ) =
∞∑

k=0

(−i)kakψk(s), −∞ < ξ < ∞. (6.34)

This spatial Fourier spectrum of the object spreads outside the transmission
area of the pupil |ξ| ≤ 1. The spatial Fourier components in the opaque area
are absorbed and cannot be detected by the CCD camera placed in the pupil
plane. Super-resolution attempts to reconstruct these absorbed Fourier com-
ponents. From Eq. (6.31) we obtain the classical reconstructed coefficients,

a
(r)
k = ak. (6.35)

Because we have neglected the quantum fluctuations, the reconstructed coef-
ficients are identical to those of the input object. The classical amplitude of
the reconstructed object a(r)(s) can be written as the following decomposition
over the prolate functions,

a(r)(s) =
L−1∑
k=0

akϕk(s). (6.36)

Because in practice one can never have infinitely many coefficients ak, we have
restricted the summation in this equation to L first prolate functions. When
L → ∞, the reconstructed object approaches the exact one, a(r)(s) → a(s).
In practice the super-resolution over the Rayleigh limit is determined by the
number L of terms used in the decomposition (6.36).

Alternatively to reconstruction of the object itself one can try to recon-
struct its spatial Fourier spectrum as
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f (r)(ξ) =
L−1∑
k=0

(−i)kakψk(s), −∞ < ξ < ∞. (6.37)

Similarly to the reconstruction of the object, when L → ∞, the reconstructed
spectrum approaches the exact one, f (r)(ξ) → f(ξ).

For numerical simulations we have taken a simple object of two narrow
Gaussian peaks,

a(s) = A
[
exp
(
− (s − s0)2

2σ2

)
+ exp

(
− (s + s0)2

2σ2

)]
, |s| ≤ 1, (6.38)

of width σ separated by distance 2s0. We choose 2s0 = 1 and σ = 0.1, so that
two peaks are well separated in the input object. The normalization constant
A is chosen so that the integral of the object intensity over the area of the
object is equal to the total mean number of photons 〈N̂〉 in the object,∫ 1

−1

a2(s)ds = 〈N̂〉. (6.39)

The Rayleigh resolution distance R = πX/(2c) in dimensionless coordinates
s is equal to π/c, where c is the space-bandwidth product. In our simulations
we work with c = 1. In this situation for 2s0 < π we are beyond the Rayleigh
limit.

In Fig. 6.2a we have plotted the normalized input object a(s)/
√

〈N̂〉, in
Fig. 6.2b, its spatial Fourier spectrum f(ξ) in the pupil plane, and in Fig. 6.2c,
the output image e(s) in the image plane. Comparing the input object with
its image one can clearly see that it is impossible to resolve two Gaussian
peaks in the image plane according to the Rayleigh criterion. In Fig. 6.2b we
have shown by the grey color the opaque area of the pupil. The part of the
spatial Fourier spectrum of the object in this area is absorbed and therefore
cannot be detected by the CCD camera placed in the pupil plane. Below we
shall illustrate the reconstruction of these absorbed Fourier components by
the prolate functions technique.

For numerical simulations we had to evaluate two sets of prolate spher-
oidal functions, ϕk(s), defined on the interval |s| ≤ 1, and ψk(s) defined for
all s, −∞ < s < ∞. The first set is necessary for decomposition of the input
object a(s), and the second one is needed for reconstruction of the spatial
Fourier spectrum f (r)(ξ). For numerical calculations of ϕk(s) we have used
the algorithm from Ref. [24]. In this algorithm the prolate functions ϕk(s)
are evaluated as the series with the Legendre polynomials Pk(s),

ϕn(s) =
∞∑

k=0

γ
(n)
k

√
k +

1
2
Pk(s), |s| ≤ 1. (6.40)

The coefficients γ
(n)
k are found as the eigenvectors of the symmetric matrix

A with the following nonzero elements,
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Fig. 6.2. Double-peak object a(s) used in numerical simulations (a), its spatial
Fourier spectrum f(ξ) in the pupil plane (b), and the image e(s) created in the
image plane (c). Grey area shows the part of the spatial spectrum absorbed by the
opaque area of the pupil.

Ak,k = k(k + 1) + c2 2k(k + 1) − 1
(2k + 3)(2k − 1)

, (6.41)

Ak,k+2 = Ak+2,k = c2 (k + 2)(k + 1)
(2k + 3)

√
(2k + 1)(2k + 5)

, (6.42)

for all k = 0, 1, 2 . . . .
We have written a numerical program in Mathematica that implements

this algorithm. The advantage of this method is that it does not require
the direct solution of the eigenproblem for ϕk(s) and λk which is unstable
due to the rapid decrease of the eigenvalues. This algorithm allows us to
calculate for c = 1 at least 17 first prolate functions in spite of the fact that
the eigenvalues of the higher-order functions become extremely small (e.g.,
λ17 = 4.183× 10−50). In Fig. 6.3 we show the first 17 prolate functions ϕk(s)
evaluated by our numerical program.

For numerical calculation of the second set of the prolate spheroidal func-
tions, ψk(s), we have used the following property of the Legendre polynomials
(see Eq. (10.1.14) in Ref. [25]),∫ 1

−1

Pn(s)e−icsξds = 2injn(ξ), (6.43)

where jn(s) is the spherical Bessel function of the first order [25]. Using this
equation we can easily obtain the following representation of ψn(ξ),

ψn(ξ) =

√
2c

π
in

∞∑
k=0

(−i)kγ
(n)
k

√
k +

1
2
jk(cξ), −∞ < ξ < ∞. (6.44)
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Fig. 6.3. Examples of the prolate spheroidal functions ϕk(s) and the corresponding
eigenvalues λk calculated using our numerical program.
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We illustrate the result of reconstruction of the spatial Fourier spectrum of
the input object in Fig. 6.4. In this figure we show the exact spatial Fourier
spectrum of the input object, drawn as a solid line, as a function of dimen-
sionless coordinate ξ in the pupil plane. Only part of this spectrum within
the transmission area of the pupil, |ξ| ≤ 1, is transmitted to the image plane.
The spatial Fourier harmonics in the opaque area of the pupils, shown by
the grey color, are absorbed. This is a reason for the of very large diffraction
spread in the image plane shown in Fig. 6.2c. The dashed lines in Fig. 6.4
correspond to the spatial Fourier spectrum of the reconstructed object with
L = 5, 7, and 11 prolate functions. One can see that the reconstructed spec-
trum approaches the exact one for ever higher spatial frequencies |ξ| as the
number of prolate functions increases.

With 7 prolate functions two spectra are very close to each other for
spatial frequencies |ξ| ≤ 8. This corresponds to a super-resolution factor of 8
over the Rayleigh limit.

6.3.2 Reconstruction of Objects with Quantum Fluctuations

For numerical simulations of quantum fluctuations we have chosen a c-number
representation of the quantum mechanical operators âk and b̂k in Eq. (6.31)
corresponding to the antinormal ordering of the creation and annihilation op-
erators. In this representation the operators âk and b̂k become the c-number
Gaussian stochastic variables αk and βk, respectively, which we shall write
as

αk = ak + δαk, βk = δβk. (6.45)

Here ak = 〈âk〉 is the mean value of the field coefficients in the object area,
and δαk and δβk are the stochastic Gaussian fluctuations. Note that the mean
values 〈b̂k〉 are zero because the classical field components outside the object
vanish. We have chosen the antinormally ordered representation because it
remains valid even in the case of the multimode squeezed state of the light
field at the input of the scheme.

We introduce the quadrature components of the fluctuations δαk and δβk

as follows,
δαk = δXα

k + iδY α
k , δβk = δXβ

k + iδY β
k . (6.46)

When the input light is in the coherent state in the object area and in the
vacuum state outside, the correlation functions of the quadrature fluctuations
are equal to

〈δXµ
k δXµ

k′〉 = 〈δY µ
k δY µ

k′〉 =
1
4
δkk′ , (6.47)

with µ = α, β.
If instead of coherent light we use the multimode squeezed light for illu-

mination of the object and multimode squeezed vacuum in the area outside
with subsequent homodyne detection at the pupil plane, these correlation
functions become
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Fig. 6.4. Exact spatial Fourier spectrum of the object from Fig. 6.3a (solid line),
and the spectra reconstructed with L = 5, 7, and 11 prolate functions (dashed
lines). Here and in Fig. 6.5 the grey area indicates the absorbed part of the spatial
spectrum.

〈δXµ
k δXµ

k′〉 =
1
4
e−2rδkk′ 〈δY µ

k δY µ
k′〉 =

1
4
e2rδkk′ , (6.48)

where r is the squeezing parameter. In these formulas we have assumed that
the input light is amplitude squeezed and for simplicity have chosen the
same squeezing parameter for all the essential modes that are used in the
decomposition of the reconstructed object.

The relative value of quantum fluctuations depends on the signal-to-noise
ratio in the input object which for the light in a coherent state is determined
by the total mean number of photons passed through the object area during
the observation time. For example, for a laser beam with λ = 1064 nm and
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optical power of 1 mW, and observation time of 1 ms we obtain the mean
photon number of 〈N̂〉 = 5.3 · 1012.

In Fig. 6.5a we have shown the results of reconstruction of the spatial
Fourier spectrum of the object from Fig. 6.2a when quantum fluctuations
of a coherent state are taken into account. The solid line gives the exact
spatial Fourier spectrum of the object. As in Fig. 6.4 the grey area shows the
absorbing part of the pupil. We use 7 prolate functions and the mean photon
number in the input object is taken 〈N̂〉 = 1012. The five thin lines correspond
to the five random Gaussian realizations of the quantum fluctuations in the
coherent state of âk and the vacuum fluctuations of b̂k. The dashed line
corresponds to the reconstructed spectrum with 7 prolate functions without
noise. One can observe that the role of quantum fluctuations becomes more
and more important as one goes to the higher and higher spatial frequencies
where the random realizations of the Fourier spectra deviate more and more
from the mean value given by the dashed line.

In Fig. 6.5b we have increased the total mean value of photons to 〈N̂〉 =
1013. This corresponds to an increased signal-to-noise ratio in the input object
and should allow for better super-resolution. This is illustrated in Fig. 6.5b
by reduced deviation of the random realizations from the mean value of the
spectrum as compared to Fig. 6.5a.

The same result can be achieved by using multimode squeezed light in-
stead of increasing the power of the source illuminating the object. This is
illustrated in Fig. 6.5c where we have used 〈N̂〉 = 1012 as in Fig. 6.5a, but
have considered the light in a multimode squeezed state with the squeezing
parameter er = 10 instead of the coherent state. As the result the fluctuations
in the higher spatial frequencies are reduced, giving better super-resolution.

In the next section we shall give a quantitative characteristic of super-
resolution as a function of the signal-to-noise ratio.

6.3.3 Point-Spread Function for Super-Resolving Reconstruction
of Objects

For the reconstruction process we can write a similar relation between the
reconstructed field operator â(r)(s) and the object field operator â(s). Using
an operator-valued equivalent of Eq. (6.36) together with Eq. (6.31) we arrive
at the following result,

â(r)(s) =
∫ 1

−1

h(r)(s, s′)â(s′)ds′ +
L−1∑
k=0

√
1 − λk

λk
b̂kϕk(s). (6.49)

Here the reconstruction point-spread function h(r)(s, s′) is given by

h(r)(s, s′) =
L−1∑
k=0

ϕk(s)ϕk(s′). (6.50)
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Fig. 6.5. Exact spatial Fourier spectrum of the object from Fig. 6.2a (solid line),
the reconstructed spectrum with L = 7 prolate functions (dashed lines), and five
random Gaussian realizations of the reconstructed spectrum with L = 7 prolate
functions (thin lines): (a) coherent light with mean total photon number 〈N̂〉 =
1012; (b) coherent light with 〈N̂〉 = 1013; and (c) squeezed light with 〈N̂〉 = 1012

and exp(r) = 10.

As seen from this equation, the form of the reconstruction PSF and, in par-
ticular, its width depend on the number of terms L in the sum. When this
number grows infinitely, L → ∞, the reconstruction PSF tends to the δ-
function,

lim
L→∞

h(r)(s, s′) =
∞∑

k=0

ϕk(s)ϕk(s′) = δ(s − s′), (6.51)

and we have unlimited super-resolution. However, this ideal situation is never
realized practically due to the second term in Eq. (6.49) which grows infinitely
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when L → ∞. Thus, Eq. (6.49) is a good illustration of the statement that
the ultimate limit of super-resolution in the reconstructed object is given not
by diffraction but by the quantum fluctuations of light represented by the
second term.

The number L of terms in the sum (6.50) that determines the width of the
reconstruction PSF, depends on the signal-to-noise ratio in the input object.
To obtain the maximum L we shall compare the signal-to-noise ratio in the
input object to that in the reconstructed object. As follows from Eq. (6.49)
with increasing L the signal-to-noise ratio in the reconstructed object dete-
riorates. We shall assume that reconstruction of the object is possible until
the limit when the signal-to-noise ratio in the reconstructed object becomes
unity.

Let us define the signal-to-noise ratio in the input object as [26]

R =
〈N̂〉2

〈(∆N̂)2〉
, (6.52)

where

〈N̂〉 =
∫ 1

−1

〈â†(s)â(s)〉ds, (6.53)

is the total mean number of photons in the input object, and 〈(∆N̂)2〉 its vari-
ance. Similarly we define the signal-to-noise ratio R(r) in the reconstructed
object as

R(r) =
〈N̂ (r)〉2

〈(∆N̂ (r))2〉
, (6.54)

where the mean number of photons in the reconstructed object is given by

〈N̂ (r)〉 =
∫ 1

−1

〈â(r)†(s)â(r)(s)〉ds. (6.55)

The deterioration of the signal-to-noise ratio in the reconstructed object can
be described by the noise figure F ,

F =
R

R(r)
, (6.56)

that is commonly used in the literature about amplifiers. Because the signal-
to-noise ratio R(r) in the reconstructed object is always smaller than that in
the input object, the noise figure is always larger than unity. If we assume
that the minimum value of R(r) that allows for reconstruction of the object
is unity, this gives us the maximum noise figure Fmax = R corresponding to
the maximum super-resolution.

Let us consider an input object in a coherent state, so that 〈â(s)〉 = a(s),
〈â†(s)â(s)〉 = |a(s)|2, 〈â†(s)â†(s′)â(s′)â(s)〉 = |a(s)|2|a(s′)|2. It is easy to
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show that in this case the input signal-to-noise ratio R is equal to the mean
total photon number in the input object,

R = 〈N̂〉 =
∫ 1

−1

|a(s)|2ds. (6.57)

On the other hand, for the signal-to-noise ratio R(r) in the reconstructed
object in this case we obtain the following result,

R(r) =
(L−1∑

k=0

|ak|2
)2

/
(L−1∑

k=0

|ak|2
λk

)
, (6.58)

where ak are the coefficients of decomposition of a(r)(s) over the prolate
functions ϕk(s) in Eq. (6.36).

As follows from Eq. (6.58), the signal-to-noise ratio R(r) and, therefore,
the noise figure F depend on the shape of the input object. For numerical
evaluation of the super-resolution factor as a function of the total mean num-
ber of photons in the input object we have taken a narrow rectangular object
placed at the origin s = 0,

aε(s) =


√

〈N̂〉
ε

|s| ≤ ε/2,

0 |s| > ε/2,

(6.59)

Taking the width ε of this object ever smaller we arrive at a pointlike source,
while keeping the total number of photons constant and equal to 〈N̂〉. Such
a pointlike object gives us the reconstruction PSF h(r)(0, s) at the output.

The degree of super-resolution in the reconstructed object can be char-
acterized by the ratio of the width of the diffraction-limited imaging PSF to
the width of the reconstruction PSF. In Fig. 6.6 we have shown the imaging
PSF h(s) and the reconstruction PSF h(r)(0, s) for L = 7 normalized to unity
at their maxima. To define the super-resolution factor we shall introduce the
half-widths W and WL of these two PSF measured at their half-maxima.
Then we define the super-resolution factor S as the ratio of W to WL,

S =
W

WL
. (6.60)

For the example given in Fig. 6.6 these half-widths are equal to W = 1.895,
WL = 0.252, and S = 7.5.

In Fig. 6.7 we have plotted the super-resolution factor S as a function
of the total mean number of photons 〈N̂〉 in the input object for the case
of coherent light and multimode squeezed light. As seen from this figure, for
the same mean number of photons multimode squeezed light provides higher
super-resolution than the coherent light.
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Fig. 6.6. Diffraction-limited imaging point-spread function h(s) and the recon-
struction point-spread function h(r)(0, s) using 7 prolate functions.

Fig. 6.7. Super-resolution factor S as a function of the total mean number of
photons 〈N̂〉 for coherent light (solid line), and multimode squeezed line with
exp(r) = 10 (dashed line).

6.4 Squeezed-Light Source for Microscopy with
Super-Resolution

In previous sections we have presented a theoretical scheme that allows us to
improve the super-resolution beyond the standard quantum limit in recon-
struction of an optical object using multimode squeezed light. The theory was
formulated in terms of prolate spheroidal functions that are the eigenwaves
of the optical imaging scheme. To achieve super-resolution with multimode
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squeezed light one has to prepare these prolate waves in a squeezed state.
The question remains on how to produce such squeezed prolate waves.

In this section we provide the answer to this question. Precisely we demon-
strate that an optical parametric amplifier (OPA) with a properly chosen
diaphragm on its output and a Fourier lens produces squeezed prolate spher-
oidal waves used in super-resolving microscopy. We investigate the quantum
statistics of the squeezed prolate spheroidal waves in our scheme in depen-
dence on physical parameters of the OPA and the optical configuration. We
formulate simple estimates on the number of “object elements” to be recon-
structed in connection with the number of degrees of freedom in a nonclassical
illuminating light.

The scheme of one-dimensional optical imaging with multimode squeezed
light is shown in Fig. 6.8.

Fig. 6.8. Schematic of optical imaging with squeezed light.

The part of the scheme to the right of the object plane performs diffraction-
limited imaging of an object of finite size X located in the object plane, in-
vestigated above. The part to the left of the object plane is an illumination
scheme. It consists of a traveling-wave OPA placed in the source plane and
a Fourier lens L. It is wellknown from the literature that a traveling-wave
OPA with plane-wave pump and nonlinear crystal with large transverse area
creates a multimode squeezed vacuum on its output [29]. A new feature of our
scheme is a diaphragm of size ds on the output of the OPA which serves for
selection of the transverse modes in squeezed state. As we demonstrate below,
when the size of this diaphragm matches the size of the pupil, ds ≥ d, this
set-up squeezes exactly the prolate spheroidal waves that are the eigenmodes
of the imaging scheme. This result can be easily understood qualitatively. In-
deed, when all three lenses in the scheme have the same focal distance f , as
in Fig. 6.1, the lenses L and L1 create a geometrical image of the diaphragm
ds in the pupil plane. Therefore, it is intuitively clear that one has to match
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the diaphragm size ds and the pupil size d to select the modes of the source
that will pass through the imaging scheme.

Let us introduce the dimensionless coordinates in the source plane as
ξ = 2y/d (see Fig. 6.8). The dimensionless photon annihilation operators in
the source plane, denoted as ĉ(ξ), obey the standard commutation relations,

[ĉ(ξ), ĉ†(ξ′)] = δ(ξ − ξ′), (6.61)

These operators are normalized so that 〈ĉ†(ξ)ĉ(ξ)〉, gives the mean photon
number per unit dimensionless length in the source plane. The Fourier trans-
form (T ĉ) (s) physically performed by the lens L in Fig. 6.8 reads as follows,

â(s) = (T ĉ) (s) =
√

c

2π

∫ ∞

−∞
dξe−icsξ ĉ(ξ). (6.62)

The photon annihilation operator â(s) in the object plane can be written as
the decomposition over ψk(s),

â(s) =
∞∑

k=0

Âkψk(s) + F̂ (s), (6.63)

where the operator-valued coefficients Âk are evaluated as

Âk =
∫ ∞

−∞
ds â(s)ψk(s). (6.64)

The operators Âk and Â†
k satisfy the standard commutation relations of the

photon annihilation and creation operators for discrete modes,

[Âk, Â†
k′ ] = δk,k′ , [Âk, Âk′ ] = 0. (6.65)

The Fourier transform of the prolate spheroidal functions ψk(s), performed
by the lens L1, is zero outside the interval |ξ| ≤ 1. Consequently, the set
of functions {ψk(s)} is not complete in the Hilbert space L2(−∞,∞), and
to satisfy the commutation relations for operators â(s) and â†(s) one has to
add an additional term F̂ (s). This term has a zero Fourier spectrum in the
interval |ξ| ≤ 1 and does not contribute to the coefficients Âk,∫ ∞

−∞
dsψk(s)F̂ (s) = 0. (6.66)

The field F̂ (s) can be decomposed over the complementary set of prolate
spheroidal functions {θk(s)}, orthogonal to {ψk(s)}.

Physically speaking, the first term in Eq. (6.63) is the object field com-
ponent that propagates in our scheme through the pupil to the image plane.
The second object field component F̂ (s) is absorbed outside the pupil and
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is not observed. Therefore, in what follows we shall omit F̂ (s) in the object
field (6.63).

It follows from (6.18) that the functions ψk(s) and θk(s) can be written
in the form

ψk(s) =
√

λkϕk(s) +
√

1 − λkχk(s),

θk(s) =
√

1 − λkϕk(s) −
√

λkχk(s). (6.67)

In terms of two sets {ϕk(s)} and {χk(s)} we can write the annihilation
operators in the source plane as

ĉ(ξ) =
∞∑

k=0

ĉkϕk(ξ) +
∞∑

k=0

d̂kχk(ξ), (6.68)

Here ĉk are the annihilation operators of the prolate waves ϕk in the core
region, and d̂k are the annihilation operators of the prolate modes χk in the
wings region. The operators ĉk are expressed through the field operator ĉ(ξ)
by

ĉk =
∫ ∞

−∞
dξ ĉ(ξ)ϕk(ξ), d̂k =

∫ ∞

−∞
dξ ĉ(ξ)χk(ξ). (6.69)

Taking into account (6.68) and (6.19) we obtain

â(s) = (T ĉ) (s) =
∞∑

k=0

(−i)k
[
ĉkψk(s) + d̂kθk(s)

]
, (6.70)

and
Âk = (−i)k ĉk. (6.71)

As expected, there is no contribution into Âk from the second sum in
Eq. (6.68) containing operators d̂k and describing the illumination coming
from the wings area of the source. If the source diaphragm is larger or matches
the size of the pupil, ds ≥ d, it has no effect on the operator amplitudes ĉk

and Âk (see (6.20)), and we shall neglect the diaphragm in the calculation of
Âk.

To obtain explicitly the coefficients Âk in the case of illumination of the
scheme by a traveling-wave OPA we shall use a simplified description of an
OPA with a plane-wave undepleted pump (see Ref. [29]). In this approxima-
tion one can find analytically the spatial Fourier amplitudes Ĉ(q),

Ĉ(q) =
∫ ∞

−∞
dξe−iqξ ĉ(ξ), (6.72)

of the field at the output of the crystal as a linear transformation of the
corresponding input Fourier amplitudes Ĉin(q) and Ĉ†

in(q),

Ĉ(q) = U(q)Ĉin(q) + V (q)Ĉ†
in(−q). (6.73)
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Here the operators Ĉin(q) at the input of the OPA are in the vacuum state.
The complex coefficients U(q) and V (q) depend on the nonlinear susceptibil-
ity of the crystal, its length, and the matching conditions in the OPA. These
coefficients have the property

|U(q)|2 − |V (q)|2 = 1, (6.74)

that guarantees the preservation of the commutation relations (6.61). Using
the standard parameters of multimode squeezing (see Ref. [29]) we obtain:

U(q) ± V ∗(−q) = e−iϕ(q)
[
e±r(q)cos θ(q) + ie∓r(q)sin θ(q)

]
. (6.75)

The phase of the amplified (stretched) quadrature amplitude of the OPA
output field c̃(q) is θ(q). The phase factor exp(−iϕ(q)) specifies the phase
of the quadrature amplitudes of the input field Ĉin(q) that are squeezed or
stretched. For the vacuum input field of the OPA the last phase is irrelevant.

The operator amplitudes Âk are found explicitly with the use of Eqs. (6.71)
and (6.69). The quantities ĉin(ξ) and ϕk(ξ) are expressed through their
Fourier transforms (6.73) and (6.27). After some calculation we obtain,

Âk =
1√
2πc

∫ ∞

−∞
dq ψk(q/c)

[
U(q)Ĉin(q) + V (q)Ĉ†

in(−q)
]
. (6.76)

We shall introduce the real quadrature components of the field amplitudes
Âk in the object plane as

Âk = Â1k + iÂ2k. (6.77)

For the variances of these quadrature components we obtain

〈
(
∆Â1k

)2

〉 =
1
4c

∫ ∞

−∞
dq ψ2

k(q/c)
[
e±2r(q)cos2 θ(q) + e∓2r(q)sin2 θ(q)

]
,

(6.78)

〈
(
∆Â2k

)2

〉 =
1
4c

∫ ∞

−∞
dq ψ2

k(q/c)
[
e∓2r(q)cos2 θ(q) + e±2r(q)sin2 θ(q)

]
.

(6.79)
Here the upper and the lower sign correspond, respectively, to the even and
the odd prolate spheroidal functions ψk.

It follows from this result that the prolate spheroidal waves in the ob-
ject illumination can be prepared in squeezed state. By proper choice of the
squeezing phase θ(q) at low spatial frequencies q one can minimize quantum
fluctuations in one of the quadrature amplitudes Aσk, σ = 1, 2 (namely, in
the one detected in the image plane of our scheme). Taking the degree and
the phase of squeezing as constant, r(q) = r, θ(q) = θ, we can estimate the
variance of the squeezed quadrature amplitude:

〈(∆Aσk)2〉 ∼ e−2r/4. (6.80)
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In reality the spatial-frequency band of multimode squeezing is limited by
the phase-matching condition in the OPA. One has to take into account the
spatial-frequency dispersion of squeezing, that is, the frequency dependence
of the squeezing phase θ(q) due to diffraction in free space and inside the
OPA. Both phenomena degrade squeezing of prolate spheroidal waves.

As shown in [28, 29], the effect of diffraction on squeezing can be almost
perfectly compensated by means of adjustment of the lens array. If this is
done, it follows from (6.78), (6.79), that the degree of squeezing of prolate
spheroidal waves depends on the overlap in the object plane of two areas: (i)
the area illuminated by the squeezed plane waves Ĉ(q), which are focused
by lens L to the points s = q/c, and (ii) the area of the energy localization
∼ ψ2

k(s) of the prolate spheroidal waves.
In analogy to other phenomena with spatially multimode squeezed light,

in the even and odd components of the object field the different quadrature
amplitudes are squeezed; for, say, θ = 0, the squeezed quadratures are A1k

and A2k for the odd and the even prolate waves, respectively.
Finally, we can formulate the conditions on multimode squeezing in object

illumination in terms of the number N of independent degrees of freedom in
the light field, propagating through the diaphragm of the OPA (we assume
here the optimum size ds = d of the diaphragm). The properties of the OPA
emission can be characterized by the coherence length lc of the output field
ĉ(ξ). The spatial-frequency range qc of effective squeezing is related to the
coherence length by the estimate

|qc| ≤ π(d/2)/lc. (6.81)

The minimum requirement on the OPA is that the effectively squeezed waves
Ĉ(qc) illuminate, after passing the lens L, the object region |s| ≤ 1. That is,
the waves

|qc|/c ≥ 1, (6.82)

should be squeezed. This gives the following estimate for the coherence length,

lc ≤ πd/2c, (6.83)

and for the number N of independent degrees of freedom in the illuminating
light, emitted from the region d:

N ∼ d/lc ≥ dX

λf
= S. (6.84)

Here S is the Shannon number of our optical scheme.
As seen from (6.67), the wave profiles ψk(s) can be expanded in terms

of two bases, {ϕk(s)} and {χk(s)}, representing the core and the wings of
illuminating field in the object plane, where λk ≤ 1 are the eigenvalues of
the imaging transformation. As known from the theory of prolate spheroidal
functions [16,21], these eigenvalues are close to 1 only for k ≤ S, where S is the
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Shannon number. For higher values of the index k the field energy in prolate
spheroidal waves ψk(s) is concentrated in the wings, that is, outside the object
area |s| ≤ 1. Hence, the condition N ∼ S provides an effective squeezing only
of the prolate spheroidal waves with k ≤ S. In order to minimize quantum
noise of the higher prolate spheroidal waves (with k > S), it is necessary
to use OPA with a large number of effectively squeezed spatial modes of
radiation,

N � S, (6.85)

and to illuminate by nonclassical light a spot in the object plane with the
size much larger than the object itself.
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7.1 Introduction

A possibility for noiseless amplification was demonstrated theoretically by
Caves [1] using general quantum-mechanical considerations based on con-
servation of commutation relations for the Heisenberg operators in the am-
plification process. Concerning their noise characteristics all amplifiers can
be divided into two groups: phase-insensitive amplifiers (PIA), whose gain
is independent of the phase of the input signal, and phase-sensitive ampli-
fiers (PSA), whose gain is phase-dependent. Caves has demonstrated that all
phase-insensitive amplifiers introduce at least 3 dB of noise in the ampli-
fied signal, whereas phase-sensitive amplifiers can, under certain conditions,
preserve the signal-to-noise ratio. This last quality is a reason why nowadays
these amplifiers are called noiseless. Noiseless amplification of temporal op-
tical signals was demonstrated experimentally in [2] for continuous-wave and
in [3] for pulsed optical signals.

The first step towards noiseless amplification of images was made in [26],
where it was theoretically demonstrated that such an amplifier can be realized
by a ring-cavity optical parametric amplifier below threshold, operating as a
phase-sensitive amplifier. The cavity-based geometry ensures a continuous-
wave regime of amplification. Under certain conditions found in [4], such an
amplifier preserves the signal-to-noise ratio of the amplified image. Recently,
a cavity-based noiseless image amplification was studied theoretically for an
optical parametric oscillator in a confocal cavity [5].

Traveling-wave noiseless amplification of images was investigated inRef. [6].
In that paper the authors considered an optical parametric amplifier (OPA)
without an external cavity. This geometry is more natural for possible prac-
tical realizations and has several advantages over the cavity-based scheme.
The most important ones are greater frequency and spatial-frequency ampli-
fication bandwidths that are determined by the phase-matching conditions in
the OPA. Greater frequency bandwidth allows for amplification of images in
single-shot pulses, and greater spatial-frequency bandwidth provides better
resolving power of noiseless amplification. In the noiseless image amplifica-
tion scheme considered in Ref. [6], the OPA was placed in the spatial Fourier
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plane of the imaging scheme. An alternative configuration with a traveling-
wave OPA where an input object is projected directly at the entrance of the
OPA, was investigated in Ref. [7]. In this case under certain conditions one
can also obtain noiseless image amplification.

Parametric image amplification has been studied by several experimental
groups [8–14]. In the experiments performed by Lantz’s group, parametric
image amplification was achieved for a monochromatic near-infrared image
with resolution 60 × 80 points in the amplified image with a mean gain of
15 dB [8]. Then the process of parametric amplification was applied for low-
pass and bandpass spatial filtering of amplified images using the filtering
properties of the transfer function of the amplifier [9], and for ultrahigh-speed
imaging [10]. Parametric amplification has also been employed in time-gated
image recovery [12, 13], and in biomedical imaging [14]. Quantum fluctua-
tions in parametric image amplification were studied in [15–17]. In partic-
ular, in [16] noiseless image amplification was observed for the first time.
However, in this experiment the authors did not address spatial distribution
of quantum fluctuations in the image. Instead, they investigated the temporal
behavior of quantum fluctuations recorded by a photodiode at the Fourier
frequency of 27 MHz while the photodiode was scanned over the image. Spa-
tially noiseless amplification of optical images was demonstrated for the first
time in Ref. [17].

In this chapter we shall give a brief theoretical description of a traveling-
wave noiseless image amplifier, following Ref. [6]. We shall also describe recent
experimental results demonstrating noiseless amplification of images in single-
shot pulses. In Section 7.2 we shall outline the optical scheme of the traveling-
wave image amplifier. In Section 7.3 we give a physical explanation of the
squeezing transformation that governs the field evolution in our scheme and
show the possibility for optimization of the observation procedure. Section
7.4 is devoted to investigation of the gain and noise characteristics of the
amplifier and establishing the conditions for its noiseless performance. In
Sections 7.5 and 7.6 we shall describe experimental results of noiseless image
amplification.

7.2 Traveling-Wave Scheme for Amplification of Images

We consider the optical scheme of a traveling-wave image amplifier, shown
in Fig. 7.1. An input optical image of a finite area SO is located in the
object plane P1. We shall assume that this image is imprinted into a faint
spatial modulation of the wavefront of an optical wave with carrier frequency
ω illuminating the plane P1. The distance, separating the lens L1 from the
object plane and the plane z = 0 from the lens L1 is equal to the focal
length f of the lens. The position z2 of the face plane P2 of the nonlinear
crystal will be determined below from the condition of the optimum phase
matching. In the case z2 = 0, the input part of the scheme performs the
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Fourier transform of the input wavefront from the object plane P1 into the
input plane of the nonlinear crystal of length l playing the role of a traveling-
wave OPA. Parametric interaction takes place between the signal wave of
frequency ω, carrying the input image, and the plane monochromatic pump
wave of double frequency, ωp = 2ω, illuminating the input plane of the crystal.
At the output plane P3 of the nonlinear crystal there is a pupil of area SP . We

Fig. 7.1. Schematic of a traveling-wave optical image amplifier.

consider the case when the wave pattern of the object wave contains a finite
range of transverse spatial frequencies. Input waves with the highest spatial
frequencies are in the vacuum state. After passing the lens L1 they illuminate
the crystal at largest distances from the longitudinal axes z and stimulate
only generation of spontaneous parametric down-conversion photons. The
pupil cuts off these noise photons, which do not contribute to the signal part
of the amplified wavefront in the image plane P4.

The back Fourier transform of the amplified object wave is performed by
the lens L2. With the axis orientation as in Fig. 7.1, the imaging magnification
of the scheme is +1. The amplified image is detected by a dense array of small
photodetectors (pixels) in the image plane P4.

In Ref. [6] it was shown that for an infinitely large pupil, SP → ∞,
the photon annihilation operator ê(ρ, t) in the image plane is related to the
photon annihilation operator â(ρ, t) in the object plane by the following
unitary transformation,

ê(ρ, Ω) = u(ρ, Ω)â(ρ, Ω) + v(ρ, Ω)â†(−ρ,−Ω). (7.1)

Here ê(ρ, Ω), â(ρ, Ω) are the temporal Fourier transforms of ê(ρ, t), â(ρ, t).
The coefficients u(ρ, Ω) and v(ρ, Ω) are given by



144 Mikhail I. Kolobov and Eric Lantz

u(ρ, Ω) = exp
{

i
[
Ωn/c − (2k − kp)/2

]
l
}

[cosh Γ (ρ, Ω)

+
iδ(ρ, Ω)
2Γ (ρ, Ω)

sinhΓ (ρ, Ω)
]

,

v(ρ, Ω) = exp
{

i
[
Ωn/c − (2k − kp)/2

]
l
} g

Γ (ρ, Ω)
sinhΓ (ρ, Ω). (7.2)

Here c/n = 1/k′
Ω is the velocity of light in the crystal. The dimensionless

mismatch function δ(ρ, 0) for Ω = 0, which we shall call the local mismatch,
is given by

δ(ρ, 0) = δ0 − ρ2/ρ2
0, δ0 = (2k − kp)l, (7.3)

where ρ0 is defined as

ρ0 = f

√
1
kl

, (7.4)

and
Γ =

√
g2 − δ2/4. (7.5)

An important case of degenerate phase matching in the crystal corre-
sponds to δ0 = 0. In this case the maximum parametric amplification takes
place for the waves, propagating in the z-direction. This implies the maximum
amplification of the area around the optical axis of the scheme, ρ = 0. The
spatial scale ρ0 determines the linear dimension of the effectively amplified
area in the object plane.

In the case of nondegenerate phase matching with positive δ0, δ0 > 0,
the dimensionless mismatch (7.3) is equal to zero for waves with q 
= 0. This
corresponds to effective parametric amplification of a region in the object
plane, which has the shape of a ring.

In the case of a pupil of finite size Eq. (7.1) becomes

e(ρ, Ω) =
1

λf

∫
dρ ′p(ρ − ρ ′)

[
u(ρ ′, Ω)a(ρ ′, Ω) + v(ρ ′, Ω)a†(−ρ ′,−Ω)

]
.

(7.6)
The function p(ρ ) is related to the pupil frame function as

p(ρ ) =
1

λf

∫
dξ P (ξ )exp

[
i
2π

λf
ρ · ξ

]
, (7.7)

and is called the impulse response of the optical system.
The pupil cuts off the photons of spontaneous parametric down-conversion,

emitted from a peripheral region of nonlinear crystal. The wavepackets of
these photons pass lens L2 and come to the detection plane at strongly in-
clined directions with respect to the axes z. These wavepackets do not con-
tribute to the amplified image, because their emission is stimulated by the
vacuum fluctuations and not by the signal waves from the object plane. But
the self-beats of these noise waves on the surface of the elementary detector
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(pixel) produce additional photocurrent noise and degrade the signal-to-noise
ratio.

The optimum choice of the pupil area SP is done as follows. Let the
input image of the area SO have details or image elements of a certain area
Sel � SO. The size of the image element determines the diffraction spread of
the wave pattern between the object plane and the input face of the crystal,
that is, the size of the spot illuminated by this element at the input face
of the crystal. The area of this spot is of the order of (fλ)2/Sel. The pupil
must be large enough to let the light within this spot pass and to cut off the
spontaneous photons:

SP ≥ (fλ)2

Sel
. (7.8)

In the presence of the pupil the field operator e(ρ, t) (7.6) is given by an
integral over the diffraction area Sdiff in the object plane. With the choice
(7.8) of the pupil area SP this diffraction spread is of the order of or slightly
less than the area of the image element:

Sdiff  (fλ)2

SP
≤ Sel. (7.9)

In our investigation we shall assume that the squeezing coefficients u(ρ, Ω)
and v(ρ, Ω) do not significantly vary within the diffraction area Sdiff and can
be considered as constants in diffraction integrals. This assumption means
that the area of the effectively amplified object wave is much larger than the
size of the image element; that is, the image consists of many elements. For
this reason we discuss the phase properties of Eq. (7.1) for the field evolution
in our optical scheme as if there were no pupil.

7.3 Optimum Phase Matching for Parametric
Amplification

As already mentioned above, we shall assume the temporal evolution of the
image to be slow and put Ω → 0 in Eq. (7.1) for calculation of the amplified
signal. Because the output field e(ρ, Ω) is the sum of the contributions coming
from symmetric points ρ and −ρ of the object plane, it is natural to consider
such input signals that are even functions of ρ. We assume that the input
field is in a coherent state with complex amplitude s(ρ ), where

s(ρ ) = s(−ρ ). (7.10)

In the case when s(ρ ) has the same phase for all ρ (e.g., s(ρ ) is real), the
wavefront of the input signal in the object plane is flat and, therefore, the
classical part of the input signal is in one and the same quadrature component
for all ρ.
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To gain more physical insight into the squeezing transformation (7.1), let
us consider what happens under this transformation with a classical complex
field amplitude α taken for the moment as constant over the whole object
plane. Denoting the output classical field amplitude ε, we can write

ε = uα + vα� = eiψ
{
|u|e−iφα + |v|eiφα�

}
, (7.11)

where we have introduced the angles ψ and φ as

ψ =
1
2
(arg u + arg v), φ =

1
2
(arg v − arg u). (7.12)

Let us define the quadrature components of the field on the input and the
output of the crystal in their eigen coordinate systems determined by the
angles φ and ψ as follows,

α = eiφ(α1 + iα2), (7.13)

ε = eiψ(ε1 + iε2). (7.14)

It is easy to see from Eq. (7.1) that these eigen quadrature components are
related by the following transformation:

ε1 = erα1, ε2 = e−rα2, (7.15)

where we have introduced the squeezing parameter r:

e±r = |u| ± |v|. (7.16)

Therefore, the results of the squeezing transformation (7.1) can be sum-
marized as follows.

(a) In the input to the system the complex field amplitude together with its
uncertainty region must be decomposed into the eigen quadrature com-
ponents defined by (7.13) in the coordinate system rotated by the angle
φ given by (7.12); this is illustrated in Fig. 2(a) for a coherent input state
with real amplitude;

(b) The quadrature component eiφa1 is rotated by the angle −φ, that is,
brought to the real axis, and stretched by the factor er; the quadrature
component ieiφa2 is brought to the imaginary axis and squeezed by the
factor e−r, (see Fig. 2(b));

(c) The resulting complex field amplitude together with its uncertainty re-
gion is rotated by the angle ψ given by (7.12) (see Fig. 7.2(c)); in the
chosen example the final state of the system represents a squeezed state,
because its uncertainty region became an ellipse with unequal dispersion
of different quadratures.
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Fig. 7.2. Graphic illustration of the squeezing transformation described by
Eq. (7.1).

In our case the coefficients u and v depend on ρ. Therefore, the phase
φ(ρ ) that determines the amplified quadrature component is a function of the
transverse coordinate ρ . As a consequence, we obtain that the input classical
signal s(ρ ) with constant phase for all ρ does not match the condition of
maximum amplification everywhere.

There are two possibilities to gain the maximum parametric amplification
for all points of the signal wave-front in the object plane. The first one is to
introduce a ρ-dependent phase shift into the incident object wave. In the
paraxial approximation this phase shift must be quadratic in ρ; that is, the
wave-front must have a certain curvature.

