

Pro ASP.NET 3.5
in VB 2008
Includes Silverlight 2

Matthew MacDonald, Mario Szpuszta,
and Vidya Vrat Agarwal

Pro ASP.NET 3.5 in VB 2008: Includes Silverlight 2

Copyright © 2009 by Matthew MacDonald, Mario Szpuszta, and Vidya Vrat Agarwal

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (paperback): 978-1-4302-1630-8

ISBN-13 (electronic): 978-1-4302-1631-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Dominic Shakeshaft
Technical Reviewer: Damien Foggon
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary

Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Douglas Pundick, Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt
Wade, Tom Welsh

Production Director | Project Manager: Grace Wong
Copy Editor: Kim Wimpsett
Associate Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Kinetic Publishing Services, LLC
Proofreader: Liz Welch, Lisa Hamilton
Indexer: Broccoli Information Management
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or
visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail , or visit

.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at in the Source Code section.

To my sweet little daughter, Vamika (Pearly),
and beloved wife, Rupali. You are both precious in my eyes and honored.

I love you.
—Vidya Vrat Agarwal

iv

Contents at a Glance

About the Authors . xxxi

About the Technical Reviewer . xxxiii

Introduction .xxxv

PART 1 Core Concepts
CHAPTER 1 Introducing ASP.NET . 3

CHAPTER 2 Visual Studio . 25

CHAPTER 3 Web Forms . 77

CHAPTER 4 Server Controls . 125

CHAPTER 5 ASP.NET Applications . 179

CHAPTER 6 State Management . 235

PART 2 Data Access
CHAPTER 7 ADO.NET Fundamentals . 277

CHAPTER 8 Data Components and the DataSet . 321

CHAPTER 9 Data Binding . 363

CHAPTER 10 Rich Data Controls . 415

CHAPTER 11 Caching and Asynchronous Pages . 491

CHAPTER 12 Files and Streams . 543

CHAPTER 13 LINQ . 579

CHAPTER 14 XML . 647

PART 3 Building ASP.NET Websites
CHAPTER 15 User Controls . 715

CHAPTER 16 Themes and Master Pages. 739

CHAPTER 17 Website Navigation . 773

CHAPTER 18 Website Deployment . 829

v

PART 4 Security
CHAPTER 19 The ASP.NET Security Model . 925

CHAPTER 20 Forms Authentication. 963

CHAPTER 21 Membership . 991

CHAPTER 22 Windows Authentication . 1049

CHAPTER 23 Authorization and Roles . 1089

CHAPTER 24 Profiles . 1127

CHAPTER 25 Cryptography . 1163

CHAPTER 26 Custom Membership Providers . 1195

PART 5 Advanced User Interface
CHAPTER 27 Custom Server Controls . 1237

CHAPTER 28 Design-Time Support . 1285

CHAPTER 29 Dynamic Graphics and GDI+ . 1321

CHAPTER 30 Portals with Web Part Pages . 1357

PART 6 Client-Side Programming
CHAPTER 31 JavaScript and Ajax Techniques . 1421

CHAPTER 32 ASP.NET AJAX . 1479

CHAPTER 33 Silverlight 2 . 1541

INDEX . 1603

vii

Contents

About the Authors . xxxi

About the Technical Reviewer . xxxiii

Introduction .xxxv

PART 1 Core Concepts

CHAPTER 1 Introducing ASP.NET . 3

The Evolution of Web Development . 3

The Early Web Development World . 4

What’s Wrong with Classic ASP? . 4

ASP.NET . 6

Seven Important Facts About ASP.NET . 7

Fact 1: ASP.NET Is Integrated with the .NET Framework 7

Fact 2: ASP.NET Is Compiled, Not Interpreted 7

Fact 3: ASP.NET Is Multilanguage . 9

Fact 4: ASP.NET Is Hosted by the Common Language Runtime . . . 12

Fact 5: ASP.NET Is Object- Oriented . 13

Fact 6: ASP.NET Is Multidevice and Multibrowser 15

Fact 7: ASP.NET Is Easy to Deploy and Configure 15

ASP.NET 3.5: The Story Continues . 16

ASP.NET 2.0 . 17

ASP.NET 3.5 . 18

Silverlight . 23

Summary . 23

CHAPTER 2 Visual Studio . 25

The .NET Development Model . 26

The Compiler . 26

The Visual Studio IDE . 27

Websites and Web Applications. 28

Creating a Projectless Website . 28

CONTENTSviii

Multitargeting . 32

Designing a Web Page . 33

The Visual Studio IDE . 40

Solution Explorer . 41

Document Window . 43

Toolbox . 43

Error List and Task List . 44

Server Explorer . 46

The Code Editor . 46

Adding Assembly References . 48

IntelliSense and Outlining . 50

The Code Model . 52

How Code- Behind Files Are Connected to Pages 55

How Control Tags Are Connected to Page Variables 56

How Events Are Connected to Event Handlers 58

Web Projects . 59

Creating a Web Project . 61

Migrating a Website from a Previous Version of Visual Studio 63

Visual Studio Debugging . 65

Single-Step Debugging . 66

Variable Watches . 69

Advanced Breakpoints. 70

Visual Studio Macros . 71

The Web Development Helper . 74

Summary . 76

CHAPTER 3 Web Forms . 77

Page Processing . 77

HTML Forms . 78

Dynamic User Interface . 80

The ASP.NET Event Model . 81

Automatic Postbacks . 82

View State . 84

XHTML Compliance . 88

Web Forms Processing Stages . 94

Page Framework Initialization . 95

User Code Initialization . 95

Validation . 96

Event Handling . 96

Automatic Data Binding . 97

CONTENTS ix

Cleanup . 97

A Page Flow Example . 97

The Page As a Control Container . 100

Showing the Control Tree . 100

The Page Header . 105

Dynamic Control Creation . 106

The Page Class . 107

Session, Application, and Cache . 108

Request . 108

Response . 110

Server . 112

User . 115

Trace . 115

Accessing the HTTP Context in Another Class 122

Summary . 123

CHAPTER 4 Server Controls . 125

Types of Server Controls . 125

The Server Control Hierarchy . 127

HTML Server Controls . 128

The HtmlControl Class . 129

The HtmlContainerControl Class . 129

The HtmlInputControl Class . 130

The HTML Server Control Classes . 130

Setting Style Attributes and Other Properties 132

Programmatically Creating Server Controls. 133

Handling Server- Side Events . 135

Web Controls . 138

The WebControl Base Class . 139

Basic Web Control Classes . 140

Units . 143

pnl.Width = myUnitEnumerations . 143

Colors . 144

Fonts. 144

Focus . 146

The Default Button . 148

Scrollable Panels . 148

Handling Web Control Events . 149

CONTENTSx

The List Controls . 152

The Selectable List Controls . 154

The BulletedList Control . 156

Input Validation Controls . 158

The Validation Controls . 158

The Validation Process . 160

The BaseValidator Class . 161

The RequiredFieldValidator Control . 163

The RangeValidator Control . 163

The CompareValidator Control . 163

The RegularExpressionValidator Control . 164

The CustomValidator Control . 167

The ValidationSummary Control . 168

Using the Validators Programmatically . 169

Validation Groups . 171

Rich Controls . 173

The AdRotator Control . 174

The Calendar Control . 176

Summary . 178

CHAPTER 5 ASP.NET Applications . 179

Anatomy of an ASP.NET Application . 179

The Application Domain . 180

Application Lifetime . 181

Application Updates . 182

Application Directory Structure . 182

The global.asax Application File . 183

Application Events . 185

Demonstrating Application Events . 187

ASP.NET Configuration . 189

The machine.config File . 189

The web.config File . 192

<system.web> Settings . 196

Reading and Writing Configuration Sections Programmatically . . . 201

The Website Administration Tool (WAT) . 204

Extending the Configuration File Structure . 206

Encrypting Configuration Sections . 211

CONTENTS xi

.NET Components . 212

Creating a Component. 213

Using a Component Through the App_Code Directory 215

Using a Component Through the Bin Directory 216

Extending the HTTP Pipeline . 219

HTTP Handlers and HTTP Modules . 219

Creating a Custom HTTP Handler . 221

Configuring a Custom HTTP Handler . 222

Registering HTTP Handlers Without Configuring IIS 224

Creating an Advanced HTTP Handler . 225

Creating an HTTP Handler for Non- HTML Content 227

Creating a Custom HTTP Module . 230

Summary . 233

CHAPTER 6 State Management . 235

ASP.NET State Management . 235

View State . 238

A View State Example . 238

Storing Objects in View State . 240

Retaining Member Variables . 243

Assessing View State . 244

View State Security . 246

Transferring Information Between Pages . 247

The Query String . 247

Using the Query String . 248

URL Encoding . 249

Cross-Page Posting . 249

Getting Page- Specific Information . 251

Performing Cross- Page Posting in Any Event Handler 252

The IsPostBack and IsCrossPagePostBack Properties 253

Cross-Page Posting and Validation . 254

Cookies . 256

Session State . 258

Session Architecture . 258

Using Session State . 260

Configuring Session State . 261

Mode . 262

Cookieless . 266

Timeout . 268

Securing Session State . 268

CONTENTSxii

Application State . 269

Static Application Variables . 271

Summary . 273

PART 2 Data Access

CHAPTER 7 ADO.NET Fundamentals . 277

The ADO.NET Architecture . 278

ADO.NET Data Providers . 279

Standardization in ADO.NET . 281

SQL Server 2005 . 282

Fundamental ADO.NET Classes . 282

The Connection Class . 284

Connection Strings . 284

Testing a Connection . 285

Connection Pooling . 287

Connection Statistics . 289

The Command and DataReader Classes . 290

Command Basics . 290

The DataReader Class . 291

The ExecuteReader() Method and the DataReader 292

The ExecuteScalar() Method . 298

The ExecuteNonQuery() Method . 299

SQL Injection Attacks . 299

Using Parameterized Commands . 303

Calling Stored Procedures . 304

Transactions . 307

Transactions and ASP.NET Applications . 308

Isolation Levels . 313

Savepoints . 315

Provider-Agnostic Code . 316

Creating the Factory . 316

Create Objects with Factory . 317

A Query with Provider- Agnostic Code. 318

Summary . 320

CHAPTER 8 Data Components and the DataSet . 321

Building a Data Access Component . 321

The Data Package . 323

CONTENTS xiii

The Stored Procedures . 324

The Data Utility Class . 325

Testing the Database Component . 331

Disconnected Data . 333

Web Applications and the DataSet . 335

XML Integration . 335

The DataSet . 336

The DataAdapter Class . 337

Filling a DataSet . 339

Working with Multiple Tables and Relationships 340

Searching for Specific Rows . 344

Using the DataSet in a Data Access Class . 344

Data Binding . 345

The DataView Class . 346

Sorting with a DataView . 346

Filtering with a DataView . 348

Advanced Filtering with Relationships . 350

Calculated Columns . 351

Typed DataSets . 354

Custom TableAdapters . 355

Creating a Typed DataSet . 356

Dissecting the Typed DataSet . 357

Using the Typed DataSet . 360

Summary . 362

CHAPTER 9 Data Binding . 363

Basic Data Binding . 364

Single-Value Binding . 364

Other Types of Expressions . 367

Repeated-Value Binding . 371

Data Source Controls . 379

The Page Life Cycle with Data Binding . 380

The SqlDataSource . 381

Selecting Records . 382

Parameterized Commands . 385

Handling Errors . 390

Updating Records . 391

Deleting Records . 395

Inserting Records . 396

Disadvantages of the SqlDataSource . 397

CONTENTSxiv

The ObjectDataSource . 398

Selecting Records . 399

Updating Records . 404

Updating with a Data Object . 405

The Limits of the Data Source Controls . 410

The Problem . 410

Adding the Extra Items . 411

Handling the Extra Options with the SqlDataSource 412

Handling the Extra Options with the ObjectDataSource 412

Summary . 413

CHAPTER 10 Rich Data Controls . 415

The GridView . 416

Defining Columns . 416

Formatting the GridView . 421

Formatting Fields . 421

Styles . 422

Formatting-Specific Values . 426

GridView Row Selection . 428

Using Selection to Create a Master- Details Form. 430

The SelectedIndexChanged Event . 431

Using a Data Field As a Select Button . 432

Sorting the GridView . 433

Sorting with the SqlDataSource . 433

Sorting with the ObjectDataSource . 434

Sorting and Selection . 436

Advanced Sorting . 437

Paging the GridView . 438

Automatic Paging . 439

Custom Pagination with the ObjectDataSource 440

Customizing the Pager Bar . 444

GridView Templates . 445

Using Multiple Templates . 448

Editing Templates in Visual Studio . 448

Binding to a Method . 449

Handling Events in a Template . 451

Editing with a Template . 452

The ListView . 459

Grouping . 462

Paging . 464

CONTENTS xv

The DetailsView and FormView . 465

The DetailsView . 466

The FormView . 470

Advanced Grids . 472

Summaries in the GridView . 472

A Parent/Child View in a Single Table. 474

Editing a Field Using a Lookup Table . 477

Serving Images from a Database . 479

Detecting Concurrency Conflicts . 485

Summary . 490

CHAPTER 11 Caching and Asynchronous Pages . 491

Understanding ASP.NET Caching . 491

Output Caching . 492

Declarative Output Caching . 493

Caching and the Query String . 494

Caching with Specific Query String Parameters 495

Custom Caching Control . 496

Caching with the HttpCachePolicy Class . 497

Post-Cache Substitution and Fragment Caching 498

Cache Profiles . 501

Cache Configuration . 502

Data Caching . 503

Adding Items to the Cache . 504

A Simple Cache Test . 506

Cache Priorities . 507

Caching with the Data Source Controls . 508

Cache Dependencies . 511

File and Cache Item Dependencies . 512

Aggregate Dependencies . 513

The Item Removed Callback. 514

Understanding SQL Cache Notifications . 516

Cache Notifications in SQL Server 2000 and SQL Server 7 517

Cache Notifications in SQL Server 2005 and SQL Server 2008 . . . 522

Custom Cache Dependencies . 525

A Basic Custom Cache Dependency . 525

A Custom Cache Dependency Using Message Queues 526

Asynchronous Pages . 529

Creating an Asynchronous Page . 530

Querying Data in an Asynchronous Page . 532

CONTENTSxvi

Handling Errors . 534

Using Caching with Asynchronous Tasks . 537

Multiple Asynchronous Tasks and Timeouts 539

Summary . 541

CHAPTER 12 Files and Streams . 543

Working with the File System . 543

The Directory and File Classes . 544

The DirectoryInfo and FileInfo Classes . 546

The DriveInfo Class . 549

Working with Attributes. 550

Filter Files with Wildcards. 552

Retrieving File Version Information . 553

The Path Class . 554

A File Browser. 556

Reading and Writing Files with Streams . 561

Text Files . 563

Binary Files . 564

Uploading Files . 565

Making Files Safe for Multiple Users . 568

Compression . 572

Serialization . 573

Summary . 577

CHAPTER 13 LINQ . 579

LINQ Basics . 580

Deferred Execution . 581

How LINQ Works . 582

LINQ Expressions . 583

LINQ Expressions “Under the Hood” . 590

LINQ to DataSet . 593

Typed DataSets . 595

Nothing . 596

LINQ to SQL . 597

Data Entity Classes . 598

The DataContext . 600

LINQ to SQL Queries “Under the Hood” . 602

LINQ to SQL and Database Components . 606

Selecting a Single Record or Value . 609

CONTENTS xvii

xvii

Generating Data Classes Automatically . 610

Relationships . 616

Generating Methods for Stored Procedures 629

Committing Changes . 631

The LinqDataSource . 638

Displaying Data . 638

Getting Related Data . 642

Editing Data . 642

Validation . 643

Summary . 646

CHAPTER 14 XML . 647

When Does Using XML Make Sense? . 647

An Introduction to XML . 648

The Advantages of XML . 649

Well-Formed XML . 650

XML Namespaces . 651

XML Schemas . 653

Stream-Based XML Processing . 654

Writing XML Files . 655

Reading XML Files . 659

In-Memory XML Processing . 663

The XmlDocument . 664

The XPathNavigator . 668

The XDocument . 671

Searching XML Content . 677

Searching with XmlDocument . 677

Searching XDocument with LINQ . 682

Validating XML Content . 684

A Basic Schema . 684

Validating with XmlDocument . 685

Validating with XDocument . 687

Transforming XML Content . 687

A Basic Stylesheet . 688

Using XslCompiledTransform . 689

Using the Xml Control . 691

Transforming XML with LINQ to XML . 691

XML Data Binding . 693

Nonhierarchical Binding . 694

Using XPath . 696

CONTENTSxviii

Nested Grids . 698

Hierarchical Binding with the TreeView . 700

Using XSLT . 702

Binding to XML Content from Other Sources 704

Updating XML Through the XmlDataSource 705

XML and the ADO.NET DataSet . 705

Converting the DataSet to XML . 706

Accessing a DataSet As XML . 708

Summary . 710

PART 3 Building ASP.NET Websites

CHAPTER 15 User Controls . 715

User Control Basics . 716

Creating a Simple User Control . 716

Converting a Page to a User Control . 718

Adding Code to a User Control . 719

Handling Events . 719

Adding Properties . 720

Using Custom Objects . 722

Adding Events . 726

Exposing the Inner Web Controls . 729

Dynamically Loading User Controls . 730

Portal Frameworks . 731

Partial Page Caching . 734

VaryByControl . 735

Sharing Cached Controls . 737

Summary . 737

CHAPTER 16 Themes and Master Pages . 739

Cascading Style Sheets . 739

Creating a Stylesheet . 740

Applying Stylesheet Rules . 742

Themes . 745

Theme Folders and Skins . 746

Applying a Simple Theme . 747

Handling Theme Conflicts . 748

Creating Multiple Skins for the Same Control 749

CONTENTS xix

Skins with Templates and Images . 750

Using CSS in a Theme . 752

Applying Themes Through a Configuration File 753

Applying Themes Dynamically . 754

Standardizing Website Layout . 756

Master Page Basics . 757

A Simple Master Page . 757

A Simple Content Page . 760

Default Content . 762

Master Pages with Tables and CSS Layout . 762

Master Pages and Relative Paths . 765

Applying Master Pages Through a Configuration File 766

Advanced Master Pages . 767

Interacting with the Master Page Class . 767

Dynamically Setting a Master Page . 769

Nesting Master Pages . 769

Summary . 771

CHAPTER 17 Website Navigation . 773

Pages with Multiple Views . 773

The MultiView Control . 774

The Wizard Control . 779

Site Maps . 788

Defining a Site Map . 789

Binding to a Site Map . 791

Breadcrumbs . 792

Showing a Portion of the Site Map . 794

The Site Map Objects . 798

Adding Custom Site Map Information . 800

Creating a Custom SiteMapProvider . 801

URL Mapping . 808

Security Trimming . 809

The TreeView Control . 811

The TreeNode . 812

Populating Nodes on Demand . 815

TreeView Styles . 816

The Menu Control . 821

Menu Styles . 824

Menu Templates. 825

Summary . 827

CONTENTSxx

CHAPTER 18 Website Deployment . 829

Internet Information Services (IIS) . 829

IIS Websites and Virtual Directories . 830

IIS Management Console and IIS Configuration 831

Mapping Websites, Virtual Directories, and Files to URLs 833

Diving into the Architecture of IIS . 835

Installing IIS . 853

Managing Websites . 860

Managing Virtual Directories and Websites with IIS 5.x
and IIS 6.0 . 861

Managing Application Pools in IIS 6.0 . 868

Managing Virtual Directories and Websites with IIS 7.0 876

Managing Application Pools in IIS 7.0 . 889

Deploying Your ASP.NET Applications . 892

Verifying the ASP.NET Installation on IIS 5.x and IIS 6.0 893

ASP.NET Side-By- Side Execution on IIS 5.x and IIS 6.0 895

ASP.NET Side-By- Side Execution on IIS 7.0 896

Configuring HTTP Runtime Settings when Deploying
on IIS 5.x . 897

Compilation Models in ASP.NET . 898

Deploying with Visual Studio . 902

Visual Studio 2005 Web Deployment Projects 904

The VirtualPathProvider in ASP.NET . 911

Health Monitoring in ASP.NET . 916

Understanding the Basic Structure . 916

Events and Providers . 917

Summary . 921

PART 4 Security

CHAPTER 19 The ASP.NET Security Model . 925

What It Means to Create Secure Software . 925

Understanding Potential Threats . 926

Secure Coding Guidelines . 927

Understanding Gatekeepers . 928

Understanding the Levels of Security . 929

Authentication . 929

Authorization . 931

CONTENTS xxi

Confidentiality and Integrity . 932

Pulling It All Together . 932

Internet Information Services Security . 934

Authentication and Authorization on IIS 5.x and IIS 6.0 935

Security Configuration on IIS 7.0 . 938

Understanding Secure Sockets Layer . 944

ASP.NET Security Architecture . 955

Authentication . 957

Authorization . 958

The Security Context . 959

Membership and Roles APIs. 961

Summary . 962

CHAPTER 20 Forms Authentication . 963

Introducing Forms Authentication . 963

Why Use Forms Authentication? . 965

Why Would You Not Use Forms Authentication? 966

Why Not Implement Cookie Authentication Yourself? 968

The Forms Authentication Classes . 969

Implementing Forms Authentication . 969

Configuring Forms Authentication . 970

Denying Access to Anonymous Users . 973

Creating a Custom Login Page . 974

Custom Credentials Store . 981

Persistent Cookies in Forms Authentication 982

IIS 7.0 and Forms Authentication . 983

Summary . 989

CHAPTER 21 Membership . 991

Introducing the ASP.NET Membership API . 991

Using the Membership API . 994

Configuring Forms Authentication . 996

Creating the Data Store . 997

Configuring Connection String and Membership Provider 1003

Creating and Authenticating Users . 1007

Using the Security Controls . 1009

The Login Control . 1011

The LoginStatus Control . 1022

The LoginView Control . 1023

CONTENTSxxii

The PasswordRecovery Control . 1024

The ChangePassword Control . 1029

The CreateUserWizard Control . 1030

Configuring Membership in IIS 7.0 . 1035

Configuring Providers and Users . 1036

Using the Membership API with Other Applications 1038

Using the Membership Class . 1040

Retrieving Users from the Store . 1041

Updating Users in the Store . 1044

Creating and Deleting Users . 1044

Validating Users . 1045

Using Membership in Windows Forms . 1046

Summary . 1048

CHAPTER 22 Windows Authentication. 1049

Introducing Windows Authentication . 1049

Why Use Windows Authentication? . 1050

Why Would You Not Use Windows Authentication? 1051

Mechanisms for Windows Authentication . 1052

Implementing Windows Authentication . 1060

Configuring IIS 5.x or IIS 6.0 . 1060

Configuring IIS 7.0 . 1062

Configuring ASP.NET . 1064

Denying Access to Anonymous Users . 1068

Accessing Windows User Information . 1070

Impersonation. 1075

Impersonation in Windows 2000 . 1076

Impersonation on Windows XP . 1077

Impersonation and Delegation on Windows Server 2003 1078

Impersonation on Windows Vista . 1081

Impersonation and Delegation on Windows Server 2008 1082

Configured Impersonation . 1082

Programmatic Impersonation . 1085

Summary . 1088

CHAPTER 23 Authorization and Roles . 1089

URL Authorization . 1089

Authorization Rules . 1090

File Authorization . 1096

CONTENTS xxiii

Authorization Checks in Code . 1097

Using the IsInRole() Method . 1097

Using the PrincipalPermission Class . 1098

Using the Roles API for Role- Based Authorization 1100

Using the LoginView Control with Roles . 1107

Accessing Roles Programmatically . 1108

Using the Roles API with Windows Authentication 1111

Protecting Non- ASP.NET Resources in IIS 5 and 6 1113

Adding a File Type Mapping . 1114

Writing a Custom HTTP Handler . 1116

Authorization and Roles in IIS 7.0 . 1118

Authorization with ASP.NET Roles in IIS 7.0 1121

Managing ASP.NET Roles with IIS 7.0 . 1123

Summary . 1125

CHAPTER 24 Profiles . 1127

Understanding Profiles . 1127

Profile Performance . 1128

How Profiles Store Data . 1129

Profiles and Authentication . 1130

Profiles vs. Custom Data Components . 1130

Using the SqlProfileProvider. 1131

Creating the Profile Tables . 1131

Configuring the Provider . 1134

Defining Profile Properties . 1134

Using Profile Properties . 1135

Profile Serialization . 1137

Profile Groups . 1139

Profiles and Custom Data Types . 1140

The Profiles API . 1143

Anonymous Profiles . 1146

Custom Profile Providers . 1149

The Custom Profile Provider Classes . 1149

Designing the FactoredProfileProvider . 1151

Coding the FactoredProfileProvider . 1153

Testing the FactoredProfileProvider . 1157

Summary . 1161

CONTENTSxxiv

CHAPTER 25 Cryptography . 1163

Encrypting Data: Confidentiality Matters . 1163

The .NET Cryptography Namespace . 1164

Understanding the .NET Cryptography Classes . 1168

Symmetric Encryption Algorithms . 1169

Asymmetric Encryption . 1170

The Abstract Encryption Classes . 1171

The ICryptoTransform Interface . 1172

The CryptoStream Class . 1173

Encrypting Sensitive Data . 1174

Managing Secrets . 1174

Using Symmetric Algorithms . 1176

Using Asymmetric Algorithms . 1182

Encrypting Sensitive Data in a Database . 1185

Encrypting the Query String . 1189

Wrapping the Query String . 1189

Creating a Test Page . 1193

Summary . 1194

CHAPTER 26 Custom Membership Providers . 1195

Architecture of Custom Providers . 1196

Basic Steps for Creating Custom Providers. 1197

Overall Design of the Custom Provider . 1198

Designing and Implementing the Custom Store 1199

Implementing the Provider Classes . 1206

Using the Custom Provider Classes . 1227

Summary . 1232

PART 5 Advanced User Interface

CHAPTER 27 Custom Server Controls . 1237

Custom Server Control Basics . 1237

Creating a Bare- Bones Custom Control . 1238

Using a Custom Control . 1240

Custom Controls in the Toolbox . 1241

Creating a Web Control That Supports Style Properties 1243

The Rendering Process . 1247

CONTENTS xxv

Dealing with Different Browsers . 1249

The HtmlTextWriter . 1249

Browser Detection . 1250

Browser Properties . 1252

Overriding Browser Type Detection . 1254

Adaptive Rendering . 1255

Control State and Events . 1257

View State . 1258

Control State . 1260

Postback Data and Change Events . 1261

Triggering a Postback . 1264

Extending Existing Web Controls . 1266

Composite Controls . 1267

Derived Controls . 1270

Template Controls . 1273

Creating a Template Control . 1273

Using Customized Templates . 1276

Styles . 1281

Summary . 1284

CHAPTER 28 Design-Time Support . 1285

The Key Players . 1285

Design-Time Attributes . 1286

The Properties Window . 1287

Attributes and Inheritance . 1292

The Toolbox Icon . 1292

Web Resources . 1294

Creating a Resource . 1294

Retrieving a Resource . 1295

Text Substitution . 1296

Code Serialization . 1297

Type Converters . 1297

Serialization Attributes . 1306

Type Editors . 1308

Control Designers . 1311

Design-Time HTML . 1312

Smart Tags . 1314

Summary . 1320

CONTENTSxxvi

CHAPTER 29 Dynamic Graphics and GDI+ . 1321

The ImageMap Control . 1321

Creating Hotspots . 1322

Handling Hotspot Clicks . 1324

A Custom Hotspot . 1325

Drawing with GDI+ . 1327

Simple Drawing . 1328

Image Format and Quality . 1330

The Graphics Class . 1332

Using a GraphicsPath . 1334

Pens . 1335

Brushes . 1338

Embedding Dynamic Graphics in a Web Page . 1340

Using the PNG Format . 1341

Passing Information to Dynamic Images . 1342

Custom Controls That Use GDI+ . 1345

Charting with GDI+ . 1351

Summary . 1356

CHAPTER 30 Portals with Web Part Pages . 1357

Typical Portal Pages . 1358

Basic Web Part Pages . 1360

Creating the Page Design . 1361

WebPartManager and WebPartZone Controls 1362

Adding Web Parts to the Page . 1364

Customizing the Page . 1368

Creating Web Parts . 1371

Simple Web Part Tasks . 1371

Developing Advanced Web Parts . 1380

Web Part Editors . 1390

Connecting Web Parts . 1396

Custom Verbs and Web Parts . 1405

User Controls and Advanced Web Parts . 1406

Uploading Web Parts Dynamically. 1410

Authorizing Web Parts . 1416

Final Tasks for Personalization . 1417

Summary . 1418

CONTENTS xxvii

PART 6 Client-Side Programming

CHAPTER 31 JavaScript and Ajax Techniques . 1421

JavaScript Essentials . 1421

The HTML Document Object Model . 1422

Client-Side Events . 1423

Script Blocks . 1426

Manipulating HTML Elements . 1427

Debugging JavaScript . 1429

Basic JavaScript Examples . 1431

Creating a JavaScript Page Processor . 1431

Using JavaScript to Download Images Asynchronously 1435

Rendering Script Blocks . 1440

Script Injection Attacks . 1442

Request Validation . 1442

Disabling Request Validation . 1443

Custom Controls with JavaScript . 1445

Pop-Up Windows . 1445

Rollover Buttons . 1450

Frames . 1454

Frame Navigation . 1454

Inline Frames . 1456

Understanding Ajax . 1458

The XMLHttpRequest Object . 1459

An Ajax Example . 1461

Using Ajax with Client Callbacks . 1466

Creating a Client Callback . 1466

Client Callbacks “Under the Hood” . 1473

Client Callbacks in Custom Controls . 1474

Summary . 1478

CHAPTER 32 ASP.NET AJAX . 1479

Introducing ASP.NET AJAX . 1479

ASP.NET AJAX on the Client: The Script Libraries 1481

ASP.NET AJAX on the Server: The ScriptManager 1482

Server Callbacks . 1483

Web Services in ASP.NET AJAX . 1484

The Web Service Proxy . 1491

CONTENTSxxviii

Placing a Web Method in a Page . 1493

ASP.NET AJAX Application Services . 1494

ASP.NET AJAX Server Controls . 1502

Partial Rendering with the UpdatePanel . 1502

Timed Refreshes with the Timer . 1511

Time-Consuming Updates with UpdateProgress 1512

Deeper into the Client Libraries . 1515

Understanding the Client Model . 1516

Object-Oriented Programming in JavaScript 1517

The Web- Page Framework . 1526

Control Extenders . 1531

Installing the ASP.NET AJAX Control Toolkit 1532

The AutoCompleteExtender . 1533

The ASP.NET AJAX Control Toolkit . 1536

Summary . 1540

CHAPTER 33 Silverlight 2 . 1541

Understanding Silverlight . 1541

Silverlight vs. Flash . 1543

Silverlight System Requirements . 1545

Installing the Silverlight Tools for Visual Studio 1546

Creating a Silverlight Solution . 1547

Silverlight Compilation . 1548

Entry Pages . 1550

Creating a Silverlight Project . 1556

Designing a Silverlight Page. 1557

Understanding XAML . 1560

Setting Properties . 1562

The XAML Code- Behind . 1563

Handling Events . 1564

Browsing the Silverlight Class Libraries . 1566

Layout . 1567

The Canvas . 1567

The Grid . 1573

CONTENTS xxix

Animation . 1578

Animation Basics . 1579

Defining an Animation . 1579

The Storyboard Class . 1580

An Interactive Animation Example. 1583

Transforms . 1587

Silverlight and ASP.NET . 1591

Using Web Services with Silverlight . 1592

The MediaPlayer Control . 1598

Summary . 1602

INDEX . 1603

xxxi

About the Authors

MATTHEW MACDONALD is an author, educator, and Microsoft MVP. He’s a
regular contributor to programming journals and the author of more than
a dozen books about .NET programming, including Pro Silverlight 2 in C#
2008 (Apress, 2008), Pro WPF in C# 2008 (Apress, 2008), and Beginning
ASP.NET 3.5 in C# 2008 (Apress, 2007). He lives in Toronto with his wife
and two daughters.

MARIO SZPUSZTA works as an architect in the Developer and Platform
Group of Microsoft Austria and helps software architects of top enterprise
and web customers with establishing new Microsoft technologies. For
several years, he has been focusing on secure software development, web
services and interoperability, and the integration of Microsoft Office clients
and servers in custom applications. Mario speaks regularly at local and inter-
national conferences, such as DevDays and TechEd Europe Developers, and
has been a technical content owner of TechEd Europe Developers for the
past two years.

VIDYA VRAT AGARWAL—a Microsoft .NET purist and an MCT, MCPD,
MCTS, MCSD.NET, MCAD.NET, and MCSD—works with Lionbridge
Technologies (NASDAQ: LIOX). He is also a lifetime member of the Com-
puter Society of India (CSI). He started working on Microsoft .NET with
its beta release. He has been involved in software development, evan-
gelism, consultation, corporate training, and T3 programs on Microsoft
.NET for various employers and corporate clients. He is the coauthor of
Beginning C# 2008 Databases: From Novice to Professional and Beginning
VB 2008 Databases: From Novice to Professional and has been the techni-
cal reviewer of many other books published by Apress. He lives with his

beloved wife, Rupali, and lovely daughter, Vamika (“Pearly”). He believes that nothing will turn
into a reality without them. He is the follower of the concept “no pain, no gain” and believes
that his wife is his greatest strength. He blogs at ; you can
reach him at .

xxxiii

About the Technical Reviewer

DAMIEN FOGGON is a freelance developer and technical author based in Newcastle, England.
While not wondering why the Newcastle Falcons can never win home or away, he spends his
spare time writing, playing rugby, scuba diving, or pretending that he can cook.

If he could be consistent (or interesting), his blog might not be three months out of date.
You never know—you may get lucky. See for yourself at .

xxxv

Introduction

As you no doubt already know, ASP.NET is Microsoft’s next-generation technology for creat-
ing server-side web applications. It’s built on the Microsoft .NET Framework, which is a cluster of
closely related new technologies that revolutionize everything from database access to distributed
applications. ASP.NET is one of the most important components of the .NET Framework—it’s the
part that enables you to develop high-performance web applications.

It’s not hard to get developers interested in ASP.NET. Without exaggeration, ASP.NET is
the most complete platform for web development that’s ever been put together. It far outclasses its
predecessor, ASP, which was designed as a quick-and-dirty set of tools for inserting dynamic
content into ordinary web pages. By contrast, ASP.NET is a full-blown platform for developing
comprehensive, blisteringly fast web applications.

In this book, you’ll learn everything you need to master ASP.NET 3.5. If you’ve pro-
grammed with a previous version of ASP.NET, you can focus on new features such as LINQ
(Chapter 13), ASP.NET AJAX (Chapter 32), and Silverlight (Chapter 33). If you’ve never pro-
grammed with ASP.NET, you’ll find that this book provides a well-paced tour that leads you
through all the fundamentals, along with a backstage pass that lets you see how the ASP.NET
internals really work. The only requirement for this book is that you have a solid understand-
ing of the VB language and the basics of .NET. If you’re a seasoned Java or C++ developer but
you’re new to VB, you may find it easier to start with a book about .NET fundamentals, such as
Pro VB 2008 and the .NET 3.5 Platform by Andrew Troelsen (Apress, 2008).

What Does This Book Cover?
Here is a quick breakdown of what you’ll find in this book:

Part 1: Core Concepts: You’ll begin in Chapter 1 with a look at the overall ASP.NET
platform, the .NET Framework, and an overview of the changes that have taken place
in ASP.NET 3.5. In Chapter 2 you’ll branch out to learn the tools of the trade—namely,
Visual Studio 2008. In Chapters 3, 4, 5, and 6 you’ll learn the key parts of the ASP.NET
infrastructure, such as the web-page model, application configuration, and state man-
agement. As you learn these core concepts, you’ll also take a low-level look at how ASP.NET
processes requests and manages the lifetime of your web applications. You’ll even learn
how to extend the ASP.NET architecture.

Part 2: Data Access: This part tackles one of the core problem domains for all software
development—accessing and manipulating data. In Chapters 7 and 8 you’ll consider the
fundamentals of ADO.NET as they apply to web applications and learn how to design data
access components. In Chapters 9 and 10 you’ll learn about ASP.NET’s set of innovative

INTRODUCTIONxxxvi

data bound controls that let you format and present data without writing pages of code.
Chapter 11 branches out into advanced caching strategies that ensure first-class perfor-
mance. Finally, Chapters 12, 13, and 14 move beyond the world of ADO.NET to show you
how to work with files, LINQ, and XML content.

Part 3: Building ASP.NET Websites: In this part you’ll learn about essential techniques
and features for managing groups of web pages. You’ll start simply with user controls in
Chapter 15, which allow you to reuse segments of the user interface. In Chapter 16 you’ll
consider two new ASP.NET innovations—themes (for styling controls automatically) and
master pages (for reusing a layout template across multiple pages). Chapter 17 shows how
you can use ASP.NET’s navigation model to let visitors surf from one page to another.
Finally, Chapter 18 describes deployment and the IIS web server software.

Part 4: Security: In this part, you’ll look at ASP.NET’s rich complement of security fea-
tures. You’ll start with a high-level overview of security concepts in Chapter 19 and then
learn the ins and outs of forms authentication (Chapter 20) and the membership feature
that works with it (Chapter 21). In Chapter 22 you’ll tackle Windows authentication, and
in Chapter 23 you’ll learn how to restrict authenticated users with sophisticated authori-
zation rules and use role-based security. In Chapter 24 you’ll explore the profiles feature,
which is a new, prebuilt solution for storing user-specific information, and in Chapter 25
you’ll go one step further and learn how to protect the data you store in a database as well
as the information you send in a URL with encryption. Finally, Chapter 26 shows how you
can plug into the ASP.NET security model by designing a custom membership provider.

Part 5: Advanced User Interface: This part shows how you can extend web pages with
advanced techniques. In Chapters 27 and 28 you’ll tackle custom controls. In Chapter 29
you’ll branch out to use GDI+ for handcrafted graphics. Finally, Chapter 30 explores
ASP.NET’s Web Parts Framework, which allows you to easily create web portals.

Part 6: Client-Side Programming: In this part, you’ll consider some of the most exciting
innovations in modern web development. First, in Chapters 31 and 32, you’ll consider
how to use JavaScript and Ajax techniques in your ASP.NET web pages. You’ll learn how to
make web pages more dynamic (by incorporating effects such as text autocompletion and
drag-and-drop) and more responsive (by reacting to client-side events and seamlessly refresh-
ing the web page). In Chapter 33, you’ll dive into the world of Silverlight, a Microsoft-built
browser plug-in that gives you the ability to bring rich graphics, animation, sound, and
video to ordinary web pages on a variety of browsers and operating systems.

Who Is This Book For?
This book is intended as a primer for professional developers who have a reasonable knowl-
edge of server-side web development. This book doesn’t provide an exhaustive look at every
ingredient in the .NET Framework—in fact, such a book would require twice as many pages.
Instead, this book aims to provide an intelligent introduction to ASP.NET for professional
programmers who don’t want to rehash the basics. Along the way, you’ll focus on other cor-
ners of the .NET Framework that you’ll need in order to build professional web applications,
including data access and XML. Using these features, you’ll be able to create next-generation
websites with the best tools on hand today.

INTRODUCTION xxxvii

This book is also relentlessly practical. You won’t just learn about features—you’ll also learn
about the real-world techniques that can take your website to the next level. Later chapters are
dedicated to cutting-edge topics such as custom controls, dynamic graphics, advanced security,
and high-performance data access, all with the goal of giving you everything you need to build
professional web applications.

To get the most from this book, you should be familiar with the syntax of the VB language
and with object-oriented concepts. You don’t need to have experience with a previous ver-
sion of ASP.NET, as all the fundamentals are covered in this book. If you’re an experienced
VB developer with no .NET experience, you should consider supplementing this book with
an introduction to .NET, such as Pro VB 2008 and the .NET 3.5 Platform by Andrew Troelsen
(Apress, 2008).

What Do You Need to Use This Book?
To develop and test ASP.NET web applications, you need Visual Studio 2008. Although you
could theoretically write code by hand, the sheer tedium and the likelihood of error mean this
approach is never used in a professional environment.

Note You can use the scaled-down Visual Studio Web Developer 2008 Express Edition, but you’ll run into
significant limitations on some of the examples. Most important, you can’t use Visual Studio Web Developer
2008 Express Edition to create class libraries, which are an essential part of modern component-oriented
design (although you can work around this limitation by using two express editions—Visual Studio Web
Developer Express Edition to create your websites and Visual Basic 2008 Express Edition to create your
components).

Additionally, if you plan to host ASP.NET websites, you’ll need to use Windows XP Professional
or (ideally) a server-based version of Windows, such as Windows Server 2003 or Windows Server
2008. You’ll also need to install IIS (Internet Information Services), the web hosting software that’s
part of the Windows operating system. IIS is described in Chapter 18.

This book includes several examples that use sample databases that are included with
SQL Server to demonstrate data access code, security techniques, and other features. You
can use any version of SQL Server to try these examples, including SQL Server 2005 Express
Edition, which is included with some versions of Visual Studio (and freely downloadable at

). If you use other relational database engines, the
same concepts will apply, but you will need to modify the example code.

Finally, to use the Silverlight examples in Chapter 33, you’ll want to have the Silverlight
Tools for Visual Studio, which you can download from .
The Silverlight Tools for Visual Studio include all the components you need to design, run, and
debug Silverlight 2 applications, including the Silverlight runtime, the Silverlight SDK, and the
Silverlight add-in for Visual Studio. Chapter 33 has more details.

INTRODUCTIONxxxviii

Customer Support
We always value hearing from our readers, and we want to know what you think about this
book—what you liked, what you didn’t like, and what you think we can do better next time.
You can send your comments by e-mail to . Please be sure to mention the
book title in your message.

Sample Code
To download the sample code, visit the Apress website at , and search
for this book. You can then download the sample code, which is compressed into a single ZIP
file. Before you use the code, you’ll need to uncompress it using a utility such as WinZip. Code
is arranged into separate directories by chapter. Before using the code, refer to the accompa-
nying readme.txt file for information about other prerequisites and considerations.

Bonus Chapters
The Apress website also includes several additional chapters that you can download as PDFs.
These chapters include content that couldn’t be included in this book (due to space require-
ments) and isn’t considered as important to ASP.NET web development. Here’s what you’ll find:

Bonus Chapter 1: This chapter describes how to use resources and localization in ASP.NET
websites. It’s an essential chapter for developers who need to create websites that can be
viewed in multiple languages.

Bonus Chapters 2, 3, and 4: These chapters tackle web services, a feature that allows you
to create code routines that can be called by other applications over the Internet. Web ser-
vices are most interesting when considering rich client development (because they allow
you to give web features to ordinary desktop applications), and they’re in the process of
being replaced by a new technology known as WCF (Windows Communication Founda-
tion). For those reasons, web services aren’t covered in detail in this book. However, you
will consider how to use web services to extend the reach of your web pages with ASP.NET
AJAX in Chapter 32 and Silverlight in Chapter 33.

Note The online web service chapters come from the previous edition of this book. The information in
these chapters still applies to ASP.NET 3.5, because the web service feature hasn’t changed.

Errata
We’ve made every effort to make sure the text and the code contain no errors. However, no
one is perfect, and mistakes do occur. If you find an error in the book, such as a spelling mis-
take or a faulty piece of code, we would be grateful to hear about it. By sending in errata, you
may save another reader hours of frustration, and you’ll be helping us provide higher-quality
information. Simply e-mail the problem to , where your information will
be checked and posted on the errata page or used in subsequent editions of the book. You can
view errata from the book’s detail page.

P A R T 1

Core Concepts

Before you can code an ASP.NET website, you need to master a small set of fundamental

skills. In this part, you’ll consider the .NET Framework, which supports every .NET appli-

cation (Chapter 1), the Visual Studio design tool that helps you build and test websites

(Chapter 2), and the ASP.NET infrastructure that makes websites work (Chapters 3, 4, 5,

and 6).

Although these topics may seem like straightforward review for a professional ASP.NET devel-

oper, there are some critically important finer points. Every serious ASP.NET developer needs

to thoroughly understand details such as the life cycle of web pages and web applications,

the ASP.NET request processing pipeline, state management, and the ASP.NET configuration

model. Not only is this understanding a key requirement for creating high- performance web

applications, it’s also a necessary skill if you want to extend the ASP.NET infrastructure—

a topic you’ll consider throughout the chapters in this part.

3

C H A P T E R 1

Introducing ASP.NET

When Microsoft created .NET, it wasn’t just dreaming about the future—it was also worrying
about the headaches and limitations of the current generation of web development technolo-
gies. Before you get started with ASP.NET 3.5, it helps to take a step back and consider these
problems. You’ll then understand the solution that .NET offers.

In this chapter you’ll consider the history of web development leading up to ASP.NET,
take a whirlwind tour of the most significant features of .NET, and preview the core changes
in ASP.NET 3.5. If you’re new to ASP.NET, this chapter will quickly get you up to speed. On the
other hand, if you’re a seasoned .NET developer, you have two choices. Your first option is to
read this chapter for a brisk review of where we are today. Alternatively, you can skip to the
section “ASP.NET 3.5: The Story Continues” to preview what ASP.NET 3.5 has in store.

The Evolution of Web Development
More than 15 years ago, Tim Berners- Lee performed the first transmission across HTTP (Hyper-
text Transfer Protocol). Since then, HTTP has become exponentially more popular, expanding
beyond a small group of computer- science visionaries to the personal and business sectors.
Today, it’s almost a household word.

When HTTP was first established, developers faced the challenge of designing appli-
cations that could discover and interact with each other. To help meet these challenges,
standards such as HTML (Hypertext Markup Language) and XML (Extensible Markup Lan-
guage) were created. HTML established a simple language that can describe how to display
rich documents on virtually any computer platform. XML created a set of rules for building
 platform- neutral data formats that different applications can use to exchange information.
These standards guaranteed that the Web could be used by anyone, located anywhere, using
any type of computing system.

At the same time, software vendors faced their own challenges. Not only did they need
to develop languages and programming tools that could integrate with the Web, but they also
needed to build entire frameworks that would allow developers to architect, develop, and
deploy these applications easily. Major software vendors including IBM, Sun Microsystems,
and Microsoft rushed to meet this need with a host of products.

ASP.NET 3.5 is the latest chapter in this ongoing arms race. With .NET, Microsoft has
created an integrated suite of components that combines the building blocks of the Web—
markup languages and HTTP—with proven object- oriented methodology.

CHAPTER 1 INTRODUCING ASP.NET4

The Early Web Development World
The first generation of web applications were difficult to program and difficult to manage, and
they faced significant performance and scalability challenges. Overall, early web development
technologies fall into two basic categories:

Separate, tiny applications that are executed by server- side calls: Early implementations
of CGI (Command Gateway Interface) are a good example. The key problem with this
development model is that it consumes large amounts of server resources, because each
request requires a separate application instance. As a result, these applications don’t scale
to large numbers.

Scripts that are interpreted by a server- side resource: Classic ASP (Active Server Pages)
and early implementations of ColdFusion fall into this category. To use these platforms,
you create files that contain HTML and embedded script code. The script file is examined
by a parser at runtime, which alternates between rendering ordinary HTML and executing
your embedded code. This process is much less efficient than executing compiled code.

ASP.NET is far more than a simple evolution of either type of application. ASP.NET is
not a set of clumsy hooks that let you trigger applications or run components on the server.
Instead, ASP.NET web applications are full .NET applications that run compiled code and
are managed by the .NET runtime. ASP.NET also uses the full capabilities of the .NET Frame-
work—a comprehensive toolkit of classes—just as easily as an ordinary Windows application.
In essence, ASP.NET blurs the line between application development and web development by
extending the tools and technologies of desktop developers into the web development world.

What’s Wrong with Classic ASP?
If you’ve programmed only with classic ASP before, you might wonder why Microsoft changed
everything with ASP.NET. Learning a whole new framework isn’t trivial, and .NET introduces
a slew of concepts and a significant learning curve (but it’s well worth it).

Overall, classic ASP is a solid tool for developing web applications using Microsoft tech-
nologies. However, as with most development models, ASP solves some problems but also
raises a few of its own. The following sections outline these problems.

Spaghetti Code
If you’ve created applications with ASP, you’ve probably seen lengthy pages that contain
 server- side script code intermingled with HTML. Consider the following example, which fills
an HTML drop- down list with the results of a database query:

CHAPTER 1 INTRODUCING ASP.NET 5

This example needs an unimpressive 19 lines of code to generate the output for simple
HTML list control. But what’s worse is the way this style of coding diminishes application
performance because it mingles HTML and script. When this page is processed by the ASP
ISAPI (Internet Server Application Programming Interface) extension that runs on the web
server, the scripting engine needs to switch on and off multiple times just to handle this single
request. This increases the amount of time needed to process the whole page and send it to
the client.

Furthermore, web pages written in this style can easily grow to unmanageable lengths. If
you add your own custom COM components to the puzzle (which are needed to supply func-
tionality ASP can’t provide), the management nightmare grows. The bottom line is that no
matter what approach you take, ASP code tends to become beastly, long, and incredibly diffi-
cult to debug—if you can even get ASP debugging working in your environment at all.

In ASP.NET, these problems don’t exist. Web pages are written with traditional object- oriented
concepts in mind. Your web pages contain controls that you can program against in a simi-
lar way to desktop applications. This means you don’t need to combine a jumble of HTML
markup and inline code. If you opt to use the code- behind approach when creating ASP.NET
pages, the code and presentation are actually placed in two different files, which simplifies
code maintenance and allows you to separate the task of web- page design from the heavy- duty
work of web coding.

Script Languages
At the time of its creation, ASP seemed like a perfect solution for desktop developers who were
moving to the world of the Web. Rather than requiring programmers to learn a completely
new language or methodology, ASP allowed developers to use familiar languages such as
VBScript on a server- based programming platform. By leveraging the already- popular COM
(Component Object Model) programming model as a backbone, these scripting languages
also acted as a convenient vehicle for accessing server components and resources. But even
though ASP was easy to understand for developers who were already skilled with scripting
languages such as VBScript, this familiarity came with a price. Because ASP was based on old
technologies that were originally designed for client use, it couldn’t perform as well in the new
environment of web development.

Performance wasn’t the only problem. Every object or variable used in a classic ASP script
is created as a variant data type. As most Visual Basic programmers know, variant data types

CHAPTER 1 INTRODUCING ASP.NET6

are weakly typed. They require larger amounts of memory, their data type is only known (and
checked) at runtime, and they result in slower performance than strongly typed variables.
Additionally, the Visual Basic compiler and development tools can’t identify them at design
time. This made it all but impossible to create a truly integrated IDE (integrated development
environment) that could provide ASP programmers with anything like the powerful debug-
ging, IntelliSense, and error checking found in Visual Basic and Visual C++. And without
debugging tools, ASP programmers were hard- pressed to troubleshoot the problems in their
scripts.

ASP.NET circumvents all these problems. For starters, ASP.NET web pages are executed
within the CLR (common language runtime), so they can be authored in any language that has
a CLR- compliant compiler. No longer are you limited to using VBScript or JavaScript—instead,
you can use modern object- oriented languages such as C# or Visual Basic.

It’s also important to note that ASP.NET pages are not interpreted but are instead com-
piled into assemblies (the .NET term for any unit of compiled code). This is one of the most
significant enhancements to Microsoft’s web development model. Even if you create your C#
or Visual Basic code in Notepad and copy it directly to a virtual directory on a web server, the
application is dynamically compiled as soon as a client accesses it, and it is cached for future
requests. If any of the files are modified after this compilation process, the application is
recompiled automatically the next time a client requests it.

ASP.NET
Microsoft developers have described ASP.NET as their chance to “hit the reset button” and
start from scratch with an entirely new, more modern development model. The traditional
concepts involved in creating web applications still hold true in the .NET world. Each web
application consists of web pages. You can render rich HTML and even use JavaScript, create
components that encapsulate programming logic, and tweak and tune your applications using
configuration settings. However, behind the scenes ASP.NET works quite differently than tra-
ditional scripting technologies such as classic ASP or PHP.

Some of the differences between ASP.NET and earlier web development platforms include
the following:

an event- driven, control- based architecture that encourages code encapsulation and
code reuse.

Visual Basic, C#, J#, and many other languages that have third- party compilers).

-
piled on demand instead of being interpreted every time they’re used. ASP.NET also
includes a fine- tuned data access model and flexible data caching to further boost
performance.

These are only a few of the features, which include enhanced state management, practical
data binding, dynamic graphics, and a robust security model. You’ll look at these improvements
in detail in this book and see what ASP.NET 3.5 adds to the picture.

CHAPTER 1 INTRODUCING ASP.NET 7

Seven Important Facts About ASP.NET
If you’re new to ASP.NET (or you just want to review a few fundamentals), you’ll be interested
in the following sections. They introduce seven touchstones of .NET development.

Fact 1: ASP.NET Is Integrated with the .NET Framework
The .NET Framework is divided into an almost painstaking collection of functional parts, with
a staggering total of more than 40,000 types (the .NET term for classes, structures, interfaces,
and other core programming ingredients). Before you can program any type of .NET applica-
tion, you need a basic understanding of those parts—and an understanding of why things are
organized the way they are.

The massive collection of functionality that the .NET Framework provides is organized
in a way that traditional Windows programmers will see as a happy improvement. Each one
of the thousands of classes in the .NET Framework is grouped into a logical, hierarchical con-
tainer called a namespace. Different namespaces provide different features. Taken together,
the .NET namespaces offer functionality for nearly every aspect of distributed development
from message queuing to security. This massive toolkit is called the class library.

Interestingly, the way you use the .NET Framework classes in ASP.NET is the same as the
way you use them in any other type of .NET application (including a stand- alone Windows
application, a Windows service, a command- line utility, and so on). In other words, .NET gives
the same tools to web developers that it gives to rich client developers.

Tip One of the best resources for learning about new corners of the .NET Framework is the .NET
Framework class library reference, which is part of the MSDN Help library reference. If you have Visual
Studio 2008 installed, you can view the MSDN Help library by selecting Start Programs Microsoft
Visual Studio 2008 Microsoft Visual Studio 2008 Documentation (the exact shortcut depends on your
version of Visual Studio). Once you’ve loaded the help, you can find class reference information grouped
by namespace under the .NET Development .NET Framework SDK .NET Framework .NET
Framework Class Library node.

Fact 2: ASP.NET Is Compiled, Not Interpreted
One of the major reasons for performance degradation in classic ASP pages is its use of inter-
preted script code. Every time an ASP page is executed, a scripting host on the web server
needs to interpret the script code and translate it to lower- level machine code, line by line.
This process is notoriously slow.

Note In fact, in this case the reputation is a little worse than the reality. Interpreted code is certainly
slower than compiled code, but the performance hit isn’t so significant that you can’t build a professional
website using old- style ASP.

CHAPTER 1 INTRODUCING ASP.NET8

ASP.NET applications are always compiled—in fact, it’s impossible to execute C# or Visual
Basic code without it being compiled first.

ASP.NET applications actually go through two stages of compilation. In the first stage,
the C# code you write is compiled into an intermediate language called Microsoft Intermedi-
ate Language (MSIL), or just IL. This first step is the fundamental reason that .NET can be
 language- interdependent. Essentially, all .NET languages (including C#, Visual Basic, and
many more) are compiled into virtually identical IL code. This first compilation step may hap-
pen automatically when the page is first requested, or you can perform it in advance (a process
known as precompiling). The compiled file with IL code is an assembly.

The second level of compilation happens just before the page is actually executed. At
this point, the IL code is compiled into low- level native machine code. This stage is known
as just-in- time (JIT) compilation, and it takes place in the same way for all .NET applications
(including Windows applications, for example). Figure 1-1 shows this two- step compilation
process.

 Figure 1-1. Compilation in an ASP.NET web page

CHAPTER 1 INTRODUCING ASP.NET 9

.NET compilation is decoupled into two steps in order to offer developers the most conve-
nience and the best portability. Before a compiler can create low- level machine code, it needs
to know what type of operating system and hardware platform the application will run on (for
example, 32- bit or 64- bit Windows). By having two compile stages, you can create a compiled
assembly with .NET code and still distribute this to more than one platform.

Of course, JIT compilation probably wouldn’t be that useful if it needed to be performed
every time a user requested a web page from your site. Fortunately, ASP.NET applications
don’t need to be compiled every time a web page is requested. Instead, the IL code is created
once and regenerated only when the source is modified. Similarly, the native machine code
files are cached in a system directory that has a path like c:\Windows\Microsoft.NET\
Framework\v2.0.50727\Temporary ASP.NET Files.

Note You might wonder why the temporary ASP.NET files are found in a directory with a 2.0 version
number rather than a 3.5 version number. Technically, ASP.NET 3.5 uses the ASP.NET 2.0 engine (with a few
new features piled on). You’ll learn more about this design later in the chapter, in the “ASP.NET 3.5: The
Story Continues” section.

As you’ll learn in Chapter 2, the actual point where your code is compiled to IL depends
on how you’re creating and deploying your web application. If you’re building a Web Appli-
cation project in Visual Studio, the code is compiled to IL when you compile your project.
But if you’re building a lighter- weight projectless Web Site project, the code for each page is
compiled the first time you request that page. Either way, the code goes through its second
compilation step (from IL to machine code) the first time it’s executed.

ASP.NET also includes precompilation tools that you can use to compile your application
right down to machine code once you’ve deployed it to the production web server. This allows
you to avoid the overhead of first- time compilation when you deploy a finished application
(and prevent other people from tampering with your code). Precompilation is described in
Chapter 19.

Note Although benchmarks are often controversial, you can find a few interesting comparisons of Java
and ASP.NET at Keep in mind that the
real issues limiting performance are usually related to specific bottlenecks, such as disk access, CPU use,
network bandwidth, and so on. In many benchmarks, ASP.NET outperforms other solutions because of its
support for performance- enhancing platform features such as caching, not because of the speed boost that
results from compiled code.

Fact 3: ASP.NET Is Multilanguage
Though you’ll probably opt to use one language over another when you develop an applica-
tion, that choice won’t determine what you can accomplish with your web applications. That’s
because no matter what language you use, the code is compiled into IL.

CHAPTER 1 INTRODUCING ASP.NET10

IL is a stepping stone for every managed application. (A managed application is any appli-
cation that’s written for .NET and executes inside the managed environment of the CLR.) In
a sense, IL is the language of .NET, and it’s the only language that the CLR recognizes.

To understand IL, it helps to consider a simple example. Take a look at this code written in
VB .NET:

This code shows the most basic application that’s possible in .NET—a simple
 command- line utility that displays a single, predictable message on the console window.

Now look at it from a different perspective. Here’s the IL code for the Main() method:

It’s easy enough to look at the IL for any compiled .NET application. You simply need to
run the IL Disassembler, which is installed with Visual Studio and the .NET SDK (software
development kit). Look for the file ildasm.exe in a directory like C:\Program Files\Microsoft
SDKs\Windows\v6.0A\Bin. Once you’ve loaded the program, use the File Open command,
and select any DLL or EXE that was created with .NET.

Tip For even more disassembling power, check out the remarkable (and free) Reflector tool at
. With the help of community- created add- ins, you can use Reflector to

diagram, analyze, and decompile the IL code in any assembly.

If you’re patient and a little logical, you can deconstruct the IL code fairly easily and figure
out what’s happening. The fact that IL is so easy to disassemble can raise privacy and code

CHAPTER 1 INTRODUCING ASP.NET 11

control issues, but these issues usually aren’t of any concern to ASP.NET developers. That’s
because all ASP.NET code is stored and executed on the server. Because the client never
receives the compiled code file, the client has no opportunity to decompile it. If it is a concern,
consider using an obfuscator that scrambles code to try to make it more difficult to under-
stand. (For example, an obfuscator might rename all variables to have generic, meaningless
names such as f__a__234.) Visual Studio includes a scaled- down version of one popular obfus-
cator, called Dotfuscator.

The following code shows the same console application in C# code:

If you compile this application and look at the IL code, you’ll find that it’s nearly iden-
tical to the IL code generated from the VB .NET version. Although different compilers can
sometimes introduce their own optimizations, as a general rule of thumb no .NET language
outperforms any other .NET language, because they all share the same common infrastruc-
ture. This infrastructure is formalized in the CLS (Common Language Specification), which is
described in the following sidebar, entitled “The Common Language Specification.”

It’s worth noting that IL has been adopted as an Ecma and ISO standard. This adoption
could quite possibly spur the adoption of other common language frameworks on other plat-
forms. The Mono project at is an example of one such project.

THE COMMON LANGUAGE SPECIFICATION

The CLR expects all objects to adhere to a specific set of rules so that they can interact. The CLS is this set
of rules.

The CLS defines many laws that all languages must follow, such as primitive types, method overload-
ing, and so on. Any compiler that generates IL code to be executed in the CLR must adhere to all rules
governed within the CLS. The CLS gives developers, vendors, and software manufacturers the opportunity
to work within a common set of specifications for languages, compilers, and data types. You can find a list
of a large number of CLS- compliant languages at .

Given these criteria, the creation of a language compiler that generates true CLR- compliant code can
be complex. Nevertheless, compilers can exist for virtually any language, and chances are that there may
eventually be one for just about every language you’d ever want to use. Imagine—mainframe programmers
who loved COBOL in its heyday can now use their knowledge base to create web applications!

CHAPTER 1 INTRODUCING ASP.NET12

Fact 4: ASP.NET Is Hosted by the Common Language Runtime
Perhaps the most important aspect of the ASP.NET engine is that it runs inside the runtime
environment of the CLR. The whole of the .NET Framework—that is, all namespaces, applica-
tions, and classes—is referred to as managed code. Though a full- blown investigation of the
CLR is beyond the scope of this chapter, some of the benefits are as follows:

Automatic memory management and garbage collection: Every time your application
instantiates a reference- type object, a variable of the reference type exists in two memory
locations, and the CLR allocates space on the managed heap for that object. When that
variable goes out of scope, the reference to that object is destroyed, but the object itself is
not destroyed. However, you never need to clear this memory manually. As soon as your
reference to an object goes out of scope (or your application ends), the object becomes
available for garbage collection. The garbage collector runs periodically inside the CLR,
automatically reclaiming unused memory for inaccessible objects. This model saves you
from the low- level complexities of C++ memory handling and from the quirkiness of COM
reference counting.

Type safety: When you compile an application, .NET adds information to your assembly
that indicates details such as the available classes, their members, their data types, and so
on. As a result, other applications can use them without requiring additional support files,
and the compiler can verify that every call is valid at runtime. This extra layer of safety
completely obliterates whole categories of low- level errors.

Extensible metadata: The information about classes and members is only one of the
types of metadata that .NET stores in a compiled assembly. Metadata describes your
code and allows you to provide additional information to the runtime or other services.
For example, this metadata might tell a debugger how to trace your code, or it might tell
Visual Studio how to display a custom control at design time. You could also use metadata
to enable other runtime services, such as transactions or object pooling.

Structured error handling: .NET languages offer structured exception handling, which
allows you to organize your error- handling code logically and concisely. You can create
separate blocks to deal with different types of errors. You can also nest exception handlers
multiple layers deep.

Multithreading: The CLR provides a pool of threads that various classes can use. For
example, you can call methods, read files, or communicate with web services asynchro-
nously, without needing to explicitly create new threads.

 Figure 1-2 shows a high- level look at the CLR and the .NET Framework.

CHAPTER 1 INTRODUCING ASP.NET 13

 Figure 1-2. The CLR and the .NET Framework

Fact 5: ASP.NET Is Object- Oriented
ASP provides a relatively feeble object model. It provides a small set of objects; these objects are
really just a thin layer over the raw details of HTTP and HTML. On the other hand, ASP.NET is
truly object- oriented. Not only does your code have full access to all objects in the .NET Frame-
work, but you can also exploit all the conventions of an OOP (object- oriented programming)
environment. For example, you can create reusable classes, standardize code with interfaces,
extend existing classes with inheritance, and bundle useful functionality in a distributable,
compiled component.

One of the best examples of object- oriented thinking in ASP.NET is found in server- based
controls. Server- based controls are the epitome of encapsulation. Developers can manipulate
control objects programmatically using code to customize their appearance, provide data to
display, and even react to events. The low- level HTML markup that these controls render is
hidden away behind the scenes. Instead of forcing the developer to write raw HTML manually,

CHAPTER 1 INTRODUCING ASP.NET14

the control objects render themselves to HTML when the page is finished rendering. In this
way, ASP.NET offers server controls as a way to abstract the low- level details of HTML and
HTTP programming.

Here’s a quick example with a standard HTML text box:

With the addition of the runat="server" attribute, this static piece of HTML becomes
a fully functional server- side control that you can manipulate in your code. You can now work
with events that it generates, set attributes, and bind it to a data source.

For example, you can set the text of this box when the page first loads using the following
VB .NET code:

Technically, this code sets the Value property of an HtmlInputText object. The end result
is that a string of text appears in a text box on the HTML page that’s rendered and sent to the
client.

HTML CONTROLS VS. WEB CONTROLS

When ASP.NET was first created, two schools of thought existed. Some ASP.NET developers were most
interested in server- side controls that matched the existing set of HTML controls exactly. This approach
allows you to create ASP.NET web- page interfaces in dedicated HTML editors, and it provides a quick
migration path for existing ASP pages. However, another set of ASP.NET developers saw the promise of
something more—rich server- side controls that didn’t just emulate individual HTML tags. These con-
trols might render their interface from dozens of distinct HTML elements while still providing a simple
 object- based interface to the programmer. Using this model, developers could work with programmable
menus, calendars, data lists, validators, and so on.

After some deliberation, Microsoft decided to provide both models. You’ve already seen an example of
HTML server controls, which map directly to the basic set of HTML tags. Along with these are ASP.NET web
controls, which provide a higher level of abstraction and more functionality. In most cases, you’ll use HTML
 server- side controls for backward compatibility and quick migration, and use web controls for new projects.

ASP.NET web control tags always start with the prefix asp: followed by the class name. For example,
the following snippet creates a text box and a check box:

Again, you can interact with these controls in your code, as follows:

Notice that the Value property you saw with the HTML control has been replaced with a Text property.
The HtmlInputText.Value property was named to match the underlying value attribute in the HTML <input>

CHAPTER 1 INTRODUCING ASP.NET 15

tag. However, web controls don’t place the same emphasis on correlating with HTML syntax, so the more
descriptive property name Text is used instead.

The ASP.NET family of web controls includes complex rendered controls (such as the Calendar and
TreeView), along with more streamlined controls (such as TextBox, Label, and Button), which map closely
to existing HTML tags. In the latter case, the HTML server- side control and the ASP.NET web control
variants provide similar functionality, although the web controls tend to expose a more standardized,
streamlined interface. This makes the web controls easy to learn, and it also means they’re a natural fit for
Windows developers moving to the world of the Web, because many of the property names are similar to
the corresponding Windows controls.

Fact 6: ASP.NET Is Multidevice and Multibrowser
One of the greatest challenges web developers face is the wide variety of browsers they need
to support. Different browsers, versions, and configurations differ in their support of HTML.
Web developers need to choose whether they should render their content according to HTML
3.2, HTML 4.0, or something else entirely—such as XHTML 1.0 or even WML (Wireless Markup
Language) for mobile devices. This problem, fueled by the various browser companies, has
plagued developers since the World Wide Web Consortium (W3C) proposed the first version
of HTML. Life gets even more complicated if you want to use an HTML extension such as
JavaScript to create a more dynamic page or provide validation.

ASP.NET addresses this problem in a remarkably intelligent way. Although you can retrieve
information about the client browser and its capabilities in an ASP.NET page, ASP.NET actu-
ally encourages developers to ignore these considerations and use a rich suite of web server
controls. These server controls render their HTML adaptively by taking the client’s capabilities
into account. One example is ASP.NET’s validation controls, which use JavaScript and DHTML
(Dynamic HTML) to enhance their behavior if the client supports it. This allows the validation
controls to show dynamic error messages without the user needing to send the page back to
the server for more processing. These features are optional, but they demonstrate how intel-
ligent controls can make the most of cutting- edge browsers without shutting out other clients.
Best of all, you don’t need any extra coding work to support both types of client.

Note Unfortunately, ASP.NET 3.5 still hasn’t managed to integrate mobile controls into the picture. As
a result, if you want to create web pages for smart devices such as mobile phones, PDAs (personal digital
assistants), and so on, you need to use a similar but separate toolkit. The architects of ASP.NET originally
planned to unify these two models so that the standard set of server controls could render markup using
a scaled- down standard such as WML or HDML (Handheld Device Markup Language) instead of HTML. How-
ever, this feature was cut late in the .NET 3.5 beta cycle.

Fact 7: ASP.NET Is Easy to Deploy and Configure
One of the biggest headaches a web developer faces during a development cycle is deploying
a completed application to a production server. Not only do the web- page files, databases,

CHAPTER 1 INTRODUCING ASP.NET16

and components need to be transferred, but components need to be registered and a slew of
configuration settings need to be re- created. ASP.NET simplifies this process considerably.

Every installation of the .NET Framework provides the same core classes. As a result,
deploying an ASP.NET application is relatively simple. For no- frills deployment, you simply
need to copy all the files to a virtual directory on a production server (using an FTP program
or even a command- line command like XCOPY). As long as the host machine has the .NET
Framework, there are no time- consuming registration steps. Chapter 19 covers deployment in
detail.

Distributing the components your application uses is just as easy. All you need to do is
copy the component assemblies along with your website files when you deploy your web
application. Because all the information about your component is stored directly in the assem-
bly file metadata, there’s no need to launch a registration program or modify the Windows
registry. As long as you place these components in the correct place (the Bin subdirectory of
the web application directory), the ASP.NET engine automatically detects them and makes
them available to your web- page code. Try that with a traditional COM component!

Configuration is another challenge with application deployment, particularly if you need
to transfer security information such as user accounts and user privileges. ASP.NET makes this
deployment process easier by minimizing the dependence on settings in IIS (Internet Infor-
mation Services). Instead, most ASP.NET settings are stored in a dedicated web.config file.
The web.config file is placed in the same directory as your web pages. It contains a hierarchi-
cal grouping of application settings stored in an easily readable XML format that you can edit
using nothing more than a text editor such as Notepad. When you modify an application set-
ting, ASP.NET notices that change and smoothly restarts the application in a new application
domain (keeping the existing application domain alive long enough to finish processing any
outstanding requests). The web.config file is never locked, so it can be updated at any time.

ASP.NET 3.5: The Story Continues
When Microsoft released ASP.NET 1.0, even it didn’t anticipate how enthusiastically the technol-
ogy would be adopted. ASP.NET quickly became the standard for developing web applications
with Microsoft technologies and a heavy- hitting competitor against all other web development
platforms. Since that time, ASP.NET has had one minor release (ASP.NET 1.1) and two more sig-
nificant releases (ASP.NET 2.0 and ASP.NET 3.5).

Note Adoption statistics are always contentious, but the highly regarded Internet analysis company Net-
craft () suggests that ASP.NET usage continues to surge and that it now runs on
more web servers than JSP. This survey doesn’t weigh the relative size of these websites, but ASP.NET pow-
ers the websites for a significant number of Fortune 1000 companies and heavily trafficked Web destinations
like MySpace.

CHAPTER 1 INTRODUCING ASP.NET 17

For the most part, this book won’t distinguish between the features that are new in
ASP.NET 3.5 and those that have existed since ASP.NET 2.0 and ASP.NET 1.0. However, in the
next few sections you’ll take a quick look at how ASP.NET has evolved.

ASP.NET 2.0
It’s a testament to the good design of ASP.NET 1.0 and 1.1 that few of the changes introduced
in ASP.NET 2.0 were fixes for existing features. Instead, ASP.NET 2.0 kept the same underly-
ing plumbing and concentrated on adding new, higher- level features. Some of the highlights
include the following:

More rich controls: ASP.NET 2.0 introduced more than 40 new controls, from long- awaited
basics like a collapsible TreeView to a JavaScript- powered Menu.

Master pages: Master pages are reusable page templates. For example, you can use a mas-
ter page to ensure that every web page in your application has the same header, footer,
and navigation controls.

Themes: Themes allow you to define a standardized set of appearance characteristics for
web controls. Once defined, you can apply these formatting presets across your website
for a consistent look.

Security and membership: ASP.NET 2.0 added a slew of security- related features, includ-
ing automatic support for storing user credentials, a role- based authorization feature,
and prebuilt security controls for common tasks like logging in, registering, and retrieving
a forgotten password.

Data source controls: The data source control model allows you to define how your page
interacts with a data source declaratively in your markup, rather than having to write the
equivalent data access code by hand. Best of all, this feature doesn’t force you to abandon
good component- based design—you can bind to a custom data component just as easily
as you bind directly to the database.

Web parts: One common type of web application is the portal, which centralizes differ-
ent information using separate panes on a single web page. Web parts provide a prebuilt
portal framework complete with a flow- based layout, configurable views, and even
 drag-and- drop support.

Profiles: This feature allows you to store user- specific information in a database without
writing any database code. Instead, ASP.NET takes care of the tedious work of retrieving
the profile data when it’s needed and saving the profile data when it changes.

THE PROVIDER MODEL

Many of the features introduced in ASP.NET 2.0 work through an abstraction called the provider model.
The beauty of the provider model is that you can use the simple providers to build your page code. If your
requirements change, you don’t need to change a single page—instead, you simply need to create a cus-
tom provider.

CHAPTER 1 INTRODUCING ASP.NET18

For example, most serious developers will quickly realize that the default implementation of profiles
is a one-size-fits- all solution that probably won’t suit their needs. It doesn’t work if you need to use exist-
ing database tables, store encrypted information, or customize how large amounts of data are cached to
improve performance. However, you can customize the profile feature to suit your needs by building your
own profile provider. This allows you to use the convenient profile features but still control the low- level
details. Of course, the drawback is that you’re still responsible for some of the heavy lifting, but you gain
the flexibility and consistency of the profile model.

You’ll learn how to use provider- based features and create your own providers throughout this book.

ASP.NET 3.5
Developers who are facing ASP.NET 3.5 for the first time are likely to wonder what happened
to ASP.NET 3.0. Oddly enough, it doesn’t exist. Microsoft used the name .NET Framework 3.0
to release new technologies—most notably, WPF (Windows Presentation Foundation), a slick
new user interface technology for building rich clients, WCF (Windows Communication Foun-
dation), a technology for building message- oriented services, and WF (Windows Workflow
Foundation), a technology that allows you to model a complex business process as a series of
actions (optionally using a visual flowchart- like designer). However, the .NET Framework 3.0
doesn’t include a new version of the CLR or ASP.NET. Instead, the next release of ASP.NET was
rolled into the .NET Framework 3.5.

Compared to ASP.NET 2.0, ASP.NET 3.5 is a more gradual evolution. Its new features are
concentrated in two areas: LINQ and Ajax, as described in the following sections.

LINQ
LINQ (Language Integrated Query) is a set of extensions for the Visual Basic and C# languages.
It allows you to write Visual Basic or C# code that manipulates in- memory data in much the
same way you query a database.

Technically, LINQ defines about 40 query operators, such as select, from, in, where, and
orderby (in Visual Basic). These operators allow you to code your query. However, there are
various types of data on which this query can be performed, and each type of data requires
a separate flavor of LINQ.

The most fundamental LINQ flavor is LINQ to Objects, which allows you to take a collec-
tion of objects and perform a query that extracts some of the details from some of the objects.
LINQ to Objects isn’t ASP.NET- specific. In other words, you can use it in a web page in exactly
the same way that you use it in any other type of .NET application.

Along with LINQ to Objects is LINQ to DataSet, which provides similar behavior for query-
ing an in- memory DataSet object, and LINQ to XML, which works on XML data. Third- party
developers and tool providers are certain to create more LINQ providers. However, the flavor
of LINQ that’s attracted the most attention is LINQ to SQL, which allows you to use the LINQ
syntax to execute a query against a SQL Server database. Essentially, LINQ to SQL creates
a properly parameterized SQL query based on your code, and executes the query when you
attempt to access the query results. You don’t need to write any data access code or use the
traditional ADO.NET objects.

CHAPTER 1 INTRODUCING ASP.NET 19

LINQ to Objects, LINQ to DataSet, and LINQ to XML are features that complement ASP.NET,
and aren’t bound to it in any specific way. However, ASP.NET includes enhanced support for
LINQ to SQL, including a data source control that lets you perform a query through LINQ to
SQL and bind the results to a web control, with no extra code required. You’ll take a look at
LINQ to Objects, LINQ to DataSet, and LINQ to SQL in Chapter 13. You’ll consider LINQ to
XML in Chapter 14.

ASP.NET AJAX
Recently, web developers have refocused to consider some of the weaknesses of web appli-
cations. One of the most obvious is the lack of responsiveness in server- side programming
platforms such as ASP.NET. Because ASP.NET does all its work on the web server, every time
an action occurs in the page the browser needs to post some data to the server, get a new copy
of the page, and refresh the display. This process, though fast, introduces a noticeable flicker.
It also takes enough time that it isn’t practical to respond to events that fire frequently, such as
mouse movements or key presses.

Web developers work around these sorts of limitations using JavaScript, the only broadly
supported client- side scripting language. In ASP.NET, many of the most powerful controls
use a healthy bit of JavaScript. For example, the Menu control responds immediately as the
user moves the mouse over different subheadings. When you use the Menu control, your page
doesn’t post back to the server until the user clicks an item.

In traditional ASP.NET pages, developers use server controls such as Menu and gain the
benefit of the client- side script these controls emit. However, even with advanced controls,
some postbacks are unavoidable. For example, if you need to update the information on
a portion of the page, the only way to accomplish this in ordinary ASP.NET is to post the page
back to the server and get an entirely new HTML document. The solution works, but it isn’t
seamless.

Restless web developers have responded to challenges like these by using more client- side
code and applying it in more advanced ways. One of the most talked about examples today
is Ajax (Asynchronous JavaScript and XML). Ajax is programming shorthand for a client- side
technique that allows your page to call the server and update its content without triggering
a complete postback. Typically, an Ajax page uses client- side script code to fire an asynchro-
nous request behind the scenes. The server receives this request, runs some code, and then
returns the data your page needs (often as a block of XML markup). Finally, the client- side
code receives the new data and uses it to perform another action, such as refreshing part of the
page. Although Ajax is conceptually quite simple, it allows you to create pages that work more
like seamless, continuously running applications. Figure 1-3 illustrates the differences.

CHAPTER 1 INTRODUCING ASP.NET20

Server returns
data that’s used to
update the page

 Figure 1-3. Ordinary server- side pages vs. Ajax

Ajax and similar client- side scripting techniques are nothing new, but in recent years
they’ve begun to play an increasingly important role in web development. One of the reasons
is that the XMLHttpRequest object—the plumbing that’s required to support asynchronous
client requests—is now present in the majority of modern browsers, including the following:

CHAPTER 1 INTRODUCING ASP.NET 21

However, writing the client- side script in such a way that it’s compatible with all brows-
ers and implementing all the required pieces (including the server- side code that handles the
asynchronous requests) can be a bit tricky. As you’ll see in Chapter 32, ASP.NET provides a cli-
ent callback feature that handles some of the work. However, ASP.NET also includes a much
more powerful abstraction layer named ASP.NET AJAX, which extends ASP.NET with impres-
sive Ajax- style features.

Note It’s generally accepted that Ajax isn’t written in all capitals, because the word isn’t an acronym.
However, Microsoft chose to capitalize it when naming ASP.NET AJAX. For that reason, you’ll see two capi-
talizations of Ajax in this book—Ajax when talking in general terms about the technology and philosophy
of Ajax, and AJAX when talking about ASP.NET AJAX, which is Microsoft’s specific implementation of these
concepts.

ASP.NET AJAX is a multilayered technology that gives you a wide range of options for integrat-
ing Ajax features into ordinary ASP.NET web pages. At the lowest level, you can use ASP.NET AJAX
to write more powerful JavaScript. At higher levels, you can use server- side components to har-
ness new features such as autocompletion, drag and drop, and animation without doing any of
the client- side programming yourself. You’ll explore ASP.NET AJAX in Chapter 33.

Green Bits and Red Bits
Oddly enough, ASP.NET 3.5 doesn’t include a full new version of ASP.NET. Instead, ASP.NET 3.5
is designed as a set of features that add on to .NET 2.0. The parts of .NET that haven’t changed in
.NET 3.5 are often referred to as red bits, while the parts that have changed are called green bits.

The red bits include the CLR, the ASP.NET engine, and all the class libraries from .NET 2.0. In
other words, if you build a new ASP.NET 3.5 application, it gets exactly the same runtime environ-
ment as an ASP.NET 2.0 application. Additionally, all the classes you used in .NET 2.0—including
those for connecting to a database, reading and writing files, using web controls, and so on—
remain the same in .NET 3.5. The red bits also include the features that were included in .NET 3.0,
such as WCF.

All the assemblies in .NET 3.5 retain their original version numbers. That means .NET 3.5
includes a mix of 2.0, 3.0, and 3.5 assemblies. If you’re curious when an assembly was released,
you simply need to check the version number.

Note In many cases, the red bits do have minor changes—most commonly for bug fixes. On the whole,
the level of changes is about the same as a service pack release.

The ASP.NET 3.5 green bits consist of a small set of assemblies with new types. For ASP.NET
developers, the important new assemblies include the following:

CHAPTER 1 INTRODUCING ASP.NET22

System.Core.dll: Includes the core LINQ functionality

System.Data.Linq.dll: Includes the implementation for LINQ to SQL

System.Data.DataSetExtensions.dll: Includes the implementation for LINQ to DataSet

System.Xml.Linq.dll: Includes the implementation for LINQ to XML

System.Web.Extensions.dll: Includes the implementation for ASP.NET AJAX and new
web controls

When building an ASP.NET 3.5 application, you’ll use the VB 9.0 language compiler. It
includes support for a few new features, most of which are required for LINQ. Figure 1-4 shows
the collection of classes and components that comprise ASP.NET 3.5.

Common Language Runtime 2.0

ASP .NET 2.0 Engine

.NET Framework 3.0 Classes
(WPF, WCF, and WF)

ASP.NET 3.5

.NET Framework 3.5
(LINQ, ASP.NET AJAX)

C# 3.0 and VB 9.0
Language Compilers

.NET Framework 2.0 Classes
(Core Framework)

 Figure 1-4. The components of ASP.NET 3.5

Note To match the Visual Studio 2008 product name, Microsoft has rebranded C# 3.0 as C# 2008, and
VB 9.0 as VB 2008.

It’s important to understand the multilayered architecture of ASP.NET 3.5, because you’ll
still see some of the fingerprints of past versions. For example, ASP.NET places temporary
files and web server configuration files in subdirectories of the c:\Windows\Microsoft.NET\
Framework\v2.0.50727 directory. This is because ASP.NET 3.5 uses the ASP.NET 2.0 engine,
and the final release version of ASP.NET 2.0 was v2.0.50727.

CHAPTER 1 INTRODUCING ASP.NET 23

Silverlight
Recently, there’s been a lot of excitement about Silverlight, a new Microsoft technology that
allows a variety of browsers on a variety of operating systems to run true .NET code. Silverlight
works through a browser plug- in, and provides a subset of the .NET Framework class library.
This subset includes a slimmed- down version of WPF, the technology that developers use to
craft next- generation Windows user interfaces.

So where does Silverlight fit into the ASP.NET world? Silverlight is all about client code—
quite simply, it allows you to create richer pages than you could with HTML, DHTML, and
JavaScript alone. In many ways, Silverlight duplicates the features and echoes the goals of
Adobe Flash. By using Silverlight in a web page, you can draw sophisticated 2D graphics, ani-
mate a scene, and play video and other media files.

Silverlight is perfect for creating a mini- applet, like a browser- hosted game. It’s also a good
choice for adding interactive media and animation to a website. However, Silverlight obviously
isn’t a good choice for tasks that require server- side code, such as performing a secure checkout
in an e- commerce shop, verifying user input, or interacting with a server- side database. And
because Silverlight is still a new, emerging technology, it’s too early to make assumptions about
its rate of adoption. That means it’s not a good choice to replace basic ingredients in a website
with Silverlight content. For example, although you can use Silverlight to create an animated
button, this is a risky strategy. Users without the Silverlight plug- in won’t be able to see your
button or interact with it. (Of course, you could create more than one front end for your web
application, using Silverlight if it’s available or falling back on regular ASP.NET controls if it’s
not. However, this approach requires a significant amount of work.)

In many respects, Silverlight is a complementary technology to ASP.NET. ASP.NET 3.5
doesn’t include any features that use Silverlight, but future versions of ASP.NET will. For
example, a future version of ASP.NET might include a server control that emits Silverlight
content. By adding this control to your web page, you would gain the best of both worlds—the
 server- side programming model of ASP.NET and the rich interactivity of client- side Silverlight.

In Chapter 34, you’ll get a thorough introduction to Silverlight. You’ll also look at the
ASP.NET Futures add- in, which gives you a preview of features that may appear in future
versions of ASP.NET, including web server controls that render Silverlight content.

Summary
So far, you’ve just scratched the surface of the features and frills that are provided in ASP.NET
and the .NET Framework. You’ve taken a quick look at the high- level concepts you need to
understand in order to be a competent ASP.NET programmer. You’ve also previewed the new
features that ASP.NET 3.5 offers. As you continue through this book, you’ll learn much more
about the innovations and revolutions of ASP.NET 3.5 and the .NET Framework.

25

C H A P T E R 2

Visual Studio

With ASP.NET, you have several choices for developing web applications. If you’re inclined
(and don’t mind the work), you can code every web page and class by hand using a bare- bones
text editor. This approach is appealingly straightforward but tedious and error- prone for any-
thing other than a simple page. Professional ASP.NET developers rarely go this route.

Instead, almost all large- scale ASP.NET websites are built using Visual Studio. This pro-
fessional development tool includes a rich set of design tools, including legendary debugging
tools and IntelliSense, which catches errors and offers suggestions as you type. Visual Studio
also supports the robust code- behind model, which separates the .NET code you write from
the web- page markup tags. To seal the deal, Visual Studio adds a built- in test web server that
makes debugging websites easy.

In this chapter, you’ll tour the Visual Studio IDE (Integrated Development Environment)
and consider the two ways you can create an ASP.NET web application in Visual Studio—
either as a basic website with no support files or as a web project. You’ll also learn about the
code model used for ASP.NET web pages and the compilation process used for ASP.NET web
applications. Finally, you’ll take a quick look at the Web Development Helper, a browser- based
debugging tool that you can use in conjunction with Visual Studio.

Note Visual Studio 2008 is available in several versions. This chapter assumes you are using the full
Visual Studio 2008 Professional or Visual Studio 2008 Team System. If you are using the scaled- down Visual
Web Developer 2008 Express Edition, you will lose some features. Most notably, you won’t be able to create
separate components using class library projects.

NEW FEATURES IN VISUAL STUDIO 2008

The latest version of Visual Studio has some long- awaited improvements. They include the following:

Web projects: Visual Studio 2005 replaced the traditional project- based web application model with
a lighter- weight system of projectless development. However, this change didn’t please everyone,
and so Microsoft released an add- on that brought the web project option back. In Visual Studio 2008,
developers get the best of both worlds, and can choose to create projectless or project- based web
applications depending on their needs.

CHAPTER 2 V ISUAL STUDIO26

Multitargeting: Web servers won’t shift overnight from .NET 2.0 to .NET 3.5. With this in mind, Visual
Studio now gives you the flexibility to develop applications that target any version of the .NET Frame-
work, from version 2.0 on.

CSS: In order to apply consistent formatting over an entire website, developers often use the Cas-
cading Style Sheets (CSS) standard. Now Visual Studio makes it even easier to link web pages to
stylesheets, and pick and choose the styles you want to apply to various elements in your page with-
out editing the markup by hand.

In this chapter, you’ll learn a great deal about web projects and projectless development, and you’ll
learn how to change the target version of a web application. You’ll learn more about Visual Studio’s support
for CSS in Chapter 16.

The .NET Development Model
To create an ASP.NET application, you need two high- level areas of functionality:

it into lower- level IL (Intermediate Language) instructions

, design web page markup, manage your files,
and test your solution

.NET separates these two pieces. That way, every language can have its own compiler, but
use the same design and debugging tools.

The Compiler
The .NET language compilers include the following:

Note For a more comprehensive list that includes third- party languages, check out
.

CHAPTER 2 V ISUAL STUDIO 27

If you want to use these compilers manually, you can invoke them from the command
line. You’ll find all of them in the c:\Windows\Microsoft.NET\Framework\v3.5 directory.
However, using the .NET compilers is awkward because you need to specify the files you want
to compile and the other .NET assemblies they use. You also need to compile your entire
application at once or compile each web page separately. To avoid these headaches, most
developers rely on the compilation support that’s built into ASP.NET and Visual Studio.

The Visual Studio IDE

Studio IDE offers a slew of high- level features that go beyond basic code management. These
are some of Visual Studio’s advantages:

An integrated web server: To host an ASP.NET web application, you need web server
software like IIS, which waits for web requests and serves the appropriate pages. Setting
up your web server isn’t difficult, but it can be inconvenient. Thanks to the integrated
development web server in Visual Studio, you can run a website directly from the design
environment. You also have the added security of knowing no external computer can
run your test website, because the test server only accepts connections from the local
computer.

Multilanguage development: Visual Studio allows you to code in your language or lan-
guages of choice using the same interface (IDE) at all times. Furthermore, Visual Studio
allows you to create web pages in different languages, but include them all in the same
web application. The only limitation is that you can’t use more than one language in the
same web page (which would create obvious compilation problems).

Less code to write: Most applications require a fair bit of standard boilerplate code, and
ASP.NET web pages are no exception. For example, when you add a web control, attach
event handlers, and adjust formatting, a number of details need to be set in the page
markup. With Visual Studio, these details are set automatically.

Intuitive coding style
automatically and using color- coding to distinguish elements such as comments. These
minor differences make code much more readable and less prone to error. You can even
configure what automatic formatting Visual Studio applies, which is great if you prefer dif-
ferent tab and indent sizes than the default settings that VS 2008 offers.

Tip To change the formatting options in Visual Studio, select Tools Options, and then look at the groups
under the Text Editor Basic Tabs section. You’ll see a slew of options that control what size a tab or indent
should be, if you want to have a different size than the default setting.

CHAPTER 2 V ISUAL STUDIO28

Faster development time: Many of the features in Visual Studio are geared toward

and efficiently, such as IntelliSense (which flags errors and can suggest corrections),
 search-and- replace (which can hunt for keywords in one file or an entire project), and
automatic comment and uncomment features (which can temporarily hide a block of
code).

Debugging: The Visual Studio debugging tools are the best way to track down mysterious
errors and diagnose strange behavior. You can execute your code one line at a time, set
intelligent breakpoints that you can save for later use, and view current in- memory infor-
mation at any time.

Visual Studio also has a wealth of features that you won’t see in this chapter, including
project management, integrated source code control, code refactoring, and a rich extensibil-
ity model. Furthermore, if you’re using Visual Studio 2008 Team System you’ll gain advanced
unit testing, collaboration, and code versioning support (which is far beyond that available in
simpler tools such as Visual SourceSafe). Although Visual Studio Team System isn’t discussed
in this chapter, you can learn more from .

Websites and Web Applications
Somewhat confusingly, Visual Studio offers two ways to create an ASP.NET- powered web
application:

Project-based development: When you create a web project, Visual Studio generates

project and stores a few debugging settings. When you run a web project, Visual Studio
compiles all your code into a single assembly before launching your web browser.

Projectless development: An alternate approach is to create a simple website without any
project file. In this case, Visual Studio assumes that every file in the website directory (and
its subdirectories) is part of your web application. In this scenario, Visual Studio doesn’t
need to precompile your code. Instead, ASP.NET compiles your website the first time you
request a page. (Of course, you can use precompilation to remove the first- request over-

The first .NET version of Visual Studio used the project model. Visual Studio 2005 removed
the project model in favor of projectless development. However, a small but significant group
of developers revolted. Realizing that there were specific scenarios that worked better with
 project- based development, Microsoft released a download that added the project feature back
to Visual Studio 2005. Now, both options are supported in Visual Studio 2008.

In this chapter, you’ll begin by creating the standard projectless website, which is the sim-
pler, more streamlined approach. Later in this chapter, you’ll learn what scenarios work better
with project- based development, and you’ll see how to create web projects.

Creating a Projectless Website
To get right to work and create a new web application, choose File New Web Site. Visual

CHAPTER 2 V ISUAL STUDIO 29

 Figure 2-1. The New Web Site window

The New Web Site window allows you to specify four details:

.NET Version: Visual Studio 2008 supports .NET 2.0, .NET 3.0, and .NET 3.5. You can
design a web application that runs under any of these versions of .NET. You make your
choice from the list in the top- right corner of the New Web Site window. You can also
change the version of .NET that you’re targeting after creating your application, as described
in the “Multitargeting” section.

Template: The template determines what files your website starts with. Visual Studio
supports two types of basic ASP.NET applications: website applications and web service
applications. These applications are actually compiled and executed in the same way. In
fact, you can add web pages to a web service application and web services to an ordinary
web application. The only difference is the files that Visual Studio creates by default. In
a web application, you’ll start with one sample web page in your project. In a web service
application, you’ll start with a sample web service. Additionally, Visual Studio includes
more sophisticated templates for certain types of sites, and you can even create your own
templates (or download third- party offerings).

Location: The location specifies where the website files will be stored. Typically, you’ll
choose File System and then use a folder on the local computer or a network path. How-
ever, you can also edit a website directly over HTTP or FTP (File Transfer Protocol). This is
occasionally useful if you want to perform live website edits on a remote web server. How-
ever, it also introduces additional overhead. Of course, you should never edit a production
web server directly because changes are automatic and irreversible.

Language: The language identifies the .NET programming language you’ll use to code
your website. The language you choose is simply the default language for the project. This

that wasn’t possible with earlier versions of Visual Studio).

CHAPTER 2 V ISUAL STUDIO30

the
four buttons that let you connect to different types of locations:

File System: This is the easiest choice—you simply need to browse through a tree of drives
and directories or through the shares provided by other computers on the network. If you

above the top- right corner of the directory tree. (You can also coax Visual Studio into cre-
ating a directory by adding a new directory name to the end of your path.)

Local IIS: This choice allows you to browse the virtual directories made available through

describes virtual directories in detail and shows you how to create them with IIS Manager.

of the virtual directory tree.

Note If you’re running Windows Vista, you won’t be allowed to interact with the local IIS server unless
you choose to run Visual Studio as an administrator when you launch it. To do so, right- click the Visual Studio
shortcut and choose Run As Administrator. This is a consequence of the new UAC (User Account Security)
system in Windows Vista.

FTP Site: This option isn’t quite as convenient as browsing for a directory—instead, you’ll
need to enter all the connection information, including the FTP site, the port, the direc-
tory, a user name, and a password before you can connect.

Remote Web Site: This option accesses a website at a specified URL (uniform resource
locator) using HTTP. For this to work, the web server must have the FrontPage Extensions
installed. When you connect, you’ll be prompted for a user name and password.

 Figure 2-2 shows all these location types.
Once you make your selection and click Open, Visual Studio returns you to the New Web

starts with three files—the main web page (Default.aspx), its source code (Default.aspx.vb),
and the web.config configuration file.

CHAPTER 2 V ISUAL STUDIO 31

 Figure 2-2. Browsing to a website location

Note Unlike Visual Studio 2005, when you create a new website, Visual Studio 2008 adds a web.config
file automatically. That’s because the web.config file contains required settings that allow your application to
opt in to the new features introduced in ASP.NET 3.5. You’ll learn more about how this works in the “Multi-
targeting” section in this chapter.

CHAPTER 2 V ISUAL STUDIO32

THE HIDDEN SOLUTION FILE

Although projectless development simplifies life, the last vestiges of Visual Studio’s solution- based system
are still lurking behind the scenes.

When you create a web application, Visual Studio actually creates solution files (.sln and .suo) in
a user- specific directory. In Windows Vista, this is a directory like c:\Users\[UserName]\Documents\Visual
Studio 2008\Projects\[WebsiteFolderName]. In earlier versions of Windows, it's a directory like c:\Docu-
ments and Settings\[UserName]\My Documents\Visual Studio 2008\Projects\[WebSiteFolderName]. The
solution files provide a few Visual Studio–specific features that aren’t directly related to ASP.NET, such
as debugging settings. For example, if you add a breakpoint to the code in a web page (as discussed in
the “Visual Studio Debugging” section later in this chapter), Visual Studio stores the breakpoint in the
.suo file. The next time you open the website, Visual Studio locates the matching solution files automati-
cally. Similarly, Visual Studio uses the solution files to keep track of the files that are currently open in
the design environment so that it can restore your view when you return to the website. This approach to
solution management is fragile—obviously, if you move the website from one location to another, you lose
all this information. However, because this information isn’t really all that important (think of it as a few
 project- specific preferences), losing it isn’t a serious problem. The overall benefits of a projectless system
are usually worth the trade- off.

If you want a more permanent solution, you can save your solution files explicitly in a location of your
choosing. To do so, simply click the top item in the Solution Explorer (which represents your solution). For
example, if you open a folder named MyWebSite, the top item is named Solution 'MyWebSite'. Then, choose
File Save [SolutionName] As. This technique is handy if you’ve created a solution that combines multiple
applications (for example, a projectless website and a class library component) and you want to edit and
debug them at the same time.

Multitargeting
Previous versions of Visual Studio were tightly coupled to specific versions of .NET. You used

applications, and Visual Studio 2005 to create .NET 2.0 applications.
Visual Studio 2008 removes this restriction. It allows you to create web applications that

three of these versions of .NET actually use the same ASP.NET 2.0 engine (and version 2.0 of

without a hitch.

Note Of course, there’s no reason that you can’t install multiple versions of .NET on the same web server
and configure different virtual directories to use different versions of ASP.NET using IIS file mapping (as
described in Chapter 19). That way, every application gets to use the version of .NET with which it was com-
piled. However, there’s a good case to be made for running all your ASP.NET 2.0 applications under .NET 3.5
if it’s available.

CHAPTER 2 V ISUAL STUDIO 33

So if .NET 2.0, .NET 3.0, and .NET 3.5 all use the same ASP.NET engine, what difference
does it make which version you target? The difference is in the extras. For example, .NET 3.0
adds a few new technologies that you may want to use from an ASP.NET web page, such as

services. The latest version, .NET 3.5, is even more enticing to ASP.NET developers. It adds

You’ve already seen that you can choose the version of .NET that you’re targeting in the
You can also change the version you’re targeting at any

point afterward by following these steps:

 1. Start Options.

 2.

 3. In the Target Framework list, choose the version of .NET you want to target.

When you change the .NET version, Visual Studio modifies your web.config file. The web.

a .NET 3.5 application includes a good deal of extra boilerplate to support Ajax and Visual

Designing a Web Page
To start designing a web page, double- click the web page in the Solution Explorer (start with
Default.aspx if you haven’t added any pages). The Default.aspx page begins with the bare
minimum markup that it needs, but has no visible content, so it will appear like a blank page
in the designer.

Visual Studio gives you three ways to look at a web page: source view, design view, and
split view. You can choose the view you want buy clicking one of the three buttons at the bot-
tom of the web page window (Source, Design, or Split). Source view shows the markup for
your page (the HTML and ASP.NET control tags). Design view shows a formatted view of what
your page looks like in the web browser. Split view, which is new in Visual Studio 2008, com-
bines the other two views so that you can see the markup for a page and a live preview at the
same time.

Note Technically, most ASP.NET 3.5 pages are made up of XHTML, and all ASP.NET controls emit valid
XHTML unless configured otherwise. However, in this chapter we refer to web page markup as HTML,
because it can use HTML or the similar but more stringent XHTML standard. Chapter 3 has more information
about ASP.NET’s support for XHTML.

The easiest way to add an ASP.NET control to a page is to drag the control from the Tool-
box on the left. (The controls in the Toolbox are grouped in numerous categories based on
their functions, but you’ll find basic ingredients in the Standard tab.) You can drag a control
onto the visual design surface of a page (using design view), or you can drop it in a specific
position of your web page markup (using source view). Either way, the result is the same.

CHAPTER 2 V ISUAL STUDIO34

Alternatively, you can type in the control tag that you need by hand in the source view. In this
case, the design view won't be updated until you click in the design portion of the window or

Once you’ve added a control, you can resize it and configure its properties in the Proper-
ties window. Many developers prefer to lay out new web pages in design view, but switch to
source view to rearrange their controls or perform more detailed tweaking. The exception is
with ordinary HTML markup—although the Toolbox includes a tab of HTML elements, it’s
usually easiest to type the tags you need by hand, rather than dragging and dropping them
one at a time.

 Figure 2-3 shows two a web page in split view, with the source markup in the top half and
the graphical surface in the bottom half.

 Figure 2-3. Editing a web page in split view

CHAPTER 2 V ISUAL STUDIO 35

Tip If you have a widescreen monitor, you’ll probably prefer to have the split view use two side-by- side
regions (rather than a top and bottom region). Fortunately, it’s easy to configure Visual Studio to do so. Just
select Tools Options, and then head to the HTML Designer General section in the tree of settings. Finally,
select the Split Views Vertically option and click OK.

To configure a control, click once to select it, or choose it by name in the drop- down list
at the top of the Properties window. Then, modify the appropriate properties in the window,

-
ing ASP.NET control tag attributes and define the initial appearance of your control. Visual
Studio even provides special “choosers” (technically known as UITypeEditors) that allow you
to select extended properties. For example, you can select a color from a drop- down list that
shows you the color, and you can configure the font from a standard font selection dialog box.

Absolute Positioning
To position a control on the page, you need to use all the usual tricks of HTML, such as
paragraphs, line breaks, tables, and styles. Visual Studio assumes you want to position your
elements using flexible “flow” positioning, so content can grow and shrink dynamically with-
out creating a layout problem. However, you can also use absolute positioning mode (also

. Here’s an example that places

Once you’ve made this change, you’re free to drag the button around the window at will,
and Visual Studio will update the coordinates in the style correspondingly.

It rarely makes sense to position individual controls using absolute positioning. It doesn’t
allow your layout to adapt to different web browser window sizes, and it causes problems if the
content in one element expands, causing it to overlap another absolutely positioned element.
It’s also a recipe for inflexible layouts that are difficult to change in the future. However, you
can use absolute positioning to place entire containers, and then use flow content inside your
container. For example, you could use absolute positioning to keep a menu bar at the side,
but use ordinary flow layout for the list of links inside. The <div> container is a good choice for
this purpose, because it has no built- in appearance (although you can use style rules to apply
a border, background color, and so on). The <div> is essentially a floating box. In this example,
it’s given a fixed 200 pixel width, and the height will expand to fit the content inside.

CHAPTER 2 V ISUAL STUDIO36

Smart Tags
Smart tags make it easier to configure complex controls. Smart tags aren’t offered for all con-

You’ll know a smart tag is available if, when you select a control, you see a small arrow
in the top- right corner. If you click this arrow, a window will appear with links (and other
controls) that trigger higher- level tasks. For example, Figure 2-4 shows how you can use this

. (Smart tags can include many more features,

 Figure 2-4. A smart tag for the Calendar control

Static HTML Tags
As you know, ASP.NET pages contain a mixture of ordinary HTML tags and ASP.NET controls.
To add HTML tags, you simply type them in or drag them from the HTML tab of the Toolbox.

Visual Studio provides a valuable style builder for formatting any static HTML element

Toolbox. The <div> will appear on your page as a borderless panel. Then select the Format
menu, and choose New Style. The New Style dialog box (shown in Figure 2-5) will appear,
with options for configuring the colors, font, layout, and border for the element.

CHAPTER 2 V ISUAL STUDIO 37

 Figure 2-5. Building HTML styles

When you create a new style, you need to choose where the style will be stored. If the
style is a one-time- only set of formatting options that applies to just a single control, choose
“(inline style)” from the Selector box. The style will then be recorded in the style attribute of
the element you’re modifying. Alternatively, you can define a named style in the current page
(the default) or in a separate stylesheet. You’ll learn more about these techniques and Visual

If you want to configure the HTML element as a server control so that you can handle
events and interact with it in code, you need to switch to source view and add the required
runat="server" attribute to the control tag.

HTML Tables
Visual Studio provides good design- time support for creating HTML tables. To try it, drag
a table from the HTML tab of the Toolbox. You’ll start with a standard 3 3 table, but you can
quickly transform it using editing features that more closely resemble a word processor than
a programming tool. Here are some of the tricks you’ll want to use:

CHAPTER 2 V ISUAL STUDIO38

The current cell is highlighted with a blue border. Inside each cell you can type static
HTML or drag and drop controls from the Toolbox. If you tab beyond the final cell,
Visual Studio adds a new row.

many options in the Insert submenu to insert rows, columns, and individual cells.

shows the same New Style dialog box you saw in Figure 2-5.

then right- click to perform a batch formatting operation.

just select the cells, right- click, and choose Modify

With these conveniences, you might never need to resort to a design tool like Dream-
weaver or Expression Web.

Tip Modern web design practices discourage using tables for layout. Instead, most professional develop-
ers favor CSS layout properties, which work equally well with Visual Studio. You’ll learn more about Visual
Studio’s support for CSS in Chapter 16.

Formatting HTML
There are endless ways to format the same chunk of HTML. Nested tags can be indented, and
long tags are often broken over several lines for better readability. However, the exact amount
of indentation and the preferred line length vary from person to person.

always preserves the capitalization and indenting you use. The drawback is that it’s easy to be
inconsistent and create web pages that use widely different formatting conventions or have
messily misaligned tags.

To help sort this out, Visual Studio offers an innovative feature that lets you define
the formatting rules you want to use and then apply them anywhere you want. To try this,
switch to the source view for a page. Now, highlight some haphazard HTML, right- click the
selection, and choose Format Selection. Visual Studio will automatically straighten out the
selected HTML content, giving it the correct capitalization, indenting, and line wrapping.

Of course, this raises an excellent question—namely, who determines what the correct
formatting settings are? Although Visual Studio starts with its own sensible defaults, you have
the ability to fine- tune them extensively. To do so, right- click anywhere in the HTML source
view, and choose Formatting and Validation. This shows the Options dialog box, positioned at
the Text Editor HTML

This section lets you control what capitalization settings are used and how long lines

80 characters, so many developers choose to decrease this number. You can also control how

CHAPTER 2 V ISUAL STUDIO 39

attributes are quoted and set whether Visual Studio should automatically add the matching
closing tag when you add an opening tag.

 Figure 2-6. Configuring HTML formatting settings

Note The formatting rules are applied whenever you use the Format Selection command and whenever
you add HTML content by adding controls from the Toolbox in design view. If you type in your HTML by hand,
Visual Studio won’t apply the formatting to “correct” you.

If you’re even more ambitious, you can click the Tag Specific Options button to set for-
matting rules that apply only to specific tags. For example, you can tell Visual Studio to add
line breaks at the beginning and end of a <div> tag. Or, you can tell Visual Studio to use differ-
ent colors to highlight specific tags, such as tags that you often need to locate in a hurry or tags

might try avoiding <table> tags and use color- coding to highlight them.)
Along with the formatting settings, the Options dialog box also has several useful settings

in the subgroups of the HTML group:

General: Lets you configure Visual Studio’s automatic statement completion, use auto-
matic wrapping, and turn on line numbers to help you locate hard-to- remember places in
your pages.

Tabs: Lets you choose the number of spaces to insert when you press Tab.

Miscellaneous: Includes the handy Format HTML on Paste option, which isn’t enabled
by default. Switch this on, and your formatting rules are applied whenever you paste new
content into the source view.

CHAPTER 2 V ISUAL STUDIO40

Validation: Lets you set the browser or type of markup you’re targeting (for example,

such as the use of deprecated elements. (You can also change this option using the HTML
Source Editing toolbar, where the option appears as a drop- down list.)

As these settings show, Visual Studio is a great partner when adding ordinary HTML con-
tent to ASP.NET pages.

The Visual Studio IDE
Now that you’ve created a basic website, it’s a good time to take a tour of the different parts
of the Visual Studio interface. Figure 2-7 identifies each part of the Visual Studio window, and

 Table 2-1. Visual Studio Windows

Window Description
Solution Explorer Lists the files and subfolders that are in the web application folder.

Toolbox Shows ASP.NET’s built- in server controls and any third- party controls or

can be written in any language and used in any language.

Server Explorer Allows access to databases, system services, message queues, and other
 server- side resources.

Properties Allows you to configure the currently selected element, whether it’s a file in
the Solution Explorer or a control on the design surface of a web form.

Error List Reports on errors that Visual Studio has detected in your code but that you
haven’t resolved yet.

Task List Lists comments that start with a predefined moniker so that you can keep
track of portions of code that you want to change and also jump to the ap-
propriate position quickly. For example, you can flag areas that need atten-

Document Allows you to design a web page by dragging and dropping, and to edit the
code files you have within your Solution Explorer. Also supports non- ASP.

Macro Explorer Allows you to see all the macros you’ve created and execute them. Macros
are an advanced Visual Studio feature; they allow you to automate tedious or
 time- consuming tasks, such as formatting code, creating backup copies of
files, arranging document windows, changing debugging settings, and so on.
Visual Studio exposes a rich extensibility model, and you can write a macro
using pure .NET code. You’ll consider the code for a basic macro later in this
chapter.

Shows a different view of your application, which is organized to show all the
classes you’ve created (and their methods, properties, and events).

Manage Styles
and Apply Styles

Allows you to modify styles in a linked stylesheet and apply them to the cur-

CHAPTER 2 V ISUAL STUDIO 41

Tip The Visual Studio interface is highly configurable. You can drag the various windows and dock them
to the sides of the main Visual Studio window. Also, some windows on the side automatically slide into and
out of view as you move your mouse. If you want to freeze these windows in place, just click the thumbtack
icon in the top- right corner of the window.

Toolbox
Document Window
(with the web form
designer shown)

Choose the
level of markup
validation

Click here to
launch the
application

Solution
Explorer

Click here to show
the event handling
code for this page

Click here to start
deploying the web
application
(see Chapter 19)

Choose whether
code-behind files
are nested under
the related .aspx
page

Click here to
launch the
ASP.NET
configuration
tool (covered
in Chapter 5)

Refresh the
directory view

Macro Explorer

Class View

Properties WindowThe tag for the
currently selected
control

Click here to
switch from
design view to
HTML markup
view

Error List
(other debugging
windows also
appear here when
you run the
application)

Server
Explorer

 Figure 2-7. The Visual Studio interface

Solution Explorer
The Solution Explorer is, at its most basic, a visual filing system. It allows you to see the files
that are in the web application directory.

 Table 2-2 lists some of the file types you’re likely to see in an ASP.NET web application.
In addition, your web application can contain other resources that aren’t ASP.NET file

CHAPTER 2 V ISUAL STUDIO42

files. These resources might be used in one of your ASP.NET web pages, or they can be used
independently.

Visual Studio distinguishes between different file types. When you right- click a file in the
list, a context menu appears with the menu options that apply for that file type. For example,
if you right- click a web page, you’ll have the option of building it and launching it in a browser
window.

Using the Solution Explorer, you can rename, rearrange, and add files. All these options
are just a right- click away. To delete a file, just select it in the Solution Explorer and press the
Delete key.

 Table 2-2. ASP.NET File Types

File Description
Ends with .aspx These are ASP.NET web pages (the .NET equivalent of the .asp file in

an ASP application). They contain the user interface and, optionally,
the underlying application code. Users request or navigate directly to
one of these pages to start your web application.

Ends with .ascx These are ASP.NET user controls. User controls are similar to web
pages, except that they can’t be accessed directly. Instead, they must
be hosted inside an ASP.NET web page. User controls allow you to de-
velop an important piece of the user interface and reuse it in as many
web forms as you want without repetitive code.

Ends with .asmx or .svc These are ASP.NET web services or data services. Web services work
differently than web pages, but they still share the same application
resources, configuration settings, and memory. However, ASP.NET

.NET 3.0 and have the extension .svc. You’ll use web services with ASP.

web.config This -
tion. It includes settings for customizing security, state management,
memory management, and much more.

global.asax This is the global application file. You can use this file to define global
variables and react to global events, such as when a web application

doesn’t create a global.asax file by default—you need to add it if it’s
appropriate.

Ends with .vb These
to separate the application from the user interface of a web page. The
 code- behind model is introduced in this chapter and used extensively
in this book.

You can also add new files by right- clicking the Solution Explorer and selecting Add
Add New Item. You can add various different types of files, including web forms, web services,
and stand- alone classes. You can also copy files that already exist elsewhere on your computer
(or an accessible network path) by selecting Add Add Existing Item. Use Add New Folder
to create a new subdirectory inside your web application. You can then drag web pages and
other files into or out of this directory. Use the Add ASP.NET Folder submenu to quickly insert
one of the folders that has a specific meaning to ASP.NET (such as the App_LocalResources
and App_GlobalResources folders for globalization, or the Theme folder for website- specific
themes). ASP.NET recognizes these folders based on their names.

CHAPTER 2 V ISUAL STUDIO 43

Visual Studio also checks for project management events such as when another process
changes a file in a project you currently have open. When this occurs, Visual Studio will notify
you and give you the option to refresh the file.

Document Window
The document window is the portion of Visual Studio that allows you to edit various types of
files using different designers. Each file type has a default editor. To learn a file’s default edi-
tor, simply right- click that file in the Solution Explorer, and then select Open With from the
 pop- up menu. The default editor will have the word Default alongside it.

Depending on the applications you’ve installed, you may see additional designers that
plug into Visual Studio. For example, if you’ve installed FrontPage 2003, you’ll have the option of
editing web pages with a FrontPage designer (which actually opens your web page in a stand-
 alone FrontPage window).

Toolbox
The Toolbox works in conjunction with the document window. Its primary use is providing the
controls that you can drag onto the design surface of a web form. However, it also allows you
to store code and HTML snippets.

The content of the Toolbox depends on the current designer you’re using as well as the
project type. For example, when designing a web page, you’ll see the set of tabs described in
 Table 2-3. Each tab contains a group of buttons. To view a tab, click the heading, and the but-
tons will slide into view.

 Table 2-3. Toolbox Tabs for an ASP.NET Project

Tab Description
Standard This tab includes the rich web server controls that are the heart of ASP.NET’s web

form model.

Data These components allow you to connect to a database. This tab includes nonvisual
data source controls that you can drop onto a form and configure at design time
(without using any code) and data display controls such as grids.

Validation These controls allow you to verify an associated input control against user- defined
rules. For example, you can specify that the input can’t be empty, that it must be

more details.

Navigation These controls are designed to display site maps and allow the user to navigate from

Login These controls provide prebuilt security solutions, such as login boxes and a wizard

WebParts This set of controls supports web parts, an ASP.NET model for building componen-

HTML This tab allows you to drag and drop static HTML elements. If you want, you can
also use this tab to create server- side HTML controls—just drop a static HTML ele-
ment onto a page, switch to source view, and add the runat="server" attribute to the
control tag.

General
drop them here, and pull them off when you need to use them later.

CHAPTER 2 V ISUAL STUDIO44

You can customize both the tabs and the items in each tab. To modify the tab groups,
 right- click a tab heading, and select Rename Tab, Add Tab, or Delete Tab. To add an item to

items from one tab group to another.

Error List and Task List
The Error List and Task List are two versions of the same window. The Error List catalogs error
information that’s generated by Visual Studio when it detects problematic code. The Task List
shows a similar view with to- do tasks and other code annotations you’re tracking. Each entry
in the Error List and Task List consists of a text description and, optionally, a link that leads
you to a specific line of code somewhere in your project.

With the default Visual Studio settings, the Error List appears automatically whenever you
build a project that has errors (see Figure 2-8).

 Figure 2-8. Viewing build errors in a project

To see the Task List, choose View Task List. Two types of tasks exist—user tasks and
comments. You can choose which you want to see from the drop- down list at the top of the
Task List. User tasks are entries you’ve specifically added to the Task List. You create these by

List. You can give your task a basic description, a priority, and a check mark to indicate when
it’s complete.

Note As with breakpoints, any custom tasks you add by hand are stored in the hidden solution files. This
makes them fairly fragile—if you rename or move your project, these tasks will disappear without warning
(or without even a notification the next time you open the website).

The comment entries are more interesting because they’re added automatically and they
link to a specific line in your code. To try the comment feature, move somewhere in your code,
and enter the comment marker (') followed by the word TODO (which is commonly referred to
as a token tag). Now type in some descriptive text:

CHAPTER 2 V ISUAL STUDIO 45

 Figure 2-9. Keeping track of tasks

To move to the line of code, double- click the new task entry. Notice that if you remove the
comment, the task entry is automatically removed as well.

Simply select Tools Options. In the Options dialog box, navigate to the Environment
Task List tab. You’ll see a list of comment tokens, which you can modify, remove, and add to.

track of sections of code that have been migrated from classic ASP pages.

 Figure 2-10. Adding a new comment token

Tip Comment tags are not case- sensitive. For example, you can use TODO and todo interchangeably.

CHAPTER 2 V ISUAL STUDIO46

Server Explorer
The Server Explorer provides a tree that allows you to explore various types of services on the

-
ment administrative tool. Typically, you’ll use the Server Explorer to learn about available

-
bases on your computer.

The Server Explorer is particularly noteworthy because it doesn’t just provide a way for
you to browse server resources; it also allows you to interact with them. For example, you can
create databases, execute queries, and write stored procedures using the Server Explorer in

-

 Figure 2-11. Querying data in a database table

The Code Editor
Many of Visual Studio’s handiest features appear when you start to write the code that sup-
ports your user interface. To start coding, you need to switch to the code- behind view. To
switch back and forth, you can use two buttons that are placed just above the Solution

you switch to code view, you’ll see the page class for your web page. You’ll learn more about
 code- behind later in this chapter.

CHAPTER 2 V ISUAL STUDIO 47

ASP.NET is event- driven, and everything in your web- page code takes place in response to
, double- click the button

in design view. Here’s a simple example that displays the current date and time in a label:

To test this page, select Debug
time running any page in this application, Visual Studio will inform you that you need a con-
figuration file that specifically enables debugging, and will offer to change your current web.

 Figure 2-12. Modifying a web.config file automatically

-
grated test web server and launch your default browser with the URL set to the current page
that’s open in Visual Studio. At this point, your request will be passed to ASP.NET, which will
compile the page and execute it.

To test your event- handling logic, click the button on the page. The page will then be
submitted to ASP.NET, which will run your event- handling code and return a new HTML page

 Figure 2-13. Testing a simple web page

CHAPTER 2 V ISUAL STUDIO48

Adding Assembly References

pages. These assemblies (listed in Table 2-4) are configured through a special machine- wide
configuration file. You don’t need to take any extra steps to use the classes in these assemblies.

 Table 2-4. Core Assemblies for ASP.NET Pages

Assembly Description
mscorlib.dll and System.dll Includes the core set of .NET data types, common exception

types, and numerous other fundamental building blocks.

Includes classes for reading and writing configuration informa-
tion in the web.config file, including your custom settings.

System.Data.dll Includes the data container classes for ADO.NET, along with the

System.Drawing.dll Includes classes representing colors, fonts, and shapes. Also

the fly.

System.Web.dll Includes the core ASP.NET classes, including classes for building
web forms, managing state, handling security, and much more.

System.Web.Services.dll Includes classes for building web services—units of code that can
be remotely invoked over HTTP.

Includes .NET classes for reading, writing, searching, transform-

System.EnterpriseServices.dll

System.Web.Mobile.dll Includes .NET classes for the mobile web controls, which are tar-
geted for small devices such as web- enabled cell phones.

If you want to use additional features or a third- party component, you may need to
import more assemblies. For example, if you want to use an Oracle database, you need to

. To add a reference, select
Website Add Reference (or Project Add Reference in a web project). The Add Reference
dialog box

In the Add Reference dialog box, select the component you want to use. If you want to

file from the appropriate directory (or from another project in the same solution, using the
Projects tab).

If you’re working with a projectless website and you add a reference to another assembly,
Visual Studio modifies the web.config file to indicate the assembly you’re using. Here’s an

file:

CHAPTER 2 V ISUAL STUDIO 49

 Figure 2-14. Adding a reference

When you create an ASP.NET application that targets .NET 3.5, Visual Studio adds a small
set of references automatically. These references point to a few assemblies that implement

If you’re working with a web project, and you add a reference to another assembly, Visual
Studio doesn’t need to change the web.config file. That’s because Visual Studio is responsible
for compiling the code in a web project, not ASP.NET. Instead, Visual Studio makes a note of
this reference in the .vbproj project file. The reference also appears in the Solution Explorer
window under the References node. You can review your references here, and remove any one
by right- clicking it and choosing Remove.

,

directory. (This happens regardless of whether you’re using project- based or projectless devel-

the .NET applications on the computer.
Adding a reference isn’t the same as importing the namespace with the Imports state-

ment. The Imports statement allows you to use the classes in a namespace without typing the
long, fully qualified class names. However, if you’re missing a reference, it doesn’t matter what
Imports statements you include—the classes won’t be available. For example, if you import
the System.Web.UI namespace, you can write Page instead of System.Web.UI.Page in your

classes, you still won’t be able to access the classes in the System.Web.UI namespace.

CHAPTER 2 V ISUAL STUDIO50

IntelliSense and Outlining
As you program with Visual Studio, you’ll become familiar with its many time- saving conve-
niences. The following sections outline the most important features you’ll use (none of which
is new in Visual Studio 2008).

Outlining
Outlining allows Visual Studio to “collapse” a subroutine, block structure, or region to a single
line. It allows you to see the code that interests you, while hiding unimportant code. To col-

 Figure 2-15. Collapsing code

You can collapse an entire code file so that it only shows definitions (such as the namespace
and class declarations, member variables and properties, method declarations, and so on), but
hides all other details (such as the code inside your methods and your namespace imports). To
get this top- level view of your code, right- click anywhere in the code window and choose Out-
lining To remove your outlining and expand all collapsed regions so
you can see everything at once, right- click in the code window and choose Outlining Stop
Outlining.

Member List
Visual Studio makes it easy for you to interact with controls and classes. When you type a
period (.) after a class or object name, Visual Studio pops up a list of available properties and

a variable and to provide a list of valid values when you assign a value to an enumeration.

CHAPTER 2 V ISUAL STUDIO 51

 Figure 2-16. IntelliSense at work

Visual Studio also provides a list of parameters and their data types when you call a method
or invoke a constructor. This information is presented in a tooltip below the code and is shown

may have multiple different versions. When they do, Visual Studio indicates the number of
versions and allows you to see the method definitions for each one by clicking the small up and
down arrows in the tooltip. Each time you click the arrow, the tooltip displays a different ver-

 Figure 2-17. IntelliSense with overloaded method

CHAPTER 2 V ISUAL STUDIO52

Error Underlining
One of the code editor’s most useful features is error underlining. Visual Studio is able to
detect a variety of error conditions, such as undefined variables, properties, or methods;
invalid data type conversions; and missing code elements. Rather than stopping you to alert
you that a problem exists, the Visual Studio editor quietly underlines the offending code. You
can hover your mouse over an underlined error to see a brief tooltip description of the prob-

 Figure 2-18. Highlighting errors at design time

Visual Studio won’t flag your errors immediately. Instead, it will quickly scan through
your code as soon as you try to compile it and mark all the errors it finds. If your code contains
at least one error, Visual Studio will ask you whether it should continue. At this point, you’ll
almost always decide to cancel the operation and fix the problems Visual Studio has reported.
(If you choose to continue, you’ll actually wind up using the last compiled version of your
application because the .NET compilers can’t build an application that has errors.)

Note You may find that as you fix errors and rebuild your project you discover more problems. That’s
because Visual Studio doesn’t check for all types of errors at once. When you try to compile your application,
Visual Studio scans for basic problems such as unrecognized class names. If these problems exist, they can
easily mask other errors. On the other hand, if your code passes this basic level of inspection, Visual Studio
checks for more subtle problems such as trying to use an unassigned variable.

The Code Model
So far, you’ve learned how to design simple web pages, and you’ve taken a tour of the Visual

more about the underpinnings of the ASP.NET code model. In this section, you’ll learn

CHAPTER 2 V ISUAL STUDIO 53

about your options for using code to program a web page and how ASP.NET events wire up
to your code.

Visual Studio supports two models for coding web pages:

Inline code: This model is the closest to traditional ASP. All the code and HTML markup
is stored in a single .aspx file. The code is embedded in one or more script blocks. How-
ever, even though the code is in a script block, it doesn’t lose IntelliSense or debugging
support, and it doesn’t need to be executed linearly from top to bottom (like classic ASP
code). Instead, you’ll still react to control events and use subroutines. This model is handy
because it keeps everything in one neat package, and it’s popular for coding simple web
pages.

Code-behind: This model separates each ASP.NET web page into two files: an .aspx
markup file with the HTML and control tags, and a .vb code file with the source code for

model provides better organization, and separating the user interface from programmatic
logic is keenly important when building complex pages.

In Visual Studio, you have the freedom to use both approaches. When you add a new web
page to your website (using Website

Studio remembers your previous setting for the next time you add a new page, but it’s com-
pletely valid (albeit potentially confusing) to mix both styles of pages in the same application.

This flexibility only applies to projectless development. If you’ve created a web project,
you must use the code- behind model—there’s no other choice. Furthermore, the code- behind
model is subtly different for the code- behind model that’s used in a projectless website, as you’ll
see shortly.

 Figure 2-19. Choosing the code model

CHAPTER 2 V ISUAL STUDIO54

To better understand the difference between the inline code and code- behind models, it
helps to consider a simple page. The following example shows the markup for a page named
TestFormInline.aspx, which displays the current time in a label and refreshes it whenever a
button is clicked. Here’s how the page looks with inline code:

show how the page is broken up into two pieces using the code- behind model. This is

CHAPTER 2 V ISUAL STUDIO 55

The only real difference between the inline code example and the code- behind example
is that the page class is no longer implicit in the latter—instead it’s declared to contain all the
page methods.

Overall, the code- behind model is preferred for complex pages. Although the inline code
model is slightly more compact for small pages, as your code and HTML grows it becomes
much easier to deal with both portions separately. The code- behind model is also concep-
tually cleaner, as it explicitly indicates the class you’ve created and the namespaces you’ve
imported. Finally, the code- behind model introduces the possibility that a web designer may
refine the markup in your pages without touching your code. This book uses the code- behind
model for all examples.

How Code- Behind Files Are Connected to Pages
Every .aspx page starts with a Page directive. This Page directive specifies the language for the
page, and it also tells ASP.NET where to find the associated code (unless you’re using inline
code, in which case the code is contained in the same file).

You can specify where to find the associated code in several ways. In older versions of
ASP.NET, it was common to use the Src attribute to point to the source code file or the Inherits
attribute to indicate a compiled class name. However, both of these options have their idio-
syncrasies. For example, with the Inherits attribute, you’re forced to always precompile your
code, which is tedious (and can cause problems in development teams, because the standard

approaches force you to declare every web control you want to use with a member variable.
This adds a lot of boilerplate code.

CHAPTER 2 V ISUAL STUDIO56

You can solve the problem using a language feature called partial classes, which lets you
split a single class into multiple source code files. Essentially, the model is the same as before,
but the control declarations are shuffled into a separate file. You, the developer, never need to

eyes will have spotted the word partial in the class declaration for your web- page code:

With this bit of infrastructure in place, the rest is easy. Your .aspx page uses the Inherits
attribute to indicate the class you’re using, and the
contains your code- behind, as shown here:

Notice that Visual Studio uses a slightly unusual naming syntax for the source code file. It
has the full name of the corresponding web page, complete with the .aspx extension, followed
by the .vb extension at the end. This is just a matter of convention, and it avoids a problem if
you happen to create two different code- behind file types (for example, a web page and a web
service) with the same name.

How Control Tags Are Connected to Page Variables
When you request your web page in a browser, ASP.NET starts by finding the associated code
file. Then, it generates a variable declaration for each server control (each element that has the
runat="server" attribute).

For example, imagine you have a text box named txtInput:

ASP.NET generates the following member variable declaration and merges it with your
page class using the magic of partial classes:

Of course, you won’t see this declaration directly, because it’s part of the automatically

of code that refers to the txtInput object (either to read or to write a property):

To make sure this system works, you must keep both the .aspx markup file (with the con-
trol tags) and the .vb file (with the source code) synchronized. If you edit control names in
one piece using another tool (such as a text editor), you’ll break the link, and your code won’t
compile.

Incidentally, you’ll notice that control variables are always declared with the protected
accessibility keyword. That’s because of the way ASP.NET uses inheritance in the web- page
model. The following layers are at work:

CHAPTER 2 V ISUAL STUDIO 57

 1. The Page class from the .NET class library defines the basic functionality that allows
a web page to host other controls, render itself to HTML, and provide access to the tra-
ditional ASP- style objects such as Request, Response, and Session.

 2.
class to acquire the basic set of ASP.NET web- page functionality.

 3. When you compile your class, ASP.NET merges some extra code into your class (using
the magic of partial classes). This code is not seen by default because it is either auto-
generated, hidden, or part of the designer.vb file. This automatically generated code
defines all the controls on your page as protected variables so that you can access them
in your code.

 4. The ASP.NET compiler creates one more class to represents the actual .aspx page. This
class inherits from your custom code- behind class (with the extra bit of merged code).
To name this class, ASP.NET adds _aspx to the name of the code- behind class (for

the page and its controls and spits out the final rendered HTML. It’s also the class that
ASP.NET instantiates when it receives the page request.

 Figure 2-20 diagrams this tangled relationship.

 Figure 2-20. How a page class is constructed

CHAPTER 2 V ISUAL STUDIO58

Note If you’re still curious, you can dig around in the c:\Windows\Microsoft.NET\Framework\v2.0.50727\
Temporary ASP.NET Files directory to see the automatically generated classes shown in Figure 2-20.
Remember, the version you need to look under is v2.0.50727, because that’s the version of the ASP.NET
engine that’s used in .NET 3.5.

So, why are all the control variables and methods declared as protected? It’s because of
the way inheritance is used in this series of layers. Protected variables act like private variables,
with a key difference—they are accessible to derived classes. In other words, using protected

-

to match your control variables to the control tags and attach event handlers at runtime.

How Events Are Connected to Event Handlers
Most of the code in an ASP.NET web page is placed inside event handlers that react to web
control events. Using Visual Studio, you can add an event handler to your code in the follow-
ing ways:

Type it in by hand: In this case, you add the method directly to the page class. You must
specify the appropriate parameters so that the signature of the event handler exactly
matches the signature of the event you want to handle.

Delegates: Alternatively, you can use delegates to wire this up programmatically.

Double-click a control in design view: In this case, Visual Studio will create an event
handler for that control’s default event. For example, if you double- click the page, it will

Choose the event from the Properties window
lightning bolt in the Properties window. You’ll see a list of all the events provided by that
control. Double- click in the box next to the event you want to handle, and Visual Studio
will automatically generate the event handler in your page class.

The second and third options are the most convenient. The third option is the most
flexible, because it allows you to select a method in the page class that you’ve already cre-

right. You’ll see a list that includes all the methods in your class that match the signature

in your page class. The only limitation of this technique is that it works exclusively with web
controls, not server- side HTML controls.

CHAPTER 2 V ISUAL STUDIO 59

 Figure 2-21. Attaching an event handler

Automatic event wire- up has two basic principles:

handler. In other words, the Page_Load() method is automatically called when the page
loads.

-
bute has the same name as the event, prefixed by the word On.

ASP.NET controls always use this syntax. Remember, because ASP.NET must connect
the event handlers, the derived page class must be able to access the code- behind class. This
means your event handlers must be declared with the protected or public keyword. (Protected
is preferred, because it prevents other classes from seeing this method.)

Web Projects
So far, you’ve seen how to create websites without any project files. The advantage of pro-
jectless development is that it’s simple and straightforward. When you create a projectless
website, you don’t need to deploy any extra support files. Instead, every file in your web folder
is automatically considered part of the web application. (This model makes sense because
every web page in a virtual directory is independently accessible, whether or not you consider
it an official part of your project.)

CHAPTER 2 V ISUAL STUDIO60

Projectless development remains popular for the following reasons:

Projectless development simplifies deployment: You simply need to copy all the files
in the website directory to the web server—there aren’t any project or debugging files to
avoid.

Projectless development simplifies file management: If you want to remove a web page,
you can simply delete the associated files using the file management tool of your choice. If
you want to add a new page or move a page from one website to another, you simply need
to copy the files—there’s no need to go through Visual Studio or edit the project file. You
can even author web pages with other tools, because there’s no project file to maintain.

Projectless development simplifies team collaboration: Different people can work inde-
pendently on different web pages, without needing to lock the project files.

Projectless development simplifies debugging: When creating a web project, you must
recompile the entire application when you change a single page. With projectless devel-
opment, each page is compiled separately, and the page is only compiled when you
request it for the first time.

Projectless development allows you to mix languages -
piled separately, you’re free to code your pages in different languages. In a web project,
you’d be forced to create separate web projects (which is trickier to manage) or separate
class library projects.

That said, there are some more specialized reasons that might lead you to adopt project-
 based development instead, or use web projects in specific scenarios. You’ll consider these in
the next section.

Project-Based Development
When you create a web project, Visual Studio generates a number of extra files, including the
.vbproj and .vbproj.user project files and the .sln and .suo solution files. When you build your
application, Visual Studio generates temporary files, which is placed in the Obj subdirectory,

files should be deployed to the web server when your web application is complete. Further-

because Visual Studio precompiles them into a DLL assembly.

Note At first glance, the precompilation of web projects seems like a big win—not only does it ensure
pages don’t need to be compiled the first time they’re requested, but it also allows you to avoid deploying
your source code to the web server. However, projectless websites can be compiled for deployment just as
easily—you simply need to use the precompilation tool you’ll learn about in Chapter 19.

Project-based development has a dedicated following. The most significant advantages to
web projects are the following:

CHAPTER 2 V ISUAL STUDIO 61

The project development system is stricter than projectless development: This is
because the project file explicitly lists what files should be part of the project. This allows
you to catch potential errors (such as missing files) and even deliberate acts of sabotage
(such as unwanted files added by a malicious user).

Web projects allow for more flexible file management: One example is if you’ve created
several separate projects and placed them in subdirectories of the same virtual directory.
In this case, the projects are kept separate for development purposes but are in essence
the same application for deployment. With projectless development, there’s no way to
keep the files in these subdirectories separate.

Tip For the same reason, web projects can be more efficient if you’re creating a web application that
uses a huge number of resource files—for example, a website that includes an Images subdirectory with
thousands of pictures. With projectless development, Visual Studio examines these files and adds them to
the Solution Explorer, because they’re a part of your website directory. But a web project avoids this extra
overhead because you won’t explicitly add the images to the list of files in your project.

Web projects allow for a customizable deployment process: Visual Studio project files

customized. Also, you get more control over the generated assembly for your web applica-
tion, which you can name appropriately, sign, and so on.

Web projects work better in some migration scenarios: For this reason, ASP.NET
automatically converts Visual Studio .NET 2003 web projects to Visual Studio 2008 web
projects. This conversion requires fewer changes to your pages.

ASP.NET website? There are advocates for both approaches. Officially, Microsoft suggests you
use the simpler website model unless there’s a specific reason to use a web project—for exam-

process in place, you’re migrating an older website created in Visual Studio 2003, or you want to
create multiple projects in one directory.

Note The downloadable examples for this book use projectless websites.

Creating a Web Project
To create a web project, choose File New Project to show the New Project dialog box

 Web. Then choose
ASP.NET Web Application.

CHAPTER 2 V ISUAL STUDIO62

 Figure 2-22. The New Project dialog box

When creating a web project, you supply a location, which can be a file path or a URL that
points to a local or remote IIS web server. You also supply a project name, which is used to
create a subdirectory (or virtual directory, if you’re using a URL) at the location you’ve chosen.
You can change the version of the .NET Framework that you’re targeting using the list in the
 top- right corner of the window, as you can when creating a projectless website.

Although web projects and projectless websites have the same end result once they’re
deployed to the web server and compiled, there are some differences in the way they’re struc-
tured at design time. These differences include the following:

Compilation: As explained earlier, web projects are compiled by Visual Studio (not ASP.NET)
when you run them. The web page classes are combined into a single assembly that has the

Code-behind: The web pages in a web project always use the code- behind model. However,
they include an extra file with the extension .aspx.desginer.vb, which includes the declara-
tions for all the controls on the web page. This means if you create a page named Default.
aspx, you’ll end up with a code- behind class in a file named Default.aspx.vb and control
declarations in a file named Default.aspx.designer.vb (see Figure 2-23). At compile time,
these two files will be merged. In a projectless website, you never see a file with the control
declarations, because this part of the code is generated at compile time by ASP.NET.

The Page directive: The web pages in a web project use a slightly different Page direc-

CHAPTER 2 V ISUAL STUDIO 63

Assembly references: In a projectless website, all the assembly references are recorded in
the web.config file, so ASP.NET can use them when resolving references at compile time.

-
dio uses when it compiles the code. The only exceptions are the references to the System.

are specific to .NET 3.5. These references are defined in the web.config file because they
include classes that you need to specify new configuration settings.

 Figure 2-23. The designer file with control declarations

Note The code file with the control declarations isn’t available in a projectless web application. Instead,
it’s generated behind the scenes the first time the application is compiled and executed. As a result, you
never have the chance to view this code.

Migrating a Website from a Previous Version of Visual Studio
If you have an existing ASP.NET web application created with an earlier version Visual Studio,
you can migrate it to the ASP.NET world with ease.

If you created a projectless website with Visual Studio 2005, you use the File Open
Web Site command, just as you would with a website created in Visual Studio 2008. The first
time you open a Visual Studio 2005 website, you’ll be asked if you want to adjust it to use
ASP.NET 3.5 (see Figure 2-24). If you choose Yes, the web.config file will be modified to target
.NET 3.5, as described in the “Multitargeting” section earlier in this chapter. If you choose No,
your website will continue targeting ASP.NET 2.0, but you can modify this detail at any time
by choosing Website Start Options. Either way, you won’t be asked again, because your
preference is recorded in the hidden solution file that’s stored in a user- specific Visual Studio
directory.

CHAPTER 2 V ISUAL STUDIO64

 Figure 2-24. Opening a projectless website that was created with Visual Studio 2005

If you created a web project with Visual Studio 2005, Visual Studio 2003, or Visual Stu-
dio .NET, you need to use the File Open Project/Solution command. When you do,
Visual Studio begins the
It prompts you to choose whether to create a backup and, if so, where it should be placed
(see Figure 2-25). If this is your only copy of the application, a backup is a good idea in case
some aspects of your application can’t be converted successfully. Otherwise, you can skip this
option.

 Figure 2-25. Importing a web project that was created with an older version of Visual Studio

When you click Finish, Visual Studio performs an in- place conversion. Any errors and
warnings are added to a conversion log, which you can display when the conversion is
complete.

CHAPTER 2 V ISUAL STUDIO 65

Visual Studio Debugging
Visual Studio has always provided robust tools for debugging your web applications. In Visual
Studio 2008, these tools remain essentially the same, with some enhancements that make it
easier to drill into live objects and collections at runtime.

To debug a specific web page in Visual Studio, select that web page in the Solution
Explorer, and click the Start Debugging button on the toolbar. (If you are currently editing
the web page you want to test, you don’t need to select it at all—just click Start Debugging to
launch it directly.)

What happens next depends on the location of your project. If your project is stored on
a remote web server or a local IIS virtual directory, Visual Studio simply launches your default
browser and directs you to the appropriate URL. If you’ve used a file system application, Visual
Studio starts its integrated web server on a dynamically selected port (which prevents it from
conflicting with IIS, if it’s installed). Then Visual Studio launches the default browser and
passes it a URL that points to the local web server. Either way, the real work—compiling the
page and creating the page objects—is passed along to the ASP.NET worker process.

The test server only runs while Visual Studio is running, and it only accepts requests from
your computer. When Visual Studio starts the integrated web server, it adds an icon for it in
the system tray. If you want to get a little bit of extra information about the test server, or you
want to shut it down, simply double- click the system tray icon.

Tip Visual Studio’s built- in web server allows you to retrieve a file listing. This means if you create a web
application named MyApp, you can make a request in the form of http://localhost:port/MyApp to see a list of
pages. Then, just click the page you want to test. This process assumes your web application doesn’t have
a default.aspx page—if it does, any requests for the website root automatically return this page.

The separation between Visual Studio, the web server, and ASP.NET allows for a few inter-
esting tricks. For example, while your browser window is open, you can still make changes to
the code and tags of your web pages. Once you’ve completed your changes, just save the page,
and click the Refresh button in your browser to request it again. Although you’ll always be
forced to restart the entire page to see the results of any changes you make, it’s still more con-
venient than rebuilding your whole project.

Fixing and restarting a web page is handy, but what about when you need to track down an
elusive error? In these cases, you need Visual Studio’s debugging smarts, which are described
in the next few sections.

Note When you use the test web server, it runs all code using your user account. This is different from
the much more limited behavior you’ll see in IIS, which uses a less- privileged account to ensure security. It’s
important to understand the difference, because if your application accesses protected resources (such as
the file system, a database, the registry, or an event log), you’ll need to make sure you explicitly allow the IIS
user. For more information about IIS and the hosting model, refer to Chapter 19.

CHAPTER 2 V ISUAL STUDIO66

SCRIPT DEBUGGING

The first time you launch a web application, Visual Studio may warn you that script debugging is disabled,
depending on your browser preferences. You can choose to turn it on, or you can choose “Don’t show this
dialog again” to make sure Visual Studio doesn’t repeat the same warning again.

Script debugging is a useful tool that works with Visual Studio to help you debug client- side JavaScript,
and you’ll use it in Chapter 32. Script debugging also works with the ASP.NET AJAX features you’ll learn
about in Chapter 33. By default, script debugging is disabled in Internet Explorer so that you don’t get error
messages when you run someone else’s problematic JavaScript code when visiting a website. However, you
need to turn script debugging on if you want to use breakpoints in a script block or enter break mode when
an error is thrown in a script.

Regardless of what you choose in Visual Studio, you can change the script debugging setting at any
time through Internet Explorer. Just choose Tools Internet Options, pick the Advanced tab, and look for
the “Disable Script Debugging” setting under the Browsing group.

Single-Step Debugging
Single-step debugging allows you to execute your code one line at a time. It’s incredibly easy to

 1. Find a location in your code where you want to pause execution, and start single-
 stepping (you can use any executable line of code but not a variable declaration,

-
point

 Figure 2-26. Setting a breakpoint

CHAPTER 2 V ISUAL STUDIO 67

 2. Now start your program as you would ordinarily. When the program reaches your
breakpoint, execution will pause, and you’ll be switched back to the Visual Studio
code window. The breakpoint statement won’t be executed.

 3. At this point, you have several options. You can execute the current line by pressing

that this is the next line that will be executed. You can continue like this through your

execution. Or, you can exit break mode and resume running your code by pressing F5.

Note Instead of using shortcut keys such as F11 and F5, you can use the buttons in the Visual Studio
Debug toolbar. Alternatively, you can right- click the code window and choose an option from the context
menu.

 4. Whenever the code is in break mode, you can hover over variables to see their cur-
rent contents. This allows you to verify that variables contain the values you expect
(see Figure 2-27). If you hover over an object, you can drill down into all the individual
properties by clicking the small plus symbol to expand it (see Figure 2-28).

 Figure 2-27. Viewing variable contents in break mode

CHAPTER 2 V ISUAL STUDIO68

 Figure 2-28. Viewing object properties in break mode

Tip You can even modify the values in a variable or property directly—just click inside the tooltip, and
enter the new value. This allows you to simulate scenarios that are difficult or time- consuming to re- create
manually or to test specific error conditions.

 5. You can also use any of the commands listed in Table 2-5 while in break mode. These
commands are available from the context menu by right- clicking the code window or
by using the associated hot key.

 Table 2-5. Commands Available in Break Mode

Command (Hot Key) Description
Step Into Executes the currently highlighted line and then pauses. If the currently

highlighted line calls a method or property, execution will pause at the first
executable line inside the method or property (which is why this feature is
called stepping into).

Step Over The same as Step Into, except that it runs methods (or properties) as
though they are a single line. If you select the Step Over command while
a method call is highlighted, the entire method will be executed. Execution
will pause at the next executable statement in the current procedure.

CHAPTER 2 V ISUAL STUDIO 69

Command (Hot Key) Description
Step Executes all the code in the current procedure and then pauses at the

statement that immediately follows the one that called this method or
property. In other words, this allows you to step “out” of the current proce-
dure in one large jump.

Resumes the program and continues to run it normally without pausing
until another breakpoint is reached.

Allows you to run all the code up to a specific line (where your cur-
sor is currently positioned). You can use this technique to skip
a time- consuming loop.

Set Next Statement Allows you to change your program’s path of execution while debugging.
It causes your program to mark the current line (where your cursor is
positioned) as the current line for execution. When you resume execution,
this line will be executed, and the program will continue from that point.
You can use this technique to temporarily bypass troublemaking code, but
it’s easy to run into an error if you skip a required detail or leave your data
in an inconsistent state.

Show Next
Statement

Moves focus to the line of code that is marked for execution. This line is
marked by a yellow arrow. The Show Next Statement command is useful if
you lose your place while editing.

You can switch your program into break mode at any point by clicking the pause button in
the toolbar or by selecting Debug

Variable Watches
In some cases, you might want to track the status of a variable. In this case, it’s more useful to
use the Locals, Autos, and Watch windows, which allow you to track variables across an entire

 Table 2-6. Variable Tracking Windows

Window Description
Locals Automatically displays all the variables that are in scope in the current procedure. This

offers a quick summary of important variables.

Autos Automatically displays variables that Visual Studio determines are important for the
current code statement. For example, this might include variables that are accessed or
changed in the previous line.

Watch Displays variables you have added. Watches are saved with your project, so you can
continue tracking a variable later. To add a watch, right- click a variable in your code,
and select Add Watch; alternatively, double- click the last row in the Watch window,
and type in the variable name.

Each row in the Locals, Autos, and Watch windows provides information about the type
or class of the variable and its current value. If the variable holds an object instance, you can
expand the variable and see its private members and properties. For example, in the Locals
window you’ll see the Me variable, which is a reference to the current page object. If you click
the plus symbol next to this, a full list will appear that describes many page properties (and

CHAPTER 2 V ISUAL STUDIO70

 Figure 2-29. Viewing the current page object in the Locals window

The Locals, Autos, and Watch windows allow you to change variables or properties while

type in a new value. If you are missing one of the watch windows, you can show it manually by
selecting it from the Debug Windows submenu.

Advanced Breakpoints
 Windows to see a window that lists all the breakpoints in your

current project. The
times a breakpoint has been encountered (see Figure 2-30). You can jump to the correspond-

to disable a breakpoint without removing it. That allows you to keep a breakpoint to use in

file described earlier.

 Figure 2-30. The Breakpoints window

CHAPTER 2 V ISUAL STUDIO 71

Visual Studio allows you to customize breakpoints so that they occur only if certain con-
ditions are true. To customize a breakpoint, right- click it, and choose one of the following
options:

Location: Use this option to review the exact file and line where the breakpoint is placed.

Condition: Use this option to set an expression. You can choose to enable this breakpoint
only when this expression is true or when it has changed since the last time the break-
point was hit.

Hit Count: Use this option to create a breakpoint that pauses only after a breakpoint has
been hit a certain number of times (for example, at least 20) or a specific multiple of times
(for example, every fifth time).

Filter: Use this option to enable a breakpoint for certain processes or threads. You’ll rarely
use this option in ASP.NET, because all web page code is executed by the ASP.NET worker
process, which uses a pool of threads.

When Hit: Use this option to set up an automatic action that will be performed every time
the breakpoint is hit. You have two handy options. Your first option is to print a message
in the Debug window, which allows you to monitor the progress of your code without
cluttering it up with Debug.Write() statements. This feature is known as tracepoints. Your
second option is to run a Visual Studio macro, which allows you to perform absolutely any
action in the IDE. You’ll consider macros in the next section.

Visual Studio Macros
One of the most exciting frills of the Visual Studio development environment is its powerful
macro and add- in framework. This framework, known as the Visual Studio Automation model,
provides almost 200 objects that give you unprecedented control over the IDE, including the
ability to access and manipulate the current project hierarchy, the collection of open windows,
and the integrated debugger. One of the most convenient and flexible Automation tools is the
macro facility.

The simplest macro is a keystroke recording. To create a simple keystroke macro, select
Tools Macros Record Temporary Macro from the Visual Studio menu, and press the
appropriate keystrokes. Once you’re finished, click the stop button on the floating macro

A good way to start learning about macros is to use the record facility and then look at the
code it generates. Select Tool Macros Macro Explorer to see a window that shows a tree

subroutine in the RecordingModule, and select Edit.

CHAPTER 2 V ISUAL STUDIO72

 Figure 2-31. The Macro Explorer

Note Visual Studio allows only one recorded macro, which is overwritten every time you record a new
one. To make a temporary macro permanent, you need to edit the macro code file, and move the code for
your temporary macro out of the TemporaryMacro subroutine into a new subroutine that you create.

Macro code uses a special DTE (design- time environment) object model. The DTE hierar-
chy provides the core features that allow you to interact with every aspect of the IDE. Some of
the ingredients at your fingertips include the following:

collection)

For example, the following macro automatically lists all the files in the project that have
been modified but not saved (with the help of a GetOuputWindowPane() function that’s not
shown). The list is shown in the Output window.

CHAPTER 2 V ISUAL STUDIO 73

To run one of the macros in the Macro Explorer, you simply double- click it. Figure 2-32
shows the result of running this macro.

 Figure 2-32. Detecting changed documents

The ListModifiedDocuments macro is only one of several dozen useful macros that are
included in the Samples macro project. (Look for it in the Utilities module.) The Samples macro
project is installed with Visual Studio 2008, and it appears in Macro Explorer automatically.
The Samples macro project has macros for adding comments, switching on and off line num-
bers, inserting dates and times, formatting code, and debugging. You can also download more

).

from editing the registry to spell- checking the text in your web page.
To learn more about Visual Studio macros and add- ins, you can consult a dedicated book

on the subject, like the good (but slightly out-of- date) Working with Microsoft Visual Studio
2005

CHAPTER 2 V ISUAL STUDIO74

The Web Development Helper
Another interesting tool that’s not tied to Visual Studio is the Web Development Helper, a free

-
ment Helper is to improve the debugging experience for ASP.NET developers by enhancing
the ability of the browser to participate in the debugging process. The Web Development
Helper provides a few useful features:

your layout isn’t cluttered).

tree of elements that make up the rendered HTML of the page.

requested, how long it took to receive it, and how large the HTML document was.

Many of these work with ASP.NET features that we haven’t covered yet. You’ll use the Web
Development Helper with ASP.NET’s tracing feature in the next chapter.

The design of the Web Development Helper is quite interesting. Essentially, it’s built out
of two pieces:

-

displays the important information in a side panel in the browser (see Figure 2-33).
The browser plug- in is designed exclusively for Internet Explorer, but at least one
other developer has already created a Firefox version that works with the same HTTP
module.

To download the Web Development Helper, surf to
 There you can download a setup program that installs two

DLLs. One is a .NET assembly that provides the HTTP module (nStuff.WebDevHelper.Server.
dll). The other is the browser plug- in (WebDevHelper.dll). The setup program copies both
files to the c:\Program Files\nStuff\Web Development Helper directory, and it registers the
browser plug- in with Internet Explorer. When the setup is finished, it gives you the option
to open a PDF document that has a short but detailed overview of all the features of the Web
Development Helper.

CHAPTER 2 V ISUAL STUDIO 75

 Figure 2-33. The Web Development Helper

When you want to use this tool with a web application, you need to add a reference to the
nStuff.WebDevHelper.Server.dll assembly. You also need to modify the web.config file so it
loads the HTTP module, as shown here:

Now, run one of the pages from this application. To actually switch on the browser
 plug- in, you need to choose Tools Web Development Helper from the Internet Explorer
menu. When you click this icon, a pane will appear at the bottom of the browser window. At
the top of the pane are a series of drop- down menus with a variety of options for examining
ASP.NET pages. You’ll see one

CHAPTER 2 V ISUAL STUDIO76

Summary
This chapter considered the role that Visual Studio can play in helping you develop your
web applications. At the same time that you explored its rich design- time environment, you
also learned about how it works behind the scenes with the code- behind model and how to
extend it with time- saving features such as macros. In the next two chapters, you’ll jump into
 full- fledged ASP.NET coding by examining web pages and server controls.

77

C H A P T E R 3

Web Forms

ASP.NET pages (officially known as web forms) are a vital part of an ASP.NET application.
They provide the actual output of a web application—the web pages that clients request and
view in their browsers.

Although web pages aren’t anything new, the concept of web forms is something entirely
unique to ASP.NET. Essentially, web forms allow you to create a web application using the same
 control- based interface as a Windows application. To run an ASP.NET web form, the ASP.NET
engine reads the entire .aspx file, generates the corresponding objects, and fires a series of events.
You react to these events using thoroughly object- oriented code.

This chapter provides in- depth coverage of web forms. You’ll learn how they work and
how you can use them to build simple pages. You’ll also get an in- depth first look at the
 page- processing life cycle and the ASP.NET server- side control model.

Page Processing
One of the key goals of ASP.NET is to create a model that lets web developers rapidly develop
web forms in the same way that Windows developers can build made-to- measure windows in
a desktop application. Of course, web applications are very different from traditional rich cli-
ent applications. There are two key stumbling blocks:

Web applications execute on the server: For example, suppose you create a form that
allows the user to select a product record and update its information. The user performs
these tasks in the browser, but in order for you to perform the required operations (such
as updating the database), your code needs to run on the web server. ASP.NET handles
this divide with a technique called postback, which sends the page (and all user- supplied
information) to the server when certain actions are performed. Once ASP.NET receives
the page, it can then fire the corresponding server- side events to notify your code.

Web applications are stateless: In other words, before the rendered HTML page is sent
to the user, your web- page objects are destroyed and all client- specific information is
discarded. This model lends itself well to highly scalable, heavily trafficked applications,
but it makes it difficult to create a seamless user experience. ASP.NET includes several
tools to help you bridge this gap; most notable is a persistence mechanism called view state,
which automatically embeds information about the page in a hidden field in the rendered
HTML.

CHAPTER 3 WEB FORMS78

In the following sections, you’ll learn about both the postback and the view state features.
Together, these mechanisms help abstract the underlying HTML and HTTP details, allowing
developers to work in terms of objects and events.

HTML Forms
If you’re familiar with HTML, you know that the simplest way to send client- side data to the
server is using a <form> tag. Inside the <form> tag, you can place other <input> tags to repre-
sent basic user interface ingredients such as buttons, text boxes, list boxes, check boxes, and
radio buttons.

For example, here’s an HTML page that contains two text boxes, two check boxes, and
a submit button, for a total of five <input> tags:

 Figure 3-1 shows what this basic page looks like in a web browser.

CHAPTER 3 WEB FORMS 79

 Figure 3-1. A simple HTML form

When the user clicks the submit button, the browser collects the current value of each
control and pastes it together in a long string. This string is then sent back to the page indi-
cated in the <form> tag (in this case, page.aspx) using an HTTP POST operation.

In this example, that means the web server might receive a request with this string of
information:

The browser follows certain rules when constructing this string. Information is always
sent as a series of name/value pairs separated by the ampersand (&) character. Each name/
value pair is split with an equal (=) sign. Check boxes are left out unless they are checked,
in which case the browser supplies the text on for the value. For the complete lowdown on
the HTML forms standard, which is supported in every current browser, surf to

.
Virtually all server- side programming frameworks add a layer of abstraction over the raw

form data. They parse this string and expose it in a more useful way. For example, JSP, ASP, and
ASP.NET all allow you to retrieve the value of a form control using a thin object layer. In ASP
and ASP.NET, you can look up values by name in the Request.Form collection. If you change
the previous page into an ASP.NET web form, you can use this approach with code like this:

This thin veneer over the actual POST message is helpful, but it’s still a long way from a true
 object- oriented framework. That’s why ASP.NET goes another step further. When a page is
posted back to ASP.NET, it extracts the values, populates the Form collection (for backward com-
patibility with ASP code), and then configures the corresponding control objects. This means
you can use the following much more intuitive syntax to retrieve information in an ASP.NET web
form:

CHAPTER 3 WEB FORMS80

This code also has the benefit of being typesafe. In other words, if you’re retrieving the
state of the check box, you’ll receive a Boolean true or false value, instead of a string with the
word on. In this way, developers are insulated from the quirks of HTML syntax.

Note In ASP.NET, all controls are placed inside a single <form> tag. This tag is marked with the
runat="server" attribute, which allows it to work on the server side. ASP.NET does not allow you to create
web forms that contain more than one server- side form tag, although it is possible to create a page that
posts to another page using a technique called cross- page posting, which is discussed in Chapter 6.

Dynamic User Interface
Clearly, the control model makes life easier for retrieving form information. What’s even more
remarkable is how it simplifies your life when you need to add information to a page. Almost
all web control properties are readable and writable. This means you can set the Text property
of a text box just as easily as you can read it.

For example, consider what happens if you want to update a piece of text on a web page
to reflect some information the user has entered earlier. In classic ASP, you would need to find
a convenient place to insert a script block that would write the raw HTML. Here’s a snippet of
ASP.NET code that uses this technique to display a brightly colored welcome message:

On the other hand, life is much neater when you define a Label control in ASP.NET:

Now you can simply set its properties:

This code has several key advantages. First, it’s much easier to write (and to write without
errors). The savings seem fairly minor in this example, but it is much more dramatic when you
consider a complete ASP.NET page that needs to dynamically render complex blocks of HTML
that contain links, images, and styles.

Second, control- based code is also much easier to place inside a page. You can write your
ASP.NET code wherever the corresponding action takes place. On the other hand, in classic
ASP you need to worry about where the content appears on the page and arrange your script
blocks code appropriately. If a page has several dynamic regions, it can quickly become a tan-
gled mess of script blocks that don’t show any clear relation or organization.

A subtler but equally dramatic advantage of the control model is the way it hides the
 low- level HTML details. Not only does this allow you to write code without learning all the
idiosyncrasies of HTML, but it also allows your pages to support a wider range of browsers.
Because the control renders itself, it has the ability to tailor its output to support different
browsers, enhanced client- side features, and even other HTML- related standards such as XHTML

CHAPTER 3 WEB FORMS 81

or WML (which is used by some mobile browsers). Essentially, your code is no longer tightly
coupled to the HTML standard.

The ASP.NET Event Model
Classic ASP uses a linear processing model. That means code on the page is processed from
start to finish and is executed in order. Because of this model, classic ASP developers need to
write a considerable amount of code even for simple pages. A classic example is a web page
that has three different submit buttons for three different operations. In this case, your script
code has to carefully distinguish which button was clicked when the page is submitted and
then execute the right action using conditional logic.

ASP.NET provides a refreshing change with its event- driven model. In this model, you add
controls to a web form and then decide what events you want to respond to. Each event han-
dler is a discrete method, which keeps the page code tidy and organized. This model is nothing
new, but until the advent of ASP.NET it has been the exclusive domain of windowed UI pro-
gramming in rich client applications.

So, how do ASP.NET events work? It’s surprisingly straightforward. Here’s a brief outline:

 1. Your page runs for the first time. ASP.NET creates page and control objects, the ini-
tialization code executes, and then the page is rendered to HTML and returned to the
client. The page objects are also released from server memory.

 2. At some point, the user does something that triggers a postback, such as clicking a but-
ton. At this point, the page is submitted with all the form data.

 3. ASP.NET intercepts the returned page and re- creates the page objects, taking care to
return them to the state they were in the last time the page was sent to the client.

 4. Next, ASP.NET checks what operation triggered the postback, and it raises the appro-
priate events (such as Button.Click), which your code can react to. Typically, at this
point you’ll perform some server- side operation (such as updating a database or read-
ing data from a file) and then modify the control objects to display new information.

 5. The modified page is rendered to HTML and returned to the client. The page objects
are released from memory. If another postback occurs, ASP.NET repeats the process in
steps 2 through 4.

In other words, ASP.NET doesn’t just use the form data to configure the control objects for
your page. It also uses it to decide what events to fire. For example, if it notices the text in a text
box has changed since the last postback, it raises the associated event to notify your page. It’s
up to you whether you want to respond to this event.

Note Keep in mind that since HTML is completely stateless, and all state made available by ASP.NET
is reconstituted, the event- driven model is really an emulation. ASP.NET performs quite a few tasks in the
background in order to support this model, as you’ll see in the following sections. The beauty of this concept
is that the beginner programmer doesn’t need to be familiar with the underpinnings of the system to take
advantage of server- side events.

CHAPTER 3 WEB FORMS82

Automatic Postbacks
Of course, one gap exists in the event system described so far. Windows developers have long
been accustomed to a rich event model that lets your code react to mouse movements, key
presses, and the minutest control interactions. But in ASP.NET, client actions happen on the
client side, and server processing takes place on the web server. This means a certain amount
of overhead is always involved in responding to an event. For this reason, events that fire rap-
idly (such as a mouse move event) are completely impractical in the world of ASP.NET.

Note If you want to accomplish a certain UI effect, you might handle rapid events such as mouse move-
ments with client- side JavaScript. Or, better yet, you might use a custom ASP.NET control that already has
these smarts built in, such as the ASP.NET AJAX controls you’ll consider in Part 6. However, all your business
code must execute in the secure, feature- rich server environment.

If you’re familiar with HTML forms, you know there is one basic way to submit a page—by
clicking a submit button. If you’re using the standard HTML server controls in your .aspx web
forms, this is still your only option. However, once the page is posted back, ASP.NET can fire
other events at the same time (namely, events that indicate that the value in an input control
has been changed).

Clearly, this isn’t enough to build a rich web form. Fortunately, ASP.NET web controls
extend this model with an automatic postback feature. With this feature, input controls can
fire different events, and your server- side code can respond immediately. For example, you
can trigger a postback when the user clicks a check box, changes the selection in a list, or
changes the text in a text box and then moves to another field. These events still aren’t as
 fine- grained as events in a Windows application, but they are a significant step up from the
submit button.

Automatic Postbacks “Under the Hood”
To use automatic postback, you simply need to set the AutoPostBack property of a web control
to true (the default is false, which ensures optimum performance if you don’t need to react to
a change event). When you do, ASP.NET uses the client- side abilities of JavaScript to bridge
the gap between client- side and server- side code.

Here’s how it works: if you create a web page that includes one or more web controls
that are configured to use AutoPostBack, ASP.NET adds a JavaScript function to the rendered
HTML page named __doPostBack(). When called, it triggers a postback, posting the page back
to the web server with all the form information.

ASP.NET also adds two hidden input fields that the __doPostBack() function uses to pass
information back to the server. This information consists of the ID of the control that raised
the event and any additional information that might be relevant. These fields are initially
empty, as shown here:

CHAPTER 3 WEB FORMS 83

The __doPostBack() function has the responsibility for setting these values with the appro-
priate information about the event and then submitting the form. A sample __doPostBack()
function is shown here:

Remember, ASP.NET generates the __doPostBack() function automatically. This code
grows lengthier as you add more AutoPostBack controls to your page, because the event data
must be set for each control.

Finally, any control that has its AutoPostBack property set to true is connected to the
__doPostBack() function using the onclick or onchange attribute. These attributes indicate
what action the browser should take in response to the client- side JavaScript events onclick
and onchange.

The following example shows the rendered HTML for a list control named lstCountry,
which posts back automatically. Whenever the user changes the selection in the list, the
 client- side onchange event fires. The browser then calls the __doPostBack() function, which
sends the page back to the server.

In other words, ASP.NET automatically changes a client- side JavaScript event into
a server- side ASP.NET event, using the __doPostBack() function as an intermediary. If you’re
a seasoned ASP developer, you may have manually created a solution like this for traditional
ASP web pages. ASP.NET handles these details for you automatically, simplifying life a great
deal.

Tip Remember, ASP.NET includes two control models: the bare- bones HTML server controls and the more
fully functional web controls. Automatic postback is available only with web controls.

CHAPTER 3 WEB FORMS84

View State
The final ingredient in the ASP.NET model is the view state mechanism. View state solves
another problem that occurs because of the stateless nature of HTTP—lost changes.

Every time your page is posted back to the server, ASP.NET receives all the information
that the user has entered in any <input> controls in the <form> tag. ASP.NET then loads the
web page in its original state (based on the layout and defaults you’ve defined in the .aspx
file) and tweaks the page according to this new information. The problem is that in a dynamic
web form, your code might change a lot more. For example, you might programmatically change
the color of a heading, modify a piece of static text, hide or show a panel of controls, or even bind
a full table of data to a grid. All these actions change the page from its initial state. However, none
of them is reflected in the form data that’s posted back. That means this information will be
lost after every postback. Traditionally, statelessness has been overcome with the use of simple
cookies, session- based cookies, and various other workarounds. All of these mechanisms require
homemade (and sometimes painstaking) measures.

To deal with this limitation, ASP.NET has devised its own integrated state serialization
mechanism. Essentially, once your page code has finished running (and just before the final
HTML is rendered and sent to the client), ASP.NET examines all the properties of all the con-
trols on your page. If any of these properties has been changed from its initial state, ASP.NET
makes a note of this information in a name/value collection. Finally, ASP.NET takes all the
information it has amassed and then serializes it as a Base64 string. (A Base64 string ensures
that there aren’t any special characters that wouldn’t be valid HTML.) The final string is inserted
in the <form> section of the page as a new hidden field.

The next time the page is posted back, ASP.NET follows these steps:

 1. ASP.NET re- creates the page and control objects based on its defaults (as defined in the
.aspx file). Thus, the page has the same state that it had when it was first requested.

 2. Next, ASP.NET deserializes the view state information and updates all the controls.
This returns the page to the state it was in before it was sent to the client the last time.

 3. Finally, ASP.NET adjusts the page according to the posted back form data. For exam-
ple, if the client has entered new text in a text box or made a new selection in a list box,
that information will be in the Form collection and ASP.NET will use it to tweak the
corresponding controls. After this step, the page reflects the current state as it appears
to the user.

 4. Now your event- handling code can get involved. ASP.NET triggers the appropriate
events, and your code can react to change the page, move to a new page, or perform
a completely different operation.

CHAPTER 3 WEB FORMS 85

Using view state is a great solution because server resources can be freed after each request,
thereby allowing for scalability to support hundreds or thousands of requests without bogging
the server down. However, it still comes with a price. Because view state is stored in the page, it
results in a larger total page size. This affects the client doubly, because the client not only needs
to receive a larger page, but the client also needs to send the hidden view state data back to the
server with the next postback. Thus, it takes longer both to receive and post the page. For simple
pages, this overhead is minimal, but if you configure complex, data- heavy controls such as the
GridView, the view state information can grow to a size where it starts to exert a toll. In these
cases, you can disable view state for a control by setting its EnableViewState property to false.
However, in this case you need to reinitialize the control with each postback.

Note Even if you set EnableViewState to false, the control can still hold onto a smaller amount of view
state information that it deems critical for proper functioning. This privileged view state information is known
as control state, and it can never be disabled. However, in a well- designed control the size required for con-
trol state will be significantly smaller than the size of the entire view state. You’ll see how it works when you
design your own custom controls in Chapter 27.

ASP.NET uses view state only with page and control properties. ASP.NET doesn’t take the
same steps with member variables and other data you might use. However, as you’ll learn later
in this book, you can place other types of data into view state and retrieve this information
manually at a later time.

 Figure 3-2 provides an end-to- end look at page requests that puts all these concepts
together.

Note It is absolutely essential to your success as an ASP.NET programmer to remember that the web
form is re- created with every round- trip. It does not persist or remain in memory longer than it takes to ren-
der a single request.

CHAPTER 3 WEB FORMS86

 Figure 3-2. ASP.NET page requests

View State “Under the Hood”
If you look at the rendered HTML for an ASP.NET page, you can easily find the hidden input
field with the view state information. The following example shows a page that uses a simple
Label web control and sets it with a dynamic “Hello, world” message:

CHAPTER 3 WEB FORMS 87

The view state string isn’t human readable—it just looks like a series of random char-
acters. However, it’s important to note that a user who is willing to go to a little work can
interpret this data quite easily. Here’s a snippet of .NET code that does the job and writes the
decoded information to a web page:

In order to test this web page, you’ll need to copy a view state string from an existing web
page (using the View Source command in your web browser). Or, you can retrieve the view
state string for the current web page using server- side code like this:

When you look at the decoded view state string, you’ll see something like this:

As you can see, the control text is clearly visible (along with some unprintable characters
that render as blank boxes). This means that, in its default implementation, view state isn’t
a good place to store sensitive information that the client shouldn’t be allowed to see—that
sort of data should stay on the server. Additionally, you shouldn’t make decisions based on
view state that could compromise your application if the client tampers with the view state
data.

Tip You can also decode the view state information for a page using the Web Development Helper utility
that was introduced in Chapter 2.

CHAPTER 3 WEB FORMS88

Fortunately, it’s possible to tighten up view state security quite a bit. You can enable
automatic hash codes to prevent view state tampering, and you can even encrypt view state
to prevent it from being decoded. These techniques raise hidden fields from a clumsy work-
around to a much more robust and respectable piece of infrastructure. You’ll learn about both
of these techniques in Chapter 6.

View State Chunking
The size of the hidden view state field has no limit. However, some proxy servers and firewalls
refuse to let pages through if they have hidden fields greater than a certain size. To circumvent
this problem, you can use view state chunking, which automatically divides view state into
multiple fields to ensure that no hidden field exceeds a size threshold you set.

To use view state chunking, you simply need to set the maxPageStateFieldLength attribute
of the <pages> element in the web.config file. This specifies the maximum view state size, in
bytes. Here’s an example that caps view state at 1 KB:

When you request a page that generates a view state larger than this, several hidden input
fields will be created:

Remember, view state chunking is simply a mechanism for avoiding problems with cer-
tain proxies (which is a relatively rare occurrence). View state chunking does not improve
performance (and adds a small amount of extra serialization overhead). As a matter of good
design, you should strive to include as little information in view state as possible, which ensures
the best performance.

XHTML Compliance
The web controls in ASP.NET 3.5 are compliant with the XHTML 1.1 standard. However, it’s
still up to you to make sure the rest of your page behaves by the rules. ASP.NET doesn’t take
any steps to force XHTML compliance onto your page.

CHAPTER 3 WEB FORMS 89

Note XHTML support doesn’t add any functionality to your web pages that you wouldn’t have with HTML
4.01. However, because XHTML is a stricter standard, it has a few benefits. For example, you can validate
XHTML pages to catch minor errors that could trip up certain browsers. Most important, XHTML pages are
also valid XML documents, which makes it easier for applications to read or analyze them programmatically
and introduces the possibility of future extensibility. The current consensus is that XHTML will replace HTML
in the future. You can learn more about XHTML by referring to the specification at

.

All the ASP.NET server controls render themselves using XHTML- compliant markup. That
means this markup follows the rules of XHTML, which include the following:

empty tag that closes itself (
).

both an id and name attribute.)

XHTML also removes support for certain features that were allowed in HTML, such as
frames and formatting that doesn’t use CSS. In most cases, a suitable XHTML alternative exists.
However, one sticking point is the target attribute, which HTML developers can use to create
links that open in new windows. The following ASP.NET controls allow you to use the target
attribute:

For example, if you set the HyperLink.Target property, the markup that ASP.NET generates
will use the target attribute and so won’t be XHTML- compliant.

Using the target attribute won’t cause a problem in modern browsers. However, if you need
to create a website that is completely XHTML- compliant, you must avoid using the target
attribute.

CHAPTER 3 WEB FORMS90

Note You won’t gain much immediate benefit by using XHTML. However, many companies and organiza-
tions mandate the use of XHTML, with a view to future standards. In the future, XHTML will make it easier to
design web pages that are adaptable to a variety of different platforms, can be processed by other applica-
tions, and are extensible with new markup features. For example, you could use XSLT (XSL Transformations),
another XML- based standard, to transform an XHTML document into another form. The same features won’t
be available to HTML pages.

Document Type Definitions
Every XHTML document should begin with a doctype (document type definition) that defines
the type of XHTML it uses. In an ASP.NET web page, the doctype must be placed immediately
after the Page directive in the markup portion of your web page. That way, the doctype will be
rendered as the first line of your document, which is a requirement.

Here’s an example that defines a web page that supports the full XHTML 1.1 standard,
which is known as XHTML 1.1 strict:

This page also defines the XML namespace for the <html> element. This is another detail
that XHTML requires.

If you don’t want to support the full XHTML 1.1 standard, you can make a few compro-
mises. One other common choice for the doctype is XHTML 1.0 transitional, which enforces
the structural rules of XHTML but allows HTML formatting features that have been replaced
by stylesheets and are considered obsolete. Here’s the doctype you need:

The XHTML transitional doctype is still too strict if your website uses HTML frames, which
XHTML considers obsolete. If you need to use frames but still want to follow the other rules of

CHAPTER 3 WEB FORMS 91

XHTML transitional, you can use the XHTML 1.0 frameset doctype for your frames page, as
shown here:

Remember, the ASP.NET server controls will work equally well with any doctype (and they
will work with browsers that support only HTML as well). It’s up to you to choose the level of
standards compliance (and backward compatibility) you want in your web pages. It's always
a good idea to include a doctype for your web pages to clearly indicate the markup standard
they supports. Without this detail, Internet Explorer renders pages using a legacy behavior
known as “quirks” mode, which differs from the more standardized rendering found in other
browsers like Firefox.

Note Most of the examples in this book use the XHTML 1.1 strict doctype. But to save space, the web
page markup listings in this book don’t include the lines that declare the doctype.

Configuring XHTML Rendering
The ASP.NET server controls automatically use XHTML markup if the requesting browser sup-
ports HTML 4.0 or later. However, there’s one quirk—ASP.NET renders a name attribute on the
<form> element. This behavior was chosen for backward compatibility, because older ASP.NET
pages could conceivably include client- side JavaScript routines that rely on this detail. Unfortu-
nately, the rules of XHTML 1.1 strict don’t allow for this one detail, harmless as it may seem.

Note This inconsistency won’t lead to an error. Browsers will still be able to process the page success-
fully, even if it uses the XHTML 1.1 strict doctype and includes the name attribute on the form element.
However, this detail will be flagged as an error by XHTML validation tools.

You can solve this problem by configuring the ASP.NET controls to use XHTML 1.1 strict
rendering. To do so, you must set the mode attribute of the xhtmlConformance element in
your web.config file to Strict, as shown here:

Your other two options are Transitional (the default) and Legacy. You can use Legacy in
rare situations when you want to disable XHTML- compliant rendering altogether. This might
be the case if you have client- side JavaScript that relies on tags or attributes that aren’t allowed
in XHTML. To solve this problem, you can revert to the HTML rendering used in ASP.NET 1.1.

When legacy rendering is enabled, ASP.NET controls do not use any of the XHTML refine-
ments that aren’t strictly compatible with HTML 4.01. For example, they render standard HTML

CHAPTER 3 WEB FORMS92

elements such as
 instead of the correct XHTML version,
. However, even if legacy
rendering is enabled, ASP.NET won’t strip out the namespace in the <html> tag or remove the
doctype if these details are present in your page. To avoid confusion, you should make sure
that your <xhtmlConformance> setting and your web page doctypes match. Ideally, you’ll use
the same doctype for all the web pages in your website, because ASP.NET doesn’t allow you to
configure XHTML rendering on a per- page basis.

Note ASP.NET makes no guarantee that the non- XHTML rendering will be supported in future versions of
ASP.NET, so use it only if it’s required for a specific scenario.

Visual Studio’s Default Doctype
When you create a new web page in Visual Studio, it automatically adds a doctype for XHTML
transitional. If this isn’t what you want, it’s up to you to modify the doctype in each new page.
If you’re using master pages (as described in Chapter 16), the solution is even easier. You can
simply set the doctype in your master page, and all the child pages that use that master page
will acquire it automatically.

It is technically possible to change Visual Studio’s default web page template so that it
uses a different doctype, but the process is a bit awkward. You need to first modify the tem-
plates, and then rebuild Visual Studio’s template cache. Here’s a quick rundown of the steps
you need to follow:

 1. You can find the Visual Studio templates in a series of ZIP files in various folders. You
need to modify the WebForm.aspx and WebForm_cb.aspx files in the c:\Program Files\
Microsoft Visual Studio 9.0\Common7\IDE\ItemTemplates\Web\VisualBasic\1033\
WebForm.zip archive.

 2. When modifying the files, simply edit the doctype. If you’re running under Windows
Vista, you’ll probably find it’s easiest to copy the archive to another location, extract
the appropriate files, edit them, add them back to the archive, and then copy the entire
archive back to its original location. That’s because you need administrator rights to
edit these files, and most simple text editors (like Notepad) won’t attempt to acquire
these rights automatically. However, you’ll be prompted through UAC (User Account
Control) when you copy, delete, and replace the files in Windows Explorer.

 3. Once you’ve update the templates, delete the c:\Program Files\Microsoft Visual Studio
9.0\Common7\IDE\ItemTemplatesCache folder to clear out the template cache.

 4. Run Visual Studio using the following command line to rebuild the template cache:

 This step requires administrator privileges.

 5. You can now run Visual Studio normally. Any new web form files you add to a web
application should have the new doctype that you’ve set.

CHAPTER 3 WEB FORMS 93

XHTML Validation
The core ASP.NET controls follow the rules of XHTML, but to make sure the finished page is
 XHTML- compliant, you need to make sure any static content you add also follows these rules.
Visual Studio can help you with its own built- in validator. Just select the target standard from
the drop- down list in the HTML Source Editing toolbar. For example, if you choose XHTML
1.1, Visual Studio flags structural errors, incorrect capitalization, improper or obsolete tags,
and so on. For example, Figure 3-3 shows that
 is not allowed in XHTML because it’s
a start tag without an end tag. Instead, you need to use the empty tag syntax,
.

 Figure 3-3. Validating for XHTML 1.1 in Visual Studio

It’s still possible that an XHTML violation might slip through the cracks. For example, you
could use a third- party control that emits noncompliant markup when it renders itself. Visual
Studio won’t be able to spot the problem, because it’s examining the server- side web form
markup, not the final rendered document that’s sent to the client. Furthermore, your browser
probably won’t flag the error either.

To give your pages the acid test, you need use a third- party validator that can request your
page and scan it for errors. One good resource is the free W3C validation service at

. Simply enter the URL to your web page, and click Check. You can also upload
a file to check it, but in this case you must make sure you upload the final rendered page, not
the .aspx source. You can see (and save) the rendered content for a page in Internet Explorer
by choosing View Source.

CHAPTER 3 WEB FORMS94

Web Forms Processing Stages
On the server side, processing an ASP.NET web form takes place in stages. At each stage, vari-
ous events are raised. This allows your page to plug into the processing flow at any stage and
respond however you would like.

The following list shows the major stages in the process flow of an ASP.NET page:

Page framework initialization

Remember, these stages occur independently for each web request. Figure 3-4 shows the
order in which these stages unfold. More stages exist than are listed here, but those are typi-
cally used for programming your own ASP.NET controls and aren’t handled directly by the page.

 Figure 3-4. ASP.NET page life cycle

CHAPTER 3 WEB FORMS 95

In the next few sections you’ll learn about each stage and then examine a simple web page
example.

Page Framework Initialization
This is the stage in which ASP.NET first creates the page. It generates all the controls you have
defined with tags in the .aspx web page. In addition, if the page is not being requested for the
first time (in other words, if it’s a postback), ASP.NET deserializes the view state information
and applies it to all the controls.

At this stage, the Page.Init event fires. However, this event is rarely handled by the web
page, because it’s still too early to perform page initialization. That’s because the control
objects may not be created yet and because the view state information isn’t loaded.

User Code Initialization
At this stage of the processing, the Page.Load event is fired. Most web pages handle this event
to perform any required initialization (such as filling in dynamic text or configuring controls).

The Page.Load event always fires, regardless of whether the page is being requested for
the first time or whether it is being requested as part of a postback. Fortunately, ASP.NET pro-
vides a way to allow programmers to distinguish between the first time the page is loaded and
all subsequent loads. Why is this important? First, since view state is maintained automati-
cally, you have to fetch your data from a dynamic data source only on the first page load. On
a postback, you can simply sit back, relax, and let ASP.NET restore the control properties for
you from the view state. This can provide a dramatic performance boost if the information is
expensive to re- create (for example, if you need to query it from a database). Second, there are
also other scenarios, such as edit forms and drill- down pages, in which you need the ability to
display one interface on a page’s first use and a different interface on subsequent loads.

To determine the current state of the page, you can check the IsPostBack property of the
page, which will be false the first time the page is requested. Here’s an example:

Note It’s a common convention to write Page.IsPostBack instead of just IsPostBack. This longer form
works because all web pages are server controls, and all server controls include a Page property that
exposes the current page. In other words, Page.IsPostBack is the same as IsPostBack—some developers
simply think the first version is easier to read. Which approach you use is simply a matter of preference.

Remember, view state stores every changed property. Initializing the control in the Page.
Load event counts as a change, so any control value you touch will be persisted in view state,
needlessly enlarging the size of your page and slowing transmission times. To streamline
your view state and keep page sizes small, avoid initializing controls in code. Instead, set the
properties in the control tag (either by editing the tag by hand in source view or by using the

CHAPTER 3 WEB FORMS96

Properties window). That way, these details won’t be persisted in view state. In cases where
it really is easier to initialize the control in code, consider disabling view state for the control
by setting EnableViewState to false and initializing the control every time the Page.Load event
fires, regardless of whether the current request is a postback.

Validation
ASP.NET includes validation controls that can automatically validate other user input con-
trols and display error messages. These controls fire after the page is loaded but before any
other events take place. However, the validation controls are for the most part self- sufficient,
which means you don’t need to respond to the validation events. Instead, you can just examine
whether the page is valid (using the Page.IsValid property) in another event handler. Chapter 4
discusses the validation controls in more detail.

Event Handling
At this point, the page is fully loaded and validated. ASP.NET will now fire all the events that
have taken place since the last postback. For the most part, ASP.NET events are of two types:

Immediate response events: These include clicking a submit button or clicking some other
button, image region, or link in a rich web control that triggers a postback by calling the
__doPostBack() JavaScript function.

Change events: These include changing the selection in a control or the text in a text box.
These events fire immediately for web controls if AutoPostBack is set to true. Otherwise,
they fire the next time the page is posted back.

As you can see, ASP.NET’s event model is still quite different from a traditional Windows
environment. In a Windows application, the form state is resident in memory, and the applica-
tion runs continuously. That means you can respond to an event immediately. In ASP.NET,
everything occurs in stages, and as a result events are sometimes batched together.

For example, imagine you have a page with a submit button and a text box that doesn’t
post back automatically. You change the text in the text box and then click the submit button.
At this point, ASP.NET raises all of the following events (in this order):

Page.Init

Button.Click

Remembering this bit of information can be essential in making your life as an ASP.NET
programmer easier. There is an upside and a downside to the event- driven model. The upside
is that the event model provides a higher level of abstraction, which keeps your code clear of
boilerplate code for maintaining state. The downside is that it’s easy to forget that the event
model is really just an emulation. This can lead you to make an assumption that doesn’t hold

CHAPTER 3 WEB FORMS 97

true (such as expecting information to remain in member variables) or a design decision that
won’t perform well (such as storing vast amounts of information in view state).

Automatic Data Binding
In Chapter 9, you’ll learn about the data source controls that automate the data binding pro-
cess. When you use the data source controls, ASP.NET automatically performs updates and
queries against your data source as part of the page life cycle.

Essentially, two types of data source operations exist. Any changes (inserts, deletes, or
updates) are performed after all the control events have been handled but just before the Page.
PreRender event fires. Then, after the Page.PreRender event fires, the data source controls
perform their queries and insert the retrieved data into any linked controls. This model makes
instinctive sense, because if queries were executed before updates, you could end up with stale
data in your web page. However, this model also introduces a necessary limitation—none of your
other event handlers will have access to the most recent data, because it hasn’t been retrieved yet.

This is the last stop in the page life cycle. Historically, the Page.PreRender event is sup-
posed to signify the last action before the page is rendered into HTML (although, as you’ve just
learned, some data binding work can still occur after the prerender stage). During the preren-
der stage, the page and control objects are still available, so you can perform last- minute steps
such as storing additional information in view state.

To learn much more about the ASP.NET data binding story, refer to Chapter 9.

Cleanup
At the end of its life cycle, the page is rendered to HTML. After the page has been rendered, the
real cleanup begins, and the Page.Unload event is fired. At this point, the page objects are still
available, but the final HTML is already rendered and can’t be changed.

Remember, the .NET Framework has a garbage collection service that runs periodically
to release memory tied to objects that are no longer referenced. If you have any unmanaged
resources to release, you should make sure you do this explicitly in the cleanup stage or, even
better, before. When the garbage collector collects the page, the Page.Disposed event fires.
This is the end of the road for the web page.

A Page Flow Example
No matter how many times people explain how something works, it’s always more satisfying
to see it for yourself (or break it trying to learn how it works). To satisfy your curiosity, you can
build a sample web form test that illustrates the flow of processing. The only thing this exam-
ple won’t illustrate is validation (which is discussed in the next chapter).

To try this, start by creating a new web form named PageFlow.aspx. In Visual Studio, you
simply need to drag a label and a button onto the design surface of your web page. This gen-
erates a server- side <form> tag with the two control tags that you need in the .aspx file. Next,
select the Label control. Using the Properties window, set the ID property to lblInfo and the
EnableViewState property to false.

CHAPTER 3 WEB FORMS98

Here’s the complete markup for the .aspx file, without any event handlers:

The next step is to add your event handlers. When you’re finished, the code- behind file
will hold five event handlers that respond to different events, including Page.Init, Page.Load,
Page.PreRender, Page.Unload, and Button.Click.

Page event handlers are a special case. Unlike other controls, you don’t need to wire them
up using attributes in your markup. Instead, page event handlers are automatically connected
provided they use the correct method name. Here are the event handlers for various page
events in the PageFlow example:

CHAPTER 3 WEB FORMS 99

Each event handler simply adds to the text in the Text property of the label. When the
code adds this text, it also uses embedded HTML tags such as (to bold the text) and

(to insert a line break). Another option would be to create separate Label controls and config-
ure the style- related properties of each one.

Note In this example, the EnableViewState property of the label is set to false. This ensures that the text
is cleared every time the page is posted back and the text that’s shown corresponds only to the most recent
batch of processing. If you left EnableViewState set to true, the list would grow longer with each postback,
showing you all the activity that has happened since you first requested the page.

Additionally, you need to wire up an event handler for the Button.Click event, as shown
here:

Page handlers are hooked up explicitly using delegates in a hidden portion of designer
code. Because this designer code is still considered part of your class (thanks to the magic of
partial classes), it can hook up any method, including a private method. Control event han-
dlers are connected using a Handles keyword, because AutoEventWireup is set to false. They
are bound at a later stage of processing, after the markup in the .aspx file and the code- behind
class have been merged together. ASP.NET creates this merged class by deriving a new class
from the code- behind class.

Here’s where things get tricky. This derived class needs to be able to access the event
handlers in the page so it can connect them to the appropriate controls. The derived class can
access the event handlers if they are Private, Public (in which case any class can access them),
or Protected (in which case any derived class can access them).

Tip Although it’s acceptable for page event handlers to be private, it’s a common convention in ASP.NET
code to make all event handlers protected, just for consistency and simplicity.

CHAPTER 3 WEB FORMS100

 Figure 3-5 shows the ASP.NET page after clicking the button, which triggers a postback
and the Button1.Click event. Note that even though this event caused the postback, Page.Init
and Page.Load were both raised first.

 Figure 3-5. ASP.NET order of operations

The Page As a Control Container
Now that you’ve learned the stages of web forms processing, it’s time to take a closer look at
how the server control model plugs into this pipeline. To render a page, the web form needs
to collaborate with all its constituent controls. Essentially, the web form renders itself and
then asks all the controls on the page to render themselves. In turn, each of those controls can
contain child controls; each is also responsible for their own rendering code. As these con-
trols render themselves, the page assembles the generated HTML into a complete page. This
process may seem a little complex at first, but it allows for an amazing amount of power and
flexibility in creating rich web- page interfaces.

When ASP.NET first creates a page (in response to an HTTP request), it inspects the .aspx
file.
a control object, and then it adds this control as a child control of the page. You can examine
the Page.Controls collection to find all the child controls on the page.

Showing the Control Tree
Here’s an example that looks for controls. Each time it finds a control, the code uses the Response.
Write() command to write the control class type and control ID to the end of the rendered HTML
page, as shown here:

CHAPTER 3 WEB FORMS 101

Note The Response.Write() method is a holdover from classic ASP, and you should never use it in
a real- world ASP.NET web application. It effectively bypasses the web control model, which leads to dis-
jointed interfaces, compromises ASP.NET’s ability to create markup that adapts to the target device, and
almost always breaks XHTML compatibility. However, in this test page Response.Write() allows you to write
raw HTML without generating any additional controls—which is a perfect technique for analyzing the con-
trols on the page without disturbing them.

To test this code, you can add it to the Page.Load event handler. In this case, the ren-
dered content will be written at the top of the page before the controls. However, when you
run it, you’ll notice some unexpected behavior. For example, consider the web form shown in
 Figure 3-6, which contains several controls, some of which are organized into a box using the
Panel web control. It also contains two lines of static HTML text.

 Figure 3-6. A sample web page with multiple controls

Here’s the .aspx markup code for the page:

CHAPTER 3 WEB FORMS102

When you run this page, you won’t see a full list of controls. Instead, you’ll see the list
shown in Figure 3-7.

 Figure 3-7. Controls on the top layer of the page

ASP.NET models the entire page using control objects, including elements that don’t cor-
respond to server- side content. For example, if you have one server control on a page, ASP.NET
will create a LiteralControl that represents all the static content before the control and will

CHAPTER 3 WEB FORMS 103

create another LiteralControl that represents the content after it. Depending on how much
static content you have and how you break it up between other controls, you may end up with
multiple LiteralControl objects.

LiteralControl objects don’t provide much in the way of functionality. For example, you can’t
set style- related information such as colors and font. They also don’t have a unique server- side
ID. However, you can manipulate the content of a LiteralControl using its Text property. The
following code rewrites the earlier example so that it checks for literal controls, and, if present, it
casts the base Control object to the LiteralControl type so it can extract the associated text:

The displayed text is HTML- encoded using the Server.HtmlEncode() method, which is
discussed later in this chapter in the “HTML and URL Encoding” section. The result is that you
don’t see the formatted content—instead, you see the HTML markup that’s used to create the
content.

This example still suffers from a problem. You now understand the unexpected new con-
tent, but what about the missing content—namely, the other control objects on the page?

To answer this question, you need to understand that ASP.NET renders a page hierarchi-
cally. It directly renders only the top level of controls. If these controls contain other controls,
they provide their own Controls properties, which provide access to their child controls. In the
example page, as in all ASP.NET web forms, all the controls are nested inside the <form> tag.
This means you need to inspect the Controls collection of the HtmlForm class to get informa-
tion about the server controls on the page.

However, life isn’t necessarily this straightforward. That’s because there’s no limit to how
many layers of nested controls you can use. To really solve this problem and display all the
controls on a page, you need to create a recursive routine that can tunnel through the entire
control tree.

The following code shows the complete solution:

CHAPTER 3 WEB FORMS104

 Figure 3-8 shows the new result—a hierarchical tree that shows all the controls on the
page and their nesting.

 Figure 3-8. A tree of controls on the page

CHAPTER 3 WEB FORMS 105

The Page Header
As you’ve seen, you can transform any HTML element into a server control with the

, and a page can contain an unlimited number of HTML controls.
In addition to the controls you add, a web form can also contain a single HtmlHead con-
trol, which provides server- side access to the <head> tag.

The control tree shown in the previous example doesn’t include the HtmlHead control,

Visual Studio default is to always make the <head> tag into a server- side control, in contrast to
previous versions of ASP.NET.

As with other server controls, you can use the HtmlHead control to programmatically
change the content that’s rendered in the <head> tag. The difference is that the <head> tag
doesn’t correspond to actual content you can see in the web page. Instead, it includes other
details such as the title, metadata tags (useful for providing keywords to search engines), and
stylesheet references. To change any of these details, you use one of a small set of members in
the HtmlHead class. They include the following:

Title: This is the title of the HTML page, which is usually displayed in the browser’s title
bar. You can modify this at runtime.

StyleSheet: This provides an IStyleSheet object that represents inline styles defined in the
header. You can also use the IStyleSheet object to create new style rules dynamically, by
writing code that calls its CreateStyleRule() and RegisterStyle() methods.

Controls: You can add or remove metadata tags programmatically using this collection
and the HtmlMeta control class.

Here’s an example that sets title information and metadata tags dynamically:

Tip The HtmlHead control is handy in pages that are extremely dynamic. For example, if you build
a data- driven website that serves promotional content from a database, you might want to change the key-
words and title of the page depending on the content you use when the page is requested.

CHAPTER 3 WEB FORMS106

Dynamic Control Creation
Using the Controls collection, you can create a control and add it to a page programmatically.
Here’s an example that generates a new button and adds it to a Panel control on the page:

You can execute this code in any event handler. However, because the page is already cre-
ated, this code always adds the new control at the end of the collection. In this example, that
means the new button will end up at the bottom of the Panel control.

To get more control over where a dynamically added control is positioned, you can use
a PlaceHolder. A PlaceHolder is a control that has no purpose except to house other controls.
If you don’t add any controls to the Controls collection of the PlaceHolder, it won’t render
anything in the final web page. However, Visual Studio gives a default representation that
looks like an ordinary label at design time, so you can position it exactly where you want. That
way, you can add a dynamic control between other controls.

When using dynamic controls, you must remember that they will exist only until the next
postback. ASP.NET will not re- create a dynamically added control. If you need to re- create
a control multiple times, you should perform the control creation in the Page.Load event
handler. This has the additional benefit of allowing you to use view state with your dynamic
control. Even though view state is normally restored before the Page.Load event, if you create
a control in the handler for the Page.Load event, ASP.NET will apply any view state informa-
tion that it has after the Page.Load event handler ends. This process is automatic.

If you want to interact with the control later, you should give it a unique ID. You can use
this ID to retrieve the control from the Controls collection of its container. You can find the
control using recursive searching logic, as demonstrated in the control tree example, or you
can use the static Page.FindControl() method, which searches the entire page for the control
with the ID you specify. Here’s an example that searches for the dynamically added control
with the FindControl() method and then removes it:

CHAPTER 3 WEB FORMS 107

Dynamically added controls can handle events. All you need to do is attach an event han-
dler using delegate code. You must perform this task in your Page.Load event handler. As you
learned earlier, all control- specific events are fired after the Page.Load event. If you wait any
longer, the event handler will be connected after the event has already fired, and you won’t be
able to react to it any longer.

 Figure 3-9 demonstrates all these concepts. It generates a dynamic button. When you
click this button, the text in a label is modified. Two other buttons allow you to dynamically
remove or re- create the button.

 Figure 3-9. Handling an event from a dynamically added control

Dynamic control creation is particularly powerful when you combine it with user controls
(reusable blocks of user interface that can combine a group of controls and HTML). You’ll
learn more about user controls in Chapter 15.

The Page Class
Now that you’ve explored the page life cycle and learned how a page contains controls, it’s
worth pointing out that the page itself is also instantiated as a type of control object. In fact, all
web forms are actually instances of the ASP.NET Page class, which is found in the System.Web.
UI namespace.

You may have already figured this out by noticing that every code- behind class explicitly
derives from System.Web.UI.Page. This means that every web form you create is equipped

CHAPTER 3 WEB FORMS108

with an enormous amount of out-of-the- box functionality. The FindControl() method and the
IsPostBack property are two examples you’ve seen so far. In addition, deriving from the Page
class gives your code the following extremely useful properties:

Many of these properties correspond to intrinsic objects that you could use in classic ASP
web pages. However, in classic ASP you accessed this functionality through built- in objects
that were available at all times. In ASP.NET, each of these built- in objects actually corresponds
to a Page property that exposes an instance of a full- featured class.

The following sections introduce these objects.

Session, Application, and Cache
The Session object is an instance of the System.Web.SessionState.HttpSessionState class.
It’s designed to store any type of user- specific data that needs to persist between web- page
requests. The Session object provides dictionary- style access to a set of name/value pairs that
represents the user’s data for that session. Session state is often used to maintain things such
as the user’s name, the user’s ID, a shopping cart, or various other elements that are discarded
when a given user is no longer accessing pages on the website.

The Application object is an instance of the System.Web.HttpApplicationState class. Like
the Session object, it’s also a name/value dictionary of data. However, this data is global to the
entire application.

Finally, the Cache object is an instance of the System.Web.Caching.Cache class. It also
stores global information, but it provides a much more scalable storage mechanism because
ASP.NET can remove objects if server memory becomes scarce. Like the other state collections,
it’s essentially a name/value collection of objects, but you can also set specialized expiration
policies and dependencies for each item.

Deciding how to implement state management is one of the key challenges of program-
ming a web application. You’ll learn much more about all these types of state management in
Chapter 6.

Request
The Request object is an instance of the System.Web.HttpRequest class. This object represents
the values and properties of the HTTP request that caused your page to be loaded. It contains
all the URL parameters and all other information sent by a client. Much of the information
provided by the Request object is wrapped by higher- level abstractions (such as the ASP.NET
web control model), so it isn’t nearly as important as it was in classic ASP. However, you might

CHAPTER 3 WEB FORMS 109

still use the Request object to find out what browser the client is using or to set and examine
cookies.

 Table 3-1 describes some of the more common properties of the Request object.

Table 3-1. HttpRequest Properties

Property Description
AnonymousID This uniquely identifies the current user if you’ve enabled anonymous

access. You’ll learn how to use the anonymous access features in
Chapter 24.

ApplicationPath and
PhysicalApplicationPath

ApplicationPath gets the ASP.NET application’s virtual directory
(URL), while PhysicalApplicationPath gets the “real” directory.

Browser This provides a link to an HttpBrowserCapabilities object, which con-
tains properties describing various browser features, such as support
for ActiveX controls, cookies, VBScript, and frames.

ClientCertificate This is an HttpClientCertificate object that gets the security certificate
for the current request, if there is one.

Cookies This gets the collection of cookies sent with this request. Chapter 6
discusses cookies.

FilePath and
CurrentExecutionFilePath

These return the real file path (relative to the server) for the currently
executing page. FilePath gets the page that started the execution
process. This is the same as CurrentExecutionFilePath, unless you’ve
transferred the user to a new page without a redirect (for example, using
the Server.Transfer() method), in which case CurrentExecutionFilePath
reflects the new page and FilePath indicates the original page.

Form This represents the collection of form variables that were posted back
to the page. In almost all cases, you’ll retrieve this information from
control properties instead of using this collection.

Headers and
ServerVariables

These provide a dictionary collection of HTTP headers and server
variables, indexed by name. These collections are mostly made up of
 low- level information that’s sent by the browser along with its web
request (such as the browser type, its support for various features, its
language settings, its authentication credentials, and so on). Usually,
you can get this information more effectively from other properties of
the HttpRequest object and higher- level ASP.NET classes.

IsAuthenticated and
IsSecureConnection

These return true if the user has been successfully authenticated and
if the user is connected over SSL (Secure Sockets Layer).

IsLocal This returns true if the user is requesting the page from the local
computer.

QueryString This provides the parameters that were passed along with the query
string. Chapter 6 shows how you can use the query string to transfer
information between pages.

Url and UrlReferrer These provide a Uri object that represents the current address for the
page and the page where the user is coming from (the previous page
that linked to this page).

UserAgent This is a string representing the browser type. Internet Explorer pro-
vides the value “MSIE” for this property. ASP.NET uses this informa-
tion to identify the browser and, ultimately, to determine the features
the browser should support (such as cookies, JavaScript, and so on).
This, in turn, can influence how web controls render themselves. For
more information about ASP.NET’s adaptive rendering model, refer to
Chapter 27.

Continued

CHAPTER 3 WEB FORMS110

Table 3-1. Continued

Property Description
UserHostAddress and
UserHostName

These get the IP address and the DNS name of the remote client. You
could also access this information through the ServerVariables collec-
tion. However, this information may not always be meaningful due to
network address translation (NAT). Depending on how clients con-
nect to the Internet, multiple clients may share the same IP address
(that of a gateway computer). The IP address may also change over
the course of several requests.

UserLanguages This provides a sorted string array that lists the client’s language pref-
erences. This can be useful if you need to create multilingual pages.

Response
The Response object is an instance of the System.Web.HttpResponse class, and it represents
the web server’s response to a client request. In classic ASP, the Response object was the only
way to programmatically send HTML text to the client. Now server- side controls have nested,
 object- oriented methods for rendering themselves. All you have to do is set their properties. As
a result, the Response object doesn’t play nearly as central a role.

The HttpResponse does still provide some important functionality—namely, cookie fea-
tures and the Redirect() method. The Redirect() method allows you to send the user to another
page. Here’s an example:

The Redirect() method requires a round- trip. Essentially, it sends a message to the browser
that instructs it to request a new page.

If you want to transfer the user to another web form in the same web application, you can
use a faster approach with the Server.Transfer() method. However, Server.Transfer has some
quirks. Because the redirection happens on the server side, the original URL remains in the
client’s web browser. Effectively, the browser has no way of knowing that it’s actually display-
ing a different page. This limitation leads to a problem if the client refreshes or bookmarks the
page. Also, Server.Transfer() is unable to transfer execution to a non- ASP.NET page or a web
page in another web application or on another web server.

Tip Another way also exists to get from one page to the next—cross- page posting. Using this technique,
you can create a page that posts itself to another page, which allows you to effectively transfer all the view
state information and the contents of any controls. You’ll learn how to use this technique in Chapter 6.

 Table 3-2 lists common HttpResponse members.

CHAPTER 3 WEB FORMS 111

Table 3-2. HttpResponse Members

Member Description
BufferOutput When set to true (the default), the page isn’t sent to the client until it’s com-

pletely rendered and ready to be sent, as opposed to being sent piecemeal.
In some specialized scenarios, it makes sense to set BufferOutput to false.
The most obvious example is when a client is downloading a large file. If
BufferOutput is false, the client will see the Save dialog box and be able to
choose the file name before the file is fully downloaded.

Cache This references an HttpCachePolicy object that allows you to configure
output caching. Chapter 11 discusses caching.

Cookies This is the collection of cookies sent with the response. You can use this
property to add additional cookies.

Expires and
ExpiresAbsolute

You can use these properties to cache the rendered HTML for the page, im-
proving performance for subsequent requests. You’ll learn about this type of
caching (known as output caching) in Chapter 11.

IsClientConnected This is a Boolean value indicating whether the client is still connected to the
server. If it isn’t, you might want to stop a time- consuming operation.

Redirect() This method transfers the user to another page in your application or a dif-
ferent website.

Additionally, the HttpResponse class includes some members that you won’t use in con-
junction with ASP.NET’s server control model. However, you might use these members when
you create custom HTTP handlers (as described in Chapter 5) or return different types of con-
tent instead of HTML pages. Table 3-3 lists these members.

Table 3-3. HttpResponse Members that Bypass the Control Model

Member Description
ContentType The content type is a header that tells the browser what type of content

it’s about to receive. Ordinarily, ASP.NET web forms use the text/html
content type, as do all web pages. However, you might create a custom
HTTP handler that serves different types of content. For example, you
could use this technique to dynamically create an image, in which case
you may need a content type of image/gif. For a comprehensive list of
HTTP MIME types, see

.

OutputStream This represents the data you’re sending to the browser as a stream of
raw bytes. You can use this property to plug into the .NET stream model
(which is described in Chapter 12). For an example that demonstrates
OutputStream, refer to Chapter 29, which uses it to return the image
content from a dynamically generated graphic.

Write() This method allows you to write text directly to the response stream.
Usually, you’ll use the control model instead and let controls output
their own HTML. If you attempt to use Response.Write() and the control
model, you won’t be able to decide where the text is placed in the page.
However, Response.Write() is important if you want to design controls
that render their own HTML representation from scratch. You’ll learn
how to use Response.Write() in this context in Chapter 27.

Continued

CHAPTER 3 WEB FORMS112

Table 3-3. Continued

Member Description
BinaryWrite() and
WriteFile()

These methods allow you to take binary content from a byte array or
from a file and write it directly to the response stream. You won’t use
these methods in conjunction with server controls, but you might use
them if you create a custom HTTP handler. For example, you could
create an HTTP handler that reads the data for a PDF document from
a record in a database and writes that data directly to the response
stream using BinaryWrite(). On the client side, the end result is the
same as if the user downloaded a static PDF file. (You’ll see an example
of WriteFile() with a custom HTTP handler that prevents image leeching
in Chapter 5.) When writing non- HTML content, make sure you set the
ContentType property accordingly.

Server
The Server object is an instance of the System.Web.HttpServerUtility class. It provides a hand-
ful of miscellaneous helper methods and properties, as listed in Table 3-4.

Table 3-4. HttpServerUtility Members

Member Description
MachineName A property representing the computer name of the computer on which

the page is running. This is the name the web server computer uses to
identify itself to the rest of the network.

GetLastError() Retrieves the exception object for the most recently encountered error
(or Nothing, if there isn’t one). This error must have occurred while
processing the current request, and it must not have been handled. This
is most commonly used in an application event handler that checks for
error conditions (an example of which you’ll see in Chapter 5).

HtmlEncode() and
HtmlDecode()

Changes an ordinary string into a string with legal HTML characters
(and back again).

UrlEncode() and
UrlDecode()

Changes an ordinary string into a string with legal URL characters (and
back again).

UrlTokenEncode() and
UrlTokenDecode()

Performs the same work as UrlEncode() and UrlDecode(), except they
work on a byte array that contains Base64- encoded data.

MapPath() Returns the physical file path that corresponds to a specified virtual file
path on the web server.

Transfer() Transfers execution to another web page in the current application.
This is similar to the Response.Redirect() method, but it’s faster. It can-
not be used to transfer the user to a site on another web server or to
a non- ASP.NET page (such as an HTML page or an ASP page).

CHAPTER 3 WEB FORMS 113

The Transfer() method is the quickest way to redirect the user to another page in your
application. When you use this method, a round- trip is not involved. Instead, the ASP.NET
engine simply loads the new page and begins processing it. As a result, the URL that’s dis-
played in the client’s browser won’t change.

The MapPath() method is another useful method of the Server object. For example,
imagine you want to load a file named info.txt from the current virtual directory. Instead of
 hard- coding the path, you can use Server.MapPath() to convert the relative path to your web
application into a full physical path. Here’s an example:

HTML and URL Encoding
The Server class also includes methods that change ordinary strings into a representation that
can safely be used as part of a URL or displayed in a web page. For example, imagine you want
to display this text on a web page:

If you try to write this information to a page or place it inside a control, you would end up
with this instead:

Not only will the text not appear, but the browser will interpret it as an instruction to
make the text that follows bold. To circumvent this automatic behavior, you need to convert
potential problematic values to their special HTML equivalents. For example, < becomes <
in your final HTML page, which the browser displays as the < character. Table 3-5 lists some
special characters that need to be encoded.

CHAPTER 3 WEB FORMS114

Table 3-5. Common HTML Entities

Result Description Encoded Entity
Nonbreaking space

< Less-than symbol <

> Greater-than symbol >

& Ampersand &

Quotation mark "

Here’s an example that circumvents the problem using the Server.HtmlEncode() method:

You also have the freedom to use HtmlEncode for some input, but not for all of it if you
want to insert a combination of text that could be invalid and HTML tags. Here’s an example:

Note Some controls circumvent this problem by automatically encoding tags. (The Label web control is
not one of them. Instead, it gives you the freedom to insert HTML tags as you please.) For example, the basic
set of HTML server controls include both an InnerText tag and an InnerHtml tag. When you set the contents
of a control using InnerText, any illegal characters are automatically converted into their HTML equivalents.
However, this won’t help if you want to set a tag that contains a mix of embedded HTML tags and encoded
characters.

The HtmlEncode() method is particularly useful if you’re retrieving values from a database
and you aren’t sure if the text is valid HTML. You can use the HtmlDecode() method to revert
the text to its normal form if you need to perform additional operations or comparisons with
it in your code. Similarly, the UrlEncode() method changes text into a form that can be used in
a URL, escaping spaces and other special characters. This step is usually performed with infor-
mation you want to add to the query string.

It’s worth noting that the HtmlEncode() method won’t convert spaces to nonbreaking
spaces. This means that if you have a series of space characters, the browser will display only
a single space. Although this doesn’t invalidate your HTML, it may not be the effect you want.
To change this behavior, you can manually replace spaces with nonbreaking spaces using the
String.Replace() method. Just make sure you perform this step after you encode the string, not
before, or the nonbreaking space character sequence () will be replaced with character
entities and treated as ordinary text.

CHAPTER 3 WEB FORMS 115

Similarly, the HtmlEncode() method won’t convert line breaks into
 tag. This means
that hard returns will be ignored unless you specifically insert
 tags.

Note The issue of properly encoding input is important for more than just ensuring properly displayed
data. If you try to display data that has embedded <script> tags, you could inadvertently end up executing
a block of JavaScript code on the client. Chapter 31 has more about this danger and the ASP.NET request
validation feature that prevents it.

User
The User object represents information about the user making the request of the web server,
and it allows you to test that user’s role membership.

The User object implements System.Security.Principal.IPrincipal. The specific class depends
on the type of authentication you’re using. For example, you can authenticate a user based on
Windows account information using IIS or through cookie- based authentication with a dedicated
login page. However, it’s important to realize that the User object provides useful information
only if your web application is performing some sort of authentication that restricts anonymous
users.

Part 4 of this book deals with security in detail.

Trace
The Trace object is a general- purpose tracing tool (and an instance of the System.Web.
TraceContext class). It allows you to write information to a log that is scoped at the page
level. This log has detailed timing information so that not only can you use the Trace object
for debugging but you can also use it for performance monitoring and timing. Additionally,
the trace log shows a compilation of miscellaneous information, grouped into several sec-
tions. Table 3-6 describes all the information you’ll see.

CHAPTER 3 WEB FORMS116

Table 3-6. Trace Log Information

Section Description
Request Details This section includes some basic information about the request con-

text, including the current session ID, the time the web request was
made, and the type of web request and encoding.

Trace Information This section shows the different stages of processing the page went
through before being sent to the client. Each section has additional
information about how long it took to complete, as a measure from the
start of the first stage (From First) and as a measure from the start of
the previous stage (From Last). If you add your own trace messages (a
technique described shortly), they will also appear in this section.

Control Tree The control tree shows you all the controls on the page, indented to
show their hierarchy, similar to the control tree example earlier in this
chapter. One useful feature of this section is the Viewstate column,
which tells you how many bytes of space are required to persist the
current information in the control. This can help you gauge whether
enabling control state could affect page transmission times.

Session State and
Application State

These sections display every item that is in the current session or appli-
cation state. Each item is listed with its name, type, and value. If you’re
storing simple pieces of string information, the value is straightforward.
If you’re storing an object, .NET calls the object’s ToString() method to
get an appropriate string representation. For complex objects, the result
may just be the class name.

Cookies Collection This section displays all the cookies that are sent with the response, as
well as the content and size of each cookie in bytes. Even if you haven’t
explicitly created a cookie, you’ll see the ASP.NET_SessionId cookie,
which contains the current session ID. If you’re using forms- based
authentication, you’ll also see the security cookie.

Headers Collection This section lists all the HTTP headers associated with the request.

Forms Collection This section lists the posted- back form information.

QueryString Collection This section lists the variables and values submitted in the query string.

Server Variables This section lists all the server variables and their contents.

CHAPTER 3 WEB FORMS 117

Tip Tracing complements Visual Studio debugging. In many cases, debugging is the best approach for
solving problems while you are coding a web application, while tracing gives you an easier option if you need
to troubleshoot problems that appear while the application is running on a web server. However, tracing
provides a few services that debugging doesn’t (at least not as easily), such as showing you the amount of
information in view state and the time taken to process the page on the server. Tracing also works regard-
less of whether you build your application in debug mode (with the debug symbols) or release mode.

You can enable tracing in two ways. You can set the Trace.IsEnabled property to true at
any point in your code, as follows:

Usually, you’ll do this in the Page.Load event handler. Another option is to use the Trace
attribute in the Page directive:

By default, trace messages are listed in the order they were generated. Alternatively, you
can specify that messages should be sorted by category, using the TraceMode attribute in the
Page directive, as follows:

or the TraceMode property of the Trace object in your code:

 Figure 3-10 shows a partial listing of trace information with the PageFlow example dem-
onstrated earlier.

CHAPTER 3 WEB FORMS118

 Figure 3-10. Basic trace information

You can also write your own information to the trace log (the portion of the trace log that
appears in the Trace Information section) using the Trace.Write() or Trace.Warn() method.
These methods are equivalent. The only difference is that Warn() displays the message in red
lettering, which makes it easier to distinguish from other messages in the list.

Here’s a code snippet that writes a trace message when the user clicks a button:

When you write trace messages, they are automatically sent to all trace listeners. However,
if you’ve disabled tracing for the page, the messages are simply ignored. Tracing messages are
automatically HTML- encoded. This means tags such as
 and are displayed as text,
not interpreted as HTML.

 Figure 3-11 shows the new entries in the log.

CHAPTER 3 WEB FORMS 119

Tip Not only can you send your own trace messages, but you can also create an event handler that
receives every trace message. Although this is an uncommon and specialized technique, you could use it to
filter out messages that are of particular interest to you during development and log them accordingly. All
you need to do is handle the Trace.TraceFinished event, which provides you with a collection of TraceContext
objects representing each trace message.

 Figure 3-11. Writing custom trace messages

Application Tracing
By default, tracing is enabled on a page-by- page basis. This isn’t always convenient. In some
cases, you want to collect trace statistics for a page and then view them later. ASP.NET sup-
ports this approach with application- level tracing.

To enable application- level tracing, you need to modify the web.config configuration file.
Look for the <trace> element and enable it as shown here:

CHAPTER 3 WEB FORMS120

This example turns on tracing (by setting enabled to true), stores a maximum of ten
requests (by setting the requestLimit), and ensures that the trace information won’t appear in
the page (by setting the pageOutput to false). It also sorts traces by time (using the traceMode
attribute), which means that the newest ten traces are kept, and it only allows local users to
review the stored traces (using the localOnly attribute).

When you enable application- level tracing, you won’t see the trace information on the
page. Instead, to view tracing information you must request the trace.axd application exten-
sion in your web application’s root directory. This extension doesn’t correspond to an actual
file—instead, ASP.NET automatically intercepts the request and lists the most recently col-
lected trace requests (as shown in Figure 3-12), provided you’re making the request from the
local machine or have enabled remote tracing. You can see the detailed information for any
request by clicking the View Details link.

 Figure 3-12. Traced application request

 Table 3-7 describes the full list of tracing options in the web.config <trace> element.

CHAPTER 3 WEB FORMS 121

Table 3-7. Tracing Options

Attribute Values Description
enabled true, false This turns tracing on or off for all pages. This is

the default setting for your web application—you
can still override it on a page-by- page basis with
the Page directive. Use the pageOutput setting to
determine whether trace information is shown in
the page or collected silently.

traceMode SortByTime,
SortByCategory

This determines the sort order of trace messages.

localOnly true, false This determines whether tracing information will be
shown only to local clients (clients using the same
computer) or can be shown to remote clients as well.
By default, this is true and remote clients cannot see
tracing information. In a production- level applica-
tion, this should always be true to ensure security.

pageOutput true, false This determines whether tracing information
will be displayed on the page (as it is with
 page- level tracing) or just stored on the server
 (application- level tracing). If you choose false to
use application- level tracing, you’ll still be able
to view the collected information by requesting
trace.axd from the virtual directory where your
application is running.

requestLimit Any integer When using application- level tracing, this is the
number of HTTP requests (for example, 10) for
which tracing information will be stored. Un-
like page- level tracing, this allows you to collect
a batch of information from multiple requests. If
you specify any value greater than 10,000, ASP.
NET treats it as 10,000. When the maximum is
reached, the behavior depends on the value of the
mostRecent setting.

mostRecent true, false If true, ASP.NET keeps only the most recent trace
messages. When the requestLimit maximum is
reached, the information for the oldest request is
abandoned every time a new request is received.
If false (the default), ASP.NET stops collecting
new trace messages when the limit is reached and
ignores subsequent requests.

writeToDiagnosticsTrace true, false If true, all trace messages are also forwarded to
the System.Diagnostics tracing infrastructure
and received by any trace listeners you’ve config-
ured using that model. The default is false. The
System.Diagnostics trace features are not ASP.
NET- specific and can be used in a wide variety of
.NET applications. They may be used in ASP.NET
as a way to automatically capture trace messages
and enter them in an event log.

CHAPTER 3 WEB FORMS122

Tracing with the Web Development Helper
If you’ve installed the Web Development Helper introduced in Chapter 2 (and available at

), you have another option for
looking at tracing information—viewing it in a separate window.

To try this out, follow the instructions in Chapter 2 to configure the module for the Web
Development Helper in your web application, and then choose Tools Web Development
Helper to switch it on in your browser.

When the Web Developer Helper is running, it automatically removes trace information
from the page. To see the tracing information, you can either uncheck the Hide Trace option
(choose Tools Options from the Web Development Helper and then click the ASP.NET tab)
or you can open it in a separate window (choose ASP.NET Show Trace Information from the
Web Development Helper).

 Figure 3-13 shows this handy feature at work.

 Figure 3-13. Managing trace information with the Web Development Helper

Accessing the HTTP Context in Another Class
Over the past several sections, you’ve seen how the Page class exposes a significant number of
useful features that let you retrieve information about the current HTTP context. These details
are available because they’re provided as properties of the Page class. But what if you want to
retrieve this information from inside another class, one that doesn’t derive from Page?

CHAPTER 3 WEB FORMS 123

Fortunately, another way exists to get access to all the HTTP context information. You
can use the System.Web.HttpContext class. This class exposes a static property called Current,
which returns an instance of the HttpContext class that represents all the information about the
current request and response. It provides the same set of built- in ASP.NET objects as properties.

For example, here’s how you would write a trace message from another component that
doesn’t derive from Page but is being used by a web page as part of a web request:

If you want to perform multiple operations, it may be slightly faster to retrieve a reference
to the current context and then reuse it:

Summary
In this chapter you walked through a detailed examination of the ASP.NET page. You learned
what it is and how it really works behind the scenes with postbacks and view state. You also
learned the basics of the server control model, examined the System.Web.UI.Page class, and
learned how to use tracing. In the next chapter, you’ll take a closer look at the web controls
that ASP.NET gives you to build sophisticated pages.

125

C H A P T E R 4

Server Controls

ASP.NET server controls are a fundamental part of the ASP.NET architecture. Essentially,
server controls are classes in the .NET Framework that represent visual elements on a web
form. Some of these classes are relatively straightforward and map closely to a specific HTML
tag. Other controls are much more ambitious abstractions that render a more complex repre-
sentation from multiple HTML elements.

In this chapter, you’ll learn about the different types of ASP.NET server controls and how
they’re related. You’ll also learn how to use validation controls to ensure that the user input
matches specific rules before a web page is submitted to the server.

Note ASP.NET 3.5 includes very few new controls. You’ll learn about a new control for displaying bound
data—the ListView—in Chapter 10. In Chapter 32, you’ll learn about a small set of new controls for creating
 Ajax- style pages.

Types of Server Controls
ASP.NET offers many different server controls, which fall into several categories. This chapter
explores the controls in the following categories:

HTML server controls: These are classes that wrap the standard HTML elements. Apart
from this attribute, the declaration for an HTML server control remains the same. Two
examples include HtmlAnchor (for the <a> tag) and HtmlSelect (for the <select> tag).
However, you can turn any HTML tag into a server control. If there isn’t a direct cor-
responding class, ASP.NET will simply use the HtmlGenericControl class. To change an
ordinary HTML element into a server control, simply add the runat="server" attribute to
the element tag.

Web controls: These classes duplicate the functionalities of the basic HTML elements but
have a more consistent and meaningful set of properties and methods that make it easier
for the developer to declare and access them. Some examples are the HyperLink, ListBox,
and Button controls. In addition, several other types of ASP.NET controls (such as rich
controls and validation controls) are commonly considered to be special types of web
controls. In Visual Studio, you’ll find the basic web forms controls in the Standard tab of
the Toolbox.

CHAPTER 4 SERVER CONTROLS126

Rich controls: These advanced controls have the ability to generate a large amount of
HTML markup and even client- side JavaScript to create the interface. Examples include
the Calendar, AdRotator, and TreeView controls. In Visual Studio, many rich controls are
also found in the Standard tab of the Toolbox.

Validation controls: This set of controls allows you to easily validate an associated input
control against several standard or user- defined rules. For example, you can specify that
the input can’t be empty, that it must be a number, that it must be greater than a certain
value, and so on. If validation fails, you can prevent page processing or allow these con-
trols to show inline error messages in the page. In Visual Studio, these controls are found
in the Validation tab of the Toolbox.

Additionally, you’ll examine several more specialized control groupings in other chapters.
These include the following:

Data controls: These controls include sophisticated grids and lists that are designed to
display large amounts of data, with support for advanced features such as templating,
editing, sorting, and pagination. This set also includes the data source controls that allow
you to bind to different data sources declaratively, without writing extra code. You’ll learn
about the data controls in Chapters 9 and 10.

Navigation controls: These controls are designed to display site maps and allow the user to
navigate from one page to another. You’ll learn about the navigation controls in Chapter 17.

Login controls: These controls support forms authentication, an ASP.NET model for
authenticating users against a database and tracking their status. Rather than writing
your own interfaces to work with forms authentication, you can use these controls to get
prebuilt, customizable login pages, password recovery, and user- creation wizards. You’ll
learn about the login controls in Chapter 21.

Web parts controls: This set of controls supports WebParts, an ASP.NET model for
building componentized, highly configurable web portals. You’ll learn about WebParts
in Chapter 30.

ASP.NET AJAX controls: These controls allow you to use Ajax techniques in your web
pages without forcing you to write client- side code. Ajax- style pages can be more respon-
sive because they bypass the regular postback-and- refresh page cycle. You’ll learn much
more in Chapter 32.

ASP.NET mobile controls: This is a set of controls that resembles the web controls but
is customized to support mobile clients such as PDAs, smart phones, and so on, by ren-
dering pages to markup standards such as HTML 3.2 or WML 1.1. The mobile controls
are highly adaptive, which means that when you create a page using these controls, the
page can be rendered in several completely different ways depending on the device that’s
accessing the page. (This concept is also used in ordinary web controls on a lesser scale.
They can generate XHTML or HTML 4.01 with JavaScript code or generate plain HTML 3.2
code according to the client browser’s capabilities.)

ASP.NET mobile controls aren’t covered in this book, although you can learn more at
.

CHAPTER 4 SERVER CONTROLS 127

The Server Control Hierarchy
All server controls derive from the base Control class in the System.Web.UI namespace. This
is true whether you’re using HTML server controls, using web controls, or creating your own
custom controls. It also applies to the Page class from which all web forms derive. Figure 4-1
illustrates the main branches of this inheritance chain.

 Figure 4-1. Server control inheritance

Because all controls derive from the base Control class, you have a basic common denom-
inator that you can use to manipulate any control on the page, even if you don’t know the
specific control type. (For example, you could use this technique to loop through all the con-
trols on the page and hide each one by setting the Visible property to false.) Tables 4- 1 and 4- 2
describe the most commonly used members of the Control class.

Table 4-1. Control Class Properties

Property Description
ClientID Returns the identifier of the control, which is a unique name created by ASP.NET

at the time the page is instantiated.

Controls Returns the collection of child controls. You can use the Page.Controls col-
lection to get the top- level collection of controls on the page. Each control
in the Controls collection may contain its own child controls, and those
controls can hold still more controls of their own, and so on.

EnableViewState Returns or sets a Boolean value indicating whether the control should
maintain its state across postbacks of its parent page. This property is true
by default.

ID Returns or sets the identifier of the control. In practice, this is the name
through which you can access the control from the server- side scripts or the
 code- behind class.

Page Returns a reference to the page object that contains the control.

Parent Returns a reference to the control’s parent, which can be the page or another
container control.

Visible Returns or sets a Boolean value indicating whether the control should be
rendered. If false, the control isn’t just made invisible on the client—instead,
the corresponding HTML tag is not generated.

CHAPTER 4 SERVER CONTROLS128

Table 4-2. Control Class Methods

Method Description
DataBind() Binds the control and all of its child controls to the specified data source or

expression. You’ll learn about data binding in Part 2.

FindControl() Searches for a child control with a specific name in the current control and all
contained controls. If the child control is found, the method returns a reference
of the general type Control. You can then cast this control to the proper type.

HasControls() Returns a Boolean value indicating whether this control has any child controls.
The control must be a container tag to have child controls (such as a <div> tag).

Render() Writes the HTML output for the control based on its current state. You don’t
call this method directly. Instead, ASP.NET calls it when the page is being
rendered.

HTML Server Controls
In the following sections you’ll learn about the HTML server controls, which are defined in the
namespace System.Web.UI.HtmlControls. Overall, there are about 20 distinct HTML server
control classes. They’re split into separate categories based on whether they are input controls
(in which case they derive from HtmlInputControl) or can contain other controls (in which
case they derive from HtmlContainerControl). Figure 4-2 shows the inheritance hierarchy.

 Figure 4-2. HTML server controls

CHAPTER 4 SERVER CONTROLS 129

The HtmlControl Class
All the HTML server controls derive from the base class HtmlControl. Table 4-3 shows the
properties that the HtmlControl class adds to the base Control class.

Table 4-3. HtmlControl Properties

Property Description
Attributes Allows you to access or add attributes in the control tag. You can use this collec-

tion to add attributes that are not exposed by specific properties. (For example, you
could add the onFocus attribute to a text box and specify some JavaScript code to
configure what happens when the text box gets focus in the page.)