Another possibility is to adjust the optical scheme such as to make the
phase φ(ρ ) independent of ρ. It follows from Eqs. (7.2) and (7.12) that

φ(ρ ) = −1
2

arg
{
cosh Γ +

iδ

2Γ
sinhΓ

}
= −1

2
tan−1

(
δ

2Γ

sinhΓ

cosh Γ

)
. (7.17)

In the case of interest, when the coupling constant is large, g � 1, and the
dimensionless mismatch is relatively small, δ � g, we can approximate φ(ρ )
as

φ(ρ ) ≈ −δ(ρ, 0)
4g

=
ρ2/ρ2

0 − δ0

4g
. (7.18)

Let us shift the crystal together with the lens L2 and the detection plane P4

at a certain distance so that the input face of the crystal is now located at
z2 
= 0. As shown in Ref. [6], the phase φ that determines the amplified and
attenuated quadrature components of the signal changes to φ̃ according to
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φ̃ = φ − ϕ2(z2,ρ ), (7.19)

with
ϕ2(z2,ρ ) = −ρ2 k

2f2
z2. (7.20)

Physically speaking, the signal wave emitted at the point ρ of the object plane
propagates after the lens L1 as inclined plane wave with q = −(k/f)ρ. If the
crystal and the rest of the scheme are shifted, the additional optical phase of
this wave on the input face of the crystal depends on q or ρ quadratically,
as seen from Eq. (7.20). Therefore, by appropriate choice of the distance z2

one can eliminate the ρ-dependence in φ̃(ρ ). Taking into account Eqs. (7.18),
(7.19), and (7.20), we obtain that the optimum choice of z2 is given by

z
(opt)
2 = − 2f2

kρ2
04g

= − l

2g
= − lamp

2
. (7.21)

Here lamp = l/g is the characteristic length of parametric amplification in
the case of large coupling constant g. The optimum adjustment of the optical
scheme is achieved when the plane P2 of the first Fourier transform is located
at the distance lamp/2 behind the input face of the crystal.

If z2 is chosen according to Eq. (7.21), the amplified and attenuated
quadratures of the signal field in the object plane are defined by Eq. (7.13)
with

φ̃ = − δ0

4g
. (7.22)

In the case of degenerate phase matching, δ0 = 0, the input signal with a real
classical amplitude s(ρ ) plane is uniformly amplified for all ρ, at least in the
paraxial approximation.

Let us consider nondegenerate phase matching with δ0 > 0. Assume that
the input image is complex,

s(ρ ) = eiϕ(ρ )|s(ρ )|, (7.23)

with a constant phase ϕ(ρ ) = φ̃ given by Eq. (7.22). As follows from
Eq. (7.13), such a signal has optimally matched quadrature components.
Because the phase φ̃ in Eq. (7.22) does not depend on transverse coordinate
ρ, this matching can be achieved for the whole image.

If the input signal is in a coherent state, both quadrature components of
the quantum fluctuation of the signal field have the same mean square value.
For this reason the amplified component of the fluctuation is always present.
Its mean square value in the plane of photodetection does not depend on
the above-described phase matching. On the contrary, if there is no optimum
phase matching of the signal field at all points of the input image, the effective
parametric gain of the signal is less than the gain of the quantum fluctuations.
This can degrade the signal-to-noise ratio for some parts of the amplified
image.
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7.4 Quantum Fluctuations in the Amplified Image and
Conditions for Noiseless Amplification

In this section we shall give the results from Ref. [6] for the mean number
of photoelectrons 〈NI(ρ, t)〉 collected from a pixel at a point ρ in the image
plane, and its variance 〈∆N2

I (ρ, t)〉. Using these quantities we shall find the
signal-to-noise RI ratio in the image plane, defined as [18,19]

RI = 〈NI(ρ, t)〉2/〈∆N2
I (ρ, t)〉, (7.24)

and compare it with the corresponding quantity RO in the object plane. Our
goal is to find conditions for noiseless operation of the scheme when these
two signal-to-noise ratios are equal.

To simplify the results we shall use two approximations. First, we assume
that both the diffraction area Sdiff and the pixel area Sd are small compared
to the image area SO and that of the image element Sel,

Sdiff , Sd ≤ Sel � SO. (7.25)

This is a natural choice in order to resolve the details of the image. The
weight of the noise terms depends on the relation between the pixel and the
diffraction areas. In what follows we shall evaluate two situations: Sd ≥ Sdiff ,
and Sd � Sdiff , and show that in both cases the overall procedure (i.e.,
amplification and detection) can be noiseless.

Second, we shall consider the situation when the signal is slow and the
observation time Td can be taken long compared to the inverse bandwidth of
parametric amplification 1/Ωp, which is the characteristic temporal scale of
the amplifier. With these approximations we obtain for the mean number of
photoelectrons collected from a pixel at the point ρ:

〈NI(ρ, t)〉 = ηSdTd|s(ρ )|2Gφ(ρ ) + η
Sd

Sdiff

Td

2π

∫
dΩ|v(ρ, Ω)|2. (7.26)

Here Gφ(ρ ) is the phase-sensitive gain of the amplifier,

Gφ(ρ ) =
∣∣∣exp

[
iϕ(ρ )

]
u(ρ, 0) + exp

[
− iϕ(ρ )

]
v(ρ, 0)

∣∣∣2. (7.27)

Introducing the relative angle ∆φ(ρ ) between the amplified quadrature and
the complex signal field in the object plane,

∆φ(ρ ) = φ(ρ ) − ϕ(ρ ), (7.28)

and the squeezing parameter r(ρ ),

exp[±r(ρ )] = |u(ρ, 0)| ± |v(ρ, 0)|, (7.29)

we can write the phase-sensitive gain Gφ(ρ ) as follows,
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Gφ(ρ ) = cos2
[
∆φ(ρ )

]
exp[2r(ρ )] + sin2

[
∆φ(ρ )

]
exp[−2r(ρ )]. (7.30)

The maximum gain G = Gφ(R) is attained for such ρ = R, where the
local mismatch δ(R, 0) vanishes: δ(R, 0) = δ0 − (R/ρ0)2 = 0. For degenerate
phase matching δ0 = 0 this maximum is located at the optical axis of the
system R = 0. For nondegenerate matching with δ0 > 0 the maximum gain
is reached along the ring of radius R given by

R = ρ0δ
1/2
0 . (7.31)

From Eqs. (7.2) and (7.29) it follows that for both degenerate and non-
degenerate matching the maximum gain G is equal to

G = exp[2g]. (7.32)

Figures 7.3a,b show the phase-sensitive gain Gφ(ρ ) as a function of trans-
verse distance for degenerate and nondegenerate matching. The dashed lines
correspond to the gain profile without optimization of the phase matching
discussed in Section 7.3, the solid lines, with optimization. We observe from
Fig. 7.3 that in the area close to the maximum of the gain, the optimization
has no effect. However, when departing from ρ = R, the gain curves with
optimization become flatter and wider in both cases of degenerate and non-
degenerate matching. We consider first the case Sd ≥ Sdiff . In this limit the
diffraction spread of the image is small and the impulse response function
p(ρ ) can be approximated by the delta-function:

p(ρ ) = λfδ(ρ ). (7.33)

Using this approximation, we arrive at the following result,

〈∆N2
I (ρ, t)〉 = ηSdTd|s(ρ )|2Gφ(ρ )

[
1 − η + ηSθ(ρ )

]
+ η

Sd

Sdiff

Td

2π

∫
dΩ|v(ρ, Ω)|2

[
1 + η + 2η|v(ρ, Ω)|2

]
, (7.34)

where we have introduced the orientation angle θ(ρ ) of the squeezing ellipse
relative to the complex amplitude of the signal in the image plane,

θ(ρ ) = ψ(ρ ) − arg
(
exp[iϕ(ρ )]u(ρ, 0) + exp[−iϕ(ρ )]v(ρ, 0)

)
, (7.35)

and the squeezing function Sθ(ρ ),

Sθ(ρ ) = cos2 θ(ρ) exp[2r(ρ )] + sin2 θ(ρ ) exp[−2r(ρ ). (7.36)

There are two shot-noise contributions in Eq. (7.34), proportional to the mean
intensity of the amplified image and that of the parametric down-conversion.
The term proportional to η2|s(ρ )|2Gφ(ρ ) stems from the interference of the
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Fig. 7.3. Phase-sensitive gain Gφ(ρ ) as a function of dimensionless transverse
distance ρ/ρ0 for degenerate (a) and nondegenerate (b) phase matching with δ0 = 4.
Curves α correspond to the maximum gain G = 100, curves β to G = 10. Dotted
lines are obtained without phase correction, solid: with correction.

amplified signal with noise and the other quadratic in the η term from the
self-interference of the noise. This self-interference determines the inherent
noise of the amplifier present even without the signal on its input.

As follows from Eq. (7.26), the mean number of detected photoelectrons,
〈NI(ρ, t)〉, contains two contributions. The first one is proportional to inten-
sity |s(ρ )|2 of the input image at the point ρ and constitutes the amplified
image. The second term exists even when no signal is present at the input,
and represents the inherent noise of the amplifier. Its physical origin is in the
phenomenon of spontaneous parametric down-conversion. This noise term
determines the ultimate lower limit for the input signal s(ρ ) that can be
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amplified without adding noise. Indeed, one can neglect the inherent noise of
the amplifier compared to the amplified signal if

|s(ρ )|2Gφ(ρ ) � 1
Sdiff

1
2π

∫
dΩ|v(ρ, Ω)|2. (7.37)

In the case of high gain, G � 1, we have |u|  |v| � 1, and Gφ  4|v|2.
Assessing the integral in the right-hand side of Eq. (7.37) as Ωp|v(ρ, 0)|2,
where Ωp is the bandwidth of parametric down-conversion, we can rewrite
this condition as

|s(ρ )|2SdiffTamp � 1/4. (7.38)

Here we have introduced the typical temporal scale of the amplifier as Tamp =
2π/Ωp. The left-hand side of Eq. (7.38) gives the degeneracy parameter of
the input field, that is, the mean number of photons in an elementary volume
cSdiffTamp, determined by the geometry of the amplifier and its response time.
The input field in such an elementary volume is amplified by our system as
an independent degree of freedom. The criterion (7.38) is met for degenerate
input signals with relatively small quantum fluctuations.

Another condition for noiseless amplification arises from Eq. (7.34) for
dispersion of the observed number of photoelectrons. Namely, the self-
interference term in Eq. (7.34), given by the last integral, must be small
compared to the term due to the interference of the amplified signal with
noise, that is, the term proportional to η2|s(ρ )|2Gφ(ρ ). This gives:

|s(ρ )|2SdiffTamp � 1/8, (7.39)

which by the order of magnitude is equivalent to condition (7.38).
Now let us turn to the case of small pixels in the photodetection array

Sd � Sdiff . In the case of a symmetrical pupil frame function P (ξ) = P (−ξ),
we obtain instead of (7.34):

〈∆N2
I (ρ, t)〉 = ηSdTd |s(ρ )|2Gφ(ρ )

[
1 − η′ + η′Sθ(ρ )

]
+ η′ Td

2π

∫
dΩ|v(ρ, Ω)|2

[
1 + η′ + 2η′|v(ρ, Ω)|2

]
. (7.40)

Here we have introduced a shorthand η′ = ηSd/Sdiff . It follows from
Eq. (7.40) that the condition (7.39) for noiseless amplification holds true
also in the case of small pixels.

To study quantitatively the noise performance of the amplifier we intro-
duce the noise figure F ′ as

F ′ =
RO(η = 1)

RI
. (7.41)

Because a linear amplifier cannot improve the signal-to-noise ratio in the
input image, the noise figure F ′ is always not smaller than unity. We refer
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to the case F ′ = 1 as noiseless amplification. Notice, that in Eq. (7.41) the
input signal-to-noise ratio refers to the ideal photodetection in the input
plane. As explained in Ref. [4], this correction is necessary to obtain the
noise figure that characterizes the noise added by the amplifier but not the
noise due to imperfections in the preamplification apparatus (such as nonideal
photodetection array in the object plane). Without such a correction (i.e.,
allowing for nonideal photodetection in the object plane with η < 1 one
could obtain the noise figure smaller than unity. The physical feature of this
phenomenon lies in the fact that the noiseless amplifier can compensate for
the imperfection of the photodetection scheme at the preamplification stage
and formally ”improve” the signal-to-noise ratio of the input image degraded
by the nonideal photodetection array.

Let us start the investigation of the noise figure with the case Sd ≥ Sdiff .
The signal-to-noise ratio in the object plane is defined in analogy to (7.24).
Because

〈NO(ρ, t)〉 = ηSdTd|s(ρ )|2, 〈∆N2
O(ρ, t)〉 = ηSdTd|s(ρ )|2, (7.42)

we find
RO = 〈NO(ρ, t)〉2/〈∆N2

O(ρ, t)〉 = ηSdTd|s(ρ )|2. (7.43)

Using the definition (7.24) of the signal-to-noise ratio in the image plane and
Eq. (7.34) we obtain

F ′ =
1
η

1 − η + ηSθ(ρ )
Gφ(ρ )

. (7.44)

It is immediately seen from Fig. 7.2(b) that |θ(ρ )| ≤ |∆φ(ρ )|. There ∆φ
is the angle between the input signal and the real axis, and θ is the angle
between the amplified (stretched and squeezed) signal and the major axis of
the squeezing ellipse (i.e., the real axis again). Because |θ(ρ )| ≤ |∆φ(ρ )|, one
can easily show that the noise figure F ′(ρ ) is never smaller than unity. In the
case of optimum phase matching, when |∆φ(ρ )| → 0, and high gain G � 1,
the noise figure approaches unity. This is illustrated in Fig. 7.4 for G = 100.
Figure 7.4(a) refers to degenerate, and Fig. 7.4(b) to nondegenerate phase
matching. In both cases we have also shown the improvement in the noise
figure, achieved by the phase correction as discussed in Section 7.3. Solid
curves refer to noise figures with such phase correction, whereas the dotted
lines are obtained without it. In our numerical calculations we introduce the
optimum phase matching by taking the input signal in the form (7.23), where
the signal phase ϕ(ρ ) is taken equal to the phase φ(ρ ) of the amplified
quadrature. One can see that with phase correction the spatial region of
noiseless amplification becomes much larger. The large peaks of excess noise
in the peripheral regions in dotted curves almost disappear in solid ones.
Therefore, the effect of optimum phase matching both on gain profile (see
Fig. 7.3) and noise figure is more pronounced in the peripheral region of the
image, where the dephasing between the signal field and the amplified field
quadrature is significant.
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(a)

(b)

Fig. 7.4. Noise figure F ′(ρ ) as a function of dimensionless transverse distance
ρ/ρ0 for degenerate (a) and nondegenerate (b) phase matching with δ0 = 4. The
maximum gain G = 100. Dotted lines are obtained without phase correction; solid,
with correction.

In the case of small pixels, Sd � Sdiff , the noise figure is given by

F ′ =
1
η

1 − η′ + η′Sθ(ρ )
Gφ(ρ )

. (7.45)

When the phase-sensitive gain G is so high that ηGSd/Sdiff � 1, Eq. (7.45)
gives the noise figure as small as Sd/Sdiff � 1. That is, the signal-to-noise
ratio is improved by the scheme with a high-gain parametric amplifier and
small photodetectors. This situation is similar to the case of observation in
the object plane with nonideal photodetectors, discussed in Ref. [4].
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Both effects, namely, detection by pixels with low quantum efficiency
η < 1 and detection by pixels of small area Sd � Sdiff lead to losses of
light from an elementary volume cSdiffTamp which in our case plays the role
of a single degree of freedom of the system. These losses degrade the signal-
to-noise ratio of the input image because this image has Poissonian quantum
fluctuations. Parametric amplification converts the Poissonian quantum noise
into excess super-Poissonian fluctuations that are much less sensitive to the
losses of light due to nonideal photodetection. Indeed, it is known that non-
ideal photodetection reduces both signal and the excess noise at the same
degree, not changing the signal-to-noise ratio. Therefore, one obtains im-
provement of the signal-to-noise ratio in the image plane corrupted by the
losses in the object plane.

One can also say that due to diffraction in the amplifier, a detector of
small area Sd in the image plane collects the information about the quan-
tum state of a portion of light, coming from a diffraction area Sdiff in the
object plane. The important practical implication of Eq. (7.45) is that one
can decrease the area of the pixel without deteriorating the signal-to-noise
ratio as long as ηGSd/Sdiff � 1. This conclusion can be very important for
such applications where one seeks to reduce the amount of information with-
out significant deterioration of the signal-to-noise ratio, such as in machine
vision, for example.

To summarize, the optimum choice for noiseless amplification with suffi-
cient spatial resolution is SO � Sel ≥ Sd ≥ Sdiff . Under such a choice, the
number of image elements resolved by the amplifier can be assessed as

Nel ≤
SO

Sdiff
 SP

Scoh
, (7.46)

where Scoh = (2π/qp)2 is the coherence area of parametric down-conversion
at the output plane of the parametric crystal, qp is the spatial-frequency
bandwidth of the crystal [20]. We have used here (7.9) and the estimate
SO  (fqp/k)2. Equation (7.46) says that there are two ways to evaluate the
number of spatial degrees of freedom of our amplifier. In the object plane of
area SO a degree of freedom is specified by Sdiff , and in the transverse section
of parametric crystal of area SP by Scoh.

7.5 Experimental Demonstration of Temporally
Noiseless Image Amplification

The first experiment that demonstrated noiseless image amplification consid-
ered temporal fluctuations that affect a spatial pattern [16]. The experimen-
tal set-up, shown in Fig. 7.5, is a traveling-wave OPA with the center of the
crystal in the image plane conjugated with the object (a resolution chart).
The noiseless properties of such a scheme have been theoretically assessed in
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Fig. 7.5. Schematic of the experimental setup to measure 1D spatial profiles of
the intensity and noise power of an image amplified by the traveling-wave OPA.
A feedback signal to the PZT is used to lock for maximum amplification in the
phase-sensitive configuration. The phase-matching diagram in terms of the spatial
frequency q is shown in the upper-right corner.

Ref. [7] and are similar to that with the crystal in the Fourier plane described
in the preceding sections. The signal and pump pulses are provided, respec-
tively, by the fundamental (1064 nm) and the second harmonic (532 nm) of
a Q-switched mode-locked Nd:YAG laser at a repetition rate of 1 kHz. The
resulting Q-switch envelopes of the pump and signal pulses are 145 and
200 ns in duration, respectively. The mode-locked pump and signal pulses
underneath these Q-switch envelopes are estimated to be 85 and 120 ps,
respectively. The amplification is performed in a KTP crystal, with a length
of either 3.25 or 5.21 mm. The signal is polarized at 45◦ of the crystal neutral
axes, in order to inject both the signal and the idler waves into the amplifier
and obtain phase-sensitive amplification. The phase of the pump beam rel-
ative to that of the signal beam is locked to maximize the parametric gain,
by means of a feedback loop that drives the piezo-electric transducer (PZT).
The object illuminated by the signal beam consists of two vertical lines of a
USAF test pattern. These lines are imaged with a unity magnification into
the center of the crystal by a telescope. The spatial frequency corresponding
to these lines, 10.1 lines/mm, is chosen sufficiently low to lie well within the
spatial bandwidth of the amplifier [9], and sufficiently high to ensure uniform
illumination by the pump beam. The amplified image is magnified 24 times
after the crystal in order to be spatially resolved when scanned by an InGaAs
detector of 300 µm diameter. In the temporal domain, the bandwidth of the
parametric amplifier is much larger than that of the detector, ensuring an
identical gain for dc and for 27 MHz photocurrents. Hence the experimental
noise figure can be simply determined as
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NF =
Noise-power gain

η (Mean-intensity gain)2
, (7.47)

where the photocurrent noise power is recorded at 27 MHz. The spatial im-
age profiles of the signal and noise scanned by the photodetector are shown
in Fig. 7.6. To minimize the effect of spatial averaging caused by the finite
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Fig. 7.6. 1D spatial profiles of the intensity (left) and the noise power (right) for a
3.25 mm long (top) and 5.21 mm long (bottom) KTP crystals. Profiles of both the
unamplified (empty squares) and the amplified (full squares) images are shown.

size of the photodetector the noise figure was characterized using experimen-
tal values of gains measured at the peaks of the spatial profile. Intensity
gains G  2.5 were obtained at the peaks, with a noise power gain lower
than the intensity gain to the square, because the amplified image is less de-
graded by the detection than the shot-noise limited input. By taking into ac-
count the measured overall detection efficiency η = 0.82 and using Eq. (7.47),
the following values of the total NF of the optical amplifier were obtained:
(0.2 ± 0.6) dB at G = 2.5 for the 3.25 mm KTP crystal and (0.4 ± 0.6) dB
at G = 2.6 for the 5.21 mm KTP crystal. These values agree with the theo-
retical values predicted for a phase-sensitive amplifier. They show clearly the
improvement due to preamplification when compared with the NF = 0.86 dB
of the detector and are almost 2 dB lower than the quantum limit of an ideal
phase-insensitive amplifier of the same gain.
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7.6 Experiment on Spatially Noiseless Amplification
of Images

The experiment described in the previous section shows that a phase-sensitive
scheme allows the signal-to-noise ratio to be unmodified over an entire image,
where the noise is recorded at a frequency of 27 MHz by a photodiode. As the
photodiode scanned the image, this result proves that phase-sensitive ampli-
fication improves the regularity in time of the distribution of photons for each
point of the image but, because only fluctuations in the time domain were
recorded, it does not directly show a regularity in space. However, patterns
in an image are pure spatial information, without any time aspect, that are
ultimately degraded by spatial fluctuations of quantum origin for very weak
images. The experiment described in this section [17] was designed to assess
these spatial fluctuations.

The quantum noise properties of an optical parametric amplifier are de-
scribed by the noise figure NF = SNRin/SNRout. However, if SNRout is the
output signal-to-noise ratio after detection with a quantum efficiency η < 1,
the input signal-to-noise ratio SNRin of a Poissonian beam is not a directly
measurable quantity. What can be effectively measured is the signal-to-noise
ratio after detection without amplification, resulting in multiplying both the
input signal-to-noise ratio and the noise figure by the global quantum effi-
ciency of the system ηtot. Unlike the “theoretical” noise figure F ′ defined in
Eq. (7.44), the experimental ratio R = ηtot × F ′ can be smaller than unity,
meaning that the amplified image is less degraded by the detection than the
shot-noise limited input (see discussion before Eq. (7.42)). Moreover, using
a detector with a pixel size Sd much smaller than the coherence area Sdiff

in the amplified image is equivalent to multiplying the quantum efficiency
by the ratio Sd/Sdiff (see Eq. (7.45)). Note that such degradation of the
signal-to-noise ratio due to very small pixels can be effectively overcome by
the amplification for the temporal fluctuations, whereas this improvement
is an artifact of spatial signals, because the OPA itself rejects both signal
and noise of high spatial frequencies. The experimental set-up is a traveling-
wave OPA similar to that described in [9] (see Fig. 7.7). The signal and the
pump pulses are provided, respectively, by the the second harmonic (1.2 ps
FWHM duration FWHM at 527.5 nm) and the fourth harmonic (0.93 ps
duration at 263.7 nm) of a Q-switched mode-locked Nd:Glass laser (Twinkle
laser by Light Conversion) at a repetition rate of 33 Hz. The amplification
is performed in a beta-barium-borate (BBO) crystal whose transverse area,
7× 7 mm2, is chosen in order to obtain a sufficient number of resolution cells
in the amplified image so as to perform valid statistics. The crystal length,
4 mm, is limited by the group-velocity difference between the UV pump and
the green signal. Because of the high dispersion of the crystal in the UV,
only type-I amplification is possible for this couple of wavelengths. Hence,
collinear interaction is phase sensitive, and phase-insensitive amplification is
obtained by a slight angular shift between the pump and the signal beams
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Fig. 7.7. Experimental set-up for spatially noiseless amplification.

as shown in Fig. 7.8. The signal beam is widened by a telescope and illu-
minates a resolution chart. A line of this chart is imaged on the input face
of the crystal by a second telescope and then onto the CCD camera by the
lens L (scheme of Ref. [7]). The CCD camera includes a back-illuminated
thin silicon array cooled at −40◦C to ensure a negligible dark current and a
low read-out noise. To match the phase-fronts, the beam waists of the sig-
nal and the pump are superimposed within the crystal. A filtering aperture,
placed in the Fourier plane and centered around the zero spatial frequency
of the signal image, limits the detected intensity of spontaneous parametric
down-conversion (SPDC) and ensures the elimination of the idler in the PIA
scheme. However, the spatial spectral bandwidth in the detected image is
reduced by this aperture and, in practice, the size of Sdiff is no longer deter-
mined by the phase matching conditions, but rather by the diameter of the
aperture, giving a transverse size of Sdiff equal to 7.3 pixels on the camera.
In the following, the results will be presented for different groupings of the
pixels (achieved by software) in order to consider effective detector areas Sd

smaller or greater than Sdiff . The NF depends on the resulting total quantum
efficiency ηtot that can be computed as the product of the quantum efficiency
(ηCCD) of the CCD camera by the transmission (ηopt) of the optical elements
after the crystal,

ηtot = ηopt × ηCCD = 0.69 × 0.9 = 0.62 ± 0.10. (7.48)

The uncertainty comes from the evaluation of ηopt, and ηCCD is given by the
manufacturer.

The experimental procedure to measure R is achieved in three main steps
that are identical in the PIA and PSA schemes. The first step consists in
measuring the signal-to-noise ratio without amplification (i.e., ηtot × SNRin)
along with a statistical verification of the Poissonian hypothesis. In the second
step, the intensity of the SPDC is measured and its level is subtracted from
the amplified images. The last step consists in measuring SNRout. For the
first step, the shot-to-shot stability of the laser is sufficient to estimate the
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Fig. 7.8. Phase-matching conditions. Top: noncollinear for the PIA scheme. Bot-
tom: collinear for the PSA scheme. Dotted line shows spatial spectral bandwidth
of the OPA. Full line indicates the resolution range.

level of the input images by recording a set of about 20 nonamplified images.
Two sets with different intensity levels were recorded in the PIA scheme. For
each set, we have verified that a nongrouped image is well described by a
Poissonian distribution, whereas grouping degrades this distribution because
of residual deterministic defects. Nevertheless, the experimental statistics on
the difference between two images of a set remains Poissonian because the
subtraction of images eliminates deterministic structures,

ηtot × SNRin = 〈n〉p × Sd = 〈n〉, (7.49)

where Sd is the detector area after grouping, expressed in pixels. In Eq. (7.49)
and in all the following 〈n〉p is the mean number of photoelectrons per pixel,
and 〈n〉 designates the number of photoelectrons on Sd, obtained by summing
the gray levels on the pixels and multiplying by the appropriate scaling factor.

To estimate the SPDC level, 20 images were recorded by injecting only
the pump. Because type-I phase matching is noncritical in wavelength [11],
the SPDC is strongly temporally multimode. These modes add incoherently
and each temporal mode is described by a thermal statistic [21]. The number
of temporal modes is experimentally assessed as

Mt =
(〈n〉SPDC

p /ηtot) × Sdiff

G − 1
, (7.50)

where 〈n〉SPDC
p is the mean level of SPDC per pixel before grouping and G

the gain of the OPA. Consequently, the variance of the SPDC on a grouped
pixel is given by

〈(∆n)2〉SPDC =
〈n〉2SPDC

Mt
+ 〈n〉SPDC, (7.51)
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where the first term in the right part of Eq. (7.51) describes the classical
fluctuations and the second term the shot noise. Equation (7.51) does not
take into account deterministic variations of SPDC due, for example, to im-
perfections of the pump profile, that are not negligible for large grouping
when directly measuring the SPDC variance. Because these variations do not
affect difference images, Eq. (7.51) is used rather than a direct measurement
to calculate the SPDC variance.

The measurement of SNRout is performed by using single-shot images, in
order to take into account the strong variations of the gain from one shot
to another in the phase-sensitive scheme because of the noncontrolled varia-
tions of the relative phase between the signal and the pump. Such a control
is made difficult by the low repetition rate of both the laser source (33 Hz)
and the camera (< 1 Hz). Classical noise is predominant in the amplified
images, because of deterministic imperfections of the system (pump beam,
lenses, etc.) and good results have been obtained only by performing differ-
ences of images, in order to eliminate the spatial defects that are reproducible
from one shot to another. SNRout is measured as follows: (i) an area with
approximately constant mean intensity is selected in the amplified image; (ii)
the measurement of the signal-to-noise ratio on all amplified images without
subtraction allows the selection of images with the highest signal-to-noise ra-
tios; (iii) pairs of images are defined by all permutations between the selected
images; (iv) the mean and the variance are calculated for each pair and each
grouping: the mean is calculated as the mean of the two images corrected by
subtracting the electronic background 〈n〉b and converted in photoelectrons
(pe−). Finally, the mean of the SPDC is subtracted. The whole calculation
is summarized as

〈n〉 = g × (〈n〉gl − 〈n〉b) − 〈n〉SPDC, (7.52)

where g = 0.97 (pe−) × (gl)−1 converts the gray level (gl) into pe−. The
variance in the amplified image is computed as half the variance of the dif-
ference of the images, with subtraction of the variances of the read-out noise
〈(∆n)2〉subread) and of the SPDC:

〈(∆n)2〉 =
1
2
× {[〈(∆n)2〉sub − 〈(∆n)2〉subread] − 2 × 〈(∆n)2〉SPDC}. (7.53)

SNRout is computed for each value of the detector area as

SNRout =
〈n〉2

〈(∆n)2〉 . (7.54)

From this value and the corresponding value ηtot × SNRin, the ratio R is
determined for each pair of images and the mean ratio is assessed from all
pairs. The experimental error bars are finally determined as twice the stan-
dard deviation divided by the square root of the number of pairs of selected
images. In the PIA scheme, about 100 amplified images were recorded for
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Fig. 7.9. Example of amplified image in the PIA scheme. Dashed line: edges of the
crystal. Solid line: limits of the area used for the statistics (8241 pixels).

Fig. 7.10. NF after detection in the PIA scheme versus the detector size. Squares:
experimental data of PIA series 1 (dotted error bars). Circles: experimental data
of PIA series 2 (solid line error bars). Line: theoretical curve (heavy dotted error
bars).

each set of nonamplified images and the gain was estimated for each image
from the mean in the corresponding set of nonamplified images. The gain
variations are due to the shot-to-shot fluctuations of the laser. The average
gain is GPIA = 1.6 ± 0.5. Ten images have been selected with a constant
gain for each set. Figure 7.9 shows an example of a selected image. Figure
7.10 reports the NF after detection for the PIA scheme versus the detector
size. For Sd ≥ Sdiff , the theoretical R is RPIA = 1.1 ± 0.1. For Sd < Sdiff ,
ηtot × (Sd/Sdiff) is used as in Eq. (7.40) although this assumption is only
correct when Sd � Sdiff as explained previously. The uncertainty is defined
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by the uncertainty on ηtot given in Eq. (7.48). The experimental data and
the theoretical curve are in good agreement. The differences between the two
sets, realized in equivalent conditions, remain in the uncertainty range due to
the random character of fluctuations. In the PSA scheme about 500 images

Fig. 7.11. Histogram of the gain for both the PIA and PSA schemes.

Fig. 7.12. Example of amplified image in the PSA scheme. Area of 3266 pixels.

were recorded and the gain was measured for each image with a range from
1 to 6, as shown in Fig. 7.11. Because the relative phase is not controlled,
it is more difficult to find pairs of images that correspond both to the same
(maximum) gain and the same phase. Nevertheless, the criteria based on the
highest signal-to-noise ratio allow the selection of five images that were am-
plified in the same conditions. Figure 7.12 shows an example of a selected
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Fig. 7.13. NF after detection in the PSA scheme versus the lateral detector size.
Squares: experimental data (solid line error bars). Line: theoretical curve (heavy
dotted error bars).

image. The gain is clearly nonhomogeneous along the line because of residual
variations of the relative phase. Therefore, the used area where the statistics
can be assumed stationary, is smaller than in the PIA case. Figure 7.13 shows
the evolution of the NF after detection for the PSA scheme versus the de-
tector size. The theoretical curve is calculated from Eq. (7.45) as in the PIA
scheme giving RPSA = 0.7±0.1 when Sd ≥ Sdiff . The agreement between the
experimental data and the theoretical curve is good and proves the noiseless
character of the PSA scheme.

In conclusion, the experimental demonstration of purely spatial noise-
less amplification of images was achieved in a PSA scheme and the results
were compared with the PIA scheme. The obtained results are in satisfac-
tory agreement with the theory. As expected, the PSA does not add noise,
whereas PIA leads to the expected 3 dB degradation of the signal-to-noise
ratio.
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8.1 Introduction

Although the processing of an image by all-optical means is quite less common
than the well-developed techniques for digital image processing [1], it has
nevertheless been around for quite some time. At a classical level early works
demonstrated frequency transfer of an optical image from the infrared to
the visible domain [2, 3], and later from the visible to the UV domain [4,
5], as well as parametric amplification of an UV image [6, 7], and contrast
inversion [8]. In these schemes, an optical image at a frequency ω is directly
injected into a nonlinear crystal illuminated with a strong monochromatic
pump wave at frequency ωp and the processed image is formed in the output
plane. As a result of the nonlinearity of the crystal, the input image will be,
depending on some phase-matching condition, either transferred to a higher
frequency ω + ωp by simple frequency addition [2–4], or amplified by photon
down-conversion [6–8]. In the latter case the amplification is accompanied
by the formation of a phase conjugated (idler) image at the complementary
frequency ωp − ω. Considering the spatial dependence of the image-processing
mechanism on the position of the object in the transverse plane, the phase-
matching condition will determine whether image-processing will be efficient
either on a disk centered on the optical main axis of the system, or on a ring of
finite width. This latter regime is also useful for selectively amplifying some
Fourier components of a given image, leading to contrast enhancement or
inversion. A quite significant amount of work in all-optical image-processing
operations has been performed in photorefractive media [9] including edge
enhancement [10–12], image inversion, division, differentiation and deblurring
[13–16], noise suppression [17], and contrast enhancement [18].

More recently, image processing has been considered also on a quantum
level, including the investigation of the properties of the quantum fluctua-
tions in the output image. The crucial prediction, which gave rise to rapid
developments in the emerging field of quantum imaging [19, 20], was made
in the context of image amplification: whereas quantum mechanics imposes
that the phase-insensitive amplification of an image is always accompanied
by an addition of at least 3 dB extra noise to the output image [21], a phase-
sensitive amplifier has much better noise performance [22, 23]. Even more,
noiseless image amplification (i.e., an amplification that preserves the signal-
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to-noise ratio during processing) was shown, first theoretically [24, 25], and
then experimentally [26], to be possible. This technique may be applicable to
situations in which a faint coherent signal must be amplified prior to detec-
tion. In the case of weak signals, the degradation of the signal-to-noise ratio
predicted by quantum mechanics in the case of phase-insensitive amplification
might irremediably destroy the information encoded in the image.

In this chapter we consider the use of the second-harmonic generation
(SHG) for all-optical processing of images. From the point of view of crystal
nonlinearities one distinguishes between type-I and type-II second-harmonic
generation. In the simplest situation, type-I refers to the case where two fields
with the same polarization and the same fundamental frequency ω combine
to yield a second-harmonic field at frequency 2ω. In type-II two linearly
orthogonally polarized fields with fundamental frequency ω are injected in
the nonlinear crystal leading to a second-harmonic field at frequency 2ω.

We will address first the situation in which the nonlinear crystal is placed
inside an optical cavity. The fundamental difference of the cavity-based geom-
etry from the traveling-wave case is the existence of instability thresholds
which, if used appropriately, allow for nonlinear processing of the image. For
example, considering type-II second-harmonic generation inside a planar cav-
ity where all the fields are resonant, it is possible to selectively enhance the
contrast of part of an image or to detect its contour [27]. This phenomenon
will be discussed in Section 8.2. In Sections 8.3 and 8.4 we will consider
the quantum imaging properties of the second-harmonic generation in the
traveling-wave configuration. The first of these sections is devoted to a type-I
case, and the second one is devoted to a type-II situation where the polar-
ization degree of freedom allows for a larger variety of possible operations.

8.2 Image Processing in Second-Harmonic Generation
at a Classical Level

In this section we consider a crystal with a χ(2) nonlinearity enclosed in an
optical cavity, taken ideally to be a planar cavity and we will assume type-II
phase matching as sketched in Fig. 8.1. A second-harmonic (SH) field will be
generated if the cavity is pumped at two orthogonal polarizations x and y.
In the paraxial and mean-field approximation the system can be described
by the following set of equations [27–31],

∂tB = −(1 + iδB)B +
i

2
∇2B + iAxAy, (8.1)

∂tAx = −(1 + iδA)Ax + i∇2Ax − iA∗
yB + Ex, (8.2)

∂tAy = −(1 + iδA)Ay + i∇2Ay − iA∗
xB + Ey, (8.3)

which govern the temporal evolution of the intracavity field envelopes Ax and
Ay at the fundamental frequency ω with linear polarizations x and y and B
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at the second-harmonic frequency 2ω, polarized along the y axis; δA and
δB are the detunings at the fundamental and second-harmonic frequencies,
respectively. Times are expressed in units of the cavity decay time and lengths
in units of the diffraction length. Diffraction is taken into account through
the transverse Laplacian ∇2 = ∂2/∂x2 + ∂2/∂y2. The pumping amplitudes
Ex and Ey in each linear polarization state are chosen such that an image is
injected with the x-polarization and a homogeneous field is inserted in the
y-polarization. The study of the steady-state solution of Eqs. (8.1)–(8.3) for

(2) nonlinear cavity Object plane Image plane 
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Image (
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Output (
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Fig. 8.1. Scheme of an optical device based on intracavity type-II second-harmonic
generation. The nonlinear crystal is enclosed in a plane-mirror cavity.

homogeneous pumps provides valuable insight into the relevant properties
of the system that will be used for image processing. For the pump waves
homogeneous in the transverse plane, Ex and Ey can be taken as real without
loss of generality. Typically, Eqs. (8.1)–(8.3) have been considered for the case
of symmetrical pumping Ex = Ey, which maximizes the production of the
second harmonic. In such a case the homogeneous stationary steady state
becomes unstable for a pump above the critical value [28–32]:

|Eas|2 = 2(1 + δ2
B)1/2(1 + δ2

A)3/2 + 2(1 + δ2
A)(1 − δAδB). (8.4)

The system evolves to a homogeneous state for which |Ax| and |Ay| are
different, so the intracavity field polarization is no longer the same as the
pump (polarization instability). Because of the symmetry of the system two
equivalent but different states can exist, with large value of |Ax| and small
value of |Ay| and vice versa [27–29]. For asymmetric homogeneous pumping
Ex 
= Ey, the homogeneous steady state for |Ay| is given by the solution of
the polynomial

∆A|Ay|10 + [4(1 − δb)∆A − |Ey|2]|Ay|8

+ 2[∆AQ + ∆AB(|Ex|2 − 2|Ey|2)]|Ay|6

+ 2[2∆2
A∆2

B∆AB − Q|Ey|2 − 2∆2
AB |Ex|2]|Ay|4

+ [∆3
A∆2

B + 2∆A∆B∆AB(|Ex|2 − 2|Ey|2)]|Ay|2

− ∆2
A∆2

B |Ey|2 = 0, (8.5)
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Fig. 8.2. Second-harmonic generation for asymmetric pumping. Steady-state in-
tracavity field amplitudes as a function of Ex, for Ey = 5, δA = 1, and δB = 0. The
vertical dashed line corresponds to the symmetric pumping Ex = Ey.

where ∆A = 1 + δ2
A, ∆B = 1 + δ2

B , ∆AB = 1 − δAδB , and Q = (δA + δB)2 +
3∆2

AB . Once |Ay| is known, |Ax| and |B| are given by

|Ax|2 =
∆B |Ex|2

|Ay|2 + 2∆AB |Ay| + ∆A∆B
,

|B|2 =
|Ax|2|Ay|2

∆B
. (8.6)

Figure 8.2 shows a typical dependence of the stationary solutions for the
intracavity fields |Ax|, |Ay|, and |B| on |Ex| when Ey = 5. For small |Ex|, the
functions Ax(Ex) and B(Ex) take small values, whereas Ay(Ex) is large and
close to Ey/(1 + iδA). All of them are single-valued. When |Ex| approaches
|Ey|, the system displays bistability: Ax(Ex) and Ay(Ex) become S-shaped
and B(Ex) closes over itself. For large |Ex| all the functions become again
single-valued but now Ax(Ex) � Ay(Ex). The existence of three steady-state
solutions of Eqs. (8.1)–(8.3) in a region of finite width centered on |Ex| = |Ey|
is closely related to the polarization instability occurring in the symmetrical
pumping case. If fact, this S-shape can be observed only if |Ey| > |Eas|.

Below we will consider the effects produced on an image inserted in the
system as spatial variations in the intensity of the x-polarized pump field
along with a homogeneous pump Ey. Varying the amplitude of the homoge-
neous pump it is possible to achieve different regimes of operation. In a first
regime the image can be transferred from the fundamental to the second-
harmonic. In a second regime it is possible to enhance its contrast and to
detect the contour of the image [27]. Furthermore, it is also possible to filter
noise eventually present in the image. For simplicity Ex and Ey are taken as
real except when noise is considered. Here we will consider only the case of an
ideal cavity with flat mirrors that is resonant with both fundamental fields



8 Optical Image Processing in Second-Harmonic Generation 171

and with the second-harmonic field. Similar operations can be performed us-
ing cavities with spherical mirrors or where only the fundamental fields are
resonant, as discussed in Ref. [33].

8.2.1 Frequency Up-Conversion of an Image

We consider the injection of an image, that is, the amplitude of the x-
polarized signal |Ex(x)| is a function of the transverse coordinate x. At a
given position x the intracavity fields Ax,y(x) and B(x) tend to take the sta-
tionary values shown in Fig. 8.2 as if the pumps were homogeneous, despite
the spatial coupling caused by diffraction. Diffraction becomes relevant for
image details on the scale of the diffraction length. Figure 8.3 shows a scheme
for a very simple one-dimensional image where |Ex| takes only two values. If
|Ex(x)| remains well below |Ey|, Ax(x) never leaves the lower branch of the
curve Ax(Ex), so |Ax| reproduces the spatial distribution of the input im-
age |Ex|(x). The output at the SH frequency B(x) also reproduces |Ex(x)|.

Fig. 8.3. Geometrical construction to illustrate the frequency transfer regime.
On the left we plot the stationary amplitude of the intracavity fields for homo-
geneous asymmetric pumping as a function of Ex for Ey = 5 (δB = 0, δA = 1,
and Eas = 3.10755). On the right we plot the response of the system to a simple
image (sketched on the far right) where Ex takes only the values E0 and E1 with
E0 < E1 < Ey.



172 Pierre Scotto, Pere Colet, Adrian Jacobo, and Maxi San Miguel

Fig. 8.4. Frequency transfer. The left column shows (from top to bottom) the
spatial distribution of the input field Ex, and of the intracavity fields |Ax|, |Ay|
and |B|. In all the figures of this chapter, except if otherwise noted, the grey scale
varies from the minimum (white) to the maximum (black) of each field. The right
column shows a transversal cut of the fields along the dashed line on the top left
panel. We have considered Ey = 5.5 (shown as dashed line on the top right panel).

Therefore, intracavity type-II SHG allows for an input image to be trans-
ferred from the fundamental to the SH frequency. In addition, polarization
switching is performed, because the image encoded in |Ex| and the SH field
B has orthogonal polarizations. As a side effect, the input image appears in
negative as a weak modulation of Ay around Ey/(1+ iδA). This procedure is
illustrated in Fig. 8.4 in a more realistic two-dimensional image. One can see
that because of diffraction the edges of the image are softened. The image in
the intracavity and the second-harmonic fields can be considered as a union
of two different stationary states and the oscillatory tails of the front con-
necting the two states induce some distortion near the border. Nevertheless,
the image is quite well reproduced as follows from Fig. 8.4.

8.2.2 Contrast Enhancement and Contour Recognition

Now we will consider the case in which the amplitude of the signal locally
exceeds |Ey|. In this case the multivalued dependence of Ax(Ex), Ay(Ex),
and B(Ex) comes into play as is shown in Fig. 8.5. If E1 is larger than
the upper end of the hysteresis cycle and E0 is smaller than the lower end,
Ax(Ex(x)) has to jump from the lower to the upper branch, and Ay(Ex(x))
has to jump from the upper to the lower branch. This will give rise to a sharp
spatial variation of Ax and Ay. In fact for vanishing intracavity fields as an
initial condition, it is not necessary to fully cross the hysteresis cycle to have
a jump. With those initial conditions where |Ex| < |Ey| the system locally
selects the steady-state solution with a small value for |Ax| and a large value
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Fig. 8.5. Geometrical construction to illustrate the contrast enhancement and
contour recognition regime similar to Fig. 8.3 but with E0 < Ey < E1.

Fig. 8.6. Contrast enhancement and contour recognition. The left column shows
(from top to bottom) the spatial distribution of the amplitude of the input image
|Ex|, and the amplitude of the intracavity fields |Ax|, |Ay|, and |B|. The right
column shows a transversal cut of the fields. We have considered |Ey| = 5.
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for |Ay|, and it selects the steady state with large |Ax| and small |Ay| where
|Ex| > |Ey|. Therefore, the reference value |Ey| plays in fact the role of an
effective threshold and the jump already occurs if |Ex| crosses |Ey| as sketched
in Fig. 8.5. In the region where |Ex(x)| is larger than the reference level |Ey|,
|Ax| has a large value compared with the zones where |Ex(x)| < |Ey|; so
the contrast in this field appears enhanced with respect to the contrast in
the input fields (see Fig. 8.5). The amplitude |Ay| takes lower values where
|Ex| < |Ey| leading to an image that is inverted with respect to the input.
At the border between the regions |Ex| > |Ey| and |Ex| < |Ey| the second
harmonic field B displays a sharp peak, because locally |Ax|  |Ay|; that
is, the system goes through the symmetric steady-state solution characterized
by a higher intracavity second-harmonic field than the asymmetric stable
ones. As a consequence, the second-harmonic field displays the contour of
the input image Fig. 8.5. These effects are shown for a two-dimensional input
image in Fig. 8.6. Image processing is slightly affected by diffraction effects
in two dimensions, which tends to smooth out sharp angles in the input
image and sets a minimum contrast below which no contrast enhancement
can occur. It should be emphasized that the previous results show that for
a given image different processing capabilities are possible by tuning the
amplitude of the homogeneous field |Ey|. This is even more interesting when
considering images that are composed of many levels of intensity, as in a
gray-scale image. In that sense, if the homogeneous pump |Ey| is set to a
value larger than |Ex(x)| for any x then the frequency transfer process will
take place and the whole image will be displayed by the second-harmonic
frequency field B(x). If |Ey| is decreased, then the parts of the image where
|Ex(x)| > |Ey| will undergo a contrast enhancement process.

8.2.3 Noise Filtering Properties

Another interesting effect arises when the inserted image is superimposed
with a complex random field, creating a noisy image both in intensity and
phase. In this case the system shows noise filtering properties, and the images
at the fundamental and the second-harmonic fields have a lower noise level
than the input image. The noise filtering effect arises as an interplay between
the diffraction and the nonlinear interaction that filters out all the high spa-
tial frequency components of the input image. Therefore, the small-scale
fluctuations are effectively removed [27]. It appears both in the frequency
transfer regime and in the contour recognition regime, but it is more effective
in the second case, when the nonlinearities play a more important role and
the contrast of the image is enhanced, as can be seen from Figs. 8.7 and 8.8.
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Fig. 8.7. Noise filtering in the frequency transfer regime. The left column shows
(from top to bottom) the spatial distribution of the amplitude of the input image
|Ex|, and the amplitude of the intracavity fields |Ax|, |Ay|, and |B|. The right
column shows a transversal cut of the fields. We have considered |Ey| = 5.

Fig. 8.8. Noise filtering in the contrast enhancement regime. The left column shows
(from top to bottom) the spatial distribution of the amplitude of the input image
|Ex|, and the amplitude of the intracavity fields |Ax|, |Ay|, and |B|. The right
column shows a transversal cut of the fields. We have considered |Ey| = 5.5.

8.3 Quantum Image Processing in Type-I
Second-Harmonic Generation

The treatment in the previous section was fully classical. In this and the next
section we will explore the possibilities offered by second-harmonic genera-
tion for image processing from a quantum point of view. We will consider a
traveling-wave configuration because in this case we will be able to separate
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the classically strong fields from the (weak) quantum fluctuations for which
we will obtain linearized propagation equations. In this section we will con-
sider the simpler case of a type-I interaction where the fundamental field has
only one relevant polarization direction and in the next section we will address
the type-II case where the polarization degree of freedom of the fundamental
fields plays an important role. In the following subsections we address the dy-
namics of the field operators, obtain the propagation equations, and explore
the results for different configurations.

8.3.1 Field-Operator Dynamics

We follow a procedure similar to the one used in Ref. [25] for an OPA. The
main difference is that for an OPA it is generally justified to work in a classical
approximation for the pump field because it is undepleted. In SHG, pump
depletion cannot be neglected and both the fundamental and the second-
harmonic fields have to be treated simultaneously as quantum fields [34].
This section is divided in two parts: we first deduce the nonlinear propagation
equations for the operators associated with the fundamental and the second-
harmonic fields and then we linearize the quantum fluctuations around the
nonlinear classical fields.

A. Propagation Equations

We will begin by defining the slowly varying photon annihilation operators for
the fundamental and the second-harmonic fields ÂF (z,ρ, t) and ÂS(z,ρ, t)
from the positive-frequency part of the electric field,

Ê
(+)
i (z,ρ, t) = iξi

√
h̄ωi

2ε0c
exp[i(kiz − ωit)]Âi(z,ρ, t) , (8.7)

for i = F, S. The wave-numbers of the fundamental and the second-harmonic
waves in the nonlinear medium, kF and kS , depend on the wave frequency
through the dispersion relation ω = ω(k). In Eq. (8.7) the prefactors

ξi =
u(ki)v(ki)
c2cos ρ(ki)

(8.8)

involve the group velocity u(ki), the phase velocity v(ki), and some general-
ized anisotropy angle ρ(ki). They describe the strength of the electric field
in the medium, as compared to that in the vacuum; z is the coordinate on
the longitudinal axis, which is defined as the beam axis, and ρ = (x, y) is the
two-dimensional coordinate vector in the transverse plane.

The dynamics of these two fields in a χ(2) nonlinear crystal is described
by the Hamiltonian operator [25,34]:

Ĥint = Ĥ0,F + Ĥ0,S + Ĥint, (8.9)
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in which Ĥ0,F and Ĥ0,S are the free-field Hamiltonians for the fundamental
and the second-harmonic field in the medium, whereas Ĥint describes the
interaction between the two fields generated by the nonlinearity of the crystal.
In terms of the slowly varying operators Âi(z,ρ, t), the free-field Hamiltonians
are given by [25]

Ĥ0,i =
h̄ωi

c

∫
V

dz d2ρÂ†
i (z,ρ, t)Âi(z,ρ, t), (8.10)

where space integration is extended to the whole volume of the crystal. The
expectation value 〈Â†

i (z,ρ, t)Âi(z,ρ, t)〉 can be interpreted as the energy den-
sity per unit volume, scaled by a factor h̄ωi/c. The interaction part Ĥint de-
scribes the three-wave interaction, which, under the usual assumption of an
instantaneous and local nonlinear response of the medium [35], is given in
terms of the slowly varying field operators by

Ĥint = ih̄λ

∫
V

dz d2ρ
[
ei∆kzÂ†

S(z,ρ, t)Â2
F (z,ρ, t)

−e−i∆kzÂS(z,ρ, t)Â†2
F (z,ρ, t)

]
, (8.11)

where h̄λ = χ(2)(h̄/2ε0c)3/2ξ2
F ξS

√
ω2

F ωS and ∆k = 2kF − kS is the collinear
phase mismatch. The Hamiltonian Ĥint is the sum of two contributions: the
first term in Eq. (8.11) is responsible for second-harmonic generation and the
second for the down-conversion. The dynamics of the two field operators is
described by the Heisenberg equations, which for the Hamiltonian defined by
Eqs. (8.10) and (8.11) are:

∂tÂF (z,ρ, t) = iωF ÂF (z,ρ, t)

−iωF

∫
V

dz′d2ρ′GF (z − z′,ρ − ρ′)ÂF (z′,ρ′, t) (8.12)

−2cλ

∫
V

dz′d2ρ′GF (z − z′,ρ − ρ′)e−i∆kz′ÂS(z′,ρ′, t)Â†
F (z′,ρ′, t),

∂tÂS(z,ρ, t) = iωSÂS(z,ρ, t)

−iωS

∫
V

dz′d2ρ′GS(z − z′,ρ − ρ′)ÂS(z′,ρ′, t) (8.13)

−2cλ

∫
V

dz′d2ρ′GF (z − z′,ρ − ρ′)e−i∆kz′Â2
F (z′,ρ′, t),

where

Gi(z− z′,ρ−ρ′) =
∫

dkzd
2q

(2π)3
ω(
√

k2
z + q2)
ωi

ei(kz−ki)(z−z′)+iq·(ρ−ρ′) . (8.14)

It is helpful to work with operators in the Fourier space rather than in real
space,
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Âσ(z, q, Ω) =
∫

d2ρe−iq·ρ
∫

dteiΩtÂσ(z,ρ, t). (8.15)

To separate the effects of the free propagation through the crystal from
the nonlinear effects it is convenient to define for each field a propagation-
corrected Fourier amplitude,

Âi(z, q, Ω) = ξi
√

ni exp{−i[kz
i (q, Ω) − ki]z}Âi(z, q, Ω), (8.16)

where kz
i (q, Ω) =

√
k(ωi + Ω)2 − q2 is the longitudinal wave-number of a

wave with frequency ωi + Ω and the transverse vector q. The exponential
phase factor in Eq. (8.15) is chosen to absorb in the free-propagation case the
exact z-dependence of the wave associated with the field operator Âi(z, q, Ω).
The prefactor ξi

√
ni =

√
ui/c, with ui defined as the group velocity of a wave

with frequency ωi, allows us to identify 〈Â†
i (z,ρ, t)Âi(z,ρ, t)〉 with the mean

photon flux density in the medium (photons cm−2 sec−1).
In the standard paraxial (|q| � kz

σ(q, Ω)) and quasi-monochromatic
(Ω � ωσ) approximation and under the assumption of slow z-dependence
of the field operators, it can be shown that the propagation-corrected Fourier
amplitudes obey the following set of propagation equations [34],

∂

∂z
ÂF (z, q, Ω) = −2K

∫
d2q′dΩ′Â†

F (z, q′, Ω′)ÂS(z, q + q′, Ω + Ω′)

× exp{i[kz
S(q + q′, Ω + Ω′) − kz

F (q, Ω) − kz
F (q′, Ω′)]z}, (8.17)

∂

∂z
ÂS(z, q, Ω) = +K

∫
d2q′dΩ′ÂF (z, q′, Ω′)ÂF (z, q − q′, Ω − Ω′)

× exp{i[kz
F (q′, Ω′) + kz

F (q − q′, Ω − Ω′) − kz
S(q, Ω)]z}, (8.18)

where K = (2π)−3
√

c3/u2
F uSλ is the coupling constant of the interaction.

These coupled differential operator equations describe the propagation of the
fundamental and the second-harmonic field through the nonlinear medium.
The right-hand side represents a sum over all three wave processes that are
able to generate a fundamental and a second-harmonic wave, respectively,
with transverse wave-vector q and frequency Ω under the physical constraints
of momentum and energy conservation. These equations generalize the prop-
agation equations derived in [36] and [37] for a single-mode case.

By solving Eqs. (8.17) and (8.18) one can obtain the functional depen-
dence between the fields at the output plane and the fields at the input one.
In principle, this allows us to calculate the output of the system for an ar-
bitrary quantum-mechanical state of the electromagnetic field illuminating
the crystal. However, due to the nonlinear character of the equations some
approximations are needed to solve them, as described bellow.

B. Two-Field Input-Output Relations

We consider now a situation suitable for image-processing problems: we as-
sume the field distribution in the input plane of the crystal as given by a
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superposition of a strong homogeneous pump field at frequency ω and a weak
coherent signal at 2ω with some spatiotemporal distribution corresponding
to an input image. We assume that at any point inside the crystal the funda-
mental field generated by the input signal remains weak with respect to the
pump field. Following [36] and [37] we write the propagation-corrected field
operators associated with the fundamental and the second-harmonic field as

ÂF (z, q, Ω) = c̃F (z)δ(2)(q)δ(Ω) + âF (z, q, Ω), (8.19)
ÂS(z, q, Ω) = c̃S(z)δ(2)(q)δ(Ω) + âS(z, q, Ω), (8.20)

where c̃F (z) and c̃S(z) are the amplitudes of the strong monochromatic
waves at frequencies ω and 2ω generated by the pump inside the crystal
which, for simplification, are considered in the plane-wave approximation,
and âF (z, q, Ω) and âS(z, q, Ω) are the quantum field operators associated
with the two fields. These representations take into account the propagation
of any field distribution injected into the crystal in addition to the strong
pump field. In particular, they encode the propagation of the vacuum fluctu-
ations entering the crystal through the input plane, which are responsible for
the quantum fluctuations in the output fields, as analyzed in [36, 37]. Sub-
stituting Eqs. (8.19) and (8.20) in Eqs. (8.17) and (8.18) we obtain at zero
order

d

dz
c̃F (z) = −2Kc̃∗F (z)c̃S(z)e−i∆kz, (8.21)

d

dz
c̃S(z) = Kc̃2

F (z)ei∆kz, (8.22)

which are the classical propagation equations of nonlinear optics. The total
power W is conserved |c̃F (z)|2 + 2|c̃S(z)|2 = |c̃F (0)|2 + 2|c̃S(0)|2 = W in
correspondence with the conservation of energy flow in the lossless crystal
(Manley–Rowe relation). Introducing the dimensionless characteristic inter-
action length z0 = 1/

√
2WK and scaling the space as ζ = z/z0 and the field

amplitudes as cF (z) = c̃F (z)/
√

W and cS(z) = c̃S(z)/
√

W/2, we arrive at

d

dζ
cF (ζ) = −c∗F (ζ)cS(ζ)e−i∆sζ , (8.23)

d

dζ
cS(ζ) = c2

F (ζ)ei∆sζ , (8.24)

where ∆s = ∆kz0. These equations can be solved analytically [46]. At first
order we obtain

∂

∂ζ
âF (ζ, q, Ω) = −cS(ζ)â†

F (ζ,−q,−Ω)e−i∆(q,Ω)ζ

−
√

2c∗F (ζ)âS(ζ, q, Ω)eiD(q,Ω)ζ , (8.25)
∂

∂ζ
âS(ζ, q, Ω) =

√
2cF (ζ)âF (ζ, q, Ω)eiD(q,Ω)ζ . (8.26)
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Equations (8.25) and (8.26) involve two different dimensionless phase-
mismatch functions,

∆(q, Ω) = [kz
F (q, Ω) + kz

F (−q,−Ω) − kS ]z0, (8.27)
D(q, Ω) = [kz

F (q, Ω) + kF − kz
S(q, Ω)]z0. (8.28)

We should notice that, in the perfect phase-matched case the linearized-
fluctuation analysis predicts that for large interaction lengths the fundamen-
tal field should evolve to a perfect squeezed vacuum [37]. This is in contra-
diction to the linearization requirement that at frequency ω the amplitude
of the fluctuations should be smaller than the mean value of the field [38].
Comparing the predictions of the linearized analysis for traveling-wave SHG
with the stochastic integration of the full nonlinear propagation equations
obtained in the positive P representation [38–40], the approximation can be
considered valid for interaction lengths ζ < 4 [34].

The different terms in Eqs. (8.25) and (8.26) have a clear physical inter-
pretation: the first term in the right-hand side of Eq. (8.25) reflects the trans-
formation inside the crystal of photons of the strong homogeneous second-
harmonic wave generated by the pump into two fundamental photons with
opposite frequency offsets Ω and −Ω and transverse wave-vectors q and −q.
This process (which we call Process I) generates a coupling between the am-
plitudes âF (z, q, Ω) and â†

F (z, q, Ω). The second term in the right-hand side
of Eq. (8.25) describes the frequency down-conversion of a second-harmonic
wave with (q, Ω), into a fundamental wave with (q, Ω), which translates
into a coupling between the field operators âF (z, q, Ω) and âS(z, q, Ω)
(Process II). Energy conservation implies that this frequency-changing process
occurs under the radiation of a fundamental pump photon. The reverse
process (Process III) acts as a source of second-harmonic photons and corre-
sponds to the right-hand side of Eq. (8.26). A large phase mismatch results
in fast spatial oscillations of the source term, which reduces the efficiency of
a particular process. Therefore, Process I will be efficient for ∆(q, Ω)ζ � 1,
whereas processes II and III will be efficient for D(q, Ω)ζ � 1. In the parax-
ial and monochromatic approximation the longitudinal wave number can be
written as

kz
i (q, Ω) = ki +

[
ωin

′
i

c
+

ki

ωi

]
Ω +

k′′
i

2
Ω2 − q2

2ki
, (8.29)

where k′′
i = ∂2k/∂ω2 and n′

i = ∂n/∂ω evaluated at ω = ωi. Then [45]

∆(q, Ω) = ∆s + sign(k′′
F )

Ω2

Ω2
2

− q2

q2
2

, (8.30)

D(q, Ω) = ∆s − Ω

Ω1
+ sign(k′′

F )
Ω2

4Ω2
2

− 1
4

(
1 − ∆k

2kF

)
q2

q2
2

, (8.31)

where q2 =
√

kF /z0, Ω1 = (ω/c(2n′
S − n′

F )z0)
−1 and Ω2 = (| k′′

F | z0)
−1/2.
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It is convenient to introduce a vectorlike notation by defining [45]

â(z, q, Ω) =
(

âF (z, q, Ω)
âS(z, q, Ω)

)
; â†(z, q, Ω) =

(
â†

F (z, q, Ω)
â†

S(z, q, Ω)

)
. (8.32)

The solution of Eqs. (8.25) and (8.26) can be expressed in the form of a
compact input-output transformation that connects the field operators at
the exit plane of the crystal with those at the input plane,

âi(z, q, Ω) = U i(z, q, Ω) · â(0, q, Ω) + V i(z, q, Ω) · â†(0,−q,−Ω) . (8.33)

This transformation involves eight complex coefficients: UF = (UFF , UFS),
US = (USF , USS), V F = (VFF , VFS) and V S = (VSF , VSS). They can be
determined by solving the propagation equations.

Analytical expressions for the coefficients of the input-output transforma-
tion Eq. (8.33) were obtained in [37] for q = 0 and Ω = 0. In the general
case, however, no analytical solution is known, so the coefficients have to be
determined by numerical integration of Eqs. (8.25) and (8.26)

8.3.2 Quantum Image Processing

We consider an optical device represented in Fig. 8.9: a χ(2)-nonlinear crys-
tal pumped at a frequency ω enclosed in a two-lens telescopic system. The
field distribution injected into the nonlinear crystal will be the spatial Fourier
transform of the original image. After processing, another lens will perform
the back-transformation into the real space. This two-lens imaging configura-
tion maps any point of the object and the image plane onto a plane wave with
a given transverse wave-vector. This configuration is similar to the one based
on parametric down-conversion used in [41,42]. In terms of image processing,
we consider an input image at the second-harmonic frequency 2ω. This opti-
cal device is expected to deliver a pair of symmetric amplifieiesd versions of
the input image at both fundamental and second-harmonic frequencies [34].
We will discuss the results in terms of plane waves with given wave-vectors,
because the telescopic system converts these wave-vectors into positions in
the transverse plane. Furthermore, we will assume the temporal evolution of
the input image to be slow and put Ω → 0 for the calculation of the output
images.

The nonlinear crystal is pumped only at a frequency ω. Considering a
vanishing collinear phase mismatch ∆k = 0, Eqs. (8.23) and (8.24) lead to

c̃F (ζ) = eiφ
(0)
F sech(ζ), (8.34)

c̃S(ζ) = eiφ
(0)
F tanh(ζ), (8.35)

where φ
(0)
F is the phase of the pump field.



182 Pierre Scotto, Pere Colet, Adrian Jacobo, and Maxi San Miguel

(2) nonlinear crystal Object plane Image plane 

L L’

y

x

z
Pump (

Input (2
Output ( Output (2

f f f

Fig. 8.9. Scheme of an optical device based on second-harmonic generation. A
nonlinear crystal, pumped at frequency ω, is enclosed in a two-lens telescopic sys-
tem. In the output plane of the crystal, a pupil of finite width represents the finite
spatial bandwidth of the system.

The input signal at frequency 2ω is described by a coherent state |αin〉
characterized by a complex amplitude αin(q, Ω). With respect to the fre-
quency ω, |αin〉 is assumed to be in the vacuum state. Therefore we have

âS(0, q, Ω)|αin〉 = αin(q, Ω)|αin〉,
âF (0, q, Ω)|αin〉 = 0. (8.36)

In parametric down-conversion according to the symmetry properties
of αin(q, Ω) one distinguishes between a phase-insensitive regime, which
corresponds to an input signal confined to one half of the object plane
(αin(q, Ω) = 0 for qy < 0) [19], and the phase-sensitive regime, which refers to
the case of symmetrical input signal, that is, when αin(q, Ω) = αin(−q,−Ω)
[42]. In the following we discuss these two regimes for the SHG system.

A. Phase-Insensitive Configuration

For the input signal defined by Eq. (8.36) using the input-output transfor-
mations (8.33) one obtains that the fundamental output field is given by

〈â†
F (ζ, q, Ω)âF (ζ, q, Ω)〉 = (2π)3δ(3)(0)(|VFF (ζ, q, Ω)|2 + |VFS(ζ, q, Ω)|2)

+ |UFS(ζ, q, Ω)|2|αin(q, Ω)|2 + |VFS(ζ, q, Ω)|2|αin(−q,−Ω)|2, (8.37)

which indeed is independent of the phase of the input signal. Four differ-
ent contributions can be distinguished: the first two terms on the right-hand
side of Eq. (8.37) are independent of the strength of the input wave and
correspond to spontaneous parametric fluorescence, which takes place in the
crystal even in the absence of any coherent input signal. The two other con-
tributions are proportional to the intensity of the input wave at (q, Ω) and
(−q,−Ω), respectively. Because of the particular injection scheme considered
here, for a given wave-vector q at which the output is considered, only one of
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these two terms is nonvanishing. For an object confined to the upper part of
the object plane, at the output one obtains two output images. One confined
to the upper output plane is an amplified version of the input image and has
the intensity given by |UFS(ζ, q, Ω)|2|αin(q, Ω)|2. The other is confined to the
lower output plane with the intensity given by |VFS(ζ, q, Ω)|2|αin(−q,−Ω)|2
and corresponds to a reversed amplified version of the input image. The phys-
ical underlying mechanism is Process I; second-harmonic photons generated
by the strong pump wave inside the crystal are converted into pairs of fun-
damental twin photons propagating in opposite directions [19].

The second-harmonic output intensity is given by a similar expression,

〈â†
S(ζ, q, Ω)âS(ζ, q, Ω)〉 = (2π)3δ(3)(0)(|VSF (ζ, q, Ω)|2 + |VSS(ζ, q, Ω)|2)

+ |USS(ζ, q, Ω)|2|αin(q, Ω)|2 + |VSS(ζ, q, Ω)|2|αin(−q,−Ω)|2. (8.38)

The second-harmonic output also displays both amplified and phase-
conjugated amplified versions of the input image. Here the underlying mecha-
nism is different; it is not the simultaneous generation of two second-harmonic
waves with opposite wave-vectors and frequency offsets, but rather the fre-
quency up-conversion of two fundamental photons (Process III).

The efficiency of these mechanisms can be quantified, defining for each
of the four output images a local phase-insensitive gain as the ratio of the
intensity of the output wave to the intensity of the input wave |αin(q, Ω)|2.
Considering a pupil of finite aperture and adequate dimensions located at the
output plane of the crystal then the output intensities due to spontaneous
processes can be neglected [41]. In this situation the gains are given by

GF (ζ, q, Ω) =
〈â†

F (ζ, q, Ω)âF (ζ, q, Ω)〉
|αin(q, Ω)|2 = |UFS(ζ, q, Ω)|2, (8.39)

GF (ζ,−q,−Ω) =
〈â†

F (ζ,−q,−Ω)âF (ζ,−q,−Ω)〉
|αin(q, Ω)|2

= |VFS(ζ, q, Ω)|2, (8.40)

GS(ζ, q, Ω) =
〈â†

S(ζ, q, Ω)âS(ζ, q, Ω)〉
|αin(q, Ω)|2 = |USS(ζ, q, Ω)|2, (8.41)

GS(ζ,−q,−Ω) =
〈â†

S(ζ,−q,−Ω)âS(ζ,−q,−Ω)〉
|αin(q, Ω)|2

= |VSS(ζ, q, Ω)|2. (8.42)

Figure 8.10 shows the phase-insensitive gains as functions of the interac-
tion length inside the crystal. At the input plane we have GF (ζ = 0, q, Ω) =
GF (ζ = 0,−q,−Ω) = GS(ζ = 0,−q,−Ω) = 0 and GS(ζ = 0, q, Ω) = 1,
which simply identifies the chosen input. Increasing the interaction length,
GS(ζ, q, Ω) decreases and GF (ζ, q, Ω) increases whereas GF (ζ,−q,−Ω) and
GS(ζ,−q,−Ω) remain very small. At small interaction length Process II is
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dominant. At ζ  1.4, the injected second-harmonic signal is fully down-
converted. Further increase of the interaction length leads to a second step in
the signal processing, which, for small wave numbers (solid lines in Fig. 8.10),
is characterized by a rapid and symmetric growth of both the fundamental
gains at q and −q. This is the manifestation of the down-conversion Process
I. This region of the crystal acts mainly as an OPA with a z-dependent pump.
However, the presence of a weak residual pump field at frequency ω allows
a partial frequency up-conversion of the amplified waves at fundamental fre-
quency through Process III. This mechanism is responsible for a slow increase
of the gains at q and −q when increasing interaction length, and leads to for-
mation of the two phase-conjugate output images at the second-harmonic
frequency.

Fig. 8.10. Phase-insensitive gains as a function of the interaction length ζ for
waves with Ω = 0 and different wave-numbers: q = 0.5 (solid line), q = 1.2 (dashed

line), and q = 1.6 (dotted line) (in units of q2 =
√

kF /z0. The symbols I, II, and III
refer to the corresponding dominant elementary process. Process III′ is the same
as process III but with q replaced by −q.

Due to diffraction, which appears in the dependence of the phase mis-
match functions D(q, Ω) and ∆(q, Ω) on q and Ω, the gains at high trans-
verse wave-number will be reduced and for q >

√
2 the input signal is no

longer amplified; rather it has an oscillatory behavior as a function of the
interaction length [34, 43]. Therefore, only a finite disk-shaped portion of
the input image centered on the beam axis will be efficiently processed [34]
similarly to what happens in a perfect-matched OPA [19].
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B. Phase-Sensitive Configuration

We consider here a symmetrical input image αin(−q,−Ω) = αin(q, Ω). For
static signals, this translates into a symmetry of the input image with respect
to the beam axis. In the case of the OPA, it is well known for these symmetric
images that the output is the result of the coherent superposition of both
twin waves produced in an elementary down-conversion process [44]. The
amplification is, therefore, phase sensitive, which is one of the requisites for
amplifying an image without deteriorating its signal-to-noise ratio [21,24,42].

When the image inserted in the SHG system is symmetric with respect
to the beam axis, the output images at each frequency will display the same
symmetry. Under the same assumptions as for the phase-insensitive case, the
ratio of the intensity in a given portion of each output image to that in the
corresponding part of the input image defines the gains

G
(φin)
F (ζ, q, Ω) = |UFS(ζ, q, Ω)eiφin + VFS(ζ, q, Ω)e−iφin |2 , (8.43)

G
(φin)
S (ζ, q, Ω) = |USS(ζ, q, Ω)eiφin + VSS(ζ, q, Ω)e−iφin |2 , (8.44)

which both depend on the phase of the input signal φin. For simplicity,
we only consider the input images with a homogeneous phase αin(q, Ω) =
|αin(q, Ω)|eiφin .

Figure 8.11 shows the phase dependence of the gains for different trans-
verse wave-numbers which in the telescopic system correspond to different
regions of the transverse plane. On the optical axis (q = 0), both gains reach
maximum values for φin = π/2 + nπ and minimum at φin = nπ [34]. For
off-axis regions of the transverse plane, one observes a shift in the position
of the maximum and minimum gains (dashed and dotted lines in Fig. 8.11).
This implies that for an input image with a homogeneous phase, the maxi-
mal gain condition can only be satisfied at one point of the transverse plane.
However, it should be possible to compensate this through a displacement of
the nonlinear crystal with respect to the lenses, which amounts to superpos-
ing a parabolic phase profile to the overall phase of the input image, as was
considered for the OPA in Ref. [42].

The effect of diffraction is similar to the phase-insensitive case: the image
processing will be efficient within a region of finite width centered on the
beam axis, whereas outside this region, the nonlinear crystal will behave as
a transparent medium [34].

Now we address the noise properties of the system, which are determined
by the quantum fluctuations of the output fields. We first define for the fun-
damental and the second-harmonic fields the following quadrature operators,

x̂φLO

i (ζ, q, Ω) =
1
2
[ˆ̃ai(ζ, q, Ω)e−iφLO + ˆ̃a

†
i (ζ,−q,−Ω)eiφLO ], (8.45)

which involves the field amplitude operator ˆ̃ai(ζ, q, Ω) related to the propaga-
tion-corrected amplitude âi(ζ, q, Ω) as follows.
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Fig. 8.11. Phase-sensitive gains for fundamental (a) and second-harmonic (b) fields
as a function of the phase of the input signal (in radians) for different values of the
transverse wave-number q = 0 (solid line), q = 1 (dashed line), and q = 1.4 (dotted
line). Interaction length ζ = 3.32.

ˆ̃ai(ζ, q, Ω) = exp{i[kz
i (q, Ω) − ki]z0ζ}âi(ζ, q, Ω) . (8.46)

The exponential factor simply restores the phase accumulated during the
propagation, which had been factored out in Eq. (8.16) for technical reasons.
Unlike in the quantities considered before, now this phase factor is important
as illustrated in [25].

The correlation function of the quadrature fluctuation δx̂
(φLO)
i (ζ, q, Ω)

defines the spectrum of squeezing S
(φLO)
i (ζ, q, Ω) through the relation

〈δx̂(φLO)
i (ζ, q, Ω)δx̂(φLO)

i (ζ, q′, Ω′)〉 = (8.47)
1
4
δ(2)(q + q′)δ(Ω + Ω′)S(φLO)

i (ζ, q, Ω).

In the case of photodetectors with perfect quantum efficiency, the spectrum of
squeezing coincides with the spectral density for photocurrent fluctuations,
normalized to the shot-noise level, as measured in a homodyne detection
scheme. The phase φLO represents the phase of the local oscillator used in
this detection setup.

Figure 8.12 shows S
(φLO)
σ (ζ, q, Ω) as a function of the local oscillator

phase. As it happens for a single-mode squeezing transformation, changing
the local oscillator phase allows one to explore the shape of the uncertainty
region covered by the quantum fluctuations of the field. The maximum of
S

(φLO)
σ (ζ, q, Ω) corresponds to the local oscillator pointing along the quadra-

ture with stretched fluctuations, whereas the minimum indicates the direction
of the squeezed quadrature. The effects of diffraction can be analyzed consid-
ering different values of q. It is clear that the maximum and minimum values
of the spectrum of squeezing are shifted for different values of q. This shift
can be interpreted as a rotation of the axis of the uncertainty region, as in
the OPA [25]. Simultaneously, reduction of the amplitude of the oscillations
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of the spectrum of squeezing indicates reduction of the squeezing effect with
larger q, with the consequence that the uncertainty region recovers more and
more the circular shape characteristic for a coherent state.

Fig. 8.12. Spectrum of squeezing S
(φLO)
σ (ζ, q, Ω) for fundamental (a) and second-

harmonic (b) fields as a function of the phase of the local oscillator (in radians) for
Ω = 0 and different values of the transverse wave vector number q = 0 (solid line),
q = 1 (dashed line), and q = 1.4 (dotted line). Interaction length ζ = 3.32.

To appreciate the performances of the SHG device with respect to noise-
less signal processing, it is convenient to consider the same detection scheme
as for noiseless amplification in the OPA [19]. It consists in measuring the
sum of the photocurrents from two symmetric pixels in the output plane. For
such a device, the noise figure is given by the ratio of the intensity-squeezing
spectrum to the phase-sensitive gain [34]

Fi(q) =
S

φout
σ

i (ζ, q, Ω)

Gφin
i (ζ, q, Ω)

, (8.48)

where

φout
F = arg[UFS(ζ, q, Ω)eiφin + VFS(ζ, q, Ω)e−iφin

+ [kz
F (q, Ω) − kF ]z0ζ , (8.49)

φout
S = arg[USS(ζ, q, Ω)eiφin + VSS(ζ, q, Ω)e−iφin

+ [kz
S(q, Ω) − kS ]z0ζ . (8.50)

Figure 8.13 shows the noise figure for the fundamental and the second-
harmonic outputs choosing the phase of the input signal such that the phase-
sensitive gains are maximal at q = 0. Because we are considering linearized
propagation equations for the field operators, the noise figure can be never
less than the unity (dotted line) [21] which corresponds to a noiseless opera-
tion.

In the domain of wave-numbers for which image processing is efficient
we find that the fundamental output shows the same level of noise as the
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Fig. 8.13. Noise figure for the fundamental (a) and the second-harmonic (b) fields
as a function of the transverse wave-number for two different values of the interac-
tion length ζ = 3.32 (solid line) and ζ = 2.5 (dashed line). Dotted line shows the
smallest possible value Fi(q) = 1 for a linear system.

input image (FS ≈ 1), so the SHG device operates without adding noise to
the signal. For the second-harmonic field the noise figure is slightly above
unity, implying a degradation of the signal-to-noise ratio in the output im-
age. However, increasing the interaction length, the noise figure approaches
unity for the spatial frequencies inside the bandwidth for image processing.
Finally, one notes that, for large transverse wave-numbers the noise figure
for the second-harmonic frequency is equal to one, because the input sig-
nal is unaffected by the system in this region, whereas for the noise figure
the fundamental frequency diverges, as a consequence of a vanishing output
intensity at ω in the limit |q| → ∞.

8.4 Quantum Image Processing in Type-II
Second-Harmonic Generation

In this section we will explore the possibilities offered by type-II second-
harmonic generation for image processing, where the polarization degree of
freedom at the fundamental frequency plays a very important role, as dis-
cussed in Section 8.2 at the classical level. Here we will consider the role
of quantum fluctuations in the telescopic traveling-wave configuration shown
in Fig. 8.14 which is similar to the one considered in Section 8.3. However,
although in that case the image was introduced as a second-harmonic signal,
here, because we have two orthogonally polarized fundamental fields, we in-
troduce the image on the fundamental fields, as in Section 8.2. We will show
that with traveling-wave type-II SHG it is possible to noiselessly up-convert
the part of an image with a given polarization while the part with orthogo-
nal polarization is noiselessly amplified. In the following subsections we will
first present the propagation equations for this system, as an extension of the
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equations presented in Subsection 8.3.2. Then we will discuss the imaging
properties of this system in two different configurations.

(2) nonlinear crystal Object plane Image plane 
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f f f
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Fig. 8.14. Scheme of an optical device based on type-II second-harmonic genera-
tion. A nonlinear crystal, pumped at frequency ω, is enclosed in a two-lens telescopic
system.

8.4.1 Propagation Equations

Following the same steps as in Subsection 8.3.2, the equations for the
propagation-corrected Fourier amplitudes are

∂

∂z
ÂS(z, q, Ω) = K

∫
d2q′dΩ′Â1(z, q′, Ω′)Â2(z, q − q′, Ω − Ω′)

× exp{i[kz
1(q′, Ω′) + kz

2(q − q′, Ω − Ω′) − kz
S(q, Ω)]z}, (8.51)

∂

∂z
Â1(z, q, Ω) = −K

∫
d2q′dΩ′Â†

2(z, q′, Ω′)ÂS(z, q + q′, Ω + Ω′)

× exp{i[kz
S(q + q′, Ω + Ω′) − kz

1(q, Ω) − kz
2(q′, Ω′)]z}, (8.52)

∂

∂z
Â2(z, q, Ω) = −K

∫
d2q′dΩ′Â†

1(z, q′, Ω′)ÂS(z, q + q′, Ω + Ω′)

× exp{i(kz
S(q + q′, Ω + Ω′) − kz

2(q, Ω) − kz
1(q′, Ω′)]z}, (8.53)

where the indices 1,2, and S correspond to the x-polarized fundamental field,
the y-polarized fundamental field, and the second-harmonic field, respectively.
These equations have a simple physical interpretation: the generation of a
given field mode is seen as the result of all possible three-wave processes that
fulfill the energy and the transverse momentum conservation lows.

Now we use a linearization approach as in the previous section. Assuming
that the pump field is a strong classical field, which, inside the crystal will
eventually produce a strong classical field at the second-harmonic frequency,
we have

Âi(z, q, Ω) = c̃i(z)δ(2)(q)δ(Ω) + âi(z, q, Ω) , (8.54)
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where i stands for 1,2,S and c̃i(z) are the amplitudes of the classical strong
monochromatic fields, and âi(z, q, Ω) are the quantum field operators. The
total power W = |c̃1(z)|2 + |c̃2(z)|2 + 2|c̃S(z)|2 is conserved as a consequence
of the conservation of the energy flux in the lossless crystal. Introducing the
dimensionless characteristic interaction length z0 = 1/

√
2WK, scaling the

space as ζ = z/z0 and the field amplitudes as c1(z) = c̃1(z)/
√

W , c2(z) =
c̃2(z)/

√
W , and cS(z) = c̃S(z)/

√
W/2, and substituting Eqs. (8.54) in Eqs.

(8.51)–(8.53), we obtain at zero order the classical equations of nonlinear
optics,

d

dζ
c1(ζ) = −c∗2(ζ)cS(ζ)e−i∆sζ , (8.55)

d

dζ
c2(ζ) = −c∗1(ζ)cS(ζ)e−i∆sζ , (8.56)

d

dζ
cS(ζ) = +2c1(ζ)c2(ζ)ei∆sζ , (8.57)

where ∆s = ∆kz0.
At first order one obtains the propagation equations for the quantum

operators associated with the fundamental and the second-harmonic fields

∂

∂ζ
â1(ζ, q, Ω) = −cS(ζ)e−i∆1(q,Ω)zâ†

2(ζ,−q,−Ω)

−
√

2c∗2(ζ)e−iD1(q,Ω)zâS(ζ, q, Ω), (8.58)
∂

∂ζ
â2(ζ, q, Ω) = −cS(ζ)ei∆1(−q,−Ω)zâ†

1(ζ,−q,−Ω)

−
√

2c∗1(ζ)e−iD2(q,Ω)zâS(ζ, q, Ω), (8.59)
∂

∂ζ
âS(ζ, q, Ω) = +

√
2c2(ζ)eiD1(q,Ω)zâ1(ζ, q, Ω)

+
√

2c1(ζ)eiD2(q,Ω)zâ2(ζ, q, Ω). (8.60)

The phase factors involved in the equations are

∆1(q, Ω) = z0(kz
1(q, Ω) + kz

2(−q,−Ω) − kS), (8.61)
D1(q, Ω) = z0(kz

1(q, Ω) + k2 − kz
S(q, Ω)), (8.62)

D2(q, Ω) = z0(k1 + kz
2(q, Ω) − kz

S(q, Ω)). (8.63)

Using the vectorlike notation [45]

â(z, q, Ω) =

 â1(z, q, Ω)
â2(z, q, Ω)
âS(z, q, Ω)

 , â†(z, q, Ω) =

 â†
1(z, q, Ω)

â†
2(z, q, Ω)

â†
S(z, q, Ω)

 , (8.64)

the solution of the propagation equations (8.58)–(8.60) can be written as
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âi(z, q, Ω) = U i(z, q, Ω) · â(0, q, Ω) + V i(z, q, Ω) · â†(0,−q,−Ω), (8.65)

which involves 18 complex coefficients that can be determined by solving the
propagation equations.