Disabled Returns or sets the control’s disabled state. If true, the control is usually rendered
as a “grayed- out” control and is not usable.

Style Returns a collection of CSS attributes that are applied to the control. In the web
page you set this property as a semicolon- delimited list of style:value attributes. In
Visual Studio, you can set this information using a designer by right- clicking the
control and selecting New Style. Styles are discussed in more detail in Chapter 16.

TagName Returns the control’s tag name, such as a, img, and so on.

The HtmlContainerControl Class
Any HTML tag that has both an opening and a closing tag can contain other HTML content or
controls. One example is the anchor tag, which usually wraps text or an image with the tags
<a>.... Many other HTML tags also work as containers, including everything from the
<div> tag (which allows you to format a block of content) to the lowly tag (which applies
bold formatting). These tags don’t map to specific HTML server control classes, but you can
still use them with the runat="server" attribute. In this case, you interact with them using the
HtmlGenericControl class, which itself derives from HtmlContainerControl.

To support containment, the HtmlContainerControl class adds the two properties shown
in Table 4-4.

Table 4-4. HtmlContainerControl Properties

Property Description
InnerHtml Returns or sets the HTML text inside the opening and closing tags. When you

use this property, all characters are left as is. This means you can embed HTML
markup (bolding text, adding line breaks, and so on).

InnerText Returns or sets the text inside the opening and closing tags. When you use this
property, any characters that would be interpreted as special HTML syntax
(such as <, the angle bracket) are automatically replaced with the HTML entity
equivalents.

CHAPTER 4 SERVER CONTROLS130

The HtmlInputControl Class
The HTML input controls allow for user interaction. These include the familiar graphical
widgets, including check boxes, text boxes, buttons, and list boxes. All of these controls are
generated with the <input> tag. The type attribute indicates the type of input control, as
in <input type="text"> (a text box), <input type="submit"> (a submit button), and <input
type="file"> (controls for uploading a file).

Server-side input controls derive from HtmlInputControl, which adds the properties
shown in Table 4-5.

Table 4-5. HtmlInputControl Properties

Property Description
Type Gets the type of an HtmlInputControl. For example, if this property is

set to text, the HtmlInputControl is a text box for data entry.

Value Gets or sets the value associated with an input control. The value
associated with a control depends on the type of control. For example,
in a text box this property contains the text entered in the control. For
buttons, this defines the text on the button.

The HTML Server Control Classes
 Table 4-6 lists all the available HTML server controls and the specific properties and events
that each one adds to the base class. As noted earlier, the declaration of HTML server controls
on the page is the same as what you use for normal static HTML tags, with the addition of the
runat="server" attribute. It is this attribute that allows ASP.NET to process them and translate
them into instances of the corresponding .NET class. For this reason, the HTML server con-
trols are a good option if you’re converting your existing HTML or ASP page to an ASP.NET
web form.

Table 4-6. HTML Server Control Classes

Tag Declaration .NET Class Specific Members
 HtmlAnchor HRef, Target, Title, Name,

ServerClick event

<button runat="server"> HtmlButton CausesValidation, ValidationGroup,
ServerClick event

<form runat="server"> HtmlForm Enctype, Method, Target,
DefaultButton, DefaultFocus

 HtmlImage Align, Alt, Border, Height, Src, Width

<input type="button"
runat="server">

HtmlInputButton Type, Value, CausesValidation,
ValidationGroup, ServerClick event

<input type="reset"
runat="server">

HtmlInputReset Type, Value

CHAPTER 4 SERVER CONTROLS 131

Tag Declaration .NET Class Specific Members

<input type="submit"
runat="server">

HtmlInputSubmit Type, Value, CausesValidation,
 ValidationGroup, ServerClick event

<input type="checkbox"
runat="server">

HtmlInputCheckBox Checked, Type, Value, ServerClick
event

<input type="file"
runat="server">

HtmlInputFile Accept, MaxLength, PostedFile, Size,
Type, Value

<input type="hidden"
runat="server">

HtmlInputHidden Type, Value, ServerChange event

<input type="image"
runat="server">

HtmlInputImage Align, Alt, Border, Src, Type, Value,
CausesValidation, ValidationGroup,
ServerClick event

<input type="radio"
runat="server">

HtmlInputRadioButton Checked, Type, Value, ServerChange
event

<input type="text"
runat="server">

HtmlInputText MaxLength, Type, Value,
ServerChange event

<input type="password"
runat="server">

HtmlInputPassword MaxLength, Type, Value,
ServerChange event

<select runat="server"> HtmlSelect Multiple, SelectedIndex, Size, Value,
DataSource, DataTextField,
DataValueField, Items (collection),
ServerChange event

<table runat="server">,
<td runat="server">

HtmlTable Align, BgColor, Border,
BorderColor, CellPadding,
CellSpacing, Height, NoWrap, Width,
Rows (collection)

<th runat="server"> HtmlTableCell Align, BgColor, Border, BorderColor,
ColSpan, Height, NoWrap,
RowSpan, VAlign, Width

<tr runat="server"> HtmlTableRow Align, BgColor, Border, BorderColor,
Height, VAlign, Cells (collection)

<textarea runat="server"> HtmlTextArea Cols, Rows, Value, ServerChange
event

Any other HTML tag with the
runat="server" attribute

HtmlGenericControl Non

Note Two specialized HTML controls aren’t shown in Table 4-6. These are the HtmlHead and HtmlTitle
controls, which provide server- side access to the <head> portion of a web page. Using these controls, you
can dynamically set the title, metadata, and linked stylesheets for the page. Chapter 3 shows an example.

CHAPTER 4 SERVER CONTROLS132

The meaning of most of the HTML server control properties is quite obvious, because they
match the underlying HTML tag attributes. This means there’s no need to focus on each indi-
vidual control. In the next few sections, you’ll get an overview of some common techniques for
using controls and dig a little deeper into their events and the common object model.

Setting Style Attributes and Other Properties
The following example shows how you can configure a standard HtmlInputText control (which
represents the <input type="text"> tag). To read or set the current text in the text box, you use
the Value property. If you want to configure the style information, you need to add new CSS
style attributes using the Style collection. Finally, if you want to set other attributes that aren’t
exposed by any properties, you need to use the Attributes collection. This example uses the
Attributes collection to associate some simple JavaScript code—showing an alert message box
with the current value of the text box—to the client- side onfocus event of the control.

If you request the page, the following HTML code will be returned for the text box:

CHAPTER 4 SERVER CONTROLS 133

The CSS style attribute may also include information that wasn’t explicitly set in the code.
For example, if you resize the input control in the Visual Studio designer, Visual Studio will
add the height and width properties to the style it uses. These details will then also appear in
the final HTML.

 Figure 4-3 shows the resulting page when focus changes to the text box.

 Figure 4-3. Testing HTML server controls

This process of control interaction is essentially the same for all HTML server controls.
Style properties and attributes are always set in the same way. The only difference is that some
controls expose additional properties that you can use. For example, the HtmlAnchor control
exposes an HRef property that lets you set the target page for the link.

Programmatically Creating Server Controls
Sometimes you don’t know in advance how many text boxes, radio buttons, table rows, or
other controls you need because this might depend on other factors such as the number of
records stored in a database or the user’s input. With ASP.NET, the solution is easy—you can
simply create instances of the HTML server controls you need, set their properties with the
 object- oriented approach used in the previous example, and then add them to the Controls
collection of the containing page. This technique was introduced in the previous chapter, and
it applies equally well to HTML server controls and web controls.

For example, the following code dynamically creates a table with five rows and four cells
per row, sets their colors and text, and shows all this on the page. The interesting detail is that
no control tags are declared in the .aspx file. Instead, everything is generated programmatically.

CHAPTER 4 SERVER CONTROLS134

This example contains two nested loops. The outer loop creates the rows. The inner loop
creates the individual cells for each row, and adds them to the Cells collection of the current
row. When the inner loop ends, the code adds the entire row to the Rows collection of the table.
The final step occurs when the outer loop is finished. At this point, the code adds the completed
table to the Controls collection of the page.

 Figure 4-4 shows the resulting page.

CHAPTER 4 SERVER CONTROLS 135

 Figure 4-4. A dynamically generated table

This example used a table because it gave a good opportunity to show how child controls
(cells and rows) are added to the Controls collection of the parent, but of course this mecha-
nism works with any other server control.

Handling Server- Side Events
HTML server controls provide a sparse event model with two possible events: ServerClick
and ServerChange. The ServerClick event is simply a click that is processed on the server side.
It’s provided by most button controls, and it allows your code to take immediate action. This
action might override the expected behavior. For example, if you intercept the click event of
a hyperlink control (the <a> element), the user won’t be redirected to a new page unless you
provide extra code to forward the request.

The ServerChange event responds when a change has been made to a text or selection
control. This event doesn’t occur until the page is posted back (for example, after the user
clicks a submit button). At this point, the ServerChange event occurs for all changed controls,
followed by the appropriate ServerClick.

 Table 4-7 shows which controls provide a ServerClick event and which ones provide
a ServerChange event.

CHAPTER 4 SERVER CONTROLS136

Table 4-7. HTML Control Events

Event Controls That Provide It
ServerClick HtmlAnchor, HtmlButton, HtmlInputButton, HtmlInputSubmit, HtmlInputReset,

HtmlInputImage

ServerChange HtmlInputText, HtmlInputCheckBox, HtmlInputRadioButton, HtmlInputHidden,
HtmlSelect, HtmlTextArea

The ServerClick and ServerChange Events
The following example demonstrates the ServerClick and ServerChange events and shows
you the order in which they unfold. To create this example, you need a text box, list box, and
check box.

Here are the controls on the page:

Note that this code declares two list items for the list box and includes the multiple attri-
bute. This means that the user will be able to select multiple items by holding down the Ctrl
key while clicking each entry.

The next step is to add event handlers for the ServerChange event. The text box and the
check box are attached to the same event handler, while the list box uses a separate event han-
dler with different code. Here’s the event handling code that works with the text box and list box:

The actual event handler code is quite straightforward. It simply casts the sender object
to a Control type, reads its ID property, and writes a message declaring that the event was
detected.

To attach the event handler to the appropriate server controls, you need to switch to
the code- behind and add then wire the events using the Handles keyword like CheckBox1.
OnServerChange and Textbox1.OnServerChange.

CHAPTER 4 SERVER CONTROLS 137

Note Visual Studio provides a greater level of design- time support for events with web controls. When
working with web controls, you can attach event handlers using a special event view in the Properties
window—you just need to click the lightning bolt icon. With HTML server controls, event handlers are added
using the Handles statement by editing the code- behind.

Next, you need to create the event handler for the list box. This event handler cycles
through the control’s Items collection and writes the value of all the selected items to the web
page, as follows:

Finally, the submit button handles the ServerClick event, as shown here:

As an added bonus, when the page is created, the event handler for the Page.Load event
adds another three items to the list box, provided the page is being requested for the first time.
This shows how easy it is to programmatically add list items.

To test this page, request it in the browser, select some items in the list box, type some
characters in the text box, select the check box, and click the submit button to generate a post-
back. You should end up with something similar to what’s shown in Figure 4-5.

CHAPTER 4 SERVER CONTROLS138

 Figure 4-5. Detecting change events

Note that the order of change events is nondeterministic, and you shouldn’t rely on these
events occurring in any set order. However, you’re likely to see events raised in the order in which
the controls are declared. The only detail of which you’re guaranteed is that all the change events
fire before the ServerClick event that triggered the postback.

Web Controls
HTML server controls provide a relatively fast way to migrate to ASP.NET, but not necessarily
the best way. For one thing, the names of HTML controls and their attributes are not always
intuitive, and they don’t have the same design- time support for attaching event handlers. The
HTML controls also have certain limitations, such as that style properties must be set through
CSS syntax (which is more difficult than setting a direct property) and that change events can’t
be raised until the page is posted back in response to another action. Finally, HTML server con-
trols can’t provide user interface elements that aren’t already defined in the HTML standard. If
you want to create some sort of aggregate control that uses a combination of HTML elements
to render a complex interface, you’re on your own.

To address these issues, ASP.NET provides a higher- level web control model. All web con-
trols are defined in the System.Web.UI.WebControls namespace and derive from the WebControl
base class, which provides a more abstract, consistent model than the HTML server controls.
Web controls also enable additional features, such as automatic postback. But the really exciting
part is that many extended controls don’t just map a single HTML tag but instead generate more
complex output made up of several HTML tags and JavaScript code. Examples include lists of
check boxes, radio buttons, calendars, editable grids, and so on.

 Figure 4-6 shows a portion of the inheritance hierarchy for web controls.

CHAPTER 4 SERVER CONTROLS 139

 Figure 4-6. Web controls

The WebControl Base Class
All the web controls inherit from the WebControl class. The WebControl class also derives
from Control. As a result, many of its properties and methods—such as Controls, Visible, and
FindControl()—are similar to those of the HTML server controls. However, the WebControl
class adds the properties shown in Table 4-8. Many of these properties wrap the CSS style
attributes, such as the foreground or background color, the font, the height, the width, and so
on. These properties allow you to configure the appearance of a web control much more easily
(and with less chance of error).

CHAPTER 4 SERVER CONTROLS140

Table 4-8. WebControl Class Properties

Property Description
AccessKey Returns or sets the keyboard shortcut that allows the user to quickly navigate to

the control. For example, if set to A, the user can move the focus to this control
by pressing Alt+A.

BackColor Returns or sets the background color.

BorderColor Returns or sets the border color.

BorderStyle One of the values from the BorderStyle enumeration, including Dashed, Dotted,
Double, Groove, Ridge, Inset, Outset, Solid, and None.

BorderWidth Returns or sets the border width.

CssClass Returns or sets the CSS style to associate with the control. The CSS style can be
defined in a <style> section at the top of the page or in a separate CSS file refer-
enced by the page.

Enabled Returns or sets the control’s enabled state. If false, the control is usually ren-
dered grayed out and is not usable.

Font Returns an object with all the style information of the font used for the control’s
text. This property includes subproperties that can be set with the object- walker
syntax shown in this chapter.

ForeColor Returns or sets the foreground color—for example, that of the text of the control.

Height Returns or sets the control’s height.

TabIndex A number that allows you to control the tab order. The control with a TabIndex
of 0 has the focus when the page first loads. Pressing Tab moves the user to the
control with the next lowest TabIndex, provided it is enabled. This property is
supported only in Internet Explorer 4.0 and higher.

Tooltip Displays a text message when the user hovers the mouse above the control.
Many older browsers don’t support this property.

Width Returns or sets the control’s width.

Basic Web Control Classes
ASP.NET includes a web control that duplicates each HTML server control and provides the
same functionality. These web controls inherit from WebControl and add their own properties
and events. Table 4-9 summarizes these core controls and their specific members.

CHAPTER 4 SERVER CONTROLS 141

Table 4-9. Basic Web Control Classes

ASP.NET Tag Declaration Generated HTML Key Members
<asp:Button> <input type="submit"/> or

<input type="button"/>
Text, CausesValidation, PostBackUrl,
ValidationGroup, Click event

<asp:CheckBox> <input type="checkbox"/> AutoPostBack, Checked, Text, TextAlign,
CheckedChanged event

<asp:FileUpload> <input type="file"> FileBytes, FileContent, FileName,
HasFile, PostedFile, SaveAs()

<asp:HiddenField> <input type="hidden"> Value

<asp:HyperLink> <a>. . . ImageUrl, NavigateUrl, Target, Text

<asp:Image> AlternateText, ImageAlign, ImageUrl

<asp:ImageButton> <input type="image"/> CausesValidation, ValidationGroup,
Click event

<asp:ImageMap> <map> HotSpotMode, HotSpots (collection),
AlternateText, ImageAlign, ImageUrl

<asp:Label> . . . Text, AssociatedControlID

<asp:LinkButton> <a> Text, CausesValidation, ValidationGroup,
Click event

<asp:Panel> <div>. . .</div> BackImageUrl, DefaultButton,
GroupingText, HorizontalAlign,
Scrollbars, Wrap

<asp:RadioButton> <input type="radio"/> AutoPostBack, Checked, GroupName,
Text, TextAlign, CheckedChanged event

<asp:Table> <table>. . .</table> BackImageUrl, CellPadding,
CellSpacing, GridLines,
HorizontalAlign, Rows (collection)

<asp:TableCell> <td>. . .</td> ColumnSpan, HorizontalAlign,
RowSpan, Text, VerticalAlign, Wrap

<asp:TableRow> <tr>. . .</tr> Cells (collection), HorizontalAlign,
VerticalAlign

<asp:TextBox> <input type="text"/> or
<textarea>. . .</textarea>

AutoPostBack, Columns, MaxLength,
ReadOnly, Rows, Text, TextMode, Wrap,
TextChanged even

The properties of web controls are all fairly intuitive. One of the goals of web controls is to
make it easier to set a control’s attributes through properties with consistent names, without
having to worry about the details of how they translate to HTML code (although having a good
knowledge of HTML certainly helps). For this reason, this chapter won’t describe and show
examples for every type of control. Instead, we’ll provide a general discussion that’s useful for
every control.

To start highlighting some of the key differences between HTML server controls and web
controls, consider the following web control tag:

CHAPTER 4 SERVER CONTROLS142

Web controls are always declared on the page with the syntax <asp:ControlName>, with
the asp: prefix that makes them immediately recognizable as being different from the HTML
controls. But this example also demonstrates a more dramatic difference—the way that style
information is specified.

Essentially, this tag generates a text box control with a width of 250 pixels, a red fore-
ground color, and a light yellow background. The text is displayed with the font Verdana, with
a size of 20, and with bold formatting. The differences between the previous declaration and
the respective declaration of an HTML tag are the following:

(input).

attribute.

being grouped together in a single style attribute.

Web controls also have two special restrictions:

Every control declaration must have a corresponding closing tag or use /> (the empty
element syntax) at the end of the opening tag. In other words, ASP.NET tags follow
the same rules as tags in XHTML. If you don’t close the tag, you’ll get a runtime error.
Breaking this rule when working with HTML server controls has no adverse effect.

All web controls must be declared within a server- side form tag (and there can be
only one server- side form per page), even if they don’t cause a postback. Otherwise,
you’ll get a run- time error. This rule is not necessary when working with HTML server
controls, provided you don’t need to handle postbacks.

If you request a page with this tag, you’ll see that the control is translated into the follow-
ing HTML tag when the page is rendered:

Note The exact HTML that’s rendered depends on the properties you’ve set and the browser that’s
making the request. You’ll learn more about ASP.NET’s rendering system (and how it differentiates between
different types of browsers) when you consider custom controls in Chapter 27.

CHAPTER 4 SERVER CONTROLS 143

Units
All the control properties that use measurements, including BorderWidth, Height, and Width,
require the Unit structure, which combines a numeric value with a type of measurement (pix-
els, percentage, and so on). This means that when you set these properties in a control tag, you
must make sure to append px (for pixel) or % (for percentage) to the number to indicate the
type of unit.

Here’s an example with a Panel control that is 300 pixels wide and has a height equal to
50 percent of the current browser window:

If you’re assigning a unit- based property through code, you need to use one of the static
methods of the Unit type. Use Pixel() to supply a value in pixels, and use Percentage() to sup-
ply a percentage value.

You could also manually create a Unit object and initialize it using one of the supplied
constructors and the UnitType enumeration. This requires a few more steps but allows you to
easily assign the same unit to several controls.

pnl.Width = myUnitEnumerations
Enumerations are used heavily in the .NET class library to group a set of related constants. For
example, when you set a control’s BorderStyle property, you can choose one of several pre-
defined values from the BorderStyle enumeration. In code, you set an enumeration using the
dot syntax:

In the .aspx file, you set an enumeration by specifying one of the allowed values as a string.
You don’t include the name of the enumeration type, which is assumed automatically.

CHAPTER 4 SERVER CONTROLS144

Colors
The Color property refers to a Color object from the System.Drawing namespace. You can
create Color objects in several ways:

Using an ARGB (alpha, red, green, blue) color value: You specify each value as integer.

Using a predefined .NET color name: You choose the correspondingly named read- only
property from the Color class. These properties include all the HTML colors.

Using an HTML color name: You specify this value as a string using the ColorTranslator
class.

To use these any of techniques, you must import the System.Drawing namespace, as
follows:

The following code shows several ways to specify a color in code:

When defining a color in the .aspx file, you can use any one of the known color names, as
follows:

Refer to the MSDN documentation for a full list of color names. Alternatively, you can use
a hexadecimal color number (in the format #<red><green><blue>), as shown here:

Fonts
The Font property actually references a full FontInfo object, which is defined in the System.
Web.UI.WebControls namespace. Every FontInfo object has several properties that define
a font’s name, size, and style. Even though the WebControl.Font property is read- only, you
can modify all the FontInfo properties (shown in Table 4-10).

CHAPTER 4 SERVER CONTROLS 145

Table 4-10. FontInfo Properties

Property Description
Name A string indicating the font name (such as Verdana).

Names An array of strings with font names, which are ordered by preference.

Size The size of the font as a FontUnit object. This can represent an absolute
or relative size.

Bold, Italic, Strikeout,
Underline, and Overline

Boolean properties that either apply the given style attribute or ignore it.

In code, you can assign values to the various font properties as shown here:

You can also set the size using the FontUnit type:

In the .aspx file, you need to use a special object- walker syntax to specify object properties
such as font. The object- walker syntax uses a hyphen (-) to separate properties. For example,
you could set a control with a specific font (Tahoma) and font size (40 point) like this:

or with a relative size, as follows:

Of course, in the world of the Internet, font names are just recommendations. If a given
font isn’t present on a client’s computer, the browser attempts to substitute a similar font.
(For more information on this font substitution process, refer to the CSS specification at

ml.)
If you want to provide a list of possible fonts, you can use the FontInfo.Names property

instead of the FontInfo.Name property. The Names property accepts an array of names that
will be rendered as an ordered list (with greatest preference given to the names at the top of
the list). Here’s an example:

CHAPTER 4 SERVER CONTROLS146

Tip The Names and Name properties are kept synchronized, and setting either one affects the other.
When you set the Names property, the Name property is automatically set to the first item in the array you
used for the Names property. If you set the Name property, the Names property is automatically set with an
array containing a single item. Therefore, you should use only the Name property or the Names property, but
not both at once.

Focus
Unlike HTML server controls, every web control provides a Focus() method. The focus method
has an effect only for input controls (controls that can accept keystrokes from the user). When
the page is rendered in the client browser, the user starts in the focused control.

For example, if you have a form that allows the user to edit customer information, you
might call the Focus() method on the first text box with customer address information. That
way, the cursor appears in this text box immediately. Also, if the text box is partway down the
form, the page scrolls to the correct position automatically. Once the page is rendered, the
user can move from control to control using the time- honored Tab key.

Of course, if you’re familiar with the HTML standard, you know there isn’t any built- in
way to give focus to an input control. Instead, you need to rely on JavaScript. This is the secret
to ASP.NET’s implementation. When your code is finished processing and the page is ren-
dered, ASP.NET adds an extra block of JavaScript code to the end of your page. This JavaScript
code simply sets the focus to the last control that had the Focus() method triggered. Here’s
the code that ASP.NET adds to your rendered web page to move the focus to a control named
TextBox2:

If you haven’t called Focus() at all, this code isn’t emitted. If you’ve called it for more than
one control, the JavaScript code uses the more recently focused control.

Rather than call the Focus() method programmatically, you can set a control that should
always be focused (unless you override it by calling the Focus() method). You do this by setting
the Form.DefaultFocus property, like so:

Incidentally, the focusing code relies on a JavaScript method named WebForm_AutoFocus(),
which ASP.NET generates automatically. Technically, the JavaScript method is provided
through an ASP.NET extension named WebResource.axd. The resource is named Focus.js.
If you dig through the rendered HTML of your page, you’ll find an element that links to this
JavaScript file that takes this form (where the d and t arguments are long):

You can type this request directly into your browser to download and examine the
JavaScript document. It’s quite lengthy, because it carefully deals with cases such as focusing

CHAPTER 4 SERVER CONTROLS 147

on a nonfocusable control that contains a focusable child. However, the following code shows
the heart of the focusing logic:

As you can see, the first task this code performs is to test whether the current browser is an
 up- level version of Internet Explorer (and hence supports the Microsoft DOM). However, even
if it isn’t, the script code still performs the autofocusing, with only subtle differences.

Another way to manage focus is using access keys. For example, if you set the AccessKey
property of a TextBox to A, then when the user presses Alt+A, focus will switch to the TextBox.
Labels can also get into the game, even though they can’t accept focus. The trick is to set the
property Label.AssociatedControlID to specify a linked input control. That way, the label
transfers focus to the control nearby.

For example, the following label gives focus to TextBox2 when the keystroke Alt+2 is
pressed:

Access keys are also supported in non- Microsoft browsers, including Firefox.

CHAPTER 4 SERVER CONTROLS148

The Default Button
Along with the idea of control focusing, ASP.NET includes a mechanism that allows you to des-
ignate a default button on a web page. The default button is the button that is “clicked” when
the user presses the Enter key. For example, on a form you might want to turn the submit but-
ton into a default button. That way, if the user hits Enter at any time, the page is posted back
and the Button.Click event is fired for that button.

To designate a default button, you must set the HtmlForm.DefaultButton property with
the ID of the respective control, as shown here:

The default button must be a control that implements the IButtonControl interface. The
interface is implemented by the Button, LinkButton, and ImageButton web controls but not by
any of the HTML server controls.

In some cases, it makes sense to have more than one default button. For example, you
might create a web page with two groups of input controls. Both groups may need a different
default button. You can handle this by placing the groups into separate panels. The Panel con-
trol also exposes the DefaultButton property, which works when any input control it contains
gets the focus.

Scrollable Panels
The Panel control has the ability to scroll. This means you can fill your Panel controls with
server controls or HTML, explicitly set the Height and Width properties of the panel so they
won’t be smaller than what’s required, and then switch on scrolling by setting the ScrollBars
property to Vertical, Horizontal, Both, or Auto (which shows scrollbars only when there’s too
much content to fit).

Here’s an example:

 Figure 4-7 shows the result.

CHAPTER 4 SERVER CONTROLS 149

 Figure 4-7. A scrollable panel

The panel is rendered as a <div> tag. The scrolling behavior is provided by setting the CSS
overflow property, which is supported in most browsers (starting with Internet Explorer 4.0
and Netscape 6.0, and including all versions of Firefox).

Handling Web Control Events
Server-side events work in much the same way as the server events of the HTML server
controls. Instead of the ServerClick events, there is a Click event, and instead of the generic
ServerChange events there are specific events such as CheckedChanged (for the RadioButton
and CheckButton) and TextChanged (for the TextBox), but the behavior remains the same.

The key difference is that web controls support the AutoPostBack feature described in
the previous chapter, which uses JavaScript to capture a client- side event and trigger a post-
back. ASP.NET receives the posted- back page and raises the corresponding server- side event
immediately.

To watch these events in action, it helps to create a simple event tracker application (see
 Figure 4-8). All this application does is add a new entry to a list control every time one of the
events it’s monitoring occurs. This allows you to see the order in which events are triggered
and the effect of using automatic postback.

CHAPTER 4 SERVER CONTROLS150

 Figure 4-8. The event tracker

In this demonstration, all control change events are handled by the same event handler:

The event handler simply adds a new message to a list box and scrolls to the end:

CHAPTER 4 SERVER CONTROLS 151

Note Automatic postback isn’t always a good thing. Posting the page back to the server interrupts the
user for a brief amount of time. If the page is large, the delay may be more than a noticeable flicker. If the
page is long and the user has scrolled to the bottom of the page, the user will lose the current position when
the page is refreshed and the view is returned to the top of the page. Because of these idiosyncrasies, it’s
a good idea to evaluate whether you really need postback and to refrain from using it for minor cosmetic rea-
sons. One possible alternative is to use the Ajax features described in Chapter 32.

The Click Event and the ImageButton Control
In the examples you’ve looked at so far, the second event parameter has always been used to
pass an empty System.EventArgs object. This object doesn’t contain any additional informa-
tion—it’s just a glorified placeholder.

One control that does send extra information is the ImageButton control. It sends a spe-
cial ImageClickEventArgs object (from the System.Web.UI namespace) that provides X and Y
properties representing the location where the image was clicked. Using this additional infor-
mation, you can create a server- side image map. For example, here’s the code that simply
displays the location where the image was clicked and checks if it was over a predetermined
region of the picture:

The sample web page shown in Figure 4-9 puts this feature to work with a simple graphi-
cal button. Depending on whether the user clicks the button border or the button surface, the
web page displays a different message.

CHAPTER 4 SERVER CONTROLS152

Note Another, more powerful approach to handling image clicks is to create a server- side image map using
the ImageMap control. The ImageMap control is demonstrated in Chapter 29, which deals with dynamic graphics.

 Figure 4-9. Using an ImageButton control

The List Controls
The list controls are specialized web controls that generate list boxes, drop- down lists, and
other repeating controls that can be either bound to a data source (such as a database or
a hard- coded collection of values) or programmatically filled with items. Most list controls
allow the user to select one or more items, but the BulletedList is an exception—it displays
a static bulleted or numbered list. Table 4-11 shows all the list controls.

Table 4-11. List Controls

Control Description
<asp:DropDownList> A drop- down list populated by a collection of <asp:ListItem> objects. In

HTML, it is rendered by a <select> tag with the size="1" attribute.

<asp:ListBox> A list box list populated by a collection of <asp:ListItem> objects. In
HTML, it is rendered by a <select> tag with the size="x" attribute, where
x is the number of visible items.

<asp:CheckBoxList> Its items are rendered as check boxes, aligned in a table with one or
more columns.

<asp:RadioButtonList> Like the <asp:CheckBoxList>, but the items are rendered as radio
buttons.

<asp:BulletedList> A static bulleted or numbered list. In HTML, it is rendered using
the or tags. You can also use this control to create a list of
hyperlinks.

CHAPTER 4 SERVER CONTROLS 153

All the list controls support the same base properties and methods as other web con-
trols. In addition, they inherit from the System.Web.UI.WebControls.ListControl class, which
exposes the properties described in Table 4-12 (among others). You can fill the lists automati-
cally from a data source (as you’ll learn in Part 2), or you can fill them programmatically or
declaratively, as you’ll see in the next section.

Table 4-12. ListControl Class Properties

Member Description
AutoPostBack If true, the form is automatically posted back when the user changes the

current selection.

Items Returns a collection of ListItem items (the items can also be added
declaratively by adding the <asp:ListItem> tag).

SelectedIndex Returns or sets the index of the selected item. For lists with multiple se-
lectable items, you should loop through the Items collection and check
the Selected property of each ListItem instead.

SelectedItem Returns a reference to the first selected ListItem. For lists with multiple
selectable items, you should loop through the Items collection and
check the Selected property of each ListItem instead.

DataSource You can set this property to an object that contains the information you
want to display (such as a DataSet, DataTable, or collection). When you
call DataBind(), the list will be filled based on that object.

DataMember Used in conjunction with data binding when the data source con-
tains more than one table (such as when the source is a DataSet). The
DataMember identifies which table you want to use.

DataTextField Used in conjunction with data binding to indicate which property or
field in the data source should be used for the text of each list item.

DataValueField Used in conjunction with data binding to indicate which property or
field in the data source should be used for the value attribute of each list
item (which isn’t displayed but can be read programmatically for future
reference).

DataTextFormatString Sets the formatting string used to render the text of the list item
(according to the DataTextField property).

In addition, the ListControl control class also defines a SelectedIndexChanged event, which
fires when the user changes the current selection.

Note The SelectedIndexChanged event and the SelectedIndex and SelectedItem properties are not used
for the BulletedList control.

CHAPTER 4 SERVER CONTROLS154

The Selectable List Controls
The selectable list controls include the DropDownList, ListBox, CheckBoxList, and RadioBut-
tonList controls—all the list controls except the BulletedList. They allow users to select one or
more of the contained items. When the page is posted back, you can check which items were
chosen.

By default, the RadioButtonList and CheckBoxList render multiple option buttons or check
boxes. Both of these classes add a few more properties that allow you to manage the layout of
these repeated items, as described in Table 4-13.

Table 4-13. Added RadioButtonList and CheckBoxList Properties

Property Description
RepeatLayout This specifies whether the check boxes or radio buttons will be ren-

dered in a table (the default option) or inline. The values are Table and
Flow, respectively.

RepeatDirection This specifies whether the list of controls will be rendered horizontally
or vertically.

RepeatColumns This sets the number of columns, in case RepeatLayout is set to Table.

CellPadding, CellSpacing,
TextAlign

If RepeatLayout is set to Table, then these properties configure the
spacing and alignment of the cells of the layout table.

Here’s an example page that declares an instance of every selectable list control, adds
items to each of them declaratively, and sets a few other properties:

CHAPTER 4 SERVER CONTROLS 155

When the page is loaded for the first time, the event handler for the Page.Load event adds
three more items to each list control programmatically, as shown here:

Finally, when the submit button is clicked, the selected items of each control are displayed
on the page. For the controls with a single selection (DropDownList and RadioButtonList), this
is just a matter of accessing the SelectedItem property. For the other controls that allow multi-
ple selections, you must cycle through all the items in the Items collection and check whether
the ListItem.Selected property is true. Here’s the code that does both of these tasks:

To test the page, load it, select one or more items in each control, and then click the but-
ton. You should get something like what’s shown in Figure 4-10.

CHAPTER 4 SERVER CONTROLS156

 Figure 4-10. Checking for selected items in the list controls

Tip You can set the ListItem.Disabled property to true if you want an item in a RadioButtonList or
CheckBoxList to be disabled. It will still appear in the page, but it will be grayed out and won’t be selectable.
The ListItem.Disabled property is ignored for ListBox and DropDownList controls.

The BulletedList Control

The BulletedList control is the server- side equivalent of the (unordered list) or
(ordered list) elements. As with all list controls, you set the collection of items that should
be displayed through the Items property. Additionally, you can use the properties in
 Table 4-14 to configure how the items are displayed.

CHAPTER 4 SERVER CONTROLS 157

Table 4-14. Added BulletedList Properties

Property Description
BulletStyle Determines the type of list. Choose from Numbered (1, 2, 3...),

LowerAlpha (a, b, c...) and UpperAlpha (A, B, C...), LowerRoman (i, ii,
iii...) and UpperRoman (I, II, III...), and the bullet symbols Disc, Circle,
Square, or CustomImage (in which case you must set the
BulletImageUrl property).

BulletImageUrl If the BulletStyle is set to CustomImage, this points to the image that is
placed to the left of each item as a bullet.

FirstBulletNumber In an ordered list (using the Numbered, LowerAlpha, UpperAlpha,
LowerRoman, or UpperRoman styles), this sets the first value. For
example, if you set FirstBulletNumber to 3, the list might read 3, 4, 5
(for Numbered) or C, D, E (for UpperAlpha).

DisplayMode Determines whether the text of each item is rendered as text (use Text,
the default) or a hyperlink (use LinkButton or HyperLink). The differ-
ence between LinkButton and HyperLink is how they treat clicks. When
you use LinkButton, the BulletedList fires a Click event that you can
react to on the server to perform the navigation. When you use
HyperLink, the BulletedList doesn’t fire the Click event—instead, it
treats the text of each list item as a relative or absolute URL, and renders
them as ordinary HTML hyperlinks. When the user clicks an item, the
browser attempts to navigate to that URL.

If you choose to set the DisplayMode to LinkButton, you can react to the Click event to
determine which item was clicked. Here’s an example:

 Figure 4-11 shows the different BulletStyle values. When you click one, the list is updated
accordingly.

CHAPTER 4 SERVER CONTROLS158

 Figure 4-11. Different BulletedList styles

Input Validation Controls
One of the most common uses for web pages (and the reason that the HTML form tags were
first created) is to collect data. Often, a web page will ask a user for some information and then
store it in a back- end database. In almost every case, this data must be validated to ensure
that you don’t store useless, spurious, or contradictory information that might cause later
problems.

Ideally, the validation of the user input should take place on the client side so that the user
is immediately informed that there’s something wrong with the input before the form is posted
back to the server. If this pattern is implemented correctly, it saves server resources and gives
the user faster feedback. However, regardless of whether client- side validation is performed,
the form’s data must also be validated on the server side. Otherwise, a shrewd attacker could
hack the page by removing the client- side JavaScript that validates the input, saving the new
page, and using it to submit bogus data.

Writing validation code by hand is a lengthy task, especially because the models for
 client- side programming (typically JavaScript) and server- side programming (in this case,
ASP.NET) are quite different. The developers at Microsoft are well aware of this, so, in addi-
tion to the set of HTML and web controls, they also developed a set of validation controls.
These controls can be declared on a web form and then bound to any other input control.
Once bound to an input control, the validation control performs automatic client- side and
 server- side validation. If the corresponding control is empty, doesn’t contain the correct
data type, or doesn’t adhere to the specified rules, the validator will prevent the page from
being posted back altogether.

The Validation Controls
ASP.NET includes six validation controls. These controls all perform a good portion of the
heavy lifting for you, thereby streamlining the validation process and saving you from having
to write tedious code. Even better, the validation controls are flexible enough to work with

CHAPTER 4 SERVER CONTROLS 159

the custom rules you define, which makes your code more reusable and modular. Table 4-15
briefly summarizes each validator.

Table 4-15. The Validation Controls

Validation Control Description
<asp:RequiredFieldValidator> Checks that the control it has to validate is not empty when

the form is submitted.

<asp:RangeValidator> Checks that the value of the associated control is within
a specified range. The value and the range can be numerical,
a date, or a string.

<asp:CompareValidator> Checks that the value of the associated control matches
a specified comparison (less than, greater than, and so on)
against another constant value or control.

<asp:RegularExpressionValidator> Checks if the value of the control it has to validate matches
the specified regular expression.

<asp:CustomValidator> Allows you to specify any client- side JavaScript validation
routine and its server- side counterpart to perform your own
custom validation logic.

<asp:ValidationSummary> Shows a summary with the error messages for each failed
validator on the page (or in a pop- up message box).

It’s important to note that you can use more than one validator for the same control. For
example, you could use a validator to ensure that an input control is not empty and another to
ensure that it contains data of a certain type. In fact, if you use the RangeValidator, Compare-
Validator, or RegularExpressionValidator, validation will automatically succeed if the input
control is empty, because there is no value to validate. If this isn’t the behavior you want, you
should add a RequiredFieldValidator to the control. This ensures that two types of validation
will be performed, effectively restricting blank values.

Although you can’t validate RadioButton or CheckBox controls, you can validate the
TextBox (the most common choice) and other controls such as ListBox, DropDownList,
RadioButtonList, HtmlInputText, HtmlTextArea, and HtmlSelect. When validating a list con-
trol, the property that is being validated is the Value property of the selected ListItem object.
Remember, the Value property is a hidden attribute that stores a piece of information in the
HTML page for each list item, but it isn’t displayed in the browser. If you don’t use the Value
attribute, you can’t validate the control (validating the text of the selection isn’t a supported
option).

Technically, every control class has the option of designating one property that can be
validated using the ValidationProperty attribute. For example, if you create your own control
class named FancyTextBox, here’s how you would designate the Text property as the property
that supports validation:

You’ll learn more about how attributes work with custom controls in Chapter 28.

CHAPTER 4 SERVER CONTROLS160

The Validation Process
You can use the validation controls to verify a page automatically when the user submits it or
to verify it manually in your code. The first approach is the most common.

When using automatic validation, the user receives a normal page and begins to fill in the
input controls. When finished, the user clicks a button to submit the page. Every button has
a CausesValidation property, which can be set to true or false. What happens when the user
clicks the button depends on the value of the CausesValidation property:

CausesValidation is false: ASP.NET will ignore the validation controls, the page will be
posted back, and your event- handling code will run normally.

CausesValidation is true (the default): ASP.NET will automatically validate the page
when the user clicks the button. It does this by performing the validation for each control
on the page. If any control fails to validate, ASP.NET will return the page with some error
information, depending on your settings. Your click event- handling code may or may not
be executed—meaning you’ll have to specifically check in the event handler whether the
page is valid.

Note Many other button- like controls that can be used to submit the page also provide the CausesValida-
tion property. Examples include the LinkButton, ImageButton, and BulletedList.

Based on this description, you’ll realize that validation happens automatically when cer-
tain buttons are clicked. It doesn’t happen when the page is posted back because of a change
event (such as choosing a new value in an AutoPostBack list) or if the user clicks a button that
has CausesValidation set to false. However, you can still validate one or more controls manu-
ally and then make a decision in your code based on the results.

In browsers that support it, ASP.NET will automatically add code for client- side valida-
tion. In this case, when the user clicks a CausesValidation button, the same error messages
will appear without the page needing to be submitted and returned from the server. This
increases the responsiveness of the application. However, if the page validates successfully on
the client side, ASP.NET will still revalidate it when it’s received at the server. By performing
the validation at both ends, your application can be as responsive as possible but still remain
secure. Best of all, the client- side validation works in most non- Microsoft web browsers, such
as Firefox.

 Figure 4-12 shows a page that uses validation with several text boxes and ends with a vali-
dation summary. In the following section, you’ll learn about how you can use the different
validators in this example.

CHAPTER 4 SERVER CONTROLS 161

 Figure 4-12. Validating a sample page

The BaseValidator Class
The validation control classes are found in the System.Web.UI.WebControls namespace and
inherit from the BaseValidator class. This class defines the basic functionality for a validation
control. Table 4-16 describes its key properties.

CHAPTER 4 SERVER CONTROLS162

Table 4-16. BaseValidator Members

Member Description
ControlToValidate Indicates the input control to validate.

Display Indicates how the error message will be shown. If Static, the space
required to show the message will be calculated and added to the space
layout in advance. If Dynamic, the page layout will dynamically change
to show the error string. Be aware that although the dynamic style could
seem useful, if your layout is heavily based on table structures, it could
change quite a bit if multiple strings are dynamically added, and this
could confuse the user.

EnableClientScript A Boolean property that specifies whether the client- side validation will
take place. It is true by default.

Enabled A Boolean property that allows the user to enable or disable the valida-
tor. When the control is disabled, it does not validate anything. You
can set this property programmatically if you want to create a page that
dynamically decides what it should validate.

ErrorMessage Error string that will be shown in the errors summary by the Validation-
Summary control, if present.

Text The error text that will be displayed in the validator control if the at-
tached input control fails its validation.

IsValid This property is also usually read or set only from script code (or the
 code- behind class) to determine whether the associated input control’s
value is valid. This property can be checked on the server after a post-
back, but if the client- side validation is active and supported by the cli-
ent browser, the execution won’t get to the server if the value isn’t valid.
(In other words, you check this property just in case the client- side
validation did not run.) Remember that you can also read the Page.
IsValid property to know in a single step if all the input controls are in
a valid state. Page.IsValid returns true only if all the contained controls
are valid.

SetFocusOnError If true, when the user attempts to submit a page that has an invalid
control, the browser switches focus to the input control so the value can
be easily corrected. (If false, the button or control that was clicked to
post the page retains focus.) This feature works for both client- side and
 server- side validation. If you have multiple validators with SetFocusO-
nError set to true, and all the input controls are invalid, the first input
control in the tab sequence gets focus.

ValidationGroup Allows you to group multiple validators into a logical group so that vali-
dation can be performed distinctly without involving other groups. This
is particularly useful if you have several distinct panels on a web page,
each with its own submit button.

Validate() This method revalidates the control and updates the IsValid property
accordingly. The web page calls this method when a page is posted back
by a CausesValidation control. You can also call it programmatically (for
example, if you programmatically set the content of an input control
and you want to check its validity).

In addition, the BaseValidator class has other properties such as BackColor, Font,
ForeColor, and others that are inherited (and in some case overridden) from the base class
Label (and the classes it inherits from, such as WebControl and Control). Every derived valida-
tor adds its own specific properties, which you’ll see in the following sections.

CHAPTER 4 SERVER CONTROLS 163

The RequiredFieldValidator Control
The simplest available control is RequiredFieldValidator, whose only work is to ensure that
the associated control is not empty. For example, the control will fail validation if a linked text
box doesn’t contain any content (or just contains spaces). Alternatively, instead of checking
for blank values you can specify a default value using the InitialValue property. In this case,
validation fails if the content in the control matches this InitialValue (indicating that the user
hasn’t changed it in any way).

Here is an example of a typical RequiredFieldValidator:

The validator declared here will show an asterisk (*) character if the Name text box is
empty. This error text appears when the user tries to submit the form by clicking a button that
has CausesValidation set to true. It also occurs on the client side in Internet Explorer 5.0 or
above as soon as the user tabs to a new control, thanks to the client- side JavaScript.

If you want to place a specific message next to the validated control, you should replace *
with an error message. (You don’t need to use the ErrorMessage property. The ErrorMessage
is required only if you want to show the summary of all the errors on the page using the
ValidationSummary control, which you’ll see later in this chapter.) Alternatively, for a nicer result,
you could use an HTML tag to use a picture (such as the common ! sign inside a yellow tri-
angle) with a tooltip for the error message. You’ll see this approach later in this chapter as well.

The RangeValidator Control
The RangeValidator control verifies that an input value falls within a predetermined range. It
has three specific properties: MinimumValue, MaximumValue, and Type. The MinimumValue
and MaximumValue properties define an inclusive range of valid values. The Type property
defines the type of the data that will be typed into the input control and validated. The sup-
ported values are Currency, Date, Double, Integer, and String.

The following example checks that the date entered falls within the range of August 5 to
August 20 (encoded in the form mm/dd/yyyy, so if your web server uses different regional
settings, you’ll have to change the date format):

The CompareValidator Control
The CompareValidator control compares a value in one control with a fixed value or, more
commonly, a value in another control. For example, this allows you to check that two text

CHAPTER 4 SERVER CONTROLS164

boxes have the same data or that a value in one text box doesn’t exceed a maximum value
established in another.

Like the RangeValidator control, the CompareValidator provides a Type property that
specifies the type of data you are comparing. It also exposes the ValueToCompare and
ControlToCompare properties, which allow you to compare the value of the input control
with a constant value or the value of another input control, respectively. You use only one of
these two properties.

The Operator property allows you to specify the type of comparison you want to do. The
available values are Equal, NotEqual, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual,
and DataTypeCheck. The DataTypeCheck value forces the validation control to check that the
input has the required data type (specified through the Type property), without performing any
additional comparison.

The following example compares an input with a constant value in order to ensure that
the specified age is greater than or equal to 18:

The next example compares the input values in two password text boxes to ensure that
their value is the same:

This example also demonstrates another useful technique. The previous examples have
used an asterisk (*) to indicate errors. However, this control tag uses an tag to show
a small image file of an exclamation mark instead.

The RegularExpressionValidator Control
The RegularExpressionValidator control is a powerful tool in the ASP.NET developer’s toolbox.
It allows you to validate text by matching against a pattern defined in a regular expression. You
simply need to set the regular expression in the ValidationExpression property.

Regular expressions are also powerful tools—they allow you to specify complex rules that
specify the characters, and in what sequence (position and number of occurrences) they are
allowed, in the string. For example, the following control checks that the text input in the text
box is a valid e-mail address:

CHAPTER 4 SERVER CONTROLS 165

The expression .*@.{2,}\..{2,} specifies that the string that it’s validating must begin with
a number of characters (.*) and must contain an @ character, at least two more characters
(the domain name), a period (escaped as \.), and, finally, at least two more characters for the
domain extension. For example, marco@apress.com is a valid e-mail address, while marco@
apress or marco.apress.com would fail validation. The proposed expression is quite simple in
reality. Using a more complex regular expression, you could check that the domain name is
valid, that the extension is not made up (see for a list of allowed domain
name extensions), and so on. However, regular expressions obviously don’t provide any way to
check that a domain actually exists or is online.

 Table 4-17 summarizes the commonly used syntax constructs (modifiers) for regular
expressions.

Table 4-17. Metacharacters for Matching Single Characters

Character Escapes Description
Ordinary characters Characters other than .$^{[(|)*+?\ match themselves.

\b Matches a backspace.

\t Matches a tab.

\r Matches a carriage return.

\v Matches a vertical tab.

\f Matches a form feed.

\n Matches a newline.

\ If followed by a special character (one of .$^{[(|)*+?\), this character
escape matches that character literal. For example, \+ matches the +
character.

In addition to single characters, you can specify a class or a range of characters that can
be matched in the expression. For example, you could allow any digit or any vowel in any posi-
tion and exclude all the other characters. The metacharacters in Table 4-18 accomplish this.

Table 4-18. Metacharacters for Matching Types of Characters

Character Class Description
. Matches any character except \n

[aeiou] Matches any single character specified in the set

[^aeiou] Matches any character not specified in the set

[3-7a-dA-D] Matches any character specified in the specified ranges (in the example the
ranges are 3–7, a–d, A–D)

\w Matches any word character; that is, any alphanumeric character or the
underscore (_)

Continued

CHAPTER 4 SERVER CONTROLS166

Table 4-18. Continued

Character Class Description
\W Matches any nonword character

\s Matches any whitespace character (space, tab, form feed, newline, carriage
return, or vertical feed)

\S Matches any nonwhitespace character

\d Matches any decimal character

\D Matches any nondecimal character

Using more advanced syntax, you can specify that a certain character or class of charac-
ters must be present at least once, or between two and six times, and so on. The quantifiers are
placed just after a character or a range of characters and allow you to specify how many times
the preceding character must be matched (see Table 4-19).

Table 4-19. Quantifiers

Quantifier Description
* Zero or more matches

+ One or more matches

? Zero or one matches

{N} N matches

{N,} N or more matches

{N,M} Between N and M matches (inclusive)

To demonstrate these rules with another easy example, consider the following regular
expression:

A string that correctly matches this expression must start with two to four vowels, have a +
sign, and terminate with zero or more digits between 1 and 5. The .NET Framework documen-
tation details many more expression modifiers.

 Table 4-20 describes a few common (and useful) regular expressions.

Table 4-20. Commonly Used Regular Expressions

Content Regular Expression Description
E-mail addressa \S+@\S+\.\S+ Defines an email address that

requires an at symbol (@) and a dot
(.), and only allows nonwhitespace
characters.

Password \w+ Defines a password that allows any
sequence of word characters (letter,
space, or underscore).

Specific-length password \w{4,10} Defines a password that must be
at least four characters long but no
longer than ten characters.

CHAPTER 4 SERVER CONTROLS 167

Content Regular Expression Description
Advanced password [a-zA-Z]\w{3,9} Defines a password that allows four

to ten total characters, as with the
 specific- length password. The twist
is that the first character must fall
in the range of a–z or A–Z (that is to
say, it must start with a nonaccented
ordinary letter).

Another advanced
password

[a-zA-Z]\w*\d+\w* Defines a password that starts with
a letter character, followed by zero
or more word characters, one or
more digits, and then zero or more
word characters. In short, it forces
a password to contain a number
somewhere inside it. You could
use a similar pattern to require
two numbers or any other special
character.

Limited-length field \S{4,10} Defines a string of four to ten char-
acters (like the password example),
but it allows special characters
(asterisks, ampersands, and so on).

Social Security number
(US)

\d{3}-\d{2}-\d{4} Defines a sequence of three, two,
and then four digits, with each
group separated by a hyphen.
A similar pattern could be used
when requiring a phone number.

Many different regular expressions of varying complexity can validate e-mail addresses. See
 for a discussion of the subject and numerous

examples.

The CustomValidator Control
If the validation controls described so far are not flexible or powerful enough for you, and if
you need more advanced or customized validation, then the CustomValidator control is what
you need. The CustomValidator allows you to execute your custom client- side and server- side
validation routines. You can associate these routines with the control so that validation is per-
formed automatically. If the validation fails, the Page.IsValid property is set to false, as occurs
with any other validation control.

The client- side and server- side validation routines for the CustomValidator are declared
similarly. They both take two parameters: a reference to the validator and a custom argument
object. The custom argument object provides a Value property that contains the current
value of the associated input control (the value you have to validate) and an IsValid property
through which you specify whether the input value is valid. If you want to check that a number
is a multiple of five, for example, you could use a client- side JavaScript validation routine like
this:

CHAPTER 4 SERVER CONTROLS168

To associate this code with the control so that client- side validation is performed auto-
matically, you simply need to set the ClientValidationFunction to the name of the function (in
this case, EmpIDClientValidate).

Next, when the page is posted back, ASP.NET fires the CustomValidator.ServerValidate
event. You handle this event to perform the same task using VB .NET code. And although the
JavaScript logic is optional, you must make sure you include a server- side validation routine to
ensure the validation is performed even if the client is using a down- level browser (or tampers
with the web- page HTML).

Here’s the event handler for the ServerValidate event. It performs the VB .NET equivalent
of the client- side validation routine shown earlier:

Finally, here’s an example CustomValidator tag that uses these routines:

The CustomValidator includes an additional property named ValidateEmptyText, which
is false by default. However, it’s quite possible you might create a client- side function that
attempts to assess empty values. If so, set ValidateEmptyText to true to give the same behavior
to your server- side event handler.

The ValidationSummary Control
The ValidationSummary control doesn’t perform any validation. Instead, it allows you to show
a summary of all the errors in the page. This summary displays the ErrorMessage value of each
failed validator. The summary can be shown in a client- side JavaScript message box (if the
ShowMessageBox property is true) or on the page (if the ShowSummary property is true). You
can set both ShowMessageBox and ShowSummary to true to show both types of summaries,
since they are not exclusive. If you choose to display the summary on the page, you can choose
a style with the DisplayMode property (possible values are SingleParagraph, List, and BulletList).
Finally, you can set a title for the summary with the HeaderText property.

The control declaration is straightforward:

CHAPTER 4 SERVER CONTROLS 169

 Figure 4-13 shows an example with a validation summary that displays a bulleted summary
on the page and in a message box.

 Figure 4-13. The validation summary

Using the Validators Programmatically
As with all other server controls, you can programmatically read and modify the properties of
a validator. To access all the validators on the page, you can iterate over the Validators collec-
tion of the current page.

In fact, this technique was already demonstrated in the sample page shown in Figures 4- 12
and 4- 13. This page provides four check boxes that allow you to test the behavior of the vali-
dators with different options. When a check box is selected, it causes a postback. The event

CHAPTER 4 SERVER CONTROLS170

handler iterates over all the validators and updates them according to the new options, as
shown here:

You can use a similar technique to perform custom validation. The basic idea is to add
a button with CausesValidation set to false. When this button is clicked, manually validate the
page or just specific validators using the Validate() method. Then examine the IsValid property
and decide what to do.

The next example uses this technique. It examines all the validation controls on the page
by looping through the Page.Validators collection. Every time it finds a control that hasn’t vali-
dated successfully, it retrieves the invalid value from the input control and adds it to a string.
At the end of this routine, it displays a message that describes which values were incorrect. This
technique adds a feature that wouldn’t be available with automatic validation, which uses the
static ErrorMessage property. In that case, it isn’t possible to include the actual incorrect val-
ues in the message.

CHAPTER 4 SERVER CONTROLS 171

This example uses an advanced technique: the Page.FindControl() method. It’s required
because the ControlToValidate property is just a string with the name of a control, not a refer-
ence to the actual control object. To find the control that matches this name (and retrieve its
Text property), you need to use the FindControl() method. Once the code has retrieved the
matching text box, it can perform other tasks such as clearing the current value, tweaking
a property, or even changing the text box color.

Validation Groups
In more complex pages, you might have several distinct groups of controls, possibly in sepa-
rate panels. In these situations, you may want to perform validation separately. For example,
you might create a form that includes a box with login controls and a box underneath it with
the controls for registering a new user. Each box includes its own submit button, and depend-
ing on which button is clicked, you want to perform the validation just for that section of the
page.

ASP.NET enables this scenario with a feature called validation groups. To create a valida-
tion group, you need to put the input controls and the CausesValidation button controls into
the same logical group. You do this by setting the ValidationGroup property of every control
with the same descriptive string (such as “Login” or “NewUser”). Every button control that
provides a CauseValidation property also includes the ValidationGroup property. All validators
acquire the ValidationGroup by inheriting from the BaseValidator class.

For example, the following page defines two validation groups, named Group1 and Group2:

CHAPTER 4 SERVER CONTROLS172

 Figure 4-14 shows the page. If you click the first button, only the first text box is validated.
If you click the second button, only the second text box is validated.

An interesting scenario is if you add a new button that doesn’t specify any validation group.
In this case, the button validates every control that isn’t explicitly assigned to a named validation
group. In this case, no controls fit the requirement, so the page is posted back successfully and
deemed to be valid. If you want to make sure a control is always validated, regardless of the vali-
dation group of the button that’s clicked, you’ll need to create multiple validators for the control,
one for each group (and one with no validation group). Alternatively, you might choose to man-
age complex scenarios such as these using server- side code.

 Figure 4-14. Grouping controls for validation

In your code, you can work with the validation groups programmatically. You can retrieve
the controls in a given validator group using the Page.GetValidators() method. Just pass the
name of the group as the first parameter. You can then loop through the items in this collec-
tion and choose which ones you want to validate, as shown in the previous section.

Another option is to use the Page.Validate() method and specify the name of the valida-
tion group. For example, using the previous page, you could create a button with no validation
group assigned and respond to the Click event with this code:

CHAPTER 4 SERVER CONTROLS 173

The first Page.IsValid check will return true, because none of the validators were validated.
After validating the first group, the Page.IsValid property will return true or false, depending
on whether there is text in TextBox1. After you validate the second group, Page.IsValid will
only return true if both groups passed the test.

Rich Controls
Rich controls are web controls that model complex user interface elements. Although there
isn’t a strict definition for rich controls, the term commonly describes web controls that pro-
vide an object model that is distinctly separate from the underlying HTML representation.
A typical rich control can often be programmed as a single object (and defined with a single
control tag), but renders itself with a complex sequence of HTML elements and may even use
 client- side JavaScript.

To understand the difference, consider the Table control and the Calendar control. When
you program with the Table control, you use objects that provide a thin wrapper over HTML
table elements such as <table>, <tr>, and <td>. The Table control isn’t considered a rich con-
trol. On the other hand, when you program with the Calendar, you work in terms of days,
months, and selection ranges—concepts that have no direct correlation to the HTML markup
that the Calendar renders. For that reason, the Calendar is considered a rich control.

ASP.NET includes numerous rich controls that are discussed elsewhere in this book,
including data- based list controls, navigation controls, security controls, and controls tailored
for web portals. The following list identifies the rich controls that don’t fall into any specialized
category, and are found in the Standard section of the Toolbox in Visual Studio:

AdRotator: This control is a banner ad that displays one out of a set of images based on
a predefined schedule that’s saved in an XML file.

Calendar: This control is a calendar that displays and allows you to move through months
and days and to select a date or a range of days.

MultiView, View, and Wizard: You can think of these controls as more advanced panels that
let you switch between groups of controls on a page. The Wizard control even includes
 built- in navigation logic. You’ll learn about these controls in Chapter 17.

Substitution: This control is really a placeholder that allows you to customize ASP.NET’s
output caching feature, which you’ll tackle in Chapter 11.

Xml: This control takes an XML file and an XSLT stylesheet file as input and displays the
resulting HTML in a browser. You’ll learn about the Xml control in Chapter 14.

The rich controls in this list all appear in the Standard tab of the Visual Studio Toolbox.

CHAPTER 4 SERVER CONTROLS174

Tip The Internet contains many hubs for control sharing. One such location is Microsoft’s own ASP.NET
website (), which provides a control gallery where developers can submit their own
ASP.NET web controls. Some of these controls are free (at least in a limited version), while others require
a payment.

The AdRotator Control
The AdRotator randomly selects banner graphics from a list that’s specified in an external XML
schedule file.

Before creating the control, it makes sense to define the XML schedule file. Here’s an
example:

Each <Ad> element has a number of other important properties that configure the link,
the image, and the frequency, as described in Table 4-21.

CHAPTER 4 SERVER CONTROLS 175

Table 4-21. Advertisement File Elements

Element Description
ImageUrl The image that will be displayed. This can be a relative link (a file in the

current directory) or a fully qualified Internet URL.

NavigateUrl The link that will be followed if the user clicks the banner.

AlternateText The text that will be displayed instead of the picture if it cannot be dis-
played. This text will also be used as a tooltip in some newer browsers.

Impressions A number that sets how often an advertisement will appear. This
number is relative to the numbers specified for other ads. For example,
a banner with the value 10 will be shown twice as often as a banner with
the value 5.

Keyword A keyword that identifies a group of advertisements. This can be used
for filtering. For example, you could create ten advertisements and
give half of them the keyword Retail and the other half the keyword
Computer. The web page can then choose to filter the possible adver-
tisements to include only one of these groups.

The actual AdRotator class provides a limited set of properties. You specify both the
appropriate advertisement file in the AdvertisementFile property and the type of window that
the link should follow in the Target property. You can also set the KeywordFilter property so
that the banner will be chosen from entries that have a specific keyword.

Here’s an example that opens the link for an advertisement in a new window:

 Figure 4-15 shows the AdRotator control. Try refreshing the page. When you do, you’ll see
that a new advertisement is randomly selected each time.

 Figure 4-15. The AdRotator control

CHAPTER 4 SERVER CONTROLS176

Additionally, you can react to the AdRotator.AdCreated event. This occurs when the page
is being created and an image is randomly chosen from the file. This event provides you with
information about the image that you can use to customize the rest of your page.

The event- handling code for this example simply configures a HyperLink control so that it
corresponds with the randomly selected advertisement in the AdRotator:

The Calendar Control
This control creates a functionally rich and good- looking calendar box that shows one month
at a time. The user can move from month to month, select a date, and even select a range of
days (if multiple selection is allowed). The Calendar control has many properties that, taken
together, allow you to change almost every part of this control. For example, you can fine- tune
the foreground and background colors, the font, the title, the format of the date, the currently
selected date, and so on. The Calendar also provides events that enable you to react when
the user changes the current month (VisibleMonthChanged), when the user selects a date
(SelectionChanged), and when the Calendar is about to render a day (DayRender).

The following Calendar tag sets a few basic properties:

The most important Calendar event is SelectionChanged, which fires every time a user
clicks a date. Here’s a basic event handler that responds to the SelectionChanged event and
displays the selected date:

Note Every user interaction with the calendar triggers a postback. This allows you to react to the selec-
tion event immediately, and it allows the Calendar to rerender its interface, thereby showing a new month or
newly selected dates. The Calendar does not use the AutoPostBack property.

CHAPTER 4 SERVER CONTROLS 177

You can also allow users to select entire weeks or months as well as single dates, or
you can render the control as a static calendar that doesn’t allow selection. The only fact you
must remember is that if you allow month selection, the user can also select a single week or
a day. Similarly, if you allow week selection, the user can also select a single day. The type of
selection is set through the Calendar.SelectionMode property. You may also need to set the
Calendar.FirstDayOfWeek property to configure how a week is selected. (For example, if you
set FirstDayOfWeek to the enumerated value Monday, weeks will be selected from Monday to
Sunday.)

When you allow multiple date selection (by setting Calendar.SelectionMode to something
other than Day), you need to examine the SelectedDates property instead of the SelectedDate
property. SelectedDates provides a collection of all the selected dates, which you can examine,
as shown here:

The Calendar control exposes many more formatting- related properties, many of which
map to the underlying HTML table representation (such as CellSpacing, CellPadding, Caption,
and CaptionAlign). Additionally, you can individually tweak portions of the controls through
grouped formatting settings called styles (which expose color, font, and alignment options).
Example properties include DayHeaderStyle, DayStyle, NextPrevStyle, OtherMonthDayStyle,
SelectedDayStyle, TitleStyle, TodayDayStyle, and WeekendDayStyle. You can change the sub-
properties for all of these styles using the Properties window.

Finally, by handling the DayRender event, you can completely change the appearance of
the cell being rendered. The DayRender event is extremely powerful. Besides allowing you to
tailor what dates are selectable, it also allows you to configure the cell where the date is located
through the e.Cell property. (The Calendar control is really a sophisticated HTML table.) For
example, you could highlight an important date or even add extra controls or HTML content
in the cell. Here’s an example that changes the background and foreground colors of the week-
end days and also makes them nonclickable so that the user can’t choose those days:

CHAPTER 4 SERVER CONTROLS178

 Figure 4-16 shows the result.

 Figure 4-16. The Calendar control

Tip If you’re using a design tool such as Visual Studio, you can even set an entire related color scheme
using the built- in designer. Simply select the Auto Format link in the smart tag. You’ll be presented with a list
of predefined formats that set various style properties.

Summary
In this chapter you learned the basics of the core server controls included with ASP.NET, such
as HTML server controls, web controls, list controls, validation controls, and rich controls. You
also learned how to use ASP.NET controls from your web- page code, access their properties,
and handle their server- side events. Finally, you learned how to validate potentially problem-
atic user input with the validation controls. In the next chapter, you’ll learn how pages come
together to form web applications.

179

C H A P T E R 5

ASP.NET Applications

In traditional desktop programming, an application is an executable file with related sup-
port files. For example, a typical Windows application consists of a main executable file (EXE),
supporting components (typically DLLs), and other resources such as databases and configu-
ration files. An ASP.NET application follows a much different model.

On the most fundamental level, an ASP.NET application is a combination of files, pages,
handlers, modules, and executable code that can be invoked from a virtual directory (and its
subdirectories) on a web server. In this chapter, you’ll learn why this distinction exists and take
a closer look at how an ASP.NET application is configured and deployed. You’ll also learn how
to use components and HTTP handlers with an ASP.NET application.

Anatomy of an ASP.NET Application
The difference between ASP.NET applications and rich client applications makes a lot of sense
when you consider the ASP.NET execution model. Unlike a Windows application, the end user
never runs an ASP.NET application directly. Instead, a user launches a browser such as Inter-
net Explorer and requests a specific URL (such as http://www.mysite.com/mypage.aspx) over
HTTP. This request is received by a web server. When you’re debugging the application in
Visual Studio, you can use a local- only test server. When you deploy the application, you use
the IIS web server, as described in Chapter 18.

The web server has no concept of separate applications—it simply passes the request
to the ASP.NET worker process. However, the ASP.NET worker process carefully segregates
code execution into different application domains based on the virtual directory. Web pages
that are hosted in the same virtual directory (or one of its subdirectories) execute in the same
application domain. Web pages in different virtual directories execute in separate application
domains.

Note A virtual directory is simply a directory that’s exposed through a web server. In Chapter 18, you’ll
learn how to create virtual directories. When using the test server in Visual Studio, your web project directory
is treated like a virtual directory. The only exception is that the test server supports only local connections
(requests initiated from the current computer).

CHAPTER 5 ASP.NET APPLICATIONS180

The Application Domain
An application domain is a boundary enforced by the CLR that ensures that one application
can’t influence (or see the in- memory data) of another. The following characteristics are a direct
result of the application domain model:

All the web pages in a single web application share the same in- memory resources,
such as global application data, per- user session data, and cached data. This informa-
tion isn’t directly accessible to other ASP.NET or ASP applications.

All the web pages in a single web application share the same core configuration settings.
However, you can customize some configuration settings in individual subdirectories
of the same virtual directory. For example, you can set only one authentication mecha-
nism for a web application, no matter how many subdirectories it has. However, you
can set different authorization rules in each directory to fine- tune who is allowed to
access different groups of pages.

All web applications raise global application events at various stages (when the appli-
cation domain is first created, when it’s destroyed, and so on). You can attach event
handlers that react to these global application events using code in the global.asax file
in your application’s virtual directory.

In other words, the virtual directory is the basic grouping structure that delimits an ASP.NET
application. You can create a legitimate ASP.NET application with a single web page (.aspx file).
However, ASP.NET applications can include all of the following ingredients:

Web pages (.aspx files): These are the cornerstones of any ASP.NET application.

Web services (.asmx files): These allow you to share useful functions with applications on
other computers and other platforms. You’ll use web services in conjunction with ASP.
NET AJAX in Chapter 32.

Note Web services have largely been replaced by WCF (Windows Communication Foundation) services,
which support all the same protocols and more. You can host WCF services on an IIS web server as part of
an ASP.NET web application. To learn more, refer to a dedicated book about WCF, such as the excellent
Programming WCF Services, by Juval Lowy.

Code-behind files: Depending on the code model you’re using, you may also have sepa-
rate source code files. If these files are coded in VB, they have the extension .vb.

A configuration file (web.config): This file contains a slew of application- level settings
that configure everything from security to debugging and state management.

global.asax: This file contains event handlers that react to global application events (such
as when the application is first being started).

Other components: These are compiled assemblies that contain separate components
you’ve developed or third- party components with useful functionality. Components allow
you to separate business and data access logic and create custom controls.

CHAPTER 5 ASP.NET APPLICATIONS 181

Of course, a virtual directory can hold a great deal of additional resources that ASP.NET
web applications will use, including stylesheets, images, XML files, and so on. In addition, you
can extend the ASP.NET model by developing specialized components known as HTTP han-
dlers and HTTP modules, which can plug into your application and take part in the processing
of ASP.NET web requests.

Note It’s possible to have file types that are owned by different ISAPI extensions in the same virtual
directory. One example is if you mingle .aspx and .asp files. A more complex example is if you map .aspx
 web- page files to version 3.5 of ASP.NET and another extension of your own devising (like .aspx2) to version
2.0. In these examples, the virtual directory corresponds to more than one application. These applications
just happen to be accessible through the same virtual web directory. However, each application is mediated
by a different ISAPI extension, and therefore they operate independently of one another.

Application Lifetime
ASP.NET uses a lazy initialization technique for creating application domains. This means
that the application domain for a web application is created the first time a request is received
for a page in that application.

An application domain can shut down for a variety of reasons, including if the web server
itself shuts down. But, more commonly, applications restart themselves in new application
domains in response to error conditions or configuration changes. For example, depending
on the settings in the computer- wide machine.config file, an ASP.NET application may be
periodically recycled when certain thresholds are reached. This model is designed to keep
an application healthy and to detect characteristics that could indicate a problem has devel-
oped or performance of the application has degraded (such as a long queue of outstanding
requests, a huge amount of memory in use, and so on). Depending on your machine.config
settings, application domains may be recycled based on the length of time the application
domain has been running, the number of queued requests, or the amount of memory used
(as described in Chapter 18).

ASP.NET automatically recycles application domains when you change the application.
One example is if you modify the web.config file. Another example is if you replace an existing
 web- page file or DLL assembly file. In both of these cases, ASP.NET starts a new application
domain to handle all future requests and keeps the existing application domain alive long
enough to finish handling any outstanding requests (including queued requests).

Tip You can programmatically shut down a web application domain using the static HttpRuntime.
UnloadAppDomain() method. (The application will restart itself automatically the next time it receives
a request.) This technique is rarely used, but it can be useful if you’re hosting a number of web applications
on the same server and some are used only infrequently. In this case, the memory overhead of keeping the
application domain alive may outweigh the increased speed of serving subsequent requests.

CHAPTER 5 ASP.NET APPLICATIONS182

Application Updates
One of the most remarkable features about the ASP.NET execution model is that you can update
your web application without needing to restart the web server and without worrying about
harming existing clients. This means you can add, replace, or delete files in the virtual directory
at any time. ASP.NET then performs the same transition to a new application domain that it per-
forms when you modify the web.config configuration file.

Being able to update any part of an application at any time without interrupting existing
requests is a powerful feature. However, it’s important to understand the architecture that
makes it possible. Many developers make the mistake of assuming that it’s a feature of the CLR
that allows ASP.NET to seamlessly transition to a new application domain. But in reality, the
CLR always locks assembly files when it executes them. To get around this limitation, ASP.NET
doesn’t actually use the ASP.NET files in the virtual directory. Instead, it uses another tech-
nique, called shadow copy, during the compilation process to create a copy of your files in
c:\Windows\Microsoft.NET\v2.0.50727\Temporary ASP.NET Files. The ASP.NET worker pro-
cess loads the assemblies from this directory, which means these assemblies are locked.

Note Remember, ASP.NET 3.5 uses the ASP.NET 2.0 engine. That’s why you’ll see the version number
v2.0.50727 used in many file paths.

The second part of the story is ASP.NET’s ability to detect when you change the original
files. This detail is fairly straightforward—it simply relies on the ability of the Windows operat-
ing system to track directories and files and send immediate change notifications. ASP.NET
maintains an active list of all assemblies loaded within a particular application’s application
domain and uses monitoring code to watch for changes and acts accordingly.

Note ASP.NET can use files that are stored in the GAC (global assembly cache), a computer- wide reposi-
tory of assemblies that includes staples such as the assemblies for the entire .NET Framework class library.
You can also put your own assemblies into the GAC, but web applications are usually simpler to deploy and
more straightforward to manage if you don’t.

Application Directory Structure
Every web application should have a well- planned directory structure. Independently from the
directory structure you design, ASP.NET defines a few directories with special meanings, as
described in Table 5-1.

CHAPTER 5 ASP.NET APPLICATIONS 183

Table 5-1. Special ASP.NET Directories

Directory Description
Bin This directory contains all the precompiled .NET assemblies (usually

DLLs) that the ASP.NET web application uses. These assemblies can
include precompiled web- page classes, as well as other assemblies ref-
erenced by these classes. (If you’re using the project model to develop
your web application in Visual Studio, rather than the more common
website model, the Bin directory will also contain an assembly that has
the compiled code for your entire web application. This assembly is
named after your application, as in WebApplication1.dll. To learn more
about the difference between project and projectless development,
refer to Chapter 2.)

App_Code This directory contains source code files that are dynamically com-
piled for use in your application. These code files are usually separate
components, such as a logging component or a data access library. The
compiled code never appears in the Bin directory, as ASP.NET places it
in the temporary directories used for dynamic compilation. (If you’re
using the project model to develop your web application in Visual
Studio, rather than the more common website model, you don’t need
to use the App_Code directory. Instead, all the code files in your project
are automatically compiled into the assembly for your web application
alongside your web pages.)

App_GlobalResources This directory stores global resources that are accessible to every page
in the web application.

App_LocalResources This directory serves the same purpose as App_GlobalResources, except
these resources are accessible for their dedicated page only.

App_WebReferences This directory stores references to web services that the web application
uses. This includes WSDL files and discovery documents.

App_Data This directory is reserved for data storage, including SQL Server 2005
Express database files and XML files. Of course, you’re free to store data
files in other directories.

App_Browsers This directory contains browser definitions stored in XML files. These
XML files define the capabilities of client- side browsers for different
rendering actions. Although ASP.NET does this globally (across the
entire computer), the App_Browsers folder allows you to configure this
behavior for separate web applications. See Chapter 27 for more infor-
mation about how ASP.NET determines different browsers.

App_Themes This directory stores the themes used by the web application. You’ll
learn more about themes in Chapter 16.

The global.asax Application File
The global.asax file allows you to write event handlers that react to global events. Users never
request the global.asax file directly. Instead, the global.asax file executes its code automatically
in response to certain application events. The global.asax file provides a similar service to the
global.asa file in classic ASP applications.

You write the code in a global.asax file in a similar way to a web form. The difference is
that the global.asax doesn’t contain any HTML or ASP.NET tags. Instead, it contains methods
with specific, predefined names. For example, the following global.asax file reacts to the
HttpApplication.EndRequest event, which happens just before the page is sent to the user:

CHAPTER 5 ASP.NET APPLICATIONS184

Although it’s not indicated in the global.asax file, every global.asax file defines the methods
for a single class—the application class. The application class derives from HttpApplication, and
as a result your code has access to all its public and protected members. This example uses the
Response object, which is provided as a built- in property of the HttpApplication class, just like
it’s a built- in property of the Page class.

In the preceding example, the Application_OnEndRequest() event handler writes a footer
at the bottom of the page with the date and time that the page was created. Because it reacts to
the HttpApplication.EndRequest event, this method executes every time a page is requested,
after all the event- handling code in that page has finished.

As with web forms, you can also separate the content of the global.asax file into two files,
one that declares the file and another that contains the code. However, because there’s no
design surface for global.asax files, the division isn’t required. Visual Studio doesn’t give you
the option to create a global.asax file with a separate code- behind class.

Note If you’ve created your web application as a web project, Visual Studio will use the code- behind
approach and create both a global.asax file (which will be nearly empty) and a linked global.asax.cs (which
contains the global application class that holds the event handlers). The end result is the same, but this dif-
ference in design ensures better backward compatibility with web projects created in Visual Studio .NET
2003 and earlier. For more information about the different between project- based and projectless develop-
ment in Visual Studio, refer to Chapter 2.

The global.asax file is optional, but a web application can have no more than one global.
asax file, and it must reside in the root directory of the application, not in a subdirectory. To
add a global.asax file to a project, select Website Add New Item (or Project Add New Item
if you’re using the Visual Studio web project model) and choose the Global Application Class
template. When Visual Studio adds a global.asax file, it includes empty event handlers for the
most commonly used application events. You simply need to insert your code in the appropri-
ate method.

The usual way to attach an application event handler is just to use the recognized method
name. For example, if you create a protected method named Application_OnEndRequest(),
ASP.NET automatically calls this method when the HttpApplication.EndRequest event occurs.
(This is really just a matter of convention. You can choose to attach an event handler to the
HttpApplication.EndRequest event instead of supplying an Application_OnEndRequest()
method. In fact, later in this chapter you’ll see how HTTP modules handle application events
using this technique.)

CHAPTER 5 ASP.NET APPLICATIONS 185

ASP.NET creates a pool of application objects when your application domain is first
loaded and uses one to serve each request. This pool varies in size depending on the system
and the number of available threads, but it typically ranges from 1 to 100 instances. Each
request gets exclusive access to one of these application objects, and when the request ends,
the object is reused. As different stages in application processing occur, ASP.NET calls the
corresponding method, which triggers your code. Of course, if your methods have the wrong
name, your implementation won’t get called—instead, your code will simply be ignored.

Note The global application class that’s used by the global.asax file should always be stateless. That’s
because application objects are reused for different requests as they become available. If you set a value in
a member variable in one request, it might reappear in another request. However, there’s no way to control
how this happens or which request gets which instance of the application object. To circumvent this issue,
don’t use member variables unless they’re static (as discussed in Chapter 6).

Application Events
You can handle two types of events in the global.asax file:

Events that always occur for every request. These include request- related and
 response- related events.

The required events unfold in this order:

 1. Application_BeginRequest(): This method is called at the start of every request.

 2. Application_AuthenticateRequest(): This method is called just before authentication
is performed. This is a jumping- off point for creating your own authentication logic.

 3. Application_AuthorizeRequest(): After the user is authenticated (identified), it’s
time to determine the user’s permissions. You can use this method to assign special
privileges.

 4. Application_ResolveRequestCache(): This method is commonly used in conjunction
with output caching. With output caching (described in Chapter 11), the rendered
HTML of a web form is reused, without executing any of your code. However, this
event handler still runs.

 5. At this point, the request is handed off to the appropriate handler. For example, for
a web form request, this is the point when the page is compiled (if necessary) and
instantiated.

 6. Application_AcquireRequestState(): This method is called just before session- specific
information is retrieved for the client and used to populate the Session collection. (Session
state is covered in Chapter 6.)

 7. Application_PreRequestHandlerExecute(): This method is called before the appropri-
ate HTTP handler executes the request.

CHAPTER 5 ASP.NET APPLICATIONS186

 8. At this point, the appropriate handler executes the request. For example, if it’s a web
form request, the event- handling code for the page is executed, and the page is ren-
dered to HTML.

 9. Application_PostRequestHandlerExecute(): This method is called just after the
request is handled.

 10. Application_ReleaseRequestState(): This method is called when the session- specific
information is about to be serialized from the Session collection so that it’s available
for the next request.

 11. Application_UpdateRequestCache(): This method is called just before information
is added to the output cache. For example, if you’ve enabled output caching for a web
page, ASP.NET will insert the rendered HTML for the page into the cache at this point.

 12. Application_EndRequest(): This method is called at the end of the request, just before
the objects are released and reclaimed. It’s a suitable point for cleanup code.

 Figure 5-1 shows the process of handling a single request.

 Figure 5-1. The application events

Some events don’t fire with every request:

Application_Start(): This method is invoked when the application first starts up and
the application domain is created. This event handler is a useful place to provide
 application- wide initialization code. For example, at this point you might load and cache
data that will not change throughout the lifetime of an application, such as navigation
trees, static product catalogs, and so on.

CHAPTER 5 ASP.NET APPLICATIONS 187

Session_Start(): This method is invoked each time a new session begins. This is often
used to initialize user- specific information. Chapter 6 discusses sessions with state
management.

Application_Error(): This method is invoked whenever an unhandled exception occurs in
the application.

Session_End(): This method is invoked whenever the user’s session ends. A session ends
when your code explicitly releases it or when it times out after there have been no more
requests received within a given timeout period (typically 20 minutes). This method is
typically used to clean up any related data. However, this method is only called if you are
using in- process session state storage (the InProc mode, not the StateServer or SQLServer
modes).

Application_End(): This method is invoked just before an application ends. The end of an
application can occur because IIS is being restarted or because the application is transi-
tioning to a new application domain in response to updated files or the process recycling
settings.

Application_Disposed(): This method is invoked some time after the application has been
shut down and the .NET garbage collector is about to reclaim the memory it occupies.
This point is too late to perform critical cleanup, but you can use it as a last- ditch failsafe
to verify that critical resources are released.

Application events are commonly used to perform application initialization, cleanup,
usage logging, profiling, and troubleshooting. However, don’t assume that your application
will need to use global application events. Many ASP.NET applications don’t use the global.
asax file at all.

Tip The global.asax file isn’t the only place where you can respond to global web application events. You
can also create custom modules that participate in the processing of web requests, as discussed later in this
chapter in the section “Extending the HTTP Pipeline.”

Demonstrating Application Events
The following web application uses a global.asax file that responds to the HttpApplication.
Error event. It intercepts the error and displays some information about it in a predefined
format.

CHAPTER 5 ASP.NET APPLICATIONS188

To test this application event handler, you need to create another web page that causes an
error. Here’s an example that generates an error by attempting to divide by zero when a page
loads:

If you request this page, you’ll see the display shown in Figure 5-2.

 Figure 5-2. Catching an unhandled error

Typically, you wouldn’t use the Application_Error() method to control the appearance of
a web page, because it doesn’t give you enough flexibility to deal with different types of errors
(without coding painstaking conditional logic). Instead, you would probably configure custom
error pages using the web.config file (as described in the next section). However, Application_
Error() might be extremely useful if you want to log an error for future reference or even send
an e-mail about it to a system administrator. In fact, in many events you’ll need to use tech-
niques such as these because the Response object won’t be available. Two examples include
the Application_Start() and Application_End() methods.

CHAPTER 5 ASP.NET APPLICATIONS 189

ASP.NET Configuration
Configuration in ASP.NET is managed with XML configuration files. All the information needed
to configure an ASP.NET application’s core settings, as well as the custom settings specific to
your own application, is stored in these configuration files.

The ASP.NET configuration files have several advantages over traditional ASP
configuration:

They are never locked: As described in the beginning of this chapter, you can update
configuration settings at any point, and ASP.NET will smoothly transition to a new appli-
cation domain.

They are easily accessed and replicated: Provided you have the appropriate network
rights, you can modify a configuration file from a remote computer (or even replace it
by uploading a new version via FTP). You can also copy a configuration file and use it to
apply identical settings to another application or another web server that runs the same
application in a web farm scenario.

They are easy to edit and understand: The settings in the configuration files are human-
 readable, which means they can be edited and understood without needing a special
configuration tool.

With ASP.NET, you don’t need to worry about configuring the IIS metabase or restarting
the web server. However, you still can’t perform a few tasks with a web.config file. For exam-
ple, you can’t create or remove a virtual directory. Similarly, you can’t change file mappings.
If you want the ASP.NET service to process requests for additional file types (such as HTML or
a custom file type you define), you must use IIS Manager, as described in Chapter 18.

The machine.config File
The configuration starts with a file named machine.config that resides in the directory c:\
Windows\Microsoft.NET\Framework\v2.0.50727\Config. The machine.config file defines
supported configuration file sections, configures the ASP.NET worker process, and registers
providers that can be used for advanced features such as profiles, membership, and role- based
security.

Compared with ASP.NET 1.x, the machine.config file in later versions of ASP.NET has been
streamlined dramatically. To optimize the initialization process, many of the default settings
that used to be in the machine.config file are now initialized programmatically. However, you
can still look at the relevant settings by opening the new machine.config.comments file (which
you can find in the same directory). It contains the full text for the standard settings along with
descriptive comments (this is similar to the machine.config file in ASP.NET 1.x). Using the
machine.config.comments file, you can learn about the default settings, and then you can add
settings that override these values to machine.config.

Along with the machine.config file, ASP.NET uses a root web.config file (in the same direc-
tory) that contains additional settings. The settings register ASP.NET’s core HTTP handlers
and modules, set up rules for browser support, and define security policy. In ASP.NET 1.x,
these settings appeared in the machine.config file.

All the web applications on the computer inherit the settings in these two files. However,
most of the settings are essentially plumbing features that you never need to touch. The fol-
lowing sections discuss the two most common exceptions.

CHAPTER 5 ASP.NET APPLICATIONS190

<processModel>
This section allows you to configure how the ASP.NET worker process recycles application
domains, and the Windows account it executes under, which determines its privileges. If you’re
using IIS 6 (the version included with Windows 2003 Server) or IIS 7 (the version included with
Windows Vista and Windows 2008 Server), these settings are ignored, and you can configure
similar settings through the IIS Manager utility.

Chapter 18 has more information about the <processModel> element.

<machineKey>
This section allows you to set the server- specific key used for encrypting data and creating digi-
tal signatures. You can use encryption in conjunction with several ASP.NET features. ASP.NET
uses it automatically to protect the forms authentication cookie, and you can also apply it to
protected view state data (as described in Chapter 6). The key is also used for authentication with
 out-of- process session state providers.

Ordinarily, the <machineKey> element takes this form:

The AutoGenerate,IsolateApps value indicates that ASP.NET will create and store machine-
specific, application- specific keys. In other words, each application uses a distinct, automati-
cally generated key. This prevents potential cross- site attacks.

If you don’t need application- specific keys, you can choose to use a single key for all appli-
cations on the current computer, like so:

If you’re using a web farm and running the same application on multiple computers, both
of these approaches raise a problem. If you request a page and it’s handled by one server, and
then you post back the page and it’s handled by another server, the second server won’t be
able to decrypt the view state and the forms cookie from the first server. This problem occurs
because the two web servers use different keys.

To resolve this problem, you need to define the key explicitly in the machine.config file.
Here’s an example of a <machineKey> element with the two key attributes defined:

CHAPTER 5 ASP.NET APPLICATIONS 191

Tip You can also hard- code application- specific keys by adding a hard- coded <machineKey> in the web.
config file that you place in the application virtual directory. You’ll need this approach if you’re in a situation
that combines the two scenarios described previously. (For example, you’ll need this approach if you’re
running your application on multiple servers and these servers host multiple web applications that need indi-
vidual keys.)

The validationKey value can be from 40 to 128 characters long. It is strongly recommended
that you use the maximum length key available. The decryptionKey value can be either 16 or 48
characters long. If 16 characters are defined, standard DES (Data Encryption Standard) encryp-
tion is used. If 48 characters are defined, Triple DES (or 3DES) will be used. (This means DES is
applied three times consecutively.) 3DES is much more difficult to break than DES, so it is rec-
ommended that you always use 48 characters for the decryptionKey. If the length of either of
the keys is outside the allowed values, ASP.NET will return a page with an error message when
requests are made to the application.

It doesn’t make much sense to create the validation and decryption keys on your own. If
you do, they’re not likely to be sufficiently random, which makes them more subject to certain
types of attacks. A better approach is to generate a strong random key using code and the .NET
Framework cryptography classes (from the System.Security.Cryptography namespace).

The following is a generic code routine called CreateMachineKey() that creates a
random series of bytes using a cryptographically strong random number generator. The
CreateMachineKey() method accepts a single parameter that specifies the number of
characters to use. The result is returned in hexadecimal format, which is required for the
machine.config file.

CHAPTER 5 ASP.NET APPLICATIONS192

You can use this function in a web form to create the keys you need. For example, the fol-
lowing snippet of code creates a 48- character decryption key and a 128- character validation
key, and it displays the values in two separate text boxes:

You can then copy the information and paste it into the machine.config file for each com-
puter in the web farm. This is a much more convenient and secure approach than creating
keys by hand. You’ll learn much more about the cryptography classes in the System.Security.
Cryptography namespace described in Chapter 25.

Along with the validationKey and decryptionKey attributes described so far, you can also
choose the algorithm that’s used to create the view state hash code. The SHA1 algorithm is
recommended for the best encryption strength, but you can alternately choose MD5 (Message
Digest 5, which offers better performance), AES (Rijndael), or 3DES (TripleDES). In addition,
you can add the validation attribute to specify what encryption method is used for the login
ticket that’s used with forms authentication. (Forms authentication is discussed in Chapter 20.)
Valid values are AES, DES, 3DES, and Auto (the default, which varies based on the form authen-
tication settings you’re using).

The web.config File
Every web application inherits the settings from the machine.config file and the root web.
config file. In addition, you can apply settings to individual web applications. For example,
you might want to set a specific method for authentication, a type of debugging, a default
language, or custom error pages. To do so, you supply a web.config file in the root virtual
directory of your web application. To further configure individual subdirectories in your web
application, you can place additional web.config files in these folders.

It’s important to understand that the web.config file in a web application can’t override
all the settings in the machine.config file. Certain settings, such as the process model settings,
can’t be changed on a per- application basis. Other settings are application- specific. That
means you can set them in the web.config file that’s in the root virtual directory of your web-
site, but you can’t set them using a web.config file that’s in a subdirectory.

The entire content of an ASP.NET configuration file is nested in a root <configuration>
element. This element contains a <system.web> element, which is used for ASP.NET settings.
Inside the <system.web> element are separate elements for each aspect of configuration.
Along with <system.web> are the <appSettings> element, which you can use to store custom
settings, and the <connectionStrings> element, which you can use to store connection strings
to databases that you use or that other ASP.NET features rely on.

Here’s the basic skeletal structure of the web.config file:

CHAPTER 5 ASP.NET APPLICATIONS 193

However, this isn’t the whole story. ASP.NET 3.5 configuration files are a bit more
complex due to the way that ASP.NET 3.5 has been released. Essentially, ASP.NET 3.5 is
a combination that includes the core ASP.NET 2.0 model (with version 2.0 of the CLR) and
a set of extensions that add support for new features. In other words, ASP.NET 3.5 is really
ASP.NET 2.0 and ASP.NET 3.0 with service packs and an option pack of new goodies. This
design allows an ASP.NET 2.0 application to run seamlessly on a server that has .NET 2.0,
.NET 3.0, or .NET 3.5—either way, it’s the same libraries that are at work.

To make this model work, ASP.NET 3.5 applications need a way to opt in to the new fea-
tures, which are stored in separate assemblies. In theory, these details could be handled by
changing the machine.config file and the root web.config file to alter the configuration of the
web server. However, this approach isn’t ideal. It makes it more difficult to tell ASP.NET 2.0
applications from ASP.NET 3.5 applications, and it forces all applications to include references
to the new features in ASP.NET 3.5 that they don’t use. And although it’s extremely unlikely,
this approach could lead to some sort of naming conflict when an ASP.NET 2.0 application is
deployed on an ASP.NET 3.5 web server (for example, if this application uses custom classes
with the same names as the newly introduced classes).

The approach that ASP.NET 3.5 uses instead is to add the configuration details that you
need to your web.config file. As a result, every web application that targets ASP.NET 3.5 ends
up with a few extra sections:

 Table 5-2 provides a quick rundown of what each new section does.

Table 5-2. New Configuration Sections for ASP.NET 3.5

Element Description
configSections Registers the optional <system.web.extensions> element, so that

ASP.NET recognizes it and knows how to process its data. Later, in
the “Extending the Configuration File Structure” section, you’ll learn
how the <configSections> element works and how to create your own
custom sections in a configuration file.

system.codedom Configures your page to use the latest version of the VB and C# compilers.

system.web.extensions Allows you to enable some ASP.NET AJAX features. Visual Studio doesn’t
add this element to your web.config file, because it’s optional. However,
it registers it in the <configSections> section so you can use it if needed.
You’ll learn about this element in Chapter 32.

system.webServer Configures the ASP.NET AJAX features to work under IIS 7. If your web-
site is hosted in any other version of IIS, these settings have no effect.
You also use this section to add custom HTTP handlers and HTTP mod-
ules that work with IIS 7, as described later in this chapter.

CHAPTER 5 ASP.NET APPLICATIONS194

There are additional details that are specific to ASP.NET 3.5 in the <system.web> element.
For example, the <compilation> element in the <system.web> element adds references to two
assemblies that contain the classes you need to use new ASP.NET 3.5 features, such as System.
Core.dll and System.Web.Extensions.dll.

Configuration Inheritance
ASP.NET uses a multilayered configuration system that allows you to use different settings for
different parts of your application. To use this technique, you need to create additional subdi-
rectories inside your virtual directory. These subdirectories can contain their own web.config
files with additional settings. ASP.NET uses configuration inheritance so that each subdirec-
tory acquires the settings from the parent directory.

For example, consider the web request http://localhost/A/B/C/MyPage.aspx, where A is
the root directory for the web application. In this case, multiple levels of settings come into play:

 1. The default machine.config settings are applied first.

 2. The web.config settings from the computer root are applied next. This web.config file is
in the same Config directory as the machine.config file.

 3. If there is a web.config file in the application root A, these settings are applied next.

 4. If there is a web.config file in the subdirectory B, these settings are applied next.

 5. If there is a web.config file in the subdirectory C, these settings are applied last.

In this sequence (shown in Figure 5-3), it’s important to note that although you can have
an unlimited number of subdirectories, the settings applied in step 1 and step 2 have special
significance. That’s because certain settings can be applied only at the machine.config level
(such as the Windows account used to execute code), and other settings can be applied only at
the application root level (such as the type of authentication your web application uses).

 Figure 5-3. Configuration inheritance

CHAPTER 5 ASP.NET APPLICATIONS 195

In this way, subdirectories can specify just a small set of settings that differ from the rest of
the web application. One reason you might want to use multiple directories in an application
is to apply different security settings. Files that need to be secured would then be placed in
a special directory with a web.config file that defines more stringent security settings than the
root virtual directory.

If settings conflict, the settings from a web.config in a nested directory always override the
settings inherited from the parent. However, one exception exists. You can designate specific
locked sections that can’t be changed. The next section describes this technique.

Using <location> Elements
The <location> element is an extension that allows you to specify more than one group of set-
tings in the same configuration file. You use the path attribute of the <location> element to
specific the subdirectory or file to which the settings should be applied.

For example, the following web.config file uses the <location> element to create two
groups of settings—one for the current directory and one that applies only to files in the subdi-
rectory named Secure:

This web.config file essentially plays the role of two configuration files. It has the same
result as if you had split the settings into two separate web.config files and placed one in the
Secure subdirectory.

There’s no limit to how many different location elements you can use in a single con-
figuration file. However, the <location> element isn’t used often, because it’s usually easier
to manage and update configuration settings when they are separated into distinct files. But
there is one scenario where the <location> element gives you functionality you can’t get any
other way. This occurs when you want to lock specific settings so they can’t be overridden.

To understand how this technique works, consider the next example. It defines two
groups of settings and sets the allowOverride attribute of the <location> tag to false on one
group, as shown here:

CHAPTER 5 ASP.NET APPLICATIONS196

In this case, you can’t override any of the settings in the <location> section. If you try, ASP.NET
will generate an unhandled exception when you request a page in the web application.

The allowOverride attribute of the <location> element is primarily useful for web hosting
companies that want to make sure certain settings can’t be changed. In this case, the adminis-
trator will modify the machine.config file on the web server and use the <location> element to
lock specific sections.

Tip When you lock settings in the machine.config file, you have two choices. First, you can lock the set-
tings for all applications by omitting the path attribute of the <location> tag. Second, you can lock settings
for a specific application by setting the path attribute to the appropriate web application name.

<system.web> Settings
The <system.web> element contains all the ASP.NET- specific configuration settings. These
settings configure various aspects of your web application and enable services such as secu-
rity, state management, and tracing. The schema of the <system.web> section is fixed—in
other words, you can’t change the structure or add your own custom elements here.

 Table 5-3 lists the basic child elements that the <system.web> element can contain and
their purpose. This list is not complete and is intended only to give you a rough idea of the
scope of ASP.NET configuration.

Table 5-3. Some Basic Configuration Sections

Element Description
authentication This element determines how you will verify a client’s identity when the client

requests a page. This is set at the application level (in other words, in the web.
config file that’s in the web application’s root virtual directory).

authorization This element controls which clients have access to the resources within the
web application or current directory.

compilation Contains the <assemblies> element, which lists the assemblies your web
application uses. These assemblies are then made available to your code (as
long as they can be found in the Bin directory or the GAC). The configuration
file for an ASP.NET 3.5 application adds mappings to the System.Core.dll and
System.Web.Extensions.dll assemblies, which include classes that are new in
ASP.NET 3.5.

customErrors Allows you to set specific redirect URLs that should be used when specific (or
default) errors occur. For example, this element could be used to redirect the
user to a friendly replacement for the dreaded 404 (page not found) error.

identity Controls the security identity of the ASP.NET application. You can use this
setting to cause the web application to temporarily assume the identity of
another Windows account and its permissions and restrictions. This setting is
set at the application level.

CHAPTER 5 ASP.NET APPLICATIONS 197

Element Description
httpHandlers Defines the classes that process the HTTP requests your application receives.

For example, requests for files with the extension .aspx are automatically han
dled by the System.Web.UI.PageHandlerFactory class, which runs the page
life cycle. Later, in the section “Extending the HTTP Pipeline,” you’ll learn how
tocreate your own HTTP handlers. If you’re using the ASP.NET integration
features in IIS 7, this section is superseded by the <handlers> section in the
<system.webServer> element.

httpModules Defines classes that are given a chance to react to every request your web ap-
plication receives. For example, ASP.NET’s session state and authentication
features work through dedicated modules. Later, in the section “Extending the
HTTP Pipeline,” you’ll learn how to create your own HTTP modules. If you’re
using the ASP.NET integration features in IIS 7, this section is superseded by
the <modules> section in the <system.webServer> element.

pages Defines default page settings (most of which you can override with the Page
directive). ASP.NET 3.5 applications also use the <pages> element to provide
access to the new controls from the System.Web.Extensions.dll assembly.

sessionState Configures the various options for maintaining session state for the appli-
cation, such as whether to maintain it at all and where to maintain it (SQL,
a separate Windows service, and so on). This is set at the application level.

trace Configures tracing, an ASP.NET feature that lets you display diagnostic infor-
mation in the page (or collect it for viewing separately).

Note The configuration file architecture is a .NET standard, and other types of applications (such as
Windows applications) can also use configuration files. For that reason, the root <configuration> element
isn’t tailored to web application settings. Instead, web application settings are contained inside the dedicated
<system.web> section.

You can include as few or as many configuration sections as you want. For example, if you
need to specify special error settings, you could add just the <customErrors> section and leave
out the others. Visual Studio adds comments to describe the purpose and syntax of various
options. XML comments are bracketed with the <!- - and -- > character sequences, as shown
here:

Note Like all XML documents, the web.config file is case- sensitive. Every setting uses camel case and
starts with a lowercase letter. That means you cannot write <CustomErrors> instead of <customErrors>.

Throughout this book, you’ll consider different parts of the web.config file as you learn
about the corresponding features. The following sections give a brief overview of several of the
more important sections.

CHAPTER 5 ASP.NET APPLICATIONS198

<customErrors>
This element allows you to configure the behavior of your application in response to various HTTP
errors. For example, you can redirect the dreaded 404 error to a page that prints a user- friendly
error message to the users of your web application by creating a section like this:

In this example, if the error is code 404 (file not found), it will redirect the user to
filenotfound.htm. If any other error occurs (including an HTTP error or an unhandled .NET
exception in the web page), the user will be redirected to the page standarderror.aspx. Because
the error mode is set to RemoteOnly, local administrators will see the actual error message
rather than being redirected. Remote clients will see only the custom error page.

The following is a list of the modes supported for the mode attribute:

On: Indicates that custom errors are enabled. If no defaultRedirect attribute is supplied,
users will see a generic error.

Off: Custom errors are disabled. This allows full error details to be displayed.

RemoteOnly: Custom errors are shown only to remote clients while full detailed errors are
displayed to local clients.

Keep in mind that the custom error settings you define in a configuration file come into
effect only if ASP.NET is handling the request. For example, if you request the nonexistent page
whateverpage.aspx in an application with the previous settings shown, you’ll be redirected to
filenotfound.htm, because the .aspx file extension is registered to the ASP.NET service. How-
ever, if you request the nonexistent page whateverpage.html, ASP.NET will not process the
request, and the default redirect setting specified in IIS will be used. You could change the set
of registered ASP.NET file types to include .html and .htm files, but this will slow down perfor-
mance for these file types (and give additional work to the ASP.NET worker process).

Note What happens if an error occurs in the error page itself? If an error occurs in a custom error page
(in this case, DefaultError.aspx), ASP.NET will not be able to handle it. It will not try to reforward the user to
the same page. Instead, it will display the normal client error page with the generic message.

<connectionStrings>
This section allows you to define database connection strings that will be used elsewhere in
your application. Seeing as connection strings need to be reused exactly to support connec-
tion pooling and may need to be modified without recompiling the web application, it makes
perfect sense to store them in the web.config file.

You can add as many connection strings as you want. For each one, you can choose to
specify the ADO.NET provider name (see Chapter 7 for more information); however, it is
entirely optional and used only if you want to take factory route for creating a connection to
the database.

CHAPTER 5 ASP.NET APPLICATIONS 199

Here’s an example that defines a single connection string:

<appSettings>
You add custom settings to a web.config file in a special element called <appSettings>. Here’s
where the <appSettings> section fits into the web.config file:

The custom settings that you add are written as simple string variables. You might want
to use a special web.config setting for several reasons. Often, you’ll want the ability to record
 hard- coded but changeable information for connecting to external resources, such as data-
base query strings, file paths, and web service URLs. Because the configuration file can be
modified at any time, this allows you to update the configuration of an application as its physi-
cal deployment characteristics change without needing to recompile it.

Custom settings are entered using an <add> element that identifies a unique variable
name (the key) and the variable contents (the value). The following example adds two new
custom configuration settings:

Once you’ve added this information, .NET makes it extremely easy to retrieve it in your
 web- page code. You simply need to use the ConfigurationSettings class from the System.
Configuration namespace. It exposes a property called AppSettings, which contains a dynami-
cally built collection of available application settings for the current directory. For example,
if the ASP.NET page class referencing the AppSettings collection is at a location such as

CHAPTER 5 ASP.NET APPLICATIONS200

http://localhost/MyApp/ MyDirectory/MySubDirectory, it is possible that the AppSettings
collection contains settings from three different web.config files. The AppSettings collection
makes that hierarchy seamless to the page that’s using it.

To use the ConfigurationSettings class, it helps to first import the System.Configuration
namespace so you can refer to the class without needing to use the long fully qualified name,
as shown here:

Next, you simply need to retrieve the value by name. The following example fills two
labels using the custom application information:

 Figure 5-4 shows the test web page in action.

 Figure 5-4. Retrieving custom application settings

An error won’t occur if you try to retrieve a value that doesn’t exist. If you suspect this
could be a problem, make sure to test for a Nothing reference before retrieving a value.

Note Values in the <appSettings> element of a configuration file are available to any class in your appli-
cation or to any component that your application uses, whether it’s a web form class, a business logic class,
a data access class, or something else. In all these cases, you use the ConfigurationSettings class in the
same way.

CHAPTER 5 ASP.NET APPLICATIONS 201

Reading and Writing Configuration Sections Programmatically
ASP.NET provides the WebConfigurationManager class in the System.Web.Configuration
namespace, which allows you to extract information from a configuration file at runtime. The
WebConfigurationManager is the starting point. It provides the members shown in Table 5-4.

Table 5-4. WebConfigurationManager Members

Member Description
AppSettings Provides access to any custom information you’ve added to the

<appSettings> section of the application configuration file. Indi-
vidual settings are provided through a collection that’s indexed by
name.

ConnectionStrings Provides access to data in the <connectionStrings> section of the
configuration file. Individual settings are provided through a col-
lection that’s indexed by name.

OpenWebConfiguration() Returns a Configuration object that provides access to the con-
figuration information for the specified web application.

OpenMachineConfiguration() Returns a Configuration object that provides access to the con-
figuration information that’s defined for the web server (in the
machine.config file).

You need to consider a number of factors when using these methods. When you retrieve
information using the WebConfigurationManager.OpenWebConfiguration() method, it reflects
the cumulative configuration for the current application. That means settings from the cur-
rent web.config file are merged with those defined higher up the configuration hierarchy (for
example, in a parent directory or in the machine.config file). To test this, you simply need to
loop over the connection strings using code like this:

Even if your application doesn’t define any connection strings of its own, you’ll see the
default connection strings that are defined for the web server.

CHAPTER 5 ASP.NET APPLICATIONS202

Tip Remember that in order to successfully use these methods and properties, the ASP.NET worker
process needs certain permissions (such as read access to the web directory). If you plan to change these
settings programmatically, the worker process also requires write access. To protect against problems, you
should always wrap your configuration calls in exception- handling code.

Furthermore, in Windows Vista you need to run Visual Studio as an administrator (by right- clicking the
shortcut and choosing Run As Administrator), which also forces the test web server to run as an administra-
tor. Without these steps, the Windows UAC mechanism will cause an exception when you attempt to call the
OpenWebConfiguration() method.

The WebConfigurationManager class gives convenient access to two configuration sections:
the <appSettings> section, where you can define custom settings, and the <connectionStrings>
section, used to define how your application connects to the database. You can get this informa-
tion using the AppSettings and ConnectionStrings properties.

Using the configuration classes, you can also retrieve information about any other
configuration section. However, you’ll need to go to a little more work. The basic technique
is to call WebConfigurationManager.OpenWebConfiguration() to retrieve a Configuration
object that contains all the configuration information. Then, you can navigate to just the
section that interests you using the Configuration.GetSection() method. The trick is that the
GetSection() method returns a different type of object depending on the type of section. For
example, if you’re retrieving information from the <authentication> section, you’ll receive
an AuthenticationSection object, as shown here:

The search is performed using a pathlike syntax. You don’t indicate the root <configura-
tion> element, because all configuration sections are contained in that element.

Classes for every configuration section are defined in the class library in the System.Web.
Configuration namespace (not the System.Configuration namespace, which includes only
configuration classes that are generic to all .NET applications). All these classes inherit from
the ConfigurationSection class.

Using a ConfigurationSection object allows you to retrieve a good deal of information
about the current state of your application. Here’s an example that displays information about
the assemblies that are currently referenced:

CHAPTER 5 ASP.NET APPLICATIONS 203

You can also modify most configuration sections programmatically through the Configu-
ration class—in fact, ASP.NET relies on this functionality for its administrative web pages. You
can modify the value directly, but you must call Configuration.Save() to commit the change.
When modifying a setting, ASP.NET handles the update safely, by using synchronization code
to ensure that multiple clients can’t commit a change simultaneously. As with any configura-
tion change, ASP.NET creates a new application domain with the new settings, and uses this
application domain to handle new requests while winding down the old application domain.

In your code, you’re most likely to change settings in the <appSettings> section or the
<connectionStrings> section. Here’s an example that rewrites the application settings shown
earlier so that it updates one of the settings after reading it:

Tip This example reflects the cumulative configuration in the root web application directory, because
it uses the string “/” when calling the OpenWebConfiguration() method. If you use the name of a sub-
directory (as in “/SomeFolder”), you’ll get the cumulative settings for that folder. If you use the path
Request.CurrentExecutionFilePath, you’ll get cumulative settings for the directory where the current
web page is located.

CHAPTER 5 ASP.NET APPLICATIONS204

Note that the web.config file is never a good solution for state management. Instead,
it makes sense as a way to occasionally update a setting that, under normal circumstances,
almost never changes. That’s because changing a configuration setting has a significant cost.
File access has never been known for blistering speed, and the required synchronization adds
a certain amount of overhead. However, the real problem is that the cost of creating a new
application domain (which happens every time a configuration setting changes) is significant.
The next time you request the page, you’ll see the effect—the request will complete much more
slowly while the page is compiled to native machine code, cached, and loaded. Even worse,
information in the Application and Caching collections will be lost, as well as any information
in the Session collection if you’re using the in- process session provider (see Chapter 6 for more
information). Unfortunately, the new configuration model makes it all too easy to make the seri-
ous mistake of storing frequently changed values in a configuration file.

By default, the Configuration.Save() method persists only those changes you have made
since creating the Configuration object. Settings are stored in the local web.config file, and
one is created if needed. It’s important to realize that if you change an inherited setting (for
example, one that’s stored in the machine.config file), then when you save the changes, you
won’t overwrite the existing value in the configuration file where it’s defined. Instead, the new
value will be saved in the local web.config file so that it overrides the inherited value for the
current application only. You can also use the SaveAs() method to save configuration settings
to another file.

When calling Configuration.Save(), you can use an overloaded version of the method that
accepts a value from the ConfigurationSaveMode enumeration. Use Modified to save any
value you changed, even if it doesn’t differ from the inherited values. Use Full to save every-
thing in the local web.config, which is useful if you’re trying to duplicate configuration settings
for testing or deployment. Finally, use Minimal to save only those changes that differ from the
inherited levels—this is the default.

The Website Administration Tool (WAT)
You might wonder why the ASP.NET team went to all the trouble of creating a sophisticated tool
like the WebConfigurationManager that performs too poorly to be used in a typical web appli-
cation. The reason is because the WebConfigurationManager isn’t really intended to be used in
your web pages. Instead, it’s designed to allow developers to build custom configuration tools
that simplify the work of configuring web applications. ASP.NET even includes a graphical con-
figuration tool that’s entirely based on the WebConfigurationManager, although you’d never
know it unless you dived into the code.

This tool is called the WAT, and it lets you configure various parts of the web.config file
using a web- page interface. To run the WAT to configure the current web application in Visual
Studio, select Website ASP.NET Configuration (or Project ASP.NET Configuration if you’re
using project- based development). Visual Studio will open an Internet Explorer window (see
 Figure 5-5), and Internet Explorer will authenticate you automatically under the current user
account.

You can use the WAT to automate the web.config changes you made in the previous
example. To try this, click the Application tab. Using this tab, you can edit or remove appli-
cation settings (select the Manage Application Settings link) or create a new setting (click the
Create Application Settings link). Figure 5-6 shows how you can edit an application setting.

CHAPTER 5 ASP.NET APPLICATIONS 205

 Figure 5-5. Running the WAT

 Figure 5-6. Editing an application setting with the WAT

CHAPTER 5 ASP.NET APPLICATIONS206

This is the essential idea behind the WAT. You make your changes using a graphical inter-
face (a web page), and the WAT generates the settings you need and adds them to the web.
config file for your application behind the scenes. Of course, the WAT has a number of settings
for configuring more complex ASP.NET settings, and you’ll see it at work throughout this book.

Extending the Configuration File Structure
Earlier in this chapter, you learned how you can use the <appSettings> element to store custom
information that your application uses. The <appSettings> element has two significant limita-
tions. First, it doesn’t provide a way to store structured information, such as lists or groups of
related settings. Second, it doesn’t give you the flexibility to deal with different types of data.
Instead, the <appSettings> element is limited to single strings.

Fortunately, ASP.NET uses a modular, highly extensible configuration model that allows
you to extend the structure of the web.config and machine.config configuration files with your
own custom sections. In fact, you’ve already learned that ASP.NET 3.5 applications already
extend the web.config structure to add support for the <system.web.extensions> element,
which isn’t recognized by earlier versions of ASP.NET.

To extend a configuration file, you need to take three basic steps:

 1. Determine the information you want to store in the configuration file and how it will
be organized into elements and attributes. Ideally, you’ll have one element for each
conceptually related group of settings. You’ll use attributes to store each piece of infor-
mation that’s associated with the element.

 2. For each new element, create a VB class that encapsulates its information. When you
run your application, ASP.NET will read the information from the element in the con-
figuration file and use it to create an instance of your class. You can then read the
information from this object whenever you need it.

 3. Register the new section in your configuration file. To do this, you need to use the
<configSections> element. The <configSections> element identifies each new element
and maps it to the associated class.

The easiest way to see how this works is to consider a basic example. The following sections
show you how to create and register a new element in the web.config file.

Creating a Section Class
Imagine you want to store several related settings that, when taken together, tell your applica-
tion how to contact a remote object. For example, these settings could indicate a port number,
server location, URL, user authentication information, and so on. Using what you’ve already
learned, you could enter this information using separate settings in the <appSettings> group.
However, there wouldn’t be anything to indicate what settings are logically related. Not only
does that make the settings harder to read and interpret, it could lead to problems if one set-
ting is updated but the other related settings aren’t.

A better option would be to break free from the limited structure of the <appSettings>
section and wrap the information in a single XML element. Here’s an example that defines
a custom <orderService> element:

CHAPTER 5 ASP.NET APPLICATIONS 207

If you want to use this sort of structure, you need to define a matching class that derives
from System.Configuration.ConfigurationSection. You can place this class in a separate DLL
component, or you can add the source code to the App_Code folder so it will be automatically
compiled as part of the current web application. (Or, if you’re creating your web application
using a web project, simply add the source code file to your project and it will be compiled as
part of the web application assembly automatically.)

Note For information about component reuse, see the “.NET Components” section later in this chapter.
For now, you can use the quicker App_Code approach rather than creating a full- fledged, separately com-
piled component.

The following OrderService class plays that role. It represents a single <orderService>
element and provides access to the three attributes through strongly typed properties:

CHAPTER 5 ASP.NET APPLICATIONS208

As you can see, each property is mapped to the corresponding attribute name using the
ConfigurationProperty attribute. This part is critically important, because it defines the schema
(the structure) of your custom section. If you add an attribute in your custom section but you
don’t include a matching ConfigurationProperty attribute, ASP.NET will throw an exception
when you try to read that part of the web.config file.

The ConfigurationProperty attribute also gives you the opportunity to decide whether that
piece of information is mandatory and what default value should be used if it isn’t supplied.

In the actual property procedures, the code uses the dictionary of attributes that’s pro-
vided by the base class. You can retrieve the attribute you want from this collection by name.

Registering a Section Class
Once you’ve created the section class, your coding work is complete. However, you still need
to register your section class in the web.config file so that ASP.NET recognizes your custom
settings. If you don’t perform this step, you’ll get an error when you attempt to run the appli-
cation because ASP.NET will notice an unrecognized section in the web.config file.

To register your custom section, you simply add a <section> element to the <configSections>
section of the web.config file. You need to indicate the name of the section (using the name attri-
bute) and the name of the corresponding section class (using the type attribute). Here’s the full
web.config file you need:

Note In an ASP.NET 3.5 application, the <configSections> element already includes <sectionGroup> and
<section> elements that define the structure of the <system.web.extensions> section of the configuration
file. The <system.web.extensions> section configures Ajax support, which is new in ASP.NET 3.5. You’ll
learn more about Ajax features in Chapter 32.

CHAPTER 5 ASP.NET APPLICATIONS 209

The final step is to retrieve the information from your custom section when you need it
in your web page. This part is easy, because it uses the same methods you’ve already used to
retrieve built- in config sections: OpenWebConfiguration() and GetSection().

The following code retrieves the information from your custom section:

 Figure 5-7 shows the displayed data.

 Figure 5-7. Retrieving custom configuration data

Custom section handlers can get a fair bit more sophisticated. For example, you might
want to create a section that has nested subelements. Here’s an example of a more complex
<orderService> section that uses this design:

To work with this structure, you simply need to create a class that derives from
ConfigurationElement to represent each nested element. Here’s the class you need to rep-
resent the <location> element:

CHAPTER 5 ASP.NET APPLICATIONS210

And here’s the revised Location property in the OrderService class:

Now you can write code like this:

Using the techniques in this chapter, you can save changes to a custom configuration sec-
tion, and you can encrypt it. You can also use additional attributes to validate configuration
string values (look for the attributes that derive from ConfigurationValidatorAttribute), and
you can create sections with nested elements and more complex structures. For more infor-
mation about extending ASP.NET configuration files, refer to the MSDN Help.

CHAPTER 5 ASP.NET APPLICATIONS 211

Encrypting Configuration Sections
ASP.NET never serves requests for configuration files, because they often contain sensitive
information. However, even with this basic restriction in place, you may want to increase
security by encrypting sections of a configuration file. This is a recommended practice for
data such as connections and user- specific details. (Of course, any passwords should also be
encrypted, although ideally they won’t be placed in a configuration file at all.)

ASP.NET supports two encryption options:

RSA: The RSA provider allows you to create a key pair that is then used to encrypt the
configuration data. The advantage is that you can copy this key between computers (for
example, if you want to use the same configuration file with all the servers in a web farm).
The RSA provider is used by default.

DPAPI: The DPAPI (data protection API) provider uses a protection mechanism that’s
built into Windows. Configuration files are encrypted using a machine- specific key. The
advantage is that you don’t need to manage or maintain the key. The disadvantage is that
you can’t use a configuration file encrypted in this way on any other computer.

With both of these options, encryption is completely transparent. When you retrieve a set-
ting from an encrypted section, ASP.NET automatically performs the decryption and returns
the plain text to your code (provided the required key is available). Similarly, if you modify
a value programmatically and save it, encryption is performed automatically. However, you
won’t be able to edit that section of the web.config file by hand. But you can still use the WAT,
IIS Manager, or your own custom code. When you use the configuration API, the decryption
and encryption steps are performed automatically when you read from or write to a protected
section.

Programmatic Encryption
To enable encryption programmatically, you need to retrieve the corresponding
ConfigurationSection.SectionInformation object and then call the ProtectSection() method.
Any existing data is encrypted at this point, and any changes you make from this point on are
automatically encrypted. If you want to switch off encryption, you simply use the correspond-
ing UnprotectSection() method.

Here’s an example that encrypts the application section if it’s unencrypted or switches off
encryption if it is:

Here’s an excerpted version of what a protected <appSettings> section looks like:

CHAPTER 5 ASP.NET APPLICATIONS212

Note that you can’t tell anything about the encrypted data, including the number of settings,
the key names of settings, or their data types.

Note Some settings can’t be encrypted because they are used outside ASP.NET (usually by the IIS web
server). The <httpRuntime> section is one example.

Command-Line Encryption
Currently, no graphical tool exists for encrypting and decrypting configuration file settings.
However, if you don’t want to write code, you can use the aspnet_regiis.exe command- line
utility, which is found in the directory c:\Windows\Microsoft.NET\Framework\v2.0.50727. To
use this tool, you must have already created a virtual directory to set your application up in IIS
(see Chapter 18 for more about that process).

When using aspnet_regiis to protect a portion of a configuration file, you need to specify
these command- line arguments:

Here’s the command line that duplicates the earlier example for an application at http://
localhost/TestApp:

.NET Components
A well- designed web application written for ASP.NET will include separate components that
may be organized into distinct data and business tiers. Once you’ve created these components,
you can use them from any ASP.NET web page seamlessly.

You can create a component in two ways:

CHAPTER 5 ASP.NET APPLICATIONS 213

Create a new .vb file in the App_Code subdirectory: ASP.NET automatically compiles any
code files in this directory and makes the classes they contain available to the rest of your
web application. When you add a new class in Visual Studio, you’ll be prompted to create
the App_Code directory (if it doesn’t exist yet) and place the file there. (Web applications
created using the Visual Studio web project model don’t have an App_Code subdirectory.
For web projects, you get the same result by simply adding the source code file to your
project, so that Visual Studio compiles it as part of your web application assembly.)

Create a new class library project in Visual Studio: All the classes in this project will be
compiled into a DLL assembly. Once you’ve compiled the assembly, you can use Visual
Studio’s Website Add Reference (or Project Add Reference) command to bring it into
your web application. This step adds the assembly reference to your web.config file and
copies the assembly to the Bin subdirectory of your application.

Both approaches have the same ultimate result. For example, if you code a database com-
ponent, you’ll access it in the same way regardless of whether it’s a compiled assembly in the
Bin directory or a source code file in the App_Code directory. Similarly, if you use ASP.NET’s
precompilation features (discussed in Chapter 18), both options will perform the same way.
(If you don’t, you’ll find that the first request to your web application takes longer to execute
when you use the App_Code approach, because an extra compilation step is involved.)

Although both approaches have essentially the same footprint, they aren’t the same for
code management. This is especially true in cases where you want to reuse the component
in more than one web application (or even in different types of .NET applications). If you use
the App_Code approach with multiple web applications, it’s all too easy to make slight modi-
fications and wind up with a mess of different versions of the same shared class. The second
approach is also more practical for building large- scale applications with a team of develop-
ers, in which case you’ll want the freedom to have different portions of the web application
completed and compiled separately. For these reasons, the class library approach is always
preferred for professional applications.

Tip The App_Code subdirectory should be used only for classes that are tightly coupled to your web
application. Reusable units of functionality (such as business libraries, database components, validation
routines, encryption utilities, and so on) should always be built as separate class libraries.

Creating a Component
The next example demonstrates a simple component that reads a random Sherlock
Holmes quote from an XML file. (This XML file is available on the Internet and freely reus-
able via the GNU Public License—you can download it at http://www.amk.ca/quotations/
sherlock- holmes.xml or with the samples for this chapter.) The component consists of two
classes—a Quotation class that represents a single quote and a SherlockQuotes class that
allows you to read a random quote. Both of these classes are placed in the SherlockLib
namespace.

CHAPTER 5 ASP.NET APPLICATIONS214

The first listing shows the SherlockQuotes class, which loads an XML file containing
quotes in QEL (Quotation Exchange Language, an XML dialect) when it’s instantiated. The
SherlockQuotes class provides a public GetRandom() quote method that the web- page code
can use.

Each time a random quotation is obtained, it is stored in a Quotation object. The listing
for the Quotation class is as follows:

CHAPTER 5 ASP.NET APPLICATIONS 215

Using a Component Through the App_Code Directory
The simplest way to quickly test this class is to copy the source code files to the App_Code sub-
directory in a web application. You can take this step in Windows Explorer or use Visual Studio
(Website Add Existing Item).

Now you might want to import the SherlockLib namespace into your web page to make its
classes more readily available, as shown here:

Finally, you can use the class in your web- page code just as you would use a class from the
.NET Framework. Here’s an example that displays the quotation information on a web page:

CHAPTER 5 ASP.NET APPLICATIONS216

When you run this application, you’ll see something like what’s shown in Figure 5-8. Every
time you refresh the page, you’ll see a different quote.

Note When you use the App_Code directory, you face another limitation—you can use only one lan-
guage. This limitation results from the way that ASP.NET performs its dynamic compilation. Essentially, all
the classes in the App_Code directory are compiled into a single file, so you can’t mix VB and C#.

 Figure 5-8. Using the component in your web page

Using a Component Through the Bin Directory
Assuming that your component provides a significant piece of functionality and that it may
be reused in different applications, you’ll probably want to create it using a separate project.
This way, your component can be reused, tested, and versioned separately from the web
application.

To create a separate component, you need to use Visual Studio to create a class library
project. Although you can create this using a separate instance of Visual Studio, it’s often eas-
ier to load both your class library project and your web application into Visual Studio at once
to assist in debugging. This allows you to easily modify both the web application and the com-
ponent code at the same time and single- step from a web- page event handler into a method
in your component. To set this up, create your web application first. Then, select File Add
New Project, and select Class Library (see Figure 5-9).

CHAPTER 5 ASP.NET APPLICATIONS 217

 Figure 5-9. Adding a class library project to a solution

Note If you are using the scaled- down version of Visual Studio known as Visual Web Developer 2008
Express Edition, you won’t be able to create class library projects. Your only alternative is to use the
App_Code approach or build the class library with another version of Visual Studio. But if you are using
Visual Web Developer Express 2008 SP1, you can create a Class Library project.

Once you’ve added the code to your class library project, you can compile your component
by right- clicking the project in the Solution Explorer and choosing Build. This generates a DLL
assembly that contains all the component classes. The namespace for classes in a VB class
library is the name of the assembly. So if you have a new class library called SherlockLib and use
the previous code, then the namespace for the classes is actually SherlockLib.SherlockLib.XYZ.
Hence, you need either to remove the Imports namespace reference from the code or to change
the default namespace for the assembly to an empty string.

To allow your web application to use this component, you need to add an assembly ref-
erence to the component. This allows Visual Studio to provide its usual syntax checking and
IntelliSense. Otherwise, it will interpret your attempts to use the class as mistakes and refuse
to compile your code.

To add a reference, choose Website Add Reference from your web application (or
Project Add Reference if you’re developing a web project). The Add Reference dialog box
includes several tabs:

CHAPTER 5 ASP.NET APPLICATIONS218

.NET: This allows you to add a reference to a .NET assembly. You can choose from the list
of well- known assemblies that are stored in the registry. Typically, you’ll use this tab to
add a reference to an assembly that’s included as part of the .NET Framework.

COM: This allows you to add a reference to a legacy COM component. You can choose
from a list of shared components that are installed in the Windows system directory.
When you add a reference to a COM component, .NET automatically creates an interme-
diary wrapper class known as an interop assembly. You use the interop assembly in your
.NET code, and the interop assembly interacts with the legacy component.

Projects: This allows you to add a reference to a .NET class library project that’s currently
loaded in Visual Studio. Visual Studio automatically shows a list of eligible projects. This is
often the easiest way to add a reference to one of your own custom components.

Browse: This allows you to hunt for a compiled .NET assembly file (or a COM component)
on your computer. This is a good approach for testing custom components if you don’t
have the source project or you don’t want to load it into Visual Studio where you might
inadvertently modify it.

Recent: This allows you to add a reference to a compiled .NET assembly that you’ve used
recently (rather than forcing you to browse for it all over again).

 Figure 5-10 compares two ways to add a reference to the SherlockLib component—by
adding a reference to a currently loaded project and by adding a reference to the compiled
DLL file.

 Figure 5-10. Adding a reference to SherlockLib.dll

Once you add the reference, the corresponding DLL file will be automatically copied to
the Bin directory of your current project. You can verify this by checking the Path property
of the reference in the Properties window or just by browsing to the directory in Windows
Explorer. The nice thing is that this file will automatically be overwritten with the most recent
compiled version of the assembly every time you run the web application.

It really is that easy. To use another component—either from your own business tier, from
a third- party developer, or from somewhere else—all you need to do is add a reference to that
assembly.

CHAPTER 5 ASP.NET APPLICATIONS 219

Tip ASP.NET also allows you to use assemblies with custom controls just as easily as you use assemblies
with custom components. This allows you to bundle reusable user interface output and functionality into
 self- contained packages so that they can be used over and over again within the same or multiple applica-
tions. Part 5 has more information about this technique.

Extending the HTTP Pipeline
The pipeline of application events isn’t limited to requests for .aspx web forms. It also applies
if you create your own handlers to deal with custom file types.

Why would you want to create your own handler? For the most part, you won’t. However,
sometimes it’s convenient to use a lower- level interface that still provides access to useful objects
such as Response and Request but doesn’t use the full control- based web form model. One
example is if you want to create a web resource that dynamically renders a custom graphic (a
technique demonstrated in Chapter 29). In this situation, you simply need to receive a request,
check the URL parameters, and then return raw image data as a JPEG or GIF file. By avoiding the
full web control model, you save some overhead, because ASP.NET does not need to go through
as many steps (such as creating the web- page objects, persisting view state, and so on).

ASP.NET makes scenarios like these remarkably easy through its pluggable architecture.
You can “snap in” new handlers for specialized file types just by adding configuration settings.
But first, you need to take a closer look at the HTTP pipeline.

HTTP Handlers and HTTP Modules
Every request into an ASP.NET application is handled by a specialized component known
as an HTTP handler. The HTTP handler is the backbone of the ASP.NET request processing
framework. ASP.NET uses different HTTP handlers to serve different file types. For example,
the handler for web pages creates the page and control objects, runs your code, and renders
the final HTML.

All HTTP handlers are defined in the <httpHandlers> section of a configuration file (which
is nested in the <system.web> element). The core set of HTTP handlers is defined in the root
web.config file. Here’s an excerpt of that file:

CHAPTER 5 ASP.NET APPLICATIONS220

Additionally, the web.config file maps several handlers that are required for ASP.NET
AJAX. These handlers support web services (ScriptHandlerFactory), remotely callable applica-
tion services (ScriptHandlerFactoryAppServices), and script resources (ScriptResource). You’ll
learn about ASP.NET AJAX in Chapter 32.

Inside the <httpHandlers> section you can place <add> elements that register new han-
dlers and <remove> elements to unregister existing handlers. In this example, four classes are
registered. All requests for trace.axd are handed to the TraceHandler, which renders an HTML
page with a list of all the recently collected trace output (as described in Chapter 3). Requests
for files that end in .config or .vb are handled by the HttpForbiddenHandler, which always
generates an exception informing the user that these file types are never served. And files end-
ing in .aspx are handled by the PageHandlerFactory. In this case, PageHandlerFactory isn’t
actually an HTTP handler. Instead, it’s a factory class that will create the appropriate HTTP
handler. This extra layer allows the factory to create a different handler or configure the han-
dler differently depending on other information about the request.

ASP.NET also uses another ingredient in page processing, called HTTP modules. HTTP
modules participate in the processing of a request by handling application events, much like
the global.asax file. A given request can flow through multiple HTTP modules, but it always
ends with a single HTTP handler. Figure 5-11 shows how the two interact.

 Figure 5-11. The ASP.NET request processing architecture

ASP.NET uses a core set of HTTP modules to enable platform features such as caching,
authentication, and error pages. You can add or remove HTTP modules with <add> and <remove>
tags in the <httpModules> section of a configuration file. Here’s an excerpt showing some of the
HTTP modules that are defined in the machine.config file, whereas these settings are also found in
a default web.config file:

CHAPTER 5 ASP.NET APPLICATIONS 221

Additionally, the web.config file maps an additional module that’s required for ASP.NET
AJAX (ScriptModule), which plays a role in managing client- side script. You’ll learn more in
Chapter 32.

One of the benefits of HTTP modules and HTTP handlers is that they provide an exten-
sible architecture that allows you to easily plug in your own handlers and modules. In the past,
developers who needed these sort of features were forced to author their own ISAPI extensions
(which play the same role as HTTP handlers) or ISAPI filters (which play the same role as HTTP
modules). Both of these components are dramatically more complex to create.

REGISTERING HANDLERS AND MODULES IN IIS 7

IIS 7 adds an ASP.NET integration feature that allows you to create handlers and modules that work with all
file types, rather than just the file extensions that are registered with ASP.NET. By default, this integration
feature is on, but you can turn it off on a per- application basis.

When using the ASP.NET integration features in IIS 7, you can’t use the ordinary <httpHandlers> and
<httpModules> sections in the <system.web> element. Instead, you must use the equivalent <handlers>
and <modules> sections in the <system.webServer> element, which IIS reads and uses automatically.

In the remainder of this chapter, you’ll see examples that use the <httpHandlers> and <httpModules>
section. These examples work with Visual Studio’s integrated web server, with IIS 5.x and IIS 6, and with
IIS 7 in classic mode (which switches off the ASP.NET integration). If you want to adjust your configuration
file so that it works with IIS 7 when ASP.NET integration is switched on, refer to the detailed discussion in
Chapter 18

Creating a Custom HTTP Handler
If you want to work at a lower level than the web form model to support a specialized form of
processing, you can implement your own HTTP handler.

To create a custom HTTP handler, you simply need to author a class that implements the
IHttpHandler interface. You can place this class in the App_Code directory, or you can com-
pile it as part of a stand- alone DLL assembly (in other words, a separate class library project)
and add a reference to it in your web application.

The IHttpHandler requires your class to implement two members, which are shown in
 Table 5-5.

CHAPTER 5 ASP.NET APPLICATIONS222

Table 5-5. IHttpHandler Members

Member Description
ProcessRequest() ASP.NET calls this method when a request is received. It’s where the HTTP

handlers perform all the processing. You can access the intrinsic ASP.NET
objects (such as Request, Response, and Server) through the HttpContext
object that’s passed to this method.

IsReusable After ProcessRequest() finishes its work, ASP.NET checks this property to
determine whether a given instance of an HTTP handler can be reused. If it
returns true, the HTTP handler object can be reused for another request of
the same type current. If it returns false, the HTTP handler object will sim-
ply be discarded.

The following code shows one of the simplest possible HTTP handlers you can create. It
simply returns a fixed block of HTML with a message.

Note If you create this extension as a class library project, you’ll need to add a reference to the System.
Web.dll assembly, which contains the bulk of the ASP.NET classes. Without this reference, you won’t be able
to use types such as IHttpHandler and HttpContext. (To add the reference, right- click the project name in the
Solution Explorer, choose Add Reference, and find the assembly in the list in the .NET tab.)

Configuring a Custom HTTP Handler
Once you’ve created your HTTP handler class and made it available to your web application
(either by placing it in the App_Code directory or by adding a reference), you’re ready to use

CHAPTER 5 ASP.NET APPLICATIONS 223

your extension. The next step is to alter the web.config file for the web application so that it
registers your HTTP handler. Here’s an example:

When you register an HTTP handler, you specify three important details. The verb attribute
indicates whether the request is an HTTP POST or HTTP GET request (use * for all requests).
The path attribute indicates the file extension that will invoke the HTTP handler. In this exam-
ple, the web.config section links the SimpleHandler class to the filename test.simple. Finally,
the type attribute identifies the HTTP handler class. This identification consists of two portions.
First is the fully qualified class name (in this example, HttpExtensions.SimpleHandler). That
portion is followed by a comma and the name of the DLL assembly that contains the class (in
this example, HttpExtensions.dll). Note that the .dll extension is always assumed, and you don’t
include it in the name.

If you’re using the App_Code approach instead of a separately compiled assembly, you
can omit the DLL name entirely, because ASP.NET generates it automatically.

Visual Studio doesn’t allow you to launch your HTTP handler directly. Instead, you need
to run your web project and then type in a URL that includes test.simple. For example, if your
web application URL is set to http://localhost:19209/Chapter05 in the local server, you need to
manually change it to http://localhost:19209/Chapter05/test.simple. (If you don’t remember
the current web application URL, just run your application and then modify the URL in the
browser.) You’ll see the HTML shown in Figure 5-12.

 Figure 5-12. Running a custom HTTP handler

CHAPTER 5 ASP.NET APPLICATIONS224

Using a custom HTTP handler isn’t as convenient when you deploy your web application
to an IIS web server.

If you’re using IIS 5 or 6, IIS won’t recognize the .simple extension or realize that it’s asso-
ciated with ASP.NET. Instead, IIS simply checks for a file named test.simple. If it exists, IIS
returns the raw data from the file. If it doesn’t, IIS returns an error message. To change this
behavior, you need to add an IIS file mapping for your application that explicitly tells IIS to
send all .simple requests to ASP.NET (as described in Chapter 18).

If you’re using the ASP.NET integration feature in IIS 7, you don’t need to register the file
type. However, you do need to change the configuration and declare the handler in the <han-
dlers> section of the <system.webServer> element instead of the <httpHandlers> section of the
<system.web> element. Chapter 18 describes the configuration you need in more detail.

Registering HTTP Handlers Without Configuring IIS
Instead of using a web.config or machine.config file, ASP.NET provides an alternate approach
for registering HTTP handlers—you can use the recognized extension .ashx. All requests that
end in .ashx are automatically recognized as requests for a custom HTTP handler.

To create an .ashx file in Visual Studio, select Website Add New Item (or Project Add
New Item for web projects) and choose Generic Handler (see Figure 5-13).

 Figure 5-13. Creating an .ashx file

The .ashx file begins with a WebHandler directive. This WebHandler directive indicates
the class that should be exposed through this file. Here’s an example:

The class name can correspond to a class in the App_Code directory or a class in a refer-
ence assembly. Alternatively, you can define the class directly in the .ashx file (underneath

CHAPTER 5 ASP.NET APPLICATIONS 225

the WebHandler directive). Either way, when a client requests the .ashx file, the correspond-
ing HTTP handler class is executed. If you save the previous example as the file simple.ashx,
whenever the client requests simple.ashx your custom web handler will be executed. Best of
all, the .ashx file type is registered in IIS, so you don’t need to perform any IIS configuration
when you deploy your application.

Whether you use a configuration file or an .ashx file is mostly a matter of preference.
However, .ashx files are usually used for simpler extensions that are designed for a single web
application. Configuration files also give you a little more flexibility. For example, you can regis-
ter an HTTP handler to deal with all requests that end with a given extension, whereas an .ashx
file only serves a request if it has a specific filename. Also, you can register an HTTP handler for
multiple applications (by registering it in the web.config file and installing the assembly in the
GAC). To achieve the same effect with an .ashx file, you need to copy the .ashx file to each virtual
directory.

Creating an Advanced HTTP Handler
In the previous example, the HTTP handler simply returns a block of static HTML. However,
you can create much more imaginative handlers. For example, you might read data that has
been posted to the page or that has been supplied in the query string and use that to custom-
ize your rendered output. Here’s a more sophisticated example that displays the source code
for a requested file. It uses the file I/O support that’s found in the System.IO namespace.

CHAPTER 5 ASP.NET APPLICATIONS226

This code simply finds the requested file, reads its content, and uses a little string
substitution (for example, replacing spaces with nonbreaking spaces and line breaks with
the
 element) and HTML encoding to create a representation that can be safely dis-
played in a browser. You’ll learn more about techniques for reading and manipulating files
in Chapter 12.

Next, you can map the handler to a file extension, as follows:

To test this handler, you can use a URL in this format:

CHAPTER 5 ASP.NET APPLICATIONS 227

The HTTP handler will then show the source code for the .vb file, as shown in Figure 5-14.

 Figure 5-14. Using a more sophisticated HTTP handler

Creating an HTTP Handler for Non- HTML Content
Some of the most interesting HTTP handlers don’t generate HTML. Instead, they render different
types of content, such as images. This approach gives you the flexibility to retrieve or generate
your content programmatically, rather than relying on fixed files. For example, you could read
the content for a large ZIP file from a database record and use Response.BinaryWrite() to send it
to the client. Or, you could get even more ambitious and use your HTTP handler to dynamically
create a ZIP archive that combines several smaller files. Either way, to the client who is using your
HTTP handler, it seems as though the browser is downloading an ordinary file. But in actuality,
the content is being served using ASP.NET code.

The following example demonstrates an HTTP handler that deals with image files. This
handler doesn’t create the image content dynamically (for that trick, refer to Chapter 29), but
it does use code to perform another important task. Whenever an image is requested, this
HTTP handler checks the referrer header of the request. The referrer header provides the host
name, which indicates whether the link to the image originates from one of the pages on your
site, or whether it stems from a page on someone else’s site. If the page that’s using the image
is on another site, you have a potential problem. Not only is this page stealing your image, it’s
also creating more work for your web server. That’s because every time someone views the
 third- party site, the image is requested from your server. If the stolen image appears on a pop-
ular site, this could generate a significant amount of extra work and reduce the bandwidth you
have available to serve your own pages.

This problem—sites that steal bandwidth by linking to resources on your server—is known
informally as leeching. It’s a common headache for popular websites that serve large amounts

CHAPTER 5 ASP.NET APPLICATIONS228

of non- HTML content (for example, photo- sharing sites such as Flickr). Many websites combat
this problem using the same technique as the HTTP handler described previously—namely,
they refuse to serve the image or they substitute a dummy image if the referrer header indicates
that a request originates from another site.

Here’s an HTTP handler that implements this solution in ASP.NET. In order for this code
to work as written, you must import the System.Globalization namespace and the System.IO
namespace.

CHAPTER 5 ASP.NET APPLICATIONS 229

For this handler to protect image files, you need to register it to deal with the appropriate
file types. Here’s the web.config settings that set this up for the .gif and .png file types (but not
.jpg):

This works for the integrated Visual Studio web server; however, when you deploy your
website, you’ll need to take an extra step. Namely, you’ll need to add a file mapping in IIS that
tells IIS all .gif requests are handled by ASP.NET.

Note This solution to leeching is far from perfect, but it serves to stop casual leechers. A programming-
savvy user can easily circumvent it with a little JavaScript code. Some web developers create much more
elaborate systems. For example, you can dynamically generate a timestamp code and append it to your
image links whenever a page is requested. Your HTTP handler can then refuse to serve images if the time-
stamp is out of date, which suggests the link has been copied and is being reused on another page long after
its creation time. However, none of these techniques can stop someone from creating a copy of the picture
and serving it directly from their site.

Based on this example, you can probably imagine a variety of different ways you can use
HTTP handlers. For example, you could render a custom image, perform an ad hoc database
query, or return some binary data. These examples extend the ASP.NET architecture but bypass
the web- page model. The result is a leaner, more efficient component.

You can also create HTTP handlers that work asynchronously. This means they cre-
ate a new thread to do their work, instead of using one of the ASP.NET worker threads. This
improves scalability in situations where you need to perform a task that takes a long time but
isn’t CPU- intensive. A classic example is waiting to read an extremely slow network resource.
ASP.NET allows only a fixed number of worker threads (typically 25) to run at once. Once this
limit is reached, additional requests will be queued, even if the computer has available CPU
time.

With asynchronous handlers, additional requests can be accepted, because the handler
creates a new thread to process each request rather than using the worker process. Of course,
there is a risk with this approach. Namely, if you create too many threads for the computer to
manage efficiently, or if you try to do too much CPU- intensive work at once, the performance

CHAPTER 5 ASP.NET APPLICATIONS230

of the entire web server will be adversely affected. Asynchronous HTTP handlers aren’t cov-
ered in this book, but in Chapter 11 you’ll learn how to use asynchronous pages, which use
asynchronous HTTP handlers behind the scenes.

HTTP HANDLERS AND SESSION STATE

By default, HTTP handlers do not have access to client- specific session state. That’s because HTTP handlers
are generally used for lower- level tasks, and skipping the steps needed to serialize and retrieve session state
information achieves a minor increase in performance. However, if you do need access to session state infor-
mation, you simply need to implement one of the following two interfaces:

If you require just read- only access to session state, you should implement the IReadOnlySessionState
interface. If you need to modify or add to session information, you should implement the IRequiresSessionState
interface. You should never implement both at the same time.

These two interfaces are just marker interfaces and do not contain any methods. That means you
don’t need to write any extra code to enable session support. For example, if you want to use read- only ses-
sion state with the SimpleHandler class, you would declare it in this way:

To actually access the Session object, you’ll need to work through the HttpContext object that’s sub-
mitted to the ProcessRequest() method. It provides a Session property.

Creating a Custom HTTP Module
It’s just as easy to create custom HTTP modules as custom HTTP handlers. You simply need to
author a class that implements the System.Web.IHttpModule interface. You can then register
your module by adding it to the <httpModules> section of the web.config file. However, you
don’t need to configure IIS to use your HTTP modules. That’s because modules are automati-
cally used for every web request.

So, how does an HTTP module plug itself into the ASP.NET request processing pipeline? It
does so in the same way as the global.asax file. Essentially, when an HTTP module is created, it
registers to receive specific global application events. For example, if the module is concerned
with authentication, it will register itself to receive the authentication events. Whenever those
events occur, ASP.NET invokes all the interested HTTP modules. The HTTP module wires up
its events with delegate code in the Init() method.

The IHttpModule interface defines the two methods shown in Table 5-6.

CHAPTER 5 ASP.NET APPLICATIONS 231

Table 5-6. IHttpModule Members

Member Description
Init() This method allows an HTTP module to register its event handlers to receive the events

of the HttpApplication object. This method provides the current HttpApplication object
for the request as a parameter.

Dispose() This method gives an HTTP module an opportunity to perform any cleanup before
the object gets garbage collected.

The following class is a custom HTTP module that handles the event HttpApplication.
AuthenticateRequest and then logs the user information to a new entry in the Windows event
log using the EventLog class from the System.Diagnostics namespace:

Note To use this example, the account used to run ASP.NET code must have permission to write to
the event log. (More specifically, the account must have permission to modify the HKEY_Local_Machine\
SYSTEM\CurrentControlSet\Services\EventLog registry key.) If you’re using the Visual Studio test server in
Windows Vista, you’ll need to explicitly run Visual Studio as an administrator (right- click the Visual Studio
2008 shortcut and choose Run As Administrator).

CHAPTER 5 ASP.NET APPLICATIONS232

Now you can register the module with the following information in the web.config file.
Here’s an example that assumes it’s compiled in a separate assembly named HttpExtensions.dll:

To test this module, request any other page in the web application. Then check the entry
in the Windows application event log. (To view the log, select Programs Administrative
Tools Event Viewer from the Start menu.) Figure 5-15 shows the logged messages.

 Figure 5-15. Logging messages with an HTTP module

CHAPTER 5 ASP.NET APPLICATIONS 233

HANDLING EVENTS FROM OTHER MODULES

The previous example shows how you can handle application events in a custom HTTP module. However,
some global events aren’t provided by the HttpApplication class but are still quite important. These include
events raised by other HTTP modules, such as the events fired to start and end a session.

Fortunately, you can wire up to these events in the Init() event; you just need a slightly different
approach. The HttpApplication class provides a collection of all the modules that are a part of the current
HTTP pipeline through the Modules collection.

For example, if you want to connect an event handler named OnSessionStart() to the SessionStateModule.
Start event, you could use code like this for the Init() method in your HTTP module:

Summary
In this chapter, you took a closer look at what constitutes an ASP.NET application. After learn-
ing more about the life cycle of an application, you learned how to code global application
event handlers with the global.asax file and how to set application configuration with the web.
config file. Finally, you learned how to use separately compiled components in your web pages
and how to extend the HTTP pipeline with your own handlers and modules.

235

C H A P T E R 6

State Management

No web application framework, no matter how advanced, can change the fact that HTTP is
a stateless protocol. After every web request, the client disconnects from the server, and the
ASP.NET engine discards the objects that were created for the page. This architecture ensures
that web applications can scale up to serve thousands of simultaneous requests without run-
ning out of server memory. The drawback is that your code needs to use other techniques to
store information between web requests and retrieve it when needed.

In this chapter, you’ll see how to tackle this challenge by maintaining information on the
server and on the client using a variety of techniques. You’ll also learn how to transfer infor-
mation from one web page to another.

ASP.NET State Management
ASP.NET includes a variety of options for state management. You choose the right option
depending on the data you need to store, the length of time you want to store it, the scope of
your data (whether it’s limited to individual users or shared across multiple requests), and
additional security and performance considerations. The different state management options
in ASP.NET are complementary, which means you’ll almost always use a combination of them
in the same web application (and often the same page).

 Table 6-1, Table 6-2, and Table 6-3 show an at-a- glance comparison of your state man-
agement options. You can review your options now, or you can use these tables as a reference
after you work your way through the more detailed information in this chapter.

CHAPTER 6 STATE MANAGEMENT236

 Table 6-1. State Management Options Compared (Part 1)

View State Query String Custom Cookies
Allowed data types All serializable .NET data

types.
A limited amount of
string data.

String data.

Storage location A hidden field in the cur-
rent web page.

The browser’s URL
string.

The client’s com-
puter (in memory
or a small text file,
depending on its
lifetime settings).

Lifetime Retained permanently
for postbacks to a single
page.

Lost when the user
enters a new URL or
closes the browser.
However, can be
stored and can persist
between visits.

Set by the program-
mer. It can be used in
multiple pages and
it persists between
visits.

Scope Limited to the current
page.

Limited to the target
page.

The whole ASP.NET
application.

Security Tamper-proof by default
but easy to read. You can
use the Page directive to
enforce encryption.

Clearly visible and easy
for the user to modify.

Insecure and can be
modified by the user.

Performance
implications

Storing a large amount
of information will
slow transmission but
will not affect server
performance.

None, because the
amount of data is
trivial.

None, because the
amount of data is
trivial.

Typical use Page-specific settings. Sending a product ID
from a catalog page to
a details page.

Personalization pref-
erences for a website.

 Table 6-2. State Management Options Compared (Part 2)

Session State Application State
Allowed data types All serializable .NET data types.

Nonserializable types are
supported if you are using the
default in- process state service.

All .NET data types.

Storage location Server memory (by default), or
a dedicated database, depend-
ing on the mode you choose.

Server memory.

Lifetime Times out after a predefined
period (usually 20 minutes
but can be altered globally or
programmatically).

The lifetime of the application (typically,
until the server is rebooted).

Scope The whole ASP.NET application. The whole ASP.NET application. Unlike
most other types of methods, application
data is global to all users.

Security Secure, because data is never
transmitted to the client. How-
ever, subject to session hijack-
ing if you don’t use SSL.

Very secure, because data is never trans-
mitted to the client.

CHAPTER 6 STATE MANAGEMENT 237

Session State Application State
Performance
implications

Storing a large amount of
information can slow down
the server severely, especially
if there are a large number of
users at once, because each user
will have a separate set of ses-
sion data.

Storing a large amount of information can
slow down the server, because this data
will never time out and be removed.

Typical use Store items in a shopping
basket.

Storing any type of global data.

 Table 6-3. State Management Options Compared (Part 3)

Profiles Caching
Allowed data types All serializable .NET data types. All .NET data types. Nonserializ-

able types are supported if you
create a custom profile.

Storage location A back- end database. Server memory.

Lifetime Permanent. Depends on the expiration
policy you set, but may possibly
be released early if server memory
becomes scarce.

Scope The whole ASP.NET application.
May also be accessed by other
applications.

The same as application state
(global to all users and all pages).

Security Fairly secure, because although
data is never transmitted, it is
stored in a database that could
be compromised.

Very secure, because data is never
transmitted to the client.

Performance implications Large amounts of data can be
stored easily, but there may be
a nontrivial overhead in retriev-
ing and writing the data for each
request.

Storing a large amount of in-
formation may force out other,
more useful cached information.
However, ASP.NET has the ability
to remove items early to ensure
optimum performance.

Typical use Store customer account
information.

Storing data retrieved from
a database.

Clearly, there’s no shortage of choices for managing state in ASP.NET. Fortunately, most
of these state management systems expose a similar collection- based programming interface.
One notable exception is the profiles feature, which gives you a higher- level data model.

This chapter explores all the approaches to state management shown in Table 6-1 and
 Table 6-2, but not those in Table 6-3. Caching, an indispensable technique for optimizing
access to limited resources such as databases, is covered in Chapter 11. Profiles, a higher- level
model for storing user- specific information that works in conjunction with ASP.NET authen-
tication, is covered in Chapter 24. However, before you can tackle either of these topics, you’ll
need to have a thorough understanding of state management basics.

In addition, you can write your own custom state management code and use server- side
resources to store that information. The most common example of this technique is storing
information in one or more tables in a database. The drawback with using server- side resources

CHAPTER 6 STATE MANAGEMENT238

is that they tend to slow down performance and can hurt scalability. For example, opening
a connection to a database or reading information from a file takes time. In many cases, you
can reduce this overhead by supplementing your state management system with caching. You’ll
explore your options for using and enhancing database access code in Part 2.

View State
View state should be your first choice for storing information within the bounds of a single
page. View state is used natively by the ASP.NET web controls. It allows them to retain their
properties between postbacks. You can add your own data to the view state collection using
a built- in page property called ViewState. The type of information you can store includes sim-
ple data types and your own custom objects.

Like most types of state management in ASP.NET, view state relies on a dictionary collection,
where each item is indexed with a unique string name. For example, consider this code:

This places the value 1 (or rather, an integer that contains the value 1) into the ViewState
collection and gives it the descriptive name Counter. If there is currently no item with the name
Counter, a new item will be added automatically. If there is already an item indexed under the
name Counter, it will be replaced.

When retrieving a value, you use the key name. You also need to cast the retrieved value to
the appropriate data type. This extra step is required because the ViewState collection casts all
items to the base Object type, which allows it to handle any type of data.

Here’s the code that retrieves the counter from view state and converts it to an integer:

If you attempt to look up a value that isn’t present in the collection, you’ll receive
a NullReferenceException. To defend against this possibility, you should check for a null
value before you attempt to retrieve and cast data that may not be present.

Note ASP.NET provides many collections that use the same dictionary syntax. This includes the collec-
tions you’ll use for session and application state as well as those used for caching and cookies. You’ll see
several of these collections in this chapter.

A View State Example
The following code demonstrates a page that uses view state. It allows the user to save a set
of values (all the text that’s displayed in all the text boxes of a table) and restore it later. This
example uses recursive logic to dig through all child controls, and it uses the control ID for the
view state key, because this is guaranteed to be unique in the page.

Here’s the complete code:

CHAPTER 6 STATE MANAGEMENT 239

 Figure 6-1 shows the page in action.

CHAPTER 6 STATE MANAGEMENT240

 Figure 6-1. Saving and restoring text using view state

Storing Objects in View State
You can store your own objects in view state just as easily as you store numeric and string
types. However, to store an item in view state, ASP.NET must be able to convert it into
a stream of bytes so that it can be added to the hidden input field in the page. This process
is called serialization. If your objects aren’t serializable (and by default they aren’t), you’ll
receive an error message when you attempt to place them in view state.

To make your objects serializable, you need to add the Serializable attribute before your
class declaration. For example, here’s an exceedingly simple Customer class:

CHAPTER 6 STATE MANAGEMENT 241

Because the Customer class is marked as serializable, it can be stored in view state:

Remember, when using custom objects, you’ll need to cast your data when you retrieve it
from view state.

For your classes to be serializable, you must meet these requirements:

-
able data type must be decorated with the NonSerialized attribute (which means it is
simply ignored during the serialization process).

Once you understand these principles, you’ll also be able to determine what .NET objects
can be placed in view state. You simply need to find the class information in the MSDN Help.
Find the class you’re interested in, and examine the documentation. If the class declaration
is preceded with the Serializable attribute, the object can be placed in view state. If the Seri-
alizable attribute isn’t present, the object isn’t serializable, and you won’t be able to store it
in view state. However, you may still be able to use other types of state management, such as
 in- process session state, which is described later in the “Session State” section.

The following example rewrites the page shown earlier to use the generic Dictionary
class. The Dictionary class is a serializable key- value collection that’s provided in the System.
Collections.Generic namespace. As long as you use the Dictionary to store serializable objects
(and use a serializable data type for your keys), you can store a Dictionary object in view state
without a hitch.

To demonstrate this technique, the following example stores all the control information
for the page as a collection of strings in a Dictionary object, and it indexes each item by string
using the control ID. The final Dictionary object is then stored in the view state for the page.
When the user clicks the Display button, the dictionary is retrieved, and all the information it
contains is displayed in a label.

CHAPTER 6 STATE MANAGEMENT242

 Figure 6-2 shows the result of a simple test, after entering some data, saving it, and
retrieving it.

CHAPTER 6 STATE MANAGEMENT 243

 Figure 6-2. Retrieving an object from view state

Retaining Member Variables
Unlike control properties, member variables that you add to your web- page classes are never
saved in view state. Interestingly, you can work around this limitation using view state.

You have two basic approaches. The first is to create a property procedure that wraps view
state access. For example, in the previous web page you could provide the dictionary with the
control text using a property like this:

CHAPTER 6 STATE MANAGEMENT244

Now the rest of your page code can freely use the ControlText property, without worrying
about how it’s being retrieved. The advantage of this approach is that the serialization details
are separated from the rest of your page logic, making it easy if you want to alter your page to
store its data somewhere else.

The other approach is to save all your member variables to view state when the Page.
PreRender event occurs and retrieve them when the Page.Load event occurs. That way, all
your other event handlers can use the member variables normally.

Keep in mind when you use either of these techniques you must be careful not to store
needless amounts of information. If you store unnecessary information in view state, it will
enlarge the size of the final page output and can thus slow down page transmission times.

Assessing View State
View state is ideal because it doesn’t take up any memory on the server and doesn’t impose
any arbitrary usage limits (such as a time- out). So, what might force you to abandon view state
for another type of state management? Here are three possible reasons:

(An ingenious user could modify the view state information in a postback request.) In
this case, consider session state. Alternatively, consider using the countermeasures
described in the next section. They aren’t bulletproof, but they will greatly increase the
effort an attacker would need in order to read or modify view state data.

session state, cookies, or the query string.

slow down page transmission times. In this case, consider using a database, or possibly
session state.

The amount of space used by view state depends on the number of controls, their com-
plexity, and the amount of dynamic information. If you want to profile the view state usage of
a page, just turn on tracing by adding the Trace attribute to the Page directive, as shown here:

Look for the Control Tree section. Although it doesn’t provide the total view state used by
the page, it does indicate the view state used by each individual control in the Viewstate Size
Bytes column (see Figure 6-3). Don’t worry about the Render Size Bytes column, which simply
reflects the size of the rendered HTML for the control.

Tip You can also examine the contents of the current view state of a page using the Web Development
Helper described in Chapter 2.

CHAPTER 6 STATE MANAGEMENT 245

 Figure 6-3. Determining the view state used in a page

To improve the transmission times of your page, it’s a good idea to eliminate view state
when it’s not needed. Although you can disable view state at the application and page level, it
makes the most sense to disable it on a per- control basis. You won’t need view state for a con-
trol in three instances:

state.

shows the current time, and you set the current time in the Page.Load event handler, it
doesn’t need view state.

postback, ASP.NET will populate your input controls using the submitted form values.
This means the text in a text box or the selection in a list box won’t be lost, even if you
don’t use view state.

Tip Remember that view state applies to all the values that change, not just the text displayed in the con-
trol. For example, if you dynamically change the colors used in a label, you’ll need to use view state even if
you don’t dynamically set the text. Technically, it’s the control’s responsibility to use view state, so it is pos-
sible to create a server control that doesn’t retain certain values even if view state is enabled. This might be
used to optimize performance in certain scenarios.

To turn off view state for a single control, set the EnableViewState property of the control
to false. To turn off view state for an entire page and all its controls, set the EnableViewState
property of the page to false, or use the EnableViewState attribute in the Page directive, as
shown here:

CHAPTER 6 STATE MANAGEMENT246

Even when you disable view state for the entire page, you’ll still see the hidden view
state tag with a small amount of information in the rendered HTML. That’s because ASP.NET
always stores the control hierarchy for the page at a minimum, even if view state is disabled.
There’s no way to remove this last little fragment of data.

View State Security
As described in earlier chapters, view state information is stored in a single Base64- encoded
string that looks like this:

Because this value isn’t formatted as clear text, many ASP.NET programmers assume that
their view state data is encrypted. It isn’t. A clever hacker could reverse- engineer this string
and examine your view state data in a matter of seconds, as demonstrated in Chapter 3.

If you want to make view state secure, you have two choices. First, you can make sure that
the view state information is tamper- proof by using a hash code.

A hash code is a cryptographically strong checksum. Essentially, ASP.NET calculates this
checksum based on the current view state content and adds it to the hidden input field when
it returns the page. When the page is posted back, ASP.NET recalculates the checksum and
ensures that it matches. If a malicious user changes the view state data, ASP.NET will be able
to detect the change, and it will reject the postback.

Hash codes are enabled by default, so if you want this functionality, you don’t need to
take any extra steps. Occasionally, developers choose to disable this feature to prevent prob-
lems in a web farm where different servers have different keys. (The problem occurs if the page
is posted back and handled by a new server, which won’t be able to verify the view state infor-
mation.) To disable hash codes, you can use the EnableViewStateMAC property of the Page
directive in your .aspx file:

Alternatively, you can set the enableViewStateMac attribute of the <pages> element in the
web.config file, as shown here:

Note This step is strongly discouraged. It’s much better to configure multiple servers to use the same
key, thereby removing any problem. Chapter 5 describes how to do this.

CHAPTER 6 STATE MANAGEMENT 247

Even when you use hash codes, the view state data will still be readable. To prevent users
from getting any view state information, you can enable view state encryption. You can turn on
encryption for an individual page using the ViewStateEncryptionMode property of the Page
directive:

Or you can set the same attribute in the web.config configuration file:

Either way, this enforces encryption. You have three choices for your view state encryp-
tion setting—always encrypt (Always), never encrypt (Never), or encrypt only if a control
specifically requests it (Auto). The default is Auto, which means that the page won’t encrypt its
view state unless a control on that page specifically requests it. To request encryption, a con-
trol must call the Page.RegisterRequiresViewStateEncryption() method. If no control calls this
method to indicate it has sensitive information, the view state is not encrypted, thereby saving
the encryption overhead. However, the control doesn’t have absolute power—if it calls Page.
RegisterRequiresViewStateEncryption() and the encryption mode of the page is Never, the
view state won’t be encrypted.

When hashing or encrypting data, ASP.NET uses the computer- specific key defined in the
<machineKey> section of the machine.config file, which is described in Chapter 5. By default,
you won’t actually see the definition for the <machineKey> because it’s initialized program-
matically. However, you can see the equivalent content in the machine.config.comments files,
and you can explicitly add the <machineKey> element if you want to customize its settings.

Tip Don’t encrypt view state data if you don’t need to do so. The encryption will impose a performance
penalty, because the web server needs to perform the encryption and decryption with each postback.

Transferring Information Between Pages
One of the most significant limitations with view state is that it’s tightly bound to a specific
page. If the user navigates to another page, this information is lost. This problem has several
solutions, and the best approach depends on your requirements. In the following sections,
you’ll see how to pass information from one page to the next using the query string and
 cross- page posting. If neither of these techniques is right for your scenario, you’ll need to use
a form of state management that has a broader scope, such as cookies, session state, or appli-
cation state, all of which are discussed later in this chapter.

The Query String
One common approach is to pass information using a query string in the URL. You will
commonly find this approach in search engines. For example, if you perform a search on the
Google website, you’ll be redirected to a new URL that incorporates your search parameters.
Here’s an example:

CHAPTER 6 STATE MANAGEMENT248

The query string is the portion of the URL after the question mark. In this case, it defines
a single variable named q, which contains the “organic+gardening” string.

The advantage of the query string is that it’s lightweight and doesn’t exert any kind of bur-
den on the server. Unlike cross- page posting, the query string can easily transport the same
information from page to page. It has some limitations, however:

the Internet.

which your program won’t expect and can’t protect against.

reason, you can’t place a large amount of information in the query string and still be
assured of compatibility with most browsers.

Adding information to the query string is still a useful technique. It’s particularly well
suited in database applications where you present the user with a list of items corresponding
to records in a database, like products. The user can then select an item and be forwarded to
another page with detailed information about the selected item. One easy way to implement
this design is to have the first page send the item ID to the second page. The second page then
looks that item up in the database and displays the detailed information. You’ll notice this
technique in e- commerce sites such as Amazon.com.

Using the Query String
To store information in the query string, you need to place it there yourself. Unfortunately,
there is no collection- based way to do this. Typically, this means using a special HyperLink
control, or you can use a Response.Redirect() statement like the one shown here:

You can send multiple parameters as long as you separate them with an ampersand (&),
as shown here:

The receiving page has an easier time working with the query string. It can receive the
values from the QueryString dictionary collection exposed by the built- in Request object, as
shown here:

If the query string doesn’t contain the recordID parameter, or if the query string contains
the recordID parameter but doesn’t supply a value, the ID string will be set to null.

CHAPTER 6 STATE MANAGEMENT 249

Note that information is always retrieved as a string, which can then be converted to
another simple data type. Values in the QueryString collection are indexed by the variable
name.

Note Unfortunately, ASP.NET does not expose any mechanism to automatically verify or encrypt query
string data. This facility could work in almost the same way as the view state protection. Without these
features, query string data is easily subject to tampering. In Chapter 25, you’ll take a closer look at the .NET
cryptography classes and learn how you can use them to build a truly secure query string.

URL Encoding
One potential problem with the query string is using characters that aren’t allowed in a URL.
The list of characters that are allowed in a URL is much shorter than the list of allowed char-
acters in an HTML document. All characters must be alphanumeric or one of a small set of
special characters (including $- _.+!*’(),). Some browsers tolerate certain additional special
characters (Internet Explorer is notoriously lax), but many do not. Furthermore, some charac-
ters have special meaning. For example, the ampersand (&) is used to separate multiple query
string parameters, the plus sign (+) is an alternate way to represent a space, and the number
sign (#) is used to point to a specific bookmark in a web page. If you try to send query string
values that include any of these characters, you’ll lose some of your data.

If you’re concerned that the data you want to store in the query string may not consist of
 URL- legal characters, you should use URL encoding. With URL encoding, special characters
are replaced by escaped character sequences starting with the percent sign (%), followed by
a two- digit hexadecimal representation. The only exception is the space character, which can
be represented as the character sequence %20 or the + sign.

You can use the methods of the HttpServerUtility class to encode your data automatically.
For example, the following shows how you would encode a string of arbitrary data for use in
the query string. This replaces all the non- legal characters with escaped character sequences.

You can use the HttpServerUtility.UrlDecode() method to return a URL- encoded string
to its initial value. However, you don’t need to take this step with the query string because
ASP.NET automatically decodes your values when you access them through the Request.
QueryString collection. Usually, it’s safe to call UrlDecode() a second time, because decoding
data that’s already decoded won’t cause a problem. The only exception is if you have a value
that legitimately includes the + sign. In this case, calling UrlDecode() will convert the + sign to
a space.

Cross-Page Posting
You’ve already learned how ASP.NET pages post back to themselves. When a page is posted
back, it sends the current content of all the controls in the form for that page (including the
contents of the hidden viewstate field). To transfer information from one page to another,
you can use the same postback mechanism, but send the information to a different page. This

CHAPTER 6 STATE MANAGEMENT250

technique sounds conceptually straightforward, but it’s a potential minefield. If you’re not
careful, it can lead you to create pages that are tightly coupled to one another and difficult to
enhance and debug.

The infrastructure that supports cross- page postbacks is a property named PostBackUrl,
which is defined by the IButtonControl interface and turns up in button controls such as
ImageButton, LinkButton, and Button. To use cross- page posting, you simply set PostBackUrl
to the name of another web form. When the user clicks the button, the page will be posted to
that new URL with the values from all the input controls on the current page.

Here’s an example that defines a form with two text boxes and a button that posts to
a page named CrossPage2.aspx:

In CrossPage2.aspx, the page can interact with the CrossPage1.aspx objects using the
Page.PreviousPage property. Here’s an example:

Note that this page checks for a Nothing reference before attempting to access the
PreviousPage object. If there’s no PreviousPage object, there’s no cross- page postback.

ASP.NET uses some interesting sleight of hand to make this system work. The first time
the second page accesses Page.PreviousPage, ASP.NET needs to create the previous page
object. To do this, it actually starts the page processing life cycle, but interrupts it just before
the PreRender stage. Along the way, a stand- in HttpResponse object is created to silently catch
and ignore any Response.Write() commands from the previous page. However, there are still
some interesting side effects. For example, all the page events of the previous page are fired,
including Page.Load, Page.Init, and even the Button.Click event for the button that triggered
the postback (if it’s defined). Firing these events is mandatory, because they are required to
properly initialize the page.

CHAPTER 6 STATE MANAGEMENT 251

Note Trace messages aren’t ignored like Response messages are, which means you may see tracing
information from both pages in a cross- posting situation.

Getting Page- Specific Information
In the previous example, the information you can retrieve from the previous page is limited to
the members of the Page class. If you want to get more specific details, such as control values,
you need to cast the PreviousPage reference to the appropriate type.

Here’s an example that handles this situation properly, by checking first if the PreviousPage
object is an instance of the expected source (CrossPage1):

You can solve this problem in another way. Rather than casting the reference manually, you
can add the PreviousPageType control directive to your page, which indicates the expected type
of the page initiating the cross- page postback. Here’s an example:

However, this approach is more fragile because it limits you to a single type. You don’t
have the flexibility to deal with situations where more than one page might trigger a cross- page
postback. For that reason, the casting approach is preferred.

Tip Seeing as the PostBackUrl property can point to only one page, it may seem that cross- page posting
can accommodate a fixed relationship between just two pages. However, you can extend this relationship
with various techniques. For example, you can modify the PostBackUrl property programmatically to choose
a different target. Conversely, a cross- post target can test the PreviousPage property, checking if it is one
of several different classes. You can then perform different tasks depending on what page initiated the
 cross- post.

Once you’ve cast the previous page to the appropriate page type, you still won’t be able
to directly access the control values. That’s because the controls are declared as protected
members. You can handle this by adding properties to the page class that wrap the control
variables, like this:

CHAPTER 6 STATE MANAGEMENT252

However, this usually isn’t the best approach. The problem is that it exposes too many
details, giving the target page the freedom to read every control property. If you need to
change the page later to use different input controls, it’s difficult to maintain these properties.
Instead, you’ll probably be forced to rewrite code in both pages.

A better choice is to define specific, limited methods or properties that extract just the
information you need. Here’s an example:

This way, the relationship between the two pages is well documented and easily under-
stood. If the controls in the source page are changed, you can probably still keep the same
interface for the public methods or properties. For example, if you changed the name entry to
use different controls in the previous example, you would still be forced to revise the FullName
property. However, once your changes would be confined to CrossPage1.aspx, you wouldn’t
need to modify CrossPage2.aspx at all.

Tip In some cases, a better alternative to cross- page posting is to use some sort of control that simulates
multiple pages or multiple steps, such as separate Panel controls or the MultiView or Wizard control. This
offers much the same user experience and simplifies the coding model. You’ll learn about these controls in
Chapter 17.

Performing Cross- Page Posting in Any Event Handler
As you learned in the previous section, cross- page posting is available only with controls that
implement the IButtonControl interface. However, there is a workaround. You can use an
overloaded method of Server.Transfer() to switch to a new ASP.NET page with the view state
information left intact. You simply need to include the Boolean preserveForm parameter and
set it to true, as shown here:

This gives you the opportunity to use cross- page posting anywhere in your web- page
code. As with any call to Server.Transfer(), this technique causes a server- side redirect. That

CHAPTER 6 STATE MANAGEMENT 253

means there is no extra roundtrip to redirect the client. As a disadvantage, the original page
URL (from the source page) remains in the user’s browser even though you’ve moved on to
another page.

Interestingly, there is a way to distinguish between a cross- page post that’s initiated
directly through a button and the Server.Transfer() method. Although in both cases you can
access Page.PreviousPage, if you use Server.Transfer(), the Page.PreviousPage.IsCrossPage-
PostBack property is false. Here’s the code that demonstrates how this logic works:

The IsPostBack and IsCrossPagePostBack Properties
It’s important to understand how the Page.IsPostBack property works during a cross- page
postback. For the source page (the one that triggered the cross- page postback), the IsPostBack
property is true. For the destination page (the one that’s receiving the postback), the IsPostBack
property is false. One benefit of this system is that it means your initialization code will usually
run when it should.

For example, imagine CrossPage1.aspx performs some time- consuming initialization the
first time it’s requested, using code like this:

Now imagine the user moves from CrossPage1.aspx to CrossPage2.aspx through a cross- page
postback. As soon as CrossPage2.aspx accesses the PreviousPage property, the page life cycle exe-
cutes for CrossPage1.aspx. At this point, the Page.Load event fires for CrossPage1.aspx. However,
on CrossPage1.aspx the Page.IsPostBack property is true, so your code skips the time- consuming
initialization steps. Instead, the control values are restored from view state. On the other hand,
the Page.IsPostBack property for CrossPage2.aspx is false, so this page performs the necessary
 first- time initialization.

In some situations, you might have code that you want to execute for the first request and
all subsequent postbacks except when the page is the source of a cross- page postback. In this
case, you can check the IsCrossPagePostBack property. This property is true if the current page
triggered a cross- page postback.

That means you can use code like this in CrossPage1.aspx:

CHAPTER 6 STATE MANAGEMENT254

There is a trick that allows you to avoid running the life cycle of the source page if you
simply want to read one of its control values. You can get the control value directly from the
Request collection using the control’s ID. For example, Request["txtName"] gets the value of
the text box named txtName, even though that text box is located on the previous page. How-
ever, retrieving Request["txtName"] won’t cause ASP.NET to instantiate the source page and
fire its events.

Before you use this approach, you should consider two serious caveats. First, you need to
make sure you use the client- side control ID, which is slightly different from the server- side
control ID if the control is nested inside a naming container such as a master page, data control,
and so on (if in doubt, check the rendered HTML). The second, more serious consideration is
that this approach violates good object- oriented practices; this approach is extremely fragile.
If the source page is modified even slightly, this technique may fail, and you won’t discover the
problem until you run this code. As a rule, it’s always better to restrict interaction between dif-
ferent classes to public properties and methods.

Cross-Page Posting and Validation
Cross-page posting introduces a few wrinkles when you use it in conjunction with the valida-
tor controls described in Chapter 4. As you learned in Chapter 4, when you use the validator
controls, you need to check the Page.IsValid property to ensure that the data the user entered
is correct. Although users are usually prevented from posting invalid pages back to the server
(thanks to some slick client- side JavaScript), this isn’t always the case. For example, the client
browser might not support JavaScript, or a malicious user could deliberately circumvent the
 client- side validation checks.

When you use validation in a cross- page posting scenario, the potential for some trouble
exists. Namely, what happens if you use a cross- page postback and the source page has valida-
tion controls? Figure 6-4 shows an example with a RequiredFieldValidator that requires input
in a text box.

CHAPTER 6 STATE MANAGEMENT 255

 Figure 6-4. Using a validator in a page that cross- posts

If you click one of the buttons to perform the cross- page postback (both of which have
CausesValidation set to true), you’ll be prevented by the browser’s client- side checks. Instead,
the error message will appear. However, you should also check what happens when client- side
script isn’t supported by setting the RequiredFieldValidator.EnableClientScript property to
false. (You can change it back to true once you perfect your code.) Now when you click one of
the buttons, the page is posted back, and the new page appears.

To prevent this from happening, you obviously need to check the validity of the source
page in the target page by examining Page.IsValid before you perform any other action. This
is the standard line of defense used in any web form that employs validation. The difference is
that if the page isn’t valid, it’s not sufficient to do nothing. Instead, you need to take the extra
step of returning the user to the original page. Here’s the code you need in the destination
page:

It’s still possible to improve on this code. Currently, when the user is returned to the origi-
nal page, the error message won’t appear, because the page is being re- requested (not posted
back). To correct this issue, you can set a flag to let the source page know the page has been
refused by the target page. Here’s an example that adds this flag to the query string:

CHAPTER 6 STATE MANAGEMENT256

Now the original page simply needs to check for the presence of this query string value
and perform the validation accordingly. The validation causes error messages to appear for
any invalid data.

You could do still more to try to improve the page. For example, if the user is in the midst
of filling out a detailed form, re- requesting the page isn’t a good idea, because it clears all the
input controls and forces the user to start again from scratch. Instead, you might want to write
a little bit of JavaScript code to the response stream, which could use the browser’s back fea-
ture to return to the source page. Chapter 31 has more about JavaScript.

Tip This example demonstrates that cross- page postbacks are often trickier than developers first expect.
If not handled carefully, cross- page postbacks can lead you to build tightly coupled pages that have subtle
dependencies on one another, which makes it more difficult to change them in the future. As a result, think
carefully before you decide to use cross- page postbacks as a method to transfer information.

Cookies
Custom cookies provide another way you can store information for later use. Cookies are small
files that are created on the client’s hard drive (or, if they’re temporary, in the web browser’s
memory). One advantage of cookies is that they work transparently without the user being
aware that information needs to be stored. They also can be easily used by any page in your
application and even retained between visits, which allows for truly long- term storage. They
suffer from some of the same drawbacks that affect query strings. Namely, they’re limited
to simple string information, and they’re easily accessible and readable if the user finds and
opens the corresponding file. These factors make them a poor choice for complex or private
information or large amounts of data.

Some users disable cookies on their browsers, which will cause problems for web applica-
tions that require them. However, cookies are widely adopted because so many sites use them.

Before you can use cookies, you should import the System.Net namespace so you can eas-
ily work with the appropriate types, as shown here:

Cookies are fairly easy to use. Both the Request and Response objects (which are provided
through Page properties) provide a Cookies collection. The important trick to remember is
that you retrieve cookies from the Request object, and you set cookies using the Response
object.

CHAPTER 6 STATE MANAGEMENT 257

To set a cookie, just create a new System.Net.HttpCookie object. You can then fill it with
string information (using the familiar dictionary pattern) and attach it to the current web
response, as follows:

A cookie added in this way will persist until the user closes the browser and will be sent
with every request. To create a longer- lived cookie, you can set an expiration date, as shown
here:

Cookies are retrieved by cookie name using the Request.Cookies collection, as shown
here:

The only way to remove a cookie is by replacing it with a cookie that has an expiration
date that has already passed. The following code demonstrates this technique:

Note You’ll find that some other ASP.NET features use cookies. Two examples are session state (which
allows you to temporarily store user- specific information in server memory) and forms security (which allows
you to restrict portions of a website and force users to access it through a login page).

CHAPTER 6 STATE MANAGEMENT258

Session State
Session state is the heavyweight of state management. It allows information to be stored in
one page and accessed in another, and it supports any type of object, including your own cus-
tom data types. Best of all, session state uses the same collection syntax as view state. The only
difference is the name of the built- in page property, which is Session.

Every client that accesses the application has a different session and a distinct collection
of information. Session state is ideal for storing information such as the items in the current
user’s shopping basket when the user browses from one page to another. But session state
doesn’t come for free. Though it solves many of the problems associated with other forms of
state management, it forces the web server to store additional information in memory. This
extra memory requirement, even if it is small, can quickly grow to performance- destroying lev-
els as thousands of clients access the site.

Session Architecture
Session management is not part of the HTTP standard. As a result, ASP.NET needs to do some
extra work to track session information and bind it to the appropriate response.

ASP.NET tracks each session using a unique 120- bit identifier. ASP.NET uses a propri-
etary algorithm to generate this value, thereby guaranteeing (statistically speaking) that the
number is unique and that it’s random enough so a malicious user can’t reverse- engineer or
guess what session ID a given client will be using. This ID is the only piece of information that
is transmitted between the web server and the client. When the client presents the session ID,
ASP.NET looks up the corresponding session, retrieves the serialized data from the state server,
converts it to live objects, and places these objects into a special collection so they can be
accessed in code. This process takes place automatically.

Note Every time you make a new request, ASP.NET generates a new session ID until you actually use
session state to store some information. This behavior achieves a slight performance enhancement—in
short, why bother to save the session ID if it’s not being used?

At this point you’re probably wondering where ASP.NET stores session information
and how it serializes and deserializes it. In classic ASP, the session state is implemented as
a free- threaded COM object that’s contained in the asp.dll library. In ASP.NET, the program-
ming interface is nearly identical, but the underlying implementation is quite a bit different.

As you saw in Chapter 5, when ASP.NET handles an HTTP request, it flows through a pipe-
line of different modules that can react to application events. One of the modules in this chain is
the SessionStateModule (in the System.Web.SessionState namespace). The SessionStateModule
generates the session ID, retrieves the session data from external state providers, and binds
the data to the call context of the request. It also saves the session state information when the
page is finished processing. However, it’s important to realize that the SessionStateModule
doesn’t actually store the session data. Instead, the session state is persisted in external com-
ponents, which are named state providers. Figure 6-5 shows this interaction.

CHAPTER 6 STATE MANAGEMENT 259

 Figure 6-5. ASP.NET session state architecture

Session state is another example of ASP.NET’s pluggable architecture. A state provider is
any class that implements the IHttpSessionState interface, which means you can customize
how session state works simply by building (or purchasing) a new .NET component. ASP.NET
includes three prebuilt state providers, which allow you to store information in process, in
a separate service, or in a SQL Server database.

For session state to work, the client needs to present the appropriate session ID with each
request. The final ingredient in the puzzle is how the session ID is tracked from one request to
the next. You can accomplish this in two ways:

Using cookies: In this case, the session ID is transmitted in a special cookie (named ASP.
NET_SessionId), which ASP.NET creates automatically when the session collection is
used. This is the default, and it’s also the same approach that was used in earlier versions
of ASP.

Using modified URLs: In this case, the session ID is transmitted in a specially modified
(or “munged”) URL. This allows you to create applications that use session state with cli-
ents that don’t support cookies.

You’ll learn more about how to configure cookieless sessions and different session state
providers later in the “Configuring Session State” section.

CHAPTER 6 STATE MANAGEMENT260

Using Session State
You can interact with session state using the System.Web.SessionState.HttpSessionState class,
which is provided in an ASP.NET web page as the built- in Session object. The syntax for add-
ing items to the collection and retrieving them is basically the same as for adding items to the
view state of a page.

For example, you might store a DataSet in session memory like this:

You can then retrieve it with an appropriate conversion operation:

Session state is global to your entire application for the current user. Session state can be
lost in several ways:

session will still exist if a web page is accessed through the original browser window.
Browsers differ on how they handle this situation.

idle minutes.

In the first two cases, the session actually remains in memory on the server, because the
web server has no idea that the client has closed the browser or changed windows. The session
will linger in memory, remaining inaccessible, until it eventually expires.

In addition, session state will be lost when the application domain is re- created. This
process happens transparently when you update your web application or change a configura-
tion setting. The application domain may also be recycled periodically to ensure application
health, as described in Chapter 18. If this behavior is causing a problem, you can store session
state information out of process, as described in the next section. With out-of- process state
storage, the session information is retained even when the application domain is shut down.

 Table 6-4 describes the key methods and properties of the HttpSessionState class.

CHAPTER 6 STATE MANAGEMENT 261

Table 6-4. HttpSessionState Members

Member Description
Count The number of items in the current session collection.

IsCookieless Identifies whether this session is tracked with a cookie or with modified URLs.

IsNewSession Identifies whether this session was just created for the current request. If there is
currently no information in session state, ASP.NET won’t bother to track the ses-
sion or create a session cookie. Instead, the session will be re- created with every
request.

Mode Provides an enumerated value that explains how ASP.NET stores session state
information. This storage mode is determined based on the web.config configu-
ration settings discussed later in this chapter.

SessionID Provides a string with the unique session identifier for the current client.

StaticObjects Provides a collection of read- only session items that were declared by <object
runat="server"> tags in the global.asax file. Generally, this technique isn’t
used and is a holdover from ASP programming that is included for backward
compatibility.

Timeout The current number of minutes that must elapse before the current session will
be abandoned, provided that no more requests are received from the client. This
value can be changed programmatically, giving you the chance to make the ses-
sion collection longer term when required for more important operations.

Abandon() Cancels the current session immediately and releases all the memory it occu-
pied. This is a useful technique in a logoff page to ensure that server memory is
reclaimed as quickly as possible.

Clear() Removes all the session items but doesn’t change the current session identifier.

Configuring Session State
You can configure session state through the <sessionState> element in the web.config file for
your application. Here’s a snapshot of all the available settings you can use:

CHAPTER 6 STATE MANAGEMENT262

The session attributes are described in the following sections.

Mode
The mode session state settings allow you to configure what session state provider is used to
store session state information between requests. The following sections explain your options.

Off

This setting disables session state management for every page in the application. This can pro-
vide a slight performance improvement for websites that are not using session state.

InProc

InProc is similar to how session state was stored in classic ASP. It instructs ASP.NET to store
information in the current application domain. This provides the best performance but the
least durability. If you restart your server, the state information will be lost.

InProc is the default option, and it makes sense for most small websites. In a web farm
scenario, though, it won’t work at all. To allow session state to be shared between servers,
you must use the out-of- process or SQL Server state service. Another reason you might want
to avoid InProc mode is because it makes for more fragile sessions. In ASP.NET, application
domains are recycled in response to a variety of actions, including configuration changes,
updated pages, and when certain thresholds are met (regardless of whether an error has
occurred). If you find that your application domain is being restarted frequently and contrib-
uting to prematurely lost sessions, you can try to counter the effect by changing some of the
process model settings (see Chapter 18), or you can change to one of the more robust session
state providers.

Before you use either the out-of- process or the SQL Server state service, keep in mind that
more considerations will apply:

must be serializable. Otherwise, ASP.NET will not be able to transmit the object to the
state service or store it in the database.

-
tion steps to make sure all the web servers are in sync. Otherwise, one might encode
information in session state differently than another, which will cause a problem if the
user is routed from one server to another during a session. The solution is to modify
the <machineKey> section of the machine.config file so it’s consistent across all serv-
ers. For more information, refer to Chapter 5.

won’t be fired, and any event handlers for this event in the global.asax file or an HTTP
module will be ignored.

CHAPTER 6 STATE MANAGEMENT 263

StateServer

With this setting, ASP.NET will use a separate Windows service for state management. Even
if you run this service on the same web server, it will be loaded outside the main ASP.NET
process, which gives it a basic level of protection if the ASP.NET process needs to be restarted.
The cost is the increased time delay imposed when state information is transferred between
two processes. If you frequently access and change state information, this can make for a fairly
unwelcome slowdown.

When using the StateServer setting, you need to specify a value for the stateConnectionString
setting. This string identifies the TCP/IP address of the computer that is running the StateServer
service and its port number (which is defined by ASP.NET and doesn’t usually need to be changed).
This allows you to host the StateServer on another computer. If you don’t change this setting, the
local server will be used (set as address 127.0.0.1).

Of course, before your application can use the service, you need to start it. The easiest way
to do this is to use the Microsoft Management Console. Select Start Programs Adminis-
trative Tools Computer Management (you can also access the Administrative Tools group
through the Control Panel). Then, in the Computer Management tool, find the Services and
Applications Services node. Find the service called ASP.NET State Service in the list, as
shown in Figure 6-6.

 Figure 6-6. The ASP.NET state service

Once you find the service in the list, you can manually start and stop it by right- clicking it.
Generally, you’ll want to configure Windows to automatically start the service. Right- click it, select
Properties, and modify the Startup Type setting to Automatic, as shown in Figure 6-7. Then click
Start to start it immediately.

CHAPTER 6 STATE MANAGEMENT264

 Figure 6-7. Service properties

Note When using StateServer mode, you can also set an optional stateNetworkTimeout attribute that
specifies the maximum number of seconds to wait for the service to respond before canceling the request.
The default is 10 seconds.

SQLServer

This setting instructs ASP.NET to use a SQL Server database to store session information, as
identified by the sqlConnectionString attribute. This is the most resilient state store but also
the slowest by far. To use this method of state management, you’ll need to have a server with
SQL Server installed.

When setting the sqlConnectionString, you follow the same sort of pattern you use with
ADO.NET data access (which is described in Part 2). Generally, you’ll need to specify a data
source (the server address) and a user ID and password, unless you’re using SQL integrated
security.

In addition, you need to install the special stored procedures and temporary session data-
bases. These stored procedures take care of storing and retrieving the session information.
ASP.NET includes a command- line tool that does the work for you automatically, called
aspnet_regsql.exe. It’s found in the c:\Windows\Microsoft.NET\Framework\v2.0.50727
directory. The easiest way to run aspnet_regsql.exe is to start by launching the Visual Studio
command prompt (open the Start menu and choose Programs Visual Studio 2008
Visual Studio Tools Visual Studio 2008 Command Prompt). You can then type in an
aspnet_regsql.exe command, no matter what directory you’re in.

CHAPTER 6 STATE MANAGEMENT 265

You can use the aspnet_regsql.exe tool to perform several different database- related tasks.
As you travel through this book, you’ll see how to use aspnet_regsql.exe with ASP.NET features
such as caching (Chapter 11), membership (Chapter 21), and profiles (Chapter 24). To use
aspnet_regsql.exe to create a session storage database, you supply the -ssadd parameter. In
addition, you use the -S parameter to indicate the database server name, and the -E parameter
to log in to the database using the currently logged in Windows user account.

Here’s a command that creates the session storage database on the current computer,
using the default database name ASPState:

This command uses the alias localhost, which tells aspnet_regsql.exe to connect to the
database server on the current computer. You can replace this detail with the computer name
of your database server.

Once you’ve created your session state database, you need to tell ASP.NET to use it by
modifying the <sessionState> section of the web.config file. If you’re using a database named
ASPState to store your session information (which is the default), you don’t need to supply the
database name. Instead, you simply need to indicate the location of the server and the type of
authentication that ASP.NET should use to connect to it, as shown here:

This completes the setup procedure. However, you can alter these steps slightly if you
want to use persistent sessions or use a custom database, as you’ll see next.

Tip To remove the ASPState database, use the -ssremove parameter.

Ordinarily, the standard session state time- out still applies to SQL Server state manage-
ment. That’s because the aspnet_regsql.exe tool also creates a new SQL Server job named
ASPState_Job_DeleteExpiredSessions. As long as the SQLServerAgent service is running, this
job will be executed every minute.

Additionally, the state tables will be removed every time you restart SQL Server, no matter
what the session time- out. That’s because the state tables are created in the tempdb database,
which is a temporary storage area. If this isn’t the behavior you want, you can tell the aspnet_
regsql.exe tool to install permanent state tables in the ASPState database. To do this, you use
the -sstype p (for persisted) parameter. Here’s the revised command line:

Now session records will remain in the database, even if you restart SQL Server.
Your final option is to use aspnet_regsql.exe to create the state tables in a different data-

base (not ASPState). To do so, you use the -sstype c (for custom) parameter, and then supply
the database name with the -d parameter, as shown here:

CHAPTER 6 STATE MANAGEMENT266

For this step to work, you must have already created the MyCustomStateDb database.
When you use this approach, you’ll create permanent session tables, so their records will
remain even when SQL Server is restarted.

If you use a custom database, you’ll also need to make two configuration tweaks
 to the <sessionState> element in your application’s web.config file. First, you must set
allowCustomSqlDatabase to true. Second, you must make sure the connection string
includes the Initial Catalog setting, which indicates the name of the database you want
 to use. Here’s the correctly adjusted element:

Tip When using the SqlServer mode, you can also set an optional sqlCommandTimeout attribute that
specifies the maximum number of seconds to wait for the database to respond before canceling the request.
The default is 30 seconds.

Custom

When using custom mode, you need to indicate what session state store provider to use by
supplying the customProvider attribute. The customProvider attribute points to the name of
a class that’s part of your web application in the App_Code directory, or in a compiled assem-
bly in the Bin directory or the GAC.

The most common reasons to use a custom session state provider are to store session
information in a database other than SQL Server or to use an existing table in a database that
has a specific schema. Creating a custom state provider is a low- level task that needs to be han-
dled carefully to ensure security, stability, and scalability, so it’s always best to use a prebuilt
provider that has been designed and tested by a reliable third party rather than roll your own.

Custom state providers are also beyond the scope of this book. However, if you’d like
to try creating your own, you can find an overview at

px.

Cookieless
You can set the cookieless setting to one of the values defined by the HttpCookieMode enu-
meration, as described in Table 6-5. You can also set the name that’s used for the cookie with
the cookieName attribute. If you don’t, the default value cookie name is ASP.NET_SessionId.

CHAPTER 6 STATE MANAGEMENT 267

Table 6-5. HttpCookieMode Values

Value Description
UseCookies Cookies are always used, even if the browser or device doesn’t support cook-

ies or they are disabled. This is the default. If the device does not support
cookies, session information will be lost over subsequent requests, because
each request will get a new ID.

UseUri Cookies are never used, regardless of the capabilities of the browser or device.
Instead, the session ID is stored in the URL.

UseDeviceProfile ASP.NET chooses whether to use cookieless sessions by examining the
BrowserCapabilities object. The drawback is that this object indicates what
the device should support—it doesn’t take into account that the user may
have disabled cookies in a browser that supports them. Chapter 27 has more
information about how ASP.NET identifies different browsers and decides
whether they support features such as cookies.

AutoDetect ASP.NET attempts to determine whether the browser supports cookies by
attempting to set and retrieve a cookie (a technique commonly used on the
Web). This technique can correctly determine if a browser supports cookies
but has them disabled, in which case cookieless mode is used instead.

Here’s an example that forces cookieless mode (which is useful for testing):

In cookieless mode, the session ID will automatically be inserted into the URL. When ASP.
NET receives a request, it will remove the ID, retrieve the session collection, and forward the
request to the appropriate directory. A munged URL is shown here:

Because the session ID is inserted in the current URL, relative links also automatically
gain the session ID. In other words, if the user is currently stationed on Page1.aspx and clicks
a relative link to Page2.aspx, the relative link includes the current session ID as part of the
URL. The same is true if you call Response.Redirect() with a relative URL, as shown here:

The only real limitation of cookieless state is that you cannot use absolute links, because
they will not contain the session ID. For example, this statement causes the user to lose all ses-
sion information:

By default, ASP.NET allows you to reuse a session identifier. For example, if you make
a request and your query string contains an expired session, ASP.NET creates a new session and
uses that session ID. The problem is that a session ID might inadvertently appear in a public
place—such as in a results page in a search engine. This could lead to multiple users accessing
the server with the same session identifier and then all joining the same session with the same
shared data.

CHAPTER 6 STATE MANAGEMENT268

To avoid this potential security risk, it’s recommended that you include the optional
regenerateExpiredSessionId attribute and set it to true whenever you use cookieless sessions.
This way, a new session ID will be issued if a user connects with an expired session ID. The
only drawback is that this process also forces the current page to lose all view state and form
data, because ASP.NET performs a redirect to make sure the browser has a new session
identifier.

Note You can test if a cookieless session is currently being used by checking the IsCookieless property of
the Session object.

Timeout
Another important session state setting in the web.config file is the timeout. This specifies the
number of minutes that ASP.NET will wait, without receiving a request, before it abandons the
session.

This setting represents one of the most important compromises of session state. A differ-
ence of minutes can have a dramatic effect on the load of your server and the performance of
your application. Ideally, you will choose a time frame that is short enough to allow the server
to reclaim valuable memory after a client stops using the application but long enough to allow
a client to pause and continue a session without losing it.

You can also programmatically change the session time- out in code. For example, if you
know a session contains an unusually large amount of information, you may need to limit the
amount of time the session can be stored. You would then warn the user and change the tim-
eout property. Here’s a sample line of code that changes the time- out to ten minutes:

Securing Session State
The information in session state is very secure, because it is stored exclusively on the server.
However, the cookie with the session ID can easily become compromised. This means an
eavesdropper could steal the cookie and assume the session on another computer.

Several workarounds address this problem. One common approach is to use a custom
session module that checks for changes in the client’s IP address (see http://msdn.microsoft.
com/msdnmag/issues/04/08/WickedCode for a sample implementation). However, the only
truly secure approach is to restrict session cookies to portions of your website that use SSL.
That way, the session cookie is encrypted and useless on other computers.

If you choose to use this approach, it also makes sense to mark the session cookie as
a secure cookie so that it will be sent only over SSL connections. That prevents the user from
changing the URL from https:// to http://, which would send the cookie without SSL. Here’s
the code you need:

CHAPTER 6 STATE MANAGEMENT 269

Typically, you’ll use this code immediately after the user is authenticated. Make sure there
is at least one piece of information in session state so the session isn’t abandoned (and then
 re- created later).

Another related security risk exists with cookieless sessions. Even if the session ID is
encrypted, a clever user could use a social engineering attack to trick a user into joining a spe-
cific session. All the malicious user needs to do is feed the user a URL with a valid session ID.
When the user clicks the link, he joins that session. Although the session ID is protected from
this point onward, the attacker now knows what session ID is in use and can hijack the session
at a later time.

Taking certain steps can reduce the likelihood of this attack. First, when using cookieless
sessions, always set regenerateExpiredSessionId to true. This prevents the attacker from sup-
plying a session ID that’s expired. Next, explicitly abandon the current session before logging
in a new user.

Application State
Application state allows you to store global objects that can be accessed by any client. Applica-
tion state is based on the System.Web.HttpApplicationState class, which is provided in all web
pages through the built- in Application object.

Application state is similar to session state. It supports the same types of objects, retains
information on the server, and uses the same dictionary- based syntax. A common example
with application state is a global counter that tracks how many times an operation has been
performed by all of the web application’s clients.

For example, you could create a global.asax event handler that tracks how many sessions
have been created or how many requests have been received into the application. Or you can
use similar logic in the Page.Load event handler to track how many times a given page has
been requested by various clients. Here’s an example of the latter:

Once again, application state items are stored as objects, so you need to cast them when
you retrieve them from the collection. Items in application state never time out. They last until
the application or server is restarted or until the application domain refreshes itself (because
of automatic process- recycling settings or an update to one of the pages or components in the
application).

Application state isn’t often used, because it’s generally inefficient. In the previous
example, the counter would probably not keep an accurate count, particularly in times of
heavy traffic. For example, if two clients requested the page at the same time, you could have
a sequence of events like this:

CHAPTER 6 STATE MANAGEMENT270

 1. User A retrieves the current count (432).

 2. User B retrieves the current count (432).

 3. User A sets the current count to 433.

 4. User B sets the current count to 433.

In other words, one request isn’t counted because two clients access the counter at the
same time. To prevent this problem, you need to use the Application.Lock() and Application.
UnLock() methods, which explicitly allow only one client to access the Application state col-
lection at a time, as follows:

Unfortunately, all other clients requesting the page will now be stalled until the Application
collection is released. This can drastically reduce performance. Generally, frequently modified
values are poor candidates for application state. In fact, application state is rarely used in the
.NET world because its two most common uses have been replaced by easier, more efficient
methods:

a database connection string. As you saw in Chapter 5, this type of constant can now be
stored in the web.config file, which is generally more flexible because you can change it
easily without needing to hunt through web- page code or recompile your application.

 time- consuming to create, such as a full product catalog that requires a database
lookup. However, using application state to store this kind of information raises all
sorts of problems about how to check if the data is valid and how to replace it when
needed. It can also hamper performance if the product catalog is too large. A similar
but much more sensible approach is to store frequently used information in the
ASP.NET cache. Many uses of application state can be replaced more efficiently
with caching.

CHAPTER 6 STATE MANAGEMENT 271

Application state information is always stored in process. This means you can use any
.NET data types. However, it also introduces the same two limitations that affect in- process
session state. Namely, you can’t share application state between the servers in a web farm,
and you will always lose your application state information when the application domain is
restarted—an event that can occur as part of ASP.NET’s normal housekeeping.

Note Application state is included primarily for backward compatibility with classic ASP. In new appli-
cations, it’s almost always better to rely on other mechanisms for global data, such as using databases in
conjunction with the Cache object.

Static Application Variables
You can store global application variables in one other way. You can add static member vari-
ables to the global.asax file (which was introduced in Chapter 5). These members are then
compiled into the custom HttpApplication class for your web application and made available
to all pages. Here’s an example that declares a static array of strings:

The key detail that allows this to work is that the variable is Shared. That’s because ASP.NET
creates a pool of HttpApplication classes to serve multiple requests. As a result, each request
might be served with a different HttpApplication object, and each HttpApplication object has
its own instance data. However, there is only one copy of the static data, which is shared for all
instances (on the same web server).

There’s another requirement to make this strategy work. The rest of your code needs to be
able to access the static members you’ve added to your custom application class. To make this
possible, you need to specify the name that should be used for that class. To do this, you set
the ClassName attribute of the Application directive, which is at the start of the global.asax file.
Here’s an example that gives the application class the name Global:

Now you can write code like this in your web pages:

To improve this example, and get better encapsulation (and more flexibility), you should
use property procedures in your application class instead of public member variables. Here’s
the corrected code:

CHAPTER 6 STATE MANAGEMENT272

When you add a member variable to the global.asax file, it has essentially the same char-
acteristics as a value in the Application collection. In other words, you can use any .NET data
type, the value is retained until the application domain is restarted, and state isn’t shared
across computers in a web farm. However, there’s no automatic locking. Because multiple
clients might try to access or modify a value at the same time, you should use the VB SyncLock
statement to temporarily restrict the variable to a single thread. Depending on how your data
is accessed, you might perform the locking in the web page (in which case you could perform
several tasks at once with the locked data) or in the property procedures or methods in the
global.asax file (in which case the lock would be held for the shortest possible time).

Here’s an example that uses two methods to manage access to a private dictionary of
metadata. These methods ensure that the global collection is always accessed in a thread- safe
manner:

Using static member variables instead of the Application collection has two advantages.
First, it allows you to write custom code that runs automatically when the value is accessed
or changed (by wrapping your data in property procedures or methods). You could use this
code to log how many times a value is being accessed, to check if the data is still valid, or to
 re- create it. Here’s an example that uses a lazy initialization pattern and creates the global
object only when it’s first requested:

This example uses the file access classes described in Chapter 12 to retrieve a list of files in
the web application. This approach wouldn’t be possible with the Application collection.

The other benefit of using static member variables is that the code that consumes them
can be typesafe. Here’s an example that uses the FileList property:

CHAPTER 6 STATE MANAGEMENT 273

Notice that no casting step is required to gain access to the custom property you’ve added.

Summary
State management is the art of retaining information between requests. Usually, this informa-
tion is user- specific (such as a list of items in a shopping cart, a user name, or an access level),
but sometimes it’s global to the whole application (such as usage statistics that track site
activity). Because ASP.NET uses a disconnected architecture, you need to explicitly store and
retrieve state information with each individual request. The approach you choose for storing
this data can have a dramatic effect on the performance, scalability, and security of your appli-
cation. To perfect your state management solution, you’ll almost certainly want to consider
adding caching into the mix, as described in Chapter 11.

P A R T 2

Data Access

The core data features of the .NET Framework remain in .NET 3.5, and are essentially

unchanged. Developers can use the same ADO.NET data classes to interact with relational

databases (Chapter 7), and other parts of the .NET Framework to interact with the file sys-

tem (Chapter 12) and read XML documents (Chapter 14).

Similarly, the data binding features in ASP.NET remain unchanged, allowing you to pull

information out of data classes and show it in a web page with as little code as possible

(Chapter 9). The same rich data controls remain (Chapter 10), with their support for data

display and data editing, and the same caching feature allows you to reduce the number of

times you query the information (Chapter 11) to ensure optimum performance.

However, there is one seismic change—developers now have a new tool for working with

data, called Language Integrated Query (LINQ). This tool gives developers more powerful

ways to manipulate in- memory data—for example, sorting, filtering, and grouping it to get

key bits of information. But the most dramatic part of LINQ is the LINQ to Entities feature

that’s built on top of it, which allows you to pull information out of a SQL Server data-

base using little more than a LINQ query. That means there’s no need to write lower- level

ADO.NET data access code. LINQ to SQL isn’t necessarily the best way to get your data or

manipulate it—that depends on your exact requirements— but it is a compelling new fea-

ture that should be in every developer’s toolkit. You’ll explore LINQ in Chapter 13.

Finally, it’s important to remember that no matter what data access strategy you use—

whether it relies on ADO.NET, LINQ to SQL, or a different set of classes—it shouldn’t be

a part of your main web application code. Instead, it makes much more sense to separate

it into a dedicated component that can be coded, versioned, and refined separately. You’ll

learn more about this strategy in Chapter 8.

277

C H A P T E R 7

ADO.NET Fundamentals

A large number of computer applications—both desktop and web applications—are
 data- driven. These applications are largely concerned with retrieving, displaying, and modi-
fying data.

Retrieving and processing data seems like a fairly straightforward task, but over the past
decade the way applications use data has changed repeatedly. Developers have moved from
simple client applications that use local databases to distributed systems that rely on central-
ized databases on dedicated servers. At the same time, data access technologies have evolved.
If you’ve worked with Microsoft languages for some time, you’ve most likely heard of (and
possibly used) an alphabet soup of data access technologies that includes ODBC, DAO, RDO,
RDS, and ADO.

The .NET Framework includes its own data access technology: ADO.NET. ADO.NET
consists of managed classes that allow .NET applications to connect to data sources (usually
relational databases), execute commands, and manage disconnected data. The small miracle
of ADO.NET is that it allows you to write more or less the same data access code in web appli-
cations that you write for client- server desktop applications, or even single- user applications
that connect to a local database.

This chapter describes the architecture of ADO.NET and the ADO.NET data providers.
You’ll learn about ADO.NET basics such as opening a connection, executing a SQL statement
or stored procedure, and retrieving the results of a query. You’ll also learn how to prevent SQL
injection attacks and how to use transactions.

CHAPTER 7 ADO.NET FUNDAMENTALS278

DATABASE ACCESS WITHOUT ADO.NET

In ASP.NET, there are a few ways to get information out of a database without directly using the ADO.NET
classes. Depending on your needs, you may be able to use one or more of these approaches to supplement
your database code (or to avoid writing it altogether).

Your options for database access without ADO.NET include the following:

: The SqlDataSource control allows you to define queries declaratively.
You can connect the SqlDataSource to rich controls such as the GridView, and give your pages the
ability to edit and update data without requiring any ADO.NET code. Best of all, the SqlDataSource
uses ADO.NET behind the scenes, and so it supports any database that has a full ADO.NET provider.
However, the SqlDataSource is somewhat controversial, because it encourages you to place data-
base logic in the markup portion of your page. Many developers prefer to use the ObjectDataSource
instead, which gives similar data binding functionality but relies on a custom database component.
When you use the ObjectDataSource, it’s up to you to create the database component and write the
 back- end ADO.NET code. You’ll learn more about data source controls in Chapter 9.

LINQ to SQL: With LINQ to SQL, you define a query using VB .NET code (or the LinqDataSource con-
trol) and the appropriate database logic is generated automatically. LINQ to SQL supports updates,
generates secure and well- written SQL statements, and provides some customizability. Like the
SQLDataSource control, LINQ to SQL doesn’t allow you to execute database commands that don’t
map to straightforward queries and updates (such as creating tables). Unlike the SqlDataSource con-
trol, LINQ to SQL only works with SQL Server and is completely independent of ADO.NET. You’ll learn
more about LINQ in Chapter 13.

: The profiles feature allows you to store user- specific blocks of data in a database without
writing ADO.NET code. However, the stock profiles feature is significantly limited—for example, it
doesn’t allow you to control the structure of the database table where the data is stored. As a result,
developers who use the profiles feature often create custom profile providers, which require custom
ADO.NET code. You’ll learn more about profiles in Chapter 24.

None of these options is a replacement for ADO.NET, because none of them offers the full flexibility,
customizability, and performance that hand- written database code offers. However, depending on your
needs, it may be worth using one or more of these features simply to get better code- writing productivity.

Overall, most ASP.NET developers will need to write some ADO.NET code, even if it’s only to optimize
a performance- sensitive task or to perform a specific operation that wouldn’t otherwise be possible. Also,
every professional ASP.NET developer needs to understand how the ADO.NET plumbing works in order to
evaluate when it’s required and when another approach is just as effective.

The ADO.NET Architecture
ADO.NET uses a multilayered architecture that revolves around a few key concepts, such as
Connection, Command, and DataSet objects.

One of the key differences between ADO.NET and some other database technologies is how
it deals with the challenge of different data sources. In many previous database technologies,
such as classic ADO, programmers use a generic set of objects no matter what the underlying
data source is. For example, if you want to retrieve a record from an Oracle database using ADO

CHAPTER 7 ADO.NET FUNDAMENTALS 279

code, you use the same Connection class you would use to tackle the task with SQL Server. This
isn’t the case in ADO.NET, which uses a data provider model.

ADO.NET Data Providers
A data provider is a set of ADO.NET classes that allows you to access a specific database, exe-
cute SQL commands, and retrieve data. Essentially, a data provider is a bridge between your
application and a data source.

The classes that make up a data provider include the following:

Connection: You use this object to establish a connection to a data source.

Command: You use this object to execute SQL commands and stored procedures.

DataReader: This object provides fast read- only, forward- only access to the data retrieved
from a query.

DataAdapter: This object performs two tasks. First, you can use it to fill a DataSet (a dis-
connected collection of tables and relationships) with information extracted from a data
source. Second, you can use it to apply changes to a data source, according to the modifi-
cations you’ve made in a DataSet.

ADO.NET doesn’t include generic data provider objects. Instead, it includes different
data providers specifically designed for different types of data sources. Each data provider
has a specific implementation of the Connection, Command, DataReader, and DataAdapter
classes that’s optimized for a specific RBDMS (relational database management system). For
example, if you need to create a connection to a SQL Server database, you’ll use a connection
class named SqlConnection.

Note This book uses generic names for provider- specific classes. In other words, instead of discussing
the SqlConnection and OracleConnection classes, you’ll learn about all connection classes. Just keep in mind
that there really isn’t a generic Connection class—it’s just convenient shorthand for referring to all the
 provider- specific connection classes, which work in a standardized fashion.

One of the key underlying ideas of the ADO.NET provider model is that it’s extensible.
In other words, developers can create their own providers for proprietary data sources. In
fact, numerous proof-of- concept examples are available that show how you can easily cre-
ate custom ADO.NET providers to wrap nonrelational data stores, such as the file system or
a directory service. Some third- party vendors also sell custom providers for .NET.

The .NET Framework is bundled with a small set of four providers:

SQL Server provider: Provides optimized access to a SQL Server database (version 7.0 or
later).

OLE DB provider: Provides access to any data source that has an OLE DB driver. This
includes SQL Server databases prior to version 7.0.

Oracle provider: Provides optimized access to an Oracle database (version 8i or later).

ODBC provider: Provides access to any data source that has an ODBC driver.

CHAPTER 7 ADO.NET FUNDAMENTALS280

Tip If you’re using an Oracle database, you may also want to consider ODP.NET (the Oracle Data Provider
for .NET) released by Oracle and available at

. It provides richer support for specialized Oracle data types such as LOBs (large objects), timestamps,
and XML data, along with a few additional features.

 Figure 7-1 shows the layers of the ADO.NET provider model.

 Figure 7-1. The ADO.NET architecture

When choosing a provider, you should first try to find a native .NET provider that’s custom-
ized for your data source. If you can’t find a native provider, you can use the OLE DB provider,
as long as you have an OLE DB driver for your data source. The OLE DB technology has been
around for many years as part of ADO, so most data sources provide an OLE DB driver (includ-
ing SQL Server, Oracle, Access, MySQL, and many more). In the rare situation when you can’t
find a dedicated .NET provider or an OLE DB driver, you can fall back on the ODBC provider,
which works in conjunction with an ODBC driver.

Tip Microsoft includes the OLE DB provider with ADO.NET so that you can use your existing OLE DB driv-
ers. However, if you can find a provider that’s customized specifically for your data source, you should use it
instead. For example, you can connect to a SQL Server database using either the SQL Server provider or the
OLE DB provider, but the SQL Server provider will always perform best.

CHAPTER 7 ADO.NET FUNDAMENTALS 281

Standardization in ADO.NET
At first glance, it might seem that ADO.NET offers a fragmented model, because it doesn’t
include a generic set of objects that can work with multiple types of databases. As a result, if
you change from one RDBMS to another, you’ll need to modify your data access code to use
a different set of classes.

But even though different .NET data providers use different classes, all providers are stan-
dardized in the same way. More specifically, each provider is based on the same set of interfaces
and base classes. For example, every Connection object implements the IDbConnection inter-
face, which defines core methods such as Open() and Close(). This standardization guarantees
that every Connection class will work in the same way and expose the same set of core proper-
ties and methods.

Behind the scenes, different providers use completely different low- level calls and APIs.
For example, the SQL Server provider uses the proprietary TDS (Tabular Data Stream) protocol
to communicate with the server. The benefits of this model aren’t immediately obvious, but
they are significant:

generic data access code (with a little more effort) by coding against the interfaces
instead of the provider classes. You’ll see this technique in action in the section
 “Provider- Agnostic Code.”

(This is different from the ADO model, where every database call needs to filter through
a common layer before it reaches the underlying database driver.) In addition, custom
providers can add nonstandard features that aren’t included in other providers (such
as SQL Server’s ability to perform an XML query).

ADO.NET also has another layer of standardization: the DataSet. The DataSet is an
 all- purpose container for data that you’ve retrieved from one or more tables in a data source.
The DataSet is completely generic—in other words, custom providers don’t define their own
custom versions of the DataSet class. No matter which data provider you use, you can extract
your data and place it into a disconnected DataSet in the same way. That makes it easy to sepa-
rate data retrieval code from data processing code. If you change the underlying database, you
will need to change the data retrieval code, but if you use the DataSet and your information has
the same structure, you won’t need to modify the way you process that data.

Tip The next chapter covers the DataSet in much more detail. In this chapter, you’ll learn the fundamentals—
how to use ADO.NET to perform direct, connection- based access.

CHAPTER 7 ADO.NET FUNDAMENTALS282

SQL Server 2005
ADO.NET provides support for a few features that are limited to SQL Server 2005. These features
include the following:

MARS (multiple active result sets): This allows you to have more than one query on the
go at the same time. For example, you could query a list of customers and then query a list
of orders without closing the first query. This technique is occasionally useful, but it’s bet-
ter if you can avoid the extra overhead.

User-defined data types: Using .NET code, you can define a custom class and then store
instances of that class directly in a column of the database. This saves you the work of
examining several fields in a row and then manually creating a corresponding data object
to use in your application.

Managed stored procedures: SQL Server 2005 can host the CLR, which gives you the
ability to write stored procedures in the database using pure VB .NET code.

SQL notifications: Notifications allow your code to respond when specific changes are
made in a database. In ASP.NET, this feature is most commonly used to invalidate a cached
data object when one or more records are updated. This is the only SQL Server 2005 fea-
ture that’s also supported in SQL Server 7 and SQL Server 2000, albeit through a different
mechanism.

Snapshot transaction isolation: This is a new transaction level that allows you to improve
concurrency. It allows transactions to see a slightly older version of data while it’s being
updated by another transaction.

For the most part, this book concentrates on programming techniques that work with all
relational databases. However, Chapter 11 covers SQL notifications because they are of great
use in many ASP.NET applications, and they are also supported in earlier versions of SQL Server
through a different technology. This chapter briefly covers snapshot isolation. For information
about other features that are specific to SQL Server 2005, you may want to consult A Developer’s
Guide to SQL Server 2005 (Addison- Wesley, 2006) and Pro SQL Server 2005 Assemblies (Apress,
2005).

Fundamental ADO.NET Classes
ADO.NET has two types of objects: connection- based and content- based.

Connection-based objects: These are the data provider objects such as Connection, Com-
mand, DataReader, and DataAdapter. They allow you to connect to a database, execute SQL
statements, move through a read- only result set, and fill a DataSet. The connection- based
objects are specific to the type of data source, and are found in a provider- specific namespace
(such as System.Data.SqlClient for the SQL Server provider).

Content-based objects: These objects are really just “packages” for data. They include the
DataSet, DataColumn, DataRow, DataRelation, and several others. They are completely
independent of the type of data source and are found in the System.Data namespace.

CHAPTER 7 ADO.NET FUNDAMENTALS 283

In the rest of this chapter, you’ll learn about the first level of ADO.NET—the connection-
based objects, including Connection, Command, and DataReader. You won’t learn about the
 higher- level DataAdapter yet, because the DataAdapter is designed for use with the DataSet
and is discussed in Chapter 8. (Essentially, the DataAdapter is a group of related Command
objects; these objects help you synchronize a DataSet with a data source.)

The ADO.NET classes are grouped into several namespaces. Each provider has its own
namespace, and generic classes such as the DataSet are stored in the System.Data namespaces.
 Table 7-1 describes the namespaces.

Table 7-1. The ADO.NET Namespaces

Namespace Description
System.Data Contains the key data container classes that model columns, relations,

tables, datasets, rows, views, and constraints. In addition, contains
the key interfaces that are implemented by the connection- based data
objects.

System.Data.Common Contains base, mostly abstract classes that implement some of the in-
terfaces from System.Data and define the core ADO.NET functional-
ity. Data providers inherit from these classes (such as DbConnection,
DbCommand, and so on) to create their own specialized versions.

System.Data.OleDb Contains the classes used to connect to an OLE DB provider, includ-
ing OleDbCommand, OleDbConnection, OleDbDataReader, and
OleDbDataAdapter. These classes support most OLE DB providers,
but not those that require OLE DB version 2.5 interfaces.

System.Data.SqlClient Contains the classes you use to connect to a Microsoft SQL Server da-
tabase, including SqlDbCommand, SqlDbConnection, SqlDataReader,
and SqlDBDataAdapter. These classes are optimized to use the TDS
interface to SQL Server.

System.Data.OracleClient Contains the classes required to connect to an Oracle database
(version 8.1.7 or later), including OracleCommand, OracleConnection,
OracleDataReader, and OracleDataAdapter. These classes are using
the optimized Oracle Call Interface (OCI).

System.Data.Odbc Contains the classes required to connect to most ODBC drivers. These
classes include OdbcCommand, OdbcConnection, OdbcDataReader,
and OdbcDataAdapter. ODBC drivers are included for all kinds of
data sources and are configured through the Data Sources icon in the
Control Panel.

System.Data.SqlTypes Contains structures that match the native data types in SQL Server.
These classes aren’t required but provide an alternative to using
standard .NET data types, which require automatic conversion.

Note An ADO.NET provider is simply a set of ADO.NET classes (with an implementation of Connection,
Command, DataAdapter, and DataReader) that’s distributed in a class library assembly. Usually, all the
classes in the data provider use the same prefix. For example, the prefix Oracle is used for the ADO.NET
Oracle provider, and it provides an implementation of the Connection object named OracleConnection.

CHAPTER 7 ADO.NET FUNDAMENTALS284

The Connection Class
The Connection class allows you to establish a connection to the data source that you want
to interact with. Before you can do anything else (including retrieving, deleting, inserting, or
updating data), you need to establish a connection.

The core Connection properties and methods are specified by the IDbConnection inter-
face, which all Connection classes implement.

Connection Strings
When you create a Connection object, you need to supply a connection string. The connection
string is a series of name/value settings separated by semicolons (;). The order of these settings
is unimportant, as is the capitalization. Taken together, they specify the basic information
needed to create a connection.

Although connection strings vary based on the RDBMS and provider you are using, a few
pieces of information are almost always required:

The server where the database is located: In the examples in this book, the database
server is always located on the same computer as the ASP.NET application, so the loop-
back alias localhost is used instead of a computer name.

The database you want to use: Most of the examples in this book use the Northwind data-
base, which is installed with older versions of SQL Server (and can be installed on newer
versions using the SQL script that’s included with the downloadable examples for this
book).

How the database should authenticate you: The Oracle and SQL Server providers give
you the choice of supplying authentication credentials or logging in as the current user.
The latter choice is usually best, because you don’t need to place password information in
your code or configuration files.

For example, here’s the connection string you would use to connect to the Northwind
database on the current computer using integrated security (which uses the currently logged- in
Windows user to access the database):

If integrated security isn’t supported, the connection must indicate a valid user and pass-
word combination. For a newly installed SQL Server database, the sa (system administrator)
account is usually present. Here’s a connection string that uses this account:

If you’re using the OLE DB provider, your connection string will still be similar, with the
addition of a provider setting that identifies the OLE DB driver. For example, you can use the
following connection string to connect to an Oracle database through the MSDAORA OLE DB
provider:

CHAPTER 7 ADO.NET FUNDAMENTALS 285

Here’s an example that connects to an Access database file:

Tip If you’re using a database other than SQL Server, you might need to consult the data provider docu-
mentation (or the .NET Framework class library reference) to determine the supported connection string
values. For example, most databases support the Connect Timeout setting, which sets the number of sec-
onds to wait for a connection before throwing an exception. (The SQL Server default is 15 seconds.)

When you create a Connection object, you can pass the connection string as a constructor
parameter. Alternatively, you can set the ConnectionString property by hand, as long as you
do it before you attempt to open the connection.

There’s no reason to hard- code a connection string. As discussed in Chapter 5, the
<connectionStrings> section of the web.config file is a handy place to store your connection
strings. Here’s an example:

You can then retrieve your connection string by name from the WebConfigurationManager.
ConnectionStrings collection. Assuming you’ve imported the System.Web.Configuration
namespace, you can use a code statement like this:

The following examples assume you’ve added this connection string to your web.config file.

Testing a Connection
Once you’ve chosen your connection string, managing the connection is easy—you simply use
the Open() and Close() methods.

You can use the following code in the Page.Load event handler to test a connection and
write its status to a label (as shown in Figure 7-2). To use this code as written, you must import
the System.Data.SqlClient namespace.

CHAPTER 7 ADO.NET FUNDAMENTALS286

 Figure 7-2 shows the results of running this code.

 Figure 7-2. Testing a connection

Note When opening a connection, you face two possible exceptions. An InvalidOperationException occurs
if your connection string is missing required information or the connection is already open. A SqlException
occurs for just about any other type of problem, including an error contacting the database server, logging in,
or accessing the specified database.

SqlException is a provider- specific class that’s used for the SQL Server provider. Other database provid-
ers use different exception classes to serve the same role, such as OracleException, OleDbException, and
OdbcException.

Connections are a limited server resource. This means it’s imperative that you open
the connection as late as possible and release it as quickly as possible. In the previous code
sample, an exception handler is used to make sure that even if an unhandled error occurs, the

CHAPTER 7 ADO.NET FUNDAMENTALS 287

connection will be closed in the finally block. If you don’t use this design and an unhandled
exception occurs, the connection will remain open until the garbage collector disposes of the
SqlConnection object.

An alternate approach is to wrap your data access code in a Using block. The using state-
ment declares that you are using a disposable object for a short period of time. As soon as
the using block ends, the CLR releases the corresponding object immediately by calling its
Dispose() method. Interestingly, calling the Dispose() method of a Connection object is equiv-
alent to calling Close(). That means you can rewrite the earlier example in the following, more
compact, form:

The best part is that you don’t need to write a Dispose method—the using statement
releases the object you’re using even if you exit the block as the result of an unhandled
exception.

Connection Pooling
Acquiring a connection takes a short, but definite, amount of time. In a web application in
which requests are being handled efficiently, connections will be opened and closed endlessly
as new requests are processed. In this environment, the small overhead required to establish
a connection can become significant and limit the scalability of the system.

One solution is connection pooling. Connection pooling is the practice of keeping
a permanent set of open database connections to be shared by sessions that use the same
data source. This avoids the need to create and destroy connections all the time. Connection
pools in ADO.NET are completely transparent to the programmer, and your data access code
doesn’t need to be altered. When a client requests a connection by calling Open(), it’s served
directly from the available pool, rather than re- created. When a client releases a connection
by calling Close() or Dispose(), it’s not discarded but returned to the pool to serve the next
request.

ADO.NET does not include a connection pooling mechanism. However, most ADO.NET
providers implement some form of connection pooling. The SQL Server and Oracle data pro-
viders implement their own efficient connection pooling algorithms. These algorithms are
implemented entirely in managed code and—in contrast to some popular misconceptions—
do not use COM+ enterprises services. For a connection to be reused with SQL Server or Oracle,
the connection string must match exactly. If it differs even slightly, a new connection will be
created in a new pool.

CHAPTER 7 ADO.NET FUNDAMENTALS288

Tip SQL Server and Oracle connection pooling use a full- text match algorithm. That means any minor
change in the connection string will thwart connection pooling, even if the change is simply to reverse the
order of parameters or add an extra blank space at the end. For this reason, it’s imperative that you don’t
 hard- code the connection string in different web pages. Instead, you should store the connection string in
one place—preferably in the <connectionStrings> section of the web.config file.

With both the SQL Server and Oracle providers, connection pooling is enabled and used
automatically. However, you can also use connection string parameters to configure pool size
settings. Table 7-2 describes these parameters.

Table 7-2. Connection Pooling Settings

Setting Description
Max Pool Size The maximum number of connections allowed in the pool (defaults to

100). If the maximum pool size has been reached, any further attempts
to open a connection are queued until a connection becomes available.
(An error is raised if the Connection.Timeout value elapses before
a connection becomes available.)

Min Pool Size The minimum number of connections always retained in the pool
(defaults to 0). This number of connections will be created when
the first connection is opened, leading to a minor delay for the first
request.

Pooling When true (the default), the connection is drawn from the appropriate
pool or, if necessary, is created and added to the appropriate pool.

Connection Lifetime Specifies a time interval in seconds. If a connection is returned to the
pool and its creation time is older than the specified lifetime, it will be
destroyed. The default is 0, which disables this behavior. This feature is
useful when you want to recycle a large number of connections at once.

Here’s an example connection string that sets a minimum pool size:

Some providers include methods for emptying out the connection pool. For example, with
the SqlConnection you can call the static ClearPool() and ClearAllPools() methods. When call-
ing ClearPool(), you supply a SqlConnection, and all the matching connections are removed.
ClearAllPools() empties out every connection pool in the current application domain. (Techni-
cally, these methods don’t close the connections. They just mark them as invalid so that they

CHAPTER 7 ADO.NET FUNDAMENTALS 289

will time out and be closed during the regular connection cleanup a few minutes later.) This
functionality is rarely used—typically, the only case in which it’s useful is if you know the pool
is full of invalid connections (for example, as a result of restarting SQL Server) and you want to
avoid an error.

Tip SQL Server and Oracle connection pools are always maintained as part of the global resources in an
application domain. As a result, connection pools can’t be reused between separate web applications on
the same web server or between web applications and other .NET applications. For the same reason, all the
connections are lost if the application domain is restarted. (Application domains are restarted for a variety
of reasons, including when you change a web page, assembly, or configuration file in the web application.
Application domains are also restarted when certain thresholds are reached—for example, IIS may recycle
an application domain that’s using a large amount of memory or has a large number of requests in the
queue. Both details may indicate that the performance of the application domain has degraded.)

Connection Statistics
If you’re using the SQL Server provider, you can retrieve some interesting statistics using the
SqlConnection.RetrieveStatistics() method. RetrieveStatistics() returns a hashtable with various
 low- level details that can help you analyze the performance of commands and the amount of
work you’ve performed. Connection statistics aren’t often used in a deployed application, but
they are useful for diagnosing performance during the testing and profiling stage. For example,
they provide one tool that you can use to determine how various data access strategies perform
(other tools include the SQL Server administrative utilities, such as the SQL Profiler and Query
Analyzer).

By default, connection statistics are disabled to improve performance. To use connec-
tion statistics, you need to set the SqlConnection.StatisticsEnabled property to true. This tells
the SqlConnection class to collect information about every action it performs. At any point
after, you can call the RetrieveStatistics() method to examine this information, or you can use
 ResetStatistics() to clear it out and start from scratch.

Here’s an example that displays the number of bytes received by the connection since you
enabled statistics:

Statistics are provided in a loosely typed name/value collection. That means you need
to know the specific name of a statistic in order to retrieve it. You can find the full list in the
Visual Studio help, but here are a few of the most useful:

ServerRoundtrips: Indicates the number of times the connection has made a request to
the database server. Typically, this value corresponds to the number of commands you’ve
executed, but strategies such as command batching can affect it.