Superposed to the homogeneous pump field, an optical image will be
injected into the nonlinear crystal in a coherent state |αin〉. This quantum
state can be written as

â(0, q, Ω)|αin〉 = α(q)δ(Ω)|αin〉. (8.66)

The amplitude α = (α1(q), 0, 0) encodes, within the vectorial notation de-
fined by Eqs. (8.64), the spatial distribution of the input image at the fun-
damental frequency with polarization x and y, and at the second-harmonic
frequency, respectively. We consider here an image stationary in time and
inserted in the x-polarization.

The quantities of interest are the numbers of photons of each field detected
by a photodetector located at a given position ρ of the image plane, which
in the telescopic configuration is identified with a given transverse number.
Assuming a detector whose size σd is much smaller than the typical variation
scales of the fields and with a perfect quantum efficiency, the average number
of photons is given by

< N̂i(ζ, q) >= σd < â†
i (ζ, q, 0)âi(ζ, q, 0) >= σd|αout(q)|2 , (8.67)

where
αout

i (q) = U i(q, 0) · α(q) + V i(q, 0) · α∗(−q) , (8.68)
represents the amplitude of the outgoing wave for the field i = 1, 2, S.
The photon numbers depend on the amplitude of the input image at the
wave number q but also, essentially as a consequence of the down-conversion
process in the crystal, on the input wave at −q. The photon number variance
is given by

〈(∆N̂i(L, q))2〉 = σd | αout
i (q) |2 (1 + 2V ∗

i (q, 0) · V i(q, 0)) . (8.69)

The noise level of the detected image is quantified by the signal-to-noise ratio:

SNRi =
〈N̂i(L, q)〉2

〈(∆N̂i(L, q))2〉
, (8.70)

which has to be compared to the signal-to-noise ratio in the input image,
SNRin

1 = σd | α1(q) |2. The noise figure is the ratio SNRin
1 /SNRi,

Fi =
1 + 2V ∗

i (q, 0) · V i(q, 0)
|αout

i (q)|2/|α1(q)|2
. (8.71)

As stated in Subsection 8.3.2, if the noise figure is equal to unity, the image
processing is noiseless, and at the level of quantum fluctuations, the quality
of the image is preserved. This is the best possible situation in a system like
the one we are considering here, but generally the noise figure is larger than
unity, therefore a degradation of the image quality occurs which can even
lead to a complete loss of information in the case of weak input signals.
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8.4.2 Linearly y-Polarized Pump: Frequency Addition Regime

The first case that we will consider is the simplest one: the pump field is
taken as linearly polarized along the y-direction. This is expressed in the
initial condition

c1(0) = 0; c2(0) = 1; c3(0) = 0. (8.72)

Because no field is pumped in the orthogonal x-polarization, SHG cannot
take place and the classical equations of nonlinear optics [27–31, 34] predict
that

c1(ζ) = 0; c2(ζ) = 1; c3(ζ) = 0. (8.73)

The linearized propagation equations (8.58)–(8.60) for the quantum operators
can be easily solved analytically. One finally obtains the following input-
output transformation.

â1(ζ, q,Ω) =
(
cos(D̃1ζ) + i

D1

2D̃1

sin(D̃1ζ)
)

e−iD1ζ/2â1(0, q, Ω)

−
√

2

D̃1

sin(D̃1ζ)e−iD1ζ/2âS(0, q, Ω), (8.74)

âS(ζ, q,Ω) =
(
cos(D̃1ζ) − i

D1

2D̃1

sin(D̃1ζ)
)

eiD1ζ/2âS(0, q, Ω)

+
√

2

D̃1

sin(D̃1ζ)eiD1ζ/2â1(0, q, Ω), (8.75)

â2(ζ, q,Ω) = â2(0, q, Ω), (8.76)

where D̃1(q,Ω) =
√

2 + D2
1(q,Ω)/4. Although the y-polarized image would

not be affected by propagation through the nonlinear crystal, this device is
able to up-convert an x-polarized input image at frequency ω to frequency 2ω.
This effect comes from dependence of the output operator as(ζ, q,Ω), as well
as a1(ζ, q,Ω), on both input operators a1(0, q, Ω) and aS(0, q, Ω). Because
the second-harmonic wave is not created in the crystal, the down-conversion
process is impossible, and hence no coupling between the frequencies (q,Ω)
and (−q,−Ω) occurs during propagation. Comparing with the general form
of the input-output transformation (8.65), all the coefficients V i(q,Ω) vanish
in the case under consideration, and as a consequence, the output signal does
not depend on the phase of the input signal.

The gain of the up-conversion process is

GS(ζ, q) ≡ 〈N̂S(ζ, q)〉
〈N̂1(0, q)〉

= 2
sin2(D̃1(q,Ω)z)

D̃1(q,Ω)2
. (8.77)

Perfect up-conversion, GS = 1, is achieved if D1(q,Ω) = 0 and sin(D̃1(q,Ω)z)
= 1. The first condition, corresponding to the perfect wave-vector matching



8 Optical Image Processing in Second-Harmonic Generation 193

defines an ensemble of points in the spatiotemporal frequency plane (q,Ω),
and, in the case of static images, at most two values of q. The second condition
establishes that even in that case maximum efficiency occurs only at given
propagation lengths ζk = (π/

√
2)(k + 1/2), with k = 0, 1, · · · ·

The noise figure coincides with the inverse of the up-conversion rate.

F (q) =
1

Rup(q)
. (8.78)

The input-output transformation (8.74)–(8.76) is completely equivalent to
the transformation performed by a beamsplitter. In the case of a coherent
image, and assuming that the second-harmonic input state is the vacuum,
an incomplete up-conversion means that the mean intensity of the output is
reduced with respect to the input image, but the amount of noise is conserved,
corresponding to the one of a coherent state. As a result, a deterioration of the
image takes place and the noise figure for the transmitted image is equal to the
inverse of the transmission coefficient of the beamsplitter. The quantum noise
present in the up-converted image can be interpreted as the superposition of
the noise already present in the input image, which is partially transmitted
together with the image itself, and the noise originally present in the second-
harmonic modes, partially reflected by the beamsplitter. Therefore, reduction
of the noise level in the output image can only be achieved by reducing the
fluctuations present in the second-harmonic input field. This can be done
by injecting a squeezed vacuum at the second-harmonic frequency instead
of a normal vacuum. By properly choosing the squeezed quadrature, this
contribution to the total noise level in the image can be reduced, and one
may approach, in the limit of a perfect squeezed quadrature, a noise figure
of unity, that is, a noiseless image processing. In the next subsection we
will consider a slightly different set-up that allows us to achieve a noiseless
up-conversion without any additional source of nonclassical light.

8.4.3 45◦-Linearly Polarized Pump: Noiseless Up-Conversion and
Amplification

We consider the case where the pump field is linearly polarized at 45◦ with
respect to the axis x. The initial condition for the classical strong fields is

c1(0) = c2(0) = 1/
√

2; cs(0) = 0. (8.79)

Because now the fundamental field is pumped at the two orthogonal polar-
izations, a strong second-harmonic field will be generated inside the crystal.
Considering the perfectly matched wave-vector, the solution of the classical
equations [27–31,34] is particularly simple and reads [46]:

c1(ζ) = c2(ζ) = sech(ζ)/
√

2; cs(ζ) = tanh(ζ). (8.80)
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It is useful to introduce a polarization basis rotated by an angle of 45◦ with
respect to the basis (x,y) [36,37,45]:

â±(ζ, q) =
1√
2
(â1(ζ, q) ± â2(ζ, q)). (8.81)

In this basis c+(ζ) = sech(ζ) and c−(ζ) = 0. The propagation equations in
this new basis can easily be derived from Eqs. (8.58)–(8.60) and one finds

∂

∂ζ
â± + (ζ, q, Ω) = −cS(ζ)g±(ζ, q, Ω)â†

+(ζ,−q,−Ω)

+ cS(ζ)g∓(ζ, q, Ω)â†
−(ζ,−q,−Ω)

−
√

2c∗+(ζ)h±(ζ, q, Ω)âS(ζ, q, Ω), (8.82)
∂

∂ζ
âS(ζ, q, Ω) =

√
2c∗+(ζ)h∗

+(ζ, q, Ω)â+(ζ, q, Ω)

+
√

2c∗+(ζ)h∗
−(ζ, q, Ω)â−(ζ, q, Ω), (8.83)

where

g±(ζ, q, Ω) =
e−i∆1(q,Ω)ζ ± e−i∆1(−q,−Ω)ζ

2
, (8.84)

h±(ζ, q, Ω) =
e−iD1(q,Ω)ζ ± e−iD2(q,Ω)ζ

2
. (8.85)

Equations (8.82)–(8.83) can be simplified, making the following additional
assumption

∆1(q,Ω) = ∆1(q,−Ω), D1(q,Ω) = D2(q,−Ω). (8.86)

This assumption is always fulfilled for q = Ω = 0. In any case, we are mainly
interested in the region around q = 0 because, as in type-I, image processing
will be mainly efficient in this region. Inserting Eqs. (8.86) into Eqs. (8.82)–
(8.83), the propagation equation for the field a−(ζ, q) decouples leading to a
type-I OPA equation, where cS(ζ) plays the role of a ζ-dependent pump,

∂

∂ζ
â−(ζ, q, Ω) = cS(ζ)e−i∆1(q,Ω)ζ â†

−(ζ,−q,−Ω). (8.87)

The equations that describe the remaining two fields reduce to the equations
of the type-I SHG,

∂

∂ζ
â+(ζ, q, Ω) = −cS(ζ)â†

+(ζ,−q,−Ω)e−i∆1(q,Ω)ζ

−
√

2c∗+(ζ)âS(ζ, q, Ω)e−iD1(q,Ω)ζ , (8.88)
∂

∂ζ
â+(ζ, q, Ω) =

√
2c+(ζ)â+(ζ, q, Ω)eiD1(q,Ω)ζ . (8.89)
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This decomposition of type-II SHG into a type-I SHG and a type-I OPA
generalizes to the transverse spatial multimode case the conclusions obtained
for a single-mode model in the traveling-wave configuration [37], or in the
cavity-based case [47].

To take advantage of the coupling between waves with spatiotemporal fre-
quencies (q, Ω) and (−q,−Ω) generated by the down-conversion, we consider
a symmetrical input image as in Subsection 8.3.2,

α±(q) = α±(−q). (8.90)

The output intensity of the system depends now on the phase φin of the
input image. For simplicity we will consider a homogeneous phase for the
input image: αeiφin , where the elements of α are real. The output intensity
is then given by

|αout
i (q)|2 = |U i(q, 0) · α(q)eiφin + V i(q, 0) · α(q)e−iφin |2 . (8.91)

The simplest detection scheme involves one detector located around q.
The noise figure is then given by Eq. (8.71) with an extra factor 2 due to the
symmetrization of the input image prior to injection,

Fi = 2
1 + 2V ∗

i (q, 0) · V i(q, 0)
|U i(q, 0) · αeiφin + V i(q, 0) · αe−iφin |2/|α1(q)|2

. (8.92)

For an OPA the noiseless character of image processing is only valid in the
limit of large gains [19]. In the up-conversion case considered here the up-
conversion rate is never large. It is then crucial from the point of view of
quantum imaging to consider the symmetrized detection scheme that involves
two detectors located at opposite spatial points (corresponding to the wave-
vectors in the telescopic configuration considered here). One measures the
sum of the photocurrents:

N̂i(L, q) = N̂i(L, q) + N̂i(L,−q). (8.93)

The noise figure for this quantity is given by

Fi =
1 + 2V ∗

i (q, 0) · V i(q, 0) + 2Re(e−2iφout
i U i(q, 0) · V i(−q, 0))

|U i(q, 0) · αeiφin + V i(q, 0) · αe−iφin |2/|α1(q)|2
, (8.94)

which differs from the one given in Eq. (8.71) by an additional interference
term. φout

i denotes the phase of the output amplitude,

φout
i = Arg[U i(q, 0) · αeiφin + V i(q, 0) · αe−iφin ] . (8.95)

For an OPA it has been shown that if the phase of the input image is adapted
for maximal amplification, this amplification preserves the signal-to-noise ra-
tio, and hence the operation is noiseless [41].
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Fig. 8.15. Amplification factor (a), up-conversion rate (b), and transmission rate
(c) as a function of the input phase for ζ = 1 (dotted line) and ζ = 2 (dashed line).

As previously stated, the phase-sensitivity of the image-processing scheme
is an important requisite for interesting quantum imaging properties. This
sensitivity is reflected in several quantities: first, the behavior of the OPA
with a z-dependent pump can be characterized by the gain

GOPA(q) =
〈N−(L, q)〉
〈N−(0, q)〉 . (8.96)

Figure 8.15a shows GOPA(0) as a function of the phase of the input image.
This gain oscillates between cosh(L) (maximal amplification) and sech(L)
(minimum amplification). Second, the behavior of the type-I SHG can be
characterized by two quantities, the up-conversion and the transmission rate

Rup(q) =
〈NS(L, q)〉
〈N+(0, q)〉 , Rtrans(q) =

〈N+(L, q)〉
〈N+(0, q)〉 . (8.97)

The phase-dependence of these quantities for q = 0 is plotted in Fig. 8.15.
In the limit of large propagation lengths, the up-conversion rate oscillates
between a minimal value of 1/2 and a maximum value of 2 which can be
understood from the energy and phase conservation in SHG. The energy
conservation implies that, after a complete conversion, the number of second-
harmonic photons has to be half the number of initial fundamental photons,
and hence the amplitude is reduced by a factor

√
2. On the contrary, the

phase of the output field is, after complete up-conversion, twice the phase
of the input fundamental field. In the case of negligible phase mismatch, the
maximal up-conversion rate occurs at φin = π/2 and 3π/2 for all distances.
However, we should note that in general the phase for which the up-conversion
is maximal may depend on the distance. Also, it is interesting to observe, in
Fig. 8.15, that the input signal phase for which the up-conversion is minimal,
ensures a maximal amplification of the “-” polarization component.

We consider now the noise behavior of the up-conversion process. We limit
ourselves to the case of the input phase adjusted for minimal/maximal up-
conversion and plot the up-conversion rate and the noise figure as a function
of the propagation length (Fig. 8.16).

We observe that in the regime of minimal up-conversion, the noise figure
rapidly drops to unity, and hence image up-conversion is performed without
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Fig. 8.16. Up-conversion rate and the noise figure at a vanishing transverse wave
vector q = 0 as a function of the propagation length in the symmetric detection
scheme. Top row φin = 0; bottom row φin = π/2.

noise addition. This can be understood because in the limit of large propa-
gation lengths, the amplitude fluctuations entering the crystal at the second-
harmonic frequency are damped during propagation, so that in this limit
they do not contribute to the noise in the amplitude of the second-harmonic
frequency output. This is not valid for the noise figure in the case of max-
imal up-conversion. Defining yi(ζ, q,Ω) =

(
âi(ζ, q,Ω) − â†

i (ζ,−q,−Ω)
)

/2i,
in the limit of large ζ one obtains

yS(z) = −
√

2y+(0) + (1 − z tanhz)yS(0). (8.98)

Therefore, the phase fluctuations of the input second-harmonic field con-
tribute to the total fluctuations and the noise figure is larger than one, as
shown in Fig. 8.16. Only for propagation lengths such that

1 − ζtanh(ζ) = 0, (8.99)

the second-harmonic input fluctuations do not contribute, and the image
processing is noiseless (F = 1). Finally, we consider the behavior of this
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Fig. 8.17. Up-conversion rate (top left) and OPA gain (bottom left) as function
of the position in the transverse plane for φin = 0. The corresponding noise figures
are shown on the right. The dotted line corresponds to the single-detector case and
the solid line corresponds to symmetric detection.

image-processing scheme as a function of the position in the transverse plane.
Figure 8.17 shows the up-conversion rate and the OPA gain for an input phase
corresponding to minimum up-conversion (maximum OPA gain). The corre-
sponding noise figures for the single detector placed at q and the symmetric
detector scheme with two detectors at q and −q are shown as well. The up-
conversion rate and the OPA gain are roughly constant on a disk of finite
diameter centered on the main optical axis of the system (q = 0). The noise
figure of the up-conversion Fup rate in this central region approaches the value
of one characterizing a noiseless image processing. However, this interesting
property is only true in the symmetric detection scheme. If the output were
detected only with one detector, a large amount of excess noise with respect
to the noise in the injected image would be observed. For the OPA gain, in
the central region of maximal gain, the two detection schemes give exactly
the same noise level, as a consequence of the strong nonclassical correlations
of the two outputs at q and −q. At higher q where almost no amplification
takes place, the noise figure FOPA for the symmetric and single-detector case
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differ by a factor 2 as a consequence of the symmetrization procedure of the
input image.
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9.1 Introduction

Solitons, whatever the nonlinear phenomenon that produces them, are iso-
lated and long-living entities that have been considered for a long time as
potential candidates to store and carry digital information. This is, in par-
ticular, the case for temporal solitons, which have been envisioned for high-
bit-rate telecommunications in fibers, but also for spatial solitons, which can
be used in parallel processing of information.

With the spectacular current development of quantum information, a
question arises: can solitons also be of some interest as potential supports
not only of classical digital information, but also of quantum information? In
view of these applications, it is therefore highly interesting to study the quan-
tum properties of solitons. Whereas this has been the subject of significant
research efforts, both theoretical and experimental for temporal solitons [1],
the subject is still almost virgin for spatial solitons. The purpose of this chap-
ter is to review the preliminary theoretical studies that have started recently
on this subject for the case of solitons freely propagating in nonlinear media.
The case of cavity solitons is treated in the next chapter.

Because of an exact balance between diffraction and nonlinearity, spatial
solitons propagate without any deformation over long distances, leading to an
enhancement of the quantum correlations and also to the local quantum noise
reduction effects. Some recent studies [2–4] have considered these quantum
effects in spatial solitons. Reference [2] shows that vacuum-induced jitter
remains negligible versus the width of a soliton. In Ref. [3], production of
sub-Poissonian light was theoretically demonstrated by placing either a stop
in the center of the beam in the near field or a lowpass filter in the far field.
Quantum fluctuations appear here as weak fluctuations of intense fields that
can be treated by linearization methods [5] in the absence of a cavity. On the
experimental side, nonclassical temporal solitons, having fluctuations below
the standard quantum limit, have been experimentally produced [6,7]. We will
see below that there exist some similarities between the quantum properties of
temporal solitons and those of spatial solitons, although evience of quantum
properties of spatial solitons has still not been found experimentally.
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We use in the first part of the chapter, devoted to the free-space solitons,
a general method of linearization, called the “Green’s function method,” that
gives numerically the expectation values of quantum moments without aver-
aging of stochastic simulations. This method, which can be applied to any
type of soliton [4, 8] and more generally to any weak quantum fluctuations
either of an intense field or amplified by a pump field [9], will be described in
Section 9.2. We consider scalar and vector χ(3) as well as χ(2) spatial solitons.
Their main properties are recalled in Section 9.3. Section 9.4 deals with the
degree of global squeezing of these solitons, and Section 9.5 presents quan-
tum properties of local fluctuations. In most of the cases, the global squeezing
increases with the propagation distance, whereas local squeezing exists only
for short distances.

9.2 General Method

We present here the outline of the method allowing us to determine the spatial
distribution of quantum fluctuations in the regime of free propagation. We
closely follow the presentation in [4]. As we will apply it to different cases
of solitons (χ(2) or χ(3), scalar or vectorial) we will present the method in
the general case of a nonlinear coupling between n monochromatic complex
electric fields of frequency ωi, written as Ei (r, z) ei(kiz−ωit), where z is the
main propagation direction, ki = niωi/c the longitudinal k-vector (ni being
the linear index of refraction of the medium at frequency ωi), and r = (x, y)
the position in the transverse plane.

9.2.1 Propagation Equations for the Fluctuations

Within the slowly varying envelope, paraxial and scalar approximations, the
coupled propagation equations for the classical field envelopes Ei are [10]

2iki
∂

∂z
Ei (r, z) + ∇2Ei (r, z) = Fi (E1, . . . , En) , (9.1)

where ∇2 = ∂2/∂x2+∂2/∂y2 is the transverse Laplacian, and Fi (E1, . . . , En)
a term proportional to the nonlinear polarization created in the medium at
frequency ωi by the different Fourier components of the field. We will assume
that we are able to determine, by analytical or numerical means, the solutions
of Eq. (9.1) for a given input field, that we will call Ēi (r, z), (i = 1, . . . , n).

Coming now to the same problem, but treated at the quantum level,
it is possible to show using the methods of quantum optics in the Wigner
representation [11], also called the “semiclassical approach [5],” that one
can use the classical solution Ēi (r, z) to determine the quantum fluctuations
within the small-quantum-fluctuation limit.

More precisely, let us write the quantum positive frequency field operator
Êi (r, z) as
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Êi (r, z) = 〈Êi (r, z)〉 + δÊi (r, z) , (9.2)

where δÊi (r, z) is the local quantum fluctuation operator of the field at
frequency ωi, the total electric field Hermitian operator Ê (r, z) being given
by the sum

∑
i

[
Êi (r, z) ei(kiz−ωit) + Ê†

i (r, z) e−i(kiz−ωit)
]
. As long as the

field contains a macroscopic number of photons and if the input fields are
coherent or nearly coherent states, the quantum mean field is nothing more
than the field given by classical nonlinear optics: 〈Êi (r, z)〉 = Ēi (r, z). Then
the fluctuations δÊi (r, z) remain small compared to the mean fields and obey
a simple propagation equation, obtained by linearizing the classical equation
of propagation (9.1) around the mean field, namely,

2iki
∂

∂z
δÊi (r, z) + ∇2δÊi (r, z)

=
∑

j

(
∂Fi

∂Ej

)
E=Ē

δÊj (r, z) +
∑

j

(
∂Fi

∂E∗
j

)
E=Ē

δÊ†
j (r, z) . (9.3)

In next subsection we will formulate the Green’s function method allowing
us to write the solution of Eq. (9.3).

9.2.2 Green’s Function Approach

A major advantage of the propagation equation (9.3) is its linear character,
so that one can find its solution in a given transverse plane z = zout as a
linear combination of the input fluctuations in plane z = zin,

δÊi

(
r, zout

)
=
∑

j

∫ ∫
d2r′Gj

i (r, r′) δÊj

(
r′, zin

)
+
∑

j

∫ ∫
d2r′Hj

i (r, r′) δÊ†
j

(
r′, zin

)
, (9.4)

where Gj
i (r, r′) and Hj

i (r, r′) are the Green’s functions associated with
Eq. (9.3). Equation (9.4) is a kind of Huygens–Fresnel integral, which
describes the propagation of the quantum fluctuations within the small-
fluctuation limit.

The quantum input field fluctuations are those of a vacuum field, or of
a coherent field. They obey the following relation [12] in the scalar field and
paraxial approximation:

〈δÊj

(
r, zin

)
δÊ†

k

(
r′, zin

)
〉 = Cjδjkδ(2) (r − r′) (9.5)

(where Cj = h̄ωj/2ε0L, L being the length along Oz of the quantization box).
The input correlation functions not in the antinormal order vanish.
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From Eqs. (9.3) and (9.5), one can easily derive the correlation functions
between the quantum fluctuations of different operators. One finds, for ex-
ample,

〈δÊi

(
r, zout

)
δÊ†

k

(
r′, zout

)
〉

=
∑

j

Cj

∫ ∫
d2r1G

j
i (r, r1) Gj∗

k (r′, r1) . (9.6)

Any correlation function or variance is therefore a given combination of the
Green’s functions Gj

i (r, r′) and Hj
i (r, r′), that we must now calculate. To

do so, one uses the propagation equation (9.3): Gj
i (r, r′), for example, is the

solution of this equation when one takes the following initial conditions,

δÊk

(
r, zin

)
= δjkδ(2) (r − r1) ,

δÊ†
k

(
r, zin

)
= 0. (9.7)

Green’s function Gj
i (r, r′) is approximately evaluated by numerical tech-

niques: one discretizes the transverse plane and one calculates using the split-
step method [13] the solution of Eq. (9.3) with a following initial condition:
unity on a given pixel and zero on all the other pixels. One must also choose
the size of the transverse grid large enough compared to the soliton radius to
avoid any spurious effects due to the periodic boundary condition imposed
at the limits of this grid by the Fast Fourier Transform (FFT) procedure.

9.2.3 Correlations Between the Photocurrents

In order to measure the local field fluctuations, we use photodetectors as-
sumed to have a quantum efficiency 1 and to be sensitive only to the field
component of frequency ωj . If the photodetector has a very small area dS
around the point r, photodetection theory implies in the small fluctuation
limit that the photocurrent fluctuations in direct photodetection, δÎj (r), are
given by

δÎj (r) = Ēj

(
r, zout

)
dS
∑

i

∫ ∫
d2r1

[
Ai

j (r, r1) δÊi

(
r1, z

in
)

+ h. c.
]
,

(9.8)
in the case where the mean field Ēj (r, zout) is real (which is the case for
the analytical solitons given in Section 9.3.1), Ai

j (r, r′) being the following
combination of the G and H Green’s functions,

Ai
j (r, r′) = Gi

j (r, r′) + Hi
j (r, r′)∗ . (9.9)

One can also use a balanced homodyne scheme, with the help of a local
oscillator field of amplitude Eloc (r) = |Eloc (r)| eiθ, in order to measure the
local fluctuations of a given quadrature component. Provided that the local



9 Quantum fluctuations in free-space spatial solitons 205

oscillator amplitude is much larger than the one of the field to measure, the
photocurrent fluctuations are given in this case by

δÎj (θ, r) = |Eloc (r)| dS
∑

i

Ci × (9.10)∫ ∫
d2r1

[
Bi

j (θ, r, r1) δÊi

(
r1, z

in
)

+ h. c.
]
,

with Bi
j (θ, r, r′) being equal to

Bi
j (θ, r, r′) = eiθGi

j (r, r′) + e−iθHi
j (r, r′)∗ . (9.11)

In particular, when θ = 0 or π/2, the photocurrent fluctuations give a signal
proportional to the quadrature component parallel or orthogonal to the mean
amplitude, which are the amplitude and phase quadrature fluctuations.

Knowing these local photocurrent fluctuations as a function of the input
fluctuations δÊi

(
r, zin

)
from Eqs. (9.8) and (9.10), and the input correlations

functions (9.5), one can then derive the covariance between pixels:

C(x, x′, θ) = < δÎ(θ, x)δÎ(θ, x′) >. (9.12)

It is also possible to determine the covariance functions or the local variance in
the case of large-area photodetectors by integrating these expressions over the
detector surface. For example, the photocurrent variance directly measured
by a photodetector of large area S is equal to

〈(δÎj)2〉 =
∑

i

Ci

∫ ∫
S

d2r

∫ ∫
S

d2r′
∫ ∫

d2r1Ēi

(
r, zout

)
Ēi

(
r′, zout

)
Ai

j (r, r1) Ai
j (r′, r1)

∗
. (9.13)

The Green’s function method can be applied to any configuration of fields
propagating in a nonlinear medium. We will consider in this chapter scalar
and vector χ(3) as well as χ(2) spatial solitons.

9.3 Spatial Solitons: Mean Values

9.3.1 χ(3) Scalar Spatial Soliton

A scalar soliton can be obtained in a Kerr medium for a single transverse
coordinate x by using, for example, a planar waveguide. The classical prop-
agation equation for the complex electric field envelope U(x, z) reads in this
case:

∂E

∂z
=

i

2k

∂2E

∂x2
+ iγ|E|2E, (9.14)

where γ is the usual Kerr coefficient, z the propagation direction, k the lon-
gitudinal wave-vector, and x the position in the transverse plane. It can be
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written in a universal form if one uses a scaling parameter η and the scaled
variables ζ = ηz, r = x

√
2ηk, and its solution is the well-known ζ invariant

hyperbolic secant [14]:

u =
√

2
cosh r

. (9.15)

9.3.2 χ(3) Vector Spatial Soliton

In the last few years, a great number of multicomponent solitons have been
demonstrated [15]. Among these, the simplest example is the bimodal vector
soliton which is shown in Fig. 9.1a and consists of two opposite circular
components that trap each other in a nonbirefringent Kerr medium. Their
complex envelopes U and V obey the following coupled nonlinear Schrödinger
equations,

∂U

∂Z
= i

1
2k

∂2U

∂x2
+ iγ(|U |2U + C|V |2U),

∂V

∂Z
= i

1
2k

∂2V

∂x2
+ iγ(|V |2V + C|U |2V ), (9.16)

where γ is the Kerr coefficient, and C represents the strength of the cross-
phase modulation (for instance, C = 7 in an isotropic liquid such as CS2 [16]).
As seen from Fig. 9.1b, this soliton bound-state propagates in equilibrium due
to incoherent coupling between both circular components. If alone in the Kerr
medium, the symmetrical field U tends to self-focus. However, the antisym-
metrical field V on the counterrotating polarization tends to diffract and it
can be shown that a proper choice of the intensities (in dimensionless units
in Fig. 9.1) ensures an exact balance between diffraction and self-focusing.
However, this equilibrium is unstable if the cross-phase modulation coefficient
is greater than the self-phase modulation coefficient, leading to symmetry-
breaking instability, whose experimental demonstration is reported in [17].

9.3.3 χ(2) Spatial Soliton

In a χ(2) medium, the complex envelopes of a fundamental field E1 (r, z)
ei(k1z−ωt) and a second-harmonic field E2 (r, z) ei(k2z−2ωt) are coupled through
the following set of equations [10], without the walk-off,

2ik1
∂

∂z
E1 (r, z) + ∇2E1 (r, z) = −2

ω2

c2
χ(2)E∗

1E2e
−i∆kz,

2ik2
∂

∂z
E2 (r, z) + ∇2E2 (r, z) = −4

ω2

c2
χ(2)E2

1ei∆kz, (9.17)

with ∆k = 2k1−k2. Here also, we will limit our analysis to the case of a single
transverse dimension x. Equation (9.17) can also be written in a universal
form [15],
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Fig. 9.1. Vector soliton projected either on orthogonal linear polarizations (Ex

and Ey) or on counterrotating circular polarizations (U and V ). The right plot
shows invariant propagation of the soliton bound-state.

i
∂u

∂ζ
+

∂2u

∂r2
− αu + u∗v = 0,

iσ
∂v

∂ζ
+

∂2v

∂r2
− σ (2α + β) v +

1
2
u2 = 0, (9.18)

when one introduces the scaling parameter η as in the χ(3) case, and a free
longitudinal phase-shift parameter α, writing ζ = ηz, r = x

√
2ηk1, σ = k2/k1,

β=∆k/η, u=2(ω2χ(2)/k1c
2)

E1

η
e−iαζ , v=((ω2χ(2)/(k1c

2E2)/η))e−i(2α+β)ζ .

Equations (9.18) have an infinite set of ζ-invariant solutions, each one
giving a precise value to the ratio between the powers of the fundamental
and the second-harmonic fields. Among these solutions, one is interesting for
computational reasons : it is the only one known so far that has an analytical
expression. It corresponds to the particular case α = 1, σ (2α + β) = 1, and
is given by

u =
3
√

2
2 cosh2 r/2

,

v =
3

2 cosh2 r/2
. (9.19)

For this analytical soliton, the ratio between the second-harmonic power and
the fundamental power is 2 (“equiphotonic” case), and the scaling parameter
η has a well-defined value η = k2((2k1 − k2)/(k1 − 2k2)) ≈ −2∆k/3. When
the relation between the scaling parameter and the phase mismatch is not
fulfilled, the soliton exists, but is no longer analytical. Its shape remains
almost the same as in Eq. (9.19). We will therefore use below the analytical
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soliton (9.19) as a typical example, keeping in mind that the results obtained
using a soliton corresponding to the neighboring parameters should not differ
significantly from those derived with the help of the analytical soliton.

Let us make precise the orders of magnitude using the experiment de-
scribed in [18], even though it is not made in the one-transverse-dimensional
case. The spatial soliton had a width of 20 µm for an input irradiance of
roughly 50 GW/cm2. In our reduced units, this corresponds to a propagation
parameter ζ = 1 for a propagation in the KTP nonlinear crystal over a length
of 0.3 mm.

9.4 Squeezing on the Total Beam

Applying the methods of Section 9.2, we are now able to determine the spatial
quantum properties of the solitons defined in Section 9.3. We give in this
section the properties of global squeezing for the three types of solitons.

9.4.1 χ(3) Scalar Spatial Soliton

As is well known [19], the Kerr effect produces in the plane-wave case a signif-
icant amount of squeezing, which increases monotone-wise with the propaga-
tion distance. The squeezing is optimized for a given quadrature component
(best squeezing) which is neither the amplitude nor the phase quadrature.
However, the amplitude quadrature of the field remains at the shot-noise level.
Figure 9.2 gives the results of the Green’s function method for the scalar soli-
ton, and shows that the results are quite similar to the plane-wave case, in
the case of a photodetector having an area much larger than the soliton
spot. Neglecting diffraction, or using single-mode propagation in an optical
fiber [1,20] seems to be almost equivalent to compensating diffraction by self-
focusing, for a given nonlinear phase ζ. Hence, a spatial soliton appears as a
practical means to obtain strong squeezing, with the restriction that it must
be detected by homodyne techniques.

9.4.2 χ(3) Vector Soliton: Total Beam Squeezing and Correlation
Between Polarizations

Because vector solitons are not analytically integrable, the impulse response
to a Dirac-like field modification of the perfect vector soliton is more com-
plicated to determine, and is calculated as follows. The perturbation consists
in a unity single-pixel step, multiplied by a small coefficient before addi-
tion to the field, in order to ensure a near-perfect linearity of propagation
equations for the perturbation. Both the unmodified and the modified fields
are first numerically propagated using Eq. (9.16), and then subtracted from
each other. Finally, the subtraction result is divided by the initial multipli-
cation coefficient, in order to retrieve the output corresponding to the input
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Fig. 9.2. Best total squeezing in shot-noise units, observed on the Kerr scalar
soliton (solid line), versus the normalized propagation distance. The dashed line
corresponds to the plane-wave case. In both cases, the normalized propagation
distance corresponds to the nonlinear phase ζ.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

C
o
rr

el
at

io
n
 c

o
ef

fi
ci

en
t

propagation distance propagation distance

S
q
u
ee

zi
n
g
 c

o
ef

fi
ci

en
t

(a) (b)

Fig. 9.3. Best total squeezing in shot-noise units (a) and correlation coefficient
between circular polarizations (b) versus the normalized propagation distance.

unity single-pixel step. Figure 9.3 shows the global squeezing coefficient of
the vector soliton for the best quadrature. This figure is very similar to that
obtained for a scalar soliton (Fig. 9.2): strong squeezing appears, although
somewhat smaller than in the scalar case for the same propagation distance.
This squeezing is due to a strong anticorrelation between circular compo-
nents, as shown in Fig. 9.3b. It can be verified in Fig. 9.4, which displays
the best squeezing of each circular polarization component as a function of
propagation, that the best squeezing on a single circular polarization is much
weaker. We can conclude that a vector soliton as a whole exhibits quantum
properties that are similar to a scalar soliton, and the field on each polariza-
tion does not itself constitute a soliton. Figure 9.5 shows that squeezing on
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Fig. 9.5. Squeezing coefficient (left) and correlation coefficient (right) of linear
polarizations versus the propagation distance.

linear polarizations disappears after a relatively short propagation distance,
even for the best quadrature. Moreover, fluctuations grow exponentially. On
the other hand, fluctuations on both linear polarizations are perfectly anticor-
related after some distance, as was expected because of the strong squeezing
of the global beam. We have verified that the results on this global beam
can also be retrieved from a description of the field by projection on linear
polarizations.

9.4.3 χ(2) Spatial Solitons

In χ(2) media, and in the plane-wave case, when one starts at ζ = 0 from
the fundamental field only, second-harmonic generation leads to a gradu-
ally increasing intensity squeezing on the total fundamental field [21], which
becomes almost perfect at long propagation lengths [22]. The situation is
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different when one starts from a χ(2) spatial soliton. In this case, one can
show that the squeezing oscillates with the propagation length, and reaches a
maximum value of 70%. Figure 9.6 presents the global squeezing of intensity
on the second harmonic [23]. The noise on this quadrature oscillates but re-
mains below the shot-noise value, whereas there is no squeezing on the other
quadratures (fundamental intensity and phase, second-harmonic phase).
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Fig. 9.6. Squeezing coefficient of the amplitude quadrature of the second-harmonic
versus the propagation distance.

9.5 Local Quantum Fluctuations

Formula (9.13) and the analogous formula derived from Eq. (9.10) for the
case of balanced homodyne detection allow us to determine the photocur-
rent fluctuations measured with photodetectors having a surface S of any
area and shape. The minimum area for which our approximate calculation
gives a physical result is the pixel area, having a size equal to the transverse
discretization length used to calculate the Green’s functions G and H. We
present the results for χ(3) and vector solitons. The results for χ(2) solitons
are very similar to those of χ(3) solitons with, however, an important differ-
ence that all squeezing effects are effective on the amplitude quadrature of
the second-harmonic: there is no need of homodyne detection.

9.5.1 χ(3) Scalar Spatial Soliton

Because of the absence of squeezing on the amplitude quadrature, we simulate
a homodyne detector, made of photodetectors of very small area and quantum
efficiency equal to unity, and a local oscillator at frequency ω, placed at
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the output of the nonlinear medium, which is able to monitor the quantum
noise on any quadrature component at a point (x, zout). By varying the local
oscillator phase to reach the minimum noise level, we obtain a quantity that
we call “best squeezing.” Figures 9.7a and 9.7b give, for two normalized
propagation distances (ζ = 0.3 and ζ = 3), such a quantity as a function of
x, together with the phase angle of the local oscillator enabling us to reach
the best squeezed quadrature. One observes that the central pixel is the most
squeezed. The noise reduction remains small because detecting a small part
of the beam is equivalent to introducing losses if the beam is monomode,
as is almost the case here [24]. For a longer propagation length, the noise
level appears to be above the shot noise for any quadrature. Indeed, Fig. 9.8,
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Fig. 9.7. Bottom: (a) best total squeezing in shot-noise units, and (b) correspond-
ing angles, observed on a single pixel, versus its transverse position. Solid line: for
the propagation distance equal to 0.3. Dashed line: for the propagation distance
equal to 3. Top: corresponding transverse intensity profile of the scalar soliton.

which displays the variation of the best squeezing on the central pixel as
a function of the propagation length, shows that the fluctuations on this
pixel decrease until an optimal propagation length (ζ = 0.3), then increase
and overpass the shot noise for a sufficiently long propagation length. Hence,
long propagation lengths produce at the same time local excess noise and
squeezing on the total beam (see Fig. 9.2). These results are not contradictory
because, as we will see, there is a gradual build-up of anticorrelations between
different transverse parts of the soliton due to diffraction. Figure 9.9 shows
the best squeezing for a photodetector of variable size, centered on the beam
axis. This photodetector can be seen as an iris that allows the detection
of only the central part of the beam, with a minimum size corresponding
to the central pixel and a maximum size corresponding to the detection of
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Fig. 9.8. Best squeezing in shot-noise units, observed on the central single pixel,
versus the propagation distance.
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Fig. 9.9. Best squeezing for a photodetector of variable size, versus the transmission
coefficient defined as the ratio between the detected and the total intensity. Solid
line: for the propagation distance equal to 0.3. Dashed line: for the propagation
distance equal to 3.

the entire beam. As expected, the noise on a very small area is close to
the shot noise. The squeezing on a small central area is bigger at a small
distance, and the squeezing for the entire beam is better at a great distance.
For ζ = 0.3 the squeezing is maximum for a finite size of the photodetector
(transmission coefficient of 0.8, corresponding to a normalized radius of 1),
whereas detecting the entire beam ensures the maximum squeezing for ζ = 3.
The explanation is again in building anticorrelations between the two sides
of the soliton for long propagation distances (see Section 9.6).
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In many circumstances, a spatial soliton behaves as a single-mode object.
The present analysis allows us to check such a single-mode character at the
quantum level: let us assume that the system is in a single-mode quantum
state. This means that it is described by the state vector |Ψ > ⊗|0 > ⊗ · · · ⊗
|0 > · · ·, with |Ψ > being a quantum state of the mode having the exact
spatial variation of the soliton field, and all the other modes being in the
vacuum state. It has been shown in [25] that if a light beam is described by
such a vector, then the noise recorded on a large photodetector with an iris
of variable size in front of it has a linear variation with the iris transmission.
We see in Fig. 9.9 that this is not the case for a spatial scalar soliton: as
far as its quantum noise distribution is concerned, it is not a single-mode
object. Let us also notice that the departure from the linear variation is on
the order of 10%, so that the single-mode approach of the soliton remains a
good approximation.

9.5.2 Intensity Squeezing by Spatial Filtering

In the results presented in the preceding subsection, squeezing can be mea-
sured only by homodyne detection, because no squeezing is present for the
amplitude quadrature, which is the easiest to measure as it requires only
direct detection and no interferometer. Mecozzi and Kumar [3] have shown
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Fig. 9.10. Intensity squeezing (dB) for a photodetector placed at the center of the
Fourier plane, with a total width of 0.25 in units of spatial frequencies corresponding
to the normalized units of the direct space.

that a simple stop on the central part of the soliton beam ensures intensity
squeezing on the remaining light. They have proposed the following intuitive
explanation: if the intensity fluctuation is positive for the entire beam, the
soliton becomes narrower (its width is inversely proportional to its power) and
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the stop will produce larger losses which compensate for the extra power due
to the fluctuation. In the Fourier plane, a square diaphragm (lowpass filter)
will produce even better squeezing. Figure 9.10 shows the intensity squeezing
that we have obtained with the Green’s function method by considering an
aperture placed in the Fourier plane. These results are in full agreement with
Fig. 1 of [3], that uses another linearization method. The residual differences
come probably from a small difference in the aperture width. We find, as did
Mecozzi and Kumar, that sub-Poissonian light can be very easily produced
from a spatial soliton by placing a simple aperture in the Fourier plane. These
results are the transposition into the spatial domain of a method that has
been used to experimentally produce squeezing of temporal fiber solitons [26].

9.5.3 χ(3) Vector Soliton

Figure 9.11 shows the squeezing coefficient on one pixel versus its transverse
position, for the propagation length where this local squeezing is the most in-
tense. The degree of squeezing is similar to the scalar case (see Fig. 9.7) with,
however, two peaks of squeezing located on the intensity peaks of the multi-
mode vector soliton. As in the scalar case, local squeezing is maximum for a
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Fig. 9.11. Best squeezing on one pixel, (left): versus the transverse position for
ζ = 0.6, (right): versus the propagation distance for the transverse position corre-
sponding to the strongest squeezing

relatively small propagation length (Fig. 9.11b). Figure 9.12 shows the best
squeezing for a photodetector of variable size, centered on one of the intensity
peaks. In contrast to Fig. 9.9, the variation is far from being linear with the
transmission, meaning that the system is not single-mode, as expected. One
observes that for long propagation distances, the global squeezing reaches a
maximum for a photodetector size corresponding roughly to the peak width.
This global squeezing implies the existence of spatial anticorrelations. In-
deed, the local squeezing on one pixel disappears for such long distances (see
Figs. 9.11 and 9.12).
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Fig. 9.12. Best squeezing for a photodetector centered on one intensity peak and
of variable size, for three different propagation distances, versus the transmission
coefficient defined as the ratio between the detected and the total intensity.

9.6 Quantum Correlations Between Field Quadratures
at Different Points

Applying the methods of Section 9.5, and using formulas analogous to (9.13),
we can also determine the spatial quantum correlations between the different
field quadrature components measured in two spatially separated areas.

9.6.1 χ(3) Scalar Spatial Soliton

Figure 9.13 shows that the covariance between pixels on the best squeezed
quadrature (calculated with the help of Eq. (9.12), and where the best squeez-
ing is defined for the total beam) increases and spreads out when passing from
ζ = 0.3 to ζ = 3. Indeed, only pixels close to each other are anticorrelated
for ζ = 0.3 and the correlation between the adjacent pixels becomes positive
for ζ = 3. For this latter distance, squeezing is due to the anticorrelation
between the left and the right sides of the soliton. Note that this covariance
evolves with the size of the pixel [4].

9.6.2 Vector Solitons

Figure 9.14 shows the spatial correlations, in terms of the covariance functions
C(x, x′, θ) of the two polarizations, and the covariance function between these
two modes, on the best squeezed quadrature and for two propagation lengths.
One sees that for ζ = 0.6, anticorrelations appear between pixels when one
measures different circular polarizations. It means that the effect of cross-
phase modulation is already noticeable, whereas effects of diffraction and
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Fig. 9.14. Covariance C(x, x′, θ), in shot-noise units, between pixels on the best
squeezed quadrature for two propagation distances (a) 0.6 and (b) 2. The values
on the main diagonal (variance) have been removed.

9.6.3 χ(2)Spatial Solitons

The covariance between the fundamental and second-harmonic amplitude
quadratures appears to be very similar to that of the scalar χ(3) soliton
for the best quadrature (see Fig. 9.13). It means that anticorrelations build
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between the left fundamental side and the right second-harmonic side of the
soliton (and vice versa). Here again, quantum properties are nonlocal.

9.7 Conclusion

Let us summarize the main results about the spatial distribution of quan-
tum fluctuations in 1D solitons that we have presented in this chapter: as far
as measurements on the whole soliton are considered, we have shown that
scalar Kerr solitons, as well as vector Kerr solitons, exhibit squeezing proper-
ties similar to those of a plane wave propagating in the same medium and for
the same type of propagation distance. Because of diffraction, as the soliton
propagates, strong anticorrelations develop between symmetrical points in-
side the scalar soliton spot, and between the polarization components for the
vector soliton or frequency components for the χ(2) soliton. Because its for-
mation is not due to phase effects, squeezing in a χ(2) soliton can be observed
on the amplitude quadrature, without homodyne detection.

In view of applications to quantum information, the next step of these
studies is the exploration of the quantum properties of soliton arrays, and
of the possible quantum entanglement between the different components of
a soliton array. From a classical point of view, Trillo et al. have shown [27]
that such an array can propagate without any deformation or recurrence. In
such a case, corresponding to 180◦ out-of-phase adjacent solitons, preliminary
quantum results [28] show that solitons behave as independent objects, with
squeezing properties for each soliton of the array similar to those of a single
scalar spatial soliton. For in-phase solitons on the other hand, modulation
instability (i.e., exponential amplification of noise) prevents any squeezing
after some propagation distance.

To our knowledge, only one experiment has demonstrated an effect related
to the quantum fluctuations in spatial solitons: quantum spatial noise leads,
for arrays of Kerr solitons in a planar waveguide to a shot-to-shot jitter that
has been experimentally characterized [?, 30]. Detailed experimental studies
of local quantum noise and correlations, which would be of high interest, are
difficult to perform because of the large amount of classical fluctuations of
the high-power laser needed to produce the solitons.
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10.1 Introduction

Spatial structures in extended nonlinear optical devices can display impor-
tant quantum features. Quantum images in Degenerate Optical Parametric
Oscillators (DOPO) show quadrature squeezing in the near field [1, 2], and
Einstein–Podolsky–Rosen (EPR) correlations in the far field [3]. These ef-
fects are due to the generation of entangled photons in the parametric down-
conversion process within the optical cavity. For a review of these effects we
refer the reader to [4, 5].

Although deterministic spatial structures are commonplace in many
branches of science such as hydrodynamics, morphogenesis, biological pop-
ulations, extended chemical reactions, and so on, the coupling of quantum
fluctuations and nonlinear spatial structures can be seen in optics even at
room temperature. Quantum images are noise-driven precursors of the spatial
patterns observed above threshold, but are induced by quantum fluctuations
in photonic devices such as the DOPO, the OPO [6], Kerr cavities [7], and
in intracavity second-harmonic generation [8].

Recent interest in spatiotemporal structures of cavity-based photonic de-
vices has focused on localized states, also known as optical bullet holes [9]
or cavity solitons (CS) [10]. One of the main advantages of these structures
over spatially extended features such as patterns, is their possible use as
elements for information processing and optical memories [10]. Recent exper-
imental observations of CS in semiconductor-based devices [11] have further
increased interest in the fundamental aspects of these structures. It is the
aim of this chapter to review some features of CS in the presence of quantum
fluctuations in models of OPO. Quantum fluctuations can be responsible for
the growth of arrays of CS [12, 13] and for the appearance of remarkable
quantum correlations in the near and far field [14] of localized states. Many
of the results discussed below can be found in other nonlinear optical cavity
devices such as Kerr, saturable absorber, and SHG cavities. We restrict the
description to the OPO, however, and in particular to the DOPO because in
this case quantum correlations are enhanced by the presence of twin photons
without loss of generality.

The chapter is divided into four sections. In Sections 10.2 and 10.3 we
describe CS in DOPO and the treatment of quantum fluctuations in DOPO
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models, separately. Section 10.4 is devoted to the growth of arrays of CS
induced by quantum fluctuations. Quantum quadratures and correlations in
the near and far field of CS are presented in Section 10.5, and conclusions
and future developments are discussed in Section 10.6.

10.2 Cavity Solitons in Degenerate Optical Parametric
Oscillators

The classical mean-field equations for a phase-matched DOPO, where both
pump and signal fields are resonated (see Fig. 10.1) are [15]

∂tA0 = Γ
[
−A0 + E − A2

1

]
+

ia

2
∇2A0,

∂tA1 = −A1 − i∆1A1 + A0A
∗
1 + ia∇2A1 . (10.1)

The slowly varying amplitudes of the pump and signal fields are denoted by

χ(2)E

A0

A1

Fig. 10.1. Schematic diagram of the doubly resonant DOPO.

A0 and A1, respectively, the time has been normalized by the photon life time
in the signal cavity, Γ = γ0/γ1 is the ratio between the pump and signal cavity
decay rates, E is the amplitude of the external pump field (here assumed to be
real), ∆1 is the signal detuning, and a = c/γ1kz is the diffraction parameter
with c the speed of light and kz the longitudinal wave-vector of the pump
field. We assume that the pump detuning is zero for convenience. Because in
the following we will change the ratio between the cavity decay rates, we write
the equations without the usual normalizations of the diffraction coefficients
with γ0 and γ1 [15]. The Laplacian ∇2 = ∂2/∂x2 +∂2/∂y2 reduces to ∂2/∂x2

in one transverse dimension (1D).
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10.2.1 Spatial Equations and Domain Walls with Oscillatory Tails

In 1D all steady states (stable and unstable) have to satisfy ordinary differ-
ential equations containing spatial derivatives. For the DOPO the equations
are

∂2

∂x2
A0 =

(
2iΓ

a

)(
−A0 + E − A2

1

)
,

∂2

∂x2
A1 =

(
i

a

)
(−A1 − i∆1A1 + A0A

∗
1) . (10.2)

Above the threshold for signal generation and for positive and zero detunings
the DOPO equations admit two steady-state homogeneous solutions given
by [16]

As
0 = E − (As

1)
2, As

1 = ±
(

EIs

1 + Is + i∆1

)1/2

≡ σe(iθ),

Is = |As
1|2 = σ2 =

√
E2 − ∆2

1 − 1 , (10.3)

where σ and θ are, respectively, the modulus and the phase of As
1 and

sin(β − 2θ) =
(

σ2

2E

)
sin β, β = arg(1 − i∆1). (10.4)

In the phase space of Eqs. (10.2) the homogeneous states correspond to two
fixed points. For the cases of interest here, Trillo et al. [16] found numerically
that a Domain Wall (DW) solution connecting the two homogeneous states
(10.3) is stable in 1D. Such solutions are solitonic in nature, belong to the
broader class of CS, and correspond to heteroclinic connections between the
two fixed points in the phase space of the fields and their spatial derivatives.
An example of the projection of these heteroclinic connections is shown in
Fig. 10.2. Solutions of the steady-state Eqs. (10.2) can be found numerically
with any required accuracy [17]. We note here that solutions of systems (10.2)
almost always diverge to infinity (i.e., with unphysical field intensities) as is
easily ascertained by studying the Jacobian of the system in the neighborhood
of a generic phase point. It is thus quite remarkable that these equations
admit a set of finite intensity solutions starting and ending on the fixed points:
namely the heteroclinic and homoclinic orbits described in this chapter.

10.2.2 Cavity Solitons Formed by Locked Domain Walls

An adjacent pair of domain walls, if stationary, represents a homoclinic tra-
jectory in the phase space of Eqs. (10.2): the fields start close to one homoge-
neous solution for large negative x and end up back at the same homogeneous
solution for large positive x. For sufficiently large separations, each DW is
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Fig. 10.2. A heteroclinic solution consisting of a pair of domain walls for ∆1 = 0.0,
a = 0.5, E = 2.0, and Γ = 1.0; (a) real part (solid line) and imaginary part (dotted
line) of the signal field as a function of the transverse coordinate x in the DOPO;
(b) the DW pair in (a) plotted in the complex A1-plane.

essentially independent: the distance between them can be increased or de-
creased with no apparent constraint. We evaluate the Jacobian of Eqs. (10.1)
at a stationary solution consisting of a pair of widely separated DW. Such a
Jacobian has two zero eigenvalues: one corresponding to an overall transla-
tional invariance of the solution, and the other, to a relative motion of the
two DW. The presence of two zero eigenvalues remains true until the DW
are close enough for their oscillating tails to interact. When this happens,
a locking phenomenon occurs that permits only a discrete set of stationary
DW separations. Some examples of the resulting structures together with
the largest of the nonzero eigenvalues of the equations linearized about each
solution are shown in Fig. 10.3a–f. For any initial condition with a given sep-
aration of DW with oscillatory tails, the distance between the DW relaxes to
the closest of these equilibrium values. No annihilation process of contiguous
DW is observed.

A generic stationary solution As
1 consists of a trajectory orbiting around

the stable homogeneous states and whose real part vanishes at an even num-
ber of points [x1, . . . , x2n] because we are using periodic boundary conditions.
The defect cores are located at positions xn = xn−1 + sj , with n, j integers,
giving rise to a huge number of possible stable distributions of defects. Note
that defect distributions presenting a significant degree of periodicity (where
the possible periods are twice the distances sj) are a very small fraction
of the total number. Different final states with arbitrary numbers of defects
can be reached by starting from the unstable (zero signal) homogeneous solu-
tion with an added random perturbation. The resulting stable 1D structures
contain, on average, a wide range of spatial wavelengths giving rise to a con-
tinuum background in Fourier space, enhanced by the fact that separations
sj are incommensurate with each other. There is an analogy between this
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Fig. 10.3. Stationary DW pairs separated by various distances. All solutions shown
are both stationary and stable. Parameters as in Fig. 2. The largest nonzero eigen-
values of the equations linearized around these solutions are: (a) −0.0000003685,
(b) −0.0001319, (c) -0.0009383, (d) −0.006748, (e) −0.0511, (f) −0.4131.

behavior and temporal chaos, because when ∂t = 0, Eq. (10.2) can be consid-
ered as a dynamical system with the variable x assuming the role of time. For
this reason these aperiodic (disordered) stable structures have been labeled
“spatial chaos” by previous authors [18, 19]. Figure 10.4 shows a typical ex-
ample of a deterministic, stable, and disordered solution and its spatial power
spectrum. Solutions of this kind are generic in the parameter space (E, Γ ).
The isolated DW and localized structures of locked DW displayed in Fig. 10.3
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Fig. 10.4. Left panel: typical asymptotic distribution of the real part of the signal
field in the absence of fluctuations for E = 4 and Γ = 0.2. Right panel: the spatial
power spectrum averaged over many realizations starting from the unstable zero
state.
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are the cavity solitons of interest for DOPO. They survive in two transverse
dimensions although the thresholds for their observation can change due to
local curvature effects [17].

10.3 Quantum Fluctuations in DOPO

Open quantum optical systems are often simulated using quantum Langevin
equations. These are first-order temporal differential equations for the field,
and include stochastic terms to take account of the noise due to the interac-
tion of the system with its environment. The Heisenberg uncertainty principle
restricts the minimum size of the noise. In this section we give an overview of
the derivation of Langevin equations containing such stochastic noise terms,
and show two examples for the DOPO with transverse effects.

Langevin equations are derived from the master equation for the density
operator of the open system by taking coherent state matrix elements [20].
This converts the master equation into a Fokker–Planck (FP) equation for
a quasi-probability, a distribution analogous to the probability distribution
in classical physics. The FP equation can then be mapped onto a stochastic
Langevin equation with quantum-limited noise terms. Various FP equations
can be derived for the same system for quasi-probabilities associated with
different operator orderings. The two most typical are the equations for the
Wigner function, which is associated with symmetrical ordering, and the Q-
or Husimi function, which is associated with antinormal ordering [21]. The
derivation of Langevin equations can be problematic, however, as the FP
equations can contain nonlinear terms, third-order derivatives, or have nega-
tive diffusion coefficients. In practice higher-order terms are often neglected,
leading to Langevin equations associated with what is known as “stochastic
electrodynamics”.

10.3.1 Wigner Representation

In optical cavities with finite transverse extent a similar procedure can be
used to derive Langevin equations from Fokker–Planck equations for quasi-
probability functionals, in which the field is associated with each point in the
transverse plane. The set of equations for the degenerate optical parametric
oscillator in the Wigner representation are as follows [2, 22],

α̇0(x) = Γ [−α0 + E] − 1
2
α2

1 +
i

2
∂2

∂x2
α0 +

√
2Γ

nth
ζ0,

α̇1(x) = −α1 − i∆1α1 + α0α
∗
1 + i

∂2

∂x2
α1 +

√
2

nth
ζ1, (10.5)

where α0(1)(x) is the pump (signal) field (now referred to with Greek letters to
reflect their fluctuating nature), nth is the number of photons at threshold, a



10 Quantum Fluctuations in Cavity Solitons 227

convenient parameter for describing the nonlinearity of the system, and ζ0(1)

is the pump (signal) Langevin noise term, which satisfies 〈ζi(x, t)ζ∗j (x′, t′)〉 =
1
2δijδ(x − x′)δ(t − t′). In the above equations the pump detuning has been
set to zero, as before.

The Wigner functional provides Langevin equations that can be used
to evaluate symmetrically ordered expectation values. These are particu-
larly useful when discussing squeezing, as four-port homodyne detection of
squeezed light is a symmetrical detection scheme. There are problems asso-
ciated with the use of the Wigner function(al) in nonlinear optics, however.
In the OPO there is a threshold pump power below which no signal field is
generated, but the light is squeezed. As this threshold is approached from
below, higher-order terms in the FP equation become significantly large so
that neglecting them is not a good approximation.

10.3.2 Q-Representation

A way around this difficulty has been proposed using Q-function-based
Langevin equations for the signal and pump fields. Details are omitted, and
the reader is directed to reference [14] where a detailed exposition is given.
The equations are for Γ = 1

α̇0(x) = −
[
1 − i

∂2

∂x2

]
α0(x) + E − 1

2
α2

1(x) +
√

2
nth

ξ0,

α̇1(x) = −
[
1 − 2i

∂2

∂x2

]
α1(x) + α0(x)α∗

1(x) +
√

2
nth

ξ1, (10.6)

where a is the ratio of the diffraction coefficients for the pump and signal
fields, and ξ0 is a Langevin noise source that satisfies 〈ξ0(x, t)ξ∗0(x′, t′)〉 =
δ(x− x′)δ(t− t′). The noise source for the signal field is phase sensitive, and
also depends on the pump field value:

ξ1(x, t) =
[

−α0I

2
√

2 + α0R
+

i

2
√

2 + α0R

]
Φ(x, t)+

√
1 − |α0|2/4

2 + α0R
Ψ(x, t), (10.7)

where α0 = α0R + iα0I and Φ and Ψ are noise sources with expectation
values similar to that of the pump fluctuations ξ0. The Q-function treatment
is valid provided that the pump field magnitude remains below twice the
threshold for signal generation, so the theory is valid in the nonlinear regime.
It has been applied successfully to derive quantum correlations both below
and above threshold, where patterns emerge in the signal field [14].

10.4 Arrays of CS Induced by Quantum Fluctuations

In this section we study the effect of quantum fluctuations on the distributions
of DW and defects in the signal field. In particular, we identify a clear change
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of behavior in the spatial spectrum decreasing the ratio Γ between the cavity
finesse of the pump and the signal fields, respectively. When considering
Eqs. (10.5) in the case of small Γ we see that the fluctuations of the pump
field become progressively irrelevant. In this case, the quantum behavior of
the DOPO is described by a “classical” equation of the pump field such
as the first equation of (10.1) and a Langevin-like equation for α1 as in
Eq. (10.5) [13,23].

Figure 10.5a shows the 1D evolution of the signal field under the action of
quantum fluctuations for Γ = 0.02, E = 1.5, and nth = 1000 obtained from
these equations in the Wigner representation. In the plot, local fluctuations
have been filtered out by introducing a threshold at Re(α1) = 0 so that
the dark (white) regions in Fig. 10.5a represent positive (negative) values
of Re(α1). Moreover, we eliminate those defect pairs whose separation is
less than a definite critical distance because they are doomed to disappear
[12]. After a transient whose duration increases exponentially with increasing
nth, we reach a stationary equilibrium regime where the average number of
defects remains constant. This corresponds to a balance between the rates of
appearance and disappearance of pairs of DW. We stress that all quantities
considered below are evaluated at equilibrium.
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Fig. 10.5. (a) Temporal evolution driven by quantum fluctuations of the real
part of the output signal field for ∆1 = 0, E = 1.5, Γ = 0.02, and nth = 1000.
Arrays of cavity solitons are clearly visible after the transient has ended. (b) The
Fourier spectrum of the spatial autocorrelation function C[Re(α1)], averaged over
time after the equilibrium state has been reached; k0 corresponds to the wave-vector
of arrays of cavity solitons and kLS to the largest eigenvalue of the linear stability
analysis of the stable homogeneous solution, away from k = 0.

For low Γ , a large number of locked cavity solitons are clearly visible in the
near field. They form arrays that jitter under the action of the fluctuations.
The lengths of the arrays are an arbitrary multiple of the soliton size s0. The
average length of the arrays increases with increasing ratio of pump-to-signal
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finesse. For example, in Fig. 10.5a this average length is larger than the trans-
verse simulation size. The presence of arrays of cavity solitons is reflected in
the far field where a huge peak at k0 appears. The power spectrum shown
in Fig. 10.5b is nothing more than the Fourier transform of the spatial au-
tocorrelation function C[g(x, t)] =

∫ +∞
−∞ h(x + x′, t)h∗(x′, t)dx′ averaged over

time. In our case h = Re(α1). The average size of the arrays of cavity solitons
is given by the inverse of the decay rate of the averaged spatial correlation
function. A large peak at k0 in the power spectrum signals the presence of
large spatial correlations at distances of the order of s0.

These arrays should not be confused with patterns above a modulational
instability because they are formed by progressive locking of localized struc-
tures and not by the instability of a given wave vector. The phenomenon
described here is analogous to the noise-induced suppression of spatial chaos
presented in [12] but is now entirely due to quantum fluctuations. Arrays of
cavity solitons in the signal intensity in the limit of small Γ and the corre-
sponding off-axis peak in the far field are a new “quantum structure” in that
they are induced by quantum noise after long transients. Note that without
the quantum fluctuations the far field is broad-band (see Fig. 10.4) and dis-
plays no correlations at any particular wave vector. We will see in Section 10.5
that photons at the k0 peak display large important quantum correlations.

Realistic quantum fluctuations can induce arrays of cavity solitons in a
1D configuration of a DOPO. Figure 10.6 shows the duration of the tran-
sient before reaching the equilibrium regime against nthΓ , a parameter that
measures the inverse of the fluctuation strength and depends on the pump
wavelength, the diffraction in the cavity, the material nonlinearity, and the
finesse of both cavities. It is important to note that Γ cannot be pushed
below, say, 10−3 to maintain the validity of the mean-field limit [24], and
large values of nth can lead to undesirably long transients. Staying above
but close to the threshold of signal generation also helps to achieve optimal
balance among the parameters and for this reason we have chosen to work
within the range of 1.5 ≤ E ≤ 3. It is important to show that the quantum
structure described here is fundamentally different from the quantum images
observed around a modulational instability as described for DOPO in [1, 2],
for OPO in [6], for Kerr cavities in [7], and for intracavity second-harmonic
generation in [8]. In all these cases, the quantum image is associated with a
noisy precursor of the pattern that forms above a modulational instability.
This means that if we switch the noise off after the formation of the quantum
image, the far-field peak at the critical wave vector kc of pattern formation
above the modulational threshold disappears. In the present case of arrays
of cavity solitons, instead, if we remove the noise after the arrays have been
induced by the quantum fluctuations, the arrays will survive indefinitely be-
cause they are one of many stable stationary solutions of the system. In this
respect it is important to note that our arrays of cavity solitons are induced
but not sustained by quantum fluctuations.
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Fig. 10.6. Duration of the transient tr before the equilibrium regime is reached
versus Γnth on a logarithmic scale for E = 2.6.

To explain why quantum fluctuations select regular arrays of cavity soli-
tons for small Γ because stable homogeneous solutions exist also for large Γ
we present a simple argument suggested in [12]. In the limit of small Γ , local
oscillations at the tails of the locked DW have large amplitude [17]. Once
a single-peak cavity soliton is excited by the fluctuations, the probability of
exciting another soliton peak in the vicinity of the first one is spatially inho-
mogeneous due to the presence of the oscillatory tails. In particular, fluctua-
tions much smaller than those necessary to excite a single-peak soliton from
a homogeneous background can excite a new peak in the vicinity of the large
amplitude oscillations of the soliton tail. This was determined by finding the
unstable single-soliton solution that provides the critical magnitude of such
excitations. In the limit of small Γ the critical amplitudes for erasing a soli-
ton peak are larger than those for its excitation, as shown in [12], and so
the equilibrium density of defects is large. Therefore, the average separation
distance between defects is small and, because this cannot be smaller than
s0 (the characteristic size of a soliton), arrays of solitons form.

The heuristic argument provided above explains the critical role played
by the parameter Γ in the stochastic selection of the final solutions. In par-
ticular, the condition of small Γ has a twofold relevance: it increases both the
role played by the signal noise and the size of the local oscillations of the soli-
ton tails. In agreement with this argument, we observe for increasing Γ that
the average size of the arrays of cavity solitons tends to decrease and larger
patches of homogeneous solutions progressively appear. This means that the
peak in the far field gradually decreases and eventually disappears on increas-
ing Γ . We note, however, that by increasing Γ the validity of the quantum
model based on a classical pump equation becomes questionable because the
fluctuations of the pump field cannot be neglected any longer [23]. If we
use Eqs. (10.5) for increasing Γ , we observe arrays of solitons progressively
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decreasing in size and finally disappearing well before Γ = 1, leaving the
dynamics to be dominated by domain walls performing random walks [12].

10.5 Quantum Features in the Near and the Far Field
of CS

We now turn our attention to the behavior of quantum fluctuations inside
DW and CS in DOPO. We separate our presentation into the near- and the
far-field measurements.

10.5.1 Quantum Correlations of CS in the Near Field

We consider the output of a broad area one-dimensional DOPO above thresh-
old (E = 1.2) and compare the quadrature components of the fluctuations
coming from the center of the DW with those of the homogeneous part in
the transverse plane. Figure 10.7 shows the averaged distribution of the real
part of the signal field A1 =< α1 > at resonance for E = 1.2, the size and
the two positions of the near-field detectors. The first position is straight at
the center of the DW whereas the second one is in the homogeneous region.
We have evaluated the normally ordered correlation function

Fig. 10.7. Averaged transverse distribution of Re(A1) =< Re(α1) > for E = 1.2.
The two circles correspond to the positions of the near-field quadrature detectors.

Γφ =<: ΛφΛφ :> Λφ = (α1− < α1 >) e−iφ + c.c. (10.8)
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where < . > denotes a temporal average after transients have been discarded
and α1 is obtained via the simulation of the Langevin equations (10.5). Nu-
merical simulations in the Q-representation (10.6) will be presented else-
where [25]. The results of the evaluation of Γφ are presented in Fig. 10.8.
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Fig. 10.8. Left panel: the near-field quadrature correlation Γφ for the detector on
the DW (solid line) and on the homogeneous solution (dotted line) for E = 1.2.
Right panel: magnification of Γφ for the DW. The solid line at zero represents the
shot noise.

The quadrature correlations of the noise in the CS clearly show an am-
plification [26] of the noise amplitude for certain angles φ of the quadrature
phase when compared with those of the homogeneous solution. The amplifi-
cation is huge (almost three orders of magnitude for the simulations presented
in Fig. 10.8) and leads to squeezing ellipses that are hugely asymmetric. A
considerable amount of squeezing is present in the near-field detection of pho-
tons coming from the DW (see the right panel of Fig. 10.8). Such squeezing
is much larger than that described in [2] for a DOPO below threshold which
progressively vanishes approaching the threshold.

A comparison between the squeezing ellipses for the DW and the homo-
geneous solution is presented in Fig. 10.9. The amplification of the amplitude
of the fluctuations in a precise direction of the quadrature phase φ is so large
that the squeezing ellipse of the homogeneous solution is invisible in the left
panel of Fig. 10.9. Such amplification is due to the breaking of the transverse
symmetry due to the presence of the DW. It is well known that the Goldstone
mode associated with such symmetry breaking has a zero eigenvalue and con-
sequently a marginal stability. Although the homogeneous solution maintains
transverse symmetry and its fluctuations are damped for every value of φ,
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Fig. 10.9. Left panel: the near-field quadrature correlation Γφ in a polar represen-
tation for the detector on the DW. Right panel: magnification of the central part
of the squeezing ellipses. Parameters are the same as in Fig. 10.8.

DW and CS break the translational invariance and their fluctuations appear
amplified in the direction of marginal stability when compared with those
of the homogeneous solution. The zero eigenvalue of the Goldstone mode is
not capable of damping fluctuations leading to jitter (and diffusion) in the
position of the DW.

Finally, from the magnification of the central part of the squeezing ellipses
presented in the right panel of Fig. 10.9, we see that the levels of squeezing
in the DW and in the homogeneous part of the signal field are comparable
in magnitude. This suggests that far-field detection can be more appropriate
for an easy detection of nonclassical features in these structures.

10.5.2 Quantum Correlations of CS in the Far Field

Quantum features of photons generated in CS are more easily observed in far-
field detection. Here photons emitted in homogeneous regions of the trans-
verse space accumulate in the k = 0 mode (on-axis emission) and photons
generated by spatial structures such as CS and patterns are scattered off-axis
with a spatial wave-vector k 
= 0. We consider here the quantum fluctuations
of two configurations of CS in DOPO: two well-separated DW (similar to
those described in Fig. 10.7) and an irregular sequence of locked DW simi-
lar to those described in Sections 10.2 and 10.4. Without loss of generality,
the chosen DOPO parameters correspond to those selected in [14]; that is,
E = 1.5, nth = 10, 000, and ∆1 = −0.18. In Fig. 10.10 we show the near- and
far-field distributions of the averaged signal and the pump fields for these two



234 Gian-Luca Oppo and John Jeffers

configurations. We note that in [14] numerical simulations are performed in
the Q-representation with Eqs. (10.6).

(a)

(b)

Fig. 10.10. Averaged transverse distributions of the real part of the near-field
and intensity (log scale) of the far-field for the pump (thin line) and signal (thick
line) for E = 1.5, nth = 10, 000, and ∆1 = −0.18; (a) two DW, (b) spatial chaos.
Reproduced from [14].

Nonclassical features can be detected in the intensities of twin beams in
the far-field by evaluating the normal-ordered variance in the difference of
the two signal intensities at opposite k wave-vectors [14]:

V(k) =

〈
[δI(k) − δI(−k)]2

〉
N (k)

δI(k) = I(k)− < I(k) > (10.9)

where I is the signal intensity, < . > denotes time averages, and N (k) is
the shot noise proportional to the sum of the averaged signal intensities at
±k. Negative values of V(k) indicate sub-Poissonian statistics in the intensity
difference of the two signal beams at ±k [27]. For standard quantum images
below the threshold, V = −0.5 for any pump intensity and far-field wave vec-
tor [2, 27]. This is an obvious artifact due to the normalization N (k) which
instead strongly depends on the pump intensity and far-field wave-vector. To
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clarify this issue, Zambrini et al. [14] plotted V(k) below the signal generation
threshold (E = 0.99) as displayed in the left panel of Fig. 10.11. Small devia-
tions of the numerical simulations from the analytical value −1/2 are due to
the smallness of the shot noise used in the normalization. The shot noise is in
fact proportional to the averaged signal intensity in the farfield shown in the
insert of the left panel of Fig. 10.11. The left panel of Fig. 10.11 shows the

<I(k)>

Fig. 10.11. Left panel: the twin-beam variance V(k) below the threshold for
signal generation (E = 0.99, nth = 10, 000, and ∆1 = −0.18). The insert shows
the averaged signal intensity. Right panel: V(k) above threshold (E = 1.5). The
black line corresponds to the CS configuration of Fig. 10.10a; the grey line to that
of Fig. 10.10b. Reproduced from [14].

spatial spectrum of the far-field variance V(k) for the two CS configurations
of interest. As in the case below threshold, quantum correlated beams are also
found in the presence of CS. Note that the scattered photons (i.e., k 
= 0) are
now entirely due to the presence of the localized CS structures. A difference
with the case below the threshold, however, is that a cut-off for the negative
variance appears at large k (k ∼ 1). This cut-off is much higher than all
the main spatial components in the CS structures as shown by the far-field
spectra in Fig. 10.10. Correlations become classical for large wave-vectors
where the signal is depleted more than the pump field and reaches asymptot-
ically the level of a coherent state (see the dotted gray line in Fig. 10.11) [14].

The interpretation of a band of quantum-correlated photons in the far
field of the signal of CS in the DOPO is simple. Any photon scattered by
the spatial structure of CS appears in the far field with its twin at the opposite
wave-number. Negative variances V(k) reflect the quantum nature of the
twin-beam photon generation in the χ(2) crystal and are then independent of
the photon output direction. It is obvious, however, that not all k-modes are
equally populated in the presence of CS. For example, in the case of arrays of
CS driven by quantum fluctuations described in Section 10.3 (see Fig. 10.5),
the largest number of photons in the far field appear at the peak ks. All these
photons display quantum correlations in the far field with negative variance
V(k), and are thus quantum structures.
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10.6 Conclusions and Acknowledgments

In this chapter we have explored the relation between cavity solitons and
quantum fluctuations in the DOPO. This is the ideal system to explore such
a relation, as it readily exhibits both of these properties.

The first effect of quantum fluctuations that we have considered is quan-
tum noise-induced stabilization of locked arrays of cavity solitons. In the
neighborhood of a domain wall quantum noise can be large enough to induce
the creation of another pair of such walls, which locks to the first domain wall
at a particular distance. This phenomenon builds up to form large arrays of
domain walls or equivalently, cavity solitons.

We have also considered quadrature correlations in the near and far field of
domain walls. In the near field the unusual nature of the domain wall center,
where the pump is above the threshold and the signal field vanishes, suggests
that there should be extreme features associated with squeezing around such
points. In the domain wall there is large amplification of the quantum fluc-
tuations with a particular phase when we compare them with those of the
homogeneous solution. The resultant fluctuations are many times larger than
the fluctuations at a position away from the domain wall, a consequence of
the breaking of the transverse symmetry imposed by the domain wall.

Quantum correlations have also been found in the far-field intensity dif-
ference of twin beams emitted from the cavity soliton structures. These cor-
relations are a consequence of the twin-photon generation process in the χ(2)

crystal. The spatial wave-vectors at which the correlations appear are deter-
mined by the underlying transverse structure of the signal field.

Our final conclusion from the work presented here is that arrays of CS in
DOPO for small values of the decay ratio Γ are the Quantum CS Structure
“par excellence” because they are generated by the quantum fluctuations and
display remarkable quantum features in both the near and the far field.

We would like to thank the following people for useful discussions, and/or
for the permission to use some of their results in this chapter: Roberta Zam-
brini, Andrew Scroggie, Ivan Rabbiosi, Graeme McCartney, Steve Barnett,
and Pere Colet. We would also like to thank the European Commission (via
the Quantim and FunFACS networks), SGI, the Royal Society—Leverhulme
Trust, and the University of Strathclyde (SRIF-II) for funding in support of
this research.
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11.1 Introduction

Quantum information has emerged as an actively developing field in the past
decade [1, 2]. The goal of this novel area of research in theory and experi-
ment is to apply the laws of the quantum world to information processing
and communication. One can mention here quantum cryptography, quantum
computing, quantum teleportation, quantum dense coding, and other appli-
cations. It seems natural to extend the concepts and approaches developed
in quantum imaging to the phenomena of quantum information, thus intro-
ducing parallelism and all-optical methods to the latter field of research.

In this chapter we discuss the extension of two continuous-variable pro-
tocols of quantum information: quantum teleportation and quantum dense
coding, onto the optical images. Similar to most quantum information phe-
nomena, the basic resource here is provided by quantum entanglement. The
key notions for our consideration are the continuous-variable spatially mul-
timode squeezing and entanglement, introduced in previous chapters and
discussed below.

It is well known that, by following the principles of quantum physics, it
is possible to transport an arbitrary quantum state of the electromagnetic
field or another object from one place to another using a classical informa-
tion exchange in combination with a quantum channel that exploits quan-
tum entangled states. This operation, named quantum teleportation, was
initially proposed for discrete variables [3] and later extended to continuous-
variable schemes [4–6]. Experimental demonstrations for discrete variables
were achieved in [7] for single-photon polarization states, and in [8, 9] for
continuous variables. Apart from its intrinsic fundamental relevance, the in-
terest of quantum teleportation arises also from its potential applications in
the fields of quantum error correction [10], quantum dense coding [11], and
quantum cryptography [12].

The first proposals of the teleportation schemes considered the case of
single-mode fields or, at most, broadband teleportation of time-dependent
signals [13]. However, the spatial degrees of freedom offer an opportunity
for substantially increasing the number of channels in which teleportation
can be realized in parallel. A protocol that allows us to teleport a spatially
multimode state of the field was proposed recently in [14,15]. Teleportation
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with these features has been called quantum holographic teleportation. Such a
teleportation scheme has far greater potential as compared to a single-mode
case because it allows for a simultaneous teleportation of two-dimensional
optical images or other two-dimensional data sets. This generalized proto-
col opens new potential applications of teleportation as quantum interface in
two-dimensional parallel quantum computing, in parallel quantum commu-
nication, quantum memory, error correction and so on.

Quantum holographic teleportation of optical images is considered in Sec-
tion 11.3 of this chapter.

Quantum dense coding is a quantum-entanglement-based scheme for com-
munication channels. The basic feature of the quantum dense coding protocol
is the use of two channels in the quantum entangled state. The signal is cre-
ated by the sender (Alice) in the first channel. Due to effective quantum
entanglement, the second channel plays the role of perfect reference system
for the first one. The receiver (Bob) detects the signal by means of a Bell-
type measurement, performed simultaneously with two channels. Quantum
entanglement allows for signal detection with sensitivity beyond the standard
quantum limit for a single channel.

Quantum dense coding has been first proposed [16] and experimentally
realized [17] for discrete variables, qubits, and later elaborated [11] and exper-
imentally realized [18] for continuous variables. In Section 11.4 we discuss the
continuous-variables quantum dense coding protocol for optical images [19].
This scheme extends the protocol [11] to the essentially multimode in space
and time optical communication channels. The spatially multimode general-
ization exploits the inherent parallelism of optical communications and allows
for simultaneous parallel dense coding of an input image with many elements.
The capacity of the parallel dense coding scheme greatly exceeds that of its
single-mode version.

11.2 Continuous-Variable Squeezing and Entanglement
for Spatially Multimode Light Fields

11.2.1 Spatial Scales of Quantum Correlations in Squeezed Light

Light fields in the squeezed state are typically produced by nonlinear para-
metric interactions. Since the first experimental demonstration [20], the phe-
nomenon of squeezing was observed by three- and four-wave mixing in non-
linear crystals, resonant media, and optical fibers, both in continuous-wave
and pulsed regimes [21].

The problem of generation of multivariate squeezing is crucial for quan-
tum imaging. The theoretical proposals and experimental efforts aiming at
effective spatially multimode squeezing both in traveling-wave and cavity-
based configurations are reviewed in other chapters of this book.
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To be specific, we consider in this chapter the sources of squeezed and
entangled light fields based on traveling-wave type-I OPAs (Optical Para-
metric Amplifiers). The intensive nondepleting classical pump field is taken
as a monochromatic plane wave with frequency ωp and wave vector kp along
the z-direction, (see Fig. 11.1). The nonlinear crystal of length l has a shape
of a plane slab with large dimensions along the x- and y-directions. By the
type-I parametric down-conversion, a pump photon produces a pair of pho-
tons of equal polarizations with frequencies ω ± Ω, where ω = ωp/2, and
transverse components of wave-vectors ±q. These conditions follow from the
frequency and the transverse momentum conservation. The wave with fre-
quency ω + Ω and transverse component q has the wave-vector k(q, Ω). As

Fig. 11.1. Schematic of traveling wave OPA.

will be shown below, in the case of collinear and frequency-degenerate phase
matching one needs two independent OPAs, OPA1 and OPA2, in order to
produce two squeezed and entangled light beams. We shall use the space-
and time-dependent photon annihilation and creation operators Ŝn(ρ, t) and
Ŝ†

n(ρ, t), n = 1, 2, of the squeezed fields. Here ρ is the 2D transverse coordi-
nate. These operators obey [22,23] the free-field commutation relations,

[Ŝn(ρ, t), Ŝ†
n′(ρ ′, t′)] = δn,n′δ(ρ − ρ ′)δ(t − t′), (11.1)[

Ŝn(ρ, t), Ŝn′(ρ ′, t′)
]

= 0,

and are normalized so that 〈Ŝ†
n(ρ, t)Ŝn(ρ, t)〉 gives the mean value of the

irradiance, expressed in photons per cm2 per second.
The transformation of the input fields Ân(ρ, t) of the OPAs in the vacuum

state into the output fields Ŝn(ρ, t) in the broadband multimode squeezed
state is described in terms of the Fourier components of these operators in
the frequency and spatial-frequency domain,

ŝn(q, Ω) =
∫

dρ dt exp[i(Ωt − q · ρ )]Ŝn(ρ, t). (11.2)
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In what follows we shall use similar notation for ân(q, Ω) and other field
operators. The squeezing transformation, performed by the OPAs, can be
written as follows,

ŝn(q, Ω) = Un(q, Ω)ân(q, Ω) + Vn(q, Ω)â†
n(−q,−Ω), (11.3)

where the coefficients Un(q, Ω) and Vn(q, Ω) depend on the pump-field ampli-
tudes of the OPAs, their nonlinear susceptibilities, and the phase-matching
conditions. For the type-I phase-matched traveling-wave OPAs, the coeffi-
cients Un(q, Ω) and Vn(q, Ω) are given in Appendix A.

In what follows we assume the frequency-degenerate and collinear phase-
matching condition in both OPAs with equal coupling constant |g1| = |g2| = g
and equal degree of squeezing (see Appendix A), where

r1(q, Ω) = r2(q, Ω) ≡ r(q, Ω), (11.4)

and r(0, 0) = g. A simple physical interpretation of wideband squeezing can
be given in terms of squeezing ellipses, introduced in the (x, y) plane of
complex field amplitude for any pair of conjugate waves with the Fourier
amplitudes ŝn(q, Ω) and ŝn(−q,−Ω). The (q, Ω) ellipse, representing the
quantum uncertainty area for the given pair of conjugate waves, is stretched
and squeezed by the factor exp[±rn(q, Ω)]. The major axis of the ellipse is
oriented at the angle ψ(q, Ω) in the plane of complex field amplitude.