ConnectionTime: Indicates the cumulative amount of time the connection has been
open.

CHAPTER 7 ADO.NET FUNDAMENTALS290

BytesReceived: Indicates the total number of bytes retrieved from the database server (as
a cumulative result of all the commands you’ve executed).

SumResultSets: Indicates the number of queries you’ve performed.

SelectRows: Records the total number of rows retrieved in every query you’ve executed.

The Command and DataReader Classes
The Command class allows you to execute any type of SQL statement. Although you can use
a Command class to perform data definition tasks (such as creating and altering databases,
tables, and indexes), you’re much more likely to perform data manipulation tasks (such as
retrieving and updating the records in a table).

The provider- specific Command classes implement standard functionality, just like the
Connection classes. In this case, the IDbCommand interface defines a few key properties and
the core set of methods that are used to execute a command over an open connection.

Command Basics
Before you can use a command, you need to choose the command type, set the command
text, and bind the command to a connection. You can perform this work by setting the cor-
responding properties (CommandType, CommandText, and Connection), or you can pass the
information you need as constructor arguments.

The command text can be a SQL statement, a stored procedure, or the name of a table. It
all depends on the type of command you’re using. Three types of commands exist, as listed in
 Table 7-3.

Table 7-3. Values for the CommandType Enumeration

Value Description
CommandType.Text The command will execute a direct SQL statement. The SQL

statement is provided in the CommandText property. This is the
default value.

CommandType.StoredProcedure The command will execute a stored procedure in the data
source. The CommandText property provides the name of the
stored procedure.

CommandType.TableDirect The command will query all the records in the table. The
CommandText is the name of the table from which the com-
mand will retrieve the records. (This option is included for
backward compatibility with certain OLE DB drivers only. It
is not supported by the SQL Server data provider, and it won’t
perform as well as a carefully targeted query.)

CHAPTER 7 ADO.NET FUNDAMENTALS 291

For example, here’s how you would create a Command object that represents a query:

And here’s a more efficient way using one of the Command constructors. Note that you
don’t need to specify the CommandType, because CommandType.Text is the default.

Alternatively, to use a stored procedure, you would use code like this:

These examples simply define a Command object; they don’t actually execute it. The Com-
mand object provides three methods that you can use to perform the command, depending on
whether you want to retrieve a full result set, retrieve a single value, or just execute a nonquery
command. Table 7-4 lists these methods.

Table 7-4. Command Methods

Method Description
ExecuteNonQuery() Executes non- SELECT commands, such as SQL commands that insert,

delete, or update records. The returned value indicates the number of
rows affected by the command. You can also use ExecuteNonQuery() to
execute data- definition commands that create, alter, or delete database
objects (such as tables, indexes, constraints, and so on).

ExecuteScalar() Executes a SELECT query and returns the value of the first field of the
first row from the rowset generated by the command. This method is
usually used when executing an aggregate SELECT command that uses
functions such as COUNT() or SUM() to calculate a single value.

ExecuteReader() Executes a SELECT query and returns a DataReader object that wraps
a read- only, forward- only cursor.

The DataReader Class
A DataReader allows you to read the data returned by a SELECT command one record at
a time, in a forward- only, read- only stream. This is sometimes called a firehose cursor. Using
a DataReader is the simplest way to get to your data, but it lacks the sorting and relational abili-
ties of the disconnected DataSet described in Chapter 8. However, the DataReader provides the
quickest possible no- nonsense access to data.

 Table 7-5 lists the core methods of the DataReader.

CHAPTER 7 ADO.NET FUNDAMENTALS292

Table 7-5. DataReader Methods

Method Description
Read() Advances the row cursor to the next row in the stream. This method

must also be called before reading the first row of data. (When the
DataReader is first created, the row cursor is positioned just before the
first row.) The Read() method returns true if there’s another row to be
read, or false if it’s on the last row.

GetValue() Returns the value stored in the field with the specified index, within
the currently selected row. The type of the returned value is the closest
.NET match to the native value stored in the data source. If you
access the field by index and inadvertently pass an invalid index that
refers to a nonexistent field, you will get an IndexOutOfRangeException
exception. You can also access values by field name using the indexer
for the DataReader. (In other words, myDataReader.GetValue(0) and
myDataReader["NameOfFirstField"] are equivalent.) Name- based
lookups are more readable, but slightly less efficient.

GetValues() Saves the values of the current row into an array. The number of fields
that are saved depends on the size of the array you pass to this method.
You can use the DataReader.FieldCount property to determine the
number of fields in a row, and you can use that information to create
an array of the right size if you want to save all the fields.

GetInt32(),GetChar(),
GetDateTime(), GetXxx()

These methods return the value of the field with the specified index in the
current row, with the data type specified in the method name. Note that if
you try to assign the returned value to a variable of the wrong type, you’ll
get an InvalidCastException exception. Also note that these methods
don’t support nullable data types. If a field might contain a null value,
you need to check it before you call one of these methods. To test for
a null value, compare the unconverted value (which you can retrieve by
position using the GetValue() method or by name using the DataReader
indexer) to the constant DBNull.Value.

NextResult() If the command that generated the DataReader returned more than
one rowset, this method moves the pointer to the next rowset (just
before the first row).

Close() Closes the reader. If the originator command ran a stored procedure
that returned an output value, that value can be read only from the
respective parameter after the reader has been closed.

The ExecuteReader() Method and the DataReader
The following example creates a simple query command to return all the records from the
Employees table in the Northwind database. The command is created when the page is
loaded.

CHAPTER 7 ADO.NET FUNDAMENTALS 293

Note This SELECT query uses the * wildcard to retrieve all the fields, but in real- world code you should
retrieve only the fields you really need in order to avoid consuming time to retrieve data you’ll never use. It’s
also a good idea to limit the records returned with a WHERE clause if you don’t need all the records.

The connection is then opened, and the command is executed through the ExecuteReader()
method, which returns a SqlDataReader, as follows:

Once you have the DataReader, you can cycle through its records by calling the Read()
method in a while loop. This moves the row cursor to the next record (which, for the first call,
means to the first record). The Read() method also returns a Boolean value indicating whether
there are more rows to read. In the following example the loop continues until Read() returns
false, at which point the loop ends gracefully.

The information for each record is then joined into a single large string. To ensure that
these string manipulations are performed quickly, a StringBuilder (from the System.Text
namespace) is used instead of ordinary string objects.

This code reads the value of the TitleOfCourtesy field by accessing the field by name
through the Item indexer. Because the Item property is the default indexer, you don’t need to
explicitly include the Item property name when you retrieve a field value. Next, the code reads
the LastName and FirstName fields by calling GetString() with the field index (1 and 2 in this
case). Finally, the code accesses the HireDate field by calling GetDateTime() with a field index
of 6. All these approaches are equivalent and included to show the supported variation.

CHAPTER 7 ADO.NET FUNDAMENTALS294

Note In this example, the StringBuilder ensures a dramatic increase in performance. If you use the
+ operator to concatenate strings instead, this operation would discard the current string object and cre-
ate a new one every time. This operation is noticeably slower, especially for large strings. The StringBuilder
object avoids this problem by allocating a modifiable buffer of memory for characters.

The final step is to close the reader and the connection and show the generated text in
a server control:

If you run the page, you’ll see the output shown in Figure 7-3.
In most ASP.NET pages, you won’t take this labor- intensive approach to displaying data in

a web page. Instead, you’ll use the data controls described in later chapters. However, you’re
still likely to use the DataReader when writing data access code in a database component.

 Figure 7-3. Retrieving results with a DataReader

CHAPTER 7 ADO.NET FUNDAMENTALS 295

Null Values
As you no doubt already know, databases use null values to represent missing or nonapplicable
information. You can use the same concept in .NET with nullable data types, which can take
a value and a null reference. Here’s an example with a nullable integer:

Unfortunately, the DataReader isn’t integrated with .NET nullable values. This discrepancy is
due to historical reasons. The nullable data types were first introduced in .NET 2.0, at which
point the DataReader model was already well established and difficult to change.

Instead, the DataReader returns the constant DBNull.Value when it comes across a null
value in the database. Attempting to use this value or cast it to another data type will cause an
exception. (Sadly, there’s no way to cast between DBNull.Value and a nullable data type.) As
a result, you need to test for DBNull.Value when it might occur, using code like this:

CommandBehavior
The ExecuteReader() method has an overloaded version that takes one of the values from the
CommandBehavior enumeration as a parameter. One useful value is CommandBehavior.
CloseConnection. When you pass this value to the ExecuteReader() method, the DataReader
will close the associated connection as soon as you close the DataReader.

Using this technique, you could rewrite the code as follows:

CHAPTER 7 ADO.NET FUNDAMENTALS296

This behavior is particularly useful if you retrieve a DataReader in one method and need
to pass it to another method to process it. If you use the CommandBehavior.CloseConnection
value, the connection will be automatically closed as soon as the second method closes the
reader.

Another possible value is CommandBehavior.SingleRow, which can improve the perfor-
mance of the query execution when you’re retrieving only a single row. For example, if you
are retrieving a single record using its unique primary key field (CustomerID, ProductID, and
so on), you can use this optimization. You can also use CommandBehavior.SequentialAccess
to read part of a binary field at a time, which reduces the memory overhead for large binary
fields. You’ll see this technique at work in Chapter 10.

The other values are less frequently used and aren’t covered here. You can refer to the
.NET documentation for a full list.

Processing Multiple Result Sets
The command you execute doesn’t have to return a single result set. Instead, it can execute
more than one query and return more than one result set as part of the same command. This
is useful if you need to retrieve a large amount of related data, such as a list of products and
product categories that, taken together, represent a product catalog.

A command can return more than one result set in two ways:

by separating commands with a semicolon (;). Not all providers support this technique,
but the SQL Server database provider does.

Here’s an example of a string that defines a batch of three SELECT statements:

This string contains three queries. Together, they return the first five records from the
Employees table, the first five from the Customers table, and the first five from the Suppliers
table.

Processing these results is fairly straightforward. Initially, the DataReader will provide
access to the results from the Employees table. Once you’ve finished using the Read() method
to read all these records, you can call NextResult() to move to the next result set. When there
are no more result sets, this method returns false.

You can even cycle through all the available result sets with a while loop, although in this
case you must be careful not to call NextResult() until you finish reading the first result set.
Here’s an example of this more specialized technique:

CHAPTER 7 ADO.NET FUNDAMENTALS 297

Note that in this case all the fields are accessed using the generic GetValue() method,
which takes the index of the field to read. That’s because the code is designed generically to
read all the fields of all the returned result sets, no matter what query you use. However, in
a realistic database application, you would almost certainly know which tables to expect, as
well as the corresponding table and field names.

 Figure 7-4 shows the page output.

Tip There is one case where you might treat all result sets with the same code—if all your result sets
contain data with the same structure. For example, you might call a stored procedure that returns three
groups of employees in three distinct result sets, separated according the sales office where they work. You
can then hardcode your field names instead of using GetValue(), because each result set will have the same
fields.

CHAPTER 7 ADO.NET FUNDAMENTALS298

 Figure 7-4. Retrieving multiple result sets

You don’t always need to step through each record. If you’re willing to show the data exactly
as it is, with no extra processing or formatting, you can add a GridView control to your page and
bind the DataReader to the GridView control in a single line. Here is the code you would use:

You’ll learn much more about data binding and how to customize it in Chapter 9 and
Chapter 10.

The ExecuteScalar() Method
The ExecuteScalar() method returns the value stored in the first field of the first row of a result set
generated by the command’s SELECT query. This method is usually used to execute a query that
retrieves only a single field, perhaps calculated by a SQL aggregate function such as COUNT() or
SUM().

The following procedure shows how you can get (and write on the page) the number of
records in the Employees table with this approach:

CHAPTER 7 ADO.NET FUNDAMENTALS 299

The code is fairly straightforward, but it’s worth noting that you must cast the returned
value to the proper type because ExecuteScalar() returns an object.

The ExecuteNonQuery() Method
The ExecuteNonQuery() method executes commands that don’t return a result set, such
as INSERT, DELETE, and UPDATE. The ExecuteNonQuery() method returns a single piece
of information—the number of affected records (or –1 if your command isn’t an INSERT,
DELETE, or UPDATE statement).

Here’s an example that uses a DELETE command by dynamically building a SQL string:

This particular code won’t actually delete the record, because foreign key constraints pre-
vent you from removing an employee record if it’s linked to other records in other tables.

SQL Injection Attacks
So far, all the examples you’ve seen have used hard- coded values. That makes the examples
simple, straightforward, and relatively secure. It also means they aren’t that realistic, and
they don’t demonstrate one of the most serious risks for web applications that interact with
a database—SQL injection attacks.

CHAPTER 7 ADO.NET FUNDAMENTALS300

In simple terms, SQL injection is the process of passing SQL code into an application, in
a way that was not intended or anticipated by the application developer. This may be possible
because of the poor design of the application, and it affects only applications that use SQL
string building techniques to create a command with user- supplied values.

Consider the example shown in Figure 7-5. In this example, the user enters a customer ID,
and the GridView shows all the rows for that customer. In a more realistic example the user
would also need to supply some sort of authentication information such as a password. Or,
the user ID might be based on a previous login screen, and the text box would allow the user
to supply additional criteria such as a date range or the name of a product in the order.

 Figure 7-5. Retrieving orders for a single customer

The problem is how this command is executed. In this example, the SQL statement is built
dynamically using a string building technique. The value from the txtID text box is simply
pasted into the middle of the string. Here’s the code:

CHAPTER 7 ADO.NET FUNDAMENTALS 301

In this example, a user might try to tamper with the SQL statement. Often, the first goal
of such an attack is to receive an error message. If the error isn’t handled properly and the
 low- level information is exposed to the attacker, that information can be used to launch
a more sophisticated attack.

For example, imagine what happens if the user enters the following text into the text box:

Now consider the complete SQL statement that this creates:

This statement returns all the order records. Even if the order wasn’t created by ALFKI, it’s
still true that 1=1 for every row. The result is that instead of seeing the specific information for
the current customer, all the information is exposed to the attacker, as shown in Figure 7-6. If
the information shown on the screen is sensitive, such as Social Security numbers, dates of birth,
or credit card information, this could be an enormous problem! In fact, simple SQL injection
attacks exactly like this are often the source of problems that affect major e- commerce compa-
nies. Often, the vulnerability doesn’t occur in a text box but appears in the query string (which
can be used to pass a database value such as a unique ID from a list page to a details page).

 Figure 7-6. A SQL injection attack that shows all the orders

CHAPTER 7 ADO.NET FUNDAMENTALS302

More sophisticated attacks are possible. For example, the malicious user could simply
comment out the rest of your SQL statement by adding two hyphens (--).This attack is specific
to SQL Server, but equivalent exploits are possible in MySQL with the hash (#) symbol and in
Oracle with the semicolon (;). Alternatively, the attacker could use a batch command to execute
an arbitrary SQL command. With the SQL Server provider, the attacker simply needs to supply
a semicolon followed by a new command. This exploit allows the user to delete the contents of
another table, or even use the SQL Server xp_cmdshell system stored procedure to execute an
arbitrary program at the command line.

Here’s what the user would need to enter in the text box for a more sophisticated SQL
injection attack to delete all the rows in the Customers table:

So, how can you defend against SQL injection attacks? You can keep a few good guidelines
in mind. First, it’s a good idea to use the TextBox.MaxLength property to prevent overly long
entries if they aren’t needed. That reduces the chance of a large block of script being pasted in
where it doesn’t belong. In addition, you can use the ASP.NET validator controls to lock out obvi-
ously incorrect data (such as text, spaces, or special characters in a numeric value). Furthermore,
you should restrict the information that’s given by your error messages. If you catch a database
exception, you should report only a generic message such as “Data source error” rather than dis-
play the information in the Exception.Message property, which may provide more information
about system vulnerabilities.

More important, you should take care to remove special characters. For example, you can
convert all single quotation marks to two quotation marks, thereby ensuring that they won’t
be confused with the delimiters in your SQL statement:

Of course, this introduces headaches if your text values really should contain apostrophes.
It also suffers because some SQL injection attacks are still possible. Replacing apostrophes
prevents a malicious user from closing a string value prematurely. However, if you’re build-
ing a dynamic SQL statement that includes numeric values, a SQL injection attack just needs
a single space. This vulnerability is often (and dangerously) ignored.

An even better approach is to use a parameterized command or a stored procedure that
performs its own escaping and is impervious to SQL injection attacks. The following sections
describe these techniques.

Tip Another good idea is to restrict the permissions of the account used to access the database so that it
doesn’t have the right to access other databases or execute extended system stored procedures. However,
this can’t remove the problem of SQL script injection, because the process you use to connect to the data-
base will almost always require a broader set of privileges than the ones you would allocate to any single
user. By restricting the account, you could prevent an attack that deletes a table, for example, but you prob-
ably can’t prevent an attack that steals someone else’s information.

CHAPTER 7 ADO.NET FUNDAMENTALS 303

Using Parameterized Commands
A parameterized command is simply a command that uses placeholders in the SQL text. The
placeholders indicate dynamically supplied values, which are then sent through the Param-
eters collection of the Command object.

For example, take this SQL statement:

It would become something like this:

The placeholders are then added separately and automatically encoded.
The syntax for parameterized commands differs slightly for different providers. With the

SQL Server provider, parameterized commands use named placeholders (with unique names).
With the OLE DB provider, each hard- coded value is replaced with a question mark. In either
case, you need to supply a Parameter object for each parameter, which you insert into the
Command.Parameters collection. With the OLE DB provider, you must make sure you add the
parameters in the same order that they appear in the SQL string. This isn’t a requirement with
the SQL Server provider, because the parameters are matched to the placeholders based on
their names.

The following example rewrites the query to remove the possibility of a SQL injection
attack:

If you try to perform the SQL injection attack against this revised version of the page,
you’ll find it returns no records. That’s because no order items contain a customer ID value
that equals the text string ALFKI' OR '1'='1. This is exactly the behavior you want.

CHAPTER 7 ADO.NET FUNDAMENTALS304

POST INJECTION ATTACKS

Savvy users might realize there’s another potential avenue for attack with web controls. Although parame-
terized commands prevent SQL injection attacks, they don’t prevent attackers from adding malicious values
to the data that’s posted back to the server. Left unchecked, this could allow attackers to submit control
values that wouldn’t otherwise be possible.

For example, imagine you have a list that shows orders made by the current user. A crafty attacker
could save a local copy of the page, modify the HTML to add more entries to the list, and then select one of
these “fake” entries. If this attack succeeds, the user will be able to see the orders made by another user,
which is an obvious problem.

Fortunately, ASP.NET defends against this attack using a rarely discussed feature called event
validation. Event validation checks the data that’s posted back to the server and verifies that the values
are legitimate. For example, if the POST data indicates the user chose a value that doesn’t make sense
(because it doesn’t actually exist in the control), ASP.NET generates an error and stops processing.

You can disable event validation by setting the EnableEventValidation attribute of the Page directive
to false. This step is sometimes necessary when you create pages that are dynamically modified using
 client- side script (as you’ll see in Chapter 32). However, in these situations, be careful to check for poten-
tial POST injection attacks by validating selected values before you act on them.

Calling Stored Procedures
Parameterized commands are just a short step from commands that call full- fledged stored
procedures.

As you probably know, a stored procedure is a batch of one or more SQL statements
that are stored in the database. Stored procedures are similar to functions in that they are
 well- encapsulated blocks of logic that can accept data (through input parameters) and return
data (through result sets and output parameters). Stored procedures have many benefits:

They are easier to maintain: For example, you can optimize the commands in a stored
procedure without recompiling the application that uses it. They also standardize data
access logic in one place—the database—making it easier for different applications to
reuse that logic in a consistent way. (In object- oriented terms, stored procedures define
the interface to your database.)

They allow you to implement more secure database usage: For example, you can allow
the Windows account that runs your ASP.NET code to use certain stored procedures but
restrict access to the underlying tables.

They can improve performance: Because a stored procedure batches together multiple
statements, you can get a lot of work done with just one trip to the database server. If your
database is on another computer, this reduces the total time to perform a complex task
dramatically.

CHAPTER 7 ADO.NET FUNDAMENTALS 305

Note SQL Server version 7 (and later) precompiles all SQL commands, including off-the- cuff SQL
statements. That means you gain the benefit of compilation regardless of whether you are using stored
procedures. However, stored procedures still tend to increase the performance benefits, because systems
that use stored procedures tend to have less variability. Systems that use ad hoc SQL statements tend to use
slightly different commands to perform similar tasks, which means compiled execution plans can’t be reused
as effectively.

Here’s the SQL code needed to create a stored procedure for inserting a single record into
the Employees table. This stored procedure isn’t in the Northwind database initially, so you’ll
need to add it to the database (using a tool such as SQL Server Management Studio) before
you use it.

This stored procedure takes three parameters for the employee’s title of courtesy, last
name, and first name. It returns the ID of the new record through the output parameter called
@EmployeeID, which is retrieved after the INSERT statement using the @@IDENTITY function.
This is one example of a simple task that a stored procedure can make much easier. Without
using a stored procedure, it’s quite awkward to try to determine the automatically generated
identity value of a new record you’ve just inserted.

Next, you can create a SqlCommand to wrap the call to the stored procedure. This com-
mand takes the same three parameters as inputs and uses @@IDENTITY to get and then return
the ID of the new record. Here is the first step, which creates the required objects and sets
InsertEmployee as the command text:

CHAPTER 7 ADO.NET FUNDAMENTALS306

Now you need to add the stored procedure’s parameters to the Command.Parameters
collection. When you do, you need to specify the exact data type and length of the parameter
so that it matches the details in the database.

Here’s how it works for a single parameter:

The first line creates a new SqlParameter object. It sets its name, type (using the SqlDbType
enumeration), and size (as a number of characters) in the constructor. It then adds it to the
Parameters collection. The second statement assigns the value for the parameter, which will
be sent to the stored procedure when you execute the command.

Now you can add the next two parameters in a similar way:

The last parameter is an output parameter, which allows the stored procedure to return
information to your code. Although this Parameter object is created in the same way, you must
make sure you specify it is an output parameter by setting its Direction property to Output.
You don’t need to supply a value.

Finally, you can open the connection and execute the command with the ExecuteNonQuery()
method. When the command is completed, you can read the output value, as shown here:

CHAPTER 7 ADO.NET FUNDAMENTALS 307

ADDING PARAMETERS WITH IMPLICIT DATA TYPES

One handy shortcut is the AddWithValue() method of the Parameters collection. This method takes the param-
eter name and the value but no data type information. Instead, it infers the data type from the supplied data.
(Obviously, this works with input parameters but not output parameters, because you don’t supply a value for
output parameters.) If you don’t need to explicitly choose a nonstandard data type, you can streamline your
code with this less- strict approach.

Here’s an example:

Assuming that lastName is a VB .NET string with 12 letters, this creates a SqlParameter object with
a Size of 12 (characters) and a SqlDbType of NVarChar. The database can convert this data as needed, pro-
vided you aren’t trying to stuff it into a field with a smaller size or a completely different data type.

Note There’s one catch—nullable fields. If you want to pass a null value to a stored procedure, you can’t
use a VB .NET Nothing reference, because that indicates an uninitialized reference, which is an error condi-
tion. Unfortunately, you can’t use a nullable data type either (such as Integer?), because the SqlParameter
class doesn’t support nullable data types. To indicate null content in a field, you must pass the .NET constant
DBNull.Value as a parameter value.

In the next chapter, you’ll see a small but fully functional database component that does
all its work through stored procedures.

Transactions
A transaction is a set of operations that must either succeed or fail as a unit. The goal of
a transaction is to ensure that data is always in a valid, consistent state.

For example, consider a transaction that transfers $1,000 from account A to account B.
Clearly there are two operations:

Suppose that an application successfully completes step 1, but because of some error,
step 2 fails. This leads to inconsistent data, because the total amount of money in the system is
no longer accurate. A full $1,000 has gone missing.

Transactions help avoid these types of problems by ensuring that changes are committed
to a data source only if all the steps are successful. So, in this example, if step 2 fails, then the
changes made by step 1 will not be committed to the database. This ensures that the system
stays in one of its two valid states—the initial state (with no money transferred) and the final
state (with money debited from one account and credited to another).

CHAPTER 7 ADO.NET FUNDAMENTALS308

Transactions are characterized by four properties popularly called ACID properties. ACID
is an acronym that represents the following concepts:

Atomic: All steps in the transaction should succeed or fail together. Unless all the steps
from a transaction complete, a transaction is not considered complete.

Consistent: The transaction takes the underlying database from one stable state to
another.

Isolated: Every transaction is an independent entity. One transaction should not affect
any other transaction running at the same time.

Durable: Changes that occur during the transaction are permanently stored on some
media, typically a hard disk, before the transaction is declared successful. Logs are main-
tained so that the database can be restored to a valid state even if a hardware or network
failure occurs.

Note that even though these are ideal characteristics of a transaction, they aren’t always
absolutely attainable. One problem is that in order to ensure isolation, the RDBMS often needs
to lock data so that other users can’t access it while the transaction is in progress. The more
locks you use, and the coarser these locks are, the greater the chance that a user won’t be able
to perform another task while the transactions are underway. In other words, there’s often
a trade- off between user concurrency and isolation.

Transactions and ASP.NET Applications
You can use three basic transaction types in an ASP.NET web application. They are as follows
(from least to most overhead):

Stored procedure transactions: These transactions take place entirely in the database.
Stored procedure transactions offer the best performance, because they need only a single
 round- trip to the database. The drawback is that you also need to write the transaction
logic using SQL statements.

Client-initiated (ADO.NET) transactions: These transactions are controlled programmat-
ically by your ASP.NET web- page code. Under the covers, they use the same commands
as a stored procedure transaction, but your code uses some ADO.NET objects that wrap
these details. The drawback is that extra round- trips are required to the database to start
and commit the transaction.

COM+ transactions: These transactions are handled by the COM+ runtime, based on
declarative attributes you add to your code. COM+ transactions use a two- stage commit
protocol and always incur extra overhead. They also require that you create a separate
serviced component class. COM+ components are generally a good choice only if your
transaction spans multiple transaction- aware resource managers, because COM+ includes
 built- in support for distributed transactions. For example, a single COM+ transaction can
span interactions in a SQL Server database and an Oracle database. COM+ transactions
are not covered in this book.

Even though ADO.NET provides good support for transactions, you should not always use
transactions. In fact, every time you use any kind of transaction, you automatically incur some
overhead. Also, transactions involve some kind of locking of table rows. Thus, unnecessarily
using transactions may harm the overall scalability of your application.

CHAPTER 7 ADO.NET FUNDAMENTALS 309

When implementing a transaction, you can follow these practices to achieve the best
results:

should return the data before the transaction starts. This reduces the amount of data
your transaction will lock.

number of locks.

transactions. This way, your transaction can be started and completed more quickly,
because the database server doesn’t need to communicate with the client (the web
application).

batches into separate transactions.

Note ADO.NET also supports a higher- level model of promotable transactions. However, a promotable
transaction isn’t a new type of transaction—it’s just a way to create a client- initiated transaction that can
automatically escalate itself into a COM+ transaction if needed. You don’t need promotable transactions
unless you need to perform operations with different data sources in the scope of the single transaction. You
can learn more about promotable transactions in Pro ADO.NET 2.0 by Sahil Malik (Apress, 2005).

Tip As a rule of thumb, use a transaction only when your operation requires one. For example, if you are
simply selecting records from a database, or firing a single query, you will not need a transaction. On the
other hand, if you are inserting an Order record in conjunction with a series of related OrderItem records, you
might want to use a transaction. In general, a transaction is never required for single- statement commands
such as individual UPDATE, DELETE, or INSERT statements, because these are inherently transactional.

Stored Procedure Transactions
If possible, the best place to put a transaction is in stored procedure code. This ensures that
the server- side code is always in control, which makes it impossible for a client to accidentally
hold a transaction open too long and potentially cause problems for other client updates. It
also ensures the best possible performance, because all actions can be executed at the data
source without requiring any network communication. Generally, the shorter the span of
a transaction, the better the concurrency of the database and the fewer the number of data-
base requests that will be serialized (put on hold while a temporary record lock is in place).

Stored procedure code varies depending on the database you are using, but most RDBMSs
support the SQL statement BEGIN TRANSACTION. Once you start a transaction, all subsequent

CHAPTER 7 ADO.NET FUNDAMENTALS310

statements are considered part of the transaction. You can end the transaction with the
COMMIT or ROLLBACK statement. If you don’t commit the transaction, it will be automati-
cally rolled back.

Here’s a SQL code example that performs a fund transfer between accounts. It’s a simpli-
fied version that allows an account to be set to a negative balance.

The previous example uses the limited error handling features of Transact- SQL (the vari-
ant of SQL used by SQL Server). When using the @@ERROR value in Transact- SQL, you must
be careful to check it immediately after each operation. That’s because @@ERROR is reset to 0
when a successful SQL statement is completed. As a result, if the first update fails and the sec-
ond update succeeds, @@ERROR returns to 0. It’s therefore too late to check it at this point.

If you’re using SQL Server 2005, you have the benefit of a more modern try/catch struc-
ture that’s similar to the structured error handling in VB .NET. When you use this approach,
any errors interrupt your code immediately, and execution passes to the subsequent error
handling block. As a result, you can structure your transaction code more cleanly, like this:

CHAPTER 7 ADO.NET FUNDAMENTALS 311

This example checks @@TRANCOUNT to determine if a transaction is underway. (The
@@TRANCOUNT variable counts the number of active transactions for the current query. The
BEGIN TRANSACTION statement increments @@TRANCOUNT by one, while ROLLBACK or
COMMIT decrements it by one.)

To prevent errors from being silently suppressed by the catch block, the RAISERROR
statement is used. ADO.NET translates this message to a SqlException object, which you must
catch in your .NET code.

Note In SQL Server, a stored procedure can also perform a distributed transaction (one that involves mul-
tiple data sources and is typically hosted on multiple servers). By default, every transaction begins as a local
transaction, but if you access a database on another server, the transaction is automatically upgraded to a
distributed transaction governed by the Windows DTC (Distributed Transaction Coordinator) service.

Client-Initiated ADO.NET Transactions
Most ADO.NET data providers include support for database transactions. Transactions are
started through the Connection object by calling the BeginTransaction() method. This method
returns a provider- specific Transaction object that’s used to manage the transaction. All
Transaction classes implement the IDbTransaction interface. Examples include SqlTransaction,
OleDbTransaction, OracleTransaction, and so on.

The Transaction class provides two key methods:

Commit(): This method identifies that the transaction is complete and that the pending
changes should be stored permanently in the data source.

Rollback(): This method indicates that a transaction was unsuccessful. Pending changes
are discarded, and the database state remains unchanged.

Typically, you use Commit() at the end of your operation. However, if any exception is
thrown along the way, you should call Rollback().

CHAPTER 7 ADO.NET FUNDAMENTALS312

Here’s an example that inserts two records into the Employees table:

Note that it’s not enough to create and commit a transaction. You also need to explicitly
enlist each Command object to be part of the transaction by setting the Command.Transaction
property to the Transaction object. If you try to execute a command that isn’t a part of the
current transaction while the transaction is underway, you’ll receive an error. However, in
the future this object model might allow providers to support more than one simultaneous
transaction on the same connection.

Tip Instead of using separate command objects, you could also execute the same object twice and just
modify its CommandText property in between (if it’s a dynamic SQL statement) or the value of its parameters
(if it’s a parameterized command). For example, if your command inserts a new record, you could use this
approach to insert two records in the same transaction.

CHAPTER 7 ADO.NET FUNDAMENTALS 313

To test the rollback features of a transaction, you can insert the following line just before
the Commit() method is called in the previous example:

This raises an exception, which will trigger a rollback and ensure that neither record is
committed to the database.

Although an ADO.NET transaction revolves around the Connection and Transaction
objects, the underlying commands aren’t different from a stored procedure transaction. For
example, when you call BeginTransaction() with the SQL Server provider, it sends a BEGIN
TRANSACTION command to the database.

Tip A transaction should be completed as quickly as possible (started as late as possible and finished as
soon as possible). Also, an active transaction puts locks on the various resources involved, so you should
select only the rows you really require.

Isolation Levels
The isolation level determines how sensitive a transaction is to changes made by other
 in- progress transactions. For example, by default when two transactions are running inde-
pendently of each other, records inserted by one transaction are not visible to the other
transaction until the first transaction is committed.

The concept of isolation levels is closely related to the concept of locks, because by
determining the isolation level for a given transaction you determine what types of locks are
required. Shared locks are locks that are placed when a transaction wants to read data from
the database. No other transactions can modify the data while shared locks exist on a table,
row, or range. However, more than one user can use a shared lock to read the data simultane-
ously. Exclusive locks are the locks that prevent two or more transactions from modifying data
simultaneously. An exclusive lock is issued when a transaction needs to update data and no
other locks are already held. No other user can read or modify the data while an exclusive lock
is in place.

Note SQL Server actually has several types of locks that work together to help prevent deadlocks and
other situations. To learn more, refer to the information about locking in the SQL Server Books Online help,
which is installed with SQL Server.

In a SQL Server stored procedure, you can set the isolation level using the SET TRANSACTION
ISOLATION LEVEL command. In ADO.NET, you can pass a value from the IsolationLevel enu-
meration to the Connection.BeginTransaction() method. Table 7-6 lists possible values.

CHAPTER 7 ADO.NET FUNDAMENTALS314

Table 7-6. Values of the IsolationLevel Enumeration

Value Description
ReadUncommitted No shared locks are placed, and no exclusive locks are honored. This type

of isolation level is appropriate when you want to work with all the data
matching certain conditions, irrespective of whether it’s committed. Dirty
reads are possible, but performance is increased.

ReadCommitted Shared locks are held while the data is being read by the transaction. This
avoids dirty reads, but the data can be changed before a transaction com-
pletes. This may result in nonrepeatable reads or phantom rows. This is the
default isolation level used by SQL Server.

Snapshot Stores a copy of the data your transaction accesses. As a result, the transac-
tion won’t see the changes made by other transactions. This approach reduces
blocking, because even if other transactions are holding locks on the data,
a transaction with snapshot isolation will still be able to read a copy of
the data. This option is supported only in SQL Server 2005 and needs to be
enabled through a database- level option.

RepeatableRead In this case, shared locks are placed on all data that is used in a query. This
prevents others from modifying the data, and it also prevents nonrepeatable
reads. However, phantom rows are possible.

Serializable A range lock is placed on the data you use, thereby preventing other users
from updating or inserting rows that would fall in that range. This is the only
isolation level that removes the possibility of phantom rows. However, it
has an extremely negative effect on user concurrency and is rarely used in
multiple user scenarios.

 Table 7-6 introduces some database terminology that deserves a bit more explanation:

Dirty reads: A dirty read is a read that sees a value from another, uncommitted transac-
tion, which may be subsequently rolled back.

Nonrepeatable reads: If nonrepeatable reads are allowed, it’s possible to perform the
query in the same transaction more than once and get different data. That’s because
merely reading data doesn’t prevent other people from changing it while the transaction
is underway. To prevent nonrepeatable reads, the database server needs to lock the rows
that your transaction reads.

Phantom rows: A phantom row is a row that doesn’t appear in an initial read, but appears
when the same data is read again during the same transaction. This can occur if another
user inserts a record while the transaction is underway. To prevent phantom rows, when
your transaction performs a query the database server needs to use a range lock based on
its WHERE clause.

Whether these phenomena are harmless quirks or potential error conditions depends
on your specific requirements. Most of the time, nonrepeatable reads and phantom rows are
minor issues, and the concurrency cost of preventing them with locks is too high to be worth-
while. However, if you need to update a number of records at once, and these records have
some interrelated data, you may need more stringent locking to prevent overlapping changes
from causing inconsistencies.

The isolation levels in Table 7-6 are arranged from the least degree of locking to the highest
degree of locking. The default, ReadCommitted, is a good compromise for most transactions.
 Table 7-7 summarizes the locking behavior for different isolation levels.

CHAPTER 7 ADO.NET FUNDAMENTALS 315

Table 7-7. Isolation Levels Compared

Isolation Level Dirty Read
Nonrepeatable
Read Phantom Data Concurrency

Read uncommitted Yes Yes Yes Best

Read committed No Yes Yes Good

Snapshot No No No Good

Repeatable read No No Yes Poor

Serializable No No No Very poor

Savepoints
Whenever you roll back a transaction, it nullifies the effect of every command you’ve executed
since you started the transaction. But what happens if you want to roll back only part of an
ongoing transaction? SQL Server handles this with a feature called savepoints.

Savepoints are markers that act like bookmarks. You mark a certain point in the flow
of the transaction, and then you can roll back to that point. You set the savepoint using the
Transaction.Save() method. Note that the Save() method is available only for the SqlTransaction
class, because it’s not part of the standard IDbTransaction interface.

Here’s a conceptual look at how you use a savepoint:

Note how the Rollback() method is used with the savepoint name as a parameter. If you
want to roll back the whole transaction, simply omit this parameter.

Note Once you roll back to a savepoint, all the savepoints defined after that savepoint are lost. You must
set them again if they are needed.

CHAPTER 7 ADO.NET FUNDAMENTALS316

Provider-Agnostic Code
For the most part, ADO.NET’s provider model is an ideal solution for dealing with different
data sources. It allows each database vendor to develop a native, optimized solution while
enforcing a high level of consistency so that skilled developers don’t need to relearn the basics.

However, the provider model isn’t perfect. Although you can use standard interfaces
to interact with Command and Connection objects, when you instantiate a Command or
Connection object, you need to know the provider- specific, strongly typed class you want
to use (such as SqlConnection). This limitation makes it difficult to build other tools or
 add- ins that use ADO.NET. For example, in Chapter 9 you’ll consider the ASP.NET data
source controls, which allow you to create data- bound pages without writing a line of code.
To provide this functionality, you need a way for the data control to create the ADO.NET
objects that it needs behind the scenes. This wasn’t possible in .NET 1.x. However, .NET 2.0
introduced a new factory model that adds improved support for writing provider- agnostic
code (code that can work with any database). This model remains unchanged in .NET 3.5.

Note Provider-agnostic code is useful when building specialized components. It may also make sense if
you anticipate the need to move to a different database in the future or if you aren’t sure what type of data-
base you’ll use in the final version of an application. However, it also has drawbacks. Provider- agnostic code
can’t take advantage of some provider- specific features (such as XML queries in SQL Server) and is more
difficult to optimize. For those reasons, it’s not commonly found in large- scale professional web applications.

Creating the Factory
The basic idea of the factory model is that you use a single factory object to create every other
type of provider- specific object you need. You can then interact with these provider- specific
objects in a completely generic way, through a set of common base classes.

The factory class is itself provider- specific—for example, the SQL Server provider includes
a class named System.Data.SqlClient.SqlClientFactory. The Oracle provider uses System.Data.
OracleClient.OracleClientFactory. At first glance, this might seem to stop you from writing
 provider- agnostic code. However, it turns out that there’s a completely standardized class
that’s designed to dynamically find and create the factory you need. This class is System.Data.
Common.DbProviderFactories. It provides a static GetFactory() method that returns the factory
you need based on the provider name.

For example, here’s the code that uses DbProviderFactories to get the SqlClientFactory:

Even though the DbProviderFactories class returns a strongly typed SqlClientFactory object,
you shouldn’t treat it as such. Instead, your code should access it as a DbProviderFactory
instance. That’s because all factories inherit from DbProviderFactory. If you use only the
DbProviderFactory members, you can write code that works with any factory.

The weak point in the code snippet shown previously is that you need to pass a string that
identifies the provider to the DbProviderFactories.GetFactory() method. You would typically

CHAPTER 7 ADO.NET FUNDAMENTALS 317

read this from an application setting in the web.config file. That way, you can write completely
 database- agnostic code and switch your application over to another provider simply by modi-
fying a single setting.

Tip In practice, you’ll need to store several provider- specific details in a configuration file. Not only do
you need to retrieve the provider name, but you’ll also need to get a connection string. You might also need
to retrieve queries or stored procedure names if you want to avoid hard- coding them because they might
change. It’s up to you to determine the ideal trade- off between development complexity and flexibility.

For the DbProviderFactories class to work, your provider needs a registered factory in the
machine.config or web.config configuration file. The machine.config file registers the four pro-
viders that are included with the .NET Framework:

This registration step identifies the factory class and assigns a unique name for the pro-
vider (which, by convention, is the same as the namespace for that provider). If you have
a third- party provider that you want to use, you need to register it in the <DbProviders>
section of the machine.config file (to access it across a specific computer) or a web.config
file (to access it in a specific web application). It’s likely that the person or company that
developed the provider will include a setup program to automate this task or the explicit con-
figuration syntax.

Create Objects with Factory
Once you have a factory, you can create other objects, such as Connection and Command
instances, using the DbProviderFactory.CreateXxx() methods. For example, the CreateConnection()
method returns the Connection object for your data provider. Once again, you must assume you
don’t know what provider you’ll be using, so you can interact with the objects the factory creates
only through a standard base class.

CHAPTER 7 ADO.NET FUNDAMENTALS318

Note As explained earlier in this chapter, the provider- specific objects also implement certain inter-
faces (such as IDbConnection). However, because some objects use more than one ADO.NET interface (for
example, a DataReader implements both IDataRecord and IDataReader), the base class model simplifies the
model.

 Table 7-8 gives a quick reference that shows what method you need in order to create
each type of data access object and what base class you can use to manipulate it safely.

Table 7-8. Interfaces for Standard ADO.NET Objects

Type of Object Base Class Example DbProviderFactory Method
Connection DbConnection SqlConnection CreateConnection()

Command DbCommand SqlCommand CreateCommand()

Parameter DbParameter SqlParameter CreateParameter()

DataReader DbDataReader SqlDataReader None (use IDbCommand.ExecuteReader()
instead)

DataAdapter DbDataAdapter SqlDataAdapter CreateDataAdapter()

A Query with Provider- Agnostic Code
To get a better understanding of how all these pieces fit together, it helps to consider a simple
example. In this section, you’ll see how to perform a query and display the results using
 provider- agnostic code. In fact, this example is an exact rewrite of the page shown earlier in
 Figure 7-3. The only difference is that it’s no longer tightly bound to the SQL Server provider.

The first step is to set up the web.config file with the connection string, provider name,
and query for this example:

Next, here’s the factory- based code:

CHAPTER 7 ADO.NET FUNDAMENTALS 319

To give this example a real test, try modifying the web.config file to use a different pro-
vider. For example, if you’re using SQL Server 2005 you can access the same database through
the OLE DB provider by making this change:

Now when you run the page, you’ll see the same list of records. The difference is that the
DbDataFactory class creates OLE DB objects to work with your code.

Note Notice that SQL Server 2005 uses the OLE DB provider named SQLNCLI. Older versions of SQL
Server use the OLE DB provider named SQLOLEDB. Either way, accessing SQL Server through OLE DB is
discouraged for performance reasons. In this example, it’s simply used to demonstrate how easily you can
switch from one provider to another if you’re using the factory model.

The challenges of provider- agnostic code aren’t completely solved yet. Even with the
provider factories, you still face a few problems. For example, there’s no generic way to catch
database exception objects (because different provider- specific exception objects don’t inherit
from a common base class). Also, different providers may have slightly different conventions

CHAPTER 7 ADO.NET FUNDAMENTALS320

with parameter names and may support specialized features that aren’t available through the
common base classes (in which case you need to write some thorny conditional logic).

Summary
In this chapter, you learned about the first level of database access with ADO.NET: connected
access. In many cases, using simple commands and quick read- only cursors to retrieve results
provides the easiest and most efficient way to write data access code for a web application.
Along the way, you considered some advanced topics, including SQL injection attacks, trans-
actions, and provider- agnostic code.

In the next chapter, you’ll learn how to use these techniques to build your own data access
classes and how to use ADO.NET’s disconnected DataSet.

321

C H A P T E R 8

Data Components and the
DataSet

In the previous chapter, you had your first look at ADO.NET, and you examined connection- based
data access. Now, it’s time to bring your data access code into a well- designed application.

In a properly organized application, your data access code is never embedded directly
in the code- behind for a page. Instead, it’s separated into a dedicated database component. In
this chapter, you’ll see how to create a simple data access class of your own, adding a separate
method for each data task you need to perform. Best of all, your database component won’t be
limited to code- only scenarios. In the next chapter, you’ll see how to consume your database
component with ASP.NET’s new data binding infrastructure.

This chapter also tackles disconnected data—the ADO.NET features that revolve around
the DataSet and allow you to interact with data long after you’ve closed the connection to the
data source. The DataSet isn’t required in ASP.NET pages. However, it gives you more flexibil-
ity for navigating, filtering, and sorting your data—topics you’ll consider in this chapter.

Building a Data Access Component
In professional applications, database code is not embedded directly in the client but encapsu-
lated in a dedicated component. To perform a database operation, the client creates an instance
of this class and calls the appropriate method.

When creating a database component, you should follow the basic guidelines in this sec-
tion. This will ensure that you create a well- encapsulated, optimized component that can be
executed in a separate process, if needed, and even used in a load- balancing configuration
with multiple servers.

Open and close connections quickly: Open the database connection in every method call,
and close it before the method ends. Connections should never be held open between
client requests, and the client should have no control over how connections are acquired
or when they are released. If the client does have this ability, it introduces the possibility
that a connection might not be closed as quickly as possible or might be inadvertently left
open, which hampers scalability.

CHAPTER 8 DATA COMPONENTS AND THE DATASET322

Implement error handling: Use error handling to make sure the connection is closed
even if the SQL command generates an exception. Remember, connections are a finite
resource, and using them for even a few extra seconds can have a major overall effect on
performance.

Follow stateless design practices: Accept all the information needed for a method in
its parameters, and return all the retrieved data through the return value. If you create
a class that maintains state, it cannot be easily implemented as a web service or used in
a load- balancing scenario. Also, if the database component is hosted out of the process,
each method call has a measurable overhead, and using multiple calls to set proper-
ties will take much longer than invoking a single method with all the information as
parameters.

Don’t let the client use wide- open queries: Every query should judiciously select only
the columns it needs. Also, you should restrict the results with a WHERE clause whenever
possible. For example, when retrieving order records, you might impose a minimum date
range (or a SQL clause such as TOP 1000). Without these safeguards, your application may
work well at first but will slow down as the database grows and clients perform large que-
ries, which can tax both the database and the network.

A good, straightforward design for a database component uses a separate class for every
database table (or logically related group of tables). The common database access methods
such as inserting, deleting, and modifying a record are all wrapped in separate stateless meth-
ods. Finally, every database call uses a dedicated stored procedure. Figure 8-1 shows this
carefully layered design.

 Figure 8-1. Layered design with a database class

The following example demonstrates a simple database component. Rather than placing
the database code in the web page, it follows a much better design practice of separating the
code into a distinct class that can be used in multiple pages. This class can then be compiled
as part of a separate component if needed. Additionally, the connection string is retrieved
from the <connectionStrings> section of the web.config file, rather than being hard- coded.

The database component actually consists of at least two classes—a data package class
that wraps a single record of information (known as the data class) and a database utility class
that performs the actual database operations with ADO.NET code (known as the data access
class). In this chapter, we refer to the component that includes these ingredients as a database
component. In the following sections, you’ll consider an extremely simple database compo-
nent that works with a single table.

CHAPTER 8 DATA COMPONENTS AND THE DATASET 323

Note Your database component doesn’t need to use the ADO.NET classes to perform its work. In par-
ticular, you may be interested in using LINQ to SQL (as discussed in Chapter 13) to do some of the work.
However, it’s always a good idea to follow this essential design and create a separate, stateless component
for your database logic.

The Data Package
To make it easier to shuffle information to the Northwind database and back, it makes sense
to create an EmployeeDetails class that provides all the database fields as public properties.
Here’s the full code for this class:

CHAPTER 8 DATA COMPONENTS AND THE DATASET324

Note that this class doesn’t include all the information that’s in the Employees table in order
to make the example more concise.

The Stored Procedures
Before you can start coding the data access logic, you need to make sure you have the set of
stored procedures you need in order to retrieve, insert, and update information. The following
database script creates the five stored procedures that are needed:

CHAPTER 8 DATA COMPONENTS AND THE DATASET 325

The Data Utility Class
Finally, you need the utility class that performs the actual database operations. This class uses
the stored procedures that were shown in the previous section.

In this example, the data utility class is named EmployeeDB. It encapsulates all the data
access code and database- specific details. Here’s the basic outline:

CHAPTER 8 DATA COMPONENTS AND THE DATASET326

Note You may have noticed that the EmployeeDB class uses instance methods, not static methods.
That’s because even though the EmployeeDB class doesn’t store any state from the database, it does store
the connection string as a private member variable. Because this is an instance class, the connection string
can be retrieved every time the class is created, rather than every time a method is invoked. This approach
makes the code a little clearer and allows it to be slightly faster (by avoiding the need to read the web.config
file multiple times). However, the benefit is fairly small, so you can use static methods just as easily in your
database components.

Each method uses the same careful approach, relying exclusively on a stored procedure to
interact with the database. Here’s the code for inserting a record, assuming you’ve imported
the System.Data.SqlClient namespace:

CHAPTER 8 DATA COMPONENTS AND THE DATASET 327

As you can see, the method accepts data as an EmployeeDetails data object. Any errors are
caught, and the sensitive internal details are not returned to the web- page code. This prevents
the web page from providing information that could lead to possible exploits. This would also
be an ideal place to call another method in a logging component to report the full information
in an event log or another database.

The GetEmployee() and GetEmployees() methods return the data using a single
EmployeeDetails object or a list of EmployeeDetails objects, respectively:

CHAPTER 8 DATA COMPONENTS AND THE DATASET328

The UpdateEmployee() method plays a special role. It determines the concurrency strat-
egy of your database component (see the next section, “Concurrency Strategies”).

Here’s the code:

CHAPTER 8 DATA COMPONENTS AND THE DATASET 329

Finally, the DeleteEmployee() and CountEmployees() methods fill in the last two
ingredients:

CHAPTER 8 DATA COMPONENTS AND THE DATASET330

Concurrency Strategies
In any multiuser application, including web applications, there’s the potential that more than
one user will perform overlapping queries and updates. This can lead to a potentially confusing
situation where two users, who are both in possession of the current state for a row, attempt to
commit divergent updates. The first user’s update will always succeed. The success or failure of
the second update is determined by your concurrency strategy.

There are several broad approaches to concurrency management. The most important
thing to understand is that you determine your concurrency strategy by the way you write your
UPDATE and DELETE commands (particularly the way you shape the WHERE clause).

Here are the most common examples:

Last-in-wins updating: This is a less restrictive form of concurrency control that always
commits the update (unless the original row has been deleted). Every time an update is com-
mitted, all the values are applied. Last-in- wins makes sense if data collisions are rare. For
example, you can safely use this approach if there is only one person responsible for updating
a given group of records. Usually, you implement a last-in- wins by writing a WHERE clause
that matches the record to update based on its primary key. The UpdateEmployee() method
in the previous example uses the last-in- wins approach.

Match-all updating: To implement this strategy, your UPDATE command needs to use
all the values you want to set, plus all the original values. You use all the original values to
construct the WHERE clause that finds the original record. That way, if even a single field
has been modified, the record won’t be matched and the change will not succeed. One
problem with this approach is that compatible changes are not allowed. For example, if
two users are attempting to modify different parts of the same record, the second user’s
change will be rejected, even though it doesn’t conflict. Another more significant problem
with the match- all updating strategy is that it leads to large, inefficient SQL statements. You
can implement the same strategy more effectively with timestamps (see the next point).

Timestamp-based updating: Most database systems support a timestamp column,
which the data source updates automatically every time a change is performed. You
don’t modify the timestamp column manually. However, if you retrieve it when you
perform your SELECT statement, you can use it in the WHERE clause for your UPDATE
statement. That way, you’re guaranteed to update the record only if it hasn’t been mod-
ified, just like with match- all updating. Unlike match- all updating, the WHERE clause
is shorter and more efficient, because it only needs two pieces of information—the pri-
mary key and the timestamp.

CHAPTER 8 DATA COMPONENTS AND THE DATASET 331

Changed-value updating: This approach attempts to apply just the changed values in
an UPDATE command, thereby allowing two users to make changes at the same time if
these changes are to different fields. The problem with this approach is it can be complex,
because you need to keep track of what values have changed (in which case they should
be incorporated in the WHERE clause) and what values haven’t.

Note Last-in-wins is an example of database access with no concurrency control at all. Match- all updat-
ing, timestamp- based updating, and changed- value updating are examples of optimistic concurrency. With
optimistic concurrency, your code doesn’t hold locks on the data it’s using—instead, your strategy is to
hope that changes don’t overlap and respond accordingly if they do. Later in this chapter you’ll learn about
transactions, which allow you to implement pessimistic concurrency. Pessimistic concurrency prevents con-
currency conflicts by locking in- use records. The tradeoff is scalability, because other users who attempt to
access the same data will be put on hold.

To get a better understanding of how this plays out, consider what happens if two
users attempt to commit different updates to an employee record using a method such as
UpdateEmployee(), which implements last-in- wins concurrency. The first user updates
the mailing address. The second user changes the employee name and inadvertently reap-
plies the old mailing address at the same time. The problem is that the UpdateEmployee()
method doesn’t have any way to know what changes you are committing. This means that it
pushes all the in- memory values back to the data source, even if these old values haven’t been
changed (and wind up overwriting someone else’s update).

If you have large, complex records and you need to support different types of edits, the
easiest way to solve a problem like this may be to create more- targeted methods. Instead
of creating a generic UpdateEmployee() method, use more- targeted methods such as
UpdateEmployeeAddress() or ChangeEmployeeStatus(). These methods can then execute
more limited UPDATE statements that don’t risk reapplying old values.

You might also want to consider allowing multiple levels of concurrency and giving the
user the final say. For example, when a user commits an edit, you can attempt to apply the
update using strict match- all or timestamp- based concurrency. If this fails, you can then show
the user the data that’s currently in the record and compare it with the data the user is trying
to apply. At that point, you can give the user the option to make further edits or commit the
change with last-in- wins concurrency, overwriting the current values. You’ll see an example
of this technique with ASP.NET’s rich data controls in Chapter 10, in the section “Detecting
Concurrency Conflicts.”

Testing the Database Component
Now that you’ve created the database component, you just need a simple test page to try it out.
As with any other component, you must begin by adding a reference to the component assem-
bly. Then you can import the namespace it uses to make it easier to use the EmployeeDetails
and EmployeeDB classes. The only step that remains is to write the code that interacts with the
classes. In this example, the code takes place in the Page.Load event handler of a web page.

CHAPTER 8 DATA COMPONENTS AND THE DATASET332

First, the code retrieves and writes the number and the list of employees by using a private
WriteEmployeesList() method that translates the details to HTML and displays that HTML in
a Literal control named HtmlContent. Next, the code adds a record and lists the table content
again. Finally, the code deletes the added record and shows the content of the Employees table
one more time.

Here’s the complete page code:

CHAPTER 8 DATA COMPONENTS AND THE DATASET 333

 Figure 8-2 shows the page output.

 Figure 8-2. Using a database component

Disconnected Data
So far, all the examples you’ve seen have used ADO.NET’s connection- based features. When
using this approach, data ceases to have anything to do with the data source the moment it
is retrieved. It’s up to your code to track user actions, store information, and determine when
a new command should be generated and executed.

CHAPTER 8 DATA COMPONENTS AND THE DATASET334

ADO.NET emphasizes an entirely different philosophy with the DataSet object. When you
connect to a database, you fill the DataSet with a copy of the information drawn from the data-
base. If you change the information in the DataSet, the information in the corresponding table
in the database isn’t changed. That means you can easily process and manipulate the data
without worry, because you aren’t using a valuable database connection. If necessary, you
can reconnect to the original data source and apply all your DataSet changes in a single batch
operation.

Of course, this convenience isn’t without drawbacks, such as concurrency issues.
Depending on how your application is designed, an entire batch of changes may be submitted
at once. A single error (such as trying to update a record that another user has updated in the
meantime) can derail the entire update process. With studious coding you can protect your
application from these problems—but it requires additional effort.

On the other hand, sometimes you might want to use ADO.NET’s disconnected access model
and the DataSet. Some of the scenarios in which a DataSet is easier to use than a DataReader
include the following:

example, if you’re sharing information with other components or distributing it to
clients through a web service).

includes built- in functionality that allows you to save it to an XML file).

example, you could use a DataSet to support a paged list control that shows a subset of
information at a time. The DataReader, on the other hand, can move in only one direc-
tion: forward.

these tables, and information about the relations between them, thereby allowing you
to create easy master- detail pages without needing to query the database more than
once.

for data binding, but because the DataReader is a forward- only cursor, you can’t bind
your data to multiple controls. You also won’t have the ability to apply custom sorting
and filtering criteria, like you can with the DataSet.

that allows a client to download a DataTable full of rows, make multiple changes, and
then resubmit it later. At that point, the web service can apply all the changes in a sin-
gle operation (assuming no conflicts occur).

In the remainder of this chapter, you’ll learn about how to retrieve data into a DataSet.
You’ll also learn how to retrieve data from multiple tables, how to create relationships between
these in- memory data tables, how to sort and filter data, and how to search for specific records.
However, you won’t consider the task of using the DataSet to perform updates. That’s because
the ASP.NET model lends itself more closely to direct commands, as discussed in the next
section.

CHAPTER 8 DATA COMPONENTS AND THE DATASET 335

Web Applications and the DataSet
A common misconception is that the DataSet is required to ensure scalability in a web applica-
tion. Now that you understand the ASP.NET request processing architecture, you can probably
see that this isn’t the case. A web application runs only for a matter of seconds (if that long).
This means that even if your web application uses direct cursor- based access, the lifetime of
the connection is so short that it won’t significantly reduce scalability, except in the mostly
highly trafficked web applications.

In fact, the DataSet makes much more sense with distributed applications that use a rich
Windows client. In this scenario, the clients can retrieve a DataSet from the server (perhaps using
a web service), work with their DataSet objects for a long period of time, and reconnect to the
system only when they need to update the data source with the batch of changes they’ve made.
This allows the system to handle a much larger number of concurrent users than it would be able
to if each client maintained a direct, long- lasting connection. It also allows you to efficiently share
resources by caching data on the server and pooling connections between client requests.

The DataSet also acts as a neat package of information for rich client applications that are
only intermittently connected to your system. For example, consider a traveling sales associate
who needs to enter order information or review information about sales contacts on a laptop.
Using the DataSet, an application on the user’s laptop can store disconnected data locally and
serialize it to an XML file. This allows the sales associate to build new orders using the cached
data, even when no Internet connection is available. The new data can be submitted later when
the user reconnects to the system.

So, where does all this leave ASP.NET web applications? Essentially, you have two choices.
You can use the DataSet, or you can use direct commands to bypass the DataSet altogether.
Generally speaking, you’ll bypass the DataSet when inserting, deleting, or updating records.
However, you won’t avoid the DataSet completely. In fact, when you retrieve records, you’ll
probably want to use the DataSet, because it supports a few indispensable features. In particu-
lar, the DataSet allows you to easily pass a block of data from a database component to a web
page. The DataSet also supports data binding, which allows you to display your information in
advanced data controls such as the GridView. For that reason, most web applications retrieve
data into the DataSet but perform direct updates using straightforward commands.

Note Web services represent the only real web application scenario in which you might decide to perform
batch updating through a DataSet. In this case, a rich client application downloads the data as a DataSet, edits
it, and resubmits the DataSet later to commit its changes.

XML Integration
The DataSet also provides native XML serialization. You don’t need to even be aware of this to
enjoy its benefits, such as being able to easily serialize a DataSet to a file or transmit the DataSet
to another application through a web service. At its best, this feature allows you to share your
data with clients written in different programming languages and running on other operating
systems. However, implementing such a solution isn’t easy (and often the DataSet isn’t the
best approach) because you have little ability to customize the structure of the XML that the
DataSet produces.

You’ll learn more about the DataSet support for XML in Chapter 14.

CHAPTER 8 DATA COMPONENTS AND THE DATASET336

The DataSet
The DataSet is the heart of disconnected data access. The DataSet contains two important
ingredients: a collection of zero or more tables (exposed through the Tables property) and
a collection of zero or more relationships that you can use to link tables together (exposed
through the Relations property). Figure 8-3 shows the basic structure of the DataSet.

 Figure 8-3. Dissecting the DataSet

Note Occasionally, novice ADO.NET developers make the mistake of assuming that the DataSet should
contain all the information from a given table in the data source. This is not the case. For performance
reasons, you will probably use the DataSet to work with a small subset of the total information in the data
source. Also, the tables in the DataSet do not need to map directly to tables in the data source. A single table
can hold the results of a query on one table, or it can hold the results of a JOIN query that combines data
from more than one linked table.

As you can see in Figure 8-3, each item in the DataSet.Tables collection is a DataTable.
The DataTable contains its own collections—the Columns collection of DataColumn objects
(which describe the name and data type of each field) and the Rows collection of DataRow
objects (which contain the actual data in each record).

CHAPTER 8 DATA COMPONENTS AND THE DATASET 337

Each record in a DataTable is represented by a DataRow object. Each DataRow object
represents a single record in a table that has been retrieved from the data source. The DataRow
is the container for the actual field values. You can access them by field name, as in
myRow["FieldName"]. Always remember that the data in the data source is not touched at
all when you work with the DataSet objects. Instead, all the changes are made locally to the
DataSet in memory. The DataSet never retains any type of connection to a data source.

The DataSet also has methods that can write and read XML data and schemas and has
methods you can use to quickly clear and duplicate data. Table 8-1 outlines these methods.
You’ll learn more about XML in Chapter 14.

Table 8-1. DataSet XML and Miscellaneous Methods

Method Description
GetXml() and
GetXmlSchema()

Returns a string with the data (in XML markup) or schema information for
the DataSet. The schema information is the structural information such
as the number of tables, their names, their columns, their data types, and
their relationships.

WriteXml() and
WriteXmlSchema()

Persists the data and schema represented by the DataSet to a file or
a stream in XML format.

ReadXml() and
ReadXmlSchema()

Creates the tables in a DataSet based on an existing XML document or
XML schema document. The XML source can be a file or any other stream.

Clear() Empties all the data from the tables. However, this method leaves the
schema and relationship information intact.

Copy() Returns an exact duplicate of the DataSet, with the same set of tables,
relationships, and data.

Clone() Returns a DataSet with the same structure (tables and relationships) but
no data.

Merge() Takes another DataSet, a DataTable, or a collection of DataRow objects as
input and merges them into the current DataSet, adding any new tables
and merging any existing tables.

The DataAdapter Class
To extract records from a database and use them to fill a table in a DataSet, you need to use
another ADO.NET object: a DataAdapter. The DataAdapter comes in a provider- specific
object, so there is a separate DataAdapter class for each provider (such as SqlDataAdapter,
OracleDataAdapter, and so on).

The DataAdapter serves as a bridge between a single DataTable in the DataSet and the
data source. It contains all the available commands for querying and updating the data source.

To enable the DataAdapter to edit, delete, and add rows, you need to specify Command
objects for the UpdateCommand, DeleteCommand, and InsertCommand properties of the
DataAdapter. To use the DataAdapter to fill a DataSet, you must set the SelectCommand.

The DataAdapter provides three key methods, as listed in Table 8-2.

CHAPTER 8 DATA COMPONENTS AND THE DATASET338

Table 8-2. DataAdapter Methods

Method Description
Fill() Adds a DataTable to a DataSet by executing the query in the SelectCommand. If

your query returns multiple result sets, this method will add multiple DataTable
objects at once. You can also use this method to add data to an existing DataTable.

FillSchema() Adds a DataTable to a DataSet by executing the query in the SelectCommand and
retrieving schema information only. This method doesn’t add any data to the
DataTable. Instead, it simply preconfigures the DataTable with detailed informa-
tion about column names, data types, primary keys, and unique constraints.

Update() Examines all the changes in a single DataTable and applies this batch of changes
to the data source by executing the appropriate InsertCommand, UpdateCommand,
and DeleteCommand operations.

 Figure 8-4 shows how a DataAdapter and its Command objects work together with the
data source and the DataSet.

 Figure 8-4. How the DataAdapter interacts with the data source

CHAPTER 8 DATA COMPONENTS AND THE DATASET 339

Filling a DataSet
In the following example, you’ll see how to retrieve data from a SQL Server database and use
it to fill a DataTable object in the DataSet. You’ll also see how to display the data by program-
matically cycling through the records and displaying them one by one. All the logic takes place
in the event handler for the Page.Load event.

First, the code creates the connection and defines the text of the SQL query:

The next step is to create a new instance of the SqlDataAdapter class that will retrieve the
employee list. Although every DataAdapter supports four Command objects, only one of these
(the SelectCommand) is required to fill a DataSet. To make life even easier, you can create the
Command object you need and assign it to the DataAdapter.SelectCommand property in one
step. You just need to supply a Connection object and query string in the DataAdapter con-
structor, as shown here:

Now you need to create a new, empty DataSet and use the DataAdapter.Fill() method to
execute the query and place the results in a new DataTable in the DataSet. At this point, you
can also specify the name for the table. If you don’t, a default name (like Table) will be used
automatically. In the following example, the table name corresponds to the name of the source
table in the database, although this is not a requirement:

Note that this code doesn’t explicitly open the connection by calling Connection.Open().
Instead, the DataAdapter opens and closes the linked connection behind the scenes when
you call the Fill() method. As a result, the only line of code you should consider placing in an
 exception- handling block is the call to DataAdapter.Fill(). Alternatively, you can also open and
close the connection manually. If the connection is open when you call Fill(), the DataAdapter
will use that connection and won’t close it automatically. This approach is useful if you want
to perform multiple operations with the data source in quick succession and you don’t want to
incur the additional overhead of repeatedly opening and closing the connection each time.

The last step is to display the contents of the DataSet. A quick approach is to use the same
technique that was shown in the previous chapter and build an HTML string by examining
each record. The following code cycles through all the DataRow objects in the DataTable and
displays the field values of each record in a bulleted list:

CHAPTER 8 DATA COMPONENTS AND THE DATASET340

Of course, the ASP.NET model is designed to save you from coding raw HTML. A much
better approach is to bind the data in the DataSet to a data- bound control, which automatically
generates the HTML you need based on a single template. Chapter 9 describes the data- bound
controls in detail.

Note When you bind a DataSet to a control, no data objects are stored in view state. The data control
stores enough information to show only the data that’s currently displayed. If you need to interact with
a DataSet over multiple postbacks, you’ll need to store it in the ViewState collection manually (which will
greatly increase the size of the page) or the Session or Cache objects.

Working with Multiple Tables and Relationships
The next example shows a more advanced use of the DataSet that, in addition to providing
disconnected data, uses table relationships. This example demonstrates how to retrieve some
records from the Categories and Products tables of the Northwind database and how to create
a relationship between them so that it’s easy to navigate from a category record to all of its child
products and create a simple report.

The first step is to initialize the ADO.NET objects and declare the two SQL queries (for
retrieving categories and products), as shown here:

CHAPTER 8 DATA COMPONENTS AND THE DATASET 341

Next, the code executes both queries, adding two tables to the DataSet. Note that the con-
nection is explicitly opened at the beginning and closed after the two operations, ensuring the
best possible performance.

In this example, the same DataAdapter is used to fill both tables. This technique is perfectly
legitimate, and it makes sense in this scenario because you don’t need to reuse the DataAdapter
to update the data source. However, if you were using the DataAdapter both to query data and
to commit changes, you probably wouldn’t use this approach. Instead, you would use a separate
DataAdapter for each table so that you could make sure each DataAdapter has the appropriate
insert, update, and delete commands for the corresponding table.

At this point you have a DataSet with two tables. These two tables are linked in the Northwind
database by a relationship against the CategoryID field. This field is the primary key for the
Categories table and the foreign key in the Products table. Unfortunately, ADO.NET does not
provide any way to read a relationship from the data source and apply it to your DataSet auto-
matically. Instead, you need to manually create a DataRelation that represents the relationship.

A relationship is created by defining a DataRelation object and adding it to the
DataSet.Relations collection. When you create the DataRelation, you typically specify
three constructor arguments: the name of the relationship, the DataColumn for the pri-
mary key in the parent table, and the DataColumn for the foreign key in the child table.

Here’s the code you need for this example:

CHAPTER 8 DATA COMPONENTS AND THE DATASET342

Once you’ve retrieved all the data, you can loop through the records of the Categories
table and add the name of each category to the HTML string:

Here’s the interesting part. Inside this block, you can access the related product records
for the current category by calling the DataRow.GetChildRows() method. This method searches
the in- memory data in the linked DataTable to find matching records. Once you have the array
of product records, you can loop through it using a nested foreach loop. This is far simpler than
the code you’d need in order to look up this information in a separate object or to execute mul-
tiple queries with traditional connection- based access.

The following piece of code demonstrates this approach, retrieving the child records and
completing the outer foreach loop:

The last step is to display the HTML string on the page:

The code for this example is now complete. If you run the page, you’ll see the output
shown in Figure 8-5.

Tip A common question new ADO.NET programmers have is, when do you use JOIN queries and when do
you use DataRelation objects? The most important consideration is whether you plan to update the retrieved
data. If you do, using separate tables and a DataRelation object always offers the most flexibility. If not, you
could use either approach, although the JOIN query may be more efficient because it involves only a single
 round- trip across the network, while the DataRelation approach often requires two to fill the separate tables.

CHAPTER 8 DATA COMPONENTS AND THE DATASET 343

 Figure 8-5. A list of products in each category

REFERENTIAL INTEGRITY

When you add a relationship to a DataSet, you are bound by the rules of referential integrity. For example,
you can’t delete a parent record if there are linked child rows, and you can’t create a child record that
references a nonexistent parent. This can cause a problem if your DataSet contains only partial data. For
example, if you have a full list of customer orders, but only a partial list of customers, it could appear that
an order refers to a customer who doesn’t exist just because that customer record isn’t in your DataSet.
One way to get around this problem is to create a DataRelation without creating the corresponding con-
straints. To do so, use the DataRelation constructor that accepts the Boolean createConstraints parameter
and set it to false, as shown here:

Another approach is to disable all types of constraint checking (including unique value checking) by
setting the DataSet.EnforceConstraints property to false before you add the relationship.

CHAPTER 8 DATA COMPONENTS AND THE DATASET344

Searching for Specific Rows
The DataTable provides a useful Select() method that allows you to search its rows using
a SQL expression. The expression you use with the Select() method plays the same role as the
WHERE clause in a SELECT statement, but it acts on the in- memory data that’s already in
the DataTable (so no database operation is performed).

For example, the following code retrieves all the products that are marked as
discontinued:

In this example, the Select() statement uses a fairly simple filter string. However, you’re
free to use more complex operators and a combination of different criteria. For more informa-
tion, refer to the MSDN class library reference description for the DataColumn.Expression
property, or refer to Table 8-3 and the discussion about filter strings in the “Filtering with
a DataView” section.

Note The Select() method has one potential caveat—it doesn’t support a parameterized condition. As
a result, it’s open to SQL injection attacks. Clearly, the SQL injection attacks that a malicious user could
perform in this situation are fairly limited, because there’s no way to get access to the actual data source or
execute additional commands. However, a carefully written value could still trick your application into return-
ing extra information from the table. If you create a filter expression with a user- supplied value, you might
want to iterate over the DataTable manually to find the rows you want, instead of using the Select() method.

Using the DataSet in a Data Access Class
There’s no reason you can’t use the DataSet or DataTable as the return value from a method in
your custom data access class. For example, you could rewrite the GetAllEmployees() method
shown earlier with the following DataSet code:

CHAPTER 8 DATA COMPONENTS AND THE DATASET 345

Interestingly, when you use this approach, you have exactly the same functionality at your
fingertips. For example, in the next chapter you’ll learn to use the ObjectDataSource to bind
to custom classes. The ObjectDataSource understands custom classes and the DataSet object
equally well (and they have essentially the same performance).

The DataSet approach has a couple of limitations. Although the DataSet makes the ideal
container for disconnected data, you may find it easier to create methods that return individ-
ual DataTable objects and even distinct DataRow objects (for example, as a return value from
a GetEmployee() method). However, these objects don’t have the same level of data binding
support as the DataSet, so you’ll need to decide between a clearer coding model (using the
various disconnected data objects) and more flexibility (always using the full DataSet, even
when returning only a single record). Another limitation is that the DataSet is weakly typed.
That means there’s no compile- time syntax checking or IntelliSense to make sure you use the
right field names (unlike with a custom data access class such as EmployeeDetails). You can
get around this limitation by building a strongly typed DataSet, as described in the “Typed
DataSets” section of this chapter.

Data Binding
Although there’s nothing stopping you from generating HTML by hand as you loop through
disconnected data, in most cases ASP.NET data binding can simplify your life quite a bit.
Chapter 9 discusses data binding in detail, but before continuing to the DataView examples in
this chapter you need to know the basics.

The key idea behind data binding is that you associate a link between a data object and
a control, and then the ASP.NET data binding infrastructure takes care of building the appro-
priate output.

One of the data- bound controls that’s easiest to use is the GridVew. The GridView has the
 built- in smarts to create an HTML table with one row per record and with one column per field.

To bind data to a data- bound control such as the GridView, you first need to set the
DataSource property. This property points to the object that contains the information you
want to display. In this case, it’s the DataSet:

CHAPTER 8 DATA COMPONENTS AND THE DATASET346

Because data- bound controls can bind to only a single table (not the entire DataSet),
you also need to explicitly specify what table you want to use. You can do that by setting the
DataMember property to the appropriate table name, as shown here:

Alternatively, you could replace both of these statements with one statement that binds
directly to the appropriate table:

Finally, once you’ve defined where the data is, you need to call the control’s DataBind()
method to copy the information from the DataSet into the control. If you forget this step, the
control will remain empty, and the information will not appear on the page.

As a shortcut, you can call the DataBind() method of the current page, which walks over
every control that supports data binding and calls the DataBind() method.

Note The following examples use data binding to demonstrate the filtering and sorting features of the
GridView. You’ll learn much more about data binding and the GridView control in Chapter 9 and Chapter 10.

The DataView Class
A DataView defines a view onto a DataTable object—in other words, a representation of the
data in a DataTable that can include custom filtering and sorting settings. To allow you to
configure these settings, the DataView has properties such as Sort and RowFilter. These prop-
erties allow you to choose what data you’ll see through the view. However, they don’t affect the
actual data in the DataTable. For example, if you filter a table to hide certain rows, those rows
will remain in the DataTable, but they won’t be accessible through the DataView.

The DataView is particularly useful in data binding scenarios. It allows you to show just
a subset of the total data in a table, without needing to process or alter that data if you need it
for other tasks.

Every DataTable has a default DataView associated with it, although you can create mul-
tiple DataView objects to represent different views onto the same table. The default DataView
is provided through the DataTable.DefaultView property.

In the following examples, you’ll see how to create some grids that display records sorted
by different fields and filtered against a given expression.

Sorting with a DataView
The next example uses a page with three GridView controls. When the page loads, it binds the
same DataTable to each of the grids. However, it uses three different views, each of which sorts
the results using a different field.

The code begins by retrieving the list of employees into a DataSet:

CHAPTER 8 DATA COMPONENTS AND THE DATASET 347

The next step is to fill the GridView controls through data binding. To bind the first grid,
you can simply use the DataTable directly, which uses the default DataView and displays all
the data. For the other two grids, you must create new DataView objects. You can then set its
Sort property explicitly.

Sorting a grid is simply a matter of setting the DataView.Sort property to a valid sorting
expression. This example sorts by each view using a single field, but you could also sort by
multiple fields, by specifying a comma- separated list. Here’s an example:

Note The sort is according to the data type of the column. Numeric and date columns are ordered
from smallest to largest. String columns are sorted alphanumerically without regard to case, assuming the
DataTable.CaseSensitive property is false (the default). Columns that contain binary data cannot be sorted.
You can also use the ASC and DESC attributes to sort in ascending or descending order. You’ll use sorting
again and learn about DataView filtering in Chapter 10.

CHAPTER 8 DATA COMPONENTS AND THE DATASET348

Once you’ve bound the grids, you still need to trigger the data binding process that copies
the values from the DataTable into the control. You can do this for each control separately or
for the entire page by calling Page.DataBind(), as in this example:

 Figure 8-6 shows the resulting page.

 Figure 8-6. Grids sorted in different ways

Filtering with a DataView
You can also use a DataView to apply custom filtering so that only certain rows are included in
the display. To accomplish this feat, you use the RowFilter property. The RowFilter property
acts like a WHERE clause in a SQL query. Using it, you can limit results using logical opera-
tors (such as <, >, and =) and a wide range of criteria. Table 8-3 lists the most common filter
operators.

CHAPTER 8 DATA COMPONENTS AND THE DATASET 349

Table 8-3. Filter Operators

Operator Description
<, >, <=, and >= Performs comparisons of more than one value. These comparisons can be

numeric (with number data types) or alphabetic dictionary comparisons (with
string data types).

<> and = Performs equality testing.

NOT Reverses an expression. Can be used in conjunction with any other clause.

BETWEEN Specifies an inclusive range. For example, “Units BETWEEN 5 AND 15” selects
rows that have a value in the Units column from 5 to 15.

IS NULL Tests the column for a null value.

IN(a,b,c) A short form for using an OR clause with the same field. Tests for equality
between a column and the specified values (a, b, and c).

LIKE Performs pattern matching with string data types.

+ Adds two numeric values or concatenates a string.

– Subtracts one numeric value from another.

* Multiplies two numeric values.

/ Divides one numeric value by another.

% Finds the modulus (the remainder after one number is divided by another).

AND Combines more than one clause. Records must match all criteria to be
displayed.

OR Combines more than one clause. Records must match at least one of the filter
expressions to be displayed.

The following example page includes three GridView controls. Each one is bound to the
same DataTable but with different filter settings.

CHAPTER 8 DATA COMPONENTS AND THE DATASET350

Running the page will fill the three grids, as shown in Figure 8-7.

 Figure 8-7. Grids filtered in different ways

Advanced Filtering with Relationships
The DataView allows for some surprisingly complex filter expressions. One of its little- known
features is the ability to filter rows based on relationships. For example, you could display cat-
egories that contain more than 20 products, or you could display customers who have made

CHAPTER 8 DATA COMPONENTS AND THE DATASET 351

a certain number of total purchases. In both of these examples, you need to filter one table
based on the information in a related table.

To create this sort of filter string, you need to combine two ingredients:

An aggregate function such as AVG(), MAX(), MIN(), or COUNT(). This function acts on
the data in the related records.

For example, suppose you’ve filled a DataSet with the Categories and Products tables and
defined this relationship:

You can now filter the display of the Categories table using a filter expression based on
the Products table. For example, imagine you want to show only category records that have at
least one product worth more than $50. To accomplish this, you use the MAX() function, along
with the name of the table relationships (CatProds). Here’s the filter string you need:

And here’s the code that applies this filter string to the DataView:

The end result is that the GridView shows only the categories that have a product worth
more than $50.

Calculated Columns
In addition to the fields retrieved from the data source, you can add calculated columns.
Calculated columns are ignored when retrieving and updating data. Instead, they represent
a value that’s computed using a combination of existing values. To create a calculated column,
you simply create a new DataColumn object (specifying its name and type) and set the Expres-
sion property. Finally, you add the DataColumn to the Columns collection of the DataTable
using the Add() method.

As an example, here’s a column that uses string concatenation to combine the first and
last name into one field:

CHAPTER 8 DATA COMPONENTS AND THE DATASET352

Tip Of course, you can also execute a query that creates calculated columns. However, that approach
makes it more difficult to update the data source later, and it creates more work for the data source. For that
reason, it’s often a better solution to create calculated columns in the DataSet.

You can also create a calculated column that incorporates information from related
rows. For example, you might add a column in a Categories table that indicates the number of
related product rows. In this case, you need to make sure you first define the relationship with
a DataRelation object. You also need to use a SQL aggregate function such as AVG(), MAX(),
MIN(), or COUNT().

Here’s an example that creates three calculated columns, all of which use aggregate func-
tions and table relationships:

CHAPTER 8 DATA COMPONENTS AND THE DATASET 353

 Figure 8-8 shows the resulting page.

 Figure 8-8. Showing calculated columns

Note Keep in mind that these examples simply demonstrate convenient ways to filter and aggregate data.
These operations are only part of presenting your data properly. The other half of the equation is proper format-
ting. In Chapter 9 and Chapter 10, you’ll learn a lot more about the GridView so that you can show currency
values in the appropriate format and customize other details such as color, sizing, column order, and fonts. For
example, by setting the format, you can change 4.5000 to the more reasonable display value, $4.50.

CHAPTER 8 DATA COMPONENTS AND THE DATASET354

Typed DataSets
Using the tools included with Visual Studio, you can generate a strongly typed DataSet. This
strongly typed DataSet consists of a series of specialized classes derived from the base DataSet,
DataTable, and DataRow objects.

A typed DataSet provides two advantages when compared with ordinary data classes:

DataSet. This means the DataSet is preinitialized with information about the tables,
columns, and data types you want to retrieve. As a result, when you execute a query
to retrieve the actual information, the query will execute slightly faster. (When you fill
a blank DataSet, the data provider actually performs two steps. First it retrieves the
bare minimum schema information, and then it executes the query.)

instead of field- name lookup. This allows you to catch errors (such as using the wrong
field name, table name, or data type) at compile time instead of at runtime.

The second point is particularly interesting. It allows you to change code like this:

into code like the following:

Both of these statements retrieve the value of the CategoryName field in the first row of
a Categories table. However, the second version has a variety of advantages. If you make a minor
mistake entering the name of the table or the field, the problem will be caught as soon as you
try to compile your code. But when you use the string- based collection lookup, you won’t real-
ize the problem until your code is executed. Furthermore, the strongly typed approach allows
you to use Visual Studio IntelliSense to find the appropriate field or table name. Clearly, a typed
DataSet provides a much richer design- time and debugging experience.

Tip If you’ve already decided to use the DataSet model, you’ll find that typed DataSets give you a good
way to clarify your code and prevent certain types of errors. However, if you’re looking for a rapid way to
build a simple database model complete with automatically generated data access code, you’ll probably be
more interested in LINQ to SQL, which is described in Chapter 13. Although you can use typed DataSets with
the TableAdapter classes to avoid writing some data access code, the limitations of this model generally out-
weigh the time savings.

The typed DataSet also has its drawbacks, including that you’ll need to manage another
 source- code file or assembly reference for your project. Using a generic DataSet relieves you of
this task and sidesteps any possible versioning problems if the data source changes. However,
in an ASP.NET application, these considerations aren’t very significant. All the code executes
on the web server, so you don’t need to worry about client deployment issues.

CHAPTER 8 DATA COMPONENTS AND THE DATASET 355

To create a typed DataSet, you need an XSD (XML schema document) that defines the
data structure for the DataSet. The easiest way to create this file correctly is to use Visual Studio.
(You’ll learn more about XML schemas in Chapter 14.) But before you consider how to create
a typed DataSet, you need to understand another related concept: the TableAdapter.

Custom TableAdapters
.NET also uses TableAdapter classes to extend the typed DataSet model. Essentially,
a TableAdapter is an automatically generated data access class. It plays the same role as the
custom data access components you considered earlier in this chapter.

Note The typed DataSet stores your data, while the TableAdapter includes the logic needed to retrieve
this data from the data source (and stuff it into your DataSet). Optionally, the TableAdapter can also include
the logic needed to update the data source based on any changes you’ve made to the data in the DataSet.

The TableAdapter is an innovative idea for rapid application development, and you can
customize it extensively using wizards. For example, you can create a TableAdapter that uses
a stored procedure of your choosing rather than a stock SELECT statement. Additionally, all
TableAdapters are created as partial classes, which means you can extend them with additional
members by adding another class definition with the same name. However, the TableAdapter
approach also has many inevitable limitations. Because it relies on autogenerated code, you’ll
never have complete flexibility to implement error handling, logging, caching, transactions,
and other key techniques in the way you might need. For that reason, professional developers
building large- scale web applications may choose to use a typed DataSet, but they rarely use
the autogenerated code of a TableAdapter. The model just isn’t flexible enough.

Note Another reason many web developers bypass the TableAdapter is because its data access model
assumes you’ll use the DataSet to query and update the database. As you learned earlier in this chapter,
it’s much more common to use the DataSet to query data but to perform updates using direct commands.
(The DataSet- based update functionality becomes much more useful in rich client scenarios, where many
changes might be made on the client and then applied in a batch.)

Although ASP.NET gives you the option to use typed DataSets without TableAdapters,
when you create a new typed DataSet, you’ll automatically end up with a set of TableAdapters.
You can easily delete these TableAdapters, which is the approach we recommend. But if you’re
interested in exploring the TableAdapter model for your web applications or if you plan to
design rich client applications that use this functionality, you can start with the tutorial at

px.

CHAPTER 8 DATA COMPONENTS AND THE DATASET356

Creating a Typed DataSet
To create a typed DataSet in Visual Studio, open a project, right- click the project in the Solution
Explorer, and choose Add New Item. Then, choose DataSet, and supply the name you want to use
for the generated DataSet class (like NorthwindDataSet.xsd). If you’re adding the typed DataSet
directly to a Visual Studio website (not a web project or a separate class library), Visual Studio
will prompt you to place the code- behind for the typed DataSet in the App_Code folder, and you
should accept.

Initially, your typed DataSet is empty, and you’ll see a blank design surface. Technically,
you can define the schema for your DataSet by hand. (Start by right- clicking the DataSet on the
design surface and choosing Add DataTable. Then, right- click your DataTable and choose
Add Column to begin building the table piece by piece.) However, a far easier option is to
drag and drop the tables you want from the Server Explorer. Visual Studio will create the cor-
responding strongly typed DataTable classes automatically.

For example, Figure 8-9 shows the design surface after dragging the Products and Categories
tables from the Server Explorer. Visual Studio retrieves all the schema information from the data
source, and it even picks up the relationship between Categories and Products automatically
(based on the foreign key constraint that’s defined in the database) and uses it to generate the
appropriate DataRelation object.

 Figure 8-9. Two strongly typed DataTable classes

CHAPTER 8 DATA COMPONENTS AND THE DATASET 357

If you want to have a slightly different data model, you can modify the tables on the design
surface. For example, you can rename tables and fields, remove fields you don’t plan to use,
change default values and autoincrement options, and so on, all using the Properties window.
You can also remove or modify relationships and other constraints. Remember, all these details
affect the client- side representation of your data in the DataSet, but they don’t affect how it’s
stored and managed in the database server.

You’ll also notice the corresponding TableAdapter definitions, which appear under each
table. To configure the TableAdapter, right- click it, and choose Configure. This allows you to
decide whether it should include update logic or selection logic only and what SQL statements
or stored procedures it should use. In this chapter, we won’t use the TableAdapter classes.

USING DATA CONNECTIONS

The easiest way to work with your database in the Server Explorer is to add a data connection. To do so,
 right- click the Data Connections node at the top of the list, and choose Add Connection (to use an existing
database) or Create New SQL Server Database (to generate a new one using the tools in Visual Studio). You
then indicate all the typical connection information, including the security mode, the server location, and
the name of the database you want to use. From that point onward, you’ll see your database in the Server
Explorer, and you’ll be able to modify the data or design of its tables.

If you’re using SQL Server 2005 Express Edition, you can use a shortcut. Any databases you’ve
added to the App_Data directory of your web application will automatically appear as an item in the Server
Explorer.

Dissecting the Typed DataSet
The strongly typed DataSet consists of specialized classes that derive from the generic data
container classes such as DataRow, DataTable, and DataSet. These derived classes add strongly
typed property access, helper methods for creating records and finding records, casting code,
and exception handling. If you’re creating the typed DataSet in a class library project, you’ll be
able to study the generated code by looking in the DataSet code file, which has the same name
as your typed DataSet.xsd file but uses the extension .Designer.vb (as in NorthwindDataSet.
Designer.vb). If you’re creating the typed DataSet in a web application, this code is generated
as part of the ASP.NET compilation process, and you won’t see it in your project.

The following is the (heavily shortened) code from the strongly typed CategoriesDataTable
class. The CategoriesDataTable class provides strongly typed access to the DataColumns for
this table (CategoryIDColumn, CategoryNameColumn, and so on) and strongly typed access
to the data as a collection of CategoriesRow objects. It also provides several helper methods,
including a strongly typed version of the AddRow() method named AddCategoriesRow() and
a FindByCategoryID() method that allows you to search for a row by CategoryID.

CHAPTER 8 DATA COMPONENTS AND THE DATASET358

The CategoriesDataTable class derives from TypedTableBase<T>, which derives from
DataTable. The TypedTableBase<T> class adds support for LINQ, as you’ll see in Chapter 13.
In previous versions of .NET, all typed DataTable classes derived directly from DataTable.

CHAPTER 8 DATA COMPONENTS AND THE DATASET 359

The CategoriesRow class derives from DataRow and provides strongly typed access to all the
fields in the row (CategoryID, CategoryName, and so on). It also includes a GetProductsRow()
method that uses the DataRelation that links the two tables. Here’s the excerpted code:

CHAPTER 8 DATA COMPONENTS AND THE DATASET360

REGENERATING A TYPED DATASET

Even the best- planned databases eventually change. Unfortunately, updating a typed DataSet is an awk-
ward proposition. The only way to do so is to regenerate the typed DataSet classes from scratch. There are
a few workarounds that can make this process easier, but none are seamless.

Here are the basic strategies you can use:

This approach works best if you’ve performed very little customization with the typed DataSet classes
(for example, renaming fields, adding relationships, and so on). Otherwise, you may be in for a fair bit of
tedious work to reapply your changes.

This approach is similar to the previous one, but it gives you the opportunity to compare the sche-
mas of old and new tables more closely, which can help you find and transfer any details you’ve
customized.

existing table and just tweak it a bit. For example, it’s easy to rename columns or even add a new
column in the designer.

. If your tables have table adapters, you can let the TableAdapter wizard
help you out. Just right- click the table on the design surface and choose Configure. Some developers
find it’s easiest to run the wizard before you make changes (to remove fields that you’re about to
change) and then run it again after you make the changes (to add the changed fields back).

Using the Typed DataSet
Once you’ve created the typed DataSet, you can write strongly typed code that uses it. This
code can fill the DataSet in the same way (using a DataAdapter), or it can use the automatically
generated TableAdapter. Either way, once you’ve created the DataSet, you can examine tables
and fields with more efficient and elegant strongly typed syntax.

The following example creates an instance of the typed NorthwindDataSet, fills it with
the Categories and Products information, and then iterates over the tables, building an HTML
string that will be displayed on the page. The strongly typed portions are in bold.

CHAPTER 8 DATA COMPONENTS AND THE DATASET 361

 Figure 8-10 shows the result.

CHAPTER 8 DATA COMPONENTS AND THE DATASET362

 Figure 8-10. Displaying output with a typed DataSet

Tip Remember that thanks to inheritance, the strongly typed DataSet really is a DataSet. This means you can
seamlessly cast the NorthwindDataSet class to the DataSet class and use ordinary string- based field and table
lookup. However, the reverse is not true—you can’t cast an ordinary DataSet to the NorthwindDataSet type.

Summary
In this chapter, you learned how to create basic database components and took an in- depth
look at the DataSet and DataView. In the next chapter, you’ll continue working with the same
database component and the DataSet—albeit through a new layer. You’ll learn how the data
source controls wrap the ADO.NET world with a higher- level abstraction and let you build rich
 data- bound pages with minimal code.

If you want to learn about all the features of the DataSet, including those that are tailored
to distributed and rich client applications, you may want to consult Programming Microsoft
ADO.NET 2.0: Core Reference by David Sceppa (Microsoft Press, 2006) or Pro ADO.NET 2.0 by
Sahil Malik (Apress, 2005). These books also cover the strongly typed DataSet and TableAdapter
model in more detail.

363

C H A P T E R 9

Data Binding

Almost every web application has to deal with data, whether it’s stored in a database, an XML
file, a structured file, or something else. Retrieving this data is only part of the challenge—a modern
application also needs a convenient, flexible, and attractive way to display the data in a web
page.

Fortunately, ASP.NET includes a rich and full- featured model for data binding. Data bind-
ing allows you to bind the data objects you’ve retrieved to one or more web controls, which will
then show the data automatically. That means you don’t need to write time- consuming logic to
loop through rows, read multiple fields, and manipulate individual controls.

To make your life even easier, you can use ASP.NET’s data source controls. A data source
control allows you to define a declarative link between your page and a data source (such as
a database or a custom data access component). Data source controls are notable for the way
they plug into the data binding infrastructure. Once you’ve configured a data source control,
you can hook it up to your web controls at design time, and ASP.NET will take care of all the data
binding details. In fact, by using a data source control, you can create a sophisticated page that
allows you to query and update a database—all without writing a single line of code.

Tip Of course, in a professional application you probably will write code to customize various aspects of
the data binding process, such as error handling. That’s why you’ll be happy to discover that the data binding
model and data source controls are remarkably extensible. In the past, countless data binding models have
failed because of a lack of flexibility.

In this chapter, you’ll learn how data binding and the data source controls work. You’ll
learn a straightforward approach to using the data source controls and the best practices
you’ll need to make them truly practical. This distinction is important, because it’s easy to use
the data source controls to build pages that are difficult to maintain and impossible to opti-
mize properly. When used correctly, data source controls don’t need to prevent good design
practices—in fact, informed developers can plug their own custom data access classes into the
data binding framework without sacrificing a thing.

But before you can tackle the data source controls, you need to start at the beginning—
with a description of ASP.NET data binding.

CHAPTER 9 DATA BINDING364

Basic Data Binding
Data binding is a feature that allows you to associate a data source with a control and have
that control automatically display your data. The key characteristic of data binding is that
it’s declarative, not programmatic. That means data binding is defined outside your code,
alongside the controls in the .aspx page. The advantage is that it helps you achieve a cleaner
separation between your controls and your code in a web page.

In ASP.NET, most web controls (including TextBox, LinkButton, Image, and many more)
support single- value data binding. With single- value binding, you can bind a control property
to a data source, but the control can display only a single value. The property you bind doesn’t
need to represent something directly visible on the page. For example, not only can you bind
the text of a hyperlink by setting the Hyperlink.Text property, but you can also bind the
 NavigateUrl property to specify the target destination of the link. To use single- value binding,
you create data binding expressions.

Many web controls support repeated- value binding, which means they can render a set
of items. Repeated- value controls often create lists and grids (the ListBox and GridView are
two examples). If a control supports repeated- value binding, it always exposes a DataSource
property, which accepts a data object. (Typically, the data object is some sort of collection, and
each item in the collection represents a record of data.) When you set the DataSource property,
you create the logical link from the server control to the data object that contains the data to
render. However, this doesn’t directly fill the control with that data. To accomplish that, you
need the control’s DataBind() method, which loops through the data source, extracts its data,
and renders it to the page. Repeated- value binding is by far the more powerful type of data
binding.

In the following sections, you’ll consider both single- value binding and repeated- value
binding.

Single-Value Binding
The controls that support single- value data binding allow you to bind some of their properties
to a data binding expression. This expression is entered in the .aspx markup portion of the
page (not the code- behind file) and enclosed between the <%# and %> delimiters. Here’s an
example:

This may look like a script block, but it isn’t. If you try to write any code inside this tag, you
will receive an error. The only thing you can add is valid data binding expressions. For example,
if you have a public, protected, or internal variable in your page class named EmployeeName,
you could write the following:

CHAPTER 9 DATA BINDING 365

To evaluate a data binding expression such as this, you must call the Page.DataBind()
method in your code. When you call DataBind(), ASP.NET will examine all the expressions on
your page and replace them with the corresponding value (in this case, the current value that’s
defined for the EmployeeName variable). If you forget to call the DataBind() method, the data
binding expression won’t be filled in—instead, it just gets tossed away when your page is ren-
dered to HTML.

The source for single- value data binding can include the value of a property, member
variable, or return value of a function (as long as the property, member variable, or function
has an accessibility of protected, public, or internal). It can also be any other expression that
can be evaluated at runtime, such as a reference to another control’s property, a calculation
using operators and literal values, and so on. The following data binding expressions are all
valid:

You can place your data binding expressions just about anywhere on the page, but usually
you’ll assign a data binding expression to a property in the control tag. Here’s an example page
that uses several data binding expressions:

CHAPTER 9 DATA BINDING366

As you can see, not only can you bind the Text property of a Label and a TextBox, but
you can also use other properties such as the ImageUrl of an Image, the NavigateUrl property
of a HyperLink, and even the src attribute of a static HTML tag. You can also put the
binding expression elsewhere in the page without binding to any property or attribute. For
example, the previous web page has a binding expression between the and tags.
When it’s processed, the resulting text will be rendered on the page and rendered in bold type.
You can even place the expression outside the <form> section, as long as you don’t try to insert
a server- side control there.

The expressions in this sample page refer to a FilePath property, a GetFilePath() function,
and the Value property of a server- side hidden field that’s declared on the same page. To
complete this page, you need to define these ingredients in script blocks or in the code- behind
class:

In this example, the property and function return only a hard- coded string. However, you
can also add just about any VB .NET code to generate the value for the data binding expression
dynamically.

It’s important to remember that the data binding expression does not directly set the
property to which it’s bound. It simply defines a connection between the control’s property
and some other piece of information. To cause the page to evaluate the expression, run the
appropriate code, and assign the appropriate value, you must call the DataBind() method of
the containing page, as shown here:

 Figure 9-1 shows what you’ll see when you run this page.
You’ll see data binding expressions again when you create templates for more advanced

controls in Chapter 10.

Tip It’s also common to see the command this.DataBind() written Page.DataBind(), or just DataBind(). All
three statements are equivalent. Page.DataBind() works because all control classes (including pages) inherit
the Control.Page property. When you write Page.DataBind(), you’re actually using the Page property of the
current page (which points to itself), and then calling DataBind() on the page object.

CHAPTER 9 DATA BINDING 367

 Figure 9-1. Single- value data binding in various controls

Other Types of Expressions
Data binding expressions are always wrapped in the <%# and %> characters. ASP.NET also
has support for a different type of expression, commonly known as $ expressions because they
incorporate the $ character. Technically, a $ expression is a code sequence that you can add to
an .aspx page and that will be evaluated by an expression builder when the page is rendered.
The expression builder processes the expression and replaces it with a string value in the final
HTML.

ASP.NET includes a built- in expression builder that allows you to extract custom applica-
tion settings and connection string information from the web.config file. For example, if you
want to retrieve an application setting named appName from the <appSettings> portion of the
web.config file, you can use the following expression:

Several differences exist between $ expressions and data binding expressions:

<%$.

-
uate $ expressions. Instead, they’re always evaluated when the page is rendered.

 can’t be inserted anywhere in a page.
Instead, you need to wrap them in a control tag and use the expression result to set
a control property. That means if you just want to show the result of an expression as
ordinary text, you need to wrap it in a Literal control (as shown in the previous exam-
ple). (The Literal control outputs its text to plain, unformatted HTML.)

CHAPTER 9 DATA BINDING368

The first part of a $ expression indicates the name of the expression builder. For example,
the AppSettings:appName expression works because a dedicated AppSettingsExpressionBuilder
is registered to handle all expressions that begin with AppSettings. Similarly, ASP.NET includes
a ResourceExpressionBuilder for inserting resources and a ConnectionStringsExpressionBuilder
that retrieves connection information from the <connectionStrings> section of the web.config
file. Here’s an example that uses the ConnectionStringsExpressionBuilder:

Displaying a connection string isn’t that useful. But this technique becomes much more
useful when you combine it with the SqlDataSource control you’ll examine later in this chapter,
in which case you can use it to quickly supply a connection string from the web.config file:

Technically, $ expressions don’t involve data binding. But they work in a similar way to
data binding expressions and have a similar syntax.

Custom Expression Builders
One of the most innovative features of $ expressions is that you can create your own expression
builders that plug into this framework. This is a specialized technique that, while impressive,
isn’t always practical. As you’ll see, custom $ expressions make the most sense if you’re devel-
oping a feature that you want to use to extend more than one web application.

For example, imagine you want a way to create a custom expression builder that allows
you to insert random numbers. You want to be able to write a tag such as this to show a ran-
dom number between 1 and 6:

Unfortunately, creating a custom expression builder isn’t quite as easy as you probably
expect. The problem is how the code is compiled. When you compile a page that contains an
expression, the expression evaluating the code also needs to be compiled with it. However, you
don’t want the expression to be evaluated at that point—instead, you want the expression to
be reevaluated each time the page is requested. To make this possible, your expression builder
needs to generate a segment of code that performs the appropriate task.

The technology that enables this is CodeDOM (Code Document Object Model)—a model
for dynamically generating code constructs. Every expression builder includes a method named
GetCodeExpression() that uses CodeDOM to generate the code needed for the expression. In
other words, if you want to create a RandomNumberExpressionBuilder, you need to create
a GetCodeExpression() method that uses CodeDOM to generate a segment of code for calculat-
ing random numbers. Clearly, it’s not that straightforward—and for anything but trivial code,
it’s quite lengthy.

All expression builders must derive from the base ExpressionBuilder class (which is found
in the System.Web.Compilation namespace). Here’s how you might declare an expression
builder for random number generation:

CHAPTER 9 DATA BINDING 369

To make the code more concise, you’ll also need to import the following namespaces:

The easiest way to build a simple expression builder is to begin by creating a static method
that performs the task you need. In this case, the static method needs to generate a random
number:

The advantage of this approach is that when you use CodeDOM, you simply generate
the single line of code needed to call the GetRandomNumber() method (rather than the code
needed to generate the random number).

Now, you need to override the GetCodeExpression() method. This is the method that
ASP.NET calls when it finds an expression that’s mapped to your expression builder (while com-
piling the page). At this point, you need to examine the expression, verify no errors are present,
and then generate the code for calculating the expression result. The code that you generate needs
to be represented in a language- independent way, as a System.CodeDom.CodeExpression object
that you construct. This dynamically generated piece of code will be executed every time the page
is requested.

Here’s the first part of the GetCodeExpression() method:

CHAPTER 9 DATA BINDING370

So far, all the operations have been performed in normal code. That’s because the two
numbers are specified as part of the expression. They won’t change each time the page is
requested, and so they don’t need to be evaluated each time the page is requested. However,
the random number should be recalculated each time, so now you need to switch to CodeDOM
and create a dynamic segment of code that performs this task. The basic strategy is to con-
struct a CodeExpression that calls the static GetRandomNumber() method.

First, the code needs to get a reference to the class that contains the GetRandomNumber()
method. In this example, that’s the expression builder class where the code is currently execut-
ing, which makes the process fairly straightforward:

Next, the code defines the parameters that need to be passed to the GetRandomNumber()
method:

With these details in place, the code can now create the CodeExpression that calls
GetRandomNumber(). To do this, it creates an instance of the CodeMethodInvokeExpression
class (which derives from CodeExpression):

Now you can copy this expression builder to the App_Code folder (or compile it separately
and place the DLL assembly in the Bin folder).

Finally, to use this expression builder in a web application, you need to register it in the
web.config file and map it to the prefix you want to use:

CHAPTER 9 DATA BINDING 371

Now you can use expressions such as <%$ RandomNumber:1,6 %> in the markup of a web
form. These expressions will be automatically handled by your custom expression builder, which
generates the code when the page is compiled. However, the code isn’t executed until you
request the page. As a result, you’ll see a new random number (that falls in the desired range)
each time you run the page.

The possibilities for expression builders are intriguing. They enable many extensibility
scenarios, and third- party tools are sure to take advantage of this feature. However, if you
intend to use an expression in a single web application or in a single web page, you’ll find it
easier to just use a data binding expression that calls a custom method in your page. For exam-
ple, you could create a data binding expression like this:

And add a matching public, protected, or internal method in your page, like this:

Just remember to call Page.DataBind() to evaluate your expression.

Repeated-Value Binding
Repeated-value binding allows you to bind an entire list of information to a control. This list
of information is represented by a data object that wraps a collection of items. This could be
a collection of custom objects (for example, in an ordinary ArrayList or Hashtable) or a collec-
tion of rows (for example, with a DataReader or DataSet).

ASP.NET includes several basic list controls that support repeated- value binding:

ListBox, and DropDownList controls

CheckBoxList and RadioButtonList controls, which render each child item with
a separate check box or radio button

, which creates a list of bulleted or numbered points

All these controls display a single- value field of a property from each data item. When per-
forming data binding with one of these controls, you’ll use the properties listed in Table 9-1.

CHAPTER 9 DATA BINDING372

Table 9-1. Data Properties for List Controls

Property Description
DataSource This is a data object that contains a collection of data items to display.

This data object must implement one of the interfaces that ASP.NET
data binding supports, typically ICollection.

DataSourceID Instead of supplying the data object programmatically (using code),
you can link your list control to a data source control by setting this
property. The data source control will generate the required data
 object automatically. You can use either the DataSource property or
the DataSourceID property, but not both.

DataTextField Every data source represents a collection of data items. A list control
can display only a single value from each list item. The DataTextField
indicates the field (in the case of a row) or property (in the case of an
object) of the data item that contains the value to display in the page.

DataTextFormatString This property specifies an optional format string that the control will
use to format each DataTextValue before displaying it. For example,
you can specify that a number should be formatted as a currency value.

DataValueField This property is similar to the DataTextField property, but the value
from the data item isn’t displayed in the page—instead, it’s stored
in the value attribute of the underlying HTML tag. This allows you to
retrieve the value later in your code. The primary use of this field is to
store a unique ID or primary key field so you can use it later to retrieve
more data when the user selects a specific item.

All the list controls are essentially the same. The only differences are the way they render
themselves in HTML and whether or not they support multiple selection.

 Figure 9-2 shows a test page that uses all these list controls (except the BulletedList con-
trol, which doesn’t support selection). In this example, the list controls are bound to the same
data object—a hashtable. When the user clicks the Get Selection button, the page lists the cur-
rently selected items.

When the page loads for the first time, the code creates a data source and assigns it to all
the list controls. In this example, the data object is a Hashtable object, which contains a series
of strings (the values) indexed by name (the keys). Hashtable collections work in the same way
as the ViewState, Session, Application, and Cache collections that you can use to store data.

Here’s the code for creating and binding the hashtable:

CHAPTER 9 DATA BINDING 373

Note Every control that supports repeated- value data binding includes a DataBind() method. You could
call this method to bind a specific control. However, when you call the Page.DataBind() method, the page
object calls DataBind() on every contained control, simplifying your life.

 Figure 9-2. Repeated- value data binding in list controls

Each key- value pair in a hashtable is represented by an instance of the DictionaryStructure
class. The DictionaryStructure class provides two properties: Value (the actual stored item, which
is a string in this example) and Key (the unique name under which this item is indexed). When
you bind a hashtable to a list control, you are actually binding a group of DictionaryStructure
objects.

In this example, the bound controls display the Value property of each item, which con-
tains the text. They also keep track of the Key property for later use. To accomplish this, you
must set the DataTextField and DataValueField properties of the lists as follows:

CHAPTER 9 DATA BINDING374

When the user clicks Get Selection, the page adds the name and values of all the selected
items to the label. Here’s the code that accomplishes this task:

CHAPTER 9 DATA BINDING 375

Binding to a DataReader
The previous example used a hashtable as the data source. Basic collections certainly aren’t
the only kind of data source you can use with list data binding. Instead, you can bind any data
structure that implements the ICollection interface or one of its derivatives. The following list
summarizes many of these data classes:

Dictionary

 read- only access to the database

object

For example, imagine you want to fill a list box with the full names of all the employees
contained in the Employees table of the Northwind database. Figure 9-3 shows the result you
want to produce.

 Figure 9-3. Data binding with a DataReader

The information in this example includes each person’s title of courtesy, first name, and
last name, which are stored in three separate fields. Unfortunately, the DataTextField property
expects the name of only a single field. You cannot use data binding to concatenate these three
pieces of data and create a value for the DataTextField. However, you can solve this issue with
an easy but powerful trick—using a calculated column. You simply need to modify the SELECT

CHAPTER 9 DATA BINDING376

query so that it creates a calculated column that consists of the information in the three fields.
You can then use this column for the DataTextField. The SQL command that you need to
accomplish this is as follows:

The data- bound list box is declared on the page as follows:

When the page loads, it retrieves the records from the database and binds them to the list
control. This example uses a DataReader as the data source, as shown here:

The previous code sample creates a connection to the database, creates the command
that will select the data, opens the connection, and executes the command that returns the
DataReader. The returned DataReader is bound to the list box, and finally the DataReader and
the connection are both closed. Note that the DataBind() method of the page or the control
must be called before the connection is closed. It’s not until you call this method that the
actual data is extracted.

CHAPTER 9 DATA BINDING 377

The last piece of this example is the code for determining the selected items. As in the
previous example, this code is quite straightforward:

If you want to use a DropDownList, a CheckListBox, or a RadioButtonList instead of a ListBox,
you need to change only the control declaration. The rest of the code that sets up the data
binding remains the same.

The Rich Data Controls
In addition to the simple list controls, ASP.NET includes some rich data controls that sup-
port repeated- value binding. The rich data controls are quite a bit different from the simple
list controls—for one thing, they are designed exclusively for data binding. They also have the
ability to display several properties or fields from each data item, often in a table- based layout
or according to a template you’ve defined; they support higher- level features such as editing;
and they provide several events that allow you to plug into the control’s inner workings at vari-
ous points.

The rich data controls include the following:

GridView: The GridView is an all- purpose grid control for showing large tables of informa-
tion. It supports selecting, editing, sorting, and paging. The GridView is the heavyweight
of ASP.NET data controls. It’s also the successor to the ASP.NET 1.x DataGrid.

DetailsView: The DetailsView is ideal for showing a single record at a time, in a table that
has one row per field. The DetailsView supports editing and optional paging controls that
allow you to browse through a sequence of records.

FormView: Like the DetailsView, the FormView shows a single record at a time, supports
editing, and provides paging controls for moving through a series of records. The differ-
ence is that the FormView is based on templates, which allow you to combine fields in
a much more flexible layout that doesn’t need to be based on a table.

Note In addition to the controls in this list, some of ASP.NET’s more specialized controls support data
binding. These include the Menu and TreeView controls (see Chapter 17) and the AdRotator control (Chapter 4).

You’ll explore the rich data controls in detail in Chapter 10. However, it’s worth taking
a look at a quick example now with the GridView, because you’ll use it to work through a vari-
ety of examples in this chapter.

CHAPTER 9 DATA BINDING378

Like the list controls, the GridView provides a DataSource property for the data object
and a DataBind() method that triggers it to read the data object and display each record. How-
ever, you don’t need to use properties such as DataTextField and DataValueField, because
the GridView automatically generates a column for every property (if you’re binding to a cus-
tom object) or every field (if you’re binding to a row). Here’s all you need to get this basic
representation:

Note Technically, you don’t even need to set the AutoGenerateColumns property, because true is the
default value.

Now, define a query that selects several fields from the Employees table:

You can bind the GridView to a DataReader in the same way you bound the list control in
the previous example. Only the name of the control changes:

 Figure 9-4 shows the GridView this code creates.

 Figure 9-4. The bare- bones GridView

Of course, you can do a lot more to configure the appearance of the GridView. If you
declare the columns explicitly (rather than relying on AutoGenerateColumns), you can
 fine- tune column order and formatting. You can also use advanced features such as sorting,

CHAPTER 9 DATA BINDING 379

paging, and editing. You’ll learn about these features throughout this chapter and in the next
chapter. You can also give your GridView a quick face- lift by choosing Auto Format from the
GridView’s smart tag.

Binding to a DataView
You will encounter a few limitations when you bind directly to a DataReader. Because the
DataReader is a forward- only cursor, you can’t bind your data to multiple controls. You also
won’t have the ability to apply custom sorting and filtering criteria on the fly. Finally, unless
you take care to code your page using generic interfaces such as IDataReader, you lock your
code into the data provider you’re currently using, making it more difficult to modify or adapt
your code in the future. To solve these problems, you can use the disconnected ADO.NET data
objects.

If you fill a disconnected DataSet, you can bind it to one or more controls, and you can
tailor the sorting and filtering criteria. The DataSet is also completely generic—no matter
which data provider you use to fill your DataSet, the DataSet itself (and the data binding code)
looks the same.

Technically, you never bind directly to a DataSet or DataTable object. Instead, you bind
to a DataView object. A DataView represents a view of the data in a specific DataTable. That
means the following:

is equivalent to this:

It’s important to note that every DataTable includes a default DataView object that’s
provided through the DataTable.DefaultView property. This sleight of hand allows you bind
directly to the DataTable. If you do, ASP.NET actually uses the default DataView automatically.
The default DataView doesn’t apply any sort order and doesn’t filter out any rows. If you want
to tweak these settings, you can either configure the default DataView or create your own and
explicitly bind it. You can then use all the sorting and filtering techniques explained in Chapter 8.

Data Source Controls
In Chapter 7 and Chapter 8, you saw how you can directly connect to a database, execute
a query, loop through the records in the result set, and display them on a page. In this chapter,
you’ve already seen that you have a simpler option; with data binding, you can write your data
access logic and then show the results in the page with no looping or control manipulation
required. Now, it’s time to introduce another convenience—data source controls. With data
source controls, you can avoid writing any data access code.

CHAPTER 9 DATA BINDING380

Note As you’ll soon see, there’s often a gap between what you can do and what you should do. In most
professional, large- scale applications, you’ll still need to write and fine- tune your data access code for opti-
mum performance, data aggregation, error handling, logging, and so on. Even if you do, you can still use the
data source controls—just don’t expect to escape without writing any code!

The data source controls include any control that implements the IDataSource interface.
The .NET Framework includes the following data source controls:

SqlDataSource: This data source allows you to connect to any data source that has an
ADO.NET data provider. This includes SQL Server, Oracle, and the OLE DB or ODBC data
sources, as discussed in Chapter 7. When using this data source, you don’t need to write
the data access code.

ObjectDataSource: This data source allows you to connect to a custom data access class,
such as the one you saw in Chapter 8. This is the preferred approach for large- scale pro-
fessional web applications.

AccessDataSource: This data source allows you to read and write the data in an Access
database file (.mdb). Access databases do not have a dedicated server engine (like SQL
Server) that coordinates the actions of multiple people and ensures that data won’t be lost
or corrupted. For that reason, Access databases are best suited for very small websites,
where few people need to manipulate data at the same time. A much better small- scale
data solution is using the free SQL Server Express with the SqlDataSource control.

XmlDataSource: This data source allows you to connect to an XML file. You’ll learn more
in Chapter 14.

SiteMapDataSource: This data source allows you to connect to the Web.sitemap file that
describes the navigational structure of your website. You’ll learn more in Chapter 17.

You can find all the data source controls in the Data tab of the Toolbox in Visual Studio.
When you drop a data source control onto your web page, it shows up as a gray box in

Visual Studio. However, this box won’t appear when you run your web application and request
the page.

The Page Life Cycle with Data Binding
Data source controls can perform two key tasks:

In order to understand how data controls work, you need to know how they fit into the
page life cycle. This understanding is important when you run into situations where you need
to work with or extend the data binding model. For example, you might want to add data or set
a selected item in a control after it has been bound to the data source. Depending on the sce-
nario, you might be able to respond to data source control events, but they aren’t always fired
at the point you need to perform your logic.

CHAPTER 9 DATA BINDING 381

Essentially, data binding tasks take place in this order:

 1. The page object is created (based on the .aspx file).

 2. The page life cycle begins, and the Page.Init and Page.Load events fire.

 3. All other control events fire.

 4. The data source controls perform any updates. If a row is being updated, the Updat-
ing and Updated events fire. If a row is being inserted, the Inserting and Inserted
events fire. If a row is being deleted, the Deleting and Deleted events fire.

 5. The Page.PreRender event fires.

 6. The data source controls perform any queries and insert the retrieved data in the
linked controls. The Selecting and Selected events fire at this point.

 7. The page is rendered and disposed.

It’s important to realize that this process is repeated for each request. That means the
data source controls query the database every time the page is posted back. If this sounds like
unnecessary work for your database—well, it is. The best solution is to use caching so that
the data you retrieve is kept in memory and reused, bypassing the database on subsequent
requests. You’ll master this technique in Chapter 11.

In the rest of this chapter, you’ll look in detail at the SqlDataSource and the ObjectDataSource
and see how you can use both to enable a variety of data binding scenarios with the rich
GridView control.

Tip Even if you plan to use the ObjectDataSource for binding your pages, you should begin by reading
“The SqlDataSource” section, which will explain many of the basics about data source controls, including
parameters, key fields, and two- way data binding.

The SqlDataSource
Data source controls turn up in the .aspx markup portion of your web page like ordinary con-
trols. Here’s an example:

The SqlDataSource represents a database connection that uses an ADO.NET provider.
However, this has a catch. The SqlDataSource needs a generic way to create the Connection,
Command, and DataReader objects it requires. The only way this is possible is if your data
provider includes a data provider factory, as discussed in Chapter 7. The factory has the
responsibility of creating the provider- specific objects that the SqlDataSource needs in order
to access the data source.

CHAPTER 9 DATA BINDING382

As you know, .NET ships with these four provider factories:

These are registered in the machine.config file, and as a result you can use any of them
with the SqlDataSource. You choose a data source by setting the provider name. Here’s
a SqlDataSource that connects to a SQL Server database:

The next step is to supply the required connection string—without it, you cannot make any
connections. Although you can hard- code the connection string directly in the SqlDataSource
tag, you should always place it in the <connectionStrings> section of the web.config file to
guarantee greater flexibility and ensure you won’t inadvertently change the connection string,
which minimizes the effectiveness of connection pooling.

For example, if you create this connection string:

you would specify it in the SqlDataSource using a $ expression like this:

Once you’ve specified the provider name and connection string, the next step is to add the
query logic that the SqlDataSource will use when it connects to the database.

Selecting Records
You can use each SqlDataSource control you create to retrieve a single query. Optionally, you
can also add corresponding commands for deleting, inserting, and updating rows. For exam-
ple, one SqlDataSource is enough to query and update the Customers table in the Northwind
database. However, if you need to independently retrieve or update Customers and Orders
information, you’ll need two SqlDataSource controls.

The SqlDataSource command logic is supplied through four properties: SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand, each of which takes a string. The
string you supply can be inline SQL (in which case the corresponding SelectCommandType,
InsertCommandType, UpdateCommandType, or DeleteCommandType property should
be Text, the default) or the name of a stored procedure (in which case the command type is
StoredProcedure). You need to define commands only for the types of actions you want to

CHAPTER 9 DATA BINDING 383

perform. In other words, if you’re using a data source for read- only access to a set of records,
you need to define only the SelectCommand property.

Note If you configure a command in the Properties window, you’ll see a property named SelectQuery
instead of SelectCommand. The SelectQuery is actually a virtual property that’s displayed as a design- time
convenience. When you edit the SelectQuery (by clicking the ellipsis next to the property name), you can
use a special designer to write the command text (the SelectCommand) and add command parameters (the
SelectParameters).

Here’s a complete SqlDataSource that defines a SELECT command for retrieving records
from the Employees table:

Tip You can write the data source logic by hand or by using a design- time wizard that lets you create
a connection and then create the command logic in a graphical query builder. To launch this tool, select the
data source control, and choose Configure Data Source from the smart tag.

Once you’ve created the data source, you can reap the benefits—namely, the ability to
bind your controls at design time, rather than writing logic in the event handler for the Page.
Load event. Here’s how it works:

 1. Select the data source control, and click Refresh Schema in the smart tag. This step
triggers the data source control to connect to the database and retrieve the column
information for your query.

 2. Add a ListBox to your form. Set the ListBox.DataSourceID property to the data source
control. You can choose it from a drop- down list that shows all the data sources on the
form (see Figure 9-5).

 3. Set the ListBox.DataTextField to the column you want to display (in this case, choose
EmployeeID). The list of fields should also be provided in a drop- down list (see
 Figure 9-5). If you didn’t perform the first step (clicking Refresh Schema), you’d be
forced to type the field names in by hand.

 4. You can use the same steps to bind a rich data control. Add a GridView to your page,
and set the GridView.DataSourceID property to the same data source. You don’t need
to set any field information, because the GridView can display multiple fields. You’ll
see the column headings from your query appear on the design surface of your page
immediately.

CHAPTER 9 DATA BINDING384

 5. Run your page. Don’t worry about executing the command or calling DataBind() on the
page—ASP.NET performs both of those tasks automatically. You’ll see a data- bound
page like the one in Figure 9-6.

 Figure 9-5. Binding a list control to a data source field

 Figure 9-6. A simple data- bound page with no code

CHAPTER 9 DATA BINDING 385

Clearly, the great advantage of the data source controls is that they allow you to config-
ure data binding at design time, without writing tedious code. Even better, the results of your
selections appear (to a limited degree) in the Visual Studio designer so you can get a better
idea of what your form will look like.

Data Binding “Under the Hood”
As you learned earlier in this chapter, you can bind to a DataReader or a DataView. So, it’s
worth asking, which approach does the SqlDataSource control use? It’s actually in your
control, based on whether you set the DataSourceMode to SqlDataSourceMode.DataSet
(the default) or to SqlDataSourceMode.DataReader. The DataSet mode is almost always
better, because it supports advanced sorting, filtering, and caching settings that depend
on the DataSet. All these features are disabled in the DataReader mode. However, you can
use the DataReader mode with extremely large grids, as it’s more memory- efficient. That’s
because the DataReader holds only one record in memory at a time—just long enough to
copy the record’s information to the linked control. Both modes support binding to mul-
tiple controls. To understand why this is possible, you need to take a closer look at how the
selection is performed.

If you profile your database, you’ll discover that by binding two controls to the same
data source, you cause the query to be executed twice. On the other hand, if you bind the
page manually, you have the ability to bind the same object to two different controls, which
means you need to execute the query only once. Clearly, the SqlDataSource imposes a bit
of unnecessary extra overhead here, but if you’re aware of it you can design accordingly.
First, you should consider caching, which the SqlDataSource supports natively through the
EnableCaching, CacheExpirationPolicy, and CacheDuration properties (see Chapter 11 for
a full discussion). Second, realize that most of the time you won’t be binding more than one
control to a data source. That’s because the rich data controls—the GridView, DetailsView,
and FormView—have the ability to present multiple pieces of data in a flexible layout. If you
use these controls, you’ll need to bind only one control, which allows you to avoid this limi-
tation altogether.

It’s also important to note that data binding is performed at the end of your web- page
processing, just before the page is rendered. That means the Page.Load event will fire, fol-
lowed by any control events, followed by the Page.PreRender event, and only then will the
data binding take place. The data binding is performed on every postback (unless you redirect
to another page). If you need to write code that springs into action after the data binding is
complete, you can override the Page.OnPreRenderComplete() method. This method is called
immediately after the PreRender stage but just before the view state is serialized and the actual
HTML is rendered.

Parameterized Commands
In the previous example, the complete query was hard- coded. Often, you won’t have this
flexibility. Instead, you’ll want to retrieve a subset of data, such as all the products in a given
category or all the employees in a specific city.

The following example creates a master- details form using parameters. To create this
example, you need two data sources. The first data source provides a list of cities (where vari-
ous employees live). Here’s the definition for this SqlDataSource:

CHAPTER 9 DATA BINDING386

This data source fills a drop- down list with city values:

The list control has automatic postback enabled, which ensures that the page is posted
back every time the list selection is changed, giving your page the chance to update the list of
employees based on the current city selection. The other option is to create a dedicated button
(such as Select) next to the list control for initiating the postback.

When you select a city, the second data source retrieves all the employees in that city.
Here’s the definition for the second data source:

The trick here is the query is written using a parameter. Parameters are always indicated
with an @ symbol, as in @City. You can define as many symbols as you want, but you must
map each parameter to a value. In this example, the value for the @City parameter is taken
from the lstCities.SelectedValue property. However, you could just as easily modify the
ControlParameter tag to bind to another property or control.

Here’s the minimum required markup for the GridView that shows the employee list
(without the formatting details):

Note If you look at the downloadable examples for this chapter, you’ll find that the GridView markup is
a fair bit more complex than what’s shown here. That’s because the GridView markup in these examples
uses properties and styles to apply more attractive formatting. The markup also explicitly defines each
column in the grid. You’ll learn how to use these features when you take a closer look at the GridView in
Chapter 10. For now, you’ll focus on the plumbing of the ASP.NET data binding model and the data source
controls.

CHAPTER 9 DATA BINDING 387

Now when you run the page, you can view the employees in a specific city (see Figure 9-7).

 Figure 9-7. Selecting records based on control selection

It’s important to understand the benefits and limitations of this example. First, when
you create a parameterized command in a SqlDataSource tag, the parameters are properly
encoded and SQL injection attacks aren’t a problem (as discussed in Chapter 7). Second, all
the data- bound controls you create rebind themselves after every postback. This means that
when you select a city, the page will be posted back and both queries will be executed. This is
probably extra database work you don’t require, assuming the list of cities does not change
frequently. Once again, this is a good place to consider caching (see Chapter 11 for details).

Stored Procedures
You can adapt this example to work with a stored procedure just as easily. For example, if you
have the following stored procedure in your database:

you can change the sourceEmployees data source, as shown here:

CHAPTER 9 DATA BINDING388

Not only does this give you all the benefit of stored procedures, but it also streamlines the
.aspx portion of your page by removing the actual SQL query, which can be quite lengthy in
a real- world page.

More Parameter Types
Parameter values aren’t necessarily drawn from other controls. You can map a parameter to
any of the parameter types defined in Table 9-2.

Table 9-2. Parameter Types

Source Control Tag Description
Control property <asp:ControlParameter> A property from another control on

the page.

Query string value <asp:QueryStringParameter> A value from the current query
string.

Session state value <asp:SessionParameter> A value stored in the current user’s
session.

Cookie value <asp:CookieParameter> A value from any cookie attached to
the current request.

Profile value <asp:ProfileParameter> A value from the current user’s
profile (see Chapter 24).

A form variable <asp:FormParameter> A value posted to the page from an
input control. Usually, you’ll use
a control property instead, but you
might need to grab a value straight
from the Forms collection if you’ve
disabled view state for the corre-
sponding control.

Set programmatically <asp:Parameter> The base class from which all other
parameters inherit. It’s never set
automatically, so it makes sense
when you’re using code to set
a parameter value by hand.

You don’t need to remember the different tag names, as Visual Studio provides a handy
editor that lets you create your command and define your parameters (see Figure 9-8). To see
this dialog box, click the ellipsis (...) next to the SelectQuery property in the Properties window.
When you type a command that uses one or more parameters, click the Refresh Parameters
button, and the list of parameters will appear. You can then choose the mapping for each
parameter by making a choice in the Parameter Source box.

CHAPTER 9 DATA BINDING 389

 Figure 9-8. Configuring parameter binding at design time

For example, you could split the earlier example into two pages. In the first page, define
a list control that shows all the available cities:

Now, you’ll need a little extra code to copy the selected city to the query string and redi-
rect the page. Here’s a button that does just that:

Finally, the second page can bind the GridView according to the city value that’s supplied
in the query string:

CHAPTER 9 DATA BINDING390

Once again, the GridView markup is exceedingly straightforward:

Sometimes you’ll need to set a parameter with a value that isn’t represented by any of the
parameter classes in Table 9-2. Or, you might want to modify a parameter value before using
it. In both of these scenarios, you need to use code to set the parameter value just before the
database operation takes place.

The SqlDataSource has a number of events that are designed for this purpose. For
example, you can fill in parameters for a select operation by reacting to the Selecting event.
Similarly, you can use the Updating, Deleting, and Inserting events when updating, deleting,
or inserting a record. In these event handlers, you can access the command that’s about to be
executed through the SqlDataSourceSelectingEventArgs.Command property, and modify its
parameter values by hand. Here’s an example:

Note that when you look up a parameter in the Parameters collection, you need to add the
@ character at the beginning of the parameter name.

Handling Errors
When you deal with an outside resource such as a database, you need to protect your code
with a basic amount of error- handling logic. Even if you’ve avoided every possible coding mis-
take, you still need to defend against factors outside your control—for example, if the database
server isn’t running or the network connection is broken.

You can count on the SqlDataSource to properly release any resources (such as connec-
tions) if an error occurs. However, the underlying exception won’t be handled. Instead, it will
bubble up to the page and derail your processing. As with any other unhandled exception,
the user will receive a cryptic error message or an error page. This design is unavoidable—if the
SqlDataSource suppressed exceptions, it could hide potential problems and make debugging
extremely difficult. However, it’s a good idea to handle the problem in your web page and show
a more suitable error message.

To do this, you need to handle the data source event that occurs immediately after the
error. If you’re performing a query, that’s the Selected event. If you’re performing an update,
delete, or insert operation, you would handle the Updated, Deleted, or Inserted events instead.
(If you don’t want to offer customized error messages, you could handle all these events with
the same event handler.)

In the event handler, you can access the exception object through the
SqlDataSourceStatusEventArgs.Exception property. If you want to prevent the error from
spreading any further, simply set the SqlDataSourceStatusEventArgs.ExceptionHandled

CHAPTER 9 DATA BINDING 391

property to true. Then, make sure you show an appropriate error message on your web page to
inform the user that the command was not completed.

Here’s an example:

Updating Records
Selecting data is only half of the equation. The SqlDataSource can also apply changes. The
only catch is that not all controls support updating. For example, the humble ListBox doesn’t
provide any way for the user to edit values, delete existing items, or insert new ones. Fortunately,
ASP.NET’s rich data controls—including the GridView, DetailsView, and FormView—all have
editing features that you can switch on.

The first step is to define suitable commands for the operations you want to perform, such
as inserting (InsertCommand), deleting (DeleteCommand), and updating (UpdateCommand).
If you know that you will allow the user to perform only certain operations (such as updates)
but not others (such as insertions and deletions), you can safely omit the commands you don’t
need.

You define the InsertCommand, DeleteCommand, and UpdateCommand in the same way
you define the command for the SelectCommand property—by using a parameterized query
or stored procedure call. For example, here’s a SqlDataSource that defines a basic update com-
mand that updates every field:

In this example, the parameter names aren’t chosen arbitrarily. As long as you give each
parameter the same name as the field it affects and preface it with the @ symbol (so FirstName
becomes @FirstName), you don’t need to define the parameter. That’s because the ASP.NET
data controls automatically submit a collection of parameters with the new values before trig-
gering the update. Each parameter in the collection uses this naming convention.

To try this, create a page with the SqlDataSource shown previously and a linked GridView
control. To enable editing, set the GridView.AutoGenerateEditButton property to true. A new

CHAPTER 9 DATA BINDING392

column appears at the left side of the grid. The GridView uses this column to show links for
controlling the editing process.

When you run the page and the GridView is bound and displayed, the edit column shows
a link named Edit next to every record. When clicked, this link switches the corresponding row
into edit mode. All fields are changed to text boxes (with the exception of read- only fields), and
the Edit link is replaced with an Update link and a Cancel link (see Figure 9-9).

The Cancel link returns the row to its initial state. The Update link passes the values to
the SqlDataSource.UpdateParameters collection (using the field names) and then triggers the
SqlDataSource.Update() method to apply the change to the database. Once again, you don’t
have to write any code.

Note The GridView is an extremely flexible control. Templates, one of its many features, allow you to
define the controls and markup used when editing a record. This is handy if you want to enable editing
through drop- down lists, add validation controls, or just fine- tune the appearance of a row in edit mode.
You’ll consider the GridView’s support for templates in Chapter 10.

 Figure 9-9. Editing with the GridView

Strict Concurrency Checking
The update command in the previous example matches the record based on its ID. The prob-
lem with this approach is that the update command updates every field indiscriminately—it
has no way to distinguish between fields that are and aren’t changed. As a result, you can end
up obliterating the changes of another user, if they are made between the time the page is
requested and the time the page is updated.

For example, imagine Chen and Lucy are viewing the same table of employee records.
Lucy commits a change to the address of an employee. A few seconds later, Chen commits
a name change to the same employee record. However, that update command not only applies

CHAPTER 9 DATA BINDING 393

the new name, but it also overwrites every field with the values in Chen’s page—effectively
replacing the address Lucy entered with the old address.

To defend against this sort of problem, you can enforce stricter concurrency checking.
One way to do this is to create a command that performs the update only if every field matches,
using a more stringent WHERE clause. Here’s what that command would look like:

There’s an important change in this command. The WHERE clause doesn’t attempt to
match the parameters named @FirstName, @LastName, and so on, because these param-
eters reflect the current values (which may not match the original values). Instead, it uses the
parameter named @original_FirstName, @original_LastName, and so on. This raises an obvi-
ous question—where do these parameter values come from? In order to get access to these
original values, you need to take first steps.

First, you need to tell the SqlDataSource that you need access to the original values by
setting the SqlDataSource.ConflictDetection property to ConflictOptions.CompareAllValues
instead of ConflictOptions.OverwriteChanges (the default).

The second step is to tell the SqlDataSource how to name the parameters that hold the
original values. By default, the original values are given the same parameter names as the
changed values. In fact, they overwrite the original parameter values. To prevent this behavior,
you need to set the SqlDataSource.OldValuesParameterFormatString property. This property
takes a string that has a {0} placeholder, where {0} indicates the original parameter name. For
example, if you set OldValuesParameterFormatString to original_{0} (which is a common
convention), the parameters that have the original values are given the prefix original_. For
example, @FirstName becomes @original_FirstName and @LastName becomes @original_
LastName, as in the update command shown previously.

Now that you understand these details, you can create a fully configured SqlDataSource
that implements this technique:

At the end of Chapter 10 you’ll see an example that shows how you can implement a more
sophisticated concurrency handling strategy that warns you when a change will conflict, and
gives you the option of applying it or canceling it.

CHAPTER 9 DATA BINDING394

Tip Commands that compare values are often inefficient, because they require more data to be sent over
the network and mean more comparison work for the database. A better solution is to use a timestamp field
(which you can hide in your bound data control). If the row is unchanged, the timestamp will always match.

Incidentally, there’s one other way to gain access to original values—by setting the
DataKeyNames property of the bound control. For example, if you set GridView.DataKeyNames to
EmployeeID, you’ll have access to both the current and original value for EmployeeID (although
you’ll still need to use the OldValuesParameterFormatString if you want to distinguish between
them). However, the DataKeyNames property is really meant to indicate the fields that compose the
primary key, and it’s used to gain access to other features in the bound data control, such as selec-
tion. If you want to keep track of old values for the purpose of concurrency checking, you should
always use the SqlDataSource.ConflictDetection property. You’ll see the DataKeyNames property
in action in Chapter 10.

Updating with Stored Procedures
The update example works just as readily with stored procedures. In this case, you simply sup-
ply the stored procedure name for the UpdateCommand:

However, this has a catch. As you’ve learned, the parameter names are based on the field
names. If the stored procedure uses the same parameter names, the update works without
a hitch. However, if the stored procedure parameter names are slightly different, the update
will fail.

Tip The order of parameters is irrelevant. Only the names are important. The SqlDataSource does
a case- insensitive comparison, so your parameters can have different capitalization.

For example, consider an UpdateEmployee stored procedure that takes parameters like this:

In this example, the FirstName and LastName fields map to parameters named @First
and @Last. Unfortunately, there’s no declarative way to correct this problem and map these
parameters to their correct names. Instead, you need to define the new parameters and write
a little custom code.

CHAPTER 9 DATA BINDING 395

The first step is to add two parameters to the SqlDataSource.UpdateParameters collec-
tion. Unfortunately, you can’t create these while the update is in progress. Instead, you need
to add them to the SqlDataSource tag:

Note that the parameter names don’t include the @ symbol when you define them in the
SqlDataSource tag.

The next step is to react to the SqlDataSource.Updating event, which fires immediately
before the update is committed. You can then set the value for the @First and @Last param-
eters and remove the @FirstName and @LastName parameters from sight. Here’s the code you
need:

This represents a fairly typical scenario in which the no- code data binding won’t work.
Overall, if you can design your stored procedures and classes to work with the data source
controls, you’ll avoid writing a great deal of code. On the other hand, if you introduce the data
source controls to an existing application with a fixed database schema and database compo-
nents, it may take a fair bit of extra code to fit these pieces together.

Deleting Records
Deleting a record is similar to updating it. You begin by creating a DeleteCommand that
removes the record you want to delete. You can match the record using its primary key, or you
can use the match-all- values approach described previously (in which case you must set the
SqlDataSource.ConflictDetection property to ConflictOptions.CompareAllValues).

CHAPTER 9 DATA BINDING396

You also need to make minor adjustments to the GridView. First, set the GridView.Auto-
GenerateDeleteButton property to true to add a column that shows a link named Delete next
to each record. (Alternatively, you can explicitly add a CommandField column to the GridView
and set its ShowDeleteButton property to true, which accomplishes the same thing. You’ll
learn how to explicitly define GridView columns in Chapter 10.)

If you’re using the standard ConflictDetection (ConflictOptions.OverwriteChanges), you
also need to set the GridView.DataKeyNames with a comma- separated list of the field names
that make up the primary key. If you don’t remember to take this step, the GridView will not
pass these parameters to the SqlDataSource, and the SqlDataSource won’t be able to find the
record it needs to delete.

Here’s the minimum markup required to create a GridView that uses this SqlDataSource
to allow record deletion:

Inserting Records
The GridView supports editing and deleting records, but it doesn’t support insertion. How-
ever, the DetailsView and FormView do support insertion. The basic process is the same. Make
sure you’ve defined the InsertCommand, as shown here:

You don’t need to worry about the ConflictDetection and OldValuesParameterFormatString
properties, because they have no effect when inserting records.

Next, you can configure the bound data control to support insertion. With the DetailsView,
you simply need to set AutoGenerateInsertButton to true, as shown here:

Alternatively, you can add a CommandField to the DetailsView and set its ShowInsertButton
to true. You can also define the fields in the DetailsView explicitly, which gives you the oppor-
tunity to set InsertVisible to false to hide fields that don’t apply to insertion operations (like
automatically generated identity values or timestamps). You’ll also learn much more about the
DetailsView in Chapter 10.

CHAPTER 9 DATA BINDING 397

Additionally, you can set the DefaultMode property to Insert to start your DetailsView in
insert mode, which is useful if you’re combining a GridView and a DetailsView on one page,
and using the GridView to show the current list of records and the DetailsView to allow the
user to add new records. You’ll see a page that uses this technique with the ObjectDataSource,
shown later in Figure 9-12.

Tip When performing record insertions, it’s a good idea to handle the SqlDataSource.Inserted event and
check for errors by examining the SqlDataSourceStatusEventArgs.Exception property. Potential errors include
inserting data that violates a database constraint or failing to supply a value for a required field.

Disadvantages of the SqlDataSource
As you’ve seen, when you use the SqlDataSource, you can often avoid writing any data
access code. However, you also sacrifice a fair bit of flexibility. Here are the most significant
disadvantages:

Data access logic embedded in the page: To create a SqlDataSource control, you need
to hard- code the SQL statements in your web page. This means you can’t fine- tune your
query without modifying your web page. In an enterprise application, this limitation
isn’t acceptable, as it’s common to revise the queries after the application is deployed in
response to profiling, indexes, and expected loads.

Tip You can improve this situation a fair bit by restricting your use of the SqlDataSource to stored
procedures. However, in a large- scale web application, the data access code will be maintained, tested,
and refined separately from the business logic (and it may even be coded by different developers). The
SqlDataSource just doesn’t give you that level of flexibility.

Maintenance in large applications: Every page that accesses the database needs its own
set of SqlDataSource controls. This can turn into a maintenance nightmare, particularly if
you have several pages using the same query (each of which requires a duplicate instance
of the SqlDataSource). In a component- based application, you’ll use a higher- level model.
The web pages will communicate with a data access library, which will contain all the
database details.

Lack of flexibility: Every data access task requires a separate SqlDataSource. If you want
to provide a user with multiple ways to view or query data, this can swamp your page with
data source objects, one for each command variant. This can get complicated—fast.

CHAPTER 9 DATA BINDING398

Inapplicability to other data tasks: The SqlDataSource doesn’t properly represent some
types of tasks. The SqlDataSource is intended for data display and data editing scenarios.
However, this model breaks down if you need to connect to the database and perform
another task, such as placing a shipment request into an order pipeline or logging an
event. In these situations, you’ll need custom database code. It will simplify your applica-
tion if you have a single database library that encapsulates these tasks along with data
retrieval and updating operations.

Note In fact, in a well- abstracted three- tier application, your web page may call a method such as
Business.PlaceOrder() without worrying about whether this operation involves saving an order record in
a database, sending a message to a message queue, communicating with a remote component, or using
a combination of all these tasks.

To get around these limitations, you should consider the ObjectDataSource. The
ObjectDataSource allows you to bind your page to a custom data access component. Best of
all, you get almost all the same frills, such as design- time data binding and no need to write
code in your web page.

The ObjectDataSource
The ObjectDataSource allows you to create a declarative link between your web- page controls
and a data access component that queries and updates data. The ObjectDataSource is remark-
ably flexible and can work with a variety of different components. However, to use it, your data
access class must conform to a few rules:

for selecting and updating your data, you’ll need to wrap them in another higher- level
class.)

array, a DataSet, a DataTable, a DataView, or a list object that implements IEnumer-
able. Each record should be a custom object that exposes all its data through public
properties.

the class must have a default, no- argument constructor so that the ObjectDataSource
can create an instance when needed.

when needed and destroy it at the end of every request, if you’re using instance meth-
ods. (And if you’re using static methods, your class should always be stateless, just to
avoid problems if more than one ASP.NET thread is using the same methods at the
same time.)

CHAPTER 9 DATA BINDING 399

You can work around many of these rules by handling ObjectDataSource events and writ-
ing custom code. However, if you want your data access class to plug into the data- binding
model seamlessly without extra work, you should observe these guidelines.

Selecting Records
For example, consider the data- bound page in Figure 9-8. You can create the same page using
the custom data access component developed in Chapter 8. You can refer to Chapter 8 to see
the full code, which has the following structure:

The first step to use this class in your page is to define the ObjectDataSource and indicate the
name of the class that contains the data access methods. You do this by specifying the fully
qualified class name with the TypeName property:

Note For this to work, the DatabaseComponent.EmployeeDB class must exist in the App_Code folder or
be compiled in an assembly in the Bin folder.

CHAPTER 9 DATA BINDING400

Once you’ve attached the ObjectDataSource to a class, the next step is to point it to the
methods it can use to select and update records.

The ObjectDataSource defines SelectMethod, DeleteMethod, UpdateMethod, and
InsertMethod properties that you use to link your data access class to various tasks. Each
property takes the name of the method in the data access class. In this example, you simply
need to enable querying, so you need to set the SelectMethod property:

Remember, the GetEmployees() method returns a collection of EmployeeDetails objects.
These objects fit the criteria of the ObjectDataSource—they provide all the appropriate record
data through public properties.

Once you’ve set up the ObjectDataSource, you can bind your web- page controls in the same
way you do with the SqlDataSource. You can even use the same drop- down lists in the Proper-
ties window, provided you click the Refresh Schema link in the ObjectDataSource smart tag first.
When you click Refresh Schema, Visual Studio retrieves the property names and data types by
reflecting on the EmployeeDetails class.

Here’s the complete page code, without the formatting details for the GridView:

 Figure 9-10 shows the result.

 Figure 9-10. Binding to a data access class

CHAPTER 9 DATA BINDING 401

From the user’s perspective, this example is equivalent to the SqlDataSource page shown
in Figure 9-8. The only difference is that by default, the columns are shown in the order that
the properties are declared in the EmployeeDetails class, whereas the SqlDataSource shows
them in the order they’re listed in the query. You can easily change the ordering of columns by
customizing the GridView.

The apparent similarities conceal some real behind-the- scenes differences. In this exam-
ple, the web page doesn’t require any hard- coded SQL details. Instead, all the work is handed
off to the EmployeeDB class. When you run the page, the ListBox and GridView will request
data from the ObjectDataSource, which will call the EmployeeDB.GetEmployees() method to
retrieve the data (once for each control). This data is then bound and displayed in both con-
trols, with no code required.

Note Remember, the EmployeeDB class uses error- handling blocks to make sure connections are prop-
erly closed, but it doesn’t catch exceptions. (Best design practices are to let the exception notify the web
page, which can then decide how best to inform the user.) You can handle errors with the ObjectDataSource
in the same way you handle them with the SqlDataSource—first, handle the Selected, Inserted, Updated, or
Deleted event; second, check for an exception; and third, mark it as handled. For more information, see the
“Handling Errors” section earlier in the chapter.

Using a Parameterized Constructor
A key part of extending the data source controls takes place through event handling. For
example, by default the ObjectDataSource is able to create your custom data access class only
if it provides a zero no- argument constructor. However, you can extend the ObjectDataSource
to work with data access classes that don’t meet this requirement by writing code that reacts to
the ObjectDataSource.ObjectCreating event.

The current EmployeesDB class retrieves the database connection string directly from the
web.config file, as shown here:

However, you might want to add another constructor that lets the web page supply a specific
connection string of its choosing:

To force the ObjectDataSource to use this constructor, you need to handle the ObjectCreating
event, create the EmployeeDB instance yourself, and then assign it to the data source using the
ObjectDataSourceEventArgs:

CHAPTER 9 DATA BINDING402

Clearly, you could perform more complex initialization in the ObjectCreating event. For
example, you could call an initialization method, choose to instantiate one of several derived
classes, and so on.

Tip The data source controls expose a rich event model. Events tend to fall into two categories. Events
ending in ing such as ObjectCreating occur while a task is underway and give you the chance to cancel or
customize what’s happening. Events ending in ed such as ObjectCreated occur when the task is finished and
are suitable for logging the action, synchronizing other controls, and handling errors.

You can also react to the ObjectDisposing event to perform cleanup. The ObjectDisposing
event is fired just before the data access object is released (before the page is served). Usually,
you won’t need to use the ObjectDisposing event because a better alternative exists—place
your cleanup code in a dedicated Dispose() method inside your data access class. As long as
the data access class implements IDisposable, the ObjectDataSource will automatically call
your Dispose() method. (To get a painless implementation of IDisposable for free, just derive
your data access class from the System.ComponentModel.Component class and override the
Dispose() method.)

Using Method Parameters
Earlier, you saw how you could use the SqlDataSource to execute parameterized commands.
The same feat is possible with the ObjectDataSource, if you provide a suitable select method
that accepts one or more parameters. You can then map each parameter to a control value,
query string argument, and so on.

To try this, you can use the EmployeeDB.GetEmployee() method, which retrieves a single
employee by ID number. Here’s the method declaration:

The test page provides a list with all the employee IDs. This list control uses the
GetEmployees() method through an Object data source:

When you choose an ID, the page posts back and uses a second data source to call
GetEmployee(). The employeeID value is taken from the selected item in the list:

CHAPTER 9 DATA BINDING 403

The name you define for the parameter must match the parameter name you use in the
method exactly. When the ObjectDataSource calls the method, it uses reflection to examine
the method, and it examines the parameter names to determine the order of arguments. This
system allows you to use overloaded methods, because the ObjectDataSource is able to cor-
rectly identify the overload you want based on the number of parameters you define and their
names.

Tip The data types are not used in the matching process—instead, the ObjectDataSource will attempt to
convert the parameter value into the data type of the matching parameter using the appropriate type con-
verter for that data type. If this process fails, an exception is raised.

Now, the single employee record returned from GetEmployee() is displayed in another
rich data control—the DetailsView. By default, the DetailsView creates a basic table with one
row for each field or property in the data item (assuming the AutoGenerateRows property is
true, which is its default value). Here’s a basic declaration for the DetailsView:

You have one more detail to fill in. The first time the page is requested, there won’t be any
selected value in the lstEmployees control. However, the DetailsView will still try to bind itself,
so the ObjectDataSource will call GetEmployee(). The employeeID parameter is null, but the
actual value that’s passed is 0, because regular integers aren’t nullable. When the GetEmployee()
method executes the query, it doesn’t find a matching record with an employeeID of 0. This is
an error condition, and an exception is thrown.

You could solve this problem by revising the GetEmployee() method to return null in this sit-
uation. However, it makes more sense to catch the binding attempt and explicitly cancel it when
there’s no employeeID parameter. You can do this by handling the ObjectDataSource.Selecting
event and looking for the employeeID parameter in the ObjectDataSourceSelectingEventArgs.
InputParameters collection, which has every parameter you’re using indexed by name.

CHAPTER 9 DATA BINDING404

This is the only code you need to write for the page. Figure 9-11 shows the page in action.

 Figure 9-11. Binding to a single employee record

Updating Records
The ObjectDataSource provides the same type of support for updatable data binding as the
SqlDataSource. The first step is to specify the UpdateMethod, which needs to be a public
instance method in the same class:

The challenge is in making sure the UpdateMethod has the right signature. As with the
SqlDataSource, updates, inserts, and deletes automatically receive a collection of parameters
from the linked data control. These parameters have the same names as the corresponding
class properties.

To understand how this works, it helps to consider a basic example. Assume you create
a grid that shows a list of EmployeeDetails objects. You also add a column with edit links. When
the user commits an edit, the GridView fills the ObjectDataSource.UpdateParameters collec-
tion with one parameter for each property of the EmployeeDetails class, including EmployeeID,
FirstName, LastName, and TitleOfCourtesy. Then, the ObjectDataSource searches for a method
named UpdateEmployee() in the EmployeeDB class. This method must have the same param-
eters, with the same names.

That means this method is a match:

CHAPTER 9 DATA BINDING 405

This method is not a match, because the names don’t match exactly:

This is not a match, because there’s an additional parameter:

The method matching algorithm is not case- sensitive, and it doesn’t consider the order or
data type of the parameters. It simply tries to find a method with the right number of param-
eters and the same names. As long as that method is present, the update can be committed
automatically, without any custom code.

Updating with a Data Object
One problem with the UpdateEmployee() method shown in the previous example is that the
method signature is a little cumbersome—you need one parameter for each property in the
data object. Seeing as you already have a definition for the EmployeeDetails class, it makes
sense to create an UpdateEmployee() method that uses it and gets all its information from an
EmployeeDetails object. Here’s an example:

The ObjectDataSource supports this approach. However, to use it, you must set the
DataObjectTypeName to the full name of the class you want to use. Here’s how it works:

Once this is in place, the ObjectDataSource will match only the UpdateMethod,
DeleteMethod, or InsertMethod if it has a single parameter that accepts the type specified in
DataObjectTypeName. Additionally, your data object must follow some rules:

are ignored.)

You’re free to add code to your data object class. For example, you can add methods, con-
structors, validation, and event- handling logic in your property procedures, and so on.

CHAPTER 9 DATA BINDING406

Dealing with Nonstandard Method Signatures
Sometimes you may run into a problem in which the property names of your data class
(for example, EmployeeDetails) don’t exactly match the parameter names of your update
method (for example, the EmployeeDB.UpdateEmployee() method). If all you need is a simple
renaming job, you need to perform the task that was described in the “Updating with Stored
Procedures” section earlier, although the syntax is slightly different.

First, you define the additional parameters you need, with the correct names. For example,
maybe you need to rename the EmployeeDetails.EmployeeID property to a parameter named
id in the update method. Here’s the new parameter you need:

Second, you react to the ObjectDataSource.Updating event, setting the value for these
parameters and removing the ones you don’t want:

Tip The same approach used here for updating applies when you’re performing inserts and deletes. The
only difference is that you handle the Inserting and Deleting events instead.

You can use a similar approach to add extra parameters. For example, if your method
requires a parameter with information that’s not contained in the linked data control, just
define it as one of the UpdateParameters and then set the value when the ObjectDataSource.
Updating event fires.

If you’re more ambitious, you can even decide to programmatically point the
ObjectDataSource to a different update method in the same class:

You’ll use this approach to solve a common problem in the section “The Limits of the
Data Source Controls” later in this chapter.

In fact, to get really adventurous you could set the ConflictDetection property to
ConflictOptions.CompareAllValues so that the old and new values are submitted in the
UpdateParameters collection. You can then examine these parameters, determine what
fields have changed, and call a different method (with different parameters accordingly).

CHAPTER 9 DATA BINDING 407

Unfortunately, this isn’t a zero- code scenario, and you might end up writing some awk-
ward code for updating and removing parameters. At worst, this code can become messy
and difficult to maintain. Still, it gives you an extra layer of flexibility that you may need in
some situations.

Handling Identity Values in an Insert
So far, all the examples you’ve seen have used parameters to supply values to an update opera-
tion. However, you can also create a parameter to return a result. With the SqlDataSource, you
can use this option to get access to an output parameter. With the ObjectDataSource, you can
use this technique to capture the return value.

 Figure 9-12 shows an example with a page that includes two data- bound controls. The
DetailsView (at the top) allows the user to insert records. The GridView (at the bottom) shows
all the records that currently exist and allows the user to delete them. Both records are bound
to the same ObjectDataSource.

 Figure 9-12. Inserting records (with a DetailsView) and deleting records (with a GridView)

Here’s the stripped- down markup for the data controls, without any formatting details:

CHAPTER 9 DATA BINDING408

When inserting a record, the ObjectDataSource calls the InsertEmployee() method, which
adds an employee record and returns the newly generated unique ID value as an integer:

You don’t need to use the identity value. As you’ve seen already, linked data controls are
bound after any updates are committed, which ensures that the updated information always
appears in the linked controls. However, you might want to use the identity for another pur-
pose, such as displaying a confirmation message. To capture this identity value, you need to
define a parameter:

Now you can retrieve the parameter by responding to the Inserted event, which fires after
the insert operation is finished:

CHAPTER 9 DATA BINDING 409

IDENTIFYING DATA CLASSES WITH ATTRIBUTES

As you’ve already learned, Visual Studio can help you configure the markup for the ObjectDataSource using
the Configure Data Source Wizard. To start this wizard, select the ObjectDataSource, click the arrow in the
 top- right corner to show the smart tag, and then click the Configure Data Source link. The wizard will walk
you through a series of steps, prompting you to pick a data access class and choose the methods you want
to use for selecting, inserting, updating, and deleting data.

When you create a database component, you can take a few simple steps to make sure it works
well with tools like the Configure Data Source Wizard. The trick is to add two specialized attributes from
the System.ComponentModel namespace that clearly identify that your class is designed for use with the
ObjectDataSource.

The first attribute you need is the DataObject attribute. You apply the DataObject attribute directly to
the declaration of your data access class, like this:

This indicates that EmployeeDB should be considered a data object—in other words, it’s a data source
that can supply data to the ObjectDataSource control. When you enable the Show Only Data Components
check box option in the Configure Data Source Wizard, you’ll only see classes that use the DataObject attri-
bute. This is a great way to cut straight to the data access classes in your solution.

Next, you need to add attributes to the methods you use for your data operations. You do this with the
DataObjectMethod attribute, which takes two parameters. The first parameter indicates whether the method
is designed for a select, update, insert, delete, or DataSet fill operation. The second parameter is a Boolean.
If true, it signals that the method is the default for its type of operation. This is useful if you provide more
than one method for a specific type of operation. For example, you might create a data access class that
has several select methods. The default method could be the one that returns an unfiltered collection of all
the records.

Here’s an example that applies the DataObjectMethod attribute:

When you’re choosing a method for record selection, the Configure Data Source Wizard will show a list
of all the methods that have a DataObjectMethod attribute with a DataObjectMethodType of Select. The
Configure Data Source Wizard will preselect the one you’ve identified as the default method.

CHAPTER 9 DATA BINDING410

The Limits of the Data Source Controls
As a whole, the data source controls are a remarkable innovation for ASP.NET developers.
However, you’ll still run into situations where you need to step beyond their bounds—or even
abandon them completely. In the following sections, you’ll see how to use the SqlDataSource
and ObjectDataSource to deal with a common design requirement—adding extra items to
a data- bound list of information.

The Problem
Earlier, you saw an example that allowed users to browse a list of cities in different regions
using two linked controls—a DropDownList and a GridView. Best of all, this example could be
created using a SqlDataSource or an ObjectDataSource; either way, it doesn’t require any cus-
tom code. Figure 9-9 showed this example earlier.

As convenient as this example is, it presents a problem that’s difficult to fix. Because it’s
impossible to create a drop- down list that doesn’t have a selected item (unless it’s empty), the
first city in the list is automatically selected. Many web applications use a different behavior
and add an extra item at the top of the list with text such as “(Choose a City)”. Selecting this
first item has no effect. Additionally, you might want to add an item that allows you to see
every city in a single list. Figure 9-13 shows the result you want.

 Figure 9-13. Data binding with extra options

CHAPTER 9 DATA BINDING 411

So, how can you implement this model with data binding? One of the few weaknesses
in the data binding model is that you never explicitly handle or create the data object that’s
bound to the control. As a result, you don’t have the chance to add an extra item. In fact, this
example has two challenges—determining how to add the extra options to the list and reacting
when they are selected to override the automatic query logic.

Adding the Extra Items
This problem has a few possible workarounds, but none is perfect. You could rewrite the query
so that it returns a result set with an extra hard- coded item. Here’s an example:

The problem with this approach is that it forces you to add presentation details to the data
layer. If your query is in a dedicated stored procedure (which is always a good idea), it will be
difficult to reuse this query for other purposes, and it will be awkward to maintain the page.

A better choice is to insert this fixed piece of string into the DropDownList programmatically.
However, you can’t take this step before the data binding takes place, because the data binding
process will wipe it from the list. You could override the Page.OnPreRenderComplete() method
to perform this task. However, that raises new complications. For one thing, the GridView will
have already been filled with data based on the initial DropDownList selection. (Even if you solve
this problem, there are other issues related to how changes are detected in the DropDownList
selection.)

Ultimately, you’ll need to resort to programmatic data binding. In normal operation,
data source controls are invoked automatically when a linked control needs data or is ready
to commit an update. However, a lesser known fact is that you can also take charge of data
source controls programmatically, by calling methods such as Select(), Update(), Insert(), and
Delete(). Of course, it’s up to you to bind the data you retrieve from Select() and supply the
changed data for when committing an update.

To put this into practice, start by removing the DropDownList.DataSourceID property.
Instead of using this property, you’ll bind the control when the page first loads. This gives you
the chance to insert the items immediately, before any other data binding actions take place:

CHAPTER 9 DATA BINDING412

In this example, the data binding for the list control is performed only once, when the
page is requested for the first time. After that, the values in view state are used instead. This
code is identical for the SqlDataSource and the ObjectDataSource. That’s not true for the
remainder of the example.

Handling the Extra Options with the SqlDataSource
The next challenge is to intercept clicks on either of the first two items. You can accom-
plish this by handling the data source Selecting event, which occurs just before the query is
executed. You can then check the parameters that are about to be supplied and cancel the
operation if needed.

Here’s the complete code:

This brute- force approach—changing the command using a hard- coded query—is ugly.
Another approach is to cancel the operation, call another method that returns the appropri-
ate data, and bind that. However, that forces you to do a fair bit of work manually, and mixing
manual and automatic data binding can quickly get confusing. Unfortunately, no perfect solu-
tion exists.

Handling the Extra Options with the ObjectDataSource
The object data source handles the problem better, because it gives you the option to reroute
the command to another method. If you find that a full list of employees is required, you can
remove the City parameter altogether and use a no- parameter method for retrieving all the
employees.

Here’s how it works:

CHAPTER 9 DATA BINDING 413

This solution isn’t possible with the SqlDataSource, because the command logic is
embedded into the data source control. Still, this approach can easily be abused and lead to
code that is difficult to maintain. For example, you won’t receive any warning if you rename,
remove, or modify the parameters for the GetAllEmployees() method. In this case, you’ll
receive an error only when you run the page and click the (All Cities) option.

Summary
In this chapter, you looked at data binding expressions and the ASP.NET data source controls
in detail. Along the way, you started using the GridView, ASP.NET’s premier rich data control.
In the next chapter, you’ll explore the three most powerful data- bound controls in detail: the
GridView, DetailsView, and FormView. You’ll also learn how they work with a few data source
features that this chapter didn’t cover, such as sorting and filtering.

415

C H A P T E R 1 0

Rich Data Controls

In the previous chapter, you saw how to use the data source controls to perform queries, both
with and without the assistance of a custom data access class. Along the way, you used some
of ASP.NET’s rich data controls, such as the GridView. However, you haven’t delved into all the
features these controls provide.

In this chapter, you’ll take a closer look at the four most powerful data controls that ASP.NET
offers: the GridView, the DetailsView, the FormView, and the new ListView. Using these controls,
you’ll learn how to fine- tune formatting and use features such as selection, sorting, filtering, and
templates. You’ll also learn about advanced scenarios such as showing images, calculating sum-
maries, and creating a master- details list in a single control.

THE EVOLUTION OF ASP.NET’S RICH DATA CONTROLS

The rich data controls have changed more than any other control set in ASP.NET. In a bid to provide devel-
opers with the best controls for displaying rich data–driven displays with minimal code, the data controls
that were originally included with ASP.NET 1.x (the DataGrid, DataList, and Repeater) were replaced with
more powerful tools in ASP.NET 2.0 (the GridView, DetailsView, and FormView) and ASP.NET 3.5 (the
ListView). The ASP.NET 1.x originals still exist, although most ASP.NET programmers won’t use any of them
except for backward compatibility.

Here’s a quick rundown of all the ASP.NET data controls:

DataGrid: The DataGrid was introduced in ASP.NET 1.0 but was completely replaced by the GridView
in ASP.NET 2.0. The GridView provides the same set of features (and more) and simplifies the coding
mode. By default, the DataGrid doesn’t appear in the Visual Studio Toolbox.

: The DataList was introduced in ASP.NET 1.0 and is mostly replaced by the GridView, which
provides a similar set of templates and much simpler coding model. The DataList has one feature that
isn’t provided by the GridView: the ability to create a multicolumn table where each cell is a separate
record. The GridView doesn’t support this unusual design, because it forces every record to occupy
a separate row. However, you can achieve this result with the new ListView.

: The Repeater was introduced in ASP.NET 1.0. It’s a bare- bones template- based control
that doesn’t provide features or frills. The Repeater has been replaced by the ListView, which offers
the same flexibility but includes features such as selection, sorting, and editing.

CHAPTER 10 R ICH DATA CONTROLS416

: The GridView is the all-in- one grid superpower in ASP.NET. It displays records in the rows
of a table, either using multiple columns, templates, or some combination of the two. The GridView
was introduced in ASP.NET 2.0 and remains unchanged in ASP.NET 3.5.

: The ListView is a flexible template- based control that doesn’t offer all the features of the
GridView but gives you the flexibility to render your data without a <table> tag. The ListView is new in
ASP.NET 3.5.

: The DetailsView is ASP.NET’s most powerful control for displaying the data from a sin-
gle record at a time. The DetailsView uses a tabular layout and supports templates. The DetailsView
was introduced in ASP.NET 2.0 and remains unchanged in ASP.NET 3.5.

: The FormView, like the DetailsView, is designed to display the data for a single record.
Although similar, the FormView requires templates. The only real advantage it provides is the ability to
display data in a nontabular arrangement. The FormView was introduced in ASP.NET 2.0 and remains
unchanged in ASP.NET 3.5.

The chapter focuses on the GridView, ListView, DetailsView, and FormView, in that order.

If you’ve programmed with ASP.NET 1.x, you’ve probably used the original DataGrid control.
Faced with the challenge of enhancing the DataGrid while preserving backward compatibility,
the ASP.NET team decided to create an entirely new control for ASP.NET 2.0. This control,
which remains unchanged in ASP.NET 3.5, is the GridView.

The GridView is an extremely flexible grid control for showing data in a basic grid consist-
ing of rows and columns. It includes a wide range of hard- wired features, including selection,
paging, sorting, and editing, and it is extensible through templates. The great advantage of the
GridView over the DataGrid is its support for code- free scenarios. Using the GridView, you can
accomplish many common tasks, such as paging and selection, without writing any code. With
the DataGrid, you were forced to handle events to implement the same features.

You’ve already seen the GridView at work in the previous chapter. However, you haven’t
yet considered how to customize it to provide the exact data display you want.

Defining Columns
The GridView examples you’ve seen so far have set the GridView.AutoGenerateColumns prop-
erty to true. When this property is set, the GridView uses reflection to examine the data object
and finds all the fields (of a record) or properties (of a custom object). It then creates a column
for each one, in the order that it finds it.

This automatic column generation is good for creating quick test pages, but it doesn’t give
you the flexibility you’ll usually want. For example, what if you want to hide columns, change
their order, or configure some aspect of their display, such as the formatting or heading text?
In all of these cases, you’ll need to set AutoGenerateColumns to false and define the columns
yourself in the <Columns> section of the GridView control tag.

CHAPTER 10 R ICH DATA CONTROLS 417

It’s possible to have AutoGenerateColumns set to true and define columns in the <Columns> section.
In this case, the columns you explicitly defined are added before the autogenerated columns. This technique
was used in the previous chapter to create a GridView with automatically generated bound columns and
a manually defined column with edit controls. However, for the most flexibility you’ll usually want to explicitly
define every column.

Each column can be any of several different types, as described in Table 10-1. The order of
your column tags determines the right-to- left order of columns in the GridView.

Column Types

BoundField This column displays text from a field in the data source.

ButtonField This column displays a button for each item in the list.

CheckBoxField This column displays a check box for each item in the list. It’s used auto-
matically for true/false fields (in SQL Server, these are fields that use the bit
data type).

CommandField This column provides selection or editing buttons.

HyperLinkField This column displays its contents (a field from the data source or static text)
as a hyperlink.

ImageField This column displays image data from a binary field (providing it can be suc-
cessfully interpreted as a supported image format).

TemplateField This column allows you to specify multiple fields, custom controls, and
arbitrary HTML using a custom template. It gives you the highest degree of
control but requires the most work.

The most basic column type is the BoundField, which binds to one field in the data
object. For example, here’s the definition for a single data- bound column that displays the
EmployeeID field:

This achieves one improvement over the autogenerated column—the header text has
been changed from EmployeeID to just ID.

When you first create a GridView, the AutoGenerateColumns property is not set (and so
the default value of true is used). When you bind it to a data source control, nothing changes.
However, if you click the Refresh Schema link of the data source control, the AutoGenerate-
Columns property is flipped to false, and Visual Studio adds a <asp:BoundField> tag for each
field it finds in the data source. This approach has several advantages:

tweaking the properties of your column object.

don’t overuse this technique, because it’s better to cut down on the amount of data
you’re retrieving if you don’t intend to display it.)

CHAPTER 10 R ICH DATA CONTROLS418

You can also hide columns programmatically. To hide a column, use the Columns collection for the
GridView. For example, setting GridView1.Columns[2].Visible to false hides the third column. Hidden columns
are left out of the rendered HTML altogether.

 auto- generated columns force the GridView to reflect on the data source at runtime.

If you modify the data source so that it returns a different set of columns, you can regenerate the
GridView columns. Just select the GridView, and click the Refresh Schema link in the smart tag. This step
will wipe out any custom columns you’ve added (such as editing controls).

Here’s a complete GridView declaration with explicit columns:

When you explicitly declare a bound field, you have the opportunity to set other proper-
ties. Table 10-2 lists these properties.

CHAPTER 10 R ICH DATA CONTROLS 419

BoundField Properties

DataField This property indicates the name of the field (for a row) or prop-
erty (for an object) of the data item that you want to display in this
column.

DataFormatString This property formats the field. This is useful for getting the right
representation of numbers and dates. In previous versions of .NET,
it was necessary to set the HtmlEncode property to false in order to
use the DataFormatString property. This is no longer required.

ApplyFormatInEditMode If true, the format string will be used to format the value even when
it appears in a text box in edit mode. The default is false, which
means only the underlying normal will be used (1143.02 instead of
$1,143.02).

HeaderText, FooterText,
and HeaderImageUrl

The first two properties set the text in the header and footer region
of the grid, if this grid has a header (GridView.ShowHeader is true)
and footer (GridView.ShowFooter is true). The header is most com-
monly used for a descriptive label such as the field name, while the
footer can contain a dynamically calculated value such as a sum-
mary (a technique demonstrated in the section “Summaries in the
GridView” toward the end of this chapter). To show an image in the
header instead of text, set the HeaderImageUrl property.

ReadOnly If true, the value for this column can’t be changed in edit mode. No
edit control will be provided. Primary key fields are often read- only.

InsertVisible If false, the value for this column can’t be set in insert mode. If you
want a column value to be set programmatically or based on a de-
fault value defined in the database, you can use this feature.

Visible If false, the column won’t be visible in the page (and no HTML
will be rendered for it). This property gives you a convenient way
to programmatically hide or show specific columns, changing the
overall view of the data.

SortExpression This property specifies an expression that can be appended to
a query to perform a sort based on this column. It’s used in con-
junction with sorting, as described in the “Sorting the GridView”
section.

HtmlEncode If true (the default), all text will be HTML encoded to prevent
special characters from mangling the page. You could disable
HTML encoding if you want to embed a working HTML tag (such as
a hyperlink), but this approach isn’t safe. It’s always a better idea to
use HTML encoding on all values and provide other functionality
by reacting to GridView selection events.

NullDisplayText This property defines the text that will be displayed for a null value.
The default is an empty string, although you could change this to
a hard- coded value, such as “(not specified).”

ConvertEmptyStringToNull If this is true, before an edit is committed, all empty strings will be
converted to null values.

ControlStyle, HeaderStyle,
FooterStyle, and ItemStyle

These properties configure the appearance for just this column,
overriding the styles for the row. You’ll learn more about styles
throughout this chapter.

CHAPTER 10 R ICH DATA CONTROLS

If you don’t want to configure columns by hand, select the GridView, and click the ellipsis
(...) next to the Columns property in the Properties window. You’ll see a Fields dialog box that
lets you add, remove, and refine your columns (see Figure 10-1).

Now that you understand the underpinnings of the GridView, you’ve still only started to
explore its higher- level features. In the following sections, you’ll tackle these topics:

Formatting: How to format rows and data values

Selecting: How to let users select a row in the GridView and respond accordingly

Sorting: How to dynamically reorder the GridView in response to clicks on a column
header

Paging: How to divide a large result set into multiple pages of data, using both automatic
and custom paging code

Templates: How to take complete control of layout, formatting, and editing by defining
templates

Configuring columns in Visual Studio

CHAPTER 10 R ICH DATA CONTROLS

Formatting consists of several related tasks. First, you want to ensure that dates, currencies,
and other number values are presented in the appropriate way. You handle this job by setting
the DataFormatString property on the column. Next, you’ll want to apply the perfect mix of
colors, fonts, borders, and alignment options to each aspect of the grid, from headers to data
items. The GridView supports these features through styles. Finally, you can intercept events,
examine row data, and apply formatting to specific data points programmatically. In the fol-
lowing sections, you’ll consider each of these techniques.

The GridView itself also exposes several formatting properties that are self- explanatory and
aren’t covered here. These include GridLines (for adding or hiding table borders), CellPadding and
CellSpacing (for controlling the overall spacing between cells), and Caption and CaptionAlign (for
adding a title to the top of the grid).

Want to create a GridView that scrolls—inside a web page? It’s easy. Just place the GridView inside
a Panel control, set the appropriate size for the panel, and set the Panel.Scrollbars to Auto, Vertical, or Both.

Formatting Fields
Each BoundField column provides a DataFormatString property that you can use to configure
the appearance of numbers and dates using a format string.

Format strings are generally made up of a placeholder and format indicator, which are
wrapped inside curly brackets. A typical format string looks something like this:

The 0 represents the value that will be formatted, and the letter indicates a predetermined
format style. In this case, C means currency format, which is based on the culture settings
that are applied to the current thread. By default, a computer that’s configured for the English
(United States) region runs with a locale of en- US and displays currencies with the dollar sign
(so 3400.34 becomes $3,400.34). A computer that’s configured for another locale might display
a different currency symbol. Here’s a column that uses this format string:

To use a different currency format, you can change the localization settings of the web
server (in the Regional and Language Options section of the Control Panel). Or, you can set
a different culture for your web application using code or using the <globalization> element in
the web.config file (two techniques that are demonstrated in Chapter 18).

If you need to display a variety of different currency strings in your application, the built- in format-
ting won’t work, and it’s up to you to solve the problem. One typical strategy is to create a Money structure
that wraps the number amount and the culture. You can then override Money.ToString() to return the right
string representation.

CHAPTER 10 R ICH DATA CONTROLS

 Table 10-3 shows some of the other formatting options for numeric values.

Numeric Format Strings

Currency {0:C} $1,234.50. Brackets indicate negative values:
($1,234.50). The currency sign is locale- specific:
11,234.50.

Scientific (Exponential) {0:E} 1.234.50E+004.

Percentage {0:P} 45.6%.

Fixed Decimal {0:F?} Depends on the number of decimal places you
set. {0:F3} would be 123.400. {0:F0} would be 123.

You can find other examples in the Visual Studio Help. For date or time values, there
is also an extensive list. For example, if you want to write the BirthDate value in the format
month/day/year (as in 12/30/08), you use the following column:

 Table 10-4 shows some more examples.

Time and Date Format Strings

Short Date {0:d} M/d/yyyy (for example: 10/30/2008)

Long Date and Short Time {0:f} dddd, MMMM dd, yyyy HH:mm aa (for ex-
ample: Monday, January 30, 2008 10:00 AM)

Long Date {0:D} dddd, MMMM dd, yyyy (for example: Mon-
day, January 30, 2008)

Long Date and Long Time {0:F} dddd, MMMM dd, yyyy HH:mm:ss aa (for ex-
ample: Monday, January 30, 2008 10:00:23 AM)

ISO Sortable Standard {0:s} yyyy-MM-ddTHH:mm:ss (for example:
 2008-01- 30T10:00:23)

Month and Day {0:M} MMMM dd (for example: January 30)

General {0:G} M/d/yyyy HH:mm:ss aa (depends on
 locale- specific settings) (for example:
10/30/2008 10:00:23 AM)

The format characters are not specific to the GridView. You can use them with other
controls, with data- bound expressions in templates (as you’ll see later in this chapter), and as
parameters for many methods. For example, the Decimal and DateTime types expose their
own ToString() methods that accept a format string, allowing you to format values manually.

Styles
The GridView exposes a rich formatting model that’s based on styles. Altogether, you can set
eight GridView styles, as described in Table 10-5.

CHAPTER 10 R ICH DATA CONTROLS

Numeric Format Strings

HeaderStyle Configures the appearance of the header row that contains column titles,
if you’ve chosen to show it (if ShowHeader is true).

RowStyle Configures the appearance of every data row.

AlternatingRowStyle If set, applies additional formatting to every other row. This formatting
acts in addition to the RowStyle formatting. For example, if you set a font
using RowStyle, it is also applied to alternating rows, unless you explicitly
set a different font through the AlternatingRowStyle.

SelectedRowStyle Configures the appearance of the row that’s currently selected. This for-
matting acts in addition to the RowStyle formatting.

EditRowStyle Configures the appearance of the row that’s in edit mode. This formatting
acts in addition to the RowStyle formatting.

EmptyDataRowStyle Configures the style that’s used for the single empty row in the special
case where the bound data object contains no rows.

FooterStyle Configures the appearance of the footer row at the bottom of the GridView,
if you’ve chosen to show it (if ShowFooter is true).

PagerStyle Configures the appearance of the row with the page links, if you’ve
enabled paging (set AllowPaging to true).

Styles are not simple single- value properties. Instead, each style exposes a Style object
that includes properties for choosing colors (ForeColor and BackColor), adding borders
(BorderColor, BorderStyle, and BorderWidth), sizing the row (Height and Width), aligning the
row (HorizontalAlign and VerticalAlign), and configuring the appearance of text (Font and
Wrap). These style properties allow you to refine almost every aspect of an item’s appearance.
And if you don’t want to hard- code all the appearance settings in the web page, you can set the
CssClass property of the style object reference to a stylesheet class that’s defined in a linked
stylesheet (see Chapter 16 for more about styles).

Defining Styles
When setting style properties, you can use two similar syntaxes (and you’ll see both of them in
this chapter). First, you can use the object- walker syntax to indicate the extended style proper-
ties as attributes in the opening tag for the GridView. Here’s an example:

Alternatively, you can add nested tags, as shown here:

CHAPTER 10 R ICH DATA CONTROLS

Both of these approaches are equivalent. However, you make one other decision when
setting style properties. You can specify global style properties that affect every column in
the grid (as in the previous examples), or you can define column- specific styles. To create
a column- specific style, you need to add style attributes or a nested tag inside the appropriate
column tag, as shown here:

Or equivalently, you can use a nested tag:

This technique is often used to define specific column widths. If you don’t define a spe-
cific column width, ASP.NET makes each column just wide enough to fit the data it contains
(or, if wrapping is enabled, to fit the text without splitting a word over a line break). If values
range in size, the width is determined by the largest value or the width of the column header,
whichever is larger. However, if the grid is wide enough, you might want to expand a column
so it doesn’t appear to be crowded against the adjacent columns. In this case, you need to
explicitly define a larger width.

Here’s a fully formatted GridView:

CHAPTER 10 R ICH DATA CONTROLS

This example uses GridView properties to set the font and adjust the cell spacing and cell
gridlines. It uses styles to bold headings and configure the background of rows and alternating
rows. Additionally, column- specific style settings highlight the location information with a dif-
ferent background, bold the ID values, and explicitly size the Notes column. A DataFormatString
is used to format all date values in the BirthDate field. Figure 10-2 shows the final result.

A formatted GridView

CHAPTER 10 R ICH DATA CONTROLS

Configuring Styles with Visual Studio
There’s no reason to code style properties by hand in the GridView control tag, because the
GridView provides rich design- time support. To set style properties, you can use the Proper-
ties window to modify the style properties. For example, to configure the font of the header,
expand the HeaderStyle property to show the nested Font property, and set that. The only lim-
itation of this approach is that it doesn’t allow you to set a style for individual columns—if you
need that trick, you must first call up the Fields dialog box (shown previously in Figure 10-1)
by editing the Columns property. Then, select the appropriate column, and set the style prop-
erties accordingly.

You can even set a combination of styles using a preset theme by clicking the Auto Format
link in the GridView smart tag. Figure 10-3 shows the Auto Format dialog box with some of the
preset styles you can choose. Select Remove Formatting to clear all the style settings.

Once you’ve chosen a theme, the style settings are inserted into your GridView tag, and
you can tweak them by hand or by using the Properties window.

Automatically formatting a GridView

Formatting-Specific Values
The formatting you’ve learned so far isn’t that fine- grained. At its most specific, this formatting
applies to a single column of values. But what if you want to change the formatting for a spe-
cific row, or even just a single cell?

CHAPTER 10 R ICH DATA CONTROLS

The solution is to react to the GridView.RowDataBound event. This event is raised when
a part of the grid (the header, footer, or pager or a normal, alternate, or selected item) is being
created and bound to the data object. You can access the current row as a GridViewRow control.
The GridViewRow.DataItem property provides the data object for the given row, and
the GridViewRow.Cells collection allows you to retrieve the row content. You can use the
GridViewRow to change colors and alignment, add or remove child controls, and so on.

The following example handles the RowDataBound event and sets the colors according to
the following rules:

the title of courtesy is a title for a female—in this case Ms. or Mrs.

cyan if the title of courtesy is Mr.

specified by the GridView.BackColor property.

Here is the complete code for the RowDataBound event handler that implements these
rules:

First, the code checks if the item being created is a data row (rather than another part of
the grid, such as the pager, footer, or header). If the item is of the right type, the code extracts
the TitleOfCourtesy field from the data- bound item and compares it to some hard- coded
string values.

CHAPTER 10 R ICH DATA CONTROLS

 Figure 10-4 shows the resulting page.

Formatting individual rows based on values

This example uses the DataBinder.Eval() method to retrieve a piece of information from the data item
using reflection. Alternatively, you could cast the e.Row.DataItem to the correct type (such as EmployeeDe-
tails for the ObjectDataSource), DataRowView (for the SqlDataSource in DataSet mode), or DbDataRecord (for
the SqlDataSource in DataReader mode). However, the DataBinder.Eval() approach works in all these sce-
narios (at the cost of being slightly slower).

This isn’t the most useful example of using the RowDataBound event, but it demonstrates
how you can handle the event and read all the important information for the item. You could
use much more imaginative formatting to change the way the pager’s links are represented,
add new buttons to the pager or header, render values that you want to highlight with special
fonts and colors, create total and subtotal rows, and more.

Selecting a row means that the user can highlight or change the appearance of a row by click-
ing some sort of button or link. When the user clicks the button, not only will the row change
its appearance, but also your code will have the opportunity to handle the event.

The GridView provides built- in support for selection. You simply need to add a
CommandField column with the ShowSelectButton property set to true. The CommandField
can be rendered as a hyperlink, a button, or a fixed image. You choose the type using the
ButtonType property. You can then specify the text through the SelectText property (which
defaults to the word Select) or specify the link to the image through the SelectImageUrl
property.

Here’s an example that displays a select button:

CHAPTER 10 R ICH DATA CONTROLS

And here’s an example that shows a small clickable icon:

 Figure 10-5 shows both types of select buttons. Clicking either one selects the row.

Using a CommandField gives you the most control over where your select column is placed. It also allows
you to set the text or image that’s used for the select button. However, as you learned in Chapter 9, there’s a short-
cut that doesn’t involve creating a CommandField at all. If you set the GridView.AutoGenerateSelectButton property
to true, the GridView will add a select button column automatically. This select column will be placed at the left
side of the grid, and it will show a text link with the word Select.

When you click a select button, the page is posted back, and a series of steps unfolds.
First, the GridView.SelectedIndexChanging event fires, which you can intercept to cancel the
operation. Next, the GridView.SelectedIndex property is adjusted to point to the selected row.
Finally, the GridView.SelectedIndexChanged event fires, which you can handle if you want to
manually update other controls to reflect the new selection. When the page is rendered, the
selected row is given the SelectedRowStyle.

For selection to work, you must configure the SelectedRowStyle so that selected rows look different
from normal rows. Usually, selected rows will have a different BackColor property.

GridView selection

CHAPTER 10 R ICH DATA CONTROLS

Using Selection to Create a Master- Details Form
As demonstrated in the previous chapter, you can bind other data sources to a property in
a control using parameters. For example, you could add two GridView controls and use infor-
mation from the first GridView to perform a query in the second.

In the case of the GridView, the property you need to bind is SelectedIndex. However, this
has one problem. SelectedIndex returns a zero- based index number representing where the
row occurs in the grid. This isn’t the information you need to insert into the query that gets
the related records. Instead, you need a key field from the corresponding row.

Fortunately, the GridView makes it easy to retrieve this information using the
SelectedDataKey property. To use this feature, you must set the GridView.DataKeyNames
property, with a comma- separated list of one or more key fields. Each name you supply must
match one of the properties of the bound object or one of the fields of the bound record.

Usually, you’ll have only one key field, as shown here:

Now you can bind the second data source to this field. Here’s an example that uses the
EmployeeID in a join query to find all the matching records from the Territories table. In other
words, this data source retrieves all the regions that the selected employee manages:

In this example, the SqlDataSource uses a single parameter—the EmployeeID of the selected
employee record. The EmployeeID value is retrieved from the SelectedDataKey.Values collection
of the first grid. You can look up the EmployeeID field by its index position (which is 0 in this
example, because there’s only one field in the DataKeyNames list) or by name. The only trick
when performing a name lookup is that you need to replace the quotation marks with the cor-
responding HTML character entity (").

Finally, the second GridView binds to this data source to show the territory records:

CHAPTER 10 R ICH DATA CONTROLS

 Figure 10-6 shows this master- details form, which contains the regions assigned to an
employee whenever an employee record is selected.

A master- details page

The SelectedIndexChanged Event
As the previous example demonstrates, you can set up master- details forms declaratively,
without needing to write any code. However, there are many cases when you’ll need to react
to the SelectedIndexChanged event. For example, you might want to redirect the user to a new
page (possibly with the selected value in the query string). Or, you might want to adjust other
controls on the page.

For example, here’s the code you need to add a label describing the child table shown in
the previous example:

CHAPTER 10 R ICH DATA CONTROLS

 Figure 10-7 shows the result.

Handling the SelectedIndexChanged event

Using a Data Field As a Select Button
You don’t need to create a new column to support row selection. Instead, you can turn an
existing column into a link. This technique is commonly used to allow users to select rows in
a table by the unique ID value.

To use this technique, add a ButtonField column. Set the DataTextField to the name of the
field you want to use, as shown here:

This field will be underlined and turned into a link that, when clicked, will post back the
page and trigger the GridView.RowCommand event. You could handle this event, determine
which row has been clicked, and programmatically set the SelectedIndex property. However,
you can use an easier method. Instead, just configure the link to raise the SelectedIndexChanged
event by specifying a CommandName with the text Select, as shown here:

CHAPTER 10 R ICH DATA CONTROLS

Now clicking the data field automatically selects the record. You can now remove
the CommandField column that was previously used to show the Select link, and you can
remove the BoundField column that was previously used to show the EmployeeID, because
the ButtonField column effectively fuses these two details in one place.

The GridView sorting features allow the user to reorder the results in the GridView by clicking
a column header. It’s convenient—and easy to implement.

To enable sorting, you must set the GridView.AllowSorting property to true. Next, you
need to define a SortExpression for each column that can be sorted. In theory, a sort expression
can use any syntax that’s understood by the data source control. In practice, a sort expression
almost always takes the form used in the ORDER BY clause of a SQL query. That means the sort
expression can include a single field or a list of comma- separated fields, optionally with the
word ASC or DESC added after the column name to sort in ascending or descending order.

Here’s how you could define the FirstName column so it sorts by alphabetically ordering
rows by first name:

If you click the column header for the FirstName column twice in a row, the first click will
sort it alphabetically, and the second click will sort it in reverse alphabetical order.

If you use autogenerated columns, each bound column has its SortExpression property set to match
the DataField property. If you don’t want a column to be sort- enabled, just don’t set its SortExpression property.

Once you’ve associated a sort expression with the column and set the AllowSorting prop-
erty to true, the GridView will render the headers with clickable links. However, it’s up to the
data source control to implement the actual sorting logic. How the sorting is implemented
depends on the data source you’re using. Not all data sources support sorting, but both the
SqlDataSource and the ObjectDataSource do.

Sorting with the SqlDataSource
In the case of the SqlDataSource, sorting is performed using the built- in sorting capabilities of
the DataView class. Essentially, when the user clicks a column link, the DataView.Sort property
is set to the sorting expression for that column.

CHAPTER 10 R ICH DATA CONTROLS

As explained in Chapter 8, every DataTable is linked to a default DataView. The DataView is a win-
dow onto the DataTable, and it allows you to apply sorting and filtering without altering the structure of the
underlying table. You can use a DataView programmatically, but when you use the SqlDataSource it’s used
implicitly, behind the scenes. However, it’s available only when the DataSourceMode property is set to
SqlDataSourceMode.DataSet.

With DataView sorting, the data is retrieved unordered from the database, and the results
are sorted in memory. This is not the speediest approach (sorting in memory requires more
overhead and is slower than having SQL Server do the same work), but it is more scalable when
you add caching to the mix. That’s because you can cache a single copy of the data and sort it
dynamically in several different ways. (Chapter 11 has much more about this essential tech-
nique.) Without DataView sorting, a separate query is needed to retrieve the newly sorted data.

 Figure 10-8 shows a sortable GridView with column links. Note that no custom code is
required for this scenario.

Automatic sorting by LastName

The sort is according to the data type of the column. Numeric and date columns are
ordered from smallest to largest. String columns are sorted alphanumerically without regard to
case, assuming the underlying DataTable.CaseSensitive property is false (the default setting).
Columns that contain binary data (such as images) cannot be sorted.

Sorting with the ObjectDataSource
The ObjectDataSource provides two options:

 or DataTable, the ObjectDataSource can use
the same automatic sorting used with the SqlDataSource.

CHAPTER 10 R ICH DATA CONTROLS

that accepts a sort expression and performs the sorting. Once again, this behavior gives
you enough flexibility to build a solution, but it’s not necessarily the ideal arrangement.
For example, instead of building a GetEmployees() method that can perform sorting,
it might make more sense to create a custom EmployeeDetails collection class with
a Sort() method. Unfortunately, the ObjectDataSource doesn’t support this pattern.

To use the sort parameter, you need to create a select method that accepts a single string
parameter. You must then set the ObjectDataSource.SortParameterName property to identify
the name of that parameter, as shown here:

When you set SortParameterName, the ObjectDataSource will always call the version of your
method that accepts a sort expression. If the data doesn’t need to be sorted (for example, the first time the
grid is filled), the ObjectDataSource will simply pass an empty string as the sort expression.

Now you have to implement the GetEmployees() method and decide how you want to
perform the sorting. The easiest approach is to fill a disconnected DataSet so you can rely on
the sorting functionality of the DataView. Here’s an example of a GetEmployees() method in
a database component that performs the sorting in this way:

CHAPTER 10 R ICH DATA CONTROLS

Another approach is to change the actual query you’re executing in response to the sort
expression. This way, your database can perform the sorting. This approach is a little more
complicated, and no perfect option exists. Here are the two most common possibilities:

 statement with an ORDER BY clause. However,
this risks SQL injection attacks, unless you validate your input carefully.

queries accordingly (either in your select method or in the stored procedure). This code
is likely to be fragile and involves a fair bit of string parsing.

Sorting and Selection
If you use sorting and selection at the same time, you’ll discover another issue. To see this
problem in action, select a row, and then sort the data by any column. You’ll see that the selec-
tion will remain, but it will shift to a new item that has the same index as the previous item.
In other words, if you select the second row and perform a sort, the second row will still be
selected in the new page, even though this isn’t the record you selected. The only way to solve
this problem is to programmatically change the selection every time a header link is clicked.

The simplest option is to react to the GridView.Sorted event to clear the selection, as
shown here:

In some cases you’ll want to go even further and make sure a selected row remains
selected when sorting changes. The trick here is to store the selected value of the key field in
view state each time the selected index changes:

CHAPTER 10 R ICH DATA CONTROLS

Now, when the grid is bound to the data source (for example after a sort operation), you
can reapply to the last selected index:

Keep in mind that this approach can be confusing if you also have enabled paging (which is
described later in the section “Paging the GridView”). That’s because a sorting operation might
move the current row to another page, rendering it not visible but keeping it selected. This is
a perfectly valid situation from a code standpoint but confusing in practice. This approach also
adds some overhead when sorting the grid. When dealing with very large grids, it’s a better idea
to simply remove the current selection.

Advanced Sorting
The GridView’s sorting is straightforward—it supports sorting by any sortable column in ascend-
ing and descending order. In some applications, the user has more sorting options or can order
lengthy result sets with more complex sorting expressions.

Your first avenue for improving sorting with the GridView is to handle the GridView.Sorting
event, which occurs just before the sort is applied. At this point, you can change the sort-
ing expression. For example, you could use this approach to turn clicks on different columns
into a compound sort. For example, you might want to check if the user clicks LastName and
then FirstName. In this case, you could apply a LastName+FirstName sort.

CHAPTER 10 R ICH DATA CONTROLS

You could take this sorting approach one step further and cascade searches over any arbi-
trary collection of columns by storing the user’s past sort selections in view state and using
them to build a larger sort expression. Of course, it’s important not to go too overboard and
create a custom sorting mechanism that’s completely unintuitive to your users, which will
cause more problems than it solves.

One more technique is available to you. You can sort the GridView programmatically
by calling the GridView.Sort() method and supplying a sort expression. This could come in
handy if you want to presort a lengthy data report before presenting it to the user. It also makes
sense if you want to allow the user to choose from a list of predefined sorting options (listed in
another control) rather than use column- header clicks.

 Figure 10-9 shows an example. When an item is selected from the list, the sort is applied
with this code:

Giving sorting options through another control

All the examples of repeated- value binding that you’ve seen so far show all the records of the
data source on a single web page. However, this isn’t always ideal in real- world situations.
Connecting to a data source that contains hundreds or even thousands of records would pro-
duce an extremely large page that would take a prohibitively long amount of time to render
and transmit to the client browser.

CHAPTER 10 R ICH DATA CONTROLS

Most websites that display data in tables or lists support record pagination, which means
showing a fixed number of records per page and providing links to navigate to the previous or
next pages to display other records. For example, you have no doubt seen this functionality in
search engines that can return thousands of matches.

The GridView control has built- in support for pagination. You can use simple pagination
with both the SqlDataSource and ObjectDataSource. If you’re using the ObjectDataSource,
you also have the ability to customize the way the paging works for a more efficient and scal-
able solution.

Automatic Paging
By setting a few properties and handling an event, you can make the GridView control man-
age the paging for you. The GridView will create the links to jump to the previous or next pages
and will display the records for the current page without requiring you to manually extract the
records by yourself. Before discussing the advantages and disadvantages of this approach, let’s
see what you need to get this working.

The GridView provides several properties designed specifically to support paging, as
shown in Table 10-6.

Paging Members of the GridView

AllowPaging Enables or disables the paging of the bound records. It is false by
default.

PageSize Gets or sets the number of items to display on a single page of the
grid. The default value is 10.

PageIndex Gets or sets the zero- based index of the currently displayed page, if
paging is enabled.

PagerSettings Provides a PagerSettings object that wraps a variety of formatting
options for the pager controls. These options determine where the
paging controls are shown and what text or images they contain.
You can set these properties to fine- tune the appearance of the
pager controls, or you can use the defaults.

PagerStyle Provides a style object you can use to configure fonts, colors, and
text alignment for the paging controls.

PageIndexChanging and
PageIndexChanged events

Occurs when one of the page selection elements is clicked, before the
navigation (PageIndexChanging) and after (PageIndexChanged).

To use automatic paging, you need to set AllowPaging to true (which shows the page con-
trols), and you need to set PageSize to determine how many rows are allowed on each page. If
you don’t set the PageSize property, the default value of 10 is used.

Here’s an example of a GridView control that sets these properties:

CHAPTER 10 R ICH DATA CONTROLS

This is enough to start using paging. Figure 10-10 shows an example with five records per
page (for a total of 16 pages).

Automatic paging works with any data source that implements ICollection. This means
that the SqlDataSource supports automatic paging, as long as you use DataSet mode. (The
DataReader mode won’t work and causes an exception.) Additionally, the ObjectDataSource
also supports paging, assuming your custom data access class returns an object that imple-
ments ICollection—arrays, strongly typed collections, and the disconnected DataSet are all
valid options.

Automatic paging doesn’t reduce the amount of data you need to query from the data-
base. Instead, all the data is retrieved and bound every time the user navigates to another
page. In other words, if you split a table into ten pages and the user steps through each one,
you will end up performing the same work ten times (and multiplying the overall database
workload for the page by a factor of ten).

Fortunately, you can make automatic paging much more efficient just by switching on
automatic caching for the data source control (see Chapter 11). This allows you to reuse the
same data object for multiple requests. Of course, storing the data in the cache may not be the
ideal solution if you’re using paging to deal with an extremely large query. In this case, a pro-
hibitively large amount of server memory is required to keep your data in the cache. That’s
when custom pagination makes sense.

Paging five records at a time

Custom Pagination with the ObjectDataSource
Custom pagination requires you to take care of extracting and binding only the current page
of records for the GridView. The GridView no longer selects the rows that should be displayed
automatically. However, the GridView still provides the pager bar with the autogenerated links
that allow the user to navigate through the pages.

CHAPTER 10 R ICH DATA CONTROLS 441

Although custom pagination is more complex than automatic pagination, it also allows
you to minimize the bandwidth usage and avoid storing a large data object in server- side mem-
ory. On the other hand, almost all custom pagination strategies requery the database with each
postback, which means you may be creating more work for the database.

The ObjectDataSource is the only data source to support custom pagination. The first
step to take control of custom paging is to set ObjectDataSource.EnablePaging to true. You
can then implement paging through three more properties: StartRowIndexParameterName,
MaximumRowsParameterName, and SelectCountMethod.

To determine whether custom pagination is better than automatic paging with caching, you need to
evaluate the way you use data. The larger the amount of data the GridView is using, the more likely you’ll
need to use custom pagination. On the other hand, the slower the database server and the heavier its load,
the more likely you’ll want to reduce repeated calls by caching the full data object. Ultimately, you may need
to profile your application to determine the optimum paging strategy.

Counting the Records
To have the GridView create the correct number of page links for you, it must know the total
number of records and the number of records per page. The records-per- page value is set with
the PageSize property, as in the previous example. The total number of pages is a little trickier.

When using automatic pagination, the total number of records is automatically deter-
mined by the GridView based on the number of records in the data source. In custom paging,
you must explicitly calculate the total number using a dedicated method. The EmployeeDB
class already includes a CountEmployees() method that returns this information, which you
saw first in Chapter 8. You simply need to bind this method to the ObjectDataSource using the
SelectCountMethod property:

When you use custom paging, the SelectCountMethod is executed for every postback. If
you want to reduce database work at the risk of providing an incorrect count, you could cache
this information and reuse it.

A Stored Procedure to Get Paged Records
The next part of the solution is a little trickier. Instead of retrieving a collection with all the
employee records, the GetEmployees() method must retrieve records for the current page
only. To accomplish this feat, this example uses a stored procedure named GetEmployeePage.
This stored procedure copies all the employee records into a temporary table that has one
additional column—a unique autoincrementing ID that will number each row. Next, the
stored procedure retrieves a selection from that table that corresponds to the requested page
of data, using the supplied @Start and @Count parameters.

CHAPTER 10 R ICH DATA CONTROLS

Here’s the complete stored procedure code:

This stored procedure uses a SQL Server–specific approach. Other databases might have
other possible optimizations. For example, Oracle databases allow you to use the ROWNUM
operator in the WHERE clause of a query to return a range of rows. For example, the Oracle
query SELECT * FROM Employees WHERE ROWNUM > 100 AND ROWNUM < 200 retrieves
the page of rows from 101 to 199.

SQL Server 2005 adds its own ROWNUMBER() function. For an example that shows how to imple-
ment efficient paging using this trick in SQL Server 2005, refer to

px.

CHAPTER 10 R ICH DATA CONTROLS

The Paged Selection Method
The final step is to create an overload of the GetEmployees() method that performs
paging. This method receives two arguments—the index of the row that starts the page
(starting at 0) and the page size (maximum number of rows). You specify the parameter
names you want to use for these two details through the StartRowIndexParameterName
and MaximumRowsParameterName properties on the ObjectDataSource control. If not
set, the default parameter names are startRowIndex and maximumRows.

Here’s the GetEmployees() method you need to use the stored procedure shown in the
previous example:

CHAPTER 10 R ICH DATA CONTROLS444

When you run this page, you’ll see that the output is the same as the output generated by
the previous page using automatic pagination, and the pager controls work the same way.

Customizing the Pager Bar
The GridView paging controls are remarkably flexible. In their default representation, you’ll
see a series of numbered links (see Figure 10-10). However, you customize them thoroughly
using the PagerStyle property (for foreground and background colors, the font, color, size, and
so on) and the PagerSettings property.

The most important detail is the PagerSettings.Mode property, which specifies how to
render the paging links according to one of several styles, as described in Table 10-7.

Pager Modes

Numeric The grid will render as many links to other pages as specified by the
PagerSettings.PageButtonCount property. If that number of links is not
enough to link to every page of the grid, the pager will display ellipsis
links (...) that, when clicked, display the previous or next set of page
links.

NextPrevious The grid will render only two links for jumping to the previous and next
pages. If you choose this option, you can also define the text for the two
links through the NextPageText and PreviousPageText properties on
the PagerSettings object (or use image links through NextPageImageUrl
and PreviousPageImageUrl).

NumericFirstLast The same as Numeric, except there are additional links for the first page
and the last page.

NextPreviousFirstLast The same as NextPrevious, except there are additional links for the
first page and the last page. You can set the text for these links through
FirstPageText and LastPageText properties on the PagerSettings object
(or images through FirstPageImageUrl and LastPageImageUrl).

CHAPTER 10 R ICH DATA CONTROLS 445

SORTING AND PAGING CALLBACKS

One disadvantage with a grid you can sort or page through is that each time you re- sort the grid or move
to another page, the browser needs to trigger a postback and render a completely new page of HTML. This
means the page flickers and scrolls back to the beginning, which makes the overall user experience a bit
jarring.

The GridView has a feature that improves on this situation: the EnableSortingAndPagingCallbacks
property. If you set this property to true, the GridView uses a different technique to refresh the page. Rather
than forcing a postback when you click a column header or a page link, the browser sends an asynchronous
request to the server to get new information. When the browser receives this information, it modifies the
current page using the HTML DOM. This technique creates a more seamless, flicker- free browsing experi-
ence. Best of all, if a browser doesn’t support this feature, the GridView gracefully degrades to the standard
postback model. The only limitation is that you can’t use sorting and paging callbacks on a grid that uses
templates.

The EnableSortingAndPagingCallbacks property uses ASP.NET’s callback infrastructure. Under the
hood, callbacks are performed using JavaScript and the XMLHttpRequest object. You’ll learn more about
callbacks and how they work in Chapter 32

If you don’t like the default pager bar, you can implement your own using the template
feature described in the next section by creating a PagerTemplate. You can then use any con-
trol you want, such as a text box where the user can type the index of the page and a button to
submit the request and load the new page. The code for extracting and binding the records for
the current page would remain the same.

So far, the examples have used the GridView control to show data in using separate bound col-
umns for each field. If you want to place multiple values in the same cell, or have the unlimited
ability to customize the content in a cell by adding HTML tags and server controls, you need to
use a TemplateField.

The TemplateField allows you to define a completely customized template for a column.
Inside the template you can add control tags, arbitrary HTML elements, and data binding
expressions. You have complete freedom to arrange everything the way you want.

For example, imagine you want to create a column that combines the first name, last
name, and courtesy fields. To accomplish this trick, you can construct an ItemTemplate like
this:

CHAPTER 10 R ICH DATA CONTROLS446

Now when you bind the GridView, the GridView fetches the data from the data source and
walks through the collection of items. It processes the ItemTemplate for each item, evaluates
the data binding expressions, and adds the rendered HTML to the table. This template is quite
straightforward—it simply defines three data- binding expressions. When evaluated, these
expressions are converted to ordinary text.

You’ll notice that these expressions use Eval(), which is a static method of the System.Web.
UI.DataBinder class. Eval() is an indispensable convenience—it automatically retrieves the
data item that’s bound to the current row, uses reflection to find the matching field (for
a DataRow object) or property (for a custom data object), and retrieves the value. This process
of reflection adds a little bit of extra work. However, this overhead is unlikely to add much time
to the processing of a request. Without the Eval() method, you’d need to access the data object
through the Container.DataItem property and use typecasting code like this:

The problem with this approach is that you need to know the exact type of data object. For
example, the data- binding expression shown previously assumes you’re binding to an array of
EmployeeDetails objects through the ObjectDataSource. If you switch to the SqlDataSource,
or if you rename the EmployeeDetails class, your page will break. On the other hand, if you use
the Eval() method, your data binding expressions will keep working as long as the data object
has a property with the given name. In other words, using the Eval() method allows you to cre-
ate pages that are loosely bound to your data access layer.

If you attempt to bind a field that isn’t present in your result set, you’ll receive a runtime error. If you
retrieve additional fields that are never bound to any template, no problem will occur.

When binding to a SqlDataSource in DataSet mode, the data item is a DataRowView. When binding to
a SqlDataSource in DataReader mode, the data item is a DbDataRecord.

The Eval() method also adds the extremely useful ability to format data fields on the fly.
To use this feature, you must use the overloaded version of the Eval() method that accepts an
additional format string parameter. Here’s an example:

You can use any of the format strings defined in Table 10-3 and Table 10-4 with the Eval()
method.

You’re free to mix template columns with other column types. Or, you could get rid of
every other column and put all the information from the Employees table into one formatted
template:

CHAPTER 10 R ICH DATA CONTROLS 447

 Figure 10-11 shows the result.

Creating a templated column

CHAPTER 10 R ICH DATA CONTROLS448

Using Multiple Templates
The previous example used a single template to configure the appearance of data items.
However, the ItemTemplate isn’t the only template that the GridView provides. In fact, the
GridView allows you to configure various aspects of its appearance with a number of tem-
plates. Inside every template column, you can use the templates listed in Table 10-8.

GridView Templates

HeaderTemplate Determines the appearance and content of the header cell

FooterTemplate Determines the appearance and content of the footer cell

ItemTemplate Determines the appearance and content of each data cell (if you
aren’t using the AlternatingItemTemplate) or every odd- numbered
data cell (if you are)

AlternatingItemTemplate Used in conjunction with the ItemTemplate to format even- numbered
and odd- numbered rows differently

EditItemTemplate Determines the appearance and controls used in edit mode

InsertItemTemplate Determines the appearance and controls used when inserting a new
record

Out of the templates listed in Table 10-8, the EditItemTemplate is one of the most useful,
as it gives you the ability to control the editing experience for the field. If you don’t use template
columns, you’re limited to ordinary text boxes, and you won’t have any validation. The GridView
also defines two templates that you can use outside of any column. These are the PagerTemplate,
which lets you customize the appearance of pager controls, and the EmptyDataTemplate, which
lets you set the content that should appear if the GridView is bound to an empty data object.

Editing Templates in Visual Studio
Visual Studio 2008 includes support for editing templates in the web- page designer. To try
this, follow these steps:

 1. Create a GridView with at least one templated column.

 Select the GridView and click Edit Templates in the smart tag. This switches the GridView
into template editing mode.

 In the smart tag, use the drop- down Display list to choose the template you want to
edit (see Figure 10-12). You can choose either of the two templates that apply to the
whole GridView (EmptyDataTemplate or PagerTemplate), or you can choose a specific
template for one of the template columns.

CHAPTER 10 R ICH DATA CONTROLS 449

Editing a template in Visual Studio

 Enter your content in the control. You can type in static content, drag-and- drop controls,
and so on.

 4. When you’re finished, choose End Template Editing from the smart tag.

Binding to a Method
One of the benefits of templates is that they allow you to use data binding expressions that
extend the ways you can format and present bound data. One key technique that recurs in
many scenarios is using a method in your page class to process a field value. This removes the
limitations of simple data binding and lets you incorporate dynamic information and condi-
tional logic.

For example, you might create a column where you want to display an icon next to each
row. However, you don’t want to use a static icon—instead, you want to choose the best image
based on the data in the row. Figure 10-13 shows an example where check marks indicate
when there is a large quantity of a given item in stock (more than 50 units) and an X indicates
when stock is fully depleted.

CHAPTER 10 R ICH DATA CONTROLS

Flagging rows conditionally

Here’s how you would define the status column:

And here’s the GetStatusPicture() method that examines the data item and chooses the
right picture URL:

This technique turns up in many scenarios. For example, you could use it to adjust
prices to take into consideration the current exchange rates. Or, you could use it to translate
a numeric code into a more meaningful piece of text. You might even want to create com-
pletely calculated columns—for example, use the EmployeeDateOfBirth field to calculate
a value for an EmployeeAge column.

CHAPTER 10 R ICH DATA CONTROLS 451

In this example, you might also want to set the alt attribute of the tag using a simi-
lar approach. That way the alternate text could provide a more meaningful description (such
as OK or Cancel) that would reflect the status of the corresponding product.

If you use data binding expressions to bind to methods, you can no longer use callbacks
to optimize the GridView refresh process. To prevent an error, make sure you do not set GridView.
EnableSortingAndPagingCallbacks to true. If you don’t want to sacrifice the callback features, you
can decide not to use templates and get similar functionality by modifying rows when they are first
added to the grid, using the GridView.RowDataBound event. This technique is described earlier in the
 “Formatting- Specific Values” section of this chapter.

Handling Events in a Template
In some cases, you might need to handle events that are raised by the controls you add to
a templated column. For example, imagine you changed the previous example so that instead
of showing a static status icon, it created a clickable image link through the ImageButton con-
trol. This is easy enough to accomplish:

The problem is that if you add a control to a template, the GridView creates multiple cop-
ies of that control, one for each data item. When the ImageButton is clicked, you need a way to
determine which image was clicked and which row it belongs to.

The way to resolve this problem is to use an event from the GridView, not the contained
button. The GridView.RowCommand event serves this purpose, because it fires whenever any
button is clicked in any template. This process, where a control event in a template is turned
into an event in the containing control, is called event bubbling.

Of course, you still need a way to pass information to the RowCommand event to identify
the row where the action took place. The secret lies in two string properties of all button con-
trols: CommandName and CommandArgument. CommandName sets a descriptive name you
can use to distinguish clicks on your ImageButton from clicks on other button controls in the
GridView. The CommandArgument supplies a piece of row- specific data you can use to iden-
tify the row that was clicked. You can supply this information using a data binding expression.

Here’s the template field containing the revised ImageButton tag:

CHAPTER 10 R ICH DATA CONTROLS

And here’s the code you need to respond when an ImageButton is clicked:

This example simply displays the ProductID in a label.

Remember, you can simplify your life using the GridView’s built- in selection support. Just set the
CommandName to Select and handle the SelectIndexChanged event, as described in the section “Using
a Data Field As a Select Button” earlier in this chapter. Although this approach gives you easy access to the
clicked row, it won’t help you if you want to provide multiple buttons that perform different tasks.

Editing with a Template
One of the best reasons to use a template is to provide a better editing experience. In the previ-
ous chapter, you saw how the GridView provides automatic editing capabilities—all you need
to do is switch a row into edit mode by setting the GridView.EditIndex property.

The easiest way to make this possible is to add a CommandField column with the
ShowEditButton property set to true (or set the GridView.AutoGenerateEditButton property
to true). Either way, you’ll end up with a dedicated column that’s used to show editing com-
mands. Initially this column will display a link named Edit next to each record. When the user
clicks an Edit link, every label in every column of that row will be replaced by a text box, unless
the field is read- only.

The standard editing support has several limitations:

It’s not always appropriate to edit values using a text box: Certain types of data are best
handled with other controls (such as drop- down lists), large fields need multiline text
boxes, and so on.

You get no validation: It would be nice to restrict the editing possibilities so that currency
figures can’t be entered as negative numbers, and so on. You can do that by adding valida-
tor controls to an EditItemTemplate.

It’s often ugly: A row of text boxes across a grid takes up too much space and rarely seems
professional.

CHAPTER 10 R ICH DATA CONTROLS

In a templated column, you don’t have these issues. Instead, you explicitly define the
edit controls and their layout using the EditItemTemplate. This can be a somewhat laborious
process.

Here’s an edit template that allows editing of a single field—the Notes field:

When binding an editable value to a control, you must use the Bind() method in your data
binding expression instead of the ordinary Eval() method. Only the Bind() method creates the
 two- way link, ensuring that updated values will be sent back to the server.

Another important fact to keep in mind is that when the GridView commits an update,
it will submit only the bound, editable parameters. In the previous example, this means the
GridView will pass back a single @Notes parameter for the Notes field. This is important, because
when you write your parameterized update command (if you’re using the SqlDataSource), you
must use only one parameter, as shown here:

CHAPTER 10 R ICH DATA CONTROLS454

Similarly, if you’re using the ObjectDataSource, you must make sure your update method
takes only one parameter, named Notes.

 Figure 10-14 shows the row in edit mode.

Editing with a template

Editing with Advanced Controls
Template based- editing really shines if you need to bind to more interesting controls, such as
lists. For example, you could change the previous example to make the TitleOfCourtesy field
editable through a drop- down list. Here’s the template you need, with the new details in bold:

CHAPTER 10 R ICH DATA CONTROLS 455

This template allows the user to pick a title of courtesy from a limited selection of possible
titles. To create this list, you need to resort to a little trick—setting the DropDownList.DataSource
with a data binding expression that points to a custom property. This custom property can then
return a suitable data source with the available titles of courtesy.

Here’s the definition for the TitlesOfCourtesy property in the web- page class:

This list of titles of courtesy is by no means complete. There are also Miss, Lord, Lady, Sir, None,
and so on. For a real- world application the titles could come from a database table or configuration file.

This step ensures that the drop- down list is populated, but it doesn’t solve the related
problem of making sure the right title is selected in the list for the current value. The best
approach here is to bind the SelectedIndex to a custom method that takes the current title and
returns the index of that value. In this example, the GetSelectedTitle() method performs this
task. It takes a title as input and returns the index of the respective value in the array returned
by TitlesOfCourtesy.

This code searches the array using the static Array.IndexOf() method. Note that you must
explicitly cast the title to a string. That’s because the DataBinder.Eval() method returns an object,
not a string, and that value is passed to the GetSelectedTitle() method.

 Figure 10-15 shows the drop- down list in action.

CHAPTER 10 R ICH DATA CONTROLS456

Editing with a drop- down list of values

Unfortunately, this still doesn’t complete the example. Now you have a list box that is
populated in edit mode, with the correct item automatically selected. However, if you change
the selection, the value isn’t sent back to the data source. In this example, you could tackle the
problem by using the Bind() method with the SelectedValue property, because the text in the
control exactly corresponds to the text you want to commit to the record. However, sometimes
life isn’t as easy, because you need to translate the value into a different database representa-
tion. In this situation, the only option is to handle the RowUpdating event, find the list control
in the current row, and extract the text. You can then dynamically add the extra parameter, as
shown here:

The UpdateCommand in the SqlDataSource must also be updated to use the
 @TitleOfCourtesy parameter:

CHAPTER 10 R ICH DATA CONTROLS 457

This will now successfully update both the Notes field and the TitleOfCourtesy. As you can
see, editable templates give you a great deal of power, but they often aren’t quick to code.

To make an even more interesting EditItemTemplate, you could add validator controls to verify input
values, as discussed in Chapter 4.

Editing Without a Command Column
So far, all the examples you’ve seen have used a CommandField that automatically generates
edit controls. However, now that you’ve made the transition over to a template- based approach,
it’s worth considering how you can add your own edit controls.

It’s actually quite easy. All you need to do is add a button control to the ItemTemplate and
set the CommandName to Edit. This automatically triggers the editing process, which fires the
appropriate events and switches the row into edit mode:

In the EditItemTemplate, you need two more buttons with a CommandName of Update
and Cancel, respectively:

CHAPTER 10 R ICH DATA CONTROLS458

As long as you use the right names when setting the CommandName property on your
buttons, the GridView editing events will fire and the data source controls will react in the
same way as if you were using the automatically generated editing controls. Figure 10-16
shows the custom edit links.

Custom edit controls

CHAPTER 10 R ICH DATA CONTROLS 459

The ListView is the only new data control in ASP.NET 3.5. It’s designed to be a replacement for
the no- frills Repeater control that’s been a part of ASP.NET since .NET 1.0.

Essentially, the ListView is an extremely flexible data- bound control that renders its con-
tent based on the templates you define. Unlike the Repeater, the ListView adds higher- level
features such as selection and editing, which work in the same way as those in the GridView.
But unlike the GridView, the ListView doesn’t support a field- based model for creating
 quick-and- easy grids with a minimum of markup.

Depending on your perspective, the ListView is either a more flexible version of the
GridView that requires more work or a more feature- filled version of the simple Repeater.

The ListView includes a more extensive set of templates than the GridView. Table 10-9
lists them all.

ListView Templates

ItemTemplate Sets the content of every data item (if you aren’t using the
AlternatingItemTemplate) or every odd- numbered data cell (if
you are).

AlternatingItemTemplate Used in conjunction with the ItemTemplate to format
 even- numbered and odd- numbered rows differently.

ItemSeparatorTemplate Sets the content of the separator that’s drawn between items.

SelectedItemTemplate Sets the content of the item that’s currently selected. You can use
the same content as the ItemSeparatorTemplate, but with differ-
ent formatting to make it stand out, or you can choose to show an
expanded display with additional details for the selected item.

EditItemTemplate Sets the controls used for an item in edit mode.

InsertItemTemplate Sets the controls used to insert a new item.

LayoutTemplate Sets the markup that wraps your list of items.

GroupTemplate Sets the markup that wraps each group of items, if you’re using the
grouping feature.

GroupSeparatorTemplate Sets the content of the separator that’s drawn between groups of
items.

EmptyItemTemplate Sets the content that’s used to fill empty values in the last group, if
you’re using grouping. For example, if you create groups of 5 and
your data source is a collection of 13 objects, there are 2 items miss-
ing from the last group.

EmptyDataTemplate Sets the markup that’s used if the bound data object is empty
(doesn’t contain any records or objects).

The most common reason for using the ListView is to create an unusual layout—for example, to
create a table that places more than one item in the same row, or to break free from table- based rendering
altogether. When building a page to display large amounts of data, ASP.NET developers usually turn to the
GridView first and use the ListView in more specialized scenarios.

CHAPTER 10 R ICH DATA CONTROLS

To display some data with the ListView, you follow the same process that you’d follow
with a GridView that’s made up of TemplateField columns. First, you create the markup for the
templates you want to use. At a bare minimum, you need the LayoutTemplate, which renders
the structure for the overall ListView, and the ItemTemplate, which represents the content for
each item. When the ListView renders itself, it iterates over the bound data and renders the
ItemTemplate for each item. It then places all of this content inside the LayoutTemplate. This
simple design is what allows the ListView to be so flexible. Other data controls use templates
for content, but not for the overall structure.

When creating the LayoutTemplate for a ListView, you need to indicate where the
ItemTemplate content should be inserted. You do this by adding a placeholder—the element
that will be duplicated once for each bound data item. To designate an element as the place-
holder, you simply set its ID to itemPlaceholder.

Your placeholder must be a server control—in other words, it needs the runat="server"
attribute.

Here’s a simple ListView that doesn’t use a table. Instead, the items are rendered one after
the other using elements that have no special formatting applied:

Notice that the item placeholder is repeated. In this example, the element appears
in the LayoutTemplate (where it simply serves as the placeholder) and in the ItemTemplate
(which causes it to be rendered into the page). When it appears in the ItemTemplate, it doesn't
require the runat="server" attribute.

CHAPTER 10 R ICH DATA CONTROLS 461

You can easily adapt this example so that it uses a table. For example, if you want to place
each item in a separate row (as the GridView does), you would use a table row (the <tr> element)
for your item placeholder:

Now, each item can start a new row (with <tr>) and add the cells where appropriate (with
<td>):

Compared to the GridView, the ListView has one conceptual drawback—it only has a single tem-
plate for displaying items. To understand how this can limit you, consider what would happen if you wanted
to create a multicolumn display using only the ListView. You’d need to add the column headers above the
ListView, and then you’d need to define all the column content in the ItemTemplate. This works perfectly
well, but it will cause major headaches if you want to make trivial- seeming changes like reordering your
columns.

To make life a little more interesting, you can create a table layout that wouldn’t be possible
with the ordinary GridView—one that places each item in a separate column. Conceptually, this
process is simple. You simply need to use a table cell (the <td> element) as your placeholder:

Now the LayoutTemplate must begin with the <td> tag. The result will quickly become
difficult to read if you have a somewhat large set of data (unless you also use paging).
 Figure 10-17 shows the result.

CHAPTER 10 R ICH DATA CONTROLS

An unusual layout with the ListView

Grouping
The ListView offers a way to create slightly more structured displays that resolve the problem
shown in Figure 10-17. The trick is to use grouping, which allows you to specify an additional
level of layout that’s used to arrange smaller groups of records inside the overall layout.

To use grouping, you begin by setting the GroupItemCount property, which determines
the number of data items in each group:

Sadly, the ListView’s grouping feature doesn’t work in conjunction with the information
in your bound data. For example, if you bind a collection of Product objects, there’s no way to
place them into groups based on price ranges or product categories (although you’ll see one
possible way to solve this problem later in this chapter, in the section “A Parent/Child View in
a Single Table”). Instead, the ListView’s groups are always fixed in size. The most you can do is
make the group size user- configurable (say, by supplying another control like a drop- down list
box from which the user can choose the number to use for GroupItemCount).

Once you’ve set the group size, you need to change the LayoutTemplate. That’s because
your overall layout no longer contains the data items—instead, it contains the groups, which
in turn hold the items. To reflect this fact, you must change the ID from itemPlaceholder to
groupPlaceholder. In this example, each group is a separate row:

CHAPTER 10 R ICH DATA CONTROLS

Next, you need to supply a GroupTemplate, which is used to wrap each group. The
GroupTemplate must provide the item placeholder that was formerly in the LayoutTemplate.
In this example, each item is a separate cell:

Both the group placeholder and the item placeholder need to be server controls, and they need to
be content elements—in other words, they need to be able to hold other elements.

Now the ItemTemplate can begin with the <td> tag, so that each item is a cell inside a row.
In turn, each row is a group of three data items in the overall table. Figure 10-18 shows the
result.

A ListView with grouping

CHAPTER 10 R ICH DATA CONTROLS464

When using grouping, the last group may not be completely filled. For example, the previ-
ous example creates groups of three. If the number of data items isn’t a multiple of three, the
last group won’t be complete. In many cases, this isn’t an issue, but in some situations it might
be—for example, if you want to preserve a certain structure or place some alternate content in
a table. In this case, you can supply the new content by using the EmptyItemTemplate.

Paging
Unlike the other data controls you’ll consider in this chapter, the ListView doesn’t have
a hard- wired paging feature. Instead, it supports another control whose sole purpose is
providing the paging feature: the DataPager.

The idea behind the DataPager is that it gives you a single, consistent way to use paging
with a variety of controls. Currently, the ListView is the only control that supports the DataPager
(probably because the other data controls are part of the core ASP.NET assemblies, which are
unchanged from ASP.NET 2.0). It’s reasonable to expect the DataPager to work with more
ASP.NET controls in future versions.

Another benefit of the DataPager is that you have the flexibility to position it where you
want in your overall layout, simply by placing the tag in the right part of the LayoutTemplate.
Here’s a fairly typical use of the DataPager that puts it at the bottom of the ListView, and gives
it buttons for moving forward or backward one page at a time or jumping straight to the first or
last page:

The DataPager also pares down the bound data so the ListView only gets the appropriate
subset of data. In the current example, pages are limited to six items. Figure 10-19 shows the
paging buttons.

CHAPTER 10 R ICH DATA CONTROLS 465

A ListView and DataPager working in conjunction

The GridView and ListView excel at showing dense tables with multiple rows of information.
However, sometimes you want to provide a detailed look at a single record. Although you
could work out a solution using a template column in a GridView, ASP.NET also includes two
controls that are tailored for this purpose: the DetailsView and FormView. Both show a single
record at a time but can include optional pager buttons that let you step through a series of
records (showing one per page). Both support templates, but the FormView requires them.
This is the key distinction between the two controls.

One other difference is the fact that the DetailsView renders its content inside a table,
while the FormView gives you the flexibility to display your content without a table. Thus, if
you’re planning to use templates, the FormView gives you the most flexibility. But if you want
to avoid the complexity of templates, the DetailsView gives you a simpler model that lets you
build a multirow data display out of field objects, in much the same way that the GridView is
built out of column objects.

CHAPTER 10 R ICH DATA CONTROLS466

Now that you understand the features of the GridView and ListView, you can get up to
speed with the DetailsView and FormView quite quickly. That’s because both the DetailsView
and the FormView borrow a portion of the GridView model.

The DetailsView
The DetailsView is designed to display a single record at a time. It places each piece of infor-
mation (be it a field or a property) in a separate row of a table.

You saw how to create a basic DetailsView to show the currently selected record in Chapter 9.
The DetailsView can also bind to a collection of items. In this case, it shows the first item in the
group. It also allows you to move from one record to the next using paging controls, if you’ve
set the AllowPaging property to true. You can configure the paging controls using the PagingStyle
and PagingSettings properties in the same way as you tweak the pager for the GridView. The
only difference is that there’s no support for custom paging, which means the full data source
object is always retrieved.

 Figure 10-20 shows the DetailsView when it’s bound to a set of employee records, with full
employee information.

It’s tempting to use the DetailsView pager controls to make a handy record browser. Unfor-
tunately, this approach can be quite inefficient. First, a separate postback is required each time
the user moves from one record to another (whereas a grid control can show multiple records
at once). But the real drawback is that each time the page is posted back, the full set of records is
retrieved, even though only a single record is shown. If you choose to implement a record browser
page with the DetailsView, at a bare minimum you must enable caching to reduce the database
work (see Chapter 11). That way, the full set of records is retrieved from the cache when possible
and doesn’t require a separate database operation.

Often, a better choice is to create your own record selection control using a subset of the
full data. For example, you could create a drop- down list and bind this to a data source that
queries just the employee names. Then, when a name is selected from the list, you retrieve
the full details for just that record using another data source. Of course, several metrics can
determine which approach is best, including the size of the full record (how much bigger it is
than just the first and last name), the usage patterns (whether the average user browses to just
one or two records or needs to see them all), and how many records there are in total. (You can
afford to retrieve them all at once if there are dozens of records, but you need to think twice if
there are thousands.)

CHAPTER 10 R ICH DATA CONTROLS 467

The DetailsView with paging

Defining Fields
The DetailsView uses reflection to generate the fields it shows. That means it examines the data
object and creates a separate field for each field (in a row) or property (in a custom object), just
like the GridView. You can disable this automatic field generation by setting AutoGenerateRows
to false. It’s then up to you to declare the field objects.

Interestingly, you use the same field object to build a DetailsView as you used to design
a GridView. For example, fields from the data item are represented with the BoundField tag,
buttons can be created with the ButtonField, and so on. For the full list, refer to Table 10-1.

Following is a portion of the field declarations for a DetailsView:

CHAPTER 10 R ICH DATA CONTROLS468

You can use the BoundField tag to set properties such as header text, formatting string,
editing behavior, and so on (see Table 10-2 earlier). In addition, you can use the ShowHeader
property. When set to false, this instructs the DetailsView to leave the header text out of the row,
and the field data takes up both columns.

The field model isn’t the only part of the GridView that the DetailsView control adopts. It
also uses a similar set of styles, a similar set of events, and a similar editing model.

Record Operations
The DetailsView supports delete, insert, and edit operations. However, unlike the GridView,
you don’t need to add a CommandField with edit controls. Instead, you simply set the Boolean
AutoGenerateDeleteButton, AutoGenerateEditButton, and AutoGenerateInsertButton proper-
ties on the DetailsView control. This adds a CommandField at the bottom of the DetailsView
with links for these tasks.