The spatiotemporal scales of squeezing and entanglement are sensitive
to the rotation of the squeezing ellipses with frequencies q, Ω, that is, to
the frequency dispersion of squeezing. As a result of the rotation, the noise
suppression in the given field quadrature goes over to the noise amplification
at higher frequencies, as shown in Fig. 11.2a. The rotation in dependence on

a b

q2

Fig. 11.2. The squeezing ellipses (a) for the broadband in space–time field ŝ1(q, Ω)
in dependence on the mismatch δ(q, Ω) (arbitrary units). The type-I collinear de-
generate phase matching, exp[r(0, 0)] = 3. (b) The same squeezing ellipses for the
imaging system with a properly inserted lens.

the spatial frequency is due to diffraction. This rotation can be effectively
eliminated by a properly inserted lens imaging system, as shown in [22, 23]
and illustrated in Fig. 11.2b.
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11.2.2 Spatially Multimode Entanglement

The EPR (Einstein–Podolsky–Rosen) beams Ên(ρ, t), n = 1,2, can be created
by the interference mixing at the 50:50 beamsplitter of two broadband mul-
timode squeezed beams Sm(ρ, t), created by two degenerate traveling-wave
OPAs:

Ên(ρ, t) =
∑

m=1,2

RnmŜm(ρ, t). (11.5)

Here

{Rnm} =
1√
2

(
1 1

−1 1

)
, (11.6)

is the scattering matrix of the beamsplitter. This generation scheme of the
spatially multimode EPR entanglement is a generalization of the scheme
previously used [8] for the generation of entanglement, which is broadband
in time, but single-mode in space.

Alternatively, the two multimode EPR beams can be generated by a single
traveling-wave OPA, degenerate in frequency, with type-II phase matching
[24, 25] (in the latter case the two beams have orthogonal polarizations), or
by a single-frequency or momentum nondegenerate OPA.

In analogy to the single-mode EPR beams, the multimode EPR beams are
created if squeezing in both channels is effective, and the squeezing ellipses
are oriented in the orthogonal directions. For simplicity we shall assume that
OPA1 and OPA2 have such properties that

U1(q, Ω) = U2(q, Ω) ≡ U(q, Ω),
V1(q, Ω) = −V2(q, Ω) ≡ V (q, Ω). (11.7)

These assumptions provide,

ψ1(q, Ω) = ψ2(q, Ω) ± π/2 ≡ ψ(q, Ω), (11.8)
φ1(q, Ω) = φ2(q, Ω) ± π/2 ≡ φ(q, Ω).

The physical properties of the generated entanglement are illustrated in
Fig. 11.3. Consider the corresponding coherence volumes Vc = cTcSc in two
incident squeezed beams. Here Tc = 2π/Ωc and Sc = (2π/qc)2 are, respec-
tively, the coherence time and the coherence area, related to the frequency-
and spatial-frequency bandwidths Ωc and qc of effective noise suppression in
the low-noise quadratures.

The left and right lower ellipses in Fig. 11.3 and vectors inside represent
the effective local values of the broadband field fluctuations in these coherence
volumes. The vectors represent only the stretched (amplified) quadrature
amplitudes of the fields Ŝ1 and Ŝ2. The squeezed quadrature amplitudes
are negligible for exp[r(0, 0)] � 1 and are not shown. After the scattering,
the outgoing fields Ê1 and Ê2 in the corresponding coherence volumes are
composed of the same amplified quadrature amplitudes (see left and right
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upper plots). This means (in the limit of effective squeezing) the effective
correlation and entanglement between the scattered fields: the quadrature
amplitudes of the fields Ê1 and Ê2 coincide (up to the sign, introduced by the
unitary transform (11.6)). In the spatiotemporal domain the entanglement
between the broadband fields is local, “volume to volume.” In the frequency

Fig. 11.3. Generation of the EPR fields Ê1(ρ, t) and Ê2(ρ, t), locally entangled in
space–time, via interference of the illuminating squeezed fields Ŝ1(ρ, t) and Ŝ2(ρ, t).

the domain the EPR fields are entangled for the frequencies Ω and spatial
frequencies q within the phase matching of the OPA.

11.3 Quantum Holographic Teleportation of Optical
Images

In this section we describe the optical scheme of quantum holographic tele-
portation and formulate criteria for achieving high fidelity of the quantum
state teleportation.

Quantum holographic teleportation has physical features that are not
present in the single-mode teleportation scheme. One of these features is
the possibility of controlling the performance of holographic teleportation by
optical elements properly inserted into the light beams propagated in the
scheme. This possibility of optical control is related to the phenomenon of
diffraction which is less important for the single-mode light fields.

Another important difference between the spatially multimode scheme
and its single-mode counterpart follows from the fact that in the case of quan-
tum holographic teleportation one has an input signal with a large number of
degrees of freedom. The usually discussed measure of the quality of telepor-
tation, the fidelity of teleportation of the quantum state of a global system,
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does not apply here because it tends to be very close to zero. One has to
define, therefore, a reduced fidelity of teleportation related to the pertinent
degrees of freedom to be teleported (see Section 11.3.4). Such a reduced fi-
delity can be made close to unity by a proper choice of the spatial bandwidth
of the EPR beams used in the protocol as well as by optimization of the
scheme with optical devices (lenses) properly inserted in the light beams.

A peculiar characteristic of the multimode teleportation schemes, based
on multipixel light detection, is the need for using a coarse-grained description
of the input and output signals in order to characterize the quality of the
multimode teleportation.

In an important case of the input image field with quantum Gaussian
statistics (e.g., input field in spatially multimode squeezed or coherent state)
we find the fidelity of teleportation in an explicit form. It turns out that the
fidelity not only depends on the features of the quantum noise in each mode
of the input state, and on the degree of entanglement in the quantum channel
(which would be true also in the case of single-mode teleportation), but it
also depends on the number and choice of image elements or pixels that one
wants to teleport in parallel.

Quantum holographic teleportation can be viewed as an extension to
the quantum domain of conventional nonstationary holography (see Sec-
tion 11.3.5). In fact, one can recognize in the quantum holographic telepor-
tation protocol all basic elements present in holography. The novel feature,
which converts holography into quantum holographic teleportation and al-
lows for suppression of quantum fluctuations in the teleported (reconstructed)
image field beyond the standard quantum limit, is the spatially multimode
quantum entanglement.

11.3.1 Basics of Quantum Teleportation

The basic components of quantum teleportation are: (i) the so-called quan-
tum channel (a pair of quantum objects in EPR state), and (ii) the EPR
measurement. For some important physical situations, an EPR state can be
interpreted as the state with precisely defined values of physical variables,
associated with the relative motion of the objects of the EPR pair. By con-
trast, the knowledge of individual variables for the objects constituting the
EPR pair, is minimal.

A general scheme of quantum teleportation is illustrated in Fig. 11.4. An
input object 1 is in an unknown quantum state |ψ(in) >1. This state has to be
teleported by Alice and Bob onto the output object 3. The stages of quantum
teleportation are:

(a) Alice and Bob prepare the objects 2 and 3 in certain EPR state
|ψEPR

in >2,3 (quantum channel). This means that the variables of the rel-
ative motion of the objects 2 and 3 are precisely defined and known both to
Alice and Bob.



246 Ivan V. Sokolov

Fig. 11.4. General scheme of quantum teleportation.

(b) Alice performs the measurement of the EPR quantum state of the
input object 1 and object 2. As a result of the measurement, the state of the
objects 1 and 2 is reduced to some EPR state |ψEPR

mes >1,2. This gives to Alice
and Bob the definite value of variables of the relative motion of the objects
1 and 2.

(c) During the preparation and measurement of EPR states and after the
information exchange over a classical channel, Alice and Bob gain the precise
knowledge of variables of the relative motion of the objects 1 and 3. This
allows to Bob to perform a physical action, which transforms (by means of
the unitary transformation Û) the quantum state of the object 3 to the input
quantum state of the object 1, |ψ(t) >3= |ψ(in) >1→3, thus achieving the
teleportation of quantum state.

11.3.2 Optical Scheme for Quantum Teleportation of Images

The scheme is an extension onto the spatially multimode light fields of that
proposed and realized in [5, 8, 9], and is shown in Fig. 11.5.

The EPR pair of light beams is prepared by optical mixing at the beam-
splitter BS1 of two fields in the spatially multimode squeezed state from two
OPAs, as described in Section 11.2.2. The input light field to be teleported
from Alice to Bob is described by the field operator Âin(ρ, t), where ρ is the
2D transverse coordinate in a cross-section of the beam.

In order to detect two quadrature components of the input field Âin(ρ, t),
this field is split at the beamsplitter BS2. Another input port of the beam-
splitter is illuminated by the EPR beam Ê1(ρ, t). In the absence of the EPR
beam, which is an essential part of the teleportation scheme, this input port
would be illuminated by a broadband in space–time flux of vacuum fluctua-
tions.

Two quadrature components of the scattered by BS2 light fields B̂x(ρ, t)
and B̂y(ρ, t) are detected “point-by-point” by two homodyne detectors Dx

and Dy formed by high-efficiency multipixel photodetection matrices (CCDs).
The spatiotemporal quantum fluctuations of the quadrature components
B̂x(ρ, t)+ B̂†

x(ρ, t) and B̂y(ρ, t)− B̂†
y(ρ, t) are locally imprinted into the pho-

tocurrents Îx(ρ, t) and Îy(ρ, t) on the output of individual pixels of the CCD
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cameras. The photocurrents are sent from Alice to Bob via two multichannel
parallel classical communication lines. This part of the protocol corresponds
to the EPR measurement by Alice (see Section 11.3.1).

Bob uses the photocurrents Îx(ρ, t) and Îy(ρ, t) for the reconstruction of
the field Âout(ρ, t) via two multichannel modulators Mx and My which mod-
ulate in space and time the relevant quadrature components of an incoming
plane coherent light wave. Due to the multimode nature of entanglement our

Fig. 11.5. Scheme of holographic teleportation.

scheme allows for parallel teleportation of N elements of the input wavefront,
preserving their space–time correlations. This number is estimated [14,15] as
the ratio of the beam cross-section to the coherence area of the light created
by the OPAs. In the previous teleportation schemes [5, 8, 9] N = 1.

11.3.3 Quantum Statistics of the Teleported Field

The input fields of the balanced homodyne detectors Dx and Dy, used for
detection of the x and y field quadratures, read

B̂x,y(ρ, t) =
1√
2

(
± Âin(ρ, t) + Ê1(ρ, t)

)
, (11.9)

with the +(−) sign corresponding to x(y). We assume that the scattering
matrix of the beamsplitter BS2 is given by Eq. (11.6). These fields in turn
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are mixed with the local oscillator fields LOx and LOy having complex ampli-
tudes B

(H)
x = B0 and B

(H)
y = iB0, where B0 is real. For parallel teleportation

of the local spatiotemporal quantum correlations of the input field, we have
first to measure those correlations with spatiotemporal resolution. Temporal
resolution can be achieved by choosing properly the frequency bandwidth
of a photodetector. On the contrary, to resolve spatially the quantum fluc-
tuations we have to use multipixel arrays of photodetectors (such as CCD
cameras) with pixel size much smaller than the typical spatial scale of quan-
tum correlations. For the case of homodyne detection of spatially single-mode
quantum fields, the time-dependent difference photocurrent operators were
considered in [26] and, in the more general case, in [27,28]. In Appendix B we
shall demonstrate (see Eq. (11.90)) that the difference photocurrent density
operators in the balanced homodyne measurement with spatial resolution,
performed by Dx and Dy, are expressed through the field operators at the
surface of the detectors in analogy to the earlier investigated observables for
detection without spatial resolution:

Îx(ρ, t) = B0

[
B̂x(ρ, t) + B̂†

x(ρ, t)
]
,

Îy(ρ, t) = B0
1
i

[
B̂y(ρ, t) − B̂†

y(ρ, t)
]
. (11.10)

In particular, these equations provide a correct expression for the spatiotem-
poral shot noise in the balanced homodyne detection scheme.

The photocurrent densities Îx(ρ, t) and Îy(ρ, t) are sent from Alice to Bob
via two multichannel classical communication lines. These signals are used by
Bob for the independent local modulation of two quadrature components of
an external coherent wave, both phase matched with the relevant quadratures
of the EPR fields. In the modulated beam the field component ∝ Îx(ρ, t) −
iÎy(ρ, t) is created. The teleported field Âout(ρ, t) is obtained by interference
mixing at the mirror M with high reflectivity of the modulated field with the
second EPR beam Ê2 (see Fig. 11.5),

Âout(ρ, t) = Ê2(ρ, t) + gc

(
Îx(ρ, t) − iÎy(ρ, t)

)
. (11.11)

Here gc is the coupling constant that takes into account the efficiency of
modulation and the transmission of the mirror M. The teleportation takes
place when gcB0

√
2 = 1. For a perfect balancing of the mirror reflectivity

and modulation gain, as described in [5], the teleported field Âout(ρ, t) takes
the form:

Âout(ρ, t) = Âin(ρ, t) + F̂ (ρ, t), (11.12)

where
F̂ (ρ, t) = Ê2(ρ, t) + Ê†

1(ρ, t), (11.13)

is the noise field added by the teleportation process. In the ideal case of perfect
entanglement of two EPR beams at all frequencies Ω and spatial frequencies
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q the noise terms Ê2(ρ, t) and Ê†
1(ρ, t) are perfectly anticorrelated and their

quantum fluctuations cancel each other.
One can easily illustrate this noise cancellation by constructing a super-

position (11.13) of the complex field amplitudes at the left and right upper
plots in Fig. 11.3. Here the field Ê1(ρ, t) is taken complex conjugate, thus
accounting for the sign inversion by the term ∝ iÎy(ρ, t) in the reconstructed
field (11.11). The perfect noise cancellation would correspond to the perfect
point-to-point in space and instantaneous in time teleportation of the quan-
tum state of the input field with an arbitrary distribution in space and time,
Âout(ρ, t) = Âin(ρ, t). However such teleportation would require infinitely
large energy of EPR beams. Indeed, first as in the single-mode case, one
would have to achieve an infinite squeezing per single coherence volume of an
EPR beam. In addition because now we have broadband multimode entan-
glement, one would need an infinite number of elementary coherence volumes
in the EPR beams. In practice teleportation will never be point-to-point in
space and instantaneous in time but always “on average” within some spatial
area and within some finite time interval.

By using Eqs. (11.5) and (11.3), we obtain for the noise amplitude f̂(q, Ω)
given by Eq. (11.13) in the Fourier domain,

f̂(q, Ω) = ξ∗(−q,−Ω)ĉ†1(−q,−Ω) + ξ(q, Ω)ĉ2(q, Ω), (11.14)

where
ξ(q, Ω) = U(q, Ω) − V ∗(−q,−Ω), (11.15)

and the field operators

ĉ1,2(q, Ω) =
1√
2

(
± â1(q, Ω) + â2(q, Ω)

)
, (11.16)

with the +(−) sign corresponding to 1(2), are unitary superpositions of two
independent vacuum fields on the inputs of the OPAs. The fields ĉ1,2(q, Ω)
are also in the vacuum state. An immediate consequence of Eqs. (11.82)
and (11.14) is that the noise operators have the commutation relations of a
classical field:

[f̂(q, Ω), f̂†(q ′, Ω′)] = (2π)3δ2(q − q ′)δ(Ω − Ω′)×(
|ξ(q, Ω)|2 − |ξ(−q,−Ω)|2

)
= 0,

[f̂(q, Ω), f̂(q ′, Ω′)] = 0, (11.17)

and thus can be considered as classical noise forces. Actually, as a consequence
of Eq. (11.86), one has |V (q, Ω)| = |V (−q,−Ω)|, and the function ξ(q, Ω) in
(11.14) is found in the form

ξ(q, Ω) = e−iφ(q,Ω)
{

e−r(q,Ω)cos ψ(q, Ω) + ier(q,Ω)sin ψ(q, Ω)
}

. (11.18)
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In the spatiotemporal domain the noise field F̂ (ρ, t) is given by

F̂ (ρ, t) =
1

(2π)3

∫
dρ0dt0

{
ξ∗(ρ − ρ0, t − t0)Ĉ

†
1(ρ0, t0)

+ ξ(ρ − ρ0, t − t0)Ĉ2(ρ0, t0)
}

, (11.19)

and the second-order correlation functions of the noise field are found in the
form

〈F̂ (ρ, t)F̂ †(ρ ′, t′)〉 = G(ρ − ρ ′, t − t′), (11.20)
〈F̂ (ρ, t)F̂ (ρ ′, t′)〉 = 0 . (11.21)

The Fourier transform of the Greens function G(ρ, t) reads,

G(q, Ω) = |ξ(q, Ω)|2 =

e−2r(q,Ω)cos2 ψ(q, Ω) + e2r(q,Ω)sin2 ψ(q, Ω). (11.22)

The statistics of a light field are determined in the most general form by the
characteristic functional, which is Gaussian [14,15] for the noise field (11.19).
Incidentally, a similar Greens function describes the photocurrent correlations
in space–time by the homodyne detection of multimode squeezed light [29].

When squeezing and entanglement are not present, r(q, Ω) = 0, the
Green’s function is δ-correlated in space–time,

G(ρ, t) = δ(ρ )δ(t). (11.23)

In the presence of an effective entanglement with the scales Sc, Tc and by the
optimum phase matching in the teleportation scheme, ψ(0, 0) = 0, the posi-
tive δ-correlated term is accompanied by a negative term due to spatiotempo-
ral anticorrelations on the scales Sc, Tc. This spatiotemporal anticorrelation
of the noise field allows for suppression of the averaged noise field, as we shall
discuss in detail below.

The spatial scales of the noise suppression are sensitive to the rotation of
squeezing ellipses in dependence of the spatial frequency, shown in Fig. 11.2a.
In the spatial frequency domain this is evident from the behavior of the
Green’s function (11.22), where the amplified quadrature amplitudes of noise
are present with the weight ∝ sin2 ψ(q, Ω) 
= sin2 ψ(0, 0) = 0. The misalign-
ment of squeezing ellipses increases with propagation along the crystal and in
free space and leads to the diffraction spread of the coherence area. A prop-
erly inserted lens imaging system compensates [22, 23] this misalignment,
as shown in Fig. 11.2b, and brings the size of the coherence area Sc to its
optimum value.

In order to compensate diffraction, one can insert the lenses directly into
the EPR beams Ên, n = 1, 2. In the general case this effect is described by
quadratic in q phase shifts θn(q) = γnq2:
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Ên(q, Ω) → ˆ̃En(q, Ω) = Ên(q, Ω)eiθn(q). (11.24)

By accounting for this phase correction in Eqs. (11.12) and (11.13) we find
the corrected orientation angle ψ(q, Ω) → ψ̃(q, Ω) = ψ(q, Ω) + θ(q), where
θ(q) = (θ1(q) + θ2(q))/2. This angle should be substituted into the Green’s
function (11.22), G(q, Ω) → G̃(q, Ω). The best result that can be obtained
with lenses is to set

θ(q) = −[d2ψ/dq2]q=0 q2, (11.25)

as in Fig. 11.2b. With this choice ψ̃(q, 0) ≈ 0 and G̃(q, 0) ≈ e−2r(q,0) over a
broad range of q. Physically speaking, lenses compensate the effect of diffrac-
tion on the spatial scale of entanglement.

The multimode teleportation will always be “on average” within some
finite spatial area and some finite time interval. Therefore, for characterizing
quantitatively the performance of teleportation we have to introduce a coarse-
grained description of the input and output variables. We consider averaging
of the field variables over a pixel Sj of area S = ∆2 and over a time window
Ti of duration T :

Âout(j, i) =
1√
ST

∫
Sj

dρ

∫
Ti

dt Âout(ρ, t), (11.26)

with analogous definitions for the input field. The averaged field operators
obey standard commutation relations

[Âout(j, i), Â
†
out(j

′, i′)] = δj,j′δi,i′ , (11.27)

and hence correspond to a discrete subset of field oscillators.
Next, we consider generic field quadrature operators of the output and

input field

X̂ϕ
out/in(j, i) = Âout/in(j, i)e−iϕ + Â†

out/in(j, i)eiϕ, (11.28)

Ŷ ϕ
out/in(j, i) = −iÂout/in(j, i)e−iϕ + iÂ†

out/in(j, i)eiϕ . (11.29)

These are observables that can be measured by means of homodyne detection
with a high-efficiency CCD camera. By using Eq. (11.12) we obtain,

X̂ϕ
out(j, i) = X̂ϕ

in(j, i) + X̂ϕ(j, i) , (11.30)

Ŷ ϕ
out(j, i) = Ŷ ϕ

in (j, i) + Ŷϕ(j, i) , (11.31)

where the excess noise added by the teleportation process on the measured
field quadrature is given by

X̂ϕ(j, i) =
1√
ST

∫
Sj

dρ

∫
Ti

dt
[
F̂ (ρ, t)e−iϕ + F̂ †(ρ, t)eiϕ

]
, (11.32)

Ŷϕ(j, i) =
1√
ST

∫
Sj

dρ

∫
Ti

dt
{
−i
[
F̂ (ρ, t)e−iϕ − F̂ †(ρ, t)eiϕ

]}
. (11.33)
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These operators are a linear combination of Gaussian stochastic variables,
independent of the input. Hence the set{

X̂ϕ(j, i) , Ŷϕ(j, i)
}

j,i
, (11.34)

represents a set of classical Gaussian stochastic variables. Here j = 1, . . . , N,
i = 1, . . . , K, is a finite set of indices labeling the pixels and the time intervals
of interest. These variables are independent of the input field and have zero
mean values. Their statistical properties are completely described in terms
of a covariance matrix

C (j, j′ ; i, i′) = 〈X̂ϕ(j, i) X̂ϕ(j′, i′)〉 (11.35)

= 〈Ŷϕ(j, i) Ŷϕ(j′, i′)〉 .

The covariance matrix elements can be expressed in terms of the Green’s
function (11.22) as

C (j, j′ ; i, i′) = 2
∫

dq B∆(q )BT (Ω)cos[q · (ρj − ρj′) − Ω(ti − ti′)]G̃(q, Ω),

(11.36)
where ρj is the center of the pixel j, and ti is the center of the ith time in-
terval. Here G̃(q, Ω) is the Green’s function (11.22) with the corrected value
of the orientation angle ψ̃(q, Ω) = ψ(q, Ω)+ θ(q ); see (11.25). In Eq. (11.36)
functions B∆(q ) BT (Ω) arise from the coarse-graining operation. For exam-
ple, a square pixel of side ∆ =

√
S they read,

B∆(q ) =
∆2

4π2
sinc2

(
qx∆

2

)
sinc2

(
qy∆

2

)
∆→∞→ δ(q ), (11.37)

BT (Ω) =
T

2π
sinc2

(
ΩT

2

)
T→∞→ δ(Ω). (11.38)

The covariance matrix (11.36) does not depend on the phase ϕ of the local
oscillator, used for the homodyne detection, so that the added noise is the
same for any quadrature component.

Ideal teleportation takes place when the Gaussian distribution of noise
has a vanishing small width in all directions of phase space, so that it ap-
proximates a multivariate Dirac δ-function. This can be realized if both the
time window T and the pixel size∆ are large enough, so that the functions
(11.37) and (11.38) in the integral of Eq. (11.36) filter a band of temporal and
spatial frequencies well inside the squeezing bandwidths, where ˜G(q, Ω) � 1.
When the pixel size ∆ and the time window T are much larger than the OPA
coherence length lc, and the OPA coherence time Tc, respectively, we obtain

lim
∆→∞ ,T→∞

C (j, j′ ; i, i′) = 2δj,j′δi,i′ exp(−2r(0, 0)) . (11.39)
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In addition, as in the single-mode case, a large degree of EPR correlation
(large squeezing parameter r) is required in order to achieve a good quality
teleportation.

For a broadband OPA, where the parametric crystal length is on the
order of millimeters, the coherence time is of the order of femtoseconds to
picoseconds, so that the usual detection time windows overcome by several
order of magnitudes the coherence time. Hence, in Eq. (11.36) it is reasonable
to assume the limit T � Tc, under which the noise added by the teleportation
scheme is uncorrelated in time,

C (j, j′ ; i, i′) = 〈Ŷϕ(j, i) Ŷϕ(j′, i′)〉 = δi,i′C(j, j′) . (11.40)

However, the same is not true for the spatial domain. For example, for an
OPA with a 3 mm long crystal, at λ = 0.712µm, taking as a rough estimate
for the coherence length lc the diffraction spread ld at the crystal exit, we
arrive at

lc ∼ ld =
√

l/2k = 13µm . (11.41)

Provided that the spatial extent in the transverse plane where EPR cor-
relations do exist is limited by the pump spot size, choosing ∆ � lc would
amount to integrating over the whole beam cross-section and losing all spatial
information.

In Fig. 11.6 we illustrate the role of the pixel size for the noise added by
the teleportation process. Precisely, we plot our numerical calculations for
some elements of the covariance matrix in the limit T � Tc as a function
of the ratio of the pixel size to the diffraction length D = ∆/ld, where ld is
defined by Eq. (11.41). As our system has an overall translational symmetry,
the covariance matrix elements C(j, j′) depend only on the relative distance
and on the orientation of pixels with respect to the difference position vector
(ρj−ρj′). In particular, all the diagonal elements C(j, j) have the same value.

Figure 11.6a shows the diagonal element C(j, j) of the covariance matrix.
The wide and narrow solid lines correspond to the observation with (bold
lines) and without (thin lines) diffraction phase-shift compensation with the
use of a lens arrangement. In both cases the plot for the diagonal element
C(j, j) shows the classical limit C(j, j) → 2 for small pixel size, when the
contribution of the high-frequency Fourier components of the noise field, q �
qc, remaining in the vacuum state, dominates. On the other side, when the
pixel size is of the same order of magnitude as the coherence length, both
the wide and narrow lines rapidly approach the ∆ → ∞ limit of Eq. (11.39),
C(j, j) → 2 exp[−2r(0, 0)] (dashed line), which corresponds to the single-
mode quantum teleportation limit. This behavior should be compared with
the covariance matrix of the noise in a classical teleportation scheme, that is,
in the absence of the EPR correlations. Then r(q, Ω) = 0, Ccl(j, j′) = 2δj,j′ ,
and Ccl(j, j) = 2. In this limit two units of vacuum noise are added at each
pixel, just as in the case of the single-mode teleportation [8]. Figure 11.6b
shows some off-diagonal elements of the covariance matrix as a function of
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Fig. 11.6. Covariance matrix elements of the noise added by the teleportation
scheme as a function of D = ∆/ld. The squeezing parameter is exp[r(0, 0)] =
3. Figure 11.6a shows the diagonal element C(j, j) of the covariance matrix for
observation without (thin line) and with (bold line) a correcting lens. Figure 11.6b
shows off-diagonal elements C(j, j′) with |ρj − ρj′ | = ∆ (lines 1), and with |ρj −
ρj′ | =

√
2∆ (lines 2). Bold and thin lines have the same meaning as in Fig. 11.6a.

∆/ld. They show correlations between the nearest-neighbor pixels in a row
or a column, |ρj − ρj′ | = ∆ (lines 1), and between the pixels on a diagonal
|ρj − ρj′ | =

√
2∆ (lines 2), of the detector matrix. As can be seen from

these plots, when the pixel size is small compared to the coherence length,
our teleportation scheme not only adds noise on each pixel (as in the single-
mode scheme) but also introduces correlations between pixels. The existence
of spatial correlations over distances on the order of the coherence length is
typical of the multimode squeezed light, and has been investigated in detail,
for example, in [29,30].

11.3.4 Global and Reduced Fidelity of Holographic Teleportation

Using Eq. (11.30) we can obtain the explicit relation between the spatio-
temporal correlation functions of the field quadratures in the output and the
input,

〈δX̂ϕ
out(j, i) δX̂ϕ

out(j
′, i′)〉 = 〈δX̂ϕ

in(j, i) δX̂ϕ
in(j′, i′)〉

+ C(j, j′; i, i′). (11.42)
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We see that because all elements C(j, j′) are small provided ∆ ≥ lc, the
teleportation preserves spatiotemporal pixel correlations. The same holds also
for the higher-order correlation functions because the added noise is Gaussian
and independent of the input.

This conclusion is based on the added noise power. Some other crite-
ria for the quantum teleportation were suggested in the literature; see, for
example, [6].

The quality of reconstruction of the quantum state |Ψin〉 of the input field
in the teleportation process is usually quantified via the fidelity parameter F .
For simplicity we consider here the fidelity of teleportation of a pure quantum
state, which is defined as

F = | 〈Ψin|Ψout〉 |2 . (11.43)

This definition works well for teleportation of a single degree of freedom
of the quantized field. But in our case of quantum teleportation of a multi-
mode light field, distributed in space and time, the definition (11.43) meets
some obvious difficulties that stem from the multimode nature of the field.
Let us, for instance, assume that the input state to be teleported has no
correlations in space and time (as, e.g., for a coherent image), and that our
teleportation protocol does not add any correlations between spatial and/or
temporal modes (as it happens for a large enough detection time window and
pixel size). In this case the global fidelity of the teleportation protocol factors
in the product of the single-mode fidelities. Even if each mode is teleported
with almost perfect fidelity, close to, but slightly less than, unity, the global
fidelity in the limit of a large number of modes will be close to zero, and
will always reduce to zero for an infinite number of modes. For this reason,
in the case of quantum teleportation of a multimode field it is important to
identify the relevant set of degrees of freedom and to introduce the notion
of the reduced fidelity for this set of degrees of freedom, and of the average
fidelity per mode.

An alternative definition of fidelity can be given in terms of the superpo-
sition of the Wigner functions describing the state in the input and in the
output (see, e.g., [5]). A discussion of the teleportation fidelity for multivari-
ate quantum objects (such as quantum images) can be found in [15]. One
can explicitly calculate the fidelity for Gaussian input states (e.g., squeezed
states, coherent states, EPR beams), for which one can assume without loss
of generality that

〈X̂in(j, i)〉 = 〈Ŷin(j, i)〉 = 0 , (11.44)

and

〈X̂in(j, i) X̂in((j′, i′) = V X(j, j′ ; i, i′)〉 ,

〈Ŷin(j, i) Ŷin((j′, i′) = V Y (j, j′ ; i, i′)〉 , (11.45)

are the input covariance matrices. The fidelity is found in the form
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F =
1

det
[
V X(j, j′ ; i, i′) + 1

2C(j, j′; i, i′)
]1/2

×
det
[
V Y (j, j′ ; i, i′) + 1

2C(j, j′; i, i′)
]1/2

. (11.46)

In particular for an input multimode coherent state

V X(j, j′ ; i, i′) = V Y (j, j′ ; i, i′) = δj,j′δi,i′ ,

and
F =

1
det
[
δj,j′δi,i′ + 1

2C(j, j′; i, i′)
] . (11.47)

These results have to be compared with the results of a classical teleportation
protocol, that is, in the absence of EPR correlations, where Ccl(j, j′; i, i′) =
2δj,j′δi,i′ . For a coherent input, in the classical case we have

Fcl =
1

2N×K
. (11.48)

From the above formulas the claim that we made at the beginning of this
section should be clear; that is, the global fidelity may rapidly approach zero
for a large number of degrees of freedom, and hence lose any quantitative
meaning. A good strategy is to identify the relevant degrees of freedom of
the system. If, for instance, the state to be teleported is the quantum state of
the coherent image, restricted to an array of NA pixels, no one will probably
be interested in the quality of teleportation of the vacuum state of the region
of space outside the image.

Because we assumed a plane-wave pump, our model is translationally
space and time invariant, and the number of available pixels and time inter-
vals is in principle infinite. This kind of model describes a realistic system
well, provided that the pump spot size is much larger than the amplifier
coherence area and that the pump pulse duration is much longer than the
amplifier coherence time [25]. Obviously, one has also to require that the
beam whose state is to be teleported is well confined inside the region where
significant gain is available, both in space and time.

Let us assume we divide our system in two subsystems, say A and B, where
subsystem A corresponds to a subset {j, i}A of pixels and of time intervals of
interest for a given measurement, and subsystem B consists of the remaining
{j, i}B pixels and time intervals. By tracing out over the degrees of freedom of
subsystem B, one can demonstrate [15] that the formulas (11.46) and (11.47)
hold true for the fidelity FA of the reduced set of degrees of freedom, provided
that the covariance matrices in those formulas are the covariance matrices
of the second-order moments of operators on the pixels and time intervals of
subsystem A.

In Fig. 11.7 we show the reduced fidelity dependence on the pixel size
and on the number of pixels for some simple patterns of pixels, in the case of
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a coherent image in the input. The observation is assumed to be performed
within the same time window, so that the dimension of the covariance matrix
in our case is given by the number of pixels in the pattern. This is very rea-
sonable for a traveling-wave OPA, because in a realistic configuration in order
to obtain large gain a pulsed operation is required. Therefore, the detection
time window will be probably longer or of the same order as the duration
of the pump pulse. Notice that the same is not necessarily true for a cavity
configuration, because the CW operation in this case permits us to resolve
the temporal degrees of freedom.

The shape of the patterns for 1, 2, and 4 pixels is shown at the top of
Fig. 11.7. We plot our numerical calculations of FA given by Eq. (11.46) for
the degree of squeezing exp[r(0, 0)] = 3, as a function of the ratio of the pixel
size to the diffraction length D = ∆/ld. For these patterns only the diagonal
covariance matrix elements C(j, j), and those describing nearest-neighbor cor-
relations in a row, in a column, and in a diagonal are of importance. The wide
and narrow solid lines correspond to the observation with (wide lines) and
without (narrow lines) diffraction phase-shift compensation with the use of a
lens arrangement. For small pixel size, D � 1, all curves attain the classical
limit FN → 0.5N . For large pixel size, D � 1, the curves tend to the limit,
imposed by the degree of squeezing: FN → (1+exp [−2r(0, 0)])−N = 0.9N (in
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Fig. 11.7. Reduced fidelity of quantum holographic teleportation for patterns of 1,
2, and 4 pixels, shown at the top of the figure (plots F1, F2, and F4, respectively),
as a function of D = ∆/ld. The squeezing parameter is exp[r(0, 0)] = 3.
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our example). As seen from Fig. 11.7, the fidelity of teleportation decreases
with the number of pixels. This qualitatively means that the multipixel ob-
servables, dependent on the correlations between pixels, are more sensitive
to the absence of entanglement in the quantum channel than the observables
for a single pixel.

The effect of optimization of the spatial scales in our teleportation proto-
col with the use of a lens arrangement is significant for a pixel width ∆ ≈ lc.
As shown in Fig. 11.7, the optimization allows us to achieve the same value
of fidelity for the pixel size, smaller by factor (2 . . . 3) than in the absence of
such optimization.

As is clear from inspection of the curves in Fig. 11.7, the fidelity for N
degrees of freedom scales with the N -th power. A useful quantity for the
estimation of reduced fidelity FN for a large array of pixels, N � 1, is hence
the average fidelity per pixel, defined as

Fav = (FN )1/N
. (11.49)

Consider a single temporal degree of freedom K = 1. For a large N = M ×M
array of square pixels, the covariance matrix becomes translationally invari-
ant, and it can be diagonalized [15] by means of a discrete Fourier trans-
formation. Figure 11.8 shows the behavior of the average fidelity per pixel
for quantum teleportation of a large array of pixels in a coherent state. The
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Fig. 11.8. Average fidelity per pixel for the quantum holographic teleportation
of a large number of pixels in a coherent state as a function of D = ∆/ld. The
squeezing parameter is exp[r(0, 0)] = 3.

reduced fidelity F1 for one pixel (Fig. 11.7) and the average fidelity per pixel
FAV (Fig. 11.8) tend to the same limits for large and small pixel size and
are slightly different for medium pixel size ∆ ∝ ld, thus reflecting an effect of
cross–correlation of the noise field at closely located pixels on FAV .
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11.3.5 Quantum Holographic Teleportation and Holography

Quantum teleportation of optical images described in this chapter can be
called quantum holographic teleportation. In this three-dimensional general-
ization of the continuous variable teleportation protocol [4,8] one can recog-
nize an extension to the quantum domain of conventional nonstationary
holography.

As in holography, the distributed-in-space–time input field is mixed with
local oscillator waves. Classical photocurrent densities Ix(ρ, t) and Iy(ρ, t)
are equivalent to nonstationary holograms.

In elementary schemes of holography it is common to perform optical
mixing of a signal wave with only one reference wave. One creates and uses
a single hologram for field reconstruction. In the general case this results
in a loss of information carried by the field quadrature, orthogonal to the
reference wave, and in the reconstruction of the signal wave in superposition
to its conjugate duplicate. In order to improve this elementary scheme, one
could split the input wave by means of a symmetrical beamsplitter and record
both quadrature components of the signal field. Both quadrature components
of the reconstructed wave could be produced by superposition of outputs of
two holograms, illuminated by two plane laser waves shifted by λ/4. This
improved configuration is nothing but the scheme illustrated in Fig. 11.5,
but without illumination by two EPR fields.

Although in the classical approach the right input port of beamsplitter
BS2 and the lower input port of M are idle (not illuminated), in the quantum
description one should take into account vacuum noise fields incident on these
beamsplitters.

The novel feature, which converts holography to the quantum holographic
teleportation is a pair of multimode EPR beams shared by Alice and Bob. As
discussed in this chapter, only perfect point–by–point and instant–by–instant
correlation at the quantum level of these twin fields allows for effective quan-
tum noise suppression in the teleported field. In practical implementation one
should provide a strict matching of EPR fields in space and time.

The above-discussed limits on quantum noise and fidelity of quantum
holographic teleportation of optical images can be viewed as an improvement
of quantum limits on holographic reconstruction of the distributed-in-space
light waves, achieved in the presence of Q quantum channel: a pair of entan-
gled (correlated at quantum level) spatially multimode light beams.

In the framework of images, the analogy between teleportation and holog-
raphy mentioned [31] in the context of single-mode fields, becomes complete
and precise.
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11.4 Quantum Dense Coding of Optical Images

In Sections 11.4.1 and 11.4.2 of this chapter we review the basics of quantum
dense coding and present a model of quantum dense coding for optical images,
where we assume arbitrarily large transverse dimensions of propagating light
beams and the unlimited spatial resolution of a photodetection scheme.

We introduce Shannon mutual information for a stream of classical input
images in a coherent state (see Section 11.4.3). An important quantity is the
spatiotemporal density of the information stream in bits per cm2· s. This
density depends on the degree of squeezing and entanglement in nonclassical
illuminating light. Two sets of spatiotemporal parameters play an important
role in our protocol: (i) the transverse coherence length and the coherence
time of spatially multimode squeezing and entanglement, and (ii) the spa-
tiotemporal parameters of a stream of input images. In our consideration we
assume that the sender (Alice) produces a uniform ensemble of images with
the Gaussian statistics, characterized by a certain resolution in space and
time (the Alice grain).

The information capacity of the dense coding scheme for optical images is
discussed in Section 11.4.4. In the case of optical images, one of the bounds on
the density of the information stream is imposed by diffraction. We demon-
strate how the effect of diffraction can be partially compensated by lenses
properly inserted in the scheme. It is shown that the information capacity
per properly introduced field degree of freedom is in agreement with general
estimates for quantum dense coding.

An important difference between the ideal classical communication chan-
nel (i.e., with vacuum fluctuations at the input of the scheme instead of
spatially multimode entangled light) and its quantum counterpart is that in
the quantum case there exists an optimum spatial density of the signal im-
age elements, which should be matched with the spatial frequency band of
entanglement.

11.4.1 Basics of Quantum Dense Coding

In Fig. 11.9 we illustrate two possible schemes of a communication line be-
tween Alice (the sender) and Bob (the receiver). Both schemes are based on
two parallel channels, but in the conventional coding scheme (a) the channels
are independent, and, by contrast, the dense coding scheme (b) essentially
exploits quantum entangled states of two objects 1 and 2 propagating in the
channels.

In the case of conventional coding, the input quantum state of two chan-
nels is a product over channels, |ψ(in)〉1,2 = |ψ(in)〉1|ψ(in)〉2. Alice indepen-
dently prepares the objects 1 and 2 in any of N orthogonal quantum states.
Bob detects the resulting state |ψn〉1|ψm〉2, n,m = 1, . . . , N , by means of
independent measurement in both channels. Evidently, this allows sending a
letter of the alphabet, which is composed of N2 letters, per cycle.
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Fig. 11.9. Conventional and dense coding.

In the dense coding scheme, the input state of two channels is one of
quantum entangled states |ψ(in)〉1,2 = |ψEPR

n0
〉1,2. A complete set of or-

thogonal EPR states for two channels is composed of N2 states |ψEPR
n 〉1,2,

n = 1, . . . , N2. An important feature of the EPR basis is that Alice can pre-
pare any of N2 states by physically operating only in one of two channels,
leaving another one untouched. In the dense coding scheme Bob detects the
EPR quantum state of the received signal by means of an EPR detector.
This provides equal capacity of two schemes: N2 letters per cycle, without
any physical action in the idle channel 2 in the case of dense coding.

Physically speaking, in the presence of entanglement an idle channel pro-
vides an optimal reference system for detecting minor physical actions per-
formed by Alice in channel 1.

11.4.2 Optical Scheme for Quantum Dense Coding of Images

The optical scheme implementing the continuous-variable dense coding pro-
tocol for optical images is shown in Fig. 11.10. Compared to the generic
continuous-variable dense coding scheme [11], here the light fields are assumed
to be spatially multimode. At the input, the spatially multimode squeezed
light beams with the slow field amplitudes Ŝ1(ρ, t) and Ŝ2(ρ, t) (we use the
Heisenberg representation), are mixed at the symmetrical beamsplitter BS1.
For a properly chosen orientation of the squeezing ellipses of the input fields
the scattered fields Ê1(ρ, t) and Ê2(ρ, t) are in the entangled state with cor-
related field quadrature components, as illustrated in Figs. 11.3 and 11.10.