When you click the Delete button, the delete operation is performed immediately. How-
ever, when you click an Edit or Insert button, the DetailsView changes into edit or insert mode.
Technically, the DetailsView has three modes (as represented by the DetailsViewMode enumer-
ation). These modes are ReadOnly, Edit, and Insert. You can find the current mode at any time
by checking the CurrentMode property, and you can call ChangeMode() to change it. You can
also use the DefaultMode property to create a DetailsView that always begins in edit or insert
mode.

In edit mode, the DetailsView uses standard text box controls just like the GridView (see
 Figure 10-21). For more editing flexibility, you’ll want to use template fields or the FormView
control.

CHAPTER 10 R ICH DATA CONTROLS 469

Editing in the DetailsView

CHAPTER 10 R ICH DATA CONTROLS

If you place the DetailsView in edit mode to modify a record, and then navigate to a new record
using the pager buttons, the DetailsView remains in edit mode. If this isn’t the behavior you want, you can
react to the PageIndexChanged event and call the ChangeMode() method to programmatically put it back in
 read- only mode.

The FormView
If you need the ultimate flexibility of templates, the FormView provides a template- only con-
trol for displaying and editing a single record.

The beauty of the FormView template model is that it matches the model of the TemplateField
in the GridView quite closely. Therefore, you have the following templates to work with:

This means you can take the exact template content you put in a TemplateField in
a GridView and place it inside the FormView. Here’s an example based on the earlier tem-
plated GridView:

CHAPTER 10 R ICH DATA CONTROLS 471

 Figure 10-22 shows the result.

A single record in a FormView

Much like the DetailsView, the FormView works in three distinct modes: read- only, insert,
and edit. However, unlike the DetailsView and the GridView, the FormView control doesn’t
support the CommandField class that automatically creates editing buttons. Instead, you’ll
need to create these buttons yourself.

To do so, you simply need to add a Button or LinkButton control and set its CommandName
property to the appropriate value. For example, a Button with a CommandName set to Edit
switches the FormView into edit mode. This technique is described earlier in this chapter, in
the section “Editing Without a Command Column.” For a quick refresher, refer to Table 10-10,
which lists all the recognized command names you can use.

CHAPTER 10 R ICH DATA CONTROLS

CommandName Values for FormView Editing

Edit Puts the FormView into edit mode. The
FormView renders the current record using the
EditItemTemplate with the edit controls you’ve
defined.

The ItemTemplate

Cancel Cancels the edit or insert operation and returns
to the mode specified by the DefaultMode
property. Usually, this will be normal mode
(FormViewMode. ReadOnly), and the FormView
will display the current record using the
ItemTemplate.

The EditItemTemplate
and InsertItemTemplate

Update Applies the edit and raises the ItemUpdating and
ItemUpdated events on the way.

The EditItemTemplate

New Puts the FormView in insertion mode. The
FormView displays a new, blank record using the
InsertItemTemplate with the edit controls you’ve
defined.

The ItemTemplate

Insert Inserts the newly supplied data and raises the
ItemInserting and ItemInserted events on the way.

The InsertItemTemplate

Delete Removes the current record from the data source,
raising the ItemDeleting and ItemDeleted events.
Does not change the FormView mode.

The ItemTemplate

In the following sections, you’ll consider a few ways to extend the GridView. You’ll learn how
to show summaries, create a complete master- details report on a single page, and display
image data that’s drawn from a database. You’ll also see an example that uses advanced con-
currency handling to warn the user about potential conflicts when updating a record.

Summaries in the GridView
Although the prime purpose of a GridView is to show a set of records, you can also add some
more interesting information, such as summary data. The first step is to add the footer row by
setting the GridView.ShowFooter property to true. This displays a shaded footer row (which
you can customize freely), but it doesn’t show any data. To take care of that task, you need
insert the content into the GridView.FooterRow.

For example, imagine you’re dealing with a list of products. A simple summary row could
display the total or average product price. In the next example, the summary row displays the
total value of all the in- stock products.

The first step is to decide when to calculate this information. If you’re using manual bind-
ing, you could retrieve the data object and use it to perform your calculations before binding
it to the GridView. However, if you’re using declarative binding, you need another technique.
You have two basic options—you can retrieve the data from the data object before the grid is
bound, or you can retrieve it from the grid itself after the grid has been bound. The following
example uses the latter approach because it gives you the freedom to use the same calculation

CHAPTER 10 R ICH DATA CONTROLS

code no matter what data source was used to populate the control. It also gives you the ability
to total just the records that are displayed on the current page, if you’ve enabled paging. The
disadvantage is that your code is tightly bound to the GridView, because you need to pull out
the information you want by position, using hard- coded column index numbers.

In this example, a paged grid of products provides a summary that indicates the total price
of all the products that are currently on display (see Figure 10-23 for the results).

A GridView with a footer summary

To fill the footer, the code in this example reacts to the GridView.DataBound event. This
occurs immediately after the GridView is populated with data. At this point, you can’t access
the data source any longer, but you can navigate through the GridView as a collection of rows
and cells. Once this total is calculated, it’s inserted into the footer row.

Here’s the complete code:

CHAPTER 10 R ICH DATA CONTROLS474

The summary row has the same number of columns as the rest of the grid. As a result, if
you want your text to be displayed over multiple cells (as it is in this example), you need to
configure cell spanning by setting the ColumnSpan property of the appropriate cell. In this
example, the first cell spans over three columns (itself, and the next two on the right).

A Parent/Child View in a Single Table
Earlier in this chapter, you saw a master/detail page that used a GridView and DetailsView. This
gives you the flexibility to show the child records for just the currently selected parent record.
However, sometimes you want to create a parent/child report that shows all the records from
the child table, organized by parent. For example, you could use this to create a complete list
of products organized by category. The next example demonstrates how you show a complete,
subgrouped product list in a single grid, as shown in Figure 10-24.

The basic technique is to create a GridView for the parent table that contains an embedded
GridView for each row. These child GridView controls are inserted into the parent GridView
using a TemplateField. The only trick is that you can’t bind the child GridView controls at the
same time that you bind the parent GridView, because the parent rows haven’t been created
yet. Instead, you need to wait for the GridView.DataBound event to fire in the parent.

In this example, the parent GridView defines two columns, both of which are the
TemplateField type. The first column combines the category name and category description:

CHAPTER 10 R ICH DATA CONTROLS 475

A parent grid with embedded child grids

The second column contains an embedded GridView of products, with two bound columns.
Here’s an excerpted listing that omits the style- related attributes:

You’ll notice that the markup for the second GridView does not set the DataSourceID
property. That’s because the data source for each of these grids is supplied programmatically
as the parent grid is being bound to its data source.

CHAPTER 10 R ICH DATA CONTROLS476

Now all you need to do is create two data sources, one for retrieving the list of categories
and the other for retrieving all products in a specified category. The first data source provides
the query that fills the parent GridView:

You can bind the first grid directly to the data source, as shown here:

This part of the code is typical. The trick is to bind the child GridView controls. If you leave
out this step, the child GridView controls won’t appear.

The second data source contains the query that’s called multiple times to fill the child
GridView. Each time, it retrieves the products that are in a different category. The CategoryID
is supplied as a parameter:

To bind the child GridView controls, you need to react to the GridView.RowDataBound
event, which fires every time a row is generated and bound to the parent GridView. At this
point, you can retrieve the child GridView control from the second column and bind it to the
product information by programmatically calling the Select() method of the data source. To
ensure that you show only the products in the current category, you must also retrieve the
CategoryID field for the current item and pass it as a parameter. Here’s the code you need:

CHAPTER 10 R ICH DATA CONTROLS 477

Editing a Field Using a Lookup Table
In data- driven applications, you’ll often encounter fields that are limited to a small list of
predetermined values. This is particularly common when you’re dealing with related tables.
For example, consider the Products and Categories tables in the Northwind database. Clearly,
every product must belong to an existing category. As a result, when you edit or create a new
product, you must set the Products.CategoryID field to one of the CategoryID values that’s in
the Categories table.

When dealing with this sort of relationship, it’s often helpful to use a lookup list for edit
and insert operations. That way, you can choose the category from a list by name, rather than
remember the numeric CategoryID value. Figure 10-25 shows a DetailsView that uses a lookup
list to simplify category picking.

A lookup list using another table

You’ve already seen an example that uses a fixed lookup list for the TitleOfCourtesy
field in the Employees table. In that example, the data and the currently selected value were
retrieved by binding to custom methods in the page. The same approach works with this
example, but you have an easier option—you can build the lookup list declaratively using
a data source control.

CHAPTER 10 R ICH DATA CONTROLS478

Here’s how it works. In your page, you need two data source controls. The first one fills
the DetailsView, using a join query to get the category name information:

This query gets all the rows from the Products table, but it’s more likely you’ll use
a parameter (possibly from the query string or from another control) to select just a single
record that interests you. Either way, the lookup list technique is the same.

The second data source control gets the full list of categories to use for the lookup list:

The last step is to define the DetailsView control. This DetailsView is similar to the exam-
ples you’ve seen previously. The difference is that the CategoryID field uses a list box instead
of a text box for editing, which requires a template.

In read- only mode, the template field simply shows the category name from the original
query (without using the lookup list at all):

In edit mode, the template uses a DropDownList control:

CHAPTER 10 R ICH DATA CONTROLS 479

This control is bound in two ways. First, it gets its data from the lookup table of categories
using the DataSourceID. The lookup table is bound to the list using the DataTextField and
DataValueField properties. This creates a list of category names but keeps track of the match-
ing ID for each item.

The trick is the SelectedValue property, which sets up the binding to the Products table.
The SelectedValue property uses a data binding expression that gets (or sets) the current
CategoryID value. That way, when you switch in edit mode, the correct category is selected
automatically, and when you apply an update, the selected CategoryID is automatically sent
to the data source control and applied to the database.

Serving Images from a Database
The data examples in this chapter retrieve text, numeric, and date information. However, data-
bases often have the additional challenge of storing binary data such as pictures. For example,
you might have a Products table that contains pictures of each item in a binary field. Retrieving
this data in an ASP.NET web page is fairly easy, but displaying it is not as simple.

The basic problem is that in order to show an image in an HTML page, you need to add an
image tag that links to a separate image file through the src attribute, as shown here:

Unfortunately, this isn’t much help if you need to show image data dynamically. Although
you can set the src attribute in code, you have no way to set the image content programmati-
cally. You could first save the data to an image file on the web server’s hard drive, but that
approach would be dramatically slower, waste space, and raise the possibility of concurrency
errors if multiple requests are being served at the same time and they are all trying to write the
same file.

You can solve this problem in two ways. One approach is to store all your images in sepa-
rate files. Then your database record simply needs to store the filename, and you can bind the
filename to a server- side image. This is a perfectly reasonable solution, but it doesn’t help in
situations where you want to store images in the database so you can take advantage of the
abilities of the RDBMS to cache data, log usage, and back up everything.

In these situations, the solution is to use a separate ASP.NET resource that returns the
binary data directly. You can then use this binary data in other web pages in controls. To tackle
this task, you also need to step outside the data binding and write custom ADO.NET code. The
following sections will develop the solution you need piece by piece.

As a general rule of thumb, storing images in a database works well as long as the images are not
enormous (for example, more than 50 MB) and do not need to be frequently edited by other applications.

CHAPTER 10 R ICH DATA CONTROLS

Displaying Binary Data
ASP.NET isn’t restricted to returning HTML content. In fact, you can use the Response.
BinaryWrite() method to return raw bytes and completely bypass the web- page model.

The following page uses this technique with the pub_info table in the pubs database (another
standard database that’s included with SQL Server). It retrieves the logo field, which contains
binary image data. The page then writes this data directly to the page, as shown here:

 Figure 10-26 shows the result. It doesn’t appear terribly impressive (the logo data isn’t that
remarkable), but you could easily use the same technique with your own database, which can
include much richer and larger images.

Displaying an image from a database

When you use BinaryWrite(), you are stepping away from the web- page model. If you
add other controls to your web page, they won’t appear. Similarly, Response.Write() won’t
have any effect, because you are no longer creating an HTML page. Instead, you’re returning
image data. You’ll see how to solve this problem and optimize this approach in the following
sections.

CHAPTER 10 R ICH DATA CONTROLS 481

Reading Binary Data Efficiently
Binary data can easily grow to large sizes. However, if you’re dealing with a large image file, the
example shown previously will demonstrate woefully poor performance. The problem is that it
uses the DataReader, which loads a single record into memory at a time. This is better than the
DataSet (which loads the entire result set into memory at once), but it still isn’t ideal if the field
size is large.

There’s no good reason to load an entire 2 MB picture into memory at once. A much
better idea would be to read it piece by piece and then write each chunk to the output
stream using Response.BinaryWrite(). Fortunately, the DataReader has a sequential access
feature that supports this design. To use sequential access, you simply need to supply the
CommandBehavior.SequentialAccess value to the Command.ExecuteReader() method.
Then you can move through the row one block at a time, using the DataReader.GetBytes()
method.

When using sequential access, you need to keep a couple of limitations in mind. First, you
must read the data as a forward- only stream. Once you’ve read a block of data, you automati-
cally move ahead in the stream, and there’s no going back. Second, you must read the fields
in the same order they are returned by your query. For example, if your query returns three
columns, the third of which is a binary field, you must return the values of the first and second
fields before accessing the binary data in the third field. If you access the third field first, you
will not be able to access the first two fields.

Here’s how you would revise the earlier page to use sequential access:

CHAPTER 10 R ICH DATA CONTROLS

The GetBytes() method returns a value that indicates the number of bytes retrieved. If you
need to determine the total number of bytes in the field, you simply need to pass a null refer-
ence instead of a buffer when you call the GetBytes() method.

Integrating Images with Other Content
The Response.BinaryWrite() method creates a bit of a challenge if you want to integrate image
data with other controls and HTML. That’s because when you use BinaryWrite() to return raw
image data, you lose the ability to add any extra HTML content.

To attack this problem, you need to create another page that calls your image- generating
code. The best way to do this is to replace your image- generating page with a dedicated HTTP
handler that generates image output. This way, you save the overhead of the full ASP.NET web
form model, which you aren’t using anyway. (Chapter 5 introduces HTTP handlers.)

Creating the HTTP handler you need is quite easy. You simply need to implement the
IHttpHandler interface and implement the ProcessRequest() method (as you learned in Chapter 5).
The HTTP handler will retrieve the ID of the record you want to display from the query string.

Here’s the complete HTTP handler code:

CHAPTER 10 R ICH DATA CONTROLS

Once you’ve created the HTTP handler, you need to register it in the web.config file, as
shown here:

CHAPTER 10 R ICH DATA CONTROLS484

Now you can retrieve the image data by requesting the HTTP handler URL, with the ID of
the row that you want to retrieve. Here’s an example:

To show this image content in another page, you simply need to set the src attribute of an
image to this URL, as shown here:

 Figure 10-27 shows a page with multiple controls and logo images. It uses the following
ItemTemplate in a GridView:

And it binds to this data source:

This current HTTP handler approach works well if you want to build a detail page with
information about a single record. For example, you could show a list of publishers and then
display the image for the appropriate publisher when the user makes a selection. However,
this solution isn’t as efficient if you want to show image data for every publisher at once, such
as in a grid control. The approach still works, but it will be inefficient because it uses a sepa-
rate request to the HTTP handler (and hence a separate database connection) to retrieve each
image. You can solve this problem by creating an HTTP handler that checks for image data
in the cache before retrieving it from the database. Before you bind the GridView, you would
then perform a query that returns all the records with their image data and load each image
into the cache.

CHAPTER 10 R ICH DATA CONTROLS 485

Displaying database images in ASP.NET web page

Detecting Concurrency Conflicts
As discussed in Chapter 8, if a web application allows multiple users to make changes, it’s
quite possible for two or more edits to overlap. Depending on the way these edits overlap and
the concurrency strategy you’re using (see the section “Concurrency Strategies” in Chapter 8
for more information), this could inadvertently result in committing stale values back to the
database.

To prevent this problem, developers often use match- all or timestamp- based concur-
rency. The idea here is that the UPDATE statement must match every value from the original
record, or the update won’t be allowed to continue. Here’s an example:

SQL Server uses the index on the ShipperID primary key to find the record and then com-
pares the other fields to make sure it matches. Now the update can succeed only if the values
in the record match what the user saw when making the changes.

CHAPTER 10 R ICH DATA CONTROLS486

As indicated in Chapter 8, timestamps are a better way to handle this problem than explicitly
matching every field. However, this example uses the match- all approach because it works with the existing
Northwind database. Otherwise, you would need to add a new timestamp column.

The problem with a match- all concurrency strategy is that it can lead to failed edits.
Namely, if the record has changed in between the time the user queried the record and applied
the update, the update won’t succeed. In fact, the data- bound controls won’t even warn you of
the problem; they’ll just execute the UPDATE statement without any effect, because this isn’t
considered an error condition.

If you decide to use match- all concurrency, you’ll need to at least check for lost
updates. You can do this by handling the RowUpdated event of the GridView control, or
the ItemUpdated event of the DetailsView, FormView, or ListView controls. In your event
handler you can check the AffectedRows property of the appropriate EventArgs object (such
as GridViewUpdatedEventArgs). If this property is 0, no records were updated, which is
almost always because another edit changed the record and the WHERE clause in the UPDATE
statement couldn’t match anything. (Other errors, such as trying an update that fails because
it violates a key constraint or tries to commit invalid data, do result in an error being raised
by the data source.)

Here’s an example that checks for a failed update in the DetailsView control and then
informs the user of the problem:

Unfortunately, this doesn’t make for the most user- friendly web application. It’s par-
ticularly a problem if the record has several fields, or if the fields take detailed information,
because these edits are simply discarded, forcing the user to start from scratch.

A better solution is to give the user a choice. Ideally, the page would show the current
value of the record (taking any recent changes into account) and allow the user to apply the
original edited values, cancel the update, or make additional refinements and then apply the
update. It’s actually quite easy to build a page that provides these niceties. Figure 10-28 shows
an example. It warns the user when changing United Package to United Packages that another
user has already modified the record, changing the company name to United Package Mailer.
The user then has the choice to keep the recently edited name or overwrite it with the new
value.

CHAPTER 10 R ICH DATA CONTROLS 487

Detecting a concurrency error during an edit

First, start with a DetailsView that allows the user to edit individual records from the
Shippers table in the Northwind database. (The Shippers table is fairly easy to use with
 match- all concurrency because it has only three fields. Larger tables work better with the
equivalent timestamp- based approach.)

CHAPTER 10 R ICH DATA CONTROLS488

Here’s an abbreviated definition of the DetailsView you need:

The data source control that’s bound to the DetailsView uses a match- all UPDATE expres-
sion to implement strict concurrency:

You’ll notice the SqlDataSource.ConflictDetection property is set to CompareAllValues,
which ensures that the values from the original record are submitted as parameters (using the
prefix defined by the OldValuesParameterFormatString property).

Most of the work takes place in response to the DetailsView.ItemUpdated event. Here, the
code catches all failed updates and explicitly keeps the DetailsView in edit mode.

But the real trick is to rebind the data control. This way, all the original values in the
DetailsView are reset to match the values in the database. That means the update can succeed
(if the user tries to apply it again).

CHAPTER 10 R ICH DATA CONTROLS 489

Rebinding the grid is the secret, but there’s still more to do. To maintain the values that
the user is trying to apply, you need to manually copy them back into the newly bound data
control. This is easy but a little tedious.

At this point, you have a data control that can detect a failed update, rebind itself, and
reinsert the values the user’s trying to apply. That means if the user clicks Update a second
time, the update will now succeed (assuming the record isn’t changed yet again by another
user).

However, this still has one shortcoming. The user might not have enough information at
this point to decide whether to apply the update. Most likely, he’ll want to know what changes
were made before he overwrites them. One way to handle this problem is to list the current
values in a label or another control. In this example, the code simply unhides a Panel control
that contains an explanatory message and another DetailsView:

The error panel describes the problem with an informative error message and contains
a second DetailsView that binds to the matching row to show the current value of the record in
question.

CHAPTER 10 R ICH DATA CONTROLS

There’s one last detail. To save overhead, there’s no point in performing the query for the
second DetailsView unless it’s absolutely necessary because a concurrency error occurred.
To implement this logic, the code reacts to the SqlDataSource.Selecting event for the second
SqlDataSource control (sourceUpdateValues) and cancels the query if the error panel isn’t cur-
rently visible.

To try this example, open two copies of the page in separate browser windows and put
both into edit mode for the same row. Apply the first change (by clicking the Update button),
and then apply the second one. When you attempt to apply the second one, the error panel
will appear, with the explanation (see Figure 10-28). You can then choose to continue with the
edit by clicking Update or to abandon it by clicking Cancel.

In this chapter, you considered everything you need to build rich data- bound pages. You took
an exhaustive tour of the GridView and considered its support for formatting, selection, sort-
ing, paging, templates, and editing. You also considered the template- based ListView and the
data controls that are designed to work with a single record at a time: the DetailsView and
FormView. Finally, the chapter wrapped up by looking at several common advanced scenarios
with data- bound pages.

491

C H A P T E R 1 1

Caching and Asynchronous
Pages

Caching is the technique of storing an in-memory copy of some information that’s expensive
to create. For example, you could cache the results of a complex query so that subsequent
requests don’t need to access the database at all. Instead, they can grab the appropriate object
directly from server memory—a much faster proposition. The real beauty of caching is that
unlike many other performance-enhancing techniques, caching bolsters both performance
and scalability. Performance is better because the time taken to retrieve the information is cut
down dramatically. Scalability is improved because you work around bottlenecks such as data-
base connections. As a result, the application can serve more simultaneous page requests with
fewer database operations.

Of course, storing information in memory isn’t always a good idea. Server memory is a
limited resource; if you try to store too much, some of that information will be paged to disk,
potentially slowing down the entire system. That’s why the best caching strategies (such as
those hard-wired into ASP.NET) are self-limiting. When you store information in a cache,
you expect to find it there on a future request most of the time. However, the lifetime of that
information is at the discretion of the server. If the cache becomes full or other applications
consume a large amount of memory, information will be selectively evicted from the cache,
ensuring that performance is maintained. It’s this self-sufficiency that makes caching so pow-
erful (and so complicated to implement on your own).

With ASP.NET, you get first-rate caching for free, and you have a variety of options. You
can cache the completely rendered HTML for a page, a portion of that HTML, or arbitrary
objects. You can also customize expiration policies and set up dependencies so that items are
automatically removed when other resources—such as files or database tables—are modified.

Understanding ASP.NET Caching
Many developers who learn about caching see it as a bit of a frill, but nothing could be further
from the truth. Used intelligently, caching can provide a twofold, threefold, or even tenfold
performance improvement by retaining important data for just a short period of time.

ASP.NET really has two types of caching. Your applications can and should use both types,
because they complement each other:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES492

Output caching: This is the simplest type of caching. It stores a copy of the final rendered
HTML page that is sent to the client. The next client that submits a request for this page
doesn’t actually run the page. Instead, the final HTML output is sent automatically. The
time that would have been required to run the page and its code is completely reclaimed.

Data caching: This type of caching is carried out manually n your code. To use data cach-
ing, you store important pieces of information that are time-consuming to reconstruct
(such as a DataSet retrieved from a database) in the cache. Other pages can check for the
existence of this information and use it, thereby bypassing the steps ordinarily required
to retrieve it. Data caching is conceptually the same as using application state, but it’s
much more server-friendly because items will be removed from the cache automatically
when it grows too large and performance could be affected. Items can also be set to expire
automatically.

Also, two specialized types of caching build on these models:

Fragment caching: This is a specialized type of output caching—instead of caching the
HTML for the whole page, it allows you to cache the HTML for a portion of it. Fragment
caching works by storing the rendered HTML output of a user control on a page. The next
time the page is executed, the same page events fire (and so your page code will still run),
but the code for the appropriate user control isn’t executed.

Data source caching: This is the caching that’s built into the data source controls, includ-
ing the SqlDataSource, ObjectDataSource, and XmlDataSource. Technically, data source
caching uses data caching. The difference is that you don’t need to handle the process
explicitly. Instead, you simply configure the appropriate properties, and the data source
control manages the caching storage and retrieval.

In this chapter, you’ll consider every caching option. You’ll begin by considering the basics
of output caching and data caching. Next, you’ll consider the caching in the data source con-
trols. Finally, you’ll explore one of ASP.NET’s hottest caching features—linking cached items to
tables in a database with SQL cache dependencies.

Output Caching
With output caching, the final rendered HTML of the page is cached. When the same page
is requested again, the control objects are not created, the page life cycle doesn’t start, and
none of your code executes. Instead, the cached HTML is served. Clearly, output caching gets
the theoretical maximum performance increase, because all the overhead of your code is
sidestepped.

Note An ASP.NET page may use other static resources (such as images) that aren’t handled by ASP.NET.
Don’t worry about caching these items. IIS automatically handles the caching of files in a more efficient way
than the ASP.NET cache.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 493

Declarative Output Caching
To see output caching in action, you can create a simple page that displays the current time of
day. Figure 11-1 shows an example.

Figure 11-1. Caching an entire page

The code for this page is straightforward. It simply sets the date to appear in a label when
the Page.Load event fires:

You have two ways to add this page to the output cache. The most common approach is to
insert the OutputCache directive at the top of your .aspx file, just below the Page directive:

In this example, the Duration attribute instructs ASP.NET to cache the page for 20 seconds.
The VaryByParam attribute is also required, but you’ll learn about its effect in the next section.

When you run the test page, you’ll discover some interesting behavior. The first time you
access the page, the current date will be displayed. If you refresh the page a short time later,
however, the page will not be updated. Instead, ASP.NET will automatically send the cached
HTML output to you (assuming 20 seconds haven’t elapsed, and therefore the cached copy
of the page hasn’t expired). If ASP.NET receives a request after the cached page has expired,
ASP.NET will run the page code again, generate a new cached copy of the HTML output, and
use that for the next 20 seconds.

Twenty seconds may seem like a trivial amount of time, but in a high-volume site, it can
make a dramatic difference. For example, you might cache a page that provides a list of prod-
ucts from a catalog. By caching the page for 20 seconds, you limit database access for this page

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES494

to three operations per minute. Without caching, the page will try to connect to the database
once for each client and could easily make dozens of requests in a minute.

Of course, just because you request that a page should be stored for 20 seconds doesn’t
mean it actually will be. The page could be evicted from the cache early if the system finds that
memory is becoming scarce. This allows you to use caching freely, without worrying too much
about hampering your application by using up vital memory.

Tip When you recompile a cached page, ASP.NET will automatically remove the page from the cache.
This prevents problems where a page isn’t properly updated because the older, cached version is being
used. However, you might still want to disable caching while testing your application. Otherwise, you may
have trouble using variable watches, breakpoints, and other debugging techniques, because your code will
not be executed if a cached copy of the page is available.

Caching and the Query String
One of the main considerations in caching is deciding when a page can be reused and when
information must be accurate up to the latest second. Developers, with their love of instant
gratification (and lack of patience), generally tend to overemphasize the importance of real-
time information. You can usually use caching to efficiently reuse slightly stale data without
a problem, and with a considerable performance improvement.

Of course, sometimes information needs to be dynamic. One example is if the page uses
information from the current user’s session to tailor the user interface. In this case, full page
caching just isn’t appropriate (although fragment caching may help). Another example is if
the page is receiving information from another page through the query string. In this case, the
page is too dynamic to cache—or is it?

The current example sets the VaryByParam attribute to None, which effectively tells
ASP.NET that you need to store only one copy of the cached page, which is suitable for all
scenarios. If the request for this page adds query string arguments to the URL, it makes no
difference—ASP.NET will always reuse the same output until it expires. You can test this by
adding a query string parameter manually in the browser window (such as ?a=b).

Based on this experiment, you might assume that output caching isn’t suitable for pages
that use query string arguments. But ASP.NET actually provides another option. You can set
the VaryByParam attribute to * to indicate that the page uses the query string and to instruct
ASP.NET to cache separate copies of the page for different query string arguments, as shown
here:

Now when you request the page with additional query string information, ASP.NET will
examine the query string. If the string matches a previous request, and a cached copy of that
page exists, it will be reused. Otherwise, a new copy of the page will be created and cached
separately.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 495

To get a better idea how this process works, consider the following series of requests:

 1. You request a page without any query string parameter and receive page copy A.

 2. You request the page with the parameter ProductID=1. You receive page copy B.

 3. Another user requests the page with the parameter ProductID=2. That user receives
copy C.

 4. Another user requests the page with ProductID=1. If the cached output B has not
expired, it’s sent to the user.

 5. The user then requests the page with no query string parameters. If copy A has not
expired, it’s sent from the cache.

You can try this on your own, although you might want to lengthen the amount of time
that the cached page is retained to make it easier to test.

Caching with Specific Query String Parameters
Setting VaryByParam="*" allows you to use caching with dynamic pages that vary their output
based on the query string. This approach could be extremely useful for a product detail page,
which receives a product ID in its query string. With vary-by-parameter caching, you could
store a separate page for each product, thereby saving a trip to the database. However, to gain
performance benefits you might have to increase the cached output lifetime to several min-
utes or longer.

Of course, this technique has some potential problems. Pages that accept a wide range of
different query string parameters (such as a page that receives numbers for a calculation, client
information, or search keywords) just aren’t suited to output caching. The possible number of
variations is enormous, and the potential reuse is low. Though these pages will be evicted from
the cache when the memory is needed, they could inadvertently force other more important
information from the cache first or slow down other operations.

In many cases, setting VaryByParam to the wildcard asterisk (*) is unnecessarily vague.
It’s usually better to specifically identify an important query string variable by name. Here’s
an example:

In this case, ASP.NET will examine the query string looking for the ProductID parameter.
Requests with different ProductID parameters will be cached separately, but all other parame-
ters will be ignored. This is particularly useful if the page may be passed additional query string
information that it doesn’t use. ASP.NET has no way to distinguish the “important” query
string parameters without your help.

You can specify several parameters, as long as you separate them with semicolons, as
follows:

In this case, the query string will cache separate versions, provided the query string differs
by ProductID or CurrencyType.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES496

Note Output caching works well with pages that vary only based on server-side data (for example, the
data in a database) and the data in query strings. However, output caching doesn’t work if the page output
depends on user-specific information such as session data or cookies. Output caching also won’t work with
event-driven pages that use forms. In these cases, events will be ignored, and a static page will be re-sent
with each postback, effectively disabling the page. To avoid these problems, use fragment caching instead
to cache a portion of the page or use data caching to cache specific information.

Custom Caching Control
Varying by query string parameters isn’t the only option when storing multiple cached ver-
sions of a page. ASP.NET also allows you to create your own procedure that decides whether
to cache a new page version or reuse an existing one. This code examines whatever informa-
tion is appropriate and then returns a string. ASP.NET uses this string to implement caching.
If your code generates the same string for different requests, ASP.NET will reuse the cached
page. If your code generates a new string value, ASP.NET will generate a new cached version
and store it separately.

One way you could use custom caching is to cache different versions of a page based on
the browser type. That way, Firefox browsers will always receive Firefox-optimized pages, and
Internet Explorer users will receive Internet Explorer–optimized HTML. To set up this sort of
logic, you start by adding the OutputCache directive to the pages that will be cached. Use the
VaryByCustom attribute to specify a name that represents the type of custom caching you’re
creating. (You can pick any name you like.) The following example uses the name browser
because pages will be cached based on the client browser:

Next, you need to create the procedure that will generate the custom caching string. This
procedure must be coded in the global.asax application file, as shown here:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 497

The GetVaryByCustomString() function passes the VaryByCustom name in the arg param-
eter. This allows you to create an application that implements several types of custom caching
in the same function. Each different type would use a different VaryByCustom name (such
as Browser, BrowserVersion, or DayOfWeek). Your GetVaryByCustomString() function would
examine the VaryByCustom name and then return the appropriate caching string. If the cach-
ing strings for different requests match, ASP.NET will reuse the cached copy of the page. Or, to
look at it another way, ASP.NET will create and store a separate cached version of the page for
each caching string it encounters.

Interestingly, the base implementation of the GetVaryByCustomString() already includes
the logic for browser-based caching. That means you don’t need to code the method shown
previously. The base implementation of GetVaryByCustomString() creates the cached string
based on the browser name and major version number. If you want to change how this logic
works (for example, to vary based on name, major version, and minor version), you could
override the GetVaryByCustomString() method, as in the previous example.

Note Varying by browser is an important technique for cached pages that use browser-specific features.
For example, if your page generates client-side JavaScript that’s not supported by all browsers, you should
make the caching dependent on the browser version. Of course, it’s still up to your code to identify the browser
and choose what JavaScript to render. You’ll learn more about adaptive pages and JavaScript in Part 5.

The OutputCache directive also has a third attribute that you can use to define caching.
This attribute, VaryByHeader, allows you to store separate versions of a page based on the value
of an HTTP header received with the request. You can specify a single header or a list of headers
separated by semicolons. You could use this technique with multilingual sites to cache different
versions of a page based on the client browser language, as follows:

Caching with the HttpCachePolicy Class
Using the OutputCache directive is generally the preferred way to cache a page, because it sepa-
rates the caching instruction from the rest of your code. The OutputCache directive also makes
it easy to configure several advanced properties in one line.

However, you have another choice: you can write code that uses the built-in special
Response.Cache property, which provides an instance of the System.Web.HttpCachePolicy
class. This object provides properties that allow you to turn on caching for the current page.
This allows you to decide programmatically whether you want to enable output caching.

In the following example, the date page has been rewritten so that it automatically enables
caching when the page is first loaded. This code enables caching with the SetCacheability()
method, which specifies that the page will be cached on the server and that any other client
can use the cached copy of the page. The SetExpires() method defines the expiration date for
the page, which is set to be the current time plus 60 seconds.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES498

Programmatic caching isn’t as clean from a design point of view. Embedding the cach-
ing code directly into your page is often awkward, and it’s always messy if you need to include
other initialization code in your page. Remember, the code in the Page.Load event handler
runs only if your page isn’t in the cache (either because this is the first request for the page,
because the last cached version has expired, or because the request parameters don’t match).

Tip Make sure you use the Response.Cache property of the page, not the Page.Cache property. The
Page.Cache property isn’t used for output caching—instead, it gives you access to the data cache
(discussed in the “Data Caching” section).

Post-Cache Substitution and Fragment Caching
In some cases, you may find that you can’t cache an entire page, but you would still like to
cache a portion that is expensive to create and doesn’t vary. You have two ways to handle this
challenge:

Fragment caching: In this case, you identify just the content you want to cache, wrap that
in a dedicated user control, and cache just the output from that control.

Post-cache substitution: In this case, you identify just the dynamic content you don’t
want to cache. You then replace this content with something else using the Substitution
control.

Out of the two, fragment caching is the easiest to implement. However, the decision of
which you want to use will usually be based on the amount of content you want to cache.
If you have a small, distinct portion of content to cache, fragment caching makes the most
sense. Conversely, if you have only a small bit of dynamic content, post-cache substitution
may be the more straightforward approach. Both approaches offer similar performance.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 499

Tip The most flexible way to implement a partial caching scenario is to step away from output caching
altogether and use data caching to handle the process programmatically in your code. You’ll see this tech-
nique in the “Data Caching” section.

Fragment Caching
To implement fragment caching, you need to create a user control for the portion of the page
you want to cache. You can then add the OutputCache directive to the user control. The result
is that the page will not be cached, but the user control will. (Chapter 15 discusses user controls
in detail.)

Fragment caching is conceptually the same as page caching. There is only one catch—if
your page retrieves a cached version of a user control, it cannot interact with it in code. For
example, if your user control provides properties, your web-page code cannot modify or access
these properties. When the cached version of the user control is used, a block of HTML is sim-
ply inserted into the page. The corresponding user control object is not available.

Post-Cache Substitution
The post-cache substitution feature revolves around a single method that has been added to
the HttpResponse class. The method is WriteSubstitution(), and it accepts a single parame-
ter—a delegate that points to a callback method that you implement in your page class. This
callback method returns the content for that portion of the page.

Here’s the trick: when the ASP.NET page framework retrieves the cached page, it automat-
ically triggers your callback method to get the dynamic content. It then inserts your content
into the cached HTML of the page. The nice thing is that even if your page hasn’t been cached
yet (for example, if it’s being rendered for the first time), ASP.NET still calls your callback in the
same way to get the dynamic content. In essence, the whole idea is that you create a method
that generates some dynamic content, and by doing so you guarantee that your method is
always called, and its content is never cached.

The method that generates the dynamic content needs to be static. That’s because ASP.NET
needs to be able to call this method even when there isn’t an instance of your page class avail-
able. (Obviously, when your page is served from the cache, the page object isn’t created.) The
signature for the method is fairly straightforward—it accepts an HttpContext object that rep-
resents the current request, and it returns a string with the new HTML. Here’s an example that
returns a date with bold formatting:

To get this in the page, you need to use the Response.WriteSubstitution() method at some
point:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES500

Now, even if you apply caching to this page with the OutputCache directive, the second
date that’s displayed on the page will still be updated for each request. That’s because the
callback bypasses the caching process. Figure 11-2 shows the result of running the page and
refreshing it several times.

Figure 11-2. Injecting dynamic content into a cached page

The problem with this technique is that post-cache substitution works at a lower level
than the rest of your user interface. Usually, when you design an ASP.NET page, you don’t
use the Response object at all—instead, you use web controls, and those web controls use the
Response object to generate their content. One problem is that if you use the Response object
as shown in the previous example, you’ll lose the ability to position your content with respect
to the rest of the page. The only realistic solution is to wrap your dynamic content in some sort
of control. That way, the control can use Response.WriteSubstitution() when it renders itself.
You’ll learn more about control rendering in Chapter 27.

However, if you don’t want to go to the work of developing a custom control just to get the
post-cache substitution feature, ASP.NET has one shortcut—a generic Substitution control that
uses this technique to make all its content dynamic. You bind the Substitution control to a static
method that returns your dynamic content, exactly as in the previous example. However, you
can place the Substitution control alongside other ASP.NET controls, allowing you to control
exactly where the dynamic content appears.

Here’s an example that duplicates the earlier example using markup in the .aspx portion
of the page:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 501

Unfortunately, at design time you won’t see the content for the Substitution control.
Remember, post-cache substitution allows you to execute only a static method. ASP.NET

still skips the page life cycle, which means it won’t create any control objects or raise any con-
trol events. If your dynamic content depends on the values of other controls, you’ll need to use
a different technique (such as data caching), because these control objects won’t be available
to your callback.

Note Custom controls are free to use Response.WriteSubstitution() to set their caching behavior. For
example, the AdRotator uses this feature to ensure that the advertisement on a page is always rotated, even
when the rest of the page is served from the output cache.

Cache Profiles
One problem with output caching is that you need to embed the instruction into the page—
either in the .aspx markup portion or in the code of the class. Although the first option (using
the OutputCache) is relatively clean, it still produces management problems if you create
dozens of cached pages. If you want to change the caching for all these pages (for example,
moving the caching duration from 30 to 60 seconds), you need to modify every page. ASP.NET
also needs to recompile these pages.

ASP.NET also allows you to apply the same caching settings to a group of pages with a fea-
ture called cache profiles. Using cache profiles, you define caching settings in the web.config
file, associate a name with these settings, and then apply these settings to multiple pages using
the name. That way, you have the freedom to modify all the linked pages at once simply by
changing the caching profile in the web.config file.

To define a cache profile, you use the <add> tag in the <outputCacheProfiles> section, as
follows. You assign a name and a duration.

You can now use this profile in a page through the CacheProfile attribute:

Interestingly, if you want to apply other caching details, such as the VaryByParam behav-
ior, you can set it either as an attribute in the OutputCache directive or as an attribute of the

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES502

<add> tag for the profile. Just make sure you start with a lowercase letter if you use the <add>
tag, because the property names are camel case, as are all configuration settings, and case is
important in XML.

Cache Configuration
You can also configure various details about ASP.NET’s cache behavior through the web.config
file. Many of these options are intended for easier debugging, and may not make sense in
a production application.

To configure these settings, you use the <cache> element inside the <caching> element
described previously. The <cache> element gives you five options to tweak, as shown here:

Use disableMemoryCollection and disableExpiration to stop ASP.NET from collecting
items when memory is low (a process called scavenging) and removing expired items. Use
caution with these settings, as you could easily cause your application to run out of memory
under these settings. Use percentagePhysicalMemoryUsedLimit to set the maximum percent-
age of a computer’s physical memory that ASP.NET will use for the cache. When the cache
reaches the memory target, ASP.NET begins to use aggressive scavenging to remove older and
less used items. A value of 0 indicates that no memory should be set aside for the cache, and
ASP.NET will remove items as fast as they’re added.

The privateBytesLimit setting determines the maximum number of bytes a specific appli-
cation can use for its cache before ASP.NET begins aggressive scavenging. This limit includes
both memory used by the cache as well as normal memory overhead from the running appli-
cation. A setting of 0 indicates that ASP.NET will use its own algorithm for determining when
to start reclaiming memory. The privateBytesPollTime indicates how often ASP.NET checks
the private bytes used. The default value is 1 second.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 503

DISK-BASED OUTPUT CACHING

Early betas of ASP.NET 2.0 included a disk-based solution that allowed you to configure ASP.NET to store
cached information on the hard drive. Clearly, disk-based caching is an order of magnitude slower than
memory-based caching, but it does have two important uses:

Durable caching: Because cached output is stored on disk, it remains even when the web applica-
tion domain is restarted. This makes it a worthwhile consideration if the information you’re caching is
expensive to generate.

Low memory usage: When a cached page is reused, it’s served straight from the hard drive. As a
result, it doesn’t need to be read back into memory. This is useful for large cached pages. It’s par-
ticularly useful if you vary the cached output based on a query string parameter and there are many
variations. Either way, it can be difficult to implement a successful caching strategy using memory
alone.

The disk-based caching feature was cut from the final release of ASP.NET because the ASP.NET team
didn’t have enough time to properly test it and optimize its performance.

Data Caching
Data caching is the most flexible type of caching, but it also forces you to take specific addi-
tional steps in your code to implement it. The basic principle of data caching is that you add
items that are expensive to create to a special built-in collection object (called Cache). This
object works much like the Application object. It’s globally available to all requests from all cli-
ents in the application. However, a few key differences exist:

The Cache object is thread-safe: This means you don’t need to explicitly lock or unlock
the Cache collection before adding or removing an item. However, the objects in the Cache
collection will still need to be thread-safe themselves. For example, if you create a custom
business object, more than one client could try to use that object at once, which could lead
to invalid data. You can code around this limitation in various ways. One easy approach
that you’ll see in this chapter is just to make a duplicate copy of the object if you need to
work with it in a web page.

Items in the cache are removed automatically: ASP.NET will remove an item if it expires, if
one of the objects or files it depends on is changed, or if the server becomes low on memory.
This means you can freely use the cache without worrying about wasting valuable server
memory, because ASP.NET will remove items as needed. But because items in the cache
can be removed, you always need to check if a cached object exists before you attempt to
use it. Otherwise, you’ll run into a NullReferenceException.

Items in the cache support dependencies: You can link a cached object to a file, a data-
base table, or another type of resource. If this resource changes, your cached object is
automatically deemed invalid and released.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES504

As with application state, the cached object is stored in process, which means it doesn’t
persist if the application domain is restarted, and it can’t be shared between computers in
a web farm. This behavior is by design, because the cost of allowing multiple computers to
communicate with an out-of-process cache would reduce some of its performance benefit. It
makes more sense for each web server to have its own cache.

Adding Items to the Cache
As with the Application and Session collections, you can add an item to the Cache collection
just by assigning a new key name:

However, this approach is generally discouraged because it does not allow you to have
any control over the amount of time the object will be retained in the cache. A better approach
is to use the Cache.Insert() method. Table 11-1 lists the four versions of the Insert() method.

Table 11-1. The Insert() Method Overloads

Overload Description
Cache.Insert(key, value) Inserts an item into the cache under the specified key name, using

the default priority and expiration. This is the same as using the
indexer-based collection syntax and assigning to a new key name.

Cache.Insert(key, value,
dependencies)

Inserts an item into the cache under the specified key name, using
the default priority and expiration. The last parameter contains a
CacheDependency object that links to other files or cached items
and allows the cached item to be invalidated when these change.

Cache.Insert(key, value,
dependencies,
absoluteExpiration,
slidingExpiration)

Inserts an item into the cache under the specified key name, using
the default priority and the indicated sliding or absolute expiration
policy (you cannot set both at once). This is the most commonly
used version of the Insert() method.

Cache.Insert(key,
value, dependencies,
absoluteExpiration,
slidingExpiration, priority,
onRemoveCallback)

Allows you to configure every aspect of the cache policy for the item,
including expiration, priority, and dependencies. In addition, you
can submit a delegate that points to a method you want invoked
when the item is removed.

The most important choice you make when inserting an item into the cache is the expi-
ration policy. ASP.NET allows you to set a sliding expiration or an absolute expiration policy,
but you cannot use both at the same time. If you want to use an absolute expiration, set the
slidingExpiration parameter to TimeSpan.Zero. To set a sliding expiration policy, set the
absoluteExpiration parameter to DateTime.Max.

With sliding expiration, ASP.NET waits for a set period of inactivity to dispose of a neglected
cache item. For example, if you use a sliding expiration period of 10 minutes, the item will be
removed only if it is not used within a 10-minute period. Sliding expiration works well when you
have information that is always valid but may not be in high demand, such as historical data or
a product catalog. This information doesn’t expire because it’s no longer valid but shouldn’t be
kept in the cache if it isn’t doing any good.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 505

Here’s an example that stores an item with a sliding expiration policy of 10 minutes, with
no dependencies:

Note The similarity between caching with absolute expiration and session state is no coincidence. When
you use the in-process state server for session state, it actually uses the cache behind the scenes! The ses-
sion state information is stored in a private slot and given an expiration policy to match the timeout value.
The session state item is not accessible through the Cache object.

Absolute expirations are best when you know the information in a given item can be con-
sidered valid only for a specific amount of time, such as a stock chart or weather report. With
absolute expiration, you set a specific date and time when the cached item will be removed.

Here’s an example that stores an item for exactly 60 minutes:

When you retrieve an item from the cache, you must always check for Nothing. That’s
because ASP.NET can remove your cached items at any time. One way to handle this is to add
special methods that re-create the items as needed. Here’s an example:

Now you can retrieve the DataSet elsewhere in your code using the following syntax, with-
out worrying about the caching details:

For an even better design, move the QueryDataFromDatabase() method to a separate data
component.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES506

There’s no method for clearing the entire data cache, but you can enumerate through the
collection using the DictionaryEntry class. This gives you a chance to retrieve the key for each
item and allows you to empty the class using code like this:

Or you can retrieve a list of cached items, as follows:

This code is rarely used in a deployed application but is extremely useful while testing
your caching strategies.

A Simple Cache Test
The following example presents a simple caching test. An item is cached for 30 seconds and
reused for requests in that time. The page code always runs (because the page itself isn’t
cached), checks the cache, and retrieves or constructs the item as needed. It also reports
whether the item was found in the cache.

All the caching logic takes place when the Page.Load event fires.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 507

Figure 11-3 shows the result after the page has been loaded and posted back several times
in the 30-second period.

Figure 11-3. Retrieving data from the cache

Cache Priorities
You can also set a priority when you add an item to the cache. The priority only has an effect if
ASP.NET needs to perform cache scavenging, which is the process of removing cached items
early because memory is becoming scarce. In this situation, ASP.NET will look for underused
items that haven’t yet expired. If it finds more than one similarly underused item, it will com-
pare the priorities to determine which one to remove first. Generally, you would set a higher
cache priority for items that take more time to reconstruct in order to indicate its heightened
importance.

To assign a cache priority, you choose a value from the CacheItemPriority enumeration.
Table 11-2 lists all the values.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES508

Table 11-2. Values of the CachePriority Enumeration

Value Description
High These items are the least likely to be deleted from the cache as the server frees

system memory.

Normal These items have the default priority level. They are deleted only after Low or
BelowNormal priority items have been removed.

BelowNormal These items are more likely to be deleted than Normal priority items.

Low These items are the most likely to be deleted from the cache as the server frees
system memory.

NotRemovable These items will ordinarily not be deleted from the cache as the server frees sys-
tem memory.

Caching with the Data Source Controls
In Chapter 9, you spent considerable time working with the data source controls. The
SqlDataSource, ObjectDataSource, and XmlDataSource all support built-in data caching.
Using caching with these controls is highly recommended, because unlike your own custom
data code, the data source controls always requery the data source in every postback. They
also query the data source once for every bound control, so if you have three controls bound
to the same data source, three separate queries are executed against the database just before
the page is rendered. Even a little caching can reduce this overhead dramatically.

Note Although many data source controls support caching, it’s not a required data source control feature,
and you’ll run into data source controls that don’t support it or for which it may not make sense (such as the
SiteMapDataSource).

To support caching, the data source controls all use the same properties, which are listed
in Table 11-3.

Table 11-3. Cache-Related Properties of the Data Source Controls

Property Description
EnableCaching If true, caching is switched on. It’s false by default.

CacheExpirationPolicy Uses a value from the DataSourceCacheExpiry enumeration—Abso-
lute for absolute expiration (which times out after a fixed interval of
time) or Sliding for sliding expiration (which resets the time window
every time the data object is retrieved from the cache).

CacheDuration The number of seconds to cache the data object. If you are using slid-
ing expiration, the time limit is reset every time the object is retrieved
from the cache. The default value, 0 (or Infinite), keeps cached items
perpetually.

CacheKeyDependency and
SqlCacheDependency

Allows you to make a cached item dependent on another item in the
data cache (CacheKeyDependency) or on a table in your database
(SqlCacheDependency). Dependencies are discussed in the “Cache
Dependencies” section.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 509

Caching with SqlDataSource
When you enable caching for the SqlDataSource control, you cache the results of the SelectQuery.
However, if you create a select query that takes parameters, the SqlDataSource will cache a sepa-
rate result for every set of parameter values.

For example, imagine you create a page that allows you to view employees by city. The
user selects the desired city from a list box, and you use a SqlDataSource control to fill in the
matching employee records in a grid (see Figure 11-4). This example was first presented in
Chapter 9.

Figure 11-4. Retrieving data from the cache

To fill the grid, you use the following SqlDataSource:

In this example, each time you select a city, a separate query is performed to get just the
matching employees in that city. The query is used to fill a DataSet, which is then cached. If
you select a different city, the process repeats, and the new DataSet is cached separately. How-
ever, if you pick a city that you or another user has already requested, the appropriate DataSet
is fetched from the cache (provided it hasn’t yet expired).

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES510

Note SqlDataSource caching works only when the DataSourceMode property is set to DataSet (the
default). It doesn’t work when the mode is set to DataReader, because the DataReader object maintains
a live connection to the database and can’t be efficiently cached.

Caching separate results for different parameter values works well if some parameter values
are used much more frequently than others. For example, if the results for London are requested
much more often than the results for Redmond, this ensures that the London results stick
around in the cache even when the Redmond DataSet has been released. Assuming the full set
of results is extremely large, this may be the most efficient approach.

On the other hand, if the parameter values are all used with similar frequency, this approach
isn’t as suitable. One of the problems it imposes is that when the items in the cache expire, you’ll
need multiple database queries to repopulate the cache (one for each parameter value), which
isn’t as efficient as getting the combined results with a single query.

If you fall into the second situation, you can change the SqlDataSource so that it retrieves
a DataSet with all the employee records and caches that. The SqlDataSource can then extract
just the records it needs to satisfy each request from the DataSet. This way, a single DataSet
with all the records is cached, which can satisfy any parameter value.

To use this technique, you need to rewrite your SqlDataSource to use filtering. First, the
select query should return all the rows and not use any SELECT parameters:

Second, you need to define the filter expression. This is the portion that goes in the
WHERE clause of a typical SQL query, and you write it in the same way as you used the
DataView.RowFilter property in Chapter 9. (In fact, the SqlDataSource uses the DataView’s row
filtering abilities behind the scenes.) However, this has a catch—if you’re supplying the filter
value from another source (such as a control), you need to define one or more placeholders,
using the syntax {0} for the first placeholder, {1} for the second, and so on. You then supply
the filter values using the <FilterParameters> section, in much the same way you supplied the
select parameters in the first version.

Here’s the completed SqlDataSource tag:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 511

Tip Don’t use filtering unless you are using caching. If you use filtering without caching, you are essen-
tially retrieving the full result set each time and then extracting a portion of its records. This combines the
worst of both worlds—you have to repeat the query with each postback, and you fetch far more data than
you need each time.

Caching with ObjectDataSource
The ObjectDataSource caching works on the data object returned from the SelectMethod. If you
are using a parameterized query, the ObjectDataSource distinguishes between requests with
different parameter values and caches them separately. Unfortunately, the ObjectDataSource
caching has a significant limitation—it works only when the select method returns a DataSet or
DataTable. If you return any other type of object, you’ll receive a NotSupportedException.

This limitation is unfortunate, because there’s no technical reason you can’t cache cus-
tom objects in the data cache. If you want this feature, you’ll need to implement data caching
inside your method, by manually inserting your objects into the data cache and retrieving
them later. In fact, caching inside your method can be more effective, because you have the
ability to share the same cached object in multiple methods. For example, you could cache a
DataTable with a list of product categories and use that cached item in both the GetProduct-
Categories() and GetProductsByCategory() methods.

Tip The only consideration you should keep in mind is to make sure you use unique cache key names
that aren’t likely to collide with the names of cached items that the page might use. This isn’t a problem
when using the built-in data source caching, because it always stores its information in a hidden slot in the
cache.

If your custom class returns a DataSet or DataTable, and you decide to use the built-in
ObjectDataSource caching, you can also use filtering as discussed with the SqlDataSource
control. Just instruct your ObjectDataSource to call a method that gets the full set of data, and
set the FilterExpression to retrieve just those items that match the current view.

Cache Dependencies
As time passes, the data source may change in response to other actions. However, if your code
uses caching, you may remain unaware of the changes and continue using out-of-date infor-
mation from the cache. To help mitigate this problem, ASP.NET supports cache dependencies.
Cache dependencies allow you to make a cached item dependent on another resource so that
when that resource changes, the cached item is removed automatically.

ASP.NET includes three types of dependencies:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES512

In the following section, you’ll consider the first two options. Toward the end of this chap-
ter, you’ll learn about SQL dependencies, and you’ll learn how to create your own custom
dependencies.

File and Cache Item Dependencies
To create a cache dependency, you need to create a CacheDependency object and then use
it when adding the dependent cached item. For example, the following code creates a cached
item that will automatically be evicted from the cache when an XML file is changed, deleted,
or overwritten.

If you point the CacheDependency to a folder, it watches for the addition, removal, or
modification of any files in that folder. Modifying a subfolder (for example, renaming, creat-
ing, or removing a subfolder) also violates the cache dependency. However, changes further
down the directory tree (such as adding a file into a subfolder or creating a subfolder in a sub-
folder) don’t have any effect.

Tip CacheDependency monitoring begins as soon as it’s created. In this example, that means if the XML
file changes before you add the dependent prodItem object to the cache, the item will expire immediately
once it’s added. If that’s not the behavior you want, use the overloaded constructor that accepts a DateTime
object. This DateTime indicates when the dependency monitoring will begin.

The CacheDependency provides several constructors. You’ve already seen how it can
make a dependency based on a file by using the filename constructor. You can also specify a
directory that needs to be monitored for changes, or you can use a constructor that accepts
an array of strings that represent multiple files or directories.

Yet another constructor accepts an array of filenames and an array of cache keys. The fol-
lowing example uses this constructor to create an item that is dependent on another item in
the cache:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 513

Next, when Cache("Key 1") changes or is removed from the cache, Cache("Key 2") will
automatically be dropped.

Figure 11-5 shows a simple test page that is included with the online samples for this
chapter. It sets up a dependency, modifies the file, and allows you to verify that the cache item
has been dropped from the cache.

Figure 11-5. Testing cache dependencies

Aggregate Dependencies
Sometimes, you might want to combine dependencies to create an item that’s dependent on
more than one other resource. For example, you might want to create an item that’s invali-
dated if any one of three files changes. Or, you might want to create an item that’s invalidated
if a file changes or another cached item is removed. Creating these rules is easy with the
AggregateCacheDependency class.

The AggregateCacheDependency can wrap any number of CacheDependency objects.
All you need to do is supply your CacheDependency objects in an array using the
AggregateCacheDependency.Add() method.

Here’s an example that makes a cached item dependent on two files:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES514

This example isn’t particularly practical, because you can already supply an array of
files when you create a CacheDependency object to get the same effect. The real value of
AggregateCacheDependency appears when you need to wrap different types of objects that
derive from CacheDependency. Because the AggregateCacheDependency.Add() method
supports any CacheDependency-derived object, you could create a single dependency
that incorporates a file dependency, a SQL cache dependency, and even a custom cache
dependency.

The Item Removed Callback
ASP.NET also allows you to write a callback method that will be triggered when an item is
removed from the cache. You can place the method that handles the callback in your web-
page class, or you can use a static method in another accessible class. However, you should
keep in mind that this code won’t be executed as part of a web request. That means you can’t
interact with web-page objects or notify the user.

The following example uses a cache callback to make two items dependent on one another—
a feat that wouldn’t be possible with dependencies alone. Two items are inserted in the cache,
and when either one of those items is removed, the item removed callback removes the other.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 515

Figure 11-6 shows a test of this page.

Figure 11-6. Testing a cache callback

When you click Remove in this page, you’ll notice that the item removed callback actu-
ally fires twice: once for the item you’ve just removed (itemA) and once for the dependent
item (itemB). This doesn’t cause a problem, because it’s safe to call Cache.Remove() on items
that don’t exist. However, if you have other cleanup steps (such as deleting a file), you need to
make sure that they aren’t performed twice.

The callback also provides your code with additional information, including the removed
item and the reason it was removed. Table 11-4 shows possible reasons.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES516

Table 11-4. Values for the CacheItemRemovedReason Enumeration

Value Description
DependencyChanged Removed because a file or key dependency changed

Expired Removed because it expired (according to its sliding or absolute expiration
policy)

Removed Removed programmatically by a Remove method call or by an Insert
method call that specified the same key

Underused Removed because ASP.NET decided it wasn’t important enough and
wanted to free memory

There are a few reasons that you might choose to use the item removed callback. As in this
example, you might use it to implement complex dependency logic. Or, you might use it to clean
up other related resources (such as a temporary file on the hard drive).

You can also use the item removed callback to recreate an item when it expires. This is
primarily useful if the item is time-consuming to create, and so you want to create it before it’s
used in a request. (For example, you could use the item removed callback to get data from a
remote component or web service.) However, you should be careful when using this technique
that you don’t waste time generating data that’s rarely used. You must also check the reason
the item is removed by examining the CacheItemRemovedReason value. If the item has been
removed due to normal expiry (Expired) or dependencies (DependencyChanged), you can
usually recreate it safely. If the item has been removed manually (Removed) or due to cache
scavenging (Underused), you’re best not to recreate it, because the item might be quickly dis-
carded again. Above all, you want to ensure that your code doesn’t get trapped into a cycle of
recreating the same item over and over again in quick succession.

Understanding SQL Cache Notifications
SQL cache dependencies give you the ability to automatically invalidate a cached data object
(such as a DataSet) when the related data is modified in the database. This feature is supported
in both SQL Server 2005 and in SQL Server 2000, although the underlying plumbing is quite a
bit different.

To understand how SQL cache dependencies work, it’s important to understand a few
flawed solutions that developers have been forced to resort to in the past.

One common technique is to use a marker file. With this technique, you add the data
object to the cache and set up a file dependency. However, the file you use is empty—it’s
just a marker file that’s intended to indicate when the database state changes.

Here’s how it works. When the user calls a stored procedure that modifies the table you’re
interested in, your stored procedure removes or modifies the marker file. ASP.NET immedi-
ately detects the file change and removes the corresponding data object. This ugly workaround
isn’t terribly scalable and can introduce concurrency problems if more than one user calls the
stored procedure and tries to remove the file at once. It also forces you to clutter your stored
procedure code, because every stored procedure that modifies the database needs similar file
modification logic. Having a database interact with the file system is a bad idea from the start,
because it adds to the complexity and reduces the security of your overall system.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 517

Another common approach is to use a custom HTTP handler that removes cached items
at your request. Once again, this only works if you build the appropriate level of support into
the stored procedures that modify the corresponding tables. In this case, instead of interacting
with a file, these stored procedures call the custom HTTP handler and pass a query string that
indicates what change has taken place or what cache key has been affected. The HTTP handler
can then use the Cache.Remove() method to get rid of the data.

The problem with this approach is that it requires the considerable complexity of an
extended stored procedure. Also, the request to the HTTP handler must be synchronous,
which causes a significant delay. Even worse, this delay happens every time the stored
procedure executes, because the stored procedure has no way of determining if the call is
necessary or if the cached item has already been removed. As a result, the overall time taken
to execute the stored procedure increases significantly, and the overall scalability of the
database suffers. Like the marker file approach, it works well in small scenarios but can’t
handle large-scale, complex applications. Both of these approaches introduce a whole other
set of complications in web farm scenarios with multiple servers.

What’s needed is an approach that can deliver notifications asynchronously, and in a scal-
able and reliable fashion. In other words, the database server should notify ASP.NET without
stalling the current connection. Just as importantly, it should be possible to set up the cache
dependency in a loosely coupled way so that stored procedures don’t need to be aware of the
caching that’s in place. The database server should watch for changes that are committed by
any means, including from a script, an inline SQL command, or a batch process. Even if the
change doesn’t go through the expected stored procedures, the change should still be noticed,
and the notification should still be delivered to ASP.NET. Finally, the notification method
needs to support web farms.

Microsoft put together a team of architects from the ASP.NET, SQL Server, ADO.NET, and
IIS groups to concoct a solution. They came up with two different architectures, depending
on the database server you’re using. Both of them use the same SqlCacheDependency class,
which derives from the CacheDependency class you saw earlier.

Tip Using SQL cache dependencies still entails more complexity than just using a time-based expiration
policy. If it’s acceptable for certain information to be used without reflecting all the most recent changes (and
developers often overestimate the importance of up-to-the-millisecond live information), you may not need it
at all.

Cache Notifications in SQL Server 2000 and SQL Server 7
ASP.NET uses a polling model for SQL Server 2000 and SQL Server 7. Older versions of SQL
Server and other databases aren’t supported (although third parties can implement their own
solutions by creating a custom dependency class).

With the polling model, ASP.NET keeps a connection open to the database and uses a
dedicated thread to check periodically if a table has been updated. The effect of tying up one
connection in this way isn’t terribly significant, but the extra database work involved with
polling does add some database overhead. For the polling model to be effective, the polling
process needs to be quicker and lighter than the original query that extracts the data.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES518

Enabling Notifications
Before you can use SQL Server cache invalidation, you need to enable notifications for the
database. This task is performed with the aspnet_regsql.exe command-line utility, which is
located in the c:\Windows\Microsoft.NET\Framework\v2.0.50727 directory. To enable noti-
fications, you need to use the -ed command-line switch. You also need to identify the server
(use -E for a trusted connection and -S to choose a server other than the current computer)
and the database (use -d). Here’s an example that enables notifications for the Northwind
database on the current server:

Tip You’ll see aspnet_regsql used throughout this book. It’s required to create the tables for several ASP.NET
features, including membership, profiles, and role management.

When you take this step, a new table named SqlCacheTablesForChangeNotification is
added to the Northwind database. The SqlCacheTablesForChangeNotification table has three
columns: tableName, notificationCreated, and changeId. This table is used to track changes.
Essentially, when a change takes place, a record is written into this table. The SQL Server poll-
ing queries this table.

This design achieves a number of benefits:

data, it’s much faster to query.

won’t risk locking and concurrency issues.

can monitor several tables at once without materially increasing the polling overhead.

Figure 11-7 shows an overview of how SQL Server 2000 cache invalidation works.

Figure 11-7. Monitoring a database for changes in SQL Server 2000

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 519

The aspnet_regsql utility adds several stored procedures to the database, as listed in
Table 11-5.

Table 11-5. Stored Procedures for Managing Notifications

Name Description
AspNet_SqlCachePolling
StoredProcedure

Gets the list of changes from the AspNet_SqlCacheTables
ForChangeNotification table; used to perform the polling.

AspNet_SqlCacheQuery
RegisteredTablesStoredProcedure

Extracts just the table names from the AspNet_SqlCache
TablesForChangeNotification table; used to get a quick look at
all the registered tables.

AspNet_SqlCacheRegister
TableStoredProcedure

Sets a table up to support notifications. This process works by
adding a notification trigger to the table, which will fire when
any row is inserted, deleted, or updated.

AspNet_SqlCacheUnRegister
TableStoredProcedure

Takes a registered table and removes the notification trigger
so that notifications won’t be generated.

AspNet_SqlCacheUpdate
ChangeIdStoredProcedure

Called by the notification trigger to update the AspNet_
SqlCacheTablesForChangeNotification, thereby indicating
that the table has changed.

Even once you’ve created the SqlCacheTablesForChangeNotification table, you still need
to enable notification support for each individual table. You can do this manually using the
SqlCacheRegisterTableStoredProcedure, or you can rely on aspnet_regsql, using the -et param-
eter to turn on the notifications and the -t parameter to name the table. Here’s an example that
enables notifications for the Employees table:

This step generates the notification trigger for the Employees table.

How Notifications Work
Now you have all the ingredients in place to use the notification system. For example, imagine
you cache the results of a query like this:

This query retrieves records from the Employees table. To check for changes that might invali-
date your cached object, you need to know if any record in the Employees table is inserted,
deleted, or updated. You can watch for these operations using triggers. For example, here’s the
trigger on the Employees table that aspnet_regsql creates:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES520

The AspNet_SqlCacheUpdateChangeIdStoredProcedure stored procedure simply incre-
ments the changeId for the table:

The AspNet_SqlCacheTablesForChangeNotification contains a single record for every
table you’re monitoring. As you can see, when you make a change in the table (such as insert-
ing a record), the changeId column is incremented by 1. ASP.NET queries this table repeatedly
and keeps track of the most recent changeId values for every table. When this value changes in
a subsequent read, ASP.NET knows that the table has changed.

This hints at one of the major limitations of cache invalidation as implemented in SQL
Server 2000 and SQL Server 7. Any change to the table is deemed to invalidate any query for
that table. In other words, if you use this query:

the caching still works in the same way. That means if any employee record is touched, even if
the employee resides in another city (and therefore isn’t one of the cached records), the noti-
fication is still sent and the cached item is considered invalid. Keeping track of what changes
do and do not invalidate a cached data object is simply too much work for SQL Server 2000
(although it is possible in SQL Server 2005).

Tip The implementation of cache invalidation with SQL Server 2000 has more overhead than the imple-
mentation with SQL Server 2005 and isn’t as fine-grained. As a result, it doesn’t make sense for tables that
change frequently or for narrowly defined queries that retrieve only a small subset of records from a table.

Enabling ASP.NET Polling
The next step is to instruct ASP.NET to poll the database. You do this on a per-application
basis. In other words, every application that uses cache invalidation will hold a separate con-
nection and poll the notification table on its own.

To enable the polling service, you use the <sqlCacheDependency> element in the web.
config file. You set the enabled attribute to true to turn it on, and you set the pollTime attri-
bute to the number of milliseconds between each poll. (The higher the poll time, the longer
the potential delay before a change is detected.) You also need to supply the connection string
information.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 521

For example, this web.config file checks for updated notification information every 15
seconds:

Creating the Cache Dependency
Now that you’ve seen how to set up your database to support SQL Server notifications, the
only remaining detail is the code, which is quite straightforward. You can use your cache
dependency with programmatic data caching, a data source control, and output caching.

For programmatic data caching, you need to create a new SqlCacheDependency and
supply that to the Cache.Insert() method, much as you did with file dependencies. In the
 SqlCacheDependency constructor, you supply two strings. The first is the name of the data-
base you defined in the <add> element in the <sqlCacheDependency> section of the web.
config file. The second is the name of the linked table.

Here’s an example:

To perform the same trick with output caching, you simply need to set the
SqlCacheDependency property with the database dependency name and the table name,
separated by a colon:

You can also set the dependency using programmatic output caching with the Response.
AddCacheDependency() method:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES522

Finally, the same technique works with the SqlDataSource and ObjectDataSource
controls:

To try a complete example, you can use the downloadable code for this chapter.

Cache Notifications in SQL Server 2005 and SQL Server 2008
SQL Server 2005 and 2008 get closest to the ideal notification solution, because the notification
infrastructure is built into the database with a messaging system, called the Service Broker.
The Service Broker manages queues, which are database objects that have the same standing
as tables, stored procedures, or views.

Using the Service Broker, you can receive notifications for specific database events. The
most direct approach is to use the CREATE EVENT NOTIFICATION command to indicate the
event you want to monitor. However, .NET offers a higher-level model that’s integrated with
ADO.NET. Using this model, you simply register a query command, and .NET automatically
instructs SQL Server to send notifications for any operations that would affect the results of
that query. ASP.NET offers an even higher-level model that builds on this infrastructure, and
allows you to invalidate cached items automatically when a query is invalidated.

The SQL Server notification mechanism works in a similar way to indexed views. Every
time you perform an operation, SQL Server determines whether your operation affects a regis-
tered command. If it does, SQL Server sends a notification message and stops the notification
process.

When using notification with SQL Server 2005 or 2008, you get the following benefits over
SQL Server 2000:

Finer-grained notification: Instead of invalidating your cached object when the table
changes, SQL Server invalidates your object only when a row that affects your query is
inserted, updated, or deleted.

More intelligent notification: A notification message is sent the first time the data is
changed, but not if the data is changed again (unless you re-register for notification mes-
sages by adding an item back to the cache).

Fewer configuration steps: You do not run aspnet_regsql to generate special tables or add
polling settings to the web.config file.

Figure 11-8 shows an overview of how cache invalidation works in SQL Server 2005 and
2008.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 523

Figure 11-8. Monitoring a database for changes in SQL Server 2005

Enabling Notifications
The only configuration step you need to perform is to make sure your database has the
ENABLE_BROKER flag set. You can perform this by running the following SQL (assuming
you’re using the Northwind database):

Notifications work with SELECT queries and stored procedures. However, some restric-
tions exist for the SELECT syntax you can use. To properly support notifications, your
command must adhere to the following rules:

just Employees).

, MAX(), MIN(), or
AVERAGE().

 the wildcard * (as in SELECT * FROM Employees).
Instead, you must specifically name each column so that SQL Server can properly track
changes that do and do not affect the results of your query.

Here’s an acceptable query:

These are the most important rules, but SQL Server Books Online has a lengthy list of
caveats and exceptions. If you break one of these rules, you won’t receive an error. However,
the notification message will be sent as soon as you register the command, and the cached
item will be invalidated immediately.

Creating the Cache Dependency
You use a different syntax to use SQL cache dependencies with SQL Server 2005 (and 2008)
than you do with SQL Server 2000. That’s because it’s not enough to simply identify the data-
base name and table— instead, SQL Server needs to know the exact database command you’re
using to retrieve your data.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES524

If you use programmatic caching, you must create the SqlCacheDependency using the
constructor that accepts a SqlCommand object. Here’s an example:

You also need to call the static SqlDependency.Start() method to initialize the listening
service on the web server. This needs to be performed only once for each database connection.
One place you can call the Start() method is in the Application_Start() method of the global.asax
file.

This method opens a new, nonpooled connection to the database. ASP.NET checks the
queue for notifications using this connection. The first time you call Start(), a new queue is
created with a unique, automatically generated name, and a new notification service is created
for that queue. Then, the listening begins. When a notification is received, the web server pulls
it from the queue, raises the SqlDependency.OnChange event, and invalidates the cached item.

Even if you have dependencies on several different tables, the same queue is used for all
of them. That means you need only a single call to SqlDependency.Start(). If you inadvertently
call the Start() method more than once, nothing happens.

Finally, you can use the following code to detach the listener:

Typically, you’ll use this when the Application_End() method is called to detach the lis-
tener and release all resources.

Tip Polling works best with data that’s used heavily and changes infrequently. That way, you minimize
the overhead of the notification process.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 525

Custom Cache Dependencies
ASP.NET gives you the ability to create your own custom cache dependencies by deriving
from CacheDependency, in much the same way that SqlCacheDependency does. This feature
allows you (or third-party developers) to create dependencies that wrap other databases or to
create resources such as message queues, Active Directory queries, and even web service calls.

Designing a custom CacheDependency is remarkably easy. All you need to do is start
some asynchronous task that checks when the dependent item has changed. When it has, you
call the base CacheDependency.NotifyDependencyChanged() method. In response, the base
class updates the values of the HasChanged and UtcLastModified properties, and ASP.NET
will remove any linked item from the cache.

You can use one of several techniques to create a custom cache dependency. Here are
some typical examples:

Start a timer: When this timer fires, poll your resource to see if it has changed.

Start a separate thread: On this thread, check your resource and, if necessary, pause
between checks by sleeping the thread.

Attach an event handler to another component: When the event fires, check your
resource. For example, you could use this technique with the FileSystemWatcher to
watch for a specific type of file change (such as file deletion).

In every case, you perform the basic initialization (attaching event handlers, creating a
separate thread, and so on) in the constructor for your dependency.

A Basic Custom Cache Dependency
The following example shows an exceedingly simple custom cache dependency class. This
class uses a timer to periodically check if a cached item is still valid.

The first step is to create the class by deriving from CacheDependency:

When the dependency is first created, you can set up the timer. In this example, the polling
time isn’t configurable—it’s hard-coded at 5 seconds. That means every 5 seconds the timer
fires and the dependency check runs.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES526

As a test, the dependency check simply counts the number of times it’s called. Once it’s
called for the fifth time (after a total of about 25 seconds), it invalidates the cached item. The
important part of this example is how it tells ASP.NET to remove the dependent item. All you
need to do is call the base CacheDependency.NotifyDependencyChanged() method, passing
in a reference to the event sender (the current object) and any event arguments.

The last step is to override DependencyDispose() to perform any cleanup that you need.
DependencyDispose() is called soon after you use the NotifyDependencyChanged() method
to invalidate the cached item. At this point, the dependency is no longer needed.

Once you’ve created a custom dependency class, you can use it in the same way as the
CacheDependency class, by supplying it as a parameter when you call Cache.Insert():

A Custom Cache Dependency Using Message Queues
Now that you’ve seen how to create a basic custom cache dependency, it’s worth considering
a more practical example. The following MessageQueueCacheDependency monitors a Micro-
soft Messaging Queuing (MSMQ) queue. As soon as that queue receives a message, the item
is considered expired (although you could easily extend the class so that it waits to receive a
specific message). The MessageQueueCacheDependency class could come in handy if you’re
building the backbone of a distributed system and you need to pass messages between com-
ponents on different computers to notify them when certain actions are performed or changes
are made.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 527

Note MSMQ is included with Windows but not necessarily installed by default. To install it on Windows XP
(or Windows Server 2003), click the Add/Remove Components icon in the Control Panel, click Add Windows
Components, and make sure Message Queuing Services is checked.

To install MSMQ in Windows Vista (or Windows Server 2008), double-click the Programs and Features
icon in the Control Panel, and then click Turn Windows Features On or Off. At minimum, you need to place
a check mark next to Microsoft Message Queuing (MSMQ) Server and Microsoft Message Queuing (MSMQ)
Server Core (which is nested underneath).

Before you can create the MessageQueueCacheDependency, you need to add a reference
to the System.Messaging.dll assembly and import the System.Messaging namespace where the
MessageQueue and Message classes reside. Then you’re ready to build the solution.

In this example, the MessageQueueCacheDependency is able to monitor any queue.
When you instantiate the dependency, you supply the queue name (which includes the loca-
tion information). To perform the monitoring, the MessageQueueCacheDependency fires its
private WaitForMessage() method asynchronously. This method waits until a new message
is received in the queue, at which point it calls NotifyDependencyChanged() to invalidate the
cached item.

Here’s the complete code for the MessageQueueCacheDependency:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES528

To test this, you can use a revised version of the file-dependency testing page shown ear-
lier (see Figure 11-9).

Figure 11-9. Testing a message queue dependency

This page creates a new private cache on the current computer and then adds a new item
to the cache with a dependency on that queue:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 529

When you click Send Message, a simple text message is sent to the queue, which will be
received almost instantaneously by the custom dependency class:

To learn more about MSMQ, you can refer to the Visual Studio Help.

Asynchronous Pages
Now that you’ve considered the fundamentals of ASP.NET caching, it’s worth taking a detour
to consider a different performance-enhancing technique: asynchronous web pages. This
specialized feature can help boost the scalability of your website. It’s particularly useful in web
pages that include time-consuming code that queries a database.

The basic idea behind asynchronous web pages is they allow you to take code that involves
significant waiting and move it to a non-ASP.NET thread. To understand the potential benefit
of this technique, you need to know a little bit more about how ASP.NET handles requests (a
topic that Chapter 18 tackles in more detail).

Essentially, .NET maintains a pool of threads that can handle page requests. When a
new request is received, ASP.NET grabs one of the available threads and uses it to process
the entire page. That same thread instantiates the page, runs your event handling code, and
returns the rendered HTML. If ASP.NET receives requests at a rapid pace—faster than it can
serve them—unhandled requests will build up in a queue. If the queue fills up, ASP.NET is
forced to reject additional requests with 503 “Server Unavailable” errors.

For most situations, the ASP.NET process model is the best possible compromise. How-
ever, there is a possible exception. If your page code involves lengthy waiting—for example, it
tries to read a file from a remote location, call an object or web service on a distant computer,
or query large amounts of data from a slow database—you’ll tie up a request processing thread
even though no real work is being performed. In other words, the web server has the process-
ing resources to handle more requests (because your thread isn’t using the CPU), but it doesn’t
have any available threads. Depending on the wait time and the volume of requests on your
website, this could adversely affect the overall throughput of your site, preventing it from han-
dling as many requests as it should be able to handle.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES530

Note The actual number of threads in the pool and the size of the request queue are influenced by sev-
eral factors, including the version of IIS you’re using and the number of CPUs on your computer. It’s always
best to let ASP.NET handle these details, because it’s most successful at balancing all the requirements. If
you have too many ASP.NET threads running at once, your threads will tax the CPU (or fight over other limited
resources) and ultimately slow down the entire web server. It’s always better to stall or reject some requests
than have the server attempt to handle too many requests and fail to complete any of them.

If you have a page that involves a fair bit of waiting, you can use the asynchronous page
feature to free up the ASP.NET request thread. By doing so, your request is moved to another
thread pool. (Technically, you’re using the I/O completion port feature, which is built into the
Windows operating system.) When your asynchronous work is finished, ASP.NET is notified,
and the next available thread in the ASP.NET thread pool finishes the work, rendering the final
HTML.

It’s important to understand that an asynchronous page is no faster than a normal, syn-
chronous page. In fact, the overhead of switching to the new thread and back again is likely
to make it a bit slower. The advantage is that other requests—ones that don’t involve long
operations—can get served more quickly. This improves the overall scalability of your site.
It’s also important to realize that the asynchronous processing takes place completely on the
web server, and the web page user won’t notice any difference—wait times and postbacks
will still take just as long.

Note Asynchronous web pages shouldn’t be confused with asynchronous client-side programming
techniques (such as Ajax, which is discussed in Chapter 31). The potential advantage of server-side asyn-
chronous web page processing is that it allows you to deal with time-consuming requests more efficiently,
so that other users won’t need to wait when traffic is heavy. The potential advantage of client-side asynchro-
nous programming is that the page seems more responsive to the end user.

Creating an Asynchronous Page
The first step to building an asynchronous page is setting the Async attribute in the Page direc-
tive to true, as shown here:

This tells ASP.NET that the page class it generates should implement IHttpAsyncHandler
instead of IHttpHandler, which gives it basic support for asynchronous operations.

The next step is to call the AddOnPreRenderCompleteAsync() method of the page, typi-
cally when the page first loads. This method takes two delegates, which point to two separate
methods. The first method launches your asynchronous task. The second method handles the
completion callback for your asynchronous task. Here’s the syntax you need:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 531

When ASP.NET encounters this statement, it takes note of it and then completes the nor-
mal page-processing life cycle, stopping just after the PreRender event fires. Then, ASP.NET
calls the begin method you registered with AddOnPreRenderCompleteAsync(). If coded cor-
rectly, the begin method launches an asynchronous task and returns immediately, allowing
the ASP.NET thread to be assigned to another request while the asynchronous task continues
on another thread. When the task is complete, ASP.NET acquires a thread from its thread pool,
runs the end method, and renders the page. Figure 11-10 illustrates this process.

Figure 11-10. The life cycle of an asynchronous page

Unfortunately, this has one significant catch. To take advantage of this design, you need to
have an asynchronous method that plugs into this infrastructure. This means you need a task
that launches itself on a separate thread and returns an IAsyncResult object that allows ASP.NET
to determine when it’s complete. At first glance, it seems that several possible techniques can
accomplish this. However, most of these won’t work correctly in an ASP.NET application.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES532

For example, seasoned .NET developers may expect to use the BeginInvoke() method of
a delegate or the ThreadPool.QueueUserWorkItem() method. Unfortunately, both of these
methods draw from the same thread pool that ASP.NET uses, which makes them ineffective.
When you use these techniques in conjunction with an asynchronous page, you relinquish
the original page-processing thread, but you acquire a second thread from the same pool.
(The online examples include a page named SimpleAsyncPage.aspx that demonstrates how
this works.)

Another option is to use the Thread class to explicitly create your own threads. Unfortu-
nately, this is a risky endeavor, because it can easily lead to a page that creates more work than
the server can handle. To understand the problem, consider what happens if a page creates a
custom thread and that page is requested 100 times in quick succession. The web server winds
up managing 100 threads, which taxes performance even if these threads are doing no work
at all. In a popular website, you might create so many threads that the server can’t complete
any requests. Furthermore, the act of thread creation itself has some overhead. A good thread
pooling system avoids thread creation and maintains a small set of threads at the ready at all
times.

That leaves you with only two options, one of which is writing a custom thread pool. This
means you use the low-level Thread class but take care to limit the total number of threads
you’ll create. This technique is not trivial, and it’s beyond the scope of this book. You can find
an excellent (although not necessarily production-ready) example of a custom thread pool at

.
So, what’s the alternative if you wisely decide not to create a custom thread pool? The

recommended approach is to use existing support in the .NET class library. For example,
.NET includes various classes that provide proper asynchronous support for downloading
content from the Web, reading data from a file, contacting a web service, and querying data
through a DataReader. In general, this support is provided through matching methods named
BeginXxx() and EndXxx(). For example, the System.IO.FileStream class provides a BeginRead()
and an EndRead() method for asynchronously retrieving data from a file. These methods use
Windows I/O completion ports, so they don’t require threads from the shared thread pool that
ASP.NET uses. If you use these methods in conjunction with an asynchronous page, you will
free up another thread to serve ASP.NET web page requests.

In the following section, you’ll see a similar example that uses the asynchronous support
that’s built into the DataReader.

Querying Data in an Asynchronous Page
The data source controls don’t have any asynchronous support. However, many of the under-
lying ADO.NET classes, including SqlCommand and SqlDataReader, have asynchronous
support. The following page takes advantage of the BeginReader() and EndReader() methods
of the SqlDataReader. To allow the asynchronous query, you need to explicitly enable it in the
connection string, as shown in the following snippet from the web.config file:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 533

The first step is to register the methods that perform the asynchronous task. This step is
the same in any asynchronous web page:

When the BeginTask() method is called, you can launch the asynchronous operation:

The EndTask() method fires automatically when the IAsyncResult object indicates the
BeginExecuteReader() method has finished its work and retrieved all the data:

If you want to perform more page processing, you can handle the Page.PreRenderComplete
event. In this example, this is the point where the grid is filled with the retrieved data:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES534

Finally, you need to override the Dispose() method of the page to ensure that the connec-
tion is closed in the event of an error:

Overall, the asynchronous data retrieval makes this page more complex. The actual bind-
ing needs to be performed by hand (rather than using a data source control), and it spans
several methods. However, the end result is a more scalable web application, assuming the
query takes a significant amount of time to execute.

Handling Errors
Currently, the asynchronous DataReader page has no error-handling code, which makes it
unsuitable for a real-world application. Implementing error handling isn’t difficult, but because
of the multistage nature of asynchronous pages, it may need to be performed in several places.

The easiest part of error handling is dealing with exceptions that occur during the asyn-
chronous operation. By convention, these exceptions are thrown when you call the EndXxx()
method. In the DataReader example, that means any query problems will cause an exception
to be thrown when you call EndExecuteReader(). Here’s how you catch it:

You can test this code by modifying the query to be intentionally incorrect. (For example,
create a query that refers to a nonexistent table.)

The other possible point of failure is when you attempt to open the connection. An
exception occurs here if the connection string is invalid or if you’re trying to connect a data-
base server that doesn’t exist. Although it’s easy to catch the resulting exception, it’s not as
easy to deal with it gracefully. That’s because this error occurs in your begin method. Once
you’ve reached the begin method, you’re at the point of no return—you’ve started an asyn-

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 535

chronous operation, and ASP.NET expects you to return an IAsyncResult object. If you return
Nothing, the page processing will be interrupted with an InvalidOperationException.

The solution is to create a custom IAsyncResult class that signals the operation is com-
plete. This IAsyncResult class can also track the exception details, so you can retrieve them
in your end method and use them to report the error. Here’s an IAsyncResult-based class
that includes these details:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES536

Now if a connection error occurs, you can return an instance of this connection object
instead of relying on the BeginExecuteReader() method. Here’s the changed code:

The only problem with this approach is that you need to explicitly check the type of
 IAsyncResult object in your end method. That way, you can detect an error condition.

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 537

To try this, modify the connection string to point to an invalid server or database, and run
the page. Your begin method will catch the error, and your end method will deal with it appro-
priately (in this example, by showing a message on the page).

Note Ideally, this tactic (checking the object type) wouldn’t be necessary. Instead, you would simply call
the EndExecuteReader() method and pass in the CompletedSyncResult object, and it would rethrow whatever
exception object is stored in the CompletedSyncResult.OperationException property. Unfortunately, you can’t
implement this design because you don’t own the EndExecuteReader() code. The only alternative is to wrap
the BeginExecuteReader() and EndExecuteReader() methods in another, higher-level class (which is need-
lessly complex) or inspect the IAsyncResult object as shown here.

Using Caching with Asynchronous Tasks
In the previous example, you saw how you could skip over the asynchronous processing stage
when an error occurs by using a custom class that implements IAsyncResult. However, you
might want to stop a requested asynchronous operation before it gets started for other reasons.
One example is if you’ve found the data you need in the cache. In this case, you don’t need to
waste time with a trip to the database.

You can handle this situation in more than one way. One option is to check the cache when
the page is first created and register the asynchronous task only if you can’t find the data object
you need. However, sometimes you won’t decide to skip the asynchronous processing stage
until later, after your begin method has already been called. In other situations, you might want
to make sure that ASP.NET runs the code in your end method, even though you’re not per-
forming an asynchronous operation. In both of these situations, you need a way to cancel your
asynchronous task and return the data you need immediately.

Once again, the solution is to use a custom IAsyncResult object. In fact, you can use the
CompletedSyncResult class developed in the previous section, with just a few minor changes.
First, you need a way to store the data that you want to return:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES538

Notice that this property uses a different error-handling design than the first version of
CompletedSyncResult. Now, when you try to read the Result property, CompletedSyncResult
checks for the presence of exception information. If an exception has occurred, there won’t be
any data. This is the perfect time to rethrow the exception to alert the caller.

The second detail you need is another constructor. This constructor should accept the
result object but not require any exception information:

Now you can modify your begin method to implement the caching. In this case, data is
stored in a DataTable object. (The DataReader can’t be efficiently cached, because it’s usable
only one time, and it holds an open database connection.)

Here’s the code that checks the cache for the DataTable and uses CompletedSyncResult
to return it without any asynchronous processing if it’s there:

The EndTask() method also needs a few changes. First, it checks whether the
 IAsyncResult object it has received is a CompletedSyncResult instance. If it is, it attempts to
read the CompletedSyncResult.Result property. At this point, an error is thrown if needed.
If the IAsyncResult isn’t a CompletedSyncResult, the code calls EndExecuteReader() to get
the DataReader, uses the DataReader to fill a DataTable with the handy DataTable.Load()
method, and then stores the DataTable in the cache for 5 minutes so it can be used by sub-
sequent requests.

Here’s the complete code for the end method:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 539

When the Page.PreRenderComplete event fires, the DataTable is bound to the grid:

This example shows the entire process, but the code isn’t arranged in the most struc-
tured way. You can improve this code by completely wrapping the BeginExecuteReader()
and EndExecuteReader() methods in the CompletedSyncResult class. That way, your web
page deals with only one type of IAsyncResult object.

Note To see an example of this more streamlined design, refer to the AsyncDataReaderRefactored.aspx
page in the samples for this chapter. This page uses an IAsyncResult-based class named AsyncQueryResult,
which supports synchronous use (when an error occurs or the data object is provided in the constructor) and
asynchronous use (through the BeginExecuteReader() and EndExecuteReader() methods).

Multiple Asynchronous Tasks and Timeouts
In some situations, you might have a series of asynchronous tasks that can be completed at the
same time. For example, maybe you have several web services that you want to call and they
all involve a considerable wait. By performing these calls simultaneously, you can collapse

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES540

your waiting time (in other words, you can wait for a response from all three web services at
once).

Tip Performing simultaneous asynchronous tasks is a good technique when your tasks involve differ-
ent resources. It’s a bad idea if your tasks will compete for the same resource. For example, a page that
performs three database queries at once isn’t a good candidate for simultaneous execution, because you’ll
need to open three connections at the same time, which will probably have a negative effect on the overall
scalability of your site.

If you use AddOnPreRenderCompleteAsync() to register multiple tasks, they’ll be executed
sequentially. If you want to execute more than one simultaneous task, you need to use the
RegisterAsyncTask() method instead. This method takes a PageAsyncTask object that encap-
sulates all the request details.

Here’s an example that has the same end result as the AddOnPreRenderCompleteAsync()
statement in the previous example:

To perform simultaneous requests, just create more than one task object and call
 RegisterAsyncTask() for each one:

In this case, the final page rendering stage will be delayed until all the asynchronous tasks
have completed their processing.

The RegisterAsyncTask() method has a few other differences as compared to the
 AddOnPreRenderCompleteAsync() method. You may have noticed that it takes two additional
parameters. The first of these allows you to supply a delegate that points to a timeout method:

This method will be triggered if the asynchronous request times out. You can use this code
to display an explanatory error message on the page before it’s rendered and returned to the
user. Here’s an example that’s designed for the asynchronous DataReader page:

CHAPTER 11 CACHING AND ASYNCHRONOUS PAGES 541

By default, a timeout occurs after 45 seconds, but you can supply a different timeout value
using the AsyncTimeout property of the Page directive, as shown here:

Note The timeout affects all tasks. There is no way to set different timeouts to different asynchronous
tasks.

The final parameter of the PageAsyncTask() constructor is an optional state object, which
you can use to pass any information you need to your begin method.

The other difference with the RegisterAsyncTask() is that the current HttpContext is passed
to your end and timeout methods. This means you can use properties such as Page.Request
to get information about the current request. This information isn’t available to asynchronous
tasks that have been registered using AddOnPreRenderCompleteAsync().

Summary
In this chapter, you took a detailed look at caching, which is one of ASP.NET’s premier fea-
tures. As a professional ASP.NET programmer, you should design with caching strategies in
mind from the beginning. Caching is particularly important when using the data source con-
trols, which can exert a sizeable footprint because they repeat their database queries for every
page request.

543

C H A P T E R 1 2

Files and Streams

Most web applications rely heavily on databases to store information. Databases are unmatched
in multiuser scenarios. They handle simultaneous access without a hitch, and they support cach-
ing and low- level disk optimizations that guarantee blistering performance. Quite simply, an
RDBMS (Relational Database Management System) offers the most robust and best- performing
storage for data.

Of course, most web developers inevitably face a scenario where they need to access data
in other locations, such as the file system. Common examples include reading information
produced by another application, writing a quick-and- dirty log for testing purposes, and creat-
ing a management page that allows administrators to upload files and view what’s currently
on the server. In this chapter, you’ll learn how to use the classes in the System.IO namespace
to get file system information, work with file paths as strings, write and read files, and serialize
objects.

Working with the File System
The simplest level of file access just involves retrieving information about existing files and
directories and performing typical file system operations such as copying files and creating
directories. These tasks don’t involve actually opening or writing a file (both of which are tasks
you’ll learn about later in this chapter).

The .NET Framework provides a few basic classes for retrieving file system information.
They are all located in the System.IO namespace (and, incidentally, can be used in desktop
applications in the same way they are used in web applications). They include the following:

Directory and File: These classes provide static methods that allow you to retrieve infor-
mation about any files and directories that are visible from your server.

DriveInfo, DirectoryInfo, and FileInfo: These classes use similar instance methods and
properties to retrieve the same information.

These two sets of classes provide similar methods and properties. The key difference is that
you need to create a DirectoryInfo or FileInfo object before you can use any methods, whereas
the static methods of the Directory and File classes are always available. Typically, the Directory
and File classes are more convenient for one- off tasks. On the other hand, if you need to retrieve

CHAPTER 12 F ILES AND STREAMS544

several pieces of information, it’s better to create DirectoryInfo and FileInfo objects. That way
you don’t need to keep specifying the name of the directory or file each time you call a method.
It’s also faster. That’s because the FileInfo and DirectoryInfo classes perform their security
checks once—when you create the object instance. The Directory and File classes perform
a security check every time you invoke a method.

The Directory and File Classes
The Directory and File classes provide a number of useful methods. Tables 12- 1 and 12- 2 tell
the whole story. Note that every method takes the same parameter: a fully qualified path name
identifying the directory or file you want the operation to act on.

Table 12-1. Directory Methods

Method Description
CreateDirectory() Creates a new directory. If you specify a directory inside another non-

existent directory, ASP.NET will thoughtfully create all the required
directories.

Delete() Deletes the corresponding empty directory. To delete a directory
along with its contents (subdirectories and files), add the optional
second parameter of true.

Exists() Returns true or false to indicate whether the specified directory exists.

GetCreationTime(),
 GetLastAccessTime(), and
GetLastWriteTime()

Returns a DateTime object that represents the time the directory was
created, accessed, or written to. Each “Get” method has a correspond-
ing “Set” method, which isn’t shown in this table.

GetDirectories() and
GetFiles()

Returns an array of strings, one for each subdirectory or file in the
specified directory. These methods can accept a second parameter
that specifies a search expression (such as ASP*.*).

GetLogicalDrives() Returns an array of strings, one for each drive that’s defined on the
current computer. Drive letters are in this format: c:\.

GetParent() Parses the supplied directory string and tells you what the parent
directory is. You could do this on your own by searching for the \
character (or, more generically, the Path.DirectorySeparatorChar),
but this function makes life a little easier.

GetCurrentDirectory() and
SetCurrentDirectory()

Allows you to set and retrieve the current directory, which is useful
if you need to use relative paths instead of full paths. Generally, you
shouldn’t rely on these functions—use full paths instead.

Move() Accepts two parameters: the source path and the destination path.
The directory and all its contents can be moved to any path, as long as
it’s located on the same drive.

GetAccessControl() and
SetAccessControl()

Returns or sets a System.Security.AccessControl.DirectorySecurity
object. You can use this object to examine the Windows access con-
trol lists (ACLs) that are applied on this directory and even change
them programmatically.

CHAPTER 12 F ILES AND STREAMS 545

Table 12-2. File Methods

Method Description
Copy() Accepts two parameters: the fully qualified source filename

and the fully qualified destination filename. To allow over-
writing, use the version that takes a Boolean third parameter
and set it to true.

Delete() Deletes the specified file but doesn’t throw an exception if the
file can’t be found.

Exists() Indicates true or false whether a specified file exists.

GetAttributes() and
SetAttributes()

Retrieves or sets an enumerated value that can include any
combination of the values from the FileAttributes enumeration.

GetCreationTime(),
GetLastAccessTime(), and
GetLastWriteTime()

Returns a DateTime object that represents the time the file
was created, accessed, or last written to. Each “Get” method
has a corresponding “Set” method, which isn’t shown in this
table.

Move() Accepts two parameters: the fully qualified source filename
and the fully qualified destination filename. You can move
a file across drives and even rename it while you move it (or
rename it without moving it).

Create() and CreateText() Creates the specified file and returns a FileStream object that
you can use to write to it. CreateText() performs the same task
but returns a StreamWriter object that wraps the stream.

Open(), OpenText(), OpenRead(),
and OpenWrite()

Opens a file (provided it exists). OpenText() and OpenRead()
open a file in read- only mode, returning a FileStream or
StreamReader. OpenWrite() opens a file in write- only mode,
returning a FileStream.

ReadAllText(), ReadAllLines(),
and ReadAllBytes()

Reads the entire file and returns its contents as a single string,
an array of strings (one for each line), or an array of bytes.
Use this method only for very small files. For larger files, use
streams to read one chunk at a time and reduce the memory
overhead.

WriteAllText(), WriteAllLines(),
and WriteAllBytes()

Writes an entire file in one shot using a supplied string, ar-
ray of strings (one for each line), or array of bytes. If the file
already exists, it is overwritten.

GetAccessControl() and
SetAccessControl()

Returns or sets a System.Security.AccessControl.FileSecurity
object. You can use this object to examine the Windows
ACLs that are applied on this directory and even change them
programmatically.

Tip The only feature that the File class lacks (and the FileInfo class provides) is the ability to retrieve the
size of a specified file.

CHAPTER 12 F ILES AND STREAMS546

The File and Directory methods are completely intuitive. For example, you could use this
code to write a dynamic list displaying the name of each file in the current directory:

Because the list of files is simply an ordinary list of strings, it can easily be bound to a list
control, resulting in the following more efficient syntax for displaying the files on a page:

Note For this code to work, the account that is used to run the ASP.NET worker process must have rights
to the directory you’re using. Otherwise, a SecurityException will be thrown when your web page attempts to
access the file system. You can modify the permissions for a directory by right- clicking the directory, select-
ing Properties, and choosing the Security tab.

If you’re using the default ASP.NET settings with IIS 5, you need to grant read and write permissions to
the ASPNET account. If you’re using IIS 6, you need to grant permissions to the IIS_WPG group, and if you’re
using IIS 7, you need to grant permissions to the IIS_USRS group. Alternatively, you can modify the account
that ASP.NET uses. For more information, refer to Chapter 18.

The DirectoryInfo and FileInfo Classes
The DirectoryInfo and FileInfo classes mirror the functionality in the Directory and File classes.
In addition, they make it easy to walk through directory and file relationships. For example,
you can easily retrieve the FileInfo objects of files in a directory represented by a DirectoryInfo
object.

Note that while the Directory and File classes expose only methods, DirectoryInfo
and FileInfo provide a combination of properties and methods. For example, while the File
class has separate GetAttributes() and SetAttributes() methods, the FileInfo class exposes
a read- write Attributes property.

Another nice thing about the DirectoryInfo and FileInfo classes is that they share a com-
mon set of properties and methods because they derive from the common FileSystemInfo base
class. Table 12-3 describes the members they have in common.

CHAPTER 12 F ILES AND STREAMS 547

Table 12-3. DirectoryInfo and FileInfo Members

Member Description
Attributes Allows you to retrieve or set attributes using a combination of

values from the FileAttributes enumeration.

CreationTime, LastAccessTime,
and LastWriteTime

Allows you to set or retrieve the creation time, last access time,
and last write time using a DateTime object.

Exists Returns true or false depending on whether the file or directory
exists. In other words, you can create FileInfo and DirectoryInfo
objects that don’t actually correspond to current physical di-
rectories, although you obviously won’t be able to use proper-
ties such as CreationTime and methods such as MoveTo().

FullName, Name, and Extension Returns a string that represents the fully qualified name, the
directory or filename (with extension), or the extension on its
own, depending on which property you use.

Delete() Removes the file or directory, if it exists. When deleting
a directory, it must be empty, or you must specify an optional
parameter set to true.

Refresh() Updates the object so it’s synchronized with any file system
changes that have happened in the meantime (for example, if
an attribute was changed manually using Windows Explorer).

Create() Creates the specified directory or file.

MoveTo() Copies the directory and its contents or the file. For a
 DirectoryInfo object, you need to specify the new path; for a
FileInfo object, you specify a path and filename.

In addition, the FileInfo and DirectoryInfo classes have a couple of unique members, as
indicated in Tables 12- 4 and 12- 5.

Table 12-4. Unique DirectoryInfo Members

Member Description
Parent and Root Returns a DirectoryInfo object that represents the parent or root

directory.

CreateSubdirectory() Creates a directory with the specified name in the directory represented
by the DirectoryInfo object. It also returns a new DirectoryInfo object
that represents the subdirectory.

GetDirectories() Returns an array of DirectoryInfo objects that represent all the subdi-
rectories contained in this directory.

GetFiles() Returns an array of FileInfo objects that represent all the files contained
in this directory.

CHAPTER 12 F ILES AND STREAMS548

Table 12-5. Unique FileInfo Members

Member Description
Directory Returns a DirectoryInfo object that represents the parent

directory.

DirectoryName Returns a string that identifies the name of the parent
directory.

Length Returns a long (64- bit integer) with the file size in bytes.

CopyTo() Copies a file to the new path and filename specified as a param-
eter. It also returns a new FileInfo object that represents the new
(copied) file. You can supply an optional additional parameter of
true to allow overwriting.

Create() and CreateText() Creates the specified file and returns a FileStream object that
you can use to write to it. CreateText() performs the same task
but returns a StreamWriter object that wraps the stream.

Open(), OpenRead(), OpenText(),
and OpenWrite()

Opens a file (provided it exists). OpenRead() and OpenText()
open a file in read- only mode, returning a FileStream or
StreamReader. OpenWrite() opens a file in write- only mode,
returning a FileStream.

When you create a DirectoryInfo or FileInfo object, you specify the full path in the con-
structor, as shown here:

When you create a new DirectoryInfo or FileInfo object, you’ll receive an exception if the
path you used isn’t properly formed (for example, if it contains illegal characters). However,
the path doesn’t need to correspond to a real physical file or directory. If you’re not sure, you
can use Exists to check whether your directory or file really exists.

If the file or directory doesn’t exist, you can always use a method such as Create() to create
it. Here’s an example:

CHAPTER 12 F ILES AND STREAMS 549

The FileInfo and DirectoryInfo objects retrieve information from the file system the first
time you query a property. They don’t check for new information on subsequent use. This
could lead to inconsistency if the file changes in the meantime. If you know or suspect that file
system information has changed for the given object, you should call the Refresh() method to
retrieve the latest information.

The DirectoryInfo class doesn’t provide any property for determining the total size infor-
mation. However, you can calculate the size of all the files in a particular directory quite easily
by totaling the FileInfo.Length contribution of each one.

Before you take this step, you need to decide whether to include subdirectories in the
total. The following method lets you use either approach:

For information about free space, you need to use the DriveInfo class.

The DriveInfo Class
The DriveInfo class allows you to retrieve information about a drive on your computer. Few
pieces of information will interest you—typically, the DriveInfo class is just used to retrieve the
total amount of used and free space.

 Table 12-6 shows the DriveInfo members.

CHAPTER 12 F ILES AND STREAMS550

Table 12-6. DriveInfo Members

Member Description
TotalSize Gets the total size of the drive, in bytes. This includes allocated and free

space.

TotalFreeSpace Gets the total amount of free space, in bytes.

AvailableFreeSpace Gets the total amount of available free space, in bytes. Available space
may be less than the total free space if you’ve applied disk quotas lim-
iting the space that the ASP.NET process can use.

DriveFormat Returns the name of the file system used on the drive (such as NTFS or
FAT32).

DriveType Returns a value from the DriveType enumeration, which indicates
whether the drive is a fixed, network, CD- ROM, RAM, or removable
drive. (It returns Unknown if the drive’s type cannot be determined.)

IsReady Returns whether the drive is ready for reading or writing operations. Re-
movable drives are considered “not ready” if they don’t have any media.
For example, if there’s no CD in a CD drive, IsReady will return false. In
this situation, it’s not safe to query the other DriveInfo properties. Fixed
drives are always readable.

Name Returns the drive letter name of the drive (such as C: or E:).

VolumeLabel Gets or sets the descriptive volume label for the drive. In an
 NTFS- formatted drive, the volume label can be up to 32 characters. If
not set, this property returns Nothing.

RootDirectory Returns a DirectoryInfo object for the root directory in this drive.

GetDrives() Retrieves an array of DriveInfo objects, representing all the logical
drives on the current computer.

Tip Attempting to read from a drive that’s not ready (for example, a CD drive that doesn’t currently have
a CD in it) will throw an exception. To avoid this problem, check the DriveInfo.IsReady property and attempt
to read other properties only if the DriveInfo.IsReady property returns true.

Working with Attributes
The Attributes property of the FileInfo and DirectoryInfo classes represents the file system
attributes for the file or directory. Because every file and directory can have a combination of
attributes, the Attributes property contains a combination of values from the FileAttributes
enumeration. Table 12-7 describes these values.

Table 12-7. Values for the FileAttributes Enumeration

Value Description
Archive The item is archived. Applications can use this attribute to mark files

for backup or removal, although it’s really just a holdover from older
 DOS- based operating systems.

Compressed The item is compressed.

CHAPTER 12 F ILES AND STREAMS 551

Value Description
Device Not currently used. Reserved for future use.

Directory The item is a directory.

Encrypted This item is encrypted. For a file, this means that all data in the file is en-
crypted. For a directory, this means that encryption is the default for newly
created files and directories.

Hidden This item is hidden and thus is not included in an ordinary directory listing.
However, you can still see it in Windows Explorer.

Normal This item is normal and has no other attributes set. This attribute is valid
only if used alone.

NotContentIndexed This item will not be indexed by the operating system’s content indexing
service.

Offline This file is offline and not currently available.

ReadOnly This item is read- only.

ReparsePoint This file contains a reparse point, which is a block of user- defined data as-
sociated with a file or a directory in an NTFS file system.

SparseFile The file is a sparse file. Sparse files are typically large files with data consist-
ing of mostly zeros. This item is supported only on NTFS file systems.

System The item is part of the operating system or is used exclusively by the operat-
ing system.

Temporary This item is temporary and can be deleted when the application is no longer
using it.

To find out all the attributes a file has, you can call the ToString() method of the Attributes
property. This returns a string with a comma- separated list of attributes:

When testing for a single specific attribute, you need to use bitwise arithmetic. For example,
consider the following faulty code:

This test succeeds only if the read- only attribute is the only attribute for the current file.
This is rarely the case. If you want to successfully check whether the file is read- only, you need
this code instead:

This test succeeds because it filters out just the read- only attribute. Essentially, the Attributes
setting consists (in binary) of a series of ones and zeros, such as 00010011. Each 1 represents an
attribute that is present, and each 0 represents an attribute that is not. When you use the And
operator with an enumerated value, it automatically performs a bitwise and operation, which
compares each digit against each digit in the enumerated value. For example, if you combine

CHAPTER 12 F ILES AND STREAMS552

a value of 00100001 (representing an individual file’s archive and read- only attributes) with the
enumerated value 00000001 (which represents the read- only flag), the resulting value will be
00000001. It will have a 1 only where it can be matched in both values. You can then test this
resulting value against the FileAttributes.ReadOnly enumerated value using the equal sign.

Similar logic allows you to verify that a file does not have a specific attribute:

When setting an attribute, you must also use bitwise arithmetic. In this case, you need to
ensure that you don’t inadvertently wipe out the other attributes that are already set.

Some attributes can’t be set programmatically. For example, the Encrypted attribute is set
by the operating system if you’re using the EFS (Encrypting File System) feature in Windows.
When a file is encrypted using EFS, it’s encrypted with a secret key that’s linked to the current
user account. When the same user reads the file, Windows decrypts it transparently. However,
other users won’t share the same secret key and won’t be able to access the file. (Although
EFS rarely makes sense in an ASP.NET application, you can use it programmatically with the
Encrypt() and Decrypt() methods of the FileInfo class.)

Filter Files with Wildcards
The DirectoryInfo and Directory objects both provide a way to search the current directories
for files or directories that match a specific filter expression. These search expressions can use
the standard ? and * wildcards. The ? wildcard represents any single character, and the * wild-
card represents any sequence of zero or more characters.

For example, the following code snippet retrieves the names of all the files in the c:\temp
directory that have the extension .txt. The code then iterates through the retrieved FileInfo
collection of matching files and displays the name and size of each one.

You can use a similar technique to retrieve directories that match a specified search pat-
tern by using the overloaded DirectoryInfo.GetDirectories() method.

The GetFiles() and GetDirectories() methods search only the current directory. If you want
to perform a search through all the contained subdirectories, you’d need to use recursive logic.

CHAPTER 12 F ILES AND STREAMS 553

Retrieving File Version Information
File version information is the information you see when you look at the properties of an EXE
or DLL file in Windows Explorer. Version information commonly includes a version number,
the company that produced the component, trademark information, and so on.

The FileInfo and File classes don’t provide a way to retrieve file version information.
However, you can retrieve it quite easily using the static GetVersionInfo() method of the
System.Diagnostics.FileVersionInfo class. The following example uses this technique to get
a string with the complete version information and then displays it in a label:

 Table 12-8 lists the properties you can read.

Table 12-8. FileVersionInfo Properties

Property Description
FileVersion, FileMajorPart,
FileMinorPart, FileBuildPart, and
FilePrivatePart

Typically, a version number is displayed as [MajorNumber].
[MinorNumber].[BuildNumber].[PrivatePartNumber].
These properties allow you to retrieve the complete version
as a string (FileVersion) or each individual component as
a number.

FileName Gets the name of the file that this instance of FileVersionInfo
describes.

OriginalFilename Gets the name the file was created with.

InternalName Gets the internal name of the file, if one exists.

FileDescription Gets the description of the file.

CompanyName Gets the name of the company that produced the file.

ProductName Gets the name of the product this file is distributed with.

ProductVersion, ProductMajorPart,
ProductMinorPart, ProductBuildPart,
and ProductPrivatePart

These properties allow you to retrieve the complete prod-
uct version as a string (ProductVersion) or each individual
component as a number.

IsDebug Gets a Boolean value that specifies whether the file con-
tains debugging information or is compiled with debug-
ging features enabled.

IsPatched Gets a Boolean value that specifies whether the file has
been modified and is not identical to the original shipping
file of the same version number.

IsPreRelease Gets a Boolean value that specifies whether the file is
a development version, rather than a commercially re-
leased product.

IsPrivateBuild Gets a Boolean value that specifies whether the file was
built using standard release procedures.

IsSpecialBuild Gets a Boolean value that specifies whether the file is
a special build.

Continued

CHAPTER 12 F ILES AND STREAMS554

Table 12-8.

Property Description
SpecialBuild If IsSpecialBuild is true, this property contains a string

that specifies how the build differs from an ordinary
build.

Comments Gets the comments associated with the file.

Language Gets the default language string for the version info block.

LegalCopyright Gets all copyright notices that apply to the specified file.

LegalTrademarks Gets the trademarks and registered trademarks that apply
to the file.

The Path Class
If you’re working with files, you’re probably also working with file and directory paths.
Path information is stored as an ordinary string. As a result, you’ll sometimes need messy
 string- parsing code to manipulate it.

This is where the System.IO.Path class becomes very useful. The Path class provides static
helper methods that perform common path manipulation tasks. For example, the following
code snippet uses the Path.Combine() method to fuse together a full directory path with a file-
name for a file in that directory:

The Path class is also a handy tool when preventing security risks such as a canonicaliza-
tion error. A canonicalization error is a specific type of application error that can occur when
your code assumes that user- supplied values will always be in a standardized form. Canonical-
ization errors are low- tech but quite serious, and they usually have the result of allowing a user
to perform an action that should be restricted.

One infamous type of canonicalization error is SQL injection, whereby a user submits
incorrectly formatted values to trick your application into executing a modified SQL com-
mand. (Chapter 7 covers SQL injection in detail.) Other forms of canonicalization problems
can occur with file paths and URLs.

For example, consider the following method that returns file data from a fixed document
directory:

This code looks simple enough. It concatenates the user- supplied filename with the
Documents path, thereby allowing the user to retrieve data from any file in this directory.
The problem is that filenames can be represented in multiple formats. Instead of submitting
a valid filename, an attacker can submit a qualified filename such as ..\filename. The concat-
enated path of WebApp\Documents\..\filename will actually retrieve a file from the parent
of the Documents directory (WebApp). A similar approach will allow the user to specify any
filename on the web application drive. Because the web page is limited only according to the

Continued

CHAPTER 12 F ILES AND STREAMS 555

restrictions of the ASP.NET worker process, the user may be allowed to download a sensitive
 server- side file.

The fix for this code is fairly easy. Once again, you can use the Path class. This time, you
use the GetFileName() method to extract just the final filename portion of the string, as shown
here:

This ensures that the user is constrained to the correct directory. If you are dealing with
URLs, you can work similar magic with the System.Uri type. For example, here’s how you
might remove query string arguments from a URI and make sure it refers to a given server and
virtual directory:

 Table 12-9 lists the most useful methods of the Path class.

Table 12-9. Path Methods

Methods Description
Combine() Combines a path with a filename or a subdirectory.

ChangeExtension() Modifies the current extension of the file in a string. If no ex-
tension is specified, the current extension will be removed.

GetDirectoryName() Returns all the directory information, which is the text between
the first and last directory separators (\).

GetFileName() Returns just the filename portion of a path.

GetFileNameWithoutExtension() This method is similar to GetFileName(), but it omits the exten-
sion from the returned string.

GetFullPath() This method has no effect on an absolute path, and it changes
a relative path into an absolute path using the current direc-
tory. For example, if c:\Temp\ is the current directory, calling
GetFullPath() on a filename such as test.txt returns c:\Temp\
test.txt.

GetPathRoot() Retrieves a string with the root (for example, C:\), provided
that information is in the string. For a relative path, it returns
a Nothing reference.

HasExtension() Returns true if the path ends with an extension.

IsPathRooted() Returns true if the path is an absolute path and false if it’s
a relative path.

CHAPTER 12 F ILES AND STREAMS556

Although the Path class contains methods for drilling down the directory structure (adding
subdirectories to directory paths), it doesn’t provide any methods for going back up (removing
subdirectories from directory paths). However, you can work around this limitation by using
the Combine() method with the relative path .., which means “move one directory up.” For good
measure, you can also use the GetFullPath() method on the result to return it to a normal form.

Here’s an example:

Note In most cases, an exception will be thrown if you supply a path that contains illegal characters to
one of these methods. However, path names that contain a wildcard character (* or ?) will not cause the
methods to throw an exception.

A File Browser
Using the concepts you’ve learned so far, it’s quite straightforward to put together a simple
 file- browsing application. Rather than iterating through collections of files and directories
manually, this example handles everything using the GridView and some data binding code.

 Figure 12-1 shows this program in action.

 Figure 12-1. Browsing the file system

CHAPTER 12 F ILES AND STREAMS 557

The directory listing is built using two separate GridView controls, one on top of the other.
The topmost GridView shows the directories, and the GridView underneath shows files. The
only visible differences to the user are that the directories don’t display length information, and
they have a folder icon next to their names. The ShowHeader property of the second GridView
is set to false so that the two grids blend into each other fairly seamlessly. And because the
GridView controls are stacked together, as the list of directories grows, the list of files moves
down the page to accommodate it.

Technically, you could handle the directory and file listing using one GridView object. That’s
because all FileInfo and DirectoryInfo objects have a common parent—the FileSystemInfo
object. However, in this grid you want to show the size in bytes of each file, and you want to dif-
ferentiate the appearance (in this case, through different icons). Because the DirectoryInfo object
doesn’t provide a Length property, trying to bind to it in a more generic list of FileSystemInfo
objects would cause an error.

Note This problem has another, equally effective solution. You could create a single GridView but not bind
directly to the FileInfo.Length property. Instead, you would bind to a method in the page class that examines
the current data object and return either the length (for FileInfo objects) or a blank string (for DirectoryInfo
objects). You could construct a similar method to hand out the correct icon URL.

Here’s the declaration for the GridView control that provides the list of directories, with-
out the formatting- specific style properties:

This grid binds to an array of DirectoryInfo objects and displays the Name and LastWriteTime
properties. It also creates a Size column, which it doesn’t use to display any information—instead,
this column simply reserves space so the directory list lines up nicely with the file list that appears
immediately underneath. In addition, the DirectoryInfo.FullName property is designated as a key
field in the grid so that you can return the full path after the user clicks one of the directories.

CHAPTER 12 F ILES AND STREAMS558

You’ll also notice that one of the columns doesn’t actually display any information—that’s the
BoundColumn for length that displays header text, but it doesn’t link to any data field.

The GridView for the files follows immediately. Here’s the slightly shortened control tag:

Note that the GridView for displaying files must define a SelectedRowStyle because it sup-
ports file selection. (The GridView for displaying directories handles selection differently. It
reacts as soon as a file is clicked by browsing to the new directory and rebinding the controls.
Thus, a directory never appears in a selected state.)

The next step is to write the code that fills these controls. The star of the show is a private
method named ShowDirectoryContents(), which retrieves the contents of the current folder
and binds the two GridView controls. Here’s the complete code:

CHAPTER 12 F ILES AND STREAMS 559

When the page first loads, it calls this method to show the current application directory:

You’ll notice that the ShowDirectoryContents() method stores the currently displayed
directory in view state. That allows the Move Up button to direct the user to a directory that’s
one level above the current directory:

To move down through the directory hierarchy, the user simply needs to click a directory
link. This is raised as a SelectedIndexChanged event. The event handler then displays the new
directory:

But what happens if a user selects a file from the second GridView? In this case, the code
retrieves the full file path, creates a new FileInfo object, and binds it to a FormView control,
which uses a template to display several pieces of information about the file. Figure 12-2
shows the result.

CHAPTER 12 F ILES AND STREAMS560

 Figure 12-2. Examining a file

Here’s the code that binds the file information when a file is selected:

The FormView uses the following template:

CHAPTER 12 F ILES AND STREAMS 561

The data binding expressions are fairly straightforward. The only one that needs any
expression is the GetVersionInfoString() method. This method is coded inside the page class.
It creates a new FileVersionInfo object for the file and uses that to extract the version informa-
tion and product name.

Of course, most developers have FTP tools and other utilities that make it easier to man-
age files on a web server. However, this page provides an excellent example of how to use the
.NET file and directory management classes. With a little more work, you could transform it
into a full- featured administrative tool for a web application.

Reading and Writing Files with Streams
The .NET Framework uses a stream model in several areas of the framework. Streams are
abstractions that allow you to treat different data sources in a similar way—as a stream of
ordered bytes. All .NET stream classes derive from the base System.IO.Stream class. Streams
represent data in a memory buffer, data that’s being retrieved over a network connection, and
data that’s being retrieved from or written to a file.

Here’s how you create a new file and write an array of bytes to it through a FileStream:

CHAPTER 12 F ILES AND STREAMS562

In this example, the FileMode.Create value is specified in the FileStream constructor to
indicate that you want to create a new file. You can use any of the FileMode values described
in Table 12-10.

Table 12-10. Values of the FileMode Enumeration

Value Description
Append Opens the file if it exists and seeks to the end of the file, or creates a new file.

Create Specifies that the operating system should create a new file. If the file already
exists, it will be overwritten.

CreateNew Specifies that the operating system should create a new file. If the file already
exists, an IOException is thrown.

Open Specifies that the operating system should open an existing file.

OpenOrCreate Specifies that the operating system should open a file if it exists; otherwise, a new
file should be created.

Truncate Specifies that the operating system should open an existing file. Once opened,
the file will be truncated so that its size is 0 bytes.

And here’s how you can open a FileStream and read its contents into a byte array:

On their own, streams aren’t that useful. That’s because they work entirely in terms of sin-
gle bytes and byte arrays. .NET includes a more useful higher- level model of writer and reader
objects that fill the gaps. These objects wrap stream objects and allow you to write more com-
plex data, including common data types such as integers, strings, and dates. You’ll see readers
and writers at work in the following sections.

Tip Whenever you open a file through a FileStream, remember to call the FileStream.Close() method when
you’re finished. This releases the handle on the file and makes it possible for someone else to access the
file. In addition, because the FileStream class is disposable, you can use it with the using statement, which
ensures that the FileStream is closed as soon as the block ends.

CHAPTER 12 F ILES AND STREAMS 563

Text Files
You can write to a file and read from a file using the StreamWriter and StreamReader classes in
the System.IO namespace. When creating these classes, you simply pass the underlying stream
as a constructor argument. For example, here’s the code you need to create a StreamWriter
using an existing FileStream:

You can also use one of the static methods included in the File and FileInfo classes, such as
CreateText() or OpenText(). Here’s an example that uses this technique to get a StreamWriter:

This code is equivalent to the earlier example.
Once you have the StreamWriter, you can use the Write() or WriteLine() method to add infor-

mation to the file. Both of these methods are overloaded so that they can write many simple data
types, including strings, integers, and other numbers. These values are essentially all converted
into strings when they’re written to a file, and they must be converted back into the appropriate
types manually when you read the file. To make this process easier, you should put each piece of
information on a separate line by using WriteLine() instead of Write(), as shown here:

w.WriteLine(1000) ' Write a number.

TEXT ENCODING

You can represent a string in binary form using more than one way, depending on the encoding you use.
The most common encodings include the following:

ASCII: Encodes each character in a string using 7 bits. ASCII- encoded data can’t contain extended
Unicode characters. When using ASCII encoding in .NET, the bits will be padded, and the resulting
byte array will have 1 byte for each character.

Full Unicode (or UTF- 16): Represents each character in a string using 16 bits. The resulting byte
array will have 2 bytes for each character.

UTF-7 Unicode: Uses 7 bits for ordinary ASCII characters and multiple 7- bit pairs for extended char-
acters. This encoding is primarily for use with 7- bit protocols such as mail, and it isn’t regularly used.

UTF-8 Unicode: Uses 8 bits for ordinary ASCII characters and multiple 8- bit pairs for extended characters.
The resulting byte array will have 1 byte for each character (provided there are no extended characters).

.NET provides a class for each type of encoding in the System.Text namespace. When using the
StreamReader and StreamWriter, you can specify the encoding you want to use with a constructor argu-
ment, or you can simply use the default UTF- 8 encoding.

Here’s an example that creates a StreamWriter that uses ASCII encoding:

CHAPTER 12 F ILES AND STREAMS564

When you finish with the file, you must make sure you close it. Otherwise, the changes
may not be properly written to disk, and the file could be locked open. At any time, you can
also call the Flush() method to make sure all data is written to disk, as the StreamWriter will
perform some in- memory caching of your data to optimize performance (which is usually
exactly the behavior you want).

When reading information, you use the Read() or ReadLine() method of the StreamReader.
The Read() method reads a single character, or the number of characters you specify, and
returns the data as a char or char array. The ReadLine() method returns a string with the con-
tent of an entire line. ReadLine() starts at the first line and advances the position to the end of
the file, one line at a time.

Here’s a code snippet that opens and reads the file created in the previous example:

ReadLine() returns a Nothing reference when there is no more data in the file. This means
you can read all the data in a file using code like this:

Tip You can also use the ReadToEnd() method to read the entire contents of the file and return it as
a single string. The File class also includes some shortcuts with static methods such as ReadAllText() and
ReadAllBytes(), which are suitable for small files only. Large files should not be read into memory at once—
instead, you can reduce the memory overhead by reading them one chunk at a time with the FileStream.

Binary Files
You can also read and write to a binary file. Binary data uses space more efficiently but also cre-
ates files that aren’t readable. If you open a binary file in Notepad, you’ll see a lot of extended
characters (politely known as gibberish).

CHAPTER 12 F ILES AND STREAMS 565

To open a file for binary writing, you need to create a new BinaryWriter class. The class con-
structor accepts a stream, which you can create by hand or retrieve using the File.OpenWrite()
method. Here’s the code to open the file c:\binaryfile.bin for binary writing:

.NET concentrates on stream objects, rather than the source or destination for the data.
This means you can write binary data to any type of stream, whether it represents a file or
some other type of storage location, using the same code. In addition, writing to a binary file is
almost the same as writing to a text file, as you can see here:

Unfortunately, when you read data, you need to know the data type you want to retrieve.
To retrieve a string, you use the ReadString() method. To retrieve an integer, you must use
ReadInt32(), as follows:

Note There’s no easy way to jump to a location in a text or binary file without reading through all the
information in order. While you can use methods such as Seek() on the underlying stream, you need to
specify an offset in bytes. This involves some fairly involved calculations to determine variable sizes. If you
need to store a large amount of information and move through it quickly, you’re best off with a dedicated
database, not a binary file.

Uploading Files
ASP.NET includes two controls that allow website users to upload files to the web server. Once
the web server receives the posted file data, it’s up to your application to examine it, ignore it,
or save it to a back- end database or a file on the web server.

The controls that allow file uploading are HtmlInputFile (an HTML server control) and
FileUpload (an ASP.NET web control). Both represent the <input type="file"> HTML tag.
The only real difference is that the FileUpload control takes care of automatically setting the
encoding of the form to multipart/form data. If you use the HtmlInputFile control, it’s up to
you to make this change using the enctype attribute of the <form> tag—if you don’t, the
HtmlInputFile control won’t work.

CHAPTER 12 F ILES AND STREAMS566

Declaring the FileUpload control is easy. It doesn’t expose any new properties or events
that you can use through the control tag.

The <input type="file"> tag doesn’t give you much choice as far as the user interface is con-
cerned (it’s limited to a text box that contains a filename and a Browse button). When the user
clicks Browse, the browser presents an Open dialog box and allows the user to choose a file.
This behavior is hard- wired into the browser, and you can’t change it. Once the user selects
a file, the filename is filled into the corresponding text box. However, the file isn’t uploaded
yet—that happens later, when the page is posted back. At this point, all the data from all the
input controls (including the file data) is sent to the server. For that reason, it’s common to add
a Button control to post back the page.

To get information about the posted file content, you can access the FileUpload.
PostedFile object. You can save the content by calling the PostedFile.SaveAs() method,
as demonstrated in the following example.

Here’s the event- handling code, which reacts to the Button.Click event and copies the
uploaded file into a subdirectory named Upload in the web application directory:

CHAPTER 12 F ILES AND STREAMS 567

In the example, if a file has been posted to the server and isn’t too large, the file is saved
using the HttpPostedFile.SaveAs() method. To determine the physical path you want to use,
the code combines the destination directory (Upload) with the name of the posted file using
the static utility methods of the Path class.

 Figure 12-3 shows the page after the file has been uploaded.

 Figure 12-3. Uploading a file

You can also interact with the posted data through the stream model, rather than just
saving it to disk. To get access to the data, you use the FileUpload.PostedFile.InputStream
property. For example, you could use the following code to display the content of a posted file
(assuming it’s text- based):

Note By default, the maximum size of the uploaded file is 4MB. If you try to upload a bigger file,
you’ll get a runtime error. To change this restriction, modify the maxRequestLength attribute of the
 <httpRuntime> setting in the application’s web.config file. The size is specified in kilobytes, so
<httpRuntime maxRequestLength="8192"/> sets the maximum file size to 8MB. By limiting file size, you
can prevent denial-of- service attacks that attempt to fill up your web server’s hard drive.

CHAPTER 12 F ILES AND STREAMS568

Making Files Safe for Multiple Users
Although it’s fairly easy to create a unique filename, what happens in the situation where you
really do need to access the same file to serve multiple different requests? Although this situa-
tion isn’t ideal (and often indicates that a database- based solution would work better), you can
use certain techniques to defend yourself.

One approach is to open your files with sharing, which allows multiple processes to access the
same file at the same time. To use this technique, you need to use the four- parameter FileStream
constructor that allows you to select a FileMode. Here’s an example:

This statement allows multiple users to open the file for reading at the same time. However,
no one will be able to update the file.

It is possible to have multiple users open the file in read- write mode by specifying a differ-
ent FileAccess value (such as FileAccess.Write or FileAccess.ReadWrite). In this case, Windows
will dynamically lock small portions of the file when you write to them (or you can use the
FileStream.Lock() method to lock down a range of bytes in the file). If two users try to write
to the same locked portion at once, an exception can occur. Because web applications have
high concurrency demands, this technique is not recommended and is extremely difficult
to implement properly. It also forces you to use low- level byte- offset calculations, where it is
notoriously easy to make small, aggravating errors.

So, what is the solution when multiple users need to update a file at once? One option is
to create separate user- specific files for each request. Another option is to tie the file to some
other object and use locking. The following sections explain these techniques.

Tip Another technique that works well if multiple users need to access the same data, especially if this data
is frequently used and not excessively large, is to load the data into the cache (as described in Chapter 11).
That way, multiple users can simultaneously access the data without a hitch. If another process is responsible
for creating or periodically updating the file, you can use a file dependency to invalidate your cached item when
the file changes.

Creating Unique Filenames
One solution for dealing with user- concurrency headaches with files is to avoid the conflict
altogether by using different files for different users. For example, imagine you want to store
a user- specific log. To prevent the chance for an inadvertent conflict if two web pages try to
use the same log, you can use the following two techniques:

Add some information to the filename, such as a timestamp, GUID (global unique
identifier), or random number. This reduces the chance of duplicate filenames to
a small possibility.

CHAPTER 12 F ILES AND STREAMS 569

The following sample page demonstrates this technique. It defines a method for creating
filenames that are statistically guaranteed to be unique. In this case, the filename incorporates
a GUID.

Here’s the private method that generates a new unique filename:

Note A GUID is a 128- bit integer. GUID values are tremendously useful in programming because they’re
statistically unique. In other words, you can create GUID values continuously with little chance of ever creat-
ing a duplicate. For that reason, GUIDs are commonly used to uniquely identify queued tasks, user sessions,
and other dynamic information. They also have the advantage over sequential numbers in that they can’t
easily be guessed. The only disadvantage is that GUIDs are long and almost impossible to remember (for an
ordinary human being). GUIDs are commonly represented in strings as a series of lowercase hexadecimal
digits, like 382c74c3-721d-4f34-80e5- 57657b6cbc27.

Using the GetFileName() method, you can create a safer logging application that writes
information about the user’s actions to a text file. In this example, all the logging is performed
by calling a Log() method, which then checks for the filename and assigns a new one if the file
hasn’t been created yet. The text message is then added to the file, along with the date and
time information.

CHAPTER 12 F ILES AND STREAMS570

For example, a log message is added every time the page is loaded, as shown here:

The last ingredients are two button event handlers that allow you to delete the log file or
show its contents, as follows:

CHAPTER 12 F ILES AND STREAMS 571

 Figure 12-4 shows the web page displaying the log contents.

 Figure 12-4. A safer way to write a user- specific log

Locking File Access Objects
Of course, in some cases you do need to update the same file in response to actions taken by
multiple users. One approach is to use locking. The basic technique is to create a separate
class that performs all the work of retrieving the data. Once you’ve defined this class, you can
create a single global instance of it and add it to the Application collection. Now you can use
the VB.NET lock statement to ensure that only one thread can access this object at a time (and
hence only one thread can attempt to open the file at once).

For example, imagine you create the following Logger class, which updates a file with log
information when you call the LogMessage() method, as shown here:

CHAPTER 12 F ILES AND STREAMS572

The Logger object locks itself before accessing the log file, creating a critical section. This
ensures that only one thread can execute the LogMessage() code at a time, removing the dan-
ger of file conflicts.

However, for this to work you must make sure every class is using the same instance of
the Logger object. You have a number of options here—for example, you could respond to
the HttpApplication.Start event in the global.asax file to create a global instance of the Log-
ger class and store it in the Application collection. Alternatively, you could expose a single
Logger instance through a static application variable, by adding this code to the global.asax file:

Now any page that uses the Logger to call LogMessage() gets exclusive access:

Keep in mind that this approach is really just a crude way to compensate for the inherent
limitations of a file- based system. It won’t allow you to manage more complex tasks, such as hav-
ing individual users read and write pieces of text in the same file at the same time. Additionally,
while a file is locked for one client, other requests will have to wait. This is guaranteed to slow
down application performance and lead to an exception if the object isn’t released before the
second client times out. Unless you invest considerable effort refining your threading code (for
example, you can use classes in the System.Threading namespace to test if an object is available
and take alternative action if it isn’t), this technique is suitable only for small- scale web applica-
tions. It’s for this reason that ASP.NET applications almost never use file- based logs—instead,
they write to the Windows event log or a database.

Compression
.NET includes built- in support for compressing data in any stream. This trick allows you
to compress data that you write to any file. The support comes from two classes in the new
System.IO.Compression namespace: GZipStream and DeflateStream. Both of these classes
represent similarly efficient lossless compression algorithms.

To use compression, you need to wrap the real stream with one of the compression
streams. For example, you could wrap a FileStream (for compressing data as it’s written to
disk) or a MemoryStream (for compressing data in memory). Using a MemoryStream, you
could compress data before storing it in a binary field in a database or sending it to a web
service.

For example, imagine you want to compress data saved to a file. First, you create the
FileStream:

CHAPTER 12 F ILES AND STREAMS 573

Next, you create a GZipStream or DeflateStream, passing in the FileStream and
a CompressionMode value that indicates whether you are compressing or decompressing
data:

To write your actual data, you use the Write() method of the compression stream, not the
FileStream. The compression stream compresses the data and then passes the compressed data
to the underlying FileStream. If you want to use a higher- level writer, such as the StreamWriter
or BinaryWriter, you supply the compression stream instead of the FileStream:

Now you can perform your writing through the writer object. When you’re finished, flush
the GZipStream so that all the data ends up in the file:

Reading a file is just as straightforward. The difference is that you create a compression
stream with the CompressionMode.Decompress option, as shown here:

Note Although GZIP is an industry- standard compression algorithm (see for
information), that doesn’t mean you can use third- party tools to decompress the compressed files you create.
The problem is that although the compression algorithm may be the same, the file format is not. Namely, the
files you create won’t have header information that identifies the original compressed file.

Serialization
You can use one more technique to store data in a file—serialization. Serialization is a higher- level
model that’s built on .NET streams. Essentially, serialization allows you to convert an entire live
object into a series of bytes and write those bytes into a stream object such as the FileStream. You
can then read those bytes back later to re- create the original object.

For serialization to work, your class must meet all the following criteria:

The class must have a Serializable attribute preceding the class declaration.

If you violate any of these rules, you’ll receive a SerializationException when you attempt
to serialize the object.

Here’s a serializable class that you could use to store log information:

CHAPTER 12 F ILES AND STREAMS574

Tip In some cases, a class might contain data that shouldn’t be serialized. For example, you might have
a large field you can recalculate or re- create easily, or you might have some sensitive data that could pose
a security request. In these cases, you can add a NonSerialized attribute before the appropriate variable to
indicate it shouldn’t be persisted. When you deserialize the data to create a copy of the original object, non-
serialized variables will return to their default values.

You may remember serializable classes from earlier in this book. Classes need to be seri-
alizable in order to be stored in the view state for a page or put into an out-of- process session
state store. In those cases, you let .NET serialize the object for you automatically. However,
you can also manually serialize a serializable object and store it in a file or another data source
of your choosing (such as a binary field in a database).

To convert a serializable object into a stream of bytes, you need to use a class that implements
the IFormatter interface. The .NET Framework includes two such classes: BinaryFormatter, which
serializes an object to a compact binary representation, and SoapFormatter, which uses the SOAP
XML format and results in a longer text- based message. The BinaryFormatter class is found in
the System.Runtime.Serialization.Formatters.Binary namespace, and SoapFormatter is found

CHAPTER 12 F ILES AND STREAMS 575

in the System.Runtime.Serialization.Formatters.Soap namespace. (To use SoapFormatter, you
also need to add a reference to the assembly System.Runtime.Serialization.Formatters.Soap.dll.)
Both methods serialize all the private and public data in a class, along with the assembly and type
information needed to ensure that the object can be deserialized exactly.

To create a simple example, let’s consider what you need to do to rewrite the logging page
shown earlier to use object serialization instead of writing data directly to the file. The first step
is to change the Log() method so that it creates a LogEntry object and uses the BinaryFormatter
to serialize it into the existing file, as follows:

The last step is to change the code that fills the label with the complete log text. Instead
of reading the raw data, it now deserializes each saved instance using the BinaryFormatter, as
shown here:

CHAPTER 12 F ILES AND STREAMS576

So, exactly what information is stored when an object is serialized? Both the BinaryFormatter
and the SoapFormatter use a proprietary .NET serialization format that includes information about
the class, the assembly that contains the class, and all the data stored in the class member vari-
ables. Although the binary format isn’t completely interpretable, if you display it as ordinary ASCII
text, it looks something like this:

The SoapFormatter produces more readily interpretable output, although it stores the
same information (in a less compact form). The assembly information is compressed into
a namespace string, and the data is enclosed in separate elements:

Clearly, this information (and its structure) is tailored for .NET applications. However, it
provides the most convenient, compact way to store the contents of an entire object.

CHAPTER 12 F ILES AND STREAMS 577

Summary
In this chapter, you learned how to use the .NET classes for retrieving file system informa-
tion. You also examined how to work with files and how to serialize objects. Along the way you
learned how data binding can work with the file classes, how to plug security holes with the
Path class, and how to deal with file contention in multiuser scenarios. You also considered
data compression using GZIP.

579

C H A P T E R 1 3

LINQ

One of the most hyped innovations in .NET 3.5 is LINQ (Language Integrated Query), a set
of language extensions that allows you to perform queries without leaving the comfort of the
VB .NET language.

At its simplest, LINQ defines keywords that you use to build query expressions. These query
expressions can select, filter, sort, group, and transform data. Different LINQ extensions allow
you to use the same query expressions with different data sources. For example, LINQ to Objects,
the simplest form of LINQ, allows you to query collections of in-memory objects. LINQ to Data-
Set performs the same feat with the in-memory DataSet. Even more interesting are the two LINQ
flavors that let you access external data: LINQ to SQL, which allows you to query a SQL Server
database without writing data access code, and LINQ to XML, which allows you to read an XML
file without using .NET’s specialized XML classes.

LINQ is a deeply integrated part of .NET 3.5, the VB 2008 language, and C# 2008. How-
ever, it isn’t an ASP.NET-specific feature, and it can be used equally well in any type of .NET
application, from command-line tools to rich Windows clients. Although you can use LINQ
anywhere, in an ASP.NET application you’re most likely to use LINQ as part of a database
component. You can use LINQ in addition to ADO.NET data access code, or—with the help
of LINQ to SQL— instead of it.

This chapter gives you an overview of LINQ from a web developer’s perspective. You’ll learn
how to use LINQ in your ASP.NET pages, and you’ll consider where LINQ improves on other
data access approaches (and where it falls short). You’ll begin by considering the essentials of
LINQ to Objects and LINQ to DataSet, which give you more flexibility to present customized
views of your data. You’ll spend the bulk of the chapter concentrating on LINQ to SQL, which
gives you a higher-level model for database queries and updates. You’ll consider how LINQ to
SQL works, how it fits into a typical web application, and whether it’s a practical replacement
for more traditional ADO.NET code. You’ll also learn how to use the LinqDataSource control,
which allows you to create surprisingly sophisticated data bound pages without writing any
data access code or SQL queries.

Note You’ll learn about one more type of LINQ—LINQ to XML—in Chapter 14.

CHAPTER 13 L INQ580

LINQ Basics
The easiest way to approach LINQ is to consider how it works with in-memory collections.
This is LINQ to Objects—the simplest form of LINQ.

Essentially, LINQ to Objects allows you to replace iteration logic (such as a For Each
block) with a declarative LINQ expression. For example, imagine you want to get a list of all
employees that have a last name that starts with the letter D. Using functional VB .NET code,
you could loop through the full collection of employees, and add each matching employee to
a second collection, as shown here:

You can then carry on to perform another task with the collection of matches, or display it
in a web page, as shown here:

You can perform the same task using a LINQ expression. The following example shows
how you can rewrite the code, replacing the For Each block with a LINQ query:

The LINQ query uses a set of new keywords, including From, In, Where, and Select. It gives
you a new collection that contains just the matching results.

The end result is identical—you wind up with a collection named matches that’s filled
with employees that have last names starting with D, which is then displayed in a grid (see
Figure 13-1). However, there are some differences in the implementation, as you’ll learn in the
following sections.

CHAPTER 13 L INQ 581

Figure 13-1. Filtering a list of employees with LINQ

Note The LINQ keywords are a genuine part of the VB .NET language. This fact distinguishes LINQ from
technologies like Embedded SQL, which forces you to switch between C syntax and SQL syntax in a block of
code.

Deferred Execution
One obvious difference between the For Each approach and the code that uses the LINQ
expression is the way the matches collection is typed. In the For Each code, the matches col-
lection is created as a specific type of collection—in this case, a strongly typed List(Of T). In
the LINQ example, the matches collection is exposed only through the IEnumerable(Of T)
interface that it implements.

This difference is due to the way that LINQ uses deferred execution. Contrary to what you
might expect, the matches object isn’t a straightforward collection that contains the matching
EmployeeDetails objects. Instead, it’s a specialized LINQ object that has the ability to fetch the
data when you need it.

In the previous example, the matches object is an instance of the WhereIterator(Of T) class,
which is a private class that’s nested inside the System.Linq.Enumerable class. Depending on
the specific query expression you use, a LINQ expression might return a different object. For
example, a union expression that combines data from two different collections would return an
instance of the private UnionIterator(Of T) class. Or, if you simplify the query by removing the
where clause, you’ll wind up with a simple SelectIterator(Of T).

Tip You don’t need to know the specific iterator class that your code uses because you interact with the
results through the IEnumerable(Of T) interface. But if you’re curious, you can determine the object type at
runtime using the Visual Studio debugger (just hover over the variables while in break mode).

CHAPTER 13 L INQ582

The LINQ iterator objects add an extra layer between defining a LINQ expression and
executing it. As soon as you iterate over a LINQ iterator like WhereIterator(Of T), it retrieves
the data it needs. For example, if you write a For Each block that moves through the matches
collection, this action forces the LINQ expression to be evaluated.

The previous example doesn’t use a For Each loop at all, because it relies on ASP.NET data
binding. However, the background behavior is the same. When you call the GridView.DataBind()
method, ASP.NET iterates over the matches collection to get the data that’s required and passes
it along to the GridView. This step triggers the evaluation of the LINQ expression in the same way
as if you were iterating over the results manually.

Depending on the exact type of expression, LINQ may execute it all in one go, or piece by
piece as you iterate. In the previous example, the data can be fetched piece by piece, but if you
were retrieving the results from a database or applying a sort order to the results, LINQ would
use a different strategy and get all the results at the beginning of your loop.

Note There’s no technical reason why LINQ needs to use deferred execution, but there are many reasons
why it’s a good approach. In many cases, it allows LINQ to use performance optimization techniques that
wouldn’t otherwise be possible. For example, when using database relationships with LINQ to SQL, you can
avoid loading related data that you don’t actually use.

How LINQ Works
Here’s a quick review of the LINQ basics you’ve learned so far:

later on.

iterator object that implements
IEnumerable(Of T).

This raises one good question—namely, how does LINQ execute an expression? What
work does it perform to produce your filtered results? The answer depends on the type of
data you’re querying. For example, LINQ to SQL transforms LINQ expressions into database
commands. As a result, the LINQ to SQL plumbing needs to open a connection and execute
a database query to get the data you’re requesting.

If you’re using LINQ to Objects, as in the previous example, the process that LINQ per-
forms is much simpler. In fact, in this case LINQ simply uses a For Each loop to scan through
your collections, traveling sequentially from start to finish. Although this doesn’t sound ter-
ribly impressive, the real advantage of LINQ is that it presents a flexible way to define queries
that can be applied to a wide range of different data sources. As you’ve already learned, the
.NET Framework 3.5 allows you to use LINQ expressions to query in-memory collections, the
DataSet, XML documents, and (most usefully) SQL Server databases. However, third-party
developers (and future versions of .NET) can add their own LINQ providers that support the
same expression syntax but work with different data sources. They simply need to translate
LINQ expressions to the appropriate lower-level series of steps. Possible examples include

CHAPTER 13 L INQ 583

LINQ providers that query the file system, other databases, directory services like LDAP, and
so on.

Note The code that LINQ to Objects uses to retrieve data is almost always slower than writing a compa-
rable For Each block. Part of this overhead is due to the fact that there are additional delegates and method
calls at work (as you’ll see later in this chapter). However, it’s extremely unlikely that in-memory object
manipulation will be a bottleneck in a server-side application like an ASP.NET website. Instead, tasks like
connecting to a database, contacting a web service, or retrieving information from the file system are all
orders of magnitude slower, and are much more likely to cause a slowdown. As a result, there’s rarely a per-
formance reason to avoid LINQ to Objects. The one exception is if you want to implement a more advanced
search routine. For example, a search that drills through a vast collection of ordered information using an
index can be more efficient than a LINQ query, which scans through the entire set of data from start to finish.

There’s an important symmetry to LINQ. LINQ expressions work on objects that imple-
ment IEnumerable(Of T) (such as the List(Of EmployeeDetails) collection in the previous
example), and LINQ expressions return objects that implement IEnumerable(Of T) (such
as the WhereIterator(Of T) in the previous example). Thus, you can pass the result from one
LINQ expression into another LINQ expression, and so on. This chain of LINQ expressions
is only evaluated at the end, when you iterate over the final data. Depending on the type of
data source that you’re querying, LINQ is often able to fuse your expression chain together
into one operation, and thus perform it in the most efficient manner possible.

LINQ Expressions
Before you can go much further with LINQ, you need to understand how a LINQ expression is
composed. LINQ expressions have a superficial similarity to SQL queries, although the order of
the clauses is rearranged.

All LINQ expressions must have a From clause that indicates the data source and a Select
clause that indicates the data you want to retrieve (or a Group clause that defines a series of
groups into which the data should be placed). The From clause is placed first:

The From clause identifies two pieces of information (shown in bold in the preceding code).
The word immediately after In identifies the data source—in this case, it’s the collection object
named employees that holds the EmployeeDetails instances. The word immediately after From
assigns an alias that represents individual items in the data source. For the purpose of the cur-
rent expression, each EmployeeDetails object is named employee. You can then use this alias
later when you build other parts of the expression, like the filtering and selection clauses.

Here’s the simplest possible LINQ query. It simply retrieves the full set of data from the
employees collection:

CHAPTER 13 L INQ584

The VB .NET language includes many more LINQ operators that won’t be considered in
detail in this book. (Instead, this chapter provides an overview of LINQ, and a closer examina-
tion of the aspects of LINQ programming that are of particular interest to web developers, like
LINQ to SQL.) In the following sections, you’ll tackle the most important operators, including
Select, Where, Order By, and Group. You can review all the LINQ operators in the .NET Frame-
work Help. You can also find a wide range of expression examples on Microsoft’s 101 LINQ
Samples page at .

Projections
You can change the select clause to get a subset of the data. For example, you could pull out a
list of first name strings like this:

or a list of strings with both first and last names:

As shown here, you can use standard VB .NET operators on numeric data or strings to
modify the information as you’re selecting it. Even more interestingly, you can dynamically
define a new class that wraps just the information you want to return. For example, if you want
to get both the first and last names, but you want to store them in separate strings, you could
create a stripped-down version of the EmployeeDetails class that includes just a FirstName
and LastName property. To do so, you use a VB 2008 feature known as anonymous types. The
basic technique is to add the new keyword to the select clause, and assign each property you
want to create in terms of the object you’re selecting. Here’s an example:

This expression, when executed, returns a set of objects that use an implicitly created
class. Each object has two properties: First and Last. You never see the class definition, because
it’s generated by the compiler and given a meaningless, automatically created name. However,
you can still use the class locally, access the First and Last properties, and even use it with
data binding (in which case ASP.NET extracts the appropriate values by property name, using
reflection). The ability to transform the data you’re querying into results with a different struc-
ture is called projection.

There’s one trick at work in this example. As you’ve already learned, LINQ expressions
return an iterator object. The iterator class is generic, which means it’s locked into a specific
type—in this case, an anonymous class that has two properties, named First and Last. How-
ever, because you didn’t define this class, you can’t define the correct IEnumerator (Of T)
reference.

CHAPTER 13 L INQ 585

Figure 13-2 shows the result of binding the matches collection to a grid.

Figure 13-2. Projecting data to a new representation

Of course, you don’t need to use anonymous types when performing a projection. You
can define the type formally, and then use it in your expression. For example, if you created
the following EmployeeName class:

you could change EmployeeDetails objects into EmployeeName objects in your query expres-
sion like this:

CHAPTER 13 L INQ586

This query expression works because the FirstName and LastName properties are publicly
accessible and aren’t read-only. After creating the EmployeeName object, LINQ sets these
properties. Alternatively, you could add a set of parentheses after the EmployeeName class
name and supply arguments for a parameterized constructor, like this:

Filtering and Sorting
In the first LINQ example in this chapter, you saw how a Where clause can filter the results to
include only those that match a specific condition. For example, you can use this code to find
employees that have a last name that starts with a specific letter:

The Where clause takes a conditional expression that’s evaluated for each item. If it’s true,
the item is included in the result. However, LINQ keeps the same deferred execution model,
which means the Where clause isn’t evaluated until you actually attempt to iterate over the
results.

As you probably already expect, you can combine multiple conditional expressions with
the And and Or operators, and you can use relational operators (such as <, <=, >, and >=).
For example, you could create a query like this to filter out products above a certain price
threshold:

One interesting feature of LINQ expressions is that you can easily call your own methods
inline. For example, you could create a function named TestEmployee() that examines an
employee and returns true or false based on whether you want to include it in the results:

You could then use the TestEmployee() method like this:

The Order By operator is equally straightforward. It’s modeled after the syntax of the
SELECT statement in SQL. You simply provide a list of one or more values to use for sorting,

CHAPTER 13 L INQ 587

separated by commas. You can add the word descending after a field name to sort in the
reverse order.

Here’s a basic sorting example:

Note Sorting is supported on any types that implement IComparable, which includes most core .NET data
types (like numeric data, dates, and strings). It is possible to sort using a piece of data that doesn’t imple-
ment IComparable, but you need to use the explicit syntax described in the next section. This way, you can
pass a custom IComparer object that will be used to sort the data.

Grouping and Aggregation
Grouping allows you to condense a large set of information into a smaller set of summary results.

Grouping is a type of projection, because the objects in the results collections are different
than the objects in the source collection. For example, imagine you’re dealing with a collection
of Product objects, and you decide to place them into price-specific groups. The result is an
IEnumerable(Of T) collection of group objects, each of which represents a separate price range
with a subset of products. Each group implements the IGrouping(Of T, K) interface from the
System.Linq namespace.

To use grouping, you need to make two decisions. First, you need to decide what criteria
to use to create the group. Second, you need to decide what information to display for each
group.

The first task is easy. You use the Group, By, and Into keywords to choose what objects
you’re grouping, how groups are determined, and what alias you’ll use to refer to individual
groups. Here’s an example that works with a collection of EmployeeDetails objects, and groups
them based on the content in the TitleOfCourtesy field (Mr., Ms., and so on).

Tip It’s a common convention to give the alias g to your groups in a LINQ expression.

Objects are placed into the same group when they share some piece of data. Once
you’ve formed your groups, you need to decide what information about them is returned
to form your results. For example, if you want to create a simple list of strings that shows
the TitleOfCourtesy of each TitleOfCourtesy group, this is the expression you need:

CHAPTER 13 L INQ588

If you bind this to a GridView, you’ll see the result shown in Figure 13-3.

Figure 13-3. A list of employee groups

Alternatively, you can choose to return the entire group, like this:

This isn’t much help with data binding, because ASP.NET won’t be able to display any-
thing useful about each group. However, it gives you the freedom to iterate over each group
in code, using code like this:

This demonstrates that even once you’ve created groups, you can still give yourself the
flexibility to access the individual items in the group.

More practically, you can use an aggregate function to perform a calculation with the data
in your group. The LINQ aggregate functions mimic the database aggregate functions you’ve
probably used in the past, allowing you to count and sum data in a group, or find the minimum,
maximum, and average value. You can also filter out groups based on these calculated values.

The following example returns a new anonymous type that includes the group key value
and the number of objects in the group. To work its magic, it uses an inline method call to a
method named Count().

CHAPTER 13 L INQ 589

Figure 13-4 shows the result.

Figure 13-4. The number of employees in a group

The preceding LINQ expression is a bit different from the ones you’ve considered so far
because it uses an extension method. Essentially, extension methods are core bits of LINQ
functionality that aren’t exposed through dedicated VB .NET operators. Instead, you need to
invoke the method directly. The Count() method is one example of an extension method.

What differentiates extension methods from ordinary methods is the fact that exten-
sion methods aren’t defined in the class that uses the method. Instead, LINQ includes a
System.Linq.Enumerable class that defines several dozen extension methods that can be
called on any object that implement IEnumerable(Of T). (These extension methods also
work with IGrouping(Of T, K), because it extends IEnumerable(Of T).)

In other words, this part of the previous LINQ expression:

tells LINQ to call System.Linq.Enumerable.Count() to calculate the number of items in the
group.

Along with Count(), LINQ also defines more powerful extension methods that you’ll want
to use in grouping scenarios, such as the aggregation functions Max(), Min(), and Average().
The LINQ expressions that use these methods are a bit more complicated, because they also
use another VB .NET feature known as a lambda expression, which allows you to supply addi-
tional parameters to the extension method. In the case of the Max(), Min(), and Average()
methods, the lambda expression allows you to indicate what property you want to use for the
calculation.

Here’s an example that uses these extension methods to calculate the maximum, mini-
mum, and average price of the items in each category:

CHAPTER 13 L INQ590

Figure 13-5 shows this grouping.

Figure 13-5. Aggregate information about product groups

Although this example is fairly intuitive, the lambda syntax looks a little unusual. In the
next section, you’ll take a deeper look at extension methods and lambda expressions.

LINQ Expressions “Under the Hood”
Although LINQ uses new VB keywords (such as From, In, and Select), the implementation of
these keywords is provided by other classes. In fact, every LINQ query is translated to a series
of method calls. Rather than relying on this translation step, you can explicitly call the meth-
ods yourself. For example, this simple LINQ expression:

can be rewritten using as follows:

The syntax here is a bit unusual. It looks as though this code is calling a Select() method
on the employees collection. However, the employees collection is an ordinary List(Of T) col-
lection, and it doesn’t include this method. Instead, Select() is an extension method that’s
automatically provided to all IEnumerable(Of T) classes.

CHAPTER 13 L INQ 591

Extension Methods
Extension methods are a new language feature that’s provided in VB 2008. Essentially, exten-
sion methods allow you to define a method in one class, but call it as though it were defined
in a different class. The LINQ extension methods are defined in the System.Linq.Enumerable
class, but they can be called on any IEnumerable(Of T) object.

Note Because LINQ extension methods are defined in the System.Linq.Enumerable class, they’re only
available if this class is in scope. If you haven’t imported the System.Linq namespace, you won’t be able to
write implicit or explicit LINQ expressions—either way, you’ll get a compiler error because the necessary
methods can’t be found.

The easiest way to understand this technique is to take a quick look at an extension method.
Here’s the definition for the Select() extension method in the System.Linq.Enumerable class:

There is a small set of rules that applies to extension methods. All extension methods must
be Shared. Extension methods can return any data type and take any number of parameters.
However, the first parameter is always a reference to the object on which the extension method
was called. The data type you use for this parameter determines the classes for which the exten-
sion method is available.

For example, with the Select() extension method, the first parameter is IEnumerable(Of T):

This indicates that the extension method can be called on an instance of any class that
implements IEnumerable(Of T) (including collections like List(Of T)). As you can see, the
Select(Of T) method accepts one other parameter—a delegate that’s used to pick out the
subset of information you’re selecting. Finally, the return value of the Select() method is an
IEnumerable(Of T) object—in this case, it’s an instance of the private SelectIterator class.

Here’s the full code that LINQ uses for the Enumerable.Select() method:

CHAPTER 13 L INQ592

Lambda Expressions
As mentioned, the lambda expression is another new piece of VB 2008 syntax in the method-
based LINQ expression. The lambda expression is passed to the Select() method, as shown
here:

As you already know, when the Select() method is called, the employees object is passed
as the first parameter. It’s the source of the query. The second parameter requires a delegate
that points to a method. This method performs the selection work, and it’s called once for
each item in the collection. The selection method accepts the original value (in this case, an
employee object) and returns the selected result. The previous example performs the most
straightforward selection logic possible—it takes the original employee object and returns it
unchanged.

There’s some sleight of hand at work in this example. As described earlier, the Select()
method expects a delegate. You could supply an ordinary delegate that points to a named
method that you’ve created elsewhere in your class, but that would make your code much
more long-winded.

To get a clearer understanding, consider what happens if you create more sophisticated
selection logic that performs a projection. You’ve already seen that LINQ gives you the flex-
ibility to pull out just the properties you want or even declare a new type. For example, this
explicit LINQ expression extracts the data from each employee and places it into an instance
of a new anonymous type that includes only name information:

Multipart Expressions
Of course, most LINQ expressions are more detailed than the examples you’ve considered in
this section. A more complete LINQ expression might add sorting or filtering, as this one does:

You can rewrite this expression using explicit syntax, as shown here:

One nice thing about the explicit LINQ syntax is that it makes the order of operations clearer.
In the previous example, it’s easy to see that you begin with the employees collection, then call

CHAPTER 13 L INQ 593

the Where() method, and finally call the Select() method. If you use more LINQ operators, you’ll
wind up with a longer series of method calls.

You’ll also notice that the Where() method works much like the Select() method. Both
Where() and Select() are extension methods, and both use lambda expressions to supply a
simple method. The Where() method supplies a lambda expression that tests each item and
returns true if it should be included in the results. The Select() method supplies a lambda
expression that transforms each data item to the representation you want. You’ll find many
more extension methods that work the same way in the System.Linq.Enumerable class.

For the most part, you’ll use the implicit syntax to create LINQ expressions. However,
there may be occasions when you need to use the explicit syntax—for example, if you need to
pass a parameter to an extension method that isn’t accommodated by the implicit LINQ syn-
tax. In any case, understanding how expressions map to method calls, how extension methods
plug into IEnumerable(Of T) objects, and how lambda expressions encapsulate filtering, sort-
ing, projections, and other details clears up a fair bit about the inner workings of LINQ.

LINQ to DataSet
As you learned in Chapter 8, you can use the DataTable.Select() method to extract a few
records that interest you from a DataTable using a SQL-like filter expression. Although the
Select() method works perfectly well, it has a few obvious limitations. First, it’s string-based,
which means it’s subject to errors that won’t be caught at compile time. It’s also limited to
filtering, and doesn’t provide the other features that LINQ operators offer, such as sorting,
grouping, and projections. If you need something more, you can use the LINQ querying fea-
tures with the DataTable.

When using LINQ to DataSet, you use essentially the same expressions that you use
to query collections of objects. After all, the DataSet is really just a collection of DataTable
instances, each of which is a collection of DataRow objects (along with additional schema
information). However, there’s one significant limitation to the DataSet—it doesn’t expose
strongly typed data. Instead, it’s up to you to cast field values to the appropriate types. This is
a bit of a problem with LINQ expressions, because they return strongly typed data. In other
words, the compiler needs to be able to determine at compile time what data type your LINQ
expression will return when you run it.

To make this possible, you need the Field(Of T) extension method, which is provided
by the DataRowExtensions class in the System.Data namespace. Essentially, the Field(Of T)
method extends any DataRow object, and gives you a strongly typed way to access a field.
Here’s an example that uses the Field(Of T) method to avoid typecasting when retrieving the
value from the FirstName field:

This isn’t the only limitation you need to overcome with the DataSet. As you’ve already
learned, LINQ works on collections that implement IEnumerable(Of T). Neither the DataTable
nor the DataRowCollection implement this interface—instead, the DataRowCollection imple-
ments the weakly typed IEnumerable interface, which isn’t sufficient. To bridge this gap, you
need another extension method, named AsEnumerable(), which exposes an IEnumerable(Of T)
collection of DataRow objects for a given DataTable. The AsEnumerable() method is defined in
the DataTableExtensions class in the System.Data namespace.

CHAPTER 13 L INQ594

In order to have the Field(Of T) and AsEnumerable() methods at your fingertips, you must
make sure you’ve imported the System.Data namespace. (You also need a reference to the
System.Data.DataSetExtensions.dll assembly, which is automatically added to the web.config
file when you create a web application that targets .NET 3.5.)

Using DataRowExtensions and DataTableExtensions, you can write a LINQ expression
that queries a DataTable in a DataSet using the same underlying infrastructure as LINQ to
Objects. Here’s an example that extracts the employee records that have last names starting
with the letter D as DataRow objects:

This collection isn’t suitable for data binding. (If you do bind this collection, the bound
control will only show the public properties of the DataRow object, rather than the collection
of field values.) The problem is that when data binding ADO.NET data, you need to include the
schema. Binding a complete DataTable works because it includes the Columns collection with
column titles and other information.

There are two ways to solve this problem. One option is to use the
DataTableExtensions.AsDataView() method to get a DataView for the filtered set of rows:

Note LINQ to DataSet expressions return instances of the EnumerableRowCollection<T> class (which
implements the familiar IEnumerable<T> interface). AsDataView() is an extension method that works only
on EnumerableRowCollection<T> objects. As a result, you must define the matches variable in the preced-
ing example without a data type in VB or as an EnumerableRowCollection<DataRow>. If you declare it as a
IEnumerable<DataRow>, you won’t have access to the AsDataView() method.

Another equally effective option is to use a projection. For example, this LINQ expression
wraps the name details in a new anonymous type that can be bound:

CHAPTER 13 L INQ 595

Figure 13-6 shows the rather modest result.

Figure 13-6. Filtering a DataSet with LINQ

Both approaches work equally well. The DataView approach is useful in disconnected rich
clients, because it gives you the option of manipulating the data without sacrificing DataSet
change tracking. (In an ASP.NET application, the distinction is usually unimportant.) The pro-
jection approach gives you the ability to reduce the number of fields to include just the ones
you want to see.

Of course, there’s no need to use LINQ to DataSet to achieve the result that’s shown in
Figure 13-6. You can accomplish the same thing by using the DataTable.Select() method to
filter out the rows that have the right last name and modifying the schema of the GridView so
it only shows the two columns you want. However, LINQ to DataSet allows you to take advan-
tage of operators that don’t have any direct DataSet equivalent, like the grouping features
discussed earlier.

Typed DataSets
Typed DataSets offer another solution for solving the limitations of the DataSet. Because a
typed DataSet uses strongly typed classes, you no longer need to rely on the Field(Of T) and
AsEnumerable() methods, which make for much more readable expressions.

For example, if you use a strongly typed DataSet for the Employees table, you can rewrite
the expression in the previous example to this simpler code:

CHAPTER 13 L INQ596

Not only is this code simpler to understand, it also looks a lot more like the expressions
you used for querying custom classes in ordinary collections.

There’s a significant limitation to watch out for with this technique. If you created a
typed DataSet using an earlier version of .NET, your strongly typed DataTable classes will
derive from DataTable. If you create a typed DataSet in Visual Studio 2008, they will derive
from TypedTableBase(Of T) (which in turn derives from DataTable). TypedTableBase(Of T)
implements IEnumerable(Of T) but DataTable does not. Thus, the LINQ expression just
shown only works if you created your typed DataSet with Visual Studio 2008. If you have
an older typed DataSet, you need to use the AsEnumerable() method and the Field(Of T)
method just as you do when using LINQ with an ordinary DataSet.

Visual Studio doesn’t automatically regenerate typed DataSet code. If you open a class
library project from an earlier version of Visual Studio, and you configure that project to
target NET 3.5, Visual Studio doesn’t change its typed DataSet classes. To get the new typed
DataSet model with TypedTableBase(Of T), you need to regenerate your typed DataSet. You
can rebuild it from scratch using the typed DataSet designer, but an easier approach is to
make a minor change on the design surface and then reverse it. For example, if you modify
a field property in the typed DataSet designer, Visual Studio will regenerate the typed
DataSet code. Unfortunately, Visual Studio lacks a more direct approach for rebuilding
typed DataSets.

Nothing
The Field(Of T) method plays an important role by giving you strongly typed access to your
field values. It also performs another useful trick: it converts null values (represented by
DBNull.Value) to a true null reference. (The DataSet doesn’t perform this step natively,
because when it was created, nullable types weren’t a part of the framework.) As a result, you
can check for a null reference rather than comparing values against DBNull.Value, which
streamlines your LINQ expressions.

Here’s an example:

When using null values, make sure you don’t attempt to access a member of a value that
could be Nothing. For example, if you want to get discontinued products in a certain date range,
you’d need to test for null values before performing the data comparison, as shown here:

Nothing values aren’t handled as nicely with a typed DataSet. Sadly, the property procedures
that are hard-wired into the custom DataRow classes in a typed DataSet throw exceptions when

CHAPTER 13 L INQ 597

they encounter Nothing value. To get around this, you’ll need to use the more cumbersome
Field(Of T) syntax when accessing a field that might contain a Nothing.

LINQ to SQL
For many ASP.NET developers, LINQ to SQL is the most exciting part of LINQ. It allows you
to use ordinary LINQ expressions—like the ones you’ve already seen—to query data in SQL
Server databases. It performs this magic by translating LINQ expressions into SQL queries
behind the scenes. It executes these queries when you need the data—in other words, when
you begin enumerating through the results. And if this weren’t impressive enough, LINQ to
SQL also includes a mechanism for applying updates. It provides change tracking for all the
data you retrieve, which means you can modify the objects you’ve queried and then commit
your entire batch of changes at once.

Tip You can think of LINQ to SQL as a marriage that combines the custom class approach with the data
tracking abilities of the DataSet.

The most obvious drawback of LINQ to SQL is the fact that it’s limited to the SQL Server
database engine—in fact, LINQ to SQL should be more realistically named LINQ to SQL Server.

LINQ to SQL is an impressive technology, but it’s only a small win for most ASP.NET
developers. As with the DataSet, ASP.NET developers are far more likely to use the querying
features in LINQ to SQL than the batch update features. That’s because the updates in a web
application usually take place one at a time rather than in a batch. They also tend to take place
immediately when the user posts back the page. At this point you have the original values and
the new (updated) values on hand, which makes it easy to use a straightforward ADO.NET
command to commit the change.

Note Unlike the DataSet, LINQ to SQL does have a facility that allows you to recreate an object on a later
request and use it to apply an update. (With the DataSet, you’d be forced to perform a query first, or you’d
need to manually tweak the change tracking details.) However, in most cases it’s still easier to perform a
direct update using the SqlCommand object, rather than worry about the LINQ to SQL data context. On the
other hand, the batch updating feature is an asset for rich client applications that need to cache data in
between updates.

In short, LINQ to SQL doesn’t provide any capability that you can’t duplicate with ADO.
NET code, your own custom objects, LINQ to Objects (for in-memory filtering), and the Data-
Set (when change tracking is needed). However, LINQ to SQL may make your life simpler in
the following ways:

CHAPTER 13 L INQ598

Less code: You don’t need to write ADO.NET code for querying the database. You can also
use a tool to generate the data classes you need.

Flexible querying capabilities: Rather than struggle with SQL, you can use the LINQ
querying model. Ultimately, you’ll be able to use one consistent model (LINQ expres-
sions) to access many different types of data, from databases to XML.

Change tracking and batch updates: You can change multiple details about the data
you’ve queried and commit a batch update, again without writing ADO.NET code.

LINQ TO ENTITIES

LINQ to SQL isn’t Microsoft’s final word in the ORM (object-relational mapping) space. In fact, another
database-focused LINQ extension, known as LINQ to Entities, is currently under development. LINQ to Entities
provides features that range far beyond to LINQ to SQL, with a trade-off of increased complexity. First, LINQ to
Entities uses the ADO.NET provider model, which means it supports any relational database engine that has a
suitable provider factory. Second, LINQ to Entities supports much more complex mapping between relational
data and classes. Where LINQ to SQL assumes you want to work with classes that are based on the tables in
your database (and closely follow its structure), LINQ to Entities allows you to bridge the gap between relational
data and your conceptual data model. In other words, it allows you to pull the information out of your database
and place it in more sophisticated business objects with built-in smarts.

For more information about LINQ to Entities and other LINQ developments, check out
.

Tip Before you can use LINQ to SQL, you need to add a reference to the System.Data.Linq.dll assembly
where the core types are designed. By default, new web applications do not include this reference.

Data Entity Classes
When you pull information out of a database with LINQ to SQL, it’s converted from a series of
records in a table to a group of in-memory objects. This translation step is the heart of LINQ to
SQL.

To perform this translation step, you need to explicitly indicate where the retrieved
data should be placed. You do this by marking up your data class with attributes from the
System.Data.Linq namespace. For example, in Chapter 8 you retrieved data from a database
and created an EmployeeDetails object for each record. To perform the same feat automati-
cally with LINQ to SQL, you need to decorate EmployeeDetails with attributes that map its
properties to fields.

The two key attributes you need are Table and Column. You apply Table to the class dec-
laration to associate the class with a database table. You apply the Column attribute to each
property to associate it with the corresponding field in that table.

The Table attribute uses a single property: Name, for the name of the table. The Column
attribute takes several properties in addition to the column name (Name). You can indicate

CHAPTER 13 L INQ 599

whether the property corresponds to a primary key value (IsPrimaryKey), is an automati-
cally numbered identity value (IsDbGenerated), or is a timestamp or row version number
(IsVersion). In more advanced scenarios, you can use the Storage property to provide the
name of the underlying variable that holds the property value, if LINQ to SQL should set that
variable directly and bypass the public property setter. You can also use UpdateCheck to set
how concurrency is handled for that value when performing an update, as you’ll see later in
this chapter.

Here’s a revised version of the EmployeeDetails class that adds the Table and Column
attributes. For conciseness, this EmployeeDetails class uses automatic properties (which
means the private member fields that back each property are generated automatically, and
aren’t shown).

CHAPTER 13 L INQ600

In this example, the property names match the field names exactly, so there’s no need to
specify the field name in the Column attribute.

The DataContext
All LINQ expressions need to act on some object. Thus, in order to use a LINQ expression to
pull information out of a database, you need an object that spans the gap. This object must
support IEnumerable(Of T), but it won’t be an ordinary in-memory container of data (like a
collection). Instead, it will be intelligent enough to fetch the data from the database by execut-
ing the query when you begin enumerating your results and the LINQ expression is evaluated.

The class that plays this role in LINQ to SQL is the DataContext class in the System.Data.Linq
namespace. It encapsulates all the core functionality that you’ll need when working with LINQ to
SQL, including a way to access tables through the IEnumerable(Of T) interfaces and a mechanism
to submit changes. The DataContext is the starting point for LINQ to SQL programming.

Before you can use the DataContext, you need to create an instance. When you do, you
can pass in a SqlConnection object, or a full-fledged connection string (to remove any possi-
bility for confusion).

Once you’ve created the DataContext, you can use the GetTable(Of T) method to get
access to a table. Your type argument is the data class you want to use to store the data for
each retrieved record. Here’s an example:

CHAPTER 13 L INQ 601

Notice that this code doesn’t explicitly state that it’s using the Employees table. Instead,
this detail is determined by the Table attribute that’s attached to the EmployeeDetails class.

The GetTable(Of T) method returns a Table(Of T) object. Technically, the Table(Of T)
object represents your table, but it doesn’t contain any data. In fact, up to this point the code
hasn’t performed any database operations at all.

Most importantly, the Table(Of T) class implements the IQueryable(Of T) interface, which
extends IEnumerable(Of T). That means you can iterate over the contents of the Table(Of T) as
a collection of records, or bind it directly to a data control like the GridView:

Each record in the Table(Of T) object is represented by an instance of the type you speci-
fied initially, when you called the GetTable() method. In the current example, that means that
each record is represented by an EmployeeDetails object, and you can iterate over the table
using code like this:

When you iterate over a Table(Of T) object (or bind it to a control, which triggers the same
action), Table(Of T) fetches the data it needs. The Table(Of T) object creates and opens the
database connection, executes a query that gets all the records in the table, and then closes
the connection (when your For Each block ends). In other words, the Table(Of T) class per-
forms the same deferred loading as a LINQ query expression—it fetches the data as you iterate
over it.

As you’ve seen, you don’t need to use a LINQ expression to get the full, unfiltered results
from a database. Instead, you simply use DataContext.GetTable(Of T) to get the appropriate
Table(Of T) class. However, if you want to perform a query that uses filtering, sorting, projec-
tions, grouping, or any of the other LINQ operators, it’s easy. You simply use the Table(Of T)
object as the data source in a LINQ expression. For example, here’s how you’d get the employ-
ees with a specific letter in their last name:

Remember, this expression won’t be evaluated until you iterate over the results (the
matches collection of EmployeeDetail objects). At this point, the LINQ expression will trigger
the Table(Of T) object to actually fetch the data you want. However, the Table(Of T) object is
intelligent enough to take the LINQ expression into account when it retrieves your data. Instead
of performing a query that nets all the records in the table and then processing them on the cli-
ent, it changes the SQL command to match the LINQ expression. In this example, that means a
WHERE clause is added to the SQL expression. This WHERE clause matches records that have a
last name starting with D, and ignores everything else.

You can now use all the LINQ expression examples you’ve seen in this chapter, but substi-
tute the Table(Of T) object in place of the collection or DataTable object.

CHAPTER 13 L INQ602

LINQ to SQL Queries “Under the Hood”
Although LINQ to SQL is superficially easy to use, it isn’t quite as simple as it appears. That’s
because you need to think about exactly when LINQ to SQL will fetch data from the database.
Depending on the way you’ve structured your code, this isn’t necessarily obvious. If you don’t
consider this aspect, you may end up requerying the same data several times (and giving the
database engine needless extra work), querying data outside of the appropriate exception han-
dling blocks (causing database errors to appear in otherwise innocent-looking code), or just
writing inefficient code.

Fortunately, LINQ to SQL makes it easy to determine exactly what SQL is being executed
behind the scenes. The easiest way to take a look is to examine the object that’s returned from
your LINQ expression. As you already know, this object implements the IEnumerable(Of T)
interface, but the specific object type depends on your LINQ expression. When executing a
LINQ expression on a Table(Of T) object, the LINQ expression returns a System.Data.Linq.
DataQuery object. The DataQuery object encapsulates the details needed to fetch the results
you want—namely the SQL query. In other words, the DataQuery stores the command that
gets your data and exposes that data through an enumerator.

Although DataQuery is an internal class (and thus you can’t manipulate it directly), it
has one useful feature that’s publicly accessible. DataQuery overrides the ToString() method
to return the query that it uses. That means you can preview the SQL command before you
execute it using code like this:

In the preceding example, the query text is as follows:

There are two important details to notice right away about this command. First, it uses
parameters (such as @p0), which means it’s immune to SQL injection attacks. Second, it
translates a .NET language detail (the String.StartsWith() method call) to the corresponding
SQL syntax (the LIKE keyword with a matching expression). Of course, there are obviously
some expressions that have no direct SQL equivalent (or no equivalent that can be determined

CHAPTER 13 L INQ 603

by the compiler). For example, consider this expression, which uses a method to test whether
each employee record should be included in the results:

It doesn’t matter what code you place in the TestName() method. LINQ to SQL is unable
to convert it to a SQL command, and you’ll receive an InvalidOperationException when you
attempt to iterate over the results.

In cases like these, where your logic can’t be translated to a SQL query automatically,
you can use LINQ to SQL to retrieve the full set of records and then filter it out on the client
side. Essentially, you use LINQ to SQL to retrieve the data from the database, and LINQ to
Objects to filter out the in-memory objects. There are several ways to achieve this, but the
basic strategy is the same. You need to step down from the IQueryable(Of T) interface (which
the Table(Of T) object implements) to the more basic IEnumerable(Of T) interface. Here’s
one possible way to do it:

Here, the AsEnumerable(Of T) method returns an IEnumerable(Of T) reference for the
Table(Of T) object.

Note Remember, IEnumerable(Of T) gives you the in-memory filtering of LINQ to Objects, while
IQueryable(Of T) provides the dynamic querying capabilities of LINQ to SQL.

Using the ToString() method is a valuable way to verify what SQL your command is using,
especially as you begin to build more complex expressions. It saves you from having to run a
SQL Server analysis tool like SQL Server Profiler. You can also get this information in debug
mode simply by hovering over the Query(Of T) object, as shown in Figure 13-7.

CHAPTER 13 L INQ604

Figure 13-7. Viewing the automatically generated SQL at runtime

Note At this point, you might be wondering if it’s possible to customize the SQL that’s used by LINQ to
SQL. For example, you might want to use a stored procedure instead of a query against a table. Although this
is possible (and you’ll see how to do it later in this chapter), it may not be worth the effort. Depending on the
degree of control you’re after and the complexity of your SQL, you might be better off just using ADO.NET to
get complete control.

THE LINQ TO SQL DEBUG VISUALIZER

As you perform more complex LINQ queries, you’ll find that the generated SQL grows dramatically, and it
may no longer be practical to read the command text in the pop-up debugger tooltip. An easier way to read
the query text is to use a visualizer window for the query text.

The ASP.NET team has created exactly the tool you need: a Visual Studio add-in that allows you to
examine your LINQ expression and review the underlying SQL query in much more detail. By default, this
tool isn’t installed in Visual Studio—instead, it’s provided as a sample project. To find it, look in a folder like
c:\Program Files\Microsoft Visual Studio 9.0\Samples\1033 for the file named CSharpSamples.zip.

CHAPTER 13 L INQ 605

Note A VB version of this add-in isn’t available at the time of authoring this chapter, but it may
become available later.

In this file, you’ll find a subfolder named QueryVisualizer, which contains the source code for this add-
in and a readme with instructions for installing it in Visual Studio. To get to this location in a hurry, use the
Help Samples command in the Visual Studio menu.

Once the visualizer is installed, you’ll be able to hover over an IEnumerable<T> variable to see the
associated query (as you did before). However, you’ll also see a small magnifying glass icon next to the
query text. Click the magnifying glass to open the visualizer window, which shows the LINQ expression and
the corresponding SQL query. The visualizer window also displays the current parameter values and allows
you to test your query and see the database records it returns.

Reviewing the SQL is an important first step to understanding how LINQ to SQL works.
However, there are a few more details that are important to understand about the way LINQ to
SQL works:

the database server until you begin iterating over the results (or you bind them to a
control). It’s at this point that connection errors, such as SqlException, will be thrown.

you’re using a For Each block to move through the results, make sure you don’t include
any time-consuming code. (This is the same rule of thumb you’d follow if you were read-
ing results with the ADO.NET DataReader.) If you need to perform lengthier processing,
use the ToList(Of T) or ToArray(Of T) methods, which query the data immediately and
return a strongly typed collection or array with the results.

binding the same result collection to several different controls, you’re needlessly magnify-
ing the work the database needs to perform (and creating the possibility for inconsistent
data). To avoid this issue, use ToList(Of T) or ToArray(Of T) to get a single collection, and
bind that.

any updated data is discarded. For example, if you perform a query for a list of employee
records, and then iterate over your data a second time (causing the query to be repeated),
you won’t see any changes that other users may have made to employee names. (This
is a requirement to ensure that the change tracking in LINQ to SQL works properly.)
However, subsequent queries will pick up any new records that have been added to the
database.

CHAPTER 13 L INQ606

Note If you want to discard your current data and pick up the latest data in the database, you can use the
DataContext.Refresh() method. However, this is unlikely to be useful in an ASP.NET web page, because your
code is only active for a very short period of time.

LINQ to SQL and Database Components
Now that you know a fair bit about LINQ to SQL, it’s important to consider how it should fit
into an ASP.NET application.

As you already know, it’s always best to place data access code in a separate class and,
ideally, a separately compiled component assembly. That way, you can minimize the depen-
dencies between your application and your data access routines. You can also revise, debug,
and version your data access code separately from the rest of your application.

This philosophy holds true with LINQ to SQL. However, it also means you need to
be careful with the deferred execution model. For example, consider this version of the
GetEmployees() method, which you might add to a typical database component:

Note Notice that this code returns IQueryable(Of T) (another option is Table(Of T)). However, make
sure you don’t oversimplify and return an IEnumerable(Of T) reference. Although this is possible (because
IQueryable(Of T) extends IEnumerable(Of T)), it may not have the result you want. Returning IEnumerable(Of T)
is equivalent to calling the AsEnumerable(Of T) method, as described in the previous section. If the web page
uses a LINQ expression on top of the object you’ve returned, the entire data will be retrieved from the data-
base and then filtered. But with IQueryable(Of T), a single streamlined SQL query will be used to query the
filtered data.

The calling page can use this method to get the data it needs:

However, deferred execution poses a problem. Because the database connection isn’t
actually made until the data is bound, it’s all too easy for the consuming code in the web page
to use the data without protecting itself against possible errors. In fact, in order for the code to
be safe, it would need to be written like this:

CHAPTER 13 L INQ 607

Rather than rely on the client’s good behavior, it’s much safer to design the component to
ensure safety. You simply need to call the ToList<T> or ToArray<T> method to force the data
to be queried before you return the results. Here’s a revised GetEmployees() method that uses
this design:

The same approach makes sense when you’re using a LINQ expression to filter your results:

When this approach works, it’s preferable. The only problem is that it does limit your flex-
ibility. For example, consider a web page that presents different filtered views of the records
in a single table. This page might retrieve the full set of data from a database component, and
then use LINQ expressions to extract just those rows that are right for the current view. If you
use the approach just shown, with the ToList(Of T) method, the web page’s LINQ expressions
will be evaluated in memory, using LINQ to Objects. But if you return an IQueryable(Of T) ref-
erence, the web page’s LINQ expressions will become tailored SQL queries, using LINQ to SQL.
This might be preferable if you’re retrieving a small subset of a huge amount of data, and you

CHAPTER 13 L INQ608

have a large number of different views that are reused infrequently. Or, it might be more effi-
cient for the database component to retrieve the full set of data, call ToList(Of T), cache the full
collection in server memory (as described in Chapter 11), and then let the web page use LINQ
to Objects.

In cases like these, you may need to profile different approaches to find the best strategy.
Either way, it’s critically important to realize that if you return IQueryable(Of T), you’ll need to
worry about catching connection-related errors in the web page.

Note Part of the benefit of LINQ is that you can use the same sort of expressions without worrying about
where your data is coming from. In the previous example, the web page uses the same query expression,
regardless of whether the data is stored in memory or fetched by a query. However, there is one difference—
if you’re using a LINQ provider that accesses external data, like LINQ to SQL, you’ll need error handling code
to catch problems when you begin to iterate over your results.

There’s one other consideration when crafting a database component—the lifetime of
the DataContext class. This is primarily of importance if you want to change data after you’ve
retrieved it. The DataContext provides an instance management feature that you’ll learn about
later in this chapter.

Essentially, the DataContext ensures that you’ll never have more than one object for the
same database record. If you retrieve the data from a specific record more than once, you’ll
get the same object instance each time. This means that if you change the data in one place
and retrieve it in another place, you’ll see the most recent changed data, even though the
changes haven’t been applied to the database yet. This behavior is useful when you’re navi-
gating through relationships, because you might not realize that you’re retrieving an object
you’ve already examined and modified. You’ll get the full story about this behavior in the
“Committing Changes” section.

In order to support change tracking, you’ll want to create the DataContext as a field in
your data access class. You can then instantiate it (and pass it the appropriate connection
string) in the constructor:

CHAPTER 13 L INQ 609

This way, all your database methods will use the same DataContext, and therefore the same
instance tracking.

Selecting a Single Record or Value
The DataContext.GetTable(Of T) method (and LINQ expressions that work on GetTable(Of T))
give you a great way to pull a group of records out of a database table. However, they aren’t as
convenient if you simply want a single record or a single calculated value. Although you can
use the same approach, it leads to unnecessary, unclear code. That’s because the only way to
get the first (and only) result is using a full For Each block.

LINQ to SQL provides an alternate approach that allows you to simplify this task. The trick
is to call one of the LINQ to SQL extension methods on the IEnumerable(Of T) results. That
extension method can then return the single value that you want. The methods you’ll want to
use are defined by the System.Linq.Enumerable class. The simplest methods are Single() and
SingleOrDefault(). The difference is that Single() throws an InvalidOperationException if there
is more than one item, while SingleOrDefault() simply returns the default empty value for the
type (which is Nothing for a reference type and 0 for numeric types).

Here’s an example that shows the Single() method at work. This database component code
performs a query that uses the primary key, ensuring that there is only one possible match.
The single matching object is extracted from the IEnumerable(Of T) collection of results using
Single():

Both the Single() and SingleOrDefault() methods have another trick—you can pass in a fil-
ter condition that’s applied against a whole group of results. This filter condition must whittle
the results down to a single matching object, which is then returned. Here’s an equivalent
example that uses this approach to return a single matching employee record without using a
LINQ expression:

This code is executed in the same way. With both code routines, LINQ to SQL executes a
targeted SQL query with a WHERE clause, rather than retrieving all the results and perform-
ing client-side filtering. You can use whichever approach seems clearer to you, although you’ll
need the full-fledged LINQ expression if you want to use other LINQ features (like projections).

Along with Single() and SingleOrDefault(), you can also use First(), FirstOrDefault(), Last(),
LastOrDefault(), ElementAt(), and ElementAtOrDefault() to grab records that are in a specific
position in a larger collection. Obviously, the result of First(), Last(), and Single() is the same if
the data source has just a single record.

CHAPTER 13 L INQ610

The extension methods described so far are useful for pulling out a complete record, but you
can also use aggregate extension methods that perform a calculation. These methods include
Min(), Max(), Count(), LongCount(), and Average(). Here’s an example of Count() at work:

Tip All of the aggregate extension methods include an overloaded version that allows you to supply a filter
condition.

Generating Data Classes Automatically
As you saw earlier, you allow existing data classes to work with LINQ to SQL by adding the
Table and Column attributes. However, if you haven’t yet created the data classes you need,
there’s no need to do it by hand. The .NET Framework includes a command-line tool named
SqlMetal that can generate the data classes, based on the schema of your tables, with the
appropriate attributes. It can also create helper methods that call the stored procedures in your
database. You can use this tool directly, or you can use the design-time support that’s built into
Visual Studio, which gives you essentially the same functionality. The key difference is that the
Visual Studio designer support allows you to generate data classes for selected tables, while
SqlMetal is an all-or-nothing tool that creates a full set of data classes for your database.

Note The ORM model that’s provided by LINQ to SQL is simple and straightforward. Your objects are the
results returned by a query. Although you could create objects that represent composite information (data
that’s joined from several tables) or aggregate information (data that’s calculated from a group of rows), LINQ
to SQL is designed with an exact correspondence of tables to classes in mind. The advantage of this model
is that it’s logical and uncomplicated. However, it’s not nearly as flexible as third-party ORM tools or LINQ to
Entities.

To generate data classes in Visual Studio, you need to add a DBML (Database Markup
Language) file to your application. If you’re following good design practices, you’ll be adding
this file to a database component assembly rather than your actual website, although both
approaches are possible. To add a DBML file, right-click your project or website in the Solution
Explorer and choose Add New Item. Then choose LINQ to SQL Classes, give it a name (like
Northwind.dbml), and click Add.

CHAPTER 13 L INQ 611

When you add a DBML file, Visual Studio creates two additional resources files. For exam-
ple, if you add a file named Northwind.dbml, you’ll end up with these three files:

Northwind.dbml: This XML file defines the schema of a portion of your database.

Northwind.dbml.layout: This XML file defines the way the individual tables in your data-
base diagram are laid out in design view.

Northwind.designer.vb: This VB code file includes the automatically generated data
classes (and any stored procedure helper methods you choose to include).

Using Visual Studio, you create a database diagram that consists of one or more tables
(and their relationships). Visual Studio generates the XML files that describe these tables, and
generates the underlying data access code automatically.

There are two ways to build your database diagram. First, you can define the schema for
your database tables by hand, although the process is quite tedious. To try this out, start by
opening your DBML file in Visual Studio. Next, right-click the design surface and choose Add

 Class to define a new data class that represents a table. You can then add one Property for
each field in the table. Of course, you’ll need to remember to include every detail and specify
the right data types so that the properties correspond with the fields in the underlying data-
base table.

A far easier approach is to use the Server Explorer window to drag tables straight from your
database. Here’s how:

 1. Show the Server Explorer window. Usually, it’s paired in a tab with the Toolbox. If you
don’t see it, choose View Server Explorer.

 2. If you haven’t yet added a connection for your database, right-click the Data Connec-
tions node at the top of the Server Explorer and choose Add Connection. Then, fill in
the name of your database server (localhost for the current computer), specify the
authentication mechanism (usually Windows authentication), and choose the data-
base you want to use. Click OK when you’re finished.

 3. Find your database in the Data Connections section the top of the Server Explorer.
Expand it, and then expand the Tables group inside so you can see all the tables in
your database.

 4. Drag each table you want to use onto the design surface for your DBML file, as shown
in Figure 13-8. Visual Studio automatically fills in the field list and adds relationships
based on the foreign key constraints defined in the database.

Tip The arrangement of tables on your design surface has no effect on the generated code, but you’ll
want to make your diagram as easy to read as possible.

CHAPTER 13 L INQ612

Figure 13-8. Building a diagram for a DBML file

If you decide you don’t want to use a table that you’ve added, select it and press the Delete
key. Follow the same procedure if you want to remove a field in order to leave out non-essential
information. (You obviously won’t be able to edit fields that aren’t included in your data classes.
In addition, if you omit a required field that doesn’t have a default value, you won’t be able to
add new records to that table.)

Using the Properties window, you can change some other details about your properties.
You’re most likely to change Name (if you don’t want the property name to match the field
name that’s specified in Source), Access (if you want to make a property Private, Friend, and
so on), Read Only (if you want to ensure that this value can’t be changed programmatically),
and Type (if you have a more specialized .NET data type you want to use, like an enumeration).
Two more specialized details are Update Check (which allows you to change how concurrency
conflicts are handled for that data, as discussed later in this chapter), and Delay Loaded (set
this to true if the field contains huge values, and you want to query them separately the first
time they’re used in code).

Note Visual Studio is smart enough to automatically depluralize table names. Thus, the Employees table
actually becomes the Employee class when you add it to a DBML file. The depluralizing logic is surprisingly
deft, and takes English spelling into account—for example, it can successfully convert the ies in Territories
to the y in Territory. Of course, you’re free to set the class name to be whatever you like by selecting it in the
design surface and modifying the Name in the Properties window.

CHAPTER 13 L INQ 613

At any point, you can look at the corresponding code in the .designer.vb file. To make sure
you see the most recent details, start by saving your DBML file (choose File Save from the
menu), and then double-click the .designer.vb file in the Solution Explorer.

There are two types of classes you’ll find in the generated code. First, you’ll find a data
class for each table you’ve added to the design surface. Second, you’ll see a class that derives
from DataContext that’s named after your DBML file (such as NorthwindDataContext). This
class provides helper methods that allow you to quickly retrieve the full contents of each table.
It also allows you to expose stored procedures to your application and provides a mechanism
for adding validation, as you’ll see later in this chapter.

The Data Classes
The data classes are essentially the same as the ones you would build yourself, but the code is
less compact and has a few additional details. Here’s a portion of the code for the Employee
class shown in Figure 13-8:

CHAPTER 13 L INQ614

DEALING WITH DATABASE SCHEMA CHANGES

Ideally, if you choose to use the automatically generated classes, you’ll minimize the number of changes
you make to them. This is a good idea because Visual Studio doesn’t allow you to update your data classes
in response to changes in the corresponding table. It’s up to you to add the required code, or remove your
class and regenerate it from scratch. This is a bit of a headache if you’ve chosen to make widespread minor
changes, like mapping table field names to differently named properties.

If the table changes are relatively minor (like a newly added field), you may want to add a dupli-
cate copy of the data class to your design surface. (It will automatically be given a different name, like
Employee1.) You can then cut code from the new class and paste it into the old one. When you’re finished
updating the old class, you can simply remove the new class altogether.

If you want to add custom code to a data class, you should place that code in a separate file. As long
as you include the Partial keyword in your class definition, your code will be merged into the full class
declaration with the automatically generated code. This approach ensures that even if you regenerate your
data classes, your custom code will remain untouched (although you’ll obviously need to edit it if it refers to
details that have changed, such as renamed properties). You’ll learn how to use this technique later in this
chapter when you use custom validation rules.

As you’d expect, the Employee class is made up of private fields and public properties that
expose these fields. However, there are a few differences from the hand-authored data class
you saw earlier:

The partial class declaration: The generated data classes are always declared with the
Partial keyword. That way, they can be merged with a similar class definition in another
file that contains custom code you want to add.

Change tracking: The generated data class implements the INotifyPropertyChanging
and INotifyPropertyChanged interfaces to support change tracking. When a property is
changed, the corresponding PropertyChanging and PropertyChanged events are raised
through these interfaces. Change tracking is an essential feature in rich client applications
(like WPF applications), because it ensures that controls are updated immediately when
the bound data object changes. This doesn’t apply to an ASP.NET application, because all
data binding references are resolved a single time, when the DataBind() method is called.
Change tracking can also make updates more efficient, because LINQ to SQL does not
need to retain as much information in memory. (You’ll learn more in the “Committing
Changes” section later in the chapter.) This factor is also minimal in an ASP.NET applica-
tion, because you’ll usually be holding small amounts of changed data in memory at a
time and updating them soon after they’ve been changed.

Note The OnPropertyChanging() method is also a great place to plug in your own custom validation logic.
You’ll learn how to do so in the “Validation” section later in this chapter.

CHAPTER 13 L INQ 615

The properties of the Column attribute: The properties in the generated data class are
more explicit than the ones you used earlier. They specify optional details like the Storage
property, and indicate the database data type to avoid any possible ambiguity.

Relationships: If you’ve added more than one related table to the design surface of your
DBML file, you’ll get some extra details that define their relationships (such as the Asso-
ciation attribute). You’ll learn about these details in the “Relationships” section.

The Employee class contains a few more differences in the way that it handles foreign key
relationships, which you’ll explore in the following sections.

All in all, the automatically generated data class is a more explicit, less compact version of
the data class code you’d typically write yourself, with the addition of change tracking.

The Derived DataContext Class
Along with the data classes (one for each table), the .designer.vb file also includes a derived
version of the DataContext class. This class is given the same name as your DBML file, with
DataContext added to the end (as in NorthwindDataContext). This customized DataContext
includes the standard constructors, an additional no-argument constructor that retrieves
the connection string from a configuration file, and one helper method for each table in
your diagram. This helper method returns the full data in that table, using the DataContext.
GetTable(Of T) method.

Here’s an abbreviated listing of the NorthwindDataContext class that shows the methods
for retrieving data from three tables:

CHAPTER 13 L INQ616

You’ll also find a range of constructors that allow you to create an instance of the cus-
tom DataContext using a connection object or connection string. Some constructors also
allow you to supply the mapping source. (Ordinarily, the mapping source is an instance of
the AttributeMappingSource class. When you use the AttributeMappingSource, LINQ to SQL
determines the table and fields to use by examining attributes like Table, Column, and Associ-
ation. An alternative is to use an XmlMappingSource object, which indicates that the mapping
information is stored in a separate XML file. Generally, you’ll only use this option if you’re
working with a third-party tool that generates mapping information in this format.)

More usefully, the derived DataContext class gives you a new way to integrate custom
code. Because the derived DataContext is a partial class, you can define the same class in a
separate file and add your own custom properties and methods to it. This way, you can make
changes on the DBML design surface and regenerate the derived DataContext without losing
the custom code you’ve added.

To give you more extensibility points, the derived DataContext defines several partial
methods with no code:

You can define these methods in your partial class declaration (in a separate file) to plug
into various operations. For example, all the constructors in the derived DataContext call
OnCreated(). That means you can define this method in your partial class definition to add
code that runs when the DataContext object is instantiated. Similarly, you can add code that
runs when a record is inserted, updated, or deleted.

Relationships
LINQ to SQL has a particularly elegant way of handling relationships. Related records are
represented by nested collections—for example, one Customer object might contain a collec-
tion of Order objects. Best of all, you can traverse these collections using the relationships (for

CHAPTER 13 L INQ 617

example, moving through all the Order objects that belong to a particular Customer object)
without being forced to flatten your objects into a joined representation that’s more difficult
to work with and can’t be updated.

There are two essential tricks to making relationships work with LINQ to SQL:

The EntitySet collection: If you want a Customer object to hold a collection of Order
objects, that nested collection must be an instance of the System.Data.Linq.EntitySet
class. This allows the related objects to work with the instance tracking that’s built into
LINQ to SQL and described in the “Committing Changes” section.

The Association attribute: You apply this to the EntitySet property that has the related
data. It identifies the class that’s used to represent the related data objects.

You can build classes that use these details by hand (as you first did with the
EmployeeDetails class) or you can create them in the DBML designer (as you did with the
Employee, EmployeeTerritory, and Territory classes in the previous section). In most cases,
you’ll probably prefer to use the rapid application development tools in Visual Studio unless
you’re retrofitting existing classes. (After all, if you wanted to fine-tune the details of each
data class, you could create your own custom data class without using LINQ to SQL.) How-
ever, the next section uses a stripped-down example with a hand-authored class, so you
can focus on the essential details.

The Northwind database includes a fairly typical one-to-many relationship between the
Customers and Orders table, where Customers is the parent and Orders is the child. Thus, it
makes sense for the Customer class to hold a collection of Order objects. Here’s the class code
that establishes this relationship:

CHAPTER 13 L INQ618

CHAPTER 13 L INQ 619

Note If you use Visual Studio to generate your data classes automatically, you’ll find that your code isn’t
as simple and straightforward as the example shown here. That’s because Visual Studio automatically adds
synchronization code, which is only required if you plan to use LINQ to SQL to edit data (for example, moving
a child record from one parent to another) or add new data (for example, inserting a new child for an existing
parent). You’ll learn about these issues in the “Committing Changes” section.

Here’s the other half of this relationship—the bare minimum code you need for the Order
class that’s the parent:

CHAPTER 13 L INQ620

CHAPTER 13 L INQ 621

Now that you have this relationship formalized, you can use it in your code. For exam-
ple, imagine you create a method in your database component that returns the full set of
customers:

You can use this method to get the list of customers, and then dig into the orders for each
customer. Here’s an example that uses this approach to write a customer order summary on a
web page:

Figure 13-9 shows the result.

CHAPTER 13 L INQ622

Figure 13-9. Navigating a relationship with LINQ to SQL

The final result isn’t as interesting as what’s taking place behind the scenes to make this
code work. Even though you don’t have any LINQ expressions at work (and therefore you can’t
see the generated SQL text in the debugger), you can still capture what’s happening using an
analysis tool like SQL Server Profiler. If you do, you’ll find that the first query is executed when
you call GetCustomers(). It retrieves the full set of customer information, but it doesn’t include
any details about the linked orders. Instead, LINQ to SQL uses lazy loading (which is also
known as deferred loading). Each time you access the Customer.Orders property, LINQ to SQL
executes a new query that fetches just the order records for that customer.

This approach gives you the potential to write efficient database search routines. If you
only plan to process the orders for one or two customers, this targeted querying approach is
ideal. However, if you plan to examine the orders for every customer (as in the previous exam-
ple), it’s far less convenient—in fact, it multiplies the work the database server needs to do.

There’s another important consideration at work here. Once again, LINQ to SQL is per-
forming its work quietly when you begin iterating over some data. Again, that means there’s
the possibility for a low-level data access error to creep into code that looks benign. In fact, this
issue can be fairly subtle. In the current example, the GetCustomers() method appears to play
it safe by calling the ToList(Of T) method before returning any data. However, ToList(Of T)
simply retrieves the top-level Customer objects. It doesn’t retrieve the related Order objects.
The lesson here is that whenever you have a data class that includes an EntitySet(Of T) field,
you have the potential to execute a database operation when you might not expect it.

CHAPTER 13 L INQ 623

Note You can disable lazy loading by setting the DataContext.DeferredLoadingEnabled property to false.
This is useful if you want to work with just a portion of your data model. If you use this technique with the
example shown previously, the Customers.Orders property will return an empty collection. The only exception
is if you use preloading (which is described in the next section) to explicitly tell the DataContext to retrieve
some related data with its initial query of the parent table.

Preloading Related Data
There is a way to force LINQ to SQL to load related data immediately, but you need to know
when to opt into it. The trick is to set the LoadOptions property of your DataContext.

The LoadOptions property accepts a System.Data.Linq.DataLoadOptions object. Essen-
tially, the DataLoadOptions object specifies which subtypes to retrieve along with a given type.
For example, the DataLoadOptions object can specify that the associated Order objects should
always be retrieved when querying Customer objects. Here’s how:

You need to set the DataLoadOptions property before you use the DataContext to perform
a query. If you’re creating the DataContext in the constructor of a database component class,
it makes sense to initialize its shape there. You can define as many shape rules as you want by
calling LoadWith(Of T) on multiple types. For example, you can make sure the orders are
included with customers, order items are included with orders, products are included with
order items, products are included with product categories, and so on.

Now when your code calls the GetCustomers() method, LINQ to SQL executes a single
query that gets all the customer and order records at once. It’s as if you were using the Data-
Set, filled it with the full contents of both tables, and then created a DataRelation to make for
easier navigation. To see the specific SQL that’s being executed, you can use the debugging
trick shown earlier and hover over the IEnumerable(Of T) variable, or you can perform a trace
using a tool like SQL Server Profiler. Either way, you’ll find that LINQ to SQL is now using a
join query to get all the results in one operation, rather than performing individual queries.

If you want more control over the query that LINQ to SQL uses to fetch related records,
you can use the AssociateWith(Of T) method instead of LoadWith(Of T). When using
AssociateWith(Of T), you supply a LINQ subquery. This could allow you to fill in other details,
like a where clause that filters out the records you don’t want to include.

This effectively hides orders with an order date before the first day in 2000, so they won’t
appear at all in the Customer.Orders collection. In the case of the Northwind database, this
clause will effectively hide all the records, so be sure to use an earlier year, like 1997, if you’re
testing this technique.

CHAPTER 13 L INQ624

Navigating from Child to Parent
In the previous example, the EntitySet allows you to navigate from a parent record (a Customer
object) to the related children (the Order objects). However, it’s equally possible that you’ll
want to go in the other direction—in other words, start with a child and then move up to the
parent. Currently, the Order class doesn’t have this functionality. However, it’s easy to add it
by using the Association attribute with an EntityRef field.

The EntityRef plays a similar role to the EntitySet. The difference is that the EntitySet leads
to a collection of child items, while the EntityRef points to the single parent. Here’s how you
can implement it in the Order class:

CHAPTER 13 L INQ 625

To keep things simple, the Order.Customer property is read-only in this example. You can
make it modifiable, but you need to take special care to make sure the linked Customer object
is synchronized. That means you need to add the Order object to the Customer.Orders Entity-
Set. Here’s the code you need:

CHAPTER 13 L INQ626

Once again, LINQ to SQL will use lazy loading and won’t fetch the customer until
you access the Order.Customer property. If this isn’t what you want, you can add another
DataLoadOptions rule by calling LoadWith(Of T):

If you disable lazy loading by setting DataContext.DeferredLoadingEnabled to false, the
Order.Customer EntityRef will always be null, unless you’ve preloaded the customer data.

Tip When you create a DBML file and add related tables, the designer adds the Association attributes and
the EntitySet and EntityRef properties automatically. If you don’t want to expose a relationship in your object
model, simply select the dotted line that represents the relationship in the database diagram, and press
Delete.

One-to-One Relationships
One-to-one relationships are easy to deal with in LINQ to SQL. Because each object is linked to
a single object, there’s no need to use the EntitySet collection. Instead, both related classes use
the EntityRef.

For example, imagine you have two classes, Customer and CustomerDetails, that have
a one-to-one relationship. The Customer class will have a CustomerDetails property and the
CustomerDetails class will have a Customer property. Both will be EntityRef objects.

CHAPTER 13 L INQ 627

Many-to-Many Relationships
There’s no dedicated LINQ to SQL attribute that represents a many-to-many relationship.
Instead, you need to handle many-to-many relationships in your object model in much the
same way that you do in your database—by using a third entity that links both sides of the
relation together.

For example, in the Northwind database, the Employees and Territories tables share a
many-to-many relationship. A single employee can work in several territories, and several
employees can work in the same territory. To express this relationship, the database includes
a junction table named EmployeeTerritories. Each record in the EmployeeTerritories table
links a single employee to a single territory.

To handle this data with LINQ to SQL, you need a class representation of each table. That
means you must create Employee, Territory, and EmployeeTerritory classes (or let the DBML
designer do it for you). Essentially, the EmployeeTerritory class takes part in two different one-
to-many relationships—one with the Employee class and one with the Territory class.

Here are the key characteristics of the solution:

Employee object will have an EntitySet with a collection of EmployeeTerritory
objects.

Territory object will have an EntitySet with a collection of EmployeeTerritory
objects.

object will have two EntityRef objects, one that points to the
linked Employee object and one that points to the linked Territory.

It’s not too difficult to construct the Employee, Territory, and EmployeeTerritory classes
on your own. They use the concepts you’ve already seen in the previous sections. However,
the details can get a bit tangled if you need to make your data editable, in which case you need
the synchronization code shown earlier. If you need the ability to remove employee-territory
pairings, create new ones, or change existing ones, it’s probably easiest to let the designer gen-
erate the data class code.

Using these data classes is just as easy as using the single one-to-many relationship you
learned about earlier. You simply need to travel through two layers. First, you need to move
through the EntitySet to get the EmployeeTerritory objects, and next you need to follow the
EntityRef object to get the linked record. For example, here’s the code that finds all the territo-
ries that are linked to a specific employee:

CHAPTER 13 L INQ628

You use much the same code to find the employees that work in a single specific territory:

Self-Relationships
In some cases, a table links to itself. This occurs with the Employees table. It includes a ReportsTo
field that links the EmployeeID field of another employee record. The relationship is one-to-
many because several employees can report to the same individual. For employees that have no
direct superior in the Employees table, this field is left null.

Although a self-relationship is conceptually different, it’s handled with the same EntitySet
and EntityRef plumbing. The only difference is that both details are contained in the same class,
as shown here:

RELATIONSHIP NAMES IN THE LINQ TO SQL DESIGNER

The DBML designer names the EntityRef and EntitySet properties based on the linked table, not the linked
field. For most normal relationships that span tables, this usually makes sense. For example, the Customer
class has an Orders EntitySet that contains Order objects, and the Order object has a Customer EntityRef
that points to the linked customer. However, this system doesn’t work in every situation. For example,
consider a Project object that has several employees working on it in different roles. In the database, these
relationships might be represented with fields like ManagerID, SupervisorID, and InspectorID, all of which
link to the same Employees table. In the generated data class, you’ll end up with unhelpful EntityRef names
like Employee1, Employee2, and Employee3.

A similar problem occurs with a self-reference. For example, the previous example is much
clearer if the EntitySet is named DirectReports (rather than Employees) and the EntityRef is named
 ReportsToEmployee (rather than Employee1). In this case, the link needs to be contextualized—the table
name is not enough information.

Fortunately, these details are easy to change in the DBML designer. Simply select the relationship and
look in the Properties window. You can set the EntitySet name by expanding the Child Property section and
modifying the Name underneath. You can set the EntityRef name by expanding the Parent Property section
and modifying the Name.

CHAPTER 13 L INQ 629

Generating Methods for Stored Procedures
The DBML designer window also allows you to generate handy methods that call the stored
procedures in your database. This feature is nice, because it saves you having to write the
equivalent code yourself. It’s a great option for performing specific business tasks (like updat-
ing a batch of records). However, if you use a stored procedure to retrieve data, you’ll lose
some of the power and flexibility you get with the DataContext.GetTable(Of T) method. To
understand why, it helps to consider a simple example.

To add a method in the DBML designer, make sure the Methods pane is visible next to
the design surface. (If it isn’t, right-click the design surface and choose Show Methods Pane.)
Then, you simply need to drag a stored procedure from your database in the Server Explorer
and drop it on the Methods pane (Figure 13-10). To see your changes in the generated code,
save the DBML file.

Figure 13-10. Generating code for a stored procedure

For example, if you add the GetAllEmployees stored procedure used in earlier chapters,
you’ll find the following method in the custom DataContext class:

CHAPTER 13 L INQ630

This somewhat terse code uses the DataContext.ExecuteMethodCall() method to call
the stored procedure. The ExecuteMethodCall() method provides an object that implements
IExecuteResult(Of T). The IExecuteResult interface defines two members—a ReturnValue
property that provides the return value of the stored procedure and a GetParameterValue()
method that allows you to retrieve the value of an output parameter.

OTHER FEATURES OF THE DATACONTEXT

The automatically generated stored procedure calling code relies on one special detail: the DataContext.
ExecuteMethodCall() method. It examines a method definition in .NET code using reflection, and uses it to
construct a query that calls the corresponding stored procedure in a database.

The DataContext has two more backdoors. You can use the ExecuteCommand() and ExecuteQuery(Of T)
methods to execute arbitrary SQL on the database. This provides a pass-through mechanism that lets you
perform database operations that aren’t directly accessible (or would be impractical) through the LINQ to
SQL data model. The difference between ExcecuteCommand() and ExecuteQuery(Of T) is that the latter expects
records to be returned. When calling the method, you specify the class that represents each record in the
result set.

Lastly, the DataContext also includes a few helper methods that allow you to manage databases,
including CreateDatabase(), DatabaseExists(), and DeleteDatabase(). If you plan to use CreateDatabase(),
make sure you’ve specified all the schema information for your table using the Column attribute on your
data class. Optional details like the SQL Server data type are now essential, because the CreateDatabase()
method will use this information to construct the right CREATE DATABASE command.

The final line of code casts the IExecuteResult reference into something more useful—
an ISingleResult reference. ISingleResult provides the same ReturnValue property (but no
 GetParameterValue() method). Most importantly, it extends IEnumerable(Of T), which
means you can enumerate over the results, bind them to a data control, or use them in a
LINQ expression. Each item is represented by an instance of a newly generated class named
GetAllEmployeesResult, which wraps the fields of the stored procedure query results.

The GetAllEmployees() method achieves the immediate goal—it calls the stored pro-
cedure and retrieves the employee data—but it also forces you to compromise. If you have
multiple stored procedures, you’ll end up with multiple data classes, which complicates
your data model needlessly. Even identical data structures (like the records returned by
a GetAllEmployees stored procedure and the single record returned by a GetEmployee
stored procedure) will use different classes. You’ll also lose the LINQ to SQL change track-
ing and update features. Finally, it’s important to note that the ISingleResult interface
extends IEnumerable(Of T), not IQueryable(Of T). This means the operation is performed
in a distinctly un-LINQ-like fashion. The data is queried immediately when you call
GetAllEmployees(Of T), and if you use the returned results with a LINQ expression to filter,
sort, or otherwise manipulate your results, you’ll be using LINQ to Objects, not LINQ to SQL.

It’s a similar story if you’re calling stored procedures that update, insert, or delete records
(or perform some other database task). The generated method will closely match the stored
procedure, with the same parameters and return type. A Parameter attribute is used to indi-
cate additional details about the matching parameter in the stored procedure (such as its
name). Here’s the code for calling the UpdateEmployee stored procedure:

CHAPTER 13 L INQ 631

In theory, you could use the DBML designer to generate a custom DataContext class with
stored procedure calls, so you don’t need to create a data access class on your own. However,
the generated code probably won’t be exactly what you want. In the example just shown,
where employee information is returned as a collection of GetAllEmployee objects, you’d
probably prefer to have an UpdateEmployee stored procedure that accepts a GetAllEmployee
instance. This more organized approach was demonstrated with the database component in
Chapter 8.

Committing Changes
As a web developer, it’s quite possible that you’ll use LINQ to SQL extensively to read data but
never use it to commit changes. After all, the rich data controls and the data source controls
make it easy to commit changes as soon as they’re made. By contrast, the change tracking fea-
tures of LINQ to SQL really shine when you need to make a batch of updates at once, or if you
want to hold on to changed data for some period of time before committing an update.

That said, you may still choose to perform your updates through LINQ to SQL. To do so,
you need to understand a few details about LINQ to SQL’s instance management.

Instance Management
If you use the same DataContext for all your database operations, the DataContext ensures that
you never have more than one object representing the same record. Every time the DataContext
retrieves a record, it logs it in an in-memory table using its primary key. If you retrieve the same
record again, the DataContext uses the existing instance.

When developers first hear about this mechanism, they often assume it’s a form of cach-
ing used to optimize data access. However, it isn’t. If you perform successive operations that
retrieve the same data, LINQ to SQL will query that data multiple times, as you’ve already
learned. Instead, the instance management is designed to prevent duplicate data.

CHAPTER 13 L INQ632

Tip Remember, you can prevent a query from being repeated multiple times for the same data by con-
verting your results into a collection using the ToList(Of T) method described earlier in the “LINQ to SQL and
Database Components” section.

If the DataContext didn’t include instance management, you could end up with multiple
in-memory objects that represent the same record of data. (This is easier than you might think,
especially if you use the EntityRef and EntitySet objects to follow the path of a relationship
from one object to another.) Duplicate data isn’t a problem for read-only information, but it is
a serious headache if you plan to update your data. It’s all too easy to update one copy of your
information while another inconsistent version remains in memory. If this could occur, the
DataContext wouldn’t be able to determine the correct update operation to execute. For that
reason, each DataContext allows a single in-memory object for any given primary key.

This design has an interesting side effect. Even though LINQ to SQL re-executes queries
when you iterate over the same data more than once, the DataContext discards any new
information. For example, imagine you iterate over the full set of employees and display their
names in a page. At this point, LINQ to SQL executes the query. Immediately after, you bind
the employee collection to a grid, causing LINQ to SQL to execute the query a second time.
At this point, the query may retrieve newly added records (and if it does, they’ll be added to
the grid.) However, if the query retrieves the same record with recently updated information,
it will simply hand back the current in-memory object and ignore the new data. This makes
sense—after all, the in-memory object could include some changes you’ve made but not
yet applied to the data source. And it may not be appropriate to fuse the new data with your
updates, because these two sets of changes may not be consistent.

Here’s a simple block of code that emphasizes this behavior. First, the code directly retrieves
a single order object by its ID, and makes a change. Then, it performs a separate query for all
the customers in the database, and iterates over all the orders of each customer. When the code
comes across the modified Order object for the second time, you’ll see the new information.

CHAPTER 13 L INQ 633

There are two ways to repeat a query and retain any new information. First, you can
create a new DataContext, which will have its own change tracking. Second, you can call
the DataContext.Refresh() method on the information you want to requery. You can use any
IEnumerable(Of T) object, whether it’s the full table exposed by GetTable(Of T) or the matches
returned from a LINQ expression.

When calling Refresh(), you need to supply a value from the RefreshMode enumeration
to specify what should be done with the changed data. If you use RefreshMode.KeepChanges
(as in the preceding example), the DataContext gets the new data, but reapplies your changes
on top of it. Your other options are OverwriteCurrentValues (which gets all the database values
and discards any changes you’ve made) and KeepCurrentValues (which gets all the database
values and then overrides them all with your values).

Note Obviously, the KeepCurrentValues approach doesn’t actually refresh your data, because you’ll still
see the same values in your program. However, KeepCurrentValues can have an effect on the change track-
ing that the DataContext performs. For example, if a record in the database has been modified by another
user, you won’t be able to commit your update because the initial values of the record have changed. (The
next section has more about this optimistic concurrency system in LINQ to SQL.) However, if you then refresh
the data with KeepCurrentValues, your new values will be recorded as changes to the existing values, and
you will be able to commit the change.

Updates
LINQ to SQL uses a disconnected model that’s conceptually similar to the DataSet. You can
change the data in your objects, and that data will persist in memory, but the change isn’t
actually made in the back-end database until you call DataContext.SubmitChanges().

Similarly, when you remove records, they’re removed from all EntityRef and EntitySet
references, but they remain in memory so LINQ to SQL can delete them later on when you
reconnect to the database and call SubmitChanges().

The DataContext provides change tracking by keeping a duplicate copy of your changed
object in memory. If you generate your data classes using the DBML designer, your data classes
will implement the INotifyPropertyChanged and INotifyPropertyChanging interfaces to provide
change notification events. This allows the DataContext to use a slightly more efficient strategy,
and store just the changed data. However, the memory saving will be minimal unless you have
a large set of changed records (and even then, it’s unlikely that you’ll have that information
in memory for long, because ASP.NET web pages perform all their work in a few seconds of
request processing time, before releasing all the objects they have in memory).

CHAPTER 13 L INQ634

Tip If your data doesn’t need to be updated, you can set DataContext.ObjectTrackingEnabled to False to
marginally reduce the overhead of the DataContext.

When you call DataContext.SubmitChanges(), the DataContext attempts to commit all
of the changes in the data that it’s tracking, including updates, deletions, and insertions. If
you have related records, LINQ to SQL will apply the changes in an order that makes sense
(for example, it won’t attempt to insert a child record before inserting a linked parent). It
determines the correct order by relying on the Association attributes you used to mark up
your classes. If you want to update different tables separately, you can use more than one
DataContext.

By default, when you call SubmitChanges(), all the changes are performed as part of a
single transaction. If an error occurs, the entire process is rolled back, but the change tracking
information remains. That means you could programmatically resolve the problem and call
SubmitChanges() again. Once the update has succeeded, the in-memory values and the data-
base values will be identical, and the DataContext will discard its change tracking information,
allowing you to make more changes.

Note Ordinarily, calling SubmitChanges() starts a new transaction. However, .NET allows you to create
distributed transactions using the TransactionScope class. If there’s a transaction scope currently underway,
the DataContext joins this transaction, and the database operations become part of a larger distributed trans-
action. For more information about this technique, refer to the information for the TransactionScope class in
the Visual Studio Help.

Insertions and Deletions
To insert a new record, you simply need to create a new object for that record, populate it
with values, and then add it to the Table(Of T) collection using the InsertOnSubmit() method.
Here’s an example:

Similarly, to delete a record, you need to remove it from the Table(Of T) collection
using the DeleteOnSubmit() method or the DeleteAllOnSubmit() method (the different
being that DeleteOnSubmit() accepts a single object while DeleteAllOnSubmit() takes an
IEnumerable(Of T) collection that can contain multiple objects). Here is an example of both
techniques:

CHAPTER 13 L INQ 635

When you remove a data object, it remains in memory so the deletion can be performed
the next time you call SubmitChanges(). However, it won’t be exposed in the table collection
any longer.

It’s important to realize that adding or removing objects from an EntitySet(Of T) collection
won’t add or delete the corresponding records. Instead, it will simply change the relationship.
For example, if you move an Order object from the Orders collection of one Customer to another,
the DataContext will update the Order.CustomerID field to point to the appropriate record. Simi-
larly, if you remove an Order object from one Orders collection without assigning it to another,
the DataContext will attempt to set the Order.CustomerID field to null the next time you call sub-
mit changes. You can perform the same task from the other side of a relationship by modifying
the EntityRef(Of T) property.

EXAMINING CHANGES

To review the changes that are being tracked by a DataContext (but haven’t yet been applied), you can use
the DataContext.GetChangeSet() method. This method returns a ChangeSet object that wraps three proper-
ties: Updates (a collection of changed data objects), Inserts (a collection of newly created data objects), and
RemovedEntities (a collection of deleted data objects).

In early beta versions of LINQ to SQL, it was also possible to review the SQL commands that would
be used to update the database before calling SubmitChanges(). This trick, which was useful for simple
test applications and debugging, is no longer available. However, there are still a number of alternatives for
those who want to take a closer look at the SQL the DataContext executes:

Profiler. This will show all the database activity over the connections you
monitor.

object to the DataContext.Log property. This TextWriter will receive all the SQL
text as it’s executed.

method using the Immediate window in Visual Stu-
dio while in debug mode. For example, if your DataContext variable is named dataContext, enter

 in the Immediate window and press Enter. This returns a
string with the concatenated text of every command the SubmitChanges() method will execute.

The third approach depends on the private implementation of the DataContext class, which may
change at any time. However, it provides the only way to preview the SQL that the DataContext will execute
without calling SubmitChanges().

CHAPTER 13 L INQ636

Concurrency
Update errors can be caused by all the usual factors—a timeout waiting for a connection, a
network error, and so on—but the most common update error is a concurrency problem.

By default, update commands use optimistic concurrency, which attempts to match every
value. This runs into immediate trouble when two users make overlapping changes. If you
attempt to update a record, and that record no longer has the initial set of values you retrieved,
the update fails with an OptimisticConcurrencyException.

There are two overall strategies you can use to deal with concurrency issues: you can try to
avoid concurrency problems before they happen, or you can try to resolve concurrency issues
after they occur.

To avoid concurrency problems, you need to modify your update logic. For example, you
could require only a few fields to match, or just the primary key to allow last-in-wins updating.
In LINQ to SQL, this behavior can’t be controlled on a case-by-case basis—instead, it’s deter-
mined at the table level based on the Column attributes you apply to your data class. Each
Column attribute has an UpdateCheck property, which determines when matching is required
on that field. Allowed values are Always (the default), Never, and WhenChanged.

You explored different concurrency strategies in Chapter 8. Table 13-1 shows how you can
use the Column.UpdateCheck property to implement them with LINQ to SQL.

Table 13-1. Concurrency Strategies in LINQ to SQL

Concurrency Strategy Behavior Implementation with LINQ to SQL
Match-all-values Only allow the update if no values

have changed.
Give every property in the data
class a Column attribute that sets
UpdateCheck to Always. This is the
default.

Match timestamp Only allow the update if the time-
stamp hasn’t changed. This is the
same behavior as match-all-values,
but offers better performance,
particularly if you have large field
values.

Give the timestamp property in
the data class a Column attribute
that sets IsVersion to true. The
DataContext will automatically
use this value to perform its concur-
rency checking.

Last-in-wins Always commit the update and
wipe out whatever exists.

Give every property in the data
class a Column attribute that sets
UpdateCheck to Never.

Merge changes Always commit the update, unless
the value you want to change has
been modified.

Give every property in the data
class a Column attribute that sets
UpdateCheck to WhenChanged.

You can further refine these strategies by using a combination of different
Column.UpdateCheck values on different columns. For example, some columns can require
more stringent update checking, because changing them would change the data significantly.

If at least some of the original column values use update checking, and one of these values
is changed by another user, an OptimisticConcurrencyException will be thrown when you
call DataContext.SubmitChanges(). At this point, you can try to resolve the problem. You saw
one example of this strategy in Chapter 10, where a grid allowed a user to confirm a change

CHAPTER 13 L INQ 637

after showing the recently changed values that were currently in the database. You can accom-
plish the same effect with LINQ to SQL, with a bit more work. If the user agrees to apply the
change, you can use the Refresh() method with RefreshMode.KeepChanges (to keep the recent
changes, but apply the new changes on top) or RefreshMode.KeepCurrentValues (to replace
the recent changes with all the values that are in memory for the current user). Then you’re
ready to apply the change by calling SubmitChanges() again.

Querying and Updating in Different Requests
The updating feature in LINQ to SQL isn’t a perfect fit in the disconnected world of the Web.
The most significant challenge is the fact that, in an ASP.NET application, records may be
queried in one request, and then updated in a subsequent postback. You could store the
DataContext object in memory (for example, in the Session state collection), but this design is
extremely inefficient, because the DataContext could retain a huge amount of data and change
tracking details. Instead, you’ll need to make the changes using a new DataContext object.

One update option is to requery the record that changed, and then apply the user-supplied
changes. The problem here is that you need an extra querying step to fetch the original details,
which results in more database work.

A better solution is to construct a new object with the original data, and then use the Attach()
method of the Table(Of T) collection. This allows you to supply an object that represents a record
that’s currently in the database. (Simply adding the object to the Table(Of T) collection indicates
that you want to insert a new record, which isn’t what you want.) After you call Attach(), you can
make the changes you want to that object. Here’s the basic pattern:

This works perfectly well, but the code is a bit tedious because you need to create the
object, supply the original values, and then supply the new values. Technically, you don’t
need to supply all the original values—the only ones that are actually important are those that
are used for update checking (the UpdateCheck.Always and UpdateCheck.WhenChanged
columns).

CHAPTER 13 L INQ638

The LinqDataSource
The LINQ to SQL examples in this chapter so far have used pure code to retrieve, manipulate,
and bind data. However, ASP.NET also includes a LinqDataSource control that you can use to
perform many of these tasks automatically.

Before taking a look at the LinqDataSource control, it’s worth asking when it’s appropri-
ate. As with LINQ to SQL in general, LinqDataSource has applications in simple and complex
scenarios. However, its most impressive niche is rapid application development when com-
bined with the DBML designer discussed earlier.

Much like the SqlDataSource control, when you use the LinqDataSource control, you
don’t need to write any code. But the LinqDataSource control goes one step further—not only
can you avoid writing VB code, you can also avoid the messy details of writing SQL queries to
select and update data. This makes it a perfect tool for small- or medium-scale applications
and applications that don’t need to be carefully tuned to get every last ounce of performance.
On the other hand, it’s also sure to exasperate database purists who prefer to have complete
control over every detail. If the LinqDataSource lacks the features, performance, or flex-
ibility you require, you’ll need to use custom data access code (possibly with the help of the
 ObjectDataSource), as described in Chapter 9.

Displaying Data
To get a feel for the capabilities and overall goals of the LinqDataSource, it’s worth building
a simple example. In the following example you’ll see how to build the web page shown in
 Figure 13-11, which allows you to insert, delete, and update records in the Employees table.

The first step is to build your data model using the DBML designer. This example uses the
same data model created earlier (in Figure 13-8), with the Employee, EmployeeTerritory, and
Territory classes.

The second step is to create the control you want to use to display your data. In this
example, two controls are used—a GridView that allows you to select an employee and a
DetailsView that allows you to change it, remove it, or create a new one. You can add both
controls straight from the Toolbox, and use the AutoFormat feature to give them a pleasant
color scheme to match Figure 13-11.

The third ingredient is the data source that links the DataContext to your data controls. In
this example, you’ll need two data source controls—one that retrieves all the employee records
(for the GridView) and one that retrieves a single employee record (for the DetailsView). The
latter will also perform the editing, inserting, and deleting operations.

CHAPTER 13 L INQ 639

Figure 13-11. Managing a table with the LinqDataSource

To create your first data source, drop a LinqDataSource control onto your web page. The
quickest way to configure it is to use the wizard (select the data source control, click the arrow
in the top-right corner, and choose Configure Data Source). The wizard has just two steps.
The first step displays all the derived DataContext classes in your project and prompts you to
choose one. In this example, the class is named NorthwindDataContext.

The second step asks you what columns you want to include. In most cases, you’ll select
the asterisk (*), which represents all columns (see Figure 13-12). You can then cut down the
columns that are actually displayed by modifying the markup for your data bound controls. If
you don’t use all the columns, you are essentially asking the LinqDataSource to perform a pro-
jection and convert your full-fledged Employee object to an anonymous type. The limitation
with this approach is that you won’t be able to update the data or display related data from
other tables.

CHAPTER 13 L INQ640

Figure 13-12. Choosing columns

The second window also provides buttons that allow you to configure a few more options
for your data source. The Where button lets you configure filter parameters, Order By lets you
configure sorting, and Advanced lets you enable support for updating, inserting, and deleting.
You’ll consider these details shortly.

When you’re finished the wizard, you’ll end up with a fairly straightforward control tag,
like this:

Clearly, the ContextTypeName property indicates the name of the DataContext class. The
TableName property indicates the name of the data class you’re using. If you selected a subset
of columns in the second step of the wizard (Figure 13-12), you’ll also see a Select property that
defines a projection, like this:

CHAPTER 13 L INQ 641

You can use the sourceEmployees data source to fill the grid shown in Figure 13-11.
 Simply set the GridView.DataSourceID property to sourceEmployees. Next, remove the
 columns you don’t want to see by deleting the <asp:BoundField> elements from the
GridView.Columns collection. Finally, make sure that the GridView supports selection. The
DataKeyNames property should be set to EmployeeID, and a Select column should be visible
in the grid (to add it, check the Enable Selection option in the GridView smart tag or set the
GridView.AutoGenerateSelectButton property by hand).

The DetailsView shows the currently selected employee in the grid. You learned how to
create this design with the SqlDataSource, but the LinqDataSource works a bit differently
because it doesn’t allow you to define the SELECT command directly. To start out, begin by
creating a new LinqDataSource that has the same characteristics as the first one. Then, you
need to build the where operator for the LINQ expression by setting the LinqDataSource.
Where property. The easiest way to build this part is to click the Where button in the second
step of the wizard. Figure 13-13 shows an expression that attempts to find an employee with
an EmployeeID that matches the selected value in the GridView.

This leaves you with the following easy-to-understand markup:

Now, when you select an employee in the GridView, the full details will appear in the
DetailsView.

Figure 13-13. Filtering out a single employee

CHAPTER 13 L INQ642

Getting Related Data
When displaying data that’s drawn from the LinqDataSource, you aren’t limited to the basic
properties in your data class. You can also branch out to consider related data. This is a power-
ful technique because it allows you to use LINQ to SQL’s relationship-walking abilities without
defining a join query or performing any extra work. The only consideration is that you can only
use this technique in a TemplateField—the ordinary BoundField doesn’t support it.

For example, imagine you want to display the total number of territories that are assigned
to every employee. You know you can get this information by counting the number of records
in the linked EmployeeTerritories table. You’ve also seen that the DBML designer adds an
Employee.EmployeeTerritory collection to the Employee class to help you out. Here’s a
 TemplateField that uses this detail, which you can add to the end of the <Columns> section:

The resulting TemplateField is shown in Figure 13-12.
You can also use this trick to navigate from a child record to its parent. For example, if you

have a grid of orders, you can show information from the linked customer record like this:

Editing Data
The final step in this example is to configure the DetailsView and second LinqDataSource to
support update, insert, and delete operations. To enable these for the DetailsView, select it
and use the smart tag to check the Enable Inserting, Enable Deleting, and Enable Updating
check boxes (or, you can set the AutoGenerateXxxButton properties by hand). Next, select the
LinqDataSource and choose the Enable Insert, Enable Delete, and Enable Update check boxes
in its smart tag. This simply sets a few similarly named properties in the LinqDataSource con-
trol tag:

Remarkably, this is all you need to complete the example. The LinqDataSource will now
automatically use the NorthwindDataContext to perform these record operations. When delet-
ing a record, it uses the Remove()method. When adding a record, it creates a new Employee data
object and inserts it into the collection. When modifying a record, it simply sets the correspond-
ing properties. No matter which operation you’re using, it ends by calling SubmitChanges() to
apply the new data, using the optimistic concurrency considered earlier.

CHAPTER 13 L INQ 643

Note There’s one quirk in this example. Because there are two data sources at work, the grid isn’t prop-
erly synchronized when records are inserted or deleted (although changes are handled correctly). To solve
this problem, you can set the GridView.EnableViewState property to false, so that it always throws out the
current data and rebinds itself after every postback. Or, you can handle the Inserted and Deleted events of
the LinqDataSource (or the ItemInserted and ItemDeleted events of the DetailsView) and manually rebind
the grid by calling GridView.DataBind(). You can see the full code with the downloadable samples for this
chapter.

Validation
To make this example just a bit more realistic, it’s worth considering how to add a bit of valida-
tion logic to catch invalid data.

As with any validation scenario, there are numerous possible techniques. First, you could
set constraints in the database itself, which will cause exceptions when the web page attempts
to commit invalid data. This approach works, but it’s fairly low-level, and it forces you to place
validation logic where you might not want it (the database) and where it might not perform as
well or be as easy to write.

Most powerfully, you can use a TemplateField in conjunction with the ASP.NET validation
controls to prevent invalid data from being submitted in the first place. Unfortunately, this
requires a lot more work (which takes the LinqToDataSource out of its ideal niche as a tool for
rapid application development), and it ties your validation code to a single control.

You could also handle the events of the bound DetailsView control or the LinqDataSource.
Both of these techniques work, but they constrain your validation unnaturally, limiting it to a
single control or a single page. This is less than ideal if you want to deal with the same data in
several different places.

A better approach is to extend the model that the DBML designer has created using par-
tial classes. This way, you can plug your own validation logic directly into the data classes,
ensuring that invalid data is impossible no matter how the data objects are manipulated in
your application.

The DBML data model actually provides three potential places where you can place your
validation code:

When properties are set: Each data class defines a series of OnFieldChanging() partial
methods, one for each property. For example, you can use the OnHireDateChanging()
method in the Employee data class to validate the HireDate property (making sure
it doesn’t fall in the future, for example). If you find invalid data, you must throw an
exception.

Before submitting the change to the database: The OnFieldChanging() method doesn’t
work if you have multiple interdependent fields that might be set at the time. In this case,
the OnValidate() method is a better choice. It allows you to verify table-level constraints
(for example, ensuring that ShippedDate doesn’t occur before OrderDate). OnValidate()
is called when SubmitChanges() is called, but before the database operation is attempted.
As with OnFieldChanging(), you indicate an error by throwing an exception.

CHAPTER 13 L INQ644

In response to specific types of update operations: In some cases, you may want to use
validation logic that only applies to specific insert, update, or delete scenarios. You can
do this with the partial methods of the derived DataContext. Each table includes three
such methods. For example, the NorthwindDataContext uses these methods for manag-
ing employee operations: InsertEmployee(), DeleteEmployee(), and UpdateEmployee().

Note When using the InsertXxx(), DeleteXxx(), and UpdateXxx() methods, it’s up to you to choose
to continue with the operation by calling the ExecuteDynamicInsert(), ExecuteDynamicDelete(), or
 ExecuteDynamicUpdate() methods of the DataContext. This gives you the flexibility to replace the standard
DataContext update process with your own data access code (for example, code that implements a different
concurrency strategy or calls stored procedures).

For example, if you wanted to prevent a record from being inserted if it has a last name
with fewer than three characters, you could add the following partial class declaration for the
Employee class, which implements OnLastNameChanging():

The LINQ infrastructure catches this exception and wraps it in a LinqDataSourceValidation
Exception object. The original ArgumentException is placed in the LinqDataSourceValidation
Exception.InnerExceptions collection. The advantage of this system appears if one record edit
or insertion causes multiple validation errors, in which case the
LinqDataSourceValidationException records all of them.

Of course, the web page doesn’t handle these exceptions gracefully unless you take extra
steps to catch them. As you learned in Chapter 9, you can handle events in the data control,
such as ItemUpdated, ItemDeleted, and ItemInserted (or RowUpdated, RowDeleted, and
RowInserted in the case of a GridView) to neutralize the error.

For example, the following code checks for an exception and displays the exception mes-
sage in a label, provided it’s a LinqDataSourceValidationException (which won't contain
sensitive details). Either way, the DetailsViewUpdateEventArgs.ExceptionHandled property is
set to true to prevent the exception from derailing the current page processing.

CHAPTER 13 L INQ 645

Figure 13-14 shows the error message that appears when the user attempts to supply an
overly short last name.

Figure 13-14. Validating an attempted change

Clearly, the LinqDataSource doesn’t give you all the control of the ObjectDataSource.
However, it provides a quick way to build data bound pages that support related data and
editing. Even better, it properly separates the different layers of your application code, which
creates a single DataContext class for data access and a data class for each table, and allows
you to plug validation, logging, and error handling logic into the most sensible places.

CHAPTER 13 L INQ646

Summary
In this chapter, you learned about LINQ, a core feature of the .NET Framework, with deep
support in the Visual Basic and C# languages. LINQ has a wide range of potential applications—
simply stated, it provides a declarative model for retrieving and processing data that allows you
to use the same (or similar) syntax with a wide range of different types of data. The one unifying
principle that underlies all applications of LINQ is that it emphasizes declarative programming
over functional programming—in other words, your code states the result it wants rather than
the sequence of steps necessary to get that result. Ideally, this shift allows developers to concen-
trate on business logic and gives the LINQ infrastructure more freedom to automate low-level
tasks and optimize how they’re performed.

Although LINQ is an exciting and impressive technology, it doesn’t suit all applications.
LINQ to Collections and LINQ to DataSet are harmless, and LINQ to XML—which you’ll
examine in Chapter 14—just might be the most practical part of LINQ, as it gives develop-
ers a modern, streamlined way to load, search, and construct XML documents. But LINQ to
SQL—the real showpiece of LINQ in .NET 3.5—offers a tricky compromise. On one hand, it
gives developers tools to dramatically simplify query logic and data processing. On the other
hand, it introduces new potential problems, like the deferred loading model, which means that
database code can be executed at unexpected times (and therefore throw database-related
exceptions when you least expect it). At worst, this model breaks down the proper division
of layers in a carefully structured component-based application, confuses data retrieval with
data processing, and allows database exceptions to migrate to unexpected places where they
might not be effectively dealt with. It’s no exaggeration to say that LINQ to SQL gives develop-
ers the most powerful tool for shooting themselves in the foot that they’ve had for a long time.
If in doubt, and if you don’t need the more powerful LINQ to SQL features like data shaping
and batch updating, it’s best to stick to the more modest approach of simple, straightforward
ADO.NET commands.

647

C H A P T E R 1 4

XML

Ever since XML (Extensible Markup Language) first arrived on the scene in the late 1990s, it
has been the focus of intense activity and overenthusiastic speculation. Based on nothing but
ordinary text, XML offers a means of sharing data between just about any two applications,
whether they’re new or old, written in different languages, built by distinct companies, or even
hosted on different operating systems. Now that XML has come of age, it’s being steadily inte-
grated into different applications, problem domains, and industries.

The .NET Framework provides a range of options for using XML. But although XML is con-
ceptually simple, processing XML is often tedious (with reams of repetitive code to write) or
tricky (with the potential for easily overlooked details to cause future headaches). For this rea-
son, .NET has a constellation of complementary XML APIs, including classes for stream- based
XML processing, classes for manipulating XML content in memory, and web controls like Xml
and XmlDataSource for quick and convenient XML display and data binding.

In .NET 3.5, a new XML API joins the group—LINQ to XML. LINQ to XML is based on the
LINQ extensions you learned about in Chapter 13. Surprisingly, LINQ to XML isn’t just another
XML API. It’s a practical starting point for what might just become the favored .NET approach
for manipulating in- memory XML.

In this chapter, you’ll cover a fair bit of ground. You’ll learn about the traditional .NET
classes for XML processing, LINQ to XML, XML data binding, and the XML support that’s built
into the ADO.NET DataSet. But first, you’ll begin by reviewing the key concepts of XML and its
supporting standards.

When Does Using XML Make Sense?
The question that every new ASP.NET developer asks (and many XML proponents don’t
answer) is when does it make sense to use XML in an ASP.NET web application? It makes
sense in a few core scenarios:

you want to exchange data with an existing application that uses a specific flavor of XML.

Because you use XML, you know other third- party applications can be designed to read
this data in the future.

various standards that are all based on XML.

CHAPTER 14 XML648

Many .NET features use XML behind the scenes. For example, web services use a higher-
 level model that’s built on top of the XML infrastructure. You don’t need to directly manipulate
XML to use web services—instead, you can work through an abstraction of objects. Similarly,
you don’t need to manipulate XML to read information from ASP.NET configuration files, save
the DataSet to a file, or rely on other .NET Framework features that have XML underpinnings.
In all these situations, XML is quietly at work, and you gain the benefits of XML without need-
ing to deal with it by hand.

XML makes the most sense in application integration scenarios. However, there’s no
reason you can’t use an XML format to store your own proprietary data. If you do, you’ll gain
a few minor conveniences, such as the ability to use .NET classes to read XML data from a file.
When storing complex, highly structured data, the convenience of using these classes rather
than designing your own custom format and writing your own file- parsing logic is significant.
It will also make it easier for other developers to understand the system you’ve created and to
reuse or enhance your work.

Note One of the most important concepts developers must understand is that there are two decisions
when storing data—choosing the way data will be structured (the logical format) and choosing the way data
will be stored (the physical data store). XML is a choice of format, not a choice of storage. This means if you
decide to store data in an XML format, you still need to decide whether that XML will be inserted into a data-
base field, inserted into a file, or just kept in memory in a string or some other type of object.

An Introduction to XML
In its simplest form, the XML specification is a set of guidelines, defined by the W3C (World
Wide Web Consortium), for describing structured data in plain text. Like HTML, XML is
a markup language based on tags within angled brackets. As with HTML, the textual nature of
XML makes the data highly portable and broadly deployable. In addition, you can create and
edit XML documents in any standard text editor.

Unlike HTML, XML does not have a fixed set of tags. Instead, XML is a metalanguage that
allows for the creation of other markup languages. In other words, XML sets out a few simple
rules for naming and ordering elements, and you create your own data format with your own
custom elements.

For example, the following document shows a custom XML format that stores a product
catalog. It starts with some generic product catalog information, followed by a product list
with itemized information about two products.

CHAPTER 14 XML 649

This example uses elements such as <productCatalog>, <product>, and <catalogName>
to indicate the document structure. However, you’re free to use whatever element names
describe your data best.

It’s because of this flexibility that XML has become extremely successful. Of course, flex-
ibility also has drawbacks. Because XML doesn’t define any standard data formats, it’s up to
you to create data formats that represent product catalogs, invoices, customer lists, and so on.
Different companies can easily store similar data using completely different tag names and
structures. And even though any application can parse XML data, the writer and the reader of
that data still need to agree on a common set of tags and structure in order for the reader to be
able to interpret that data and extract meaningful information.

Usually, third- party organizations define standards for particular problem domains and
industries. For example, if you need to store a mathematical equation in XML, you’ll probably
choose the MathML format, which is an XML- based format that defines a specific set of tags
and a specific structure. Similarly, hundreds more standard XML formats exist for real estate
listings, music notation, legal documents, patient records, vector graphics, and much more.
Creating a robust, usable XML format takes some experience, so it’s always best to use a stan-
dardized, agreed- upon, XML- based markup language when possible.

Note One obvious application XML- based language is XHTML, the modernized version of HTML. In
essence, XHTML is an XML- based language that indicates the structure of documents, by dividing text into
sections, headings, paragraphs, and lists.

The Advantages of XML
When XML was first introduced, its success was partly due to its simplicity. The rules of XML
are much shorter and simpler than the rules of its predecessor, SGML (Standard General-
ized Markup Language), and simple XML documents are human- readable. However, in the
intervening years many other supporting standards have been added to the XML mix, and as
a result, using XML in a professional application isn’t simple at all.

CHAPTER 14 XML650

Note Although XML is human- readable in theory, it’s often difficult to understand complex documents,
and only computer applications, not developers, can read many types of XML.

But if anything, XML is much more useful today than it ever was before. The benefits of
using XML in a modern application include the following:

Adoption: XML is ubiquitous. Many companies are using XML to store data or are actively
considering it. Whenever data needs to be shared, XML is automatically the first (and
often the only) choice that’s examined.

Extensibility and flexibility: XML imposes no rules about data semantics and does not
tie companies into proprietary networks, unlike EDI (Electronic Data Interchange). As
a result, XML can fit any type of data and is cheaper to implement.

Related standards and tools: Another reason for XML’s success is the tools (such as pars-
ers) and the surrounding standards (such as XML Schema, XPath, and XSLT) that help in
creating and processing XML documents. As a result, programmers in nearly any language
have ready- made components for reading XML, verifying that XML is valid, verifying XML
against a set of rules (known as a schema), searching XML, and transforming one format of
XML into another.

XML acts like the glue that allows different systems to work together. It helps standardize
business processes and transactions between organizations. But XML is not just suited for data
exchange between companies. Many programming tasks today are all about application inte-
gration—web applications integrate multiple web services, e- commerce sites integrate legacy
inventory and pricing systems, and intranet applications integrate existing business applica-
tions. All these applications are held together by the exchange of XML documents.

Well-Formed XML
XML is a fairly strict standard. This strictness is designed to preserve broad compatibility. If the
rules of XML weren’t as strict, it would be difficult to distinguish between a harmless variance
and a serious error. Even worse, some mistakes might be dealt with differently by different XML
parsers, leading to inconsistencies in the way that is processed (or even whether it can be pro-
cessed at all). These are the sort of quirks that affected one notorious language that isn’t based
on XML—HTML.

To prevent this sort of problem, all XML parsers perform a few basic quality checks. If an
XML document does not meet these standards, it’s rejected outright. If the XML document does
follow these rules, it’s deemed to be well formed. Well- formed XML isn’t necessarily correct
XML—for example, it could still contain incorrect data—but an XML processor can parse it.

To be considered well formed, an XML document must meet these criteria:

CHAPTER 14 XML 651

way to distinguish them from each other. However, an element can contain two nested
elements with the same name.

(The root element is the top- level ele-
ment that starts the document and contains all its content.)

HTML comments and are bracketed with <!- - and -- > markers.)

Tip To quickly test if an XML document is well formed, try opening it in Internet Explorer. If there is an
error, Internet Explorer will report a message and flag the offending line.

XML Namespaces
As the XML standard gained ground, dozens of XML markup languages (often called XML
grammars) were created, and many of them are specific to certain industries, processes, and
types of information. In many cases, it becomes important to extend one type of markup
with additional company- specific elements, or even create XML documents that combine
several different XML grammars. This poses a problem. What happens if you need to com-
bine two XML grammars that use elements with the same names? How do you tell them
apart? A related, but more typical, problem occurs when an application needs to distinguish
between XML grammars in a document. For example, consider an XML document that has
 order- specific information using a standard called OrderML and client- specific information
using a standard called ClientML. This document is sent to an order- fulfillment application
that’s interested only in the OrderML details. How can it quickly filter out the information that
it needs and ignore the unrelated details?

The solution is the XML Namespaces standard. The core idea behind this standard is that
every XML markup language has its own namespace that uniquely identifies all related ele-
ments. Technically, namespaces disambiguate elements by making it clear to which markup
language they belong.

All XML namespaces use URIs (universal resource identifiers). Typically, these URIs look
like a web- page URL. For example, is a typical name for
a namespace. Though the namespace looks like it points to a valid location on the Web, this
isn’t required (and shouldn’t be assumed). URIs are used for XML namespaces because they
are more likely to be unique. Usually, if you create a new XML language, you’ll use a URI that
points to a domain or website you control. That way, you can be sure that no one else is likely
to use that URI. However, the namespace doesn’t need to be a URI—any sequence of text is
acceptable.

CHAPTER 14 XML652

Note Sometimes URNs (uniform resource names) are used to prevent confusion with website addresses.
URNs start with the prefix urn: and can incorporate a domain name or unique identifier (such as a GUID). One
example is om. For more information, see

.

To specify that an element belongs to a specific namespace, you simply need to add the
xmlns attribute to the start tag and indicate the namespace. For example, the element shown
here is part of the namespace. If you don’t take this step, the ele-
ment will not be part of any namespace.

It would be cumbersome if you needed to type in the full namespace URI every time you
wrote an element in an XML document. Fortunately, when you assign a namespace in this
fashion, it becomes the default namespace for all child elements. For example, in the XML
document shown here, the <order> and <orderItem> elements are both placed in the

 namespace:

Tip Namespace names must match exactly. If you change the capitalization in part of a namespace, add
a trailing / character, or modify any other detail, the XML parser will interpret it as a different namespace.

You can declare a new namespace for separate portions of the document. The easiest
way to deal with this is to use namespace prefixes. Namespace prefixes are short character
sequences that you can insert in front of a tag name to indicate its namespace. You define
the prefix in the xmlns attribute by inserting a colon (:) followed by the characters you want
to use for the prefix.

Here’s an order document that uses namespace prefixes to map different elements into
two different namespaces:

CHAPTER 14 XML 653

Namespace prefixes are simply used to map an element to a namespace. The actual prefix
you use isn’t important as long as it remains consistent.

XML Schemas
A good part of the success of the XML standard is due to its remarkable flexibility. Using
XML, you can create exactly the markup language you need. This flexibility also raises a few
problems. With developers around the world using your XML format, how do you ensure that
everyone is following the rules?

The solution is to create a formal document that states the rules of your custom markup
language, which is called a schema. These rules won’t include syntactical details (such as the
requirement to use angle brackets or properly nest tags) because these requirements are already
part of the basic XML standard. Instead, the schema document will list the logical rules that per-
tain to your type of data. They include the following:

Document vocabulary: This determines what element and attribute names are used in
your XML documents.

Document structure: This determines where tags can be placed and can include rules
specifying that certain tags must be placed before, after, or inside others. You can also
specify how many times an element can occur.

Supported data types: This allows you to specify whether data is ordinary text or must be
able to be interpreted as numeric data, date information, and so on.

Allowed data ranges: This allows you to set constraints that restrict numbers to certain
ranges, limit text to a certain length, force regular expression pattern matching, or allow
only a small set of specified values.

The XML Schema standard defines the rules you need to follow when creating a schema
document. The following is an XML schema that defines the rules for the product catalog
document shown earlier:

CHAPTER 14 XML654

Every schema document is an XML document that begins with a root <schema> ele-
ment. These elements are defined in the XML schema namespace (

). Your schema documents must use this exact namespace name. However, you’re
free to map it to whatever namespace prefix you’d like to use in your schema document,
although xsd (used here) and xs are the conventional choices.

Inside the <schema> element are two types of definitions—the <element> element, which
defines the structure the target document must follow, and one or more <complexType> ele-
ments, which define smaller data structures that are used to define the document structure.

The <element> tag is really the heart of the schema, and it’s the starting point for all vali-
dation. In this example, the <element> tag identifies that the product catalog must begin with
a root element named <productCatalog>. Inside the <productCatalog> element is a sequence
of three elements. The first, <catalogName>, contains ordinary text. The second, <expiryDate>,
includes text that fits the rules for date representation, as set out in the schema standard. The
final element, <products>, contains a list of <product> elements.

Each <product> element is a complex type, and the type is defined with the <complex-
Type> element at the end of the document. This complex type (named productType) consists
of a sequence of three elements with product information. The elements must store this
information as text (<productName>), a decimal value (<productPrice>), and a Boolean value
(<inStock>), respectively. The complex type includes one required attribute, named id.

Note A full discussion of XML Schema is beyond the scope of this book. However, if you want to learn
more, you can consider the excellent online tutorials at or the stan-
dard itself at .

Stream-Based XML Processing
The .NET Framework allows you to manipulate XML data with a set of classes in the System.
Xml namespace (and other namespaces that begin with System.Xml). Out of these, the most
lightweight way to read and write XML is through two stream- based classes: XmlTextReader
and XmlTextWriter. These classes are mandatory if you have huge XML files that make it

CHAPTER 14 XML 655

impractical to hold the whole document in memory at once. They may also be sufficient for
simple XML processing.

Writing XML Files
The .NET Framework provides two approaches for writing XML data to a file:

You can build the document in memory using the XmlDocument or XDocument class
and write it to a file when you’re finished.

You can write the document directly to a stream using the XmlTextWriter. This outputs
data as you write it, node by node.

Constructing an XML document in memory is a good choice if you need to perform other
operations on XML content after you create it, such as searching it, transforming it, or validat-
ing it. It’s also the only way to write an XML document in a nonlinear way, because it allows
you to insert new nodes anywhere. However, the XmlTextWriter provides a much simpler and
better performing model for writing directly to a file, because it doesn’t store the whole docu-
ment in memory at once.

Tip You can use the XmlDocument, XDocument, and XmlTextWriter classes to create XML data that isn’t
stored in a file. That’s because all of these classes allow you to write information to any stream. Using tech-
niques such as these, you could build an XML document and then insert it into another storage location such
as a text- based field in a database table.

The next web- page example shows how to use the XmlTextWriter to create a well- formed
XML file. The first step is to create a private WriteXML() method that will handle the job. It
begins by creating an XmlTextWriter object and passing the physical path of the file you want
to create as a constructor argument.

The second parameter to the XML constructor specifies the encoding. You can pass
a Nothing reference to use standard UTF- 8 encoding.

Note Keep in mind that when you use the XmlTextWriter to create an XML file, you face all the limitations
that you face when writing any other type of file in a web application. In other words, you need to take safe-
guards (such as generating unique filenames) to ensure that two different clients don’t run the same code
and try to write the same file at once.

CHAPTER 14 XML656

The XmlTextWriter has properties such as Formatting and Indentation, which allow you
to specify whether the XML data will be automatically indented with the typical hierarchical
structure and to indicate the number of spaces to use as indentation. You can set these two
properties as follows:

Tip Remember, in a datacentric XML document, whitespace is almost always ignored. But by adding
indentation, you create a file that is easier for a human to read and interpret, so it can’t hurt.

Now you’re ready to start writing the file. The WriteStartDocument() method writes the
XML declaration with version 1.0 (<?xml version="1.0"?>), as follows:

The WriteComment() method writes a comment. You can use it to add a message with the
date and time of creation:

Next, you need to write the real content—the elements, attributes, and so on. This exam-
ple builds an XML document that represents a DVD list, with information such as the title, the
director, the price, and a list of actors for each DVD. These records will be child elements of
a parent <DvdList> element, which must be created first:

Now you can create the child nodes. The following code opens a new <DVD> element:

Now the code writes two attributes, representing the ID and the related category. This
information is added to the start tag of the <DVD> element.

The next step is to add the elements with the information about the DVD inside the
<DVD> element. These elements won’t have child elements of their own, so you can write
them and set their values more efficiently with a single call to the WriteElementString()
method. WriteElementString() accepts two arguments: the element name and its value
(always as string), as shown here:

CHAPTER 14 XML 657

Next is a child <Starring> element that lists one or more actors. Because this element
contains other elements, you need to open it and keep it open with the WriteStartElement()
method. Then you can add the contained child elements, as shown here:

At this point the code has written all the data for the current DVD. The next step is to close
all the opened tags, in reverse order. To do so, you just call the WriteEndElement() method
once for each element you’ve opened. You don’t need to specify the element name when you
call WriteEndElement(). Instead, each time you call WriteEndElement() it will automatically
write the closing tag for the last opened element.

Now let’s create another <DVD> element using the same approach:

CHAPTER 14 XML658

To complete the document, you simply need to close the <DvdList> item, with yet another
call to WriteEndElement(). You can then close the XmlTextWriter, as shown here:

To try this code, call the WriteXML() procedure from the Page.Load event handler. It will
generate an XML file named DvdList.xml in the current folder, as shown in Figure 14-1.

Note It’s always a good idea to identify your XML language by giving it a unique XML namespace, as
described earlier in this chapter. Once you do, you’ll then want to place your elements into that namespace.
To do so, you must first define the namespace prefix as an attribute using the WriteAttributeString() method
to write an xmlns attribute. Typically, you’ll add this attribute to the root element of your document or to the
first element that uses your namespace. Next, you must qualify your element names with the namespace
prefix. To do so, you use the overloaded version of the WriteStartElement() method that accepts a namespace
URI and a namespace prefix.

CHAPTER 14 XML 659

 Figure 14-1. A dynamically created XML document

Reading XML Files
As when writing XML content, there are two basic strategies when reading it:

XDocument classes. Out of these three, only the XPathNavigator is read- only.

a stream- based reader.

The stream- based approach reduces the memory overhead and is usually—but not
always—more efficient. If you need to perform a time- consuming task with an XML docu-
ment, you might choose to use the in- memory approach to reduce the amount of time that
the file is kept open, if you know other users will also need to access it.

CHAPTER 14 XML660

Although reading an XML file with an XmlTextReader object is the simplest approach, it
also provides the least flexibility. The file is read in sequential order, and you can’t freely move
to the parent, child, and sibling nodes as you can with in- memory XML processing. Instead,
you read a node at a time from a stream. Usually, you’ll write one or more nested loops to dig
through the elements in the XML document until you find the content that interests you.

The following code starts by loading the source file in an XmlTextReader object. It then
begins a loop that moves through the document one node at time. To move from one node to
the next, you call the XmlTextReader.Read() method. This method returns true until it moves
past the last node, at which point it returns false. This is similar to the approach used by the
DataReader class, which retrieves query results from a database.

Here’s the code you need:

CHAPTER 14 XML 661

After handling the types of nodes you’re interested in, the next step is to check if the cur-
rent node has attributes. The XmlTextReader doesn’t have an Attributes collection, but an
AttributeCount property returns the number of attributes. You can continue moving the cur-
sor forward to the next attribute until MoveToNextAttribute() returns false.

In the last two lines the procedure concludes by flushing the content in the buffer and
closing the reader. When using the XmlTextReader, it’s imperative you finish your task and
close the reader as soon as possible, because it retains a lock on the file.

The XmlTextReader provides additional methods that help make reading XML faster
and more convenient if you know what structure to expect. For example, you can use
MoveToContent(), which skips over irrelevant nodes (such as comments, whitespace, and
the XML declaration) and stops on the declaration of the next element.

You can also use the ReadStartElement() method, which reads a node and performs basic
validation at the same time. When you call ReadStartElement(), you specify the name of the ele-
ment you expect to appear next in the document. The XmlTextReader calls MoveToContent()
and then verifies that the current element has the name you’ve specified. If it doesn’t, an excep-
tion is thrown. You can also use the ReadEndElement() method to read the closing tag for the
element.

Finally, if you want to read an element that contains only text data, you move over the
start tag, content, and end tag by using the ReadElementString() method and by specifying
the element name. The data you want is returned as a string.

CHAPTER 14 XML662

Here’s the code that extracts data from the DVD list using this more streamlined
approach:

 Figure 14-2 shows the result.

CHAPTER 14 XML 663

 Figure 14-2. Efficient XML reading

In-Memory XML Processing
Stream-based XML processing offers the least overhead but also gives you the least flexibility.
In many XML processing scenarios, you don’t want to work at such a low level. Instead, you’ll
want an easy way to pull out the element content you want with a few lines of code (rather
than a few dozen). Furthermore, the stream- based processing model makes it easy to make
relatively trivial omissions that can cause significant future problems, like failing to anticipate
whitespace and comments.

In-memory XML processing is far more convenient. Unfortunately, there’s no single, stan-
dard approach for in- memory XML processing. All the following classes allow you to read and
navigate the content of an XML file:

XmlDocument: The XmlDocument class implements the full XML DOM (Document
Object Model) Level 2 Core, as defined by the W3C. It’s the most standardized interface
to XML data, but it’s also a bit clunky at times.

XPathNavigator: Like the XmlDocument, the XPathNavigator holds the entire XML docu-
ment in memory. However, it offers a slightly faster, more streamlined model than the
XML DOM, along with enhanced searching features. Unlike the XmlDocument, it doesn’t
provide the ability to make changes and save them.

CHAPTER 14 XML664

XDocument: The XDocument provides an even more intuitive and efficient API for deal-
ing with XML. Technically, it’s part of LINQ to XML, but it’s useful even when you aren’t
constructing LINQ queries. However, because of the newness of the XDocument, it needs
to work in conjunction with the older .NET XML classes to perform tasks like validation.
You’ll also find that some classes that have been around for a long time—like the Xml
web control that lets you display XML in a web page more easily—are still based on the
XmlDocument, and so won’t work with the XDocument.

The following sections demonstrate each of these approaches to loading the DVD list XML
document.

The XmlDocument
The XmlDocument stores. information as a tree of nodes. A node is the basic ingredient of an
XML file and can be an element, an attribute, a comment, or a value in an element. A separate
XmlNode object represents each node. The XmlDocument wraps groups of XmlNode objects
that exist at the same level into XmlNodeList collections.

You can retrieve the first level of nodes through the XmlDocument.ChildNodes prop-
erty. In the DVD list example, that property provides access to the initial comments and the
<DvdList> element. The <DvdList> element contains other child nodes, and these nodes con-
tain still more nodes and the actual values. To drill down through all the layers of the tree, you
need to use recursive logic, as shown in this example.

 Figure 14-3 shows a web page that reads the DvdList.xml document and displays a list of
elements. This example uses different levels of indenting to show the overall structure.

When the example page loads, it creates an XmlDocument object and calls the Load()
method, which retrieves the XML data from the file. It then calls a recursive function in the
page class named GetChildNodesDescr() and displays the result in a Literal control named
lblXml:

CHAPTER 14 XML 665

 Figure 14-3. Retrieving information from an XML document

CHAPTER 14 XML666

THE XMLDOCUMENT AND USER CONCURRENCY

In a web application, it’s extremely important to pay close attention to how your code accesses the file sys-
tem. If you aren’t careful, a web page that reads data from a file can become a disaster under heavy user
loads. The problem occurs when two users access a file at the same time. If the first user hasn’t taken care
to open a shareable stream, the second user will receive an error.

These issues are covered in more detail in Chapter 12. However, all of this raises an excellent
question—how does the XmlDocument.Load() method open a file? To find the answer, you need to dig into
the IL code of the .NET Framework. What you’ll find is that several steps actually unfold to load an XML
document into an XmlDocument object. First, the path you supply is examined by an XmlUrlResolver and
passed to an XmlDownloadResolver, which determines whether it needs to make a web request (if you’ve
supplied a URL) or can open a FileStream (if you’ve supplied a path). If it can use the FileStream, it explicitly
opens the FileStream with shareable reads enabled. As a result, if more than one user loads the file with
the XmlDocument.Load() method at once on different threads, no conflict will occur. Of course, the best
approach is to reduce contention by caching the retrieved XML content or the XmlDocument object (see
Chapter 11).

The GetChildNodesDescr() method takes two parameters: an XmlNodeList object (a col-
lection of nodes) and an integer that represents the nesting level. When the Page.Load event
handler calls GetChildNodesDescr(), it passes an XmlNodeList object that represents the first
level of nodes. The code also passes 0 as the second argument of GetChildNodesDescr() to
indicate that this is the first level of nesting in the XML document. The processed node con-
tent is then returned as a string.

Tip What if you want to create an XmlDocument and fill it based on XML content you’ve drawn from
another source, such as a field in a database table? In this case, instead of using the Load() method, you
would use LoadXml(), which accepts a string that contains the content of the XML document.

The interesting part is the GetChildNodesDescr() method. It first creates a string with
three spaces for each indentation level that it will later use as a prefix for each line added to the
final HTML text.

Next, the GetChildNodesDescr() method cycles through all the child nodes of the Xml-
NodeList. For the first call, these nodes include the XML declaration, the comment, and the
<DvdList> element. An XmlNode object exposes properties such as NodeType, which identi-
fies the type of item (for example, Comment, Element, Attribute, CDATA, Text, EndElement,

CHAPTER 14 XML 667

Name, and Value). The code checks for node types that are relevant in this example and adds
that information to the string, as shown here:

Note that not all types of nodes have a name or a value. For example, for an element such
as Title, the name is Title, but the value is empty, because it’s stored in the following Text node.

Next, the code checks whether the current node has any attributes (by testing if its Attri-
butes collection is not Nothing). If it does, the attributes are processed with a nested foreach
loop:

CHAPTER 14 XML668

Lastly, if the node has child nodes (according to its HasChildNodes property), the
code recursively calls the GetChildNodesDescr function, passing to it the current node’s
 ChildNodes collection and the current indent level plus 1, as shown here:

When the whole process is finished, the outer foreach block is closed, and the function
returns the content of the StringBuilder object.

The XmlDocument also allows you to modify node content (for example, you can change
the XmlNode.Name and XmlNode.Value properties) and make more dramatic changes, such
as removing a node from a collection by creating a new node. In fact, you can even construct
an entire XML document in memory as an XmlDocument and then save it after the fact. To
save the current content of an XmlDocument, you call the Save() method and supply the string
name of the file or a ready- made stream.

The XPathNavigator
The XPathNavigator class (found in the System.Xml.XPath namespace) works similarly to the
XmlDocument class. It loads all the information into memory and then allows you to move
through the nodes. The key difference is that it uses a cursor- based approach that allows you
to use methods such as MoveToNext() to move through the XML data. An XPathNavigator can
be positioned on only one node a time.

You can create an XPathNavigator from an XmlDocument using the XmlDocument.
CreateNavigator() method. Here’s an example:

CHAPTER 14 XML 669

In this case, the returned object is passed to the GetXNavDescr() recursive method, which
returns the HTML code that represents the XML structure, as in the previous example.

The code of the GetXNavDescr() method is a bit different from the GetChildNodesDescr()
method in the previous example, because it takes an XPathNavigator object that is positioned
on a single node, not a collection of nodes. That means you don’t need to loop through any
collections. Instead, you can simply examine the information for the current node, as follows:

CHAPTER 14 XML670

Note that the values for the NodeType property are almost the same, except for the
enumeration name, which is XPathNodeType instead of XmlNodeType. That’s because the
XPathNavigator uses a smaller, more streamlined set of nodes. One of the nodes it doesn’t
support is the XmlDeclaration node type.

The function checks if the current node has any attributes. If so, it moves to the first
one with a call to MoveToFirstAttribute() and loops through all the attributes until the
MoveToNextAttribute() method returns false. At that point it returns to the parent node,
which is the node originally referenced by the object. Here’s the code that carries this out:

The function does a similar thing with the child nodes by moving to the first one with
MoveToFirstChild() and recursively calling itself until MoveToNext() returns false, at which
point it moves back to the original node, as follows:

CHAPTER 14 XML 671

This code produces almost the same output as shown in Figure 14-3.

The XDocument
The XDocument is an all- purpose model for managing in- memory XML. Unlike the
 XmlDocument and XPathNavigator, it’s equally at home constructing XML content. (By
comparison, the XmlDocument makes XML construction unnecessarily complex, while the
XPathNavigator doesn’t support it at all.) If you need to generate XML in a nonlinear fashion—
for example, you need to write a collection of elements in the root element, and then add
more information inside each of these elements, you’ll need to use an in- memory class like
XDocument.

Much as an XmlDocument object consists of XmlNode objects, an XDocument con-
sists of XNode objects. The XNode is an abstract base class. Other more specific classes, like
 XElement, XComment, and XText, derive from it. One difference is that attributes are not
treated as separate nodes in the LINQ to XML model—instead, they are simply name value
pairs that are attached to another element. For that reason, the XAttribute class doesn’t derive
from XNode.

Technically, the XDocument class is a part of LINQ. It’s found in the System.Xml.Linq
namespace, and it’s a part of the System.Xml.Linq.dll assembly introduced in .NET 3.5. You’ll
need to add a reference to this assembly to use the XDocument and related classes.

Creating XML with XDocument
You can use XDocument to generate XML content with clean and concise code. Alternatively,
you can create XML content that doesn’t represent a complete document using the XElement
class.

All the LINQ to XML classes provide useful constructors that allow you to create and ini-
tialize them in one step. For example, you can create an element and supply text content that
should be placed inside using code like this:

This is already better than the XmlDocument, which forces you to create nodes and then
configure them in a separate statement. But the code savings become even more dramatic
when you consider another feature of the LINQ to XML classes—their ability to create a nested
tree of nodes in a single code statement.

CHAPTER 14 XML672

Here’s how it works. Two LINQ to XML classes—XDocument and XElement—include con-
structors that take a parameter array for the last argument. This parameter array holds a list of
nested nodes.

Note A parameter array is a parameter that’s preceded with the ParamArray keyword. This parameter is
always the last parameter, and it’s always an array. The advantage is that users don’t need to declare the
array—instead, they can simply tack on as many arguments as they want, which are grouped into a single
array automatically. String.Format() is an example of a method that uses a parameter array. It allows you to
supply an unlimited number of values that are inserted into the placeholders of a string.

Here’s an example that creates an element with two nested elements and their content:

You can extend this technique to create an entire XML document, complete with ele-
ments, text content, attributes, and comments. For example, here’s the complete code that
creates the DvdList.xml sample document:

CHAPTER 14 XML 673

This code exactly replicates the XmlTextWriter code you considered earlier. However, it’s
shorter and easier to read. It’s also far simpler than the equivalent code that you would use
to create an in- memory XmlDocument. Unlike the code that uses the XmlTextWriter, there’s
no need to explicitly close elements—instead, they are delineated by the constructor of the
appropriate XElement. Another nice detail is the way the indenting of the code statements
mirrors the nesting of the elements in the XML document, allowing you to quickly take in the
overall shape of the XML content.

Once the XML content has been created, you can save it using the XDocument.Save()
method. Like XmlDocument.Save(), it allows you to supply a string that represents a file name
(which is the technique shown previously) or a stream.

CHAPTER 14 XML674

Reading XML with XDocument
The XDocument also makes it easy to read and navigate XML content. You can use the
 XDocument.Load() method to read XML documents from a file, URI, or stream, or you can
use the XDocument.Parse() method to load XML content from a string.

Once you have a live XDocument with your content, you can dig into the tree of nodes
using a few key properties and methods of the XElement class. Table 14-1 lists the most useful
methods.

Table 14-1. Essential Methods of the XElement Class

Method Description
Attributes() Gets the collection of XAttribute objects for this element.

Attribute() Gets the XAttribute with the specific name.

Elements() Gets the collection of XElement objects that are contained by this element. (This is
the top level only—these elements may in turn contain more elements.) Optionally,
you can specify an element name, and only those elements will be retrieved.

Element() Gets the single XElement contained by this element that has a specific name (or
Nothing if there’s no match).

Nodes() Gets all the XNode objects contained by this elements. This includes elements and
other content, like comments.

Notice that there’s an important difference between the XmlDocument and the XDocument
model. With the XDocument class, nested elements are exposed through methods rather than
properties. This gives you added flexibility to filter out just the elements that interest you. For
example, when using the XDocument.Elements() method, you have two overloads to choose
from. You can get all the child elements (in which case you would supply no parameters) or get
just those child elements that have a specific element name (in which case you would specify the
element name as a string).

The XElement class (and other LINQ to XML classes) offer quite a few more members.
For example, you’ll find members for quickly stepping from one node to the next (FirstNode,
LastNode, NextNode, PreviousNode, and Parent), properties for testing for the presence of
children (HasElements), attributes (HasAttributes), and content (IsEmpty), and methods for
inserting, removing, and otherwise manipulating the XML tree of nodes (Add(), AddAfterSelf(),
AddBeforeSelf(), RemoveNodes(), Remove(), ReplaceWith(), and so on).

One further simplification that LINQ to XML uses is that it doesn’t force you to distinguish
between elements and the text inside, which are represented as two separate nodes in the XML
DOM. Instead, you can retrieve the inner value from an XElement by simply casting it to the
appropriate data type, as shown here:

Setting the text content inside an element is nearly as easy. You simply assign the new
content to the Value property, as shown here:

You can use the same simplified approach to read and set attributes with the XAttribute
class.

CHAPTER 14 XML 675

Here’s a straightforward code routine that mimics the XML processing code you saw ear-
lier with the XPathNavigator. It scans through the elements that are available, and adds title,
director, and price information to a bulleted list.

This code pulls out individual elements of interest using the XElement.Element() method
and iterates over collections of nested XElement objects using the XElement.Elements()
method. For example, the opening declaration of the foreach block selects the collection doc.
Element("DvdList").Elements(). In other words, it grabs the nested <DvdList> element from
the root of the document and examines all the elements inside (which are <DVD> elements).
It then retrieves the content from the nested <Title> and <Director> elements inside. From
start to finish, the code is noticeably simpler and more intuitive than the XmlTextReader and
XmlDocument approaches.

Namespaces
The XDocument class has a particularly elegant way of dealing with namespaces. You simply
define an XNamespace object, which you can then use when creating an XElement as part of
the name. The XElement class automatically creates the xmlns attribute for you (although you
can use the XAttribute object to create it manually, in which case the XElement is intelligent
enough to use it).

Here’s an example that places some of the elements in the DvdList.xml sample document
into a namespace:

CHAPTER 14 XML676

You’ll notice that all the elements in this example are placed in the new XML namespace,
but the attributes aren’t. This isn’t a requirement, but it’s a common convention of XML lan-
guages. Because the elements are already scoped to a specific namespace and the attributes
are attached to an element, it’s not considered necessary to specifically place the attributes in
the same namespace.

Here’s the resulting markup with the namespace:

If your elements are in an XML namespace, you must also take that namespace into
account when navigating through the XML document. For example, when using the
 XmlElement.Element() method, you must supply the fully qualified element name by add-
ing an XNamespace object to the string with the element name:

Note Technically, you don’t need to use the XNamespace class, although it makes your code clearer.
When you add the XNamespace to an element name string, the namespace is simply wrapped in curly
braces. In other words, when you combine the namespace with
the element name , it’s equivalent to the string .
This syntax works because the curly brace characters aren’t allowed in ordinary element names, so there’s
no possibility for confusion.

CHAPTER 14 XML 677

Searching XML Content
In many situations, you don’t need to process the entire XML document. Instead, you need
to extract a single piece of information. The exact approach you use depends on the class
you’re using. With the XmlDocument, you’ll use the GetElementsByTagName() for simple sce-
narios, and the XPath language for more sophisticated cases. With the XDocument, you’ll use
one of the built- in searching methods (like the Elements() method) for simple scenarios and
LINQ expressions when you need more power. In the following sections, you’ll see all these
approaches.

Note If you’ve already learned the LINQ querying syntax, you’ll find that it gives you a powerful, strongly
typed way to search XML. However, that won’t save you from learning more traditional approaches like
XPath, because these standards still crop up in other places, including XSL transforms and ASP.NET’s XML
data binding feature.

Searching with XmlDocument
The simplest way to perform a search with the XmlDocument is to use the XmlDocument.
GetElementsByTagName() method, which searches an entire document tree for elements that
have a specific name and returns an XmlNodeList that contains all the matches as XmlNode
objects.

For example, the following code retrieves the title of each DVD in the document:

 Figure 14-4 shows the result of running this code in a web page.

CHAPTER 14 XML678

Figure 14-4. Searching for information in an XML document

You can also search portions of an XML document by using the method XmlElement.
GetElementsByTagName() on a specific element. In this case, the XmlDocument searches all
the descendant nodes looking for a match. To use this method, first retrieve an XmlNode that
corresponds to an element and then cast this object to an XmlElement. The following example
demonstrates how to use this technique to find the stars of a specific movie:

CHAPTER 14 XML 679

 Figure 14-5 shows the result of this test.

 Figure 14-5. Searching portions of an XML document

The code you’ve seen so far assumes that none of the elements has a namespace.
More sophisticated XML documents will always include a namespace and may even have
several of them. In this situation, you can use the overload of the method XmlDocument.
GetElementsByTagName(), which requires a namespace name as a string argument, as
shown here:

 Additionally, you can supply an asterisk (*) for the element name if you want to match all
tags in the specified namespace:

The GetElementsByTagName() method is fairly limited. It allows you to search based
on the name of an element only. You can’t filter based on other criteria, such as the value of
the element or attribute content. XPath is a much more powerful standard that allows you to
retrieve the portions of a document that interest you.

-

CHAPTER 14 XML680

every <DVD> element inside the <DvdList>. Finally, the period (.) always selects the current
recursive path operator that searches all the descendants of

document for nodes.
These ingredients are enough to build many basic templates, although the XPath standard

also defines special selection criteria that can filter out only the nodes in which you are inter-
ested. Table 14-2 provides a method overview of XPath characters.

Note XML distinguishes between two related terms: child node and descendant node. Understanding
the difference is a key to understanding how XPath expressions work. A child node is a contained node
that’s just one level below the parent. A descendant node is a contained node that’s nested at any level. In
other words, the term descendant node includes child nodes, and the children of the child nodes, and their
children, and so on. In the DVD list example, <Title> is a child of <DVD> and a descendant of <DVD> and
<DvdList>, but it’s not a child of <DvdList>.

Table 14-2. Basic XPath Syntax

Expression Meaning
-

ates
elements that are children of the root <DvdList> element.

Searches for child nodes recursively, digging through all the nested layers of nodes.

-
dants of a <DVD> element.

@ method attribute
named ID from all <DVD> elements.

*
<DVD> element (which include <Title>, <Director>, <Price>, and <Starring> in this
example).

|
the <Title> and <Director> elements in the <DVD> element.

. Indicates the current (default) node.

.. Indicates the parent node. If the current node is <Title>, then .. refers to the <DVD> node.

[]
DVD[Title='Forrest Gump'] selects the <DVD> elements that contain a <Title> ele-

with the indicated attribute value. You can use the and keyword and the or keyword
to combine criteria.

starts-with This method function retrieves elements based on what text a contained element

a <Title> element that contains text that starts with the letter P.

position This function retrieves elements based on position, using 1- based counting.

count This function counts the number of elements with the matching name. count(DVD)
returns the number of <DVD> elements.

CHAPTER 14 XML 681

To execute an XPath expression in .NET, you can use the Select() method of the
 XPathNavigator or the SelectNodes() or SelectSingleNode() method of the XmlDocument
class. The following code uses this technique method to retrieve specific information:

 Figure 14-6 shows the results.

 Figure 14-6. Extracting information with XPath

Tip You can use XPath searches with the XDocument class as well, through extension methods. You sim-
ply need to import the System.Xml.XPath namespace. This namespace includes an Extensions class which
defines a few methods that extend XNode—most notably, XPathSelectElement() and XPathSelectElements().

CHAPTER 14 XML682

Searching XDocument with LINQ
You’ve already seen how to use the method the XElement.Element() and XElement.Elements()
methods to filter out elements that have a specific name. However, both these methods only
go one level deep. For example, you can use them on the XElement class that represents the
<DVDList> element to find the <DVD> elements, but you won’t be able to find the <Title> ele-
ments, because these are two levels deep.

There are several ways to resolve this problem. The easiest approach is to use a few more
 built- in XElement methods that you haven’t considered yet, such as ElementsAfterSelf(),
ElementsBeforeSelf(), Ancestors(), and Descendants(). All of these return IEnumerable<T> col-
lections of XElement objects.

ElementsAfterSelf() and ElementsBeforeSelf() find the sibling elements. The Ancestors()
and Descendants() methods are more noteworthy, because they traverse the XML hierarchy.
For example, using Descendants() on the root <DvdList> element returns all the elements in
the document, including the directly contained <DVD> elements and more deeply nested ele-
ments like <Title> and <Price>.

Using this knowledge, you can find all the movie titles in the document, at any level, using
this code:

This gives you functionality that’s similar to the XmlDocument.GetElementsByTagName()
method. However, it doesn’t match the features of XPath. To do that, you need LINQ expressions.

As you learned in Chapter 13, LINQ expressions work with objects that implement
IEnumerable<T>. The various LINQ extensions provide ways of bridging the gap between
IEnumerable<T> and other data sources. For example, LINQ to DataSet adds extension meth-
ods that allow you to get IEnumerable<T> collections of DataRow objects. LINQ to SQL adds
the Table<T> class, which provides an IEnumerable<T> implementation over a database
query. And LINQ to XML provides the XDocument and XElement classes, which include sev-
eral ways for getting IEnumerable<T> collections of elements, including the Elements() and
Descendants() methods you’ve just considered.

Once you place your collection of elements in a LINQ expression, you can use all the
familiar operators. That means you can use sorting, filtering, grouping, and projections to get
the data you want. Here’s an example that gets the XElement objects for the <Title> elements
that have an ID value less than 3:

It’s often more useful to translate the data to some other form. For example, the follow-
ing query creates an anonymous type that combines title and price information. The results
are sorted in descending order by price and then bound to a GridView for display. Figure 14-7
shows the result.

CHAPTER 14 XML 683

 Figure 14-7. Extracting information with a LINQ to XML expression

Notice the casting code that converts the XElement to the expected type (string for the
title or decimal for the price). This casting step is required to extract the value from the full
XElement object.

The LINQ to XML infrastructure also includes a set of extension methods that work on col-
lections of elements. Here’s a query that uses one of them to get a list of titles:

At first glance, this looks like a fairly ordinary usage of the XElement.Elements() method.
But closer inspection reveals that something else is happening.

The first call to Elements() gets all the <DVD> elements in the root <DvdList> element.
The second call is a bit different, because it’s not acting on an XElement object. Instead, it’s
acting on the collection of XElement objects that’s returned by the first Elements() call. In
other words, the second call is actually calling the Elements() method on an IEnumerable<T>
collection. The IEnumerable<T> interface obviously doesn’t include the Elements() method.
Instead, the Extensions class in the System.Xml.Linq namespace defines this extension method
for any IEnumerable<XElement> type. The end result is that this version of the Elements()
method searches the collection and picks out the elements with the matching name.

Of course, you’ve already seen that you don’t need to use this approach to create this
query. You can just as easily rely on the XElement.Descendants() method to dig through any
branch of your XML document. However, the Elements() extension method might be more

CHAPTER 14 XML684

useful in other scenarios where you have IEnumerable<XElement> collections that have been
constructed in a different way, from different parts of an XML document.

The Extensions class defines several additional extension methods that apply to XElement
collections, including Ancestors(), AncestorsAndSelf(), Attributes(), Descendants(), and
DescendantsAndSelf().

Validating XML Content
So far you’ve seen a number of strategies for reading and parsing XML data. If you try to read
invalid XML content using any of these approaches, you’ll receive an error. In other words, all
these classes require well- formed XML. However, none of the examples you’ve seen so far has
validated the XML to check that it follows any application- specific rules.

A Basic Schema
As described at the beginning of this chapter, XML formats are commonly codified with an
XML schema that lays out the required structure and data types. For the DVD list document,
you can create an XML schema that looks like this:

CHAPTER 14 XML 685

This schema defines two complex types, representing the list of stars (named StarringType)
and the list of DVDs (each of which is an instance of a complex type named DVDType). The
structure of the document is defined using an <element> tag.

Validating with XmlDocument
One approach for validating an XML document against a schema is to use an
 XmlValidatingReader. To create one, you use the XmlReader.Create() method and pass in
an XmlReaderSettings object that specifies the XSD schema you want to use. The validating
reader works like the XmlTextReader but includes the ability to verify that the document fol-
lows schema rules. The validating reader throws an exception (or raises an event) to indicate
errors as you move through the XML file.

The first step when performing validation is to import the System.Xml.Schema
namespace, which contains types such as XmlSchema and XmlSchemaCollection:

The following example shows how you can create a validating reader that uses the
DvdList.xsd file and shows how you can use it to verify that the XML in DvdList.xml is valid.
The first step is to create the XmlReaderSettings object that specifies the schema you want
to use:

Each schema is used to validate the elements in a specific namespace. If your document
contains elements from more than one namespace, you can use separate schemas to validate
them. If you don’t include a schema that validates the namespace your document uses, no
validation will be performed. You specify the namespace name and the schema file path when
you call the XmlReaderSettings.Schemas.Add() method.

The simple version of the DVD list that’s used in this example doesn’t use a namespace.
As a result, you need to pass an empty string as the first parameter.

Once you’ve configured your validation settings, you can create the validating reader and
validate the document:

CHAPTER 14 XML686

Using the current file, this code will succeed, and you’ll be able to access the current node
through the validating reader in the same way that you can with an ordinary reader. However,
consider what happens if you make the minor modification shown here:

Now when you try to validate the document, an XmlSchemaValidationException (from
the System.Xml.Schema namespace) will be thrown, alerting you to the invalid data type—the
letter A in an attribute that is designated for integer values.

Instead of catching errors, you can react to the ValidationEventHandler event. If you react
to this event, you’ll be provided with information about the error, but no exception will be
thrown. To connect an event handler to this event, assign the method to the XmlSettings.
ValidationEventHandler property before you create the validating reader:

The event handler receives a ValidationEventArgs class, which contains the exception,
a message, and a number representing the severity:

To try the validation, you can use the XmlValidation.aspx page in the online samples. This
page allows you to validate a valid DVD list as well as another version with incorrect data and
an incorrect tag. Figure 14-8 shows the result of a failed validation attempt.

 Figure 14-8. The validation test page

CHAPTER 14 XML 687

Validating with XDocument
Although XDocument doesn’t have baked- in validation functionality, .NET includes extension
methods that allow you to use it with the validation classes you saw in the previous section. To
make these available, you need to import the System.Xml.Schema namespace. This namespace
contains an Extensions class that includes a Validate() method you can use on an XElement or
XDocument.

Here’s an example that uses the Validate() extension method to validate the DvdList.xml
document:

Note The validation process is essentially the same with the XmlDocument class. The only difference is
that XmlDocument includes a Validate() method, and so it doesn’t require an extension method.

Transforming XML Content
XSL (Extensible Stylesheet Language) is an XML- based language for creating stylesheets.
Stylesheets (also known as transforms) are special documents that can be used (with the help
of an XSLT processor) to convert your XML documents into other documents. For example,
you can use an XSLT stylesheet to transform one type of XML to a different XML structure. Or
you could use a stylesheet to convert your data- only XML into another text- based document
such as an HTML page, as you’ll see with the next example.

Note Of course, XSL stylesheets shouldn’t be confused with CSS (Cascading Style Sheets), a standard
used to format HTML. Chapter 16 discusses CSS.

Before you can perform a transformation, you need to create an XSL stylesheet that
defines how the conversion should be applied. XSL is a complex standard—in fact, it can be
considered a genuine language of its own with conditional logic, looping structures, and more.

CHAPTER 14 XML688

Note A full discussion of XSLT is beyond the scope of this book. However, if you want to learn more,
you can consider a book such as Jeni Tennison’s Beginning XSLT 2.0: From Novice to Professional (Apress,
2005), the excellent online tutorials at , or the standard itself at

.

A Basic Stylesheet
To transform the DVD list into HTML, you’ll use the simple stylesheet shown here:

Every XSL file has a root <stylesheet> element. The <stylesheet> element can contain one
or more templates (the sample file has four). In this example, the first <template> element
matches the root element. When it finds it, it outputs the tags necessary to start an HTML page
and then uses the <apply- templates> command to branch off and perform processing for any
<DVD> elements that are children of <DvdList>, as follows:

CHAPTER 14 XML 689

Each time the <DVD> tag is matched, a horizontal line is added, and a heading is created.
Information about the <Title>, <Price>, and <Director> tag is extracted and written to the page
using the <value- of> command. Here’s the full template for transforming <DVD> elements:

Using XslCompiledTransform
Using this stylesheet and the XslCompiledTransform class (contained in the System.Xml.Xsl
namespace), you can transform the DVD list into formatted HTML. Here’s the code that per-
forms this transformation and saves the result to a new file:

Of course, in a dynamic web application you’ll want to transform the XML file and return
the resulting code directly, without generating an HTML file. To do this you have to cre-
ate an XPathNavigator for the source XML file. You can then pass the XPathNavigator to the
XslCompiledTranform.Transform() method and retrieve the results in any stream object.

The following code demonstrates this technique:

CHAPTER 14 XML690

Once you have the results in a MemoryStream, you can create a StreamReader to retrieve
them as a string:

 Figure 14-9 shows the resulting page.

 Figure 14-9. Transforming XML to HTML

CHAPTER 14 XML 691

Using the Xml Control
In some cases you might want to combine transformed HTML output with other content and
web controls. In this case, you can use the Xml control. The Xml control displays the result of
an XSL transformation in a discrete portion of a page.

For example, consider the previous XSLT example, which transformed DvdList.xml using
DvdList.xsl. Using the Xml control, all you need is a single tag that sets the DocumentSource
and TransformSource properties, as shown here:

The best part of this example is that all you need to do is set the XML input and the XSL
transform file. You don’t need to manually initiate the conversion.

Note You don’t need separate files to use the Xml control. Instead of using the DocumentSource property,
you can assign an XmlDocument object to the Document property or assign a string containing the XML
content to the DocumentContent property. Similarly, you can supply the XSLT information by assigning an
XslTransform object to the Transform property. These techniques are useful if you need to supply XML and
XSLT data programmatically (for example, if you extract it from a database record).

Transforming XML with LINQ to XML
XSL is a well- entrenched standard for transforming XML into different representations. How-
ever, it’s obviously not the only approach. There’s nothing that stops you from opening an
XDocument, rearranging its nodes manually, and then saving the result—aside from the intrin-
sic complexity of such an approach, which makes your code difficult to maintain and subject
to all kinds of easily missed errors.

So although XSL isn’t the only way to change the representation of XML, in the recent past
it has been the only reasonably practical way to do so. With LINQ, this reality changes a bit.
Although XSL will still continue to be used in a wide range of scenarios, LINQ to XML offers a
compelling alternative.

To perform a transformation with LINQ to XML, you need to use a LINQ expression that
uses a projection. (As discussed in Chapter 13, a projection takes the data you’re searching and
rearranges it into a different representation.) The trick is that the projection must return an
XElement rather than an anonymous type.

As you’ve already seen, the XElement constructor allows you to create an entire tree of
nodes in a single statement. By using these constructors, your LINQ expression can build an
XML tree complete with elements, subelements, attributes, text content, and so on.

The easiest way to understand this technique is to consider an example. The following
code extracts some of the information from the DvdList.xml document and rearranges it into
a different structure.

CHAPTER 14 XML692

This code does quite a bit in only a few lines. The first two statements open the original
XML file and load it into an XDocument object. The third and final code statement does the
rest—it creates a new XDocument and fills it with the transformed content.

The document starts with an XML declaration and is followed by the root element, which
is named <Movies>. The content for the node is an array of XElement objects, which are used
to fill the <Movies> element. The trick is that this array is constructed using a LINQ expression.
This expression pulls out all the <DVD> elements in the original documents (wherever they
occur, using the Descendants() method) and filters for those that have ID attribute values less
than 3. Finally, the select clause applies a projection that creates each nested XElement inside
the <Movies> element. Each nested XElement represents a <Movie> element, contains a Name
attribute (which has the movie title), and holds a nested collection of <Star> elements.

The final result is as follows:

The syntax for LINQ- based transforms is often easier to understand than an XSL
stylesheet, and it’s always more concise.

Even better is the fact that the source content doesn’t need to be drawn from an XML
document. For example, there’s no reason that you can’t use a LINQ expression that con-
structs the XElement nodes for an XDocument, but pulls its information from a different type
of data. In this example, the expression gets its information from the XDocument by calling the
Descendants() method, but you could just as easily substitute another IEnumerable<T> collec-
tion, including an in- memory collection or a LINQ to SQL database table. In fact, this feature
could easily replace more proprietary technologies, like the awkward FOR XML query syntax in
SQL Server.

Here’s an example that queries the Employees table you’ve used in earlier chapters and
packages the result into an XML document:

CHAPTER 14 XML 693

And here’s the resulting XML that’s generated:

The disadvantage of using LINQ to XML for transformation is that it’s not a standard
technology, whereas XSLT definitely is. Furthermore, the logic is programmatic, which means
you’ll need to recompile your code to change your transformation. Although the syntax of XSLT
is more complex, its declarative model adds valuable flexibility if you need to share, reuse, or
modify the transform.

XML Data Binding
Now that you’ve learned how to read, write, and display XML by hand, it’s worth considering
a shortcut that can save a good deal of code—the XmlDataSource control.

The XmlDataSource control works in a declarative way that’s analogous to the
 SqlDataSource and ObjectDataSource controls you learned about in Chapter 9. However, it
has two key differences:

or data access class. It provides other controls with an XmlDocument object for data
binding.

the SqlDataSource and ObjectDataSource return flat tables of data.

CHAPTER 14 XML694

The XmlDataSource also provides a few features in common with the other data source
controls, including caching and rich design support that shows the schema of your data in
bound controls.

In the following sections, you’ll see how to use the XmlDataSource in simple and complex
scenarios.

Nonhierarchical Binding
The simplest way to deal with the hierarchical nature of XML data is to ignore it. In other
words, you can bind the XML data source directly to an ordinary grid control such as the
GridView.

The first step is to define the XML data source and point it to the file that has the content
you want to use:

Now you can bind the GridView with automatically generated columns, in the same way
you bind it to any other data source:

Note Remember, you don’t need to use automatically generated columns. If you refresh the schema at
design time, Visual Studio will read the DvdList.xml file, determine its structure, and define the corresponding
GridView columns explicitly.

Now, when you run the page, the XmlDataSource will extract the data from the DvdList.xml
file, provide it to the GridView as an XmlDocument object, and call DataBind(). Because the
 XmlDocument implements the IEnumerable interface, the GridView can walk through its struc-
ture in much the same way as it walks through a DataView. It traverses the XmlDocument.Nodes
collection and gets all the attributes for each XmlNode.

Tip You can use the XmlDataSource programmatically. Call XmlDataSource.GetXmlDocument() to cause it
to return the file’s content as an XmlDocument object.

However, this has a catch. As explained earlier, the XmlDocument.Nodes collec-
tion contains only the first level of nodes. Each of these nodes can contain nested nodes
through its own XmlNode.Nodes collection. However, the IEnumerable implementation
that the XmlDocument uses doesn’t take this into account. It walks over only the upper
level of XmlNode objects, and as a result you’ll see only the top level of nodes, as shown in
 Figure 14-10.

CHAPTER 14 XML 695

 Figure 14-10. Flattening XML with data binding

You can make this binding explicit by defining columns for each attribute:

In other words, if you don’t customize the XML data binding process, you can bind only to
the top- level of nodes, and you can display text only from the attributes of that node. Further-
more, if there is more than one type of top- level node, the bound control uses the schema of
the first node. In other words, if you have a document like this:

the GridView will inspect the first node and create an ID and Name column. It will then
attempt to display ID and name information for each node. If no matching attribute is found
(for example, the <DVD> specifies a name), then that value will be left blank. Similarly, the
Category attribute won’t be used, unless you explicitly define it as a column.

CHAPTER 14 XML696

All of this raises an obvious question—how do you display other information from deeper
down in the XML document? You have a few options:

details grid was created in Chapter 10).

-
trol that fits is the TreeView.

You’ll see all of these techniques in the following sections.

Using XPath
Ordinarily, when you bind an XmlNode, you display only attribute values. However, you can
get the text from nested elements using XPath data binding expressions.

The most flexible way to do this is to use a template that defines XPath data binding
expressions. XPath data binding expressions are similar to Eval() expressions, except instead
of supplying the name of the field you want to display, you supply an XPath expression based
on the current node.

For example, here’s an XPath expression that starts at the current node, looks for a nested
node named Title, and gets associated element text:

Here’s an XPath expression that filters out the text of an ID attribute for the current node:

Tip You can use the XPath data binding syntax with your own custom data objects, but it isn’t easy. The
only requirement is that the data item must implement the IXPathNavigable interface.

Finally, here’s a GridView with a simple set of XPath expressions:

CHAPTER 14 XML 697

 Figure 14-11 shows the result.

 Figure 14-11. XML data binding with templates

As with the Eval() method, you can use an optional second parameter with a format string
when calling XPath():

Note Unfortunately, you need to use a template to gain the ability to write XPath data binding expres-
sions. That limits the usefulness of other controls (such as drop- down lists) in XML data binding scenarios.
Although you can bind them to attributes without any problem, you can’t bind them to show element content.

You can also use XPath to filter out the initial set of matches. For example, imagine you
want to create a grid that shows a list of stars rather than a list of movies. To accomplish this,
you need to use the XPath support that’s built into the XmlDataSource to prefilter the results.

To use XPath, you need to supply the XPath expression that selects the data you’re
interested in by using the XmlDataSource.XPath property. This XPath expression extracts an
XmlNodeList, which is then made available to the bound controls.

If that expression returns a list of nodes, and all the information you need to display is
found in attributes, you don’t need to perform any extra steps. However, if the information is
in element text, you need to create a template.

In this example, the template simply displays the text for each <Star> node:

CHAPTER 14 XML698

 Figure 14-12 shows the result.

 Figure 14-12. Using XPath to filter results

You can create a simple record browser using the XmlDataSource.XPath property. Just let
the user choose an ID from another control (such as a drop- down list), and then set the XPath
property accordingly:

This works because data binding isn’t performed until the end of the page life cycle.

Nested Grids
Another option is to show nested elements by nesting one grid control inside another. This
allows you to deal with much more complex XML structures.

The remarkable part is that ASP.NET provides support for this approach without requir-
ing you to write any code. This is notable, especially because it does require code to create the
nested master- details grid display demonstrated in Chapter 10.

CHAPTER 14 XML 699

The next example uses nested grids to create a list of movies, with a separate list of star-
ring actors in each movie. To accomplish this, you begin by defining the outer grid. Using a
template, you can display the title and director information:

Now, you need to define another GridView control inside the template of the first GridView.
The trick is in the DataSource property, which you can set using a new XPathSelect() data bind-
ing statement, as shown here:

When you call XPathSelect(), you supply the XPath expression that retrieves the
 XmlNodeList based on a search starting at the current node. In this case, you need to drill
down to the nested group of <Star> elements.

Once you’ve set the right data source, all you need to do is define a template in the second
GridView that displays the appropriate information. In this case, you need only a single data
binding expression to get the element text:

 Figure 14-13 shows the grid, with a little extra formatting added for good measure.

CHAPTER 14 XML700

 Figure 14-13. Showing XML with nested grids

Tip In this example, you might want to consider using the Repeater to show the actor names. That way,
you have the flexibility to show the list in a more compact format, without using a table.

Hierarchical Binding with the TreeView
Some controls have the built- in smarts to show hierarchical data. In .NET, the principal example
is the TreeView. When you bind the TreeView to an XmlDataSource, it uses the XmlDataSource.
GetHierarchicalView() method and displays the full structure of the XML document (see
 Figure 14-14).

The TreeView’s default XML representation still leaves a lot to be desired. It shows only
the document structure (the element names), not the document content (the element text). It
also ignores attributes. To improve this situation, you need to set the TreeView.AutoGenerate
DataBindings property to false, and you then need to explicitly map different parts of the XML
document to TreeView nodes.

CHAPTER 14 XML 701

 Figure 14-14. Automatically generated TreeView bindings

To create a TreeView mapping, you need to add <TreeNodeBinding> elements to the
<DataBinding> section. You must start with the root element and then add a binding for each
level you want to show. You cannot skip any levels.

Each <TreeNodeBinding> must name the node it binds to (through the DataMember
property), the text it should display (TextField), and the hidden value for the node (ValueField).
Unfortunately, both TextField and ValueField are designed to bind to attributes. If you want to
bind to element content, you can use an ugly hack and specify the #InnerText code. However,
this shows all the inner text, including text inside other more deeply nested nodes.

The next example defines a basic set of nodes to show the movie title information:

CHAPTER 14 XML702

 Figure 14-15 shows the result.
To get a more practical result with TreeView data binding, you need to use an XSL trans-

form to create a more suitable structure, as described in the next section.

Tip To learn how to format the TreeView, including how to tweak gridlines and node pictures, refer to
Chapter 17.

 Figure 14-15. Binding to specific content

Using XSLT
The XmlDataSource has similar built- in support for XSL transformations. The difference is
that you don’t use the stylesheet to convert the XML to HTML. Instead, you use it to convert
the source XML document into an XML structure that’s easier to data bind. For example, you
might generate an XML document with just the results you want and generate a flattened
structure (with elements converted into attributes) for easier data binding.

To specify a stylesheet, you can set the XmlDataSource.TransformFile to point to a file
with the XSL transform, or you can supply the stylesheet as a single long string using the
XmlDataSource.Transform property. You can use both stylesheets and XPath expressions, but
the stylesheet is always applied first.

One good reason to use the XSLT features of the XmlDataSource is to get your XML data
ready for display in a hierarchical control such as the TreeView. For example, imagine you
want to create a list of stars grouped by movie. You also want to put all the content into attri-
butes so it’s easy to bind.

CHAPTER 14 XML 703

Here’s the final XML you’d like:

You can transform the original XML into this markup using the following, more advanced
XSL stylesheet. It extracts every <DVD> element from the source document and creates a
slightly rearranged <DVD> element for it in the result document. The new <DVD> element
uses attributes to expose the ID and title information (rather than using nested elements).
The transformed <DVD> element also includes nested <Star> elements, but they’re also modi-
fied. Now, each <Star> element exposes the star name as an attribute (rather than using text
content).

CHAPTER 14 XML704

Now you can bind this to the TreeView and display it with this set of bindings:

Binding to XML Content from Other Sources
So far, all the examples you’ve seen have bound to XML content in a file. This is the standard
scenario for the XmlDataSource control, but it’s not your only possibility. The other option is
to supply the XML as text through the XmlDataSource.Data property.

You can set the Data property at any point before the binding takes place. One convenient
time is during the Page.Load event:

Tip If you use this approach, you may find it’s still a good idea to set the XmlDataSource.DataFile property
at design time in order for Visual Studio to load the schema information about your XML document and make
it available to other controls. Just remember to remove this setting when you’re finished developing, as the
DataFile property overrides the Data property if they are both set.

This allows you to read XML content from another source (such as a database) and still
work with the bound data controls. However, it requires adding some custom code.

Even if you do use the XmlDataSource.Data property, XML data binding still isn’t nearly
as flexible as the .NET XML classes you learned about earlier in this chapter. One of the key

CHAPTER 14 XML 705

limitations is that the XML content needs to be loaded into memory all at once as a string
object. If you’re dealing with large XML documents, or you just need to ensure the best possi-
ble scalability for your web application, you might be able to reduce the overhead considerably
by using the XmlReader instead, even though it will require much more code. Handling the
XML parsing process yourself also gives you unlimited flexibility to rearrange and aggregate
your data into a meaningful summary, which isn’t always easy using XSLT alone.

Note If you do use the XmlDataSource to display XML data from a file, make sure you use cach-
ing to reduce the number of times that the file needs to be opened. You can use the CacheDuration,
 CacheKeyDependency, and CacheExpirationPolicy properties of the XmlDataSource. If your file changes
infrequently, you’ll be able to keep it in the cache indefinitely, which guarantees good performance. On
theother hand, if you need to update the underlying XML document frequently, you’re likely to run into mul-
tiuser concurrency headaches, as discussed in Chapter 12.

Updating XML Through the XmlDataSource
Unlike the SqlDataSource and the ObjectDataSource, the XmlDataSource doesn’t support
editable binding. You can confirm this fact with a simple test—just bind the XmlDataSource to
a GridView, and add a CommandField with edit buttons. When you try to commit the update,
you’ll get an error informing you that the data source doesn’t support this feature.

However, the XmlDataSource does provide a Save() method. This method replaces the
file specified in the DataFile property with the current XML content. Although you need to add
code to call the Save() method, some developers have used this technique to provide editable
XML data binding.

The basic technique is as follows: when the user commits a change in a control,
your code retrieves the current XML content as an XmlDocument object by calling the
XmlDataSource.GetXmlDocument() method. Then, your code finds the corresponding node
and makes the change using the features of XmlDocument (as described earlier in this chap-
ter). You can find and edit specific nodes, remove nodes, or add nodes. Finally, your code
must call the XmlDataSource.Save() method to commit the change.

Although this approach works perfectly well, it’s not necessarily a great way to design
a website. The XML manipulation code can become quite long, and you’re likely to run into
concurrency headaches if two users make different changes to the same XmlDocument at
once. If you need to change XML content, it’s almost always a better idea to implement the
logic you need in a separate component, using the XML classes described earlier.

XML and the ADO.NET DataSet
Now that you’ve taken an exhaustive look at general- purpose XML and .NET, it’s worth taking
a look at a related topic—the XML support that’s built into ADO.NET.

ADO.NET supports XML through the disconnected DataSet and DataTable objects.
Both have the built- in intelligence to convert their collection rows into an XML document.
You might use this functionality for several reasons. For example, you might want to share
data with another application on another platform. Or you might simply use the XML format

CHAPTER 14 XML706

to serialize to disk so you can retrieve it later. In this case, you still use the same methods,
although the actual data format isn’t important.

Table 14-3 lists all the XML methods of the DataSet.

Table 14-3. DataSet Methods for Using XML

Method Description
GetXml() Retrieves the XML representation of the data in the DataSet as a single string.

WriteXml() Writes the contents of the DataSet to a file or a TextWriter, XmlWriter, or
Stream object. You can choose a write mode that determines if change track-
ing information and schema information is also written to the file.

ReadXml() Reads XML data from a file or a TextReader, XmlReader, or Stream object and
uses it to populate the DataSet.

GetXmlSchema() Retrieves the XML schema for the DataSet XML as a single string. No data is
returned.

WriteXmlSchema() Writes just the XML schema describing the structure of the DataSet to a file or
a TextWriter, XmlWriter, or Stream object.

ReadXmlSchema() Reads an XML schema from a file or a TextReader, XmlReader, or Stream
object and uses it to configure the structure of the DataSet.

InferXmlSchema() Reads an XML document with DataSet contents from a file or a TextReader,
XmlReader, or Stream object and uses it to infer what structure the DataSet
should have. This is an alternative approach to using the ReadXmlSchema()
method, but it doesn’t guarantee that all the data type information is
preserved.

Tip You can also use the ReadXml(), WriteXml(), ReadXmlSchema(), and WriteXmlSchema() methods of
the DataTable to read or write XML for a single table in a DataSet.

Converting the DataSet to XML
Using the XML methods of the DataSet is quite straightforward, as you’ll see in the next exam-
ple. This example uses two GridView controls on a page. The first DataSet is filled directly from
the Employees table of the Northwind database. (The code isn’t shown here because it’s simi-
lar to what you’ve seen in the previous chapters.) The second DataSet is filled using XML.

CHAPTER 14 XML 707

Here’s how it works: once the DataSet has been created, you can generate an XML schema
file describing the structure of the DataSet and an XML file containing the contents of every row.
The easiest approach is to use the WriteXmlSchema() and WriteXml() methods of the DataSet.
These methods provide several overloads, including a version that lets you write data directly to
a physical file. When you write the XML data, you can choose between several slightly different
formats by specifying an XmlWriteMode. You can indicate that you want to save both the data
and the schema in a single file (XmlWriteMode.WriteSchema), only the data (XmlWriteMode.
IgnoreSchema), or the data with both the current and the original values (XmlWriteMode.
DiffGram).

Here’s the code that you need to save a DataSet to an XML file:

This code creates an Employees.xml file in the current folder.
Now you can perform the reverse step by creating a new DataSet object and filling it with

the data contained in the XML file using the DataSet.ReadXml() method as follows:

This completely rehydrates the DataSet, returning it to its original state.
If you want to see the structure of the generated Employees.xml file, you can open it in

Internet Explorer, as shown in Figure 14-16. Notice how the first part contains the schema that
describes the structure of the table (name, type, and size of the fields), followed by the data
itself.

The DataSet XML follows a predefined format with a few simple rules:

The root document element is the DataSet.DataSetName (for example, Northwind).

The example with one table means that there are multiple <Employees> elements.

the field is stored as text inside the tag.

Unfortunately, the DataSet doesn’t make it possible for you to alter the overall structure.
If you need to convert the DataSet to another form of XML, you need to manipulate it by using
XSLT or by loading it into an XmlDocument object.

CHAPTER 14 XML708

 Figure 14-16. Examining the DataSet XML

Accessing a DataSet As XML
Another option provided by the DataSet is the ability to access it through an XML interface.
This allows you to perform XML- specific tasks (such as hunting for a tag or applying an XSL
transformation) with the data you’ve extracted from a database. To do so, you create an
 XmlDataDocument that wraps the DataSet. When you create the XmlDataDocument, you
 supply the DataSet you want as a parameter, as follows:

Now you can look at the DataSet in two ways. Because the XmlDataDocument inherits
from the XmlDocument class, it provides all the same properties and methods for examining
nodes and modifying content. You can use this XML- based approach to deal with your data,
or you can manipulate the DataSet through the XmlDataDocument.DataSet property. In either
case, the two views are kept automatically synchronized—when you change the DataSet,
the XML is updated immediately, and vice versa. This automatic synchronization introduces
extra overhead, and as a result the XmlDataDocument is not the most efficient in- memory

CHAPTER 14 XML 709

approach to managing an XML document. (Both the XmlDocument and XDocument classes
are far faster.)

For example, consider the pubs database, which includes a table of authors. Using the
XmlDataDocument, you could examine a list of authors as an XML document and then apply
an XSL transformation with the help of the Xml web control. Here’s the complete code you’d
need:

Here’s the XSL stylesheet that does the work of converting the XML data into
 ready-to- display HTML:

 Figure 14-17 shows the processed data in HTML form.
Remember that when you interact with your data as XML, all the customary database-

 oriented concepts such as relationships and unique constraints go out the window. The
only reason you should interact with your DataSet as XML is if you need to perform an XML-
 specific task. You shouldn’t use XML manipulation to replace the approaches used in earlier

CHAPTER 14 XML710

chapters to update data. In most cases, you’ll find it easier to use advanced controls such as
the GridView, rather than creating a dedicated XSL stylesheet to transform data into the HTML
you want to display.

 Figure 14-17. Displaying the results of a query through XML and XSLT

Tip If you’re using a SQL Server database, you also have the option of performing a FOR XML query to
retrieve the results of your query as an XML document. (You’ll still be forced to use an XSL stylesheet or
some other mechanism to convert it to the HTML you want to show.) To learn more about FOR XML queries,
refer to the SQL Server Books Online.

Summary
In this chapter, you got a taste of ASP.NET’s XML features. The class libraries for interacting
with XML are available to any .NET application, whether it’s a Windows application, a web
application, or a simple command- line tool. They provide one of the most fully featured tool-
kits for working with XML and other standards such as XPath, XML Schema, and XSLT. The
story gets even better in .NET 3.5, which adds the XDocument model with streamlined XML
processing and full support for LINQ expressions.

CHAPTER 14 XML 711

XML is a vast topic, and there is much more to cover, such as advanced navigation, search
and selection techniques, validation, and serialization. If you want to learn more about XML in
.NET, consider a dedicated book on the subject or scour the Visual Studio Help. But remember
that you should use XML only where it’s warranted. XML is a great tool for persisting file- based
data in a readable format and for sharing information with other application components and
services. However, it doesn’t replace the core data management techniques you’ve seen in
previous chapters.

P A R T 3

Building ASP.NET
Websites

Once you’ve learned to create solid web pages, you’ll begin to consider the big picture—

in other words, how to group together a large number of web pages to form a cohesive,

integrated website. The previous chapters in this book have already considered some of

the fundamentals, like managing state when the user moves from one page to another, and

using separate components to factor data access code out of your web pages so they’re

available wherever you need them. However, web programmers face a few more consider-

ations, such as ensuring consistency on every page and streamlining website navigation.

In this part, you’ll consider the topics that become important when you stop thinking about

individual pages and starting planning an entire web application.

First, you’ll look at user controls (Chapter 15), which let you reuse a block of user inter-

face in multiple pages. In Chapter 16, you’ll get more sophisticated with two more tools:

themes, which let you set control properties automatically, and master pages, which let

you reuse a single template to standardize the layout and content in multiple pages. Taken

together, these three tools ensure that your web application appears as a single, coherent

whole.

In Chapter 17, you’ll consider a related topic: how to use site maps and navigation controls

to let users move around your website. Finally, in Chapter 18 you’ll learn how to bring your

web application into a production environment by moving it off a development computer

(or test server) to a full- fledged web server running IIS.

715

C H A P T E R 1 5

User Controls

The core set of ASP.NET controls is broad and impressive. It includes controls that encapsu-
late basic HTML tags and controls that provide a rich higher- level model, such as the Calendar,
TreeView, and data controls. Of course, even the best set of controls can’t meet the needs of
every developer. Sooner or later, you’ll want to get under the hood, start tinkering, and build
your own user interface components.

In .NET, you can plug into the web forms framework with your own controls in two ways.
You can develop either of the following:

User controls: A user control is a small section of a page that can include static HTML
code and web server controls. The advantage of user controls is that once you create one,
you can reuse it in multiple pages in the same web application. You can even add your
own properties, events, and methods.

Custom server controls: Custom server controls are compiled classes that programmati-
cally generate their own HTML. Unlike user controls (which are declared like web- form
pages in a plain- text file), server controls are always precompiled into DLL assemblies.
Depending on how you code the server control, you can render the content from scratch,
inherit the appearance and behavior from an existing web control and extend its features,
or build the interface by instantiating and configuring a group of constituent controls.

In this chapter, you’ll explore the first option—user controls. User controls are a great way
to standardize repeated content across all the pages in a website. For example, imagine you
want to provide a consistent way for users to enter address information on several different
pages. To solve this problem, you could create an address user control that combines a group
of text boxes and a few related validators. You could then add this address control to any web
form and program against it as a single object.

User controls are also a good choice when you need to build and reuse site headers, foot-
ers, and navigational aids. (Master pages, which are discussed in Chapter 16, complement
user controls by giving you a way to standardize web- page layout.) In all of these examples,
you could avoid user controls entirely and just copy and paste the code wherever you need
to. However, if you do, you’ll run into serious problems once you need to modify, debug, or
enhance the controls in the future. Because multiple copies of the user interface code will be
scattered throughout your website, you’ll have the unenviable task of tracking down each copy
and repeating your changes. Clearly, user controls provide a more elegant, object- oriented
approach.

CHAPTER 15 USER CONTROLS716

User Control Basics
User control (.ascx) files are similar to ASP.NET web- form (.aspx) files. Like web forms, user con-
trols are composed of a user interface portion with control tags (the .ascx file) and can use inline
script or a .vb code- behind file. User controls can contain just about anything a web page can,
including static HTML content and ASP.NET controls, and they also receive the same events as
the Page object (like Load and PreRender) and expose the same set of intrinsic ASP.NET objects
through properties (such as Application, Session, Request, and Response).

The key differences between user controls and web pages are as follows:

inherit from the System.Web.UI.UserControl class. In fact, the UserControl class and
the Page class both inherit from the same TemplateControl class, which is why they
share so many of the same methods and events.

“that file type is not served” error message to anyone who tries.) Instead, user controls
are embedded inside other web pages.

Creating a Simple User Control
To create a user control in Visual Studio, select Website Add New Item, and choose the Web
User Control template.

The following is the simplest possible user control—one that merely contains static HTML.
This user control represents a header bar.

CHAPTER 15 USER CONTROLS 717

You’ll notice that the Control directive identifies the code- behind class. However, the sim-
ple header control doesn’t require any custom code to work, so you can leave the class empty:

As with ASP.NET web forms, the user control is a partial class, because it’s merged with
a separate portion generated by ASP.NET. That automatically generated portion has the mem-
ber variables for all the controls you add at design time.

Now to test the control, you need to place it on a web form. First, you need to tell the ASP.NET
page that you plan to use that user control with the Register directive, which you can place immedi-
ately after the Page directive, as shown here:

This line identifies the source file that contains the user control using the Src attribute. It
also defines a tag prefix and tag name that will be used to declare a new control on the page.
In the same way that ASP.NET server controls have the <asp: ... > prefix to declare the controls
(for example, <asp:TextBox>), you can use your own tag prefixes to help distinguish the controls
you’ve created. This example uses a tag prefix of apress and a tag named Header.

The full tag is shown in this page:

At a bare minimum, when you add a user control to your page, you should give it a unique
ID and indicate that it runs on the server, like all ASP.NET controls. Figure 15-1 shows the sam-
ple page with the custom header.

CHAPTER 15 USER CONTROLS718

 Figure 15-1. Testing the header user control

In Visual Studio, you don’t need to code the Register directive by hand. Instead, once
you’ve created your user control, simply select the .ascx file in the Solution Explorer and drag
it onto the design area of a web form (not the source view). Visual Studio will automatically
add the Register directive for you as well as an instance of the user control tag.

The header control is the simplest possible user control example, but it can already pro-
vide some realistic benefits. Think about what might happen if you had to manually copy the
header’s HTML code into all your ASP.NET pages, and then you had to change the title, add
a contact link, or something else. You would need to change and upload all the pages again.
With a separate user control, you just update that one file. Best of all, you can use any combi-
nation of HTML, user controls, and server controls on an ASP.NET web form.

Converting a Page to a User Control
Sometimes the easiest way to develop a user control is to put it in a web page first, test it on its
own, and then translate the page to a user control. Even if you don’t follow this approach, you
might still end up with a portion of a user interface that you want to extract from a page and
reuse in multiple places.

Overall, this process is a straightforward cut-and- paste operation. However, you need to
watch for a few points:

so they can’t be added to user controls (which might appear multiple times in a single
page). Also, remove the doctype.

that the Control directive does not support, such as AspCompat, Buffer, ClientTarget,
CodePage, Culture, EnableSessionState, EnableViewStateMac, ErrorPage, LCID,
ResponseEncoding, Trace, TraceMode, and Transaction.

CHAPTER 15 USER CONTROLS 719

the Control directive by supplying the ClassName attribute. This way, the web page that
consumes the control can be strongly typed, which allows it to access properties and
methods you’ve added to the control. If you are using the code- behind model, you need
to change your code- behind class so that it inherits from UserControl rather than Page.

Change the file extension from .aspx to .ascx.

Adding Code to a User Control
The previous user control didn’t include any code. Instead, it simply provided a useful way to
reuse a static block of a web- page user interface. In many cases, you’ll want to add some code
to your user control creation, either to handle events or to add functionality that the client can
access. Just like a web form, you can add this code to the user control class in a <script> block
directly in the .ascx file, or you can use a separate .vb code- behind file.

Handling Events
To get a better idea of how this works, the next example creates a simple TimeDisplay user
control with some event- handling logic. This user control encapsulates a single LinkButton
control. Whenever the link is clicked, the time displayed in the link is updated. The time is also
refreshed when the control first loads.

Here’s the user control markup:

And here’s the corresponding code- behind class:

CHAPTER 15 USER CONTROLS720

Note that the lnkTime_Click event handler calls a method named RefreshTime(). Because
this method is public, the code on the hosting web form can trigger a label refresh program-
matically by calling RefreshTime().

 Figure 15-2 shows the resulting control.

 Figure 15-2. A user control that handles its own events

Note that in this example, the user control receives and handles a Page.Load event. This
event and event handler are completely separate from the Page.Load event that the web form
can respond to (although they are both raised as a consequence of the same thing—a page
being created). This makes it easy for you to add initialization code to a user control.

Adding Properties
Currently, the TimeDisplay user control allows only limited interaction with the page that
hosts it. All you can really do in your web- form code is call RefreshTime() to update the dis-
play. To make a user control more flexible and much more reusable, developers often add
properties.

The next example shows a revised TimeDisplay control that adds a public Format prop-
erty. This property accepts a standard .NET format string, which configures the format of the
displayed date. The RefreshTime() method has been updated to take this information into
account.

CHAPTER 15 USER CONTROLS 721

In the hosting page, you have two choices. For one, you can set the Format property at
some point in your code by manipulating the control object, as shown here:

Your second option is to configure the user control when it’s first initialized by setting the
value in the control tag, as shown here:

In this example, two versions of the TimeDisplay control are created, one with a control
that displays the date in the default format and another one with a custom format applied.
 Figure 15-3 shows the resulting page in the browser.

Tip If you use simple property types such as Integer, DateTime, Double, and so on, you can still set them
with string values when declaring the control on the host page. ASP.NET will automatically convert the string
to the property type defined in the class. Technically, ASP.NET employs a type converter—a special type of
object often used to convert data types to and from string representations, which is described in Chapter 28.

CHAPTER 15 USER CONTROLS722

 Figure 15-3. Two instances of a dynamic user control

When you begin adding properties to a user control, it becomes more important to under-
stand the sequence of events. Essentially, page initialization follows this order:

 1. The page is requested.

 2. The user control is created. If you have any default values for your variables, or if you
perform any initialization in a class constructor, it’s applied now.

 3. If any properties are set in the user control tag, these are applied now.

 4. The Page.Load event in the page executes, potentially initializing the user control.

 5. The Page.Load event in the user control executes, potentially initializing the user
control.

Once you understand this sequence, you’ll realize that you shouldn’t perform user control
initialization in the Page.Load event of the user control that might overwrite the settings speci-
fied by the client.

Using Custom Objects
Many user controls are designed to abstract away the details of common scenarios with
a higher- level control model. For example, if you need to enter address information, you
might group several text box controls into one higher- level AddressInput control. When you’re
modeling this sort of control, you’ll need to use more complex data than individual strings
and numbers. Often, you’ll want to create custom classes designed expressly for communi-
cation between your web page and your user control.

To demonstrate this idea, the next example develops a LinkTable control that renders a set
of hyperlinks in a formatted table. Figure 15-4 shows the LinkTable control.

CHAPTER 15 USER CONTROLS 723

 Figure 15-4. A user control that displays a table of links

To support this control, you need a custom class that defines the information needed for
each link:

CHAPTER 15 USER CONTROLS724

This class could be expanded to include other details, such as an icon that should appear
next to the control. The LinkTable simply uses the same icon for every item.

Next, consider the code- behind class for the LinkTable user control. It defines a Title
property that allows you to set a caption and an Items collection that accepts an array of
LinkTableItem objects, one for each link that you want to display in the table.

The control itself uses data binding to render most of its user interface. Whenever the
Items property is set or changed, a GridView in the LinkTable control is rebound to the item
collection. The GridView contains a single template that, for each link, displays each HyperLink
control, which appears with an exclamation mark icon next to it.

CHAPTER 15 USER CONTROLS 725

Finally, here’s the typical web- page code you would use to define a list of links and display
it by binding it to the LinkTable user control:

Once it’s configured, the web- page code never needs to interact with this control again.
When the user clicks one of the links, the user is just forwarded to the new destination without
needing any additional code. Another approach would be to design the LinkTable so that it
raises a server- side click event. You’ll see that approach in the next section.

CHAPTER 15 USER CONTROLS726

Adding Events
Another way that communication can occur between a user control and a web page is through
events. With methods and properties, the user control reacts to a change made by the web- page
code. With events, the story is reversed—the user control notifies the web page about an action,
and the web- page code responds.

Usually, you’ll delve into events when you create a user control that the user can interact
with. After the user takes a certain action—such as clicking a button or choosing an option from
a list—your user control intercepts a web control event and then raises a new, higher- level event
to notify your web page.

The first version of the LinkTable control is fairly functional, but it doesn’t use events.
Instead, it simply creates the requested links. To demonstrate how events can be used, the
next example revises the LinkTable so that it notifies the user when an item is clicked. Your
web page can then determine what action to take based on which item was clicked.

The first step to implement this design is to define the events. Remember that to define
an event you must use the event keyword with a delegate that represents the signature of the
event. The .NET standard for events specifies that every event should use two parameters. The first
one provides a reference to the control that sent the event, and the second one incorporates
any additional information. This additional information is wrapped into a custom EventArgs
object, which inherits from the System.EventArgs class. (If your event doesn’t require any addi-
tional information, you can just use the generic System.EventArgs class, which doesn’t contain
any additional data. Many events in ASP.NET, such as Page.Load or Button.Click, follow this
pattern.)

In the LinkTable example, it makes sense to transmit basic information about what link was
clicked. To support this design, you can create the following custom EventArgs object, which
adds a read- only property that has the corresponding LinkTableItem object:

CHAPTER 15 USER CONTROLS 727

Notice that the LinkTableEventArgs class defines two new details—a SelectedItem prop-
erty that allows the user to get information about the item that was clicked and a Cancel property
that the user can set to prevent the LinkTable from navigating to the new page. One reason
you might set Cancel is if you want to respond to the event in your web- page code and handle
the redirect yourself. For example, you might want to show the target link in a server- side
<iframe> or use it to set the content for an tag rather than navigating to a new page.

Next, you need to create a new delegate that represents the LinkClicked event signature.
Here’s what it should look like:

You can add the delegate definition anywhere you’d like, but it’s customary to place it at
the namespace level, just before or after the declaration of the class that uses it (in this case,
LinkTableEventArgs).

Using the LinkClickedEventHandler, the LinkTable class defines a single event:

To intercept the server click, you need to replace the HyperLink control with a LinkButton,
because only the LinkButton raises a server- side event. (The HyperLink simply renders as an
anchor that directs the user straight to the target when clicked.) Here’s the new template you
need:

You can then intercept the server- side click event by handling the GridView.RowCommand
event, which fires when a command is triggered by any control in the grid:

Then you can write the event- handling code that passes the event along to the web page
as a LinkClicked event:

CHAPTER 15 USER CONTROLS728

Note that when you raise an event, you must first check to see if the event variable contains
a Nothing reference. If it does, it signifies that no event handlers are registered yet (perhaps the
control hasn’t been created). Trying to fire the event at this point will generate a null reference
exception. If the event variable isn’t null, you can fire the event by using the name and passing
along the appropriate event parameters.

Consuming this event isn’t quite as easy as it is for the standard set of ASP.NET controls.
The problem is that user controls don’t provide much in the way of design- time support.
(Custom controls, which you’ll look at in Chapter 27, do provide design- time support.) As
a result, you can’t use the Properties window to wire up the event handler at design time.
Instead, you need to write the event handler and the code that attaches it yourself.

Here’s an example of an event handler that has the required signature (as defined by the
LinkClickedEventHandler delegate):

You have two options to wire up the event handler. You can do it manually in the Page.
Load event handler using this code:

 Figure 15-5 shows the result when a link is clicked.

CHAPTER 15 USER CONTROLS 729

 Figure 15-5. A user control that fires an event

Exposing the Inner Web Controls
One important detail to remember is that the user control’s constituent controls can be accessed
only by the user control. That means the web page that hosts the user control cannot receive
the events, set the properties, or call the methods of these contained controls. For example,
in the TimeDisplay user control, the web page has no ability to access the LinkButton control
that it uses.

Usually, this behavior is exactly what you want. It means your user control can add pub-
lic properties to expose specific details without giving the web page free reign to tamper with
everything and potentially introduce invalid or inconsistent changes. For example, if you want
to give the web page the ability to tweak the foreground color of the LinkButton control, you
might add a ForeColor property to your user control. Here’s an example:

To change the foreground color in your web- page code, you would now use code like this:

This example maps the lnkTime.ForeColor property to the ForeColor property of the user
control. This trick is usually the best approach, but it can become tedious if you need to expose
a large number of properties. For example, your user control might render a table, and you
might want to let the user configure the formatting of each table cell.

In this case, it might make sense to expose the complete control object. Here’s an example
that exposes the lnkTime control for the TimeDisplay user control:

CHAPTER 15 USER CONTROLS730

Notice that you need to use a read- only property, because it’s not possible for the web
page to replace the control with something different.

Now you can use this code to set the foreground color in the hosting page:

Keep in mind that when you use this practice, you expose all the details of the inner con-
trol. This means the web page can call methods and receive events from that control. This
approach gives unlimited flexibility, but it reduces the reusability of the code. It also increases
the chance that your web page will become tightly coupled to the internal details of the current
implementation of your control, thereby making it less likely that you can revise or enhance the
user control without disrupting the web pages that use it. As a general rule, it’s always better
to create dedicated methods, events, and properties to expose just the functionality you need,
rather than opening a back door that could be used to create messy workarounds.

Dynamically Loading User Controls
So far you’ve seen how you can add user controls to a page by registering the type of user control
and adding the corresponding tag. You can also create user controls dynamically—in other
words, create them on the fly using nothing but a little web- page code.

This technique is similar to the technique you used to add ordinary web controls dynami-
cally (as described in Chapter 3). As with ordinary controls, you should do the following:

Add user controls when the Page.Load event fires (so that your user control can prop-
erly restore its state and receive postback events).

Use container controls and the PlaceHolder control to make sure the user controls end
up exactly where you want.

Give the user control a unique name by setting its ID property. You can use this informa-
tion to retrieve a reference to the control when you need it with the Page.FindControl()
method.

This has one additional wrinkle. You can’t create a user control object directly, like you
can with an ordinary control. That’s because user controls aren’t entirely based on code—they
also require the control tags that are defined in the .ascx file. To use a user control, ASP.NET
needs to process this file and initialize the corresponding child control objects.

To perform this step, you need to call the Page.LoadControl() method. When you call
LoadControl(), you pass the filename of the .ascx user control markup file. LoadControl()
returns a UserControl object, which you can then add to the page and cast to the specific
class type to access control- specific functionality.

CHAPTER 15 USER CONTROLS 731

Here’s an example that loads the TimeDisplay user control dynamically and adds it to the
page using a PlaceHolder control:

Despite this slightly awkward detail, dynamically loading is a powerful technique when
used in conjunction with user controls. It’s commonly used to create highly configurable
portal frameworks.

Portal Frameworks
Although it takes a fair bit of boilerplate code to create a complete portal framework, you can see
the most important principles with a simple example. Consider the page shown in Figure 15-6. It
includes a panel that contains three controls—a DropDownList (with its AutoPostBack property
set to true), a Label, and a PlaceHolder control.

 Figure 15-6. A panel for holding user controls

When the user selects an item from the drop- down list, the page posts back, and the
appropriate user control is loaded dynamically and inserted into the placeholder. Figure 15-7
shows the result.

CHAPTER 15 USER CONTROLS732

 Figure 15-7. A dynamically loaded user control

Here’s the code that loads the selected control:

This example demonstrates a number of interesting features. First, because the PlaceHolder
is stored in a formatted container, the user controls you load automatically acquire the contain-
er’s font, background color, and so on (unless they explicitly define their own fonts and colors).

Best of all, because you’re loading these controls when the Page.Load event fires, the con-
trol objects are able to handle their own events. You can try this by loading the TimeDisplay
user control and then clicking the link to refresh the time.

Note Because the TimeDisplay control isn’t loaded until the page is posted back at least once, it won’t
show the time until you click the link at least once. Instead, it will start with the generic control name text.
You can solve this problem in a number of ways, including calling the RefreshTime() method from your web
page when the control is loaded. An even better approach is to create an interface for all your user controls
that defines certain basic methods, such as InitializeControl(). That way, you can initialize any control generi-
cally. Most portal frameworks use interfaces to provide this type of standardization.

CHAPTER 15 USER CONTROLS 733

It’s not too difficult to extend this example to provide an entire configurable web page.
All you need to do is create more panels and organize them on your web page, possibly using
tables and other panels to group them. (The following example loads user controls into <div>
elements that have the runat="server" attribute set to make them server controls.)

This might seem like a tedious task, but you can actually use it quite effectively by writing
some generic code that deals with all the panels on your page. One option is to create a user con-
trol that loads other user controls. Another approach is to use a custom method in the web- page
class (as shown in the following code) to handle user control loading for three panels.

 Figure 15-8 shows this example in action.
Using this technique to build an entire web portal framework is possible, but it requires sig-

nificant work before it would be practical. Creating this framework is a tedious, time- consuming
task. In Chapter 30 you’ll learn about web parts, a native ASP.NET solution for building web
portals that doesn’t force you to reinvent the wheel. Web parts are based, at least in part, on user
controls.

CHAPTER 15 USER CONTROLS734

 Figure 15-8. A dynamic web page with multiple user controls

Partial Page Caching
In Chapter 11, you learned how you can cache a web page by adding the OutputCache direc-
tive to the .aspx page. This type of caching, called output caching, caches a rendered HTML
version of the page, which ASP.NET can reuse automatically for future requests without exe-
cuting any of your page code.

One of the drawbacks with output caching is that it works on an all-or- nothing basis. It
doesn’t work if you need to render a portion of your page dynamically. For example, you might
want to cache a table that’s filled with records read from a data source so that you can limit
the round- trips to the database server, but you might still need to get fresh output for the rest
of the page. If that’s your situation, user controls can provide exactly what you’re looking for
because they can cache their own output. This feature is called partial caching, or fragment
caching, and it works in almost the same way as output caching. The only difference is that
you add the OutputCache directive to the user control, instead of the page.

To test this feature, add the following line to the .ascx portion of a user control such as the
TimeDisplay:

CHAPTER 15 USER CONTROLS 735

Now in the hosting page you’ll see that the displayed time won’t change for 10 seconds.
Refreshing the page has no effect. The VaryByParam parameter has the same meaning as it did
with web pages—it allows to you to generate and cache fresh HTML output when the param-
eters in the query string portion of the URL change.

Alternatively, you can enable caching by adding the following attribute to the declaration
of your user control class:

There’s one caveat when using fragment caching. When a user control is cached, the user
control essentially becomes a block of static HTML. As a result, the user control object won’t
be available to your web- page code. Instead, ASP.NET instantiates one of two more generic
object types, depending on how the user control was created. If the user control was created
declaratively (by adding a user tag to the web page), a StaticPartialCachingControl object is
added. If the user control was created programmatically (using the LoadControl() method),
a PartialCachingControl object is added. ASP.NET places the object into the logical posi-
tion that a user control would occupy in the page’s control hierarchy if it were not cached.
However, these objects are just placeholders—they won’t allow you to interact with the user
control through its properties or methods. If you aren’t sure if caching is in effect, you should
test for a null reference before you attempt to use the user control object.

VaryByControl
If your user control contains input controls, it’s difficult to use caching. The problem occurs
if the content in the input controls affects the cached content that the user control displays.
With ordinary caching, you’re stuck reusing the same copy of the user control, regardless what
the user types into an input control. (A similar problem exists with web pages, which is why it
seldom makes sense to cache a web page that includes input controls.)

The VaryByControl property solves this problem. VaryByControl takes a semicolon- delimited
string of control names that are used to vary the cached content in much the same way that
VaryByParameter varies the cached content for query string values.

For example, consider the following user control, named VaryingDate:

CHAPTER 15 USER CONTROLS736

When the button is clicked, it displays the current date in one of three formats.

It’s not sufficient to keep one cached copy of this page, because the display format changes
depending on the selection in the lstMode control (see Figure 15-9).

 Figure 15-9. Content that varies by control selection

You can handle this using the VaryByControl attribute in the .ascx file for the user control
and referring specifically to the property of the control that varies:

When you try this example, you’ll see a different date for each option, which emphasizes
that ASP.NET maintains a separate cached copy for each list selection.

CHAPTER 15 USER CONTROLS 737

Sharing Cached Controls
If you use the same user control in ten different pages, ASP.NET will cache ten separate ver-
sions of that control. This gives each page the chance to customize the user control the first
time it’s executed, before the user control is cached. However, in many cases you might find
that you reuse the same user control on multiple pages and you don’t need to introduce
 page- specific customizations. In this case, you can save memory by telling ASP.NET to share
the cached copy of the control.

ASP.NET enables this scenario through the Shared property of the OutputCache directive.
The Shared property works only when you are applying the directive to a user control, not a web
form. Here’s an example:

You can also make the same request by adding the PartialCaching attribute to the class
declaration for the user control:

The Nothing parameters here represent VaryByParam, VaryByControl, and
VaryByCustom.

Summary
In this chapter, you learned how to create some simple and some sophisticated user controls.
You also saw how to load user controls dynamically and how to use fragment caching.

Though user controls are easy to create, they don’t solve every custom control challenge.
In fact, user controls are quite limited in scope (they can’t be easily shared across applications),
and they have limited design- time support (for example, you can’t attach event handlers in
the Properties window). User controls also lack advanced features and aren’t well suited to
rendering HTML and JavaScript on the fly. To improve on this situation, you can step up to cus-
tom controls, which are much more sophisticated and quite a bit more complicated to create.
Chapter 27 describes custom controls.

Note Although server controls are more powerful than user controls, most of the concepts you’ve learned
in this chapter apply to server controls in the same way that they apply to user controls. For example, you
can create server controls that include properties and methods, use custom objects, fire events, and expose
child controls.

739

C H A P T E R 1 6

Themes and Master Pages

Building a professional web application involves much more than designing individual web
pages. You also need the tools to integrate your web pages into a complete, unified website. In
this chapter, you’ll consider two ASP.NET features that let you do that.

First up is a feature called themes, which let you define the formatting details for various
types of controls and seamlessly reuse these formats in multiple pages. Themes make it much
easier to standardize your website’s look and feel and tweak it later. Once a theme is in place,
you can give your entire website a face- lift just by changing the theme definition.

A more impressive innovation is master pages, which let you create reusable page tem-
plates. Using a master page, you can define the layout for your website pages, complete with
all the usual details such as headers, menu bars, and ad banners. Once you’ve formalized
this structure, you can use the master page throughout your website, ensuring that all pages
have the same design. Visitors can then surf from one section to another without noticing any
change.

In this chapter, you’ll learn how to use themes and master pages to standardize your
websites.

Cascading Style Sheets
The first step you can follow to create a seamless, unified website is to adopt a consistent
visual style. In other words, standardize ruthlessly. If you want to tweak the font or border of
a button, make sure you change it for every button you include. Being consistent isn’t always
easy. To help manage the details, you can use CSS or themes.

CSS provides a cross- platform solution for formatting web pages that works in conjunc-
tion with HTML or XHTML and is supported by virtually all modern browsers. In fact, early
versions of Visual Studio automatically generated a Styles.css file for you to use in your web-
site. (Later versions of Visual Studio abandoned this practice in favor of less clutter.)

Tip You can get the technical lowdown on CSS at , or you can visit
 for a thorough tutorial.

CHAPTER 16 THEMES AND MASTER PAGES740

Creating a Stylesheet
With CSS, you use a stylesheet to define a set of formatting presets. You then link this stylesheet
to the appropriate control using the CssClass property. To try it and add an (almost) empty
stylesheet to your web project, choose Website Add New Item in Visual Studio (or Project
Add New Item if you’re using the web project model). Then select Style Sheet, edit the filename,
and click OK.

Stylesheets consist of rules. Each rule defines how a single ingredient in your web page
should be formatted. For example, if you want to define a rule for formatting headings, you
start by defining a rule with a descriptive name, like this:

Each rule name has two parts. The portion before the period indicates the HTML element
to which the rule applies. In this example, nothing appears before the period, which means the
rule can apply to any tag. The portion after the period is a unique name (called the CSS class
name) that you choose to identify your rule. CSS class names are case- sensitive.

Once you’ve defined a rule, you can add the appropriate formatting information. Here’s
an example that sets the heading1 style to use large, bold text with a green foreground color.
The font is set to Verdana (if it’s available), Arial (if it’s not), or the browser’s default sans- serif
typeface (if neither Verdana nor Arial is installed).

You can also create rules that are applied to HTML tags automatically. To do this, specify
the tag name for the rule name. Here’s a rule that affects all <h2> tags on the page that uses the
stylesheet:

Although this automatic stylesheet application sounds useful, it’s less convenient in ASP.NET
because you’re usually dealing with controls, not individual HTML tags. You can’t always be cer-
tain what tags will be used to render a given control, so it’s best to explicitly specify the rule you
want to use through the class name.

Tip If hand- writing CSS rules seems like too much work, don’t worry—Visual Studio allows you to
build a style rule using the same designer you use to format HTML tags. To use this feature, start by adding
your rule declaration. Then, right- click between the two curly braces, and select Build Style. You’ll see the
Modify Style dialog box where you can point and click your way to custom fonts, borders, backgrounds, and
alignment.

CHAPTER 16 THEMES AND MASTER PAGES 741

A typical stylesheet defines a slew of rules. In fact, stylesheets are often used to formally
define the formatting for every significant piece of a website’s user interface. The following
stylesheet serves this purpose by defining four rules. The first rule sets the font for the <body>
element, which ensures that the entire page shares a consistent default font. The rest of the
rules are class- based, and need to be applied explicitly to the elements that use them. Two
rules define size and color formatting for headings, and the final rule configures the formatting
that’s needed to create a bordered, shaded box of text.

Visual Studio includes a CSS Outline window, which shows you an overview of the rules in
your stylesheet. The CSS Outline window appears automatically when you’re editing a stylesheet
and is grouped in a tab with the Solution Explorer.

While you’re editing the stylesheet just shown, you’ll see the outline shown in Figure 16-1.
It clearly indicates that your stylesheet includes one element rule (the one that formats the body)
and three class rules. You can jump immediately to a specific rule by clicking it in the CSS Outline
window.

CHAPTER 16 THEMES AND MASTER PAGES742

 Figure 16-1. Navigating a stylesheet with the CSS Outline window

Rule names are technically known as selectors, because they identify the parts of an HTML
document that should be selected for formatting. You’ve seen how to write selectors that use
element types and selectors that use class names. CSS also supports a few more options for
building advanced selectors that aren’t described in this chapter. For example, you can create
selectors that only apply to a specific element type inside another element (for example, a link
inside a specific <div> container). Or, you can create selectors that apply formatting to indi-
vidual elements that have specific id values. (These appear in the CSS Outline window under
the Element IDs group.) To learn more about CSS, consult a dedicated book such as CSS: The
Definitive Guide, by Eric Meyer.

Applying Stylesheet Rules
To use a rule in a web page, you first need to link the page to the appropriate stylesheet. You
do this by adding a <link> element in the <head> section of your page. The <link> element ref-
erences the file with the styles you want to use. Here’s an example that allows the page to use
styles defined in the file StyleSheet.css, assuming it’s in the same folder as the web page:

Now you can bind any static HTML element or control to your style rules. For example,
if you want an ordinary label to use the heading1 format, set the Label.CssStyle property to
heading1, as shown here:

To apply a style to an ordinary piece of HTML, you set the class attribute. Here’s an exam-
ple that applies a style to a <div> element, which groups together a paragraph of text for easy
formatting:

There’s no reason that you need to attach style sheets and apply styles by hand. You can
also use the support that’s built into Visual Studio. To add the <link> element to a web page,

CHAPTER 16 THEMES AND MASTER PAGES 743

drag your stylesheet from the Solution Explorer and drop it onto the design surface of the page (not
the source view). To apply a style, you can use Visual Studio’s Apply Styles window.

To show the Apply Styles window, open a web page and choose View Apply Styles. The
Apply Styles window appears on the left with the Toolbox and Server Explorer, just like the other
CSS windows you’ve seen so far.

The Apply Styles window shows a list of all the styles that are available in the attached
stylesheets, along with a preview of each one (see Figure 16-2). To apply a style, simply select
an element on your web page and then click the appropriate style in the Apply Styles window.
Visual Studio is intelligent enough to figure out the appropriate way to apply a style based on
what you’ve selected in your web page:

.

on the type of content you’ve selected) and then sets its class attribute.

Tip Click the Options button to tweak the way the Apply Styles window works. For example, you can choose
to preview styles in a different order, or include just those styles that are being used in the current page.

 Figure 16-2. Applying a style with the Apply Styles window

Visual Studio has even more stylesheet assistance for you to explore. Here are a few more
features that can help with the daily drudgery of managing styles:

The Manage Styles window: This window gives you an at-a- glance overview of all the
styles that are in scope in the current web page, in a single list. To show it, open a web
page and choose View Manage Styles. Using this window, you can view the style defini-
tion (hover over a style), edit it (right- click the style and choose Go To Code), or design it
with the style builder (right- click the style and choose Modify Style).

CHAPTER 16 THEMES AND MASTER PAGES744

The Style Sheet toolbar: This toolbar is useful when designing a stylesheet, and provides
buttons for modifying an existing style or adding a new style. To show this toolbar, right- click
the toolbar strip and add a check mark next to Style Sheet.

The CSS Properties window: This window allows you to examine a style in detail and modify
its formatting properties. To use it, choose View CSS Properties. Then, find an element
that has a style, and select it on the design surface of your web page. The CSS Properties win-
dow will show a detailed, sub- grouped list of all the CSS style properties (see Figure 16-3),
which looks similar to the list of web control properties in the Properties window.

Note If more than one style rule applies to the currently selected element, the CSS Properties window
shows a list of all the style rules in order of precedence. You can then select one to view or edit it. Properties
that are set in a parent but don’t apply to the currently selected element (either because they aren’t inherited
or because they’re overridden by another style) are crossed out with a red line.

 Figure 16-3. Modifying a style with the CSS Properties window

CHAPTER 16 THEMES AND MASTER PAGES 745

Using stylesheets accomplishes two things. First, it standardizes your layout so that you
can quickly format pages without introducing minor mistakes or idiosyncrasies. Second, it
separates the formatting information so that it doesn’t appear in your web pages at all, allow-
ing you to modify the format without tracking down each page or recompiling your code. And
although CSS isn’t a .NET- centric standard, Visual Studio still provides rich support for it.

Themes
With the convenience of CSS styles, you might wonder why developers need anything more.
The problem is that CSS rules are limited to a fixed set of style attributes. They allow you to reuse
specific formatting details (fonts, borders, foreground and background colors, and so on), but
they obviously can’t control other aspects of ASP.NET controls. For example, the CheckBoxList
control includes properties that control how it organizes items into rows and columns. Although
these properties affect the visual appearance of the control, they’re outside the scope of CSS,
so you need to set them by hand. Additionally, you might want to define part of the behavior of
the control along with the formatting. For example, you might want to standardize the selection
mode of a Calendar control or the wrapping in a TextBox. This obviously isn’t possible through
CSS.

Themes fill this gap. Like CSS, themes allow you to define a set of style attributes that you
can apply to controls in multiple pages. However, unlike CSS, themes aren’t implemented by
the browser. Instead, they’re a native ASP.NET solution that’s implemented on the server.
Although themes don’t replace styles, they have some features that CSS can’t provide. Here are
the key differences:

Themes are control- based, not HTML- based: As a result, themes allow you to define
and reuse almost any control property. For example, themes allow you to specify a set of
common node pictures and use them in numerous TreeView controls or to define a set
of templates for multiple GridView controls. CSS is limited to style attributes that apply
directly to HTML.

Themes are applied on the server: When a theme is applied to a page, the final styled
page is sent to the user. When a stylesheet is used, the browser receives both the page and
the style information and then combines them on the client side.

Themes can be applied through configuration files: This lets you apply a theme to an
entire folder or your whole website without modifying a single web page.

Themes don’t cascade in the same way as CSS: Essentially, if you specify a property in
a theme and in the individual control, the value in the theme overwrites the property in
the control. However, you have the choice of changing this behavior and giving prece-
dence to the properties in the page, which makes themes behave more like stylesheets.

It would be overstating it to say that themes replace CSS. Instead, themes represent
a higher- level model. To implement your formatting properties, ASP.NET will frequently ren-
der inline style rules. In addition, if you’ve crafted the perfect stylesheet, you can still use it. It’s
up to you whether you want to use one or both solutions. As you’ll see later in this chapter (in
the section “Using CSS in a Theme”), it’s possible to use a stylesheet as part of a theme.

CHAPTER 16 THEMES AND MASTER PAGES746

Theme Folders and Skins
All themes are application- specific. To use a theme in a web application, you need to create
a folder that defines it. You need to place this folder in a folder named App_Themes, which
must be inside the top- level directory for your web application. In other words, a web appli-
cation named SuperCommerce might have a FunkyTheme theme in the SuperCommerce\
App_Themes\FunkyTheme folder.

An application can contain definitions for multiple themes, as long as each theme is in
a separate folder. Only one theme can be active on a given page at a time. In the “Applying
Themes Dynamically” section, you’ll discover how you can dynamically change the active
theme when your page is processing.

To actually make your theme accomplish something, you need to create at least one skin
file in the theme folder. A skin file is a text file with the .skin extension. ASP.NET never serves
skin files directly—instead, they’re used behind the scenes to define a theme.

A skin file is essentially a list of control tags—with a twist. The control tags in a skin file
don’t need to completely define the control. Instead, they need to set only the properties
you want to standardize. For example, if you’re trying to apply a consistent color scheme, you
might be interested in setting properties such as ForeColor and BackColor only. When you add
a control tag for the ListBox control in the skin file, it might look like this:

The runat="server" portion is always required. Everything else is optional. The id attribute
is not allowed in a theme, because it’s required to uniquely identify each control in the actual
web page.

It’s up to you whether you create multiple skin files or place all your control tags in a single
skin file. Both approaches are equivalent, because ASP.NET treats all the skin files in a theme
directory as part of the same theme definition. Often, it makes sense to separate the control
tags for complex controls (such as the data controls) into separate skin files. Figure 16-4 shows
the relationship between themes and skins in more detail.

 Figure 16-4. Themes and skins

CHAPTER 16 THEMES AND MASTER PAGES 747

ASP.NET also supports global themes. These are themes you place in the c:\Inetpub\
wwwroot\aspnet_client\system_web\v2.0.50727\Themes directory (assuming c:\Inetpub\
wwwroot is the web root for the IIS web server, which is the default configuration). However,
it’s recommended that you use local themes, even if you want to create more than one website
that has the same theme. Using local themes makes it easier to deploy your web application,
and it gives you the flexibility of introducing site- specific differences in the future.

If you have a local theme with the same name as a global theme, the local theme takes
precedence, and the global theme is ignored. The themes are not merged together.

Tip ASP.NET doesn’t ship with any predefined themes. That means you’ll need to create your own from
scratch or download sample themes from other websites such as .

Applying a Simple Theme
To add a theme to your project, select Website Add New Item (or Project Add New Item)
and choose Skin File. Visual Studio will warn you that skin files need to be placed in a sub-
folder of the App_Themes folder and will ask you if that’s what you intended. If you choose
Yes, Visual Studio will create a folder with the same name as your theme file. You can then
rename the folder and the file to whatever you’d like to use. Figure 16-5 shows an example
with a theme that contains a single skin file.

Visual Studio doesn’t include any design- time support for creating themes, so it’s up to
you to copy and paste control tags from other web pages. Here’s a sample skin that sets back-
ground and foreground colors for several common controls:

To apply the theme in a web page, you need to set the Theme attribute of the Page direc-
tive to the folder name for your theme. (ASP.NET will automatically scan all the skin files in
that theme.)

 Figure 16-5. A theme in the Solution Explorer

CHAPTER 16 THEMES AND MASTER PAGES748

You can make this change by hand, or you can select the DOCUMENT object in the
Properties window at design time and then set the Theme property (which provides a handy
 drop- down list of all your web application’s themes). Visual Studio will modify the Page direc-
tive accordingly.

When you apply a theme to a page, ASP.NET considers each control on your web page
and checks your skin files to see if they define any properties for that control. If ASP.NET finds
a matching tag in the skin file, the information from the skin file overrides the current proper-
ties of the control.

 Figure 16-6 shows the result of applying the FunkyTheme to a simple page. The first pic-
ture shows the Themes.aspx page in its natural state, with no theme. The second picture shows
the same page with the FunkyTheme applied. All the settings in FunkyTheme are applied to the
controls in Themes.aspx, even if they overwrite values you’ve explicitly set in the page (such as
the background for the list box). However, details that were in the original page but that don’t
conflict with the theme (such as the custom font for the buttons) are left in place.

 Figure 16-6. A simple page before and after applying a theme

Handling Theme Conflicts
As you’ve seen, when properties conflict between your controls and your theme, the theme
wins. However, in some cases you might want to change this behavior so that your controls
can fine- tune a theme by specifically overriding certain details. ASP.NET gives you this option,
but it’s an all-or- nothing setting that applies to all the controls on the entire page.

To make this change, just use the StyleSheetTheme attribute instead of the Theme attribute
in the Page directive. (The StyleSheetTheme setting works more like CSS.) Here’s an example:

Now the custom yellow background of the ListBox takes precedence over the background
color specified by the theme. Figure 16-7 shows the result—and a potential problem. Because
the foreground color has been changed to white, the lettering is now difficult to read. Overlap-
ping formatting specifications can cause glitches such as this, which is why it’s often better to
let your themes take complete control by using the Theme attribute.

CHAPTER 16 THEMES AND MASTER PAGES 749

Note It’s possible to use both the Theme attribute and the StyleSheetTheme attribute at the same time so
that some settings are always applied (those in the Theme) and others are applied only if they aren’t already
specified in the control (those in the StyleSheetTheme). Depending on your point of view (and level of com-
fort with themes and styles), this is either a terribly confusing design or a useful way to make a distinction
between settings you want to enforce (Theme) and settings you want to use as defaults (StyleSheetTheme).

 Figure 16-7. Giving the control tag precedence over the theme

Another option is to configure specific controls so they opt out of the theming process
entirely. To do this, simply set the EnableTheming property of the control on the web page to
false. ASP.NET will still apply the theme to other controls on the page, but it will skip over the
control you’ve configured.

Creating Multiple Skins for the Same Control
Having each control locked into a single format is great for standardization, but it’s probably
not flexible enough for a real- world application. For example, you might have several types
of text boxes that are distinguished based on where they’re used or what type of data they
contain. Labels are even more likely to differ, depending on whether they’re being used for
headings or for body text. Fortunately, ASP.NET allows you to create multiple declarations
for the same control.

Ordinarily, if you create more than one theme for the same control, ASP.NET will give
you a build error stating that you can have only a single default skin for each control. To get
around this problem, you need to create a named skin by supplying a SkinID attribute. Here’s
an example:

CHAPTER 16 THEMES AND MASTER PAGES750

The catch is that named skins aren’t applied automatically like default skins. To use
a named skin, you need to set the SkinID of the control on your web page to match. You can
choose this value from a drop- down list that Visual Studio creates based on all your defined
skin names, or you can type it in by hand:

If you don’t like the opt- in model for themes, you can make all your skins named. That
way, they’ll never be applied unless you set the control’s SkinID.

Note Using named themes is similar to using CSS rules that are based on class name (as shown at the
beginning of this chapter). CSS class rules are applied only if you set the class attribute of the corresponding
HTML tag.

ASP.NET is intelligent enough to catch if you try to use a skin name that doesn’t exist,
in which case you’ll get a build warning. The control will then behave as though you set
EnableTheming to false, which means it will ignore the corresponding default skin.

Tip The SkinID doesn’t need to be unique. It just has to be unique for each control. For example, imag-
ine you want to create an alternate set of skinned controls that use a slightly smaller font. These controls
match your overall theme, but they’re useful on pages that display a large amount of information. In this case,
you can create new Button, TextBox, and Label controls, and give each one the same skin name (such as
Smaller).

Skins with Templates and Images
So far, the theme examples have applied relatively simple properties. However, you can cre-
ate much more detailed control tags in your skin file. Most control properties support themes.
If a property can’t be declared in a theme, you’ll receive a build error when you attempt to
launch your application.

Note Control developers can choose which properties you can set in a skin file by applying the Themeable
attribute to the property declaration. If this attribute isn’t present, the property can’t be set in a theme. You’ll
learn more about custom control attributes in Chapter 28.

CHAPTER 16 THEMES AND MASTER PAGES 751

For example, many controls support styles that specify a range of formatting information.
The data controls are one example, and the Calendar control provides another.

This skin defines the font, colors, and styles of the Calendar. It also sets the selection mode,
the formatting of the month navigation links, and the overall size of the calendar. As a result, all
you need to use this formatted calendar is the following streamlined tag:

 Figure 16-8 shows how this Calendar control would ordinarily look and how it looks when
the page uses the corresponding theme.

Caution When you create skins that specify details such as sizing, be careful. When these settings are
applied to a page, they could cause the layout to change with unintended consequences. If you’re in doubt,
set a SkinID so that the skin is applied only if the control specifically opts in.

 Figure 16-8. An unformatted Calendar on an unthemed and themed page

Another powerful technique is to reuse images by making them part of your theme. For
example, imagine you perfect an image that you want to use for OK buttons throughout your
website and you have another image for all the Cancel buttons. The first step in implementing
this design is to add the images to your theme folder. For the best organization, it makes sense
to create one or more subfolders just for holding images. In Figure 16-9, the images are stored
in a folder named ButtonImages.

CHAPTER 16 THEMES AND MASTER PAGES752

 Figure 16-9. Adding images to a theme

Now you need to create the skins that use these images. In this case, both of these tags
should be named skins. That’s because you’re defining a specific type of standardized but-
ton that should be available to the page when needed. You aren’t defining a default style that
should apply to all buttons.

When you add a reference to an image in a skin file, always make sure the image URL
is relative to the theme folder, not the folder where the page is stored. When this theme is
applied to a control, ASP.NET automatically inserts the Themes\ThemeName portion at the
beginning of the URL.

Now to apply these images, simply create an ImageButton in your web page that refer-
ences the corresponding skin name:

You can use the same technique to create skins for other controls that use images. For
example, you can standardize the node pictures used in a TreeView, the bullet image used for
the BulletList control, or the icons used in a GridView.

Using CSS in a Theme
ASP.NET also gives you the ability to use a stylesheet as part of a theme. You might use this
feature for a few reasons:

CHAPTER 16 THEMES AND MASTER PAGES 753

 elements that might not correspond to server controls.

used to format static HTML pages.

themes to implement the same formatting.

To use a stylesheet in a theme, you first need to add the stylesheet to your theme folder.
ASP.NET searches this folder for all .css files and dynamically binds them to any page that uses
the theme.

This has one catch, however. To bind the page to the stylesheet, ASP.NET needs to be able
to insert a <link> tag in the <head> section of the web page. This is possible only if the <head>
tag has the runat="server" attribute (which is the default in the web pages generated by Visual
Studio).

This turns the <head> element into a server- side control that ASP.NET can modify to
insert the stylesheet links. Once this detail is in place, you simply need to set the Theme attri-
bute of the page to gain access to the stylesheet rules. You can then set the CssClass property
of the controls you want to format, as you saw earlier in the chapter. Any style rules that are
linked directly to HTML tags are applied automatically.

You can use as many stylesheets as you want in a theme. ASP.NET will add multiple <link>
tags, one for each stylesheet in the theme.

Applying Themes Through a Configuration File
Using the Page directive, you can bind a theme to a single page. However, you might decide
that your theme is ready to be rolled out for the entire web application. The cleanest way to
apply this theme is to configure the <pages> element in the web.config file for your applica-
tion, as shown here:

If you want to use the stylesheet behavior so that the theme doesn’t overwrite conflicting
control properties, use the styleSheetTheme attribute instead of the theme attribute:

CHAPTER 16 THEMES AND MASTER PAGES754

Either way, when you specify a theme in the web.config file, the theme you specify will be
applied throughout all the pages in your website, provided these pages don’t have their own
theme settings. If a page specifies the Theme or StyleSheetTheme attribute, the page setting
will take precedence over the web.config setting.

Using this technique, it’s just as easy to apply a theme to part of a web application. For
example, you can create a separate web.config file for each subfolder and use the <pages>
setting to configure different themes.

Tip If you apply themes through a configuration file, you can still disable them for specific pages. Just
include the EnableTheming attribute in the Page directive, and set it to false. No themes will be applied to the
page.

Applying Themes Dynamically
In some cases, themes aren’t used to standardize website appearance but to make that appear-
ance configurable for each user. In this scenario, your web application gives the user the chance
to specify the theme that your pages will use.

This technique is remarkably easy. All you need to do is set the Page.Theme or Page.
StyleSheetTheme property dynamically in your code. The trick is that this step needs to be
completed in the Page.PreInit event stage. After this point, attempting to set the property
causes an exception.

Here’s an example that applies a dynamic theme by reading the theme name from the
current Session collection:

Of course, you could also store the selected theme in a cookie, a session state, a profile
(see Chapter 25), or any other user- specific location.

If you want to create a page that allows the user to choose a theme, you need a little more
sleight of hand. The problem is that the user’s selection can’t be read until after the page has been
loaded and has passed the PreInit stage. However, at this point, it is too late to set the theme. One
way around this problem is to trigger a refresh by redirecting the page back to itself. The most
efficient way to accomplish this is to use Server.Transfer() so that all the processing takes place
on the server. (Response.Redirect() sends a redirect header to the client and so requires an extra
 round- trip.) You’ll see this technique in the next example.

CHAPTER 16 THEMES AND MASTER PAGES 755

Note Other approaches are possible, but the best real- world solution is probably to make users perform
theme selection on a separate web page. You can store the theme selection in a cookie, session state, or
some other type of storage. The chosen theme will then always be available to the Page.PreInit event handler
on other pages.

Here’s the code that presents the list of selections when the page loads and then records
the selection and transfers the page when a button is clicked:

Remember, you still need the event handler for the Page.PreInit event to actually apply
the selected theme to the page. Figure 16-10 shows the result.

 Figure 16-10. Allowing the user to choose a theme

CHAPTER 16 THEMES AND MASTER PAGES756

If you use named skins, you can set the SkinID of a control declaratively when you design
the page, or you can specify it dynamically in your code.

Caution If you use named skins, you’ll need to be careful that every theme uses the same names
and provides tags for the same controls. If a control specifies the SkinID attribute and ASP.NET can’t find
a matching skin for that control in the theme, the control won’t be themed, and it will keep its current
formatting.

Standardizing Website Layout
Standardizing the formatting of your website is only half the battle. You also need to make sure
that common elements, such as your website header and site navigation controls, appear in
the same position on every page.

The challenge is to create a simple, flexible layout that can be replicated throughout your
entire website. You can use three basic approaches:

User controls: User controls allow you to define a “pagelet”—a portion of a web page,
complete with markup and server- side code, that can be reused on as many web forms as
you want. User controls are a great way to standardize a common page element. However,
they can’t solve the layout problem on their own, because there’s no way to ensure that
user controls are placed in the same position on every page. Chapter 15 describes user
controls.

HTML frames: Frames are a basic tool of HTML that allow you to show more than one
page in a browser window at once. The key disadvantage of frames is that each page is
retrieved through a separate request to the server, and as a result the code on each page
must be completely independent. That means a page in one frame can’t communicate
with or influence a page in another frame (at least not through server- side code).

Master pages: Master pages are an ASP.NET feature that’s designed specifically for stan-
dardizing web- page layout. Master pages are web- page templates that can define fixed
content and declare the portion of the web page where you can insert custom content. If
you use the same master page throughout your website, you’re guaranteed to keep the
same layout. Best of all, if you change the master page definition after applying it, all the
web pages that use it acquire the change automatically.

In ASP.NET, master pages are the preferred option for standardizing website layout, and
you’ll see them at work throughout the rest of this chapter. Frames offer a clumsier program-
ming model but are required if you want to fix a portion of your page in place while allowing
scrolling in another section. If you want to learn more about frames, refer to Chapter 32 for the
basics and for several ASP.NET workarounds.

CHAPTER 16 THEMES AND MASTER PAGES 757

Master Page Basics
To provide a practical, flexible solution for page templating, a number of requirements must
be met:

template are then constrained to adding or modifying content in the allowed regions.

a page dynamically at runtime.

Master pages meet all of these requirements. They provide a system for reusing templates,
a way to limit how templates can be modified, and rich design- time support.

For this to work, ASP.NET defines two specialized types of pages: master pages and content
pages. A master page is a page template. Like an ordinary ASP.NET web page, it can contain
any combination of HTML, web controls, and even code. In addition, master pages can include
content placeholders—defined regions that can be modified. Each content page references
a single master page and acquires its layout and content. In addition, the content page can add
 page- specific content in any of the placeholders. In other words, the content page fills in the
missing pieces that the master page doesn’t define.

For example, in a typical website, a master page might include a fixed element such as
a header and a content placeholder for the rest of the page. The content page then acquires
the header for free and supplies additional content.

To take a closer look at how this works, it helps to consider the example presented in the
following sections.

A Simple Master Page
To create a master page in Visual Studio, select Website Add New Item from the menu.
Select Master Page, give it a filename (such as SiteTemplate.master), and click Add.

A master page is similar to an ordinary ASP.NET web form. Like a web form, the master
page can include HTML, web controls, and code (either in an inline script block or in a sepa-
rate file). One difference is that while web forms start with the Page directive, a master page
starts with a Master directive that specifies the same information, as shown here:

CHAPTER 16 THEMES AND MASTER PAGES758

Another difference between master pages and ordinary web forms is that master
pages can use the ContentPlaceHolder control, which isn’t allowed in ordinary pages. The
ContentPlaceHolder is a portion of the page where the content page can insert content.

When you create a new master page in Visual Studio, you start with a blank page that
includes two ContentPlaceHolder controls. One is defined in the <head> section, which gives
content pages the ability to add page metadata, such as search keywords and stylesheet links.
The second, more important ContentPlaceHolder is defined in the <body> section, and repre-
sents the displayed content of the page. It appears on the page as a faintly outlined box. If you
click inside it or hover over it, the name of the ContentPlaceHolder appears in a tooltip (see
 Figure 16-11). To create more sophisticated page layouts, you can add additional markup and
ContentPlaceHolder controls.

The ContentPlaceHolder doesn’t have any remarkable properties. Here’s an example that
creates a master page with a static banner followed by a ContentPlaceHolder and then a footer
(shown in Figure 16-12):

CHAPTER 16 THEMES AND MASTER PAGES 759

 Figure 16-11. A new master page

 Figure 16-12. A master page at design time

Master pages can’t be requested directly. To use a master page, you need to build a linked
content page.

CHAPTER 16 THEMES AND MASTER PAGES760

A Simple Content Page
To use your master page in another web page, you need to add the MasterPageFile attribute to
the Page directive. This attribute indicates the filename of the master page you want to use:

Notice that the MasterPageFile attribute begins with the path ~/ to specify the root web-
site folder. If you just specify the filename, ASP.NET checks a predetermined subfolder (named
MasterPages) for your master page. If you haven’t created this folder or your master page isn’t
there, it checks the root of your web folder next.

Setting the MasterPageFile attribute isn’t enough to transform an ordinary page into
a content page. The problem is that content pages have a single responsibility—to define the
content that will be inserted in one or more ContentPlaceHolder controls (and to write any
code you need for these controls). A content page doesn’t define the page, because the outer
shell is already provided by the master page. As a result, attempting to include elements such
as <html>, <head>, and <body> will fail, because they’re already defined in the master page.

To provide content for a ContentPlaceHolder, you use another specialized control, called
Content. The ContentPlaceHolder control and the Content control have a one-to- one relation-
ship. For each ContentPlaceHolder in the master page, the content page supplies a matching
Content control (unless you don’t want to supply any content at all for that region). ASP.NET
links the Content control to the appropriate ContentPlaceHolder by matching the ID of the
ContentPlaceHolder with the Content.ContentPlaceHolderID property of the corresponding
Content control. If you create a Content control that references a nonexistent ContentPlaceHolder,
you’ll receive an error at runtime.

Tip To make it even easier to create a new content page, let Visual Studio guide you. Just select Website
 Add New Item from the menu. Select Web Form, click the Select Master Page check box, and click OK.

Visual Studio will prompt you to choose a master page file from your current web project. When you take this
step, Visual Studio automatically creates a Content control for every ContentPlaceHolder in the master page.

Thus, to create a complete content page that uses the SiteTemplate master page, you sim-
ply need to fill in the content for the ContentPlaceHolder with the ID ContentPlaceHolder1.
Here’s an example that shows the complete page code:

CHAPTER 16 THEMES AND MASTER PAGES 761

In this example, the Page directive sets the MasterPageFile attribute and the Title attribute.
The Title attribute allows you to specify the title for your content page, thereby overriding the
title that’s set in the master page. This works as long as the master page has the runat="server"
attribute in the <head> tag, which is the default.

As you can see, content pages are refreshingly clean, because they don’t include any of the
details defined in the master page. Even better, this makes it easy to update your website. The
existing content pages will keep working and will fit themselves into the new layout wherever
you specify.

MASTER PAGES AND FORMATTING

Master pages provide a few interesting possibilities for standardizing formatting. For example, you can link
to a stylesheet without using themes by adding a <link> element in the <head> section of the master page.
That way, the stylesheet is automatically applied to all the content pages that use this master page.

You can also use a more fine- grained model and have your master page help you apply different
formatting to different sections of a content page. All you need to do is set the appropriate foreground and
background colors, fonts, and alignment options using container tags in the master page. For example, you
might set these on a table, a table cell, a <div> tag, or a Panel control. The information from the content
page can then flow seamlessly into these containers, acquiring the appropriate style attributes automatically.

 Figure 16-13 shows this sample content page.

 Figure 16-13. A content page at runtime

To get a better understanding of how master pages work under the hood, it’s worth tak-
ing a look at a content page with tracing (add the Trace="true" attribute in the Page directive).
That way you can study the control hierarchy. What you’ll discover is that ASP.NET creates

CHAPTER 16 THEMES AND MASTER PAGES762

the control objects for the master page first, including the ContentPlaceHolder, which acts as
a container. It then adds the controls from the content page into the ContentPlaceHolder.

If you need to dynamically configure your master page or content page, you can react to
the Page.Load event in either class. Sometimes you might use initialization code in both the
master page and the content page. In this situation, it’s important to understand the order
in which the respective events fire. ASP.NET begins by creating the master page controls and
then the child controls for the content page. It then fires the Page.Init event for the master
page and follows it up by firing the Page.Init event for the content page. The same step occurs
with the Page.Load event. Thus, customizations that you perform in the content page (such as
changing the page title) will take precedence over changes you make at the same stage in the
master page, if they conflict.

Default Content
When the master page defines a ContentPlaceHolder, it can also include default content—
content that will be used only if the content page doesn’t supply a corresponding Content
control.

To get this effect, all you need to do is place the appropriate HTML or web controls in the
ContentPlaceHolder tag. (You can do this by hand using the .aspx markup or just by dragging
and dropping controls into the ContentPlaceHolder.)

Here’s an example that adds default content to the banner text from the previous example:

If you create a content page in Visual Studio, you won’t notice any immediate change. That’s
because Visual Studio automatically creates a <Content> tag for each ContentPlaceHolder. When
a content page includes a <Content> tag, it automatically overrides the default content. However,
if you delete the <Content> tag, you’ll see the default content in its place—the new “Master Pages
Website” banner text.

Note Content pages can’t use just a portion of the default content or just edit it slightly. This isn’t possible
because the default content is stored only in the master page, not in the content page. As a result, you need
to decide between using the default content as is or replacing it completely.

Master Pages with Tables and CSS Layout
For the most part, HTML uses a flow- based layout. That means as more content is added, the
page is reorganized and other content is bumped out of the way. This layout can make it diffi-
cult to get the result you want with master pages. For example, if you aren’t careful, you could
craft the perfect layout, only to have the structure distorted by a huge block of information
that’s inserted into a <Content> tag.

To control these problems, most master pages will use either HTML tables or CSS posi-
tioning to control the layout.

CHAPTER 16 THEMES AND MASTER PAGES 763

With tables, the basic principle is to divide all or a portion of the page into columns and
rows. You can then add a ContentPlaceHolder in a single cell, ensuring that the other content
is aligned more or less the way you want. With CSS positioning, the idea is to separate your
content into <div> tags and position these <div> tags by using absolute coordinates or by float-
ing them on one side of the page. You’ll then place the ContentPlaceHolder in the <div> tag.

Tip For some great examples of CSS- based layout, see the sites and
.

The following example shows how you can use master pages to create a traditional web
application with a header, footer, and navigation bar, all of which are defined with tables.
 Figure 16-14 shows how this structure is broken up into a table.

Here’s the markup for the table that contains the ContentPlaceHolder:

 Figure 16-14. A table- based layout

CHAPTER 16 THEMES AND MASTER PAGES764

Tip To get a quick refresher on HTML tables, complete with information about how to specify borders, cell
sizes, alignment, and more, refer to the examples at .

 Figure 16-15 shows the resulting master page and a content page that uses the master
page. Using style rules, dotted lines have been added around all the cells that are fixed (in
other words, cells that don’t have a ContentPlaceHolder control that the content page can use
to insert additional content).

 Figure 16-15. A master page and content page that use a table

To convert this example into something more practical, just replace the static text in
the master page with the actual header, footer, and navigation controls (using the ASP.NET
navigation features discussed in Chapter 17). All the child pages will acquire these features
automatically. This is the first step for defining a practical structure for your entire website.

Many professional web developers prefer to use more modern CSS- based layout tech-
niques. CSS- based layout allows you to write markup that’s easier to read and easier to revise
later on, which makes for fewer long- term headaches.

Fortunately, it’s just as easy to use the ContentPlaceHolder with CSS- based layout as it is
to use it with tables. Instead of placing the ContentPlaceHolder objects in the cells of a table,
you simply place the ContentPlaceHolder objects in different <div> elements. Your stylesheet
then applies the positioning to each <div> using the position, left, right, top, and bottom
attributes.

For example, one common page design is to divide the page into three columns. The col-
umns on either edge of the page are set to a fixed size, while the column in the middle takes
the remaining space. Here’s a simple stylesheet that puts this design into action by creating
a 150-pixel- wide panel on either side of the page:

CHAPTER 16 THEMES AND MASTER PAGES 765

You can now divide your page into columns using the styles, and place a ContentPlaceHolder
in the appropriate region. For example, you might use the left panel for navigation controls, the
right panel for an advertisement, and the middle panel for the content that’s supplied by
the content page:

Remember, in order for this technique to work, the master page must use the stylesheet
you’ve created—in other words, it needs to include the <link> element that attaches the
stylesheet and makes the styles available to your web page markup, as described at the begin-
ning of this chapter in the “Applying Stylesheet Rules” section.

There are a variety of tutorials online about CSS- based layout. You can find a concise set
of examples for common layouts at , and some thought- provoking
examples that demonstrate how the same content can be given an entirely different layout and
appearance with an advanced stylesheet at .

Master Pages and Relative Paths
One quirk that can catch unsuspecting developers is the way that master pages handle rela-
tive paths. If all you’re using is static text, this issue won’t affect you. However, if you’ve added
 tags or any other HTML tag that points to another resource, problems can occur.

The problem shows up if you place the master page in a different directory from the con-
tent page that uses it. This is a recommended best practice for large websites. In fact, Microsoft
encourages you to use a dedicated folder for storing all your master pages. However, if you’re
not suitably careful, this can cause problems when you use relative paths.

For example, imagine you put a master page in a subfolder named MasterPages and add
the following tag to the master page:

CHAPTER 16 THEMES AND MASTER PAGES766

Assuming the file \MasterPages\banner.jpg exists, this appears to work fine. The image
will even appear in the Visual Studio design environment. However, if you create a content
page in another subfolder, the path is interpreted relative to that folder. If the file doesn’t exist
there, you’ll get a broken link instead of your graphic. Even worse, you could conceivably get
the wrong graphic if another image has the same filename.

This problem occurs because the tag is ordinary HTML. As a result, ASP.NET won’t
touch it. Unfortunately, when ASP.NET builds your content page, this tag is no longer appro-
priate. The same problem occurs with <a> tags that provide relative links to other pages, and
with the <link> element, which you can use to connect the master page to a stylesheet.

To solve your problem, you could try to think ahead and write your URL relative to the
content page where you want to use it. But this creates confusion, limits where your master
page can be used, and has the unwelcome side effect of displaying your master page incor-
rectly in the design environment.

Another quick fix is to make your image tag into a server- side control, in which case ASP.NET
will fix the mistake:

This works because ASP.NET uses this information to create an HtmlImage server control.
This object is created after the Page object for the master page is instantiated. At this point,
ASP.NET interprets all the paths relative to the location of the master page. You could use the
same technique to fix <a> tags that provide relative links to other pages.

You can also use the root path syntax and start your URL with the ~ character. For exam-
ple, this tag points unambiguously to the banner.jpg file in the MasterPages subfolder
of the website:

Unfortunately, this syntax works only with server- side controls. If you want a similar effect
with ordinary HTML, you need to change the link to a full relative path incorporating your domain
name. This makes for ugly, unportable HTML, and it’s not recommended.

Applying Master Pages Through a Configuration File
It’s worth noting that you can also apply a master page to all the pages in your website at
once using the web.config file. All you need to do is add the <pages> attribute and set its
masterPageFile attribute, as shown here:

The problem is that this approach tends to be quite inflexible. Any web page you have
that doesn’t play by the rules (for example, that includes a root <html> tag or defines a con-
tent region that doesn’t correspond to a ContentPlaceHolder) will be automatically broken. If
you must use this feature, don’t apply it site- wide. Instead, create a subfolder for your content
pages, and create a web.config file in just that subfolder to apply the master page.

CHAPTER 16 THEMES AND MASTER PAGES 767

Note Even if a master page is applied through the web.config, you have no guarantee that an individual
page won’t override your setting by supplying a MasterPageFile attribute in the Page directive. And if the
MasterPageFile attribute is specified with a blank string, the page won’t have any master page at all, regard-
less of what the web.config file specifies.

Advanced Master Pages
Using what you’ve learned, you can create and reuse master pages across your website.
However, you can use other tricks and techniques to refine the way master pages work. In
the following sections, you’ll see how to interact with a master page from your content, how
to set master pages dynamically, and how to nest one master page inside another.

Interacting with the Master Page Class
One issue with master pages is how their model assumes you either want to copy something
exactly across every page (in which case you include it in the master page) or vary it on each
and every page (in which case you add a ContentPlaceHolder for it and include the informa-
tion in each content page). This distinction works well for many pages, but it runs into trouble
if you want to allow a more nuanced interaction between the master page and content pages.

For example, you might want the master page to give a choice of three display modes. The
content page would then choose the correct display mode, which would change the appear-
ance of the master page. However, the content page shouldn’t have complete freedom to change
the master page indiscriminately. Instead, anything other than these three presets should be
disallowed.

To enable scenarios such as these, you need some level of programmatic interaction between
the content page and the master page. This isn’t too difficult, because you can access the cur-
rent instance of your master page using the Page.Master property.

The first step in allowing interaction between your content page and master page is to add
public properties or methods to your master page class. The content page can then set these
properties or call these methods accordingly. For example, maybe you want to make the ban-
ner text customizable (as shown in a previous example) but you don’t want to let the content
page insert any type of content there. Instead, you want to restrict it to a single descriptive
string. To accomplish this, you can add a server- side label control to the header and provide
access to that control through a BannerText property in the master page class:

CHAPTER 16 THEMES AND MASTER PAGES768

The content page can now change the text. The only caveat is that the Master property
returns an object that’s typed as the generic MasterPage class. You need to cast it to your spe-
cific master page class to get access to any custom members you’ve added.

Another way to get strongly typed access to the master page is to add the MasterType
directive to the content page. All you need to do is indicate the virtual path of the corresponding
.master file:

Now you can use simpler strongly typed code when you access the master page:

You should note one point about these examples: when you navigate from one page to
another, all the web- page objects are re- created. This means that even if you move to another
content page that uses the same master page, ASP.NET creates a different instance of the master
page object. As a result, the Text property of the Label control in the header is reset to its default
value (a blank string) every time the user navigates to a new page. To change this behavior, you
need to store the information in another location (such as a cookie) and write initialization
code in the master page to check for it.

You can also get access to an individual control on a master page through brute force. The
trick is to use the MasterPage.FindControl() method to search for the object you want based
on its unique name. When you have the control, you can then modify it directly. Here’s an
example that uses this technique to look for a label:

Of course, this type of interaction breaks all the rules of proper class- based design and
encapsulation. If you really need to access a control in a master page, you are far better off
wrapping it (or, ideally, just the properties you’re interested in) by adding properties to your
master page class. That way, the interaction between the content page and the master page is
clear, documented, and loosely coupled. If your content page tinkers directly with the inter-
nals of another page, it’s likely to lead to fragile code models with dependencies that break
when you edit the master page.

CHAPTER 16 THEMES AND MASTER PAGES 769

Dynamically Setting a Master Page
Sometimes you might want to change your master page on the fly. This might occur in a cou-
ple of cases:

visible features according to the user. You may perform this customization based on
accessibility considerations, available bandwidth, or user preferences.

itself to have a different look and layout accordingly. For example, you might cobrand
your website, providing the same features with two or more different layouts.

Changing the master page programmatically is easy. All you need to do is set the Page.
MasterPageFile property. The trick is that this step needs to be completed in the Page.Init
event stage. After this point, attempting to set this property causes an exception.

You can implement this technique in much the same way that you implemented dynamic
themes earlier in this chapter. However, this technique has a potential danger—a content page
isn’t necessarily compatible with an arbitrary master page. If your content page includes
a Content tag that doesn’t correspond to a ContentPlaceHolder in the master, an error will
occur. To prevent this problem, you need to ensure that all the master pages you set dynami-
cally include the same placeholders.

Nesting Master Pages
You can nest master pages so that one master page uses another master page. This is not used
too often, but it could allow you to standardize your website to different degrees. For example,
you might have two sections of your website. Each section might warrant its separate navi-
gation controls. However, both sections may need the same header. In this case, you could
create a top- level master page that adds the header. Here’s an example:

CHAPTER 16 THEMES AND MASTER PAGES770

Next, you would create a second master page that uses the first master page (through the
MasterPageFile attribute). This second master page gets the header from the first master page
and adds the navigation controls in a panel on the left. Here’s an example:

Tip You don’t need to add the MasterPageFile attribute to your master page by hand. Instead, you can
use the Select Master Page check box when creating the second master page, just as you can when creating
a new web page.

Presumably, your goal would be to create more than one version of the second master page—
one for each section of your website. These would acquire the same standard header.

Finally, each content page could use one of the second- level master pages to standardize
its layout:

CHAPTER 16 THEMES AND MASTER PAGES 771

 Figure 16-16 shows the result.

 Figure 16-16. A content page that uses a nested master page

You can use as many layers of nested master pages as you want. However, be careful when
implementing this approach—although it sounds like a nifty way to make a modular design, it
can tie you down more than you realize. For example, you’ll need to reword your master page
hierarchy if you decide later that the two website sections need similar but slightly different
headers. For that reason, it might be better to use only one level of master pages and copy the
few common elements. In most cases, you won’t be creating many master pages, so this won’t
add a significant amount of duplication.

Note In previous versions of ASP.NET, Visual Studio didn’t offer design support for nested master pages.
However, this isn’t an issue in Visual Studio 2008, which correctly renders nested master pages.

Summary
In this chapter, you tackled two key enhancements that were first introduced in ASP.NET 2.0—
themes and master pages. Both of these features remain unchanged in ASP.NET 3.5 (although
there are refinements in the way Visual Studio works with them). Armed with these tools, you
can create a complete web application that has a unified look and feel and a consistent layout.

In the next chapter, you’ll learn how to add navigation controls to the mix.

773

C H A P T E R 1 7

Website Navigation

Navigation is a fundamental component of any website. Although it’s easy enough to trans-
fer the user from one page to another, creating a unified system of navigation that works across
an entire website takes more effort. While you could build your own navigation system with
a few links (and a lot of work), ASP.NET has a built- in navigation system that makes it easy.

In this chapter, you’ll tackle three core topics:

The MultiView and Wizard controls: These let you boil down a series of steps into a single
page. With the help of these controls, you can combine several pages of work into one place,
simplifying your navigation needs.

The site map model: This lets you define the navigation structure of your website and
bind it directly to rich controls. You’ll also learn how to extend this framework to support
different types of controls and different site map storage locations.

The rich navigational controls: These include the TreeView and Menu. Although these
controls aren’t limited to navigation, they’re an ideal match. In this chapter, you’ll learn
about their wide range of features.

Using these controls, the site map model, and master pages, you can build a complete
navigation system with minimal effort. Best of all, ASP.NET cleanly separates the data (the
information about the structure of your website) from its implementation (the navigational
controls). That means you can reorganize, replace, and rename web pages without disturb-
ing your website or editing any code. All you need to do is make the corresponding changes
to your application’s site map file.

Pages with Multiple Views
Most websites split tasks across several pages. For example, if you want to add an item to your
shopping cart and take it to the checkout in an e- commerce site, you’ll need to jump from
one page to another. This is the cleanest approach, and it’s easy to program—provided you
use some sort of state management technique (from query strings to session state) to transfer
information from one page to another.

In other situations, you might want to embed the code for several different pages inside
a single page. For example, you might want to provide several views of the same data (such as
a grid- based view and a chart- based view) and allow the user to switch from one view to the

CHAPTER 17 WEBSITE NAVIGATION774

other without leaving the page. Or, you might want to handle a small multistep task (such as
supplying user information for an account sign- up process), without worrying about how to
transfer the relevant information between web pages.

Tip From the user’s point of view, it probably doesn’t make much difference whether you use multiple
pages or a page with multiple views. In a well- designed site, the only difference the user will see is that the
multiple view approach keeps the same URL. The prime difference is the coding model. With multiple pages,
you get improved separation but extra work in determining how the pages should interact (the way they
share or transmit information). With multiple views, you lose your separation but get easier coding for small,
nondivisible tasks.

In ASP.NET 1.x, the only way to model a page with multiple views was to add several Panel
controls to a page so that each panel represents a single view or a single step. You could then
set the Visible property of each Panel so that you see only one at a time. The problem with this
approach is that it clutters your page with extra code for managing the panels. Additionally, it’s
not very robust—with a minor mistake, you can end up with two panels showing at the same
time.

Fortunately, there’s no need to design your own multiple view system from scratch.
Instead, you can use one of two higher- level controls that make these designs much easier—
the MultiView and the Wizard.

The MultiView Control
The MultiView is the simpler of the two multiple view controls. Essentially, the MultiView gives
you a way to declare multiple views and show only one at a time. It has no default user inter-
face—you get only whatever HTML and controls you add. The MultiView is equivalent to the
custom panel approach explained earlier.

Creating a MultiView is suitably straightforward. You add the <asp:MultiView> tag to your
.aspx page file and then add one <asp:View> tag inside it for each separate view.

CHAPTER 17 WEBSITE NAVIGATION 775

Inside the <asp:View> tag, you add the HTML and web controls for that view.

Tip You can also add views programmatically (like any other control) by instantiating a new view object
and adding it to the MultiView with the Add() or AddAt() methods of the Views collection.

Visual Studio shows all your views at design time, one after the other (see Figure 17-1).
You can edit these regions in the same way you design any other part of the page.

CHAPTER 17 WEBSITE NAVIGATION776

 Figure 17-1. Designing multiple views

Note You can get a similar effect to the MultiView using the Accordion control, which is a part of the
ASP.NET AJAX Control Toolkit. The Accordion control allows you to create a group of collapsible panels. The
user clicks a header to expand one of the panels and close all the others. The Accordion has dramatically dif-
ferent underpinnings than the MultiView, and does most of its work on the client. You’ll learn more about the
Accordion in Chapter 32.

The MultiView.ActiveViewIndex determines what view will be shown. This is the only view
that’s rendered in the page. The default ActiveViewIndex value is -1, which means no view
is shown. One option is to use a list control that lets users choose from the full list of views.
Here’s some sample code that binds the list of views to a list box:

CHAPTER 17 WEBSITE NAVIGATION 777

And here’s the code that sets the current view based on the list index:

 Figure 17-2 shows the result.

 Figure 17-2. Switching views with a list control

If you want to give the views more descriptive names, you simply fill the list box by hand.
Just make sure the order matches the order of views.

There’s actually no need to write this code, because the MultiView includes some built- in
smarts. Like some of the rich data controls, the MultiView recognizes specific command
names in button controls. (A button control is any control that implements IButtonControl,
including the Button, ImageButton, and LinkButton.) If you add a button control to the view
that uses one of these recognized command names, the button will have some automatic
functionality. Table 17-1 lists all the recognized command names. Each command name also
has a corresponding static field in the MultiView class, so you can easily get the right com-
mand name if you choose to set it programmatically.

CHAPTER 17 WEBSITE NAVIGATION778

Table 17-1. Recognized Command Names for the MultiView

Command Name MultiView Field Description
PrevView PreviousViewCommandName Moves to the previous view.

NextView NextViewCommandName Moves to the next view.

SwitchViewByID SwitchViewByIDCommandName Moves to the view with a specific ID
(string name). The ID is taken from
the CommandArgument property of
the button control.

SwitchViewByIndex SwitchViewByIndexCommandName Moves to the view with a specific
numeric index. The index is taken
from the CommandArgument prop-
erty of the button control.

To try this, add this button to your first two views (remembering to change the ID for each
one):

and add this button to your second and third views:

Finally, make sure the drop- down list shows the correct view when you use the buttons by
adding this code to handle the MultiView.ActiveViewIndexChanged event:

THE PERFORMANCE OF MULTIVIEW PAGES

The most important detail you need to know about the MultiView is that unlike the rich data controls (the
GridView, FormsView, and so on), the MultiView is not a naming container. This means that if you add
a control named textBox1 to a view, you can’t add another control named textBox1 to another view. In fact,
in terms of the page model, there’s no real difference between controls you add to a view and controls in
the rest of the page. Either way, the controls you create will be accessible through member variables in
your page class. This means it’s easy to configure a control in the second view when an event is raised by
a control in the first view.

As a result, the pages you create using the MultiView tend to be heavier than normal pages. That’s
because the entire control model—including the controls from every view—is created on every postback
and persisted to view state. For the most part, this won’t be a significant factor, unless you are manipulating
a large number of controls programmatically (in which case you might want to turn EnableViewState off for
these controls) or you are using several data sources. For example, if you have three views and each view
has a different data source control, each time the page is posted back all three data source controls will
perform their queries, and every view will be bound, including those that aren’t currently visible. To avoid

CHAPTER 17 WEBSITE NAVIGATION 779

this overhead, you can use the techniques described in Chapter 9, such as leaving your controls unbound
and binding them programmatically, or canceling the binding process for views that aren’t currently visible.

Of course, not all uses of the MultiView need to involve data binding. The perfect scenario for the
MultiView is an extended set of input controls—for example, an online survey form that’s split into separate
views just to spare the user a lot of scrolling. This example works well with the MultiView because at the
end when the survey is complete, you can read all the data from the controls of every view.

Now you can move from view to view using the buttons (see Figure 17-3).

 Figure 17-3. Switching views with recognized command names

The Wizard Control
The Wizard control is a more glamorous version of the MultiView control. It also supports
showing one of several views at a time, but it includes a fair bit of built- in yet customizable
behavior, including navigation buttons, a sidebar with step links, styles, and templates.

Usually, wizards represent a single task, and the user moves linearly through them,
moving from the current step to the one immediately following it (or the one immediately
preceding it in the case of a correction). The ASP.NET Wizard control also supports nonlinear
navigation, which means it allows you to decide to ignore a step based on the information the
user supplies.

By default, the Wizard control supplies navigation buttons and a sidebar with links for
each step on the left. You can hide the sidebar by setting the Wizard.DisplaySideBar property
to false. Usually, you’ll take this step if you want to enforce strict step-by- step navigation and
prevent the user from jumping out of sequence. You supply the content for each step using
any HTML or ASP.NET controls. Figure 17-4 shows the region where you can add content to
an out-of-the- box Wizard instance.

CHAPTER 17 WEBSITE NAVIGATION780

 Figure 17-4. The region for step content

Wizard Steps
To create a wizard in ASP.NET, you simply define the steps and their content using
<asp:WizardStep> tags. Each step takes a few basic pieces of information. The most impor-
tant ones are listed in Table 17-2.

Table 17-2. WizardStep Properties

Property Description
Title The descriptive name of the step. This name is used for the text of the links in the

sidebar.

StepType The type of step, as a value from the WizardStepType enumeration. This value
determines the type of navigation buttons that will be shown for this step. Choices
include Start (shows a Next button), Step (shows Next and Previous buttons), Finish
(shows a Finish and Previous button), Complete (show no buttons and hides the
sidebar, if it’s enabled), and Auto (the step type is inferred from the position in the
collection). The default is Auto, which means that the first step is Start, the last step
is Finish, and all other steps are Step.

AllowReturn Indicates whether the user can return to this step. If false, once the user has passed
this step, the user will not be able to return. The sidebar link for this step will have
no effect, and the Previous button of the following step will either skip this step or
be hidden completely (depending on the AllowReturn value of the preceding steps).

The following wizard contains four steps that, taken together, represent a simple survey.
The StepType adds a Complete step at the end, with a summary. The navigation buttons and
sidebar links are added automatically.

CHAPTER 17 WEBSITE NAVIGATION 781

CHAPTER 17 WEBSITE NAVIGATION782

 Figure 17-5 shows the wizard steps.

 Figure 17-5. A wizard with four steps

Unlike the MultiView control, you can see only one step at a time on the design surface
of your web page in Visual Studio. To choose which step you’re currently designing, select it
from the smart tag, as shown in Figure 17-6. But be warned—every time you do, Visual Studio
changes the Wizard.ActiveStepIndex property to the step you choose. Make sure you set this
back to 0 before you run your application so it starts at the first step.

Note Remember, when you add controls to separate steps on a wizard, they are all instantiated and per-
sisted in view state, regardless of the current step. If you need to slim down a complex wizard, you’ll need to
split it into separate pages, use the Server.Transfer() method to move from one page to the next, and tolerate
a less elegant programming model.

CHAPTER 17 WEBSITE NAVIGATION 783

 Figure 17-6. Designing a step

Wizard Events
You can write the code that underpins your wizard by responding to several events (as listed in
Table 17-3).

Table 17-3. Wizard Events

Event Description
ActiveStepChanged Occurs when the control switches to a new step (either because the user

has clicked a navigation button or your code has changed the ActiveStepIn-
dex property).

CancelButtonClick Occurs when the Cancel button is clicked. The cancel button is not
shown by default, but you can add it to every step by setting the Wizard.
DisplayCancelButton property. Usually, a cancel button exits the wizard.
If you don’t have any cleanup code to perform, just set the CancelDesti-
nationPageUrl property, and the wizard will take care of the redirection
automatically.

FinishButtonClick Occurs when the Finish button is clicked.

NextButtonClick and
PreviousButtonClick

Occurs when the Next or Previous button is clicked on any step. However,
because there is more than one way to move from one step to the next, it’s
better to handle the ActiveStepChanged event.

SideBarButtonClick Occurs when a button in the sidebar area is clicked.

CHAPTER 17 WEBSITE NAVIGATION784

On the whole, two wizard programming models exist:

Commit-as-you-go: This makes sense if each wizard step wraps an atomic operation that
can’t be reversed. For example, if you’re processing an order that involves a credit card
authorization followed by a final purchase, you can’t allow the user to step back and edit
the credit card number. To support this model, you set the AllowReturn property to false
on some or all steps, and you respond to the ActiveStepChanged event to commit changes
for each step.

Commit-at-the-end: This makes sense if each wizard step is collecting information for
an operation that’s performed only at the end. For example, if you’re collecting user
information and plan to generate a new account once you have all the information, you’ll
probably allow a user to make changes midway through the process. You execute your
code for generating the new account when the wizard is finished by reacting to the Fin-
ishButtonClick event.

To implement commit-at-the- end with the current example, just respond to the Finish-
ButtonClick event. Here’s an example that simply displays every selection in the summary:

For this to work, you must add a Label control named lblSummary. In this example,
lblSummary is placed in the final summary step.

Tip If you want to find out the path the user has taken through your wizard, you can use the Wizard.GetH-
istory() method. It returns a collection of WizardStepBase objects that have been accessed so far, arranged
in reverse chronological order. That means the first item in the collection represents the previous step, the
second item represents the step before that, and so on.

CHAPTER 17 WEBSITE NAVIGATION 785

Wizard Styles and Templates
Without a doubt, the Wizard control’s greatest strength is the way it lets you customize its
appearance. This means that if you want the basic model (a multistep process with navigation
buttons and various events), you aren’t locked into the default user interface.

Depending on how radically you want to change the wizard, you have different options.
For less dramatic modifications, you can set various top- level properties. For example, you can
control the colors, fonts, spacing, and border style, as you can with any ASP.NET control. You
can also tweak the appearance of every button. For example, to change the Next button, you
can use the following properties: StepNextButtonType (use a button, link, or clickable image),
StepNextButtonText (customize the text for a button or link), StepNextButtonImageUrl (set
the image for an image button), and StepNextButtonStyle (use a style from a stylesheet). You
can also add a header using the HeaderText property.

More control is available through styles. You can use styles to apply formatting options
to various portions of the Wizard control just as you can use styles to format different parts of
rich data controls such as the GridView. Table 17-4 lists all the styles you can use. As with other
 style- based controls, more specific style settings (such as SideBarStyle) override more general
style settings (such as ControlStyle) when they conflict. Similarly, StartNextButtonStyle over-
rides NavigationButtonStyle on the first step.

Table 17-4. Wizard Styles

Style Description
ControlStyle Applies to all sections of the Wizard control

HeaderStyle Applies to the header section of the Wizard control, which is visible
only if you set some text in the HeaderText property

SideBarStyle Applies to the sidebar area of the Wizard control

SideBarButtonStyle Applies to just the buttons in the sidebar

StepStyle Applies to the section of the control where you define the step content

NavigationStyle Applies to the bottom area of the control where the navigation buttons
are displayed

NavigationButtonStyle Applies to just the navigation buttons in the navigation area

StartNextButtonStyle Applies to the next navigation button on the first step (when StepType
is Start)

StepNextButtonStyle Applies to the next navigation button on intermediate steps (when
StepType is Step)

StepPreviousButtonStyle Applies to the previous navigation button on intermediate steps
(when StepType is Step)

FinishPreviousButtonStyle Applies to the previous navigation button on the last step (when Step-
Type is Finish)

CancelButtonStyle Applies to the cancel button, if you have Wizard.DisplayCancelButton
set to true

Finally, if you can’t get the level of customization you want through properties and styles,
you can use templates to completely define the appearance of the Wizard control. Ordinarily,
you can supply the markup only for the step content (as shown in Figure 17-1). With tem-
plates, you supply the markup for one of the other regions, such as the header, sidebar, or

CHAPTER 17 WEBSITE NAVIGATION786

buttons. All templates are declared separately from the step content. Figure 17-7 shows where
templates fit in.

 Figure 17-7. Template regions in the Wizard control

Table 17-5 shows the full list of templates.

Table 17-5. Wizard Templates

Style Description
HeaderTemplate Defines the content of the header region

SideBarTemplate Defines the sidebar, which typically includes navigation links for each
step

StartNavigationTemplate Defines the navigation buttons for the first step (when StepType is
Start)

StepNavigationTemplate Defines the navigation buttons for intermediate steps (when Step-
Type is Step)

FinishNavigationTemplate Defines the navigation buttons for the final step (when StepType is
Finish)

For example, here’s a header template that uses a data binding expression to show the
title of the current step:

CHAPTER 17 WEBSITE NAVIGATION 787

You can also add the following templates to customize the navigation buttons. This exam-
ple keeps the standard buttons (by declaring them explicitly) and adds a piece of italicized text
so you can see when each template is being used.

The secret to using templates is making sure you use the right command names so that
the Wizard control will hook up the standard logic. Otherwise, you’ll need to implement the
navigation and sequencing code, which is tedious and error- prone. For example, clicking on
a button with a command name of MoveNext automatically moves to the next step. If you are
unsure about the correct command name to use, you can use a convenient shortcut. Select the
Wizard control in Visual Studio, and choose one of the template generation links in the smart
tag, such as Convert to StartNavigationTemplate. When you do, Visual Studio inserts a tem-
plate that duplicates the default button appearance and behavior.

CHAPTER 17 WEBSITE NAVIGATION788

Note You can use the validation controls in a Wizard without any problem. If the validation controls detect
invalid data, they will prevent the user from clicking any of the sidebar links (to jump to another step) and
they will prevent the user from continuing by clicking the Next button. However, by default the Previous
button has its CausesValidation property set to false, which means the user will be allowed to step back to
the previous step. If this isn’t the behavior you want, you can create your own custom template and set the
CausesValidation property of your controls accordingly.

Site Maps
If your website has more than a handful of pages, you’ll probably need some sort of navigation
system to let the user move from one page to the next. As you saw in Chapter 16, you can use
master pages to define a template for your site that includes a navigation bar. However, it’s
still up to you to fill this navigation bar with content.

Obviously, you can use the ASP.NET toolkit of controls to implement almost any navi-
gation system, but it still requires you to perform all the hard work. Fortunately, ASP.NET
includes a set of navigation features that you can use to dramatically simplify the task.

As with all the best ASP.NET features, ASP.NET navigation is flexible, configurable, and
pluggable. It consists of three components:

 site
map, which is (by default) stored in a file.

-
able object model. This part is performed by the SiteMapDataSource control and the

.

the user the ability to easily move from one place to another. This part is provided
through the controls you bind to the SiteMapDataSource control, which can include
breadcrumb links, lists, menus, and trees.

You can customize or extend each of these ingredients separately. For example, if you
want to change the appearance of your navigation controls, you simply need to bind different
controls to the SiteMapDataSource. On the other hand, if you want to read a different format
of site map information or read it from a different location, you need to change your site map
provider.

 Figure 17-8 shows how these pieces fit together.

CHAPTER 17 WEBSITE NAVIGATION 789

 Figure 17-8. ASP.NET navigation with site maps

Defining a Site Map
The starting point in site map–based navigation is the site map provider. ASP.NET ships with

, which is able to retrieve site map
 file. If you want to retrieve a site map from another location or in

a custom format, you’ll need to create your own site map provider—a topic covered in the
 section “Creating a Custom SiteMapProvider.”

 looks for a file named Web.sitemap in the root of the virtual
directory. Like all site map providers, its task is to extract the site map data and create the
corresponding SiteMap object. This SiteMap object is then made available to other controls
through the SiteMapDataSource.

To try this, you need to begin by creating a Web.sitemap file and defining the website
structure using the <siteMap> and <siteMapNode> elements. To add a site map using Visual
Studio, choose Website Add New Item (or Project Add New Item in a web project), choose
the Site Map template, and then click Add.

Here’s the bare- bones structure that the site map file uses:

CHAPTER 17 WEBSITE NAVIGATION790

To be valid, your site map must begin with the root <siteMap> node, followed by a
single <siteMapNode> element, representing the default home page. You can nest other
 <siteMapNode> elements in the root <siteMapNode> as many layers deep as you want. Each
site map node should have a title, description, and URL, as shown here:

In this example, the URL uses the ~/ relative path syntax, which indicates the root of the
web application. This style isn’t necessary, but it is strongly recommended, as it ensures that
your site map links are interpreted correctly regardless of the current folder.

You can now use the <siteMapNode> to create a site map. The only other restriction is
that you can’t create two site map nodes with the same URL.

Note The restriction to avoid duplicate URLs is not baked into the navigation system. It’s simply required
by the XmlSiteMapProvider, because the XmlSiteMapProvider uses the URL as a unique key. If you create
your own site map provider or use a third- party provider, you may allow duplicate URLs and require sepa-
rate key information. However, you can’t get around the rule that every site must begin with one root node,
because that’s implemented in the base SiteMapProvider class. (As you’ll see shortly, you still have options
for tailoring the display of the site map tree, but you must start with a single home node.)

Here’s a sample site map:

CHAPTER 17 WEBSITE NAVIGATION 791

Tip In this example, all the nodes have URLs, which means they are clickable (and take the user to spe-
cific pages). However, if you simply want to use these nodes as categories to arrange other links, just omit
the url attribute. You’ll still see the node in your bound controls; it just won’t be rendered as a link.

Binding to a Site Map
Once you’ve defined the Web.sitemap file, you’re ready to use it in a page. This is a great place
to use master pages so that you can define the navigation controls as part of a template and
reuse them with every page. Here’s how you might define a basic structure in your master
page that puts navigation controls on the left and creates the SiteMapDataSource that pro-
vides navigational information to other controls:

Then you can create a child page with some simple static content:

The only remaining task is to choose the controls you want to use to display the site map
data. One all- purpose solution is the TreeView control. You can add the TreeView and bind it
to the SiteMapDataSource in the master page using the DataSourceID, as shown here:

Alternatively, you could use the fly- out Menu control just as easily:

CHAPTER 17 WEBSITE NAVIGATION792

 Figure 17-9 shows both options.
You can do a lot more to customize the appearance of your navigation controls and the

processing of your site map. You’ll consider these more advanced topics in the following
sections.

 Figure 17-9. TreeView and Menu navigation

Breadcrumbs
ASP.NET actually defines three navigation controls: the TreeView, Menu, and SiteMapPath.
The SiteMapPath provides breadcrumb navigation, which means it shows the user’s current
location and allows the user to navigate back up the hierarchy to a higher level using links.
 Figure 17-10 shows an example with a SiteMapPath control when the user is on the Software.
aspx page. Using the SiteMapPath control, the user can return to the Products.aspx page or the
Home.aspx page.

CHAPTER 17 WEBSITE NAVIGATION 793

 Figure 17-10. Breadcrumb navigation with SiteMapPath

The SiteMapPath has a subtle but important difference from other navigational con-
trols such as the TreeView and Menu. Unlike these controls, the SiteMapPath works directly
with the ASP.NET navigation model—in other words, it doesn’t need to get its data through
the SiteMapDataSource. As a result, you can use the SiteMapPath on pages that don’t have
a SiteMapDataSource, and changing the properties of the SiteMapDataSource won’t affect
the SiteMapPath.

Here’s how you define the SiteMapPath control:

Typically, you’ll place the SiteMapPath on your master page so it can be displayed on all
your content pages.

The SiteMapPath control is useful both for an at-a- glance view that provides the current
position and for a way to move up the hierarchy. However, you always need to combine it with
other navigation controls that let the user move down the site map hierarchy.

The SiteMapPath control is also thoroughly customizable. Table 17-6 lists some of its most
commonly configured properties.

Table 17-6. SiteMapPath Appearance- Related Properties

Property Description
ShowToolTips Set this to false if you don’t want the description text to appear when

the user hovers over a part of the site map path.

ParentLevelsDisplayed Sets the maximum number of parent levels that will be shown at
once. By default, this setting is -1, which means all levels will be
shown.

RenderCurrentNodeAsLink If true, the portion of the page that indicates the current page is
turned into a clickable link. By default, this is false because the user
is already at the current page.

PathDirection You have two choices: RootToCurrent (the default) and CurrentTo-
Root (which reverses the order of levels in the path).

PathSeparator Indicates the characters that will be placed between each level in the
path. The default is the greater- than (>) symbol. Another common
path separator is the colon (:).

CHAPTER 17 WEBSITE NAVIGATION794

For even more control, you can configure the SiteMapPath control with styles or even
redefine the controls and HTML with templates (see Table 17-7).

Table 17-7. SiteMapPath Styles and Templates

Style Template Applies To
NodeStyle NodeTemplate All parts of the path except the root and current

node.

CurrentNodeStyle CurrentNodeTemplate The node representing the current page.

RootNodeStyle RootNodeTemplate The node representing the root. If the root node
is the same as the current node, the current node
template or styles are used.

PathSeparatorStyle PathSeparatorTemplate The separator between each node.

For example, the following SiteMapPath uses an arrow image as a separator and a fixed
string of bold text for the root node. The final part of the path, which represents the current
page, is italicized.

Notice how the CurrentNodeTemplate uses a data binding expression to bind to the title
property of the current node. You can also get the url and description attributes that you declared
in the site map file in the same way.

Showing a Portion of the Site Map
In the examples so far, the page controls replicate the structure of the site map file exactly.
However, this isn’t always what you want. For example, showing a large site map might dis-
tract the user from the portion of the website they’re currently exploring. Or, the site map
might have so many levels that the entire tree doesn’t fit neatly into your web page.

In this situation, you can choose to cut down on the total amount of information and
show just a portion of your site map. The following sections explain the different techniques
you can use.

CHAPTER 17 WEBSITE NAVIGATION 795

Skipping the Root Node
Ordinarily, the site map tree begins with the single root node from the site map. Often, this
isn’t what you want. It adds an extra layer of nesting to your site map structure, making it take
more room), and introduces a top- level link that might not be very useful.

In the previous example (Figure 17-10), you may not like the way the Home node sticks
out. To clean this up, you can set the SiteMapDataSource.ShowStartingNode property to false.
If you still want to show the Home entry, modify the site map file so it defines the Home node
in the first group of pages (just before Products). The real root node won’t be shown, so it
doesn’t need any URL.

Here’s the revised site map:

 Figure 17-11 shows the nicer result.

 Figure 17-11. A site map without the root node

Starting from the Current Node
The previous example shows how you can skip the root node. Another option you have is to
show just a portion of the complete site map, starting from the current node. For example, you
might use a control such as the TreeView to show everything in the hierarchy starting from
the current node. If the user wants to move up a level, they could use another control (such as
a SiteMapPath).

CHAPTER 17 WEBSITE NAVIGATION796

To implement this design, simply set the SiteMapDataSource.StartFromCurrentNode
property to true. The SiteMapPath will still show the complete hierarchy, because it doesn’t
use the SiteMapDataSource. (Thus, the user can click a link in the SiteMapPath to move up to
a higher- level page.) However, bound navigational controls such as the TreeView will show
only the pages beneath the current page, allowing the user to move down the hierarchy.

You still have the choice of whether to use ShowStartingNode, but now it determines
whether you show the current node, because that’s the starting point for the navigation tree.
 Figure 17-12 shows an example where both StartFromCurrentNode and ShowStartingNode
are true. The current page is Products.aspx. The SiteMapPath shows higher- level pages, and
the TreeView shows the nodes underneath the Products.aspx node (Hardware.aspx and
Software.aspx).

 Figure 17-12. Binding to child nodes only

For this technique to work, ASP.NET must be able to find a page in the Web.sitemap file
that matches the current URL. Otherwise, it won’t know where the current position is, and it
won’t provide any navigation information to the bound controls.

Starting from a Specific Node
The SiteMapDataSource has two more properties that can help you configure the navigation
tree: StartingNodeOffset and StartingNodeUrl.

StartingNodeUrl is the easiest to understand—it takes the URL of the node that should
be the first node in the tree. This value must match the url attribute of the node in the Web.
sitemap file exactly. For example, if you specify a StartingNodeUrl of "~/home.aspx", then the
first node in the tree is the Home node, and you will see only nodes underneath that node.

The StartingNodeUrl property is particularly useful if you want to vary between a small
number of different site maps (say, fewer than ten). The ideal solution is to define multiple site
map files and bind to the one you want to use. Unfortunately, the
supports only a single site map file, so you need to find a different mechanism. In this case, the
solution is to separate the different site maps into distinct branches of the Web.sitemap file.

For example, imagine you want to have a dealer section and an employee section on your
website. You might split this into two different structures and define them both under differ-
ent branches in the same file, like this:

CHAPTER 17 WEBSITE NAVIGATION 797

Now, to bind the menu to the dealer view, you set the StartingNodeUrl property to "~/
default.aspx". You can do this programmatically or, more likely, by creating an entirely differ-
ent master page and implementing it in all your dealer pages. In your employee pages, you set
the StartingNodeUrl property to "~/default_emp.aspx". This way, you’ll show only the pages
under the Employee Home branch of the site map.

You can even make your life easier by breaking a single site map into separate files using
the siteMapFile attribute, like this:

Even with this technique, you’re still limited to a single site map tree, and it always starts
with the Web.sitemap file. However, you can manage your site map more easily because you
can factor some of its content into separate files. (You can also use security trimming, which
is discussed later in the “Security Trimming” section, to create user- specific, personalized site
maps.)

Note This technique is greatly limited because the XmlSiteMapProvider doesn’t allow duplicate URLs.
That means there’s no way to reuse the same page in more than one branch of a site map. Although you can
try to work around this problem by creating different URLs that are equivalent (for example, by adding extra
query string parameters on the end), this raises more headaches. If these limitations won’t work in your sce-
nario, the best approach is to design your own site map provider.

The SiteMapDataSource.StartingNodeOffset property takes the most getting used to. It
takes an integer that instructs the SiteMapDataSource to move that many levels down the tree
(if the number is positive) or up the tree (if the number is negative). The important detail that’s
often misunderstood is that when the SiteMapDataSource moves down the tree, it moves
toward the current node. If it’s already at the current node, or your offset takes it beyond the
current node, the SiteMapDataSource won’t know where to go, and you’ll end up with a blank
navigation control.

CHAPTER 17 WEBSITE NAVIGATION798

To understand how this works, it helps to consider an example. Imagine you’re at this
location in a website:

If the SiteMapDataSource is starting at the Home node (the default), and you apply
a StartingNodeOffset of 2, it will move down the tree two levels and bind the tree from that
node down. In this example, that node is Software:

That means you’ll be able to jump to any links in the Software or Custom groups, but
you won’t be able to go anywhere else (at least not without stepping up a level first or clicking
another control).

If you attempt to move down too many levels—for example, if the user is on a second-
 level page and you supply a StartingNodeOffset of 3—the SiteMapDataSource will run out of
levels and your bound controls will be left blank.

Another useful technique is to move up from the current node. For example, if you set
StartFromCurrentNode to true and use a StartingNodeOffset of -3, the SiteMapDataSource
will move up three levels from the current page (Contact Us) and bind to this tree:

This technique is a bit more useful, because it ensures that your navigational controls will
always show the same number of levels. If you attempt to step up past the root node, you’ll
simply see as many levels as possible. For example, if you specify a StartingNodeOffset of -3
and the user is currently at a second- level page (such as Software), you’ll bind to this tree:

It may take a bit of experimenting to decide the right combination of SiteMapDataSource
settings that you want to use.

Note StartingNodeOffset and StartFromCurrentNode are specialized properties that many websites never
use. However, they can be useful if you have a deeply nested, complex site map tree. In this case, you can
use these properties to cut down the number of levels that are shown at once. This makes the navigation links
easier to read and understand (or at least more compact, so they don’t waste valuable web page space).
To get a similar effect with the SiteMapPath (which doesn’t use the SiteMapDataSource), you can set the
SiteMapPath.ParentLevelsDisplayed property.

The Site Map Objects
You aren’t limited to no- code data binding in order to display navigation hierarchies. You can
interact with the navigation information programmatically. Two reasons exist for using pro-
grammatic navigation:

CHAPTER 17 WEBSITE NAVIGATION 799

To change the display of the page: For example, you can retrieve the current node infor-
mation and use that to configure details such as the page heading and title.

To implement different navigation logic: For example, you might want to display just
a portion of the full list of child nodes for the current page in a newsreader, or you might
want to create previous/next navigation buttons.

The site map API is remarkably straightforward. To use it, you need to work with two
classes from the System.Web namespace. The starting point is the SiteMap class, which pro-
vides the static properties CurrentNode (the site map node representing the current page) and
RootNode (the root site map node). Both of these properties return a SiteMapNode object.
Using the SiteMapNode, you can retrieve information from the site map, including the title,
description, and URL values. You can branch out to consider related nodes using the naviga-
tional properties in Table 17-8.

Note You can also search for nodes using the methods of the current SiteMapProvider object, which is
available through the SiteMap.Provider static property. For example, the SiteMap.Provider.FindSiteMapNode()
method allows you to search for a node by its URL.

Table 17-8. SiteMapNode Navigational Properties

Property Description
ParentNode Returns the node one level up in the navigation hierarchy, which contains the

current node. On the root node, this returns a Nothing reference.

ChildNodes Provides a collection of all the child nodes. Check the HasChildNodes property
to determine if there are child nodes.

PreviousSibling Returns the previous node that’s at the same level (or a Nothing reference if no
such node exists).

NextSibling Returns the next node that’s at the same level (or a Nothing reference if no such
node exists).

To see this in action, consider the following code, which configures two labels on a page
to show the heading and description information retrieved from the current node:

The next example is a little more ambitious. It provides a Next button, which allows the
user to traverse an entire set of subnodes. The code checks for the existence of sibling nodes,
and if there aren’t any in the required position, it simply hides the link.

CHAPTER 17 WEBSITE NAVIGATION800

Adding Custom Site Map Information
In the site maps you’ve seen so far, the only information that’s provided for a node is the title,
description, and URL. This is the bare minimum of information that you’ll want to use. However,

 site map is open, which means you’re free to insert custom attributes
with your own data.

You might want to insert additional node data for a number of reasons. This additional
information might be descriptive information that you intend to display or contextual infor-
mation that describes how the link should work. For example, you could add attributes that
specify a target frame or indicate that a link should be opened in a pop- up window. The only
catch is that it’s up to you to act on the information later. In other words, you need to config-
ure your user interface so it uses this extra information.

For example, the following code shows a site map that uses a target attribute to indicate
the frame where the link should be opened. This technique is useful if you’re using frames-
 based navigation (rather than a master page), as described in Chapter 31. In this example,
one link is set with a target of _blank so it will open in a new (pop- up) browser window.

Now in your code, you have several options. If you’re using a template in your navigation
control, you can bind directly to the new attribute you’ve added. If your navigation control
doesn’t support templates (or you don’t want to create one), you’ll need to find another
approach. Both the TreeView and Menu classes expose an event that fires when an individual
item is bound (TreeNodeDataBound and MenuItemDataBound). You can then customize the
current item. To apply the new target, you use this code:

Notice that you can’t retrieve the custom attribute from a strongly typed property.
Instead, you retrieve it by name using the SiteMapNode indexer.

CHAPTER 17 WEBSITE NAVIGATION 801

Creating a Custom SiteMapProvider
To really change how the ASP.NET navigation model works, you need to create your own site
map provider. You might choose to create a custom site map provider for several reasons:

database).

 format
expected by ASP.NET. This is most likely if you have an existing system in place for
storing site maps.

might want to generate a different site map based on the current user, the query string
parameters, and so on.

 implementation.
For example, maybe you want the ability to have nodes with duplicate URLs.

You have two choices when implementing a custom site map provider. All site map pro-
viders derive from the abstract base class SiteMapProvider in the System.Web namespace. You
can derive from this class to implement a new provider from scratch. However, if you want to
keep the same logic but use a different data store, just derive from the StaticSiteMapProvider
class instead. It gives you a basic implementation of many methods, including the logic for
node storing and searching.

In the following sections, you’ll see a custom provider that lets you store site map infor-
mation in a database.

Storing Site Map Information in a Database
In this example, all navigation links are stored in a single database table. Because databases
don’t lend themselves easily to hierarchical data, you need to be a little crafty. In this example,
each navigation link is linked to a parent link in the same table, except for the root node. This
means that although the navigational links are flattened into one table, you can re- create the
right structure by starting with the home page and then searching for the subset of rows at
each level.

 Figure 17-13 shows the SiteMap table with some sample data that roughly duplicates the
site map you saw earlier in this chapter.

 Figure 17-13. The SiteMap table

CHAPTER 17 WEBSITE NAVIGATION802

In this solution, the site map provider won’t access the table directly. Instead, it will use
a stored procedure. This gives some added flexibility and potentially allows you to store your
navigation information with a different schema, as long as you return a table with the expected
column names from your stored procedure.

Here’s the stored procedure used in this example:

Creating the Site Map Provider
Because this site map provider doesn’t change the underlying logic of site map navigation, you
can derive from StaticSiteMapProvider instead of deriving from SiteMapProvider and reimple-
menting all the tracking and navigation behavior (which is a much more tedious task).

Here’s the class declaration for the provider:

The first step is to override the Initialize() method to get all the sitemap- related information
you need from the web.config file. The Initialize() method gives you access to the configuration
element in the web.config that defines the site map provider.

In this example, your provider needs three pieces of information:

(as described in Chapter 7). In other words, you can support SQL Server, Oracle, or
another database equally easily, as long as there’s a .NET provider factory installed.

You can configure your web application to use the custom provider (SqlSiteMapProvider)
and supply the required three pieces of information using the <siteMap> section of the web.
config file:

CHAPTER 17 WEBSITE NAVIGATION 803

Now in your provider you simply need to retrieve these three pieces of information and
store them for later. Here’s the code you need to add to the SqlSiteMapProvider class:

The real work that the provider does is in the BuildSiteMap() method, which constructs
the SiteMapNode objects that make up the navigation tree. In the lifetime of an application,
you’ll typically construct the SiteMapNode once and reuse it multiple times. To make that
possible, the provider needs to store the site map in memory, so add the following field to the
SqlSiteMapProvider class:

CHAPTER 17 WEBSITE NAVIGATION804

The root SiteMapNode contains the first level of nodes, which then contain the next level
of nodes, and so on. Thus, the root node is the starting point for the whole navigation tree.

You override the BuildSiteMap() method to actually create the site map. The first step is
to check if the site map has already been generated and then create it. Because multiple pages
could share the same instance of the site map provider, it’s a good idea to lock the object
before you update any shared information (such as the in- memory navigation tree).

Next, you need to create the database provider and use it to call the stored procedure that
gets the navigation history. The navigation history is stored in a DataSet (a DataReader won’t
work because you need back-and- forth navigation to traverse the structure of the site map).

Here’s the code you need (which assumes you’ve imported the System.Data and System.
Data.Common namespace):

The next step is to navigate the DataTable to create the SiteMapNode objects, beginning
with the root node. You can find the root node by searching for the node with no parent (where
ParentID is null). In this example, no attempt is made to check for all the possible error condi-
tions (such as duplicate root nodes).

CHAPTER 17 WEBSITE NAVIGATION 805

Now to create a SiteMapNode, you need to supply the key, URL, title, and description.
In the default implementation of a site map provider, the key and URL are the same, which
makes searching by URL easier. The custom SqlSiteMapProvider also uses this convention.

Now it’s time to fill in the rest of the hierarchy. This is a step that needs to be performed
recursively so that you can drill down through a hierarchy that’s an unlimited number of levels
deep. To make this work, the SqlSiteMapProvider uses a private AddChildren method, which
fills in one level at a time. Once this process is complete, the root node that provides access to
the full site map is returned.

The AddChildren() method simply searches the DataTable for records where the ParentID
is the same as the current ID—in other words, it finds all the parents for the current node. Each
time it finds a child, it adds the child to the SiteMapNode.ChildNodes collection using the
AddNode method that’s inherited from StaticSiteMapProvider.

Here’s the complete code:

CHAPTER 17 WEBSITE NAVIGATION806

The only remaining details are to fill a few other required overloads that retrieve the site
map information:

This completes the example. You can now request the same pages you created earlier,
using the new site map provider (as configured in the web.config file). In fact, you use exactly
the same markup. The custom provider plugs in easily and neatly. The new information will
flow through the custom provider and arrive in your pages without any indication that the
underlying plumbing has changed.

Adding Sorting
Currently, the SqlSiteMapProvider returns the results ordered alphabetically by title. This means
the About page always appears before the Contact Us page. This make sense for a quick test, but
it isn’t practical in a real site, where you probably want the ability to control the order in which
pages appear.

Fortunately, an easy solution exists. In fact, you don’t even need to touch the
 SqlSiteMapProvider code. All you need to do is introduce a new field in the SiteMap table
(say, OrdinalPosition) and modify the GetSiteMap procedure to use it:

CHAPTER 17 WEBSITE NAVIGATION 807

First, records are sorted into groups based on the parent (which node they fall under). Next,
they’re ordered according to the OrdinalPosition values, if you’ve supplied them. Finally, they’re
sorted by title.

Sorting is only applied with a group of pages that are at the same level. For example, you
can use the same ordinal numbers (say, 1, 2, 3) to order pages in the Products branch as you do
in the Services branch. If two pages in the same group have the same ordinal number, they’re
ordered alphabetically by title with respect to one another. (As a side effect, if you don’t set any
ordinal numbers, the nodes will all be sorted alphabetically by title, just like they were in the
previous example.)

Note Strictly speaking, you don’t need to sort by ParentID. The SqlSiteMapDataProvider code processes
nodes one batch at a time, and each batch is made up of nodes that have the same ParentID. However, sort-
ing by ParentID makes it easier to test your sorting. This way, you can run the GetSiteMap stored procedure,
look over the results, and get a good overview of how your nodes are organized.

Adding Caching
One issue you might notice with the SqlSiteMapProvider is that it stores the root node for the
current site map in memory indefinitely. This means the SqlSiteMapProvider uses the same
site map until the application domain is restarted (for example, when you rebuild your website
or change its configuration settings). If you plan to change your site map regularly, you have
several choices to make sure your application notices the change and refreshes the site map.
The best option is to use the data cache to keep the root note around for a limited amount of
time.

You can use time- based expiry (for example, so the site map is refreshed once an hour).
The cache time is added to the web.config file (as a value in seconds):

and it’s retrieved in the SqlSiteMapProvider constructor using this statement and it needs be
declared in the class.

Here’s a revised version of the BuildSiteMap() method that keeps the site map in the
cache for the desired period of time:

CHAPTER 17 WEBSITE NAVIGATION808

Lastly, the SqlSiteMapProvider.Clear() method requires minor changes so that it removes
the site map from the cache:

If you want to get even more sophisticated, you can use SQL Server cache invalidation to
automatically remove your cached site map when a change takes place in the SiteMap table.
The only disadvantage is that this is a SQL Server–specific feature, so it breaks the broad data-
base compatibility enjoyed by the SqlSiteMapProvider (which currently supports any data
source that has an ADO.NET data provider and data factory).

If you decide to implement database cache invalidation, you need to take care to ensure
that it’s an optional feature. For example, you might decide to use the time- based caching
approach shown here unless you find a specific attribute in the custom provider tag that indi-
cates database cache invalidation is supported. You’d also need to distinguish between database
cache invalidation for SQL Server 2005 and database cache invalidation for SQL Server 2000. For
more information, refer to Chapter 11.

Note Some developers have created custom site map providers that expose the directory structure of
a website using the site map model. These providers simply create nodes for every file and subdirectory
they find in your website directory. This approach allows you to provide basic navigation without actually
creating a site map file (or table). Of course, you sacrifice considerable flexibility, because you can’t control
what pages are shown or how they’re ordered. For an example of a custom provider that implements this
 file-and- folder approach, see px.

URL Mapping
In some situations, you might want to have several URLs lead to the same page. This might
be the case for a number of reasons—maybe you want to implement your logic in one page
and use query string arguments but still provide shorter and easier-to- remember URLs to
your website users (often called friendly URLs). Or maybe you have renamed a page, but you
want to keep the old URL functional so it doesn’t break user bookmarks. Although web servers
sometimes provide this type of functionality, ASP.NET includes its own URL mapping feature.

The basic idea behind ASP.NET URL mapping is that you map a request URL to a different
URL. The mapping rules are stored in the web.config file, and they’re applied before any other
processing takes place. Of course, for ASP.NET to apply the remapping, it must be processing

CHAPTER 17 WEBSITE NAVIGATION 809

the request, which means the request URL must use a file type extension that’s mapped to
ASP.NET. (See Chapter 18 for more information about how to configure ASP.NET to handle file
extensions that it wouldn’t ordinarily handle.)

You define URL mapping in the <urlMappings> section of the web.config file. You supply
two pieces of information—the request URL (as the attribute url) and the new destination URL
(mappedUrl). Here’s an example:

To make a match, the incoming URL must be requesting the same page. However, the
case of the request URL is ignored, as are query string arguments. Unfortunately, there’s no
support for advanced matching rules, such as wildcards or regular expressions.

When you use URL mapping, the redirection is performed in the same way as the Server.
Transfer() method, which means there is no round- trip and the URL in the browser will still
show the original request URL, not the remapped URL. In your code, the Request.Path and
Request.QueryString properties reflect the new (mapped) URL. The Request.RawUrl property
returns the original friendly request URL.

This can introduce some complexities if you use it in conjunction with site maps—namely,
does the site map provider try to use the original request URL or the destination URL when
looking for the current node in the site map? The answer is both. It begins by trying to match
the request URL (provided by the Request.RawUrl property), and if no value is found, it then
uses the Request.Path property , so you
could change it in a custom provider if desired.

Security Trimming
In Chapter 23, you’ll learn how to protect specific pages and folders using authorization rules.
These authorization rules can prevent anonymous users from accessing sensitive content,
regardless of what type of authentication system you’re using. You can also use authorization
rules to lock out specific users, roles, or Windows groups.

This creates a bit of a challenge if you’re using a single site map for all users. The problem
is that the site map may include some pages that are accessible only to certain classes of users.
For example, all users will see a link to an Admin.aspx page, even though you may have used
authorization rules that explicitly prevent most people from accessing this page. To prevent
the confusion, you can use an often- overlooked site map feature called security trimming.

When security trimming is switched on, all the pages that a user wouldn’t be allowed to
access (based on authorization rules) are left out of the site map altogether. This means non-
 admin users won’t see the link to the Admin.aspx page. And if you’ve used authorization rules

CHAPTER 17 WEBSITE NAVIGATION810

to create separate groups of pages for separate roles, every user will see just the appropriate
pages.

To turn on security trimming, you need to use the securityTrimmingEnabled attribute
when you register the site map provider in the web.config file. Although you could edit the
root web.config file on the web server, the easiest option is to simply add the standard site
map provider with the new configuration settings, as shown here:

When you switch on security trimming, it automatically applies to all the nodes in your
site map file. However, you can opt out. If you know specific sections of your site map should
be shown to all people or if you don’t want to use security trimming to hide certain pages, you
can explicitly turn security trimming off for a portion of the site map. To do so, you need to set
the roles attribute for that node to an asterisk (*), as shown here:

Now the Services node is visible to everyone, regardless of their role, even if security trim-
ming is switched on. You might take this step for several reasons:

To ensure good performance: The fewer nodes ASP.NET needs to check, the less over-
head it applies to each request.

To make it easier for people to use a secure page as a starting point: For example, an
administrator might want to surf to your website and click the Admin.aspx link before log-
ging in. At this point, the administrator will be sent to a login page (assuming you’re using
forms authentication), authenticated, and then redirected back to the Admin.aspx page.
But if the Admin.aspx page isn’t visible, the site isn’t quite as easy to use. The administra-
tor would need to surf to the login page first and then surf to the Admin.aspx page.

To prevent child nodes from being hidden: For example, if the Administration node con-
tains other nodes that aren’t secured (such as Meet Our Administrators), these nodes will
be hidden when the Administration node is hidden. This problem usually indicates a poor
site map design.

The value of the roles attribute is not passed down to nested nodes. This means if there
are other nodes contained inside the Administration node and these nodes point to protected
pages that you want to show in the site map, you’ll need to add the roles="*" attribute to each
one.

CHAPTER 17 WEBSITE NAVIGATION 811

Tip Security trimming imposes extra work on each request. If your site map contains a large number of
nodes, this additional overhead can reduce performance. Microsoft recommends using security trimming
with site maps that have fewer than 150 nodes. Or, to ensure good performance, turn off security trimming
for sections of the site map where it’s not needed using the roles attribute.

The roles node hints at another, less commonly used possibility. You can use it to explic-
itly set a comma- separated list of roles (or, in the case of Windows authentication, Windows
groups) that are allowed to see the page. However, this usage is confusing. You can’t use it to
limit access to a node; instead, it only expands access. In other words, when you enable security
trimming, ASP.NET determines who should see a site map node based on the authorization set-
tings for that page in the web.config file. Then, it also shows the node for explicitly named roles.

Note Remember, the roles attribute controls whether a node appears in the site map. It has no effect on
whether a user can actually access the page, which is determined by the web.config authorization rules. To
learn more about authorization rules, refer to Chapter 23.

The TreeView Control
The TreeView is one of the most impressive navigation controls. Not only does it allow you
to render rich tree views, it also supports filling portions of the tree on demand (and without
refreshing the entire page). But most important, it supports a wide range of styles that can
transform its appearance. By setting just a few basic properties, you can change the TreeView
from a help topic index to a file-and- folder directory listing. In fact, the TreeView doesn’t have
to be rendered as a tree at all—it can also tackle nonindented hierarchical data such as a table
of contents with the application of just a few style settings.

You’ve already seen two basic TreeView scenarios. In Chapter 14, you used a TreeView to
 data. In this chapter, you used a TreeView to display site map data. Both

of these examples used the ability of the TreeView to bind to hierarchical data sources. But you
can also fill a TreeView by binding to an ordinary data source (in which case you’ll get only a
single level of nodes) or by creating the nodes yourself, either programmatically or through the
.aspx declaration.

The latter option is the simplest. For example, by adding <asp:TreeNode> tags to the
<Nodes> section of a TreeView control, you can create several nodes:

CHAPTER 17 WEBSITE NAVIGATION812

And here’s how you can add a TreeNode programmatically when the page loads:

When the TreeView is first displayed, all the nodes are shown. You can control this behav-
ior by setting the TreeView.ExpandDepth property. For example, if ExpandDepth is 2, only
the first three levels are shown (level 0, level 1, and level 2). To control how many levels the
TreeView includes altogether (collapsed or uncollapsed), you use the MaxDataBindDepth
property. By default, MaxDataBindDepth is -1, and you’ll see the entire tree. However, if you
use a value such as 2, you’ll see only two levels under the starting node. You can also program-
matically collapse and expand individual nodes by setting the TreeNode.Expanded property to
true or false.

This just scratches the surface of how a TreeView works. To get the most out of the
TreeView, you need to understand how to customize several other details for a TreeNode.

The TreeNode
Each node in the tree is represented by a TreeNode object. As you already know, every
 TreeNode has an associated piece of text, which is displayed in the tree. The TreeNode object
also provides navigation properties such as ChildNodes (the collection of nodes it contains)
and Parent (the containing node, one level up the tree). Along with this bare minimum, the
TreeNode provides all the useful properties detailed in Table 17-9.

Table 17-9. TreeNode Properties

Property Description
Text The text displayed in the tree for this node.

ToolTip The tooltip text that appears when you hover over the node text.

Value Stores a nondisplayed value with additional data about the node (such as a unique
ID you’ll use when handling click events to identify the node or look up more
information).

NavigateUrl If set, the user will be automatically forwarded to the corresponding URL when
this node is clicked. Otherwise, you’ll need to react to the TreeView.SelectedNo-
deChanged event to decide what action you want to perform.

Target If the NavigateUrl property is set, this sets the target window or frame for the link.
If Target isn’t set, the new page is opened in the current browser window. The
TreeView also exposes a Target property, which you can set to apply a default
target for all TreeNode instances.

ImageUrl The image that’s displayed next to this node.

ImageToolTip The tooltip text for the image displayed next to the node.

One unusual detail about the TreeNode is that it can be in one of two modes. In selection
mode, clicking the node posts back the page and raises the TreeView.SelectedNodeChanged

CHAPTER 17 WEBSITE NAVIGATION 813

event. This is the default mode for all nodes. In navigation mode, clicking a node navigates
to a new page, and the SelectedNodeChanged event is not raised. The TreeNode is placed in
navigation mode as soon as you set the NavigateUrl property to anything other than an empty
string. A TreeNode that’s bound to site map data is in navigational mode, because each site
map node supplies URL information.

The next example fills a TreeView with the results of a database query. You want to use the
TreeView’s ability to show hierarchical data to create a master- details list. Because ASP.NET
doesn’t include any data source control that can query a database and expose the results as
a hierarchical data source, you can’t use data binding. Instead, you need to programmatically
query the table and create the TreeNode structure by hand.

Here’s the code that implements this approach:

Now when a node is clicked, you can handle the SelectedNodeChanged event to show the
node information:

CHAPTER 17 WEBSITE NAVIGATION814

 Figure 17-14 shows the result.

 Figure 17-14. Filling a TreeView with database data

data instead of relational data. Seeing as SQL Server 2000 and later have the ability to perform

-
Source assumes you’ll be binding to a file, you need to set the Data property by hand with the

CHAPTER 17 WEBSITE NAVIGATION 815

Populating Nodes on Demand
If you have an extremely large amount of data to display in a TreeView, you probably don’t
want to fill it in all at once. Not only will that increase the time taken to process the initial
request for the page, it will also dramatically increase the size of the page and the view state.
Fortunately, the TreeView includes a populate-on- demand feature that makes it easy to fill in
branches of the tree as they are expanded. Even better, you can use populate-on- demand on
selected portions of the tree, as you see fit.

To use populate-on- demand, you set the PopulateOnDemand property to true for any
TreeNode that has content you want to fill in at the last minute. When the user expands this
branch, the TreeView will fire a TreeNodePopulate event, which you can use to add the next
level of nodes. If you want, this level of nodes can contain another level of nodes that are pop-
ulated on demand.

Although the programming model remains fixed, the TreeView actually supports two
techniques for filling in the on- demand nodes. When the TreeView.PopulateNodesFromClient
property is true (the default), the TreeView performs a client- side callback to retrieve the nodes
it needs from your event, without posting back the entire page. If PopulateNodesFromClient
is false, or if it’s true but the TreeView detects that the current browser doesn’t appear to sup-
port client callbacks, the TreeView triggers a normal postback to get the same result. The only
difference is that the entire page will be refreshed in the browser, generating a less seamless
interface. (It also allows other page events to fire, such as control change events.)

You can use the populate-on- demand feature with the previous example. Instead of filling
the whole tree when the page loads, you would begin by adding just the category nodes and
setting them to populate on demand:

CHAPTER 17 WEBSITE NAVIGATION816

Note Chapter 31 has more information about how client callbacks work and how you can use them
directly. However, the TreeView support is particularly nice because it hides the underlying model, allowing
you to write an ordinary .NET event handler.

Now you need to react to the TreeNodePopulate event to fill a category when it’s expanded.
In this example, the only nodes that populate themselves on demand are the categories. How-
ever, if there were several levels of nodes that use populate-on- demand, you could check the
TreeNode.Depth to determine what type of node is being expanded.

A given node is populated on demand only once. After that, the values remain available on
the client, and no callback is performed if the same node is collapsed and expanded.

TreeView Styles
The TreeView has a fine- grained style model that lets you completely control its appearance.
Each style applies to a type of node. Styles are represented by the TreeNodeStyle class, which
derives from the more conventional Style class.

CHAPTER 17 WEBSITE NAVIGATION 817

As with other rich controls, the styles give you options to set background and foreground
colors, fonts, and borders. Additionally, the TreeNodeStyle class adds the node- specific style
properties shown in Table 17-10. These properties deal with the node image and the spacing
around a node.

Table 17-10. TreeNodeStyle Added Properties

Property Description
ImageUrl The URL for the image shown next to the node

NodeSpacing The space (in pixels) between the current node and the node above and
below

VerticalPadding The space (in pixels) between the top and bottom of the node text and bor-
der around the text

HorizontalPadding The space (in pixels) between the left and right of the node text and border
around the text

ChildNodesPadding The space (in pixels) between the last child node of an expanded parent
node and the following sibling node

Because a TreeView is rendered using an HTML table, you can set the padding of various
elements to control the spacing around text, between nodes, and so on. One other property
that comes into play is TreeView.NodeIndent, which sets the number of pixels of indentation
(from the left) in each subsequent level of the tree hierarchy. Figure 17-15 shows how these
settings apply to a single node.

The TreeView also allows you to configure some of its internal rendering through
 higher- level properties. You can turn off the node lines in a tree using the
TreeView.ShowExpandCollapse property. You can also use the CollapseImageUrl and
 ExpandImageUrl properties to set the collapsed and expanded indicators of the TreeView
(usually represented by plus and minus icons) and the NoExpandImageUrl property to set
what’s displayed next to nodes that have no children. Finally, you can show check boxes
next to every node (set TreeView.ShowCheckBoxes to true) or individual nodes (set
TreeNode.ShowCheckBox to true). You can determine if a given node is checked by
 examining the TreeNode.Checked property.

CHAPTER 17 WEBSITE NAVIGATION818

 Figure 17-15. Node spacing

Applying Styles to Node Types
The TreeView allows you to individually control the styles for different types of nodes—for
example, root nodes, nodes that contain other nodes, selected nodes, and so on.

To apply node style settings to all the nodes of a tree, you can use the TreeView.NodeStyle
property. You can isolate individual regions of the TreeView using a more specific style, as
listed in Table 17-11.

Styles are listed in this table in order of most general to most specific. That means the
SelectedNodeStyle style settings override any conflicting settings in a RootNodeStyle, for

CHAPTER 17 WEBSITE NAVIGATION 819

example. (If you don’t want a node to be selectable, set TreeNode.SelectAction to None.) How-
ever, the RootNodeStyle, ParentNodeStyle, and LeafNodeStyle settings never conflict, because
the definitions for root, parent, and leaf nodes are mutually exclusive. You can’t have a node
that is simultaneously a parent and a root node, for example—the TreeView simply designates
this as a root node.

Table 17-11. TreeView Style Properties

Property Description
NodeStyle Applies to all nodes.

RootNodeStyle Applies only to the first- level (root) node.

ParentNodeStyle Applies to any node that contains other nodes, except root nodes.

LeafNodeStyle Applies to any node that doesn’t contain child nodes and isn’t a root node.

SelectedNodeStyle Applies to the currently selected node.

HoverNodeStyle Applies to the node the user is hovering over with the mouse. These settings
are applied only in up- level clients that support the necessary dynamic script.

Applying Styles to Node Levels
Being able to apply styles to different types of nodes is interesting, but a more useful feature is
being able to apply styles based on the node level. That’s because most trees use a rigid hier-
archy (for example, the first level of nodes represents categories, the second level represents
products, the third represents orders, and so on). In this case, it’s not so important to deter-
mine whether a node has children. Instead, it’s important to determine the node’s depth.

The only problem is that a TreeView can have a theoretically unlimited number of node lev-
els. Thus, it doesn’t make sense to expose properties such as FirstLevelStyle, SecondLevelStyle,
and so on. Instead, the TreeView has a LevelStyles collection that can have as many entries
as you want. The level is inferred from the position of the style in the collection, so the first
entry is considered the root level, the second entry is the second node level, and so on. For this
system to work, you must follow the same order, and you must include an empty style place-
holder if you want to skip a level without changing the formatting.

For example, here’s a TreeView that doesn’t use any indenting but instead differentiates
levels by applying different amounts of spacing and different fonts:

CHAPTER 17 WEBSITE NAVIGATION820

If you apply this to the category and product list shown in earlier examples, you’ll see
a page like the one shown in Figure 17-16.

 Figure 17-16. A nonindented TreeView

TreeView Images
As you’ve already learned, you can set the image for a single node using the TreeViewNode.
ImageUrl property. Fortunately, you don’t need to use this fine- grained approach if you want
to assign a consistent set of images to your entire tree. Instead, you can use three TreeView
properties to set images for all your nodes. You can choose the picture that is shown next to
all collapsed nodes (CollapseImageUrl), all expanded nodes (ExpandImageUrl), and all nodes
that don’t have any children and thus aren’t expandable (NoExpandImageUrl). If you set these
properties and you specify an image for a specific node using the TreeViewNode.ImageUrl
property, the node- specific image takes precedence.

The TreeView also has some stock images that you can use if you don’t want to go to
the trouble of creating your own custom node images. To access these images, you use the
TreeView.ImageSet property, which takes one of 16 values from the TreeViewImageSet enu-
meration. Each set includes an image for collapsed, expanded, and no- children nodes. When
using the ImageSet property, you don’t need to use any of the other image- related properties.

 Figure 17-17 shows several of the available ImageSet options. For example, an ImageSet
value of TreeViewImageSet.Faq creates a tree with help- style icons that show a question mark
(for nodes that have no children) or a question mark superimposed over a folder (for nodes
that do contain children).

CHAPTER 17 WEBSITE NAVIGATION 821

 Figure 17-17. Different looks for a TreeView

The Menu Control
The Menu control is another rich control that supports hierarchical data. Like the TreeView,
you can bind the Menu to a data source, or you can fill it by hand (declaratively or program-
matically) using MenuItem objects.

The MenuItem class isn’t quite as rich as the TreeNode class—for example, MenuItem
objects don’t support check boxes or the ability to programmatically set their expanded/
collapsed state. However, they still have many similar properties, including those for setting
images, determining whether the item is selectable, and specifying a target link. Table 17-12
has the defaults.

Table 17-12. MenuItem Properties

Property Description
Text The text displayed in the menu for this item (when displayed).

ToolTip The tooltip text that appears when you hover over the menu item.

Value Stores a nondisplayed value with additional data about the menu item (such
as a unique ID you’ll use when handling click events to identify the node or
look up more information).

NavigateUrl If set, when this node is clicked, it automatically forwards the user to this
URL. Otherwise, you’ll need to react to the Menu.MenuItemClick event to
decide what action you want to perform.

Continued

CHAPTER 17 WEBSITE NAVIGATION822

Table 17-12. Continued

Property Description
Target If the NavigateUrl property is set, this sets the target window or frame for the

link. If Target isn’t set, the new page is opened in the current browser wit-
ndow. The Menu also exposes a Target property, which you can set to apply
a default target for all MenuItem instances.

Selectable If false, this item can’t be selected. Usually you’ll set this to false only if the
item is a subheading that contains selectable child items.

ImageUrl If set, it’s the image that’s displayed next to the menu item (on the right of the
text). By default, no image is used.

PopOutImageUrl The image that’s displayed next to the menu item (on the right) if it contains
subitems. By default, this is a small solid arrow.

SeparatorImageUrl The image that’s displayed immediately underneath this menu item, to sepa-
rate it from the following item.

You can walk over the structure of a Menu control in much the same way as the structure
of a TreeView. The Menu contains a collection of MenuItem objects in the Items property,
and each MenuItem has a ChildItems collection that contains nested items. For example, you
could adapt the previous example that used the TreeView to display a list of categories and
products by simply changing a few class names. Here’s the code you need, with the surpris-
ingly few changes highlighted:

CHAPTER 17 WEBSITE NAVIGATION 823

 Figure 17-18 shows the result.

 Figure 17-18. Displaying a menu with information from a database

Overall, the Menu and TreeView controls expose strikingly similar programming models,
even though they render themselves quite differently. They also have a similar style- based for-
matting model. But a few noteworthy differences exist:

 can expand an arbitrary number
of node branches at a time.

 fly- out menus that appear over any other content on the page. The TreeView shows all
its items inline in the page.

 does not.

property. The TreeView supports only vertical layouts.

CHAPTER 17 WEBSITE NAVIGATION824

Menu Styles
The Menu control provides an overwhelming number of styles. Like the TreeView, the Menu
derives a custom class from the Style base class—in fact, it derives two (MenuStyle and
MenuItemStyle). These styles add spacing properties (ItemSpacing, HorizontalPadding, and
VerticalPadding). However, you can’t set menu item images through the style, because there
is no ImageUrl property.

Much like the TreeView, the Menu supports defining different menu styles for different
menu levels. However, the key distinction that the Menu control encourages you to adopt is
between static items (the root level items that are displayed in the page when it’s first gener-
ated) and dynamic items (the items in fly- out menus that are added when the user moves
the mouse over a portion of the menu). In most websites, there is a definite difference in
the styling of these two elements. To support this, the Menu class defines two parallel sets
of styles, one that applies to static items and one that applies to dynamic items, as shown in
Table 17-13.

Table 17-13. Menu Styles

Static Style Dynamic Style Description
StaticMenuStyle DynamicMenuStyle Sets the appearance of the overall “box” in

which all the menu items appear. In the case
of StaticMenuStyle, this box is shown on the
page, whereas with DynamicMenuStyle it’s
shown as a pop- up.

StaticMenuItemStyle DynamicMenuItemStyle Sets the appearance of individual menu items.

StaticSelectedStyle DynamicSelectedStyle Sets the appearance of the selected item. Note
that the selected item isn’t the item that’s
currently being hovered over. It’s the item that
was previously clicked (and triggered the last
postback).

StaticHoverStyle DynamicHoverStyle Sets the appearance of the item that the user is
hovering over with the mouse.

Along with these styles, you can set level- specific styles so that each level of menu
and submenu is different. You do this using three collections: LevelMenuItemStyles,
 LevelSubMenuStyles, and LevelSelectedStyles. These collections apply to ordinary
menus, menus that contain other items, and selected menu items, respectively.

It might seem like there’s a fair bit of unnecessary work here in separating dynamic and
static styles. The reason for this model becomes obvious when you consider another remark-
able feature of the Menu control—it allows you to choose the number of static levels. By
default, there is only one static level, and everything else is displayed as a fly- out menu when
the user hovers over the corresponding parent. But you can set the Menu.StaticDisplayLevels
property to change all that. If you set it to 2, for example, the first two levels of the menu will
be rendered in the page, using the static styles. (You can control the indentation of each level
using the StaticSubMenuIndent property.)

 Figure 17-19 shows the previous example with this change. Note that the items still
change as you hover over them, and selection works in the same way. If you want, you can
make your entire menu static.

CHAPTER 17 WEBSITE NAVIGATION 825

 Figure 17-19. A menu with two static levels

Tip The Menu control exposes many more top- level properties for tweaking specific rendering aspects.
For example, you can set the delay before a pop- up menu disappears (DisappearAfter), the default images
used for expansion icons and separators, the scrolling behavior (which kicks into gear when the browser
window is too small to fit a pop- up menu), and much more. Consult MSDN for a full list of properties.

Menu Templates
The Menu control also supports templates through the StaticMenuItemTemplate and
 DynamicMenuItemTemplate properties. These templates determine the HTML that’s ren-
dered for each menu item, giving you complete control.

Interestingly, whether you fill the Menu class declaratively or programmatically, you can
still use a template. From the template’s point of view, you’re always binding to a MenuItem
object. That means your template always needs to extract the value for the item from the
MenuItem.Text property, as shown here:

One reason you might want to use the template features of the Menu is to show mul-
tiple pieces of information from a data object. For example, you might want to show both
the title and the description from the SiteMapNode for this item (rather than just the title).

CHAPTER 17 WEBSITE NAVIGATION826

Unfortunately, that’s not possible. The problem is that the Menu binds directly to the
MenuItem object. The MenuItem object does expose a DataItem property, but by the time
it’s being added into the menu, that DataItem no longer has the reference to the SiteMapNode
that was used to populate it. So, you’re mostly out of luck.

If you’re really desperate, you can write a custom method in your class that looks up the
SiteMapNode based on its URL. This is extra work that should be unnecessary, but it solves the
problem. The GetDescriptionFromTitle() method shown here demonstrates this technique:

Now you can use the GetDescriptionFromTitle() method in a template:

Finally, you can declare data bindings for the Menu control that specifically map out what
property in the bound object should be used for the MenuItem text. This isn’t much help if you

CHAPTER 17 WEBSITE NAVIGATION 827

want to display both the title and description, because it accepts only one field. However, it’s
fairly easy to show the title as the text and the description as the tooltip text:

Note The TreeView and Menu render themselves using HTML tables. Some web designers frown on
using tables for layout purposes and prefer CSS positioning rules. Microsoft hasn’t ignored these demands—
in fact, it has created a (still experimental) set of control adapters that can alter the rendered markup of both
controls so they use CSS rules instead of <table> tags. To learn more about this project, surf to

. For more details about adaptive rendering, refer to Chapter 27.

Summary
In this chapter, you explored a variety of navigation features. You started with the multipane
MultiView and Wizard controls. You then delved into ASP.NET’s navigation model and learned
how to define site maps, bind the navigation data, and extend the site map provider infrastruc-
ture. Finally, you considered two rich controls that are especially suited for navigation data:
the TreeView and Menu.

829

C H A P T E R 1 8

Website Deployment

Deploying an ASP.NET web application is just the process of copying the directory structure
of your application and its files to the target server. Of course, once you’ve copied your appli-
cation, you need to configure databases, configure security settings, and fine- tune the web
server appropriately. The web server used in most scenarios is the one that ships with Windows—
IIS. Using IIS, you can configure what directories are exposed as virtual directories and are
thereby accessible to other clients that make calls over the network or the Internet.

In this chapter, you’ll learn about the architecture of all relevant versions of IIS reaching
from IIS 5.x (shipping with Windows 2000 and XP), through IIS 6.0 (included in Windows
Server 2003), to the latest version, IIS 7.0, which comes with Windows Vista and Windows Server
2008. You’ll learn how to install and configure each version of IIS on all the different Windows
versions.

Afterward, you’ll learn the specifics for deploying ASP.NET- based web applications, includ-
ing the compilation model, side-by- side deployment with different versions of ASP.NET, and
Visual Studio’s deployment features. You’ll also tackle a couple of advanced deployment topics,
including the VirtualPathProvider (which lets you deploy web application pages to a database
instead of the file system) and ASP.NET health monitoring (which helps you keep an eye on the
state of your application in a production environment).

Internet Information Services (IIS)
IIS is, at its core, a Windows service that is responsible for processing requests received on
specific ports. For this purpose, a service called the World Wide Web Publishing Service runs
on the system. This service is primarily responsible for handling and processing requests
received on various TCP/IP ports, usually port 80 for normal HTTP and port 443 for HTTPS.
At the time of writing this book, there are several different available versions of IIS that you
should be aware of. The first one is IIS 5.x, which ships with Windows 2000 and Windows XP.
Second, we have IIS 6.0, which ships with Windows Server 2003 and introduced extremely
important changes with the web server’s process model for processing requests. Finally, with
Windows Vista and Windows Server 2008, IIS 7.0 became available and introduced several
architectural changes in the web server with the primary target of modularization of the web
server.

On IIS 5.x, which ships with Windows 2000 and Windows XP, the World Wide Web Pub-
lishing Service was the primary component implementing the web server. Actually, the service
itself listens on the ports for accepting HTTP/HTTPS- based requests, and the service processes
the requests either by itself or through so- called ISAPI extension DLLs. With IIS 6.0 and Windows

CHAPTER 18 WEBSITE DEPLOYMENT830

Server 2003, the primary focus was improving stability and security of the web server by chang-
ing the process model of the web server. Instead of having the World Wide Web Publishing
Service being the only component listening on ports and processing requests, in IIS 6.0, request
processing is split into several processes. A kernel- mode driver called HTTP.SYS was introduced,
which has the responsibility of receiving HTTP- based requests through various ports, and
then passing these requests on to several worker processes that are managed by the World Wide
Web Publishing Service. Each worker process is responsible for processing requests received
through the various ports and addresses they are configured for. The big advantage is that
every worker process runs independently, which means that you can implement a certain level
of isolation between web applications.

Finally, with IIS 7.0 on Windows Vista and Windows Server 2008, this architecture has been
extended to allow the web server to receive requests through any protocol on any port, in addi-
tion to just HTTP and TCP/IP. This capability makes IIS a first- class host for any component
that requires making its services available across the network through one or more ports and
protocols, such as HTTP, HTTPS, or just native TCP/IP. In addition, the web server has been
modularized to allow better extensibility in the overall life cycle of the request processing and
to enable a better integration with ASP.NET. You will learn details about all these architectural
changes later in this chapter.