The classical signal image field Â(ρ, t) is created by Alice in the first beam
by means, for example, of the controlled (with a given resolution in spacetime)
mixing device Mod with almost perfect transmission for the nonclassical field
Ê1(ρ, t). The receiver (Bob) detects the entangled state of two beams by
means of an optical mixing at the symmetrical output beamsplitter BS2

and the homodyne detection of quadrature components of the output fields
B̂1(ρ, t) and B̂2(ρ, t). This allows for the measurement of both quadrature
components of the image field with effective quantum noise reduction.
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Fig. 11.10. Optical scheme for spatially multimode dense coding.

One can give a more straightforward explanation of the sub-shot-noise
detection of the signal in the scheme shown in Fig. 11.10. For the symmetrical
scattering matrix of the beamsplitters

{Rnm} =
1√
2

(
1 1
1 −1

)
, (11.50)

and equal optical paths of two beams, the effective Mach–Zehnder interferom-
eter directs the input squeezed field Ŝ1(ρ, t) onto the detector D1, and sim-
ilarly for Ŝ2(ρ, t), thus allowing for sub-shot-noise detection of the squeezed
quadrature components in both beams.

The fields at the inputs of the homodyne detectors D1 and D2 are

B̂n(ρ, t) = Ŝn(ρ, t) +
1√
2
Â(ρ, t), (11.51)

where n = 1, 2. In the paraxial approximation, the slow amplitude of light
field B̂n(ρ, t) is related to the creation and annihilation operators b̂†n(q, Ω)
and b̂n(q, Ω) for the plane waves with the transverse component of the wave
vector q and frequency Ω by

B̂n(ρ, t) =
1√
L2T

∑
q,Ω

b̂n(q, Ω)ei(q·ρ−Ωt). (11.52)

In this section we shall characterize the information capacity of our scheme
by means of the density of the information stream in bits per cm2· s. In
order to introduce this relative quantity, it is convenient to consider a large
quantization volume with the transverse and longitudinal dimensions L and
cT . The summation is performed over the following values of q and Ω: q =
(qx, qy), qx = 2π/Lnx, qy = 2π/Lny and Ω = 2π/Tn with nx, ny and n taking
the values 0,±1,±2, . . . .



11 Quantum Teleportation and Dense Coding 263

The free-field commutation relations are given by[
B̂n(ρ, t), B̂†

n′(ρ ′, t′)
]

= δn,n′δ(ρ − ρ ′) δ(t − t′),[
b̂n(q, Ω), b̂†n′(q ′, Ω′)

]
= δn,n′ δq,q ′ δΩ,Ω′ . (11.53)

The value of the irradiance (in photons per cm2·s) is equal to B̂†
n(ρ, t)B̂n(ρ, t),

and the number of photons in the field mode (q, Ω), localized in the quantiza-
tion volume L2cT , is b̂†n(q, Ω)b̂n(q, Ω). The observed photocurrent densities
are considered in this section as continuous in space and time variables. That
is, we assume an arbitrarily high resolving power of the detectors and do not
examine the effect of finite pixel size of the CCD matrices on the information
capacity. The photocurrent densities

Î1(ρ, t) = B0

[
B̂1(ρ, t) + B̂†

1(ρ, t)
]
,

Î2(ρ, t) = B0
1
i

[
B̂2(ρ, t) − B̂†

2(ρ, t)
]
, (11.54)

have the following Fourier amplitudes,

î1(q, Ω) = B0

[
b̂1(q, Ω) + b̂†1(−q,−Ω)

]
,

î2(q, Ω) = B0
1
i

[
b̂2(q, Ω) − b̂†2(−q,−Ω)

]
, (11.55)

where B0 (taken as real) and iB0 are the local oscillator amplitudes used in
homodyne detection (see the discussion in Appendix B). Here and in what
follows we denote the Fourier amplitudes of the fields and the photocurrent
densities by lower-case symbols.

The squeezing transformation performed by the optical parametric ampli-
fiers illuminating the inputs of the scheme, can be written (see Section 11.2
and Appendix A for details) as follows,

ŝn(q, Ω) = Un(q, Ω)ĉn(q, Ω) + Vn(q, Ω)ĉ†n(−q,−Ω), (11.56)

where the coefficients Un(q, Ω) and Vn(q, Ω) depend on the pump-field am-
plitudes of the OPAs, their nonlinear susceptibilities, and the phase matching
conditions. The input fields ĉn(q, Ω) of the OPAs are assumed to be in the
vacuum state.

After some calculation we obtain for the Fourier amplitudes of the pho-
tocurrent densities:

în(q, Ω) = B0

{
f̂n(q, Ω) + an(q, Ω)

}
, (11.57)

where

f̂1(q, Ω) =
[
er1(q,Ω)cos ψ1(q, Ω) + ie−r1(q,Ω)sinψ1(q, Ω)

]
e−iφ1(q,Ω)ĉ1(q, Ω)
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+
[
h.c., (q, Ω) → (−q,−Ω)

]
, (11.58)

and

f̂2(q, Ω) =
[
e−r2(q,Ω)cos ψ2(q, Ω) + ier2(q,Ω)sin ψ2(q, Ω)

]
e−iφ2(q,Ω)ĉ2(q, Ω)

+
[
h.c., (q, Ω) → (−q,−Ω)

]
, (11.59)

represent the quantum fluctuations of the fields at both photodetectors, and

a1(q, Ω) =
1√
2

[
a(q, Ω) + a∗(−q,−Ω)

]
,

a2(q, Ω) =
1

i
√

2

[
a(q, Ω) − a∗(−q,−Ω)

]
,

(11.60)

are the components detected by Bob of the Alice signal image. Here a(q, Ω)
are the Fourier amplitudes of classical field A(ρ, t), defined in analogy to
Eq. (11.52).

11.4.3 Shannon Mutual Information for Images

In order to estimate the channel capacity one has to define the degrees of
freedom of the noise and the signal in our spatially multimode scheme.

We shall assume that all elements of the scheme: the OPA’s nonlinear
crystals, beamsplitters, modulator, and the CCD matrices of detectors, have
large transverse dimensions. The squeezed light fields are the stationary in
time and uniform in the cross-section of the beams’ random variables. That
is, all correlation functions of these fields are translationally invariant in
the ρ, t space. For the observed photocurrent densities this implies that any
pair of the Fourier noise amplitudes (11.58) and (11.59) for given (q, Ω) and
(−q,−Ω) results from squeezing of the input fields c(q, Ω) and c(−q,−Ω)
and therefore is independent of any other pair.

On the other hand, because the observed photocurrent densities are real,
the Fourier amplitudes în(q, Ω) and î†n(−q,−Ω) are not independent, where

în(q, Ω) = î†n(−q,−Ω). (11.61)

For this reason we consider as independent random variables only the noise
terms in Fourier amplitudes in(q, Ω) for Ω > 0. The real and imaginary parts
of the complex amplitudes in(q, Ω) for Ω > 0 are related to the amplitudes
of the real photocurrent noise harmonics ∼cos(q ·ρ−Ωt) and ∼sin(q ·ρ−Ωt),
directly recovered by Bob from his measurements.

The Fourier amplitudes of the photocurrent densities (11.57) satisfy the
relation (11.61) and therefore it is sufficient to take into account only Ω > 0.
A random signal sent by Alice is assumed to be stationary and uniform in the
cross-section of the beams. The amplitudes an(q, Ω) for Ω > 0, n = 1, 2, are
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taken as independent complex Gaussian variables with variance σA(q, Ω) de-
pending on (q, Ω). Because the transformation (11.60) is unitary, this implies
that the Fourier classical amplitudes a(q, Ω) for any (q, Ω) are also taken as
statistically independent, and the quantity

σA(q, Ω) = 〈|a(q, Ω)|2〉, (11.62)

is the mean photon number in the Alice signal wave (q, Ω) in the quantization
volume, where σA(q, Ω) = σA(−q,−Ω). Here the statistical averaging over
the Gaussian ensemble of the Alice signal is performed with the complex
weight function

PA
q,Ω(a(q, Ω)) =

1
πσA(q, Ω)

exp
{
−|a(q, Ω)|2

σA(q, Ω)

}
. (11.63)

In what follows we assume a Gaussian spectral profile of width qA for the
ensemble of input images in the spatial frequency domain,

σA(q, Ω) = (2π)3
P

π(qA/2)2
exp

(
−

q2
x + q2

y

(qA/2)2

)
Π(Ω),

Π(Ω) =
{

1/ΩA |Ω| ≤ ΩA/2,
0 |Ω| > ΩA/2,

(11.64)

and, for the sake of simplicity, the narrow rectangular spectral profile Π(Ω)
of width ΩA and height 1/ΩA in the temporal frequency domain. Because∑

q,Ω

σA(q, Ω) = L2TP, (11.65)

the total average density of photon flux in the image field per cm2 · s is P .
The variances of the observables in(q, Ω) are finally found in the form

〈1
2

{
în(q, Ω), î†n(q, Ω)

}
+
〉 = B2

0

[
σBA

n (q, Ω) + σA(q, Ω)
]
, (11.66)

where { , }+ denotes the anticommutator. The quantum noise variances in
both detection channels are given by

σBA
n (q, Ω) = 〈1

2

{
f̂n(q, Ω), f̂†

n(q, Ω)
}

+
〉, (11.67)

σBA
1 (q, Ω) = e2r1(q, Ω)cos2 ψ1(q, Ω) + e−2r1(q, Ω)sin2 ψ1(q, Ω), (11.68)

σBA
2 (q, Ω) = e−2r2(q, Ω)cos2 ψ2(q, Ω) + e2r2(q, Ω)sin2 ψ2(q, Ω). (11.69)

Using these results we can evaluate the Shannon mutual information for our
dense coding scheme.
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It is well known that in the case of a single-mode squeezed light field the
statistics of its quadrature amplitudes are Gaussian and can be characterized,
for example, by a Gaussian weight function in the Wigner representation. In
the homodyne detection of squeezed light, the statistics of the photocounts
are also Gaussian due to the linear relation between the field amplitude and
the photocurrent density. The discussion of homodyne detection in terms
of the characteristic function can be found in [28]. Some considerations for
homodyne detection of spatially multimode fields [15] are given in Appendix
B.

Finally, in our quantum dense coding scheme the statistically independent
degrees of freedom of the noise and the signal are labeled by the frequencies
(q, Ω) for Ω > 0. One can consider our quantum channel as a collection of
statistically independent parallel Gaussian communication channels in the
Fourier domain. The mutual information between Alice and Bob for a given
detector and frequencies (q, Ω) is defined as

IS
n (q, Ω) = HB

n (q, Ω) − H
(B|A)
n (q, Ω)

A

. (11.70)

Here HB(q, Ω) is the entropy of Bob’s observable, and

H
(B|A)
n (q, Ω)

A

is averaged over the ensemble of Alice’s signals’ entropy of noise, introduced
by the channel [32]. For the Gaussian channel the mutual information is given
by

IS
n (q, Ω) = ln

(
1 +

σA(q, Ω)
σBA

n (q, Ω

)
. (11.71)

The quantum noise suppression within the frequency range of effective squeez-
ing and entanglement increases the signal-to-noise ratio at the right side of
(11.71). The total mutual information IS , associated with the large area L2

and the large observation time T , is defined as a sum over all degrees of free-
dom and is related to the density of the information stream J in bits (more
precisely, in nits) per cm2· s:

IS =
∑

n,q,Ω>0

IS
n (q, Ω) = L2T J, (11.72)

where
J =

1
(2π)3

∫
dq

∫
Ω>0

dΩ
∑

n=1,2

IS
n (q, Ω). (11.73)

11.4.4 Channel Capacity

For qualitative and numerical analysis it is natural to associate such quanti-
ties as the density of the information stream and of the photon flux with the
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physical parameters present in our quantum dense coding scheme. Squeezing
and entanglement, produced by type-I optical parametric amplifiers, are char-
acterized by the effective spectral widths qc and Ωc in the spatial and tempo-
ral frequency domain. The coherence area in the cross-section of the beams
and the coherence time are introduced as Sc = (2π/qc)2 and Tc = 2π/Ωc.
For simplicity, we assume that both OPAs have the same coherence area and
coherence time. The correlation area SA and the correlation time TA of non-
stationary images, sent by Alice, are related to the spectral widths of the
signal qA and ΩA by SA = (2π/qA)2 and TA = 2π/ΩA. We consider the
broadband degenerate collinear phase matching in the traveling-wave type-I
OPAs. The coherence time Tc of the spontaneous down-conversion will be
typically short compared to the time duration TA of Alice movie frame.

The dimensionless information stream J and the dimensionless input pho-
ton flux P are defined by J = ScTAJ , P = ScTAP . That is, we relate both
quantities to the time duration of Alice’s movie frame and the coherence area
of squeezing and entanglement.

The optimum entanglement conditions in the OPAs are achieved provided

r1(q, Ω) = r2(q, Ω) ≡ r(q, Ω),
ψ1(q, Ω) = ψ2(q, Ω) ± π/2 ≡ ψ(q, Ω), (11.74)

ψ(0, 0) = π/2.

By using the above-introduced definitions, we find the dimensionless infor-
mation stream J in the following form,

J =
∫

dκ ln

{
1 + P 1

σBA(κ, 0)
1

π(dA/2)2
exp

(
−

κ2
x + κ2

y

(dA/2)2

)}
, (11.75)

where

σBA(κ, 0) = e2r(κ, 0)cos2 ψ(κ, 0) + e−2r(κ, 0)sin2 ψ(κ, 0), (11.76)

and the dimensionless spatial frequency is defined as κ = q/qc. The relative
spectral width of the Alice signal dA = qA/qc = (Sc/SA)1/2 can be inter-
preted as the number of image elements per coherence length, that is, the
relative linear density of image elements. In what follows we assume a sim-
ple estimate qc/2 =

√
2k/l, related to the diffraction spread of parametric

down-conversion light inside the OPA crystal, where k is the wave number
and l is the crystal length.

Quantum noise in the dense coding scheme is effectively reduced for op-
timum phase matching of squeezed beams. As discussed in Section 11.2, an
important factor is the spatial frequency dispersion of squeezing, that is, the
q-dependence of the squeezed quadrature component phase. This dependence
is due to the diffraction inside the OPA. A thin lens properly inserted into the
light beam can effectively correct the q-dependent orientation of squeezing
ellipses, as illustrated in Fig. 11.2b.
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The improvement in the signal-to-noise ratio for different spatial frequen-
cies can be characterized by the inverse noise variance σBA(κ, 0) shown in
Fig. 11.11. As seen in this figure, the phase correction by means of a lens al-
lows for the low-noise signal transmission within the spatial-frequency band
of the effective squeezing.

Fig. 11.11. Inverse noise variance in dependence on the spatial frequency κ for
vacuum noise at the input (1), and for squeezing with exp[r(0, 0)] = 3, without (2)
and with (3), phase correction.

In our plots for the mutual information density J we keep constant the
coherence area Sc, the degree of squeezing r(0, 0), and the density of signal
photon flux P.

The dependence of mutual information density on the relative linear den-
sity dA of the image elements is shown in Fig. 11.12. For dA � 1 (large image
elements, SA � Sc), the mutual information density increases linearly with
dA, because this implies an improvement of spatial resolution in the input
signal. In the classical limit (vacuum noise at the input of the scheme), the
increase of mutual information density with the density of image elements
takes place until the information per Alice’s image element becomes of the
order of or less than one bit:

ln
{

1 +
4
π

P
d2

A

}
∼ P

d2
A

≤ 1. (11.77)

The further increase of dA has no effect because it is completely compen-
sated by the decrease of information per image element. In our plots this
corresponds to dA ∼

√
P ∼ 1 for P = 1, dA ∼ 1.7 for P = 3, and dA ∼ 3 for

P = 10 (see Fig. 11.12a,b,c correspondingly).
It is instructive to estimate the effect of squeezing and entanglement on

the information capacity of our dense coding channel. A standard assumption
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Fig. 11.12. Mutual information density for the vacuum noise at the input of the
scheme (1), and for squeezing with exp(r(0, 0)) = 3, without (2) and with (3) phase
correction. The density of signal photons is P = 1 (a), P = 3 (b), P = 10 (c).

for such an estimate reads

〈nsqueezed〉 ∼ 〈nsignal〉, (11.78)

and implies that the energy costs of squeezing and entanglement (the number
of photons in squeezed light per mode at a given detector) are of the order
of the signal photon number per mode. Here

〈nsqueezed〉 = sinh2r ∼ e2r

4
. (11.79)

Let us take for simplicity dA ∼ 1, when the size SA of the image element is
of the order of coherence area Sc of squeezed light. Under this condition one
can consider the coherence volume cSATA as a degree of freedom for both
the signal and the squeezed field. Then
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〈nsignal〉 ∼ P, (11.80)

and the assumption (11.78) means,

P ∼ e2r

4
. (11.81)

In our plots e2r = 9, and P = 1 < e2r/4, P = 3 ∼ e2r/4, P = 10 > e2r/4 in
Fig. 11.12a,b,c correspondingly. By inspecting the curves for dA ≤ 1 one can
observe that for 〈nsqueezed〉 ∼ 〈nsignal〉 (the curves 3 and 1 in Fig. 11.12b) the
information capacity of the dense coding channel exceeds that of the classical
channel by a factor of ∼2 .

This result is in agreement with the general properties of quantum dense
coding, and with the estimate [11] for the single-mode continuous variables
dense coding scheme.

For P < e2r/4 (the curves 3 and 1 in Fig. 11.12a) the superiority of the
quantum channel is more significant, but in this case the energy costs of
squeezing and entanglement exceed the power of the signal itself. The curves
3 and 1 in Fig. 11.12c illustrate an opposite limit: relatively low energy costs
of the quantum channel and a small increase of its information capacity.

For dA � 1 (image elements much smaller than the coherence length),
the effect of entanglement on the channel capacity is washed out and J goes
down to the classical limit. This is due to the fact that in the limit SA � Sc

almost all spatial frequencies of the signal are outside the spatial-frequency
band of effective noise suppression, and the channel capacity is finally limited
by vacuum noise.

The phase correction of squeezing and entanglement significantly improves
the channel capacity, because it brings the spatial frequency band of the
effective noise suppression to its optimum value. It eliminates the destructive
effect of the amplified (stretched) quadrature of the noise field at the higher
spatial frequencies, as seen from Fig. 11.12, curves 3 and 2.

11.5 Conclusions and Outlook

In this chapter we have discussed the model of quantum holographic tele-
portation of optical images proposed in [14, 15], and have demonstrated the
ability of the scheme to transfer a quantum state of an input image from one
place to another with high fidelity. We have extended the continuous-variable
dense coding protocol onto the optical images [19]. We have shown that such
multimode extension of the quantum communication channel provides much
higher channel capacity due to its intrinsic parallel nature.

The above-discussed models of quantum holographic teleportation and
quantum dense coding of optical images can be viewed as examples of an
interplay between quantum information and quantum imaging. Of evident



11 Quantum Teleportation and Dense Coding 271

interest is a search for applications of more general kinds of the essentially
multivariate quantum entanglement in quantum information phenomena.

One can mention here, for instance, quantum entanglement between
light waves of different frequencies, associated with frequency nondegenerate
squeezing. Frequency nondegenerate squeezed states of light were observed
in some experiments, for example, in [33]. Quantum teleportation of optical
images based on this kind of entanglement could allow for the transfer of a
quantum state of light to a desirable tunable frequency.

An important problem of quantum information is the problem of exchange
of the quantum state between light and the long-lived matter degrees of free-
dom (quantum memory). An experimental demonstration of quantum mem-
ory for light based on the off-resonant interaction of light with a spin-oriented
atomic ensemble was achieved in [34]. One could expect that extension of
quantum memory schemes, involving essentially multivariate light–matter en-
tanglement, could increase their information capacity.

Of interest could be quantum information schemes, based on the other
versions of multivariate entanglement, as, for example, in the domain of or-
bital angular momentum (OAM) of light (see Chapter 12).

As mentioned in Section 11.4, the superiority of the dense coding scheme
over a single communication channel is related to the fact that in the pres-
ence of quantum entanglement an idle channel provides an optimal reference
system for detecting minor physical perturbation in the signal channel. Such
an entanglement-based increase of sensitivity is common for quantum dense
coding and some recently discussed schemes of quantum measurements. In
analogy to the dense coding of optical images, the use of essentially multi-
mode entanglement in quantum measurements could allow for parallel mea-
surements at improved quantum limits of the distributed-in-space light fields
or the multivariate quantum objects. For instance, the measurement at the
Heisenberg limit δϕ ∼ 1/n of the phase perturbations in a distributed-in-
space faint phase object [35] can be achieved in the scheme similar to that of
dense coding.
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A Properties of Spatially Multimode Squeezing

The basic results for spatially multimode squeezing are summarized in [23].
The coefficients of the squeezing transformation (11.3), (11.56) satisfy the
conditions
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|Un(q, Ω)|2 − |Vn(q, Ω)|2 = 1, (11.82)
Un(q, Ω)Vn(−q,−Ω) = Un(−q,−Ω)Vn(q, Ω),

which are necessary and sufficient for the preservation of the free-field com-
mutation relations (11.1), (11.53). The spatial and temporal parameters of
squeezed and entangled light fields essentially depend on the orientation angle
ψn(q, Ω) of the major axes of the squeezing ellipses,

ψn(q, Ω) =
1
2

arg {Un(q, Ω)Vn(−q,−Ω)} , (11.83)

and on the degree of squeezing rn(q, Ω),

e±rn(q,Ω) = |Un(q, Ω)| ± |Vn(q, Ω)|. (11.84)

The phase of the amplified quadrature components is given [36] by

φn(q, Ω) = −1
2

arg {Un(q, Ω)V ∗
n (−q,−Ω)} . (11.85)

For the type-I phase-matched traveling-wave OPAs, the coefficients Un(q, Ω)
and Vn(q, Ω) are given by

Un(q, Ω) = exp
{

i
[
(kz(q, Ω) − k)l − δ(q, Ω)/2

]}[
cosh Γn(q, Ω)+

iδ(q, Ω)
2Γn(q, Ω)

sinh Γn(q, Ω)
]
, (11.86)

Vn(q, Ω) = exp
{

i
[
(kz(q, Ω) − k)l − δ(q, Ω)/2

]} gn

Γn(q, Ω)
sinh Γn(q, Ω).

Here l is the length of the nonlinear crystal, kz(q, Ω) is the longitudinal
component of the wave-vector k(q, Ω) for the wave with frequency ω + Ω
and transverse component q. The dimensionless mismatch function δ(q, Ω)
is given by

δ(q, Ω) =
(
kz(q, Ω) + kz(−q,−Ω) − kp

)
l ≈ (2k − kp)l + k′′

ΩlΩ2 − q2l/k,

(11.87)
where kp is the wave number of the pump wave; kp−2k = 0 in the degenerate
case. We have assumed the paraxial approximation. The parameter Γn(q, Ω)
is defined as

Γn(q, Ω) =
√

g2
n − δ2(q, Ω)/4, (11.88)

where gn is the dimensionless coupling strength of nonlinear interaction, taken
as real for simplicity. It is proportional to the nonlinear susceptibility, the
length of the crystal, and the amplitude of the pump field.
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B Homodyne Detection with Spatial Resolution

In this Appendix we shall discuss the validity of Eqs. (11.10), (11.54) for the
photocurrent density operators in the balanced homodyne detection scheme
with spatial resolution. For definiteness we shall consider the homodyne de-
tection of the X quadrature component. The results for the conjugate com-
ponent are obtained in a similar way.

In Fig. 11.13 we present the schematic of point-by-point balanced homo-
dyne detection with a photodetector Dx. To achieve spatial resolution, the
pixels of the CCD matrices are assumed to be much smaller than the co-
herence area Sc of the EPR beams. We shall discuss the properties of the
quantum operator for the surface density of the photocurrent and show that
the definitions (11.10), (11.54) of this observable are in agreement with the
standard description of photodetection with resolution in space and time,
based on the Glauber field correlation functions [37]. The output signal of

Fig. 11.13. Schematic of balanced homodyne detection with spatial resolution.

the balanced homodyne detector Dx is given by

Îx(ρ, t) = Î(l)
x (ρ, t) − Î(r)

x (ρ, t), (11.89)

where Î
(l)
x (ρ, t) and Î

(r)
x (ρ, t) are the surface photocurrent densities, measured

by the left and right CCD matrices. The local oscillator plane wave LOx with
complex amplitude B

(H)
x is classical and strong, |B(H)

x | � |Bx(ρ, t)|, where
Bx(ρ, t) is the input field of the detector. In this limit the quantum operator
for the difference photocurrent surface density is introduced in analogy to
the earlier-investigated spatially single-mode case; see [26, 27] and in a more
general context [28]. The classical field strength is replaced by the quantum
field operator B̂x(ρ, t) in the difference surface power of beatings between the
object and the local oscillator waves:

Îx(ρ, t) = B(H)
x

∗
B̂x(ρ, t) + h.c. (11.90)
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The quantum efficiency of the CCD matrices for simplicity is assumed to
be equal to unity and the additional quantum noise due to the light losses
in detectors is neglected. The beamsplitter BS3 is described by the matrix
similar to (11.6).

Let us show that the operator (11.90) is in agreement with the Glauber
photodetection theory [37] and, in particular, describes correctly the shot-
noise of photodetection in space and time. In standard photodetection theory
the second-order correlation function of the photocurrent density is related
to the fourth-order correlation function of the field amplitudes. In our case
of differenced photodetection this relation reads

〈1
2

{
Îx(ρ, t), Îx(ρ ′, t′)

}
+
〉 = 〈Φ̂(l)

x (ρ, t) + Φ̂(r)
x (ρ, t)〉δ(ρ − ρ ′)δ(t − t′)+

〈TN

{(
Φ̂(l)

x (ρ, t) − Φ̂(r)
x (ρ, t)

)(
Φ̂(l)

x (ρ ′, t′) − Φ̂(r)
x (ρ ′, t′)

)}
〉. (11.91)

Here the quantities

Φ̂(l)
x (ρ, t) =

1
2

(
B(H)

x + B̂x(ρ, t)
)†(

B(H)
x + B̂x(ρ, t)

)
,

Φ̂(r)
x (ρ, t) =

1
2

(
−B(H)

x + B̂x(ρ, t)
)†(

−B(H)
x + B̂x(ρ, t)

)
(11.92)

are the surface densities of the photon flux on the left and right CCD
matrices, and { , }+ stands for the anticommutator. The TN ordering of
the field operators in (11.91) means: (i) the normal ordering, and (ii) the
time ordering of the positive-frequency (annihilation) operators, such that
the time argument grows up from right to left, and the inverse time ordering
of the negative-frequency (creation) field operators.

In the limit of a strong local oscillator we can assume in (11.91) the
following approximation,

Φ̂(l)
x (ρ, t) − Φ̂(r)

x (ρ, t) ≈ B(H)
x

∗
B̂x(ρ, t) + h.c. (11.93)

Consider now the same second-order symmetrized correlation function of the
output photocurrents (see the left side of Eq. (11.91)), directly substituting
into it the above-introduced surface photocurrent density operator (11.90).
Bringing the field operators to the TN order with the use of the commutation
relation similar to (11.1), we arrive at

〈1
2

{
Îx(ρ, t), Îx(ρ ′, t′)

}
+
〉 = |B(H)∗

x |2δ(ρ − ρ ′)δ(t − t′)

+〈TN

{(
B(H)∗

x B̂x(ρ, t) + h.c.
)(

B(H)
x

∗
B̂x(ρ ′, t′) + h.c.

)}
〉. (11.94)

This expression is in agreement with the Glauber correlation function (11.91),
approximated with the use of Eq. (11.93). The deltalike contribution describes
the shot noise of photodetection in space and time. In Sections 11.3.3 and
11.4.2 we apply the difference photocurrent surface density operator (11.90)
to the analysis of our teleportation and dense coding schemes.
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12.1 Introduction

The study of the mechanical effects of light, including angular momentum,
has a long history. The recent rapid growth of interest, however, can be
traced to the observation that the Laguerre–Gaussian modes, familiar from
laser physics, carry a well-defined quantity of orbital angular momentum [1].
To be specific, the mode uLG

p	 (Eq. (12.21)) propagating in the z-direction,
with azimuthal dependence exp(i�φ), carries a z-component of orbital angular
momentum of �h̄ per photon. This idea is strongly suggested by the powerful
analogy between paraxial optics and the Schrödinger equation, together with
the operator corresponding to the z-component of orbital angular momentum
Lz = −ih̄∂/∂φ [2]. A convincing demonstration follows from an analysis of
the Poynting vector and the associated angular momentum density [1, 3] as
briefly described in Section 12.2.

x

z

y

E

B
S

S

Fig. 12.1. The helical phase front for an � = 1 mode. The electric and magnetic
fields lie in the plane of this phase front so that the momentum density, which is
proportional to Poynting’s vector, is everywhere normal to the phase front.
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The physical origin of the angular momentum may be readily appreciated
by reference to Fig. 12.1. The electric and magnetic fields at any point lie in
the plane tangent to the helical phase front. This means that the local mo-
mentum density, ε0E×B, is normal to the phase front. Hence the momentum
density itself follows a helical path along the beam and there is an orbital
angular momentum associated with this rotation of the momentum [3]. The
locus of the momentum is illustrated in Fig. 12.2 by the antlers of the male
greater kudu. The angular momentum arises from the azimuthal component
of the momentum density. Along the z-axis the azimuthal coordinate is un-
defined and the fields must tend to zero there for beams with nonzero orbital
angular momentum. This is reminiscent of the eye of a hurricane (see Fig.
12.2), the windless center of the storm. For � = 1 the phase fronts have the
form of a simple screw thread, but in general there are � intertwined phase
fronts. For � = 2 the phase fronts form a double helix, like that found for
the DNA molecule and for � = 3 they have the form of the familiar fusilli
pasta (see Fig. 12.2). Any beam having the azimuthal dependence exp(i�φ)
will carry an associated orbital angular momentum of �h̄ per photon.

The orbital angular momentum of light is rapidly becoming a mature field
of study encompassing a wide range of physical phenomena and there is only
room here to touch on a few of these, with special emphasis placed on quan-
tum and nonlinear optical phenomena. For readers interested in acquiring a
broader introduction there is a review article [4], and a recent book on the
topic [5] which includes reprints of many of the key papers.

12.2 Angular Momentum in Electromagnetism

The mechanical properties of light, namely energy, momentum, and angular
momentum originate from the fundamental electric and magnetic fields. We
can associate a local density with each of these and express a local conserva-
tion law in terms of this density and an associated flux or “current” [6]. The
energy density for the free field is

W =
1
2
(ε0E2 + µ−1

0 B2). (12.1)

This, together with Poynting’s vector,

S = µ−1
0 E × B, (12.2)

satisfies a continuity equation corresponding to the local conservation of en-
ergy:

∂W

∂t
+ ∇ · S = 0. (12.3)

Poynting’s vector (divided by the square of the speed of light) also plays the
role of the momentum density for the field:
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Fig. 12.2. Left: the momentum density follows a helical locus much like the antlers
of the male greater kudu (picture from http://www.sa-venues.com/wildlife). Right
top: satellite image of a hurricane with the eye visible at its center (picture from
http://rsd.gsfc.nasa.gov/rsd/images). Right bottom: the form of the � = 3, 2 phase
fronts illustrated by the � = 3 and the less common � = 2 fusilli pasta.

p = ε0E × B, (12.4)

which is also locally conserved. The corresponding momentum flux density is

Tij =
1
2
δij(ε0E2 + µ−1

0 B2) − ε0EiEj − µ0BiBj , (12.5)

with momentum conservation expressed as

∂Si

∂t
+

∂Tji

∂xj
= 0, (12.6)

where we employ the summation convention for the three spatial coordinates.
The form of the angular-momentum density follows from that for the

momentum density, by analogy with mechanics, as the cross-product of the
momentum density and the position:

j = ε0r × (E × B). (12.7)

Angular momentum is also locally conserved so there is an angular momen-
tum flux density:

Mli = εijkxjTkl (12.8)

(where εijk is the alternating or permutation symbol) and an associated con-
servation law:
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∂ji

∂t
+

∂Mli

∂xl
= 0. (12.9)

Note that the dimensions of the angular-momentum flux density are of an
angular momentum per unit area per unit time. This suggests that we can
understand this as a flow of angular momentum through a surface.

All light beams carry angular momentum; we can see this from the defin-
ition of the angular momentum density (12.7). All that is required is for the
total momentum to have a component perpendicular to the position relative
to the axis of rotation. A more interesting situation arises when considering
the z-component of angular momentum of a beam that is itself propagating in
the z-direction (so that its total momentum points in this direction). Clearly
this can only happen if the momentum densities in different parts of the beam
are not parallel to the z-axis and if the remaining local x- and y-components
of the momentum density conspire to create a nonzero z-component of an-
gular momentum. There are essentially two ways in which this can occur:
one, which is associated with spin angular momentum, has its origins in the
rotation of the electric field for circularly polarized light (see Fig. 12.3) and
the other, which we associate with the orbital angular momentum, arises due
to the existence of helical wave-fronts as depicted in Fig. 12.1. We will be
interested here only in the angular momentum of light about its propagation
axis and particularly in the orbital component.

12.2.1 Spin and Orbital Angular Momentum

In mechanics it is often convenient to separate the angular momentum of a
body into spin and orbital components; for a planet the former gives rise to
days and nights and the latter is responsible for the annual cycle. A com-
parable separation for the electromagnetic field is far from straightforward.
The usual approach is to introduce the vector potential A and to perform an
integration by parts to give [7–9]:

Js = ε0

∫
E × Ad3r, (12.10)

Jo = ε0

∫
El(r ×∇)Ald

3r, (12.11)

as the total spin and orbital angular momenta. The spin part gives the dif-
ference between the total numbers of right and left circularly polarized pho-
tons [8,9], but it appears that the separation is not physically observable [7].
More serious is the observation that neither Js nor Jo is actually an an-
gular momentum [10, 11]. There are also aesthetic grounds for questioning
the forms of Js and Jo. Maxwell’s equations for the free field and the local
mechanical properties described above are unchanged by the transformation

E → cos θE + cos θcB,

B → cos θB − cos θ
1
c
E, (12.12)
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Fig. 12.3. The electric field vector for a circularly polarized beam. The rotation
of this and of the associated magnetic field give rise to a spin angular momentum.

for any angle θ. This is not true, however, for the densities associated with
Js and Jo. The situation is simplified somewhat if we consider the angular-
momentum flux rather than the density of the angular momentum [12]. We
find that for a monochromatic beam of light, a separation into a spin and an
orbital component is both meaningful and physically reasonable. It should be
noted, however, that a different form exists for the spin density and flux [13]
and it remains to be seen whether the difference is significant.

The form of the angular momentum greatly simplifies, however, within
paraxial optics and it is in this regime that most of the work has been done.
In order to understand the angular momentum of a light beam, therefore, it
is reasonable to examine it within the paraxial regime.

12.2.2 Angular Momentum in Paraxial Optics

For most practical purposes it suffices to consider beams of light, propagating
in the z-direction, for which the transverse beam profile changes only slowly
with z. We consider a monochromatic field with angular frequency ω = kc.
For the amplitude distribution u(x, y, z)eikz, the associated paraxial approx-
imation amounts to ignoring ∂2u/∂2z in comparison with k∂u/∂z and ∂u/∂z
compared with ku in the scalar wave equation. The resulting paraxial wave
equation is noteworthy for its similarity to the Schrödinger equation:

i
∂u

∂z
= − 1

2k

(
∂2

∂x2
+

∂2

∂y2

)
u. (12.13)

In order to make a connection with the fields we need a method to construct
them from u. The simplest procedure is to work in the Lorentz gauge and to
write the vector potential as [14]
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A = (αx̂ + βŷ)ueikz. (12.14)

The Lorentz gauge is used, in preference to the more usual Coulomb gauge,
so that we do not need to force A to be transverse. Here α and β are a
pair of complex numbers with |α|2 + |β|2 = 1 and x̂, ŷ are unit vectors in
the x- and y-directions, respectively. Within the paraxial approximation, the
corresponding positive-frequency components of the electric and magnetic
fields are

E = iωA −∇
(

c2

iω
∇ · A

)
=
[
iωαux̂ + iωβuŷ − c

(
α

∂u

∂x
+ β

∂u

∂y

)
ẑ

]
eikz, (12.15)

B =
[
−iβkux̂ + iαkuŷ +

(
β

∂u

∂x
− α

∂u

∂y

)
ẑ

]
eikz. (12.16)

From these, it is straightforward to calculate the (time-averaged) momentum
density [1, 3]

p̄ =
ε0
2

(E∗ × B + E∗ × B)

=
ε0
2

[iω(u∇u∗ − u∗∇u) + 2ωk|u|2ẑ + ωσ∇|u|2 × ẑ], (12.17)

where σ = i(αβ∗ − α∗β). It simplifies matters considerably to work in cylin-
drical polar coordinates (ρ, φ, z). The second term represents the linear mo-
mentum in the direction of the beam and is consistent with assigning a z-
component of momentum equivalent to h̄k per photon. (Consistency with
the paraxial approximation requires us to ignore the z-component of the first
term.) The φ-component may be associated with a twisting of the light about
its propagation direction and is responsible for the angular momentum. There
are two terms in Eq. (12.17) that can give rise to a φ-component of the mo-
mentum density: the first term through (u∇u∗ − u∗∇u)φ and the last term
through (∇|u|2 × ẑ)φ. The first of these arises naturally when the amplitude
has the form

u = v(ρ, z)ei	φ, (12.18)

and leads to a momentum density that is proportional to �. The second occurs
when αβ∗ has an imaginary part and is clearly associated with a circular or
elliptical polarization of the beam. The remaining ρ-component is associated
with diffraction of the light.

If we specialize to a beam with amplitude of the form (12.18) then we
find that the angular momentum density has the simple form [1]

jz = ρp̄φ = ε0ωl|u|2 − ε0
2

ωσρ
∂|u|2
∂ρ

. (12.19)



12 Orbital Angular Momentum of Light 283

The flux of angular momentum in the paraxial approximation is simply cjz

[12] and hence the ratio of the total flux of angular momentum to the total
flux of energy (given by Poynting’s vector) is∫ ∫

ρdρdφcjz∫ ∫
ρdρdφc2p̄z

=
� + σ

ω
. (12.20)

This simple result has an intriguing interpretation that emerges if we multiply
and divide this expression by h̄ to give (h̄� + h̄σ)/h̄ω. We have associated
an energy h̄ω with each photon and the result we have derived suggests
that we should also associate an orbital angular momentum h̄� and a spin
angular momentum h̄σ with each photon. This is indeed the case and an
analysis based on the angular momentum flux reveals that this is also true
for nonparaxial beams [12].

12.2.3 Mechanical Effects

It is important to realize that the spin and orbital angular momenta carried
by our light beam are true mechanical angular momenta. This means that
the light can exert a torque on a material body and this has been confirmed
in a sequence of careful experiments [15–19].

Fig. 12.4. Left: a birefringent particle spinning around its axis when illuminated
by a circularly polarized beam. Right: an absorbing particle orbiting around the
axis of a linearly polarized beam carrying orbital angular momentum � = 8. Further
details of this experiment may be found in [19].

The effects of a light beam carrying angular momentum on a particle
are illustrated in Fig. 12.4. A beam carrying spin but no orbital angular
momentum σ = ±1, � = 0 induces a particle to spin about its own center
of mass. A beam carrying orbital angular momentum but no spin angular
momentum induces a particle to orbit about the center of the beam. The
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polarization-induced rotation of a particle trapped at the radial intensity
maximum seems, at first sight, to be at odds with our formula (12.19), which
suggests that the optical spin angular momentua should be zero there (as
∂|u|2/∂ρ = 0). The resolution of this paradox lies in the fact that we should
be calculating the torque in terms of the change in the total flux of optical
angular momenta on passing through the material. This procedure yields
results that are fully in accord with experimental observations [20]

12.3 Beams Carrying Orbital Angular Momentum

12.3.1 Phase Singularities and Spatial Properties

We have seen that a wave with an amplitude having azimuthal dependence
exp(i�φ) carries �h̄ units of orbital angular momentum for each photon. The
presence of this phase factor tells us that the orbital angular momentum is
fundamentally a property of the form of the wave in the plane perpendicular
to the direction of propagation. In particular, on moving around the z-axis
in a closed loop, the phase will change by 2π�. The amplitude (12.18) has
an undefined phase or phase singularity on the z-axis, that is, at ρ = 0. It
necessarily follows that the field must be zero there and we will see that this
is a common feature for fields carrying orbital angular momentum.

We should note that phase singularities and their associated lines of dark-
ness are topological features of the field. They commonly occur for a variety
of waves and have been studied widely [21,22]. In the lower part of Fig. 12.5
we have plotted the intensity and phase for a three-slit interference experi-
ment. The phase clearly contains points, two of which are labeled, at which
all the colors meet and the associated phase is undefined. Examination of the
intensity reveals that these correspond to dark regions. The more familiar
two-slit pattern exhibits the less common phenomenon of planes of darkness
on which the phase is undefined.

Here we are interested in fields carrying orbital angular momentum and
so will limit our attention to phase singularities lying on the z-axis with
azimuthal dependence exp(i�φ). Such fields have zero intensity along the z-
axis.

12.3.2 Laguerre–Gaussian and Bessel Beams

The paraxial wave equation (12.13) has simple solutions with the required
exp(i�φ) dependence. The most important and most widely used of these are
the Laguerre–Gaussian modes which have the form [24]

uLG
p	 =

CLG
p	

w(z)

(
ρ
√

2
w(z)

)|	|

L|	|
p

(
2ρ2

w2(z)

)
exp
(

−ρ2

w2(z)

)
exp(i�φ)
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Fig. 12.5. The intensity and phase for a Young two-slit experiment and its less
familiar three-slit counterpart. The three-slit system exhibits phase singularities
along lines piercing the plane of the figure. Reproduced from [23].