IIS 7.0 ON WINDOWS VISTA AND WINDOWS SERVER 2008

The first version of IIS 7.0 was released with Windows Vista in November 2006. Windows Server 2008 will
be released at the beginning of 2008 and will ship with an updated version of IIS 7.0. For Windows Vista,
the focus of the team was building a feature- complete web server with the new, modularized architecture
to enable developers to build web applications and web server extensions with managed and native code
on Windows Vista. The version of IIS 7.0 shipping with Windows Server 2008 will support the same feature
set and APIs as the version of IIS 7.0 on Windows Vista. The configuration system will be the same, and
at the time of writing, the IIS product team has mentioned that most of the changes (such as performance
optimizations) will happen under the hood. These changes will be transparent to developers so that they
can develop and test code on Windows Vista and run it on the server. There is just a small set of features
that will be extended in IIS 7.0 with Windows Server 2008, such as FastCGI for better support of runtimes
such as PHP. These extensions will be included in the first service pack of Windows Vista, as well.

IIS Websites and Virtual Directories
In all versions of IIS, the World Wide Web Publishing Service is responsible for managing and
running websites and their web applications. A website is used for exposing content stored
in a physical directory of the web server or on a network share accessible to the web server
as a root web application. This content can be exposed on one or more ports associated with
the website through several protocols, including HTTP and HTTPS. Each website needs to be
configured based on a local physical directory or a network share, and for each website, you
need to configure at least one port. Additionally, you can assign an IP address through which
your website is accessible. This is only important if your server is accessible through more
than one IP address. This is the case if the web server has multiple network adapters installed.
If you don’t explicitly assign an IP address to a website, it is accessible through any IP address
of the server. If you assign one or more IP addresses to a website, it is accessible on these IP

CHAPTER 18 WEBSITE DEPLOYMENT 831

addresses through the configured ports only. Of course, one port can be used only once for
one IP address. But several different IP addresses can leverage the same port.

Any incoming request on one of the registered ports for the configured websites is passed
through the Windows network stack to IIS (actually the World Wide Web Publishing Service),
which processes the request and returns a response to the client again through the Windows
network stack.

You can see a website as a root web application exposing contents on its own as well
as through many sub- applications. Virtual directories are created for exposing content as
a sub- application within a website of the web server. Virtual directories are always used to expose
content from a physical location such as a directory of the local file system or a network share of
the local network that is accessible to the web server through web technologies. Content of these
virtual directories is accessible through the same protocols, ports, and IP addresses configured for
their parent website. Figure 18-1 illustrates the concept of websites and virtual directories. As you
can see, websites publish content from physical directories and through virtual directories config-
ured within the websites themselves. The websites are assigned to IP addresses through which the
web server is accessible, and they listen on specified ports on these IP addresses.

BigDays

IP Address A

IP Address B

Network
Adapter

Network
Adapter

TestingBigDays

Promotion

UniversityTemplate

UniversityStartup

UniversityProduction

Default Website

Other Website

Yet Another Website

Port
80

Port
80

Port
81

 Figure 18-1. Websites publishing content from physical directories on specified ports

Basically there are two types of virtual directories: simple directories for exposing content
to the outside world by inheriting any configuration, behavior (security, execution, etc.), and
state from their parent website; and virtual directories configured as separate applications
with their own configuration, behavior, and state. That means each virtual directory config-
ured as a separate application has its own isolated session state and application state that exist
independently from other applications configured within the site. A default installation of IIS
has one default website configured for the server that processes requests on port 80, as you
can see in Figures 18- 2 and 18- 3, which show the IIS management console used for configur-
ing IIS.

IIS Management Console and IIS Configuration
In all versions of IIS, websites and virtual directories exposed by the World Wide Web Pub-
lishing Service and its components are configured using the IIS management console (often
referred to as IIS Manager). For IIS 5.x and IIS 6.0, the management console is very similar—at

CHAPTER 18 WEBSITE DEPLOYMENT832

first, you’ll notice only a few differences resulting from the (in reality huge) architectural
changes introduced with IIS 6.0. You can see the IIS 6.0 management console in Figure 18-2.

 Figure 18-2. IIS 6.0 management console

On the other hand, the management console changed dramatically in IIS 7.0, and
has been restructured to a very task- and feature- oriented paradigm, as opposed to the
 content- driven paradigm of the IIS 5.x and 6.0 versions, as you can see in Figure 18-3.

 Figure 18-3. IIS 7.0 management console

On IIS 5.x- and IIS 6.0- based systems, the complete configuration (which means any con-
figured website or virtual directory with all its settings) is stored in a file called the metabase

CHAPTER 18 WEBSITE DEPLOYMENT 833

on the local system. The IIS metabase is a binary database in IIS 5.x and an XML- based data
store in IIS 6.x, and it can be configured through the IIS management console (shown in
 Figure 18-2). In IIS 7.0, the configuration system was changed dramatically for easier configurabil-
ity and better integration with ASP.NET. Actually, default values for the web server configuration
settings are stored in one central XML- based configuration, and the settings for specific websites
and virtual directories are stored in a separate section called <system.webServer> within the web.
config file of the website or virtual directory. Actually, this is the same configuration file as the one
used by ASP.NET itself for storing its configuration settings, which is a great unification of the con-
figuration system. Most settings modified through the IIS 7.0 management console are written to
the website or virtual directory’s web.config file instead of a central configuration. Of course, not
all settings can be stored in the website or virtual directory’s web.config file, and therefore some
settings are stored in a central configuration. You’ll learn more about this new configuration sys-
tem later in this chapter.

Mapping Websites, Virtual Directories, and Files to URLs
Web applications are accessed over HTTP by clients typing a URL into a browser. The browser
passes this request to the server (in this case IIS), which actually processes the request. A typical
URL for a web application might take the following format:

Of course, URLs can come in many flavors. For example, in an intranet, web servers can
be accessed either through their local server name known within the intranet, as shown in
the preceding URL, or through their IP address. If your web server is publicly accessible over
the Internet, clients might connect to it using a registered domain name. Finally, a server—
whether it’s on the Internet or an intranet—can always be accessed through its IP address.
Here are some more examples of valid URLs:

When IIS receives a request, its first step is to examine the request itself and the requested
URL. The first portion of the URL after the protocol specification (WebServer in our first URL
example in this section) identifies the web server through its friendly server name. The server
name of course gets resolved to the server’s IP address by naming services (such as DNS or
WINS in intranets). At the end, the server is always contacted through its IP address. Remem-
ber that a server can be accessed through multiple IP addresses if it has multiple network cards
installed, as you learned in the previous section.

With the IP address in place, IIS looks for a website configured for this IP address. In the first
URL examples shown previously, no port number was specified as a part of the URL. Therefore,
IIS automatically looks for a website listening on port 80. If you want to reach content of a web-
site that does not run on the default port (80), you have to specify the site’s port in the URL. The
following example accesses the same page on the same server but uses port 1234 because the
website is running on this port, not on port 80:

In this case, IIS now looks for a website configured for the resolved IP address listening on
port 1234. The second portion (OnlineStore) identifies the virtual directory where the ASP.NET

CHAPTER 18 WEBSITE DEPLOYMENT834

application is stored. The third portion (default.aspx) indicates the requested file. The file
extension gives IIS the necessary information for deciding how the request will be processed.
We will dive into the details of how IIS processes such a request later. For now, all you need
to know is that based on the filename extension .aspx, IIS knows that it needs to pass the
request on to the ASP.NET runtime, which in turn processes the page, generates output, and
returns this output to IIS, which then returns it back to the client. Interestingly enough, IIS
will pass the request to ASP.NET even if the file doesn’t exist physically (on the file system).
That allows ASP.NET to add extensions that don’t actually correspond to physical pages. One
example is the trace.axd extension, which allows local developers to see recent debugging
output. Another example is the WebResource.axd extension, which allows ASP.NET to return
resources stored in compiled assemblies such as script code or language resource strings to
be returned to the client through simple URL processing.

Finally, you’ve no doubt noticed that not all URLs include the portion with the filename.
For example, you might make a request like this:

In this case, if OnlineStore is a virtual directory, IIS will search for one of the default docu-
ments and automatically run that. By default, IIS will check first for a default.htm file; it will
then check for default.asp, index.htm, index.html, and iisstart.htm files; and finally it will check
for the ASP.NET file default.aspx. As a result, it’s always a good idea to name your web appli-
cation’s home page default.aspx. (Of course, you can configure this list of default documents
using IIS, as described in the “Managing Websites” section of this chapter.)

Tip Even if you don’t know the name of the computer you’re working on, you can still easily request
a local page using the loopback address. The loopback address is 127.0.0.1, and the alias is localhost. The
loopback address and alias always point to the current computer and are extremely useful while testing.
For example, you can enter http://localhost/OnlineStore/catalog.aspx to request an ASP.NET page from the
OnlineStore virtual directory on the local computer.

Tip As mentioned previously, you can configure multiple websites on one IIS server. Every website has
to run on a separate port. This port has to be specified in the URL, as shown previously when accessing
a web application running in one site, except the port has the default value of 80. Basically that means you
can have only one website running on port 80 per IP address. But IIS supports the notion of host headers.
On IIS 5.x and IIS 6.0, you can configure host headers in the website’s properties in the Advanced Web Site
Identification dialog box. On IIS 7.0, you can configure host headers in the bindings configuration for each
website and each binding. Using this setting, you can have multiple websites running on the same port. (Of
course, every website then needs a different value for the host header setting.) For this purpose, your web
server needs to be made accessible through multiple machine names. You need to map every machine name
to a host header value in the website configuration. In that case, IIS determines the website that contains the
web application that serves the request based on the requested web server’s machine name. It compares
the machine name with the host header values of the websites and selects the website with the host header
name that matches this machine name.

CHAPTER 18 WEBSITE DEPLOYMENT 835

Diving into the Architecture of IIS
In the previous section, you learned about the basic concepts and terms you need to under-
stand when it comes to IIS. You know that content is exposed through websites and virtual
directories, and you know how they map to URLs through which clients are accessing content
published on the web server. Furthermore, you know that IIS ultimately decides on how to
process a request based on the filename extension of the file requested through the URL.

Now it’s time to take a closer look at the architecture of IIS to understand how it processes
incoming requests. There are two architectural concepts you should be aware of to be able to
configure and fine- tune the web server for your application:

As mentioned in the previous section, IIS decides how to process a request based on file-
name extensions passed with the request URL. These concepts are covered with the request
handling architecture. After IIS has determined how it needs to process a request, it starts with
the actual processing of the request. This happens within a process running on the operating
system managed by IIS. IIS manages these processes based on certain principles, which you
will learn about when we discuss the process model.

The architecture for handling requests is the same for IIS 5.x and IIS 6.0, and has been
changed and improved dramatically with IIS 7.0. The process model was changed dramatically
with IIS 6.0 and the release of Windows Server 2003. IIS 7.0 builds on top of the process model
introduced with IIS 6.0 and slightly extends this architecture. In the following sections, we will
cover the architectural concepts and their changes based on the different versions of IIS.

Request Handling in IIS 5.x and IIS 6.0
As mentioned earlier, IIS decides on how to handle a request based on the filename extension
used by the client in the request URL. In IIS 5.x and IIS 6.0, every filename is registered in the
IIS configuration with a so- called ISAPI extension. Simply spoken, an ISAPI extension is a DLL
that is responsible for processing a request for a resource with a specific filename extension in
the URL. Figure 18-4 shows the ISAPI DLL configuration of IIS 5.x and IIS 6.0. You can find this
configuration by right- clicking your website or virtual directory and selecting the Properties
menu. You then need to navigate to the Home Directory tab and click the Configuration but-
ton, which opens the application configuration for the website or virtual directory.

CHAPTER 18 WEBSITE DEPLOYMENT836

 Figure 18-4. ISAPI DLL configuration in IIS 5.x and IIS 6.0

Each filename extension that is not associated with an ISAPI DLL is handled by the web
server directly and is returned to the client without any further processing. By default, that’s
true for static HTML pages and images or any other binary files. Any file that should be accepted
and processed by the web server needs to be configured as a valid MIME type on the web server
as well. Otherwise, without having an ISAPI extension associated, and without being configured
as a valid MIME type, the web server will reject the request from the client. MIME types are con-
figured by opening the Properties dialog of the web server, which typically is the root node in IIS
Manager.

Of course, before the actual ISAPI extension gets hit for processing the request or static file
contents are returned from the web server, the request needs to pass through several other mod-
ules—such as authentication modules, authorization modules (e.g., IP address restrictions), or
even modules for request compression and logging. Figure 18-5 outlines the processing life cycle
of one request within IIS 5.x and IIS 6.0 from a high- level perspective.

CHAPTER 18 WEBSITE DEPLOYMENT 837

Basic NTLM

Authentication

HTTP Request

HTTP
Response

SPNEGO

File-Based

Authorization

Response Compression

Determine
Request Handler

IP Address

Static File

Logging

CGI

ISAPI

 Figure 18-5. IIS 5.x and IIS 6.0 request processing architecture

As you can see in Figure 18-5, the ISAPI extension gets hit after the request goes through
several other modules from the web server. These modules are rather general- purpose mod-
ules, which makes sense for most web applications. A typical example is the authentication
module, which can be used for authenticating users through various protocols. You will learn
more about security- related modules and configuration in IIS in Chapter 19 and subsequent
chapters. The actual request processing either involves returning static file content directly or
takes place in the ISAPI extension if a filename extension is registered with one. Take a look back
at Figure 18-4, and you will recognize that for each version of ASP.NET, a separate ISAPI exten-
sion ships with the corresponding version of the .NET Framework. But this ISAPI extension for
ASP.NET does not really process any request by itself. It is just a dispatcher that forwards the
request to the ASP.NET runtime, which is entirely written in managed code based on the .NET
platform. That means all the ASP.NET- specific processing is completely independent from the
web server. As a first step, incoming requests run through some web server- specific processing
stages such as authentication and authorization. But as soon as these are completed, the request
is passed on to the ASP.NET runtime through the ASP.NET ISAPI extension. This ISAPI exten-
sion is installed in IIS with the installation of the .NET Framework. ASP.NET then processes the
request completely independently from the web server, as mentioned before. When it finishes

CHAPTER 18 WEBSITE DEPLOYMENT838

its work, the ASP.NET runtime returns its results to the ISAPI extension, which then returns
the content to IIS. Finally, IIS sends the content back to the client. Optionally, IIS applies some
 post- processing such as request compression before it returns the content back. But from the
perspective of an ASP.NET developer, this is fairly transparent. Figure 18-6 illustrates the rela-
tionship between IIS 5.x or IIS 6.0 and ASP.NET.

ASP.NET Runtime

Managed

HTML Response

requestedpage.aspx

Basic

Pre-
processing

Post-
processing

 Figure 18-6. ASP.NET request processing in IIS 5.x and IIS 6.0

 Figure 18-6 really illustrates that the ASP.NET runtime works completely independent
from IIS and that the ASP.NET ISAPI extension is just a dispatcher forwarding the request from
the web server to the ASP.NET runtime. That brings up one important point: the architecture
of ASP.NET allows it to be hosted in any application (web server) you want it to. That said, you
now know why Visual Studio is able to use the integrated Visual Web Developer Web Server.
The Visual Web Developer Web Server is just another host for the ASP.NET runtime, and you
can even create your own ASP.NET runtime host.

In addition to static file processing where IIS returns contents of a file by itself to the cli-
ent and to ISAPI- based processing, IIS allows classic CGI- based processing of requests as well.
When using CGI- based processing, a filename extension is registered with an executable that
is responsible for processing the request. This executable is launched in a separate process for
each incoming request. CGI actually has been the very first approach in history for implement-
ing dynamic web applications, and many dynamic languages such as Perl or PHP propagate
this model of request processing (although for most of these languages, ISAPI extensions for IIS
have been implemented already). The big disadvantage of CGI- based processing is that it actu-
ally launches a separate process for each incoming request, which—at least on Windows—is
a very extensive, resource- intensive, and slow operation.

Finally, ISAPI extensions and CGI are the only ways for extending IIS and its processing
behavior. On Windows, CGI is not really the recommended way to process requests of dynamic
web applications, as spanning off new processes for each request is a very resource- intensive
operation on Windows. Therefore, the IIS team recommends extending IIS through ISAPI exten-
sions. Implementing an ISAPI extension is actually very hard. They can be implemented through
native C/C++ DLLs, only.

CHAPTER 18 WEBSITE DEPLOYMENT 839

Furthermore, you will recognize that ASP.NET runs fairly independently from IIS itself.
This introduces a number of disadvantages. First and foremost, ASP.NET cannot be involved
in certain stages of the life cycle of the overall request processing. This means that some modules,
such as authentication modules, need to be implemented two times—first for IIS and second
for ASP.NET. This is the reason why ASP.NET ships with its own module for Windows authen-
tication (which extracts the Windows identity from the user authenticated by IIS in previous
request processing steps). This also means that you cannot do certain things with ASP.NET, as
it is not involved in all processing steps of the request. For example, you cannot use the basic
authentication protocol for authenticating users against your own user database. ASP.NET
is bound to the way IIS authenticates users when configuring basic authentication, and IIS
authenticates users with basic authentication against Windows users only! You will learn more
about security in Chapter 19—we’ve just used authentication as an example here as it hits the
nail on the head with regard to ASP.NET integration problems in IIS 5.x and IIS 6.0.

Last but not least, this type of request processing is very monolithic. Many modules ship-
ping with IIS that are not implemented as ISAPI extensions or CGI processes are integrated
into IIS directly. So they are installed with IIS whether you are going to use them or not, as they
are a part of IIS. This also means that they will require a certain amount of resources (even if
features are not used, at least their code is loaded into memory). These problems were the pri-
mary motivation of the IIS product team for changing the request handling architecture with
IIS 7.0.

Request Handling with IIS 7.0 on Windows Vista and Windows Server 2008
IIS 7.0 has been introduced with Windows Vista for the first time, and is an integrated part of
Windows Server 2008 as well. It builds on top of the architectural changes introduced with IIS
6.0 in terms of the process model, which we will cover in the subsequent two sections of this
chapter. The primary goals of IIS 7.0 are the following:

For the sake of these goals, the architecture for handling requests has been changed dra-
matically in IIS 7.0. Inspired by the ASP.NET architecture (which you learned about in Chapter 5),
IIS now natively builds on the concept of HttpModules and HttpHandlers. Modules provide
 general- purpose functionality such as authentication, authorization, logging, and request
compression, while handlers are associated with filename extensions and are therefore responsible
for processing requests with the filename extensions in the request URL they are configured for.
 Figure 18-7 illustrates this new architecture of IIS 7.0.

CHAPTER 18 WEBSITE DEPLOYMENT840

Execute Handler

Output Cache

...

IpRestrictionModule

UrlAuthorizationModule

...

WindowsAuthenticationModule

BasicAuthenticationModule

Static
File

Page
Handler

Web Service
Handler

...

HTTP
Request

HTTP
Response

Pipeline of
Modules

Handlers Registered for
Filename Extension

 Figure 18-7. Request handling architecture in IIS 7.0

Each module and each handler is implemented in a separate DLL hosted in the process
that is responsible for processing requests. Figure 18-8 shows the IIS 7.0 management con-
sole with the Handler Mappings configuration feature opened. As you can see, each filename
extension is associated with a handler that’s responsible for processing requests with certain
filename extensions.

For example, you may find a handler for processing classic ASP pages (if this feature is
installed on your system) or you may find a handler for processing ASP.NET pages (again,
only if the feature is installed). For general- purpose functionality that needs to be executed
for every request, IIS 7.0 supports HTTP modules, as shown in Figure 18-7. These modules are
configured with the Modules configuration feature of IIS 7.0, as shown in Figure 18-9. ISAPI
extensions, by the way, still work with IIS 7.0 as well, and they are added as script maps to the
handler configuration. If an ISAPI DLL is configured for processing the request, IIS treats it as
every other handler configured within IIS, with no exceptions.

CHAPTER 18 WEBSITE DEPLOYMENT 841

 Figure 18-8. The Handler Mappings configuration feature in IIS 7.0

 Figure 18-9. The Modules configuration feature in IIS 7.0

CHAPTER 18 WEBSITE DEPLOYMENT842

This architecture introduces several interesting advantages. First of all, it allows you to run
just the modules and handlers you really require. Modules and handlers that are not required
are not loaded into the worker process responsible for processing requests. You don’t even
need to install these modules and handlers on your machine if you don’t need them. This is
the reason for the fine- grained installation options of IIS 7.0, as you will see later in this chap-
ter. That reduces both the necessary resources required by a worker process and the attack
surface of the web server, as modules and handlers that are not required are not loaded (or
even installed) on the server.

Second, the new architecture allows you to extend the web server in each stage of the
request processing life cycle by just writing custom modules or handlers and registering them
through the IIS management console. Which brings us to another interesting aspect. By default,
IIS runs in a mode called ASP.NET integrated mode. This means that the request processing
pipeline includes both native modules and handlers implemented with C/C++ as well as man-
aged modules and handlers implemented with the .NET language of your choice. And the best
part of the story is that you can implement these handlers and modules by writing a class (with
any .NET language) that implements the well- known interfaces IHttpModule (for a module)
and IHttpHandler (for a handler), which you learned about in Chapter 5. That means you can
customize the request processing pipeline of the web server with standard ASP.NET know- how
and without digging into IIS- specific APIs and functions. But it gets even better: it also means
that in ASP.NET integrated mode, you can leverage ASP.NET- based modules for integrating
 common- purpose functionality into any other web application hosted in IIS 7.0 based on any
runtime. For example, that allows you to use ASP.NET forms authentication with classic ASP
applications or even PHP applications. This of course is true for any modules shipping out of
the box with ASP.NET as well as for any custom modules you are providing. Figure 18-10 illus-
trates this architecture.

IIS 7.0 Hosting Native and ASP.NET Modules/Handlers

HTML Response

requestedpage.aspx

Native and
Managed
Modules

ASP.NET Module

Native IIS 7.0 Module

Native or
Managed
Handlers

 Figure 18-10. ASP.NET integrated mode in IIS 7.0

CHAPTER 18 WEBSITE DEPLOYMENT 843

For backward compatibility, IIS 7.0 supports a classic mode. In this classic mode, requests
are handled the same way as with IIS 5.x and IIS 6.0. This backward compatibility mode is useful
for ISAPI extensions with functionality that relies deeply on the old processing model of IIS 5.x
or IIS 6.0 and that would not expect certain modules to be executed (as is the case with the inte-
grated module pipeline in IIS 7.0, by default). You will learn later in this chapter how to configure
classic and integrated mode in IIS 7.0.

The IIS 5.x Process Model
In the previous two sections, we analyzed how IIS handles requests based on filename extensions
included in the requested URL. Each of these requests finally needs to be executed in a process on
the operating system. As you know, requests are handled by ISAPI extensions in IIS 5.x. By default
these ISAPI extensions are loaded directly into the World Wide Web Publishing Service, which is
responsible for the entire request handling and processing in IIS 5.x.

As mentioned previously, requests are not processed directly by the aspnet_isapi.dll ISAPI
extension. In fact, the ASP.NET ISAPI extension is just a dispatcher. It receives requests and
forwards these requests to the ASP.NET runtime, which runs completely in the context of the
CLR. When hosting ASP.NET web applications on IIS 5.x- based systems, the ASP.NET runtime
actually runs in a separate worker process called aspnet_wp.exe. This worker process hosts
the ASP.NET runtime and performs the actual request processing. Within the worker process,
ASP.NET applications are isolated through AppDomains so that one web application cannot
accidentally damage the memory of another web application. The ASP.NET ISAPI extension
automatically starts the process if it is not running.

As mentioned before, any other ISAPI extension (either written in C++ or classic Visual
Basic) runs either directly in the web server process or in an external dllhost.exe process for
advanced isolation, as demonstrated in Figure 18-11.

ASP.NET
Application

aspnet_wp.exe

Internet
Information Services 5.x

Dllhost.exe

ISAPI /
ASP

Application

ISAPI Filters

Windows TCP/IP Network Stack

User Mode

Kernel Mode

Classic ASP
Application

Metabase
Configuration

 Figure 18-11. The IIS 5.x process model

CHAPTER 18 WEBSITE DEPLOYMENT844

As soon as the isolation level for a classic ISAPI extension- based application is set to High,
IIS executes the ISAPI application in a separate dllhost.exe process. As mentioned, ASP.NET
applications run in their own isolated worker process. The applications are isolated through
application domains. Application domains are mechanisms of the CLR for isolating .NET com-
ponents running in the same host process for security and reliability reasons. In addition, this
worker process provides a completely configurable process model that defines several settings
for increasing the reliability of web applications; settings include process recycling, worker
process memory limits, request queuing, and much more. Table 18-1 outlines the most impor-
tant settings of the <processModel> element in the machine.config configuration file. (You can
find a complete list in the documentation for the <processModel> element on MSDN Online.)

Table 18-1. The <processModel> Element in the machine.config File

Configuration Description
enable Enables or disables the ASP.NET process model. If the process model

is enabled, the ASP.NET runtime is executed in its own worker pro-
cess. If not, ASP.NET applications are executed directly in the web
server process.

timeout Specifies how long ASP.NET waits for a worker process before it
creates a new instance of the worker process. Therefore, if a worker
process hangs for some reason, other ASP.NET applications are still
available, because the runtime creates a new worker process.

idleTimeout Every worker process requires some resources in memory. There-
fore, if requests come in infrequently, the runtime can shut down
the process for saving resources. This value specifies how long the
runtime waits for shutting down the worker process if it is idle and
not processing any requests.

shutdownTimeout In a normal situation, the ASP.NET runtime sends a signal to the
worker process for shutting down normally. If the worker process
takes longer for shutting down than configured with this setting, it
just kills the worker process abnormally.

requestLimit If the number of requests processed by a worker process exceeds
this number, the runtime launches another worker process. The old
worker process completes processing the requests of the previously
attached requests and shuts down afterward.

requestQueueLimit If the number of requests in the worker process’s queue to be pro-
cessed exceeds this number, ASP.NET returns a 503 (server too busy)
error. This is useful in particular for mitigating denial-of- service
attacks in terms of required resources. (If too many requests come in
and every request requires a large amount of memory, the resources
on the server might not be enough.) You should carefully configure
this setting. The other problem is that if you configure this setting
with a too- low number, probably too many users would get a 503
error. This could result in a denial-of- service attack again in terms of
blocking real users’ requests while an attacker is flooding the server
with senseless requests. Therefore, the setting alone is not enough
for mitigating denial-of- service attacks (although it’s hard mitigating
them in general). Finding the appropriate application architecture
and avoiding things such as storing lots of data for anonymous users
are essential tasks.

restartQueueLimit Specifies the maximum number of requests queued while waiting for
the worker process to restart after an abnormal termination.

CHAPTER 18 WEBSITE DEPLOYMENT 845

Configuration Description
memoryLimit Specifies the maximum amount of memory in percent of the total

memory available on a system that can be used by the worker pro-
cess. If this amount is exceeded, the runtime automatically launches
a new process, reassigns requests to this new process, and shuts
down the old process. But remember, even if you have a system with
more than 2 GB of RAM and have configured this setting appro-
priately, you might get an out-of- memory exception if the process
requires more than 2 GB of RAM. The reason for this is that the op-
erating system by default doesn’t allow a process to have more than
2 GB. By enabling the 4GB RAM TUNING feature on the operating
system, a process can have up to 3 GB of RAM.

webGarden This setting is especially important for multiprocessor environments.
Basically, it allows the runtime to start more than one worker process
on one machine for request processing if the machine has more than
one CPU. Actually, you can start exactly one process per CPU if web
gardening is enabled for improving the performance of your web ap-
plication. This setting is used together with the cpuMask setting.

cpuMask This setting is used in conjunction with the webGarden setting.
If web gardening is enabled, this setting specifies a bitmask that
enables web application processing for different CPUs in the system.
Every CPU is represented by a bit, and if this bit is set to 1, the
ASP.NET runtime starts a worker process for the CPU. The bitmask
is stored as a hexadecimal value in this setting.

username Every process on a Windows system has to run under a specific
identity. The user name of the process model element specifies the
identity under which the worker process will run. Each access to the
file system or to any other unmanaged operating system resource is
verified against the process’s identity. The default for this setting is
Machine, which is a special setting that identifies the local machine’s
ASPNET user account.

password Specifies the password for the user account used for the worker
process. By default, this is set to the value AutoGenerate, which uses
the password automatically generated during the installation of the
.NET Framework.

responseDeadlockInterval The ASP.NET runtime pings the worker process in regular intervals to
verify if it is still alive. The process has to respond to this ping in the
time specified in this setting. If the process hangs for any reason and
doesn’t respond in the time specified here, the runtime starts a new
instance of the process and reassigns all requests in the request
queue.

maxWorkerThreads Allows you to configure the number of threads used for processing
requests within one worker process.

maxIoThreads Specifies the maximum number of IO threads per worker process
instance.

As successful as it is, this process model has two significant flaws. First, if an application
running directly in the web server process crashes, it can crash the whole web server. For that
reason, the IIS product team added the possibility of configuring isolation levels and execut-
ing web applications in separate processes, which solves this problem. However, by default,
this behavior is not applied to ASP.NET applications, because they run in the external ASP.NET
worker process (aspnet_wp.exe). It just affects classic ASP applications and any other type of
ISAPI extension (e.g., PHP, Perl, or custom C++ ISAPI extensions). To apply this behavior

CHAPTER 18 WEBSITE DEPLOYMENT846

to ASP.NET, you have to disable the process model through the <processModel> element in
machine.config, as described previously. Disabling the ASP.NET process model means that
you cannot use the process model features described. Furthermore, it means that for every
process, an instance of the CLR has to be loaded. Of course, you should keep in mind that
loading more instances of the CLR means that more memory is required.

The process model also has another, much bigger problem. Take a close look at the
request flow in Figure 18-11. You’ll see two context switches within the flow: the first one
happens between the kernel- mode network stack and the web server running in user mode,
and the second happens between the web server process and the external dllhost.exe or
aspnet_wp.exe worker process. Context switches are expensive operations, especially if pro-
cesses are running under different users. Data marshaling has to happen, and data must be
exchanged between processes. To increase performance and reliability, the IIS product team
has significantly changed the architecture of IIS with the release of Windows Server 2003, as
you will see in the “IIS 6.0 Process Model” section of this chapter.

Custom Identities for the Worker Process in IIS 5.x

As you have seen already in Table 18-1, the <processModel> element includes a user name and
password combination. By default, the user name is set to Machine, and the password is set to
Autogenerate. This setting automatically selects the ASPNET account, which is a low- privileged
account generated with the installation of ASP.NET. Of course, the password is generated dur-
ing installation as well and therefore unknown (which is not really a problem, because the
ASP.NET user is not intended to be used for interactive logon sessions).

Of course, if your code needs additional permissions (and it often will to access a file, data-
base, registry key, and so on), you can either grant ASPNET these permissions or instruct ASP.NET
to use a different account. In some cases, such as accessing network resources, it is necessary
to create a separate user account. In this case, you can enter the user name and password of
another user in the <processModel> element, as follows:

Of course, the fact that the user name and password are not encrypted in this file is not
really an optimal solution. Even worse, the new configuration encryption cannot be used
with the <processModel> element. Fortunately, another tool (which needs to be downloaded
separately) exists for encrypting this data (as well as user name and password settings stored
in the <identity> configuration entry). This tool is aspnet_setreg.exe, and you can download it
from the Microsoft website. The .NET runtime automatically decrypts the information. (This
functionality has been added with a patch for ASP.NET 1.0 and is included in ASP.NET 1.1. The
patch is still valid and works for ASP.NET 2.0 and ASP.NET 3.5 as well.)

IIS 6.0 Process Model
Windows Server 2003 was the first operating system released after the launch of the Trustwor-
thy Computing Initiative. IIS 6.0, therefore, is the first web server from Microsoft developed
completely within the parameters of the new security directives created during this initiative.
These directives have changed the whole development process in relation to security.

Actually, IIS 6.0 is not just a product upgrade; it’s a complete rewrite of the product with
security and reliability taken into consideration from the first moment of the development life

CHAPTER 18 WEBSITE DEPLOYMENT 847

cycle for the product. The basic concepts such as websites, virtual directories, and the meta-
base (which is XML- based in IIS 6.0) are still the same and configured in the same way, but the
way the server processes requests is significantly different compared to previous versions, as
you can see in Figure 18-12.

ISAPI
DLL

Filters

W3WP.EXE

CLASSIC
ASP

Filters

W3WP.EXE

ASP.NET

Filters

W3WP.EXE

HTTP.SYS (Kernel-Mode Driver)

Web Server
Administration

Service
(WAS)

Internet
Information Services

6.0

Metabase
Configuration

User Mode

Kernel Mode

 Figure 18-12. The IIS 6.0 process model

The web server is now split into several components. Instead of receiving requests from the
TCP/IP network stack, Windows Server 2003 includes a kernel- mode driver called HTTP.SYS,
which is responsible for receiving HTTP requests from clients. The kernel mode forwards requests
to any process that registers itself for specific URLs. Therefore, any application that registers with
the kernel- mode driver can receive HTTP requests without running a whole web server.

Note The method described previously will be used in the next generation of the operating system not
only for HTTP but also for several other protocols. The next generation of the messaging system, code- named
Indigo, will leverage this infrastructure as a hosting model as well. The hosting model is currently referenced
as WebHost and provides the basic runtime environment for several protocols (TCP, SOAP, and so on).

IIS leverages this infrastructure for launching W3C worker processes (W3WP.EXE). Every
worker process runs one or more applications, either ASP.NET- based applications or other types
of web applications. These worker processes provide a mechanism for isolation. As applications
are running in separate processes, a crash of one application doesn’t affect other applications at
all. In addition, IIS 6.0 introduces WAS (originally called Web Server Administration Service, now
called Windows Activation Service as it is not just used for HTTP- based requests), which moni-
tors the activities of worker processes. If a worker process fails, WAS automatically restarts the
process so that the application is still available after the crash. Furthermore, you can configure
a separate identity for every worker process. This allows you to configure additional isolation
through permissions of the account that’s configured for the worker process.

CHAPTER 18 WEBSITE DEPLOYMENT848

The worker processes are configured through application pools in the IIS management
console, which includes new configuration options for this process model. For every appli-
cation pool, the web server creates an instance of a worker process. Web applications (virtual
directories) are assigned to these application pools. Each application pool can run as many
applications as you want. The configuration for the application pools on one application
replaces the isolation level known from IIS 5.x configurations. Figure 18-13 shows the IIS
management console with the application pools as well as the property page of one virtual
directory with the application pool configured.

 Figure 18-13. Application pools and an application configured for one pool

Application pools allow you to easily configure different web applications to run under dif-
ferent accounts with different resource usage limits, use multiple CPUs, and provide even more
robust web application isolation. Of course, the drawback is that these separate instances of the
IIS worker process load separate instances of the CLR, which consumes additional memory.

Note Remember, the worker process isn’t limited to a single task. Both the ASP.NET worker process and
the IIS worker process run multiple threads at the same time so that they can serve simultaneous requests
from different users.

As mentioned, all the reliability and security options are configured at the application pool
level in IIS 6.0. Therefore, when running ASP.NET on IIS 6.0, the classic ASP.NET process model
with the configuration of the <processModel> element in machine.config is disabled, because all
the options introduced for the <processModel> are configured for IIS 6.0 worker processes now.

CHAPTER 18 WEBSITE DEPLOYMENT 849

Note You can use IIS 6.0 in IIS 5.x compatibility mode, which runs the web server with the process model
introduced by IIS 5.x. In that case, the ASP.NET process model of course is enabled again. Keep in mind that
using this process model leads to all the disadvantages of the old process model discussed previously. Although
the process model in IIS 6.0 is different, your application basically is not affected by this change except that you
activate recycling features and web gardening features of the application pool. As soon as you do that, you have
to keep in mind that your application process will be shut down when recycling, which means that features such
as session state or any other information is lost if you just keep it directly in the process. For ASP.NET applica-
tions, you can configure session state to be stored either in an external process or in SQL Server to handle this
problem. For classic ASP applications or other types of applications such as PHP, Perl, or custom ISAPI exten-
sions, you have to handle this in your application on your own.

Every setting introduced with the ASP.NET process model maps to a corresponding
setting for application pools in IIS 6.0. Table 18-2 gives an overview of which setting in the
<processModel> element maps to which setting of an application pool.

Table 18-2. IIS 6.0 Equivalents for the <processModel> Settings

IIS 6.0 Setting
Configuration
Tab

<processModel>
Setting Description

Health enable Enables/disables the ASP.
NET <processModel>.

Enable Pinging Health timeout Pinging is performed by
WAS for detecting the
worker process’s health
state. It is nothing more
than a local RPC to the
process, and if the worker
process doesn’t respond
in an appropriate time, it
kills the process and starts
a new one.

Rapid-Fail protection Health Rapid fail protection is
used together with pinging.
If a process crashes several
times within a specified
amount of time, the web
server can be configured
to not restart it again. This
enables you to avoid the
situation of bothering the
server with continuously
restarting a worker process
and therefore having less
time available for pro-
cessing requests of other
worker processes.

Continued

CHAPTER 18 WEBSITE DEPLOYMENT850

Table 18-2. Continued

IIS 6.0 Setting
Configuration
Tab

<processModel>
Setting Description

Startup time limit Health Specifies the maximum
amount of time a worker
process may take for
starting up. If the worker
process needs more time,
startup is canceled by WAS.

Shutdown time limit Health shutdownTimeout Specifies the maximum
amount of time the
worker process may take
for a normal shutdown. If
the worker process needs
more time for shutting
down, WAS just kills the
process.

Idle timeout Performance idleTimeout If the worker process has
no request to handle for
the amount of time speci-
fied in this setting, WAS
shuts it down.

Request queue limit Performance requestQueueLimit Limits the number of
requests in the kernel
request queue to avoid
flooding the server with
requests.

Enable CPU monitoring Performance N/A Specifies the maximum
CPU charge for a worker
process. If the worker pro-
cess charges the CPU more
than configured here you
can configure IIS to shut it
down or keep it alive but in
quarantine for debugging
(called orphaning).

Web Garden Performance webGarden This setting allows you
to configure IIS so that it
creates multiple processes
for one application pool.
Each of these processes
is then able to process re-
quests for a web applica-
tion. Actually, IIS 6.0 can
launch multiple processes
for a pool even if the ma-
chine has just one CPU.

CHAPTER 18 WEBSITE DEPLOYMENT 851

Table 18-2. Continued

IIS 6.0 Setting
Configuration
Tab

<processModel>
Setting Description

SMPProcessorAffinityMask cpuMask Currently this setting
can be edited only
in the IIS metabase.
xml file stored in the
<DRIVE>:\WINDOWS\
SYSTEM32\INTESRV
directory. Together with
the SMPAffinitized attri-
bute set to true, it allows
you to specify the CPU
mask for web garden-
ing on multiprocessor
machines.

Recycle in minutes Recycling Allows you to specify that
the worker process will
be restarted based on the
specified time interval.

Recycle in number
of requests

Recycling requestLimit Recycles a worker process
after it has processed
the specified number of
requests.

Recycle at following times Recycling IIS 6.0 allows you to spec-
ify dedicated times for
worker process recycling.

N/A N/A restartQueueLimit See the documentation
for the <processModel>
element.

Memory Recycling Recycling memoryLimit IIS 6.0 allows you to spec-
ify two separate memory
limits. The first one is
the memory used by
the application, and the
second option specifies
the virtual memory (used
plus reserved memory) of
the application.

Application pool identity Identity username Specifies the user identity
for an application pool.
The default is the restricted
Network Service account
with least privileges. You
can change this setting
either to the local system
that has a couple of addi-
tional privileges on the lo-
cal machine or to the local
system (what is not recom-
mended, as you should run
your applications always
with least privileges; you
can find more information
on that in Part 4).

Continued

CHAPTER 18 WEBSITE DEPLOYMENT852

Table 18-2. Continued

IIS 6.0 Setting
Configuration
Tab

<processModel>
Setting Description

Application pool identity Identity password Specifies the password
for the application pool’s
identity.

responseDeadlock
Interval

See the <processModel>
configuration options.

maxWorkerThreads See the <processModel>
configuration options.

maxIoThreads See the <processModel>
configuration options.

This overview should give you a fairly good understanding of how IIS 6.0 manages pro-
cesses for handling requests and how it works together with ASP.NET. Next, we will take a look
at how IIS 7.0 builds on top of the investments from IIS 6.0.

The IIS 7.0 Process Model
While IIS 7.0 introduces deep architectural changes in terms of configuration and modulariza-
tion as well as ASP.NET integration, it builds on top of the investments made with IIS 6.0 in
terms of the underlying process model for handling requests. That means IIS 7.0 itself under-
stands the notion of worker processes configured through application pools as IIS 6.0 does.
But when running IIS 7.0 in ASP.NET integrated mode, ISAPI extensions are not responsible
for executing requests primarily, as you can see in Figure 18-14.

ISAPI
DLL

Filters

W3WP.EXE

Module

W3WP.EXE

Module

W3WP.EXE

Module

ModuleModuleModule

HandlerModule

ISAPI
Extension

Handler

W3WP.EXE

HTTP.SYS TCP.SYS

Windows
Activation
Service
(WAS)

Internet
Information Services

7.0

Central Server
Configuration

User Mode

Kernel Mode

 Figure 18-14. The IIS 6.0 process model extended in IIS 7.0

While the activation model introduced with IIS 6.0 is very powerful, it is limited to the
HTTP protocol. IIS 7.0 generalizes this model of process activation and makes it available for
several protocols. Therefore, WAS has been re- architected to a general- purpose component

CHAPTER 18 WEBSITE DEPLOYMENT 853

and is now called the Windows Activation Service. This allows IIS to host services exposing
functionality through a variety of protocols such as native TCP/IP. Furthermore, IIS 7.0 allows
each worker process (application pool) to run in two modes: ASP.NET integrated mode for
the new module and handler- based request processing that allows managed and native mod-
ules and handlers to be included in the request processing life cycle; and classic mode, which
handles request the same way as IIS 6.0 does. Classic mode is used for compatibility with older
ISAPI extensions that heavily rely on the old processing model.

Installing IIS
Even though IIS is included with Windows, it’s not installed by default. That’s because Microsoft
recognizes that allowing Internet access to any part of your computer is a security risk, and it’s
not an operation that should be performed automatically if it’s not needed.

Note IIS is available only if your computer is running Windows 2000, Windows 2000 Server, Windows XP
Professional, or Windows Server 2003. Each version of Windows has a slightly different version or configura-
tion of IIS. As a general rule of thumb, when you want to publish your website, you should use a server
version of Windows to host it. Desktop versions such as Windows 2000, Windows XP Professional, and
Windows Vista are fine for development, but they are not optimized for hosting highly scalable applications
with lots of simultaneously working users, which makes them much less suitable for real- world use. Win-
dows Server 2003 and Windows Server 2008 are different from the other operating systems, as by default
IIS 6.0/7.0 is installed in a locked- down mode that allows processing static content and ASP.NET applications
only. Other types of applications, even classic ASP, must be explicitly enabled by administrators.

The process of configuring IIS depends on the version of Windows you have installed. The
next two sections lead you through the steps you need to perform. Another general point you
have to bear in mind is that you probably need to install different versions of the .NET Frame-
work after you have installed IIS. For example, Windows 2000 and Windows XP ship with no
version of the .NET Framework at all. Therefore, after you’ve installed IIS on these operating
system versions, you need to install the version of the .NET Framework you want to work with.
Windows Server 2003 ships with the .NET Framework 1.1 installed by default. Therefore, after
you’ve installed IIS 6.0 on Windows Server 2003, you can run ASP.NET 1.1–based applications
if you have activated them as outlined in the subsequent section. If you want to use newer ver-
sions of ASP.NET on Windows Server 2003, you need to install them after you’ve installed IIS.

Last but not least, we have Windows Vista and Windows Server 2008, which ship with the
.NET Framework 2.0 and the .NET Framework 3.0 by default (3.0 is built on top of 2.0). So you’re
able to run ASP.NET 2.0 applications with or without .NET Framework 3.0 functionality out
of the box. But if you want to use ASP.NET 3.5, you need to install the .NET Framework 3.5
after you have installed IIS on these operating systems. Remember that the .NET Framework 3.5
sits on top of the .NET Framework 2.0 and 3.0 as well—so it does not install a new version of
the CLR at all. But the .NET Framework 3.5 redistributable includes several fixes to the 2.0
and 3.0 versions—therefore, you should briefly test your applications before deploying the
.NET Framework 3.5 on your production machines even if you’re not going to use 3.5- specific
features.

CHAPTER 18 WEBSITE DEPLOYMENT854

Installing IIS 5
On a Windows 2000 Professional, Windows 2000 Server, or Windows XP Professional com-
puter, you can follow these steps to install IIS:

 1. Click Start, and select Settings Control Panel.

 2. Choose Add or Remove Programs.

 3. Click Add/Remove Windows Components.

 4. If Internet Information Services (IIS) is checked (see Figure 18-15), you already have
this component installed. Otherwise, click it, and then click Next to install the required
IIS files. You’ll need to have your Windows setup CD handy.

 Figure 18-15. IIS is currently installed.

After you have installed IIS 5 on your machine, you can install the .NET Framework ver-
sion you want to work with. For ASP.NET 3.5, you need to install the .NET Framework 2.0, the
.NET Framework 3.0, and the .NET Framework 3.5.

Installing IIS 6
If you’re using Windows Server 2003, you can install IIS through the Add/Remove Windows
Components dialog box, but it’s more likely that you’ll use the Manage Your Server Wizard.
Here’s how it works:

 1. Select Add or Remove a Role from the main Manage Your Server window. This
launches the Configure Your Server Wizard.

 2. Click Next to continue past the introductory window. The setup wizard will test your
available and enabled network connections and then continue to the next step.

CHAPTER 18 WEBSITE DEPLOYMENT 855

 3. Now you choose the roles to enable. Select Application Server (IIS, ASP.NET) from the
list, as shown in Figure 18-16, and click Next.

 4. Click the Enable ASP.NET check box on the next window (shown in Figure 18-17). If
you don’t, IIS will be enabled, but it will be able to serve static content (such as ordi-
nary HTML pages) only. Click Next to continue.

 5. The next window shows a summary of the options you’ve chosen. Click Next to con-
tinue installing IIS 6.0 and ASP.NET 2.0. Once the process is complete, you’ll see a final
confirmation message. Remember that with IIS 6.0, only ASP.NET 2.0 gets installed.
In order to use ASP.NET 3.5, you need to install both the .NET Framework 3.0 and the
.NET Framework 3.5 after you’ve installed IIS 6.0.

Note The remaining parts of this chapter describe website administration for IIS 5.x and 6.0 together
as administering these two versions of IIS is very similar. IIS 7.0 administration is covered separately as of
course the administration with the new management console is very different from IIS 5.x / IIS 6.0.

 Figure 18-16. Choosing an application server role

CHAPTER 18 WEBSITE DEPLOYMENT856

 Figure 18-17. Enabling other services

Installing IIS 7.0 on Windows Vista
On Windows Vista, IIS is installed via the Programs feature of the Control Panel. When open-
ing the Programs feature details in the Control Panel, at the very top of the page you will find
the Programs and Features option, where you need to select the link “Turn Windows features
on or off.” You can easily find this option by opening the Control Panel and entering the search
terms program, on, and off into the search box. The Windows Vista Control Panel will filter its
contents based on these search terms, and there should be just a few results remaining. You
have to find and click the “Turn Windows features on or off” link in the result set displayed in
the Control Panel window after you have entered the search terms.

After selecting the “Turn Windows features on or off” link, you will need to confirm the UAC
(user account control) security dialog if UAC is enabled on your machine (which by default is the
case). Afterward, the Windows Features dialog appears, which allows you to select features. It
displays a tree of features, from which you need to find Internet Information Services.

CHAPTER 18 WEBSITE DEPLOYMENT 857

 Figure 18-18. Configuring IIS 7.0 on Windows Vista

As you can see in Figure 18-18, the feature tree lets you select the features installed with
IIS in a very fine- grained fashion. For ASP.NET applications, you have to make sure to activate
the ASP.NET option within the Application Development Features sub- tree. After clicking OK,
Windows will install IIS 7.0. Next, you can open the IIS management console just by opening
the Start menu and typing IIS into the search box for finding the shortcut to the management
console. As the management console is configured to run with administrative privileges, you
will be prompted with a User Account Control confirmation dialog each time you start the IIS
management console if you have UAC activated (which is the default).

After you have installed IIS 7.0 on Windows Vista, you can install the .NET Framework 3.5.
As Vista ships with .NET 2.0 and .NET 3.0 already, you don’t need to install any additional .NET
Framework version.

CHAPTER 18 WEBSITE DEPLOYMENT858

Installing IIS 7.0 on Windows Server 2008
On Windows Server 2008, IIS 7.0 is installed through the Server Manager, which can be found
in the Administrative Tools program group of the Start menu. Similar to Windows Server 2003,
you can configure server roles in Windows Server 2008 as well. As one of these roles is the Web
Server role, this is the place where you need to go for installing IIS 7.0. Here is how it works in
detail:

 1. Open the Start menu, navigate to All Programs Administrative Tools, and select
Server Manager.

 2. Within the Server Manager, select the Roles node in the left tree view for configuring
server roles. Figure 18-19 shows the Roles Configuration option in the Server Manager.

 3. Now you need to click the Add Roles link in the right section of the window. This opens
a wizard that allows you to add a new role to your server.

 4. Follow the steps within the wizard until you reach the Select Server Roles step. There
you need to check the Web Server role from the list of roles (shown in Figure 18-20).

 5. The wizard may notify you that it needs to install other roles or features that are required
for the Web Server role. If so, just confirm the dialog by clicking Add Required Features
and proceed with the wizard, as shown in Figure 18-20.

 6. After you confirm installation of any dependent roles, the wizard continues with
a detailed configuration of the Web Server role, which is shown in Figure 18-21. The
first step is just an introduction you can step through. The next step is the important
one. Similar to Windows Vista, the wizard allows a very fine- grained selection of the
features to be installed with IIS 7.0, as you can see in Figure 18-21.

 7. Again, while selecting services, the wizard might notify you that it needs to install other
services of the Web Server role that might be required for a service you selected. You
should verify these notifications and confirm them if the feature you selected is one
you really require.

 8. Finally, the wizard will display a summary page. After finishing the wizard, IIS 7.0 will
be installed with the services you selected while walking through the wizard.

CHAPTER 18 WEBSITE DEPLOYMENT 859

 Figure 18-19. The Server Manager in Windows Server 2008

 Figure 18-20. Adding the Web Server role

CHAPTER 18 WEBSITE DEPLOYMENT860

 Figure 18-21. Configuring Web Server role services

After you have installed IIS 7.0 on Windows Server 2008, you can install the .NET Frame-
work 3.5. As Windows Server 2008 ships with .NET 2.0 and 3.0, you don’t need to install any
additional .NET Framework version.

Managing Websites
When IIS is installed, it automatically creates a directory named c:\Inetpub\wwwroot, which
represents the default website that is automatically created. Any files in this directory will
appear as though they’re in the root of your web server.

To add more pages to your web server, you can copy HTML, ASP, or ASP.NET files directly
to the c:\Intetpub\wwwroot directory. For example, if you add the file TestFile.html to this
directory, you can request it in a browser through the URL .
You can even create subdirectories to group- related resources. For example, you can access
the c:\Intetpub\wwwroot\MySite\MyFile.html file through a browser using the URL

. If you’re using Visual Studio to create new web projects, you’ll
find that it automatically generates new subdirectories in the wwwroot directory. So, if you cre-
ate a web application named WebApplication1, the files will be stored in c:\Inetpub\wwwroot\
WebApplication1 and will be made available through .

CHAPTER 18 WEBSITE DEPLOYMENT 861

Caution If you are running Visual Studio on Windows Vista, you need to run it with administrative privi-
leges in order to create new web applications (virtual directories) directly from within Visual Studio on IIS.
Furthermore, you need to run Visual Studio with administrative privileges if you want to debug web applica-
tions hosted in IIS, as only administrators have the permission to attach to processes for debugging. To run
Visual Studio on Vista with administrative privileges when User Account Control is activated, you need to
 right- click the Visual Studio shortcut in the Start menu and select the Run as Administrator option from the
context menu. You can also configure your shortcut in the shortcut properties to always run as administrator
to save you from right- clicking the symbol every time you want to start Visual Studio.

Using the wwwroot directory is straightforward, but it makes for poor organization. To
properly use ASP or ASP.NET, you should create a new virtual directory for each web applica-
tion you create. With a virtual directory, you can expose any physical directory (on any drive
on your computer) on your web server as though it were located in the c:\Inetpup\wwwroot
directory.

To create and manage virtual directories, you need to use the administrative IIS Manager
utility. The steps for doing this are essentially the same in IIS 5.x and IIS 6.0, and are slightly
different in IIS 7.0. The next few sections walk you through the steps for managing virtual direc-
tories and explain the settings that you can configure for all three: IIS 5.x, IIS 6.0, and IIS 7.0.

Managing Virtual Directories and Websites with IIS 5.x and IIS 6.0
To start the IIS management console on Windows XP or Windows Server 2003, select Settings

 Control Panel Administrative Tools Internet Information Services from the Start menu.
The first step for creating a new website is typically creating the physical directory where the
pages will be stored (for example, c:\MySite). The second step is to expose this physical direc-
tory as a virtual directory through IIS. This means that the website becomes publicly accessible
to other computers that connect to your computer over HTTP.

To create a new virtual directory for an existing physical directory, right- click the Default
Website item in the IIS tree, and choose New Virtual Directory from the context menu.
A wizard will start to manage the process. As you step through the wizard, you’ll need to pro-
vide three pieces of information: an alias, a directory, and a set of permissions. The following
sections describe these settings.

Alias
The alias is the name a remote client will use to access the files in this virtual directory. For
example, if your alias is MyApp and your computer is MyServer, you can request pages using
a URL such as .

Directory
The directory is the physical directory on your hard drive that will be exposed as a virtual
directory. For example, c:\Intetpub\wwwroot is the physical directory that is used for the root
virtual directory of your web server. IIS will provide access to all the allowed file types in this
directory.

CHAPTER 18 WEBSITE DEPLOYMENT862

Permissions
Finally, the wizard asks you to set permissions for your virtual directory, as shown in
 Figure 18-22. You can set several permissions:

Read: This is the most basic permission—it’s required in order for IIS to provide any
requested files to the user. If this is disabled, the client will not be able to access ASP or
ASP.NET pages or static files such as HTML and images. Note that even when you enable
read permission, there are several other layers of possible security in IIS. For example,
some file types (such as those that correspond to ASP.NET configuration files) are auto-
matically restricted, even if they’re in a directory that has read permission.

Run scripts: This permission allows the user to request an ASP or ASP.NET page. If you
enable read but don’t allow script permission, the user will be restricted to static file types
such as HTML documents. ASP and ASP.NET pages require a higher permission because
they could conceivably perform operations that would damage the web server or compro-
mise security.

Execute: This permission allows the user to run an ordinary executable file or CGI appli-
cation. This is a possible security risk as well and shouldn’t be enabled unless you require
it (which you won’t for ordinary ASP or ASP.NET applications).

Write: This permission allows the user to add, modify, or delete files on the web server.
This permission should never be granted, because it could easily allow the client com-
puter to upload and then execute a dangerous script file (or at the least, use all your
available disk space). Instead, use an FTP site, or create an ASP.NET application that
allows the user to upload specific types of information or files.

Browse: This permission allows you to retrieve a full list of files in the virtual directory,
even if the contents of those files are restricted. Browse is generally disabled, because it
allows users to discover additional information about your website and its structure as
well as exploit possible security holes. On the other hand, it’s quite useful for testing, so
you might want to enable it on a development computer.

 Figure 18-22. Virtual directory permissions

CHAPTER 18 WEBSITE DEPLOYMENT 863

To host an ASP.NET application, you need to enable only the “Read” and “Run scripts”
permissions (the first two check boxes). If you’re using a development computer that will
never act as a live web server, you can allow additional permissions. Keep in mind, however,
that this could allow other users on a local network to access and modify files in the virtual
directory. You can also change the virtual directory permissions after you have created the vir-
tual directory.

Virtual Directories and Web Applications in IIS 5.x and IIS 6.0
You can manage all the virtual directories on your computer in the IIS utility by expanding the
tree under the Default Website item. You’ll notice that items in the tree have three types of
icons:

Ordinary folder: This represents a subdirectory inside another virtual directory. For
example, if you create a virtual directory and then add a subdirectory to the physical
directory, it will be displayed here.

Folder with a globe: This represents a virtual directory.

Package folder: This represents a virtual directory that is also a web application. By default,
when you use the wizard to create a virtual directory, it’s also configured as a web applica-
tion. This means it will share a common set of resources and run in its own application
domain.

When you create a virtual directory with the Virtual Directory Creation Wizard, it’s also
configured as a web application. This is almost always what you want. If your virtual directory
isn’t a web application, you won’t be able to control its ASP.NET configuration settings, and
you won’t be able to create a web application in it using Visual Studio .NET.

Folder Settings in IIS 5.x and IIS 6.0
IIS makes it easy to configure virtual directories after you’ve created them. Simply right- click
the virtual directory in the list and choose Properties. The Properties window will appear, with
its information divided into several tabs. The following sections describe some of the most
important settings.

Virtual Directory

The Virtual Directory tab includes options that allow you to change the permissions you set
when creating the virtual directory with the wizard. You can also see the local path that cor-
responds to this virtual directory. If you’re looking at the root of a virtual directory, you can set
the local path to point to a different physical directory by clicking the Browse button. If you’re
looking at an ordinary subdirectory inside a virtual directory, the local path will be read- only.

Remember, when you create a virtual directory with the wizard, it’s also configured as
a web application. You can change this by clicking the Remove button next to the application
name. Similarly, you can click the Create button to transform an ordinary virtual directory into
a full- fledged application. Usually you won’t need to perform these tasks, but it’s nice to know
they are available if you need to make a change. They can be useful when transplanting an
application from one computer to another.

CHAPTER 18 WEBSITE DEPLOYMENT864

Note Any changes that you make will be automatically applied to all subdirectories. If you want to make
a change that will affect all the virtual directories on your server, right- click the Default Website item and
choose Properties. The change will be cascaded down to all the subdirectories that are contained in the
current virtual directory. If your change conflicts with the custom settings that you’ve set for a virtual direc-
tory, IIS will warn you. It will present a list of the directories that will be affected and give you the chance to
specify exactly which ones you want to change and which ones you want to leave as is.

File Mappings

As explained earlier in this chapter, IIS hands off requests for ASP pages to the ASP ISAPI exten-
sion and sends requests for ASP.NET pages to the ASP.NET ISAPI extension. Furthermore, you
have seen that IIS decides the designated ISAPI extension based on the filename extension of
the requested URL. Actually, you can configure these file mappings on a per- virtual directory
basis. When ASP.NET is installed, it modifies the IIS metabase to add the mappings for file
types that it needs to process. To view these file mappings, click the Configuration button on
the Virtual Directory tab. You’ll see the window shown in Figure 18-23.

 Figure 18-23. File mappings

 Table 18-3 lists the ASP.NET file mappings.

CHAPTER 18 WEBSITE DEPLOYMENT 865

Table 18-3. The ASP.NET File Mappings

File Extension Description
.aspx These are ASP.NET web pages.

.ascx These are ASP.NET user controls. User controls are similar to web
pages, except that they can’t be accessed directly. Instead, they must
be hosted inside an ASP.NET web page.

.asmx These are ASP.NET web services, which allow you to expose useful
functionality to other applications over HTTP.

.asax This extension is used for the global application file, which you can use
to react to global events, such as when a web application first starts.

.ashx This extension is used for HTTP handlers, which allow you to process
requests without using the full- fledged ASP.NET web- page model.

.axd This extension is used for the trace.axd application extension, which
allows you to view trace messages while debugging.

.rem and .soap These extensions identify that IIS is hosting an object that can be
called by .NET remoting. The remoting technology is similar to web
services, but it’s a proprietary .NET solution that doesn’t have the
same features for cross- platform capability.

.cs, .csproj, .vb, .vbproj,

.config, .resx, .licx, .webinfo,
and .vsdisco

These file types are used by ASP.NET, but they can’t be directly
requested by clients. However, ASP.NET registers them so that it can
explicitly prevent users from accessing these files, regardless of the
IIS security settings.

Is there any reason you should explicitly change an ASP.NET file mapping? Probably not.
If you have multiple versions of ASP.NET installed at one time, you may want to configure the
mappings differently in different directories. That way, each website can use the version of
ASP.NET that it was compiled with. However, there’s no reason to make this sort of change by
hand. Instead, you can use the aspnet_regiis.exe command- line utility.

In other cases, you might want to add a file mapping. For example, you could specify that
the ASP.NET service will handle any requests for GIF images by adding a mapping for the .gif
file type that points to the aspnet_isapi.dll file. This would allow you to use ASP.NET security
services for GIF file requests. (Note that this sort of change can slow down performance for GIF
requests, because these requests will need to trickle through more layers on the server.)

Caution You should never remove any of the ASP.NET file type mappings! If you remove the .aspx or
.asmx file types, web pages and web services won’t work. Instead of being processed by the ASP.NET ser-
vice, the raw file will be sent directly to the browser. If you remove other files types such as .vb or .config,
you’ll compromise security. ASP.NET will no longer process requests for these types of files, which means
that malicious users will be able to request them through IIS and inspect the code and configuration informa-
tion for your web application.

CHAPTER 18 WEBSITE DEPLOYMENT866

Mapping Your Own File Extensions to ASP.NET in IIS 5.x and IIS 6.0

In IIS 5.x and IIS 6.0, it is very common in many cases to map your own file extensions to the
ASP.NET runtime so that these file extensions are processed by ASP.NET, or, more exactly,
your web application. For this purpose, you have to perform the following steps:

IIS management console to map your filename extension to the appropriate
version of the ASP.NET ISAPI DLL, as described earlier in this chapter.

HTTP handler in your solution. An HTTP handler is a class that imple-
ments the IHttpHandler interface. The handler implements just one simple method
called ProcessRequest. Within this method, you add code for processing the request with
the previously specified filename extension. In this way, for example, you can include
code that reads a JPG image from a database instead of the file system. You can further-
more include functionality for caching the images or any type of information using the
ASP.NET cache.

runtime knows that a file extension has to be processed with the previously created
HTTP handler.

In Chapter 23, you will learn about the details for mapping filename extensions to the
ASP.NET runtime and creating an HTTP handler when it comes to securing custom filename
extensions through the ASP.NET runtime.

Documents

This tab allows you to specify the default documents for a virtual directory. For example, con-
sider the virtual directory . A user can request a specific page in this
directory using a URL such as . But what happens if
the user simply types into a web browser?

In this case, IIS will examine the list of default documents defined for that virtual direc-
tory. It will scan the list from top to bottom and return the first matching page. Using the list in
 Figure 18-24, IIS will check first for a default.htm file and then for default.asp, index.htm, iis-
start.asp, and default.aspx. If none of these pages is found, IIS will return the HTTP 404 (page
not found) error.

You can configure the default document list by removing entries or adding new ones.
Most ASP.NET applications simply use default.aspx as their home page.

CHAPTER 18 WEBSITE DEPLOYMENT 867

 Figure 18-24. The default document list

Custom Errors

The Custom Errors tab allows you to specify an error page that will be displayed for specific
types of HTTP errors (see Figure 18-25). You can use ASP.NET configuration to replace HTTP
errors or application errors with custom messages. However, these techniques won’t work if
the web request never makes it to the ASP.NET service (for example, if the user requests an
HTML file that doesn’t exist). In this case, you may want to supplement custom ASP.NET error
handling with the appropriate IIS error pages for other generic error conditions.

CHAPTER 18 WEBSITE DEPLOYMENT868

 Figure 18-25. IIS custom errors

Managing Application Pools in IIS 6.0
Through application pools you can configure the number of worker processes launched by IIS
as well as more configuration details for these processes. For every application pool config-
ured in IIS Manager, the web server starts at least one worker process. In every worker process,
multiple applications of any type—from ISAPI DLLs to classic ASP and of course ASP.NET—
can be hosted. For the purpose of managing the application pool, IIS 6.0 Manager includes
a new configuration node called Application Pools, as shown in Figure 18-13 earlier in this
chapter (of course, you won’t find this node in IIS 5.x–based configuration managers).

In this section, you will learn about some of the details of creating and configuring appli-
cation pools with the new IIS management console of Windows Server 2003.

Note The IIS management console has always had the capability of managing web servers on remote
machines. You just had to add the server in IIS Manager to the root node, and then you were able to configure
this remote machine. Of course, if you are using Windows XP running IIS 5.x, the IIS management console
doesn’t know about application pools; therefore, you can’t manage them from Windows XP machines. For
that purpose, Microsoft offers a tool called Internet Information Services (IIS) 6.0 Manager for Windows XP
on the Microsoft downloads page, which can be installed on Windows XP machines for administering IIS 6.0
instances

en).

CHAPTER 18 WEBSITE DEPLOYMENT 869

Creating Application Pools
As you have seen already, the IIS 6.0 Manager displays application pools in a separate configu-
ration node. A default installation consists of one application pool called the DefaultAppPool.
This application pool runs as a network service, and every web application in the default web-
site is configured to run in this application pool.

You may want to create additional application pools for other applications on a web
server for several reasons:

Stability problems: Maybe you want to run older applications with some stability prob-
lems in a separate application pool so that these problems don’t affect other applications.

Memory leaks: A resource- intensive application or an old application with a memory leak
is a good candidate for regular recycling. In this case, you can create a separate pool and
configure process recycling. Applications running in other pools are not affected by these
settings.

Security: Security configuration might be another reason for encapsulating applications
in separate pools. For example, if you have web applications that require specific permis-
sions (such as accessing only specific SQL Server databases or the Windows certificate
store), you can create your own Windows user having the necessary permissions, con-
figure a new application pool with this user, and then run web applications that require
only these specific permissions in this pool. All the other applications in other application
pools still run under the low- privileged Network Service account.

Administration: In web hosting scenarios, you can isolate administrative applications as
well as applications for different customers (or groups of customers) through application
pools; this way, web applications from one customer don’t have access to resources such
as databases or the file system of other customers’ applications because of the permis-
sions for a configured application pool identity.

As you can see, several useful scenarios exist for creating separate application pools for
different applications or groups of applications. Application pools (worker processes) provide
you with a mechanism for isolating these applications based on different criteria such as secu-
rity or reliability.

Caution Recycling an application pool (worker process) basically means stopping the old process and
starting a new instance of a worker process for the application pool. Therefore, any data stored in the pro-
cess space of the worker process is lost when the pool is recycled. That said, an application needs to be
“designed” for recycling, or recycling should take place at a time where traffic on the website is not heavy.
Designing applications for recycling involves the same steps as designing an application for a web farm;
using external session state, for example, is one of the key needs for preparing an application for recycling
because usually session state is stored in the process space of the worker process. Fortunately, ASP.NET
comes with a mechanism for externalizing session state and storing session data either in an external state
server process or in SQL Server. In that case, session state is not lost if a process is recycled (or in the case
of the web farm, the request is processed by another server in the farm).

CHAPTER 18 WEBSITE DEPLOYMENT870

You can create application pools just by double- clicking the Application Pools node (or
an existing application pool) and selecting New Application Pool from the context menu, as
demonstrated in Figure 18-26.

 Figure 18-26. First step for creating an application pool

You can create an application pool either with the dialog box presented in Figure 18-27
or through a previously exported XML configuration file (created by selecting All Tasks Save
Configuration to a File from the context menu shown in Figure 18-26). When selecting the first
option (just a new application pool), you are given two choices, as shown in Figure 18-27.

 Figure 18-27. Creating a new application pool

CHAPTER 18 WEBSITE DEPLOYMENT 871

You can create the application pool with a set of default settings defined by IIS, or you can
create the pool based on the settings already present in another application pool. As soon as
you have created the application pool, you will see it in the list of application pools, and you
can configure it by right- clicking it and selecting Properties from the context menu, as shown
in Figure 18-28.

 Figure 18-28. The properties of an application pool

Basically, you can create as many application pools as you want; IIS doesn’t know any
limits—theoretically. Of course, every process needs a basic set of resources; therefore, the
number of processes is limited by the resources of the web server machine.

Application Pools and Web Applications
Once you have created an application pool, you can run web applications within this pool.
As mentioned previously, isolating web applications takes place through application pools
now; therefore, when configuring virtual directories and websites, the application pool setting
replaces the old Isolation Mode setting introduced with IIS 5.x, as you can see in Figure 18-29.

CHAPTER 18 WEBSITE DEPLOYMENT872

 Figure 18-29. Configuring the application pool

For configuring an application pool, just right- click the virtual directory for which you
want to configure the application pool and then change the setting to the pool you want the
application to run in.

You don’t need to restart anything—neither the web server nor the application pool. The
application runs in the new pool from the moment you click the OK or Apply button.

Custom Application Pool Identities
As previously mentioned, one of the useful isolation strategies you can implement with appli-
cation pools is security. For every application with special security permissions, you can create
a separate Windows user having those permissions and configure an application pool with this
Windows user as an identity. Then only applications that require these permissions will be put
into this application pool.

CHAPTER 18 WEBSITE DEPLOYMENT 873

Tip By the way, application pools are a perfect way to use Windows authentication when connecting to
SQL Server. This is more secure than SQL authentication, as you don’t have to store user names and pass-
words in your web.config file. Also, it uses Kerberos if a KDC (in terms of Windows, an Active Directory with
a Primary Domain Controller) is in place. You just create a new Windows user, configure the application pool
with the user, add the user to the SQL Server database the application needs to access, and then configure
the application to run in this application pool. Applications running in other pools then don’t have access to
the database (except if you configure them with the same identity or add the identity of another pool to the
SQL Server database’s users).

You can configure the identity for every application pool by right- clicking the pool in IIS
management console, selecting Properties, and then going to the Identity tab of the property
page, as demonstrated in Figure 18-30.

 Figure 18-30. Configuring the application pool identity

CHAPTER 18 WEBSITE DEPLOYMENT874

In this dialog box, you basically have two options: the first one is selecting from a couple
of predefined accounts, and the second one is selecting your own user account by specifying
the Windows user name and password for this account.

Note IIS uses the same mechanism for storing these credentials as the Windows Service Control Man-
ager does. It encrypts the credentials using the data protection API (DPAPI) of the system with a private key
from the operating system and stores the encrypted version in the metabase. Of course, this system’s private
key is accessible only when you have access to the local machine and the appropriate permissions on the
machine.

The predefined accounts you can select are as follows:

Network Service: This is a restricted account with fewer privileges than the Local System
account. This account is intended to be used for applications that require access to the
network and need to be accessed from other machines.

Local Service: This account is more restricted than the Network Service account and is
intended to be used for services that don’t require additional network access. Services
running on this account don’t have the permission to access other network resources;
they can access local resources only.

Local System: The well- known Local System account, of course, still exists. But we rec-
ommend never using this account for web applications of any type, as this is the most
powerful account of a system. It can perform any action on the local system, so any appli-
cation running under this account can also do this. Basically, your strategy should be
to always run applications with a least- privileged account—this means that an account
should not have more privileges than the application actually needs. Therefore, if some-
one is able to break (hack) the application, the damage will be limited to a minimum, as
the account under which the application is running is restricted.

The other possibility you have is creating your own identity and configuring this identity
with the application pool. This gets interesting if you have an application with specific permis-
sions such as accessing only specific databases or accessing the Windows certificate store for
encrypting data based on X509 certificates, for example. In that case, you can create a Windows
user account that has these permissions and then configure the application pool with this
account. As you can see in Figure 18-30, you can select the option Configurable and then spec-
ify your own Windows account for the application pool.

But this Windows account, of course, has to have at least the same permissions as the
Network Service account does. Fortunately, Microsoft has prepared a Windows group that will
be installed with IIS 6.0 on Windows Server 2003 machines that have those permissions—the
IIS Worker Process Group (IIS_WPG). Any user account intended to be used as an application
pool user has to be a member of this worker process group, as shown in Figure 18-31.

CHAPTER 18 WEBSITE DEPLOYMENT 875

 Figure 18-31. The IIS Worker Process Group

When you open the properties for this group, you will see that Network Service is a mem-
ber of this group and therefore gets all the necessary permissions to be used as the identity for
application pools. The group grants the user special permissions such as the permission for
running as a service process in the background. It also grants access to the necessary directo-
ries such as the temporary ASP.NET files stored in c: \WINDOWS\Microsoft.NET\Framework\
[Version]\Temporary ASP.NET Files, where ASP.NET stores the dynamically compiled version
of the different pages.

Caution When configuring the identity for an application pool, you need to restart the pool. That’s
because every process runs under a valid identity; therefore, the identity must be known when the process
is started. Changing application pool configuration doesn’t restart the application pool; therefore, it still runs
under the old identity until it gets restarted. So, you have to restart the process so that it starts under the
newly configured account.

CHAPTER 18 WEBSITE DEPLOYMENT876

If your application needs access in addition to the directories granted by IIS_WPG, you
must grant access to the identity configured for the application pool explicitly. You even have
to grant access to the file system directories where the files of your web application are located.
Otherwise, the application pool will not be able to access these files, and therefore the applica-
tion won’t work. But basically that’s it: adding the user to IIS_WPG, granting access to resources
necessary for your application (your file system directories or anything else your application tries
to access), and configuring the application pool with the identity are the only steps necessary.

Tip If your application calls complex web services or uses the XmlSerializer class, it might need access
to the c:\WINDOWS\TEMP directory as well because the serializer stores dynamically created assemblies for
serialization and deserialization in this directory. Therefore, if your web application crashes with an “Access
Denied” exception when calling web services or serializing/deserializing XML documents, just verify whether
the application pool’s identity has access to this directory.

Managing Virtual Directories and Websites with IIS 7.0
Managing virtual directories and websites with IIS 7.0 is slightly different than in previous
versions of IIS. But it works the same way on Windows Vista and Windows Server 2008. There-
fore, we will demonstrate website management with IIS 7.0 on Windows Vista. On Windows
Vista, the easiest way to start the IIS management console is to type the search term IIS into
the search box of the Start menu. Immediately afterward, the shortcut to the IIS management
console will appear. As with IIS 5.x and 6.0, after installing IIS 7.0, a default website exists on
your server that exposes content of the c:\inetpub\wwwroot directory through the web server.
The first big difference you will recognize when working with the new IIS management tool is
its new, feature- driven approach for configuring the web server. While the tree on the left side
still looks the same as with previous versions of IIS, the details area shows configuration fea-
tures that allow you to perform several configurations. The configuration features available in
the details view differ based on the selection in the tree. For example, you will find more con-
figuration features available at the level of a website compared to the level of virtual directories
within a website.

To create a virtual directory within the default website, the first step you need to complete
is creating a physical directory (e.g., e:\ Work\MySite) which stores the contents you would
like to expose. Next you need to think whether the new virtual directory will just expose con-
tents and inherit behavior, configuration settings, and state from its parent, or whether it will
be an isolated application with its own behavior, configuration, and state.

If you want to create a virtual directory that just inherits behavior and configuration from
the default website, simply right- click the default website and select Add Virtual Directory
from the context menu. If you want to create an application with its own behavior, configura-
tion, and state, then select Add Application from the context menu. The two dialogs are very
similar, as you can see in Figure 18-32.

CHAPTER 18 WEBSITE DEPLOYMENT 877

 Figure 18-32. Adding a virtual directory or an application to your website

The only difference between these two dialogs is that you are required to specify an appli-
cation pool for a virtual directory that is an application. The settings in these dialogs basically
have the same meaning as in previous versions of IIS. The alias is the name a remote client will
use to access files within the virtual directory or application, while the physical directory is the
full path to the physical folder on the local machine or a network share that stores the contents
that need to be exposed by the web server. If the files, which are exposed through a virtual
directory or a web application, are stored on a network share, and you need to connect with
specific credentials to this network share, you can configure these credentials by clicking the
“Connect as” button.

Virtual Directory and Application Settings
Most of the configuration options you will be able to configure for a virtual directory are now
configured through the configuration features that you can see in the details view in the center
of the IIS management console, as shown earlier in Figure 18-3.

Instead of opening a separate dialog box, the new IIS Manager displays the configuration
dialog directly in the details view whenever you double- click one of the configuration features
shown in Figure 18-3. You can configure a few of the properties for the virtual directory by
 right- clicking the virtual directory in the tree view and selecting the entry Advanced Settings.
You can also open these settings by clicking on either the Basic Settings or Advanced Settings
link in the task pane at the right- hand side of the window. In general, you will find all the pos-
sible tasks available for the current selection in the tree view or the details view in this task
pane on the right- hand side—so these are always good places to look when you want to see

CHAPTER 18 WEBSITE DEPLOYMENT878

which options are currently available. If you click the Basic Settings link, a dialog is opened
that shows the most common settings for the current selection; if you click the Advanced Set-
tings link, a property grid is shown (similar to the Visual Studio property grid that shows all the
available options configured for the current selection). Figure 18-33 shows the two versions of
dialogs for virtual directories. Basically, the options you can configure for a virtual directory
here are the same settings you were required to specify when creating the virtual directory.

 Figure 18-33. Basic and advanced settings for a virtual directory

All other settings are configured through the configuration settings features shown in
 Figure 18-3. Table 18-4 summarizes all configuration options that are available for a virtual
directory (parts of them are shown in Figure 18-3). As you can see, the configuration features
are grouped by area in Figure 18-3. This grouping is very useful, as the IIS 7.0 management
console allows you to configure both ASP.NET- based configuration settings as well as IIS- based
configuration settings directly from within IIS Manager. As you will see later, even IIS- based con-
figuration settings are written directly into the web.config file stored within the virtual directory
for a web application. Based on the area, you can immediately see which part of the configura-
tion is affected when modifying a setting within a configuration feature—ASP.NET or IIS. You
can also group by category, which means IIS Manager groups configuration features based on
categories of configuration options such as Application Development, Health and Diagnostics,
HTTP Features, Security, and Server Components. Table 18-4 lists the configuration features
based on areas. Please note that some features might not be available depending on the fea-
ture set you’ve installed with IIS. For example, if you do not install the Classic ASP feature with
your web server, the classic ASP configuration feature will not be shown in the IIS management
console.

CHAPTER 18 WEBSITE DEPLOYMENT 879

Table 18-4. IIS 7.0 Configuration Features for a Virtual Directory

Area Feature Feature Description
IIS ASP Allows you to configure all options for classic ASP page pro-

cessing. Typical configuration options are session configura-
tion options, COM+ properties, and debugging properties.

IIS Authentication With this configuration feature you can configure authenti-
cation settings for the virtual directory. You will learn more
about valid options such as basic authentication and forms
authentication in Chapters 19, 20, and 21.

IIS Authorization Rules With this configuration feature you can configure URL
authorization rules for IIS. You will learn more about URL
authorization rules in Chapter 23.

IIS Default Document IIS 7.0 allows you to configure the default documents as
IIS 5.x and IIS 6.0. IIS looks for these documents whenever
a URL in a request does not specify a filename. It then takes
the first file in the list of default documents it finds in the vir-
tual directory. This configuration is just a comma- separated
list of files in which files are searched based on the order of
the filenames listed in the text box.

IIS Directory Browsing This feature allows you to configure details for directory
browsing if the directory browsing module is enabled for
a virtual directory. When opening this feature, you can en-
able or disable directory browsing with a link displayed in
the task pane of the IIS management console.

IIS Error Pages Within this configuration feature you can specify custom
error pages for different types of HTTP return values.

IIS Failed Request Tracing
Rules

Failed request tracing is a new feature of IIS 7.0. It allows
you to keep traces for requests that resulted in an error while
being processed on the server. This is a very powerful option
for monitoring “in- production” systems if they do not work
properly.

IIS Handler Mappings You have seen the Handler Mappings configuration feature
earlier, in Figure 18-8. Handler mappings allow you to con-
figure an HTTP handler that is responsible for processing
requests with files for certain filename extensions.

IIS MIME Types This setting allows you to configure all MIME types that are
valid for being processed within your virtual directory and
all subdirectories of your virtual directory. MIME types for
filename extensions that are not registered will be rejected
when requested for processing by the web server.

IIS Modules In the Modules configuration feature you can add or remove
HTTP modules that are processed with each request within
a virtual directory. You can enable or disable modules and
you can change the request processing order.

IIS SSL Settings This configuration feature allows you to configure SSL set-
tings for the current virtual directory. You will learn more
about configuring SSL in Chapter 19.

ASP.NET .NET Compilation With this configuration feature you can configure all the
valid compilation options for your ASP.NET application.
These options are stored in the <compilation> configuration
option of your <system.web> configuration section in the
web.config file.

Continued

CHAPTER 18 WEBSITE DEPLOYMENT880

Table 18-4. Continued

Area Feature Feature Description
ASP.NET .NET Globalization This feature allows you to configure culture settings for

 multilanguage- enabled web applications (as discussed in
Bonus Chapter 1, which you can find on the Apress website,
at).

ASP.NET .NET Profile In this configuration feature you can configure profile set-
tings for the profiles API, which has been part of ASP.NET
since version 2.0. You will learn more about profiles in
Chapter 24.

ASP.NET .NET Roles With ASP.NET, the team introduced the roles API, which is
a full- featured system for managing application roles and
associating them with users. You will learn more about the
.NET roles API in Chapter 23, including some details of this
configuration feature option in IIS 7.0.

ASP.NET .NET Trust Levels This feature allows you to configure the trust level of the
ASP.NET code access security settings. This setting deter-
mines the level of access an ASP.NET application gets to
resources of the machine, in addition to the permissions the
application gets on the web server through the user the ap-
plication pool is configured with.

ASP.NET .NET Users This configuration option allows you to configure the mem-
bership API user settings that have been introduced with
ASP.NET 2.0. You will learn more about the membership API
and this configuration feature in IIS 7.0 in Chapter 21.

ASP.NET Application Settings With this configuration feature you can configure applica-
tion settings stored in the <appSettings> configuration sec-
tion of your web.config file.

ASP.NET Connection Strings Settings stored in the <connectionStrings> configuration
section of you web.config file can be configured with this
feature directly from within the IIS 7.0 management console.

ASP.NET Pages and Controls Through this feature you can specify settings for the ASP.NET
<pages> configuration option within the <system.web>
section. Typical examples are themes, the application- wide
master page, and ViewState options that apply to your whole
web application.

ASP.NET Providers Several APIs that have been introduced with ASP.NET 2.0
are provider- based, including the membership API, the roles
API, the profiles API, and the personalization API, which is
part of the Web Parts framework of ASP.NET. These provid-
ers can be configured through this configuration feature
directly from within IIS 7.0. You will learn more about these
APIs in Chapters 21, 23, 24, and 30.

ASP.NET Session State Every session state relation option can be configured through
this feature. These settings are stored in the <sessionState>
configuration option in the <system.web> section of your
web.config file.

ASP.NET SMTP E-mail This feature allows you to configure settings for an outgo-
ing SMTP e-mail server and writes these settings to the
 <mailSettings> part of the <system.net> configuration
 section of your web.config file.

CHAPTER 18 WEBSITE DEPLOYMENT 881

When you double- click one of these features, the configuration options open up in the details
view in the IIS 7.0 management console. You can then navigate back through the navigation but-
tons in the top- left corner of the management console, which give you a feature- configuration
browsing experience similar to browsing between web pages. You’ll probably need to get used to
this new navigation paradigm, but in the end I think it’s much more convenient compared to the
 old- style model of the IIS 5.x and IIS 6.0 managers.

Understanding the New IIS 7.0 Configuration Model
Previous versions of IIS stored their complete configuration in the metabase. In IIS 5.x and older
versions, the metabase is a binary file stored in the inetsrv subdirectory of the c:\Windows\
System32 directory. For better manageability with IIS 6.0, the metabase became an XML file
so that it could be programmatically modified more easily. But still the configuration was very
monolithic, and only had basic concepts for inheriting and overriding settings at certain lev-
els within your hierarchy of websites and virtual directories. Furthermore, it required you to
have administrative privileges just for modifying simple settings within your website or virtual
directory.

With IIS 7.0, the team has changed the configuration model—and as with handlers and
modules, they have been inspired by the ASP.NET team again. Every configuration of IIS 7.0 is
now stored in different XML- based configuration files, which allow fine- grained management,
including inheritance and overriding of settings at different levels of your websites and virtual
directories. Figure 18-34 outlines the new configuration file hierarchy you need to be aware of.

IIS Central Configuration

applicationHost.config
\Windows\System32\InetSrv\config

.NET Framework

machine.config
\Windows\Microsoft.NET\...\config

Virtual Directory Configuration

web.config
in Virtual Directory Physical Path

Parent Virtual Directory

Inherits

Inherits

Inherits

web.config
in Virtual Directory Physical Path

 Figure 18-34. The hierarchy of the new configuration system of IIS 7.0

IIS 7.0 has a central, XML- based configuration stored in the inetsrv\config subdirectory
of the Windows\System32 directory (on 32- bit systems). This configuration file contains a list
of all websites and virtual directories configured for your web server. This list is stored in the
<system.applicationHost> configuration section of the configuration file and cannot be over-
ridden by any subsequent file. That means for creating a website or a virtual directory, you
still need to have administrative privileges (which is a good thing). The following code snippet
shows a little excerpt of this configuration section:

CHAPTER 18 WEBSITE DEPLOYMENT882

As you can see, the structure of the applicationHost.config file is very easy to understand.
You can find settings such as application pool configurations, website configurations, and
configurations for virtual directories. Contents in the <system.applicationHost> section cannot
be overridden by configuration files at lower levels within the hierarchy.

Furthermore, the applicationHost.config file contains default settings for websites and
virtual directories stored in the <system.webServer> configuration section, which can be
overridden within configuration files at lower levels within the inheritance hierarchy shown
in Figure 18-34. These default settings are defaults for handlers, modules, security settings,
default documents, and so on, as you can see in the following excerpt of the applicationHost.
config configuration file:

CHAPTER 18 WEBSITE DEPLOYMENT 883

When taking a close look at this configuration file, you will recognize that it looks much
like a .NET configuration file with a couple of new configuration sections. That’s exactly what
I meant when I said that the team has been inspired by ASP.NET. But this has another huge
advantage: it is compatible with the ASP.NET configuration system, and for other settings, it
means that you can override certain settings just by adding appropriate configuration sections
and options to a web.config file stored within the virtual directory of your web application.
The following code snippet shows a web.config file of a web application that is placed into the
physical path of the virtual directory of the web application. It contains ASP.NET- specific con-
figuration settings as well as IIS- specific configuration settings that are used for overriding the
defaults.

CHAPTER 18 WEBSITE DEPLOYMENT884

The preceding web.config file is stored in the application’s virtual directory, as you can
see in Figure 18-35. It overrides the web server’s default settings for page handlers and associ-
ates the ASP.NET-managed PageHandlerFactory with any files having the filename extension
.mypagex. If you combine the usage of the ASP.NET page build provider, which is registered in
the <compilation> configuration section, with the PageHandlerFactory, you can have ASP.NET
pages with filename extensions other than .aspx. But this is just a simple example to show you
the concepts and power behind the inheritance concept of the new configuration model.

 Figure 18-35. Having a custom filename extension registered for your virtual directory

Just think of what this means in terms of deployment! You are able to deploy your ASP.NET
application including the ASP.NET- specific and the IIS- specific configuration just by copy-
ing the application files together with a web.config file to the target web server. If for the
 IIS- specific settings stored in the <system.webServer> section you have included settings that
can be overridden on the target server in your web.config file, you do not even need to touch
the target web server with separate configuration actions. And it is sufficient that you have
access rights to the physical target directory of your virtual directory. So, for certain noncritical
IIS configuration settings (that are allowed to be overridden), you even don’t need administra-
tive privileges on the target web server for changing your web application’s configuration. All
you need is write access to the target physical directory.

CHAPTER 18 WEBSITE DEPLOYMENT 885

Understanding ASP.NET Integrated Mode in IIS 7.0
Going back to Figure 18-10, you have learned that IIS 7.0 supports two different modes for
request handling. Classic mode favors the same architecture that you know from IIS 5.x and
IIS 6.0, whereas in the integrated mode, IIS 7.0 favors one common pipeline for process-
ing native as well as managed (ASP.NET) modules and handlers. This gives you the power of
extending IIS with standard ASP.NET know- how by just creating HTTP module classes imple-
menting the ASP.NET IHttpModule interface. Let’s walk through an example. Suppose you
have a database running on your local SQL EXPRESS instance called SimpleLogging with the
following table in place:

Now you can write a standard ASP.NET HTTP module, which, as you learned in Chapter 5,
logs every incoming request to this database table, similar to the following one:

CHAPTER 18 WEBSITE DEPLOYMENT886

If you now want to reuse this module for each web application running on the web server,
you can configure it as a module within the IIS 7.0 management console at the root level of
your website. When running IIS 7.0 in ASP.NET integrated mode, the module then can be con-
figured such that it is executed for every web application, even for non-ASP.NET–based web
applications. All you need to make sure is that the module is available on a global basis. The
easiest way to do so is signing it with a strong name and adding it to the global assembly cache
(GAC) using the gacutil.exe utility, which ships with the .NET Framework. Then you can con-
figure the module through the IIS 7.0 management console, as shown in Figure 18-36, using its
strong name in the Type property of the Add Module dialog.

 Figure 18-36. Configuring a new HTTP module written in ASP.NET

CHAPTER 18 WEBSITE DEPLOYMENT 887

Because we implemented the previously shown class in a .NET class library that
I then added to the GAC, I’ve used its fully qualified name for registration (for example,
“CustomSqlLoggingModule.SimpleSqlLogging, CustomSqlLoggingModule, Culture=Neutral,
Version=1.0.0.0, PublicKeyToken=25c214109a392976”). The important part when adding
ASP.NET HTTP modules that should be executed for every web application configured in
IIS 7.0 is leaving the “Invoke only for requests to ASP.NET” check box unchecked—if you
check this box, the module will be executed for ASP.NET- based applications only. If you
do not check this box, you will have now integrated it as a module executed within the IIS 7.0
HTTP modules pipeline for every request. Because we configured the module at the level
of the parent website shown in Figure 18-36 (which actually is the default website), the
preceding logging module will track every request for any web application and virtual
directory configured within this website into the custom SQL Server database—whether it
is one going to ASP.NET or not. This model is extremely powerful and valuable for extend-
ing the web server with your existing ASP.NET know- how!

There is one last thing you need to be aware of: when running IIS 7.0 in ASP.NET integrated
mode, you should configure all HTTP modules in the <system.webServer> section of your
web.config file instead of the httpModules configuration section within the <system.web>
section. If IIS 7.0 detects an HTTP module configured in the <system.web> configuration
section, it throws an exception when running in ASP.NET integrated mode, as in that case
the HTTP pipeline of IIS is the only valid one (otherwise we would end up in a chaos of mod-
ules configured in different parts of our configuration system, which could lead to certain
strange effects—therefore, IIS prevents us from doing so).

Creating and Managing Websites and Bindings
So far you’ve just configured virtual directories within the default website, which is created for
you automatically when IIS gets installed on your system. But very often, you want to create
several isolated root web applications listening on different ports (and IP addresses, as you
learned in the first section of this chapter). In that case, you are required to create a website
that acts as a root web application. As you can see in Figure 18-37, creating a new website (by
clicking on the Web Sites node in the tree view and selecting the Add Web Site link from the
task pane) is very similar to creating a new virtual directory.

CHAPTER 18 WEBSITE DEPLOYMENT888

 Figure 18-37. Creating a new website in IIS 7.0

You need to specify a logical name (alias) for the website; you need to specify a local,
physical directory that contains the contents for the root web application represented by the
website; and finally, you need to specify an application pool for the website. The only option
that is new is the binding configuration for the website. As mentioned in the first section of
this chapter, every website provides its content through a specific protocol, port, and (option-
ally) IP address. These settings are configured with the bindings settings. In Figure 18-37 you
will see that we now want to create a website providing content through the HTTP protocol on
any IP address available (due to the option All Unassigned) on port 80 without a host header
value specified. When creating this website, IIS Manager will tell us that there is another website
configured with exactly the same binding (same protocol, port, IP address, and host header)
and that it cannot start the website, since only one website can listen on a specific port for an
IP address with a specific host header defined. We can change the binding configuration by
clicking on the website in the tree of IIS Manager and selecting the Bindings link from the task
pane, as shown in Figure 18-38.

CHAPTER 18 WEBSITE DEPLOYMENT 889

 Figure 18-38. Configuring bindings for a website

As shown in Figure 18-38, we are going to change the port from 80 to 81, which means that
the combination of port, IP address, and host header value will be unique for our web server
now. Therefore, we can start using the website now. If your machine has more than one IP
address, you could also configure the bindings for each of your websites to provide contents
through a specific IP address. You can also make your machine available through multiple
machine names if it has just one IP address. In that case, you can configure multiple websites
to listen on the same port and IP address as long as the machine name through which they
are accessed is different. You then need to configure the different machine names through the
host header configuration option of the website binding. In any case, the combination of port,
IP address, and host header value needs to be unique so that IIS can assign requests clearly to
a website.

Managing Application Pools in IIS 7.0
Now that you know how to configure virtual directories and websites, we need to take a look at
one final set of configuration options before moving on to ASP.NET application deployment:
the configuration of application pools. As mentioned earlier, IIS 7.0 uses the same architecture
as IIS 6.0 for the process model of the web server. It just extends this model with a number of
small improvements. But the concept of an application pool is still the same as you learned
about in IIS 6.0. The configuration of application pools is very similar to IIS 6.0 as well. In the
tree view, you still find an entry for Application Pool configurations, which allows you to cre-
ate, modify, and delete application pools, as you can see in Figure 18-39.

CHAPTER 18 WEBSITE DEPLOYMENT890

 Figure 18-39. Configuring application pools in IIS 7.0

For adding a new application pool, just click the Add Application Pool link from the task
pane. This opens a very simple dialog that allows you to specify the name of the application
pool, the .NET Framework version it should host, and its Managed Pipeline Mode setting.

 Figure 18-40. Adding a new application pool in IIS 7.0

The drop- down you can see in Figure 18-40 allows you to select the .NET Framework
version that is used for the application pool. This drop- down lists all versions of the frame-
work that are installed on the machine. As the .NET Framework versions 3.0 and 3.5 do not
introduce a new version of the CLR and are just extensions on top of the .NET Framework 2.0,
you will not find them in this list. If you want to run .NET 3.0– or 3.5–based applications in an
application pool, it is sufficient to configure the pool for the .NET Framework 2.0. After you
have created an application pool, you can configure all the detailed options by selecting the
application pool in the list of pools and clicking the Advanced Settings link from the task pane.
This opens a property grid dialog with all the detailed options, as shown in Figure 18-41.

CHAPTER 18 WEBSITE DEPLOYMENT 891

 Figure 18-41. Detailed properties of an application pool in IIS 7.0

The dialog shown in Figure 18-41 allows you to configure all the basic settings and
advanced settings such as custom identities for the application pool. Although the way you
configure the pool is different from the UI’s perspective, the same rules apply as with IIS 6.0
application pools. For example, you will find the same options for configuring identities as
in IIS 6.0 (Network Service, Local Service, Local System, and Specific User, for working with
a custom user account for the pool). When you want to leverage custom identities for the
application pool, the steps you need to perform are very similar in IIS 7.0 as compared to
IIS 6.0 (described in the “Managing Application Pools in IIS 6.0” section earlier in the chapter).
There still exists a special Windows group for IIS Worker Process identities, which is called
IIS_IUSRS on Windows Vista and Windows Server 2008 (instead of IIS_WPG, as it is called
in IIS 6.0). Every Windows user that should be used for running application pools needs to
be a member of this IIS_IUSRS group. All the other configuration steps are nearly the same
(except that some dialogs are slightly different in Windows Vista and Windows Server 2008),
and therefore we will skip these details. The only real difference between IIS 6.0 and IIS 7.0 in
terms of application pools is the configuration of the managed pipeline mode. This configu-
ration option allows you to specify whether request handling for applications added to the
application pool will happen in the old IIS 5.x/IIS 6.0 ISAPI extension- based way or in the new
ASP.NET integrated mode of modules and handlers.

This overview on IIS and the architectural changes with the different versions of IIS should
give you a fairly good understanding of how IIS and ASP.NET work together in different situa-
tions and constellations. However, there’s a lot more to learn before you can consider yourself
an experienced web administrator. To learn more about these features, consult the online
documentation. In terms of IIS, one of the best current resources is IIS.net (

CHAPTER 18 WEBSITE DEPLOYMENT892

). On IIS.net, you will find plenty of documentation and blog entries, as well as custom
modules, handlers, and extensions for the IIS management console (by the way, the IIS man-
agement console has been rewritten completely from scratch based on Windows Forms and is
extensible in standard Windows Forms ways—for more information, take a look at a couple of
samples published on IIS.net). Now it’s really time to take a look into some details on deploy-
ing ASP.NET on a properly configured web server.

Deploying Your ASP.NET Applications
Deploying ASP.NET web applications usually requires nothing more than copying the directory
structure of your application to the target machine and configuring the environment. For sim-
ple applications, that’s almost always true. But if your application uses databases or accesses
other resources, you have to perform some additional steps. Here are some common factors
that will require additional configuration steps:

else. But if you are using global assemblies accessed through the GAC, you have to
verify whether these assemblies are in place. If not, you have to install them using the
gacutil.exe command- line utility of the .NET Framework.

create the database and its tables but to configure the database server logins and
database users. Don’t forget that if you are using integrated authentication for con-
necting to a SQL Server database, you must configure the account under which
ASP.NET is executed (the application pool account or aspnet_wp.exe account) as
a user for the application’s database.

-
tion pools and share the application directory as a virtual directory and configure the
virtual directory appropriately.

for running the worker process (either aspnet_wp.exe or w3wp.exe in IIS 6.0/7.0) needs
to have file system–based read access to the application directories. If your application
accesses other resources such as the registry or event log, you have to configure the
permission for the worker process account to access these resources.

are different from the extensions registered on a default ASP.NET installation.

the web.config file for production environments. That means add (or modify) any con-
nection strings and application settings as well as security and authorization settings,
session state settings, and globalization settings appropriately.

hosting environment and your application runs on multiple web servers for load balanc-
ing, you have to synchronize any encryption keys used for encrypting forms authentication
tickets or view state on all those machines. These keys are stored in machine.config and
need to be equal on every machine in the web farm so that one machine is able to decrypt
information encrypted by another machine that previously processed the request.

CHAPTER 18 WEBSITE DEPLOYMENT 893

When it comes to deployment, you should know about a couple of useful things. First,
before running ASP.NET applications the first time on a server, it might be useful to verify
whether ASP.NET has been installed appropriately. Then you have to decide which version of
ASP.NET your application requires. Actually, as with every other .NET Framework application,
you can run as many ASP.NET runtimes side by side as you want. And of course, don’t forget to
turn off the debug configuration option in the <compilation> section of web.config.

When debugging is enabled, the compiled ASP.NET web- page code will be larger and exe-
cute more slowly. Additionally, temporary compilation files won’t be deleted automatically.
For that reason, debugging should be used only while testing your web application.

Of course, you don’t need to deploy any project and solution files (*.sln, *.vbproj, *.csproj,
and so on) used by Visual Studio. In the case of using precompilation (either the classic one
as used in ASP.NET 1.x or the site precompilation based on aspnet_compiler as introduced in
the “Compilation Models in ASP.NET” section), source code files (*.cs, *.vb) and resource files
(*.resx) don’t need to be deployed as well. And of course, because you probably won’t debug
on production machines, you don’t need any *.pdb files there either.

Verifying the ASP.NET Installation on IIS 5.x and IIS 6.0
After installing ASP.NET on a Windows XP or Windows Server 2003- based system, it’s a good
idea to test that it’s working. On Windows Vista and Windows Server 2008, the .NET Framework
and ASP.NET are preinstalled on the operating system and even within IIS 7.0. Therefore
ASP.NET should run without any problems on IIS 7.0- based systems, as it is an integral part
of IIS. The only thing you need to keep in mind is that you have activated it as outlined in
the “Installing IIS” section of this chapter. And if ASP.NET is not activated on IIS 7.0, you’ll
get a detailed error message from IIS 7.0 telling you about missing handler configura-
tions—handlers that are configured when activating ASP.NET.

All you need to do for testing ASP.NET is create a simple ASP.NET page, request it in
a browser, and make sure it’s processed successfully. To perform this test, create a new physi-
cal directory on your computer. Then use the Create Virtual Directory Wizard to expose this
directory as a virtual directory named Test. Finally, create a new file in this directory using
Notepad. Name this file test.aspx. The filename isn’t that important, but the extension is. It’s
the .aspx extension that tells IIS that this file needs to be processed by the ASP.NET engine.

Inside the test.aspx file, paste the following code:

CHAPTER 18 WEBSITE DEPLOYMENT894

When you request this file in a browser, ASP.NET will load the file, execute the embedded
code statement (which retrieves the current date and inserts it into the page), and then return
the final HTML page. This example isn’t a full- fledged ASP.NET web page, because it doesn’t
use the web control model you learned about in the first part of this book. However, it’s still
enough to test that ASP.NET is working properly. When you enter http://localhost/Test/
test.aspx in the browser, you should see a page that looks like the one shown in Figure 18-42.

 Figure 18-42. ASP.NET is correctly installed.

If you see only the plain text, as in the example in Figure 18-43, ASP.NET isn’t installed
correctly. This problem commonly occurs if ASP.NET is installed but the ASP.NET file types
aren’t registered in IIS. In this case, ASP.NET won’t actually process the request. Instead, the
raw page will be sent directly to the user, and the browser will display only the content that
isn’t inside a tag or script block.

 Figure 18-43. ASP.NET isn’t installed or is configured incorrectly.

You can usually solve this problem by repairing your IIS file mappings using the aspnet_
regiis.exe utility described earlier. Here’s the syntax you’ll need:

Microsoft provides more detailed information about troubleshooting and aspnet_regiis.exe in
a knowledge- base article at 93.

CHAPTER 18 WEBSITE DEPLOYMENT 895

ASP.NET Side-By- Side Execution on IIS 5.x and IIS 6.0
As you have already seen a couple of times in this chapter, IIS forwards the request to an
ISAPI extension DLL based on the filename extension of the URL request. Because every
version of ASP.NET ships with its own ISAPI extension, it’s easy to configure ASP.NET for
 side-by- side usage. Just assign the ASP.NET file extension with the appropriate ISAPI exten-
sion of the version required, and the application runs with the required version of ASP.NET.
This ISAPI extension is stored in the c:\WINDOWS\Microsoft.NET\Framework\[Version]
directory, and its name is aspnet_isapi.dll. The following are a few examples of the tasks you
can perform with aspnet_regiis.exe.

If you want to list all the versions of ASP.NET that are installed on the computer and the
matching ISAPI extensions, execute this command:

Please remember that ASP.NET 3.5 won’t be listed as a separate version of ASP.NET when
executing this command. ASP.NET 3.5 is built on top of ASP.NET 2.0 and can be seen as
an extension rather than a completely new version of ASP.NET. To configure a specific vir-
tual directory to use a specific version of ASP.NET, make sure you’re using the right version of
 aspnet_regiis.exe. For example, if you want to configure an application to use ASP.NET 2.0
instead of ASP.NET 1.1, make sure you’re using the version of aspnet_regiis.exe that’s included
with the .NET 2.0 Framework (and in the corresponding version directory). Then, execute a
command line like this:

This command maps the SampleApp1 virtual directory to use the version of ASP.NET that
corresponds with the version of aspnet_regiis.exe. The first part of the path, W3SVC/1/ROOT/,
identifies the web root of the current computer. Finally, if you need to migrate all the applica-
tions in one fell swoop, you can use the following command:

This command also comes in handy if your IIS file mappings are set incorrectly (for
example, you installed IIS after you installed ASP.NET, so the ASP.NET file mappings were
not applied). But since ASP.NET 2.0, you can also use the graphical configuration tool that
integrates into the IIS management console. Just right- click, select Properties for the virtual
directory you want to configure, and open the newly integrated ASP.NET tab in the configura-
tion. It allows you to select the version of ASP.NET, as shown in Figure 18-44. Again, ASP.NET 3.5
won’t be listed here, as it sits on top of ASP.NET 2.0 and leverages the 2.0 runtime and base
class library.

CHAPTER 18 WEBSITE DEPLOYMENT896

 Figure 18-44. Selecting the appropriate version of ASP.NET

There is one important aspect you need to be aware of when it comes to side-by- side
execution of ASP.NET on IIS 6.0. All requests are processed in one or more worker processes
that are created by the web server for an application pool. You need to know that each process
can host only one version of the CLR. That means you cannot run applications that depend
on different versions of the CLR (such as ASP.NET 1.1 and ASP.NET 2.0–based applications)
in a single application pool. For each version of ASP.NET that depends on its own version of
the CLR, you need to create a separate application pool. That means if you run ASP.NET 1.0,
ASP.NET 1.1, and ASP.NET 2.0 applications side by side on one server, you need to create an
application pool for each version of the CLR and run virtual directories and websites within
the application pool that hosts their required ASP.NET version. For .NET Framework 3.0– and
 3.5–based applications, you don’t need to create separate application pools, as both versions
are extensions on top of the .NET Framework 2.0 and are dependent on the CLR that ships
with the .NET Framework 2.0.

ASP.NET Side-By- Side Execution on IIS 7.0
Similar to previous versions, IIS 7.0 allows side-by- side execution of ASP.NET applications
as well. Basically, side-by- side execution is guaranteed with handler mappings together with
the .NET Framework version configuration of application pools. For each version of the .NET
Framework that ships with its own version of the CLR, you need to create a separate applica-
tion pool. In the handler configuration for the virtual directory or website, you then need to
associate the appropriate page handler factory of the ASP.NET version you need for running
the application with the ASP.NET filename extensions (.aspx, .asmx, etc.). Basically that’s it.

ASP.NET managed pipeline mode is supported for the .NET Framework 2.0 and newer
versions, only. In that case, you need to configure the appropriate version of the .NET Frame-
work in the application pool configuration and then associate the appropriate page request

CHAPTER 18 WEBSITE DEPLOYMENT 897

handler of the required ASP.NET version within the handler configuration feature of IIS 7.0,
as previously outlined. As both the .NET Framework 3.0 and 3.5 are built on top of the .NET
Framework 2.0, and neither version ships with a new ASP.NET core, you don’t need to make
any special configurations to run web applications using the .NET Framework 2.0, 3.0, and 3.5
side by side. It basically just works.

Older versions of ASP.NET such as 1.0 and 1.1 need to be run in application pools config-
ured for classic pipeline mode. Therefore, when running an application that requires either
ASP.NET 1.0 or ASP.NET 1.1, you first need to create a separate application pool configured for
classic pipeline mode. No version of the .NET Framework needs to be configured in the pool in
this case, as ISAPI extensions are used for request processing only. You need to configure the
appropriate ISAPI extension for the required ASP.NET version (1.0 or 1.1) with the ASP.NET
filename extensions (.aspx, .asmx, etc.) only. You can find more details about how to enable
ASP.NET 1.1–based applications in the article “How to Run ASP.NET v1.1 on IIS7,” available on
IIS.net at

=1.

Configuring HTTP Runtime Settings when Deploying on IIS 5.x
The ASP.NET configuration builds upon the basic configuration of the web server, as you saw
in the previous chapters. Furthermore, you have seen that you can configure lots of settings in
terms of reliability and performance at the application pool level in IIS. However, a couple of
settings are not available there (but they were available in the old ASP.NET <processModel>
configuration).

These settings are typical for the CLR and the ASP.NET runtime in particular. You can
configure such settings through a special section in the web.config file for an ASP.NET web
application—the <httpRuntime> section that resides directly below the <system.web> element
in the configuration file. Table 18-5 shows the most important settings of the <httpRuntime>
element; for a complete list, take a look at MSDN Online.

Table 18-5. Most Important Settings of the <httpRuntime> Configuration Element

Setting Description
appRequestQueueLimit Specifies the maximum number of requests that ASP.NET

will queue for the application. Request queuing takes place
if ASP.NET does not have enough threads for processing the
requests (threads are configured either in the <processModel>
or through the minFreeThreads setting).

enable If this setting is false, the application will not work anymore,
because the ASP.NET runtime doesn’t create an AppDomain
for the application and therefore doesn’t process any requests
targeted to this application.

enableKernelOutputCache IIS 6.0 (and later) comes with a mechanism for caching data
directly in the HTTP.SYS kernel- mode driver’s memory. This
option specifies whether ASP.NET leverages this feature.

enableVersionHeader If this setting is set to true, ASP.NET outputs a version
header.

executionTimeout Indicates the maximum number of seconds that a request is
allowed to execute before being automatically shut down by
ASP.NET.

Continued

CHAPTER 18 WEBSITE DEPLOYMENT898

Table 18-5. Continued

Setting Description
idleTimeOut As you know, ASP.NET ensures application isolation within

a single process through application domains. For every
configured web application (in IIS an application having
a separate virtual directory), it creates an instance for an ap-
plication domain. This setting specifies how long an applica-
tion domain runs idle before ASP.NET releases the resources
and shuts down the application domain.

maxRequestLength This setting specifies the maximum size for uploaded files
in kilobytes. Files that are uploaded through the FileUpload
control are limited by this setting. The default is 4096 KB
(4 MB).

minFreeLocalRequestFreeThreads The minimum number of free threads that ASP.NET keeps
available to allow execution of new local requests (requests
submitted on the local machine).

minFreeThreads The minimum number of free threads to allow execu-
tion of new requests. If the number of requests requires
more threads, the requests will be queued by the ASP.NET
runtime.

compilationTempDirectory Specifies the directory used as temporary file storage for
dynamic compilation.

requestPriority Enables you to set priorities for web pages as they are pro-
cessed by the ASP.NET runtime. This is interesting if you
want to have a website or a part of a website running in the
same worker process be more responsive than others. A typi-
cal example for this is an administrative page that has to be
responsive in all cases. Sites or parts of a website configured
with the value High will be processed faster and before lower
prioritized parts of the website by the ASP.NET runtime.

Compilation Models in ASP.NET
As you already know, ASP.NET comes with a compilation model for dynamically compiling
assemblies out of tag- based code and actual source code. The application is always executed
as a compiled version for increasing performance. Of course, special directories play an
important role for dynamic compilation, as explained previously. ASP.NET offers three ways
for compiling web applications:

Classic precompilation: ASP.NET introduced this model with its first release. With this
compilation model, parts of the website are precompiled (any referenced assemblies as
well as the code- behind portions with the page- processing logic), and others such as the
 tag- based code files (ASPX or ASMX files) are dynamically compiled at runtime with the
first request. You can use this model only with the classic code- behind model where the
actual page inherits from the compiled base class with the page logic. The easiest way to
work with the classic compilation model is to use the web application project released
by Microsoft shortly after the release of Visual Studio 2005 and the .NET Framework 2.0.
Actually, the web application project is an easy way to migrate ASP.NET 1.x–based appli-
cations to ASP.NET 2.0; we recommend it. You can find it at

.

CHAPTER 18 WEBSITE DEPLOYMENT 899

Dynamic compilation: The application is deployed with all tag and source code files, and
ASP.NET completely compiles the application on the fly. The advantage of this approach
is that making changes just in tag files or even source code files is possible on the fly, and
the application is automatically compiled after a change occurs. Of course, the big dis-
advantage is that dynamic compilation takes place on the first request, and therefore the
first request after a change in code will need more time than subsequent requests (in large
production systems, we don’t suggest making changes directly in source code without test-
ing them first in test environments). This mechanism has been available since ASP.NET 2.0.

Site precompilation: Since ASP.NET 2.0, you have a model for precompilation allowing
you to compile the whole website into binaries so that all code files, and even tag files
such as ASPX or ASMX files, are completely compiled into binaries and deployed as bina-
ries on the target machine.

When creating a new website project, ASP.NET by default selects the dynamic compila-
tion model. This means all the code and pages are stored as markup files and source code files
on the file system, and ASP.NET dynamically compiles them. Therefore, the first request will
require a little bit more time while ASP.NET compiles the whole page. Therefore, it might be
better to deploy the site in a compiled format, which you can do with site precompilation. For
site precompilation, you have to use a separate tool, called aspnet_compiler.exe, to compile
the web application. The compiler is stored in the Microsoft .NET Framework directory. You
must launch the compiler on your test/development machine before you deploy the entire
website. Basically, the tool takes the following parameters:

You can specify a metabase path, the virtual path, the file system path for the application
to be compiled, and the target directory for the application. Figure 18-45 shows the aspnet_
compiler.exe tool in action.

As you can see in Figure 18-45, the compiler creates several files in the target directory as
well as in the Bin directory. If you take a closer look at the default.aspx file, you’ll recognize
that it doesn’t contain any useful tags; it contains just the information “This is a marker file
generated by the precompilation tool and should not be deleted!” All the actual code and tags
are compiled into the binaries located in the Bin directory. If you take a closer look at the con-
tents of the Bin directory, you will notice that aspnet_compiler.exe has included an assembly
for every part of the website; pages and user controls including the code- beside, App_Code
folder contents, themes, resources, and web references will be compiled into separate assemblies
by aspnet_compiler.exe. Pages and user controls with their code- beside files are compiled into
one assembly, and the markup contents from the control or page are compiled into a .NET
module that is part of the compiled assembly. Now you can just copy the resulting directory
structure to the target machine and share the directory as a virtual directory through IIS, and
the application is ready to run.

CHAPTER 18 WEBSITE DEPLOYMENT900

 Figure 18-45. The aspnet_compiler.exe tool in action

But using aspnet_compiler.exe has a couple of caveats. First, as mentioned, aspnet_
compiler.exe removes all the markup code from the pages and the user controls and compiles
it into an assembly that resides in the Bin directory. This is fine if you want to make it a little
bit harder to read the code contained in your website on the deployment machine (you could
call it a “little” version for protecting your intellectual property); however, you cannot quickly
change the contents of the pages, which can be handy in some scenarios. Fortunately, aspnet_
compiler.exe provides a solution for this problem. If you prefer to leave the pages editable,
you can call aspnet_compiler.exe with the -u option (which means updatable); this leaves
the markup content in the pages and user controls without touching them and just compiles
the code- beside, code- behind, code in the App_Code folder, web references, themes, and
resources. Figure 18-46 shows aspnet_compiler.exe with the -u option and the result.

CHAPTER 18 WEBSITE DEPLOYMENT 901

 Figure 18-46. The updatable option of aspnet_compiler.exe

Please note the highlighted code fragment in Figure 18-46. The only aspect aspnet_
compiler.exe had to change in the markup was the inherits attribute of the Page directive (or
the Control directive in case of a user control). Instead of just specifying a class, now you need
to specify the name of the assembly in which the code- beside file resides. Of course, you can
change the markup contents of your pages and user controls on the fly because they get com-
piled dynamically at runtime. But don’t forget that this might have some performance impact
on the first request of your page because ASP.NET needs to compile the markup contents
before serving the request.

The second caveat with aspnet_compiler.exe arises if you have a standard release and
patch management process for your applications. If you look at the files generated with each
run of aspnet_compiler.exe, you will recognize that they get different names each time you
compile your website. Imagine that you have deployed with aspnet_compiler.exe a huge pre-
compiled web application to a web server, and you realize you have a bug in one of your pages.
Typically for large solutions, you’d fix the bug in the page and then just deploy the necessary
assemblies, leaving the other ones as they are on the server. That makes patch and release
management easier because you know exactly which version of which assemblies are on the
production web server. However, the problem is that aspnet_compiler.exe generates new
assembly names each time you run it. This is nasty because when exchanging just the assem-
bly that contains the bug fix and leaving the other ones, you don’t know which assembly really
contains the compiled contents of the page. So, the only option is to deploy the whole website
again to the web server, which might lead to a number of problems. For example, you might
need to take the website offline because copying the contents takes a long time. Or perhaps
the precompilation steps are necessary, delaying the first request coming to your new version
of the website.

CHAPTER 18 WEBSITE DEPLOYMENT902

Fortunately, you can fix this issue with another switch of the aspnet_compiler.exe tool.
Using the -fixednames switch, you can tell aspnet_compiler.exe to generate fixed assembly
names for your website. Therefore, all assemblies generated for the pages, user controls,
themes, resources, web references, and code contained in the App_Code folder get a fixed
name each time you compile the website.

A nice side effect of the -fixednames switch is that the names generated by aspnet_
compiler.exe are easier to read than the ones created otherwise because every name contains
the name of the actual page, user control, or theme it contains. Still, you might have some
different requirements for your deployment such as putting all the compiled contents of your
web page into a single assembly; we’ll cover this later, in the “Visual Studio 2005 Web Deploy-
ment Projects” section.

TAKING APPLICATIONS TEMPORARILY OFFLINE: APP_OFFLINE.HTM

ASP.NET automatically detects any changes you make to the files of your website and then recompiles the
parts of the website as necessary. But what if you want to take your virtual directory offline for your patch
operations for a while without affecting any other virtual directories of your website running in the same
application pool?

Basically, the solution is simple. You just need to put a file with the name App_Offline.htm in the root
directory of your web application. As a result, ASP.NET shuts down the running HttpApplication for your web
application, and you can start with your maintenance operations. Actually, ASP.NET automatically sends
back the contents of App_Offline.htm (with a non-HTTP- 200 status code) for any request sent to this web
application. This is a nice undocumented feature for creating a user- friendly standard reply while you are
maintaining (patching, updating, etc.) your website.

This does have one little issue in combination with Internet Explorer. When the Show Friendly Http
Errors option is turned on in Internet Explorer, the browser displays its own friendly error page for every
response from the web server with a non-HTTP- 200 (OK) status code with a reply smaller than 512 bytes.
So, you should make sure your App_Offline.htm file is at least 512 bytes if you want Internet Explorer to
display the contents of your App_Offline.htm file. If you don’t have enough content for this purpose, just add
HTML comments to your page to fill up the remaining space until you reach 512 bytes.

Deploying with Visual Studio
Visual Studio offers an option for directly deploying websites from within the development
environment onto a web server. This option supports multiple protocols such as FTP and
FrontPage Server Extensions. Selecting Copy Web Site from the Web Site menu from within
Visual Studio opens the dialog box shown in Figure 18-47.

CHAPTER 18 WEBSITE DEPLOYMENT 903

 Figure 18-47. The Visual Studio deployment option

The dialog box shows the website on the left side and the remote machine on the right
side. For connecting to a remote machine, just click the button next to the Connect To
 drop- down list. This fires up another dialog box, as shown in Figure 18-48, for selecting the
target website. As you can see, besides a local directory or local IIS instance, remote sites can
be accessed either through FTP or FrontPage Server Extensions.

After connecting to the server, you can select files and directories from the left panel
(which displays the content of your project) and move them over to the previously selected
server. Of course, in case of FTP or FrontPage Server Extensions, the website must already be
configured on the remote machine.

CHAPTER 18 WEBSITE DEPLOYMENT904

 Figure 18-48. Selecting the target website

Visual Studio 2005 Web Deployment Projects
So far, you have seen many aspects of deploying ASP.NET 3.5–based web applications. Spe-
cifically, you learned about some important configuration steps, and then you learned about
compiling a website. Finally, you learned about deploying websites directly from within Visual
Studio.

Although these out-of-the- box features are extremely useful, a couple of features are miss-
ing in Visual Studio and in the .NET Framework SDK and tools regarding deployment. Especially
when it comes to compiling websites using the previously introduced aspnet_compiler.exe,
you will realize some limitations: for example, you can’t control the naming conventions of the
assemblies generated or the number of assemblies created. Fortunately, the ASP.NET team rec-
ognized these limitations shortly after the release of Visual Studio 2005 and the .NET Framework 2.0
back in 2005 and therefore created the Visual Studio Web Deployment Projects package, which
solves the limitations of aspnet_compiler.exe and the lack of precompilation support within the
Visual Studio 2005 development environment (aspnet_compiler.exe is not integrated in Visual
Studio 2005 out of the box through menus or separate project types).

The Web Deployment Projects package is available as a free download from
. In this section, we will focus on web deployment

projects. Originally, Microsoft planned to include Web Deployment Projects as a part of the
.NET Framework 3.5 tools and Visual Studio 2008. But unfortunately, at the time of writing this
book, the Visual Studio team decided to cut the Web Deployment Projects package from Visual
Studio 2008 due to resource limitations in the project teams. We currently don’t know when
these features will be available for Visual Studio 2008. So, the direct integration of the concepts
in this chapter into Visual Studio won’t be available with the first release of Visual Studio 2008

CHAPTER 18 WEBSITE DEPLOYMENT 905

and the .NET Framework 3.5. However, as the .NET Framework 3.5 is built on top of the .NET
Framework 2.0 and 3.0, the tools included in the Web Deployment Projects package are still
useful for ASP.NET 3.5 developers (for example, you can use the aspnet_merge.exe tool intro-
duced in this chapter in the context of Visual Studio 2005 and ASP.NET 2.0 with ASP.NET 3.5
as well—just without the neat integration of additional dialog boxes and project types in Visual
Studio).

The installer of the Web Deployment Projects package adds a few new files to the %Program
Files%\Microsoft Visual Studio 8\Common7\Packages directory, which are basically files repre-
senting an add- in in Visual Studio 2005. Furthermore, it installs files into the %Program Files%\
MSBuild\Microsoft\WebDeployment\v8.0 directory.

In this directory, you will find two files in addition to the aspnet_merge.exe application, the
Microsoft.WebDeployment.targets XML file, and a DLL called Microsoft.WebDeployment.Tasks.dll.
Both files are used for Microsoft Build (MSBuild) tasks, which can be included in automated builds
executed by MSBuild (see the sidebar “MSBuild: A Complete Build Infrastructure in .NET”).

MSBUILD: A COMPLETE BUILD INFRASTRUCTURE IN .NET

The lack of professional build tools on the Microsoft development platform was really painful before the release
of the .NET Framework 2.0 and Visual Studio 2005. Microsoft had no ready-to- use infrastructure for automated
builds. In fact, in the good ol’ times of COM and ActiveX, you were responsible for such an infrastructure on
your own. Tools such as VBMake helped out a little bit for Visual Basic 6–based projects. Fortunately, with the
.NET Framework 1.0, the open- source community at SourceForge () has created
NAnt (), which is a free tool for automated builds.

With the release of the .NET Framework, Microsoft recognized the need for a professional build
infrastructure for implementing complicated automated builds (such as nightly/weekly/monthly builds with
different configurations and different prebuild and postbuild steps) and included a huge, professional build
infrastructure called MSBuild in the .NET Framework 2.0 SDK for free. Some of the features MSBuild offers
are as follows:

Actually, every solution file created by Visual Studio 2005 is an MSBuild file. That being said, you can
take any Visual Studio 2005 solution file and compile it within automated builds from the command line
using msbuild.exe. The input taken by MSBuild containing all the prebuild, build, and postbuild steps (which
are build tasks) is described using XML.

MSBuild is such a huge infrastructure that discussing how to use it could easily fill a book on its
own. If you are interested in MSBuild, refer to the article “MSBuild Concepts,” available at

.

CHAPTER 18 WEBSITE DEPLOYMENT906

In addition to the assembly containing the build tasks, the Web Deployment Projects
package installs a new tool called aspnet_merge.exe. This tool has some useful options for
precompiled websites. You can use the aspnet_merge.exe tool to get rid of the limitations of
aspnet_compiler.exe. As mentioned in the “Compilation Models in ASP.NET” section earlier
in this chapter, aspnet_compiler.exe automatically decides which assemblies to generate and
automatically generates names for these assemblies. With aspnet_compiler.exe, every page
and user control is compiled into a separate assembly with an automatically generated name.
Although you can force the tool to generate fixed names using the -fixednames switch, pro-
fessional patch management is hard for large websites with lots of pages and user controls
because aspnet_compiler.exe will generate many assemblies with strange names. By using
aspnet_merge.exe, you can combine assemblies generated by aspnet_compiler.exe with the
following options:

assembly.

and user controls) into a single assembly.

your website.

The aspnet_merge.exe tool is always called for websites previously compiled with aspnet_
compiler.exe. Figure 18-49 shows aspnet_merge.exe in action for creating a single assembly for the
whole web page. (Don’t forget to add the Web Deployment Projects package’s directory, %Program
Files%\MSBuild\Microsoft\WebDeployment\v8.0, to your PATH environment variable.)

In Figure 18-49, you can see one assembly generated for the whole website, called
TestCompiledMerged.dll, and one module, named App_Code.compiled, belonging to this
assembly. The other assembly belongs to a class library project referenced in the website
project. Of course, referenced assemblies are not affected by aspnet_merge.exe; only parts
belonging to the website are affected by aspnet_merge.exe. If you call aspnet_merge.exe with-
out any specific parameter (such as the -o switch in Figure 18-49), it generates one assembly
for each folder, and the assembly for the root folder is called Root.dll. For other options, you
have to specify one of the command- line switches available for aspnet_merge.exe. Table 18-6
describes the available options of the aspnet_merge.exe utility.

CHAPTER 18 WEBSITE DEPLOYMENT 907

 Figure 18-49. The aspnet_merge.exe utility in action

Table 18-6. The aspnet_merge.exe Command- Line Utility Parameters

Parameter Description
-keyfile Specifies the name of a key file containing a public and private key for strongly

naming the assemblies generated by aspnet_merge.exe.

-delaysign If specified, tells aspnet_merge.exe that assemblies should be delay signed.

-o Merges the entire website into a single assembly with the name specified for this pa-
rameter. The name of the assembly is specified without the .dll filename extension.
Of course, referenced assemblies will not be merged into the output assembly.

-w Merges web UI content files (pages and user controls) into one assembly and leaves
code contained in App_Code and App_WebReferences in separate assemblies.

-prefix Allows you to specify a prefix that will be added to the resulting assembly
names. Typically, you specify the name of your company with this option so
that every assembly generated by aspnet_merge.exe will get a name as follows:
prefix.assemblyname.dll. You cannot use this option with the -w option.

-copyattrs Copies assembly level attributes from the source assembly specified in this
 command- line switch. If no assembly is specified, aspnet_merge.exe automatically
uses the attributes of the assembly generated for the App_Code folder (App_Code.dll).

-debug Generates the debug symbols for the merged assemblies so that the resulting web-
site can be debugged using Visual Studio 2005.

-r Automatically removes the compiled module files created by aspnet_compiler.exe.

-xmldocs Merges XML documentation generated for the source assemblies with the same
logic as the assemblies.

-log Writes log messages of the merge operation.

-errorstack Outputs additional error messages for errors happening during the merge operation.

-nologo Suppresses the copyright message when starting the tool.

CHAPTER 18 WEBSITE DEPLOYMENT908

With all these options, the aspnet_merge.exe utility is definitely useful for controlling the
assembly output of aspnet_compiler.exe in a more granular fashion. Finally, these options are
helpful for a better patch management because you can specify which assemblies are created
and, even better, you have control over the names generated for assemblies. For example,
when you need to fix a bug in a page in a specific folder, it is much easier to just replace the
assembly affected by the bug fix on the production machine when using aspnet_merge.exe.
Of course, all these options are available as ready-to- use MSBuild tasks as well, so you can
include them in automated builds on a separate build machine (Visual Studio 2005 does not
need to be installed on this separate build machine).

But wouldn’t it be nice if you could do all that from within Visual Studio 2005? The Web
Deployment Projects package includes an add- in for Visual Studio 2005 that allows you to per-
form all the tasks mentioned with aspnet_merge.exe directly from within Visual Studio. Let’s
take a close look at the Visual Studio 2005 integration. As you can see in Figure 18-50, when
installing the Web Deployment Projects package, you will find a new menu entry in the Build
menu of Visual Studio that allows you to add a web deployment project to your existing solu-
tion. (This menu is available for website projects only.)

 Figure 18-50. The new Add Web Deployment Project option in Visual Studio

When you select the new menu item shown in Figure 18-50, you need to specify the name
of the deployment project and its location in a separate dialog box, as shown in Figure 18-51.
This adds a new project to your solution that is a new MSBuild file where you can specify addi-
tional compilation options. Therefore, this project does not have any subitems in Solution
Explorer, as shown in Figure 18-51.

CHAPTER 18 WEBSITE DEPLOYMENT 909

 Figure 18-51. Adding a new web deployment project

Finally, when building your web deployment project (by right- clicking it and selecting Build
from the context menu), Visual Studio 2005 starts creating a precompiled version of your website
using aspnet_compiler.exe, and starts merging your assemblies using aspnet_merge.exe. You
can see this by looking at the Output window of Visual Studio. When taking a look at the output
Window after a successful build of your project, you will see that Visual Studio 2005 calls aspnet_
compiler.exe and then calls aspnet_merge.exe to create a compiled version of your website
according to the options selected in the Property Pages dialog boxes of the web deployment proj-
ect. Figure 18-52 shows one of the project’s Property Pages dialog boxes affecting the parameters
for the call to aspnet_merge.exe executed by Visual Studio. Actually, this Property Pages dialog
box is the one that controls the options passed into aspnet_merge.exe. It allows you to select how
aspnet_merge.exe merges the assemblies generated by aspnet_compiler.exe into the final output
assemblies.

CHAPTER 18 WEBSITE DEPLOYMENT910

 Figure 18-52. Property Pages dialog box for the final assembly output generation

Tip Basically, the web deployment project will be added in a separate directory of the solution directory.
If you just create a simple website project with Visual Studio 2005, the solution directory is the same direc-
tory as your website. Therefore, the deployment project will be created as a subdirectory of your website
project. This isn’t good, because the deployment project does not really belong to your website, although it
will appear in Visual Studio’s Solution Explorer as if it does. Therefore, we recommend creating a blank solu-
tion, adding the website project to the solution, and then adding the web deployment project. This way, every
project will be added in a separate subdirectory of the solution directory, which is much clearer than having it
all in one directory.

The other Property Pages dialog boxes for the project properties allow you to specify
compilation options (which are passed into aspnet_compiler.exe), signing options for strong
name signing your assemblies (such as the path and filename of the strong- named key file),
and deployment options such as web.config configuration section replacements (for example,
you can specify different connection string settings for your deployment project so that they
are exchanged when building the deployment project). The Use IIS Metabase Path for Source
Input option on the Compilation tab of the Property Pages dialog box is important if you
want to use a web deployment project for an IIS- based website containing subsites. Basically,
when using aspnet_compiler.exe, it compiles the complete directory structure, including all
the subdirectories of the source directory. If a website in IIS contains subsites with separate
web.config files and global.asax files, this will result in compilation errors. Using the Use IIS
Metabase Path for Source Input option, you can specify the exact IIS metabase path for compi-
lation (such as /LM/W3SVC/1/ROOT/ProAspNetWeb, where ProAspNetWeb is the name of the
virtual directory), excluding any subapplication configured in IIS. All these options are stored
for different build configurations. This means that for every build configuration (such as the

CHAPTER 18 WEBSITE DEPLOYMENT 911

 out-of-the- box configurations Release and Debug, or any custom- built configuration) you can
configure these options separately. Finally, the Web Deployment Projects package is a good
way to prepare your website to be deployed on a web server.

Note At the time of writing this book, according to the product teams, the web application project was cut
from Visual Studio 2008 due to resource limitations. There are plans of providing this functionality for Visual
Studio 2008, but we unfortunately don’t know yet when these features will be available for it.

The VirtualPathProvider in ASP.NET
The VirtualPathProvider class is a special part of the basic ASP.NET framework. It allows you to
implement some sort of “virtual URL” accessible on the server. This gives you the possibility of
generating a response for a URL dynamically without having an ASPX or HTML file stored on
the hard disk.

Why is that interesting, and why will you learn about that in this chapter? Well, the
VirtualPathProvider class gives you the additional possibility of deploying your web applica-
tion (or, rather, parts of your web application). Actually, you have the ability to store “pages”
of the web application somewhere other than on the file system without writing your own basic
page framework that uses information in the database for dynamically creating controls and
adding them to the page. You can just retrieve the whole file from the database and pass it to
the ASP.NET runtime for further processing. The runtime treats the information retrieved from
the database (or any other data store) like a physical page located on the file system. And that’s
not all—you can use the VirtualPathProvider class for accessing other features, such as themes
and skins, from a different location than the file system. With such a capability, you can write
fully customizable applications by providing some management system that allows you to
upload new themes and skins into a database (perhaps on a per- user or per- user group basis),
which are accessed by the runtime through the VirtualPathProvider class you have written.

The best way to understand the capabilities of the VirtualPathProvider class is to walk
through a simple example. You will learn how to write a simple VirtualPathProvider class that
can read ASPX files from a database table stored in SQL Server.

Note Of course, the VirtualPathProvider is one possibility for getting “file content” from a location dif-
ferent from the file system. Actually, Windows SharePoint Services use a similar mechanism of retrieving
content from somewhere other than the file system. However, this can (but need not) affect the performance
of your application, depending on what you need to read and how you are going to read the data (or file) and
where the storage or database keeping this data (or file) is located in your network. Therefore, always be
careful to use them properly and test them with your requirements by building some prototypes before you
start building a large system based on it. This possibility adds some flexibility for parts of large applications,
but should not be used for storing a complete application in a database instead of the file system.

CHAPTER 18 WEBSITE DEPLOYMENT912

Let’s get started with the simple example. You will need a database table on your local SQL
Server that looks like the one shown in Figure 18-53.

 Figure 18-53. The SQL Server database used for the VirtualPathProvider

As you can see, the table includes a filename (which is the primary key as well) and the
actual content. The content can be any type of code that ASP.NET understands. Because you
are just serving simple pages in the sample, the content can be anything that the page parser is
able to compile. After that, you can create a new website. Of course, both files stored physically
on the file system and files stored virtually in the database should be accessible. You have to
take that into consideration when writing your own implementation for the VirtualPathProvider
class.

Therefore, when creating a new website, you just leave the default.aspx page in place and
modify its code as follows:

CHAPTER 18 WEBSITE DEPLOYMENT 913

Next, you have to create your implementation of the VirtualPathProvider class. The
VirtualPathProvider class is defined in the System.Web.Hosting namespace. Just add a new
class to the App_Code directory and inherit from VirtualPathProvider. The class needs to
implement at least the following methods:

In addition, the VirtualPathProvider class has functions for verifying a directory (DirectoryExists),
getting file hashes (GetFileHash), and cache verification (GetCacheDependency) that should be
overridden for more complex solutions. Furthermore, currently it requires you to implement
a static method called AppInitialize. If the method is present in a VirtualPathProvider class, it is
automatically called by the framework. Within this method, you create an instance of your own
provider and register it for the hosting environment. If you don’t do that, the framework simply
won’t know about your virtual provider and therefore will not use it at all.

As you can see in the previous code snippet, the GetFile method needs to return a virtual
file. This virtual file is then used by the ASP.NET hosting framework for opening the file. There-
fore, it provides an Open method. The Open method needs to return the contents for the entry
in your database—but how will the content for your database get there? The VirtualFile class
doesn’t accept any parameters except the virtual path of the file. And—not surprisingly—it is
abstract.

So, the solution is simple—you have to create your own implementation of VirtualFile and
override the Open method. This method then returns a stream to the ASP.NET infrastructure,
which actually returns the contents of your database file. The following is the implementation
of the simple VirtualFile class:

CHAPTER 18 WEBSITE DEPLOYMENT914

The class’s constructor gets the virtual path as well as the content of the file. In the Open
method, the string with the actual content gets saved to a MemoryStream, and this stream is
then returned. ASP.NET uses the stream for reading the contents as if they were read from the
file system—thanks to the abstraction of bytes through Stream classes.

The next step is to complete the VirtualPathProvider class. It needs to read the actual data
for the files from the database. If a file doesn’t exist in the database, the provider just forwards
the request to its previous provider (which has been selected by the infrastructure while reg-
istering in the static AppInitialize method). Add a method for retrieving the contents from the
database to the MyProvider class introduced previously:

CHAPTER 18 WEBSITE DEPLOYMENT 915

The GetFileFromDB function does nothing other than get the filename from the virtual
path and then read the contents for the filename from the database. (Remember, the filename
is the primary key in the database defined, as shown in Figure 18-53.) This method is then
used by both the FileExists and GetFile methods, as shown in the following code snippet:

With those functions in place, the application is ready to run. Of course, the
VirtualPathProvider class works for resources connected with the ASP.NET ISAPI exten-
sion only. Therefore, if you want to use your own filename extensions in your application,
you first have to connect this extension with the aspnet_isapi.dll ISAPI filter extension.
 Figure 18-54 shows the application in action. You can see three browsers in the figure—
one trying to access the physical file, a second trying to access a file from the database, and
a third trying to access a resource that is available neither in the database nor on the file
system.

CHAPTER 18 WEBSITE DEPLOYMENT916

 Figure 18-54. The VirtualPathProvider in action

Health Monitoring in ASP.NET
Health monitoring is a process for verifying the application’s state while being operated in
production environments. It is used for several reasons, such as catching errors, getting noti-
fied in case of errors, analyzing the performance of the application, and getting information
about the payload for the application. Monitoring is usually implemented through a mecha-
nism called instrumentation, which is a technique used for adding events, performance
counters, and tracing capabilities to an application.

Through these tracing capabilities, administrators, operational staff, and developers have
the ability to monitor the application based on several aspects. However, instrumentation is
something that has to be integrated into the application’s architecture in a way that makes
monitoring useful and convenient.

As of version 2.0, ASP.NET ships with an integrated health- monitoring system that is
completely consumable through a health- monitoring API. Therefore, the instrumentation
capabilities are integrated into the platform. You will now learn about the fundamentals of this
instrumentation system.

Understanding the Basic Structure
The system is split up into two major parts: types of events that are implemented in a set of
event classes and providers that are responsible for processing different types of events. You
can see this when looking at the basic structure of the health- monitoring configuration that is
part of the web.config configuration file:

CHAPTER 18 WEBSITE DEPLOYMENT 917

Through the <providers> element, you can configure a number of providers responsible for
event processing. The events that can be processed are registered through the <eventMappings>
element. The connection between providers and events is drawn through the <rules> element,
which defines the provider responsible for processing an event and some additional parameters.

The <rules> section on its own may reference profiles that are defined in the <profiles>
section. These profiles are some additional parameters that can be used for configuring the
behavior of the event- processing mechanism. Examples for such parameters are the number
of times the event has to happen until it is raised by the monitoring system and the time that
has to elapse between two events.

Events and Providers
The reasons for splitting events and providers into two components are extensibility and
flexibility. The event just defines a situation that has become reality in the application, and
the provider specifies how the event will be processed. ASP.NET ships with several event
providers for catching the following types of events defined in the System.Web.Management
namespace:

Heartbeats: These events are raised in a regular interval defined in the web.config con-
figuration file. They provide you with information about the running process in regular
intervals for monitoring memory consumption, CPU processor load, and much more. The
class that implements this event is the WebHeartBeatEvent class.

Application lifetime events: These enable you to catch several events raised during the
application’s life cycle, including startup, shutdown, session starts, and session ends.
These types of events are encapsulated in the WebApplicationLifetimeEvent class.

Security audit events: The WebAuditEvent class encapsulates security audit events such
as failed logons or attempts to access resources without the necessary permissions.

Request- and response- based events: These are encapsulated in the WebRequestEvent
class. You can catch several types of events, including the start of a request, its end, and
information about the response generated.

Errors: Finally, you can catch and monitor several types of errors—either general applica-
tion errors happening on startup/shutdown or request- based errors. General errors are
encapsulated in the WebErrorEvent class and request- specific errors are encapsulated in
the WebRequestErrorEvent class.

These events are already registered with corresponding friendly names in the machine- wide
configuration of the default installation of ASP.NET. Of course, if you create your own type of
event generated by the application, you can register it in the <eventMappings> section of the
<healthMonitoring> section in the web.config file. The syntax is basically the same as shown for
the default events in machine.config in the following code snippet:

CHAPTER 18 WEBSITE DEPLOYMENT918

Of course, only a couple of events are registered in the machine- wide configuration. You
can find a full list of the events with their friendly names in Table 18-7.

Table 18-7. List of Events Available on a Default Installation

Event Name Event Type Description
All Events WebBaseEvent Mapping for all events available, as

all events inherit from this class.

HeartBeats WebHeartBeatEvent Heartbeat event for delivering
information about the process in
regular intervals.

Application Lifetime Events WebApplicationLifetimeEvent Delivers application- specific events
such as startup or shutdown.

Request Processing Events WebRequestEvent Basic configuration for deliver-
ing all request processing events
available.

All Errors WebBaseErrorEvent Catches all types of error events, as
this is the base class for errors in
general.

Infrastructure Errors WebErrorEvent While All Errors focuses on all
errors happening within the web
application, this type of error in-
cludes infrastructure errors of the
ASP.NET runtime as well.

Request Processing Errors WebRequestErrorEvent Errors that occur within the pro-
cessing of one request.

All Audits WebAuditEvent Catches all types of audits, as this
is the general base class for audit
events.

Failure Audits WebFailureAuditEvent Catches all audits designated to
failures such as invalid logins or
“access denied” errors.

Success Audits WebSuccessAuditEvent Catches all audits designated to
succeeding operations.

CHAPTER 18 WEBSITE DEPLOYMENT 919

Basically, any type of provider can process these events. Again, the system ships with
a couple of providers, but only some of them are really configured in the machine- wide con-
figuration, as shown in the following code snippet:

Although only the three providers shown in the previous code snippet are configured by
default, the framework ships with five providers. If you need another provider, just write a class
inherited from the ProviderBase class of the namespace System.Configuration.Provider, and
register the provider in the <providers> section of the <healthMonitoring> section in your own
web.config file in the same way as in the previous code snippet. The framework ships with the
following providers:

EventLogWebEventProvider: Responsible for adding different types of events to the
Windows event log of the local system.

MailWebEventProvider: Responsible for sending events via SMTP to a configured e-mail
address. The e-mail address is added as a parameter to the provider entry in the same way
as the ConnectionStringName parameter of the SqlWebEventProvider shown in the previ-
ous code snippet.

SqlWebEventProvider: Offers the possibility for storing events in a SQL Server–based
database. Of course, the database requires some standard tables for the provider
in place. The SQL scripts for creating and dropping those tables are available in the
InstallWebEventSqlProvider.sql and UninstallWebEventSqlProvider.sql files in the
.NET Framework directory.

TraceWebEventProvider: Enables you to catch and add events to the ASP.NET trace,
which can be viewed through the trace.axd handler of the runtime.

WmiWebEventProvider: Allows you to publish events through WMI. You can catch these
events like you do any other type of WMI event through the System.Management API or
the unmanaged WMI provider APIs available for Windows.

CHAPTER 18 WEBSITE DEPLOYMENT920

Now that you know events define situations that might happen in the application and
providers define the delivery mechanism for those events (which means how these events are
processed), you can configure a simple application for using the health- monitoring infrastruc-
ture. You just need to take any of the samples created previously, or create a new website with
an empty default.aspx page, and add the following configuration to the web.config file:

In the previous example, we added the e-mail provider for sending an e-mail in case of
every application lifetime event. The defined element in the <rules> section connects the pre-
viously configured e-mail provider with the actual events. For the rule definition, you should
use the friendly name defined for the registered event in the <eventMappings> section.

Tip If you want to test this scenario quickly, you can use the POP3 server that ships with Windows Server
2003. When you set up the POP3 server, you can either configure it to create mailboxes based on Windows
accounts or use password- based authentication and therefore create a user name/password combination
for every mailbox you configure. After you have installed the POP3 server, just create a mailbox, launch
Outlook, and configure the previously configured mailbox. (The SMTP and POP3 server are both localhost in
that case.) Afterward, you just need to configure the SMTP server for the ASP.NET application through the
web administration site that results in adding the necessary configuration entries to the web.config file of
the application. When starting and shutting down the application together with the web server, you will then
receive the appropriate events for the application.

CHAPTER 18 WEBSITE DEPLOYMENT 921

Tip When running ASP.NET on IIS 7.0, you have another useful feature available. This feature, called
failed request tracing, can be configured through the IIS 7.0 management console. This feature enables you
to do a non- repro instrumentation for failed requests. That means you can turn on tracing for ASP.NET and
IIS, and tell IIS to keep tracing information just for failed requests and throw it away for any other request.
You can configure failed request tracing on a per- URL basis, and you can configure custom failure defini-
tions as well. You can find more information about failed request tracing at the following URL:

=1. Failed request
tracing is an extremely useful feature introduced with IIS 7.0. You should definitely have a look at this helpful
technology.

Summary
In this chapter, you learned how to configure your web application on the target environment.
For this step, IIS—the web hosting software included with Windows—plays a key role; you saw
the different aspects of installing and configuring IIS on Windows 2000/XP, Windows Server
2003, Windows Vista, and Windows Server 2008–based systems.

You also learned about the process architecture of IIS 5.x, IIS 6.0, and IIS 7.0; and you
learned how the request handling architecture has been improved dramatically with IIS 7.0 and
its ASP.NET integrated mode. You learned about the differences between the process model
architectures. While IIS 5.x uses a single- process model and ASP.NET executes in a separate
worker process called aspnet_wp.exe for executing managed applications, IIS 6.0 and IIS 7.0
favor the more secure and reliable worker process model, with which you can configure as many
processes as you want for running your web applications. Every worker process is configured
through application pools. Based on these pools, you can configure recycling, performance, and
health settings, and a custom identity for every process. By default, each process runs under the
restricted Network Service account, but if additional permissions are required, you can config-
ure your own identity. You also learned how the architectural changes in IIS 7.0 provide you with
a modularized web server that allows a very fine- grained configuration and enables a smooth
integration with ASP.NET through its managed pipeline mode. In managed pipeline mode, you
can even integrate custom handlers and modules written in .NET by implementing standard
ASP.NET interfaces such as IHttpHandler and IHttpModule.

Then you learned about how Windows and IIS share web applications through virtual
directories. You learned how to configure those virtual directories and how to put them into
their designated application pools when using IIS 6.0 or 7.0. You also learned how to create
and configure application pools with both versions of IIS.

In addition, you learned all the details about deploying ASP.NET applications to the tar-
get environment. Although deploying ASP.NET applications merely requires copying them to
the target web server and sharing the directory as a virtual directory through IIS, you need to
keep a couple of things in mind, such as validating the ASP.NET configuration, selecting the
appropriate ASP.NET runtime because more than one version of ASP.NET can be installed on
the target machine, and viewing the details of the different compilation possibilities when it
comes to ASP.NET deployment. For advanced deployment scenarios, you still can leverage the
powerful Windows Installer.

CHAPTER 18 WEBSITE DEPLOYMENT922

Finally, we discussed the fundamentals of the health- monitoring subsystem included with
ASP.NET. This system gives you a basic infrastructure to instrument and monitor ASP.NET
web applications based on events and providers. Events are just states that can become true in
a web application, and providers are components for processing those events.

Basically, the topics you learned in this chapter are the most important topics for website
deployment. In addition, you might want to refer to the command- line administration avail-
able with IIS 6.0 and 7.0. Together with some other scripts (such as database scripts imported
through sqlcmd.exe), they provide a mechanism for deploying ASP.NET web applications with
simple scripts, automatically.

P A R T 4

Security

Devising a proper security strategy is a key part of any distributed application, particularly

a large- scale web application that’s exposed over the public Internet. In this book, you’ll

find no less than eight chapters that cover ASP.NET security features.

In Chapter 19, you’ll begin with a high- level overview of three security fundamentals:

authentication, authorization, and confidentiality. Once you have this perspective in mind,

you’re ready to consider ASP.NET’s two key systems for authenticating users: forms

authentication (Chapter 20), which provides a simple yet flexible framework for securing

a public website, and Windows authentication (Chapter 22), which uses existing Windows

accounts to authenticate users and is most commonly used in local intranet sites. You’ll

also explore ASP.NET’s higher- level security services, such as membership, roles, and pro-

files. Membership (Chapter 21) provides prebuilt security controls and allows ASP.NET to

manage the back- end database that stores user credentials. Roles (Chapter 24) allows

you to place users into logical groups, which can then have different privileges. Profiles

(Chapter 25) allows you to store user- specific information in a server- side database with-

out writing your own ADO.NET code. Although these features are powerful, they drive many

details behind the scenes. To truly customize the way these features work, you need to

build a custom provider, a topic you’ll tackle in Chapter 26.

Finally, you’ll find that Chapter 25 takes a detour into .NET’s cryptography features, which

are essentially for securing sensitive information before you store it in a file or database.

Unlike the other security features that are described in this part, the .NET cryptography

classes aren’t limited to ASP.NET, although they’re frequently useful in web applications,

allowing you to perform feats like building a tamper- proof query string.

925

C H A P T E R 1 9

The ASP.NET Security Model

Security is an essential part of web applications and should be taken into consideration from
the first stage of the development process. Essentially, security is all about protecting your assets
from unauthorized actions. You use several mechanisms to this end, including identifying users,
granting or denying access to sensitive resources, and protecting the data that’s stored on the
server and transmitted over the wire. In all of these cases, you need an underlying framework
that provides basic security functionality. ASP.NET fills this need with built- in functionality
that you can use for implementing security in your web applications.

The ASP.NET security framework includes classes for authenticating and authorizing
users as well as for dealing with authenticated users in your applications. Furthermore, the
.NET Framework on its own provides you with a set of base classes for implementing confi-
dentiality and integrity through encryption and digital signatures.

With the release of ASP.NET 2.0, which builds the foundation for ASP.NET 3.5, the secu-
rity infrastructure is extended significantly with a higher- level model for managing users and
roles, both programmatically and with built- in administrative tools. This functionality (which
is accessible through the membership and roles APIs) builds on the existing security infra-
structure that has been present since ASP.NET 1.x. Best of all, this security infrastructure is
completely extensible through the provider design pattern, as you’ll see in Chapter 26. Going
even further, ASP.NET 3.5 extends this infrastructure with functionality for integration into
Ajax, as you will learn in Chapters 31 and 32.

This chapter provides a road map to the security features in ASP.NET. In subsequent
chapters, you’ll dig deeper into each of the topics covered in this chapter. Here, you’ll get
a quick introduction to the key features of .NET security. You’ll see how the .NET authenti-
cation providers and authorization modules are structured, and you’ll learn how the user’s
security context is represented with identity and principal objects. Most important, you’ll get
a basic understanding of how you can incorporate security into your application architecture
and design, and you’ll see what the most important factors are for creating secure software.

What It Means to Create Secure Software
Although the security framework provided by .NET and ASP.NET is powerful, it’s essential
to keep some basic principles in mind and use the features correctly and at the right time.
In all too many projects, security is treated as an afterthought, and architects and develop-
ers fail to consider it in the early stages. But when you don’t keep security in mind from the

CHAPTER 19 THE ASP.NET SECURITY MODEL926

beginning—which means in your application architecture and design—how can you use all
the security features offered by the .NET Framework correctly and at the right time?

Therefore, it’s essential to include security from the first moment of your development
process. That’s the only way to make the right security- related decisions when creating your
architecture and designs.

Understanding Potential Threats
Creating a secure architecture and design requires that you have an in- depth understanding
of your application’s environment. You can’t create secure software if you don’t know who has
access to your application and where possible points of attack might be. Therefore, the most
important factor for creating a secure application architecture and design lies in a good under-
standing of environmental factors such as users, entry points, and potential possible threats
with points of attack.

That’s why threat modeling has become more important in today’s software development
processes. Threat modeling is a structured way of analyzing your application’s environment
for possible threats, ranking those threats, and then deciding about mitigation techniques
based on those threats. With this approach, a decision for using a security technology (such
as authentication or SSL encryption) is always based on an actual reason: the threat itself.

But threat modeling is important for another reason. As you probably know, not all poten-
tial threats can be mitigated with security technologies such as authentication or authorization.
In other words, some of them can’t be solved technically. For example, a bank’s online solution
can use SSL for securing traffic on its website. But how do users know they are actually using
the bank’s page and not a hacker’s fake website? Well, the only way to know this is to look at the
certificate used for establishing the SSL channel. But users have to be aware of that, and there-
fore you have to inform them of this somehow. So, the “mitigation technique” is not a security
technology. It just involves making sure all your registered users know how to look at the
certificate. (Of course, you can’t force them to do so, but if your information is designed appro-
priately, you might get most of them to do it.) Threat modeling as an analysis method helps you
determine issues such as these, not merely the technical issues.

Threat modeling is a big topic that is beyond the scope of this book; refer to Michael
Howard and David C. LeBlanc’s Writing Secure Code, Second Edition (Microsoft Press, 2002)
or Frank Swiderski and Window Snyder’s Threat Modeling (Microsoft Press, 2004). Also, there
are a couple of additional books from the Microsoft patterns & practices team (

). This team at Microsoft builds content and building blocks based on
 real- world projects Microsoft is doing with early adopter customers. Its book Building Secure
Microsoft ASP.NET Applications by Microsoft Corp. (Microsoft Press, 2003) covers many details
and concepts of building secure web applications, which are independent of the ASP.NET
releases in many cases. Much of the patterns & practices content is available for free as elec-
tronic books as well. Take a look at the following links:

Apress has its own offering for full details on ASP.NET security with Pro ASP.NET 2.0
Security by Russ Basiura (Apress, 2007). Finally, we want to mention one last reference here
that is, in our opinion, extremely important for project managers and architects: The Security

CHAPTER 19 THE ASP.NET SECURITY MODEL 927

Development Lifecycle by Michael Howard and Steve Lipner (Microsoft Press, 2006). This
book focuses on how to make sure that security gets an integral part in your software devel-
opment life cycle, from the first planning steps through architecture, development, testing,
and maintenance. It summarizes how Microsoft’s project management makes sure security
is an integral part of the project in a smooth and pragmatic way. As it doesn’t take much time
to read this book, we recommend that everyone out there should read it, even if you are not
a project manager or architect.

Secure Coding Guidelines
Of course, a secure architecture and design alone doesn’t make your application completely
secure. It’s only one of the most important factors. After you have created a secure architec-
ture and design, you have to write secure code as well. Again, Writing Secure Code, Second
Edition by Michael Howard and David C. LeBlanc (Microsoft Press, 2002) and Threat Modeling
by Frank Swiderski and Window Snyder (Microsoft Press, 2004), as well as The Security Devel-
opment Lifecycle by Michael Howard and Steve Lipner (Microsoft Press, 2006) are excellent
sources for detailed information for every developer. In terms of web applications, you should
always keep the following guidelines in mind when writing code:

Never trust user input: Assume that every user is evil until you have proven the opposite.
Therefore, always strongly validate user input. Write your validation code in a way that it
verifies input against only allowed values and not invalid values. (There are always more
invalid values than you might be aware of at the time of writing the application.)

Never use string concatenation for creating SQL statements: Always use parameterized
statements so that your application is not SQL injectable, as discussed in Chapter 7.

Never output data entered by a user directly on your web page before validating and
encoding it: The user might enter some HTML code fragments (for example, scripts) that
lead to cross- site scripting vulnerabilities. Therefore, always use HttpUtility.HtmlEncode()
for escaping special characters such as < or > before outputting them on the page, or use
a web control that performs this encoding automatically.

Never store sensitive data, business- critical data, or data that affects internal business
rule decisions made by your application in hidden fields on your web page: Hidden fields
can be changed easily by just viewing the source of the web page, modifying it, and saving
it to a file. Then an attacker simply needs to submit the locally saved, modified web page
to the server. Browser plug- ins are available to make this approach as easy as writing an
 e-mail with Microsoft Outlook.

Never store sensitive data or business- critical data in view state: View state is just
another hidden field on the page, and it can be decoded and viewed easily. If you use the
EnableViewStateMAC=true setting for your page, view state will be signed with a message
authentication code that is created based on a machine key of the web server’s machine.
config. We recommend using EnableViewStateMAC=true as soon as you include data in
your view state that should not be changed by users browsing your web page. See Chap-
ter 6 for more about protecting view state.

Enable SSL when using Basic authentication or ASP.NET forms authentication: Chap-
ter 20 discusses forms authentication. SSL is discussed later in this chapter in the section
“Understanding SSL.”

CHAPTER 19 THE ASP.NET SECURITY MODEL928

Protect your cookies: Always protect your authentication cookies when using forms
authentication, and set timeouts as short as possible and only as long as necessary.

Use SSL: In general, if your web application processes sensitive data, secure your whole
website using SSL. Don’t forget to protect even image directories or directories with other
files not managed by the application directly through SSL.

Of course, these are just a few general, important issues. To get a complete picture of the
situation in terms of your concrete application, you have to create threat models in order to
compile a complete list of potential dangers. In addition, invest in ongoing education, because
hackers’ techniques and technologies evolve just as other techniques and technologies do.

If you forget about just one of these guidelines, all the other security features are more or
less useless. Never forget the following principle: Security is only as good as your weakest link.

Understanding Gatekeepers
A good way to increase the security of your application is to have many components in place
that enforce security. Gatekeepers are a conceptual pattern that apply a pipelining model to
a security infrastructure. This model helps you tighten your security.

The gatekeeper model assumes that a secure application always has more security mecha-
nisms in place than necessary. Each of these mechanisms is implemented as a gatekeeper that
is responsible for enforcing some security- related conditions. If one of these gatekeepers fails,
the attacker will have to face the next gatekeeper in the pipeline. The more gatekeepers you
have in your application, the harder the attacker’s life will be. Actually, this model supports
a core principle for creating secure applications: be as secure as possible, and make attackers’
lives as hard as possible.

In Figure 19-1, you can see a pipeline of gatekeepers. At the end of the pipeline, you can see
the protected resource (which can be anything, even your custom page code). The protected
resource will be accessed or executed only if every gatekeeper grants access. If just one gate-
keeper denies access, the request processing is returned to the caller with a security exception.

Implementing a central security component in such a way is generally a good idea. You
can also secure your business layer in this way. The ASP.NET application infrastructure lever-
ages this mechanism as well. ASP.NET includes several gatekeepers, each one enforcing a
couple of security conditions and therefore protecting your application. In the next sections
of this chapter, you will learn which gatekeepers the ASP.NET framework includes and what
those gatekeepers’ responsibilities are.

 Figure 19-1. A pipeline of gatekeepers

CHAPTER 19 THE ASP.NET SECURITY MODEL 929

Understanding the Levels of Security
Basically, for mainstream web applications, the fundamental tasks for implementing security
(besides the issues you identify during your threat modeling session) are always the same:

Authentication: First, you have to authenticate users. Authentication asks the question,
who goes here? It determines who is working with your application on the other end.

Authorization: Second, as soon as you know who is working with your application, your
application has to decide which operations the user may execute and which resources the
user may access. In other words, authorization asks the question, what is your clearance
level?

Confidentiality: While the user is working with the application, you have to ensure that
nobody else is able to view sensitive data processed by the user. Therefore, you have to
encrypt the channel between the client’s browser and the web server. Furthermore, you
possibly have to encrypt data stored on the backend (or in the form of cookies on the cli-
ent) even if you have to prevent database administrators or other staff of the company
where the web application is hosted from viewing the data of your application.

Integrity: Finally, you have to make sure data transmitted between the client and the
server is not changed by unauthorized actors. Digital signatures provide you with a way
to mitigate this type of threat.

ASP.NET includes a basic infrastructure for performing authentication and authoriza-
tion. The .NET Framework base class library includes some classes in the System.Security
namespace for encrypting and signing data. Furthermore, SSL is a standardized way for ensur-
ing confidentiality and integrity of data transmitted between the client browser and the web
server. Now you will take a closer look at each of these concepts.

Authentication
Authentication is the process of discovering a user’s identity and ensuring the authenticity of
this identity. The process of authentication is analogous to checking in at a conference reg-
istration table. First, you provide some credentials to prove your identity (such as a driver’s
license or a passport). Second, once your identity is verified with this information, you are
issued a conference badge, or token, that you carry with you when you are at the conference.
Anyone you meet at the conference can immediately determine your identity by looking at
your badge, which typically contains basic identity information, such as your first and last
name. This whole process is an example of authentication. Once your identity is established,
your token identifies you so that everywhere you go within a particular area, your identity is
known.

In an ASP.NET application, authentication is implemented through one of four possible
authentication systems:

Windows authentication

Forms authentication

Passport authentication

CHAPTER 19 THE ASP.NET SECURITY MODEL930

In each of these, the user provides credentials when logging in. The user’s identity is tracked
in different ways depending on the type of authentication. For example, the Windows operating
system uses a 96- bit number called an SID (security identifier) to identify each logged- on user.
In ASP.NET forms authentication (which is covered in detail in Chapter 20), the user is given
a forms authentication ticket, which is a combination of values that are encrypted and placed
in a cookie.

All authentication does is allow the application to identify who a user is on each request.
This works well for personalization and customization, because you can use the identity
information to render user- specific messages on the web pages, alter the appearance of the
website, add custom content based on user preferences, and so on. However, on its own,
authentication isn’t enough to restrict the tasks that a user is allowed to perform based on
that user’s identity. For that, you need authorization, described in a moment. However,
before you learn about authorization, you will take a look at impersonation, which is related
to authentication.

Impersonation
Impersonation is the process of executing code in the context (or on behalf) of another user
identity. By default, all ASP.NET code is executed using a fixed machine- specific account
(typically ASPNET on IIS 5.x or Network Service on IIS 6.0 and IIS 7.0). To execute code using
another identity, you can use the built- in impersonation capabilities of ASP.NET. You can use
a predefined user account, or you can assume the user’s identity, if the user has already been
authenticated using a Windows account.

You might want to use impersonation for two reasons:

To give each web application different permissions: In IIS 5, the default account that’s
specified in the machine.config file is used for all web applications on the computer. If
you want to give different web applications different permissions, you can use imper-
sonation to designate different Windows accounts for each application. That’s especially
important for hosting scenarios where you want to isolate web applications of different
customers appropriately (so that, for example, a web application of customer A is not able
to access directories or databases from a web application of customer B).

To use existing Windows user permissions: For example, consider an application that
retrieves information from various files that already have user- specific or group- specific
permissions set. Rather than code the authorization logic in your ASP.NET application,
you can use impersonation to assume the identity of the current user. That way, Windows
will perform the authorization for you, checking permissions as soon as you attempt to
access a file.

These two scenarios are fundamentally different. In the first scenario, impersonation
defines a single, specific account. In this case, no matter what user accesses the application,
and no matter what type of user- level security you use, the code will run under the account
you’ve set. In the second scenario, the users must be authenticated by IIS. The web- page code
will then execute under the identity of the appropriate user. You’ll learn more about these
options in Chapter 22.

CHAPTER 19 THE ASP.NET SECURITY MODEL 931

Authorization
Authorization is the process of determining the rights and restrictions assigned to an authenti-
cated user. In the conference analogy, authorization is the process of being granted permission
to a particular type of session, such as the keynote speech. At most conferences it is possible
to purchase different types of access, such as full access, preconference only, or exhibition hall
only. This means if you want to attend the keynote address at Microsoft’s Professional Devel-
oper Conference to hear what Bill Gates has to say, you must have the proper permissions (the
correct conference pass). As you enter the keynote presentation hall, a staff member will look
at your conference badge. Based on the information on the badge, the staff member will let you
pass or will tell you that you cannot enter. This is an example of authorization. Depending on
information related to your identity, you are either granted or denied access to the resources
you request.

The conference example is a case of role- based authorization—authorization being based
on the role or group the user belongs to, not on who the user is. In other words, you are autho-
rized to enter the room for the keynote address based on the role (type of pass), not your specific
identity information (first and last name). In many cases, role- based authorization is preferable
because it’s much easier to implement. If the staff member needed to consult a list with the name
of each allowed guest, the process of authorization would be much more awkward. The same
is true in a web application, although the roles are more likely to be managers, administrators,
guests, salespeople, clients, and so on.

In a web application, different types of authorization happen at different levels. For
example, at the topmost level, your code can examine the user identity and decide whether
to continue with a given operation. On a lower level, you can configure ASP.NET to deny
access to specific web pages or directories for certain users or roles. At an even lower level,
when your code performs various tasks such as connecting to a database, opening a file,
writing to an event log, and so on, the Windows operating system checks the permissions
of the Windows account that’s executing the code. In most situations, you won’t rely on this
bottommost level, because your code will always run under a fixed account. In IIS 5.x, this is
the account named ASPNET. In IIS 6.0 and IIS 7.0, this is by default the fixed Network Service
account. (In both cases, you can override the default account, as described in Chapter 18.)

Sound reasons exist for using a fixed account to run ASP.NET code. In almost all appli-
cations, the rights allocated to the user don’t match the rights needed by your application,
which works on behalf of the user. Generally, your code needs a broader set of permissions
to perform incidental tasks, and you won’t want to give these permissions to every user
who might access your web application. For example, your code may need to create a log
record when a failure occurs, even though the current user isn’t allowed to directly write
to the Windows event log, file, or database. Similarly, ASP.NET applications always require
rights to the c:\[WinDir]\Microsoft.NET\Framework\[Version]\Temporary ASP.NET Files
directory to create and cache a compiled machine- language version of your web pages. Note
that for ASP.NET 3.5 applications you still will find this folder in the version subdirectory in
the Microsoft.NET directory for version 2.0! This is because ASP.NET 3.5 is an extension that
builds on top of ASP.NET 2.0 instead of being a completely new version of ASP.NET. Finally,
you might want to use an authentication system that has nothing to do with Windows. For
example, an e- commerce application might verify user e-mail addresses against a server- side
database. In this case, the user’s identity doesn’t correspond to a Windows account.

In a few rare cases, you’ll want to give your code the ability to temporarily assume the
identity of the user. This type of approach is much more common when creating ASP.NET

CHAPTER 19 THE ASP.NET SECURITY MODEL932

applications for local networks where users already have a carefully defined set of Windows
privileges. In this case, you need to supplement your security arsenal with impersonation, as
mentioned in the previous section and described in Chapter 22.

Confidentiality and Integrity
Confidentiality means ensuring that data cannot be viewed by unauthorized users while being
transmitted over a network or stored in a data store such as a database. Integrity is all about
ensuring that nobody can change the data while it is transmitted over a network or stored in
a data store. Both are based on encryption.

Encryption is the process of scrambling data so that it’s unreadable by other users.
Encryption in ASP.NET is a completely separate feature from authentication, authorization,
and impersonation. You can use it in combination with these features or on its own.

As mentioned previously, you might want to use encryption in a web application for two
reasons:

To protect communication (data over the wire): For example, you might want to make
sure an eavesdropper on the public Internet can’t read a credit card number that’s used to
purchase an item on your e- commerce site. The industry- standard approach to this prob-
lem is to use SSL. SSL also implements digital signatures for ensuring integrity. SSL isn’t
implemented by ASP.NET. Instead, it’s a feature provided by IIS. Your web- page (or web
service) code is identical whether or not SSL is used.

To protect permanent information (data in a database or in a file): For example, you
might want to store a user’s credit card in a database record for future use. Although you
could store this data in plain text and assume the web server won’t be compromised, this
is never a good idea. Instead, you should use the encryption classes that are provided with
.NET to manually encrypt data before you store it.

It’s worth noting that the .NET encryption classes aren’t directly tied to ASP.NET. In fact,
you can use them in any type of .NET application. You’ll learn about encryption and digital
signatures as well as how to take control of custom encryption in Chapter 25.

Pulling It All Together
So, how do authentication, authorization, and impersonation all work together in a web
application?

When users first come to your website, they are anonymous. In other words, your applica-
tion doesn’t know (and doesn’t care) who they are. Unless you authenticate them, this is the
way it stays.

By default, anonymous users can access any ASP.NET web page. But when a user requests
a web page that doesn’t permit anonymous access, several steps take place (as shown in
 Figure 19-2):

CHAPTER 19 THE ASP.NET SECURITY MODEL 933

 1. The request is sent to the web server. Since the user identity is not known at this time,
the user is asked to log in (using a custom web page or a browser- based login dialog
box). The specific details of the login process depend on the type of authentication
you’re using.

 2. The user provides his or her credentials, which are then verified, either by your applica-
tion (in the case of forms authentication) or automatically by IIS (in the case of Windows
authentication).

 3. If the user credentials are legitimate, the user is granted access to the web page. If his or
her credentials are not legitimate, then the user is prompted to log in again, or the user
is redirected to a web page with an “access denied” message.

 Figure 19-2. Requesting a web page that requires authentication

When a user requests a secure web page that allows only specific users or users in specific
roles, the process is similar, but an extra step takes place (see Figure 19-3):

 1. The request is sent to the web server. Since the user identity is not known at this time,
the user is asked to log in (using a custom web page or a browser- based login dialog
box). The specific details of the login process depend on the type of authentication
you’re using.

 2. The user provides his or her credentials, which are verified with the application. This is
the authentication stage.

 3. The authenticated user’s credentials or roles are compared to the list of allowed users
or roles. If the user is in the list, then the user is granted access to the resource; other-
wise, access is denied.

CHAPTER 19 THE ASP.NET SECURITY MODEL934

 4. Users who have access denied are either prompted to log in again, or they are redi-
rected to a web page with an “access denied” message.

 Figure 19-3. Requesting a web page that requires authentication and authorization

Internet Information Services Security
Before the ASP.NET runtime even gets in touch with an incoming request, IIS verifies the
 security according to its own configuration. Therefore, before you learn about the details of
ASP.NET security, you have to learn about the first gatekeeper in the security pipeline of your
web application—IIS.

IIS provides you with a couple of essential security mechanisms that act as gatekeepers
before ASP.NET starts with the request processing. Basically, IIS includes the following secu-
rity mechanisms:

Authentication: IIS supports Basic authentication, Digest authentication, Passport
authentication, and Windows authentication as well as certificate authentication through
an SSL channel. Any authentication IIS performs results in an authenticated Windows
user. Therefore, IIS supports authenticating Windows users only.

Authorization: IIS provides built- in support of IP address restrictions and evaluation of
Windows ACLs (which is the acronym for Access Control Lists, which are Windows’ way
of protecting resources managed by the operating system, such as file system files and
folders, registry entries, named pipes, and so on).

Confidentiality: Encryption can be enforced through SSL.

In the following sections, you will learn about the details of IIS security configuration. You
will learn details about security- related configuration options for IIS 5.x and IIS 6.0 as well as

CHAPTER 19 THE ASP.NET SECURITY MODEL 935

IIS 7.0. You configure security settings for authentication, authorization, and confidentiality
exactly the same way in IIS 5.x and IIS 6.0. On IIS 5.x and IIS 6.0 you have to keep IIS secu-
rity always in mind, because it affects how ASP.NET behaves with different security settings
applied in web.config.

For example, if your ASP.NET application wants to use Windows authentication, you should
configure IIS to use either Windows or Basic (or Digest) authentication. If your ASP.NET web
application doesn’t want to use Windows accounts (and therefore use custom or forms authen-
tication), you must configure IIS to allow anonymous access.

When it comes to IIS 7.0, you have to keep in mind that IIS 7.0 ships with a much better
and tighter integration of ASP.NET when running in “integrated” mode, as you learned in
Chapter 18. Running in integrated mode (which is the default for each application pool), IIS
7.0 allows you to leverage managed HTTP modules of ASP.NET for authentication and autho-
rization. Therefore, configuring security of ASP.NET- based web applications on IIS 7.0 is often
just one step (but not in all cases, as you’ll learn in subsequent chapters and you saw in Chap-
ter 18). Compare this one step to configuration of ASP.NET web applications running in IIS 5.x
or IIS 6.0, where you have to configure IIS security separately. As you learned in Chapter 18,
you can run IIS 7.0 in classic mode for backward compatibility, as well. In that case, IIS 7.0
behaves exactly the same way as IIS 5.x and IIS 6.0 do—and therefore you have to remember
the same things as when working on IIS 5.x and IIS 6.0. For more details on HTTP modules
and the ASP.NET module pipeline, refer to Chapter 5 and to the section “ASP.NET Security
Architecture” later in this chapter. In the following sections you will learn more details about
IIS security configuration.

Authentication and Authorization on IIS 5.x and IIS 6.0
When working on Windows XP you will find yourself working with IIS 5.1, whereas on Win-
dows Server 2003 you will have IIS 6.0 available. For detailed information on the differences
between these two versions of the web servers, please refer to Chapter 18.

Although the architecture of IIS 6.0 in Windows Server 2003 was improved dramatically
compared to IIS 5.x, all the basic security settings such as authentication, authorization, and
even confidentiality are configured exactly the same way—none of the user interfaces in the
management console in terms of configuration have changed. In the next sections you will
learn about configuring authentication, authorization, and confidentiality options on IIS 5.x
and IIS 6.0.

Authentication on IIS 5.x and IIS 6.0
As previously mentioned, IIS in general supports several authentication mechanisms.
Authentication, authorization, and most of the confidentiality settings are configured on
a per- website and web- application basis. You can find the security settings for IIS 5.x and
IIS 6.0 on the Directory Security tab of a virtual directory’s properties. Figure 19-4 shows the
authentication options of IIS 5.x and 6.0.

CHAPTER 19 THE ASP.NET SECURITY MODEL936

 Figure 19-4. IIS 5.x and 6.0 authentication options

Anonymous access gives everyone access to the web page. It overrides any other authenti-
cation setting of IIS because IIS authenticates only if it is necessary (and of course if anonymous
authentication is enabled, no additional authentication steps are necessary for saving round-
 trips). Further, if you have configured anonymous authentication in IIS, you still can use
 ASP.NET- based security to authenticate users either with ASP.NET- integrated mechanisms
such as forms authentication or a custom type of authentication, as you will learn later in this
chapter and in subsequent chapters.

Windows authentication configures IIS to validate the credentials of the user against a
Windows account configured either on the local machine or within the domain. When work-
ing within a domain, domain users don’t need to enter their user name and password if
already logged onto a client machine within the network, because the client’s authentication
ticket is passed to the server for authentication automatically.

IIS also supports Basic authentication. This is an authentication method developed by
the W3C that defines an additional HTTP header for transmitting user names and passwords

CHAPTER 19 THE ASP.NET SECURITY MODEL 937

across the wire. But pay attention: nothing is encrypted. The information will be transmitted
Base64 encoded. Therefore, you should only use Basic authentication with SSL. As is the case
with Windows authentication, the credentials entered by the user are evaluated against a Win-
dows account. But the way the credentials are transferred over the wire is different. While
Basic authentication transmits the information through the HTTP header, Windows authen-
tication uses either NTLM (the acronym for Windows NT LAN Manager, which is a simple
 challenge- response authentication protocol, as you will learn later) or Kerberos for transmit-
ting the information.

Digest authentication is similar to Basic authentication. Instead of sending the creden-
tials Base64 encoded across the wire, it hashes the user’s password and transmits the hashed
version across the wire. Although this sounds more secure, Digest authentication has never
become common. As a result, it’s rarely used outside of controlled environments (such as
intranets).

Passport authentication uses Microsoft Passport as its underlying infrastructure. Micro-
soft Passport implements a central identity management. In that case, the user’s credentials
are managed by a separate Passport server. While usually this infrastructure is hosted by
Microsoft, you can also host your own Passport infrastructure within your company and use
that instead. Strangely enough, it is labeled with “.NET Passport authentication” in the man-
agement console, but it is a generic authentication mechanism that is not bound to the .NET
Framework itself. Furthermore, you should not use Passport authentication anymore, as it
has been replaced by Windows Live ID, which is part of the Windows Live platform. Windows
Live ID is based on the same concept of centrally storing IDs, but it is implemented on a much
more open platform than Passport was before. For details, refer to the Windows Live SDK at

.
Finally, IIS supports one additional authentication method, certificate authentication,

that cannot be found in Figure 19-4, as it is configured through SSL.

Note For debugging ASP.NET web applications, Windows authentication needs to be enabled because
Windows determines whether you are allowed to debug or not based on your Windows user rights.

Authorization on IIS 5.x and IIS 6.0
 Figure 19-5 shows how you can configure IP address restrictions with IIS. IP address restric-
tions provide you with a possibility of restricting access to the web server from machines
specified in the list of granted machines. This makes sense if you want only a couple of
 well- known business partners to be able to access your web server.

CHAPTER 19 THE ASP.NET SECURITY MODEL938

 Figure 19-5. IP address restrictions in IIS

Security Configuration on IIS 7.0
On Windows Vista or Windows Server 2008, you will work with Internet Information Services
(IIS) 7.0. As you learned in Chapter 18, the architecture of IIS 7.0 improved on top of the archi-
tectural changes introduced with IIS 6.0 for the sake of a much better integration with ASP.NET,
easier configuration, and extensibility.

Indeed, IIS 7.0 by default runs in the so- called ASP.NET “integrated” mode, which means
the web server itself integrates its own HTTP processing pipeline with the ASP.NET HTTP
modules pipeline. This allows integration of both IIS 7.0 native HTTP modules and ASP.NET
standard HTTP modules within the central request processing pipeline of the web server.
These modules implement general- purpose functionality such as security for all web applica-
tions hosted in IIS 7.0.

This architecture introduces a number of advantages, listed in Chapter 18, in terms of
security. As you learned in Chapter 18 when we discussed the configuration model, you can
configure IIS 7.0 in a way that it allows you to store (and override) nearly all settings by putting

CHAPTER 19 THE ASP.NET SECURITY MODEL 939

them into the <system.webServer> configuration section in your application’s web.config con-
figuration file. In terms of deployment, you can implement Xcopy deployment this way, as you
don’t need to keep IIS settings as separate settings in mind—which is important for security
configuration, of course. Figure 19-6 outlines the differences between the classic IIS 5.x and
6.0 request handling model and the ASP.NET integrated model of IIS 7.0 with respect to HTTP
modules and handlers, which are core for implementing security gatekeepers.

In IIS 5.x and IIS 6.0, ASP.NET has no chance of influencing what happens before the
request is passed through the ASP.NET ISAPI extension to the ASP.NET runtime. As you can
see, when running in integrated mode, IIS 7.0 allows you to leverage the existing HTTP mod-
ules included with ASP.NET. IIS 7.0 introduces a number of additional, native HTTP modules
for functionality that ship with the web server. That means the ASP.NET runtime can be
involved from the first moment of the request processing. One example of a native module
shipping with the web server is the BasicAuthenticationModule that implements the Basic
authentication handshake, which is not included in ASP.NET out of the box. For more infor-
mation on how Basic authentication works in detail, please refer to Chapter 22. An overview
of the modules included with ASP.NET out of the box is included in the section “ASP.NET
Security Architecture” later in this chapter. Note that certain types of modules ship with both
ASP.NET and IIS 7.0. For example, when it comes to URL- based authorization, IIS 7.0 wants
to offer this feature even if you are not using ASP.NET on the target system in your web server.
Therefore, it ships with its own independent URL authorization module. Finally, that means
URL authorization is one of the few configurations where you need to be aware of both the
 IIS- based configuration and the ASP.NET- based configuration. However, you can configure
IIS 7.0 to use just one of the two mechanisms as well. You will learn more about how you can
do this and about all the authorization details in Chapter 23.

This architectural change of the web server service has a nice implication for your web
applications in terms of security. As in integrated mode, ASP.NET can be integrated into the
request processing of the web server from the very first moment (and not just after ISAPI
processing); it allows greater reusability of ASP.NET- based features across different types of
web applications based on different development platforms running on IIS. For example, you
now can use ASP.NET- based forms authentication (as outlined in Chapter 20 in detail) for any
other type of application, such as classic ASP applications or even PHP applications. That’s
because in integrated mode, the ASP.NET runtime is involved in the request from the first
moment. On the other hand, the ASP.NET integrated mode allows you to use other ASP.NET-
 based core frameworks, such as the membership API and roles API (outlined in Chapter 23 in
detail) with authentication methods other than forms authentication. For example, you can
use the membership API together with Basic authentication by leveraging and customizing the
IIS 7.0 HTTP module pipeline.

CHAPTER 19 THE ASP.NET SECURITY MODEL940

 Figure 19-6. The classic IIS model compared to the ASP.NET integrated model of IIS 7.0

Authentication on IIS 7.0
You configure authentication on a per- website and web application level on IIS 7.0, as well.
You can configure authentication by using the Authentication feature setting in the IIS area in
the IIS management console as outlined in Figure 19-7.

The Authentication feature of IIS lists all the available authentication modules registered
in the HTTP module pipeline, either by IIS itself in the applicationHost.config configuration
or in the ASP.NET module configuration of your web.config. For more information on the
web server–wide configuration through applicationHost.config, refer to Chapter 18. Out of the
box, IIS 7.0 covers the same authentication options as IIS 5.x and 6.0 do. IIS 7.0 adds ASP.NET
forms authentication, as this is the only authentication mechanism that ASP.NET adds to the
authentication features (all other ASP.NET authentication modules are based on results of the
 IIS- based authentication modules, as you will learn when we take a detailed look at those).
 Figure 19-8 shows the authentication feature details of IIS 7.0.

CHAPTER 19 THE ASP.NET SECURITY MODEL 941

 Figure 19-7. Configuring authentication in IIS 7.0

 Figure 19-8. The IIS 7.0 authentication feature configuration

CHAPTER 19 THE ASP.NET SECURITY MODEL942

To configure an authentication method for the selected web application or virtual directory,
just click the appropriate link in the task pane of the management console on the right- hand
side. Some authentication modules allow you to configure further details by clicking the Edit
link in the task pane when having the module you want to configure selected in the main area.
For example, in the case of forms authentication, the detailed configuration allows you to set
the login page or the ticket expiration (for more details on configuring forms authentication,
refer to Chapter 20).

Authorization on IIS 7.0
While IIS 5.x and IIS 6.0 offered IP address restrictions as the only authorization mechanism
included directly in the web server, IIS 7.0 allows you to configure IP address restrictions
as well as user- and role- based security configuration. You configure these authorization
rules via IIS 7.0’s Authorization feature, as shown in Figure 19-9. The management console
of IIS 7.0 allows you to configure allow and deny rules for users authenticated by one of the
authentication modules, as well as roles the user is assigned to. You will find more details on
authorization and roles in Chapter 23, which outlines the basic ASP.NET concepts as well as
what happens when you combine these with the IIS- based authorization rules. As IIS ships
with its own URL authorization module, this can be one of the tricky parts in terms of con-
figuration, as you will see in Chapter 23.

 Figure 19-9. Configuring authorization rules in IIS 7.0

All details of these configuration settings are discussed in Chapter 23, when you will learn
about ASP.NET features for user- and role- based authorization. The second authorization

CHAPTER 19 THE ASP.NET SECURITY MODEL 943

functionality IIS ships with is the ability to restrict requests to certain clients by using IP
address restrictions. Unfortunately, when it comes to IP address restriction, the new man-
agement console does not include an administration feature for configuring these settings.
This is one of the few settings you need to configure manually. You can configure IP address
restrictions either in the global applicationHost.config configuration file of IIS, or for each web
application separately by adding it to the application’s web.config configuration file. You con-
figure IP address restrictions in the <ipSecurity> element of the <system.webServer> section:

Adding the preceding configuration to your web.config file restricts access to your appli-
cation to clients having the IP address 192.168.0.2. Requests from clients with any other IP
address are rejected, as you can see in Figure 19-10.

 Figure 19-10. Access to the web server denied via IP address restriction

CHAPTER 19 THE ASP.NET SECURITY MODEL944

However, before you can configure IP address restrictions within a web.config file of
a web application, you need to enable configuration overrides in the applicationHost.config
file of IIS 7.0. That’s because by default IIS is configured so that configuration of IP address
restrictions is permitted only in the server- wide configuration. To allow configuration of IP
address restrictions at the level of web.config files, open the file applicationHost.config in the
inetsrv\config directory of your system directory (for example, c:\Windows\System32\Inetsrv\
config), as follows:

By default, the overrideModeDefault setting is configured with the option “Deny,” which
means you cannot override settings at lower hierarchies within the configuration- file hierarchy.
As the applicationHost.config configuration is the highest level of configuring web applications
in IIS 7.0, you cannot override this setting anywhere. You will find this configuration at the very
first section of the configuration file within the configSections configuration section. When this
configuration is done, you can configure IP address restriction at a per- web application basis
by adding the <ipSecurity> configuration to your web.config as outlined earlier in this section.

Understanding Secure Sockets Layer
The SSL technology encrypts communication over HTTP. SSL is supported by a wide range
of browsers and ensures that an eavesdropper can’t easily decipher information exchanged
between a client and a web server. SSL is important for hiding sensitive information such as
credit card numbers and confidential company details, but it’s also keenly important for user
authentication. For example, if you create a login page where the user submits a user name
and password, you must use SSL to encrypt this information. Otherwise, a malicious user
could intercept the user credentials and use them to log on to the system.

IIS provides SSL out of the box. Because SSL operates underneath HTTP, using SSL does
not change the way you deal with HTTP requests. All the encryption and decryption work is
taken care of by the SSL capabilities of the web server software (in this case, IIS). The only
difference is that the URL for addresses protected by SSL begins with rather than

. SSL traffic also flows over a different port (typically web servers use port 443 for SSL
requests and port 80 for normal requests).

For a server to support SSL connections, it must have an installed X.509 certificate (the
name X.509 was chosen to correspond with the X.500 directory standard). To implement SSL,
you need to purchase a certificate, install it, and configure IIS appropriately. We’ll cover these
steps in the following sections.

Understanding Certificates
Before sending sensitive data, a client must decide whether to trust a website. Certificates were
designed to serve this purpose, by making it possible to partially verify a user’s identity. Certifi-
cates can be installed on any type of computer, but they are most often found on web servers.

With certificates, an organization purchases a certificate from a known certificate author-
ity (CA) and installs it on its web server. The client implicitly trusts the CA and is therefore
willing to trust certificate information signed by the CA. This model works well because it is
unlikely that a malicious user will go to the expense of purchasing and installing a falsified
certificate. The CA also retains information about each registered user. However, a certificate

CHAPTER 19 THE ASP.NET SECURITY MODEL 945

does not in any way ensure the trustworthiness of the server, the safety of the application, or
the legitimacy of the business. In these ways, certificates are fundamentally limited in scope.

The certificate itself contains certain identifying information. It is signed with the CA’s
private key to guarantee that it is authentic and has not been modified. The industry- standard
certificate type, known as x.509v3, contains the following basic information:

-
ing communication

In addition, a certificate might also include business- specific information, such as the cer-
tificate holder’s industry, the length of time they have been in business, and so on.

The two biggest CAs are as follows:

Thawte:

VeriSign:

If you don’t need the identity validation function of CAs (for example, if your certificates
will be used only on a local intranet), you can create and use your own certificates and con-
figure all clients to trust them. This requires Active Directory and Certificate Server (which is
a built- in part of Windows 2003 Server, Windows 2000 Server, and Windows 2008 Server). For
more information, consult a dedicated book about Windows network administration.

Understanding SSL
As described in the previous section, every certificate includes a public key. A public key is part
of an asymmetric key pair. The basic idea is that the public key is freely provided to anyone who
is interested. The corresponding private key is kept carefully locked away and is available only
to the server. The interesting twist is that anything that’s encrypted with one of the keys is deci-
pherable with the other. That means a client can retrieve the public key and use it to encode a
secret message that can be decrypted only with the corresponding private key. In other words,
the client can create a message that only the server can read.

This process is called asymmetric encryption, and it’s a basic building block of SSL. An
important principle of asymmetric encryption is that you can’t determine a private key by ana-
lyzing the corresponding public key. To do so would be computationally expensive (even more
difficult than cracking one of the encrypted messages). However, asymmetric encryption also
has its limitations— namely, it’s much slower and generates much larger messages than sym-
metric encryption.

Symmetric encryption is the type of encryption that most people are intuitively familiar
with. It uses the same secret key to encrypt a message as to decrypt it. The drawback with
symmetric encryption is that both parties need to know the secret value in order to have a con-
versation. However, you can’t transmit this information over the Internet, because a malicious
user might intercept it and then be able to decipher the following encrypted conversation. The
great trick of SSL is to combine asymmetric and symmetric encryption. Asymmetric encryp-
tion manages the initial key exchange—in other words, agrees on a secret value. Then, this

CHAPTER 19 THE ASP.NET SECURITY MODEL946

secret value symmetrically encrypts all subsequent messages, which ensures the best possible
performance.

The whole process works like this, where the client refers to the web browser running on
the end user’s machine and the server refers to the web server hosting the websites the user
wants to get access to:

 1. The client sends a request to connect to the server.

 2. The server signs its certificate and sends it to the client. This concludes the handshake
portion of the exchange.

 3. The client checks whether the certificate was issued by a CA it trusts. If so, it pro-
ceeds to the next step. In a web browser scenario, the client may warn the user with
an ominous- sounding message if it does not recognize the CA, and allows the user to
decide whether to proceed. The client recognizes CAs when their certificate is stored
in the Trusted Root Certification Authorities store of the operating system. You can
find certificates stored in this store through the Internet Explorer options by clicking
the Certificates button on the Content tab.

 4. The client compares the information in the certificate with the information received
from the site (including its domain name and its public key). The client also verifies
that the server- side certificate is valid, has not been revoked, and is issued by a trusted
CA. Then the client accepts the connection.

 5. The client tells the server what encryption keys it supports for communication.

 6. The server chooses the strongest shared key length and informs the client.

 7. Using the indicated key length, the client randomly generates a symmetric encryption
key. This will be used for the duration of the transaction between the server and the
client. It ensures optimum performance, because symmetric encryption is much faster
than asymmetric encryption.

 8. The client encrypts the session key using the server’s public key (from the certificate),
and then it sends the encrypted session key to the server.

 9. The server receives the encrypted session key and decrypts it using its private key. Both
the client and server now have the shared secret key, and they can use it to encrypt all
communication for the duration of the session.

You’ll notice that the symmetric key is generated randomly and used only for the duration
of a session. This limits the security risk. First, it’s harder to break encrypted messages using
cryptanalysis, because messages from other sessions can’t be used. Second, even if the key is
determined by a malicious user, it will remain valid only for the course of the session.

Another interesting point is that the client must generate the symmetric key. This is because
the client has the server’s public key, which can be used to encrypt a message that only the
server can read. The server does not have corresponding information about the client and thus
cannot yet encrypt a message. This also means that if the client supplies a weak key, the entire
interaction could be compromised. For example, older versions of the Netscape browser used
a weak random number generator to create the symmetric key. This would make it much easier
for a malicious user to guess the key.

When deploying an application, you will probably want to purchase certificates from a
genuine CA such as Thawte or VeriSign. This is particularly the case with websites and Internet

CHAPTER 19 THE ASP.NET SECURITY MODEL 947

browsers, which recognize a limited number of CAs automatically. If you use a test certificate
to encrypt communication with a secured portion of a website, for example, the client browser
will display a warning that the certificate is not from a known CA.

Configuring SSL on IIS 5.x and IIS 6.0
Configuring SSL on IIS 5.x and IIS 6.0 works exactly the same way and requires you to perform
several configuration steps. First of all, you need to request a server certificate that is used for
SSL- based communication with your web server. This request is used for purchasing or retriev-
ing an SSL certificate from a well- known CA or your internal CA (which, for example, can be
based on Windows Certificate Services, which are part of Windows Server 2003 and onward).
IIS Manager allows you to create a certificate request for requesting server certificates at a CA
automatically. First, start IIS Manager. Expand the Web Sites group, right- click your website
item (often titled Default Web Site), and choose Properties. Under the Directory Security tab,
you’ll find a Server Certificate button (see Figure 19-11).

 Figure 19-11. Configuring directory security

Click the Server Certificate button to start the IIS Certificate Wizard (see Figure 19-12). This
wizard requests some basic organization information and generates a request file. The request
file contains all information required by a CA to issue a server certificate to you for your server.
This information is captured by the wizard during the steps and includes information such as
your company’s name, your organization’s name, your server’s domain name, and so on. The
wizard packages this information together into the request file in Base64- encoded format. The
information is necessary so that the CA is able to identify you and your server uniquely. Fur-
thermore, in addition to this general information, you’ll also need to supply a bit length for the
key while walking through the wizard. The higher the bit length, the stronger the key.

CHAPTER 19 THE ASP.NET SECURITY MODEL948

 Figure 19-12. Creating a server certificate request

The generated file can be saved as a text file, but it must ultimately be sent to a CA. In
many cases you do this by just sending an e-mail to a certain address of the CA with the text
file as an attachment or content embedded into the e-mail body, depending on the CA you
want to retrieve your certificate from. Some CAs allow you to submit the request directly
through websites, as well. In many cases that just happens by taking the content of the text
file and pasting it into a text box of the CA (for example, that’s how it works when you use
Microsoft Certificate Services on Windows Server 2003 as an internal CA). A sample (slightly
abbreviated) request file is as follows:

The CA will return a certificate that you can install according to its instructions. By con-
vention, you should run all SSL communication over port 443 and serve normal web traffic
over port 80.

CHAPTER 19 THE ASP.NET SECURITY MODEL 949

Encoding Information with SSL on IIS 5.x and IIS 6.0

Once you’ve installed the certificate, it’s fairly easy to use SSL communication. The only other
step is to modify your request to use a URL that starts with instead of the
prefix. Typically, this means tweaking a Response.Redirect() statement in your code. Because
all the encryption and decryption occurs just before the message is sent (or immediately after
it is retrieved), your application does not need to worry about deciphering the data manually,
manipulating byte arrays, using the proper character encoding, and so on.

At the server side, you can also enforce SSL connections so that it is impossible to interact
with a website’s content (for example, web service, web pages of a website, and so on) with-
out encrypting communication. Simply right- click the website in IIS Manager, and select the
Directory Security tab. In the Secure Communications section, click the Edit button (which
is available only after a certificate is installed). Then, choose Require Secure Channel (see
 Figure 19-13).

 Figure 19-13. Enforcing SSL access

Keep in mind that there are good reasons not to enforce an SSL connection for an entire
virtual directory. For example, you might want to secure certain requests to a single ASP.NET
page but not secure others that don’t return sensitive information. This allows you to increase
performance and reduce the work performed by the server. If needed, you can check for a
secure connection in your code and then throw an exception or redirect the user if SSL is
required but not present.

Here’s an example that checks whether the current request is transmitted over a secure
connection using the HttpRequest.IsSecureConnection property:

CHAPTER 19 THE ASP.NET SECURITY MODEL950

A common mistake is to use localhost or any other aliases for the server host name in an
SSL connection. This will not work, because the client attempts to verify that the CN (common
name) part of the subject name of the server certificate matches the host name found in the
HTTP request during the handshake portion of the SSL exchange.

With SSL, all traffic will be encrypted, not just the sensitive data. For this reason, many
web servers use a hardware accelerator to improve the performance of encryption with SSL.

Tip Remember, SSL is not tied to ASP.NET in any way. If you want to learn more about SSL, consult a book
dedicated to security and IIS, such as CYA Securing IIS 6.0 by Bernard Cheah, Ken Schaefer, and Chris
Peiris (Syngress, 2004) or the really good Microsoft IIS 6.0 Administrator’s Pocket Consultant by William R.
Stanek (Microsoft Press, 2003). Furthermore, take a look at the IIS online community, which includes great
resources as well ().

Configuring SSL in IIS 7.0
Configuring SSL in IIS 7.0 requires the same steps as for the older counterparts of the web
server. You’ll just find these configuration options at different places in the new management
console. First of all, again, you have to issue a certificate for your web server that is used for
 SSL- based communication with your web services. For this purpose you have to select the web
server root node in the navigation tree of the management console, and select the Server Cer-
tificates feature, as shown in Figure 19-14.

When opening the details, the management console will list all the server certificates
installed on your web server. The first interesting part in IIS 7.0 is the fact that you can install
multiple server certificates on one web server, which can be used for different websites config-
ured on your web server (see Figure 19-15). This is a nice improvement compared to older IIS
versions, which allowed you to install just one server certificate per web server.

In the Server Certificates feature details view, the task pane on the right side of the man-
agement console shows the necessary task for installing server certificates. It allows you to
create a certificate request automatically that you can use for requesting a new certificate at
a CA. To create a new request, you just use the Create Certificate Request task link on the task
pane, which creates the same Base64- encoded request as the previous IIS versions did. You
use this Base64- encoded request file to submit your request at the CA. After you have retrieved
the certificate from your CA, you can complete the running request by clicking the Complete
Certificate Request task link in the task pane within the server certificates feature of the man-
agement console. This way you can request and configure an SSL certificate for a stand-alone
web server. If you want to request a certificate for your own CA, you can use the Online Certi-
fication Authority wizard by clicking the Create Domain Certificate wizard. This certificate is
then configured in your own CA and is used for signing certificates issued by this CA.

CHAPTER 19 THE ASP.NET SECURITY MODEL 951

 Figure 19-14. The Server Certificates option in IIS 7.0

 Figure 19-15. List of server certificates installed in IIS 7.0

CHAPTER 19 THE ASP.NET SECURITY MODEL952

Honestly, this process is really cumbersome if you are just a developer who wants to test
SSL with your own web applications. Therefore, IIS 7.0 includes an additional option that was
not available in previous IIS versions out of the box: creating a self- signed certificate for your
own machine. All you need to specify for a self- signed certificate is a friendly name to be dis-
played in the list. Afterward, the wizard creates a certificate by using cryptographic functions
of your machine and installs that certificate in your web server! It is important to understand
that these certificates should be used for testing purposes only, because no other browser than
yours running on your developer machine will know the certificate, and therefore will include
warnings that the certificate is invalid.

Note You can create such self- signed certificates for IIS 6.0 on Windows Server 2003, as well. The IIS
resource kit tools available for free include a tool called selfssl.exe that creates a self- signed testing cer-
tificate for IIS 6.0, as well. You can download the tool from

en.

After you have configured and installed your server certificates, you can leverage them for
 SSL- based communication within the websites configured on your IIS. For this purpose you
need to configure protocol bindings for SSL, as well as the SSL options for your web applica-
tions within the websites.

Configuring Bindings for SSL

As outlined in detail in Chapter 18, bindings are used for making contents of websites avail-
able through specific protocols, IP addresses, and ports. Host headers for accessing several
web applications through the same IP address and port are configured in bindings, as well. If
you want to leverage SSL for applications configured within a website, you need to configure
a protocol binding for SSL for the website. For that purpose, just select your website (such
as the Default Web Site) in the navigation tree of the IIS management console and select the
Bindings link from the task pane on the right- hand side of the console. A dialog that allows you
to configure your bindings appears. Now you can add new bindings to make contents available
through different IP addresses, ports, and protocols. Figure 19-16 shows this dialog.

CHAPTER 19 THE ASP.NET SECURITY MODEL 953

 Figure 19-16. Configuring bindings for a website

By clicking the Add button you can add new bindings to your website, and by clicking the
Edit button you can modify existing bindings in the list. Figure 19-17 shows the binding con-
figuration for enabling SSL on your website.

 Figure 19-17. SSL binding configuration in IIS 7.0

CHAPTER 19 THE ASP.NET SECURITY MODEL954

As you can see, the protocol is configured to https running on the default IP address for
your server, using port 443 for SSL- based access (which is the default port for SSL). Further-
more, in the combo box on the lower end of the window you can select the certificate that’s
used for SSL traffic on the selected website. Every certificate you installed previously is avail-
able for selection in this list, and you can configure different certificates for each website on
your web server. After you have configured the SSL binding for your website, you can enable
SSL for web applications within the website.

Encoding Information with SSL on IIS 7.0

Enabling SSL is configured on a per- web application basis in IIS. After you have configured
your bindings at a website level, you can select a web application of your choice in the naviga-
tion tree of the IIS management console and activate the SSL feature configuration as shown
in Figure 19-18.

 Figure 19-18. Enabling SSL traffic on your website

The options included here are the same as the ones available in IIS 5.x and IIS 6.0. You can
specify if you want to require SSL encoding for the selected web application and whether you
require client certificates for authenticating users. When using client certificate authentication
you need to configure certificate mappings from certificates to users that are finally authenti-
cated by IIS when retrieving a certain certificate. Again, you need to configure these mappings
in your web.config configuration file through the <iisClientCertificateMapping> configuration
section within the <system.webServer> section. For more information on configuring client
certificate mappings, refer to the Microsoft documentation available at MSDN or TechNet:

.

CHAPTER 19 THE ASP.NET SECURITY MODEL 955

ASP.NET Security Architecture
ASP.NET implements the concept of gatekeepers (introduced previously) through HTTP mod-
ules. Each module is a class implementing the interface IHttpModule, and each module acts as
a gatekeeper of the ASP.NET infrastructure. Of course, HTTP modules are used for other tasks,
but lots of them are security related. As you can see in Figure 19-19, ASP.NET includes several
authentication and authorization modules.

Because web applications use the stateless HTTP, no information is retained for the user
between requests. As a result, the user must be authenticated and authorized at the beginning
of each request. ASP.NET handles this by firing global application events. Authentication
modules can handle these events to perform user authentication. Not all requests require
authentication or authorization. However, the related events always fire. These events are
handled by the configured HTTP modules shown in Figure 19-19. You can handle the events
through the global application class as well (these events are defined in the Global.asax file
as inline server code by default), but for higher reusability we recommend creating separate
HTTP modules, because it is really easy to create them. Note that IIS 7.0 allows integrating the
HTTP module pipeline of ASP.NET with its own HTTP processing pipeline directly to imple-
ment several features when running in ASP.NET integrated mode. In fact, in some cases it
uses the same implementations shipping with ASP.NET for features that have been part of
ASP.NET before the release of IIS 7.0 (such as the forms authentication module). However,
IIS 7.0 adds several additional modules for functionality not included in ASP.NET, such as
the BasicAuthenticationModule for implementing Basic authentication as specified by the
W3C. But the basic architecture and behavior stays the same; as outlined earlier in this chap-
ter, it allows including ASP.NET earlier in the request processing stage, giving you as an ASP.
NET developer more control over the request processing. More details on the IIS 7.0–specific
modules are included in Chapters 20, 22, and 23. This section just covers the basic concepts of
using HTTP modules as security gatekeepers, and those modules included with ASP.NET itself
out of the box. Therefore, anything covered in this section is available on IIS 5.x, IIS 6.0, and
IIS 7.0 in the same way.

 Figure 19-19. The ASP.NET security gatekeepers as IHttpModule classes

CHAPTER 19 THE ASP.NET SECURITY MODEL956

The two primary events you need to deal with are the AuthenticateRequest and
 AuthorizeRequest events. These aren’t the only events that fire, but these are the most use-
ful. Figure 19-20 shows the order of security- related application events.

 Figure 19-20. Security- related application events

CHAPTER 19 THE ASP.NET SECURITY MODEL 957

Caution Session state is not accessible until after the authorization and authentication events have
fired. This prevents you from storing user identity information in session state. Instead, you must use other
mechanisms.

The AuthenticateRequest event is raised by the HttpApplication object when a request
requires authentication. Once the user is authenticated (typically supplying some sort of user
credential such as a cookie with user information), the next step is to make sure the user iden-
tity information is readily available for the rest of the page- processing cycle. To accomplish this,
you must create a new object with user information and attach it to the User property of the
current HttpContext.

The AuthorizeRequest event is raised after the user has been authenticated in the
 AuthenticateRequest event. Authorization modules use AuthorizeRequest to check whether
the user is authorized for the resource they are requesting.

Authentication
Authentication is implemented in ASP.NET through specialized HTTP modules, as demon-
strated in Figures 19- 19 and 19- 20. You choose which authentication module you want to use
with the <authentication> element in the web.config configuration file. All modules imple-
ment the IHttpModule interface (so do the authentication modules as well, of course), which
provides access to application events (as explained in Chapter 5). This allows them to handle
the HttpApplication.AuthenticateRequest event. Each module also exposes its own Authenti-
cate event that you can handle in the Global.asax file.

Caution The <authentication> element can be used only in the web.config that is in the root direc-
tory of an application. Attempting to use it in a subdirectory will cause an error. This means that only one
authentication type can be defined for each application. However, different subdirectories can define different
authorization rules.

ASP.NET provides three core authentication modules:

The following sections briefly describe each module.

The FormsAuthenticationModule
The FormsAuthenticationModule uses forms authentication, which allows you to design your
own login pages, write your own authentication logic, but rely on ASP.NET to track user and

CHAPTER 19 THE ASP.NET SECURITY MODEL958

role information using an encrypted cookie. The FormsAuthenticationModule is active when
the <authentication> element is set as follows:

Chapter 20 explores forms authentication in more detail. (You can also use forms authen-
tication with the membership API and the roles API, which are introduced later in this chapter
and covered in detail in Chapters 20, 21, and 22.)

The WindowsAuthenticationModule
The WindowsAuthenticationModule works in conjunction with IIS to perform Windows
authentication. This module is active when the <authentication> element in the web.config
file is set as follows:

Chapter 22 explores Windows authentication in more detail.

The PassportAuthenticationModule
The PassportAuthenticationModule is active when the <authentication> element in the
web.config file is set as follows:

The PassportAuthenticationModule provides a wrapper for Microsoft’s Passport authen-
tication service. When using Passport, users are authenticated using the information in
Microsoft’s Passport database (the same technology that powers the free Hotmail e-mail sys-
tem). The advantage of Passport is that you can use existing user credentials (such as an e-mail
address and password), without forcing users to go through a separate registration process.

We recommend not even thinking about using .NET Passport authentication anymore, as
it has been replaced by a new concept called Live ID, which is part of the Windows platform.
This offering is much more flexible in terms of usage and licensing and does not use the Pass-
port infrastructure anymore. Live ID offers a set of web services that allow you to authenticate
users manually without using this configuration option. Windows Live is a huge platform and
by far too much to be covered here in this book. If you are interested in integrating Windows
Live ID, you should take a look at the Windows Live SDK at

.

Authorization
Once a user is authenticated, information such as the user’s name and security context is
automatically made available by the ASP.NET infrastructure. You can access this informa-
tion through the HttpContext.Current.User object and use this information to implement
authorization in your code. Furthermore, ASP.NET includes the following prebuilt modules
for implementing authorization:

CHAPTER 19 THE ASP.NET SECURITY MODEL 959

UrlAuthorization: The UrlAuthorization module works based on the content of the
<authorization> configuration in the web.config files of different directories of your web
application. It can restrict access to both directories and files, based on the user’s name
or the roles assigned to the user.

FileAuthorization: When using Windows authentication in intranets, ASP.NET auto-
matically uses the FileAuthorization module for authorizing Windows users against files
accessed by ASP.NET based on Windows ACLs. Therefore, each Windows user must have
at least read access rights on the files of the web applications in that case. This module
works with Windows authentication only—but without impersonation.

When impersonating users in Windows environments, you can even configure ACLs on
registry entries or any other resource on the machine, and Windows does authorization based
on the Windows user for you.

Caution Using impersonation is tricky (if not dangerous). It requires you to properly configure ACL entries
on every object for every group, or sometimes even every user. A simple configuration mistake can lead to
a security hole in your application. When the number of users (and Windows groups) grows, the situation
gets more and more complex, and therefore configuration errors may happen. You shouldn’t use imperson-
ation if it’s not really necessary. You should always prefer to create custom application roles and perform
authorization based on these roles.

Furthermore, you can implement authorization by writing custom code in your pages or
components used by the web application. In that case, you refer to the HttpContext.Current.
User object and make decisions based on role membership or the user’s name directly. You
will learn more about how to design and implement authorization in Chapter 23. But before
learning about the details of authentication and authorization, you must understand the
meaning of the security context.

The Security Context
Regardless of the authentication system, ASP.NET uses the same underlying model to repre-
sent user and role information. Users who log in to a web application are granted a principal
and an identity based on the credentials they have provided. The principal object represents
the current security context of the user. It combines the user itself (the identity) with informa-
tion stored in the account records for the current user such as the roles, privileges, and much
more. It therefore allows you to perform role- based authorization, and it provides a reference
to the corresponding identity object. The identity object represents the successfully authenti-
cated user and therefore provides user information such as the user name.

The IPrincipal Interface
All principal objects implement the IPrincipal interface, which defines a core set of functional-
ity. When you access the User property of the current web page (System.Web.UI.Page) or from

CHAPTER 19 THE ASP.NET SECURITY MODEL960

the current HTTP context (HttpContext.Current), you’re accessing an IPrincipal object that
represents the security context of the current user.

The IPrincipal interface defines a single property named Identity, which retrieves an
IIdentity object that provides information about the current user. The IPrincipal interface also
defines a single method named IsInRole(), which allows you to test whether the current user is
a member of a specific role.

Here’s an example that uses the IsInRole() method to test whether the current user is a
member of a role named Admin:

When using Windows authentication or forms authentication, the principal object is cre-
ated automatically. However, it’s also possible to create a principal object on the fly, with user
and role information that you extract from another location, such as a custom database. You’ll
see examples of both techniques in later chapters.

The IIdentity Interface
Like the IPrincipal interface, the IIdentity interface provides consistency no matter what
authentication scheme you use. All identity objects must implement IIdentity.

The IIdentity interface defines the basic information needed to represent the current user.
At a minimum, this includes the following three read- only properties:

AuthenticationType: Returns the type of authentication used as a string (forms, Passport,
NTLM, or a custom authentication type).

IsAuthenticated: Returns a Boolean value that indicates whether the user has been authen-
ticated (true) or is anonymous (false).

Name: Returns the name of the current user as a string.

You can access the IIdentity object that represents the current user through the IPrincipal
object. Here’s an example that uses this technique to check whether the user has been
authenticated:

The type of identity object depends on the type of authentication used. All in all, four
identity classes are included in the .NET Framework:

System.Web.Security.FormsIdentity: Represents a user who is logged on using forms
authentication.

System.Security.Principal.WindowsIdentity: Represents a Windows user account.

System.Web.Security.PassportIdentity: Provides a class to be used by the
PassportAuthenticationModule.

System.Security.Principal.GenericIdentity: Represents a generic user identity. (You can
use this to create identities if you’re creating a custom authentication system.)

CHAPTER 19 THE ASP.NET SECURITY MODEL 961

Membership and Roles APIs
As you will see in Chapter 20, when using forms authentication, you need to authenticate your
users against a custom store. This means you must do much more than create a basic login
page for validating user names and passwords. Of course, you need a way to manage users as
well as assign users to roles. With ASP.NET 1.x you had to create such management tools and
components for programmatic management on your own. ASP.NET 3.5 provides this infra-
structure, introduced with ASP.NET 2.0 (which still is the foundation of ASP.NET 3.5) through
the membership API, the roles API, and the profiles API.

Membership API
The membership API is a complete user management system. It helps you create, edit, and
delete users, and it includes functionality for password recovery. You can use the API for
programmatically performing all these management tasks, or you can use the ASP.NET web
configuration tool for the graphical administration of your users. With this infrastructure you
can save lots of time, as you don’t have to create your own user administration application
anymore. That’s because it has already existed within the ASP.NET base framework since
version 2.0. Furthermore, it includes functionality for validating a user name and password
combination entered by the user.

You will learn more details about the membership API in Chapter 21.

Roles API
In many cases authorization is performed on groups of users called roles. One role can contain
many users, and a user can be assigned to many roles. ASP.NET 2.0 includes a ready-to- use API
that allows you to assign users to roles as needed. Again, you can do this programmatically
through the roles API or with the ASP.NET web configuration utility.

In Chapter 23, you will learn about the details of using the roles API in your applications.

Profiles API
Of course, if your web application authenticates users, these users may want to persist
settings on your website for subsequent visits. Typically, for this use case you implement
 so- called user profiles that persist settings on a per- user basis between different visits to
your website. The big difference between user profiles and session state is that profiles are
persistent across multiple sessions. Again, ASP.NET 3.5 includes a ready-to- use infrastruc-
ture through the ASP.NET 2.0 foundation for managing profiles in your application.

In Chapter 24, you will learn how you can use the profiles API in your application.

Extending Membership, Roles, and Profiles
ASP.NET needs to store all the information of users, roles, and profiles somewhere. By default
it stores the data in a SQL Server database. But the whole infrastructure is completely exten-
sible through so- called custom providers. Membership, roles, and profile providers are
components that are responsible for storing user, role, and profile information in a data store.
While ASP.NET 3.5 ships with a provider for SQL Server (part of the ASP.NET 2.0 foundation
that ASP.NET 3.5 is built on top of), you can create and configure custom providers to store this
information anywhere you want. Best of all, the whole API accesses these providers through

CHAPTER 19 THE ASP.NET SECURITY MODEL962

 well- defined interfaces, which means your application can be written completely provider
independently. That means changing a provider will not affect your application in any way!

You will learn more about custom providers in Chapter 26.

Summary
With ASP.NET, programmers finally have a comprehensive, full- featured set of security tools.
As with many other features in the world of ASP.NET, the presence of a security framework
simply means that there is less work for you to do to implement a variety of authentication and
authorization scenarios.

ASP.NET provides three types of authentication providers, including Windows authen-
tication, forms authentication, and Passport authentication. Additionally, ASP.NET also
includes all the necessary interfaces and classes you need to build your own authentication
and authorization system. In the following chapters, you’ll learn about all of these features.

Finally, you learned about security configurations in different versions of IIS—from IIS 5.x
and IIS 6.0 to the new version 7.0 introduced with Windows Vista and Windows Server 2008.
The most interesting part is the ASP.NET integrated mode introduced with IIS 7.0 that lever-
ages the ASP.NET runtime, with its concept of HTTP modules for implementing common web
server functionality. This allows a single point of configuration for your web applications in
web.config, as well as a better integration of ASP.NET in the request processing. Therefore, you
can include ASP.NET- based features such as forms authentication in applications that aren’t
 ASP.NET- based, as this functionality is part of the web server now.

963

C H A P T E R 2 0

Forms Authentication

In the previous chapter, you learned about the basic structure of ASP.NET security. In
this chapter, you will learn how you can authenticate your users using forms authentica-
tion. You should use this type of authentication whenever there is a reason for not using
 Windows- based accounts in your applications. We will discuss such reasons in this chapter,
as well as in Chapter 22 when discussing Windows authentication itself.

In such cases, you need your own authentication infrastructure with a custom login page
that validates a user name and password against a custom store such as your own database.
This infrastructure then establishes the security context on each request again (in many cases
such systems work based on cookies). If you’ve ever authenticated users with ASP 3.0, you’ve
probably created such authentication mechanisms on your own.

Fortunately, ASP.NET includes a complete infrastructure for implementing such systems.
ASP.NET handles the cookies and establishes the security context on each request for you.
This infrastructure is called forms authentication, and you’ll learn how it works in this chapter.

Note The basic forms authentication infrastructure works the same way as in previous versions of ASP.NET.
If you are familiar with ASP.NET 1.x you should know that Microsoft introduced a handful of new settings
in the configuration schema of ASP.NET 2.0, covered in the section “Configuring Forms Authentication.”
However, the team did not introduce any new concepts with the release of ASP.NET 3.5 in terms of forms
authentication except for Ajax support, which you will learn about in Chapter 32. So, if you are familiar with
forms authentication on ASP.NET 1.x you should review this chapter for the new configuration settings, and if
you are already familiar with forms authentication on ASP.NET 2.0, you can skip this chapter.

Introducing Forms Authentication
Forms authentication is a ticket- based (also called token- based) system. This means when
users log in, they receive a ticket with basic user information. This information is stored in an
encrypted cookie that’s attached to the response so it’s automatically submitted on each sub-
sequent request.

When a user requests an ASP.NET page that is not available for anonymous users, the
ASP.NET runtime verifies whether the forms authentication ticket is available. If it’s not

CHAPTER 20 FORMS AUTHENTICATION964

available, ASP.NET automatically redirects the user to a login page. At that moment, it’s your
turn. You have to create this login page and validate the credentials within this login page.
If the user is successfully validated, you just tell the ASP.NET infrastructure about the suc-
cess (by calling a method of the FormsAuthentication class), and the runtime automatically
sets the authentication cookie (which actually contains the ticket) and redirects the user to
the originally requested page. With this request, the runtime detects that the authentication
cookie with the ticket is available and grants access to the page. You can see this process in
 Figure 20-1.

 Figure 20-1. The forms authentication process

All you need to do is configure forms authentication in the web.config file, create the login
page, and validate the credentials in the login page.

CHAPTER 20 FORMS AUTHENTICATION 965

Why Use Forms Authentication?
Forms authentication is an attractive option for developers for a number of reasons:

Let’s look at each of these in turn.

Controlling the Authentication Code
Because forms authentication is implemented entirely within ASP.NET, you have complete
control over how authentication is performed. You don’t need to rely on any external systems,
as you do with Windows or Passport authentication. You can customize the behavior of forms
authentication to suit your needs, as you will see in the section “Persistent Cookies in Forms
Authentication.”

Controlling the Appearance of the Login Form
You have the same degree of control over the appearance of forms authentication as you do
over its functionality. In other words, you can format the login form in any way you like. Since
ASP.NET 2.0, the offering got even better with the membership API and the security controls.
These security controls contain a ready-to- use and highly customizable Login control. We will
discuss the membership API and the security controls in the next chapter in detail.

This flexibility in appearance is not available in the other authentication methods. Win-
dows authentication needs the browser to collect credentials, and Passport authentication
requires that users leave your website and visit the Passport site to enter their credentials.

Working with a Range of Browsers
Forms authentication uses standard HTML as its user interface, so all browsers can handle it.
Because you can format the login form in any way you like, you can even use forms authenti-
cation with browsers that do not use HTML, such as those on mobile devices. To do this, you
need to detect the browser being used and provide a form in the correct format for the device
(such as WML for most mobile phones).

Caution Forms authentication uses standard HTML forms for collecting and submitting the user’s cre-
dentials. Therefore, you have to use SSL to encrypt and transmit the user’s credentials securely. If you don’t
use SSL, the information is transmitted as clear text in the postback data in the request to the server.

CHAPTER 20 FORMS AUTHENTICATION966

Storing User Information
Forms authentication stores users in the web.config file by default, but as you will see in the
section “Custom Credentials Store,” you can store the information anywhere you like. You
just need to create the code that accesses the data store and retrieves the required informa-
tion. (And if you use the membership API introduced in Chapter 21, you even don’t need to
do that.) A common example is to store the user information in a custom database.

This flexibility in the storage of user information also means you can control how user
accounts are created and administered, and you can attach additional information to user
accounts, such as personal preferences for customizing the appearance of your website. You
can also attach business- specific information such as, for example, encrypted credit card
information if you have an online shop. In addition to the membership API mentioned ear-
lier and covered in Chapter 21, ASP.NET 2.0 introduced the profiles API, which allows you
to store additional user information independent from your user accounts themselves. The
profiles API is covered in Chapter 24. By comparison, Windows authentication (discussed in
Chapter 22) is much less flexible. It requires that you set up a Windows user account for each
user you want to authenticate. This is obviously a problem if you want to serve a large number
of users or if you want to register users programmatically. It also doesn’t allow you to store
additional information about users. (In the case of Active Directory, you have the possibility
of extending the Active Directory schema, which defines contents and types for data structures
stored in an Active Directory. However, this is something that needs to be planned well and is
often not seen gladly by IT administrators.) Instead, you have to store this information sepa-
rately. Passport authentication has similar limitations. Although Passport stores more user
information, it doesn’t allow you to add custom information, and it doesn’t allow you to take
part in user registration or account management.

Why Would You Not Use Forms Authentication?
So far, you’ve considered the reasons that make forms authentication an attractive choice for
user authentication. However, forms authentication also has downsides:

page completely on your own or use the security controls that have been available
since ASP.NET 2.0 (covered in the next chapter).

The following sections explore these issues. You can solve the first two of these downsides
by using the membership API framework, which offers prebuilt controls and a prebuilt schema
for credential storage and runs on SQL Server databases out of the box. You will learn about
the membership API framework in Chapter 21.

Creating Your Own Login Interface
As mentioned earlier, forms authentication gives you control over the interface that users
use to log into your web application. Along with its benefits, this approach also creates extra
work, because you have to build the login page. Other forms of authentication supply some
prebuilt portions. For instance, if you’re using Windows authentication, the browser provides

CHAPTER 20 FORMS AUTHENTICATION 967

a standard dialog box. In Passport authentication, the user interface of the Passport site is
always used for logging in.

Creating the login page for forms authentication doesn’t require a lot of work, though. It’s
just worth noting that forms authentication is merely a framework for building an authentica-
tion system, rather than an all-in- one system that’s complete and ready to use.

The new membership API, on the other hand, includes a prebuilt Login control that can
be used either on a separate login page or within any page of your application that provides
a prebuilt login user interface. This user interface is customizable and communicates with the
membership API to log the user in automatically. The control does most of the work of creat-
ing custom login pages. In most cases, creating a custom login page requires nothing more
than adding an .aspx page to your solution with a Login control on it. You don’t need to catch
any events or write any code if you are fine with the default behavior of the control (which will
usually be the case). You will learn more details about this control in Chapter 21.

Maintaining User Details
When you use forms authentication, you are responsible for maintaining the details of the
users who access your system. The most important details are the credentials that the user
needs in order to log into the system. Not only do you need to devise a way to store them, but
you also need to ensure that they are stored securely. Also, you need to provide some sort of
administration tools for managing the users stored in your custom store.

The membership API framework ships with a prebuilt schema for storing credentials in
a SQL Server database. So, you can save lots of time using this existing schema; furthermore,
the schema is extensible. Still, you are responsible for backing up the credentials store securely
so that you can restore it in case of a system failure.

All these considerations don’t apply to most other types of authentication. In Windows
authentication, user credentials are stored by the underlying operating system. Windows uses
a variety of techniques to keep them secure automatically so that you don’t need to perform
any work of your own. In Passport authentication, the credentials are stored securely on Pass-
port servers.

Intercepting Network Traffic
When a user enters credentials for forms authentication, the credentials are sent from the
browser to the server in plain- text format. This means anyone intercepting them will be able
to read them. This is obviously an insecure situation.

The usual solution to this problem is to use SSL (as described in the previous chapter).
Now, a valid argument might be that you just need to use SSL for securing the login page, not
the entire application. You can configure forms authentication to encrypt and sign the cookie,
and therefore it’s extremely difficult for an attacker to get any information from it. In addition,
the cookie should not contain any sensitive information and therefore won’t include the pass-
word that was used for authentication.

But what if the attacker intercepts the unencrypted traffic and just picks the (already
encrypted) cookie and uses it for replay? The attacker doesn’t need to decrypt it; she just
needs to send the cookie with her own request across the wire. You can mitigate such
a replay attack only if you run the entire website with SSL.

Other authentication mechanisms don’t require this extra work. With Windows authen-
tication, you can use a protocol that automatically enforces a secure login process (with the

CHAPTER 20 FORMS AUTHENTICATION968

caveat that this is not supported by all browsers and all network environments). With Pass-
port authentication, the login process is handled transparently by the Passport servers, which
always use SSL.

Why Not Implement Cookie Authentication Yourself?
Depending on the configuration you will learn about in the next sections of this chapter, forms
authentication uses cookies for assigning authentication tickets to clients and users. A more
generic term for this approach is cookie authentication. Cookie authentication is, on the sur-
face, a fairly straightforward system. You might wonder why you shouldn’t just implement it
yourself using cookies or session variables.

The answer is the same reason developers don’t implement features in ASP.NET ranging
from session state to the web control framework. Not only does ASP.NET save you the trouble,
but it also provides an implementation that’s secure, well tested, and extensible. Some of
the advantages provided by ASP.NET’s implementation of forms authentication include the
following:

NET security classes.

Keeping the Authentication Cookie Secure
Cookie authentication seems simple, but if it’s not implemented correctly, you can be left with
an insecure system. On their own, cookies are not a safe place to store sensitive information,
because a malicious user can easily view and edit cookie data. If your authentication is based
on unprotected cookies, attackers can easily compromise your system.

By default, the forms authentication module encrypts its authentication information
before placing it in a cookie. It also attaches a hash code and validates the cookies when they
return to the server to verify that no changes have been made. The combination of these two
processes makes these cookies very secure and saves you from needing to write your own
security code. Most examples of homemade cookie authentication are far less secure.

Forms Authentication Is Well Tested
Forms authentication is an integral part of ASP.NET, so it has already been used in a number
of web applications and websites. Because so many people use the same system, flaws are
quickly discovered, publicized, and solved. As long as you keep up-to- date with patches, you
have a high level of protection. On the other hand, if you create your own cookie authentica-
tion system, you do not have the advantage of this widespread testing. The first time you’ll
notice a vulnerability will probably be when your system is compromised.

Integrating with the ASP.NET Security Framework
All types of ASP.NET authentication use a consistent framework. Forms authentication is
fully integrated with this security framework. For example, it populates the security context
(IPrincipal) object and user identity (IIdentity) object, as it should. This makes it easy to cus-
tomize the behavior of forms authentication.

CHAPTER 20 FORMS AUTHENTICATION 969

The Forms Authentication Classes
The most important part of the forms authentication framework is the
FormsAuthenticationModule, which is an HttpModule class that detects existing forms
authentication tickets in the request. If the ticket is not available and the user requests a
 protected resource, it automatically redirects the request to the login page configured in
your web.config file before this protected resource is even touched by the runtime.

If the ticket is present, the module automatically creates the security context by initializ-
ing the HttpContext.Current.User property with a default instance of GenericPrincipal, which
contains a FormsIdentity instance with the name of the currently logged- in user. Basically, you
don’t work with the module directly. Your interface to the module consists of the classes in
Table 20-1, which are part of the System.Web.Security namespace.

Table 20-1. The Forms Authentication Framework Classes

Class Name Description
FormsAuthentication This is the primary class for interacting with the forms authen-

tication infrastructure. It provides basic information about the
configuration and allows you to create the ticket, set the cookie,
and redirect from the login page to the originally requested page
if the validation of credentials was successful.

FormsAuthenticationEventArgs The FormsAuthenticationModule raises an Authenticate event
that you can catch. The event arguments passed are encapsu-
lated in an instance of this class. It contains basic information
about the authenticated user.

FormsAuthenticationTicket This class represents the user information that will be encrypted
and stored in the authentication cookie.

FormsIdentity This class is an implementation of IIdentity that is specific to
forms authentication. The key addition to the FormsIdentity
class, in addition to the members required when implementing
the IIdentity interface, is the Ticket property, which exposes the
forms authentication ticket. This allows you to store and retrieve
additional information in the ticket, such as caching role infor-
mation for simple scenarios.

FormsAuthenticationModule This is the core of the forms authentication infrastructure that
establishes the security context and performs the automatic page
redirects to the login page if necessary.

Mostly you will use the FormsAuthentication class and the FormsIdentity class, which
represents a successfully authenticated user in your application. Next you will learn how to
use forms authentication in your application.

Implementing Forms Authentication
You need to complete the following steps to use forms authentication in your application:

 1. Configure forms authentication in the web.config file.

 2. Configure IIS to allow anonymous access to the virtual directory, and configure ASP.NET
to restrict anonymous access to the web application.

 3. Create a custom login page that collects and validates a user name and password and
then interacts with the forms authentication infrastructure for creating the ticket.

CHAPTER 20 FORMS AUTHENTICATION970

The following sections describe these steps.

Note The cookie is encrypted with a machine- specific key that’s defined in the machine.config file. Usu-
ally, this detail isn’t important. However, in a web farm you need to make sure all servers use the same key
so that one server can decrypt the cookie created by another.

Configuring Forms Authentication
You have to configure forms authentication appropriately in your web.config file. Remember
from the previous chapter that every web.config file includes the <authentication /> configu-
ration section. Forms authentication works if you configure this section with the value Forms
for the mode attribute:

The <authentication /> configuration is limited to the top- level web.config file of
your application. If the mode attribute is set to Forms, ASP.NET loads and activates the
 FormsAuthenticationModule, which does most of the work for you. The previous configura-
tion uses default settings for forms authentication that are hard- coded into the ASP.NET
runtime. You can override any default settings by adding settings to the <system.web> sec-
tion of the machine.config file. You can override these default settings in your application
by specifying additional settings in the <forms /> child tag of this section. The following
code snippet shows the complete set of options for the forms tag:

CHAPTER 20 FORMS AUTHENTICATION 971

Note In the preceding example, the domain property is set to a value representing your domain. However,
usually when developing and debugging an application, you run your web application either on your local
server or a test server within your intranet (for example, by using the URL
when using the integrated web development server). In that case the URL you use to access the application
is different from your actual domain. Therefore, forms authentication would not work, as it matches the name
of the cookie domain with the URL used for accessing the web server. If you need to test cross- application
domain authentication, we recommend setting the domain property to the name of your local machine or
your test machine and accessing the application by using your machine’s name instead of localhost (for
example, instead of), or you can leave
it blank.

The properties are listed in the order you will use them in most cases. Table 20-2 describes
the details of these properties and their default configuration.

Table 20-2. The Forms Authentication Options

Option Default Description
name .ASPXAUTH The name of the HTTP cookie to use for authenti-

cation. If multiple applications are running on the
same web server, you should give each applica-
tion’s security cookie a unique name.

loginUrl login.aspx Defines which page the user should be redirected
to in order to log into the application. This could
be a page in the root folder of the application, or it
could be in a subdirectory.

timeout 30 The number of minutes before the authentication
cookie expires. ASP.NET will refresh the cookie
when it receives a request, as long as half of the
cookie’s lifetime has expired. The expiry of cookies
is a significant concern. If cookies expire too often,
users will have to log in often, and the usability
of your application may suffer. If they expire too
seldom, you run a greater risk of cookies being
stolen and misused.

slidingExpiration true This attribute enables or disables sliding expira-
tion of the authentication cookie. If enabled, the
expiration of an authentication cookie will be
reset by the runtime with every request a user sub-
mits to the page. This means with every request
the expiration of the cookie will be extended.

cookieless UseDeviceProfile Allows you to specify whether the runtime uses
cookies for sending the forms authentication
ticket to the client. Possible options are AutoDe-
tect, UseCookies, UseUri, and UseDeviceProfile.
These settings are covered in detail in Table 20-3
later in this chapter.

Continued

CHAPTER 20 FORMS AUTHENTICATION972

Table 20-2. Continued

Option Default Description
protection All Allows you to specify the level of protection for

the authentication cookie. The option All en-
crypts and signs the authentication cookie. Other
possible options are None, Encryption (encrypts
only), and Validation (signs only).

requireSSL false If set to true, this property has the effect that the
browser simply doesn’t transmit the cookie if SSL
is not enabled on the web server. Therefore, forms
authentication will not work in this case if SSL is
not activated on the web server.

enableCrossAppRedirects false Enables cross- application redirects when using
forms authentication for different applications
on your server. Of course, this makes sense only
if both applications rely on the same credential
store and use the same set of users and roles.

defaultUrl default.aspx If the FormsAuthenticationModule redirects
a request from the user to the login page, it in-
cludes the originally requested page when calling
the login page. Therefore, when returning from
the login page, the module can use this URL for
a redirect after the credentials have been validated
successfully. But what if the user browses to the
login page directly? This option specifies the page
to redirect to if the user accesses the login page
directly by typing its URL into the address bar of
the browser.

domain <empty string> Specifies the domain for which this cookie is valid.
Overriding this property is useful if you want to
enable the cookie to be used for more applications
on your web server.

path / The path for cookies issued by the application.
The default value (/) is recommended, because
case mismatches can prevent the cookie from
being sent with a request.

As explained in Table 20-2, you can disable cookie validation and encryption. However,
it’s reasonable to wonder why you would want to remove this protection. The only case in
which you might make this choice is if you are not authenticating users for security reasons
but simply identifying users for personalization purposes. In these cases, it does not really
matter if a user impersonates another user, so you might decide that the overhead of encrypt-
ing, decrypting, and validating the authentication cookies will adversely affect performance
without offering any benefits. Think carefully before taking this approach, however—you
should use this approach only in situations where it really does not matter if the authentica-
tion system is subverted.

Credentials Store in web.config
When using forms authentication, you have the choice of where to store credentials for the users.
You can store them in a custom file or in a database; basically, you can store them anywhere you

CHAPTER 20 FORMS AUTHENTICATION 973

want if you provide the code for validating the user name and password entered by the user with
the values stored in your credential store.

The easiest place to store credentials is directly in the web.config file through the
 <credentials /> subelement of the <forms /> configuration tag introduced previously.

Note First, using web.config as a credential store is possible for simple solutions with just a few users
only. In larger scenarios, you should use the membership API, which is described in Chapter 21. Second, you
can hash password values for credentials stored in the web.config file. Hashing is nothing more than apply-
ing one- way encryption to the password. This means the password will be encrypted in a way that it can’t be
decrypted anymore. You will learn how you can hash passwords correctly when creating a custom member-
ship provider in Chapter 26.

Denying Access to Anonymous Users
As mentioned earlier, you do not need to restrict access to pages in order to use authentica-
tion. It is possible to use authentication purely for personalization so that anonymous users
view the same pages as authenticated users (but see slightly different, personalized content).
However, to demonstrate the redirection functionality of forms authentication, it’s useful to
create an example that denies access to anonymous users. This will force ASP.NET to redirect
anonymous users to the login page.

Chapter 23 describes authorization in detail. For now, you’ll use the simple technique of
denying access to all unauthenticated users. To do this, you must use the <authorization> ele-
ment of the web.config file to add a new authorization rule, as shown here:

CHAPTER 20 FORMS AUTHENTICATION974

The question mark (?) is a wildcard character that matches all anonymous users. By
including this rule in your web.config file, you specify that anonymous users are not allowed.
Every user must be authenticated, and every user request will require the forms authentication
ticket (which is a cookie). If you request a page in the application directory now, ASP.NET will
detect that the request isn’t authenticated and attempt to redirect the request to the login page
(which will probably cause an error, unless you’ve already created this page).

Unlike the <authentication> element, the <authorization> element is not limited to the
web.config file in the root of the web application. Instead, you can use it in any subdirectory,
thereby allowing you to set different authorization settings for different groups of pages. You’ll
learn much more about authorization in Chapter 23.

Creating a Custom Login Page
Next, you have to create a custom login page. This page collects a user name and password
from the user and validates it against the credentials stored in the credential store. If creden-
tials are stored in web.config, this is extremely easy. However, at the same time, it is not much
harder to store credentials in any other store, such as an external database.

The login page you have to create must contain the parts shown in Figure 20-2. Further-
more, you must include the code for validating the credentials. The ASP.NET page shown in
 Figure 20-2 contains the text boxes for entering the values. Note that the URL in the address
bar of the browser shown in Figure 20-2 includes the originally requested page as a query
parameter. This parameter is used by the FormsAuthentication class later for redirecting to
the originally requested page. If not present, it uses the page configured in the defaultUrl attri-
bute of the <forms /> configuration tag.

 Figure 20-2. A typical login page for a web application

What you cannot see in Figure 20-2 are validation controls. Validation controls are
especially important to let the user enter only valid values for a user name and a password.
Remember what we mentioned in the previous chapter: never trust user input. Validation

CHAPTER 20 FORMS AUTHENTICATION 975

adheres to this principle by ensuring that only valid values are entered. Here you can see all
the controls contained on the login page:

CHAPTER 20 FORMS AUTHENTICATION976

As mentioned previously, the validation controls serve two purposes. First, the
RequiredFieldValidator controls ensure that both a user name and password are entered in
a valid format containing only the characters allowed for user names and passwords. Second,
the RegularExpressionValidator controls ensure that only valid values are entered in the User
Name text field and in the Password text field. For example, the user name may contain let-
ters, digits, and spaces only. Therefore, the validation expression looks like this:

The \w character class is equivalent to [a-zA-Z_0- 9], and the space afterward allows
spaces in the user name. The password, for example, may also contain special characters.
Therefore, the validation expression looks different from the previous one, as shown here:

Note that the single quote is used for enclosing the attribute value, because this uses the
double quote as the allowed special character. Furthermore, because the attribute is contained
in the tag code (and therefore the HTML entity), & indicates that the ampersand (&) char-
acter is allowed in the password. You can see the validation controls in action in Figure 20-3.

As you can see in Figure 20-3, with validation controls in place you can stop users from
entering values for the user name or password that would lead to a SQL injection attack. In
addition to using parameterized SQL queries (introduced in Chapter 7 and Chapter 8), you
should always use validation controls to mitigate this type of attack in your applications.

 Figure 20-3. Validation controls in action

CHAPTER 20 FORMS AUTHENTICATION 977

The last step for creating the login page is to write the code for validating the credentials
against the values entered by the user. You have to add the necessary code to the Click event
of the login button. Because the following Click event is using the credentials store of the
web.config file, validation is fairly easy:

Caution Because forms authentication uses standard HTML forms for entering credentials, the user
name and password are sent over the network as plain text. This is an obvious security risk—anyone who
intercepts the network traffic will be able to read the user names and passwords that are entered into the
login form. For this reason, it is strongly recommended that you encrypt the traffic between the browser and
the server using SSL (as described in Chapter 19), at least while the user is accessing the login page.

Furthermore, it’s important to include the Page.IsValid condition at the beginning of
this procedure. The reason for this is that validation controls by default use JavaScript for
 client- side validation. When calling Page.Validate(), the validation takes place on the server.
This is important for browsers that either have JavaScript turned off or don’t support it. There-
fore, if you don’t include this part, validation will not happen if the browser doesn’t support
JavaScript or doesn’t have JavaScript enabled. So, you should always include server- side vali-
dation in your code.

The FormsAuthentication class provides two methods that are used in this example. The
Authenticate() method checks the specified user name and password against those stored
in the web.config file and returns a Boolean value indicating whether a match was found.
Remember that the methods of FormsAuthentication are Shared, so you do not need to create
an instance of FormsAuthentication to use them—you simply access them through the name
of the class.

If a match is found for the supplied credentials, you can use the RedirectFromLoginPage()
method, as shown here:

CHAPTER 20 FORMS AUTHENTICATION978

This method performs several tasks at once:

 1. It creates an authentication ticket for the user.

 2. It encrypts the information from the authentication ticket.

 3. It creates a cookie to persist the encrypted ticket information.

 4. It adds the cookie to the HTTP response, sending it to the client.

 5. It redirects the user to the originally requested page (which is contained in the query
string parameter of the login page request’s URL).

The second parameter of RedirectFromLoginPage() indicates whether a persistent cookie
should be created. Persistent cookies are stored on the user’s hard drive and can be reused
for later visits. Persistent cookies are described in the section “Persistent Cookies in Forms
Authentication” later in this chapter.

Finally, if Authenticate() returns false, an error message is displayed on the page. Feed-
back such as this is always useful. However, make sure it doesn’t compromise your security.
For example, it’s all too common for developers to create login pages that provide separate
error messages depending on whether the user has entered a user name that isn’t recognized
or a correct user name with the wrong password. This is usually not a good idea. If a malicious
user is trying to guess a user name and password, the user’s chances increase considerably if
your application gives this sort of specific feedback.

Logging Out
Logging a user out of forms authentication is as simple as calling the FormsAuthentication.
SignOut() method. You can create a logout button and add this code, as shown here:

When you call the SignOut() method, you remove the authentication cookie. Depending
on the application, you may want to redirect the user to another page when the user logs out.
If the user requests another restricted page, the request will be redirected to the login page.
You can also redirect to the login page immediately after calling the SignOut method. Or you
can use the Response.Redirect method.

Note In a sophisticated application, your login page might not actually be a page at all. Instead, it might
be a separate portion of the page—either a distinct HTML frame or a separately coded user control. Using
these techniques, you can keep a login and logout control visible on every page. The membership API frame-
work includes ready-to- use controls for providing this type of functionality.

CHAPTER 20 FORMS AUTHENTICATION 979

Hashing Passwords in web.config
Forms authentication includes the possibility of storing the password in different formats. In
the <credentials /> configuration section of the <forms /> element, the format of the password
is specified through the passwordFormat attribute, which has three valid values:

Clear: The passwords are stored as clear text in the <user /> elements of the <credentials />
section.

MD5: The hashed version of the password is stored in the <user /> elements, and the algo-
rithm used for hashing the password is the MD5 hashing algorithm.

SHA1: The <user /> elements in the <credentials /> section of the web.config file contain
the hashed password, and the algorithm used for hashing the password is the SHA1 algo-
rithm. This value is the default for the passwordFormat option.

When using the hashed version of the passwords, you have to write a tool or some code
that hashes the passwords for you and stores them in the web.config file. This could be either
code such as the following, included in some administrative applications for your web appli-
cation, or a separate Windows application for managing the users of your web application
(which then needs to run on the web server). For storing the password, you should then use
the FormsAuthentication.HashPasswordForStoringInConfigFile method instead of passing in
the clear- text password as follows:

The first parameter specifies the clear- text password, and the second one specifies the
hash algorithm you should use. The result of the method call is the hashed version of the pass-
word. This result needs to be stored in the web.config (when using web.config as a storage for
your user accounts) or can be stored in your own users database (when using a custom data-
base for storing user information).

If you want to modify users stored in web.config as shown previously, you have to use the
configuration API of the .NET Framework. You cannot edit this section with the web- based
configuration tool. The following code snippet shows how you can modify the section through
the configuration API. This code typically is implemented as part of an administrative applica-
tion for managing your web application, which should be available for administrators only.

CHAPTER 20 FORMS AUTHENTICATION980

To use this configuration API, you need to import the System.Web.Configuration name-
space into your application. Furthermore, you need to make sure to have a reference to the
System.Configuration.dll assembly (which is the case, by default).

Of course, only privileged users such as website administrators should be allowed to
execute the previous code, and the process executing the code must have write access to your
web.config file. Also, this sort of code should not be included in the actual web application.
You should include it in an administration application only. You will learn more about hashing
passwords in Chapters 25 and 26.

Cookieless Forms Authentication
Since ASP.NET 2.0, the runtime supports cookieless forms authentication out of the box. In
ASP.NET 1.x you had to write this functionality on your own. If you don’t want the runtime
to use cookies, you configure this through the cookieless attribute of the <forms /> tag in the
<authentication /> section:

The cookieless option includes the possible settings in Table 20-3.

Table 20-3. Cookieless Options in the <forms /> Configuration

Option Description
UseCookies Forces the runtime to use cookies when working with forms authentication.

This requires the client browser to support cookies. If the browser does not
support cookies, forms authentication will simply not work with that set-
ting activated. As it will never receive a valid authentication cookie from the
browser, ASP.NET redirects back to the login page over and over again, and
you end up in an endless loop of presented login pages.

UseUri If this configuration option is selected, cookies will not be used for authenti-
cation. Instead, the runtime encodes the forms authentication ticket into the
request URL, and the infrastructure processes this specific portion of the URL
for establishing the security context.

AutoDetect Results in the use of cookies if the client browser supports cookies. Otherwise,
URL encoding of the ticket will be used. This is established through a probing
mechanism.

UseDeviceProfile Results in the use of cookies or URL encoding based on a device profile con-
figuration stored on the web server. These profiles are stored in .browser files
in the <drive>:\<windows directory>\Microsoft.NET\Framework\v2.0.50727\
CONFIG\Browsers directory. Note that you will still find these settings in the
.NET Framework 2.0 directory for ASP.NET 3.5, as the .NET Framework 3.5
builds on top of .NET Framework 2.0 and 3.0 instead of being a separate, iso-
lated release shipping with its own base class library and runtime. If you want
more details about the different versions of the .NET Framework and their
relationships to one another, take a look at Chapter 1.

CHAPTER 20 FORMS AUTHENTICATION 981

Custom Credentials Store
As mentioned previously, the credential store in web.config is useful for simple scenarios only.
You won’t want to use web.config as the credential store for a number of reasons:

Potential lack of security: Even though users aren’t able to directly request the web.config
file, you may still prefer to use a storage medium where you can secure access more effec-
tively. As long as this information is stored on the web server, passwords are accessible to
any administrator, developer, or tester who has access.

No support for adding user- specific information: For example, you might want to store
information such as addresses, credit cards, personal preferences, and so on.

Poor performance with a large number of users: The web.config file is just a file, and
it can’t provide the efficient caching and multiuser access of a database. Furthermore,
whenever you change the web.config file, the HttpApplication is restarted, which results
in losing all AppDomains, Session state, and so on. Reestablishing all these things affects
performance.

Therefore, in most applications you will use your own custom credential store for user
name and password combinations, and mostly it will be a database such as SQL Server.
In ASP.NET 1.x, you had to implement this scenario on your own. In your login form you
then had to connect to the database, verify whether the user existed, compare the password
stored in the database to the one entered by the user, and then call FormsAuthentication.
RedirectFromLoginPage if the user name and password entered by the user were valid.
The following example demonstrates this, and it assumes that you have written a function
 MyAuthenticate that connects to a SQL Server database and reads the corresponding user
entry. It returns true if the entered user name and password match the ones stored in the
database.

Fortunately, since ASP.NET 2.0 the .NET Framework provides a ready-to- use infrastruc-
ture as well as a complete set of security- related controls that do this for you. The membership
API includes a SQL Server–based data store for storing users and roles, and has functions for
validating user names and passwords against users of this store without knowing any details
about the underlying database, as you will learn in Chapter 21. It also includes powerful secu-
rity controls, such as a ready-to- use Login control, which sits on top of the membership API.
Furthermore, this infrastructure is completely extensible through custom providers, as you
will learn in Chapter 26.

CHAPTER 20 FORMS AUTHENTICATION982

Persistent Cookies in Forms Authentication
The examples you’ve seen so far have used a nonpersistent authentication cookie to maintain
the authentication ticket between requests. This means that if the user closes the browser, the
cookie is immediately removed. This is a sensible step that ensures security. It’s particularly
important with shared computers to prevent another user from using a previous user’s ticket.
Nonpersistent cookies also make session hijacking attacks (where a malicious user gains
access to the network and steals another user’s cookie) more difficult and more limited.

Despite the increased security risks of using persistent authentication cookies, it is
appropriate to use them in certain situations. If you are performing authentication for per-
sonalization rather than for controlling access to restricted resources, you may decide that the
usability advantages of not requiring users to log in on every visit outweigh the increased dan-
ger of unauthorized use.

Once you have decided to use persistent cookies, implementing them is easy. You
simply need to supply a value of true rather than false for the second parameter of the
 RedirectFromLoginPage() or SetAuthCookie() method of the FormsAuthentication class.
Here’s an example:

By default, persistent cookies do not expire unless the FormsAuthentication.SignOut()
method is used. Persistent cookies are not affected by the timeout attribute that is set in the
<forms> element of the web.config file. If you want the persistent cookie to eventually expire
sometime in the future, you have to use the GetAuthCookie() method of FormsAuthentication,
set the expiry date and time, and then write the cookie to the HTTP response yourself.

The following example rewrites the code that authenticates the user when the login but-
ton is clicked. It creates a persistent cookie but performs additional steps to limit the cookie’s
life span to ten days:

CHAPTER 20 FORMS AUTHENTICATION 983

The code for checking the credentials is the same in this scenario. The only difference is
that the authentication cookie isn’t added automatically. Instead, it’s created with a call to
GetAuthCookie(), which returns a new instance of HttpCookie, as shown here:

Once you’ve created the authentication cookie, you can retrieve the current date and time
(using the DateTime.Now static property), add ten days to it (using the DateTime.AddDays()
method), and use this value as the expiry date and time of the cookie:

Next, you have to add the cookie to the HTTP response:

Finally, you can redirect the user to the originally requested URL, which you can obtain by
using the GetRedirectUrl() method:

The end result is a cookie that will persist beyond the closing of the browser but that will
expire after ten days, at which point the user will need to reenter credentials to log into the
website.

IIS 7.0 and Forms Authentication
You might wonder why we cover forms authentication in conjunction with IIS 7.0 separately.
First of all, the new IIS 7.0 management console allows you to configure most ASP.NET options
directly from within the management console, as you learned in Chapter 18. Second, IIS 7.0
ships with a new ASP.NET integrated mode that—among many other things—integrates the
ASP.NET HTTP processing pipeline with the IIS HTTP processing pipeline. This gives you a tre-
mendous set of new capabilities you can leverage with your existing ASP.NET knowledge. For
example, one capability is the possibility of using ASP.NET forms authentication for other web
applications configured in IIS 7.0, which do not necessarily need to be built with ASP.NET.

Furthermore, IIS 7.0 leverages web.config files for storing many parts of its configuration
for web applications configured within the web server. That means you can configure many
options of your web application either by using the IIS 7.0 management console or by directly
modifying the web.config file. Due to the tight integration of configuration features for ASP.NET
and IIS 7.0, any changes made to the web.config file directly are reflected to the management
console immediately, and vice versa.

Let’s first take a look at the possibilities of configuring forms authentication from within
the IIS 7.0 management console. You can configure forms authentication by using the

CHAPTER 20 FORMS AUTHENTICATION984

authentication configuration feature of the IIS 7.0 management console, as you can see in
 Figure 20-4.

After enabling forms authentication in this way, you also need to configure the required
authorization rules. The most important one is to add a “deny” rule for all anonymous users
using the authorization configuration feature of the IIS 7.0 management console, as shown in
 Figure 20-5.

 Figure 20-4. Configuring forms authentication from the IIS 7.0 management console

Both configuration settings affect your web.config file, and the web server takes this infor-
mation from the web.config file for its behavior as well, in the following code snippet:

CHAPTER 20 FORMS AUTHENTICATION 985

 Figure 20-5. Denying access to all anonymous users using the IIS 7.0 authorization feature

You will notice that IIS configured forms authentication for you as expected, in the
<system.web> section. But by default (and if you haven’t added it manually before), you won’t
find any authorization rule. As mentioned in Chapter 18, not all configuration options are
directly placed in the web.config configuration file by default. URL authorization is one of
these configuration options. You will learn the details about URL authorization in general
and any IIS 7.0 specifics in Chapter 23.

In any case, the unified management console is very neat, as you don’t need to configure
IIS security and ASP.NET security through different tools, and many options are stored directly
in your web.config by default. As you learned in Chapters 18 and 19, and as you will find in
Chapter 23, you even can configure IIS so that nearly all configuration options are stored
directly in web.config. However, as mentioned earlier, the ASP.NET integration gives us many
more possibilities when running IIS 7.0 in ASP.NET integrated mode (more details in Chapter 18
and Chapter 19).

CHAPTER 20 FORMS AUTHENTICATION986

When running IIS 7.0 in integrated mode (which is the default), IIS uses one HTTP pro-
cessing pipeline for processing both ASP.NET- based HTTP modules and IIS 7.0 native HTTP
modules. As forms authentication is implemented as an ASP.NET HTTP module, you can use
it for any web application and virtual directory configured on IIS 7.0 when running in inte-
grated mode. That means you can even use forms authentication together with other types of
applications, such as static HTML sites, classic ASP applications, or even PHP applications. All
you need to do is configure the web application as a virtual directory and then configure forms
authentication through the IIS 7.0 management console. That adds a web.config configuration
to your application automatically. You need to take care of one additional detail, so let’s walk
through configuring forms authentication for a non- ASP.NET application in this section. Sup-
pose you have the following classic ASP application running on your web server:

Now just share the folder where you have stored this classic ASP page file (for example,
TestClassic.asp) as a virtual directory or web application from within IIS. Afterwards, you
can configure forms authentication and authorization settings as described earlier. As IIS 7.0
natively supports forms authentication by leveraging the HTTP forms authentication module
delivered with ASP.NET, it works the same way as it would work with an ASP.NET application
itself. All you need is to make sure you have the required login page, which on its own is an
ASP.NET page. You also need the parts required by this ASP.NET page, available within the
web application (or within another virtual directory if you use cross- application forms authen-
tication cookies). Figure 20-6 shows the classic ASP page together with an ASP.NET login page
in a virtual directory. Forms authentication is simply configured via the IIS 7.0 management
console as outlined earlier.

CHAPTER 20 FORMS AUTHENTICATION 987

 Figure 20-6. ASP.NET content mixed together with classic ASP

However, just putting ASP content together with your ASP.NET- based login pages and
configuring forms authentication is not enough yet. When you try navigating to the classic ASP
page, forms authentication will not work yet. Depending on your authentication and authori-
zation rules, you will either get an “unauthorized” response or you will just be able to navigate
to the classic ASP page without being prompted for login (you will learn more about authoriza-
tion rules and their behavior in Chapter 23).

The reason for that is that by default, managed HTTP modules such as the forms authen-
tication module are configured so that they are only executed for requests to ASP.NET- based
code. Therefore, to make forms authentication work you need to change this behavior by
selecting the HTTP Modules configuration feature of the IIS 7.0 management console while
having your web application selected. Then, open the details for the FormsAuthentication
module configured in the list of modules, as shown in Figure 20-7 and Figure 20-8.

After you have opened the HTTP Modules configuration feature, you need to find the
FormsAuthentication entry and double- click it, or select the Edit link from the task pane on
the right border of the management console. In the settings dialog that opens, you just need
to disable the option Invoke Only for Requests to ASP.NET Applications or Managed Handlers,
as shown in Figure 20-8.

After having completed this configuration when accessing the classic ASP page in your
web application directory, the request is authenticated by using ASP.NET forms authentica-
tion. The web.config of your web application then looks as follows:

CHAPTER 20 FORMS AUTHENTICATION988

 Figure 20-7. Selecting the HTTP Modules configuration feature in your web application

CHAPTER 20 FORMS AUTHENTICATION 989

 Figure 20-8. Configuration details of the FormsAuthenticationModule

The configuration of the FormsAuthenticationModule is important. The check mark you
configured according to Figure 20-8 manifests itself in the setting preCondition="", which by
default is set to managedHandler.

In general, you can use this way to leverage powerful ASP.NET features, such as forms
authentication or even the membership API introduced in Chapter 21, with all your web
applications configured on your IIS 7.0- based web server. This is a huge advantage compared
to previous versions of IIS, and makes many things much easier.

Summary
In this chapter, you learned how to use forms authentication to implement authentication
systems that simplify life and provide a great deal of flexibility. You also learned how to protect
passwords, and how you can use any data source for credential storage. In the next chapter,
you’ll learn about the new features that are built on top of forms authentication and that make
it even easier to create login pages and deal with user authentication without writing all the
code yourself.

Finally, you learned about how IIS 7.0 allows you to configure forms authentication and
the necessary simple authorization rules directly from within the management console of
IIS 7.0. The most interesting part is that you can leverage ASP.NET- based forms authentication
across all of your web applications on the web server—independent from the platform they are
developed with. You learned how you can leverage the IIS 7.0 integrated mode to use forms
authentication with other web applications based on static HTML pages, classic ASP, or even
PHP. This is a powerful technology and a huge improvement compared to IIS 5.x and IIS 6.0.

991

C H A P T E R 2 1

Membership

On one hand, forms authentication solves the critical fundamentals for implementing secure,
custom login forms for your ASP.NET applications. On the other hand, the tasks you have
to accomplish for implementing the login forms and communicating with the underlying
credential store are almost always the same for every web application, and they’re tedious.
You should keep in mind one more point: forms authentication provides the infrastructure
for authenticating users only. If you are using a custom credentials store, you have to write
administration applications for managing users, which need to implement functionality for
adding users, removing users, resetting passwords, and much more. Implementing such
functionality is fairly similar for every web application and gets boring quickly.

That’s what the ASP.NET team received as feedback from the developer community. There-
fore, ASP.NET 3.5 ships with the membership API (which has been introduced with ASP.NET 2.0
for the first time). The membership API is a framework based on top of the existing forms authen-
tication infrastructure. When using the membership API, you even don’t need to implement login
pages or credential storage. In this chapter, you will learn about the details of the membership API.

Note If you are already familiar with the functionality of the membership API from ASP.NET 2.0, you can
skip this chapter, as ASP.NET 3.5 does not introduce any new functionality to the membership API framework.
New functionality in terms of membership has been introduced with Ajax only, which is covered in Chapter 32
when we discuss ASP.NET Ajax extensions.

Introducing the ASP.NET Membership API
The membership API framework provides you with a complete set of user management func-
tions out of the box:

web configuration utility.

reset e-mails to the users if an e-mail address is stored for the affected user.

programmatically in the background. Of course, these passwords can be sent to these
users automatically if e-mail addresses are available for them.

CHAPTER 21 MEMBERSHIP992

details for every user. This is necessary for typical management tasks, such as assigning
users to roles through a management user interface, or for simple things such as creat-
ing statistics about how many users are leveraging your website’s offerings.

-
playing login states and different views for authenticated and unauthenticated users.

on the underlying data store through membership provider classes. Any functionality
listed until now therefore works completely independently from the underlying data
store, and the data store can be replaced with other types of data stores without need-
ing to modify the application at all. By default, the membership API leverages a SQL
Server Express database for storing user and role information.

 Figure 21-1 shows the fundamental architecture of the membership API, which consists of
providers, an API, and controls for creating appropriate user interfaces.

 Figure 21-1. Architecture of the membership API

CHAPTER 21 MEMBERSHIP 993

The membership API is designed to work completely independently from its underly-
ing data store. You, as the application developer, primarily work with the controls provided
by ASP.NET as well as the Membership class. The Membership class provides you with a set
of static methods and static properties for programmatically accessing users and roles of the
store. These methods work with a membership provider. This provider implements the access
to the underlying data store. All membership API–related classes are placed in the System.
Web.Security namespace. Table 21-1 lists and describes these classes.

Table 21-1. The Membership API–Related Classes of the System.Web.Security Namespace

Component Description
Membership The Membership class is the primary point of interaction

with the membership API. It provides methods for manag-
ing users, validating users, and resetting user passwords.

MembershipCreateUserException An exception is thrown if an error occurs when you try to
create a user through the Membership class.

MembershipUser Represents a single user stored in a membership API
credential store. This object contains all information about
this user and is returned through several methods of the
Membership class, such as GetUser.

MembershipUserCollection A collection of membership users. For example, the
GetAllUsers method of the Membership class returns an
instance of this collection.

MembershipProvider This is the base class that you derive from if you want to
create a custom membership provider that authenticates
users against your custom credential store.

MembershipProviderCollection A collection of available membership providers on the
machine and for this web application.

SqlMembershipProvider An implementation of the MembershipProvider class that
works with SQL Server databases.

ActiveDirectoryMembershipProvider An implementation of the MembershipProvider class that
works with Active Directory.

ActiveDirectoryMembershipUser This class inherits all the functionality from MembershipUser
and adds some Active Directory–specific properties.

ASP.NET ships with a membership provider for SQL Server and Active Directory (which
enables you to create custom login pages for users stored in Active Directory). But the idea of
providers is that they give you the ability to completely extend the infrastructure. Therefore,
you can write your own membership provider, which is a class that inherits from System.Web.
Security.MembershipProvider. You configure membership providers primarily through your
web.config configuration file, which includes a <membership /> section. You will learn more
about custom membership providers in Chapter 26.

CHAPTER 21 MEMBERSHIP994

Note Although the membership API supports Active Directory as a provider, there is still a big difference
between using Windows authentication and using the membership API for authenticating users in your web
application. When you configure your application to use membership APIs, which are based on forms authenti-
cation, credentials are sent as clear text across the line (except you should use SSL), and a forms authentication
ticket is used for authentication, as you learned in the previous chapter. On the other hand, when configuring
Windows authentication, the user is authenticated either through NTLM or through Kerberos (in the case of
Windows 2000, Windows Server 2003, or Windows Server 2008 domains). Both methods are much more
secure, because credentials are never sent across the line.

In Table 21-1, you will find a dedicated class called ActiveDirectoryMembershipUser that is used
in conjunction with the ActiveDirectoryMembershipProvider. However, you won’t find a class called
SqlMembershipProviderUser, which means that the SqlMembershipProvider uses the base class
MembershipUser for representing users. This is simply because the Active Directory provider version
extends the MembershipUser class with a number of Active Directory–specific attributes that are available for
 AD- based users. There are no such specific properties available for the SqlMembershipProvider; there-
fore, creating a separate SqlMembershipUser class is simply unnecessary.

The membership API is just used for managing and authenticating users. It does not imple-
ment any authorization functionality and doesn’t provide you with functionality for managing
user roles. For this purpose, you have to use the roles API. You will learn more about authoriza-
tion and the role management functionality in Chapter 23.

Using the Membership API
Before you can use the ASP.NET membership API and the security controls of ASP.NET, you
have to complete a couple of steps:

 1. Configure forms authentication in your web.config file as usual, and deny access to
anonymous users.

 2. Set up the membership data store. For example, if you are using SQL Server, you have
to create a couple of tables and stored procedures in a SQL Server database of your
choice.

 3. Configure the database connection string and the membership provider you want to
use in the application’s web.config file.

 4. Create users in your membership store using the ASP.NET web configuration utility or
using a custom administration page that you can implement in your web application
using the membership API functions.

 5. Create a login page that uses the prebuilt Login control, or create a login page that uses
the Membership class for validating the entered credentials and authenticating the user.

You can perform every configuration step except the provider configuration through the
ASP.NET WAT, which includes a security wizard. Just select the Web Site ASP.NET Configu-
ration menu from within Visual Studio. Figure 21-2 shows the WAT.

CHAPTER 21 MEMBERSHIP 995

 Figure 21-2. Setting up security in the WAT

If you are using ASP.NET on a machine with SQL Server 2005 Express Edition, you don’t
even need to set up a data store and configure a membership provider. Just launch the security
wizard in the WAT, as shown in Figure 21-2, and start by adding users to your membership
storage. The required underlying data store will be created automatically for you when you
create the first user. It will be created automatically even if you programmatically access the
membership store, because this functionality is provided through the SqlMembershipProvider.
However, be aware that this only works with the SQL Server 2005 Express Edition! If you are
using one of the other SQL Server 2005 editions or you are using another SQL Server version
(such as SQL Server 2000), then you need to configure your data store manually, as described
later in the section “Creating the Data Store.”

When using SQL Server 2005 Express Edition, the SqlMembershipProvider automatically
creates a new database in the website’s App_Data special directory called ASPNETDB.MDF.
This database implements the complete schema, which is necessary for storing and managing
user information, role information, user- role assignments, or even more, such as personaliza-
tion and user profiles. You’ll learn about this database in Chapters 24 and 30.

If you want to use your own database for storing user information and role information
instead of this automatically created one, you have to configure the membership provider and
connection information for the provider before you launch the security wizard in the WAT.
You will learn more about the configuration steps and how the membership API works behind
the scenes in the next sections of this chapter.

CHAPTER 21 MEMBERSHIP996

Configuring Forms Authentication
The membership API is based on top of forms authentication and provides you with an
 out-of-the- box infrastructure for managing and authenticating users. Therefore, as the first step,
you have to configure your application for forms authentication as usual. But you will structure
the solution a little bit differently this time. Often, the root directory of the web application grants
access to anonymous users, while restricted resources are stored in subdirectories with restricted
access. These subdirectories have their own web.config file that denies access to anonymous
users. As soon as someone tries to access resources stored in this secured directory, the ASP.NET
runtime automatically redirects the user to the login page. Typically, the root directory, which is
accessible to anonymous users, includes features such as a login page and a registration page.
You can see the structure of the web application in Figure 21-3, which displays the Solution
Explorer of an already structured Visual Studio project.

 Figure 21-3. The folder and file structure of a web application with a secured area

Therefore, in the root directory of the web application, you just configure forms authenti-
cation by including the following:

As you can see, this configuration specifies forms authentication and allows anonymous
access to the pages. In the secured subdirectory, you add an extra web.config file with the fol-
lowing contents:

CHAPTER 21 MEMBERSHIP 997

This configuration denies any anonymous user access to the website’s secured subfolder.
If someone who is not authenticated tries to access resources placed in this directory, the ASP.
NET run- time automatically redirects the user to the (publicly available) login page. Of course,
you have to create the login page on your own, but it’s much easier and much less work with
the membership API, as you will see when you learn about the Login control in the section
“Using the Security Controls.”

Creating the Data Store
When using the membership API, you have to set up a data store that will be used by your
membership provider. As mentioned earlier, when using SQL Server 2005 Express Edition in
conjunction with ASP.NET, the SqlMembershipProvider is able to create this storage automati-
cally for you. However, when using any other version or edition of SQL Server (2000, 2005, or
2008), you have to create this data storage manually. There are some other reasons for not using
these auto- attached, file- based databases: performance and concurrency. Let’s give you some
background. SQL Server 2005 Express Edition can leverage databases in two ways. The first
way is the classic way, which means you create or attach a database to the SQL Server Service
as you are used to from previous versions. SQL Server then has full control over the database
and is able to provide this database to multiple applications and multiple users concurrently.
The second mode in which SQL Server 2005 Express Edition can be used is a file- based mode.
This means your application can access a SQL Server database file directly without attaching
it to your SQL Server instance. SQL Server dynamically attaches and detaches the database
to the locally running SQL Server Express Edition whenever data from the database is needed.
Therefore, the database file is just locked for a short amount of time (compared to attached
databases, which are locked by SQL Server all the time when the SQL Server service is running).
That makes copying the database file easy, as it is not locked (for example, if you want to copy
changes you’ve made to a deployment location, and so on). However, at the same time, it
requires some additional performance overhead when accessing the file- based database, as
it needs to be attached automatically. Furthermore, for the time the database is attached for
a dedicated application, no other application has access to it, as it is locked for the currently
active application. The file- based mode is neat for Windows- based client applications that are
using SQL Server Express Edition on the client as some kind of client- based storage, where one
user and one application are accessing the database at the same time. It is nice for development
purposes as well, as you do not need to manage databases for all projects in your SQL Server
installation through Management Studio. However, this option is not well suited for production
environments where multiple users of your (and maybe other) web application(s) access contents
of the database.

CHAPTER 21 MEMBERSHIP998

Therefore, for production environments we recommend manual creation of the member-
ship database as described in this section. In the case of the SqlMembershipProvider, creating
such a data storage means creating a SQL Server database and a number of tables and stored
procedures in this database. ASP.NET ships with a number of SQL scripts that allow you to
manually create the necessary database and database tables required for storing user and role
information used by the membership API. However, ASP.NET also ships with a tool that creates
these database tables and stored procedures in a database of your choice for you. This tool
is called aspnet_regsql.exe, and you can easily call it from within a Visual Studio Command
Prompt window. In the case of a custom provider, you have to prepare and configure the data
store used by the custom provider according to the custom provider’s documentation and
requirements.

You can use the aspnet_regsql.exe tool in two ways: either through a wizard interface or
through the command line using dedicated command- line switches. In any case, you should
launch the tool from a Visual Studio Command Prompt window, as it includes the necessary path
information to the .NET Framework directory containing the necessary tools. If you just launch
the tool without any parameters, the tool fires up the wizard interface that guides you through
the process of creating a database, as shown in Figure 21-4. Note that although we are already at
ASP.NET 3.5, this tool is located in the directory of the .NET Framework 2.0 (Windows\Microsoft.
NET\Framework\v2.0.50727), as no changes have been made to the membership API framework
in ASP.NET 3.5. In Figure 21-4 you are creating the database in a SQL Server 2005 Express Edition.
Therefore, you manually add the \SQLEXPRESS post- fix to the (local) machine identifier for iden-
tifying the named instance SQLEXPRESS. That means your new database gets created in the SQL
Server instance named SQLEXPRESS. Also note that it gets created as a full- blown, attached data-
base (rather than the file- based version that gets created automatically). So, this would be the way
you would create the database manually for any other edition of SQL Server (ranging from SQL
Server 2000 up to SQL Server 2005 Enterprise Edition): you just would either skip the instance
name (in this case SQLEXPRESS) or use your own instance name. You have the option of choos-
ing an instance name for your SQL Server when installing SQL Server on your target machine.

The wizard provides you with the option of either creating the necessary database or
removing the tables from an existing database. If you select the <default> option for the data-
base, it looks for a database called aspnetdb on the server you have specified. If it doesn’t exist
already, aspnet_regsql.exe creates this database and creates the tables in this database. If the
tables already exist in the target database, the wizard leaves them as they are.

As already mentioned, you can use the aspnet_regsql.exe tool from the command line as
well. Actually, that’s a good way to automate your application’s setup—just call this tool from
the command line and automatically set up the ASP.NET database tables required by your
application. For example, to set up the membership API database tables, you can execute the
following command:

CHAPTER 21 MEMBERSHIP 999

 Figure 21-4. The apsnet_regsql.exe wizard user interface

 Figure 21-5 shows the result of executing this command. Again, note that you are working
against a local SQL Server instance called SQLEXPRESS (which is the SQL Server Express Edition
installed on your machine). However, as you are creating a full- blown, attached database
here, this would work with any version and edition of SQL Server. On a default installation of
the full- blown SQL Server edition (Standard or Enterprise Edition), you would just skip the
instance name (\SQLEXPRESS), or use the instance name you specified during the installation
of your SQL Server, instead.

 Figure 21-5. Executing aspnet_regsql.exe for installing the database

CHAPTER 21 MEMBERSHIP1000

 Table 21-2 describes the most important command- line switches of the aspnet_regsql.exe
tool needed for the membership API and related ASP.NET application services.

Table 21-2. Command- Line Switches of aspnet_regsql.exe

Switch Description
-S servername Specifies the SQL Server and instance for which you want to install the ASP.NET

database tables. You can use SQL Server 7.0 or newer as an underlying storage
for the membership API.

-U username The SQL Server database user with which you want to connect to SQL Server.
This is required if you do not want to use Windows authentication to connect
only to SQL Server.

-P password If the -U switch is specified, you need to specify the password switch as well.
This is required if you do not want to use Windows authentication to connect
only to SQL Server.

-E If you don’t specify -U and -P, you automatically connect through Windows
authentication to the SQL Server instance specified in -S. With -E, you can ex-
plicitly specify to connect through Windows authentication to the SQL Server.

-C Allows you to specify a full- fledged ODBC or OLEDB connection string for con-
necting to the database.

-sqlexportonly Creates the SQL scripts for adding or removing the specified features to the
database without installing them on a dedicated SQL Server instance.

-A Installs application services. The valid options for this switch are all, m, r, p, c,
and w. The command in the previous example used the option all for installing
all application services; m is dedicated to membership. r means role services, p
means ASP.NET profiles for supporting user profiles, c stands for personaliza-
tion of web part pages, and finally, w means SQL web event provider.

-R Uninstalls application services. This switch supports the same option as -A and
uninstalls the corresponding database tables for the application services.

-d Lets you optionally specify the name of the database into which you want to
install the application services. If you don’t specify this parameter, a database
named aspnetdb is created automatically (as is the case with the <default>
option for the database in the wizard interface).

The aspnet_regsql.exe tool contains a couple of additional switches for installing SQL
Server–based session state as well as for configuring the SQL cache dependency. For session
state, please refer to Chapter 6. You will learn more about caching and cache dependencies in
Chapter 11.

Database Scripts for ASP.NET Services
The aspnet_regsql.exe tool executes a couple of scripts for creating (or dropping) the
 membership- related database and database tables. These scripts ship with the .NET
Framework; you can find them in the .NET Framework directory, as shown in Figure 21-6.

Two types of scripts exist: InstallXXX and the corresponding UninstallXXX scripts. When
an InstallXXX script installs a set of database tables such as the set needed for the membership
API, the corresponding UninstallXXX script drops the same tables and databases. Table 21-3
describes some of the SQL scripts included with the .NET Framework.

CHAPTER 21 MEMBERSHIP 1001

 Figure 21-6. The SQL scripts for installing and uninstalling SQL databases

Table 21-3. Membership API Installation Scripts

Script Description
InstallCommon.sql Installs some common tables and stored procedures necessary for

both the membership and roles APIs. This includes tables for identify-
ing ASP.NET applications that use other ASP.NET features, such as the
membership API, role service, or personalization.

InstallMembership.sql Installs the database tables, stored procedures, and triggers used by
the membership API. This includes tables for users, additional user
properties, and stored procedures for accessing this information.

InstallRoles.sql Installs all database tables and stored procedures required for as-
sociating users with application roles. These roles will be used for
authorization, as you will learn in Chapter 23.

InstallPersonalization.sql Contains DDL for creating any table and stored procedure required
for creating personalized portal applications with web parts. You will
learn more about web part pages in Chapter 30.

InstallProfile.sql Creates all the necessary tables and stored procedures for supporting
ASP.NET user profiles.

InstallSqlState.sql Installs tables for persistent session state in the TEMP database of SQL
Server. That means every time the SQL Server service is shut down,
the session state gets lost.

InstallPersistSqlState.sql Installs tables for persistent session state in a separate ASPState data-
base. That means the state stays alive even if the SQL Server service
gets restarted.

If you do not want to use aspnet_regsql.exe or you cannot use aspnet_regsql.exe, you can
execute these scripts by either using osql.exe or using sqlcmd.exe. osql.exe is included with SQL
Server 2000 editions, and sqlcmd.exe is included with SQL Server 2005 editions for executing

CHAPTER 21 MEMBERSHIP1002

scripts from the command line. For example, to install the common database tables on a SQL
Server Express Edition, you can execute the following command:

Remember that you do not need to execute these scripts if you are using aspnet_regsql.
exe, as it executes these SQL scripts for you. We recommend using aspnet_regsql.exe when-
ever possible, and explain this way only for situations where you cannot use aspnet_regsql.
exe for some reason (whatever that reason might be—IT policy, SQL script customization,
or inclusion of the standard SQL scripts in your own SQL scripts you use for deploying your
application. But instead of including these SQL scripts in your own SQL deployment scripts,
we recommend including either custom code or batch files in your deployment packages for
calling aspnet_regsql.exe manually, as well).

The -S switch specifies the server and instance name for the target SQL Server. Usually you
will not use an instance name (which is specified after the \), but SQL Server Express Edition
will be installed as a named instance so that you can install more versions and instances of
SQL Server on the same machine. Remember that for SQL Server Express Edition, you have to
specify the instance name, which is SQLExpress by default. With the -E switch, you specify to
access SQL Server through Windows authentication, and finally through the -i switch you can
specify the input SQL script that should be executed. Figure 21-7 shows the result of executing
the previous command.

 Figure 21-7. Installing ASP.NET database tables on SQL Server Express

CHAPTER 21 MEMBERSHIP 1003

Don’t be confused by the error messages. Because the command was executed by the
administrator, the error messages appear because you cannot grant, revoke, or deny permis-
sions to the system administrator (sa, db owner, or system—the administrator owns all these
permissions).

File-Based SQL Server Store
SQL Server 2005 Express Edition supports a file- only database mode that allows you to
access SQL Server databases directly through their MDF files without creating or attach-
ing them in a SQL Server instance—as explained briefly earlier in this chapter. With this
feature it is possible to just copy the application’s database file with the application files
onto the target server and run the application. The SQL Server provider then uses a con-
nection string that accesses the database file directly. SQL Server automatically attaches
the database (temporarily) and allows you to access it directly through the file without any
additional configuration steps. The only prerequisite is that SQL Server 2005 Express Edition
is installed on the target machine. Also remember that file- based mode works only with the
Express Edition. The large editions do not support this mode (as it typically is not practicable
for highly scalable production environments).

These database files are located in the special App_Data subdirectory of the application.
When running ASP.NET with the default configuration, this file will be created automatically for
you. But what causes the file to be created for you? Well, the answer is simple: when a feature
that requires a specific type of functionality is used for the first time, the provider automati-
cally creates the database file with the necessary contents. Therefore, when you first run the
security wizard of the web- based administration tool WAT you saw previously, the database
will be created automatically when you create the first user. This functionality is provided
by the SqlMembershipProvider class. (The actual implementation is also included in a utility
class used by all SQL provider classes, such as the SqlRoleProvider.) Remember that we do not
recommend this mode for production environments, as it has some performance and concur-
rency drawbacks explained in the section “Creating the Data Store” earlier in this chapter.

Configuring Connection String and Membership Provider
With the default configuration and SQL Server 2005 Express Edition installed, you don’t have
to prepare the data store and configure a membership provider, because the ASP.NET runtime
uses the file- based SQL Server 2005 provider and automatically creates the database file for you.
When having no SQL Server 2005 Express Edition installed, you need to create the storage
manually, as outlined in the preceding section, and configure the provider of the membership
API as outlined in this section. Remember that a membership provider should be configured
at the root web.config file of your web application (meaning the web.config that is placed in
the root directory within your web application). That means the following configuration hap-
pens in the root web.config, and not in a web.config in a subdirectory of your website, as it
affects the whole web application!

But if you want to use your own SQL Server database, or even your custom membership
provider and store, you have to configure the provider as well as the connection string to the
membership store database appropriately. For this purpose, you have to touch the web.con-
fig file directly or edit the configuration through the IIS MMC snap- in if you are running your
application on IIS.

CHAPTER 21 MEMBERSHIP1004

In the case of using SQL Server storage (or other database- based storage), you have to con-
figure the connection string as your first step. You can do this through the <connectionStrings />
section of the web.config file. For example, if you want to use a local database called MyDatabase
where you have installed the database tables through the aspnet_regsql.exe tool as shown previ-
ously, you have to configure the connection string as follows (remember, the <connectionStrings />
section is located directly below the <configuration /> element):

After you have configured the connection string for your custom membership storage,
you must configure the membership provider for the application. For this purpose, you have
to add the <membership> section to your web.config file (if it’s not already there) below the
<system.web> section, as follows (again in your root web.config as outlined at the beginning of
this section—a rule of thumb is that provider configurations are always placed in the root web.
config, as they affect the whole web application):

CHAPTER 21 MEMBERSHIP 1005

Within the <membership> section, you can add multiple providers as child elements
of the <providers> section. In the previous code, you can see a valid configuration for the
included SqlMembershipProvider. It’s important not to forget about the defaultProvider attri-
bute on the <membership> element. This attribute indicates the membership provider that
your application will use. Configured providers are shown in the ASP.NET web configuration
when selecting the option Select a Different Provider for Each Feature in the provider configu-
ration. This enables you selecting a separate provider for each feature as shown in Figure 21-8.

 Figure 21-8. The configured provider selected in the WAT

 Table 21-4 describes the most important properties you can configure for the
SqlMembershipProvider.

CHAPTER 21 MEMBERSHIP1006

Table 21-4. The SqlMembershipProvider’s Properties

Property Description
name Specifies a name for the membership provider. You can choose any

name you want. You can use this name later for referencing the pro-
vider when programmatically accessing the list of configured member-
ship providers. Furthermore, the WAT will use this name to display the
provider.

applicationName String value of your choice that specifies the name of the application for
which the membership provider manages users and their settings. This
setting allows you to use one membership database for multiple ap-
plications. Users and roles are always associated with an application. If
you do not specify an application name, a root application name called
“/” will be used automatically. More details are outlined after the table.

description An optional description for the membership provider.

passwordFormat Gets or sets the format in which passwords will be stored in the
underlying credential store. Valid options are Clear for clear- text pass-
word storage, Encrypted for encrypting passwords in the data store
(uses the locally configured machine key for encryption), and Hashed
for hashing passwords stored in the underlying membership store.

minRequiredNonalphanumericCharacters Specifies the number of nonalphanumeric characters the password
needs to have. This is an important part for the validation of the
password and enables you to specify strength requirements for the
passwords used by your users.

minRequiredPasswordLength Allows you to specify the minimum length of passwords for users of
your application. This is also an important property for specifying
password strength properties.

passwordStrengthRegularExpression If the previously mentioned properties are not sufficient for specifying
password strength conditions, then you can use a regular expression
for specifying the format of valid passwords. With this option you are
completely flexible in terms of specifying password format criteria.

enablePasswordReset The membership API contains functionality for resetting a user’s
password and optionally sending an e-mail if an SMTP server is con-
figured for the application.

enablePasswordRetrieval When set to true, you can retrieve the password of a MembershipUser
object by calling its GetPassword method. Of course, this works only if
the password is not hashed.

maxInvalidPasswordAttempts Specifies the number of invalid validation attempts before the user gets
locked. The default value of this setting is 5. In many cases, you’ll likely
want to set this to a lower level depending on your security policy.

passwordAttemptWindow Here you can set the number of minutes in which a maximum number
of invalid password or pass word question- answer attempts are allowed
before the user is completely locked out from the application. In that
case, the user gets locked out, so the administrator must activate the ac-
count again. Again, the default value is ten minutes. Depending on your
security policies, you might want to lower or raise the value.

requiresQuestionAndAnswer Specifies whether the password question with an answer is required
for this application. This question can be used if the user has forgot-
ten his password. With the answer he gets the possibility of retrieving
an automatically generated, new password via e-mail.

requiresUniqueEmail Specifies whether e-mail addresses must be unique for every user in
the underlying membership store.

CHAPTER 21 MEMBERSHIP 1007

Now, after you have set up the data store and configured the membership provider, you
can use your configuration in your application, or for example, by creating users through the
WAT. There is just one last important thing you have to bear in mind: the effects of the applica-
tionName property of the membership configuration. You can use one membership provider
database for more than one application by leveraging this property. Every user, role, profile—
actually, any object in the membership database—is connected to an application entry. If you
don’t specify an applicationName property in the membership configuration, the API (and
therefore any administration tool such as WAT) associates objects to the root application with
the “/” name. If you specify the applicationName property in the membership provider con-
figuration, any object created by the membership API will be associated with an application
specified with the name. Validation of credentials through the Login control (as outlined in
the section “Using the Security Controls”) or through the membership API (as you will learn
in the section “Using the Membership Class”) works only against objects associated with the
application configured in the applicationName property. That means if you configure your
membership provider with the application name TestApp and you try to log in, the membership
API (and therefore any controls sitting on top of it) will validate user names and passwords only
against users associated with the application entry TestApp—even if users with the same name
and password exist in the database, associated with other applications. This can be a little pitfall
when switching from test configuration to production system and changing the application-
Name property but using the same membership database.

Creating and Authenticating Users
To create new users in your previously created membership provider store, launch the WAT
by selecting the Website ASP.NET Web Configuration menu from within Visual Studio. Now
switch to the Security tab, and select Create User, as shown in Figure 21-9.

After you have created a couple of users, you can connect to the database through Visual
Studio’s Server Explorer (which requires you to add a database connection in Server Explorer
to your membership database) or with the SQL Server Management Studio, and look at the
aspnet_Users and aspnet_Membership tables in the database, as shown in Figure 21-10.

Both the password and the answer for the password question are stored as a salted hash in
the database because you have selected the passwordFormat="Hashed" option for the provider
in the <membership> configuration section. You can see this when opening the aspnet_
Membership table where these values are stored as you can see in Figure 21-11.

CHAPTER 21 MEMBERSHIP1008

 Figure 21-9. Creating users with the WAT

 Figure 21-10. The aspnet_Users table in the membership database

CHAPTER 21 MEMBERSHIP 1009

 Figure 21-11. The aspnet_Membership table with the password- hash and salt values

After you have added users to the membership store, you can authenticate those users
with the membership API. For that purpose, you have to create a login page that queries the
user name and password from the user and then validates those credentials against the cre-
dential store, as follows:

You don’t need to know which provider is actually used by the application. If you want
to use a different membership provider, you just need to change the configuration so that the
membership API uses this different provider. Your application doesn’t know about any details
of the underlying provider. Furthermore, in the next section you will learn about the new secu-
rity controls. You will see that you don’t need to create the controls for the login page manually
anymore.

Using the Security Controls
Now, after you have prepared your provider and storage for user information, you can start
building the user interfaces for authenticating users, registering users, or giving users the
chance of resetting their passwords. All these purposes require building some ASP.NET pages
(such as login.aspx, as was necessary with forms authentication, introduced in the previous
chapter).

CHAPTER 21 MEMBERSHIP1010

ASP.NET ships with several controls you can use in your ASP.NET pages that simplify the
process of creating login pages, for example, as well as other related pages (for example, regis-
tering users, resetting passwords using password question and answer combinations, and so
on). In this section, you will learn more about these security controls included with ASP.NET.
These security controls rely on the underlying forms authentication and the membership API
infrastructure. Table 21-5 describes the security controls that ship with ASP.NET and sum-
marizes their typical usage scenarios. We’ve also included some hints where these controls are
typically used. However, these are just recommendations. You can use these controls on any
ASP.NET page in your web application.

Table 21-5. The New ASP.NET Security Controls

Control Primary Purpose
Login The Login control is a composite control that solves the most common task

for forms authentication–based applications—displaying a user name and
password text box with a login button. Furthermore, if events are caught
through custom event procedures, it automatically validates the user against
the default membership provider. This control is typically placed on a login.
aspx page used for forms authentication. However, you can place it on any
page where you want to allow users to sign in to your website.

LoginStatus The login status is a simple control that validates the authentication state of
the current session. If the user is not authenticated, it offers a login button
that redirects to the configured login page. Otherwise, it displays a sign- out
button for the possibility of logging off. This control encapsulates behavior
that should typically be available on all your pages. Therefore, placing it on
a master page is very useful. However, you can use it on any page where you
think displaying the login status with direct links to a login page or for sign-
ing out is useful for your users.

LoginView This is really a powerful control that allows you to display different sets of
controls for authenticated and unauthenticated users. Furthermore, it al-
lows you to display different controls for users who are in different roles, as
you will see in Chapter 23. This control is typically placed on content pages,
as it displays contents of your website depending on the user currently
working with a web page.

PasswordRecovery This allows the user to retrieve the password if the user has provided an
 e-mail address during registration. It requests the user name from the user
and then automatically displays a user interface that displays the password
question and requests the appropriate answer from the user. If the answer
is correct, it uses the membership API to send the password to the user.
Typically, you put this control on a separate page in your website, which
allows the user to reset the password. This page can be referred from the
login page, for example, as you will see later in this chapter.

ChangePassword This control is a composite control that requests the old password from the
user and lets the user enter a new password, including the password con-
firmation. Again, you usually put this on a separate ASP.NET page, which
allows the user to change his password.

CreateUserWizard Includes a complete wizard that guides the user (or an administrator) through
the process of creating a user. This control is typically placed on a separate
ASP.NET page in your website, which allows users to register themselves on
your website.

You can use these controls with any other control. For example, you can use the Login
control either on your main page or on a separate login page. Every control works in the same

CHAPTER 21 MEMBERSHIP 1011

way: if you don’t handle any custom events, all these controls work with the membership API
by default. As soon as you handle events provided by the controls, you are responsible for
completing the task. For example, the Login control supports an Authenticate event. If you
don’t handle this event, it uses the membership API automatically. But if you do handle this
event, you are responsible for validating user credentials on your own.

The Login Control
The Login control simplifies the creation of a login page for forms authentication in conjunc-
tion with the membership API. It provides you with a ready-to- use user interface that queries
the user name and password from the user and offers a Log In button for logging the user in.
Behind the scenes, it encapsulates functionality you learned about in the previous chapter:
validating user credentials against the membership API and encapsulating the basic forms
authentication functionality, such as redirecting back to the originally requested page in
a restricted area of your application after a successful login.

That means it encapsulates things such as Membership.ValidateUser() or
FormsAuthentication.RedirectFromLoginPage() for you, and you do not have to write this
code on your own. Figure 21-12 shows an example of the Login control in action.

 Figure 21-12. The Login control in action

Whenever the user hits the Log In button, the control automatically validates the user
name and password using the membership API function Membership.ValidateUser(), and
then calls FormsAuthenication.RedirectFromLoginPage() if the validation was successful. All
options on the UI of the Login control affect the input delivered by the control to these meth-
ods. For example, if you click the “Remember me next time” option, it passes the value true to
the createPersistentCookie parameter of the RedirectFromLoginPage() method. Therefore, the
FormsAuthenticationModule creates a persistent cookie, as you learned about in the previous
chapter.

Behind the scenes, the UI of the Login control is nothing more than an ASP.NET com-
posite control. It’s completely extensible in that it allows you to override any layout styles and

CHAPTER 21 MEMBERSHIP1012

properties, as well as handle events thrown by the control for overriding its default behavior. If
you leave the Login control as it is and you don’t handle any of its events, it automatically uses
the membership provider configured for your application. The simplest form of a Login con-
trol on your page is as follows:

You can use several properties for changing the appearance of the control. You can use
the different style settings supported by the Login control as follows:

You can also use CSS classes for customizing the Login control’s appearance. Every style
property supported by the Login control includes a CssClass property. As is the case for every
other ASP.NET control, this property allows you to set a CSS class name for your Login control
that was added to the website previously. Imagine you added the following CSS stylesheet with
the filename MyStyles.css to your project:

CHAPTER 21 MEMBERSHIP 1013

The content of the CSS file defines the style .MyLoginTextBoxStyle that you will use for the
text boxes displayed on your Login control. You can include this style file in your login page so
that you can use the style for the Login control as follows:

ANONYMOUS ACCESS TO STYLESHEETS USED BY YOUR LOGIN PAGE

If you try running the page and if the CSS file is placed in a directory where anonymous access is denied,
the styles will not be applied to the Login control because the CSS file is protected by the ASP.NET runtime
(because its file extension is mapped to ASP.NET). This is also the case if you deny access to anonymous
users in the root directory and put your CSS file there. Therefore, if you want to use CSS files with the Login
control (where the user is definitely the anonymous user), either you have to put the CSS file into a directory
that allows anonymous users access or you have to add the following configuration for the CSS file to your
web.config file:

In the preceding example, assume you’re restricting access to the overall application, which means
you have an <authorization> element in the root web.config that restricts access to the whole application.
That means you have to add this configuration to the root web.config file to make the CSS file accessible to

CHAPTER 21 MEMBERSHIP1014

the login page, which gets accessed anonymously. If you just have a restricted area in your web application
in a subfolder, and the root part of your web application is accessible to anonymous users as well (as shown
earlier in Figure 21-3), you do not need to add this configuration if you just put the CSS file in the root folder
of your application. If you put the CSS file in the restricted area of your web application and make it acces-
sible to the publicly accessible login page, you need to use the following configuration:

We prefer having publicly available resources in a separate folder and restricting access to any other
location of the web application, or the other way round. You will learn more about authorization and the
configuration steps for it in Chapter 23.

 Table 21-6 lists the styles supported by the Login control. Every style works in the same way.
You can set color and font properties directly, or you use the CssClass property for assigning
a CSS class.

Table 21-6. The Styles Supported by the Login Control

Style Description
CheckBoxStyle Defines the style properties for the Remember Me check box.

FailureTextStyle Defines the style for the text displayed if the login was not successful.

HyperLinkStyle The Login control allows you to define several types of hyperlinks, for
example, to a registration page. This style defines the appearance of these
hyperlinks.

InstructionTextStyle The Login control allows you to specify help text that is displayed directly
in the Login control. This style defines the appearance of this text.

LabelStyle Defines the style for the UserName and Password labels.

LoginButtonStyle Defines the style for the login button.

TextBoxStyle Defines the style for the User Name and Password text boxes.

TitleTextStyle Defines a style for the title text of the Login control.

ValidatorTextStyle Defines styles for validation controls that are used for validating the user
name and password.

The UI of the Login control is not just customizable through these styles—other, additional
properties are dedicated to specific content parts of the control, such as the Log In button,
which allows you to customize the UI as well. For example, you can select the text displayed
for the login button, and you have the choice of displaying a login link instead of a login but-
ton (which is the default). Furthermore, you can add several hyperlinks to your Login control,
such as a hyperlink to a help text page or a hyperlink to a registration page. Both pages must

CHAPTER 21 MEMBERSHIP 1015

be available for anonymous users, because the help should be provided to anonymous users
(remember, if someone sees the Login control, she potentially is an anonymous user). If you
want to include some additional links in your Login control, modify the previously displayed
control as follows:

This code displays two additional links—one for a help page and one for a registration
page—and adds some short, instructional text below the heading of the Login control. The
styles discussed previously are applied to these properties. Table 21-7 describes the most
important properties for customizing the Login control.

Table 21-7. The Relevant Customization Properties for the Login Control

Property Description
TitleText The text displayed as the heading of the control.

InstructionText You have already used this property in the previous code snip-
pet, which contains text that is displayed below the heading of the
control.

FailureText The text displayed by the Login control if the login attempt was not
successful.

UserNameLabelText The text displayed as a label in front of the user name text box.

PasswordLabelText The text displayed as a label in front of the password text box.

UserName Initial value filled into the user name text box.

UsernameRequiredErrorMessage Error message displayed if the user has not entered a user name.

PasswordRequiredErrorMessage Error message displayed if the user has not entered a password.

LoginButtonText The text displayed for the login button.

LoginButtonType The login button can be displayed as a link, button, or image. For
this purpose, you have to set this property appropriately. Supported
values are Link, Button, and Image.

LoginButtonImageUrl If you display the login button as an image, you have to provide
a URL to an image that is displayed for the button.

Continued

CHAPTER 21 MEMBERSHIP1016

Table 21-7. Continued

Property Description
DestinationPageUrl If the login attempt was successful, the Login control redirects the

user to this page. This property is empty by default. If empty, it uses
the forms authentication infrastructure for redirecting either to the
originally requested page or to the defautlUrl configured in web.
config for forms authentication.

DisplayRememberMe Enables you to show and hide the Remember Me check box. By de-
fault this property is set to true.

FailureAction Defines the action the control performs after a login attempt failed.
The two valid options are Refresh and RedirectToLoginPage. The first
one refreshes just the current page, and the second one redirects to
the configured login page. The second one is useful if you use the
control anywhere else instead of the login page.

RememberMeSet Defines the default value for the Remember Me check box. By default
this option is set to false, which means the check box is not checked
by default.

VisibleWhenLoggedIn If set to false, the control automatically hides itself if the user is al-
ready logged in. If set to true (default), the Login control is displayed
even if the user is already logged in.

CreateUserUrl Defines a hyperlink to a page in the website that allows you to create
(register!) a user. Therefore, this is typically used for enabling the
user to access a registration page. Typically this page displays the
CreateUserWizard control.

CreateUserText Defines the text displayed for the CreateUserUrl hyperlink.

CreateUserIconUrl Defines a URL to an image displayed together with the text for the
CreateUserUrl hyperlink.

HelpPageUrl URL for redirecting the user to a help page.

HelpPageText Text displayed for the hyperlink configured in the HelpPageUrl
property.

HelpPageIconUrl URL to an icon displayed together with the text for the HelpPageUrl
hyperlink.

PasswordRecoveryUrl URL for redirecting the user to a password recovery page. This page
is used if the user has forgotten the password. Typically this page
displays the PasswordRecovery control.

PasswordRecoveryText The text displayed for the hyperlink configured in
PasswordRecoveryUrl.

PasswordRecoveryIconUrl Icon displayed together with the text for the PasswordRecoveryUrl.

Templates and the Login Control
As you can see, the control is nearly completely customizable through these properties. But as
you probably have seen, you cannot define any validation expressions for validating the input.
Of course, you can do validation on the server side within the event procedures offered by the
Login control. However, generally, if you want to add any controls to the Login control, you
can’t do that through the properties introduced previously. For example, what if you have an
additional text box for strong authentication with a second password or user access key as on
some governmental pages?

CHAPTER 21 MEMBERSHIP 1017

Fortunately, the Login control supports templates just as other controls such as the GridView
control do. With templates, you can customize the contents of the Login control without any
limitations. You can add any controls you want to your Login control. You can use a custom
template for the Login control through the LayoutTemplate tag as follows:

CHAPTER 21 MEMBERSHIP1018

Now, one question arises when taking a look at the preceding code: when customizing
the template, you have to write so much UI code (or design it in a visual designer)—so why not
write a custom login page without using the Login control? This is a valid question. However, as
explained at the beginning of this section, the UI part is just one part of the Login control. Under
the hood, meaning whenever the user clicks the login button, for example, the Login control
contains all the code for automatically validating the user against the membership API storage
and redirecting the user back to the originally requested page through the forms authentication
infrastructure. So, you still save yourself from writing this code.

With the right controls and the correct ID values for these controls in place, you don’t need
to write any code for handling events. The code just works as usual, except that you define the
set of controls and the layout of these controls. Actually, the Login control requires at least two
text boxes with the IDs UserName and Password. If those two text boxes are missing (or don’t
have these ID values), the control throws an exception. All the other controls are optional, but
if you specify corresponding ID values (such as Login for the login button), the Login control
automatically handles their events and behaves as when you used the predefined layouts for
the control. Table 21-8 lists the special ID values, their required control types, and whether they
are required or optional.

Table 21-8. Special Controls for the Login Template

Control ID Control Type Required?
UserName System.Web.UI.WebControls.Textbox Yes

Password System.Web.UI.WebControls.Textbox Yes

RememberMe System.Web.UI.WebControls.CheckBox No

FailureText System.Web.UI.WebControls.Literal No

Login Any control that supports event bubbling and a CommandName No

The control with the ID Login can be any control that supports event bubbling (as you will
learn in Chapter 27 in detail) and a CommandName property. It is important that you set the
CommandName property to Login, because otherwise the Login control won’t recognize it in
the event- handling process. If you don’t add a control with the CommandName set to Login,
you have to handle the event of the control yourself and write the appropriate code for validat-
ing the user name and password and for redirecting to the originally requested page. You can
also add controls with other IDs that are not related to the Login control at all. The previous
code includes RequiredFieldValidator and RegularExpressionValidator controls for validating
the UserName and Password fields appropriately.

CHAPTER 21 MEMBERSHIP 1019

When using the LayoutTemplate, many of the properties originally offered by the Login
control are not available anymore. Only the following properties are available when using the
template:

All the style properties and several properties for configuring text contents of default con-
trols are not available in Visual Studio’s property editor anymore, because you can add them
manually as separate controls or static text to the template for the Login control. If you still
add them to the Login control when using the template mode, they simply get ignored because
the template overrides the default UI of the Login control, which leverages these properties.

Programming the Login Control
The Login control supports several events and properties that you can use to customize the
behavior of the control. This gives you complete control over customizing the Login control
(used along with the other customization possibilities such as templates or custom style prop-
erties). The Login control supports the events listed in Table 21-9.

Table 21-9. The Events of the Login Control

Event Description
LoggingIn Raised before the user gets authenticated by the control.

LoggedIn Raised after the user has been authenticated by the control.

LoginError Raised when the login of the user failed for some reason (such as a wrong pass-
word or user name).

Authenticate Raised to authenticate the user. If you handle this event, you have to authenticate
the user on your own, and the Login control completely relies on your authenti-
cation code.

You can handle the first three events (in the previous table) to perform some actions
before the user gets authenticated, after the user has been authenticated, and if an error has
happened during the authentication process. For example, you can use the LoginError event
to automatically redirect the user to the password recovery page after a specific number of
attempts, as follows:

CHAPTER 21 MEMBERSHIP1020

The Login control fires the events in the order shown in Figure 21-13.
As mentioned previously, if you handle the Authenticate event, you have to add your own

code for validating the user name and password. The Authenticate event receives an instance
of AuthenticateEventArgs as a parameter. This event argument class has a property called
Authenticated. If you set this property to true, the Login control assumes that authentication
was successful and raises the LoggedIn event. If set to false, it displays the FailureText and
raises the LoginError event.

CHAPTER 21 MEMBERSHIP 1021

 Figure 21-13. The order of the Login control events

As you can see, you have direct access to the entered values through the UserName and
Password properties that contain the text entered in the corresponding text boxes. If you are
using template controls and require the value of another control in addition to the controls
with the IDs UserName and Password, you can use the control’s FindControl method to get
the control. This method requires the ID of the control and returns an instance of System.
Web.UI.Control. You then just cast the control to the appropriate type and read the values you
require for your custom credential validation method. The following Login control uses a tem-
plate with an additional control that you will use later in the Authenticate event in your code:

CHAPTER 21 MEMBERSHIP1022

In the previous code example, the user’s key is an additional value that must be provided
by the user for successfully logging in. To include this value into your credential validation
process, you have to modify the contents of the Authenticate event as follows:

Of course, in this case you cannot use any default membership provider. You have to
implement your own validation function that accepts these additional parameters. But the
Login control forces you not to use membership at all. The validation function can be any type
of function you want. You just need to set the e.Authenticated property appropriately. Then
you can use the Login control for whatever login mechanism you want.

The LoginStatus Control
The LoginStatus control is a simple control that displays either a login link if the user is
not authenticated or a logout link if the user is authenticated. The login link automatically
redirects to the configured login page, and the logout link automatically calls the method
FormsAuthentication.SignOut for logging off the user. The control is fairly simple, and
therefore customization is simple as well.

The LoginStatus control offers a couple of properties for customizing the text shown
for the links and the URLs to redirect to when the user clicks the link. You can find the most
important properties in Table 21-10.

CHAPTER 21 MEMBERSHIP 1023

Table 21-10. Properties for Customizing the LoginStatus Control

Property Description
LoginText The text displayed if the user is not signed in.

LoginImageUrl A URL for an image displayed as an icon for the login link.

LogoutText The text displayed if the user is authenticated.

LogoutImageUrl A URL for an image displayed as an icon for the logout link.

LogoutAction Configures the action the control performs if the user clicks the logout link that
is displayed when the user is authenticated. Valid options are Refresh, Redirect,
and RedirectToLoginPage. The first option just refreshes the current page, the
second option redirects to the page configured in the LogoutPageUrl, and the
last option redirects to the login page.

LogoutPageUrl A page to redirect to if the user clicks the logout link and the LogoutAction is
set to Redirect.

The LoginView Control
This control is fairly simple but extremely powerful. It allows you to display a different set of
controls for anonymous and authenticated users. Further, it even allows you to display dif-
ferent content based on which roles the currently logged- in user is assigned to. You will learn
more about roles and their connection to the LoginView control in Chapter 23. For now you
will learn how to display different content for anonymous users and for authenticated users.

The LoginView control is a template control with different types of templates—one for
anonymous users, one for authenticated users, and one for supporting role- based templates.
Within those templates, you just add the controls to display for the corresponding situation
as follows (role- based templates are encapsulated into RoleGroup controls, but you will learn
more about them in Chapter 23):

CHAPTER 21 MEMBERSHIP1024

The previous control displays some simple text for anonymous users and some text in
a text box together with a button for logged- in users, as shown in Figure 21-14. Furthermore,
the control supports two events you can handle for initializing content controls of different
templates appropriately before they are displayed:

template

one template to another

 Figure 21-14. The LoginView control for anonymous and authenticated users

The PasswordRecovery Control
The PasswordRecovery control is useful if a user has forgotten his password. This queries
the user name from the user and afterward automatically displays the password question
stored for the user in the credential store. If the user enters the correct answer for the password
question, the password is mailed automatically to the e-mail address configured for the user.
 Figure 21-15 shows the PasswordRecovery control in action.

CHAPTER 21 MEMBERSHIP 1025

 Figure 21-15. The PasswordRecovery control in action

The control includes three customizable view modes. First, the user has to enter his user
name. When the user clicks the submit button, the control queries the password question
through the membership API from the underlying credential store. Second, this question is
then displayed, and the user is requested to enter the correct answer. When the user enters
the correct answer, an automatically generated password or the stored password is sent to the
user’s e-mail address. This e-mail address was specified during the registration process (or
when the user was created through the WAT). If sent successfully, the control displays a con-
firmation view. Any mail configuration takes place through the control’s properties, as follows.
Of course, the password can be sent to the user only if it is not hashed. Therefore, the member-
ship provider must be configured in a way that it stores the passwords either encrypted or in
 clear- text format. If the membership provider stores the password in a hashed form, it auto-
matically generates a new, random password and sends the new password in the e-mail.

The control requires an e-mail SMTP server for sending the e-mail message. With .NET
Framework 2.0, the mail infrastructure has changed a little bit. As the .NET Framework 3.5 did
not add anything to the mail infrastructure, these changes are still valid (remember, .NET 3.5
builds on top of .NET 2.0 and .NET 3.0). System.Web.Mail is deprecated and exists for backward
compatibility only. It has been replaced by a new SmtpClient class in the System.Net.Mail
namespace, which you can use in any type of application. You can configure this class in the

CHAPTER 21 MEMBERSHIP1026

<system.net> configuration section of your application’s configuration file. Therefore, you
have to configure the SMTP mail server in your web.config file, as follows:

The MailDefinition subelement of the PasswordRecovery control allows you to set basic
properties, as you can see in the first code snippet of this section. Also, through the BodyFileName
of the MailDefinition subelement, you can specify the name of a file containing the e-mail text.
This file has to be in the same directory as the page where the control is hosted. If the control
is hosted within another user control, the file has to be in the directory of the user control’s host
page. The PasswordRecovery control supports different style properties for specifying format-
ting and layout options for the different parts of the control (just as the Login control does). For
a complete list of the supported properties, refer to the MSDN documentation; these properties
are similar to the properties introduced with the Login control. The control raises several different
events during the password recovery process. You can handle these events if you want to custom-
ize the actions completed by the control. Table 21-11 lists these events.

Table 21-11. Events of the PasswordRecovery Control

Event Description
VerifyingUser Raised before the control starts validating the user name entered.

Validating the user name means looking for the user in the membership
store and retrieving the password question information.

UserLookupError If the user name entered in the user name text box doesn’t exist in
the membership store, this event is raised before the failure text is
displayed.

VerifyingAnswer When the user clicks the submit button in the second step, the answer
for the question is compared to the one stored in the membership store.
This event is raised before this action takes place.

AnswerLookupError If the answer provided by the user is not correct, this event is raised by
the control.

SendingMail This event is raised by the control after the answer submitted by the
user has been identified as the correct answer and before the e-mail is
sent through the mail server.

SendMailError If the e-mail cannot be sent for some reason (for example, the mail
server is not available), this event is raised by the control.

You can use these events for preparing information before that information gets processed
by the control. For example, if you want to convert all letters in the user name to lowercase
letters before the control compares contents with the data stored in the membership store,
you can do this in the VerifyingUser event. Similarly, you can use the VerifyingAnswer for

CHAPTER 21 MEMBERSHIP 1027

preprocessing information before it gets processed by the control. Both events get event argu-
ments of type LoginCancelEventArgs, which contains a Cancel property. If you set this property
to true, you can cancel the whole processing step.

When handling the SendingMail event, you have the chance to modify the contents
of the e-mail message before the control actually sends the e-mail to the user. The passed
MailMessageEventArgs contains a Message property that represents the actual e-mail mes-
sage. By modifying the Message’s properties, such as the Attachments collection, you can
add attachments, configure a CC address, or do anything else related to the e-mail message.

PasswordRecovery Templates
Like the Login control, the PasswordRecovery control can be customized completely if cus-
tomization through the previously mentioned properties and styles is not sufficient for some
reason. The control supports templates for every view:

password recovery process when the user is required to enter the user name.

QuestionTemplate.

for the confirmation, which are shown after the password has been sent successfully to
the user.

Every template has certain required controls. For example, the UserNameTemplate
requires a text box for entering the user name. The QuestionTemplate requires a text box for
entering the question, and the SuccessTemplate requires a Literal control for displaying the
final confirmation message. A template PasswordRecovery control might look like this:

CHAPTER 21 MEMBERSHIP1028

Again, if you use controls with the appropriate ID values and use the appropriate
CommandName values for buttons, you don’t have to write any code for the control to
work, as in the previous examples where you didn’t use templates. In the previous code,
these special controls are in bold. Some of these controls are required for the templates,
and others are optional. Table 21-12 lists the controls for PasswordRecovery templates.

Table 21-12. Special Controls for PasswordRecovery Templates

Additional Template ID Control Type Required? Comments
UserNameTemplate UserName System.Web.

UI.WebControls.
Yes TextBox

UserNameTemplate SubmitButton All controls
that support
 Command- event
bubbling.

No Name must be set to
Submit.

UserNameTemplate FailureText System.Web.
UI.WebControls.

No Literal

QuestionTemplate UserName System.Web.
UI.WebControls.

No Literal

QuestionTemplate Question System.Web.
UI.WebControls.

No Literal

QuestionTemplate Answer System.Web.
UI.WebControls.

Yes TextBox

QuestionTemplate SubmitButton All controls
that support
 Command- event
bubbling.

No Name must be set to
Submit.

QuestionTemplate FailureText System.Web.
UI.WebControls.

No Literal

CHAPTER 21 MEMBERSHIP 1029

Again, the submit button can be any control that supports event bubbling and
a CommandName property. Typically you can use the controls Button, ImageButton, or Link-
Button for this purpose. The CommandName must be set to Submit; otherwise, the command
is not recognized by the control (the ID is not evaluated and can therefore be set to any value).
The SuccessTemplate doesn’t require any type of control with any special IDs. Therefore, you
can add any control you want there; it’s just for displaying the confirmation. In the previous
example, it includes a Literal control that should display the e-mail address to which the pass-
word has been sent. You can set this Literal control through the SendingMail event procedure.
Again, you can use the FindControl method for finding the control (which is actually a child
control of the PasswordRecovery template control) in the appropriate template, as follows:

Because the PasswordRecovery control includes more than one template, you cannot call
the FindControl method directly on the PasswordRecovery control instance. You have to select
the appropriate template container (UserNameTemplateContainer, QuestionTemplateContainer,
or SuccessTemplateContainer). Afterward, you can work with the control as usual. In the previous
example, you just set the text of the label to the first e-mail recipient. Usually for a password recov-
ery, the list has only one mail recipient.

The ChangePassword Control
You can use this control as a standard control for allowing the user to change her password. The
control simply queries the user name as well as the old password from the user. Then it requires
the user to enter the new password and confirm the new password. If the user is already logged
on, the control automatically hides the text field for the user name and uses the name of the
authenticated user. You can use the control on a secured page as follows:

Again, the control includes a MailDefinition child element with the same settings as the
PasswordRecovery control. This is because after the password has been changed successfully,
the control can automatically send an e-mail to the user’s e-mail address if a mail server is
configured for the web application. As for all the other controls, this control is customizable
through both properties and styles and a template- based approach. But this time two tem-
plates are required when customizing the control:

CHAPTER 21 MEMBERSHIP1030

password as well as the new password, including the password confirmation field.

-
pleted successfully or not.

The ChangePasswordTemplate requires you to add some special controls with special IDs
and CommandName property values. You can find these control ID values and CommandName
values in bold in the following code snippet:

The text box controls of the ChangePasswordTemplate are all required. The other controls
are optional. If you select the ID properties and the CommandName properties for the buttons
appropriately, you don’t have to write any additional code.

The CreateUserWizard Control
The CreateUserWizard control is the most powerful control of the login controls. It enables
you to create registration pages within a couple of minutes. This control is a wizard control
with two default steps: one for querying general user information and one for displaying a con-
firmation message. As the CreateUserWizard inherits from the base Wizard control, you can
add as many wizard steps as you want. But when you just add a CreateUserWizard control to
your page as follows, the result is really amazing, as shown in Figure 21-16.

CHAPTER 21 MEMBERSHIP 1031

 Figure 21-16. A simple CreateUserWizard control

The default appearance of the control is, again, customizable through properties and
styles. The control offers lots of styles, but the meaning of the styles is similar to the styles
covered for the previous controls. In fact, this control includes the most complete list of styles,
as it includes most of the fields presented in the previous controls as well. When you use the
CreateUserWizard control as shown previously, you don’t need to perform any special config-
uration. It automatically uses the configured membership provider for creating the user, and
it includes two steps: the default CreateUserWizardStep that creates controls for gathering the
necessary information and the CompleteWizardStep for displaying a confirmation message.

CHAPTER 21 MEMBERSHIP1032

Both steps are customizable through styles and properties or through templates. Although you
can customize these two steps, you cannot remove them. If you use templates, you are respon-
sible for creating the necessary controls, as follows:

Because the control is a wizard control, the first step doesn’t require any buttons because
a Next button is automatically displayed by the hosting wizard control. Depending on the con-
figuration of the membership provider, some of the controls in the first step are required, and
others are not, as listed in Table 21-13.

CHAPTER 21 MEMBERSHIP 1033

Table 21-13. Required Controls and Optional Controls

Type Required? Comments
UserName System.Web.UI.WebControls.

TextBox
Yes Always required

Password System.Web.UI.WebControls.
TextBox

Yes Always required

ConfirmPassword System.Web.UI.WebControls.
TextBox

Yes Always required

Email System.Web.UI.WebControls.
TextBox

No Required only if the
RequireEmail property of
the CreateUserWizard con-
trol is set to true

Question System.Web.UI.WebControls.
TextBox

No Required only if the
underlying membership pro-
vider requires a password
question

Answer System.Web.UI.WebControls.
TextBox

No Required only if the
underlying membership pro-
vider requires a password
question

ContinueButton Any control that supports
bubbling

No Not required at all, but if
present, you need to set
the CommandName to
Continue

As soon as you start creating additional wizard steps, you will need to handle events and
perform some actions within the event procedures. For example, if you collect additional
information from the user with the wizard, you will have to store this information somewhere
and therefore will need to execute some SQL statements against your database (assuming you
are storing the information in a SQL Server database, for example). Table 21-14 lists the events
specific to the CreateUserWizard control. The control also inherits all the events you already
know from the Wizard control.

Table 21-14. The CreateUserWizard Events

Event Description
ContinueButtonClick Raised when the user clicks the Continue button in the last wizard step.

CreatingUser Raised by the wizard before it creates the new user through the mem-
bership API.

CreatedUser After the user has been created successfully, the control raises this
event.

CreateUserError If the creation of the user was not successful, this event is raised.

SendingMail The control can send an e-mail to the created user if a mail server is
configured. This event is raised by the control before the e-mail is sent
so that you can modify the contents of the mail message.

SendMailError If the control was unable to send the message—for example, because
the mail server was unavailable—it raises this event.

CHAPTER 21 MEMBERSHIP1034

Now you can just add a wizard step for querying additional user information, such as the
first name and the last name, and automatically save this information to a custom database
table. A valid point might be storing the information in the profile. But when running through
the wizard, the user is not authenticated yet, so you cannot store the information into the pro-
file, as this is available for authenticated users only. Therefore, you either have to store it in
a custom database table or include a way for the user to edit the profile after the registration
process.

Furthermore, the CreatedUser event is raised immediately after the CreateUserWizardStep
has been completed successfully. Therefore, if you want to save additional data within this
event, you have to collect this information in previous steps. For this purpose, it’s sufficient to
place other wizard steps prior to the <asp:CreateUserWizardStep> tag. In any other case you
have to save the information in one of the other events (for example, the FinishButtonClick
event). But because you cannot make sure that the user really runs through the whole wizard
and clicks the Finish button, it makes sense to collect all the required information prior to the
CreateUserWizardStep and then save any additional information through the CreatedUser
event.

With the previous wizard step alignment, you now can store additional information in
your data store when the CreatedUser event is raised by the control, as follows:

CHAPTER 21 MEMBERSHIP 1035

In the CreatedUser event, the code just looks for the wizard step with the ID set to NameStep.
Then it uses the FindControl method several times for getting the controls with the actual content.
As soon as you have retrieved the controls where the user entered his first name, last name, and
age, you can access their properties and perform any action you want with them.

In summary, the CreateUserWizard control is a powerful control based on top of the mem-
bership API and is customizable, just as the other login controls that ship with ASP.NET. With
template controls, you have complete flexibility and control over the appearance of the login
controls, and the controls still perform lots of work—especially interaction with membership—
for you. And if you still want to perform actions yourself, you can handle several events of the
controls.

Configuring Membership in IIS 7.0
As mentioned in the previous chapters, IIS 7.0 ships with much better ASP.NET integration in
terms of configuration and extensibility. That means the new management console of IIS 7.0
ships with a full set of administration tools for configuring the ASP.NET membership API and
providers. Furthermore, as the membership API is used in conjunction with ASP.NET forms
authentication, you also can use the membership API with web applications not developed
with ASP.NET, such as classic ASP or PHP applications.

CHAPTER 21 MEMBERSHIP1036

Configuring Providers and Users
The first step for using the membership API after configuring forms authentication is the
configuration of a membership provider. For that purpose, the IIS 7.0 management console
offers the new “Providers” feature configuration in the .NET category section, as outlined in
 Figure 21-17.

As you can see, this applet allows you to select different features through the combo box
at the top of the screen. The features you can select in this combo box map to appropriate pro-
viders in ASP.NET. You can configure users, roles, and profiles this way directly from within
the IIS management console (roles and authorization are covered in Chapter 23 in detail, and
profiles are covered in Chapter 24 in detail). For example, the .NET Users feature shown in
 Figure 21-17 that’s selected in the combo box maps to the membership API provider that is
responsible for managing users of a web application. Just click the Add link in the task pane on
the right border of the management console to add a new provider. This opens a dialog that
lets you select the type of the provider supported by both the runtime and your application if
you have custom provider classes deployed with it (you will read more on custom membership
provider development in Chapter 26). Figure 21-18 shows the dialog for configuring a new pro-
vider for your application.

 Figure 21-17. The IIS 7.0 .NET providers feature configuration.

CHAPTER 21 MEMBERSHIP 1037

 Figure 21-18. Adding a new provider to your application

This dialog allows you to configure the most common properties, including the applica-
tionName property, which affects the association of objects in the membership database to
a dedicated application if you share a database across multiple applications. After you have
configured your provider successfully for your feature (such as .NET Users in Figures 21- 17
and 21- 18), you can work with the other administration features of the management console.
For example, you can add and delete users directly from within the IIS management console
using the .NET Users configuration feature, as shown in Figure 21-19. Within this configura-
tion, the IIS 7.0 management console uses the membership API for retrieving and displaying
all the users available, creating new users, modifying users, resetting a user’s password, and
deleting users.

CHAPTER 21 MEMBERSHIP1038

 Figure 21-19. Managing users directly from within IIS 7.0

Using the Membership API with Other Applications
As outlined in Chapter 20, it is possible to use forms authentication with any web application
configured in IIS 7.0 when running IIS in ASP.NET integrated mode. That means you can use
the membership API with any web application as well. You do so by configuring forms authen-
tication for your web application (such as classic ASP or PHP), as explained in Chapter 20, and
configuring membership providers for .NET users as outlined in the previous section of this
chapter. Figure 21-20 shows the classic ASP page introduced in the section “IIS 7.0 and Forms
Authentication” in Chapter 20, together with an ASP.NET login page hosting the Login control.

CHAPTER 21 MEMBERSHIP 1039

 Figure 21-20. An ASP.NET login page hosting the Login control with a classic ASP page

USING BASIC AUTHENTICATION WITH MEMBERSHIP API

The extensibility model of IIS 7.0 goes one step further and allows you to use the ASP.NET membership
API and providers even for other types of authentication methods, such as HTTP Basic authentication. This
is only possible when running IIS 7.0 in ASP.NET integrated mode. That’s because when running IIS in
ASP.NET integrated mode, native HTTP modules and managed HTTP modules are executed in the same
 request- processing pipeline. This allows you to easily replace standard functionality implemented as an
HTTP module with your own implementations.

For example, this allows you to create a custom module that implements the HTTP Basic authentica-
tion scheme and validates user accounts against your custom database using the membership API. You can
use this module to replace the existing Basic authentication module. You need to know how Basic authen-
tication works in detail to implement such a module. Unfortunately, you cannot extend the existing modules
by using a .NET- based language directly, as most of these modules are native implementations (not even
 COM- based).

In the IIS 7.0 online community at , you can find articles demonstrating how to
implement a Basic authentication module and how to plug it into IIS 7.0 to replace the default Basic authen-
tication module. This implementation allows you to use other accounts than Windows accounts (which are
the default) in conjunction with Basic authentication.

Now, you just configure the membership provider through the IIS management console
as outlined in the previous section and that’s it—membership is used together with forms
authentication and a classic ASP page. The web.config looks as follows after completing the
configuration:

CHAPTER 21 MEMBERSHIP1040

You can integrate the membership API this way into any other web application configured
on IIS 7.0 as well. That allows a unification of your authentication infrastructure across all web
applications if you want.

Using the Membership Class
In the following sections of this chapter, you will learn how you can use the underlying
membership programming interface that is used by all the controls and the whole member-
ship API infrastructure you just used. You will see that the programming interface is simple.
It consists of a class called Membership with various properties and methods, and a class
called MembershipUser that encapsulates the properties for a single user. The methods of
the Membership class perform fundamental operations:

CHAPTER 21 MEMBERSHIP 1041

Many methods of the Membership class accept an instance of MembershipUser as
a parameter or return one or even a collection of MembershipUser instances. For example, by
retrieving a user through the Membership.GetUser method, setting properties on this instance,
and then passing it to the UpdateUser method of the Membership class, you can simply update
user properties. The Membership class and the MembershipUser class both provide the neces-
sary abstraction layer between the actual provider and your application. Everything you do with
the Membership class depends on your provider. This means if you exchange the underlying mem-
bership provider, this will not affect your application if the implementation of the membership
provider is complete and supports all features propagated by the MembershipProvider base class.

All classes used for the membership API are defined in the System.Web.Security namespace.
The Membership class just contains lots of static methods and properties. We will now walk you
through the different types of tasks you can perform with the Membership class and related
classes such as the MembershipUser.

Retrieving Users from the Store
The first task you will do is retrieve a single user and a list of users through the Membership class
from the membership store. For this purpose, you just create a simple page with a GridView
control for binding the users to the grid, as follows:

CHAPTER 21 MEMBERSHIP1042

As you can see, the GridView defines the UserName field as DataKeyName. This enables
you to access the UserName value of the currently selected user directly through the grid’s
SelectedValue property. As most of the methods require the user name for retrieving more
details, this is definitely useful. With this page in place, you can now add the following code to
the Page_Load event procedure for loading the users from the membership store and binding
them to the grid:

 Figure 21-21 shows the application in action.

 Figure 21-21. The custom user management application in action

As you can see, the Membership class includes a GetAllUsers method, which returns an
instance of type MembershipUserCollection. You can use this collection just like any other
collection. Every entry contains all the properties of a single user. Therefore, if you want to
display the details of a selected user, you just need to add a couple of controls for displaying
the contents of the selected user in the previously created page, as follows:

CHAPTER 21 MEMBERSHIP 1043

You can then handle the SelectedIndexChanged event of the previously added GridView
control for filling these fields with the appropriate values, as follows:

CHAPTER 21 MEMBERSHIP1044

As you can see, the MembershipCollection object requires the user name for accessing
users directly. Methods from the Membership class such as GetUser require the user name
as well. Therefore, you used the UserName field as content for the DataKeyNames property
in the GridView previously. With an instance of the MembershipUser in your hands, you can
access the properties of the user as usual.

Updating Users in the Store
Updating a user in the membership store is nearly as easy as retrieving the user from the store.
As soon as you have an instance of MembershipUser in your hands, you can update properties
such as the e-mail and comments as usual. Then you just call the UpdateUser method of the
Membership class. You can do that by extending the previous code by adding a button to your
page and inserting the following code in the button’s Click event- handling routine:

The UpdateUser method just accepts the modified MembershipUser you want to update.
Before the method is called, you have to update the properties on your instance. This has just
one exception: the IsLockedOut property cannot be set. This property gets automatically set
if the user has too many failed login attempts. If you want to unlock a user, you have to call
the MembershipUser’s UnlockUser method separately. Similar rules apply to the password.
You cannot change the password directly by setting some properties on the MembershipUser.
Furthermore, the MembershipUser class has no property for directly accessing the password
at all. For this purpose, the Membership class itself supports a GetPassword method and
a ChangePassword method that requires you to pass in the old and the new password. Retrieving
the password through the GetPassword method is possible, but only if the password is not
hashed in the underlying store. Therefore, GetPassword works only if the membership pro-
vider is configured to store the password either in clear text or encrypted in the underlying
membership store.

Creating and Deleting Users
Creating users is as simple as using the rest of the membership API. You can create users by
just calling the CreateUser method of the Membership class. Therefore, if you want to add the
feature of creating users to your website, you can add a new page containing the necessary text

CHAPTER 21 MEMBERSHIP 1045

boxes for entering the required information, then add a button, and finally handle the Click
event of this button with the following code:

The CreateUser method exists with several overloads. The easiest overload just accepts
a user name and a password, while the more complex versions require a password question
and answer as well. The CreateUser() method returns a new instance of MembershipUser
representing the created user, while the MembershipCreateStatus object returns additional
information about the creation status of the user. As the CreateUser() method already has
a MembershipUser as a return value, the method returns the status as an output parameter.
Depending on the provider’s configuration, your call to simpler versions of CreateUser will
succeed or fail. For example, the default membership provider requires you to include a pass-
word question and answer; therefore, if you don’t provide them, a call to CreateUser will result
in an exception.

Deleting users is as simple as creating users. The Membership class offers a DeleteUser()
method that requires you to pass the user name as a parameter. It deletes the user as well as all
related information, if you want, from the underlying membership store.

Validating Users
Last but not least, the Membership class provides a method for validating a membership user. If
a user has entered his user name and password in a login mask, you can use the ValidateUser()
method for programmatically validating the information entered by the user, as follows:

CHAPTER 21 MEMBERSHIP1046

Using Membership in Windows Forms
Although the membership API was originally built for ASP.NET and web applications, you can
also use it for Windows Forms–based applications. Indeed, the Microsoft patterns & practices
group is doing that in the latest version of the Microsoft Enterprise Library, version 3.x, for the
.NET Framework in the authentication and authorization building block as well.

All you need to do to use membership in your Windows Forms applications is follow these
steps:

 1. Add a reference to System.Web.dll.

 2. Create a database using aspnet_regsql.exe.

 3. Add an app.config application configuration file.

 4. Add a connection string to your app.config file that points to the membership
database.

 5. Add a <system.web> configuration section to your app.config file.

 6. Configure the <membership> section within <system.web> in your app.config file.

 7. Run the application, and access the database through the membership API classes.

With this infrastructure in place, you can implement security the same way in Windows
Forms as you do in your web applications. In addition, this opens up possibilities for creating
common components that you can use for both ASP.NET and Windows Forms applications.
Suppose you have a Windows Forms application as demonstrated in Figure 21-22. It allows
you to add users to your database, and it displays users in the database in a simple ListView
control.

 Figure 21-22. Windows Forms application using membership

This application needs to have an application configuration file similar to the following:

CHAPTER 21 MEMBERSHIP 1047

With this configuration in place, add a reference to System.Web.dll in your project, and
import the System.Web and System.Web.Security namespaces (although this looks a little bit
strange in a Windows Forms application). The following code then works without any problems:

This is a nice way to create Windows Forms applications using the ready-to- use
 user- management framework provided by the membership and roles APIs. As mentioned,
Microsoft is doing the same with its latest version of the Microsoft Enterprise Library for
.NET from the patterns & practices group (see

).

CHAPTER 21 MEMBERSHIP1048

Summary
In this chapter, you learned about the membership API, which provides you with a full- fledged
infrastructure for managing users of your application. You can either use the WAT, the new
security controls, or the membership API for accessing these base services. The membership
API is provider- based. In other words, you can exchange the underlying store by changing
the underlying provider without touching your application. In this chapter you used only SQL
Server as a provider.

Furthermore, you learned how you can configure membership providers and users directly
from within the IIS 7.0 management console, due to its tight integration with ASP.NET. You
learned how to use the membership API even with non- ASP.NET applications, such as classic ASP
applications or PHP applications. It is also possible to replace existing authentication modules
of IIS 7.0 to integrate the membership API with them. In Chapter 26 you will learn the necessary
details for creating and configuring a custom membership provider. In the next chapter, you’ll
look at a different approach to validating user identity—Windows authentication.

1049

C H A P T E R 2 2

Windows Authentication

Forms authentication is a great approach if you want to roll your own authentication system
using a back- end database and a custom login page. But what if you are creating a web appli-
cation for a smaller set of known users who already have Windows user accounts? In these
situations, it makes sense to use an authentication system that can leverage the existing user
and group membership information.

The solution is Windows authentication, which matches web users to Windows user accounts
that are defined on the local computer or another domain on the network. In this chapter, you’ll
learn how to use Windows authentication in your web applications. You’ll also learn how to
apply impersonation to temporarily assume another identity.

Introducing Windows Authentication
Unlike forms authentication, Windows authentication isn’t built into ASP.NET. Instead, Win-
dows authentication hands over responsibility of authentication to IIS. IIS asks the browser to
authenticate itself by providing credentials that map to a Windows user account. If the user is
successfully authenticated, IIS allows the web- page request and passes the user and role infor-
mation onto ASP.NET so that your code can act on it in much the same way that it works with
identity information in a forms authentication scenario. This is true for all different versions of
IIS currently available: IIS 5.x, IIS 6.0, and IIS 7.0. The difference between the three versions lies
in the request handling internals, as you learned in Chapter 18. Although Windows authentica-
tion is an integral part of IIS 5.x and IIS 6.0, which you cannot influence at all (except enabling
and disabling it as an option), in IIS 7.0 it is implemented as a general- purpose native HTTP
module, as discussed in Chapter 18. This means you can reuse this module across a variety of
types of applications implemented on different platforms and hosted in IIS.

 Figure 22-1 shows the end-to- end flow.

CHAPTER 22 WINDOWS AUTHENTICATION1050

 Figure 22-1. The Windows authentication process

Why Use Windows Authentication?
You would want to use Windows authentication for four main reasons:

The first reason is quite simple—using Windows authentication allows IIS and the client
browser to take care of the authentication process so you don’t need to create a login page,
check a database, or write any custom code. Similarly, Windows already supports basic user
account features such as password expiry, account lockout, and group membership.

CHAPTER 22 WINDOWS AUTHENTICATION 1051

The second, most important reason for using Windows authentication is that it allows you
to leverage existing Windows accounts. Typically, you use Windows authentication for appli-
cations where the users are part of the same local network or intranet as your web server. This
means you can authenticate users with the same credentials they use to log into their comput-
ers. Best of all, depending on the settings you use and the network architecture, you may be able
to provide “invisible” authentication that works without forcing a separate login step. Instead,
the browser simply uses the logged- in identity of the current user.

The third reason is really an appealing one. When working with Windows authentication, you
have a single authentication model across different types of applications. For example, you can use
the same authentication model for web services, ASP.NET applications, and Windows Communi-
cation Foundation–based services (wherever they are hosted). Therefore, Windows authentication
can save you from the challenge of flowing identities between machine boundaries. With Kerberos
in place, Windows offers a well- established mechanism for such scenarios. Actually, this goes
along with the fourth reason for using Windows authentication.

Windows authentication allows you to take advantage of existing Windows security set-
tings. For example, you can control access to files by setting Windows file- access permissions.
However, it’s important to remember that these permissions don’t take effect automatically.
That’s because by default your web application runs using a fixed account (typically ASPNET
for IIS 5.x as defined in the machine.config file, and Network Service on IIS 6.0 and IIS 7.0 with
the worker process model). You can change this behavior by carefully using Windows authen-
tication and impersonation, as described in the “Impersonation” section of this chapter. Please
note that delegation makes sense being configured only on server operating systems, as you
can see in the section “Impersonation and Delegation on Windows Server 2003” later in this
chapter.

Why Would You Not Use Windows Authentication?
So, why would you not want to use Windows authentication?

The first problem is that Windows authentication won’t work unless the users you are
authenticating already have valid Windows accounts. In a public website, this probably isn’t
the case. Even if you could create a Windows account for each visitor, it wouldn’t be as effi-
cient as a database approach for large numbers of users. It also has a potential security risk,
because Windows user accounts can have permissions to the web server computer or other
network computers. You might not want to risk granting these abilities to your website users.

The second problem is that some of the authentication methods that IIS uses require users
to have compatible software on their computers. This limits your ability to use Windows authen-
tication for users who are using non- Microsoft operating systems or for users who aren’t using
Internet Explorer.

CHAPTER 22 WINDOWS AUTHENTICATION1052

The final main problem is that Windows authentication doesn’t give you any control over
the authentication process. Also, you have no easy way to add, remove, and manage Windows
account information programmatically or to store other user- specific information with the
user credentials. As you learned in the previous chapter, all these features are easy to add to
forms authentication, but they don’t play any part in Windows authentication.

Mechanisms for Windows Authentication
When you implement Windows authentication, IIS uses one of three possible authentication
strategies to authenticate each request it receives:

Basic authentication: The user name and password are passed as clear text. This is the
only form of authentication supported by all browsers as part of the HTML standard.

Digest authentication: The user name and password are not transmitted. Instead,
a cryptographically secure hash with this information is sent.

Integrated Windows authentication: The user name and password are not transmitted.
Instead, the identity of a user already logged into Windows is passed automatically as
a token. This is the only form of authentication that takes place transparently (without
user intervention).

The following sections discuss these options.

Note There are other less commonly used protocols for Windows authentication. One example is
 certificate- based authentication. If you use this approach, you must distribute a digital certificate to each
client and map each certificate to the appropriate Windows account. Unfortunately, this technique is rife with
administrative and deployment headaches. Additionally, IIS 6.0 and IIS 7.0 support Advanced Digest authen-
tication, which works essentially the same way as Digest authentication but stores the passwords more
securely. Passport authentication is only supported by IIS 6.0 and IIS 5.1. It has been removed from IIS 7.0,
as Passport (which allows a user to log in using a Passport account that maps to a Windows user account)
is deprecated and currently replaced by a much more open approach based on web services with Windows
Live called Live ID. In any case, Passport has not been used very often.

Basic Authentication
The most widely supported authentication protocol is Basic authentication. Almost all web
browsers support it. When a website requests client authentication using Basic authentication,
the web browser displays a login dialog box for user name and password, like the one shown in
 Figure 22-2.

CHAPTER 22 WINDOWS AUTHENTICATION 1053

 Figure 22-2. A login dialog box for Basic authentication

After a user provides this information, the data is transmitted to the web server (in this
case localhost). Once IIS receives the authentication data, it attempts to authenticate the user
with the corresponding Windows account.

The key limitation of Basic authentication is that it isn’t secure—at least not on its own.
User name and password credentials obtained via Basic authentication are transmitted between
the client and server as clear text. The data is encoded (not encrypted) into a Base64 string that
eavesdroppers can easily read. In Windows Vista Microsoft has even modified the login dialog to
display a warning if the connection is not secure (meaning SSL/TLS is not used for communicat-
ing with the web server), and Basic authentication is used, as you can see in Figure 22-2. For this
reason, you should use Basic authentication only in situations where there’s no need to protect
user credentials, or only in conjunction with an HTTP wire encryption protocol such as SSL.
This way, the data that would otherwise be clearly visible to any network sniffing utility will be
encrypted using complex algorithms. (You can find more information on SSL in Chapter 19.)

Digest Authentication
Digest authentication, like Basic authentication, requires the user to provide account infor-
mation using a login dialog box that is displayed by the browser. Unlike Basic authentication,
however, Digest authentication passes a hash of the password, rather than the password.
(Digest is another name for hash, which explains the name of this authentication scheme.)
Because a hash is used, the password is never sent across the network, thereby preventing it
from being stolen even if you aren’t using SSL.

The process of authenticating a user with Digest authentication works like this:

CHAPTER 22 WINDOWS AUTHENTICATION1054

 1. The unauthenticated client requests a restricted web page.

 2. The server responds with an HTTP 401 response. This response includes a nonce
value—a randomly generated series of bytes. The web server ensures that each nonce
value is unique before it issues it.

 3. The client uses the nonce, the password, the user name, and some other values to cre-
ate a hash. This hash value, known as the digest, is sent back to the server along with
the plain- text user name.

 4. The server uses the nonce value, its stored password for the user name, and the other
values to create a hash. It then compares this hash to the one provided by the client. If
they match, then the authentication succeeds.

Since the nonce value changes with each authentication request, the digest is not very
useful to an attacker. The original password cannot be extracted from it. Similarly, because
it incorporates a random nonce, the digest cannot be used for replay attacks, in which an
attacker attempts to gain access at a later time by resending a previously intercepted digest.

In theory, Digest authentication is a standard, and web servers and web browsers should
all be able to use Digest authentication to exchange authentication information. Unfortunately,
Microsoft interpreted a part of the Digest authentication specification in a slightly different

Digest authentication works only with Internet Explorer 5.0 and later.
Another limitation of Digest authentication in IIS is that it functions only when the vir-

tual directory being authenticated is running on or controlled by a Windows Active Directory
domain controller.

Integrated Windows Authentication
Integrated Windows authentication is the most convenient authentication standard for
 WAN- based and LAN- based intranet applications, because it performs authentication
without requiring any client interaction. When IIS asks the client to authenticate itself, the
browser sends a token that represents the Windows user account of the current user. If the web
server fails to authenticate the user with this information, a login dialog box is shown where
the user can enter a different user name and password.

For Integrated Windows authentication to work, both the client and the web server must
be on the same local network or intranet. That’s because Integrated Windows authentication
doesn’t actually transmit the user name and password information. Instead, it coordinates
with the domain server or Active Directory instance where it is logged in and gets that com-
puter to send the authentication information to the web server.

CHAPTER 22 WINDOWS AUTHENTICATION 1055

The protocol used for transmitting authentication information is either NTLM (NT LAN
Manager) authentication or Kerberos 5—depending on the operating system version of the
client and the server. If both are running Windows 2000 or higher and both machines are
running in an Active Directory domain, Kerberos is used as the authentication protocol;
otherwise, NTLM authentication will be used. Both protocols are extremely secure (Kerberos
is the most secure protocol currently available), but they are limited. Therefore, in general,
integrated authentication works only on Internet Explorer 2.0 or higher (Integrated Windows
authentication is not supported in non–Internet Explorer clients). Kerberos works only for
machines running Windows 2000 or higher, and neither protocol can work across a proxy
server. In addition, Kerberos requires some additional ports to be open on firewalls. In the fol-
lowing section, you will learn the basics of the authentication protocols used for Integrated
Windows authentication. These concepts will help you understand the configuration steps,
especially for impersonation and delegation.

NT LAN Manager Authentication

NTLM authentication is integrated into the Windows operating system since it has built- in
network support. NTLM authenticates clients through a challenge/response mechanism that
is based on a three- way handshake between the client and the server. Everything you will learn
about in this section takes place on the operating system automatically. Of course, this works
only if the client and the server are running Windows.

The client starts the communication by sending a message to the server, which indicates that
the client wants to talk to the server. The server generates a 64- bit random value called the nonce.
The server responds to the client’s request by returning this nonce. This response is called the
challenge. Now the client operating system asks the user for a user name and password. Immedi-
ately after the user has entered this information, the system hashes the password. This password
hash—called the master key—will then be used for encrypting the nonce. Together with the user
name, the client transmits the encrypted nonce in its response to the server (completing the
challenge/response mechanism).

The server now needs to validate the returned nonce. Depending on whether the user is
a local user or a domain user, this validation takes place locally or remotely on the domain
controller. In both cases, the user’s master key, which is the hashed version of the password,
is retrieved from the security account database. This master key then encrypts the clear- text
nonce again on the server (of course, the server has cached the clear- text nonce before it
transmits the data to the client). If the re- created encrypted version of the nonce matches the
encrypted version returned from the client, the user is authenticated successfully, and a logon
session is created on the server for the user. Figure 22-3 shows the process flow.

As you can see, the password is never transmitted across the wire. Even the hashed version
of the password is never transmitted. This makes NTLM really secure. But there is an even more
secure protocol with additional possibilities, as you will see in the next section.

CHAPTER 22 WINDOWS AUTHENTICATION1056

 Figure 22-3. The NTLM protocol at a glance

Kerberos Authentication: A Short Introduction

Currently, Kerberos 5 is the most secure authentication protocol available. It is a well- known
public standard created by the IETF (Internet Engineering Task Force), and it implements
 a ticket- based authentication protocol. On Windows operating systems, Kerberos has been
available since Windows 2000. When activating Integrated Windows authentication, Windows
will use Kerberos automatically under the following circumstances:

plays the role of the key distribution center) is available in the network.

CHAPTER 22 WINDOWS AUTHENTICATION 1057

In any other case, Windows will select NTLM as the authentication protocol. Although cover-
ing Kerberos in detail requires a book of its own, you will learn about the basic concepts in this
chapter. These concepts will help you understand the necessary configuration tasks and when
each feature will work. For example, one of the big differences between NTLM and Kerberos is that
Kerberos supports both impersonation and delegation, while NTLM supports impersonation only.

Delegation is based on the same concept as impersonation. It involves merely perform-
ing actions on behalf of the client’s identity. But while impersonation just works within the
scope of one machine, delegation works across the network as well. This means the authenti-
cation ticket of the original client’s identity can be passed to another server in the network if
the originally accessed server machine has the permission to do so. You will learn more about
impersonation and delegation later, in the “Impersonation” section. For now, it’s important
to understand that Kerberos supports both impersonation and delegation, while NTLM and
other Windows authentication techniques such as Basic or Digest authentication support
impersonation only.

The core component of a Kerberos system is the KDC (key distribution center), which
is responsible for issuing tickets and managing credentials. In the Windows world, an Active
Directory primary domain controller plays the role of the KDC. Every actor (meaning all the cli-
ents and all the servers) involved in the authentication process has to trust the KDC. It manages
all the user and computer accounts and issues so- called authentication tickets and session tick-
ets. Authentication tickets are issued after a successful authentication of a user or a machine,
and are used for requesting any further tickets, such as session tickets. Session tickets are then
used for establishing secure communication sessions between machines in the domain. This is
another big difference when comparing Kerberos to NTLM: while NTLM works for workgroup
scenarios without a central authority, Kerberos requires a central authority for issuing any type
of ticket. Therefore, for Kerberos to work, you require a connection to an Active Directory domain
controller. Figure 22-4 shows the flow for authenticating a user and then establishing a session
between the client and the simple member server of a domain.

The following section explains the basics about Kerberos authentication and tickets,
which are demonstrated in Figure 22-4 (the steps in the numbered list map to the numbers in
the figure):

 1. Every user authentication process starts with submitting a request to the authentication
service, which runs on the KDC (Active Directory Domain Controller in Figure 22-4).
This request contains the user name of the user to be authenticated. The KDC reads the
user’s master key from the security account database. Again, this is the hashed version
of the user’s password.

 2. Afterward, it creates a TGT (ticket- granting ticket). This ticket contains a session key for
the user’s session as well as an expiration date and time. Before the ticket is returned to
the client, the server encrypts it using the user’s master key.

 3. With only the correct password entered on the client, the client operating system can
create the correct master key (the hash) for successfully decrypting the TGT received
from the server. If decryption of the TGT succeeds on the client, the user is authenti-
cated successfully.

CHAPTER 22 WINDOWS AUTHENTICATION1058

 4. Finally, the client caches the TGT locally.

 5. When the client wants to communicate with another member server in the network, it
first has to ask the KDC for a session ticket. For this purpose, it sends the locally cached
TGT to a ticket- granting service that runs on the KDC. This service validates the TGT,
and if it’s still valid (not expired, not tampered with, and so on), it generates a session
key for the communication session between the client and the member server. This
session key is then encrypted with the client’s master key. In addition, the session key
is packaged into an ST (session ticket), which contains additional expiration informa-
tion for the server. This session ticket is encrypted with the member server’s master
key. Of course, both the server and the client are well known to the KDC, as somewhere
in the past both have been joined to the domain (joining a machine to a domain means
establishing a trust relationship between this machine and the KDC). Therefore, the
KDC knows the client’s and the member server’s master keys and can use them for
encrypting the information accordingly.

 6. Both the encrypted session key and the encrypted session ticket are forwarded to the
client.

 7. The client decrypts the session key and keeps a local copy of this session key in a local
cache.

 8. Afterward the client forwards the encrypted session ticket to the server. The KDC has
encrypted the session ticket for the server using the server’s master key, as outlined in
step 5.

 9. If the server can successfully decrypt and validate the session ticket received from the
client, the communication session will be established.

 10. Both the client and the server use the previously generated session key for encrypting
the communication traffic. As soon as the session ticket has expired, the whole opera-
tion takes place again.

Every ticket—session tickets and ticket- granting tickets—is equipped with capabilities.
Capabilities of a ticket are a set of defined properties that are required for certain features,
such as impersonation or delegation. For example, equipped with the right set of properties
(capabilities), tickets can be used for impersonating the client user on the server or delegating
the client’s identity to another server. If the client and the KDC do not include these capabili-
ties (set of properties) into the ticket, features related to these capabilities will not work. For
example, if the ticket does not include the necessary information for impersonating a user,
impersonation will not work. From the security perspective, this is a good design, as the client
and the server can decide whether certain features are allowed or not just by including or not
including certain properties in the ticket. Exactly for this purpose, the user account and the
server account need additional permissions, as you will see in the “Impersonation” section of
this chapter.

CHAPTER 22 WINDOWS AUTHENTICATION 1059

 Figure 22-4. Kerberos authentication and tickets

Covering these concepts in detail would require a book on its own. The idea of this dis-
cussion of the basic concepts of NTLM and Kerberos is to give you enough understanding to
complete the necessary configuration steps to make impersonation and delegation work in
your environment. In most cases, if something doesn’t work with impersonation (or delega-
tion), it’s because the domain controller or the KDC is incorrectly configured (if you are not
using Active Directory) or because the expiration date of the ticket is not set appropriately (it
should not be set too long, but not too short either).

Although covering these topics in great detail requires an entire book, this overview will
allow you to understand how the protocol works and what the requirements for different usage
scenarios are.

CHAPTER 22 WINDOWS AUTHENTICATION1060

Implementing Windows Authentication
To use Windows authentication in an ASP.NET application and have access to the user iden-
tity in ASP.NET, you need to take three steps on IIS 5.x- based or IIS 6.0- based web servers and
two steps on IIS 7.0- based systems:

 1. Configure the type of Windows authentication using IIS Manager.

 2. Configure ASP.NET to use the IIS authentication information using the web.config file.

 3. Restrict anonymous access for a web page, a subdirectory, or the entire application.

The first two steps are just one step in IIS 7.0 when running in ASP.NET integrated mode, as
its new management console directly configures your application’s web.config file as required,
in addition to the IIS configuration. Depending on the IIS 7.0 feature delegation configuration,
you can even include the complete configuration in the application’s web.config file, as you
learned in Chapter 18. The following sections describe steps for IIS 5.x/6.0 and IIS 7.0.

Configuring IIS 5.x or IIS 6.0
As you know, with IIS 5.x- or 6.0- based systems, configuring security involves configur-
ing your web server and your web application separately. Therefore, before you can use
Windows authentication in ASP.NET, you need to choose the supported protocols by con-
figuring the virtual directory. To do so, start IIS Manager (select Settings Control Panel
Administrative Tools Internet Information Services). Then right- click a virtual directory
or a subdirectory inside a virtual directory, and choose Properties. Select the Directory
Security tab, which is shown in Figure 22-5.

Click the Edit button in the Authentication and Access Control section to modify the direc-
tory security settings. Enable the supported protocols in the Authenticated access box in the
bottom half of the window. If you enable Basic authentication, you can also set a default domain
to use when interpreting the user credentials. (The user can also log into a specific domain by
supplying a user name in the format DomainName\UserName.) In the example in Figure 22-6,
support is enabled for Integrated Windows authentication and anonymous access.

Note If you allow anonymous access, you can also set the Windows user account that IIS will use auto-
matically. However, this user account has little effect and is mostly a holdover from classic ASP. In classic
ASP, this account would be used to execute all code. In ASP.NET, a fixed account (typically ASPNET on IIS 5.x
and Network Service on IIS 6.0 and IIS 7.0) is used to execute code, because more privileges are required to
successfully compile and cache web pages.

CHAPTER 22 WINDOWS AUTHENTICATION 1061

 Figure 22-5. Directory security settings

 Figure 22-6. Directory authentication methods

CHAPTER 22 WINDOWS AUTHENTICATION1062

If you enable more than one authentication option, the client will use the strongest
authentication method it supports as long as anonymous access is not enabled. If anony-
mous access is enabled, the client will access the website anonymously. This means if you
want to force clients to log in, you need to take one of two steps:

from accessing a specific page, subdirectory, or application.

Users” and in more detail in Chapter 23.

Note If you remove Integrated Windows authentication from your virtual directory, you won’t be able to
debug your web application. That’s because Visual Studio .NET uses this protocol to authenticate you when
you compile and run an application in the development environment.

Configuring IIS 7.0
The big difference compared to IIS 5.x and IIS 6.0 is that even Basic authentication and Windows
authentication are implemented as modules within the IIS 7.0 HTTP modules pipeline. This
pipeline is a mixture of native modules shipping with IIS and managed modules shipping with
ASP.NET. The big advantage of this model is that you can use standard ASP.NET HTTP modules
for all applications configured in IIS 7.0—even applications not based on ASP.NET.

Another big advantage of IIS 7.0 is a unification of the configuration system as introduced
in Chapter 18, which means you do not need to configure certain configuration options (as
outlined in Chapter 18) in IIS 7.0 and ASP.NET separately. You can do all the configuration
directly through the IIS management console. IIS performs the configuration in its central
configuration store (applicationHost.config, as you learned in Chapter 18) and in the appli-
cation’s web.config as necessary. In IIS 7.0 you can configure the authentication methods
via the authentication configuration feature of the management console, as you can see in
 Figure 22-7.

You can just enable or disable some authentication modules, such as the Windows
authentication module, by clicking the appropriate link in the Actions task pane on the right
border of the console (for example, Enable or Disable). Other authentication modules, such as
the Basic authentication module, offer more detailed settings by clicking the Edit link on the
Actions task pane, as you can see in Figure 22-8.

As shown in Figure 22-8, these are the default domain settings used for Basic authenti-
cation, which you know from IIS 5.x and IIS 6.0 as well. As with the previous versions of IIS,
this domain is used as a default domain if the user logs into the website without specifying
a domain in the format DOMAIN\Username when logging in through the authentication
dialog.

CHAPTER 22 WINDOWS AUTHENTICATION 1063

 Figure 22-7. Authentication configuration feature of IIS 7.0

 Figure 22-8. Configuring Basic authentication details

CHAPTER 22 WINDOWS AUTHENTICATION1064

Whenever performing this configuration, IIS 7.0 updates your application’s web.config
file, and if necessary its central applicationHost.config configuration file, which you learned
about in Chapter 18. How the files get updated and which settings reside in which of these
two files depends on the feature delegation configuration you learned about in Chapter 18. By
default, web server–specific modules are configured centrally in the applicationHost.config
configuration file, and ASP.NET–based configurations are automatically updated in your appli-
cation’s web.config file. In any case, that means after performing this configuration through
the IIS 7.0 management console you do not need to perform any additional, manual configura-
tion steps in your application’s web.config.

Configuring ASP.NET
Once you’ve configured IIS, the authentication process happens automatically. This is true for
all versions of IIS (5.x, 6.0, and of course 7.0). However, if you are using IIS 5.x or IIS 6.0 and you
want to be able to access the identity information for the authenticated user in your ASP.NET
application, you need to manually configure the web.config file of your ASP.NET application to
use Windows authentication after you have configured IIS 5.x or 6.0. This configuration looks
as follows:

The preceding configuration tells ASP.NET that you want to use the Windows authen-
tication module. The WindowsAuthenticationModule HTTP module will then handle the
AuthenticateRequest event of the application to extract the identity previously authenticated
by the web server and provide it to the web application. This is true independent from the
underlying version of IIS!

IIS 7.0 and ASP.NET Configuration
When using IIS 7.0, you do not need to perform this authentication configuration separately,
as its management console updates the web.config file automatically. However, the settings in
your web.config might not be the only settings configured by the management console.

In that case, one question might arise: why are there more configuration settings neces-
sary than the one outlined earlier, and what are these settings? Well, indeed when using IIS 7.0
with Basic or Windows authentication, two HTTP modules in the pipeline are responsible for
performing dedicated parts of the authentication process, as you can see in Figure 22-9. One
of these modules is the native one shipping with IIS 7.0, and the other one is the module ship-
ping with ASP.NET itself.

CHAPTER 22 WINDOWS AUTHENTICATION 1065

 Figure 22-9. Modules implementing Windows authentication

The WindowsAuthenticationModule module is a native HTTP module provided by IIS 7.0,
while the module named only WindowsAuthentication is the managed module provided by
ASP.NET. The native module is the web server’s implementation of the authentication protocol
itself. For Basic authentication, this is the BasicAuthenticationModule, and for Windows
authentication, it is the WindowsAuthenticationModule. These modules are responsible for
handling the native authentication protocol. For example, in the case of Windows authenti-
cation, the module is responsible for handling the NTLM challenge/response or the Kerberos
handshake, as outlined in the section “Integrated Windows Authentication” earlier in this chap-
ter. The managed module ships with ASP.NET. The managed module is responsible for extracting
Windows user information for the user authenticated by the native module. After extracted, the
Windows user information is available in your application—as is the case on any version of IIS.

That means that when configuring Windows, Basic, or Digest authentication through
the IIS 7.0 management console, two configurations need to be performed: first it needs to
configure ASP.NET for Windows authentication as outlined earlier, and second it needs to
configure the native authentication module. The native module is configured either in the
central applicationHost.config configuration of the web server, or in the web.config file of your
application, depending on the feature delegation configuration of the web server. The central
configuration applicationHost.config is located in the inetsrv\config subdirectory of your sys-
tem directory. For example, on a 32- bit Windows version this would be \Windows\system32\
inetsrv\config.

By default, IIS 7.0 feature delegation is configured so that your web.config inherits the
settings from the central applicationHost.config configuration for the native authentication
modules, such as the native BasicAuthenticationModule. That means your web.config file con-
tains only the ASP.NET–specific configuration. You configure the native module in the central
applicationHost.config configuration, as follows:

CHAPTER 22 WINDOWS AUTHENTICATION1066

However, you can change your feature delegation configuration of IIS 7.0 so that even these
settings are stored in your application’s web.config file. This would allow xcopy deployment of
your application, as any setting can be stored directly in the web.config file (if the feature con-
figuration delegation of the target web server is configured appropriately). Figure 22-10 shows
the IIS 7.0 feature configuration with authentication modules selected. You can find the feature
configuration option when clicking the top- level node of the tree view on the left side of the
management console. Feature delegation is always configured for the whole web server, and
therefore affects any web application or virtual directory!

As you can see, the feature delegation for authentication modules provided by IIS 7.0
natively, such as Basic, Digest, and Windows authentication, is set to Read Only. That means
these settings are configured by the management console in the central applicationHost.config
configuration file, and inherited by your local web.config file. It even means that configuration
settings for these modules are not allowed to appear in an application’s web.config configura-
tion. Therefore, you will not find any configuration settings for these modules in your local web.
config file, by default.

 Figure 22-10. The IIS 7.0 feature configuration for authentication modules

CHAPTER 22 WINDOWS AUTHENTICATION 1067

If you change the feature delegation configuration for these modules (or one of these
modules) to Read/Write, the configuration will be included in your web.config file as well.
That means if you configure the feature delegation for Basic authentication and Windows
authentication to the setting Read/ Write, the following section will be added to your web.
config file. It will be added when configuring one (or both) of these authentication methods
for your web application using the authentication configuration feature of the IIS 7.0 manage-
ment console:

As you can see in the preceding web.config file, the configuration of the Windows authen-
tication HTTP module shipping with ASP.NET resides in the <system.web> section as it would
do on any version of IIS. Any configuration specific to native HTTP modules typically shipping
with IIS 7.0 is added to the <system.webServer> configuration section, which has been intro-
duced with IIS 7.0. However, you need to bear one additional thing in mind. If you configure
settings for native modules in the <system.webServer> section of your web.config, even though
the central feature delegation configuration is set to Read Only, you will receive an HTTP 500
internal server error when trying to request the page. Even the IIS 7.0 management console
will respond with an error message when trying to configure the affected features, as shown in
 Figure 22-11.

CHAPTER 22 WINDOWS AUTHENTICATION1068

 Figure 22-11. Configuration error with invalid web.config according to feature delegation

In that case, you need to manually remove invalid web.config configuration entries from
your web.config file.

In general, unifying the configuration model and feature delegation is a powerful util-
ity for administrators and developers. Having feature delegation enabled as outlined earlier
would allow xcopy deployment of your web applications to IIS. All you need to do is add a vir-
tual directory or web application, and all the remaining configuration settings reside directly
in your web.config file of your application. At the same time, administrators can determine
exactly which settings can be overridden in web.config files to strengthen security. Remember
that by default, feature delegation configuration is disabled for many modules. These modules
are configured in the central applicationHost.config configuration of IIS 7.0 and not through
the application’s web.config. You can find a complete list just by opening the feature configu-
ration of your local web server, as outlined earlier and in Chapter 18.

Denying Access to Anonymous Users
As described earlier, you can force users to log on by modifying IIS virtual directory settings or

Not only does it give you more flexibility, but it also makes it easier to verify and modify autho-

technique of denying access to all unauthenticated users. To do this, you must use the

CHAPTER 22 WINDOWS AUTHENTICATION 1069

The question mark (?) is a wildcard character that matches all anonymous users. By includ-
ing this rule in your web.config file, you specify that anonymous users are not allowed. Every
user must be authenticated using one of the configured Windows authentication protocols.

IIS 7.0 and Authorization Configuration
When using IIS 7.0, you -
ment console, as shown in Figure 22-12.

 Figure 22-12. IIS authorization configuration for Windows authentication

-
tion rules are added to the central applicationHost.config configuration of the web server. That
means if you configure these rules with the IIS management console, they will not be reflected

element of the <system.web> section of your web.config as outlined earlier, and the resulting
behavior will be exactly the same as when configuring them through the IIS management
console—at least from the user’s perspective. What does that mean? Well, when configuring

 the IIS 7.0 management console, they will be configured in the
-

ule. That means the web server itself rejects the request. On the other hand, when configuring
the settings in the <system.web> section, ASP.NET will reject the request (which is at a later
point in time in the processing pipeline).

CHAPTER 22 WINDOWS AUTHENTICATION1070

Furthermore, when you disable the Anonymous Authentication module in IIS 7.0, you don’t

 “secure-by- default,” we would recommend you configure
management console or your web.config file anyway.

Accessing Windows User Information
One of the nice things about Windows authentication is that no login page is required. When
the user requests a page that requires authentication, the browser transmits the credentials to
IIS. Your web application can then retrieve information directly from the User property of the
web page.

Here’s an example that displays the currently authenticated user:

This is the same code you can use to get information about the current identity when
using forms authentication. However, you’ll notice one slight difference. The user name is
always in the form DomainName\UserName or ComputerName\UserName. Figure 22-13

 Figure 22-13. Displaying user information

The WindowsPrincipal Class
As you’ve learned in the past two chapters, the User property returns an IPrincipal object.
When you use Windows authentication, this is an instance of the WindowsPrincipal class.
The WindowsPrincipal class provides access to a WindowsIdentity object through the Identity
property.

CHAPTER 22 WINDOWS AUTHENTICATION 1071

The WindowsPrincipal class implements four overloads of IsInRole() that all check
whether the user is in a specified Windows user group. The IsInRole(string) overload (which is
the only one required to be implemented when implementing IPrincipal) is implemented so
that it accepts the name of the user group to be checked. IsInRole(int) expects an integer RID
(Role Identifier) that refers to a user group. Furthermore, an overload is provided that expects
a member of the WindowsBuiltInRole enumeration, which provides a list of predefined Win-
dows account types (such as Guest, Administrator, and so on). Finally, an overload accepting
a SecurityIdentifier instance has been available since version 2.0 of the .NET Framework. You
will learn more about the SecurityIdentifier classes in the section “IdentityReference and Role
Information” later in this chapter. You can find the WindowsPrincipal, WindowsIdentity, and
WindowsBuiltInRole types in the System.Security.Principal namespace.

Here’s a simple example that tests whether the user is in a predefined Windows role:

Note that you must cast the User object to a WindowsPrincipal to access this Windows-
 specific functionality. Also notice that this cast will not work with forms authentication enabled
and with the roles API enabled. (Chapter 23 covers the roles API in detail.) When having the roles
API enabled, ASP.NET will create a RolePrincipal even when Windows authentication is configured
for the application. Figure 22-14 shows the result of the previous code sample.

 Figure 22-14. Testing group membership

 Table 22-1 lists all the possible roles provided through the WindowsBuiltInRole enumera-
tion. You can also test for membership with any arbitrary group you’ve created. Chapter 23
discusses this technique.

CHAPTER 22 WINDOWS AUTHENTICATION1072

Table 22-1. Values for the WindowsBuiltInRole Enumeration

Role Description
AccountOperator Users with the special responsibility of managing the user accounts on

a computer or domain.

Administrator Users with complete and unrestricted access to the computer or domain.

BackupOperator Users who can override certain security restrictions only as part of backing
up or restoring operations.

Guest Like the User role but even more restrictive.

PowerUser Similar to Administrator but with some restrictions.

PrintOperator Like a User but with additional privileges for taking control of a printer.

Replicator Like a User but with additional privileges to support file replication in
a domain.

SystemOperator Similar to Administrator but with some restrictions. Generally, system operators
manage a particular computer.

User Users are restricted accounts that are prevented from making system- wide
changes.

The WindowsIdentity Class
You can access some additional information about the currently authenticated user by casting
the general identity object to a WindowsIdentity object. WindowsIdentity provides a number
of additional members, as described in Table 22-2.

Table 22-2. Additional Members of the WindowsIdentity

Member Description
IsAnonymous This property returns true if the user is anonymous (has not been authenticated).

IsGuest This property returns true if the user is using a Guest account. Guest accounts
are designed for public access and do not confer many privileges.

IsSystem Returns true if the user account has the Act As Part of the Operating System
permission, which means it is a highly privileged system account.

Groups Retrieves a collection that contains instances of IdentityReference classes,
which returns the SID values for the groups the user is in.

Token Returns the Windows account token for the identity.

Owner Gets the SID for the token owner.

User Gets the user’s SID. For example, you can use this SID if you want to modify
permissions for this user on ACLs through the classes provided in the System.
Security.AccessControl namespace.

Impersonate() This method instructs ASP.NET to run the following code under the corre-
sponding Windows account. You’ll learn much more about impersonation in
the next section.

GetAnonymous() This static method creates a WindowsIdentity that represents an anonymous user.

GetCurrent() This static method creates a WindowsIdentity that represents the identity tied
to the current security context (the user whose identity the current code is run-
ning under). If you use this method in an ASP.NET application, you’ll retrieve
the user account under which the code is running, not the user account that
was authenticated by IIS and is provided in the User object.

CHAPTER 22 WINDOWS AUTHENTICATION 1073

The following code displays extra Windows- specific information about the user:

 Figure 22-15 shows the result.

 Figure 22-15. Showing Windows- specific user information

IdentityReference and Role Information
One of the hardest challenges in the .NET Framework 1.x was retrieving a list of roles for the
currently logged on Windows user. For this purpose, you really had to dig deep into the ADSI
(Active Directory Service Interface) APIs, which was not very fun. Fortunately, back in 2005
with the release of the .NET Framework 2.0, Microsoft fixed this problem and made a much
more convenient list of groups available. As the .NET Framework 3.5 is based on the .NET
Framework versions 2.0 and 3.0, and this functionality is part of the base class library, it has
not changed with ASP.NET 3.5.

The .NET Framework ships with a set of IdentityReference classes. An IdentityReference is
a reference to a valid Windows identity that is expressed through a SID. Valid Windows identi-
ties are computer and user accounts as well as Windows groups. When you create a user, when
you create a group, or when you set up a new machine with Windows, it gets a worldwide unique
SID assigned by the system. Actually, this SID is used for uniquely identifying system objects
such as users. You can find an IdentityReference wherever a system object such as a user is
referenced. For example, if you grant a user on your machine access to a file through the Secu-
rity tab of the file properties, an IdentityReference gets added to the access control list of the

CHAPTER 22 WINDOWS AUTHENTICATION1074

file and contains the SID of the user to whom you are granting access. When adding a user to
a group, a reference to the user in the form of a SID gets added to the group’s user list as well
(and to the user’s group list).

The .NET Framework includes three classes for SID references in the System.Security.
Principal namespace: IdentityReference, SecurityIdentifier, and NTAccount. These classes
are key for enumerating groups of a Windows user through a WindowsIdentity instance. The
IdentityReference is an abstract base class for any class representing a SID. Therefore, it is
the base class for two classes: SecurityIdentifier and NTAccount. The first one represents the
real, unique code of a SID—which looks similar to a Universally Unique ID (UUID)—whereas
the second one represents the human- readable string for a SID (such as the readable name of the
user or the group). The IdentityReference base class defines a method called Translate that
allows you to convert an existing IdentityReference instance from one type to another, such as
the conversion from NTAccount to SecurityIdentifier.

With that knowledge, enumerating the groups of the currently logged on Windows user
account is simple, as shown in the following code sample:

CHAPTER 22 WINDOWS AUTHENTICATION 1075

The WindowsIdentity class of the .NET Framework 2.0 introduced a new property called
Groups, which is nothing other than a collection of IdentityReference objects. All you need to
do is enumerate this collection and translate the IdentityReference to the type of reference you
need for your purpose. As already mentioned, the .NET Framework comes with two types of
representations of IdentityReferences: a SecurityIdentifier representing the SID because it’s
 system- internal code, and the NTAccount representing the human- readable version of the SID.
Through the Value property of the IdentityReference classes, you can access the actual value of
the reference, which is the SID code for the SecurityIdentifier instance and the readable name
of the user or group for the NTAccount instance.

Note The IdentityReference classes are used by the System.Security.AccessControl classes introduced
with .NET 2.0 as well. These classes provide a fully managed API that allows you to access file system access
control lists programmatically from .NET- based applications. Access control list entries always bind to
IdentityReference instances in this API, representing the user for which you have created the access control
list entry. Finally, this is a great possibility for setting file system or registry access rights correctly when
installing your applications on target machines (or modifying file system or registry access rights program-
matically). Actually, you can use the System.Security.AccessControl classes to secure even more than just
file system objects or registry objects. Indeed, you can secure any system object that can be secured through
access control lists, such as named pipes, that are used for interprocess communication.

Impersonation
Everything that ASP.NET does is executed under a Windows account. When using IIS 5.x,
this identity is the account ASPNET by default. You can configure this account through the
machine.config file, as described in Chapter 18. In IIS 6.0 and IIS 7.0, this identity is the iden-
tity of the worker processes created for an application pool configured in IIS. Each application
pool can have its own identity configured as you learned in Chapter 18. In any case, as each page
request is processed, the configured identity determines what ASP.NET can and cannot do.

Impersonation provides you with a way to make this system more flexible. Instead of using
a fixed account for all users, web pages, and applications, you can temporarily change the iden-
tity that ASP.NET uses for certain tasks. This process of temporarily assuming the identity of
another Windows account is impersonation.

One common reason to use impersonation is to differentiate the permissions given to dif-
ferent web applications on the same computer. In this case, you configure impersonation to
use a specific, fixed account for each web application. Another potential reason to use imper-
sonation is to use the permissions that are defined for the currently authenticated user. This
means the actions ASP.NET performs will be limited according to the person who is using the

-
tories, one for each user. By impersonating the user in your web application, you ensure that
your application cannot inadvertently give the user access to any files except the ones in that
user’s directory. If you attempt to access a restricted file, the Windows operating system will
intervene, and an exception will be raised in your code.

Another common reason for using fixed accounts for impersonation is to enforce restrictions
when accessing certain resources in a database, while still securing the possibility of connection

CHAPTER 22 WINDOWS AUTHENTICATION1076

pooling. For example, whenever you need to enforce restrictions on database objects such as
stored procedures, you typically would need to impersonate each user before accessing the
database. However, there is a big drawback when impersonating each single user: a separate
connection to the database is opened for each single user, which leads to having no connection
pooling at all. If you want to keep the advantages of connection pooling to a certain extent, you
can group the users together; create one additional, common Windows account for these users;
and impersonate this account through a fixed- configured impersonation identity in your
web.config (or by writing custom code). This way you can make sure that for these users
connection pooling is still available, as they’re connected to the database using a common,
impersonated identity.

Note Impersonation does not give you the ability to circumvent Windows security. You must still have the
credentials for the user you want to impersonate, whether you write them into your code or a user provides
them at runtime.

ASP.NET has two types of impersonation. Configured (web.config) impersonation allows
you to specify that page requests should be run under the identity of the user who is making
the request. Programmatic impersonation gives you the ability to switch to another identity
within the code and switch back to the original identity when a specific task is finished. You’ll
learn about both of these techniques in the following sections.

Impersonation in Windows 2000
To impersonate other users when running on Windows 2000, the account that does the imper-
sonation must have the Act As Part of the Operating System permission. This permission is not
required on Windows XP and later.

To use impersonation, you must specifically add this permission to the ASPNET account. You
can perform this administrative task using the Local Security Policy tool. Select Control Panel
Administrative Tools, and select Local Security Policy. Then browse to the Local Policies User
Rights Assignment node. You’ll see a list of settings, as shown in Figure 22-16.

 Figure 22-16. Reviewing user rights assignments

CHAPTER 22 WINDOWS AUTHENTICATION 1077

Double-click the Act As Part of the Operating System entry, and select Add User or Group.
This displays a dialog box where you can explicitly give this permission to an account. In the text
box at the bottom of the window, enter the account name ASPNET, as shown in Figure 22-17, or
click Advanced and then click Find Now to get a list of available account names.

 Figure 22-17. Assigning the permission to ASPNET

Finally, click OK to confirm your action and add this permission to the ASPNET account.

Tip This permission doesn’t need to be assigned to the local system account, which always has it. As
a result, if you’ve configured ASP.NET to use the local system account, you don’t need to perform any addi-
tional configuration steps.

Impersonation on Windows XP
In its default configuration, impersonation works on Windows XP workstations. Fortunately, you
don’t even need to apply a high- level privilege such as the Act As Part of the Operating System
privilege to a low- privileged account such as the ASP.NET user. Windows XP and Windows Server
2003 support a separate privilege for impersonation, as shown in Figure 22-18, which you have to
assign to the account under which your worker process is running.

CHAPTER 22 WINDOWS AUTHENTICATION1078

 Figure 22-18. The Impersonate a Client After Authentication privilege

By default the ASP.NET worker process account (the ASPNET user) has this privilege, so
you don’t need to perform any extra configuration steps.

Impersonation and Delegation on Windows Server 2003
When using Windows Server 2003 as a stand- alone server, you have to assign the Impersonate
a Client After Authentication privilege to the account of the application pool, as is the case for
the worker process account on Windows XP. The local IIS worker process group (IIS_WPG)
and the local service and network service account have this privilege by default. Therefore, you
don’t need to configure anything if you use a network service or local service or if you create
a custom account and add it to the IIS_WPG group.

But delegation is different. As mentioned previously, delegation means that a server that
has authenticated the client can pass the client’s authentication ticket to another server in this
network. This means that this server (and therefore your application) acts on behalf of the cli-
ent across the network. Figure 22-19 shows this in detail.

 Figure 22-19. Identity flows across network hops

CHAPTER 22 WINDOWS AUTHENTICATION 1079

In Figure 22-19, you can see the big difference of impersonation. While impersonation
takes place on the local machine only, delegation brings the concept of impersonation to calls
across the network. Of course, if every server could do that in an uncontrolled fashion, this
feature would definitely lead to a security risk. Therefore, Windows provides you with a way
to specify which computer is trusted for delegation. By default no computer in the network
except the domain controller is trusted for delegation. In Figure 22-19, the server you would
configure for delegation would be the Web Application Server, as this is the one that needs to
pass the credentials on to the next server.

You can configure delegation through the Active Directory Users and Computers manage-
ment console on your domain controller. First, you have to open the Computers node, and then
select the properties of the computer you want to configure for delegation. If you are running
your domain with Windows Server 2003 at a functional level (which implies you don’t have
any Windows 2000 or older machines in your network), you can use constrained delegation, as
shown in Figure 22-20.

 Figure 22-20. Configuring delegation in Windows Server 2003 (functional level)

If you are running the application in domains with Windows 2000 servers, you can configure
the Trust for Delegation setting on the General tab of the server’s properties page. Figure 22-21
shows the settings if you are running your domain with Windows 2000 (functional level).

It’s important to keep in mind that both Figure 22-20 and Figure 22-21 show the same dia-
log box (the properties of the computer you want to configure through Active Directory Users
and Computers). In the first case (Figure 22-20), Windows Server 2003 is configured to run
the Active Directory domain at the Windows Server 2003 functional level; in the second case
(Figure 22-21), the domain is configured for the Windows 2000 functional level (which is the
default configuration).

CHAPTER 22 WINDOWS AUTHENTICATION1080

With these settings, you specify the capabilities of the tickets issued by the KDC (which
is the domain controller). If tickets don’t have these capabilities, delegation is not granted
and not possible. After you have configured this setting, you don’t need to perform any extra
steps. Just configure IIS for Integrated Windows authentication, and enable impersonation
in your ASP.NET web application, as you will see in the next section. You can find more
about configuring and troubleshooting delegation at

7/.

 Figure 22-21. Trusted for delegation for Windows 2000 (functional level)

Caution We suggest not using impersonation or delegation if it’s not really necessary. If you use imper-
sonation or delegation, this includes flowing the original client user’s identity from the front- end to the
backend. On the backend, all the ACLs and operating system security- related authorization settings must be
configured properly for every single user. This configuration gets harder and harder with an increasing num-
ber of users. A simple configuration mistake can lead to either an application that doesn’t work or a (probably
huge) security leak. And think about the additional security configurations necessary! Instead, you should
group users to roles and perform any security configuration based on roles or groups. You will learn more
about roles and groups in Chapter 23.

CHAPTER 22 WINDOWS AUTHENTICATION 1081

Caution Enabling delegation for a server is something you should do carefully. Thoroughly review appli-
cations running on such a server, because malicious applications can lead to repudiation attacks. Imagine
a malicious application (or a malicious part of an application that has not been reviewed) running on this server
and performing some “illegal” actions under an impersonated or delegated user’s identity. Applications (and
therefore servers) should be allowed only for performing delegation if it’s really necessary so that applica-
tions running on such servers cannot do any “illegal” things based on other, impersonated or delegated user
identities.

Impersonation on Windows Vista
Windows Vista supports the Impersonate a Client After Authentication privilege as well, as is
the case with Windows XP. You can configure this privilege through the local security policies
management console as well, and it works exactly the same way as it does on Windows XP or
Windows Server 2003.

The only point you have to keep in mind is that Windows Vista ships with IIS 7.0, which
implements the model of application pools, as IIS 6.0 on Windows Server 2003 does as well.
That means if you configure the impersonation setting, you’ll need to configure it for the user
under which your web applications’ application pool is running (and not for the ASPNET
user anymore, as was the case for Windows 2000/XP). As you can see in Figure 22-22, the built- in
accounts Local Service and Network Service both have this privilege, by default.

 Figure 22-22. Impersonation privilege in Windows Vista

CHAPTER 22 WINDOWS AUTHENTICATION1082

That means as long as you run your application pools under Network Service or Local
Service, you don’t need to configure anything for enabling impersonation. If you run your
applications under a custom user account, you need to configure this privilege for the user you
are going to use for the application pool.

Impersonation and Delegation on Windows Server 2008
On Windows Server 2008 you have to be aware of mostly the same things as you have to be on
Windows Server 2003 when it comes to impersonation and delegation. The only additional fact
is that you will work with IIS 7.0 on Windows Server 2008, as well.

Again, you need to be aware that impersonation across multiple machines is called delega-
tion. You need to configure delegation explicitly using the Windows Server 2008 Active Directory
Computers and Users configuration through the server management console.

On the one hand, you need to permit machines to pass Kerberos tickets to other machines
that allow impersonation (this is the “Trusted for delegation” user right, which can be found in
the local or global security policies management console of the server), and on the other hand,
you have to give the same permission to the domain user under which your web application
process is running. You need to do this configuration on the domain controller on Windows
Server 2008. The configuration options are very similar between Windows Server 2003 and
Windows Server 2008; they’re just implemented in different sets of configuration consoles.
Therefore, we’ll skip explaining these details again.

Configured Impersonation
The simplest form of impersonation is configured impersonation, where you use the web.config
file to define the impersonation behavior you want. You accomplish this by adding the <identity>
element shown here:

You can configure the <identity> element in more than one way, depending on the result
you want. If you want to impersonate the Windows account authenticated by IIS, then you
should use the setting as shown in the previous code snippet—just set the impersonate attri-
bute to true.

Keep in mind that if you allow anonymous access, you can use the IUSR_[ComputerName]
account. When using this approach, the impersonated account must have all the permissions
required to run ASP.NET code, including read- write access to the c:\[WinDir]\Microsoft.NET\

CHAPTER 22 WINDOWS AUTHENTICATION 1083

Framework\[Version]\Temporary ASP.NET Files directory where the compiled ASP.NET files
are stored. Otherwise, an error will occur and the page will not be served.

ASP.NET also provides the option to specifically set an account that will be used for run-
ning code. This technique is useful if you want different ASP.NET applications to execute with
different, but fixed, permissions. In this case, the user’s authenticated identity isn’t used by
the ASP.NET code. It just sets a base level of permissions you want your application to have.
Here’s an example:

This approach is more flexible than changing the machine.config account setting. The
machine.config setting determines the default account that will be used for all web applications
on the computer. The impersonation settings, on the other hand, override the machine.config
setting for individual websites. Unfortunately, the password for the impersonated account can-
not be encrypted in the web.config file by default. This constitutes a security risk if other users
have access to the computer and can read the password. The risk is especially severe if you are
using impersonation with a highly privileged account.

Fortunately, you can encrypt such settings with a tool provided by Microsoft called
aspnet_setreg.exe. Because the following configuration sections cannot be encrypted with
the aspnet_regiis.exe utility, you can use aspnet_setreg.exe to secure the following infor-
mation in your web.config file:

The aspnet_setreg.exe tool was originally created for .NET 1.0, but it can be used with .NET 1.1
and 2.0 (and of course 3.0 and 3.5 as they are additive releases to 2.0) as well. You can download
the tool from Microsoft at 90.

The aspnet_setreg.exe tool queries the information and stores it encrypted in the registry.
Of course, the worker process user has to have permissions for this registry key, as the first
action it performs is to read the identity information from the registry key for impersonating
this identity. You can use aspnet_setreg.exe as follows for encrypting a user name and pass-
word for the <identity> element:

This encrypts the specified user name and password and stores the encrypted version in
the registry key HKLM\Software\ProAspNet\Identity. Next you have to grant the worker pro-
cess or application pool’s identity read access to this registry hive, as shown in Figure 22-23.

CHAPTER 22 WINDOWS AUTHENTICATION1084

 Figure 22-23. Granting access to the registry hive

Now you have to configure your <identity> element in the web.config file as follows:

When you now create a default.aspx page as follows with the preceding <identity/>
element configured, the result looks like Figure 22-24:

CHAPTER 22 WINDOWS AUTHENTICATION 1085

 Figure 22-24. Configured impersonation with fixed user name and password

Programmatic Impersonation
Configured impersonation allows you to impersonate a user for the entire duration of a request.
If you want more control, such as the ability to impersonate a user for only part of the page
request, you have to do the impersonation yourself in your code.

The key to impersonating a user programmatically is the WindowsIdentity.Impersonate()
method. This method sets up impersonation for a specific account. You identify the account
you want to impersonate by using its account token. Account tokens are what Windows uses
to track users once their credentials are approved. If you have the token for a user, you can
impersonate that user.

The general process is as follows:

 1. Obtain an account token for the account you want to impersonate.

 2. Use WindowsIdentity.Impersonate() to start impersonation. This method returns
a WindowsImpersonationContext object.

 3. Call the Undo() method of the WindowsImpersonationContext object to revert to the
original identity.

Getting a Token
You can get an account token in two main ways. The most common approach is to retrieve the
token for the currently authenticated user. You can access this token through the current secu-
rity context, using the WindowsIdentity.Token property. Tokens are represented in .NET as
IntPtr objects, which are representations of pointers to unmanaged memory locations. How-
ever, you never need to interact with this directly. Instead, you simply need to pass the token
to the WindowsIdentity.Impersonate() method.

Here’s an example that extracts the token for the current user:

CHAPTER 22 WINDOWS AUTHENTICATION1086

The only other way to get a user token is to programmatically log in with a specific user
name and password. Unfortunately, .NET does not provide managed classes for logging a user
in. Instead, you must use the LogonUser() function from the unmanaged Win32 security API.

To use the LogonUser() function, you must first declare it as shown in the following code
snippet. This code uses the DllImport attribute, which tells the runtime that you are going to
access a native Windows API located in the native DLL advapi32.dll in the Windows system
directory. The types of the parameters in the function prototype where this attribute is applied
to need to map to the types of the functions encapsulated into the native DLL. Although every
call to this method in your code looks like a call to any other static method of a .NET class,
in reality the call gets routed to the native method encapsulated in the DLL specified in the
DllImport attribute, and the information transmitted gets marshaled accordingly. For more
information on consuming functionality implemented in a native Windows DLL, take a look at
the MSDN article at px.

As you can see, the LogonUser() function exists in advapi32.dll. It takes a user name, domain,
password, logon type, and logon provider input parameters, along with an output parameter that
allows you to access the token following a successful logon. The parameter names aren’t impor-
tant. In this example, the somewhat cryptic names from the Windows API reference are used.
A Boolean result is returned to indicate whether the logon was successful.

Note Windows XP or later operating systems impose restrictions on the use of blank passwords to
prevent network- based attacks. As a result of these restrictions, you won’t be able to use the LogonUser()
function to impersonate an account with a blank password.

Once you have imported the LogonUser() function, you can use it in your code to log the
user in, as shown here:

CHAPTER 22 WINDOWS AUTHENTICATION 1087

Note that you must convert the integer value returned by LogonUser() into an IntPtr in
order to use it with the WindowsIdentity.Impersonate() method.

Performing the Impersonation
Once you have an account token, you can use the WindowsIdentity.Impersonate() method
to start impersonating the corresponding identity. You can use the Impersonate() method
in two ways. You can use the static version, which requires an account token. Alternatively,
you can use the instance version, which impersonates the identity represented by the
corresponding WindowsIdentity object. In either case, the Impersonate() method returns
a WindowsImpersonationContext object that has a single function—it allows you to revert
to the original identity by calling its Undo() method.

Here’s an example of programmatic impersonation at its simplest, using the static version
of the Impersonate() method:

At any time, you can determine the identity that your code is currently executing under by
calling the WindowsIdentity.GetCurrent() method. Here’s a function that uses this technique
to determine the current identity and display the corresponding user name in a label on a web
page:

Using the method, you can create a simple test that impersonates the authenticated IIS
identity and then reverts to the standard identity:

CHAPTER 22 WINDOWS AUTHENTICATION1088

 Figure 22-25 shows the result.

 Figure 22-25. Impersonating a user programmatically

Summary
In this chapter, you learned how to use Windows authentication with ASP.NET to let IIS
validate user identities. You also learned about the different types of authentication, how to
retrieve user information, and how to impersonate users so your code runs under a different
Windows account. Furthermore, you learned how IIS 7.0 and ASP.NET work together when
it comes to Windows authentication. The IIS 7.0 management console is able to configure
both ASP.NET–specific and web server–specific settings for you. This configuration is done in
your web.config as well as in the web server’s central configuration (applicationHost.config),
depending on the feature delegation configuration. By default, features shipping with the web
server are configured centrally, and ASP.NET–specific features are configured in web.config.
However, you can change this behavior by modifying the feature delegation configuration.

Windows authentication and forms authentication.

1089

C H A P T E R 2 3

Authorization and Roles

So far, you’ve seen how to confirm that users are who they say they are and how to retrieve
information about those authenticated identities. This gives your application the basic ability
to distinguish between different users, but it’s only a starting point. To create a truly secure
web application, you need to act upon that identity at various points using authorization.

Authorization is the process of determining whether an authenticated user has sufficient
permissions to perform a given action. This action could be requesting a web page, accessing
a resource controlled by the operating system (such as a file or database), or performing an
 application- specific task (such as placing an order in an order management system or assign-
ing a project in a project management application such as Microsoft Project Server). Windows
performs some of these checks automatically, and you can code others declaratively using the
web.config file. You’ll need to perform still others directly in your code using the IPrincipal
object.

In this chapter, you’ll learn how ASP.NET authorization works, how to protect different
resources, and how to implement your own role- based security.

URL Authorization
The most straightforward way to set security permissions is on individual web pages, web ser-
vices, and subdirectories. Ideally, a web application framework should support resource- specific
authorization without requiring you to change code and recompile the application. ASP.NET
supports this requirement with declarative authorization rules, which you can define in the web.
config file.

The rules you define are acted upon by the UrlAuthorizationModule, a specific HTTP
module. This module examines these rules and checks each request to make sure users can’t
access resources you’ve specifically restricted. This type of authorization is called URL authori-
zation because it considers only two details—the security context of the user and the URL of the
resource that the user is attempting to access. If the page is forbidden and you’re using forms
authentication, the user will be redirected to the login page. If the page is forbidden and you’re
using Windows authentication, the user will receive an “access denied” (HTTP 401) error page,
as shown in Figure 23-1, or a more generic error message or custom error page, depending on
the <customErrors> element.

CHAPTER 23 AUTHORIZATION AND ROLES1090

 Figure 23-1. Trying to request a forbidden web page

Authorization Rules
You define the authorization rules in the <authorization> element within the <system.web>
section of the web.config file. The basic structure is as follows:

In other words, two types of rules exist: allow and deny. You can add as many allow and
deny rules as you want. Each rule identifies one or more users or roles (groups of users). In
addition, you can use the verbs attribute to create a rule that applies only to specific types of
HTTP requests (GET, POST, HEAD, or DEBUG).

You’ve already seen the simplest example in the previous chapters. To deny access to all
anonymous users, you can use a <deny> rule like this:

CHAPTER 23 AUTHORIZATION AND ROLES 1091

In this case, the question mark (?) is a wildcard that represents all users with unknown
identities. This rule is almost always used in authentication scenarios. That’s because you
can’t specifically deny other, known users unless you first force all users to authenticate
themselves.

You can use an additional wildcard—the asterisk (*), which represents all users. For exam-
ple, the following <authorization> section allows access by authenticated and anonymous users:

This rule is rarely required, because it’s already present in the machine.config file. After
ASP.NET applies all the rules in the web.config file, it applies rules from the machine.config
file. As a result, any user who is not explicitly denied access automatically gains access.

Now consider what happens if you add more than one rule in the authorization section:

When evaluating rules, ASP.NET scans through the list from top to bottom. As soon as it
finds an applicable rule, it stops its search. Thus, in the previous case, it will determine that
the rule <allow users="*"> applies to the current request and will not evaluate the second line.
That means these rules will allow all users, including anonymous users. Reversing the order of
these two lines, however, will deny anonymous users (by matching the first rule) and allow all
other users (by matching the second rule).

When you add authorization rules to the web.config file in the root directory of the web
application, the rules automatically apply to all the web resources that are part of the applica-
tion. If you’ve denied anonymous users, ASP.NET will examine the authentication mode. If
you’ve selected forms authentication, ASP.NET will direct the user to the login page. If you’re
using Windows authentication, IIS will request user credentials from the client browser, and
a login dialog box may appear (depending on the protocols you’ve enabled).

In the following sections, you’ll learn how to fine- tune authorization rules to give them
a more carefully defined scope.

Controlling Access for Specific Users
The <allow> and <deny> rules don’t need to use the asterisk or question mark wildcards. Instead,
they can specifically identify a user name or a list of comma- separated user names. For example,
the following authorization rule specifically restricts access from three users. These users will not
be able to access the pages in the directory having a web.config containing these entries in place.
All other authenticated users will be allowed.

CHAPTER 23 AUTHORIZATION AND ROLES1092

You can also use a comma- separated list to deny multiple users at once. Here’s an equiva-
lent version of the previous example that uses only two authorization rules:

Note that in both these cases the order in which the three users are listed is unimport-
ant. However, it is important that these users are denied before you include the <allow> rule.
For example, the following authorization rules won’t affect the user jenny, because ASP.NET
matches the rule that allows all users and doesn’t read any further:

When creating secure applications, it’s often a better approach to explicitly allow specific
users or groups and then deny all others (rather than denying specific users, as in the examples
so far). Here’s an example of authorization rules that explicitly allow two users. All other user
requests will be denied access, even if they are authenticated.

You should consider one other detail. The format of user names in these examples
assumes forms authentication. In forms authentication, you assign a user name when you call
the RedirectFromLoginPage() method. At this point, the UrlAuthorizationModule will use that
name and check it against the list of authorization rules. Windows authentication is a little
different, because names are entered in the format DomainName\UserName or ComputerName\
UserName. You need to use the same format when listing users in the authorization rules. For
example, if you have the user accounts dan and matthew on a computer named FARIAMAT, you
can use these authorization rules:

CHAPTER 23 AUTHORIZATION AND ROLES 1093

Note Make sure you specify the computer or domain name in the users attribute when you use Windows
authentication. You can’t use an alias such as localhost, because this will not be successfully matched.

Controlling Access to Specific Directories
A common application design is to place files that require authentication into a separate direc-
tory. With ASP.NET configuration files, this approach is easy. Just leave the <authorization>
element in the normal parent directory empty, and add a web.config file that specifies stricter
settings in the secured directory.

Remember that when you add the web.config file in the subdirectory, it shouldn’t contain
any of the application- specific settings. In fact, it should contain only the authorization infor-
mation, as shown here:

Note You cannot change the <authentication> tag settings in the web.config file of a subdirectory in your
application. Instead, all the directories in the application must use the same authentication system. However,
each directory can have its own authorization rules.

When using authorization rules in a subdirectory, ASP.NET still reads the authorization
rules from the parent directory. The difference is that it applies the rules in the subdirectory
first. This is important, because ASP.NET stops as soon as it matches an authorization rule. For
example, consider an example in which the root virtual directory contains this rule:

and a subdirectory contains this rule:

In this case, the user dan will be able to access any resource in the root directory but
no resources in the subdirectory. If you reverse these two rules, dan will be able to access
resources in the subdirectory but not the root directory.

CHAPTER 23 AUTHORIZATION AND ROLES1094

To make life more interesting, ASP.NET allows an unlimited hierarchy of subdirectories
and authorization rules. For example, it’s quite possible to have a virtual directory with autho-
rization rules, a subdirectory that defines additional rules, and then a subdirectory inside that
subdirectory that applies even more rules. The easiest way to understand the authorization
process in this case is to imagine all the rules as a single list, starting with the directory where
the requested page is located. If all those rules are processed without a match, ASP.NET then
begins reading the authorization rules in the parent directory, and then its parent directory,
and so on, until it finds a match. If no authorization rules match, ASP.NET will ultimately
match the <allow users="*"> rule in the machine.config file.

Controlling Access to Specific Files
Generally, setting file access permissions by directory is the cleanest and easiest approach.
However, you also have the option of restricting specific files by adding <location> tags to your
web.config file.

The <location> tags sit outside the main <system.web> tag and are nested directly in the
base <configuration> tag, as shown here:

In this example, all files in the application are allowed, except SecuredPage.aspx and
AnotherSecuredPage.aspx, which have an access rule that denies anonymous users.

CHAPTER 23 AUTHORIZATION AND ROLES 1095

Controlling Access for Specific Roles
To make website security easier to understand and maintain, users are often grouped into cat-
egories, called roles. If you need to manage an enterprise application that supports thousands
of users, you can understand the value of roles. If you needed to define permissions for each
individual user, it would be tiring, difficult to change, and nearly impossible to complete with-
out error.

In Windows authentication, roles are automatically available and naturally integrated. In
this case, roles are actually Windows groups. You might use built- in groups (such as Administra-
tor, Guest, PowerUser, and so on), or you can create your own to represent application- specific
categories (such as Manager, Contractor, Supervisor, and so on). Roles aren’t provided intrinsi-
cally in forms authentication alone, but together with membership, ASP.NET employs the roles
API, which is an out-of-the- box implementation for supporting and managing roles in your
application. Furthermore, if you don’t want to use this infrastructure, it’s fairly easy to create
your own system that slots users into appropriate groups based on their credentials. You’ll learn
details about the two ways of supporting roles in the section “Using the Roles API for Role- Based
Authorization” in this chapter.

Once you have defined roles, you can create authorization rules that act on these roles. In
fact, these rules look essentially the same as the user- specific rules you’ve seen already.

For example, the following authorization rules deny all anonymous users, allow two spe-
cific users (dan and matthew), and allow two specific groups (Manager and Supervisor). All
other users are denied.

Using role- based authorization rules is simple conceptually, but it can become tricky
in practice. The issue is that when you use roles, your authorization rules can overlap. For
example, consider what happens if you allow a group that contains a specific user and then
explicitly deny that user. Or consider the reverse—allowing a user by name but denying the
group to which the user belongs. In these scenarios, you might expect the more fine- grained
rule (the rule affecting the user) to take precedence over the more general rule (the rule affect-
ing the group). Or, you might expect the more restrictive rules to always take precedence, as
in the Windows operating system. However, neither of these approaches is used in ASP.NET.
Instead, ASP.NET simply uses the first matching rule. As a result, rule ordering can become
important.

Consider this example:

CHAPTER 23 AUTHORIZATION AND ROLES1096

Here’s how ASP.NET parses these rules:

belongs.

still allowed because the user- specific rule is matched first.

both the Manager and Guest groups. The Guest rule occurs earlier in the list, so those
users would have already been denied.

dan will already have been allowed, because this rule won’t be executed.

denied by one of the preceding rules, are allowed.

Keep in mind that these overlapping rules can also span multiple directories. For example,
a subdirectory might deny a user, while a parent directory allows a user in that group. In this
example, when accessing files in the subdirectory, the user- specific rule is matched first.

File Authorization
URL authorization is one of the cornerstones of ASP.NET authorization. However, ASP.NET
also uses another type of authorization that’s often overlooked or ignored by many develop-
ers. This is file- based authorization, and it’s implemented by the FileAuthorizationModule.
 File- based authorization takes effect only if you’re using Windows authentication. If you’re
using custom authentication or forms authentication, it’s not used.

To understand file authorization, you need to understand how the Windows operating
system enforces file system security. If your file system uses the NTFS format, you can set
ACLs that specifically identify users and roles that are allowed or denied access to individual
files. The FileAuthorizationModule simply checks the Windows permissions for the file you’re
requesting. For example, if you request a web page, the FileAuthorizationModule checks that
the currently authenticated IIS user has the permissions required to access the underlying
.aspx file. If the user doesn’t, the page code is not executed, and the user receives an “access
denied” message.

New ASP.NET users often wonder why file authorization needs to be implemented by
a separate module—shouldn’t it take place automatically at the hands of the operating system?
To understand why the FileAuthorizationModule is required, you need to remember how
ASP.NET executes code. Unless you’ve enabled impersonation, ASP.NET executes under a fixed
user account, such as ASPNET. The Windows operating system will check that the ASP.NET
account has the permissions it needs to access the .aspx file, but it wouldn’t perform the
same check for a user authenticated by IIS. The FileAuthorizationModule fills the gap. It
performs authorization checks using the security context of the current user. As a result, the

CHAPTER 23 AUTHORIZATION AND ROLES 1097

system administrator can set permissions to files or folders and control access to portions of an
ASP.NET application. Generally, it’s clearer and more straightforward to use authorization rules
in the web.config file. However, if you want to take advantage of existing Windows permissions
in a local network or an intranet scenario, you can.

Authorization Checks in Code
With URL authorization and file authorization, you can control access only to individual web
pages. The next step in ensuring a secure application is to build checks into your application
before attempting specific tasks or allowing certain operations. To use these techniques, you’ll
need to write some code.

Using the IsInRole() Method
As you saw in earlier chapters, all IPrincipal objects provide an IsInRole() method, which lets
you evaluate whether a user is a member of a group. This method accepts the role name as
a string name and returns true if the user is a member of that role.

For example, here’s how you can check if the current user is a member of the Supervisors
role:

Remember that when using Windows authentication, you need to use the format
DomainName\GroupName or ComputerName\GroupName. Here’s an example:

This approach works for custom groups you’ve created but not for built- in groups that are
defined by the operating system. If you want to check whether a user is a member of one of the
 built- in groups, you use this syntax:

Of course, you can also cast the User object to a WindowsPrincipal and use the over-
loaded version of IsInRole() that accepts the WindowsBuiltInRole enumeration, as described
in Chapter 22.

CHAPTER 23 AUTHORIZATION AND ROLES1098

Using the PrincipalPermission Class
.NET includes another way to enforce role and user rules. Instead of checking with the
IsInRole() method, you can use the PrincipalPermission class from the System.Security.
Permissions namespace.

The basic strategy is to create a PrincipalPermission object that represents the user or role
information you require. Then, invoke the PrincipalPermission.Demand() method. If the cur-
rent user doesn’t meet the requirements, a SecurityException will be thrown, which you can
catch (or deal with using a custom error page).

There are four overloads of the constructor of the PrincipalPermission, from one up to three
parameters, which are in turn evaluated by the Demand() method of the class. One parameter
is for the user name, another one is for the role name, and the third one specifies a flag that
asks the PrincipalPermission’s Demand() method to verify if the user is authenticated or not
(isAuthenticated). The last and fourth overload accepts a PermissionState parameter as the only
parameter. This parameter is inherited by the base class of the PrincipalPermission class. It is
out of scope for this book and not relevant for the further sections in this chapter. You can omit
either one of these parameters by supplying a Nothing reference in its place. For example, the
following code tests whether the user is a Windows administrator:

The advantage of this approach is that you don’t need to write any conditional logic. Instead,
you can simply demand all the permissions you need. This works particularly well if you need
to verify that a user is a member of multiple groups. The disadvantage is that using exception
handling to control the flow of your application is slower. Often, PrincipalPermission checks are
used in addition to web.config rules as a failsafe. In other words, you can call Demand() to ensure
that even if a web.config file has been inadvertently modified, users in the wrong groups won’t be
allowed.

Merging PrincipalPermission Objects
The PrincipalPermission approach also gives you the ability to evaluate more complex authenti-
cation rules. For example, consider a situation where UserA and UserB, who belong to different
groups, are both allowed to access certain functionality. If you use the IPrincipal object, you need
to call IsInRole() twice. An alternate approach is to create multiple PrincipalPermission objects
and merge them to get one PrincipalPermission object. Then you can call Demand() on just this
object.

CHAPTER 23 AUTHORIZATION AND ROLES 1099

Here’s an example that combines two roles:

This example checks that a user is a member of either one of the two Windows groups,
Administrators or Guests. You can also ensure that a user is a member of both groups. In this
case, use the PrincipalPermission.Intersect() method instead of PrincipalPermission.Union().

Using the PrincipalPermission Attribute
The PrincipalPermission attribute provides another way of validating the current user’s creden-
tials. It serves the same purpose as the PrincipalPermission class, but it’s used declaratively. In
other words, you attach it to a given class or method, and the CLR checks it automatically when
the corresponding code runs. The exception handling now works a little bit differently: this time
you cannot catch the exception within the function on which the attribute has been applied.
You have to catch the exception in the function that actually calls this function. If you apply the
PrincipalPermission attribute on an event procedure (such as Button_Click), you have to catch
the exception in the global Application_Error event, which you can find in the Global.asax file.

When you use a PrincipalPermission attribute, you can restrict access to a specific user or
a specific role. Here’s an example that requires the user accessing the page to be in the server’s
Administrators group. If the user is not member of the web server’s Administrators group, the
ASP.NET runtime throws a security exception.

Again, with the previous example you have to catch the exception in the global error han-
dler (Application_Error) because your code is not the caller of this web page. Otherwise, ASP.NET
would raise the exception and display the ASP.NET error page according to the web.config
configuration. The following example restricts a particular method to a specific role:

CHAPTER 23 AUTHORIZATION AND ROLES1100

The caller of this method can catch the SecurityException with a try/catch block.
PrincipalPermission attributes give you another way to safeguard your code. You won’t

use them to make decisions at runtime, but you might use them to ensure that even if web.
config rules are modified or circumvented, a basic level of security remains.

Note Changing declarative permissions means that you need to recompile the application. But why use
them if every change requires recompilation? Don’t you want to have the possibility of managing roles in
terms of adding, deleting, and changing them? Yes, and that requires more generic code, but it can’t be done
with declarative permissions. So, when is it helpful to use declarative permissions? Well, declarative permis-
sions are especially suited for fixed roles in your application that cannot be deleted anyway. For example, an
Administrators role is required in most applications and therefore cannot be deleted. So, you can secure
functionality that should be accessible to only administrators with declarative permissions. Typical examples
in Windows are all the built- in groups such as Administrators, Power Users, Backup Operators, and Users.

Using the Roles API for Role- Based Authorization
ASP.NET ships with a ready-to- use infrastructure for managing and using roles (as well as
the membership API introduced in Chapter 21). This infrastructure—which is completely
extensible through providers such as the membership API—includes prebuilt functionality for
managing roles, assigning roles to users, and accessing all the role information from code. In
more detail, the roles infrastructure includes the following:

tables based on the Membership database introduced in Chapter 21. These tables associate
membership user entries with roles in a many-to- many relationship and are automatically
created when calling the aspnet_regsql.exe tool (also introduced in Chapter 21).

through the RoleManagerModule (also included with the roles infrastructure).

To use this infrastructure, you have to first enable it. You can do this either by checking
the Enable Roles for This Web Site box when running through the Security Setup Wizard or by
clicking the Enable Roles link in the Security tab of the WAT. Figure 23-2 shows both of these
possibilities.

CHAPTER 23 AUTHORIZATION AND ROLES 1101

 Figure 23-2. Configuring the roles API

In both cases, the tool adds a little configuration entry to the application’s web.config file.
You can do this manually, just as you can enable the roles API.

With this configuration in place, ASP.NET automatically creates a file- based database,
ASPNETDB.MDF, in the application’s App_Data directory, as already described in Chapter 21.
If you want to use a custom store, you have to complete the following steps:

 1.
command scripts included in the .NET Framework directory. Both were introduced
in Chapter 21.

 2. Configure the roles provider to use the previously created custom store.

CHAPTER 23 AUTHORIZATION AND ROLES1102

You can configure the roles provider through the <roleManager> tag. You can either use
a different database or use a completely different store if you want. In addition, you can con-
figure certain properties through the <roleManager> tag that can’t be configured in the WAT.

As soon as you have added this configuration entry to your web.config file, you can select
the provider through the WAT. Just switch to the Provider tab, and then click the link Select
a Different Provider for Each Feature. Figure 23-3 shows the provider selection in the WAT.

CHAPTER 23 AUTHORIZATION AND ROLES 1103

 Figure 23-3. The roles provider in the web- based configuration tool

 Table 23-1 lists the properties you can configure through the <roleManager> configura-
tion tag.

Table 23-1. Options for the <roleManager> Configuration

Option Description
enabled Indicates whether the roles API is enabled (true) or not (false).

defaultProvider Optional attribute for specifying the currently active provider for stor-
ing role information. If you want to use a different provider, you have
to configure it and set the defaultProvider attribute to the name of the
provider you want to use.

cacheRolesInCookie Instead of reading the roles every time from the back- end store, you can
store roles in a cookie. This attribute indicates whether a cookie is used.

cookieName If roles are cached in a cookie, you can specify a name for this cookie
through this attribute.

cookiePath Specifies the path of the cookie where roles are cached for your applica-
tion. This allows you to specify the part of your application for which
the cookie is valid. The default value is /.

Continued

CHAPTER 23 AUTHORIZATION AND ROLES1104

Table 23-1. Continued

Option Description

cookieProtection The roles cookie can be encrypted and signed. You specify the level of
protection through this attribute. Valid values are All (encrypt and sign),
Encryption, Validation, and None.

cookieRequireSSL Specifies whether the cookie will be returned by ASP.NET only if SSL is
enabled (true) or in any other case (false). If this attribute is set to true
and SSL is not activated, the runtime simply doesn’t return the cookie,
and therefore role checks always happen against the underlying roles
provider.

cookieTimeout Gets or sets a timeout for the roles cookie in minutes with a default of 30
minutes.

cookieSlidingExpiration Specifies whether the cookie’s timeout will be extended with each
request the user is performing against the ASP.NET application (true) or
not (false). The default is true.

createPersistentCookie If set to true, the cookie will be stored persistently on the client machine.
Otherwise, the cookie is just a session cookie that will be deleted when
the user is closing the browser.

domain Specifies the valid domain for the role cookie.

maxCachedResults Specifies the maximum number of role names persisted in the cookie.

In the previous example, you configured the SqlRoleProvider. The provider includes
a couple of additional settings you can configure through web.config, as shown in Table 23-2.

 Table 23-2. Additional Properties of the SqlRoleProvider

Prooperty Description
name Name of the provider. This name can be used in the defaultProvider

attribute described in Table 23-1 for specifying the provider by the
application.

applicationName Name of the application for which the roles are managed.

description Short, friendly description of the provider.

connectionStringName Name of the connection string specified in the web.config file’s
<connectionStrings> section that will be used for connecting to the
 back- end roles store.

In addition to the SqlRoleProvider, ASP.NET ships with a provider that can be used on
Windows Server 2003 with Authorization Manager. You can also create and use your own
custom providers, as you will learn in Chapter 26. Table 23-3 shows the classes included in
the roles API framework.

CHAPTER 23 AUTHORIZATION AND ROLES 1105

 Table 23-3. The Fundamental Roles API Classes

Class Description
RoleManagerModule This module ensures that roles will be assigned to the cur-

rently logged- on user for every request. It attaches to the
Application_AuthenticateRequest event and creates an instance
of RolePrincipal containing the roles the user is assigned to
automatically if the roles API is enabled in web.config.

RoleProvider Base class for every roles provider that defines the interface
you must implement for a custom RoleProvider. Every custom
provider must be inherited from this class.

RoleProviderCollection A collection of roles providers. This collection allows you to
iterate through the configured roles providers on your system
and for your application, which is handy when writing an ad-
ministration application or pages for your application.

SqlRoleProvider
databases.

WindowsTokenRoleProvider Gets role information for an authenticated Windows user based
on Windows group associations.

AuthorizationStoreRoleProvider Implementation of a roles provider for storing roles in an

ships with Windows Server 2003 and allows you to declaratively
define application roles and permissions for this role. Your ap-
plication can use Authorization Manager for programmatically
authorizing users.

Roles You use the Roles class as your primary interface to the roles
store. This class includes methods for programmatically man-
aging roles.

RolePrincipal This is a IPrincipal implementation that connects the configured
roles with the authenticated user. It is created automatically by
the RoleManagerModule if the roles API is enabled.

As soon as you have configured the roles API, you can create users and roles and then assign
users to these roles using either the WAT or the Roles class in your code. On the Security tab, just
click the Create or Manage Roles link. Then you can create roles and add users to roles, as shown
in Figure 23-4.

CHAPTER 23 AUTHORIZATION AND ROLES1106

 Figure 23-4. Adding users to roles

After you have configured users and roles, you need to configure the authorization rules
for your application. You have already learned all the necessary details. Just configure the
appropriate <authorization> sections in the different directories of your application. Fortu-
nately, you even don’t have to do this manually. When selecting the Security tab, you just need
to click one of the links in the Add New Access Rule section, as shown in Figure 23-5.

When the roles API is enabled, the RoleManagerModule automatically creates a
RolePrincipal instance containing both the authenticated user’s identity and the roles of the
user. The RolePrincipal is just a custom implementation of IPrincipal, which is the base inter-
face for all principal classes. It therefore supports the default functionality, such as access to
the authenticated identity and a method for verifying a role membership condition through
the IsInRole() method. Furthermore, it employs a couple of additional properties for accessing
more detailed information about the principal. You can use the properties in the following code
for extracting information from the instance as well as for performing authorization checks by
calling the IsInRole() method:

CHAPTER 23 AUTHORIZATION AND ROLES 1107

 Figure 23-5. Configuring access rules with the WAT

Using the LoginView Control with Roles
In the previous chapter, you learned details about the security controls that ship with ASP.NET.
One of these controls is the LoginView control. You used this control in Chapter 21 for dis-
playing different controls for anonymous and logged- in users. The control uses templates
for implementing this functionality. In Chapter 21 you used the <LoggedInTemplate> and
<AnonymousTemplate> templates.

CHAPTER 23 AUTHORIZATION AND ROLES1108

The control supports one additional template that enables you to create different views
based on the roles to which a user belongs. For this purpose you need to add a RoleGroups
template with <asp:RoleGroup> controls. Within every <asp:RoleGroup> control, you specify
a comma- separated list of roles in the Roles attribute for which its <ContentTemplate> will be
displayed, as follows:

The LoginView control in the previous code displays different content for logged- in users
and for users assigned to specific roles. For example, for users in the Admin role the control
displays the text “Only Admins will see this,” while for users in the Contributor role it displays
the text “This is for contributors!” Also, for users who are associated with the Reader or Designer
role, it displays different content.

It’s important to understand that just one of these templates will be displayed. The con-
trol simply displays the first template that fits the logged- in user. For example, if you have a user
associated with the Contributor, Reader, and Designer roles, the first matching template is the
<asp:RoleGroup> for contributors. The other role group will simply not be displayed. The
LoggedInTemplate, for example, will be displayed only for authenticated users with no match-
ing <asp:RoleGroup> element. As soon as a matching role group is found, the contents of the
LoggedInTemplate will not be displayed.

Accessing Roles Programmatically
As is the case for the membership API introduced in Chapter 21, the roles API includes an API
that allows you to perform all tasks from code. You can programmatically add new roles, read
role information, and delete roles from your application. Furthermore, you can associate users
with roles as well as get users associated with a specific role. You can do all this by calling
methods of the Roles class.

CHAPTER 23 AUTHORIZATION AND ROLES 1109

Most of the properties included in the Roles class just map to the settings for the
<roleManager> tag described in Table 23-1. Therefore, Table 23-4 includes the additional
properties and the Roles class’s methods that you can use for managing and accessing the
roles API programmatically.

 Table 23-4. Members of the Roles Class

Member Description
Provider Returns the provider currently used by your application.

Providers Returns a collection of all the available providers on the system and
for your application. It therefore returns the providers configured in
machine.config and in web.config of your application.

AddUserToRole Accepts a user name and a role name as a string parameter and adds
the specified user to the specified role.

AddUserToRoles Accepts a user name as a string parameter and role names as an array
of strings and adds the specified user to all the roles specified in the
role names parameter.

AddUsersToRole Accepts a string array with user names and a string parameter that
specifies a role name and adds all the specified users to the role speci-
fied in the second parameter.

AddUsersToRoles Accepts a string array with user names and a second one with role
names and adds all the users in the user names parameter to all the
roles in the role names parameter.

CreateRole Creates a new role.

DeleteRole Deletes an existing role.

FindUsersInRole Accepts a string representing the role name and a second string speci-
fying a pattern for user names to match. The method returns a list of
users that are associated with the role, and matches the pattern of the
second parameter of the method (usernameToMatch).

GetAllRoles Returns a string array containing all the role names of the roles avail-
able in the role store of the configured provider.

GetRolesForUser Returns a string array containing all the roles the specified user is as-
sociated with. There is also a version that doesn’t take any parameters,
which gets the roles of the currently logged on user.

GetUsersInRole Returns a list of users who are associated with the role passed in as
a parameter.

IsUserInRole Returns true if the specified user is a member of the specified role.

RemoveUserFromRole Removes a single user from the specified role.

RemoveUserFromRoles Removes the specified user from all roles specified.

RemoveUsersFromRole Removes all the specified users from a single role.

RemoveUsersFromRoles Removes all the specified users from all the specified roles.

RoleExists Returns true if a role exists and otherwise false.

A good use for accessing roles programmatically is to associate users to roles automati-
cally when they register themselves. Of course, this is useful only for specific roles. Imagine
that your application supports a role called Everyone, and every single user should be a mem-
ber of this role. If you register users on your own, you can enter this relationship manually. But

CHAPTER 23 AUTHORIZATION AND ROLES1110

if your application supports self- registration for Internet users, you can’t do this. Therefore,
you somehow have to make sure users will be associated with the Everyone role automatically.

With your first attempt, you might want to catch the CreatedUser event of the
CreateUserWizard control, but that’s not sufficient. Remember the existence of the ASP.NET
WAT, where you can create users. In this case, catching the CreatedUser event of the con-
trol placed in your application won’t help. Therefore, you have to find a different solution.
You need an application- wide event for this purpose, although this will not be raised by
the configuration application because it is a different application. One possibility is to
catch the Application_AuthenticateRequest event; within the event you verify whether the
user is a member of the Everyone class. If not, you can add the user automatically. This shifts
the task of adding a user automatically to the role to the point of authentication, which affects
every user. To do so, you just have to add a global application class to your project and add
the following code.

Caution You should do something like this only for the lowest privileged roles, such as Everyone. It’s
never a good idea to perform such an action for any other type of role.

The previous code reads the name of the Everyone role from the configuration file so that
it is not hard- coded into the application. It then uses the Roles class to check whether the user
is already associated with the role, and if not, it checks whether the role exists. If the user is not
associated with the role, and the user exists in the system, it uses the Roles.AddUsersToRole
method for programmatically adding the user to the Everyone role.

CHAPTER 23 AUTHORIZATION AND ROLES 1111

Caution You might want to use User.IsInRole() in the previous code; however, this is not valid. When
the application- wide Application_AuthenticateRequest is called, the RoleManagerModule itself has not been
called yet. Therefore, the RolePrincipal with the association of the user and its roles has not been created
yet, so a call such as User.IsInRole("Everyone") would return false. Later in your page code—for example, in
a Page_Load routine—the RolePrincipal is already initialized, and the call to User.IsInRole("Everyone") will
work appropriately.

Using the Roles API with Windows Authentication
The roles API comes with a provider that integrates with Windows roles for Windows authentica-
tion: the WindowsTokenRoleProvider. This provider retrieves the Windows group membership
information for the currently logged- on user and provides it in the same way for your application
as you saw previously with the SqlRoleProvider. When using the WindowsTokenRoleProvider,
you have to configure your application using Windows authentication and then configure the
WindowsTokenRoleProvider as follows:

With this configuration in place, the user is authenticated through Windows authentication.
The RoleManagerModule automatically creates an instance of RolePrincipal and associates
it with the HttpContext.Current.User property. Therefore, you can use the RolePrincipal as
follows—there is no difference compared to other roles providers in terms of usage:

CHAPTER 23 AUTHORIZATION AND ROLES1112

You can see the result of the previous code in Figure 23-6.
The provider- based architecture enables you to use Windows authentication with Win-

dows groups without changing the inner logic of your application. Everything works the same
as with the SqlRoleProvider. The same is true for the membership API introduced in Chapter 21.
When configuring another provider, you don’t have to change your code; however, you should
have some programmatic authorization checks with hard- coded role names in your code,
because the Windows groups include the domain qualifier and the custom roles do not. To
avoid this, you can add functionality to your application that allows you to associate roles with
permissions in either a database or a configuration file. The way you do this depends on the
requirements of your application.

 Figure 23-6. Results of querying the RolePrincipal with Windows authentication

We suggest not using Windows groups for authorization in your application directly except
for a few of the built- in groups such as the Administrators group. In most cases, it’s useful to
define roles that are specific to your application. This is why:

CHAPTER 23 AUTHORIZATION AND ROLES 1113

machine on which they exist.

-
nizational and network management requirements of the enterprise. Often these
requirements do not map to the application requirements.

application more flexible and usable across multiple types of network structures.

A good example that introduces such a design is Windows SharePoint Services. SharePoint
(currently available in version 2007) is a ready-to- use portal solution built on ASP.NET 2.0 that
can be used for free with Windows Server 2003. SharePoint includes prebuilt functionality for
document libraries, meeting workspaces, and lists. You can use SharePoint for collaboratively
working in teams—sharing documents, planning meetings, and more.

For example, SharePoint defines application- specific roles that are typical for a collabora-
tive portal solution. You can assign both Windows users and Windows groups to these roles.
SharePoint by default includes the roles Administrator, Web Author, Designer, and Reader.
All of these roles are optimized for performing authorization within the portal. For example,
while a Web Author automatically gets permission to create new workspaces for meetings
and to structure contents displayed on the portal, a Reader is just able to view information on
the portal. Every Windows user assigned to one of these roles, or every Windows user who is
a member of a Windows group assigned to one of these roles, automatically gets the appropri-
ate permissions. Therefore, SharePoint is independent of the network structure deployed in
the Windows network where it is used. You will learn more details about implementing such
concepts in your own application in Chapter 26, where you will learn details about custom
membership and roles providers.

Protecting Non- ASP.NET Resources in IIS 5 and 6
All the authorization and authentication systems you’ve learned about so far have one limita-
tion: they work only on file types that ASP.NET handles. In other words, if a user requests
a GIF file or HTML page from the same virtual directory, that user will completely bypass your
authentication and authorization mechanisms. Depending on your security needs, this may
be completely acceptable, simply irrelevant, or potentially dangerous.

This behavior is a result of the way IIS 5.x and IIS 6.0 use file mappings, which were first
covered in Chapter 18. By default, ASP.NET is registered to deal with a small set of relevant
files. These include files it needs to execute—such as web pages and web services—and files it
wants to protect—such as source code files, configuration files, and project files. If you want
requests for other file types to filter through the ASP.NET request processing architecture and
security models, you have to map those file types to the ASP.NET ISAPI filter.

Mapping additional file types to ASP.NET gives you some extra features. For example, it
gives you the ability to deny anonymous user requests for image files. However, it can also
add overhead, because files that would normally be served directly now require ASP.NET to
perform some work. This overhead is fairly minimal if you aren’t expecting users to request
 non- ASP.NET file types and if you’re simply using this technique to provide a higher level of
security.

CHAPTER 23 AUTHORIZATION AND ROLES1114

Furthermore, if you map a file type with the ASP.NET runtime, you have to tell the run-
time how it should process this file type. You can do this by creating your own HTTP handler,
as you will learn later in this chapter.

Note If you’re using Windows authentication, it is technically possible to force IIS to authenticate all
requests, even those that are for non- ASP.NET files. To do so, you simply need to remove the anonymous
access option for the virtual directory. However, this option isn’t as useful as it seems, because it doesn’t
allow you to enforce authentication for specific files or file types. As a result, you may find it more useful
to allow anonymous access but use the techniques described in the following sections to protect specific
resources.

Adding a File Type Mapping
To add a file type mapping to IIS 5.x or IIS 6.0, follow these steps:

 1. Launch IIS Manager, and browse to the virtual directory in the tree.

 2. Right-click the virtual directory, and select Properties.

 3. Choose the Virtual Directory tab. Then click the Configuration button in the Applica-
tion section of the Virtual Directory tab. The Application Configuration dialog box will
appear, as shown in Figure 23-7.

 4. You need to add a new mapping for each file type you want to protect with forms
authentication. This mapping will route requests for that file type to the ASP.NET ISAPI
DLL. Click the Add button to create a new mapping. You’ll see the dialog box shown in
 Figure 23-8.

 5. The executable you want to use is aspnet_isapi.dll. The exact directory depends on
the version of ASP.NET you have installed. In .NET 2.0, it’s c:\[WinDir]\Microsoft.Net\
Framework\v2.0.50727\aspnet_isapi.dll. You also need to enter the file extension you
want to map. Finally, you should also specify that you want to perform this mapping
for all verbs (a verb is a method for requesting the file from the server over HTTP, such
as GET or POST).

 6. Once you have taken these steps, click OK to add the extension.

CHAPTER 23 AUTHORIZATION AND ROLES 1115

 Figure 23-7. Application mappings

 Figure 23-8. Adding an application mapping

CHAPTER 23 AUTHORIZATION AND ROLES1116

Writing a Custom HTTP Handler
Every resource processed by ASP.NET is processed by an actor called an HTTP handler. For exam-
ple, web pages with the extension .aspx are processed by a page handler, while stand- alone web
services with the extension .asmx are processed by a SOAP handler. All these classes are imple-
mentations of the IHttpHandler interface.

When you associate your custom file type with the ASP.NET runtime, as shown in the pre-
vious section, you have to tell ASP.NET how to process this resource. The way to do this is to
write a custom HTTP handler class that implements this interface. A custom handler process-
ing any type of binary file looks like this:

CHAPTER 23 AUTHORIZATION AND ROLES 1117

This handler simply determines the local physical path of the resource requested by
calling Server.MapPath. Afterward it uses a FileStream for opening the resource and returning
the bytes included for this resource. You have to configure this HTTP handler as well. For this
purpose, you just add a <httpHandlers> section within the <system.web> section of your web.
config application configuration, as follows:

The type attribute includes the full namespace and class name of the IHttpHandler imple-
mentation. Optionally, if it is placed in a different assembly, you have to specify the name of
the assembly in the format "namespace.typename, assembly" within it. The additional attri-
butes specify the HTTP verb (GET, PUT, POST, or * for all) as well as the path and file types for
which the handler will be used.

PROBLEMS WITH SOME FILE TYPES

Developers have reported some problems when using forms authentication to protect Adobe Acrobat (PDF)
files. It’s possible that similar problems could affect other file types, especially if they require a web browser
 plug- in to be displayed.

With PDF files, the problems are caused by a combination of the ActiveX component that allows
Internet Explorer to view Acrobat files and IIS. The problem is that PDF files are sent from the server to the
client in chunks so that the user does not have to wait until the whole file has downloaded to start viewing
it. For some reason, redirections adversely affect this system—for example, using the Response.Redirect()
method. Redirecting to a PDF file causes the file to be reported as corrupted. This creates problems if you
try to use forms authentication to protect PDF files. After the user logs in, the redirection back to the original
PDF causes the file to be reported as corrupted or simply not displayed.

To solve this problem, you need to avoid using FormsAuthentication.RedirectFromLoginPage() or
Response.Redirect() to send the user back to the PDF file. Fortunately, you simply need to write an HTML
page that instructs the browser to redirect itself using the Response.AppendHeader() method. This header
has the name refresh and takes the form 0;url=[originalUrl]. This causes the browser to immediately load
the target URL (the 0 indicates a delay of 0 seconds).

Here’s the code statement you need to use instead of the RedirectFromLoginPage() method:

Remember that because you aren’t using the RedirectFromLoginPage() method, you’ll also need to
create and attach the cookie before you perform the redirect

CHAPTER 23 AUTHORIZATION AND ROLES1118

Authorization and Roles in IIS 7.0
As you learned in Chapter 19, IIS 5.x and IIS 6.0 have limited built- in support for authorization

this changes, as IIS 7.0 now natively supports the same URL- based authorization mechanisms
as ASP.NET does. On the one hand, IIS 7.0 ships with its own UrlAuthorizationModule. This
allows configuration of URL- based authorization in the <authorization> configuration option
as a part of the <system.webServer> section of the web.config configuration file. On the other
hand, when running in ASP.NET integrated mode you can also configure web applications
hosted in IIS 7.0 to leverage the ASP.NET- based URL authorization module directly. You can
therefore leverage existing <authorization> configurations within the <system.web> section.

IIS 7.0 allows you to manage access rules for your own, native authorization module for
websites directly from within the management console. Even more, you can manage roles
stored in your configured roles API provider’s data store directly from the management con-
sole, as well. You already saw how to configure access rules using the IIS management console
on IIS 7.0 in Chapter 20, where you configured some Basic authentication rules for enabling
forms authentication for ASP.NET and non- ASP.NET applications. Figure 23-9 shows the
authorization configuration feature of the IIS 7.0 management console, again. In this section
we will drill into some details about IIS 7.0 authorization mechanisms.

The IIS 7.0 URL authorization feature works completely independently of ASP.NET; it is
implemented in its own, native HTTP module shipping with IIS 7.0. As mentioned earlier, it is
configured in a separate configuration section within your web.config configuration file. Any
authorization rule you configure through the IIS 7.0 management console gets added to an
<authorization> configuration section within the <system.webServer> section of the web.con-
fig file. You learned about the details of the IIS 7.0 configuration architecture in Chapter 18.
A typical IIS 7.0 authorization configuration in a web.config file looks similar to the following
one and conceptually works the same way as ASP.NET authorization rules do.

CHAPTER 23 AUTHORIZATION AND ROLES 1119

 Figure 23-9. Configuring authorization rules in IIS 7.0

The configuration within that section adheres to the same rules that the authorization
configuration of ASP.NET introduced at the beginning of this chapter does. IIS 7.0 evaluates
these rules from top to bottom, and as soon as it finds an applicable rule it stops searching
immediately. Again, don’t forget that the authorization is implemented in its own, native
UrlAuthorizationModule.dll module, which ships with IIS 7.0 (see Figure 23-10).

CHAPTER 23 AUTHORIZATION AND ROLES1120

 Figure 23-10. The native and the managed URL authorization modules

Why is it important to understand this difference? First of all, you can use the IIS 7.0
UrlAuthorizationModule.dll independently from ASP.NET. When you install IIS 7.0 on a machine
without installing ASP.NET in the web server, you still could use URL- based authorization
through the native module. However, a second reason is much more important for an
ASP.NET developer. The native URL authorization module shipping with IIS 7.0 is able to
correctly identify logged in users authenticated by all possible authentication modules, includ-
ing Basic authentication, Windows authentication, and even forms authentication. This is
because the module has been developed so that it understands the forms authentication ticket
(either encoded in a cookie or the query string) correctly. But unfortunately it has not been
implemented with ASP.NET roles in mind.

What is the reason for that? Well, roles are extracted by the ASP.NET infrastructure
at a certain stage within the application’s life cycle from storage (for example, a database
configured for the roles provider). Role information is then encapsulated in managed objects
implementing the IPrincipal interface, and therefore stored in pure, managed .NET objects
that are not accessible to native modules of IIS 7.0. Therefore, native modules of IIS 7.0 such
as the UrlAuthorizationModule cannot make use of this information. So, you cannot con-
figure any ASP.NET- based roles in conjunction with the native IIS 7.0 URL authorization
module within the <authorization> configuration of the <system.webServer> section. In real-
ity, that means you can use only Windows Roles principal names when using the native
UrlAuthorizationModule shipping with IIS 7.0.

As mentioned before, in the case of user names you can fully leverage the authorization
management of IIS 7.0. This is because the native module is implemented in a way that rec-
ognizes users authenticated by native modules and users authenticated by managed modules
such as the FormsAuthenticationModule. To make use of the FormsAuthentication module in
conjunction with the native UrlAuthorizationModule, the FormsAuthentication module needs
to be enabled for the native processing queue, as you learned in Chapter 20.

Finally, that means role- based authorization is one of the few exceptions where you still
have to keep IIS- based and ASP.NET- based configuration in mind separately.

CHAPTER 23 AUTHORIZATION AND ROLES 1121

Authorization with ASP.NET Roles in IIS 7.0
Now we know that the native URL authorization module shipping with IIS 7.0 does not under-
stand ASP.NET- specific role information, as this information is only encapsulated into managed
objects implementing managed interfaces. On the other hand, running IIS 7.0 in ASP.NET inte-
grated mode provides a unified HTTP processing pipeline where native and managed modules
are processed within the same HTTP module pipeline. Therefore, you can use any managed
HTTP module written with the .NET language of your choice to extend the default behavior of
IIS 7.0.

That means you can write your own HTTP modules with .NET and integrate them into
the IIS 7.0 processing pipeline. But it also means that you can integrate existing ASP.NET
modules such as the FormsAuthentication or even the UrlAuthorization modules directly
into the processing pipeline. That enables you to achieve the following two things much
more easily compared to previous versions of IIS:

ASP.NET

Both targets can be achieved the same way—you just need to enable the managed
UrlAuthorization module shipping with ASP.NET to be processed in the native pipeline
together with other IIS 7.0 modules (and ASP.NET modules) as well. You can enable this con-
figuration option in the IIS 7.0 modules configuration feature, as outlined in Figure 23-11.

 Figure 23-11. Enabling the UrlAuthorization managed module for native processing

As soon as you have enabled the managed UrlAuthorization module, any resource of the
website gets protected by ASP.NET security, as well. That’s true for images, text files, or any
other type of file such as classic ASP pages or even PHP pages. Now you can configure autho-
rization roles for accessing all of these resources through the <authorization> configuration
section within the <system.web> section of your web.config file. Figure 23-12 illustrates the

CHAPTER 23 AUTHORIZATION AND ROLES1122

power of this IIS 7.0 and ASP.NET integrated way of security. Even though IIS 7.0 authorization
is configured to allow anyone access to the site, whenever the browser is accessing an image,
it gets redirected to the forms authentication login page because of ASP.NET authorization
configuration.

The configuration within the web.config file looks similar to the following one for the case
demonstrated in Figure 23-12.

CHAPTER 23 AUTHORIZATION AND ROLES 1123

 Figure 23-12. The ASP.NET UrlAuthorization module in action for other file types

As you can see in the preceding configuration, the IIS 7.0 authorization allows access to the
website to any user, whereas the ASP.NET authorization clearly denies access to anonymous users.
Furthermore, the IIS 7.0 configuration includes both the ASP.NET FormsAuthenticationModule
and the ASP.NET UrlAuthorizationModule in its processing pipeline, which means they will affect
access to any resource—whether ASP.NET- based or not ASP.NET- based—within the web applica-
tion directory. This also means that you can leverage roles managed by ASP.NET through the roles
API and roles API framework for any resource hosted in an IIS 7.0 web application.

Using the UrlAuthorization module of ASP.NET for the native processing pipeline only
makes sense when not using Windows authentication. That’s because with Windows authen-
tication you can configure any declarative authorization rules directly through the IIS 7.0
management console to leverage the out-of-the- box functionality provided by the native Url-
AuthorizationModule shipping with IIS 7.0.

Managing ASP.NET Roles with IIS 7.0
Although the native UrlAuthorization module shipping with IIS 7.0 does not understand appli-
cation roles managed by ASP.NET through the roles API or through any other managed- only
mechanism, it allows you to manage roles for the roles API with any provider configured in
your web.config directly through its management console. You can do this through the .NET
Roles configuration feature, as shown in Figure 23-13.

You can add, delete, or modify roles directly through the IIS management console using
this feature, whereas IIS leverages the roles API provider configured in your web.config. You
can use any provider, even custom providers, as you will learn in Chapter 26. You can config-
ure providers through the Providers configuration feature of the IIS 7.0 management console,
as shown in Figure 23-14.

CHAPTER 23 AUTHORIZATION AND ROLES1124

 Figure 23-13. The .NET Roles configuration feature in action

 Figure 23-14. Configuring roles providers with IIS 7.0

CHAPTER 23 AUTHORIZATION AND ROLES 1125

The provider feature allows you to configure providers for .NET users (membership API,
Chapter 21), .NET Roles as shown in Figure 23-14, and .NET Profiles (see Chapter 24 for more
details). The configuration feature shown in Figure 23-13 leverages the provider configured for
.NET Roles for any management operation.

Together with the possibilities introduced in the previous section of this chapter (autho-
rization with ASP.NET Roles in IIS 7.0) and the possibilities introduced in Chapters 20 and 21,
this allows you to leverage the full power of the ASP.NET framework, including forms authenti-
cation, the membership API, and the roles API for any web application hosted in IIS 7.0—even
if it is not ASP.NET- based. This is an extremely useful and powerful possibility provided by IIS 7.0,
thanks to its new architecture.

Summary
Authorization provides an effective way to control access to resources. In this chapter, you
learned how to safeguard different pages, directories, and code routines in your web applica-
tion using authorization. You also saw how to use the roles API for managing and associating
users with roles for simpler authorization. Finally, you learned about the new authorization
possibilities introduced with IIS 7.0. Then you learned about IIS 7.0 and its new possibilities
for authorization. IIS 7.0 now ships with its own, native UrlAuthorization module that allows
declarative authorization even without ASP.NET being involved. Although the native autho-
rization module shipping with IIS 7.0 is able to understand all types of authenticated users
(Basic, Windows, and forms), it is unable to extract ASP.NET roles from managed applications,
as they are encapsulated behind pure managed objects. However, you learned how to solve
this problem by leveraging the ASP.NET integrated mode of IIS 7.0 and configuring the
UrlAuthorization module shipping with ASP.NET. You configured these to be available even
for applications that aren’t ASP.NET- based as a general authorization mechanism across many
IIS 7.0- based web applications.

In the next chapter, you’ll take a look at a few advanced security techniques that you can
use to extend ASP.NET authentication and authorization.

1127

C H A P T E R 2 4

Profiles

In previous chapters, you learned how to use a range of ASP.NET security features. Many of
these features are geared to identifying individual users (authentication) and then determin-
ing what actions they should be able to perform (authorization). But you need to uniquely
identify and authenticate users for another important reason—to keep track of user- specific
information.

In ASP.NET 1.x, the only practical option to store user- specific information was to create
your own data access component (a topic covered in Chapter 8). Your web page could call the
methods of your data access component to retrieve the current user’s data and then save any
changes. As you’ll see in this chapter, this approach still makes a lot of sense in many scenar-
ios. However, ASP.NET 2.0 introduced another option with the profiles feature, which remains
unchanged in ASP.NET 3.5. When you use profiles, ASP.NET handles retrieving and updating
 user- specific data automatically by using a back- end data source (typically a database).

Conceptually, the profiles feature is a lot like creating your own database component.
However, it adds some neat conveniences. Most impressively, it integrates with the ASP.NET
authentication model in such a way that user information is automatically retrieved for the
current user when needed and (if this information is changed) written back to the database at
the end of the current request. Best of all, your web- page code can access the current user’s
profile data using strongly typed properties.

In this chapter, you’ll learn how to use profiles, how the profiles system works, and when
profiles make the most sense. You’ll also learn how to extend the Profiles API with a custom
profile provider.

Understanding Profiles
One of the most significant differences between profiles and other types of state management
(as discussed in Chapter 6) is that profiles are designed to store information permanently by using
a back- end data source such as a database. Most other types of state management are designed
to maintain information for a series of requests that occur in a relatively short space of time (such
as session state and caching) or in the current browser session (such as non- persistent cookies
and view state) or to transfer information from one page to another (such as the query string and
 cross- page posting). If you need to store information for the longer term in a database, profiles
simply provide a convenient model that manages the retrieval and persistence of this informa-
tion for you.

Before you begin using profiles, you need to assess them carefully. In the following sections,
you’ll learn how they stack up.

CHAPTER 24 PROFILES1128

Profile Performance
The goal of ASP.NET’s profiles feature is to provide a transparent way to manage user- specific
information, without forcing you to write custom data access code using the ADO.NET data
classes. Unfortunately, many features that seem convenient suffer from poor performance or
scalability. This is particularly a concern with profiles, because they involve database access,
and database access can easily become a scalability bottleneck for any distributed application.

So, do profiles suffer from scalability problems? This question has no simple answer. It all
depends on how much data you need to store and how often you plan to access it. To make an
informed decision, you need to know a little more about how profiles work.

Profiles plug into the page life cycle in two ways:

-
plete profile data for the current user from the database. From this point onward, you
can read the profile information in your code without any further database work (until
the next postback).

At that point (after the PreRender, PreRenderComplete, and Unload events have fired
for the page), the profile is written back to the database. This way, multiple changes
are batched into one operation. If you don’t change the profile data, no extra database
work is incurred.

Note Profile reading and saving is implemented by a dedicated ProfileModule, which runs during each
request. Chapter 5 discusses HTTP modules in more detail.

Overall, the profiles feature could result in two extra database trips for each request (in
a read- write scenario) or one extra database trip (if you are simply reading profile data). The
profiles feature doesn’t integrate with caching, so every request that uses profile data requires
a database connection.

From a performance standpoint, profiles work best when the following is true:

They tend to work less well when the following is true:

only some of that data in a given request (because the profile model always retrieves
the full block of profile data).

Of course, you can combine profiles with another type of state management. For example,
imagine your website includes an order wizard that walks the user through several steps. At

CHAPTER 24 PROFILES 1129

the beginning of this process, you could retrieve the profile information and store it in session
state. You could then use the Session collection for the remainder of the process. Assuming you’re
using the in- process or out-of- process state server to maintain session data, this approach is
more efficient because it saves you from needing to connect to the database repeatedly.

How Profiles Store Data
The most significant limitation with profiles doesn’t have anything to do with performance—
instead, it’s a limitation of how the profiles are serialized. The default profile provider included
with ASP.NET serializes profile information into a block of data that’s inserted into a single
field in a database record. For example, if you serialize address information, you’ll end up with
something like this:

Another field indicates where each value starts and stops, using a format like this:

it more difficult to use this data in other applications. You can write custom code to parse the
profile data in order to find the information you want, but depending on the amount of data and
the data types you’re using, this can be an extremely tedious process. And even if you do this,
you’re still limited in the ways you can reuse this information. For example, imagine you use
profiles to store customer address information. Because of the proprietary format, it’s no longer
possible to generate customer lists in an application such as Microsoft Word or perform queries
that filter or sort records using this profile data. (For example, you can’t easily perform a query to
get all the customers living in a specific city.)

This problem has two solutions:

a database.

-
base schema.

Out of the two options, creating a custom data access component is easier, and it gives
you more flexibility. You can design your data component to have any interface you want, and
you can then reuse that component with other .NET applications. Currently, ASP.NET devel-
opers are more likely to use this approach because it has been around since .NET 1.0 and is
well understood.

The second option is interesting because it allows your page to keep using the profile
model. In fact, you could create an application that uses the standard profile serialization
with the SqlProfileProvider and then switch it later to use a custom provider. To make this
switch, you don’t need to change any code. Instead, you simply modify the profile settings in
the web.config file. As it becomes more common for websites to use profiles, custom profile
providers will become more attractive.

CHAPTER 24 PROFILES1130

Note It’s also important to consider the type of data that works best in a profile. As with many other types
of state management, you can store any serializable types into a profile, including simple types and custom
classes.

Profiles and Authentication
One significant difference between profiles and other types of state management is that pro-
files are stored as individual records, each of which is uniquely identified by user name. This
means that profiles require you to use some sort of authentication system. It makes no differ-
ence what type of authentication system you use (Windows Forms or a custom authentication
system)—the only requirement is that authenticated users are assigned a unique user name.
That user name is used to find the matching profile record in the database.

Note Later in this chapter (in the section “Anonymous Profiles”), you’ll also learn how the anonymous
identification feature lets you temporarily store profile information for users who haven’t logged in.

Profiles vs. Custom Data Components
Profiles are a natural competitor with custom data components of the kind you saw in Chapter 8.
Clearly, data components are far more flexible. They allow you not only to maintain user- specific
information but also to store other types of information and perform more complex business
tasks.

For example, an e- commerce website could realistically use profiles to maintain customer
address information (with the limitations discussed in the previous section). However, you
wouldn’t use a profile to store information about previous orders. Not only is it far too much
information to store efficiently, it’s also awkward to manipulate.

The standard profile provider that’s included with ASP.NET (named SqlProfileProvider)
doesn’t provide any features beyond basic database storage and retrieval. The following list
includes some features that you can easily add through a custom database component but
aren’t available if you’re using the SqlProfileProvider. If you need any of these features, you’ll
need to abandon profiles and create your own data access component, or you’ll need to design
a custom profile provider.

Encryption: Profile data can be serialized into a string, XML, or a binary representation.
But no matter what you choose, you’ll always end up storing the raw text. If you have sen-
sitive information, your only option is to encrypt it manually before you store it, which has
the undesirable result of putting encryption logic in your UI code.

Validation: You can’t restrict the type of information that can be placed in a profile. You
need to use other tools (such as validator controls and custom data classes) to prevent
invalid data.

CHAPTER 24 PROFILES 1131

Caching: If profile information is used in a page, it’s always retrieved from the database.
You can’t keep profile information around in memory. Although you can copy profile
information into the cache, it becomes more difficult to track this information.

Auditing: When you design a custom database component, you have the ability to add
any logging or tracing code you want. You can use this to diagnose unexpected errors or
monitor the performance of your web application. However, if you want these features
with profiles, you’ll need to build a custom profile provider that has the logging code.

Now that you know the ins and outs of profiles, you’re ready to try them.

Using the SqlProfileProvider
The SqlProfileProvider allows you to store profile information in a SQL Server 7.0 or later data-
base. You can choose to create the profile tables in any database. However, you can’t change
any of the other database schema details, which means you’re locked into specific table names,
column names, and serialization formats.

From start to finish, you need to perform the following steps to use profiles:

 1. Create the profile tables. (If you’re using SQL Server 2005 Express Edition, this step
happens automatically.)

 2. Configure the profile provider.

 3. Define some profile properties.

 4. Enable authentication for a portion of your website.

 5. Use the profile properties in your web- page code.

You’ll tackle these steps in the following sections.

Creating the Profile Tables
If you’re not using SQL Server Express, you must create the profile tables manually. To do so,
you use the aspnet_regsql.exe command- line utility, which is the same tool that allows you to
generate databases for other ASP.NET features, such as SQL Server–based session state, mem-
bership, roles, database cache dependencies, and web parts personalization. You can find the
aspnet_regsql.exe tool in the c:\Windows\Microsoft.NET\Framework\v2.0.50727 folder.

Note If you’re using SQL Server 2005 Express Edition, you don’t need to create your database by hand.
Instead, the first time you use the profiles feature, ASP.NET will create a new database named aspnetdb.mdf,
place it in the App_Data subdirectory of your web application, and add the profiles tables. If you already have
an aspnetdb.mdf database (because you’re using it for another feature), ASP.NET will simply add the profiles
tables to the existing aspnetdb.mdf database.

CHAPTER 24 PROFILES1132

To create the tables, views, and stored procedures required for profiles, you use aspnet_
regsql.exe with the -A p command- line option. The only other detail you need to supply is the
server location (- S), database name (- d), and authentication information for connecting to the
database (use -U and -P to supply a password and user name, or use -E to use the current Win-
dows account). If you leave the other server location and database name, aspnet_regsql.exe
uses the default instance on the current computer and creates a database named aspnetdb.

Here’s an example that creates the aspnetdb database with the default name on the current
computer by logging into the database using the current Windows account:

 Table 24-1 shows the tables that aspnet_regsql.exe creates. (The rather unexciting views
aren’t included.)

Table 24-1. Database Tables Used for Profiles

Table Name Description
aspnet_Applications Lists all the web applications that have records in this database. It’s possible

for several ASP.NET applications to use the same aspnetdb database. In this
case, you have the option of separating the profile information so that it’s
distinct for each application (by giving each application a different applica-
tion name when you register the profile provider), or of sharing it (by giving
each application the same application name).

aspnet_Profile Stores the user- specific profile information. Each record contains the com-
plete profile information for a single user. The PropertyNames field lists the
property names, and the PropertyValuesString and PropertyValuesBinary
fields list all the property data, although you’ll need to do some work if you
want to parse this information for use in other non- ASP.NET programs. Each
record also includes the last update date and time (LastUpdatedDate).

aspnet_SchemaVersions Lists the supported schemas for storing profile information. In the future,
this could allow new versions of ASP.NET to provide new ways of storing
profile information without breaking support for old profile databases that
are still in use.

aspnet_Users Lists user names and maps them to one of the applications in aspnet_
Applications. Also records the last request date and time (LastActivityDate)
and whether the record was generated automatically for an anonymous user
(IsAnonymous). Anonymous user support is discussed later in this chapter
(in the section “Anonymous Profiles”).

Note Even if you don’t use the default database name (aspnetdb), you should use a new, blank database
that doesn’t include any other custom tables. That’s because aspnet_regsql.exe creates several tables for
profiles (see Table 24-1), and you shouldn’t risk confusing them with business data. The examples in the rest
of this chapter assume you’re using aspnetdb.

 Figure 24-1 shows the relationships between the most important profile tables.

CHAPTER 24 PROFILES 1133

 Figure 24-1. The profile tables

ASP.NET also creates several stored procedures that allow it to manage the information in
these tables more easily. Table 24-2 lists the most noteworthy stored procedures.

Table 24-2. Database Stored Procedures Used for Profiles

Stored Procedure Description
aspnet_Applications_
CreateApplications

Checks whether a specific application name exists in the aspnet_
Applications table and creates the record if needed.

aspnet_CheckSchemaVersion Checks for support of a specific schema version for a specific fea-
ture (such as profiles) using the aspnet_SchemaVersions table.

aspnet_Profile_GetProfiles Retrieves the user name and update times for all the profile records
in the aspnet_Profile table for a specific web application. Doesn’t
return the actual profile data.

aspnet_Profile_GetProperties Retrieves the profile information for a specific user (which you
specify by user name). The information is not parsed in any way—
instead, this stored procedure simply returns the underlying fields
(PropertyNames, PropertyValuesString, PropertyValuesBinary).

aspnet_Profile_SetProperties Sets the profile information for a specific user (which you specify
by user name). This stored procedure requires values for the
PropertyNames, PropertyValuesStrings, and PropertyValuesBinary

aspnet_Profile_
GetNumberOfInactiveProfiles

Returns profile records that haven’t been used within a time win-
dow you specify.

aspnet_Profile_
DeleteInactiveProfiles

Removes profile records that haven’t been used within a time
window you specify.

aspnet_Users_CreateUser Creates a new record in the aspnet_Users table for a specific user.
Checks whether the user exists (in which case no action is taken)
and creates a GUID to use for the UserID field if none is specified.

aspnet_Users_DeleteUser Removes a specific user record from the aspnet_Users table.

CHAPTER 24 PROFILES1134

Configuring the Provider
Now that you have the database in place, you can register the SqlProfileProvider using the
web.config file. First, define a connection string for the profile database. Then, use the <profile>
section to remove any existing providers (with the <clear> element), and add a new instance
of the System.Web.Profile.SqlProfileProvider class (with the <add> element). Here are the con-
figuration settings you need:

When you define a profile provider, you need to supply a name (which the <profile>
element can then reference as the default provider), the exact type name, a connection string,
and a web application name. Use different application names to separate the profile informa-
tion between web applications (or use the same application name to share it).

Defining Profile Properties
Before you can store anything in the aspnet_Profile table, you need to define it specifically.
You do this by adding the <properties> element inside the <profile> section of the web.config
file. Inside the <properties> element, you place one <add> tag for each user- specific piece of
information you want to store. At a minimum, the <add> element supplies the name for the
property, like this:

CHAPTER 24 PROFILES 1135

Usually, you’ll also supply the data type. (If you don’t, the property is treated as a string.)
You can specify any serializable .NET class as the type, as shown here:

You can set a few more property attributes to create the more advanced properties shown
in Table 24-3.

Table 24-3. Profile Property Attributes

Attribute (for the <add> Element) Description
name The name of the property.

type The fully qualified class name that represents the data type
for this property. By default, this is System.String.

serializeAs Indicates the format to use when serializing this value (String,
Binary, Xml, or ProviderSpecific). You’ll look more closely at
the serialization model in the section “Profile Serialization.”

readOnly Add this attribute with a value of true to create a property
that can be read but not changed. (Attempting to change the
property will cause a compile- time error.) By default, this is
false.

defaultValue A default value that will be used if the profile doesn’t exist or
doesn’t include this particular piece of information. The de-
fault value has no effect on serialization—if you set a profile
property, the ProfileModule will commit the current values
to the database, even if they match the default values.

allowAnonymous A Boolean value that indicates whether this property can be
used with the anonymous profiles feature discussed later in
this chapter. By default, this is false.

provider
this property. By default, all properties are managed using
the provider specified in the <profile> element, but you can
assign different properties to different providers.

Using Profile Properties
Because profiles are stored in a user- specific record, you need to authenticate the current
user before you can read or write profile information. You can use any type of authentication
system (Windows, forms, or custom). You simply need to add an authorization rule to prevent
anonymous access for the page or folder where you plan to use the profile. Here’s an example:

CHAPTER 24 PROFILES1136

Chapter 23 has much more information about authorization rules.
With these details in place, you’re ready to access the profile information using the Profile

property of the current page. When you run your application, ASP.NET creates a new class to
represent the profile by deriving from System.Web.Profile.ProfileBase, which wraps a collec-
tion of profile settings. ASP.NET adds a strongly typed property to this class for each profile
property you’ve defined in the web.config file. These strongly typed properties simply call the
GetPropertyValue() and SetPropertyValue() methods of the ProfileBase base class to retrieve
and set the corresponding profile values.

For example, if you’ve defined a string property named FirstName, you can set it in your
page like this:

 Figure 24-2 presents a complete test page that allows the user to display the profile infor-
mation for the current user or set new profile information.

 Figure 24-2. Testing profiles

The first time this page runs, no profile information is retrieved, and no database con-
nection is used. However, if you click the Show Profile Data button, the profile information is
retrieved and displayed on the page:

CHAPTER 24 PROFILES 1137

At this point, an error will occur if the profile database is missing or the connection can’t
be opened. Otherwise, your page will run without a hitch, and you’ll see the newly retrieved
profile information. Technically, the complete profile is retrieved when your code accesses the
Profile.FirstName property in the first line and is used for the subsequent code statements.

Note Profile properties behave like any other class member variable. That means if you read a profile
value that hasn’t been set, you’ll get a default initialized value (like an empty string or the number 0).

If you click the Set Profile Data button, the profile information is set based on the current
control values:

Now the profile information is committed to the database when the page request finishes.
If you want to commit some or all of the information earlier (and possibly incur multiple data-

Profile.Save() method. As you can see, the profiles feature is unmatched
for simplicity.

Note The Profile object doesn’t include just the properties you’ve defined. It also provides LastActivityDate
and LastUpdatedDate properties with information drawn from the database.

Profile Serialization
Earlier, you learned how properties are serialized into a single string. For example, if you save
a FirstName of Harriet and a LastName of Smythe, both values are crowded together in the
PropertyValuesString field, saving space:

The PropertyNames field gives the information you need to parse each value from the
PropertyValuesString field. Here’s what you’ll see in the PropertyNames field in this example:

CHAPTER 24 PROFILES1138

The colons (:) are used as delimiters. The basic format is as follows:

Something interesting happens if you create a profile with a DateTime data type. When
you look at the PropertyValuesString field, you’ll see something like this:

Initially, it looks like the profile data is serialized as XML, but the PropertyValuesString
clearly doesn’t contain a valid XML document (because of the text at the end). What has actu-
ally happened is that the first piece of information, the DateTime, is serialized (by default) as
XML. The following two profile properties are serialized as ordinary strings.

The PropertyNames field makes it slightly clearer:

Interestingly, you have the ability to change the serialization format of any profile prop-
erty by adding the serializeAs attribute to its declaration in the web.config file. Table 24-4 lists
your choices.

Table 24-4. Serialization Options

SerializeAs Description
String Converts the type to a string representation. Requires a type converter

type converters.)

Xml Converts the type to an XML representation, which is stored in a string,
using the System.Xml.XmlSerialization.XmlSerializer (the same class
that’s used with web services).

Binary Converts the type to a proprietary binary representation that only .NET
understands using the System.Runtime.Serialization.Formatters.Binary.
BinaryFormatter. This is the most compact option but the least flexible.
Binary data is stored in the PropertyValuesBinary field instead of the
PropertyValues.

ProviderSpecific Performs customized serialization that’s implemented in a custom
provider.

For example, here’s how you can change the serialization for the profile settings:

Now the next time you set the profile, the serialized representation in the PropertyValuesString
field will take this form:

CHAPTER 24 PROFILES 1139

If you use the binary serialization mode, the property value will be placed in the
PropertyValuesBinary field instead of the PropertyValuesString field. The only indication of
this shift is the use of the letter B instead of S in the PropertyNames field. Here’s an exam-
ple where the FirstName property is serialized in the PropertyValuesBinary field:

All of these serialization details raise an important question—what happens when you
change profile properties or the way they are serialized? Profile properties don’t have any
support for versioning. However, you can add or remove properties with relatively minor
consequences. For example, the ProfileModule will ignore properties that are present in the
aspnet_Profile table but not defined in the web.config file. The next time you modify part of
the profile, these properties will be replaced with the new profile information. Similarly, if you
define a profile in the web.config file that doesn’t exist in the serialized profile information,

renaming a property, changing its data type, and so on, are likely to cause an exception when
you attempt to read the profile information. Even worse, because the serialized format of the
profile information is proprietary, you have no easy way to migrate existing profile data to
a new profile structure.

Note Not all types are serializable in all ways. For example, classes that don’t provide a parameterless
constructor can’t be serialized in Xml mode. Classes that don’t have the Serializable attribute can’t be serial-
ized in Binary mode. You’ll consider this distinction when you learn how to use custom types with profiles,
but for now just keep in mind that you may run across types that can be serialized only if you choose a differ-
ent serialization mode.

Profile Groups
If you have a large number of profile settings, and some settings are logically related to each
other, you may want to use profile groups to achieve better organization.

For example, you may have some properties that deal with user preferences and others
that deal with shipping information. Here’s how you could organize these profile properties
using the <group> element:

CHAPTER 24 PROFILES1140

Now you can access the properties through the group name in your code. For example,
here’s how you retrieve the country information:

For example, you could achieve the same effect as in the previous example by declaring a cus-
tom Address class. You’d also have the ability to add other features (such as validation in the
property procedures). The next section shows how.

Profiles and Custom Data Types
Using a custom class with profiles is easy. You need to begin by creating the class that wraps
the information you need. In your class, you can use public member variables or full- fledged
property procedures. The latter choice, though longer, is the preferred option because it
ensures your class will support data binding and gives you the flexibility to add property pro-
cedure code later.