× exp
[

ikρ2z

2(z2 + z2
R)

]
exp
[
−i(2p + |�| + 1)tan−1(z/zR)

]
, (12.21)

where zR is the Rayleigh range, w(z) = [2(z2 + z2
R)/kzR]1/2 is the radius

of the beam, and where L
|	|
p is an associated Laguerre polynomial, obtained

from the more familiar Laguerre polynomials by differentiation:

L|	|
p = (−1)|	|

d|	|

dx|	|Lp+|	|(x). (12.22)

The constant

CLG
p	 =

(
2p!

π(p + |�|)!

)1/2

(12.23)

is chosen so that the modes are normalized in the transverse plane
∫∫

dxdy|u|2
= 1. The focal plane of the Laguerre–Gaussian mode is at z = 0 and it is there
that it has its smallest width. The Rayleigh range, zR, is the characteristic
length scale associated with diffraction. Parts (a) to (c) of Fig. 12.6 present
the intensity, real part, and phase of the Laguerre–Gaussian mode with � = 3
and p = 2 in its focal plane. The intensity has the dark central spot character-
istic of nonzero orbital angular momentum, and p+1 bright rings. The phase
increases by 2π� = 6π as we traverse a closed circuit around the central phase
singularity. The term (2p + |�|+ 1)tan−1(z/zR) is the Gouy phase, which de-
scribes the change in the phase, in addition to kz, on propagating along the



286 Stephen M. Barnett and Roberta Zambrini

beam. Its value depends only on the mode order N = 2p + |�|. This makes it
relatively easy to deal with superpositions of modes having the same order,
but combining modes of different order can result in a complicated evolution.

A second important class of solutions are the Bessel beams:

uB
κ	 = J|	|(κρ)exp(i�φ)exp

(
−iκ2z

2k

)
. (12.24)

Unlike the Laguerre–Gaussian beams, they are not welllocalized at small val-
ues of ρ and cannot be normalized. They are of interest as they do not diffract
and also because they are also solutions of the full, that is, nonparaxial, with
the only requirement being to replace −κ2/2k by

√
k2 − κ2 − k. We should

note that practical realizations of Bessel beams always have finite transverse
extent and hence are nondiffracting only for a finite propagation length [25].

Fig. 12.6. Intensity (a),(d), real part (b),(e) and phase (c),(f) for a Laguerre–
Gaussian (a)–(c) beam with � = 3, p = 2 in its focal plane and for a Bessel (d)–(f)
beam with � = 1. The color scale can be clearly recognized from the last plot.

12.3.3 Generation and Conversion

We have not yet explained how beams carrying orbital angular momentum
are generated. There are essentially three methods that have been applied to
date and we briefly describe each in turn.
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Cylindrical Lens Mode Converter

It is simplest to start by recalling the manner in which polarization, or spin
angular momentum, is routinely manipulated in the laboratory. Birefringent
waveplates have different refractive indices for two characteristic orthogonal
linear polarizations and this means that the two polarizations acquire differ-
ent phase shifts on propagation through the waveplate. There is, therefore,
an associated transformation of the polarization that depends on the thick-
ness and orientation of the waveplate. The most often-used waveplates are
the quarter- and half-waveplates, which induce a relative phase shift of π/2
or π, respectively, between the two characteristic linear polarizations. They
are commonly used to convert linear polarization to circular polarization and
to rotate the linear polarization, but a combination of them can be used to
generate any desired change in polarization.

The cylindrical lens mode-converter for orbital angular momentum works
by direct analogy with the waveplate for polarization [26–28]. To see this we
must first introduce the Hermite–Gaussian modes [24]:

uH
nm =

CHG
nm

1 + z2/z2
R

exp
(
−(x2 + y2)

w2(z)

)
exp
(
−ik(x2 + y2)z

2(z2 + z2
R)

)
× exp

(
i(2p + |�| + 1) tan−1(z/zR)

)
×Hn

(
x
√

2
w(z)

)
Hm

(
y
√

2
w(z)

)
, (12.25)

where Hn is the nth Hermite polynomial and the constant CHG
nm has been

chosen to enforce normalization. These are the analogues of linear polariza-
tions along the x- and y-directions and may be generated by breaking the
rotational symmetry in a laser cavity to suppress the fundamental TEM00

mode. We can transform these modes into the required Laguerre–Gaussian
modes, or into rotated Hermite–Gaussian modes, by means of cylindrical
lenses, which act to focus the beam along one transverse direction only. A pair
of such lenses, of focal length f , separated by f/

√
2 acts as a π/2-converter.

This is the analogue of the quarter-waveplate and converts suitably oriented
Hermite–Gaussian modes into simply related Laguerre–Gaussian modes with
� = ±|m − n| and p = min(m,n), so that the mode order is unchanged
(N = m + n = 2p + |�|). If the lenses are separated by 2f then the lenses
act as a π-converter, which allows us to rotate the Hermite–Gaussian mode.
Combining π/2- and π-converters provides considerable freedom in manipu-
lating the mode and its orbital angular momentum [29].

Spiral Phase Plate

The essential feature of modes carrying an orbital angular momentum of �h̄
is that they have an azimuthal phase dependence of exp(i�φ). The simplest Au: ok?
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method for achieving this, at least conceptually, is to use a transparent ma-
terial, the thickness of which increases linearly with φ, so that it resembles
a spiral staircase (see Fig. 12.7a). If the height of the step corresponds to
a phase difference of 2π�, then the device will imprint an azimuthal phase
profile of exp(i�φ) on an incoming wave [30, 31]. If we start with a Gaussian
beam, which has zero orbital angular momentum, then a beam carrying �h̄
units of orbital angular momentum per photon will be generated. Naturally,
the initial radial profile of the beam is largely unaffected so that a superpo-
sition of many Laguerre–Gaussian modes is generated with a range of values
of p but a single value of �. The superposition is dominated, however, by the
p = 0 contribution. Generation of beams carrying orbital angular momentum
has been demonstrated both in the microwave [31] and optical [30, 32] re-
gions of the spectrum. In the latter, a high degree of precision in fabrication
is required owing to the small value of the wavelength.

(a) (b)

Fig. 12.7. (a) A spiral phase plate and (b) a hologram designed for generating
light-carrying orbital angular momentum.

Hologram

Holographic methods for generating orbital angular momentum are closely
related to the spiral phase plate. The essential idea is to use a phase hologram
to impose an exp(i�φ) phase shift on the incoming beam in much the same
way as the spiral phase plate. Inevitably, however, there will remain a non-
diffracted component of the initial beam carrying no angular momentum. In
order to separate the desired beam we superpose a phase diffraction grating
onto the desired phase pattern. The resulting hologram has a “pitchfork”
dislocation with the �-value imposed corresponding to the difference between
the number of lines above and below the dislocation [33, 34]. A hologram
designed to create a beam with � = 1 is given in Fig. 12.7b. As with the
spiral phase plate, the diffracted beam will be a superposition of Laguerre–
Gaussian beams with a range of different p values, but it can be arranged for
the value p = 0 to dominate.
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12.3.4 Other Field Spatial Profiles

We have seen that beams with azimuthal phase dependence exp(i�φ) and
an associated phase singularity or vortex along the z-axis carry an orbital
angular momentum of �h̄ per photon. It would be quite wrong, however,
to infer that the angular momentum is a property of the vortex core itself.
There is no light at the vortex core and so the on-axis densities and fluxes
of energy, momentum, and angular momentum are all zero. The angular
momentum is, of course, a property of the beam as a whole. It is quite possible
to form a superposition of Laguerre–Gaussian modes such that the total
angular momentum of the beam differs from the topological charge (or �
value) associated with the vortex. A dramatic example of this can be seen
in an experiment that demonstrated the inversion of an optical vortex under
free-space propagation [35]. Naturally, angular momentum is conserved in
this situation. A further example is given by the astigmatic modes (see Fig.
12.8). These are characterized in the transverse plane by an elliptical intensity
profile and elliptical equiphase contours with an angle between the major axes
of the two ellipses. Such modes have been shown to carry large quantities of
orbital angular momentum but do not display a vortex at all [36, 37].

This somewhat perplexing situation can be demystified by appealing to
quantum theory and considering a single photon. We have seen that each
photon in a Laguerre–Gaussian beam carries an orbital angular momentum
of �h̄. We can also expand any mode in terms of the complete set of Laguerre–
Gaussian modes. This suggests that we can consider each photon in an astig-
matic mode as being in a superposition of different angular momentum states.
The large orbital angular momentum observed for highly astigmatic modes
is then the average angular momentum 〈�〉h̄ multiplied by the number of
photons.

Fig. 12.8. Contours of equal intensity and phase in the transverse plane for a
typical astigmatic mode.
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12.3.5 Fractional Orbital Angular Momentum

We have seen that a superposition of Laguerre–Gaussian modes can be char-
acterized by a well-defined mean orbital angular momentum and this can, of
course, take on any desired value, integer or noninteger. By fractional orbital
angular momentum, however, we refer to a beam specifically prepared to have
an azimuthal phase dependence of the from exp(i�φ) where � is not an integer.
The first study of such modes that we are aware of [98] showed that a degen-
erate optical parametric oscillator pumped by an � = 1 Laguerre–Gaussian
beam should produce a field with half-integer orbital angular momentum and
an azimuthal dependence exp(iφ/2). Such a field necessarily displays a ra-
dial discontinuity at some given angle, that is, a radial line of zero intensity,
so that the field can be single-valued. We can view this line as a disconti-
nuity or domain wall between equally stable states in which the generated
subharmonic field differs in overall sign, that is, by a phase of π.

Fractional orbital angular momentum has been generated by means of
spiral phase plates with a phase step not equal to an integer multiple of 2π
and by analogous holograms. The latter exhibit a radial discontinuity between
the fringes. The form of the mode is characterized by both the value of � and
the angular position of the discontinuity [32, 38, 39]. This contrasts with the
integer orbital angular momentum modes, of course, for which there is no
discontinuity.

The fractional angular momentum states are not eigenmodes of the parax-
ial wave equation and so do not preserve their form under spatial propagation.
We can view this process as interference between the Gouy phases associated
with different mode orders. Propagation produces a rich structure of vortices
that has been both derived analytically and observed experimentally [38,39].

12.4 Quantum Optical Angular Momentum

12.4.1 States of Spin and Orbital Angular Momentum

The optics described in the preceding section, together with the familiar
polarization-dependent wave plates and polarizing beamsplitters, give us a
high degree of control over both the spin and orbital components of the
optical angular momentum. This control extends into the quantum regime,
where experiments have been performed on optical angular momentum at
the single photon level [40–43, 96]. For a single photon, at least within the
paraxial approximation, it is permissible to write down a state vector for the
angular momentum in the form |�〉 ⊗ |σ〉 as eigenstates of the total angular
momentum:

Ĵz|�〉 ⊗ |σ〉 = (� + σ)h̄|�〉 ⊗ |σ〉. (12.26)

Here we readily identify the spin (σh̄) and orbital (�h̄) contributions to the
total angular momentum.
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The polarization is described by two orthonormal state vectors with
σ = ±1 or by any superposition of these. This has been widely employed
as a physical implementation of the qubit or quantum bit of information [47]
and underlies many implementations of quantum key distribution [48]. Using
the orbital angular momentum offers the prospect of a much larger, and in
principle unbounded, space of states, each associated with a different integer
value of �. There has been some progress in this direction including a demon-
stration of entanglement between a pair of photons with a well-defined total
angular momentum but with the angular momentum of each individual pho-
ton unspecified (see Section 12.6.3) [40]. There has also been a demonstration
of a free-space communications system in which information is encoded on
the value of � (see Section 12.5.3) [49].

The orbital angular momentum is intimately connected with the phase
profile of the electromagnetic field in the plane perpendicular to the prop-
agation axis. For this reason there is a natural link between the study of
orbital angular momentum and transverse effects. In the quantum theory of
transverse effects it is convenient to introduce continuum annihilation and
creation operators Âσ(x) and Â†

σ(x), where x = xi + yj is any position in
the plane perpendicular to the propagation axis (chosen to correspond to the
z-axis) and σ denotes the polarization [50]. We include quantum effects by
means of the commutation relation:[

Âσ(x), Â†
σ′(x′)

]
= δσσ′δ(x − x′). (12.27)

The Laguerre–Gaussian modes form a complete orthonormal set in the x, y
plane and it may be useful to introduce a complete set of annihilation oper-
ators to describe these modes:

âp	σ =
∫ ∞

−∞

∫ ∞

−∞
uLG

p	 (x)Âσ(x)dxdy. (12.28)

It is straightforward to show that these operators and their creation operator
counterparts satisfy the required commutation relations for a set of indepen-
dent boson modes: [

âp	σ, â†
p′	′σ′

]
= δpp′δ		′δσσ′ ,

[âp	σ, âp′	′σ′ ] = 0 =
[
â†

p	σ, â†
p′	′σ′

]
. (12.29)

Hence we can describe transverse effects in quantum optics using both the
continuum mode approach and, where it is suitable, operators for modes with
well-defined orbital angular momentum.

12.4.2 Measuring Orbital Angular Momentum

If we are to explore and exploit quantum-optical orbital angular momentum
then it is important to have an efficient method for measuring it. Figure 12.9
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illustrates some of the methods that have been employed successfully for this
purpose. Perhaps the most conceptually simple method is depicted in Fig.
12.9a. A Mach–Zehnder interferometer is employed in which a Dove prism
is inserted in one arm. This prism acts to reflect, by means of total internal
reflection, the beam about its vertical axis. The resulting interference pattern
exhibits 2|�| fringes and allows us to determine � by counting fringes [27,44].
This method is not suitable, however, at the single photon level as we will
then only obtain a single spot on our detector, rather than the required 2|�|
fringes.

For single photons we can employ a hologram or a spiral phase plate to
change the value of � by a selected amount, � → � − ∆�. If and only if the
change induced results in an � = 0 beam will the resulting beam have an
intensity on the axis. Hence focusing the light onto a pinhole will produce
transmitted light only if the original beam had � = ∆� (see Fig. 12.9b) [45].
Detecting a photon, therefore, corresponds to determining that the value of �
was the single value ∆�; indeed failure to find the photon does not even allow
us to conclude that � 
= ∆� as most of an � = 0 mode will be focused outside
the pinhole. More complicated computer-generated holograms have been used
to detect several different � states, but the efficiency of this process cannot
exceed the reciprocal of the number of different � values to be detected [46].

One method, depicted in Fig. 12.9c, is, at least in principle, 100% efficient
for a known set of � values. The interferometer from Fig. 12.9a is modified
by the inclusion of a second Dove prism. The net effect of these is to intro-
duce an �-dependent phase shift, equal to �α, between the fields in the two
interferometer arms, where α is twice the angle between the orientations of
the two prisms. If, for example, we choose α = π, then the fields reaching
the output beamsplitter will be in phase for even values of � but out of phase
for odd values and we can therefore determine whether � is even or odd,
for even a single photon, by monitoring the direction in which it exits the
interferometer [41]. Placing additional similar interferometers at the output
allows us to further separate �-values. Figure 12.9d presents the results of two
stages of �-sorting, with three interferometers in total, allowing measurement
of � modulo 4. A practical improvement of this design is described in [51].
The spin angular momentum can easily be transformed and measured using
polarization-sensitive elements such as waveplates and polarizing beamsplit-
ters. These can be incorporated into the orbital angular momentum sorting
interferometer to allow us to measure the total angular momentum �+σ [52].

12.5 Angle and Angular Momentum

12.5.1 Uncertainty Relation for Angle and Angular Momentum

The modes corresponding to precisely defined orbital angular momentum
have a dependence on the azimuthal coordinate in the form exp(i�φ) and
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a)

b)

c)
d)

Fig. 12.9. Different methods to detect orbital angular momentum (a)–(c) and
experimental observation of � modulo 4 with three interferometers (d). Reproduced
from [41].

hence the associated intensity for the mode has cylindrical symmetry. This is
analogous to the behavior found in quantum mechanics where the eigenstates
of L̂z are associated with cylindrically symmetric probability distributions.
It follows that any attempt to localize the angular coordinate will inevitably
introduce a spread of angular momentum values. This situation is a reflec-
tion of the conjugate relationship between the angular position φ and the
corresponding angular momentum Lz.

We can express the complementarity of φ and Lz by means of an uncer-
tainty principle. In doing so, however, we need to take account of the fact
that all physical properties are periodic functions of the angular position. For
this reason we must restrict the values of the angle observable to lie within
a 2π radian range. Thus the angle operator φ̂θ will have eigenvalues φ lying
in the range θ to θ + 2π, with a common choice being −π ≤ φ < π. This
dependence on the choice of angular range is denoted by the subscript θ on
the angle operator. Deriving the correct properties of φ̂θ requires some care,
including the use of a specific limiting procedure [53], and is analogous to the
derivation of the phase operator for a field mode [54, 55]. The result is that
for states with a finite uncertainty in angular momentum we find [53] Au: ok?

∆φθ∆Lz ≥ h̄

2
|1 − 2πP (θ)| , (12.30)
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where ∆Lz = h̄∆� and P (θ) is the angular probability density at the bound-
ary of the chosen angular range. We can see that for the angular momentum
eigenstates, ∆Lz = 0 and so too does the right-hand side of the inequality as
P (θ) = 1/2π, which reflects the rotational symmetry of the angular momen-
tum eigenstates. For states with well-localized angles, however, we can have
P (θ) ≈ 0 so that ∆φθ∆Lz ≥ h̄/2.

12.5.2 Intelligent and Minimum Uncertainty Product States

The uncertainty relation (12.30) limits the precision with which we simul-
taneously fix both the angular coordinate and the angular momentum. It
is important to determine, therefore, the form of the states that minimize
the uncertainty product. The lower bound, given by the right-hand side of
Eq. (12.30), depends on the angle probability density P (θ) and hence the
lower bound is itself state dependent. For this reason there are at least two
distinct ways in which the uncertainty product can be said to be minimized.
These are the intelligent states [56] and the minimum uncertainty product
states [57]. We can obtain the form of these states by using Lagrange’s method
of undetermined multipliers [59,60].

Fig. 12.10. Intelligent and minimum uncertainty product states with angle uncer-
tainty ∆φ = 1.6.
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Intelligent States

The states that saturate the uncertainty relation, that is, realize the equality
in the uncertainty relation, are the intelligent states [58]. Such states satisfy
a simple eigenvalue equation that, for angular momentum and angle takes
the form: [

L̂z − 〈L̂z〉 − ih̄λ
(
φ̂θ − 〈φ̂θ〉

)]
|ψ〉 = 0. (12.31)

We can solve this equation by working in the angle representation to find the
angle wavefunction Ψ(φ):[

i
d

dφ
+ �̄ + iλ(φ − φ̄θ)

]
Ψ(φ) = 0, (12.32)

where �̄ = 〈L̂z〉/h̄ and φ̄θ = 〈φ̂θ〉. In seeking the solution we note that Ψ(φ)
needs to be a continuous function of φ so that the derivative dΨ(φ)/dφ is
well behaved. If we choose θ = −π, so that −π ≤ φ < π, we are led to the
solution, normalized in the range −π to π [56]:

Ψ(φ) =
(λ/π)1/4√
erf(π

√
λ)

ei	̄φe−λφ2/2. (12.33)

The form of this wavefunction is given by the solid curve in Fig. 12.10. The
expectation value of the angle for this state is zero and the requirement that
that wavefunction should be continuous tells us that �̄ must be an integer.
The uncertainties in the angle and angular momentum for this state are

∆φ = (2λ)−1/2

√
1 − 2

√
πλe−π2λ

erf(π
√

λ)
,

∆� = λ∆φ, (12.34)

where we have written ∆φ(−π) as ∆φ. From these it is easy to show that

∆φ∆� =
1
2

∣∣1 − 2π|Ψ(π)|2
∣∣ , (12.35)

confirming that (12.33) is indeed the intelligent state.

Minimum Uncertainty Product States

For any given value of ∆φ the minimum value of the uncertainty product
∆φ∆� need not be that given by the corresponding intelligent state. This
is because the states minimizing the angle–angular momentum uncertainty
product may have a value of |1 − 2πP (θ)| /2 that is considerably smaller
than that found for the corresponding intelligent state. The states that min-
imize the uncertainty product ∆φ∆� either for given ∆φ or for ∆� are the
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Fig. 12.11. Uncertainty product for the intelligent states (solid line) and for the
minimum uncertainty product states (dashed line) plotted as a function of the angle
uncertainty.

minimum uncertainty product states (or constrained minimum uncertainty
product states) [57]. This procedure leads us to the states |f〉 that satisfy the
eigenvalue equation (

L̂2
z

h̄2 + λφ̂2

)
|f〉 = µ|f〉, (12.36)

where λ and µ are real constants. We can solve this equation by again using
the angle representation to obtain the angle wavefunction f(φ). In doing
so, we need to ensure that both the wavefunction and its first derivative are
continuous so that the second derivative arising from the square of the angular
momentum, L̂2

z → −h̄2∂2/∂φ2, is well behaved. The resulting wavefunction
can be written in terms of a confluent hypergeometric function:

f(φ) = exp

(
−
√

λφ2

2

)
M

(√
λ − µ

4
√

λ
,
1
2
,
√

λφ2

)
, (12.37)

where the relationship between µ and λ is such as to ensure the required
continuity of f(φ). The form of this wavefunction is given by the dashed
curve in Fig. 12.10. If the angular uncertainty is not too large then this state
is well approximated by a overlapping sequence of Gaussians:

f(φ) ≈ κ

∞∑
n=−∞

exp

[
−
√

λ(φ + 2nπ)2

2

]
, (12.38)

with µ =
√

λ, and κ is a normalization constant. The uncertainty products
for the intelligent and minimum uncertainty product states are compared in
Fig. 12.11.
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Experimental Tests

The form of the uncertainty relation (12.30) and of the associated intelligent
states (12.33) have been confirmed by an experimental test [56]. A schematic
representation of the experiment is given in Fig. 12.12. The required intelli-
gent state was prepared by means of an aperture that imposed the required
Gaussian angular dependence on an initial � = 0 Gaussian mode. The an-
gular momentum content of the resulting mode was then analyzed using
the hologram and pinhole technique described in Section 12.4. The intensity
measured for the different values of �, together with the value of ∆φ imposed
by the aperture, was then used to calculate an experimental value for the
uncertainty product ∆φ∆�.

The results obtained for the uncertainty product are plotted against ∆φ in
Fig. 12.13 and compared with the theoretical value obtained for the intelligent
states from the uncertainty relation. We see that there is very good agreement
for most values of ∆φ. The slightly poorer fit visible for small values of ∆φ are
due to the difficulty in accurately measuring the very large angular momenta
that contribute to ∆�. At large values of ∆φ we are very close to an eigenstate
of angular momentum and the observed angular-momentum uncertainty is
dominated by experimental noise.

12.5.3 Communications

The orbital angular momentum of light can be used to carry information,
with different values of � corresponding to different possible “letters” in a
signal. Communication using different states of orbital angular momentum
is not suitable for fiber-based communications as fibers can only admit a
restricted range of spatial modes and will also tend to scramble the relative
phase between these. It is well suited, however, to free-space communications.
A recent experiment has demonstrated the feasibility of free-space communi-
cations based on orbital angular momentum [49]. The communication device
consists of transmitting and receiving telescopes. In the transmitting tele-
scope, light with a chosen value of � is created by means of a spatial light
modulator acting as a hologram. The � value is analyzed in the receiving
telescope by means of a second hologram.

The uncertainty relation between the angle and angular momentum pro-
vides a measure of security against eavesdropping. This is because an eaves-
dropper will typically only be able to access a small portion of the beam
and the uncertainty principle then ensures that this light will have a broad-
ened spectrum of �-values [49, 62]. The theoretical and experimental effects
of cutting out part of the beam are presented in Fig. 12.14.

The orbital angular momentum is a well-behaved quantum property of
light. Exploiting this degree of freedom will allow us to engineer states of
so-called quNits for quantum communications [61].
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Fig. 12.12. Schematic of the experiment used to observe uncertainties in angular
position and angular momentum. Passing a light beam through an aperture restricts
the angular position, leading to a corresponding broadening of the light’s angular
momentum states. A spatial light modulator is used to produce both the aperture
function and the angular-momentum-analyzing hologram. The probability of each
angular momentum component is deduced from the fraction of the resulting light
transmitted through a pinhole. Reproduced from [56].

Fig. 12.13. Experimental values for the uncertainty product ∆φ∆�, compared with
the theoretical value given by the solid line. Reproduced from [56].



12 Orbital Angular Momentum of Light 299

0

1

P(l)

l

0

1

P(l)

l

0

1

P(l)

l

0

1

P(l)

-4 -3 -2 -1  0   1  2  3  4
l

Measured
Calculated

2πφ

2πφ

2πφ

2πφ

-4 -3 -2 -1  0   1  2  3  4

-4 -3 -2 -1  0   1  2  3  4

-4 -3 -2 -1  0   1  2  3  4

Fig. 12.14. Figure of effects on the angular momentum content of aperturing a
beam with a well-defined angular momentum. Reproduced from [49].

12.5.4 Rotation Measurements

High-resolution displacement measurement of a light beam has been recently
demonstrated using a proper spatial mode, a novel “flipped” mode [63]. In-
deed the achieved precision depends not only on the the number of photons
in the beam quantum state, as is generally true in interferometry [64,65], but
also on its transverse spatial distribution. The choice of the spatial mode is
also important to increase the precision in measuring the rotation of a beam
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of light about an optical axis. The limiting resolution in this rotation mea-
surement does not depend specifically on the number of photons used but
rather on the total number of quanta of orbital angular momentum carried
by the light beam [66].

We consider a light beam propagating in the z-direction through an image
rotator, such as a rotating Dove prism, or a pair of stationary Dove prisms
with a fixed relative orientation. The output beam will be azimuthally rotated
by an angle δφ around the z-axis. A natural way to measure small angles δφ
is to observe the azimuthal displacement of a spot of light impinging on the
edges of the rotator. The achievable experimental precision is then limited by
the finite size of the optical elements used. For a device with radial aperture
R, the azimuthal resolution is [66]

δφ ∝ 1√
�M

f(N), (12.39)

where �M = (R/w0 − 1)2 is the maximum angular momentum index trans-
mitted by the device. The function f(N) has the form N−1/2, N−3/4, N−1

for coherent, strongly squeezed, or number states, respectively, where N is
the average number of photons [67].

The resolution of rotation measurements can be improved by choosing
the appropriate spatial mode. If the incoming beam is an angular momentum
eigenstate then the only effect of the rotator is to add a constant phase shift.
This suggests the use of an interferometer with the rotator placed along one of
the paths and input beams in angular momentum eigenstates. The difference
in the intensities of the two output beams depends both on the phase shift,
here �δφ, and on the quantum state of the incoming beams, leading to the
smallest detectable phase shift [66]

δφ ∝ 1
�
f(N). (12.40)

For Fock states (f(N) = 1/N) the minimum detectable rotation is set by
the total number of quanta of orbital angular momentum, N�. Therefore we
can increase the sensitivity in rotation measurements not only by the use
of nonclassical states of light (dependence on N), but also by using easily
accessible eigenmodes of orbital angular momentum (geometrical function of
�M ). Moreover, the use of these modes to enhance the angular resolution
is relatively robust, as no matter how many photons are lost, each of the
remaining photons still carries �h̄ units of angular momentum.

12.6 Orbital Angular Momentum in Quantum
Nonlinear Optics

Vortex beams carrying orbital angular momentum made an early appearance
in nonlinear classical optics, but were mostly studied as a peculiar case of
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singularities, namely phase singularities or screw dislocations [68,69]. Even
after the identification of a well-defined amount of orbital angular momentum
per photon in Laguerre–Gaussian beams in 1992 [1], most of the literature in
singular optics was not explicitly concerned with this mechanical property of
light [70]. This is perhaps not too surprising as the link between vortices and
orbital angular momentum is not generally as simple as that for the Laguerre–
Gaussian modes. In this section we focus on orbital angular momenta in
nonlinear optics, and for general studies on singular optics and vortex solitons
we refer to [71, 94, 72].

In Section 12.3.3 we have summarized some of the techniques used to
generate beams with orbital angular momentum based on mode converters,
spiral phase plates, and holograms. These are devices with a linear response
to the input beam. Beams carrying orbital angular momentum can also be
generated spontaneously in nonlinear devices. We mention here in particular
the example of lasers, in which optical elements with circular symmetry are
embedded in the resonator allowing for the oscillation of higher-order LG
modes [73,74].

An active area of investigations about angular momentum in nonlin-
ear processes focuses on the effects observed when LG or Bessel beams are
pumped in optical devices as quadratic crystals [40,75], nonlinear cavities [81],
lasers [83,84], or cold atoms [85]. An important question arising when waves
mix in nonlinear devices is the conservation of their mechanical properties
(see Section 12.6.1). Several experiments have confirmed that the orbital an-
gular momentum of photons is conserved in up- and down-conversion as well
as in four-wave mixing. These are discussed in Sections 12.6.2 and 12.6.3. An-
other question of interest is the stability of beams carrying orbital angular
momentum during propagation in nonlinear media: a subject that challenged
several theoretical studies in the last decade. An example of a stable ring
soliton has been recently observed in two-dimensional optically induced pho-
tonic lattices [86,87]. On the other hand, the instability of vortex solitons in
propagation allows us to observe a clear and dynamical manifestation of the
orbital angular momentum of light, as discussed in Section 12.6.4. We con-
clude this section reporting on some observations of spontaneously formed
spatial structures that carry a fractional angular momentum per photon.

12.6.1 Phase Matching

Wave-mixing processes in nonlinear materials take place efficiently only if the
phase of the waves is properly matched to produce constructive interference.
If we consider three-wave mixing, as observed in quadratic crystals, then the
frequency and phase-matching conditions are ω0 = ω1 +ω2 and k0 = k1 +k2.
Considering the nonlinear interaction at the quantum level, we see that the
frequencies and wave-vectors of the created photons sum to the same values
as for the destroyed photons. We can interpret these conditions as expres-
sions of the conservation of energy and linear momentum, respectively. The
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interactions between light and matter considered here do indeed assume that
neither energy nor momentum is transferred to matter during the interaction.

Recent experiments have shown that orbital angular momentum is also
a conserved quantity within nonlinear processes [40, 75], as detailed in the
following sections. In the case of mixing of three waves this is expressed
by �0 = �1 + �2, being �0,1,2 the angular momentum of pump, signal, and
idler photons. In [77] it was shown that the conservation of orbital angular
momentum is also a consequence of phase-matching conditions. More compli-
cated situations occur in the nonparaxial regime [78–80] or for noncollinear
interactions [76].

Interestingly, the spin angular momentum is usually not conserved in
wave-mixing processes: in type-I phase matching, for instance, the lower-
frequency waves are generally polarized orthogonally to the higher-frequency
wave. As a matter of fact, in order to phase match three-wave mixing, it is
necessary to use birefringent materials. As we have seen in Section 12.2.3,
the interaction is then anisotropic and spin angular momentum in the light
involved in the process is not conserved, with the outstanding angular mo-
mentum transferred to the medium.

12.6.2 Second-Harmonic Generation of Laguerre–Gaussian Beams

Second-harmonic generation results from the mixing of three waves in quad-
ratic media, when the frequency of a pump wave (ω = ω1 = ω2) is doubled
(2ω = ω0). It has been shown that if the pump carries �h̄ units of orbital
angular momentum per photon, the second-harmonic carries 2�h̄ units [88].
A simple explanation of this phenomenon is obtained assuming that the gen-
erated wave is proportional to the square of the pump wave: for a wave in
a Laguerre–Gaussian mode L0,	 the second harmonic will be L0,2	 with a
beam waist reduced by a factor

√
2. A consistent picture was also obtained

in [88] by considering that the interacting waves must have collinear Poynt-
ing vectors. As the Poynting vector of a pump uLG

0	 beam spirals at the rate
�/kr [89], and the generated beam has a doubled k, � must also be doubled
in order to have the same rotation rates in both waves.

The experimental demonstration of the conservation of angular momen-
tum is achieved through the observation of the spatial structure of both fun-
damental and second-harmonic beams. In [88] this was achieved by the use
of cylindrical mode converters, transforming Hermite–Gaussian in Laguerre–
Gaussian modes with n − m = � and m = p = 0 (Section 12.3.3). Given the
fundamental relation between orbital momentum and azimuthal phase dis-
tribution of the beam, interferometric techniques are also particularly useful.
In [75] the beam was interfered with its mirror image generated with a Dove
prism, giving the characteristic fork diagrams shown in Fig. 12.15. The �
value is given by one half of the number of the bright fringes in the fork. The
doubling of � can then be easily recognized in the experimental images of the
fundamental and second-harmonic.
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Fig. 12.15. Forked interferograms for a variety of uLG
p� modes (left) and their

second-harmonic counterpart (right). Both p = 0 and p �= 0 are studied. Reproduced
from [75].

The conservation of orbital angular momentum in second-harmonic gen-
eration has also been demonstrated for Laguerre–Gaussian modes with p 
= 0.
For a pump beam in a multiringed mode p 
= 0 the second harmonic will be in
a superposition of modes with different p indices, instead of in a single mode
as in the case p = 0. These modes have different Gouy phases and inter-
fere, giving a spatial distribution that changes during propagation, but with
a fixed azimuthal index 2�. The experimental data displayed in Fig. 12.15
show the conservation of orbital angular momentum for p = 1, 2. Equivalent
results can be found when Bessel instead of Laguerre–Gaussian beams are
considered [92].

Second-harmonic generation is a particular (degenerate) case of sum-
frequency processes, in which two waves with frequencies ω1 and ω2 are in-
jected in a quadratic crystal and sum in a third wave ω3 = ω1 + ω2. The
conservation of orbital angular momentum has been demonstrated also in
this more general case [90]. This allows us to produce the arithmetical sum
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and difference of topological charges, and equivalently to the orbital angular
momenta of single uLG

0	 modes.
We have focused here on the conservation of angular momenta for nonlin-

ear interactions of vortex beams under conditions for stable propagation. A
more accurate analysis reveals that ring-shaped beams in a nonlinear optical
material can be azimuthally unstable [93]. This problem has been extensively
studied analytically and numerically in the literature, as reviewed in [94]. We
will describe a recent experiment on this subject in the context of high-order
nonlinearities in Section 12.6.4.

12.6.3 Down-Conversion and Entanglement

In the previous section we discussed the conservation of orbital angular mo-
mentum in sum-frequency processes, where the spatial distribution of two
input waves dictates the shape of the sum wave through phase matching.
In the case of parametric down-conversion a pump wave of frequency ω0 is
converted in two waves ω1 + ω2 = ω0, known as the signal and idler. Phase
matching dictates in this case only the complementarity of the phases of
the down-converted beams, but not their individual values. Indeed either the
signal or idler is generally in a superposition of orbital angular momentum
eigenstates and known to be individually incoherent. However, coincidence
measurement allows us to observe that the orbital angular momenta of each
down-converted photon pair do sum to the value of a pump photon [40].

The lack of a well-defined phase profile and angular momentum in the
signal as well as in the idler beam prevent immediate observation of the
conservation of this quantity from the detection of the spatial profile of the
beams [95]. Indeed the conservation in these spontaneous processes is ob-
served only when looking at cross-correlations between different spatial modes
in the signal and idler [40, 96]. Alternatively well-defined spatial modes in
the down-converted fields can be achieved in stimulated parametric down-
conversion [97], by strong transverse selection of the spontaneously down-
converted field obtained with Bessel beams [82], or in optical parametric
oscillators (OPO) [81]. In [97], in addition to the pump, the idler is also in-
jected on the crystal inducing the emission of a well-defined mode. Detecting
the three interacting fields with a CCD camera it was confirmed that the
idler angular momentum was �2 = �0 − �1. The conservation can also be ob-
served in parametric oscillators operating above threshold, but only under
certain resonance and mode degeneracy conditions, ultimately depending on
the crystal birefringence [81].

A degenerate OPO pumped by a c.w. LG mode was studied in [98] in the
context of the stabilization of domain walls. It was shown that for a pump uLG

0	

with even � there is a stable signal with phase profile ei	φ/2. The signal would
be in a discontinuous state with fractional angular momentum for odd �. This
ill-defined phase induces one (or more) domain wall with vanishing intensity
in the radial direction. Signals with a number of domain walls with the same
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parity of the pump index � are shown in Fig. 12.16. These light distributions
with one or several lines of darkness were called “optical sprinklers,” as they
actually rotate in time. The peculiarity of this state is that it is a mode
with fractional orbital angular momentum given by the noninteger azimuthal
index �/2, for � odd (Section 12.3.5). We note that some authors use this
same definition of beams carrying fractional angular momentum referring
to the average angular momentum per photon. This quantity is generally
noninteger for any superposition of few uLG

0	i
modes with an odd value of∑

�i, without any discontinuities in the phase. Nice examples of structures
with fractional average angular momentum are self-trapped necklaces in the
nonlinear Schrödinger equation [99].

Fig. 12.16. Numerically calculated “optical sprinklers” in the signal intensity of
an OPO pumped by a uLG

0� mode of azimuthal index � = 1 (a)–(d) and � = 2 (e)–(f)
for different pump intensities. Reproduced from [98].

The identification of a conserved quantity in the simultaneous generation
of photons suggests the possibility of generating orbital angular momentum
entanglement in a Hilbert space with increased dimensionality with respect
to the spin case. This entanglement was already shown in [40] and discussed
in [77]. The two-photon state generated in the paraxial regime for a thin
crystal can then be written as

|ψ〉 =
+∞∑

	1=−∞
C	1 |�1〉|�0 − �1〉, (12.41)
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with |�〉 denoting an angular momentum eigenstate. The angular distribu-
tion of coincidence counts has a more complicated structure. For a Gaussian
(� = 0) pump we expect these to be well localized on opposite sides of the
down-conversion cone. It has recently been suggested that this simultaneous
correlation between the orbital angular momentum and the azimuthal coordi-
nate could form the basis of a demonstration of the famous EPR paradox [91].
For a Laguerre–Gaussian pump, however, the “image” produced in the idler,
in coincidence with detecting the signal photon in a small region, is given by
the Fourier transform of the pump field inside the nonlinear crystal [43]. It
has recently been demonstrated that photons are also entangled in fractional
angular momenta [32].

12.6.4 High-Order Nonlinearity

In Sections 12.6.2 and 12.6.3 we have reported on experiments focusing on the
conservation of orbital angular momentum in three-wave mixing processes.
Higher-order nonlinearities allow us to increase the number of coupled beams.
Experiments in noncollinear configurations both in cold cesium atoms [85]
and in a doped color glass [100] have recently confirmed angular momentum
conservation for Kerr nonlinear processes mixing four waves in LG modes.
However, the question that is attracting the attention of several groups is
the possibility of obtaining stable propagation of beams carrying angular
momentum in nonlinear media [102].

A novel class of self-trapped beams characterized by the rotation of
the field phase and more resistant to whole-beam collapse was proposed
in 1985 [103]. These beams are indeed spatial optical solitons, carrying a
nonzero angular momentum, and known as vortex solitons. After their first
experimental observation in 1992 [104], different strategies to obtain vortex
solitons have been studied, including competing nonlinearities, multimode
vector solitons (in which a vortex is stabilized by the potential introduced
by another mode), nonlocal coupling, and photonic crystals. Extensive nu-
merical and theoretical investigations, however, have shown that ring beams
suffer strong azimuthal instabilities in both a saturable Kerr medium and
in a material with a competing quadratic and cubic nonlinearity [107]. Due
to the azimuthal symmetry-breaking instability, beams with a phase profile
exp(i�φ) usually decay into 2|�| (for the self-focusing Kerr-like medium) or
2|�| + 1 (for the quadratic media) fundamental optical solitons [107].

The instability of these beams offers the possibility of observing a nice
dynamical effect of the conservation of angular momentum, as seen both
in Kerr-like [105] and quadratic [106] media. In particular, the propagating
ring decays into a number of filaments that travel off tangentially to the
unstable ring, conserving the total orbital angular momentum, as shown in
Fig. 12.17(i). The results of a recent experiment with a saturable nonlinearity
[101] are shown in Fig. 12.17(ii). When a laser pulse in an LG mode with



12 Orbital Angular Momentum of Light 307

(i)

a)

b)

(ii)

Fig. 12.17. (i) Graphical evolution of an � = 3-ring mode (a) decaying into three
solitons flying away tangentially to the initial ring (b). (ii) Experimental output
(a) for an � = 3 beam breaking into six filaments at resonance, and (b) tuned far
from resonance. In (c) and (d) the equivalent results from numerical simulations
of the nonlinear propagation equation modeling for the sodium vapor. Reproduced
from [101].

orbital angular momentum � = 3 passes through a dense sodium vapor it
breaks up into six filaments, as predicted in [107].

12.7 Conclusion

The orbital angular momentum of light is fundamentally associated with the
phase properties of the field in the plane perpendicular to the propagation
direction. This contrasts with the more familiar spin angular momentum that
is associated with the polarization or vector character of the electromagnetic
field. It is clear that the orbital angular momentum is fundamentally a spatial
property of the field and so is intimately connected with imaging and spatial
correlations, which are the principal topics of this book.

We should emphasize that optical angular momentum is a genuine me-
chanical property and this has been amply demonstrated in the experiments
described in Section 12.2.3. It is also clear that the nonlinear instabilities
described in Section 12.6.4 can most easily be understood in terms of a con-
served mechanical angular momentum.

The angular momentum is conjugate to the azimuthal angular coordinate
and these are constrained by an uncertainty relation, or analogue of the
Fourier bandwidth theorem. We showed in Section 12.5 that this uncertainty
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principle leads to well-defined intelligent and minimum uncertainty product
states and that these have been demonstrated experimentally.

The study of orbital angular momentum in the quantum domain is only
in its infancy. It is already clear, however, that entanglement can be pro-
duced and that angular momentum can be manipulated and measured at the
single-photon level. There is a great deal of potential for the realization of
quantum communications and information-processing-based orbital angular
momentum.
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