Here’s a slightly abbreviated Address class that ties together the same information you
saw in the previous example.

You can place this class in the App_Code directory (or compile it and place the DLL
assembly in the Bin directory). The final step is to add a property that uses it:

CHAPTER 24 PROFILES 1141

Now you can manipulate it in your code like this:

Custom Type Serialization
You need to keep in mind a few points, depending on how you decide to serialize your cus-
tom class. By default, all custom data types use XML serialization with the XmlSerializer. This
class is relatively limited in its serialization ability. It simply copies the value from every public
property or member variable into a straightforward XML format like this:

You can alter this XML representation by adding attributes from the System.Xml.Serialization
namespace to the public properties in your class. For example, you can use XmlElement to change
the XML element name that’s used to store a property, XmlAttribute to make sure a property is
stored as an XML attribute instead of an XML element, and XmlIgnore to prevent a property value
from being serialized altogether. For more information, refer to the .NET Framework reference for
the System.Xml.Serialization namespace.

When deserializing your class, the XmlSerializer needs to be able to find a parameterless
public constructor. In addition, none of your properties can be read- only. If you violate either
of these rules, the deserialization process will fail.

If you decide to use binary serialization instead of XmlSerialization, .NET uses a completely
different approach.

In this case, the ProfileModule enlists the help of the BinaryFormatter. The BinaryFormatter
can serialize the full public and private contents of any class, provided the class is decorated with
the Serializable attributes. (Additionally, any class it derives from or references must also be seri-
alizable.) You can learn much more about the binary formatter in Chapter 12.

Finally, you can decide to use string serialization:

In this case, you need a type converter that can translate between an instance of your class
and its string representation. Chapter 28 shows you how to create type converters.

CHAPTER 24 PROFILES1142

Automatic Saves
The ProfileModule that saves profile information isn’t able to detect changes in complex data
types (anything other than strings, simple numeric types, Boolean values, and so on). This
means if your profile includes complex data types, the ProfileModule saves the profile infor-

This behavior obviously adds unnecessary overhead. To optimize performance when
working with complex types, you have several choices. One option is to set the correspond-
ing profile property to be read- only (if you know it never changes). Another approach is to
disable the autosave behavior completely by adding the automaticSaveEnabled attribute on
the <profile> element and setting it to false, as shown here:

If you choose this approach, it’s up to you to call Profile.Save() to explicitly commit
changes. Generally, this approach is the most convenient, because it’s easy to spot the places
in your code where you modify the profile. Just add the Profile.Save() call at the end:

One final option is to handle the ProfileModule.ProfileAutoSaving event in the global.asax
file. At this point, you can check to see if a save is really necessary and cancel the save if it isn’t.

With this technique, the obvious problem is determining whether the automatic save should

be awkward and slow. A better option is to make the page keep track of whether a change has
been made. If a change has been made, your code can then set a flag to indicate that the update
should go ahead.

For example, consider the test page shown in Figure 24-3 that allows you to retrieve and
modify address information.

 Figure 24-3. Modifying a complex type in a profile

CHAPTER 24 PROFILES 1143

All the text boxes on this page use the same event handler for their TextChanged event.
This event handler indicates that a change has been made by storing a Boolean value in the
context for the current request:

Note The Page.Context property provides an HttpContext object. The HttpContext.Items collection pro-
vides a handy place where you can temporarily store data that needs to be used later during the same
postback. View state and session state can be used to similar effect, but they assume longer- storage.

Keep in mind that a value stored in this way lasts only for the duration of the current
request. In this example, that’s not a problem because the user has only two options after

Save). However, if you create a page where the user can make changes over several steps and
then apply them later, you would need to do more work to maintain the flag. Storing the flag
in other locations such as session state or view state won’t work, because they aren’t available
when the ProfileAutoSaving event fires in the global.asax file.

Finally, here’s the event handler you need that allows the autosave to carry on only if
a change has been made:

Remember, the ProfileAutoSaving event fires for any change. If you have more than one
page that modifies different profile details, you might need to write conditional code that
checks which page was requested and restricts or permits the save accordingly. In this situ-
ation, it’s usually easier to turn off automatic saving altogether and force the page to use the
Profile.Save() method.

The Profiles API
Although your page automatically gets the profile information for the current user, that doesn’t
prevent you from retrieving and modifying the profiles of other users. In fact, you have two
tools to help you—the ProfileBase class and the ProfileManager class.

The GetProfile()
function that retrieves, by user name, the profile information for a specific user. Figure 24-4
shows an example with a Windows authenticated user.

CHAPTER 24 PROFILES1144

Here’s the code that gets the profile:

 Figure 24-4. Retrieving a profile manually

GetProfile() . However, you won’t find ProfileCommon
in the .NET class library. That’s because ProfileCommon is a dynamically generated class that
ASP.NET creates to hold the profile information for your web application. In this example, the
profile defines a property named Address so that you can retrieve this information using the
ProfileCommon.Address property.

as you interact with the profile for the current user. You can even make changes. The only differ-
ence is that changes aren’t saved automatically. If you want to save a change, you need to call the

and LastUpdatedDate properties, which you can use to determine the last time a specific profile
was accessed and modified.

Note If you try to retrieve a profile that doesn’t exist, you won’t get an error. Instead, you’ll simply end up
with blank data. If you change and save the profile, a new profile record will be created. You can test for this
condition by examining the ProfileCommon.LastUpdatedDate property. If the profile hasn’t been created yet,
this value will be a zero- date value (in other words, day 0 on month 0 in year 0000).

CHAPTER 24 PROFILES 1145

If you need to perform other tasks with profiles, you can use the ProfileManager class
in the System.Web.Profile namespace, which exposes the useful static methods described in
 Table 24-5. Many of these methods work with a ProfileInfo class, which provides information
about a profile. The ProfileInfo includes the user name (UserName), last update and last activity
dates (LastActivityDate and LastUpdateDate), the size of the profile in bytes (Size), and whether
the profile is for an anonymous user (IsAnonymous). It doesn’t provide the actual profile values.

 Table 24-5. ProfileManager Methods

Method Description
DeleteProfile() Deletes the profile for the user you specify.

DeleteProfiles() Deletes multiple profiles at once. You supply a collection
of user names.

DeleteInactiveProfiles() Deletes profiles that haven’t been used since a time
you specify. You also must supply a value from the
ProfileAuthenticationOption enumeration to indicate
what type of profiles you want to remove (All, Anonymous,
or Authenticated).

GetNumberOfProfiles() Returns the number of profile records in the data source.

GetNumberOfInactiveProfiles() Returns the number of profiles that haven’t been used
since the time you specify.

GetAllInactiveProfiles() Retrieves profile information for profiles that haven’t been
used since the time you specify. The profiles are returned

GetAllProfiles() Retrieves all the profile data from the data source as a col-

profiles you want to retrieve (All, Anonymous, or Authen-
ticated). You can also use an overloaded version of this
method that uses paging and retrieves only a portion of
the full set of records based on the starting index and page
size you request.

FindProfilesByUserName()
a specific user name. The SqlProfileProvider uses a LIKE
clause when it attempts to match user names. That
means you can use wildcards such as the % symbol. For
example, if you search for the user name user%, you’ll
return values like user1, user2, user_guest, and so on. You
can use an overloaded version of this method that uses
paging.

FindInactiveProfilesByUserName() Retrieves profile information for profiles that haven’t been
used since the time you specify. You can also filter out cer-
tain types of profiles (All, Anonymous, or Authenticated)
or look for a specific user name (with wildcard matching).

can use an overloaded version of this method that uses
paging.

For example, if you want to remove the profile for the current user, you need only a single
line of code:

CHAPTER 24 PROFILES1146

And if you want to display the full list of users in a web page (not including anonymous

 Figure 24-5 shows the result.

 Figure 24-5. Retrieving information about all the profiles in the data source

Anonymous Profiles
So far, all the examples have assumed that the user is authenticated before any profile infor-
mation is accessed or stored. Usually, this is the case. However, sometimes it’s useful to create
a temporary profile for a new, unknown user. For example, most e- commerce websites allow
new users to begin adding items to a shopping cart before registering. If you want to provide
this type of behavior and you choose to store shopping cart items in a profile, you’ll need some
way to uniquely identify anonymous users.

ASP.NET provides an anonymous identification feature that fills this gap. The basic idea
is that the anonymous identification feature automatically generates a random identifier for
any anonymous user. This random identifier stores the profile information in the database,
even though no user ID is available. The user ID is tracked on the client side using a cookie (or
in the URL, if you’ve enable cookieless mode). Once this cookie disappears (for example, if the
anonymous user closes and reopens the browser), the anonymous session is lost and a new
anonymous session is created.

Anonymous identification has the potential to leave a lot of abandoned profiles, which
wastes space in the database. For that reason, anonymous identification is disabled by default.
However, you can enable it using the <anonymousIdentification> element in the web.config
file, as shown here:

CHAPTER 24 PROFILES 1147

You also need to flag each profile property that will be retained for anonymous users by

If you’re using a complex type, the allowAnonymous attribute is an all-or- nothing setting.

The <anonymousIdentification> element also supports numerous optional attributes that
let you set the cookie name and timeout, specify whether the cookie will be issued only over an
SSL connection, control whether cookie protection (validation and encryption) is used to pre-
vent tampering and eavesdropping, and configure support for cookieless ID tracking. Here’s
an example:

For more information, refer to the configuration settings for forms authentication
(Chapter 20) and role management (Chapter 23), which use the same settings.

Note If you use anonymous identification, it’s a good idea to delete old anonymous sessions regularly
using the aspnet_Profile_DeleteInactiveProfiles stored procedure, which you can run at scheduled intervals
using the SQL Server Agent. You can also delete old profiles using the ProfileManager class, as described in
the previous section.

Migrating Anonymous Profiles
A challenge that occurs with anonymous profiles is what to do with the profile information
when a previously anonymous user logs in. For example, in an e- commerce website a user
might select several items and then register or log in to complete the transaction. At this point,
you need to make sure the shopping cart information is copied from the anonymous user’s
profile to the appropriate authenticated (user) profile.

Fortunately, ASP.NET provides a solution through the ProfileModule.MigrateAnonymous
event. This event (which can be handled in the global.asax file) fires whenever an anonymous
identifier is available (either as a cookie or in the URL if you’re using cookieless mode) and the
current user is authenticated.

CHAPTER 24 PROFILES1148

The basic technique when handling the MigrateAnonymous event is to load the profile for
the anonymous user by calling Profile.GetProfile() and passing in the anonymous ID, which is
provided to your event handler through the ProfileMigrateEventArgs.

Once you’ve loaded this data, you can then transfer the settings to the new profile manu-
ally. You can choose to transfer as few or as many settings as you want, and you can perform
any other processing that’s required. Finally, your code should remove the anonymous profile
data from the database and clear the anonymous identifier so the MigrateAnonymous event
won’t fire again.

You need to handle this task with some caution. If you’ve enabled anonymous identifica-
tion, every time a user logs in, the MigrateAnonymous event fires, even if the user hasn’t entered
any information into the anonymous profile. That’s a problem, because if you’re not careful, you
could easily overwrite the real (saved) profile for the user with the blank anonymous profile. The

whether the user has anonymous address information.

If this information isn’t a part of the anonymous profile, no information is migrated. A more
sophisticated example might test for individual properties separately or might migrate an anony-
mous profile only if the information in the user profile is missing or out of date.

CHAPTER 24 PROFILES 1149

A SHOPPING CART EXAMPLE

To see a more comprehensive end-to- end example of profiles, you can refer to the online samples. They
include a page named ShoppingCartTest.aspx (in the SqlProfileProviderWindowsAuthentication website),
which uses profiles to store a complete shopping cart stocked full of items.

The ShoppingCartTest.aspx example provides a good demonstration of how you can store complex
objects in a profile. However, most professional websites won’t use profiles in this way, because it forces
you to give up too much control over data storage. You’re more likely to use session state instead (and possi-
bly use SQL Server–backed session storage if you want partially complete shopping carts to persist between
user visits). In fact, the ShoppingCart and ShoppingCartItem classes that the ShoppingCartTest.aspx page
uses work equally well if you want to store shopping cart data in session state.

Custom Profile Providers
The profile model plugs neatly into ASP.NET web pages. However, it isn’t very configurable.
You might decide you need to create a custom profile provider for a number of reasons:

-
base, such as an Oracle database.

in the PropertyValuesString and PropertyValuesBinary fields is tedious, error- prone,
and inflexible. If you need to use this information in other queries or applications, you
need to store your profile information in a database table that’s split into distinct fields.

example, you could apply validation, caching, logging, encryption, or compression. (In
some cases, you can get these features by simply extending the ProfileBase class that
wraps profile settings, rather than creating an entirely new ProfileProvider.)

In the following sections, you’ll focus on the second scenario. You’ll see how to build
a custom provider that keeps its property values in separate fields and can be adapted to fit
any existing database.

The Custom Profile Provider Classes
To implement a profile provider, you need to create a class that derives from the ProfileProvider
abstract class from the System.Web.Profile namespace. The ProfileProvider abstract class itself
inherits the SettingsProvider abstract class from the System.Configuration namespace, which
inherits from the ProviderBase abstract class from the System.Configuration.Provider namespace.
As a result, you also need to implement members from the SettingsProvider and ProviderBase
classes. Altogether, more than a dozen members must be implemented before you can compile
your custom profile provider.

However, these methods aren’t all of equal importance. For example, you can create
a basic provider that saves and retrieves profile information by implementing two or three
of these methods. Many of the other methods support functionality that’s exposed by the
ProfileManager class, such as the ability to delete profiles or find inactive profiles.

CHAPTER 24 PROFILES1150

In the following example, you’ll consider a simple profile provider that includes the core
logic that’s needed to plug into a page but doesn’t support most other parts of the Profiles API.
Methods that aren’t supported simply throw a NotImplementedException, like this:

All of these methods are conceptually easy to implement (all you need is some basic ADO.NET
code). However, properly coding each method requires a fairly substantial amount of code.

 Table 24-6 lists the overridable properties and methods and indicates which class defines
them. Those that are implemented in the following example are marked with an asterisk. To
be considered truly complete, a provider must implement all of these members.

 Table 24-6. Abstract Members for Profile Providers

Class Member Description
*ProviderBase Name A read- only property that returns the

name (set in the web.config file) for the
current provider.

*ProviderBase Initialize() Gets the configuration element from
the web.config file that initializes this
provider. Gives you the chance to read
custom settings and store the informa-
tion in member variables.

SettingsProvider ApplicationName A name (set in the web.config file) that
allows you to separate the users of dif-
ferent applications that are stored in the
same database.

*SettingsProvider GetPropertyValues() Retrieves the profile information for
a single user. This method is called
automatically when a web page accesses
the Page.Profile property. This method
is provided with a list of all the profile
properties that are defined in the appli-
cation. You must return a value for each
of these properties.

*SettingsProvider SetPropertyValues() Updates the profile information for
a single user. This method is called au-
tomatically at the end of a request when
profile information is changed. This
method is provided with a list of all the
profile properties that are defined in the
application and their current values.

ProfileProvider DeleteProfiles() Deletes one or more user profile records
from the database.

ProfileProvider DeleteInactiveProfiles() Similar to DeleteProfiles() but looks for
profiles that haven’t been accessed since
a specific time. To support this method,
you must keep track of when profiles are
accessed or updated in your database.

CHAPTER 24 PROFILES 1151

Class Member Description

ProfileProvider GetAllProfiles() Returns information about a group
of profile records. This method must
support paging so that it returns only
a subset of the total records. Refer to
the aspnet_Profile_GetProfiles stored
procedure that aspnet_regsql creates for
a sample paging implementation.

ProfileProvider GetAllInactiveProfiles() Similar to GetAllProfiles() but looks for
profiles that haven’t been accessed since
a specific time. To support this method,
you must keep track of when profiles are
accessed or updated in your database.

ProfileProvider FindProfilesByUserName() Retrieves profile information based
on the user name of one or more (if
you support wildcard matching) users.
The actual profile information isn’t
returned—only some standard infor-
mation such as the last activity date is
returned.

ProfileProvider FindInactiveProfilesByUserName() Similar to FindProfilesByUserName()
but looks for profiles that haven’t been
accessed since a specific time.

ProfileProvider GetNumberOfInactive Profiles() Counts the number of profiles that
haven’t been accessed since a specific
time.

* Implemented in the following example

Designing the FactoredProfileProvider
The FactoredProfileProvider stores property values in a series of fields in a database table,
rather than in a single block. This makes the values easier to use in different applications and
with different queries. Essentially, the FactoredProfileProvider unlocks the profiles table so
that it’s no longer using a proprietary schema. The only disadvantage to this approach is that
it’s no longer possible to change the profile or add information to it without modifying the
schema of your database.

When implementing a custom profile provider, you need to determine how generic you
want your solution to be. For example, if you decide to implement compression using the classes
in the System.IO.Compression namespace (see Chapter 12) or encryption with the classes in the
System.Security.Cryptography namespace (see Chapter 25), you’ll also need to decide whether
you want to create an all- purpose solution or a more limited provider that’s fine- tuned for your
specific scenario.

Similarly, the FactoredProfileProvider has two possible designs:

certain assumptions. For example, you can simply assume that profile properties
match field names.

CHAPTER 24 PROFILES1152

The first approach is the most straightforward and in some cases will be the easiest to
secure and optimize. However, it also limits your ability to reuse your provider or change your
database schema later. The second approach is the one you’ll see in the following example.

The basic idea behind the FactoredProfileProvider is that it will perform its two key tasks
(retrieving and updating profile information) through two stored procedures. That gives you
a powerful layer of flexibility, because you can modify the stored procedures at any time to use
different tables, field names, data types, and even serialization choices.

The critical detail in this example is that the web application chooses which stored proce-
dures to use by using the provider declaration in the web.config file. Here’s an example of how
you might use the FactoredProfileProvider in an application:

Along with the expected attributes (name, type, and connectionStringName), the
<add> tag includes two new attributes: updateUserProcedure and getUserProcedure. The
updateUserProcedure indicates the name of the stored procedure that’s used to insert and
update profile information. The getUserProcedure indicates the name of the stored proce-
dure that’s used to retrieve profile information.

This design allows you to use the FactoredProfileProvider with any database table. But
what about mapping the properties to the appropriate columns? You could take a variety of
approaches to make this possible, but the FactoredProfileProvider takes a convenient short-
cut. When updating, it simply assumes that every profile property you define corresponds to
the name of a stored procedure parameter. So, if you define the following properties:

the FactoredProfileProvider will call the update stored procedure you’ve specified and pass the
value in for parameters named @FirstName and @LastName. When querying profile informa-
tion, the FactoredProfileProvider will look for the field names FirstName and LastName.

This is similar to the design used by the SqlDataSource and
Although it forces you to follow certain conventions in your two stored procedures, it imposes
no other restrictions on the rest of your database. For example, the update stored procedure
can insert the information into any series of fields in any table, and the stored procedure used

CHAPTER 24 PROFILES 1153

Coding the FactoredProfileProvider
The first step of creating the FactoredProfileProvider is to derive the class from ProfileProvider:

All the methods that aren’t implemented in this example (see Table 24-6) are simply filled
with a single line of code that throws an exception.

Note One quick way to fill all the methods with exception- throwing logic is to right- click ProfileProvider in
the class declaration and choose Refactor Implement Abstract Class.

Initialization
The FactoredProfileProvider needs to keep track of a few basic details, such as the provider
name, the connection string, and the two stored procedures. These details are all exposed
through read- only properties, as shown here:

CHAPTER 24 PROFILES1154

To set these details, you need to override the Initialize() method. At this point, you receive
a collection that contains all the attributes of the <add> element that registered the provider. If
any of the necessary details are absent, you should raise an exception. The following code dem-
onstrates this (and assumes you’ve imported the System.Collections.Specialized namespace):

Reading Profile Information
When the web page accesses any profile information, ASP.NET calls the GetPropertyValues()
method. It passes in two parameters—a
name and a -
erties that the application has defined (and expects to be able to access). You need to return
a SettingsPropertyValueCollection with the corresponding values.

Before doing anything, you should create a new SettingsPropertyValueCollection:

CHAPTER 24 PROFILES 1155

that retrieves the profile information. The connection string and stored procedure name are
specified through the configuration attributes that were retrieved in the Initialize() method.

The only nonconfigurable assumption in this code is that the stored procedure accepts
a parameter named @UserName. You could add other configuration attributes to make this
parameter name configurable.

This code retrieves the current user name from the SettingsContext dictionary that’s

includes two pieces of information—a Boolean flag that indicates if the user was authen-
ticated (indexed under the name IsAuthenticated) and the user name of the currently
authenticated user (indexed under the name UserName).

Now you’re ready to execute the command and retrieve the matching record. Depending

with a list of users and one with profile information), or all the information may come from
a single table.

Once you have the row, the next task is to loop through the SettingsPropertyCollection.
For each defined property, you should retrieve the value from the corresponding field. How-
ever, it’s perfectly valid for a user to exist without any profile information. In this case (when

requested property, but don’t bother setting the property values. They’ll simply keep their
defaults.

CHAPTER 24 PROFILES1156

The final step is to close the reader and connection and to return the collection of values.

Note If you want to mimic the behavior of the SqlProfileProvider, you should also update the database
with the last activity time whenever the GetPropertyValues() method is called.

Updating Profile Information
-

ing property values. This time, the update stored procedure is used, and every supplied value
is translated into a parameter with the same name.

Here’s the complete code:

CHAPTER 24 PROFILES 1157

This completes the code you need for the simple implementation of the
FactoredProfileProvider.

Note If you want to mimic the behavior of the SqlProfileProvider, you should also update the database
with the last update time whenever the SetPropertyValues() method is called.

Testing the FactoredProfileProvider
To try this example, you need to create, at a bare minimum, a database with a Users table and
the two stored procedures. The following example demonstrates an example with a Users
table that provides address information (see Figure 24-6).

CHAPTER 24 PROFILES1158

 Figure 24-6. A custom Users table

A straightforward procedure named Users_GetByUserName queries the profile informa-
tion from the table:

The Users_Update stored procedure is a little more interesting. It begins by checking for
the existence of the specified user. If the user doesn’t exist, a record is created with the profile
information. If the user does exist, that record is updated. This design meshes with the behav-
ior of the SqlProfileProvider.

Note Remember, all profile providers assume the user has already been authenticated. If you’re using the
same table to store user authentication information and profile information, an unauthenticated user must
have a record in this table. However, this isn’t the case if you use separate tables or Windows authentication.

Here’s the complete code for the Users_Update stored procedure:

CHAPTER 24 PROFILES 1159

Note You can download a script to create this table and the corresponding stored procedures with the
sample code for this chapter.

To use this table, you simply need to configure the FactoredProfileProvider, identify the
stored procedures you’re using, and define all the fields of the Users table that you need to
access. Here are the complete web.config configuration details:

CHAPTER 24 PROFILES1160

It assumes you’ve added a connection string named ProfileServer to the <connectionStrings>
section of your web.config file:

From this point, you can access the profile details exactly as you would with the
SqlProfileProvider. For example, here’s the code you need to copy the information in a series
of text boxes into the profile record:

And here’s the code that reads the current values in the text boxes and applies them to the
profile, completing the test page:

 Figure 24-7 shows the test page.

CHAPTER 24 PROFILES 1161

 Figure 24-7. Testing a custom profile provider

Summary
In this chapter, you took a detailed look at the profiles feature. You considered how it works
behind the scenes, when it makes the most sense, and how to configure its behavior.

The final part of this chapter explored how to create a simple profile provider of your own.
Using these techniques, you can overcome many of the limitations of the profiles feature (such
as the way it serializes all information into a single, opaque field). The ultimate decision of
whether to use profiles or a custom database component still depends on several factors, but
with this ability profiles become a valid alternative.

1163

C H A P T E R 2 5

Cryptography

In Chapters 19–23, you learned how to identify users through several supported authentication
mechanisms and how to implement authorization for those users in your applications. ASP.NET
supports rich services, such as the membership and roles APIs, that help you implement this
functionality. However, although authentication and authorization are two important factors
for securing applications, you have to keep much more in mind. Therefore, .NET has a bit more
functionality in store. One of the most important examples is .NET’s support for cryptography—
the science of scrambling data to ensure confidentiality and adding hash codes to detect
tampering.

.NET includes the rich CryptoAPI for a wide range of cryptographic tasks, such as creating
hashes of different types (MD5, SHA1, and so on) and implementing the most important sym-
metric and asymmetric encryption algorithms. And if that’s not enough, the .NET Framework
ships with separate functions for protecting secrets on the local machine or on a per- user
basis through a completely managed wrapper for the Windows data protection API (DPAPI).
In this chapter, you’ll learn when to use these APIs and how to use them correctly. If you have
experience with .NET Framework 2.0 cryptography APIs you can skip this chapter, as the .NET
Framework 3.0 and .NET Framework 3.5 do introduce new functionality in only specific areas
that are not covered in this chapter, as they are out of scope for this book.

Encrypting Data: Confidentiality Matters
In Chapter 20, you learned how to use hashing to protect passwords using methods of the
FormsAuthentication class. With hashing, you store a digital fingerprint of the original data,
not the data itself. As a result, you have no way to reverse the hashing process to retrieve the
original data. All you can do is hash new data and perform a comparison.

The hashing approach is the most secure practice for validating passwords. However,
it’s not much help when you want to protect sensitive data that you need to decrypt later. For
example, if you’re creating an e- commerce application, you probably want to store a user’s
credit card information so it can be reused in later orders. In this scenario, your application
needs to be able to retrieve the credit card details on its own. Hashing doesn’t give you what
you really need.

Often developers deal with this situation by storing sensitive data in clear text. They assume
that because the data is kept in a secure server- side storage location, they don’t need to go to the
additional work of encrypting it. However, security experts know this is not true. Without encryp-
tion, a malicious user needs to gain access to the server for only a matter of minutes or even
seconds to retrieve passwords or credit card numbers for every customer. Security breaches can
occur because of poor administrative policies, weak administrator passwords, or other exploitable

CHAPTER 25 CRYPTOGRAPHY1164

software on the server. Problems can even occur because of hardware maintenance; in fact, dozens
of companies have reported selling or discarding old server hard drives without properly erasing
the sensitive customer data they contained. Finally, many organizations have a privacy policy that
explicitly pledges to keep customer information confidential and encrypted at all times. If a secu-
rity breach occurs and the company is forced to notify users that their data is at risk because it
wasn’t properly encrypted, the company can face significant embarrassment and loss of trust. To
avoid these problems and ensure that data is safe, you need to encrypt sensitive information stored
by your application.

The .NET Cryptography Namespace
In the System.Security.Cryptography namespace, you can find the necessary classes for
encrypting and decrypting information in your application. Furthermore, you find all
the fundamental classes for creating different types of hashes in this namespace. If you
then reference the additional assembly System.Security.dll, you have access to even more
advanced security functionality such as an API for modifying Windows ACLs (the System.
Security.AccessControl namespace), the DPAPI, and classes for creating key- hashed mes-
sage authentication codes (HMAC). Table 25-1 shows the categories of classes.

Table 25-1. Categories of Security Classes in the System.Security.Cryptography Namespace

Category Description
Encryption algorithms The namespace includes the most important hashing and encryption

algorithms and classes for creating digital signatures. You will learn
more about the details of these classes in the section “Understanding
the .NET Cryptography Classes.”

Helper classes If you need to create true cryptographic random numbers, you will find
helper classes in the System.Security.Cryptography namespace. The
helper classes are for interacting with the underlying Windows cryptog-
raphy system (the CryptoAPI).

X509 certificates In the namespace System.Security.Cryptography.X509Certificates, you
will find all the necessary classes for working with X509 certificates and
(since .NET 2.0) classes for accessing the Windows certificate store.

XML signature and
encryption

You can find complete support of the XML signature and encryption
standards in the System.Security.Cryptography.Xml namespace. The
classes in this namespace are used for encrypting and signing XML
documents according to the standards published by the W3C.

CMS/PKCS#7 Since .NET 2.0, the framework has managed support for creating
 CMS/PKCS- enveloped messages directly without unmanaged calls.
(CMS stands for Cryptographic Message Syntax and PKCS stands for
 Public- Key Cryptography Standard.)

In the world of the Web, X509 certificates play an important role. They establish SSL com-
munications and perform certificate authentication to secure traffic between the web server
and its clients. An X509 certificate is a binary standard for encapsulating keys for asymmetric
encryption algorithms together with a signature of a special organization that has issued the
certificate (usually such organizations are called certificate authorities).

For simple SSL connections, you don’t need access to the certificate store, but if you want
to call web services or web applications in your code hosted on a different server that requires

CHAPTER 25 CRYPTOGRAPHY 1165

you to authenticate with an X509 certificate, your application has to read the certificate from
the Windows certificate store and then add the certificate to the web request (or the web service
proxy) before actually sending the request. For this purpose, the System.Security.Cryptography.
X509Certificates namespace includes several classes you can use, as follows:

X509Certificate and X509Certificate2: These classes encapsulate X509 certificates. They
allow you to load certificates from various stores such as the file system and give you access
to the properties of a certificate. The X509Certificate class is the one provided originally with
the very first versions of the .NET Framework. The X509Certificate2 is an extension to the
X509Certificate class, and includes a number of additional methods and properties intro-
duced with the .NET Framework 2.0 for the first time.

X509Store: This class gives you access to the Windows certificate storage, which is a spe-
cial storage where Windows stores all certificates. For every user, Windows creates such
a store (accessible through StoreLocation.CurrentUser) and for the machine it manages
exactly one store (StoreLocation.LocalMachine). User storages are accessible only for the
users they are created for, while the machine store stores certificates that are accessible
for all users working with a machine.

X509CertificateCollection: This is a simple class representing a collection of X509Certificate
and X509Certificate2 instances that represent single certificates. The X509Store allows you
to retrieve either a list of certificates or single certificates based on one of their unique iden-
tifiers (such as the certificate’s subject key, subject name, or hash).

You can read a certificate from the store and assign it to a web request in your application,
as follows:

This code opens the personal certificate store of the local machine by using the X509Store
class. It then tries to find a certificate with the subject name "CN=Mario, CN=Szpuszta" in this

CHAPTER 25 CRYPTOGRAPHY1166

store. The syntax used here is the common name syntax that you probably know from LDAP
directory systems as well.

Windows supports several types of certificate stores that are called store locations. The local
machine store, for example, is accessible to all applications running on the local machine with the
appropriate permissions. You can create a separate store for each Windows service of a machine,
and every user has a separate certificate store. Certificates are stored securely in those stores.
While the local machine store is encrypted with a key managed by the local security authority
of the machine, the user store is encrypted with a key stored in the user’s profile. Within a store
location, Windows differentiates between stores used for different purposes. The most important
stores are the Personal (“my”) store and the Trusted Root Certification Authorities. Usually, the
“my” store contains all the certificates used by applications (and users if it’s a user store), while the
Trusted Root Certification Authorities store contains certificates of authorities issuing certificates.
VeriSign is an example of a well- known authority from which you can buy certificates. If you place
a certificate into the Trusted Root Certification Authorities store, you indicate that any certificates
issued by this authority are trusted by the system and therefore can be used by any application
without any fear. Other certificates by default are not trusted and therefore marked with a special
flag. Of course, you should use only valid certificates issued by a trusted authority for critical oper-
ations such as authenticating or setting up SSL on the server, because any other certificate could
lead to a potential security risk.

In ASP.NET web applications, you have to use either the local machine store or a service
account’s store (which is nothing more than the user store of the service account under which
a Windows service is executed). Therefore, the code introduced previously opens the store with
the flag StoreLocation.LocalMachine. The second possible flag for this option is StoreLocation.
CurrentUser, which opens a current user’s or service account’s store. As the certificate is a “usage”
certificate, you will read it from the personal store. You can view the certificates of a store by
opening a Microsoft Management Console and then adding the Certificates snap- in, as shown
in Figure 25-1.You can open this console by starting the management console (mmc.exe) and
then selecting File Add/Remove Snap In. In the dialog box that appears after selecting this
menu entry, you select the Certificates snap- in from the list of available snap- ins and add it to
the selected snap- ins list. When doing so, you have to select the store you want to display in the
 snap- in. Afterward you can close the dialog, and the certificates snap- in displaying all stores and
certificates in these stores for the selected account appears in the management console.

You can create test certificates through the makecert.exe command. For example, the
following command creates a certificate in the personal store of the local machine:

As soon as you have the certificate from the store in place, you can use it when sending
requests through SSL to a server that requires certificate authentication, as follows:

For the preceding code you need to import the System.Net namespace in your code file.
Useful cases where this code makes sense are, for example, use cases where your application

CHAPTER 25 CRYPTOGRAPHY 1167

needs to retrieve data from another web application or send data to another web applica-
tion using HTTP GET/POST requests and the other web application requires authentication
through certificates.

Another useful example of security is a class for generating cryptographically strong ran-
dom numbers. This class is important for generating random key values or salt values when you
want to store salted password hashes. A salted password hash is a hash created from a password
and a so- called salt. A salt is a random value. This ensures that even if two users select the same
passwords, the results stored in the back- end store will look different, as the random salt value is
hashed with the password. It also requires you to store the salt value in a separate field together
with the password, because you will need it for password validation. You will learn more about
salted hash values when creating a custom membership provider in Chapter 26. For now, this
shows how you can create random number values with the System.Security.Cryptography.
RandomNumberGenerator class:

For more information about the random number generator, refer to the Cryptographic
Service Provider documentation of Windows, as this class is just a wrapper around the native
implementation).

 Figure 25-1. The Windows Certificates snap- in

CHAPTER 25 CRYPTOGRAPHY1168

Understanding the .NET Cryptography Classes
Before you can perform cryptography in .NET, you need to understand a little more about the
underlying plumbing. The .NET encryption classes are divided into three layers. The first layer
is a set of abstract base classes; these classes represent an encryption task. These include the
following:

AsymmetricAlgorithm: This class represents asymmetric encryption, which uses a public/
private key pair. Data encrypted with one key can be decrypted only with the other key.

SymmetricAlgorithm: This class represents symmetric encryption, which uses a shared
secret value. Data encrypted with the key can be decrypted using only the same key.

HashAlgorithm: This class represents hash generation and verification. Hashes are also
known as one- way encryption algorithms, as you can only encrypt but not decrypt data.
You can use hashes to ensure that data is not tampered with.

The second level includes classes that represent a specific encryption algorithm. They
derive from the encryption base classes, but they are also abstract classes. For example, the
DES algorithm class, which represents the DES (Data Encryption Standard) algorithm, derives
from SymmetricAlgorithm.

The third level of classes is a set of encryption implementations. Each implementation
class derives from an algorithm class. This means a specific encryption algorithm such as DES
could have multiple implementation classes. While some .NET Framework encryption classes
are implemented entirely in managed code, most are actually thin wrappers over the CryptoAPI
library. The classes that wrap the CryptoAPI functions have CryptoServiceProvider in their name
(for example, DESCryptoServiceProvider), while the managed classes typically have Managed in
their name (for example, RijndaelManaged). Essentially, the managed classes perform all their
work in the .NET world under the supervision of the CLR, while the unmanaged classes use calls
to the unmanaged CryptoAPI library. This might seem like a limitation, but it’s actually an effi-
cient reuse of existing technology.

The CryptoAPI has never been faulted for its technology, just for its awkward programming
interface. Figure 25-2 shows the classes in the System.Security.Cryptography namespace. This
 three- layer organization allows almost unlimited extensibility. You can create a new imple-
mentation for an existing cryptography class by deriving from an existing algorithm class. For
example, you could create a class that implements the DES algorithm entirely in managed code
by creating a new DESManaged class and inheriting from DESCryptoServiceProvider. Similarly,
you can add support for a new encryption algorithm by adding an abstract algorithm class (for
example, the CAST128 algorithm, which is similar to the DES algorithm but is not provided in
the framework) and a concrete implementation class (such as, for example, CAST128Managed if
you want to implement the CAST128 algorithm).

Note The encryption classes are one of the few examples in the .NET class library where the standard
naming and case rules are not followed. For example, you’ll find classes such as TripleDES and RSA rather
than TripleDes and Rsa.

CHAPTER 25 CRYPTOGRAPHY 1169

 Figure 25-2. The cryptographic class hierarchy

Symmetric Encryption Algorithms
As mentioned in the previous section, the .NET Framework supports three types of encryption:
symmetric, asymmetric, and one- way encryption (hashes). Symmetric algorithms always use
the same key for encryption and decryption. Symmetric algorithms are fast for encryption and
decryption. Table 25-2 lists the most important symmetric algorithms supported by the .NET
Framework.

Table 25-2. Symmetric Algorithms Supported by .NET

Abstract Algorithm
Default
Implementation Valid Key Size

Maximum
Key Size

DES DES DESCryptoServiceProvider 64 64

TripleDES TripleDES TripleDESCryptoServiceProvider 128, 192 192

RC2 RC2 RC2CryptoServiceProvider 40–128 128

Rijndael Rijndael RijndaelManaged 128, 192, 256 256

The strength of the encryption corresponds to the length of the key. Keep in mind that the
greater the key size, the harder it is for a brute- force attack to succeed, because there are far
more possible key values to test. Of course, greater symmetric key sizes also lead to larger mes-
sages and slower encryption times. For most purposes, a good standard choice is Rijndael. It
offers solid performance and support for large key sizes.

CHAPTER 25 CRYPTOGRAPHY1170

Note DES, TripleDES, and RC2 are all implemented using the CryptoAPI and thus need the high encryption
pack on Windows 2000. Note also that the key length for DES and TripleDES includes parity bits that don’t
contribute to the strength of the encryption. TripleDES with a 192- bit key uses only 168 bits, while a 128- bit
key uses 112 bits. In DES, the 64- bit key uses only 56 bits. For that reason, it’s considered fairly weak, and
you should use other key algorithms instead. For additional information about the relative strengths of these
algorithms, consult a dedicated book or Internet resource about encryption theory, such as Bruce Schneier’s
Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second Edition (Wiley, 1995).

As mentioned, the big advantage of symmetric algorithms is performance. Conversely, the
major problems with symmetric algorithms are as follows:

Key exchange: If you are using symmetric algorithms to exchange data between two
applications hosted by different parties, you have to exchange the key in a secure way.

Brute-force attacks: If you use the symmetric key for a longer period of time, attackers
might have enough time to decrypt traffic by just trying any valid combination of bits in
a key. Therefore, with an increasing bit size, the strength of the key increases, as explained
previously. But generally this means you should use a different key in regular intervals
anyway.

Long-term key management: If you have to update keys in regular intervals, you have to
exchange them in regular intervals, which might lead to additional security risks. Further-
more, you have to store the key in a secure place.

Symmetric algorithms are not enough for secure systems, and that’s why asymmetric
algorithms exist.

Asymmetric Encryption
Asymmetric algorithms try to solve some of the problems of symmetric algorithms. They are
based on mathematical methods that require different keys for encryption and decryption. Usu-
ally the key used for encryption is called a public key. You can give this key to anyone who wants
to send encrypted information to you. On the other hand, the private key is the only key that can
be used for decryption. Therefore, if you are the only one with access to the private key, you are
the only person who is able to decrypt the information. This fact makes key exchange between
parties definitely easier, because you don’t need to transmit the key that can decrypt sensitive
data. Table 25-3 lists the asymmetric algorithms supported by the .NET Framework.

Table 25-3. Asymmetric Algorithms Supported by .NET

AbstractAlgorithm Default
Implementation

Valid Key Size Default Key Size

RSA RSA RSACryptoServiceProvider 384–16384 (8- bit
increments)

1024

DSA DSA DSACryptoServiceProvider 512–1024 (64- bit
increments)

1024

CHAPTER 25 CRYPTOGRAPHY 1171

When you use RSA (its name comes from the inventors of the algorithm—Ron Rivest, Adi
Shamir, and Leonard Adleman) and DSA (Digital Signature Algorithm), you will recognize that
only RSA supports the direct encryption and decryption of values. The DSA algorithm—as its
name Digital Signature Algorithm implies—can be used only for signing information and veri-
fying signatures.

The big problem is that asymmetric algorithms are much slower (depending on the size of
the data you want to encrypt) than symmetric algorithms. This will affect the performance of
your application if you need to exchange data through lots of requests. Therefore, technologies
such as SSL use asymmetric algorithms at the beginning when establishing a connection ses-
sion. Through the first communication steps, traffic between the client and the server is secured
through asymmetric encryption (the client encrypts with a public key, and the server decrypts
with a private key). With these steps the client and the server can exchange a symmetric key
securely. This symmetric key then secures traffic for any subsequent communication through
symmetric encryption. This combines the advantages of symmetric and asymmetric encryp-
tion. You do have to find a way to securely store the private key so that unauthorized people
don’t have a chance to access it.

Note If you don’t store the private key on an external device such as a smart card, you create a chance
of someone gaining unauthorized access (and even the smart card is not completely secure, because you
can lose it), especially users who have administrative privileges on machines. However, you should always
make your solution as secure as possible and “raise the bar” for attackers. Therefore, any additional security
mechanism (gatekeeper) will make life for a potential attacker harder.

The Abstract Encryption Classes
The abstract encryption classes serve two purposes. First, they define the basic members that
encryption implementations need to support. Second, they provide some functionality through
the static Create() method, which you can use to indirectly create a class instance for you. This
method allows you to create one of the concrete implementation classes without needing to
know how it is implemented.

For example, consider the following line of code:

The static Create() method returns an instance of the default DES implementation class.
In this case, the class is DESCryptoServiceProvider. The advantage of this technique is that you
can code generically, without creating a dependency on a specific implementation. Best of all,
if Microsoft updates the framework and the default DES implementation class changes, your
code will pick up the change seamlessly. This is particularly useful if you are using a CryptoAPI
class, which could be replaced with a managed class equivalent in the future.

In fact, you can work at an even higher level if you want by using the static Create()
method in one of the cryptographic task classes. For example, consider this code:

CHAPTER 25 CRYPTOGRAPHY1172

This creates an instance of whatever cryptography class is defined as the default symmet-
ric algorithm. In this case, it isn’t DES but is Rijndael. The object returned is an instance of the
RijndaelManaged implementation class. For more information on configuring default imple-
mentations and configuring friendly names used with the Create() method, take a look at the
document about “Mapping Algorithm Names to Cryptography Classes” on MSDN at

.

Note It is good practice to code generically using the abstract algorithm classes. This allows you to know
which type of algorithm you are using (and any limitations it may have) without worrying about the underlying
implementation.

Note that most of the algorithm classes support a GenerateKey() method as well, in addi-
tion to methods for encrypting and decrypting data with an algorithm. This method generates
a random key that adheres to the key requirements of the corresponding algorithm. The key is
generated on strong cryptographic random number generators that are part of the Windows
platform so that the value is really unpredictable and random.

The ICryptoTransform Interface
.NET uses a stream- based architecture for encryption and decryption, which makes it easy
to encrypt and decrypt different types of data from different types of sources. This architec-
ture also makes it easy to perform multiple cryptographic operations in succession, on the
fly, independent of the low- level details of the actual cryptography algorithm you’re using
(such as the block size).

To understand how all this works, you need to consider the core types—the ICryptoTransform
interface and the CryptoStream class. The ICryptoTransform interface represents blockwise cryp-
tographic transformation. This could be an encryption, decryption, hashing, Base64 encoding/
decoding, or formatting operation. To create an ICryptoTransform object for a given algorithm,
you use the CreateEncryptor() and CreateDecryptor() methods on the cryptography algorithm class
instance (such as an instance of DES or any other algorithm you have created earlier).

Use the CreateEncryptor() method if you want to encrypt data and use the CreateDecryptor()
method if you want to decrypt data. Here’s a code snippet that creates an ICryptoTransform for
encrypting with the DES algorithm:

Various cryptographic tasks execute in the same way, even though the actual cryp-
tographic function performing the transformation may be different. Every cryptographic
operation requires that data be subdivided into blocks of a fixed size before it can be pro-
cessed. You can use an ICryptoTransform instance directly, but in most cases you’ll take
an easier approach and simply pass it to another class: the CryptoStream.

CHAPTER 25 CRYPTOGRAPHY 1173

The CryptoStream Class
The CryptoStream wraps an ordinary stream and uses an ICryptoTransform to perform its
work behind the scenes. The key advantage is that the CryptoStream uses buffered access,
thereby allowing you to perform automatic encryption without worrying about the block size
required by the algorithm. The other advantage of the CryptoStream is that, because it wraps
an ordinary .NET stream- derived class, it can easily “piggyback” on another operation, such
as file access (through a FileStream), memory access (through a MemoryStream), a low- level
network call (through a NetworkStream), and so on.

To create a CryptoStream, you need three pieces of information: the underlying stream,
the mode (read or write), and the ICryptoTransform you want to use. For example, the follow-
ing code snippet creates an ICryptoTransform using the DES algorithm implementation class
and then uses it with an existing stream to create a CryptoStream:

Note that the CryptoStream can be in one of two modes: read mode or write mode, as
defined by the CryptoStreamMode enumeration. In read mode, the transformation is per-
formed as it is retrieved from the underlying stream (as shown in Figure 25-3).

 Figure 25-3. Reading and decrypting data

In write mode, the transformation is performed before the data is written to the underly-
ing stream (as shown in Figure 25-4).

 Figure 25-4. Writing and encrypting data

CHAPTER 25 CRYPTOGRAPHY1174

You cannot combine both modes to make a readable and writable CryptoStream (which
would have no meaning anyway). Similarly, the Seek() method and the Position property of
the CryptoStream class, which are used to move to different positions in a stream, are not sup-
ported for the CryptoStream and will throw a NotSupportedException if called. However, you
can often use these members with the underlying stream.

Encrypting Sensitive Data
Now that you’ve taken an in- depth look at .NET cryptography, it’s time to put it all together. In
the following sections, you will create two utility classes that use symmetric and asymmetric
algorithms. In the section “Encrypting Sensitive Data in a Database,” you will use one of these
classes to encrypt sensitive information such as a credit card number stored in a database,
and in the section “Encrypting the Query String” you will learn how to encrypt the URL query
string of an HTTP GET/POST request. You need to perform the following steps to encrypt and
decrypt sensitive information; we will cover these steps in this and the subsequent sections:

 1. Choose and create an algorithm.

 2. Generate and store the secret key.

 3. Encrypt or decrypt information through a CryptoStream.

 4. Close the source and target streams appropriately.

After you have created and tested your encryption utility classes, you will prepare a database
to store secret information and then write the code for encrypting and decrypting this secret
information in the database.

Managing Secrets
Before you learn the details of using the encryption classes, you have to think about one additional
thing: where do you store the key? The key used for encryption and decryption is a secret, so
it must be stored securely. Often developers think the best way to store such a key is in source
code. However, storing secrets in source code is one of the biggest mistakes you can make in
your application. Imagine that you have the following code in the code of a class library that
will be compiled into a binary DLL:

Keys such as this can easily be revealed through disassembling tools. You just need to
open ILDASM and analyze your class. Of course, you definitely will be able to find this secret,
as shown in Figure 25-5.

CHAPTER 25 CRYPTOGRAPHY 1175

 Figure 25-5. ILDASM with the previous class and the secret

If you think this is a problem in the managed world only, try something similar with an
unmanaged C++ application. Create a class, and include the secret as a constant value in your
application. Because constant values are stored in a special section of native executables, per-
form the following steps:

 1. Install the Microsoft Platform SDK.

 2. Open a command shell, and execute the following command:

 3. Open the generated file test.txt with Notepad, and scroll to the .rdata section. Some-
where in this section you will find your hard- coded secret.

So, you definitely have to protect the key somehow. You might want to encrypt the key on
its own, but then you need another encryption key.

Windows supports a built- in mechanism for storing and protecting secrets. This mecha-
nism uses a machine key generated with the system installation for encrypting data. Only the
local operating system (the system’s local security authority) has access to this machine key.
Of course, the machine key is unique for every installation. Windows supports the DPAPI for
protecting data with this key. You don’t have direct access to the key when using this API; you
just tell the system to encrypt or decrypt something with the machine’s key. So, this solves the
problem of key management: your application could encrypt the key used by your application
through the DPAPI. For this purpose, the .NET Framework supports the class System.Security.
Cryptography.ProtectedData, which you can use as follows:

CHAPTER 25 CRYPTOGRAPHY1176

You need to add a reference to the System.Security.dll assembly and import the Sys tem.
Security.Cryptography namespace when you want to use the ProtectedData class for protect-
ing sensitive information. Possible scopes are LocalMachine and CurrentUser. While the first
option uses the machine key, the second one uses a key generated for the currently logged- on
user’s profile. (In the case of Active Directory roaming profiles that allow reusing a Windows user
profile on several Windows machines within an Active Directory domain, this key is machine
independent.) If a user is the administrator of the machine and has the necessary know- how,
he can decrypt the data by writing a program that calls the previous function. However, this
definitely “raises the bar” and makes it harder to access the key. And if the user is not the
administrator and has no permission to use the DPAPI, she cannot decrypt data encrypted
with the machine key.

Caution Don’t use the DPAPI to encrypt information in your database. Although it is easy to use the
DPAPI with the .NET Framework, this method has one problem: encrypted data is bound to the machine if
you use the DataProtectionScope.LocalMachine setting. Therefore, if the machine crashes and you have to
restore your data on another machine, you will lose all the encrypted information. If you use the DPAPI for
encrypting the key as described previously, you should have a backup of the key in another secure place.
If you want to use the DPAPI in web farm scenarios, you have to run your application under a domain user
account and use the key created for the user’s profile (DataProtectionScope.CurrentUser). We recommend
creating a separate domain for your web farm so that you don’t have to use a domain user of your company’s
internal domain network.

Using Symmetric Algorithms
As mentioned, symmetric encryption algorithms use one key for encrypting and decrypting
data. In the next section you will learn the details by creating a utility class that performs the
encryption and decryption of sensitive data. You can then reuse this class across several web
applications. The utility class you will create has the following structure and can be used for
encrypting and decrypting string data. (Note that based on the _ProtectKey Boolean, you will
write code later on that decides whether to protect the key using the DPAPI or not by querying
this Boolean value. A true value means it should protect the key using the DPAPI, as you will
see when you implement the class.)

CHAPTER 25 CRYPTOGRAPHY 1177

Because the class is just a utility class with static members only, you can make it a static
class so that nobody can create an instance of it. You can specify the name of the algorithm
(DES, TripleDES, RijnDael, or RC2) through the AlgorithmName property. It also supports
operations for generating a new key, reading this key from the file specified directly into the
key property of an algorithm instance, and encrypting and decrypting data. To use this class,
you must set the algorithm name appropriately and then generate a key if none exists already.
Then you need to call the EncryptData and DecryptData methods, which internally will call
the ReadKey method for initializing the algorithm. The ProtectKey property allows the user of
the class to specify whether the key should be protected through the DPAPI.

You can generate encryption keys through the algorithm classes. The GenerateKey()
method looks like this:

CHAPTER 25 CRYPTOGRAPHY1178

The GenerateKey() method of the SymmetricAlgorithm class generates a new key through
cryptographically strong random number algorithms via the GenerateKey() method supplied
by the created algorithm, and initializes the Key property with this new key. If the calling code
has set the ProtectKey flag of your utility class to true, your implementation encrypts the key
using the DPAPI.

The ReadKey method reads the key from the file created by the GenerateKey method, as
follows:

If the key was protected previously, the ReadKey method uses the DPAPI for unprotect-
ing the encrypted key when reading it from the file. Furthermore, ReadKey() requires you to
pass in an existing instance of a symmetric algorithm. It directly initializes the key property of
the algorithm so that this key will be used automatically for all subsequent operations. Finally,
both the EncryptData() and DecryptData() functions use the ReadKey() function.

CHAPTER 25 CRYPTOGRAPHY 1179

As you can see, both methods require a keyFile parameter with the path to the file that stores
the key. They subsequently call the ReadKey method for initializing their algorithm instance
with the key. While the EncryptData method accepts a string and returns a byte array with the
encrypted representation, the DecryptData method accepts the encrypted byte array and returns
the clear- text string.

Let’s get started with the EncryptData method:

First, the method converts the incoming clear- text string value into a byte array because all
the encryption functions of the algorithms require byte arrays as input parameters. You can use
the Encoding class of the System.Text namespace to do this easily. Next, the method creates the
algorithm according to the AlgorithmName property of the class. This value can be one of the
names RC2, Rijndael, DES, or TripleDES. The factory method of the SymmetricAlgorithm cre-
ates the appropriate instance, while you can register additional cryptography classes through
the <cryptographySettings> section in the machine.config file. You can read more about config-
uring cryptography providers at .

Afterward, the method creates a memory stream that will be the target of your encryp-
tion operation in this case. Before the class starts with the encryption operation through
the CryptoStream class, it generates an initialization vector (IV) and writes the IV to the target
stream on the first position. The IV adds random data to the encrypted stream of data.

Imagine the following situation: if your application exchanges the same information
multiple times between a client and a server, simple encryption will always result in the same

CHAPTER 25 CRYPTOGRAPHY1180

encrypted representation of the information. This makes brute- force attacks easier. To add
some sort of random information, symmetric algorithms support IV. These IVs are not only
added to the encrypted stream of bytes themselves but are also used as input for encrypting
the first block of data. When using the CryptoStream for encrypting information, don’t forget
to call the FlushFinalBlock method to make sure the last block of encrypted data is written
appropriately to the target.

You have to add the IV itself to the encrypted set of bytes because you need the informa-
tion later to be able to decrypt the encrypted content completely:

The decryption function is structured the other way around. It creates the algorithm and
creates a stream for the decrypted target information. Before you can start decrypting the data,
you have to read the IV from the encrypted stream, because it is used by the algorithm for the
last transformation. You then use the CryptoStream as you did previously, except you create
a decryptor transformer this time. Finally, you get the decrypted byte representation of the
string you have created through Encoding.UTF8.GetBytes(). To reverse this operation, you
need to call the GetString() method of the UTF- 8 encoding class for getting the clear- text rep-
resentation of the string.

Using the SymmetricEncryptionUtility Class
Now you can create a page for testing the class you created previously. Just create a page that
allows you to generate a key and enter clear- text data through a text box. You can output the

CHAPTER 25 CRYPTOGRAPHY 1181

encrypted data through Convert.ToBase64String() easily. For decryption, you need to decode
the Base64- encoded portion back to its byte array. You do so by calling the counterpart method
called Convert.FromBase64String() to get the encrypted bytes back and pass them into the
DecryptData method.

The previous page uses the DES algorithm because you set the AlgorithmName of your
utility class appropriately. Within the Click event of the GenerateKeyCommand button, it calls
the GenerateKey() method. Depending on the check box of the page, it encrypts the key itself
through the DPAPI or not. After the data has been encrypted through your utility class within

CHAPTER 25 CRYPTOGRAPHY1182

the Click event of the EncryptCommand button, it converts the encrypted bytes to a Base64
string and then writes it to the EncryptedDataText text box. Therefore, if you want to decrypt
information again, you have to create a byte array based on this Base64 string representation
and then call the method for decryption. You can see the result in Figure 25-6.

 Figure 25-6. The resulting test page for symmetric algorithms

Using Asymmetric Algorithms
Using asymmetric algorithms is similar to using symmetric algorithms. You will see just a hand-
ful of differences. The major difference has to do with key management. Symmetric algorithms
just have one key, and asymmetric algorithms have two keys: one for encrypting data (public
key) and one for decrypting data (private key). While the public key can be available to everyone
who wants to encrypt data, the private key should be available only to those decrypting infor-
mation. In this section, you will create a utility class similar to the previous one.

Because the .NET Framework ships with only one asymmetric algorithm for real data encryp-
tion (RSA; remember, DSA is used for digital signatures only), you don’t need to include a way
to select the algorithm (for a while).

CHAPTER 25 CRYPTOGRAPHY 1183

The GenerateKey method creates an instance of the RSA algorithm for generating the
key. It stores only the private key in the file secured through the DPAPI and returns the public
key representation as an XML string using the ToXmlString() method of the algorithm. This is
a fairly realistic concept—the private key is usually kept as a secret by the application, while
the public key is shared with others to be able to encrypt information that then is decrypted by
the application using its secret private key.

The caller of the function needs to store the public key somewhere; this is necessary for
encrypting information. You can retrieve the key as an XML representation through a method
called ToXmlString(). The parameter specifies whether private key information is included
(true) or not (false). Therefore, the GenerateKey function first calls the ToXmlString() func-
tion with the true parameter to store the complete key information in the file, and then calls it
with the false parameter to include the public key only. Subsequently, the ReadKey() method
just reads the key from the file and then initializes the passed algorithm instance through
FromXml(), the opposite of the ToXmlString() method:

CHAPTER 25 CRYPTOGRAPHY1184

This time the ReadKey() method is used by the decryption function only. The EncryptData()
function requires the caller to pass in the XML string representation of the public key returned
by the GenerateKey() method, because the private key is not required for encryption. Encryp-
tion and decryption with RSA take place as follows:

Now you can build a test page, as shown in Figure 25-7. (You can find the source code of
this page in the book’s downloadable code in the Source Code/Download area on the Apress
website at .)

 Figure 25-7. A sample test page for asymmetric algorithms

CHAPTER 25 CRYPTOGRAPHY 1185

Encrypting Sensitive Data in a Database
In this section, you will learn how to create a simple test page for encrypting information stored
in a database table. This table will be connected to a user registered in the Membership Service.
We suggest not creating a custom membership provider with custom implementations of
MembershipUser that support additional properties. As long as you stay loosely coupled with
your own logic, you can use it with multiple membership providers. In this sample, you will cre-
ate a database table that stores additional information for a MembershipUser without creating
a custom provider. It just connects to the MembershipUser through the ProviderUserKey—this
means the actual primary key of the underlying data store. Therefore, you have to create a table
on your SQL Server as follows:

The primary key, UserId, will contain the same key as the MembershipUser for which this
information is created. That’s the only connection to the underlying Membership Service. As
mentioned, the advantage of not creating a custom provider for just these additional fields is
that you can use it for other membership providers. We suggest creating custom providers
only for supporting additional types of data stores for the Membership Service. The sensitive
information is the CreditCard field, which now is not stored as VARCHAR but as VARBINARY
instead. Now you can create a page that looks like this:

CHAPTER 25 CRYPTOGRAPHY1186

The page includes a LoginView control to display the Login control for anonymous users
and display some text fields for the information introduced with the CREATE TABLE statement.
Within the Load button’s Click event handler, you will write code for retrieving and decrypt-
ing information from the database, and within the Save button’s Click event handler, you will
obviously do the opposite. Before doing that, though, don’t forget to configure the connection
string appropriately.

Now you should use the ASP.NET WAT to create a couple of users in your membership
store. After you have done that, you can start writing the actual code for reading and writing
data to the database. The code doesn’t include anything special. It just uses the previously
created encryption utility class for encrypting the data before updating the database and
decrypting the data stored on the database.

Let’s take a look at the Page_Load method, which initializes the ADO.NET
Connection instance, and then at the update method implemented in the SaveCommand’s
Click event handler first. Remember that you leverage the previously created utility class
(SymmetricEncryptionUtility), which requires you to specify a filename for storing the pro-
tected private key. Also note that in the previous ASP.NET page code, you used the LoginView
control. This means that you have to manually find the TextBox controls using FindControl()
on the LoginView control and associate them to your own members, as shown in the following
code snippet as well:

CHAPTER 25 CRYPTOGRAPHY 1187

CHAPTER 25 CRYPTOGRAPHY1188

The two key parts of the previous code are the part that retrieves the ProviderUserKey from
the currently logged- on MembershipUser for connecting the information to a membership
user, and the position where the credit card information is encrypted through the previously
created encryption utility class. Only the encrypted byte array is passed as a parameter to the
SQL command. Therefore, the data is stored encrypted in the database.

The opposite of this function, reading data, looks quite similar, as shown here:

Again, the function uses the currently logged- on MembershipUser’s ProviderUserKey
property for retrieving the information. If successfully retrieved, it reads the clear- text data and
then retrieves the encrypted bytes from the database table. These bytes are then decrypted
and displayed in the credit card text box. You can see the results in Figure 25-8.

CHAPTER 25 CRYPTOGRAPHY 1189

 Figure 25-8. Encrypting sensitive information on the database

Encrypting the Query String
In this book, you’ve seen several examples in which ASP.NET security works behind the scenes
to protect your data. For example, in Chapter 20 you learned how ASP.NET uses encryption
and hash codes to ensure that the data in the form cookie is always protected. You have also
learned how you can use the same tools to protect view state. Unfortunately, ASP.NET doesn’t
provide a similar way to enable automatic encryption for the query string (which is the extra
bit of information you add to URLs to transmit information from one page to another). In many
cases, the URL query information corresponds to user- supplied data, and it doesn’t matter
whether the user can see or modify it. In other cases, however, the query string contains infor-
mation that should remain hidden from the user. In this case, the only option is to switch to
another form of state management (which may have other limitations) or devise a system
to encrypt the query string.

In the next example, you’ll see a simple way to tighten security by scrambling data before
you place it in the query string. Once again, you can rely on the cryptography classes provided
with .NET. In fact, you can leverage the DPAPI. (You can do this only if you are not in a server
farm environment. In that case, you could use the previously created encryption classes and
deploy the same key file to any machine in the server farm.)

Wrapping the Query String
The starting point is to build an EncryptedQueryString class. This class should accept a col-
lection of string- based information (just like the query string) and allow you to retrieve it in
another page. Behind the scenes, the EncryptedQueryString class needs to encrypt the data
before it’s placed in the query string and decrypt it seamlessly on the way out.

CHAPTER 25 CRYPTOGRAPHY1190

Here's the starting point for the EncryptedQueryString class you need:

You should notice one detail immediately about the EncryptedQueryString class: it derives
from the StringDictionary class, which represents a collection of strings indexed by strings. By
deriving from StringDictionary, you gain the ability to use the EncryptedQueryString like an
ordinary string collection. As a result, you can add information to the EncryptedQueryString in
the same way you add information to the Request.QueryString collection. Here’s an example:

Best of all, you get this functionality for free, without needing to write any additional
code. So, with just this rudimentary class, you have the ability to store a collection of name/
value strings. But how do you actually place this information into the query string? The
EncryptedQueryString class provides a ToString() method that examines all the collection
data and combines it in a single encrypted string.

First, the EncryptedQueryString class needs to combine the separate collection values into
a delimited string so that it’s easy to split the string back into a collection on the destination
page. In this case, the ToString() method uses the conventions of the query string, separating
each value from the name with an equal sign (=) and separating each subsequent name/value
pair with the ampersand (&). However, for this to work, you need to make sure the names and
values of the actual items in the collection don’t include these special characters. To solve this
problem, the ToString() method uses the HttpServerUtility.UrlEncode() method to escape the
strings before joining them.

Here’s the first portion of the ToString() method, which escapes and joins the collection
settings into one string:

CHAPTER 25 CRYPTOGRAPHY 1191

The next step is to use the ProtectedData class to encrypt the data. This class uses the
DPAPI to encrypt the information and its Protect method to return a byte array, so you need
to take additional steps to convert the byte array to a string form that’s suitable for the query
string. One approach that seems reasonable is the static Convert.ToBase64String() method,
which creates a Base64- encoded string. Unfortunately, Base64 strings can include symbols
that aren’t allowed in the query string (namely, the equal sign). Although you could create
a Base64 string and then URL- encode it, this further complicates the decoding stage. The
problem is that the ToBase64String() method may also introduce a series of characters that
look like URL- encoded character sequences. These character sequences will then be incor-
rectly replaced when you decode the string.

A simpler approach is to use a different form of encoding. This example uses hex encoding,
which replaces each character with an alphanumeric code. The following example shows the
simple implementation of such a helper class implementing hexadecimal- based encodings:

CHAPTER 25 CRYPTOGRAPHY1192

The GetString() method just returns a string with hexadecimal digits created from a byte
array, while GetBytes() converts a string with hexadecimal digits back to the byte array for
further processing. This is fairly simple to implement, as it uses existing conversion methods
encapsulated in the .NET Framework’s convert class. These methods are then simple to use, as
the following code excerpt shows:

You can place the string returned from EncryptedQueryString.ToString() directly into
a query string using the Response.Redirect() method.

The destination page that receives the query data needs a way to deserialize and decrypt the
string. The first step is to create a new EncryptedQueryString object and supply the encrypted data.
To make this step easier, it makes sense to add a new constructor to the EncryptedQueryString
class that accepts the encrypted string, as follows:

This constructor first decodes the hexadecimal information from the string passed in and
uses the DPAPI to decrypt information stored in the query string. It then splits the information
back into its parts and adds the key/value pairs to the base StringCollection.

Now you have the entire infrastructure in place to create a simple test page and transmit
information from one page to another in a secure fashion.

CHAPTER 25 CRYPTOGRAPHY 1193

Creating a Test Page
To try the EncryptedQueryString class, you need two pages—one that sets the query string and
redirects the user and another that retrieves the query string. The first one contains a text box
for entering information, as follows:

When the user clicks the SendCommand button, the page sends the encrypted query
string to the receiving page, as follows:

Notice that the page enters the complete encrypted data string as one parameter called
data into the query string for the destination page. Figure 25-9 shows the page in action.

 Figure 25-9. The source page in action

CHAPTER 25 CRYPTOGRAPHY1194

The destination page deserializes the query string passed in through the data query string
parameter with the previously created class, as follows:

This code adds the information to a label on the page. You can see the result of the previ-
ously posted information in Figure 25-10.

 Figure 25-10. The results of the received query string information

Summary
In this chapter, you learned how to take control of .NET security with advanced techniques.
You saw how to use stream- based encryption to protect stored data and the query string. In
the next chapter, you’ll learn how to use powerful techniques to extend the ASP.NET security
model.

1195

C H A P T E R 2 6

Custom Membership Providers

In the previous chapters, you learned all the necessary details for authenticating and autho-
rizing users with ASP.NET through both forms authentication and Windows authentication.
You learned that with forms authentication on its own, you are responsible for managing users
(and roles if you want to implement role- based authorization in your application) in a custom
store.

Fortunately, ASP.NET ships with the membership API and the roles API, which provide
you with a framework for user and roles management. You learned the details about the mem-
bership API in Chapter 21, and you learned about the roles API in Chapter 23. You can extend
the framework through providers that implement the actual access to the underlying data store.
In both of those chapters, you used the default provider for SQL Server that ships with ASP.NET.

You can exchange the default implementation that works with SQL Server by implement-
ing custom membership and roles providers. This gives you the possibility of exchanging the
underlying storage used for user and role information, without affecting your web application.

In this chapter, you will learn how you can extend the membership API and the roles API
by implementing custom membership and roles providers. Furthermore, you will learn how
you can configure and debug your custom provider for web applications. With the information in
this chapter, you will also be equipped to create other custom providers—for example, providers
for the profiles API and the personalization engine of web parts (see Chapter 30)—because the
creation process is always the same.

Note Because the provider model was introduced in ASP.NET 2.0, most of the information in this chapter
is new to ASP.NET 1.x developers. To develop a custom membership and roles provider, you need in- depth
 know- how of ADO.NET, System.Xml, and the basic ASP.NET infrastructure. If you are coming from ASP.NET 1.1,
you should read Chapters 21 and 23 before digging into this chapter. If you are new to ASP.NET, you should
read Chapters 19, 20, 21, 23, and 25 as well as Chapters 7, 8, 12, and 14 before you start reading this chap-
ter. .NET Framework 3.0 and .NET Framework 3.5 do not introduce any changes to the membership API and
roles API. Therefore, if you are already familiar with ASP.NET 2.0, and you know all the details about custom
membership providers, you can skip this chapter.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1196

Architecture of Custom Providers
In Chapters 21 and 23 you learned many details about the integrated membership and roles
services. These services provide you with an out-of-the- box solution for managing users and
roles with forms authentication. As explained earlier, you can extend the model through pro-
viders, as shown in Figure 26-1. When implementing custom providers, you should always
keep the architecture shown in Figure 26-1 in mind. A custom provider is always based on the
lowest level in the layered model introduced by the ASP.NET membership and roles framework.
It’s important to know that every other provider- based API in ASP.NET is structured in the same
way. Therefore, implementing custom providers for the profiles API or the personalization engine
of ASP.NET is similar.

 Figure 26-1. The membership and roles framework

As you can see from their basic architectures, the membership and roles services are
independent from each other. Therefore, membership providers and roles providers have
separate base classes; in addition, you can store membership users and roles in different
 back- end systems. A good example is when using the roles service with Windows authen-
tication. Remember what you learned in Chapter 23 about application- specific roles that
are used for authorization within the application instead of within Windows groups: this
provides you with a way to decouple your application from an underlying Active Directory
infrastructure.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1197

Before you learn about the details of implementing custom providers, it’s important to
understand why you might want to create a custom membership provider. Some common
reasons include the following:

the ASP.NET standard.

-
tories of your choice).

implemented for governmental websites where users have to authenticate by specifying
three values: a user name, a subscription ID, and a password.

If you just want to store your own information in addition to the information stored by the
default implementation, we recommend not implementing a custom provider. Because the mem-
bership API gives you access to a key that uniquely identifies a user in the store, we recommend
adding your own tables for storing your additional information and connecting information stored
in your tables through the user’s unique key with the actual user of the membership provider’s
storage; alternatively, you could implement user profiles for these additional properties. This is far
easier than implementing a custom provider for adding a few extra values.

From within the application, you can access the user’s unique key through the
ProviderUserKey property . In this chapter, you will learn

Basic Steps for Creating Custom Providers
You will now learn how to implement your custom provider for the membership and roles ser-
vices. Creating a custom provider involves the following steps:

 1. Design and create the underlying data store.

 2. Create utility classes for accessing the underlying data store.

 3. .

 4. Create a class that inherits from the RoleProvider.

 5. Create a provider test application.

 6. Configure the custom providers in your test application.

 7. Use the custom providers in your custom application.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1198

Implementing custom providers is fairly straightforward but will require some time, as
you have to implement lots of methods and properties. In the following sections, you will

 file as the underlying data
-

native if you write a simple application and need to host this application on a provider site and
don’t have access to a database such as SQL Server.

Overall Design of the Custom Provider
Before creating a custom provider, you have to think about the overall design of the solution.
Your goal is to keep the underlying functionality as simple as possible so that you can concen-

object graph with just one function call in a file and to read it with one function call.

-
alize at the time of instance creation of the serializer. Also don’t forget that you need to import

 don’t allow you to access some information—

serialization requires all properties and members that need to be stored as public properties
or members. Therefore, you will create your own representation of users and roles as utility
classes for the back- end store. These classes will never be passed to the application, which
simply relies on the existing membership classes. (You will include some mapping logic,

class.) Figure 26-2 shows the overall design of the custom provider solution.
As mentioned, the SimpleUser and SimpleRole

, this makes the
whole implementation much easier. UserStore and RoleStore are both utility classes for encap-

files as well as some basic utility functions for searching information in the store.

 classes.
, while

. Both base classes are defined in the System.
Web.Security namespace.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1199

 Figure 26-2. The design of your custom provider solution

Designing and Implementing the Custom Store
After you have designed your overall architecture, you can start thinking about the underlying

-

tion as the primary mechanism for reading from and writing to these files. Therefore, you need

follows:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1200

In this example, you will use a GUID as ProviderUserKey for uniquely identifying users in
your store, similar to a primary key used for uniquely identifying records in a table of a data-
base. For every user you will then store a user name, a password (hashed), an e-mail, some
date information, a password question and answer, and some comments. For the roles, you
will store a name as well as the association to the users. For simplicity, every role will contain
an array of user names (which are strings) that are associated with this role. The serialized ver-
sion of an array of users will be the user store, while the serialized version of an array of roles
will be the roles store, as shown in Figure 26-3.

 Figure 26-3. Serialized versions of the SimpleUser and SimpleRole arrays

Note that Figure 26-3 shows a serialized version of your users and roles from the finished
version of the provider you are developing. You are using passwords with a salted hash, as you
will see in this chapter. Furthermore, you might ask why no comment has been serialized to

class).

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1201

Another design aspect you have to think about is how to access the store. You need only
one instance of each store class in memory (UserStore and RoleStore) to save resources and

 files too often. You can implement this through the Singleton pattern,
which is a solution for ensuring that only one instance of a class exists within a process. It does
this by making the constructor private and providing a static public method for retrieving an
instance. This public method verifies whether the instance already exists, and if not, it auto-
matically creates an instance of its own, which is then returned. Now, you might ask why you
are not just using a static class with lots of static methods and members. When looking at the
following code snippet, you will recognize that you’re keeping storage information in memory,
and that way you would support opening more, isolated storages at the same time without

-
mentation of your storage classes, as you can see in the following code. Taking a look at the

UserStore instance in memory, which encapsulates access to one store in an isolated fashion
(the same logic applies to the RoleStore for roles). Although you do not use this feature in your
provider, it might be an interesting pattern for other scenarios.

Let’s examine all these aspects based on the UserStore class introduced in Figure 26-3:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1202

The class includes a few private members for the filename of the store, the list of users,
 instance used for reading and writing data.

Because the constructor is private, instances can’t be created outside the class. Outside
classes can retrieve instances only by calling the public static GetStore() method. The imple-
mentation of the Singleton pattern is special in this case. It creates single instances based on
the filenames. For every file processed by the provider, one instance of the UserStore class is
created. If more than one web application using this provider is running in the same process,
you need to ensure that different instances are created for different filenames. Therefore, the
class doesn’t manage one static variable for a single instance; instead, it has a dictionary con-
taining all the instances of the class, one for every filename.

 serialization to save and load data to and from the store, the
functions for loading the store and saving data back to the store are fairly easy:

Both functions are private, as they are called only within the class itself. The LoadStore()
method is called within the constructor of the UserStore class. Within the method, the private
variable _Users is initialized. Every subsequent query happens based on querying the _Users
collection of the store class. The SaveStore() method, on the other hand, just serializes the
_Users collection to the file specified in the private _FileName member, which is passed in
through the constructor (and indirectly through the static GetStore() method). Finally, the
class supports a couple of methods for querying information in the _Users collection.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1203

The Users property is a simple property that allows the actual provider
) to access users of the store. After the provider implementation

has changed something within the store (has changed properties of a user, for example),
it calls the public Save() method, which internally calls the SaveStore() to serialize infor-
mation back to the file specified in the private _FileName variable of this instance. The
remaining methods are for searching users based on different criteria. For this purpose,
the generic List() includes a find method. This find method accepts a reference to another
method that is called for every element while iterating through the list for comparison. If the
comparison function returns true for an element, the element is included in the results.

In this code, you pass a VB .NET delegate, which stores the reference of a function. Not only
does it store the reference of instance method, but it also contains the reference of the object
instance for which it is being invoked. The delegate here compares the internal SimpleUser’s
key with the key passed in. If this is true, the current user that is passed in as a parameter from
the List() is returned as a result; otherwise, the List() continues iterating through its elements.
The inline implementation of the method, without explicitly creating a method with a separate
prototype, is called an anonymous method and is a special feature of VB for saving additional
code for short algorithm parameters.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1204

The UserStore includes the implementation for saving user information only. Roles are
not included. For this purpose, you have to implement the RoleStore class (which is similar to
the UserStore class), as shown here:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1205

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1206

This implementation looks fairly similar to the UserStore. The major differences are that

class with a different type. Also, the functions for querying the store are different. While the
UserStore implements functions for finding users by e-mail, by unique IDs, or by names, this
store class finds roles by name, enables returning users of a role, and queries all roles for one
dedicated user. Note that in the preceding GetRole() method, you compare the role names
using the Equals method of the string instance by passing in the parameter StringComparison.
OrdinalIgnoreCase. This means you compare the role names without case sensitivity. So, if a role
name gets passed in with different case letters, you still find it in your method.

Now the classes for accessing the underlying stores are complete, which means you can
start implementing the custom provider classes.

Implementing the Provider Classes
, which fulfills the role of an

adapter between your custom store and the requirements of the membership API. (The code
for the complete provider implementation is included in this book’s downloads in the Source
Code/Download area of the Apress website at .) In this section you will
go through the most important parts of creating a membership provider.

Every custom membership provider must be inherited from System.Web.Security.
rovider, as follows:

, you have to implement lots of properties and
methods to fulfill the requirements of the membership API. These properties and methods are
used for querying, creating, updating, and deleting users as well as retrieving specific informa-
tion about the provider such as password requirements. These types of properties are queried by
the security controls introduced in Chapter 21. (For example, the RequiresQuestionAndAnswer

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1207

property is queried by the CreateUserWizard to decide whether to display the text boxes for
entering password questions and answers.) You should start by implementing the properties of
the provider, as this is the easiest part of the whole task. For every property, you should provide
one private variable that contains the state of the appropriate property.

For a detailed description of these properties, you can refer to Chapter 21. The proper-
ties of providers are described there, and they have the same meaning as in the underlying

So, how can the ASP.NET infrastructure initialize these properties with values configured
in web.config? You can find the answer in the original base class for all providers, which is
in the System.Configuration.Provider.ProviderBase class. The ProviderBase class in turn is

, and therefore all classes that inherit from
-

ties of ProviderBase. All you have to do is override the Initialize method. This method accepts
two parameters: a name (which is configured through the name attribute in web.config) and

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1208

a NameValueCollection (which contains keys and their appropriate values for all settings con-
figured through web.config). Within this method you can initialize the private members of the
properties shown previously.

 step by step:

First, you have to verify whether any configuration is passed in. If nothing is configured
for the provider, it won’t work. Second, if no name is specified, you have to initialize a default
name, which is required by the configuration tool for displaying the provider in the list of pro-
viders. Finally, you have to add a default description if no description is configured for the provider.
This final step is optional but useful for configuration tools that query provider information.

Don’t forget to call the base class’s Initialize implementation for initializing basic proper-
ties properly. You do this in the last line of code in the previous code.

Next, you can start initializing your properties:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1209

Caution In our first implementation, we tried to derive the default application name from the current
HTTP context automatically based on the virtual root directory. The effect was that our provider worked prop-
erly as long as we used the management functions from within the application. As soon as we tried to use it
from the ASP.NET WAT, though, it failed with an exception. When debugging, we discovered that in this case
the provider doesn’t have access to members of the application’s HTTP context. Therefore, you should avoid
using the HttpContext.Current in your membership provider and instead keep it as simple as possible.

The previous code starts by initializing some default values for your options, just in case
they are not included in the web.config configuration file. After initializing these default val-
ues, you can go through the entries of the config parameter passed into the method (which is
a simple NameValueCollection). As you can see, you even can include custom settings such
as the filename setting, which is not included in the default set of properties of the membership

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1210

provider. This filename property is a custom property for your specific provider that points to
 file that contains the user information. You will pass this filename to the UserStore

class in a separate property that you will use in the remaining functions of the implementation.

Next, you have a large number of methods in your provider. These methods are for creating,
updating, and deleting users as well as for accessing and retrieving user details. The methods
access the information through the previously created store classes. The following code snip-
pet lists these methods to give you an overview of what you have to implement while reading
through the subsequent sections.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1211

Within those methods, you just have to call the appropriate methods of the UserStore
class through the previously introduced CurrentStore property. These are the only methods
defined by the provider. Any additional method introduced in this chapter is a helper method
that you have to include on your own. (In this book, you will see the most important implemen-
tations of these methods but not all of them. The complete code is available with the book’s
downloadable code.)

Let’s get started with the CreateUser method.

Creating Users and Adding Them to the Store
The CreateUser method is interesting because it needs to make sure that the user name
and e-mail are unique and that the password is valid and adheres to the password strength
requirements.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1212

In the first section, the function calls the private methods ValidateUserName and
ValidatePassword. These methods make sure the user name and e-mail are unique in the store
and the password adheres to the password strength requirements. After these checks succeed,
you can create the user for the underlying store (SimpleUser), add the user to the store, and
then save the store.

 to the calling
 with the details of the created user. For this purpose, you just need to

as shown in the following function:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1213

 and passes the
appropriate properties from your own SimpleUser as constructor parameters.

Next, take a look at the validation functions for validating the user name, e-mail, and
password:

The password validation first verifies the length of the password. If the password is too short,
it returns false. Through the .NET Framework, it then verifies regular expression classes to see
whether the number of nonalphanumeric characters in the password is high enough according to

-
forms a check on the password through regular expression functions of the .NET Framework of
the System.Text.RegularExpressions namespace against the PasswordStrengthRegularExpression.
If all these checks pass, the function returns true. If these checks don’t pass, it returns false.

Now let’s take a closer look at the method for validating the user name and the e-mail.
Both need to be unique in the underlying store.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1214

As you can see in the previous snippet, user validation is fairly simple. The code goes
through the users in the CurrentStore and verifies whether there is any user with the same user
name or e-mail. If that’s the case, the function returns false or otherwise true.

The last interesting part in the CreateUser method is how the password is set for the user.
Through the PasswordFormat property, every provider has three types for storing the password:
clear, hashed, and encrypted. The CreateUser method uses a private helper method of the

 called TransformPassword, as follows:

This method queries the current setting for the PasswordFormat property, and according
to the setting it leaves the password as clear text, creates a hash for the password, or encrypts
the password, as follows:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1215

If the password format is set to Clear, the method just returns the clear- text password. In
the case of the Hashed setting, it creates the simple hash through the forms authentication util-
ity method and then returns the hash for the password. The last possible option encrypts the
password with a two- way encryption algorithm, which has the advantage that the password can
be retrieved from the underlying storage through decryption. In that case, the method uses the
EncryptPassword method from the base class implementation for encrypting the password. This
method uses a key stored in machine.config for encrypting the password. If you are using this in
a web farm environment, you have to sync the key stored in machine.config on every machine so
that a password encrypted on one machine of the farm can be decrypted on another machine on
the web farm properly.

Validating Users on Login
 supports a method for programmatically validating a password entered

by a user. This method is used by the Login control as well. This means every time the user tries

calls the ValidateUser method of the underlying membership provider. According to the settings
of the PasswordFormat property, the method has to retrieve the user from the store based on the
user name and then somehow validate the password. If the password is clear text, validating the
password involves a simple string comparison. Encrypted passwords have to be decrypted and
compared afterward, while last but not least validating hashed passwords means re- creating the
hash and then comparing the hash values.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1216

This method retrieves the user from the store. It then validates the password against the
password passed in (which is the one entered by the user for login) through a private helper
method called ValidateUserInternal. Finally, if the user name and password are fine, it updates
the LastLoginDate and the LastActivityDate for the user and then returns true. It’s always use-
ful to encapsulate password validation functionality into a separate function, because it may
be used more than once in your provider. A typical example for reusing this functionality is the
ChangePassword method, where the user has to enter the old password and the new password. If
validation of the old password fails, the provider should not change the password, as shown here:

Only if the old password is entered correctly by the user does the change take place. The
ChangePassword method again uses the TransformPassword method to generate the pro-
tected version (hashed, encrypted) of the password if necessary. You can reuse the function
introduced previously with the CreateUser method. But now let’s take a look at the password
validation functionality:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1217

This method uses the TransformPassword method for creating the protected version of
the password (hashed, encrypted) if necessary. The results are then compared through simple
string comparison. (Even the encrypted version returns a Base64- encoded string that will be

 file; therefore, string comparison is fine.) This is why validating hashed
passwords works at all, for example. Just re- create the hash, and then compare the hashed ver-
sion of the password.

Using Salted Password Hashes
If you want to change this to include a salt value as mentioned, you have to complete the
following steps:

 1. Add a new field to your SimpleUser class called PasswordSalt.

 2. Extend your TransformPassword method to accept a salt value. This salt is necessary for
 re- creating the hash, which actually will be based on both the password and the salt.

 3. When creating a new password, you simply have to create the random salt value and
then store it with your user. For any validation, pass the previously generated salt value
to the TransformPassword function for validation.

The best way to do this is to extend the TransformPassword so that it generates the salt
value automatically if necessary. Therefore, it accepts the salt as a second parameter. This
parameter is not just a simple parameter—it’s a reference parameter, as shown here:

Whenever you pass in string.Empty or Nothing for the salt value, the function automatically
generates a new salt. The method therefore is called as follows from other methods that create
the new password hash. These methods are CreateUser, ChangePassword, and ResetPassword,
as they all update the password value of your SimpleUser class.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1218

This means every method that updates the password field of your user store sets the
PasswordSalt value to string.Empty before it calls TransformPassword and passes in a ref-
erence to the user.PasswordSalt field. When validating the password, you don’t want the
method to regenerate a new salt value. Therefore, you have to pass in the salt value stored
with the hashed version of the password in the data store. Having said that, the previously
introduced ValidateUserInternal() method now looks like this:

The only thing that changes compared to the original version is that the method now
passes in an initialized version of the salt value that will be used by the TransformPassword
method to regenerate the password hash based on the existing salt and the password entered
by the user. Therefore, internally the TransformPassword method now looks as follows for
validating and optionally generating a salt value:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1219

When the provider is configured for storing the passwords as salted hashes, it verifies
whether the passed- in salt value is empty or Nothing. If the provider is configured for using
salted hashes, it generates a new salt value using the cryptographic random number genera-
tor of the System.Security.Cryptography namespace to generate a real random number. The
functions CreateUser, ChangePassword, and ResetPassword will pass in null or string.Empty
to generate a new salt value, while the ValidateUserInternal method passes in the already ini-
tialized salt value from the underlying data store of the provider. Afterward, the method again
uses the HashPasswordForStoringInConfigFile, but this time it passes a combination of the
random salt value and the actual password. The result is returned to the caller.

The Remaining Functions of the Provider
Initializing the provider and creating and validating users are the most important and hardest
functions to implement in the provider. The rest of the functions are just for reading information
from the store and for updating the users in the store. These functions call the underlying methods
of the UserStore class or try to find users in the UserStore.Users collection. A typical example is the
GetUser() method, which retrieves a single user from the data store based on its user name or key:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1220

This example accepts the name of the user as a parameter and another parameter that indi-
 automatically initializes this parameter

when it calls your provider’s method. In your method, you can query this parameter; if it is set
to true, you must update the LastActivityDate of your user in the store. The function does noth-
ing other than find the user in the underlying store by calling the UserStore’s GetUserByName
method based on the information of the store

 utility method. The provider imple-
mentation requires you to implement a couple of methods that work this way. You just need to
call the methods of the UserStore appropriately. Some of the methods require you to return not

, as follows:

For example, the FindUsersByEmail method finds all users with a specific e-mail (which
is possible only if you have configured the provider to not require the e-mail to be unique or
if you use pattern matching for e-mails through regular expressions). It returns a collection

 users. But as you can see, the method again leverages the FindAll method of
the List<> class and an anonymous method for specifying the filter criteria. Therefore, the col-
lection returned from this method is a collection of SimpleUser instances that you use in the
 back- end store. You can create another helper method for mapping this type of collection to

, as follows:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1221

Finally, the LastActivityDate property
class to determine the number of current users online in the application. You have to imple-
ment this method in your custom provider through the GetNumberOfUsersOnline method, as
follows:

This method just goes through all users in the store and uses the UserIsOnlineTimeWindow,
 and specifies the number of min-

utes a user is online without any activity. As long as the LastActivityDate with this number
of minutes is larger than the current date and time, the user is considered to be online. The
LastActivityDate is updated automatically by the different overloads of the GetUser method
and the ValidateUser method.

Implementing the remaining functions of the provider does not involve any new concepts,
and therefore we will skip them. They merely update some values on users and then call the

 file on the file system. You can download
the complete implementation of this provider with the source code for the book.

Implementing the XmlRoleProvider
Implementing the roles provider is much easier than implementing the membership provider,
because the structures are much simpler for managing roles. Implementing the roles provider
does not introduce any new concepts. It merely requires calling the appropriate methods of
the previously introduced RoleStore class for creating roles, deleting roles, assigning users to
roles, and deleting users from roles. The complete interface of the roles provider looks like this:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1222

As you can see, the class derives from the base class RoleProvider. Again, it overrides the
Initialize method for initializing custom properties. But this time initialization of the provider
is much simpler because the roles provider supports only a handful of properties. The only
property provided by the base class is the ApplicationName property. Everything else is up to
you. Therefore, initialization is fairly simple here:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1223

Again, the initialization routine checks the name and description configuration param-
eters and initializes them with default values if they are not configured. It then calls the base
class’s Initialize implementation. Do not forget to call the base class’s Initialize method; other-
wise, the default configuration values managed by the base class will not be initialized. Next it

 just knows about
the ApplicationName and FileName settings. Again, the FileName specifies the name of the

 file where role information is stored.
Next, the class supports a few methods for managing the roles: CreateRole, DeleteRole,

and RoleExists. Within these methods, you have to access the underlying RoleStore’s methods,
as you can see in this example of CreateRole:

Compared to the CreateUser method introduced previously, this method is fairly simple. It
creates a new instance of SimpleRole and then adds this new role to the underlying RoleStore.
Again, it is useful to add a CurrentStore property to your membership provider’s implementa-
tion. This gives you easy access to the underlying store, as shown in the following code snippet
(this property was already used in the previous snippet).

The RoleExists method goes through the CurrentStore.Roles list and verifies whether the
role with the name passed in through its parameter exists in the list. The DeleteRole tries to
find the role in the roles list of the underlying role store, and if it exists, it deletes the role from

the methods for your custom roles provider are that simple. The most complex operations

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1224

are adding a user to a role and removing the user from the role. The following is the first
method—adding users to roles:

Although the Roles class you used in Chapter 23 provides more overloads for this type of
method, your provider has to implement the most flexible one: adding all users specified in
the first parameter array to all roles specified in the second parameter array. Therefore, you

 file, and for every role specified
in the roleNames parameter you have to add all users specified in the usernames parameter
to the corresponding role. That’s what this method is doing. Within the first foreach, it iterates
through the array of role names passed in. It retrieves the role from the store by calling the
RoleStore’s GetRole method and then adds all the users specified in the usernames parameter

The RemoveUsersFromRoles method is doing the opposite, as follows:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1225

The only difference in this method from the one introduced previously is that it removes
the users specified in the usernames parameter from all the roles specified in the roleNames
parameter. The remaining logic of the method is the same. The remaining methods of the cus-
tom roles provider are easy to implement; in most cases, they just iterate through the roles that
exist in the store and return some information, mostly arrays of strings with user names or role
names, as shown here:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1226

The first method returns all roles for a single user. It therefore calls the RoleStore’s
GetRolesForUsers method, which returns a list of SimpleRole objects. The result is then mapped
to an array of strings and returned to the caller. Retrieving users for one role is even simpler, as
the functionality is provided by the RoleStore class. Finally, the IsUserInRole method verifies
whether a user is assigned to a role by retrieving the role and then calling the StringCollection’s
Contains method to verify whether the user exists in the SimpleRole’s AssignedUsers collection.

You should take a look at one last method—FindUsersInRoles:

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1227

This method tries to find users based on pattern matching in the role specified through
the roleName parameter. For this purpose, it retrieves the role from the store and then creates
a regular expression. The SQL membership provider uses the % character for pattern matching,
and because it is a good idea to have a provider that is compatible to existing implementations,
you will use it for pattern matching again in your provider. But regular expressions don’t under-
stand the % as a placeholder for any characters in the string; therefore, you need to replace it
with a representation that regular expressions understand: \w*
now passes in this character as a placeholder, your pattern matching function will still work,

’s implementation
(which also uses the % as a placeholder). The remaining part of the function goes through the
users assigned to the role; if the user name matches the pattern, it is added to the resulting list
of strings that will be returned as a simple string array.

As you can see, implementing the custom roles provider is easy if you have previously imple-
mented the custom membership provider. The process does not require you to understand any
new concepts. In general, when you know how to implement one provider, you know how to
implement another provider. Therefore, it should be easy for you to implement custom profile
and personalization providers. Again, you can download the complete source code for the roles
provider from the Source Code/Download area on the Apress website at .
Now it’s time to discuss how you can use these providers.

Using the Custom Provider Classes
Using providers in a custom web application is fairly easy. The steps for using custom provid-
ers are as follows (besides the typical ones such as configuring forms authentication):

 1. If you have encapsulated the custom provider in a separate class library (which is
definitely useful, as you want to use it in several web applications), you need to add
a reference to this class library through the Visual Studio Add References dialog box.

 2. Afterward, you must configure the custom provider appropriately in your web.config file.

 3. Next you have to select your custom provider as the default provider either through the
ASP.NET WAT or through web.config manually.

 4. After you have completed these configuration steps, you are ready to use the provider.
If you have not added any special functionality and have just implemented the inher-
ited classes straightforwardly as shown in this chapter, you don’t even need to change
any code in your application.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1228

in the web.config configuration file within the <system.web> section looks like this:

In the previous example, the providers will be configured to use files stored on c:\Work
for saving user and role information appropriately. With this configuration, you will find
the providers in the ASP.NET WAT (under Providers/Advanced Configuration), as shown in
 Figure 26-4.

Don’t try to test the provider in the WAT; it will fail in this case. Testing providers in the
WAT is just supported for providers that are using database connection strings to connect to

 files, testing will not work for the
custom provider in this case.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1229

 Figure 26-4. Custom providers in the ASP.NET WAT

Caution When you configure the custom providers with a relative path and filename for the XML files
used by the custom membership and roles provider, the provider will create these files in the working direc-
tory of the web server. If you are developing without administrative privileges on Windows XP or Windows
Server 2003, or you run Windows Vista with user account control enabled, you will get an exception when-
ever the provider tries to write into the store (for example, when you create a user). Therefore, you should
configure absolute filenames and path values for these provider configuration settings of your custom pro-
vider. Using Server.MapPath() in the implementation of your provider is not recommended, as the provider
will not be used directly from within your web application in most cases. Rather, it runs in the context of WAT
or when you use IIS 7.0 in the context of the IIS 7.0 management console. Therefore, do not use any depen-
dencies to web applications in a provider implementation, such as Server.MapPath(), or any other type of
dependencies (such as HttpContext, Application, and so on).

Debugging Using the WAT
 and Roles classes for retrieving and updating data

stored through the membership provider. Although we suggest building your own test driver

have the possibility of debugging from within the ASP.NET WAT, especially if you experience
any problems you did not encounter while testing with your own applications.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1230

For debugging through the WAT, you just need to launch the configuration utility through the
Website ASP.NET Configuration menu and then attach to the web server process hosting the
configuration tool. If you are using the file- based web server for development purposes, launch
Visual Studio’s Attach to Process dialog box by selecting Debug Attach to Process. Next, find
the appropriate web server process. As in most cases, two of these processes will run when using

port number displayed in the address bar of the browser using the ASP.NET WAT with the one
displayed in the Attach to Process dialog box. Then your breakpoints in the provider classes will
be hit appropriately. Figure 26-5 shows how to attach to the web service process that hosts the
ASP.NET WAT.

 Figure 26-5. Attaching to the Configuration utility web server process

Using Custom Providers with IIS 7.0
In several previous chapters, such as Chapters 18, 19, 20, 21, and 22, you learned about the
ASP.NET integrated mode of IIS 7.0, which unifies the pipelining and configuration model of
IIS for a much better integration with ASP.NET itself. That includes usage and configuration
of the membership API and membership providers. Therefore, using custom membership
providers through IIS is fairly straightforward, and exactly the same as configuring member-
ship providers the way you learned in Chapter 21.

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1231

As soon as you have a custom membership provider or roles API provider implementation in
your application’s bin directory (or installed globally in the global assembly cache), IIS allows
you to configure this provider through its management console, as you can see in Figure 26-6.

After you have configured your custom provider for .NET Users (as in Figure 26-6) and for
.NET roles, you can add, edit, and remove users directly from within the management console
of IIS 7.0. You don’t need to fulfill any special requirements in your provider implementations.
The only exception is that you may not include any dependencies to a running instance of
a web application, such as accessing the HttpContext, which is not available from within the
management console. However, you should always adhere to this rule when implementing
custom providers.

The final question we need to answer right now is, “How can you debug custom member-
ship providers when they are used from within the IIS management console?” Why? Well, it
can happen that your program logic works fine from within WAT but does not work properly
from within the IIS management console (for example, you accidentally use a dependency to
a running web application such as the HttpContext). Finding these errors is easier when you
can debug the application. Again, this is fairly straightforward. Instead of attaching to the web

as you can see in Figure 26-7.

 Figure 26-6. Adding your custom provider through the IIS 7.0 management console

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS1232

 Figure 26-7. Debugging a provider from within the IIS management console

You need to be aware of a few things. Usually you run the IIS management console with
administrative privileges. Debugging an application running with administrative privileges
requires running Visual Studio with administrative privileges as well. If you are working

privileges, that means you need to start Visual Studio using the runas command (right- click
devenv.exe and select Run As from the context menu). On Windows Vista with user account
control enabled, you need to run Visual Studio elevated by right- clicking and selecting the
context menu entry Run As Administrator. Next— as shown in Figure 26-7—you need to
make sure to check the check marks on the bottom of the Attach to Process dialog from Visual
Studio. Having done that, debugging a provider accessed by the management console is
a piece of cake. We recommend that you always test your custom providers against both
WAT and the IIS 7.0 management console.

Summary
In this chapter, you saw how to extend the ASP.NET membership API and roles API through
custom membership providers and roles providers. As an example, you developed a cus-

appropriate only for simple applications, but you learned the most important concepts for
developing a custom membership and roles provider. These providers should conform as
much as possible to the suggested interfaces so that you don’t have to change your application

CHAPTER 26 CUSTOM MEMBERSHIP PROVIDERS 1233

when using a different provider. Furthermore, when using IIS 7.0 in ASP.NET integrated
mode you can use your custom provider to manage users and roles directly from within the
IIS 7.0 management console. You don’t need to fulfill any special requirements, as this is new
functionality included with the new version of IIS out of the box. You should always test your
custom providers against both the IIS 7.0 management console and WAT to ensure the broad-
est availability of your custom providers.

P A R T 5

Advanced User Interface

As you already know, one of ASP.NET’s greatest strengths is its extensible architecture.

Throughout this book, you’ve learned how to customize the way ASP.NET processes

requests, reads configuration files, and uses countless provider- based features from mem-

bership to profiles. Custom controls are one more avenue of advancement—they allow you

to build your own well- encapsulated graphical widgets that you can drop into any page in

any web application. Sometimes, the goal of a first- rate custom control is to provide a nice

wrapper around a fancy piece of HTML markup. More often, custom controls are used to

standardize a piece of page functionality and formalize the way it interacts with the page

code so that you can reuse it effortlessly.

In Chapter 27, you’ll learn how to build basic ASP.NET controls. You’ll begin with simple

controls that render their HTML from scratch. You’ll learn a host of important techniques,

including mechanisms to retain state information, support style attributes, preserve com-

patibility with different browsers, and trigger postback events. Later, you’ll consider other

types of custom controls, like composite controls that are built out of smaller pieces,

derived controls that extend ASP.NET staples, and template- based controls that give

unparalleled flexibility. Once you’ve explored these different types of controls, you’ll learn

how to make sure they support key design- time features in Chapter 28. Although it may

sound like a frill, proper design- time support is the only way to make sure your control can

be manipulated in Visual Studio—for example, so it can be edited in the Properties window

without losing information and viewed on the web- page design surface.

In Chapter 29, you’ll tackle a different technique for web- page design and learn how you

can render custom image content that you can then place in a web page (with the help of

the familiar tag). You’ll also learn how to streamline the process by wrapping your

drawing logic in a custom control. Finally, in Chapter 30 you’ll consider a whole new fam-

ily of web controls—the web parts that allow you to build flexible portal- style web pages.

You’ll learn how to use the existing set of ASP.NET web parts and how to create your own

reusable web parts.

1237

C H A P T E R 2 7

Custom Server Controls

Each type of custom control has its own advantages and disadvantages. In Chapter 15, you
learned about user controls. User controls are easier to create than custom server controls, but
server controls are far more powerful. Server controls beat user controls in two key areas:

Server controls give you complete control over the HTML you generate: In other words,
you can create a control such as the ASP.NET Calendar, which provides a single object
interface but renders itself as a complex combination of elements.

Server controls provide better design- time support: You can add them to the Toolbox
in Visual Studio and set properties and add event handlers at design time. You can even
configure the description that Visual Studio will show for each property, along with other
 design- time niceties.

All of ASP.NET’s web controls are server controls. In this chapter, you’ll learn how you can
build your own.

Custom Server Control Basics
Server controls are .NET classes that derive directly or indirectly from System.Web.UI.Control.
The Control class provides properties and methods that are common across all server controls
(such as ID, ViewState, and the Controls collection). Most controls don’t derive directly from
Control; instead, they derive from System.Web.UI.WebControls.WebControl, which adds a few
features that help you implement standard styles. These include properties such as Font, Fore-
Color, and BackColor.

Ideally, you’ll create your server controls in a separate class library project and compile
the project into a separate DLL assembly. Although you can create a custom control and place
the source code directly in the App_Code directory of a web application, this limits your ability
to reuse the control in pages written in different languages. If you place controls in a separate
assembly, you’ll also have better design- time support, which makes it easier to add them to
web pages using Visual Studio.

To get a better idea of how custom controls work, the following sections demonstrate
a few simple custom control examples.

CHAPTER 27 CUSTOM SERVER CONTROLS1238

Tip To create a new assembly for your custom server controls, start by creating a new project in Visual
Studio by choosing File New Project. In the New Project dialog box, browse to the Visual Basic Web
section. Then, choose the ASP.NET Server Control project type. The ASP.NET Server Control project template
is essentially the same as an ordinary class library assembly project, except it already has the references you
need to the ASP.NET assemblies.

Creating a Bare- Bones Custom Control
To create a basic custom control, you derive from the Control class and override the Render()
method. The Render() method receives an HtmlTextWriter object that you use to generate the
HTML for the control.

The simplest way to generate your HTML is to use the HtmlTextWriter.Write() method,
which writes a string of raw HTML into the page. Obviously, you can’t use Write() to output
ASP.NET tags and other server- side content, because you’re rendering the content for the final
page just before it’s sent to the client.

Here’s an example control that generates a simple hyperlink using the HtmlTextWriter in
the Render() method:

The HtmlTextWriter class not only lets you write raw HTML, but it also provides some
helpful methods to help you manage style attributes and tags. The next example presents the
same control, with a couple of minor differences. First, it renders the start tag and the end tag
for the anchor separately, using the RenderBeginTag() and RenderEndTag() methods. Second,
it adds style attributes that configure how the control will appear. Here’s the complete code:

CHAPTER 27 CUSTOM SERVER CONTROLS 1239

You should note a few important points in this example. First, to make life easier, the
example uses several enumerations. These enumerations help avoid minor typographic mis-
takes that would cause unexpected problems. The enumerations include the following:

HtmlTextWriterTag: This enumeration defines dozens of HTML tags, such as <a>, <p>,
, and many more.

HtmlTextWriterAttribute: This enumeration defines a large set of common HTML tag
attributes such as onclick, href, align, alt, and more.

HtmlTextWriterStyle: This enumeration defines 14 style attributes, including
BackgroundColor, BackgroundImage, BorderColor, BorderStyle, BorderWidth, Color,
FontFamily, FontSize, FontStyle, FontWeight, Height, and Width. All these pieces of
information are joined in a semicolon- delimited list of CSS style information, which is
used to set the style attribute of the rendered tag.

When the Render() method executes, it begins by defining all the attributes that will be
added to the upcoming tag. Then when the start tag is created (using the RenderBeginTag()
method), all of these attributes are placed into the tag. The final rendered tag looks like this:

 Table 27-1 provides an overview of the key methods of the HtmlTextWriter.

Table 27-1. HtmlTextWriter Methods

Method Description
AddAttribute() Adds any HTML attribute and its value to an HtmlTextWriter output

stream. This attribute is automatically used for the next tag you create by
calling RenderBeginTag(). Instead of using the exact attribute name, you
can choose a value from the HtmlTextWriterAttribute enumeration.

AddStyleAttribute() Adds an HTML style attribute and its value to an HtmlTextWriter output
stream. This attribute is automatically used for the next tag you create by
calling RenderBeginTag(). Instead of using the exact style name, you can
choose a value from the HtmlTextWriterStyle enumeration, and it will be
rendered appropriately depending on whether the browser is an up- level
or down- level client.

RenderBeginTag() Writes the start tag for the HTML element. For example, if you are writing
an anchor tag, this writes <a>. Instead of using the exact tag name, you
can choose a value from the HtmlTextWriterTag enumeration.

RenderEndTag() Writes the end tag for the current HTML element. For example, if you are
in the process of writing an anchor tag, this writes the closing . You
don’t need to specify the tag name.

Continued

CHAPTER 27 CUSTOM SERVER CONTROLS1240

Table 27-1. Continued

Method Description
WriteBeginTag() This method is similar to the RenderBeginTag() method, except it doesn’t

write the closing > character for the start tag. That means you can call
WriteAttribute() to add more attributes to the tag. To close the start tag, you
can call Write(HtmlTextWriter.TagRightChar), which writes the closing >.

WriteAttribute() Writes an HTML attribute to the output stream. This must follow the
WriteBeginTag() method.

WriteEndTag() Writes the end tag for the current HTML element (the one that was last
opened using the WriteBeginTag() method).

Using a Custom Control
To use a custom control, you need to make it available to your web application. You have two
choices—you can copy the source code to the App_Code directory, or you can compile in
a separate assembly, which you will then place in the Bin directory (using Visual Studio’s Add
Reference command).

For the page to have access to a custom control, you must use the Register directive, just
as you did with user controls in Chapter 15. However, this time you need to indicate slightly
different information. Not only must you include a TagPrefix, but you also need to specify
the assembly file (without the DLL extension) and the namespace where the control class is
located. You don’t need to specify the TagName, because the server control’s class name is used
automatically.

Here’s an example of the Register directive:

If the control is in the App_Code directory of the current web application, you don’t need
to include the Assembly attribute:

You can reuse tag prefixes. In other words, it’s completely valid to map two different
namespaces or two completely different assemblies to the same tag prefix.

If you want to use a control in several pages of the same web application, ASP.NET has
a helpful shortcut—you can register the tag prefix in the web.config file like this:

CHAPTER 27 CUSTOM SERVER CONTROLS 1241

This is particularly handy if you want to standardize on a specific tag prefix. Otherwise,
Visual Studio chooses a default prefix (such as cc1 for custom control 1) when you drop a con-
trol from the Toolbox.

Once you’ve registered the control, you can declare it with a standard control tag, as
shown here:

 Figure 27-1 shows the custom LinkControl in action.

 Figure 27-1. A bare- bones server control

Custom Controls in the Toolbox
To make it easier to use your custom control, you probably want to allow it to appear in the
Toolbox. Impressively, Visual Studio has built- in Toolbox support for custom controls, pro-
vided you create them in a separate assembly.

Note Remember, Visual Studio supports projectless development, which means it hides solution files
away in a user- specific directory. This means that it’s fairly easy to lose the solution file (for example, by
moving the website to another computer or renaming the website directory outside of Visual Studio). If you
lose your solution file, the next time you open your website, the custom control project won’t appear in the
design environment—instead, you’ll need to choose File Add Existing Project to get it back. To avoid
this problem in a solution that has multiple projects, you can explicitly save a solution file to a well- known
location and use the solution file to open your web application later. To do so, select the first line in the
Solution Explorer (which has text such as Solution “MyWebApp” (2 projects)), and then choose File Save
[SolutionName].sln As.

Once you’ve created your project, you can define your controls. You develop your control
library project in the same way you work with any other DLL component. You can build the
project at any time, but you can’t start it directly because it isn’t an actual application.

To test your controls, you need to use them in another application. You can use two
approaches. First, you can add a reference in the same way that you add a reference to any
other .NET assembly. Just right- click your website in the Solution Explorer, and choose Add
Reference. Choose the Projects tab, pick the custom control project you’ve created, and click

CHAPTER 27 CUSTOM SERVER CONTROLS1242

OK. This copies the compiled control assembly to your Bin directory in your website, making it
available to your pages.

An easier approach is to use the automatic Toolbox support in Visual Studio. When you
compile a project that contains custom server controls, Visual Studio examines each control
and adds it dynamically to a temporary, project- specific section of the Toolbox at the top (see
 Figure 27-2). That means you can easily add controls to any page. When you drop the control
on the page, Visual Studio automatically copies the assembly over to the Bin directory if you
haven’t already created a reference, adds the Register directive if it’s not already present in the
page, and then adds the control tag.

 Figure 27-2. A custom control in the Toolbox

Tip As with any other type of reference in Visual Studio, every time you compile your project, the most
recent version of the referenced assembly is copied into your web application’s Bin directory. This means
that if you change and recompile a custom control after adding it to the Toolbox, you have no reason to
remove and re- add it.

The only limitation of the automatic Toolbox support is that your custom controls will
appear in the Toolbox only when the custom control project is loaded in the design environ-
ment. If you want to make a control available to any web application but you don’t want the
web application developers to be able to change your custom control code, you need another
approach. In this case, it makes sense to deploy just the compiled assembly. You can then add
the controls to the Toolbox permanently so the application developers don’t need to worry
about finding the control.

To do this, right- click the Toolbox, and select Choose Items. On the .NET Framework
Components tab, click the Browse button. Then choose the custom control assembly from
the file browser. The controls will be added to the list of available .NET controls, as shown in
 Figure 27-3.

CHAPTER 27 CUSTOM SERVER CONTROLS 1243

 Figure 27-3. Adding a custom control to the Toolbox

All checked controls will appear in the Toolbox. Note that controls aren’t added on
a per- project basis. Instead, they will remain in the Toolbox until you delete them. To remove
a control, right- click it, and select Delete. This action removes the icon only, not the referenced
assembly.

Visual Studio gives you quite a bit of basic design- time support. For example, after you
add a custom control to a web page, you can modify its properties in the Properties window
(they will appear under the Misc group) and attach event handlers. In Chapter 28, you’ll learn
how you can further customize the design- time behavior and appearance of your control.

Creating a Web Control That Supports Style Properties
The previous custom control example doesn’t allow the web page to customize the control’s
appearance. The LinkControl doesn’t provide any properties for setting foreground or back-
ground colors, the font, or other attributes of the HTML tag that you generate. In other words,
the LinkControl is in complete control of its rendering, and doesn’t allow outside code (the
web page) to alter the HTML it generates. To make the LinkControl more flexible, you need to
explicitly add public properties for various formatting- related details. You then need to read
these properties in the Render() method and generate the appropriate HTML code.

Of course, style properties are a basic part of infrastructure that many HTML controls need
to use. Ideally, all controls should follow a single, streamlined model for style information and
not force custom control developers to write this generic functionality themselves. ASP.NET
does this with the WebControl base class (in the System.Web.UI.WebControls namespace).
Every web control that’s included with ASP.NET derives from WebControl, and you can derive
your custom controls from it as well.

CHAPTER 27 CUSTOM SERVER CONTROLS1244

Not only does the WebControl class include basic style- related properties such as Font,
ForeColor, BackColor, and so on, but it also renders them automatically in the control tag.
Here’s how it works: the WebControl assumes that it should add the attributes to a single
HTML tag, called the base tag. If you’re writing multiple elements, the attributes are added to
the outermost element that contains the other elements. You specify the base tag for your web
control in the constructor.

Finally, you don’t override the Render() method. The WebControl already includes an
implementation of Render() that farms the work out to the following three methods:

RenderBeginTag(): This method writes the opening tag for your control, along with the
attributes you’ve specified.

RenderContents(): This method writes everything between the start and end tag, which
can include text content or other HTML tags. This is the method you’ll override most often
to write your custom control content.

RenderEndTag(): This method writes the closing tag for your control.

Of course, you can change this behavior by overriding the Render() method, if needed.
But if this basic framework suits your needs, you’ll be able to accomplish quite a bit with little
custom code.

The next example demonstrates a new link control that derives from WebControl and
thereby gains automatic support for style properties.

The default constructor calls the WebControl constructor. More than one version of the
WebControl constructor exists—this code uses the version that allows you to specify a base
control tag. In this example, the base control tag is the <a> anchor, as shown here:

The LinkWebControl constructor doesn’t require any actual code. It’s just important that
you use this opportunity to call the WebControl constructor to set the base control tag. If you
use the default (zero- parameter) WebControl constructor, a tag is used automatically.
You can then render additional HTML inside this tag, which ensures that all elements
will have the same style attributes.

The LinkWebControl also defines two properties that allow the web page to set the text
and the target URL:

CHAPTER 27 CUSTOM SERVER CONTROLS 1245

You could set the strText and strHyperLink variables to empty strings when you define
them. However, this example overrides the OnInit() method to demonstrate how you can ini-
tialize a control programmatically:

The LinkWebControl presents a minor challenge. To successfully create an <a> tag,
you need to specify a target URL and some text. The text is placed between the start and
end tags. However, the URL is added as an attribute (named href) to the start tag. As you’ve
already learned, the WebControl manages the attributes for the start tag automatically.
Fortunately, the WebControl class gives you the ability to add extra tags by overriding the
method AddAttributesToRender(), as shown here:

Note that whenever a custom control overrides a method, it should call the base class
implementation using the MyBase keyword. This ensures that you don’t inadvertently sup-
press any code that needs to run. Often, all the base method does is fire a related event, but
that’s not always the case. For example, if you override RenderBeginTag() and don’t call the
base implementation, the rendering code will fail with an unhandled exception because the
tag isn’t opened.

CHAPTER 27 CUSTOM SERVER CONTROLS1246

Finally, the RenderContents() method adds the text inside the anchor:

CUSTOM SERVER CONTROLS IN VISUAL STUDIO

When you create an ASP.NET server control project, it begins with one server control (named, rather unhelp-
fully, WebCustomControl1). You can create additional controls by adding new code files and writing the
code by hand, as in the previous example. Or, you can create a new control with a bit more help from Visual
Studio by choosing Project Add New Item, browsing to the Visual Basic Items Web section, and choos-
ing the ASP.NET Server Control template.

There’s one important difference between the controls you create by hand and the ones Visual Studio
generates. Controls created by Visual Studio include some automatically generated boilerplate code:

, which is stored in view state (a technique you’ll start using
later in this chapter).

property.

 design- time support. (For example, the control class declaration begins with a DefaultProperty attri-
bute that indicates what property Visual Studio should highlight in the Properties window when you
select the control at design time.) You’ll learn how to use these attributes in the next chapter—for
now, you don’t need to worry about them.

It’s quite easy to add these details without Visual Studio’s help, so don’t be afraid to begin with a blank
code file and write your custom control class by hand (as many control developers do).

Note that the code doesn’t use the style properties. Instead, ASP.NET applies these auto-
matically when it renders the base tag.

Now that you have created the control, you can use it in any ASP.NET web page. You can
set the style properties in code or in the control tag. You can even use the Properties window.
Here’s an example:

CHAPTER 27 CUSTOM SERVER CONTROLS 1247

The HyperLink and Text attributes are automatically mapped to the corresponding public
properties of the custom control. The same is true of the style- related properties, which are
defined in the base WebControl class.

 Figure 27-4 shows this control in a web browser.

 Figure 27-4. A custom control that supports style properties

Tip As a general guideline, you should derive from the WebControl class if your control needs to add any
visible content to the page. Of course, exceptions exist. For example, if you know you want only a subset
of the UI features, or you want to combine multiple controls, which will each have their own specific style
properties, you might want to derive from Control instead of WebControl. However, the basic rule of thumb
that the .NET class library follows is always to derive from WebControl, even if some of the properties aren’t
relevant.

The Rendering Process
The previous example introduced several new rendering methods. Before going any further,
it’s a good idea to look at how they all work together.

The starting point for the rendering process is the RenderControl() method. The
RenderControl() method is the public rendering method that ASP.NET uses to render
each control on a web page to HTML. You should not override RenderControl(). Instead,
RenderControl() calls the protected Render() method that starts the rendering process.
You can override Render(), as demonstrated in the first example in this chapter. However,
if you override Render() and don’t call the base implementation of the Render() method,
none of the other rendering methods will fire.

The base implementation of the Render() method calls RenderBeginTag(), RenderContents(),
and then RenderEndTag(), as you saw in the previous example. However, this has one more
twist. The base implementation of the RenderContents() method calls another rendering
method— RenderChildren(). This method loops through the collection of child controls in
the Controls collection and calls the RenderControl() method for each individual control.
By taking advantage of this behavior, you can easily build a control from other controls. This
approach is demonstrated later in this chapter with composite controls (see the section
“Composite Controls”).

CHAPTER 27 CUSTOM SERVER CONTROLS1248

So, which rendering method should you override? If you want to replace the entire ren-
dering process with something new, or if you want to add HTML content before your base
control tag (such as a block of JavaScript code), you can override Render(). If you want to take
advantage of the automatic style attributes, you should define a base tag (by specifying a tag
name parameter such as HtmlTextWriterTag.A when you call the base constructor) and then
override RenderContents(). If you want to prevent child controls from being displayed or cus-
tomize how they are rendered (for example, by rendering them in the reverse order), you can
override RenderChildren().

 Figure 27-5 summarizes the rendering process.

 Figure 27-5. The control rendering methods

It’s worth noting that you can call RenderControl() yourself to examine the HTML output
for a control. In fact, this technique can be a convenient shortcut when debugging. Here’s an
example that gets the rendered HTML for a control and displays it in a label on a web page:

 Figure 27-6 shows the page with the control and its HTML.

CHAPTER 27 CUSTOM SERVER CONTROLS 1249

 Figure 27-6. Getting the HTML representation of a control

Tip This technique isn’t just for debugging. You could also use it to simplify your rendering code. For example,
you might find it easier to create and configure an HtmlTable control and then call its RenderControl() method,
rather than write tags such as <table>, <td>, and <tr> directly to the output stream.

Dealing with Different Browsers
Because of the wide variation in the features supported by different browsers, it’s a challenge
to create applications that work across all the browsers and still provide the best possible
user experience. ASP.NET provides a few features that can help you write the correct type of
markup for different devices.

The HtmlTextWriter
First, ASP.NET makes a broad distinction in the type of markup that a client sees so that some
clients get HTML 3.2, others get HTML 4.0, and others get XHTML 1.1. You might not even
realize that this differentiation is taking place.

It all works through the HtmlTextWriter class, which has several derived classes.
HtmlTextWriter itself is designed to write HTML 4.0 markup. But its derived classes are different—
so, the Html32TextWriter writes HTML 3.2 markup for down- level clients, the ChtmlTextWriter
can write compact HTML (cHTML) for mobile devices, and the XhtmlTextWriter writes
XHTML 1.1. Because all these classes derive from HtmlTextWriter, you’re free to use the same
basic set of HtmlTextWriter methods in your rendering code. However, the implementations of
many of these methods differ, so depending on which object you get, the output might not be
the same.

For example, the Html32TextWriter doesn’t support CSS (Cascading Style Sheets). This
means that certain details that can’t be easily faked through other means (such as background
colors) are simply ignored.

CHAPTER 27 CUSTOM SERVER CONTROLS1250

However, it all depends on how high- level your rendering code is. If you write raw HTML
text using the HtmlTextWriter.Write() method, it doesn’t matter what text writer you’re using—
none of them will change your text. That’s why it’s dangerous to use this approach. On the
other hand, if you use the HtmlTextWriter.RenderBeginTag() method, different text writers
may substitute another tag.

For example, if you use this rendering code:

you expect this:

But here’s the result you’ll see with the Html32TextWriter (assuming Html32TextWriter.
ShouldPerformDivTableSubstitution is true):

On the other hand, if you use this code, your rendered output is completely inflexible and
never changes, regardless of the capabilities of the target device:

Similarly, if you derive from WebControl to get automatic support for style properties, this
support is implemented differently depending on the renderer.

The overall lesson here is that you should avoid writing raw HTML (using the Write()
method) and use higher- level methods (such as RenderBeginTag(), RenderEndTag(), and so on)
wherever possible. That way, your controls are more flexible. ASP.NET will create and pass in
the correct HtmlTextWriter, based on the capabilities of the browser that’s requesting the page,
and your HTML markup can adapt itself.

Tip You can try different rendering behaviors by creating a console application that creates the appropri-
ate text writer and uses it directly.

Browser Detection
So, how does ASP.NET decide which type of text writer suits a particular client? It’s all based
on the user- agent string that the client supplies when it makes a request. ASP.NET tries to
match this string against a large catalog of known browsers. You can find this catalog in c:\
[WinDir]\Microsoft.NET\Framework\[Version]\Config\Browsers. There you’ll see a number
of .browser files. Each one is an XML file that maps a user- agent string to a set of capabilities
and a text writer.

Every .browser file has this basic structure:

CHAPTER 27 CUSTOM SERVER CONTROLS 1251

Further complicating the model is that you can create subcategories of browsers. To
do this, the <browser> element includes the parentID attribute, which refers to another
<browser> definition from which it should inherit settings.

For example, if you look at the opera.browser file, you’ll find information like this:

CHAPTER 27 CUSTOM SERVER CONTROLS1252

Here the Opera browser is given a set of basic settings and is specifically associated with
the HtmlTextWriter for HTML 4.0 rendering. In addition, several control adapters are defined
to give Opera- specific rendering for these elements (more on that in the “Adaptive Rendering”
section).

You probably think this is a somewhat brittle system—and unfortunately, it is. You have
no guarantee that a browser won’t appear with a browser string that doesn’t match any of the
known patterns or that a browser won’t submit the wrong string. However, this is a necessary
compromise in the loosely coupled world of the Web, and the ASP.NET team has worked hard
to make sure the browser information that ships with ASP.NET 3.5 is much more reliable and
 up-to- date than the information with earlier versions of ASP.NET. You’re also free to custom-
ize the browser presets completely or even add new definitions for different user- agent strings.

Browser Properties
You can detect the current browser configuration using the Browser property of the HttpRequest
object, which returns a reference to an HttpBrowserCapabilities object. (You can also get the
 user- agent string from the UserAgent property.) When a client makes an HTTP request, an
HttpBrowserCapabilities object is created and filled with information about the capabilities
of the browser based on the corresponding .browser file. The information provided in the
HttpBrowserCapabilities class includes the kind of browser and its version, whether scripting
support is available on the client side, and so on. By detecting the capabilities of the browser,
you can choose to customize your output to provide different behaviors on different browsers.
This way, you can fully exploit the potential capabilities of up- level clients without breaking
 down- level clients.

 Table 27-2 summarizes the properties of HttpBrowserCapabilities class.

Table 27-2. HttpBrowserCapabilities Properties

Property Description
Browser Gets the browser string that was sent with the request in the user- agent

header.

MajorVersion Gets the major version number of the client browser. (For example, this
returns 4 for version 4.5.)

MinorVersion Gets the minor version number of the client browser. (For example, this
returns 5 for version 4.5.)

Type Gets the name and the major version number of the client browser.

Version Gets the full version number of the client browser.

Beta Returns true if the client browser is a beta release.

AOL Returns true if the client is an AOL (America Online) browser.

Platform Provides the name of the operating system platform that the client uses.

CHAPTER 27 CUSTOM SERVER CONTROLS 1253

Property Description
Win16 Returns true if the client is a Win16- based computer.

Win32 Returns true if the client is a Win32- based computer.

ClrVersion Provides the highest version number of the .NET CLR installed on the
client computer. You can also use the GetClrVersions() method to
retrieve information about all the installed CLR versions. This setting is
significant only if you have embedded .NET Windows Forms controls in
your web page. Client browsers don’t need the CLR to run ordinary ASP.
NET web pages.

ActiveXControls Returns true if the client browser supports ActiveX controls.

BackgroundSounds Returns true if the client browser supports background sounds.

Cookies Returns true if the client browser supports cookies.

Frames Returns true if the client browser supports frames.

Tables Returns true if the client browser supports HTML tables.

JavaScript Indicates whether the client browser supports JavaScript. This is con-
sidered obsolete, and it’s recommended that you test the EcmaScript-
Version property instead.

VBScript Returns true if the client browser supports VBScript.

JavaApplets Returns true if the client browser supports embedded Java applets.

EcmaScriptVersion Gets the version number of ECMA script that the client browser
supports.

MSDomVersion Gets the version of Microsoft HTML DOM that the client browser
supports.

Crawler Returns true if the client browser is a web crawler search engine.

The following code snippet shows a crude way to dynamically tailor rendered output
based on the capabilities of the requesting browser. In this example, the code simply outputs
different strings to indicate what it has detected. In a more realistic example, you would render
different HTML or JavaScript based on the same information.

The HttpBrowserCapabilities class has one glaring limitation—it’s limited to evaluating the
expected built- in functionality of the browser. It does not evaluate the current state of a brows-
er’s functionality. For example, imagine you are evaluating the client- side JavaScript support
provided by the browser. If the requesting browser is Internet Explorer 5.5, this will return true

CHAPTER 27 CUSTOM SERVER CONTROLS1254

since the browser supports client- side JavaScript support. However, if the user has the script-
ing capabilities turned off, the JavaScript property still returns true. In other words, you don’t
learn what the browser is capable of doing, just what it should be capable of doing. In fact, all
ASP.NET really does is read the user- agent information that’s passed from the browser to the
server during the request and compare this string against the predefined user- agent informa-
tion in the .browser files. It’s the .browser files that list the corresponding browser capabilities,
such as whether the browser supports scripting, styles, frames, and so on. Unfortunately, the
client just doesn’t send any information about how the browser is configured.

This situation leaves you with two options. You can rely on the HttpBrowserCapabilities
class to tell you whether certain browser features should be available and base your program-
ming logic on that information. In this case, you may need to tolerate the occasional error. If
you need a more robust approach, you need to write your own code to actually test the support
for the features you need. For example, with cookies you could (over two web pages) attempt
to set a cookie and then attempt to read it. If the second test doesn’t succeed, cookie support
isn’t enabled. You could use similar workarounds to check for other features such as JavaScript
support. For example, you could add a piece of JavaScript code to the page that writes to a hid-
den form variable and then check it on the server. These steps are awkward and messy, but they’re
the only way to be absolutely certain of specific browser features. Unfortunately, when creat-
ing custom controls, you usually don’t have the luxury of performing these tests.

 Table 27-3 shows how some common browsers stack up with the HttpBrowserCapabilities
class.

Table 27-3. HttpBrowserCapabilities Properties for Common Browsers

Browser EcmaScriptVersion MSDomVersion W3CDomVersion
Internet Explorer 7 1.2 7.0 1.0

Firefox 2.0 1.4 0.0 1.0

Netscape 6 1.5 0.0 1.0

Opera 6 1.3 0.0 1.0

Overriding Browser Type Detection
ASP.NET gives you the ability to explicitly set how a page is rendered instead of relying on
automatic browser detection. The trick is to set the Page.ClientTarget property either program-
matically (in the Page.PreInit stage) or declaratively (using the Page directive). When you set the
ClientTarget property, automatic browser detection is disabled, and ASP.NET uses the browser
setting you specified for the remainder of the request.

The only trick to using the ClientTarget property is that you can use only defined aliases.
Each alias is mapped to a specific user- agent string (and the browser settings for that user
agent are declared in the corresponding .browser file).

CHAPTER 27 CUSTOM SERVER CONTROLS 1255

The root web.config on your server defines the following four aliases, using the <clientTarget>
section:

For example, using the downlevel alias, you could create a page that always attempts to
create HTML 3.2–compatible markup for browsers that predate Internet Explorer 4:

Similarly, you could use the ie5 alias to force ASP.NET to use CSS formatting even if the
browser doesn’t appear to support it.

If you want to identify a browser in a different way and use your own alias, you can define
it in the root web.config file or (more commonly) in the web.config file of your web applica-
tion. Here’s an example that defines an ie302 alias for Internet Explorer 3.02:

Now you can force a page to use this alias and render itself as though Internet Explorer
3.02 were making the request:

Adaptive Rendering
In ASP.NET 1.x, every control needed to have the built- in smarts to tailor itself for different
browsers. If you needed to support different devices and different types of markup, you
needed to develop an entirely separate control.

ASP.NET 2.0 improved this situation dramatically with a new adaptive rendering model
that’s based on control adapters, and this model remains unchanged in ASP.NET 3.5. The con-
trol adapter model makes it possible to create a single control that can be adapted for multiple
types of devices. Best of all, because of the separation between controls and control adapters,
 third- party developers can write adapters for existing controls, allowing them to work with
other platforms.

CHAPTER 27 CUSTOM SERVER CONTROLS1256

You can link any control to an adapter through the .browser file. For example, you could
create a FirefoxSlideMenuAdapter that changes the rendered code for your SlideMenu control
so that it works better with Firefox. You would then edit the mozilla.browser file to specifically
indicate that this adapter should be used for your control with all Firefox browsers.

The control adapter works by plugging into the rendering process. ASP.NET calls the adapter
at each state of the web control’s life cycle, which allows the adapter to adjust the rendering
process and handle other details, such as device- specific view state logic.

To create an adapter, derive a new class from System.Web.UI.Adapters.ControlAdapter
(if your custom control derives from Control) or System.Web.UI.WebControls.Adapters.Web-
ControlAdapter (if your custom control derives from WebControl). You can then implement
the functionality you want by overriding methods. Each method corresponds to a method in
the custom control class, and when you override the method in a control adapter, the control
adapter method is used instead of the control method.

Note As with server controls, you should place your control adapters in a separate DLL assembly. If your
adapters are relatively simple, you may choose to place them in the same assembly that contains your con-
trols. However, if your adapters are complex and they’re designed to support a specialized usage scenario,
you might choose to place them in a dedicated assembly of their own.

For example, in the ControlAdapter you can override methods such as OnInit(), Render(),
and RenderChildren(). In the WebControlAdapter you can also override RenderBeginTag(),
RenderEndTag(), and RenderContents(). Here’s an example:

CHAPTER 27 CUSTOM SERVER CONTROLS 1257

THE CSS CONTROL ADAPTERS

For a fascinating example of what control adapters can do, check out the “CSS- friendly” control adapters at
. This sample, which includes full source code, modifies the ren-

dering for rich controls such as the Menu, TreeView, DetailsView, and FormView. The goal is to make these
controls render using markup that more closely follows modern web design practices.

For example, many web designers prefer to avoid using <table> tags to control layout. They reserve
the <table> tag for representing “tables” of information but don’t use them to control where content is
placed. Instead, they create <div> sections for each region of the page and place them in the right spots
using CSS positioning rules. This creates cleaner markup than nested tables, and it’s easier to read, under-
stand, and edit. A possible downside is that the necessary level of CSS support is lacking in old browsers.

The CSS adapters extend this web design practice to many existing ASP.NET controls. For example,
the CSS adapters change the Menu control’s output from a <table> tag to nested tags. Other than this
detail, the rest of the output is essentially unchanged.

The adapter- based solution allows you to modify the way these controls are rendered without being
forced to derive (and use) entirely new ASP.NET controls. You don’t need to reimplement the basic func-
tionality (for example, the data- binding features of the Menu control), and you can choose exactly which
browsers should receive the CSS treatment.

Even if you aren’t interested in using the CSS adapters, they are a good example and starting point
if you need to design your own adapters. The site also provides test pages where you can try the adapters
(and compare the adapted output to the normal output) and see a white paper that describes their design.

If you want to perform the normal control rendering and add your custom rendering
steps, simply call the base ControlAdapter.Render() implementation, which calls the Render()
method of the corresponding control. This technique works for all the rendering methods.

You can also access the linked control through the ControlAdapter.Control property if you
need to examine additional details.

The adaptive rendering model allows endlessly customizable controls and cross- device
integration. You can do quite a bit more with a custom control adapter. For example, you can
hook to events in the underlying control and then use that to customize event behavior on dif-
ferent devices.

Control State and Events
ASP.NET uses web controls to create an object- oriented layer of abstraction over the lower- level
details of HTML and HTTP. Two cornerstones of this abstraction are view state (the mecha-
nism that lets you store information between requests) and postback (the technique wherein
a web page posts back to the same URL with a collection of form data). To create realistic

CHAPTER 27 CUSTOM SERVER CONTROLS1258

server controls, you need to know how to create classes that plug into both of these parts of the
 web- page infrastructure.

View State
Controls need to store information in state just like your web pages. Fortunately, all controls
provide a ViewState property that you can use to store and retrieve information just as you
do with a web page. You’ll need to use the ViewState collection to restore private information
after a postback.

A common design pattern with web controls is to access the ViewState collection in your
property procedures. For example, consider the LinkWebControl presented earlier. Currently,
this control doesn’t use view state, which means that if you change its Text and HyperLink
properties programmatically, the changes will be lost in subsequent postbacks. (This isn’t true
of the style properties such as Font, ForeColor, and BackColor, which are stored in view state
automatically.) To change the LinkWebControl to ensure that state information is retained for
the Text and HyperLink properties, you need to remove the text and hyperLink fields from the
LinkButton class and rewrite the Text and HyperLink properties as shown here:

CHAPTER 27 CUSTOM SERVER CONTROLS 1259

You can also request that the page encrypts the view state information by calling Page.
RegisterRequiresViewStateEncryption() when your control initializes. This is useful if you need
to store potentially sensitive data.

It’s important to realize that the ViewState property of a control is separate from the
ViewState property of the page. In other words, if you add an item in your control code, you
can’t access it in your web page, and vice versa. When the page is rendered to HTML, ASP.NET
takes the view state of the page and all the combined controls and then merges it into a special
tree structure.

Although view state is easy to use in a control, you have to consider a couple of issues.
First, you shouldn’t store large objects because they will reduce page transmission times. For
example, the ASP.NET controls that support data binding don’t store the DataSource property
in view state. They simply hold it in memory until you call the DataBind() method. This makes
programming a little more awkward—for example, it forces you to rebind data controls after
every postback—but it ensures that pages don’t become ridiculously bloated.

Another consideration with view state is that it’s at the mercy of the containing page. If the
page sets the EnableViewState property of your control to false, all your view state information
will be lost after each postback. If you have critical information that you require in order for
your control to work, you should store it in control state instead (see the next section).

Note Even if the EnableViewState property is set to false, the ViewState collection will still be accessible
to your code. The only difference is that the information you place in that collection will be discarded once
the control is finished processing and the page is rendered.

Finally, keep in mind that you can’t assume data is in the ViewState collection. If you try
to retrieve an item that doesn’t exist, you’ll run into a NullReferenceException. To prevent this
problem, you should check for Nothing or set default view state information in the OnInit()
method or the custom control constructor. For example, the LinkWebControl won’t run into
Nothing because it uses OnInit() to set initial view state values.

Note Although the WebControl provides a ViewState property, it doesn’t provide properties such as Cache,
Session, and Application. However, if you need to use these objects to store or retrieve data, you can access
them through the static HttpContext.Current property.

CHAPTER 27 CUSTOM SERVER CONTROLS1260

Occasionally, you might want more flexibility to customize how view state information
is stored. You can take control by overriding the LoadViewState() and SaveViewState() meth-
ods. The SaveViewState() method is always called before a control is rendered to HTML. You
can return a single serializable object from this method, which will be stored in view state.
Similarly, the LoadViewState() method is called when your control is re- created on subse-
quent postbacks. You receive the object you stored as a parameter, and you can now use it to
configure control properties. In most simple controls, you’ll have no reason to override these
methods. However, sometimes it does become useful, such as when you’ve developed a more
compact way of storing multiple pieces of information in view state using a single object or
when you’re deriving from an existing control and you want to prevent it from saving its state.
You also need this method when you’re managing how a complex control saves the state of
nested child controls. You’ll see an example of this last technique at the end of this chapter.

Control State
ASP.NET includes a feature called control state for storing the data a control is currently using.
Technically, control state works in the same way as view state—it stores serializable informa-
tion that’s stuffed into a hidden field when the page is rendered. In fact, ASP.NET puts the view
state information and the control state information into the same hidden field. The difference
is that control state is not affected by the EnableViewState property. Even if this is set to false,
your control can still store and retrieve information from control state.

Note The LinkWebControl doesn’t require control state. If the developer sets EnableViewState to true, it’s
probably because the developer expects to set the HyperLink and Text properties in every postback.

Because control state cannot be disabled, you should carefully restrict the amount of
information you store. Usually, it should be limited to something critical such as a current
page index or a data key value. To use control state, you must begin by overriding the OnInit()
method and call Page.RegisterRequiresControlState() to signal that your control needs to access
control state.

Unlike view state, you can’t access control state directly through a collection. (This limita-
tion is likely in place to prevent developers from overusing control state when view state is better
suited.) Instead, you must override two methods: SaveControlState() and LoadControlState().

These methods use a slightly unusual pattern. The basic idea is that you want to take any
control state that has been serialized by the base class and combine that with an object that
contains your new serializable object. You can accomplish this with the System.Web.Pair class,
as shown here:

CHAPTER 27 CUSTOM SERVER CONTROLS 1261

This technique allows you to store only a single object. If you need to store several pieces
of information, consider making a custom class that encapsulates all these details (and make
sure it includes the Serializable attribute, as discussed in Chapter 6). Alternatively, you can
create a chain of Pair objects:

Postback Data and Change Events
View state and control state help you keep track of your control’s contents, but they’re not
enough for input controls. That’s because input controls have an additional ability—they
allow users to change their data. For example, consider a TextBox control that’s represented
as an <input> tag in a form. When the page posts back, the data from the <input> tag is part of
the information in the control collection. The TextBox control needs to retrieve this informa-
tion and update its state accordingly.

To process the data that’s posted to the page in your custom control, you need to imple-
ment the IPostBackDataHandler interface. By implementing this interface, you indicate to
ASP.NET that when a postback occurs, your control needs a chance to examine the postback
data. Your control will get this opportunity regardless of which control actually triggers the
postback.

The IPostBackDataHandler interface defines two methods:

CHAPTER 27 CUSTOM SERVER CONTROLS1262

LoadPostData(): ASP.NET calls this method when the page is posted back, before any
control events are raised. It allows you to examine the data that’s been posted back and
update the state of the control accordingly. However, you shouldn’t fire change events at
this point, because other controls won’t be updated yet.

RaisePostDataChangedEvent(): After all the input controls on a page have been ini-
tialized, ASP.NET gives you the chance to fire a change event, if necessary, by calling
the RaisePostDataChangedEvent() method.

The best way to understand how these methods work is to examine a basic example. The
next control emulates the basic TextBox control. Here’s the basic control definition:

As you can see, the control inherits from WebControl and implements IPostBackDataHandler.
The control requires only a single property, Text. The Text is stored in view state and ini-

tialized to an empty string in the control constructor. The constructor also sets the base tag to
<input>.

Because the base tag is already set to <input>, there’s little extra rendering work required.
You can handle everything by overriding the AddAttributesToRender() method and adding
a type attribute that indicates the <input> control represents a text box and a value attribute
that contains the text you want to display in the text box, as follows:

CHAPTER 27 CUSTOM SERVER CONTROLS 1263

You must also add the UniqueID for the control using the name attribute. That’s because
ASP.NET matches this string against the posted data. If you don’t add the UniqueID, the
LoadPostData() method will never be called, and you won’t be able to retrieve posted data.

Tip Alternatively, you can call the Page.RegisterRequiresPostback() method in the OnInit() method of your
custom control. In this case, ASP.NET will add the UniqueID if you don’t explicitly render it, ensuring that you
can still receive the postback.

All that’s left is to implement the IPostBackDataHandler methods to give the control the
ability to respond to user changes.

The first step is to implement the LoadPostData() method. This method uses two param-
eters. The second parameter is a collection of values posted to the page. The first parameter is
the key value that identifies the data for the current control. Thus, you can access the data for
your control using syntax like this:

The LoadPostData() also needs to tell ASP.NET whether a change event is required. You
can’t fire an event at this point, because the other controls may not be properly updated with
the posted data. However, you can tell ASP.NET that a change has occurred by returning true.
If you return true, ASP.NET will call the RaisePostDataChangedEvent() method after all the
controls are initialized. If you return false, ASP.NET will not call this method.

Here’s the complete code for the LoadPostData() method in the CustomTextBox:

The RaisePostDataChangedEvent() has the relatively simple task of firing the event. How-
ever, most ASP.NET controls use an extra layer, whereby the RaisePostDataChangedEvent()
calls an OnXxx() method and the OnXxx() method actually raises the event. This extra layer
gives other developers the ability to derive a new control from your control and alter its behav-
ior by overriding the OnXxx() method.

CHAPTER 27 CUSTOM SERVER CONTROLS1264

Here’s the remaining code:

 Figure 27-7 shows a sample page that tests the CustomTextBox control and responds to its
event.

 Figure 27-7. Retrieving posted data in a custom control

Triggering a Postback
By implementing IPostBackDataHandler, you’re able to participate in every postback
and retrieve the posted data that belongs to your control. But what if you want to trigger
a postback? The simplest example of such a control is the Button control. Here, the sup-
port is automatic, because according to the HTML Forms standard, a submit button always
posts back the page. However, many other rich web controls—including the Calendar and
GridView—allow you to trigger a postback by clicking an element or a link somewhere in the
rendered HTML. The support for this behavior is provided through another ASP.NET mecha-
nism: a JavaScript function named __doPostBack(). The __doPostBack() function accepts two
parameters: the name of the control that’s triggering the postback and a string representing
additional postback data.

ASP.NET makes it easy to access the __doPostBack() function with the Page.ClientScript.
GetPostBackEventReference() method. This method creates a reference to the client- side
__doPostBack() function, which you can then render into your control. Usually, you’ll place
this reference in the onclick attribute of one of the HTML elements in your control. That way,
when that HTML element is clicked, the __doPostBack() function is triggered. Of course,
JavaScript provides other attributes that you can use, some of which you’ll see in Chapter 31.

CHAPTER 27 CUSTOM SERVER CONTROLS 1265

The best way to see postbacks in action is to create a simple control. The following example
demonstrates a clickable image. When clicked, the page is posted back without any additional data.

This control is based on the tag and requires just a single property:

The only customization you need to do is add a few additional attributes to render. These
include the unique control name, the image URL, and the onclick attribute that wires the image
up to the __doPostBack() function, as follows:

This is enough to trigger the postback, but you need to take additional steps to participate in
the postback and raise an event. This time, you need to implement the IPostBackEventHandler
interface. This interface defines a single method named RaisePostBackEvent():

When the page is posted back, ASP.NET determines which control triggered the post-
back (by looking at each control’s UniqueID property), and, if that control implements
IPostBackEventHandler, ASP.NET then calls the RaisePostBackEvent() method with the
event data. At this point, all the controls on the page have been initialized, and it’s safe to
fire an event, as shown here:

CHAPTER 27 CUSTOM SERVER CONTROLS1266

 Figure 27-8 shows a sample page that tests the CustomImageButton control and responds
to its event.

 Figure 27-8. Triggering a postback in a custom control

This control doesn’t offer any functionality you can’t already get with existing ASP.NET web
controls, such as the ImageButton. However, it’s a great starting point for building something
that’s much more useful. In Chapter 31, you’ll see how to extend this control with JavaScript
code to create a rollover button—something with no equivalent in the .NET class library.

Note Rather than posting back the entire page, you can use a callback to fetch some specific information
from the server. Callbacks are described in Chapter 31.

Extending Existing Web Controls
In many situations, you don’t need to create a new control from scratch. Some of the func-
tionality might already exist in the basic set of ASP.NET web controls. Because all ASP.NET
controls are ordinary classes, you can use their functionality with basic object- oriented prac-
tices such as composition (creating a class that uses instances of other classes) and inheritance
(creating a class that extends an existing class to change its functionality). In the following sec-
tions, you’ll see how both tasks apply to custom control design.

CHAPTER 27 CUSTOM SERVER CONTROLS 1267

Composite Controls
So far you’ve seen a few custom controls that programmatically generate all the HTML code
they need (except for the style properties, which can be inherited from the WebControl class).
If you want to write a series of controls, you need to output all the HTML tags, one after the
other. Fortunately, ASP.NET includes a feature that can save you this work by allowing you to
build your control class out of other, existing web controls.

The basic technique is to create a control class that derives from System.Web.UI.Web-
 Controls.CompositeControl (which itself derives from WebControl). Then, you must override
the CreateChildControls() method to add the child controls. At this point, you can create
one or more control objects, set their properties and event handlers, and finally add them to
the Controls collection of the current control. The best part about this approach is that you
don’t need to customize the rendering code at all. Instead, the rendering work is delegated
to the constituent server controls. You also don’t need to worry about details such as trigger-
ing postbacks and getting postback data, because the child controls will handle these details
themselves.

The following example creates a TitledTextBox control that pairs a label (on the left) with
a text box (on the right). Here’s the class definition for the control:

The CompositeControl implements the INamingContainer interface. This interface doesn’t
have any methods. It simply instructs ASP.NET to make sure all the child controls have unique
ID values. ASP.NET does this by prepending the ID of the server control before the ID of the
control. This ensures that there won’t be any naming conflict, even if you add several instances
of the TitleTextBox control to a web form.

To make life easier, you should track the constituent controls with member variables. This
allows you to access them in any method in your control. However, you shouldn’t create these
controls yet, because that’s the function of the CreateChildControls() method.

The web page won’t be able to directly access either of these controls. If you want to allow
access to certain properties, you need to add property procedures to your custom control
class, as follows:

CHAPTER 27 CUSTOM SERVER CONTROLS1268

Note that these properties simply store information in view state—they don’t directly
access the child controls. That’s because the child controls might not yet exist. These proper-
ties will be applied to the child controls in the CreateChildControls() method. All the controls
are rendered in a , which works well. It ensures that if the web page applies font, color,
or position attributes to the TitledTextBox control, it will have the desired effect on all the child
controls.

Now you can override the CreateChildControls() method to create the Label and TextBox
control objects. These objects are separated with one additional control object—a LiteralControl,
which simply represents a scrap of HTML. In this example, the LiteralControl wraps two non-
breaking spaces. Here’s the complete code for the CreateChildControls() method:

The CreateChildControls() code attaches an event handler to the TextBox.TextChanged
event. When this event fires, your TitledTextBox should pass it along to the web page as the
TitledTextBox.TextChanged event. Here’s the code you need to implement the rest of this
design:

CHAPTER 27 CUSTOM SERVER CONTROLS 1269

 Figure 27-9 shows a sample page that tests the TitledTextBox control and responds to its
event.

 Figure 27-9. Creating a composite control with a label and text box

You may prefer to follow the earlier approach and use an HtmlTextWriter to get full con-
trol over the HTML markup you render. But if you want to handle postbacks and events and
create complex controls (such as an extended GridView or a navigational aid), using composite
controls can simplify your life dramatically.

BETTER DESIGN SUPPORT FOR THE TITLEDTEXTBOX

There’s one more detail worth adding to this example. If you change the Title or Text properties after the
CreateChildControls() method has been called to render the control, you need to make sure that the child
controls are regenerated. Although this won’t happen in most scenarios (because the controls won’t be
rendered until the page is rendered), it can happen in the design environment when you tweak the control in
the Properties window.

Here’s the code that deals with this scenario when the Title property is set. It calls the
RecreateChildControls() method, which ensures that the HTML is updated after each change.

CHAPTER 27 CUSTOM SERVER CONTROLS1270

Derived Controls
Another approach to creating controls is to derive a more specialized control from one of the
existing control classes. You can then override or add just the functionality you need, rather
than re- creating the whole control. This approach isn’t always possible, because some con-
trols keep key pieces of their infrastructure out of site in private methods you can’t override.
However, when it does work, it can save a lot of work.

Sometimes, you might create a derived control so that you can preinitialize an existing
control with certain styles or formatting properties. For example, you could create a custom
Calendar or GridView that sets styles in the OnInit() method. That way, when you add this
Calendar control, it’s already formatted with the look you need. In other cases, you might add
entirely new functionality in the form of new methods or properties, as demonstrated in the
following example.

Creating a Label for Specific Data
One common reason for creating customized controls is to fine- tune a control for specific
types of data. For example, consider the Label control. In its standard form, it’s a flexible
 all- purpose tool that you can use to render text content and insert arbitrary HTML. However,
in many situations it would be nice to have a higher- level way to output text—a way that auto-
matically takes care of some of the presentation by applying some built- in rules to translate
your content to an HTML- worthy representation. The following example is designed for one of
these scenarios. It shows how you can customize the rendering of a derived Label control for
a specific type of content.

In Chapter 14, you learned about the Xml control, which allows you to display XML con-
tent in a page using an XSLT stylesheet. However, the Xml control doesn’t give you any way to
show XML content without using an XSLT stylesheet to transform it first. So, what should you
do if you want to duplicate the Internet Explorer behavior, which shows a color- coded tree of
XML tags? You could implement this approach using an XSLT stylesheet. However, another
interesting choice is to create a custom Label control that’s designed for XML content. This
Label control can apply the formatting you want automatically.

First, consider what happens if you try to display XML content without taking any extra
steps. In this case, all the XML tags will be interpreted as meaningless HTML tags, and they
won’t be shown. The display will simply show a jumbled block of text that represents all the
content of all elements from start to finish. You can improve upon this situation slightly by
using the HttpServerUtility.HtmlEncode() method, which replaces all special HTML char-
acters with the equivalent character entities. However, the XML display you’ll create with
this approach is still far from ideal. For one thing, all the whitespace will be collapsed, and
all the line breaks will be ignored, leading to a long string of text that’s not easy to interpret.
 Figure 27-10 shows this approach with the DvdList.xml document used in Chapter 14.

CHAPTER 27 CUSTOM SERVER CONTROLS 1271

 Figure 27-10. Displaying XML data with HTML escaping

The custom XmlLabel control solves this problem by applying formatting to XML start and
end tags. This functionality is wrapped into a static method called ConvertXmlTextToHtmlText(),
which accepts a string with XML content and returns a string with formatted HTML content. This
functionality is implemented as a static method rather than an instance method so that you can
call it to format text for display in other controls.

The ConvertXmlTextToHtmlText() method uses a regular expression to find all the XML
tags in the string. Here’s the expression you need:

This expression matches the less- than sign (<) that starts the tag, followed by a sequence
of one or more characters that aren’t greater- than signs (>). The match ends as soon as
a greater- than sign is found. This expression matches both start tags (such as <DvdList>) and
end tags (such as </DvdList>).

Tip You might think you could use a simpler regular expression such as <.+> to match a tag. The prob-
lem is that regular expressions use greedy matching, which means they often match as much as possible.
As a result, an expression such as <.+> will match everything between the less- than sign of the first tag and
the greater- than sign in the last tag at the end of document. In other words, you’ll end up with a single match
that obscures other embedded matches. To prevent this behavior, you need to create a regular expression
that explicitly specifies what characters you don’t want to match.

Once you have a match, the next step is to replace this text with the text you really want.
The replacement expression is as follows:

CHAPTER 27 CUSTOM SERVER CONTROLS1272

This replacement uses the HTML entities for the less- than and greater- than signs (<
and >), and it adds an HTML tag to format the text in bold. The $1 is a back reference
that refers to the bracketed text in the search expression. In this example, the bracketed text
includes the full opening tag of the XML element—everything between the opening < and the
closing >.

Once the tags are in bold, the last step is to replace the spaces in the string with the
character entity so that whitespace will be preserved. At the same time, it makes sense to
replace all the line feeds with an HTML
.

Here’s the complete code for formatting the XML text. In order to use this code as written,
you must import the System.Text.RegularExpressions namespace.

The rest of the XmlLabel code is remarkably simple. It doesn’t add any new properties.
Instead, it simply overrides RenderContents() to ensure that the formatted text is rendered
instead of the ordinary text:

Note that this code doesn’t call the base implementation of RenderContents(). That’s
because the goal of the XmlLabel control is to replace the rendering logic for the label text, not
to supplement it.

 Figure 27-11 shows what ordinary XML data looks like when displayed in the XmlLabel
control. Of course, now that you have the basic framework in place, you could do a lot more to
perfect this output, including color- coding and automatic indenting.

CHAPTER 27 CUSTOM SERVER CONTROLS 1273

 Figure 27-11. Displaying formatted XML data

Tip You can use a similar technique to create a label that automatically converts mail addresses and
URLs to links (wrapped by the <a> tag), formats multiple lines of text into a bulleted list, and so on.

Template Controls
Up to this point, the controls you’ve seen have rendered themselves based on the logic and
code within the control. The consumers of the control (the web pages that use it) do not have
the ability to directly define the layout and style of the control’s content.

Template controls and styles allow you to create controls and add functionality without
needing to lock users into a fixed layout. With templates, the control consumer provides a set of
HTML tags that define the information and formatting used by the control. The template con-
trol uses one or more templates to render portions of its interface. As a result, template controls
can be much more flexible than ordinary controls.

ASP.NET includes several controls that support templates, including the GridView, ListView,
DetailsView, and FormView. In the following sections, you’ll learn how to support templates in
your own controls.

Creating a Template Control
It’s surprisingly easy to create a basic template control. You start by creating a composite
control. This control should derive from WebControl and implement the INamingContainer
interface to make sure that every child control has a unique name.

CHAPTER 27 CUSTOM SERVER CONTROLS1274

The next step is to create one or more template containers. A template container allows
the user to specify the template declaratively in the .aspx portion of the web page. To support
a template, you just need a control property that accepts an ITemplate object, as shown here:

Note that the template isn’t stored in view state, because it’s always retrieved from the
.aspx file, and it doesn’t change programmatically. That means you can store it in a private
variable and re- create it with each postback.

The ITemplate interface defines a single method, InstantiateIn(), which creates an instance
of a template inside an existing control. Essentially, when the InstantiateIn() method is called,
ASP.NET parses the template and creates controls based on the tags and code in the template.
These controls are then added to the control container that’s passed into the method. For
example, if a template contains a single Label tag, then calling InstantiateIn() creates a Label
control and adds it to the Controls collection of the specified container. Your control uses the
InstantiateIn() method to render its templates.

The final ingredient is the CreateChildControls() method. This is the place where you cre-
ate the template using the InstantiateIn() method and add it to the Controls collection.

To understand how this all works together, consider the following extremely simple tem-
plate control. It defines a single template and an additional property that lets the user choose
how many times the template should be repeated in the web page. Overall, it works more or
less the same as the simple Repeater control (without any support for data binding). Here’s the
complete code:

CHAPTER 27 CUSTOM SERVER CONTROLS 1275

To use this control, you need to provide a template for the ItemTemplate property. You
can do this declaratively by adding the HTML and control tags in an <ItemTemplate> tag.
Here’s an example:

 Figure 27-12 shows the rendered content, which copies the template HTML into the page
ten times.

CHAPTER 27 CUSTOM SERVER CONTROLS1276

 Figure 27-12. Repeating a template

This example has neglected one detail. All template controls should use the PersistChildren
attribute, as shown here:

This tag indicates that all child elements in the control tag should be interpreted as proper-
ties. As a result, if you add an <ItemTemplate> tag inside the <SuperSimpleRepeater> tag, the ASP.
NET parser will assume the <ItemTemplate> tag defines the content for the SuperSimpleRepeater.
ItemTemplate property. If your control derives from WebControl, this is already the default behav-
ior, so you don’t need to take this step. However, it’s still a good practice to include this attribute to
explicitly indicate how the control deals with nested tags.

If you apply the PersistChildren attribute with an argument of false, the ASP.NET parser
assumes that any nested tags are child controls. It then creates the corresponding control
object and passes it your control by calling the AddParsedSubObject() method. The default
implementation of this method simply adds the child control to the Controls collection of
the current control, although you can change this behavior by overriding this method.

Using Customized Templates
As you can see, creating a basic template control isn’t difficult and doesn’t require much code.
However, the previous example still lacks a few key features. For one thing, it doesn’t allow you
to access any information from the template items. It would be much more useful if there were

CHAPTER 27 CUSTOM SERVER CONTROLS 1277

a way to access some basic information about each item. Using this information, you could
write data- binding expressions in your template, as you can with template controls such as the
Repeater and DataList.

To support this technique, you need to create a custom control class to use as a template
container. This control needs to include properties that provide the information in which
you’re interested. The following example shows a custom template container that provides
two properties: an item number representing the index of the template in the series and the
total number of items:

Note that because this control acts as a template container, it needs to implement the
INamingContainer interface.

Now you need to adjust the CreateChildControls() method of the SuperSimpleRepeater
so that it creates instances of the SimpleRepeaterItem control, instead of an ordinary Panel
control. Each instance of the SimpleRepeaterItem will then hold a single instance of the item
template.

But before you get to this point, it’s worth making the template control a little more
sophisticated. The next example adds a header and footer template and an alternating item
template. With these four templates, the programmer will have much more control over the
layout of the content. Here’s the template code you need:

CHAPTER 27 CUSTOM SERVER CONTROLS1278

Note that each template property uses the TemplateContainer attribute to indicate what
type of container your control will use when it instantiates the template.

Now you can revise the CreateChildControls() method in the SuperSimpleRepeater. The
CreateChildControls() method will create instances of the SimpleRepeaterItem container and
pass the current index and the total item count as constructor arguments. Then, it will add the
SimpleRepeaterItem as a child control of the SuperSimpleRepeater.

CHAPTER 27 CUSTOM SERVER CONTROLS 1279

This has one additional caveat. For data binding to work with the new SuperSimpleRepeater
control, you need to call the DataBind() method of the header, footer, and item containers. To
make sure this critical step takes place, you need to override the DataBind() method. By default,
the DataBind() method binds all the child controls in the Controls collection. However, your

CHAPTER 27 CUSTOM SERVER CONTROLS1280

overridden implementation needs to call EnsureChildControls() first to make sure all the tem-
plate containers have been created before the control is bound. Here’s the code you need:

You can now test the new SuperSimpleRepeater with the following control tag and
templates:

Note how the <ItemTemplate> and <AlternatingItemTemplate> sections use data- binding
expressions that refer to Container. These expressions are evaluated against the properties of
the container object, which in this example is an instance of the SimpleRepeaterItem class.
All your web page needs to do is call the SuperSimpleReader.DataBind() method when the
page loads. You can call SuperSimpleReader.DataBind() directly, or you can call it indirectly
through the Page.DataBind() method, as shown here:

 Figure 27-13 shows the new repeater control in action. Odd items (1, 3, 5, and so on) use
the normal item template, while even items (2, 4, 6, and so on) use the alternative item tem-
plate with the double border.

CHAPTER 27 CUSTOM SERVER CONTROLS 1281

 Figure 27-13. Repeating more advanced templates

Tip As you saw with template controls such as the Repeater and DataList, it is common practice to extend
the container control to provide a DataItem property. When a data item is read from the data source, the data
item is passed to the container, which then exposes it and allows the web page to bind to it. In this way, the
template control becomes ultimately flexible, because it doesn’t need to know anything about the type or
structure of the data it’s displaying.

Styles
In the template examples that you’ve seen so far, it’s up to the web page to supply HTML elements
for the template and the style attributes that tailor their appearance. Many template controls sim-
plify this process through style objects. In ASP.NET, the System.Web.UI.WebControls.Style class
represents the complete collection of style information including colors, fonts, alignment, bor-
ders, and spacing. Using this class, you can easily add style support to your template controls.

For example, consider the SuperSimpleRepeater presented in the previous example, which
uses four templates (item, alternating item, header, and footer). Using the Style class, you can
define four corresponding style properties, one for each template.

CHAPTER 27 CUSTOM SERVER CONTROLS1282

Here’s an example of the style property for the header:

Note In this example, the style information is not persisted in view state. This approach reduces the over-
all page size. However, it also means that if you change style information programmatically, it will be reset
after every postback.

The Style class provides a collection of properties that you can set programmatically.
Here’s an example of how you could set the background color of the header using the
SuperSimpleRepeater.HeaderStyle property:

Even more usefully, you can configure all the style properties using the Properties win-
dow. Just look for the style property and click the plus sign next to it. A full list of subproperties
will appear, each of which you can configure in the same way you configure style information
for an ordinary web control.

Of course, once you’ve added the properties for storing style information, you still need
to adjust the control creation code to use these styles. The basic technique is to use the Con-
trol.ApplyStyle() method, which copies all the style information from a style object to a control.
Here’s how you can use this technique to set the style attributes for the header:

The alternating item template is a special case. Usually, the alternating item will use the
item style plus any styles that are redefined in the alternating item style. In this way, the user
can just add a few style settings for the alternating item, rather than redefining all the style set-
tings from the item style.

To accomplish this behavior, you need the help of the CopyFrom() and MergeWith()
methods of the Style class. The CopyFrom() method copies the styles from one style object to
the calling style object, overwriting current values if they exist. The MergeWith() method com-
bines the two styles so that if a value exists for the style attribute in the first style, this value will
not be overwritten by the style value from the second style object.

 Table 27-4 demonstrates how this works. The first two columns show the values for sev-
eral style properties on two instances of the Style class. The third column shows the updated

CHAPTER 27 CUSTOM SERVER CONTROLS 1283

values for the first style after calling CopyFrom() and passing in the second style. The last
column shows the same values in Style1 after calling MergeWith() and passing Style2 as
a parameter. Note that Style2 is not changed by either of these operations.

Table 27-4. How Styles Are Copied and Merged

Style1 Before Style2 Before
Style1 After
CopyFrom(Style2)

Style1 After
MergeWith(Style2)

BackColor Black White White Black

ForeColor White Black Black White

Height 25 [Not set] 25 25

Width [Not set] 25 25 25

Here’s how you can use the CopyFrom() and MergeWith() methods to create a style for
alternating items:

You can now apply that style when needed, just as with any other style:

With this revised version of the control, you can add style tags to the repeater. Here’s an
example of the style information that might be created after configuring the style properties in
Visual Studio:

Notice that the templates in this example are pared down so that they no longer apply for-
matting directly through HTML tags and style attributes. Instead, all the formatting is set using
the styles. Figure 27-14 shows the result when you bind the SimpleStyledRepeater and show
the page.

CHAPTER 27 CUSTOM SERVER CONTROLS1284

 Figure 27-14. Using styles with templates

You can accomplish quite a bit more with template controls, and it would take a sig-
nificant amount of code (and a major investment of time) to duplicate a control such as the
GridView. However, these examples show what you need to get started. Using them, you can
create template controls that are fine- tuned for your own custom data.

Summary
In this chapter, you learned how to use a variety of techniques to create custom controls. In the
next chapter, you’ll continue your exploration by learning how to take control of the design- time
representation of a control. In Chapter 29 and Chapter 31, you’ll see examples of custom controls
that use GDI+ and JavaScript for advanced solutions.

Even after you’ve read all these chapters, you still will not have learned everything there
is to know about ASP.NET custom control creation. If you want to continue your exploration
into the tricks, techniques, and idiosyncrasies of custom control programming, you might
be interested in a dedicated book about the topic. You may also be interested in examining
 third- party control offers at the ASP.NET control gallery

y/).

1285

C H A P T E R 2 8

Design-Time Support

Custom controls have two requirements. They need to interact with a web page (and your
code) at runtime, and they need to interact with Visual Studio at design time. These two tasks are
related, but they can be refined and customized separately. Some of ASP.NET’s most advanced
controls (such as the Wizard and GridView) include an impressive degree of design- time smarts,
including the ability to configure complex properties and apply themes with the click of a mouse.

You’ve already seen how Visual Studio gives a basic level of support to all custom controls.
For example, when you compile a custom control project, your controls are added to the Tool-
box automatically. You can then drop them on a web form, configure their properties, attach
event handlers, and so on. Depending on how you’ve implemented the rendering logic, you
may even see a design- time representation of the control’s HTML. In this chapter, you’ll learn
how to extend this level of design- time support.

Many of the techniques you’ll see are frills and niceties that make it easier to work with
custom controls. For example, you might use design- time support to add descriptions that
appear in the Properties window or render a more representative appearance for your control
on the design surface. However, other times design- time support is essential. For example, if
you create a control that exposes complex objects as properties and you don’t take any extra
steps to add design- time support, the control will work erratically in the design- time environ-
ment. You might find that properties you set using the Properties window are reset sporadically
or cause nested child control tags to disappear. These quirks are a result of how ASP.NET seri-
alizes your control properties, and you’ll learn how to tackle these issues in this chapter.

The Key Players
In .NET, there’s no single class that provides design- time support. Instead, there’s a number of
different ingredients that are all involved. They include the following:

Attributes: You apply attributes to parts of your control for several reasons. First, these
attributes supply information that will be used to tailor the display in the Properties win-
dow and the control icon in the Toolbox. Second, attributes configure how properties are
serialized. Third, attributes allow you to attach other design- time components to your
control, such as type converters, type editors, and control designers.

Web resources: Web resources are related files that a custom control uses, such as images.
Using web resources, you can embed these files in your custom control assembly and use
a specially formatted URL to retrieve them when they’re needed.

CHAPTER 28 DESIGN-TIME SUPPORT1286

Type converters: Type converters allow complex or unusual data types to be converted
to and from representations in more common data types. For example, if you create
a type editor that lets you convert a custom data type to and from a string representation,
you can then view and edit a control property that uses that data type in the Properties
window. Type converters can also play a role in code serialization by generating the ini-
tialization code required to instantiate a complex type.

Type editors: Type editors provide a graphical interface for setting complex type values.
For example, when you choose a font for a web control using the drop- down font name
list in the Properties window, you’re making use of a type editor.

Control designers: Control designers are the heavyweight of custom control development.
Every control has a control designer that manages its design- time appearance and behav-
ior. You can use a custom control designer to add frills like smart tags and provide default
HTML content that Visual Studio should use to represent the control on the design -time
surface. You can also use a designer to hide properties in your control class at design- time or
add design-time- only properties.

In this chapter, you’ll re- examine several of the custom controls that were introduced in
Chapter 27 and consider how you can improve their design- time support using all of these
ingredients. You’ll begin by considering how you can outfit your control with a custom tool-
box icon and proper support for the Properties window. Next, you’ll learn how to shape basic
control serialization with attributes and type converters. Then, you’ll see how to improve the
 design- time experience with type editors that allow complex properties to be set more easily.

Finally, you’ll see how you can use control designer for three common tasks: to further
customize control serialization, to change the default HTML representation of your control,
and to add a smart tag with convenient shortcuts for common control configuration tasks.

Design-Time Attributes
The first level of design- time support consists of control attributes—declarative flags that are
compiled into the metadata of your custom control assembly. Attributes give you a way to add
information that’s related to a piece of code without forcing you to change the code or create
a separate file in an entirely different format.

Attributes are always placed in angle brackets before the code element they modify. For
example, here’s how you can add an attribute that provides a description for the Text property
of a control:

In this case, the Description attribute decorates the Text property.

CHAPTER 28 DESIGN-TIME SUPPORT 1287

Note All attributes are actually classes. By convention, the class name ends in Attribute. For example, the
Description attribute is actually represented by the DescriptionAttribute class. Although you can use the full
class name, the VB .NET compiler allows you to use a handy shortcut and omit the final Attribute word.

In .NET, attributes are used for a range of tasks. The key detail to understand about attri-
butes is that they can be read and interpreted by different agents. For example, you can add
attributes that give information to the CLR, the compiler, or a custom tool. This chapter focuses
primarily on attributes that provide information to Visual Studio and tell it how to work with
a control at design time. Later in the “Code Serialization” section, you’ll also learn about some
attributes that influence how the ASP.NET parser interprets control tags in the .aspx file.

Tip Like many of the classes for design- time support, most of the attributes you’ll learn about in this
chapter are found in the System.ComponentModel namespace. Before applying these attributes, you should
import that namespace into the code files for your custom controls.

The Properties Window
The simplest attributes influence how the properties of your control appear in the Properties
window. For example, you’ve probably noticed that the core set of ASP.NET web controls group
their properties into several categories. When you select a property, the Properties window
shows a brief description. To add this information to your own control, you need to decorate
each property with the Category and Description attributes, as shown here:

As you can see, both the Category and Description attribute accept a single string as an
argument. Figure 28-1 shows the resulting display if you select the Text property in the Proper-
ties window.

CHAPTER 28 DESIGN-TIME SUPPORT1288

 Figure 28-1. A property with a description

 Table 28-1 lists the key attributes that influence the way a property is displayed in the
Properties window.

Table 28-1. Attributes for Control Properties

Attribute Description
Browsable(true|false) If false, this property will not appear in the Properties window (al-

though the programmer can still modify it in code or by manually
adding the control tag attribute, as long as you include a Set property
procedure). One reason you might use this attribute is to hide calcu-
lated or runtime properties that can’t be changed at design time.

Category(string) A string that indicates the category under which the property will
appear in the Properties window. If you don’t specify a value for the
Category attribute, the property will appear in a category named
Default in the Properties window.

Description(string) A string that indicates the description the property will have when
selected in the Properties window.

DefaultValue() Sets the default value that will be displayed for the property in the Prop-
erties window. The default value is typically the initial value, in which
case you don’t need to use the DefaultValue attribute. However, using
this attribute can sometimes allow the code generator to optimize the
tags it generates by leaving out information if it matches the default.

Themeable(true|false) All custom controls automatically support theming (which is
described in Chapter 16). However, if you don’t want a specific prop-
erty to be configurable as part of a skin, apply the Themeable attri-
bute with a value of false. Unlike the other attributes in this table, the
Themeable attribute is defined in the System.Web.UI namespace.

Localizable(true|false) Localization is enabled for all controls and objects. If a property
is localizable, Visual Studio will allow its values to be persisted in
a satellite assembly. If you don’t want this to be possible, or you have
a property that shouldn’t vary based on localization, set this to false.

ReadOnly(bool) When true, this property is read- only in the Properties window at
design time.

CHAPTER 28 DESIGN-TIME SUPPORT 1289

Attribute Description
DesignOnly(bool) When set to true, this property is available only at design time. This

is typically used with special properties that configure how a control
behaves at design time and don’t correspond to a “real” piece of
information about the control.

ImmutableObject(bool) When set to true on an object property, this attribute ensures that
the subproperties of this object are displayed as read- only. For ex-
ample, if you apply this to a property that uses a Point object, the X
and Y subproperties will be read- only.

MergableProperty(bool) Configures how the Properties window behaves when more than one
instance of this control is selected at once. If false, the property is not
shown. If true (the default), the property can be set for all selected
controls at once.

ParenthesizePropertyName(bool) If true, Visual Studio will display parentheses around this property in
the Properties window (as it does with the ID property).

Bindable(bool) If true, Visual Studio will display this property in the DataBindings
dialog box and allow it to be bound to a field in a data source.

RefreshProperties() You use this attribute with a value from the RefreshProperties enu-
meration. It specifies whether the rest of the Properties window must
be updated when this property is changed (for example, if one prop-
erty procedure could change another property).

You can apply two attributes, DefaultEvent and DefaultProperty, to your custom control
class declaration, rather than a specific property. Additionally, the TagPrefix attribute is used at
the assembly level and isn’t attached to any code construct. Table 28-2 describes these attributes.

Table 28-2. Attributes for Control Classes and Assemblies

Attribute Description
DefaultEvent(string) Indicates the name of the default event. When you double- click

the control on the design surface, Visual Studio automatically
adds an event handler for the default event. (If there’s no default
event, double- clicking the control simply selects it.)

DefaultProperty(string) Indicates the name of the default property. The DefaultProperty
is the property that is highlighted in the Properties window by
default, the first time the control is selected. (If there’s no default
property, no property is selected when you first select the control.)

ControlValuePropertyAttribute(string) Indicates the name of the property that should be used, by de-
fault, when binding a ControlParameter to this control for use in
a data source (as described in Chapter 9).

NonVisualControl() Indicates that this control has no runtime appearance. At design
time, you can choose View Visual Aids ASP.NET Non- Visual
Controls to hide all controls that have the NonVisualControl attri-
bute. The data source controls are an example of nonvisual controls.

TagPrefix(string, string) Associates a namespace with a prefix, which will be used when
adding control tags to an .aspx page.

Continued

CHAPTER 28 DESIGN-TIME SUPPORT1290

Table 28-2. Continued

Attribute Description
ToolboxBitmap(type, string) Specifies the bitmap that will be shown for this control when it’s

added to the Toolbox. By default, Visual Studio uses a generic
gear icon.

ToolboxData(string) Specifies the tag that will be created for this control in the .aspx
file when you drag it from the Toolbox. By default, Visual Studio
creates an empty tag including just the ID and Runat attributes.

As you learned in Chapter 27, every custom control has a prefix that’s registered with the
Register directive in the .aspx page. Visual Studio adds this directive automatically when you
insert the control. If you want to customize the prefix, you can use the TagPrefix attribute,
which accepts two string parameters. The first string is the namespace your controls are in,
and the second string is the tag prefix you want to use.

Here’s an example that specifies that controls in the CustomServerControlsLibrary should
use the apress tag prefix:

The assembly attribute should not be placed inside a namespace block. Instead, it should
be defined outside all namespaces so that it has global scope.

Now if you add a control with the class name CustomTextBox from the CustomServer
ControlsLibrary namespace, this is the tag Visual Studio uses:

If you have controls in multiple namespaces, you need to use TagPrefix multiple times—
once for each namespace. You can use the same prefix or different prefixes.

By default, when you drag a custom control from the Toolbox, Visual Studio creates a con-
trol tag with the runat and ID attributes, like this:

Using the ToolboxData attribute, you can supply different markup, which can include
default values. Here’s an example:

Note that you use the placeholder {0} to represent the tag prefix.
When you specify attribute values with the ToolboxData attribute, you can often omit the

quotation marks (as with the ID and Runat attributes in this example). However, the quotation
marks are required when dealing with strings that contain spaces or special characters (as with
the Text attribute). To include quotation marks in the ToolboxData string, you must use the
escape character sequence .

Now when you drag the CustomTextBox onto a form, you’ll get this tag:

CHAPTER 28 DESIGN-TIME SUPPORT 1291

With all these details in mind, you’re ready to give a respectable level of design- time
support to an ordinary custom control. Here’s the simple CustomTextBox control from the
previous chapter, with a full complement of attributes. The code has been left out.

CHAPTER 28 DESIGN-TIME SUPPORT1292

Attributes and Inheritance
When you derive a control from a base class that has design- time attributes, the control inher-
its the design- time functionality of its parent, just like it inherits the methods and properties.
If the parent class’s implementation of the design- time attributes is sufficient for your control,
you do not need to reapply them.

However, in some cases you might want to change the design- time behavior of an existing
property. In this case, you must first override the property and then reapply the changed attri-
butes or add the new ones.

Most of the properties in the base classes WebControl and Control are marked as virtual,
which allows you to change their behavior. For example, if you wanted to hide the Height
property of a custom control that derives from WebControl (maybe because it is calculated
from the content rather than set by the developer), you could override the Height property and
apply the Browsable attribute, as shown here:

The Toolbox Icon
Adding a Toolbox icon is refreshingly easy. All you need to do is add a bitmap to your project
and follow these rules:

extension .bmp). For example, you would use a bitmap named CustomTextBox.bmp
for the CustomTextBox control.

16 pixels. Otherwise, it will be mangled when Visual Studio
attempts to scale it.

Action to Embedded Resource.

 Figure 28-2 shows the required image for the CustomTextBox control.

CHAPTER 28 DESIGN-TIME SUPPORT 1293

 Figure 28-2. Adding a Toolbox bitmap

Once you’ve added the correct bitmap and set its Build Action property to Embedded
Resource, the next step is to compile the control project. However, you won’t see your cus-
tom icons in the Toolbox tab that Visual Studio adds automatically for your control project.
Instead, you’ll only see your custom icon if you manually configure the Toolbox and add your
control to one of its permanent tabs. To do this, right- click the appropriate tab, select Choose
Items, and then browse to the assembly that has your control library (as described in Chapter 27).

 Figure 28-3 shows an example with two custom controls. One has the generic gear icon,
while the CustomTextBox uses a custom bitmap.

 Figure 28-3. A custom Toolbox bitmap

CHAPTER 28 DESIGN-TIME SUPPORT1294

Incidentally, it’s possible to use a toolbox icon that uses a filename that doesn’t match the
name of your control class. In this case, you need the help of the ToolboxBitmap attribute. For
example, the following code configures the CustomTextBox control to use a bitmap named
CustomTextBox1.bmp:

You can also use this trick to place bitmaps in a separate subfolder in your project. For
example, here’s how you would refer to a bitmap in a folder named Images:

Finally, it’s also possible to steal bitmaps from core ASP.NET controls, using code like this:

If you’re creating a simple control, all you may need to do is add a set of descriptive prop-
erties and a toolbox icon. However, more complex controls often require other considerations.
These range from code serialization issues (how the control tag is created when you use the
Properties window) to control designers (advanced tools for customizing the design- time
HTML your control renders). In the rest of the chapter, you’ll take a look at these topics.

Web Resources
Often, custom controls will have other, associated, noncode resources. For example, you
might have script files, stylesheets, and images that you need to use with the control. This
introduces an additional deployment headache, because you now need to copy these resource
files to every web application that uses your control. Fortunately, ASP.NET has a solution: the
web resources model.

Creating a Resource
To create a web resource, you begin by adding the resource files to your custom control
project. Then, using the Properties window, you must change the Build Action property to
Embedded Resource, not Content (see Figure 28-4). This way, the file will be embedded inside
your compiled assembly.

CHAPTER 28 DESIGN-TIME SUPPORT 1295

 Figure 28-4. An embedded resource

The next step is to make that resource URL- accessible. This works by using the
 assembly- level WebResource attribute.

For example, imagine you want to access the button picture used for the CustomImageButton
control. Once you’ve changed the Build Action setting, here’s the attribute you need to add to your
code:

The WebResource attribute takes two parameters. The first is the full name of your
embedded resource, which must be prefixed with the default namespace of your project. (This
detail, which you can see by right- clicking your project in the Solution Explorer and choosing
Properties, is automatically added to the beginning of the resource name.) The second param-
eter is the content type.

Once you’ve taken these steps, the last bit of work you need to do is get the URL for your
embedded resource. ASP.NET supports this through a handler named WebResource.axd.
This handler accepts URL requests, extracts the corresponding resource from the appropriate
assembly, and then returns the content. In other words, you don’t need a clutter of images and
scripts, because the WebResource.axd file can serve them as needed, right from your custom
control assembly.

Retrieving a Resource
To get your resource, you need to tell the WebResource.axd handler what resource you need
and what assembly contains it. You can generate the right URL using the Page.ClientScript.
GetWebResourceUrl() method. Here’s an example that uses this technique to grab a default
image for the CustomImageButton control:

CHAPTER 28 DESIGN-TIME SUPPORT1296

Note Incidentally, web resources automatically take localization into account. If you have a satellite
resource assembly with a locale- specific version of this image file, that version would be used instead. For
more information, refer to Bonus Chapter 1 (available on the Apress website,).

The actual URL looks something like this:

The a and r query string parameters specify the assembly and resource names, respec-
tively. The t is a workaround to support caching. Essentially, the WebResource.axd caches
every requested resource. That way you can request the same image hundreds of times
without incurring extra work digging up the resource from the assembly. (This is particu-
larly important to ensure performance if you have an assembly that’s packed with a large
number of resources.) However, caching introduces its own problem—namely, you don’t
want to reuse a cached resource if the assembly contains a newer version. The t parameter
defends against this. It’s an assembly timestamp. When the custom control assembly is
rebuilt, the generated URLs will have a different t value; as a result, the browser will make
a new request, and the WebResource.axd file will get the latest content.

You can try out this example with the CustomImageButton control in the downloadable
code for this chapter.

Text Substitution
The WebResource.axd handler has one other trick in store. You can set the Boolean
PerformSubstitution property of the WebResource attribute to tell it to perform automatic
substitution. This allows you to create a text- based resource that points to other embedded
resources. For example, consider a web control that uses several HTML files to supply help
information. You may want to use hyperlinks to connect one HTML file to another, but
embed them all as web resources.

CHAPTER 28 DESIGN-TIME SUPPORT 1297

Without automatic substitution, you wouldn’t be able to create a resource that points to
another resource, because you don’t know the resource names that ASP.NET will generate. But
with automatic substitution, you can use the original filename. The compiler will replace your
reference to the filename with the correct automatically generated resource name.

For example, imagine you create a file named CustomServerControls.Help.htm, which
contains links to other resources. Here’s the attribute you need for the CustomServerControls.
Help.htm file:

Now the WebResource.axd will scan through the text of your resource file (in this case, the
HTML file named CustomServerControls.Help.htm) and look for expressions in this format:

For example, you might use this markup to display an image named HelpTitle.gif, which is
also a web resource:

Every time the compiler finds a reference like this, it will replace it with the URL for the
corresponding web resource (in this case, the URL that points to HelpTitle.gif). Here’s an
example:

Once it’s finished its transformation, the modified version of CustomServerControls.Help.htm
will be embedded in the assembly as a resource.

Note Automatic substitution only works for text- based resources.

Code Serialization
When you configure control properties in the Properties window, Visual Studio needs to be
able to create and modify the corresponding control tag in the .aspx file. This process is called
code serialization, and it often works automatically. However, you can run into trouble if you
use properties that are themselves complex types or if you create a template control or a con-
trol that supports child controls.

In the following sections, you’ll learn about the different ingredients that affect control
serialization and what changes you need to make in order to resolve common problems.

Type Converters
The Properties window deals seamlessly with common data types. String data doesn’t present
a problem, but the Properties window can also convert strings to numeric types. For example,

CHAPTER 28 DESIGN-TIME SUPPORT1298

if you look at the Width property of a control, you’ll see a value such as 50 px. You can enter
any characters in this field, but if you try to commit the change (by pressing Enter or moving
to another field) and you’ve included characters that can’t be interpreted as a unit, the change
will be rejected.

This behavior is made possible by type converters, specialized classes that are designed
for the sole purpose of converting a specialized data type to a string representation and back.
Most of the core .NET data types have default type converters that work perfectly well. (You
can find these type converters in the System.ComponentModel namespace.) However, if you
create your own structures or classes and use them as properties, you may also want to create
custom type converters that allow them to work in the Properties window.

A Control with Object Properties
The next example uses a RichLabel control that’s a slightly revised version of the XmlLabel
control presented in Chapter 27. The difference is that while the XmlLabel is designed to show
XML documents, the RichLabel control is designed to support different types of content.

Essentially, the RichLabel can support any type of content that’s defined in the following
RichLabelTextType enumeration. In this simple example, the RichLabelTextType enumeration
includes only two options: Xml (which uses the same code as the XmlLabel) and Html (which
treats the text as is and doesn’t perform any additional processing). However, you could easily
add the rendering code for different types of text.

The RichLabel also allows you to choose what tag you want to use to format important
details (such as the XML tags in XML rendering mode). The way this works is through another
class, named RichLabelFormattingOptions. The RichLabelFormattingOptions class defines
two properties: Type (which holds a value from the RichLabelTextType enumeration) and
HighlightTag (which stores a tag name as a string, such as b for the tag, which applies bold
formatting).

CHAPTER 28 DESIGN-TIME SUPPORT 1299

The RichLabel class includes a Format property, which exposes an instance of the custom
RichLabelFormattingOptions class. The rendering logic in the RichLabel control uses this
information to customize the HTML it generates.

Here’s the code for the RichLabel control:

CHAPTER 28 DESIGN-TIME SUPPORT1300

Alternative designs are possible. For example, you could add these two pieces of format-
ting information (Type and HighlightTag) as separate properties in the RichLabel class, in
which case you wouldn’t need to take any extra steps to ensure proper serialization. How-
ever, you might decide to group related properties together using a custom class (such as
RichLabelFormattingOptions) for a number of reasons. Perhaps you want the ability to reuse
the RichLabelFormattingOptions class in order to specify text- formatting options for other
controls. Or maybe you need to create a more complex control that accepts several different
pieces of text and can convert all of them using independent RichLabelFormattingOptions
settings. In both of these situations, it becomes useful to group the properties using the
RichLabelFormattingOptions class.

However, the RichLabel control doesn’t work well with Visual Studio. When you try to
modify this control at design time, you’ll immediately notice the problem. The Properties win-
dow doesn’t allow you to edit the RichLabel.Format property. Instead, it shows an empty edit
box where you can’t type anything. To solve this problem, you need to create a custom type
converter, as explained in the next section.

Creating a Custom Type Converter
A custom type converter is a class that can convert from your proprietary data type (in this
case, the RichLabelFormattingOptions class) to a string and back. In the following example,
you’ll see such a class, named RichLabelFormattingOptionsConverter.

The first step is to create a custom class that derives from the base class TypeConverter, as
shown here:

CHAPTER 28 DESIGN-TIME SUPPORT 1301

By convention, the name of a type converter class consists of the class type it converts, fol-
lowed by the word Converter.

Once you create the type converter, you have several methods to override:

CanConvertFrom(): This method examines a data type and returns true if the type con-
verter can make the conversion from this data type to the custom data type.

ConvertFrom(): This method performs the conversion from the supplied data type to the
custom data type.

CanConvertTo(): This method examines a data type and returns true if the type converter
can make the conversion from the custom object to this data type.

ConvertTo(): This method performs the conversion from the custom data type to the
requested data type.

Remember that the key task of a type converter is to convert between your custom data
type and a string representation. This example uses a string representation that includes both
values from the RichLabelFormattingOptions object, separated by a comma and a space and
with angled brackets around the tag name. Here’s what the string format looks like:

Here’s an example with XML formatting and a tag:

With that in mind, you can create two helper methods in the converter class to per-
form this conversion. The first is a FuncToString() method that builds the required string
representation:

The second part is a FromString() method that decodes the string representation. If the
string isn’t in the format you need, the FromString() code raises an exception. Otherwise, it
returns the new object instance.

CHAPTER 28 DESIGN-TIME SUPPORT1302

Before attempting a conversion from a string to a RichLabelFormattingOptions object, the
Properties window will first query the CanConvertFrom() method. If it receives a true value, it
will call the actual ConvertFrom() method. All the CanConvertFrom() method needs to do is
check that the supplied type is a string, as follows:

The ConvertFrom() method calls the conversion by calling the FromString() method
shown earlier:

Note It is good object- oriented programming practice to always give the base classes from which you
inherit a chance to handle a message you are not going to support. In this case, any requests to perform
a conversion from an unrecognized type are passed to the base class.

CHAPTER 28 DESIGN-TIME SUPPORT 1303

The same process occurs in reverse when converting a RichLabelFormattingOptions
object to a string. First, the Properties window calls CanConvertTo(). If it returns true, the next
step is for the Properties window to call the ConvertTo() method. Here’s the code you need:

Now that you have a fully functioning type converter, the next step is to attach it to the
corresponding property.

Attaching a Type Converter
You can attach a type converter in two ways. You can add the TypeConverter attribute to the
related class (in this case, RichLabelFormattingOptions), as shown here:

This way, whenever an instance of this class is used for a control, Visual Studio knows to
use your type converter.

Alternatively, you can attach the type converter directly to the property in your custom
control that uses it, as shown here:

CHAPTER 28 DESIGN-TIME SUPPORT1304

This approach makes the most sense if you are using a generic data type (such as a string)
and you want to customize its behavior in only this case.

Now you can recompile the code and try using the RichLabel control in a sample web page.
When you select a RichLabel, you’ll see the current value of the RichLabel.Format property in
the Properties window (shown in Figure 28-5), and you can edit it by hand.

Note When changing details such as type converter, control designer, and control builders, your changes
will appear immediately in the design environment after a recompile.

 Figure 28-5. A string representation of the RichLabelFormattingOptions object

Of course, unless you enter the correct string representation, you’ll receive an error mes-
sage, and your change will be rejected. In other words, the custom type converter shown
here gives you the ability to specify a RichLabelFormattingOptions object as a string, but the
process certainly isn’t user- friendly. The next section shows you how to improve this level of
support.

The ExpandableObjectConverter
ASP.NET web controls support a number of object properties. The best example is Font, which
refers to a FontInfo object with properties such as Bold, Italic, Name, and so on. When you
set the Font property in the Properties window, you don’t need to type all this information in
a single, correctly formatted string. Instead, you can expand the Font property by clicking the
plus (+) box and edit the FontInfo properties individually.

You can enable the same type of editing with your own custom object types—you simply
need to create a custom type converter that derives from the ExpandableObjectConverter

CHAPTER 28 DESIGN-TIME SUPPORT 1305

class instead of the base TypeConverter class. For example, you could take the
RichLabelFormattingOptionsConverter developed in the previous section and change it as
shown here:

Now you can specify the Format property by typing in a string or expanding the property
and modifying one of the two subproperties. Figure 28-6 shows the much more convenient
interface that you’ll see in the Properties window.

This looks good at first pass, but it has still a few quirks. One problem is that when you change
a subproperty (Type or HighlightTag), the string representation that’s shown in the Format box
isn’t immediately updated. To solve this problem you need to apply the NotifyParentProperty and
RefreshProperties attributes to the properties of the RichLabelFormattingOptions class. At the
same time, you might also want to add a Description attribute to configure the text that will appear
in the Properties window for this subproperty.

 Figure 28-6. Editing properties of the RichLabelFormattingOptions object

Here’s the revised code for the RichLabelFormattingOptions class:

CHAPTER 28 DESIGN-TIME SUPPORT1306

This solves the synchronization and editing problems, but all the quirks still aren’t fixed.
The problem is that although you can edit the RichLabel.Format property, the information you
set isn’t persisted into the control tag. This means that the changes you make at design time
are essentially ignored. To resolve this problem, you need to dig a little deeper into how .NET
serializes control properties, as described in the next section.

Serialization Attributes
You can control how control properties are serialized into the .aspx file using attributes. You
need to consider two key attributes—DesignerSerializationVisibility and PersistenceMode.

The DesignerSerializationVisibility attribute determines whether a property will be serial-
ized. You have three choices (as defined in the DesignerSerializationVisibility enumeration):

Visible: This is the default value. It specifies that the property should be serialized, and it
works for simple data types (such as strings, dates, and enumerations) and the numeric
data types.

Content: This serializes the entire content of an object. You can use this value to serialize
complex types with multiple properties, such as a collection.

Hidden: This specifies that a property shouldn’t be serialized at all. For example, you
might use this to prevent a calculated value from being serialized.

The PersistenceMode attribute allows you to specify how a property is serialized. You have
the following choices (as defined in the PersistenceMode enumeration):

CHAPTER 28 DESIGN-TIME SUPPORT 1307

Attribute: This is the default option. The property will be serialized as an HTML attribute
of the control.

InnerProperty: The property will be persisted as a nested tag inside the control. This is
the preferred setting to generate complex nested hierarchies of objects. Examples are the
Calendar and GridView controls.

InnerDefaultProperty: The property will be persisted inside the control tag. It will be the
only content of the control tag. An example is the Text property of the Label control. When
using a default property, the property name doesn’t appear in the nested content.

EncodedInnerDefaultProperty: This is the same as InnerDefaultProperty, except that the
content will be HTML- encoded before it is persisted.

To understand how these different options work, it’s worth considering a few examples. The
PersistenceMode.Attribute choice is the default option you’ve seen with the core set of ASP.NET
control tags. If you combine this attribute with DesignerSerializationVisibility.Content in a prop-
erty whose type contains subproperties, ASP.NET uses the object- walker syntax, in the form of
 Property- SubProperty="Value". You can see an example with the Font property, as shown here:

On the other hand, consider what happens if you create a custom control that overrides
the persistence behavior of the Font property to use PersistenceMode.InnerProperty, as shown
here:

Now the persisted code for the Font property takes this form:

To allow the RichLabel to serialize its Format property correctly, you need to apply both the
PersistenceMode and DesignerSerializationVisibility attributes. The DesignerSerializationVisibility
attribute will specify Content, because the Format property is a complex object. The
PersistenceMode attribute will specify InnerProperty, which stores the Format property
information as a separate, nested tag. Here’s how you need to apply these two attributes to the
RichLabelFormattingOptions.Format property:

CHAPTER 28 DESIGN-TIME SUPPORT1308

Now when you configure the Format property in the Properties window, ASP.NET will
create a tag in this form:

The end result is that the RichLabel control works perfectly when inserted into a web page
at runtime as well as when a developer is using it at design time.

You can apply two other related serialization properties at the class level—PersistChildren
and ParseChildren. Both attributes control how ASP.NET deals with nested tags and whether it
supports child controls. When PersistChildren is true, child controls are persisted as contained
tags. When PersistChildren is false, any nested tags designate properties. ParseChildren plays
the same role when reading control tags. When ParseChildren is true, the ASP.NET parser
interprets all nested tags as properties rather than controls.

When deriving from the WebControl class, the default is that PersistChildren is false and
ParseChildren is true, in which case any nested tags are treated as property values. If you want
child content to be treated as child controls in the control hierarchy, you need to explicitly set
PersistChildren to true and ParseChildren to false. Because the RichLabel control isn’t designed
to hold other controls, this step isn’t needed—the defaults are what you want.

The RichLabel isn’t the only control that needs the serialization attributes. To successfully
use the template controls described in Chapter 27 (such as the SuperSimpleRepeater), all the
template properties need to use PersistenceMode.InnerProperty serialization.

Here’s an example of a templated property that’s correctly configured:

Otherwise, when you set other properties in the control, the template content will be
erased.

Type Editors
So far you’ve seen how type converters can convert various data types to strings for represen-
tation in the Properties window. But some data types don’t rely on string editing at all. For
example, if you need to set an enumerated value (such as BorderStyle), you can choose from
a drop- down list of all the values in the enumeration. More impressively, if you need to set

CHAPTER 28 DESIGN-TIME SUPPORT 1309

a color, you can choose from a drop- down color picker. And some properties have the ability
to break out of the Properties window altogether. One example is the Columns property of the
GridView. If you click the ellipsis next to the property name, a dialog box will appear where
you can configure the column collection using a rich user interface.

These properties all rely on UI type editors. Type editors have a single task in life—they
generate user interfaces that allow you to set control properties more conveniently. Certain
data types (such as collections, enumerations, and colors) are automatically associated with
advanced type editors. In other cases, you might want to create your own type editor classes
from scratch. All UI type editors are located in the System.Drawing.Design namespace.

Just as with type converters (and almost everything in the extensible architecture of .NET
 design- time support), creating a new type editor involves inheriting a base class (in this case
UITypeEditor) and overriding desired members. The methods you can override include the
following:

GetEditStyle(): Specifies whether the type editor is a DropDown (provides a list of spe-
cially drawn choices), Modal (provides a dialog box for property selection), or None (no
editing supported).

EditValue(): This method is invoked when a property is edited (for example, the ellipsis
next to the property name is clicked in the Properties window). Generally, this is where
you would create a special dialog box for property editing.

GetPaintValueSupported(): Use this to return true if you are providing a PaintValue()
implementation.

PaintValue(): Invoked to paint a graphical thumbnail that represents the value in the
property grid. For example, this is used to create the color box for color properties.

The code for UI type editors isn’t overly complicated, but it can take a bit of getting used
to for web developers. That’s because it involves using the other user interface platform in
.NET—Windows Forms. Although the topic of Windows Forms is outside the scope of this
book, you can learn a lot from a basic example. Figure 28-7 shows a custom color editing con-
trol that allows you to set various components of a color independently using sliders. As you
do, it displays the color in a box at the bottom of the control.

 Figure 28-7. Using a custom type editor

CHAPTER 28 DESIGN-TIME SUPPORT1310

The code for the actual control (the ColorTypeEditorControl) isn’t shown here, but you
can refer to the downloadable examples for this chapter to take a closer look. However, the full
code for the type editor that uses this control is as follows:

CHAPTER 28 DESIGN-TIME SUPPORT 1311

To create this example, you need to add a reference to the System.Windows.Forms assem-
bly. It also helps to import the System.Windows.Forms.Design namespace, which contains the
IWindowsFormsEditorService interface.

To use this type editor, you need to attach it to a property that uses the Color data type.
Most web controls already include color properties, but you can override one of them and
apply a new Editor attribute.

Here’s an example that does exactly that to attach the type editor to the BackColor property
of the RichLabel control:

Control Designers
A control designer influences the design- time behavior and design- time appearance for a con-
trol. Every control uses a ready- made control designer from the .NET Framework, depending
on the class that it inherits from. However, you’re free to override this detail and configure
your control to use a custom control designer. To create a custom control designer, you derive
a class from System.Web.UI.Design.ControlDesigner. You can then add functionality to your
control designer by overriding its base methods.

Out of all the design- time topics that you’ll consider in this chapter, control designers are
the most sophisticated. In the following sections, you’ll see how to perform two common tasks
with custom control designers. First, you’ll use a control designer to customize the design- time
HTML for a control. Then, you’ll use a control designer to create a smart tag. These two examples
require a fair bit of code, but they still only scratch the surface of the full set of control designer
features that an experienced control developer can use. For example, you can use a custom
control designer to further customize the way nested markup inside your control is serialized, to
filter out properties you don’t want to show at design time, to create design-time- only properties,
or to provide template editing features. For more information, you can study the MSDN docu-
mentation or continue your exploration with a dedicated book about server controls.

CHAPTER 28 DESIGN-TIME SUPPORT1312

Design-Time HTML
You’ve probably noticed that custom controls aren’t all treated the same on the design surface.
ASP.NET tries to show a realistic design- time representation by running the rendering logic,
but exceptions exist. For example, composite and template controls aren’t rendered at all in
the design- time environment, which means you’re left with nothing but a blank rectangle on
your design surface.

To deal with these issues, controls often use custom control designers that produce basic
HTML that’s intended only for design- time display. This display can be a sophisticated block
of HTML that’s designed to reflect the real appearance of the control, a basic snapshot that
shows a typical example of the control (as you’ll see for a GridView or FormView that doesn’t
have any configured fields), or just a gray placeholder box with a message (as you’ll see for
a ListView or DetailsView that doesn’t have any templates).

If you want to customize the design- time HTML for your control, you can derive a custom
designer from the ControlDesigner base class and override one of the following three methods:

GetDesignTimeHtml(): Returns the HTML that’s used to represent the current state of
the control at design time. The default implementation of this method simply returns the
result of calling the RenderControl() method.

GetEmptyDesignTimeHtml(): Returns the HTML that’s used to represent an empty
control. The default implementation simply returns a string that contains the name of the
control class and the ID.

GetErrorDesignTimeHtml(): Returns the HTML that’s used if a design- time error occurs
in the control. This HTML can provide information about the exception (which is passed
as an argument to this method).

Of course, these methods reflect only a small portion of the functionality that’s available
through the ControlDesigner. You can override many more methods to configure different
aspects of design- time behavior. In the following section, you’ll see how to create a control
designer that adds enhanced support for the SuperSimpleRepeater.

The next example develops a control designer that generates a reasonable representation
for the SuperSimpleRepeater developed in the previous chapter. Without a custom control
designer, the design- time content of the SuperSimpleRepeater is an empty string.

The first step in creating a designer is to build a class that derives from the ControlDesigner
namespace in the System.Web.UI.Design namespace, as shown here:

You can apply the designer to the control using the Designer attribute, as shown here:

CHAPTER 28 DESIGN-TIME SUPPORT 1313

When creating a control designer, the first step is to create the GetEmptyDesignTimeHtml()
method. This method simply needs to return a static piece of text. The ControlDesigner includes
a helper method named CreatePlaceHolderDesignTimeHtml(), which generates a gray HTML
box with a message that you specify (just like the ListView control without any templates). You
can use this method to simplify your rendering code, as shown here:

 Figure 28-8 shows the empty design- time view of the SuperSimpleRepeater control.

 Figure 28-8. The empty design- time HTML

Note Keep in mind that ASP.NET isn’t able to decide when your control is empty. Instead, you’ll
need to call the GetEmptyDesignTimeHtml() method when necessary. As you’ll see in this example, the
GetDesignTimeHtml() method calls GetEmptyDesignTimeHtml() if a template isn’t present.

Coding the GetErrorDesignTimeHtml() method is just as easy. Once again, you can use
the CreatePlaceHolderDesignTimeHtml() method, but this time you should supply the details
about the exception that occurred.

The final step is to write the GetDesignTimeHtml() method. This code retrieves the cur-
rent instance of the SuperSimpleRepeater control from the ControlDesigner.Component
property. It then checks for an item template. If no template is present, the empty HTML is
shown. If a template is present, the control is data bound, and then the design- time HTML is
displayed, as follows:

CHAPTER 28 DESIGN-TIME SUPPORT1314

This produces the vastly improved design- time representation shown in Figure 28-9,
which closely resembles the actual runtime appearance of the SuperSimpleRepeater.

 Figure 28-9. The improved design- time representation

Smart Tags
Visual Studio includes one more feature for creating a rich design- time experience—smart tags.
These are the pop- up windows that appear next to a control when you click the tiny arrow in
the corner.

Smart tags are similar to menus in that they have a list of items. However, these items
can be commands (which are rendered like hyperlinks) or other controls such as check boxes,
 drop- down lists, and more. They can also include static descriptive text. In this way, a smart
tag can act like a mini Properties window.

 Figure 28-10 shows an example of the custom smart tag that’s created in the next exam-
ple. It allows the developer to set a combination of TitledTextBox properties. It includes two

CHAPTER 28 DESIGN-TIME SUPPORT 1315

text boxes that let you set the text, a See Website Information link that launches a browser for
a specific URL, and some static information that indicates the control’s name.

 Figure 28-10. A custom smart tag

To create this smart tag, you need the following ingredients:

A collection of DesignerActionItem objects: Each DesignerActionItem represents a single
item in the smart tag.

An action list class: This class has two roles—it configures the collection of
DesignerActionItem instances for the smart tag, and, when a command or change is
made, it performs the corresponding operation on the linked control.

A control designer: This hooks your action list up to the control so the smart tag appears
at design time.

In the following sections, you’ll build this solution piece by piece.

The Action List
Smart tags allow a number of options. To keep it all well organized, it’s a good idea to sepa-
rate your code by creating a custom class that encapsulates your action list. This custom class
should derive from DesignerActionList (in the System.ComponentModel.Design namespace).

Here’s an example that creates an action list that’s intended for use with the
TitledTextBox:

You should add a single constructor to the action list that requires the matching control
type. You can then store the reference to the control in a member variable. This isn’t required,

CHAPTER 28 DESIGN-TIME SUPPORT1316

because the base ActionList class does have a Component property that provides access to
your control. However, by using this approach, you gain the convenience of strongly typed
access to your control.

Before you can build the smart tag, you need to equip your action list class with the required
members. For every link you want to add to the tag (via a DesignerActionMethodItem), you need
to create a method. For every property you want to add (via the DesignerActionPropertyItem),
you need to create a property procedure.

The smart tag in Figure 28-10 includes seven custom items: two category headers, three
properties, one action link, and one piece of static text (at the bottom of the tag).

The first step is to add the properties. The get property procedure needs to retrieve the
value of the property from the linked control. The set property procedure needs to apply the
new value to the linked control. However, this has a catch—you can’t set the new value directly.
If you do, other parts of the designer infrastructure won’t be notified about the change. Instead,
you need to work through the PropertyDescriptor.SetValue() method. To make this easier, you
can define a private helper method in your action list class that retrieves the PropertyDescriptor
for a given property by name:

Now you can create the three properties that wrap the properties in the TitledTextBox
control:

CHAPTER 28 DESIGN-TIME SUPPORT 1317

Note Not all properties can be edited natively in a smart tag—it all depends on the data type. If the data
type has an associated UITypeEditor (for graphically editing the property) or a TypeConverter (for converting
the data type to and from a string representation), editing will work. Most common data types have these
ingredients, but your custom objects won’t (and as a result, all you’ll see is a read- only string generated by
calling ToString() on the object). For more information, refer to the next chapter, which looks at type conver-
sion in detail.

The next step is to build the functionality for the See Website Information link. To do this,
create a method in the action list class. Here’s the code, which uses the Process class to launch
the default browser:

The DesignerActionItem Collection
The individual items in a smart tag are represented by the DesignerActionItem class. The .NET
Framework provides four basic classes that derive from DesignerActionItem, as described in
 Table 28-3.

CHAPTER 28 DESIGN-TIME SUPPORT1318

Table 28-3. Classes Derived from DesignerActionItem

Class Description
DesignerActionMethodItem This item is rendered as a link. When you click it, it triggers an

action by calling a method in your DesignerActionList class.

DesignerActionPropertyItem This item is rendered as an edit control and uses logic that’s
similar to the Properties window. Strings are given edit boxes,
enumerated values become drop- down lists, and Boolean values
are turned into check boxes. When you change the value, the
underlying property is modified.

DesignerActionTextItem This item is rendered as a static piece of text. Usually, it provides
additional information about the control. It’s not clickable.

DesignerActionHeaderItem This item derives from DesignerActionTextItem. It’s a static piece
of text that’s styled as a heading. Using one or more header items,
you can divide the smart tag into separate categories and group
your other properties accordingly. It’s not clickable.

To create your smart tag, you need to build a DesignerActionItemCollection that com-
bines your group of DesignerActionItem objects. Order is important in this collection, because
Visual Studio will add the DesignerActionItem objects to the smart tag from top to bottom in
the order they appear.

To build your action list, you override the DesignerActionList.GetSortedActionItems()
method, create the DesignerActionItemCollection, add each DesignerActionItem to it, and
then return the collection. Depending on the complexity of your smart tag, this may take sev-
eral steps.

The first step is to create the headers that divide the smart tag into separate regions. You
can then add other items to these categories. This example uses two headers:

Next, you can add the properties. You specify the name of the property, followed by the
name that should appear in the smart tag. The last two items include the category where the
item should be placed (corresponding to one of the DesignerActionHeaderItems you just cre-
ated) and a description (which appears as a tooltip when you hover over that item).

CHAPTER 28 DESIGN-TIME SUPPORT 1319

Visual Studio connects the action item to the property in the action item class by using
reflection with the property name you supply. If you add more than one property to the same
category, they’re ordered based on the order in which you add them. If you add more than one
category header, the categories are also ordered according to their position.

The next step is to create a DesignerActionMethodItem(), which binds a smart tag item to
a method. In this case, you specify the object where the callback method is implemented, the
name of the method, the name that should appear in the smart tag display, the category where
it will appear, and the tooltip description. The last parameter is a Boolean value. If true, the
item will be added to the context menu for the control as well as to the smart tag.

Finally, you can create new DesignerActionTextItem objects with the static text you want
to show and return the complete collection of items, like so:

The Control Designer
Once you’ve perfected your smart tag action list, you still need to connect it to your control.
You do this by creating a custom designer and overriding the ActionLists property so that it
returns an instance of your custom action list class. The following control designer demon-
strates this. Notice that the action list isn’t created each time ActionList is called—instead, it’s
cached in a private member variable to optimize performance.

CHAPTER 28 DESIGN-TIME SUPPORT1320

Summary
In this chapter, you took a tour through some of the simple and complex aspects of the .NET
 design- time architecture. You learned how to configure the way control properties are dis-
played in the Properties window and how to take charge of control serialization and parsing.
For many more advanced topics, such as custom control designers, you can consult the MSDN
documentation.

1321

C H A P T E R 2 9

Dynamic Graphics and GDI+

In Chapter 4, you learned about basic web controls for displaying graphics, such as the Image
and ImageButton controls. Both allow you to display an image, and the ImageButton control
also fires a Click event that gives you the exact mouse coordinates. But in a modern web appli-
cation, you’ll often want much more.

In this chapter, you’ll learn about two .NET innovations that give you greater control over
the look and feel of your website. First, you’ll learn about the ImageMap control, which allows
you to define invisible shaped regions over an image and react when they’re clicked. Next you’ll
tackle GDI+, a .NET model for rendering dynamic graphics. You’ll learn how to render custom
graphics with GDI+, how to embed these graphics in a web page, and how to create custom
controls that use GDI+.

The ImageMap Control
Web pages commonly include complex graphics, where different actions are taken depending
on what part of the graphic is clicked. ASP.NET developers can use several tricks to implement
this design:

Stacked image controls: Multiple borderless pictures will look like one graphic when
carefully positioned next to each other. You can then handle the clicks of each control
separately. This approach works well for buttons and navigational controls that have
defined, rectangular edges.

ImageButton: When an ImageButton control is clicked, it provides the coordinates
where the click was made. You can examine these coordinates in your server- side code
and determine what region was clicked programmatically. This technique is flexible but
tedious and error- prone to code.

ImageMap: With the ImageMap control, you can define separate regions and give each
one a unique name. One advantage of this approach is that as the user moves the mouse
pointer over the image, it changes to a hand only when the user is positioned over a defined
region. Thus, this approach works particularly well for detailed images that have small
hotspots.

The ImageMap control provides a server- side abstraction over the HTML <map> and
<area> tags, which define an image map. The ImageMap control renders itself as a <map> tag.
You define regions by adding HotSpot objects to the ImageMap.HotSpots collection, and each

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1322

region is rendered as an <area> tag inside the <map> tag. Just before the <map> tag, ASP.NET
renders the linked tag that shows the picture and uses the image map.

For example, if you create a map named ImageMap1 with three circular hotspots, the
ImageMap control will render markup like this:

Creating Hotspots
You can add an ImageMap control to a form in much the same way as an Image control. Just
drop it onto the page, and set the ImageUrl property to the name of the image file you want
to use. You can also use the usual ImageAlign, BorderStyle, BorderWidth, and BorderColor
properties.

To define the clickable regions, you need to add HotSpot objects to the ImageMap.
HotSpots property. You can use three derived classes: CircleHotSpot, RectangleHotSpot, and
PolygonHotSpot. These choices aren’t arbitrary—they match the three shape types defined in
the HTML standard.

Before you can tackle this task, you need to know the exact coordinates of the hotspot
you want to create. Unfortunately, the ImageMap designer isn’t much help, so you’ll probably
rely on a dedicated HTML authoring program. For example, Figure 29-1 shows three circle
hotspots being adjusted with Microsoft FrontPage.

Once you’ve tweaked the hotspots to perfection, you can look at the source code to find
the coordinates. In the case of a circle, three details are important: the X coordinate, Y coordi-
nate, and radius. They appear in that order in the <area> tag:

This tag defines the hotspot around the DVD region. The circle’s center is at (272, 83), and
the radius is 83 pixels.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1323

 Figure 29-1. Configuring hotspots in Microsoft FrontPage

Tip It’s acceptable to have overlapping hotspots, but the hotspot that is defined first will handle the click.
In the example shown in Figure 29-1, this means it makes sense to define the hotspots in this order: DVDs,
Media, CDs.

When defining a rectangle, you define the top- left and bottom- right corners. The order
of coordinates is left X, top Y, right X, and bottom Y. When defining a polygon, you can have
as many points as you like. The browser draws a line from one point to another to create the
shape. You list the X and Y coordinates for your points in pairs like this: X1, Y1, X2, Y2, X3, Y3,
and so on. It’s recommended (according to the HTML standard) that you end with the same
point with which you started.

Once you’ve determined your hotspots, you can add the corresponding HotSpot objects.
Here’s the ImageMap for Figure 29-1, with three hotspots:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1324

Rather than coding this by hand, you can select your ImageMap and click the ellipsis next
to the HotSpots property in the Properties window. This opens a collection editor where you
can add and modify each hotspot.

Once you’ve defined the hotspots, you can test them in a browser. When you move the
mouse pointer over a hotspot, it changes into a hand. You’ll also see that the alternate text
you’ve defined for the hotspot appears in a tooltip.

Handling Hotspot Clicks
The next step is to make the hotspots clickable. A hotspot can trigger one of two actions—it
can navigate to a new page, or it can post back your page (and fire the ImageMap.Click event).
To choose which option you prefer, simply set the ImageMap.HotSpotMode property.

Tip When you set the ImageMap.HotSpotMode property, it applies to all hotspots. You can also override
this setting for individual hotspots by setting the HotSpot.HotSpotMode property. This allows you to have
some hotspots that post back the page and others that trigger page navigation.

To disable hotspots completely, use HotSpotMode.Inactive. If you use HotSpotMode.
Navigate, you need to set the URL for each hotspot using the HotSpot.NavigateUrl property.
If you use HotSpotMode.PostBack, you should give each hotspot a unique HotSpot.
PostBackValue. This allows you to identify which hotspot triggered the postback in the Click
event.

Here’s the revised ImageMap control declaration that adds these details:

Here’s the Click event handler, which simply displays the name of the clicked hotspot:

 Figure 29-2 shows the resulting page.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1325

 Figure 29-2. Handling a hotspot click

A Custom Hotspot
The ImageMap control supports any HotSpot- derived hotspot class. ASP.NET includes exactly
three, which correspond to the three basic types of <area> shapes defined in the HTML stan-
dard. However, you can create your own hotspots by deriving your own custom class from
HotSpot.

Obviously, a custom hotspot class can’t do anything that falls outside the HTML standard.
For example, it would be nice to have an ellipse and other curved shapes, but that just isn’t
available. However, you can create a variety of complex multisided shapes, such as triangles,
octagons, diamonds, and so on, using the polygon type. By deriving a custom HotSpot, you
can create a higher- level model that generates the appropriate polygon based on a few basic
pieces of information (such as the center coordinate and the radius).

For example, the following class presents a simple custom triangle. This triangle is created
based on a center point, width, and height.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1326

When creating a custom HotSpot, you must override the MarkupName property to return
the type of shape you are creating. Remember, the only valid choices are circle, rectangle, and
polygon. This information is placed into the shape attribute of the <area> tag.

Finally, you need to override the GetCoordinates() method to return the string for the
cords attribute. For a polygon, this must be a comma- separated series of points in X, Y pairs.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1327

Here’s the code that creates a simple triangle, with a bottom edge and a single point in the top
center:

Now you can use your custom hotspot much as you use a custom control. The first step is
to register a tag prefix for your namespace, as shown here:

And here’s an ImageMap that uses the TriangleHotSpot and redirects users to a new URL
when the triangle is clicked:

Drawing with GDI+
GDI+ is an all- purpose drawing model for .NET applications. GDI+ has a number of uses in
.NET, including writing documents to the printer, displaying graphics in a Windows applica-
tion, and rendering graphics in a web page.

Using GDI+ code to draw a graphic is slower than using a static image file. However, it
gives you much more freedom and enables several possibilities that weren’t possible (or were
prohibitively difficult) in earlier web development platforms, such as classic ASP. For example,

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1328

you can create rich graphics that incorporate user- specific information, and you can render
charts and graphs on the fly based on the records in a database.

The heart of GDI+ programming is the System.Drawing.Graphics class. The Graphics
class encapsulates a GDI+ drawing surface, whether it is a window, a print document, or an
 in- memory bitmap. ASP.NET developers rarely have the need to paint windows or print docu-
ments, so it’s the last option that is the most practical.

To use GDI+ in ASP.NET, you need to follow a sequence of four steps:

 1. Create the in- memory bitmap where you’ll perform all your drawing.

 2. Create a GDI+ graphics context for the image. This gives you the System.Drawing.
Graphics object you need.

 3. Perform the drawing using the methods of the Graphics object. You can draw and fill
lines and shapes, and you can even copy bitmap content from existing files.

 4. Write the binary data for the image to the browser, using the Response.OutputStream
property.

In the following sections, you’ll see several examples of web pages that use GDI+. Before
continuing, you may want to ensure that the following namespaces are imported:

The System.Drawing namespace defines many of the fundamental ingredients for draw-
ing, including pens, brushes, and bitmaps. The System.Drawing.Drawing2D namespace adds
other useful details such as the flexible GraphicsPath class, while System.Drawing.Imaging
includes the ImageFormat namespace that lets you choose the graphics format in which your
bitmap will be rendered when it’s sent to the client.

Simple Drawing
The following example demonstrates the simplest possible GDI+ page. All the work is performed
in the event handler for the Page.Load event.

The first step is to create the in- memory bitmap by creating an instance of the System.
Drawing.Bitmap class. When you create this object, you need to specify the height and width
of the image in pixels as constructor arguments. You should make the size as small as possible.
Not only will a larger bitmap consume additional server memory while your code is executing,
but the size of the rendered content you send to the client will also increase, slowing down the
transmission time.

The next step is to create a GDI+ graphics context for the image, which is represented by
the System.Drawing.Graphics object. This object provides the methods that allow you to draw
content on the in- memory bitmap. To create a Graphics object from an existing Bitmap object,
you just use the static Graphics.FromImage() method, as shown here:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1329

Now comes the interesting part. Using the methods of the Graphics class, you can draw
text, shapes, and images on the bitmap. In this example, the drawing code is exceedingly sim-
ple. It fills the graphic with a solid white background using the FillRectangle() method of the
Graphics object. (Without this step, every pixel is initially set to black.)

The FillRectangle() method requires several arguments. The first argument sets the color,
the next two parameters set the starting point, and the final two parameters set the width and
height. When measuring pixels, the point (0, 0) is the top- left corner of your image in (X, Y)
coordinates. The X coordinate increases as you go farther to the right, and the Y coordinate
increases as you go farther down. In the current example, the image is 300 pixels wide and
50 pixels high, which means the point (299, 49) is the bottom- right corner.

In this example, the FillRectangle() method doesn’t quite fill the entire bitmap. Instead, it
leaves a border 1- pixel wide all around. Because you haven’t painted any content to this area,
these pixels will have the default color (which, for a bitmap that you render to the GIF format,
is black).

The next portion of the drawing code renders a static label message. To do this, you need
to create a System.Drawing.Font object that represents the font you want to use. This shouldn’t
be confused with the FontInfo object you use with ASP.NET controls to specify the requested
font for a web page. Unlike FontInfo, Font represents a single, specific font (including typeface,
size, and style) that’s installed on the current computer.

When you create a Font object, you specify the font name, point size, and style, as shown
here:

Tip Because this image is generated on the server, you can use any font that the server has installed
when creating the graphic. The client won’t need to have the same font, because the client receives the text
as a rendered image.

To render the text, you use the DrawString() method of the Graphics object. As with the
FillRectangle() object, you need to specify the coordinates where the drawing should begin.
This point represents the top- left corner of the text block. In this case, the point (10, 5) is used,
which gives a distance of 10 pixels from the left and 5 pixels from the top.

Once the image is complete, you can send it to the browser using the Image.Save()
method. Conceptually, you “save” the image to the browser’s response stream. It then gets
sent to the client and is displayed in the browser. When you use this technique, your image
replaces any other web- page data and bypasses the web control model.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1330

Tip You can save an image to any valid stream, including a FileStream. This technique allows you to save
dynamically generated images to disk, so you can use them later in other web pages.

Finally, you should explicitly release your image and graphics context when you’re fin-
ished, because both hold onto some unmanaged resources that won’t be released right away
if you don’t. You release resources by calling the Dispose() method, as shown here:

 Figure 29-3 shows the completed web page created by this code.

 Figure 29-3. A graphical label

Image Format and Quality
When you save the image, you can also choose the format you want to use. JPEG offers the
best color support and graphics, although it uses compression that can lose detail and make
text look fuzzy. GIF is often a better choice for graphics containing text, but it doesn’t offer
good support for color. In .NET, every GIF uses a fixed palette with 256 generic colors. If you
use a color that doesn’t map to one of these presets, the color will be dithered, leading to
a less-than- optimal graphic.

Tip Another choice is the PNG format, which gives you the best of both the JPEG and GIF formats. These
image formats don’t work directly in a web page—instead, you need to wrap it in an tag. Later, in the
section “Embedding Dynamic Graphics in a Web Page,” you’ll see how to take this step.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1331

Quality isn’t just determined by the image format. It also depends on the way you render
the original bitmap. GDI+ allows you to choose between optimizing your drawing code for
appearance or speed. When you choose to optimize for the best appearance, .NET uses extra
rendering techniques such as antialiasing to improve the drawing.

Antialiasing smoothes jagged edges in shapes and text. It works by adding shading at the
border of an edge. For example, gray shading might be added to the edge of a black curve to
make a corner look smoother. Technically, antialiasing blends a curve with its background.
 Figure 29-4 shows a close- up of an antialiased ellipse.

 Figure 29-4. Antialiasing with an ellipse

To use smoothing in your applications, you set the SmoothingMode property of the
Graphics object. You can choose between None (the default), HighSpeed, AntiAlias, and
 HighQuality (which is similar to AntiAlias but uses other, slower optimizations that improve
the display on LCD screens). The Graphics.SmoothingMode property is one of the few stateful
Graphics class members. This means you set it before you begin drawing, and it applies to any
text or shapes you draw in the rest of the paint session (until the Graphics object is disposed of).

Tip Antialiasing makes the most difference when you’re displaying curves. That means it will dramatically
improve the appearance of ellipses, circles, and arcs, but it won’t make any difference with straight lines,
squares, and rectangles.

You can also use antialiasing with fonts to soften jagged edges on text. You can set the
Graphics.TextRenderingHint property to ensure optimized text. You can choose between
SingleBitPerPixelGridFit (fastest performance and lowest quality), AntiAlias (good quality
due to smoothing), AntiAliasGridFit (better quality due to smoothing and hinting but slower
performance), and ClearTypeGridFit (the best quality on an LCD display). Or you can use
the SystemDefault value to apply whatever font- smoothing settings the user has configured.
 SystemDefault is the default setting, and the default system settings for most computers
enable text antialiasing. Even if you don’t set this, your dynamically rendered text will prob-
ably be drawn in high quality. However, because you can’t necessarily control the system
settings of the web server, it’s a good practice to specify this setting explicitly if you need to
draw text in an image.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1332

The Graphics Class
The majority of the GDI+ drawing smarts is concentrated in the Graphics class. The Graphics
class also provides a slew of methods for drawing specific shapes, images, and text. Table 29-1
describes these methods, many of which are used in the examples in this chapter.

Table 29-1. Graphics Class Methods for Drawing

Method Description
DrawArc() Draws an arc representing a portion of an ellipse specified by

a pair of coordinates, a width, and a height.

DrawBezier() and DrawBeziers() Draws the infamous and attractive Bezier curve, which is de-
fined by four control points.

DrawClosedCurve() Draws a curve and then closes it off by connecting the
endpoints.

DrawCurve() Draws a curve (technically, a cardinal spline).

DrawEllipse() Draws an ellipse defined by a bounding rectangle specified by
a pair of coordinates, a height, and a width.

DrawIcon() and
DrawIconUnstreched()

Draws the icon represented by an Icon object and (optionally)
stretches it to fit a given rectangle.

DrawImage() Draws the image represented by an Image- derived object (for
example, a Bitmap object that’s been loaded from a file) and
stretches it to fit a rectangular region.

DrawImageUnscaled() and
DrawImageUnscaledAndClipped()

Draws the image represented by an Image- derived object with
no scaling and (optionally) clips it to fit the rectangular region
you specify.

DrawLine() and DrawLines() Draws one or more lines. Each line connects the two points
specified by coordinate pairs.

DrawPath() Draws a GraphicsPath object, which can represent a combina-
tion of curves and shapes.

DrawPie() Draws a “piece-of- pie” shape defined by an ellipse specified by
a coordinate pair, a width, a height, and two radial lines.

DrawPolygon() Draws a multisided polygon defined by an array of points.

DrawRectangle() and
DrawRectangles()

Draws one or more rectangles. Each rectangle is defined by
a starting coordinate pair and width and height.

DrawString() Draws a string of text in a given font.

FillClosedCurve() Draws a curve, closes it off by connecting the endpoints, and
fills it.

FillEllipse() Fills the interior of an ellipse.

FillPath() Fills the shape represented by a GraphicsPath object.

FillPie() Fills the interior of a “piece-of- pie” shape.

FillPolygon() Fills the interior of a polygon.

FillRectangle() and FillRectangles() Fills the interior of one or more rectangles.

The DrawXxx() methods draw outlines (for example, the edge around a rectangle). The
FillXxx() methods paint solid regions (for example, the actual surface inside the borders of

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1333

a rectangle). The only exception is the DrawString() method, which draws filled- in text using
a font you specify, and DrawIcon() and DrawImage(), which copy bitmap images onto the
drawing surface.

If you want to create a shape that has both an outline in one color and a fill in another
color, you need to combine both a draw and a fill method. Here’s an example that first paints
a white rectangle and then adds a green border around it:

Note If you specify coordinates that are not in the drawing area, you won’t receive an exception. How-
ever, the content you draw that’s off the edge won’t appear in the final image. In some cases, this means
a partial shape may appear (which might be exactly the effect you want).

You’ll notice that when you use a fill method, you need to specify a Brush object. When
you use a draw method, you need to specify a Pen object. In this example, the code uses a
prebuilt Pen and Brush object, which can be retrieved from the Pens and Brushes classes,
respectively. Brushes retrieved in this way always correspond to solid colors. Pens retrieved in
this way are always 1-pixel wide. Later in this chapter (in the “Pens” and “Brushes” sections),
you’ll learn how to create your own custom pens and brushes for more exotic patterns.

Using the techniques you’ve learned, it’s easy to create a simple web page that draws a
more complex GDI+ image. The next example uses the Graphics class to draw an ellipse, a text
message, and an image from a file.

Here’s the code you’ll need:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1334

 Figure 29-5 shows the resulting web page.

 Figure 29-5. Using multiple elements in a drawing

Using a GraphicsPath
Two interesting methods that you haven’t seen yet are DrawPath() and FillPath(), which work
with the GraphicsPath class in the System.Drawing.Drawing2D namespace.

The GraphicsPath class encapsulates a series of connected lines, curves, and text. To build
a GraphicsPath object, you simply create a new instance and use the methods in Table 29-2 to
add all the required elements.

Once you’ve created a GraphicsPath object, you can use the Graphics.DrawPath() method
to draw its outline and the Graphics.FillPath() method to paint its fill region:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1335

Table 29-2. GraphicsPath Methods

Method Description
AddArc() Draws an arc representing a portion of an ellipse specified by a pair of

coordinates, a width, and a height.

AddBezier() and
AddBeziers()

Draws the infamous and attractive Bezier curve, which is defined by
four control points.

AddClosedCurve() Draws a curve and then closes it off by connecting the endpoints.

AddCurve() Draws a curve (technically, a cardinal spline).

AddEllipse() Draws an ellipse defined by a bounding rectangle specified by a pair of
coordinates, a height, and a width.

AddLine() and AddLines() Draws a line connecting the two points specified by coordinate pairs.

AddPath() Adds another GraphicsPath object to this GraphicsPath object.

AddPie() Draws a “piece-of- pie” shape defined by an ellipse specified by a coor-
dinate pair, a width, a height, and two radial lines.

AddPolygon() Draws a multisided polygon defined by an array of points.

AddRectangle() and
AddRectangles()

Draws an ordinary rectangle specified by a starting coordinate pair
and width and height.

AddString() Draws a string of text in a given font.

StartFigure() and
CloseFigure()

StartFigure() defines the start of a new closed figure. When you use
CloseFigure(), the starting point will be joined to the endpoint by an
additional line.

Transform(), Warp(), and
Widen()

Applies a matrix transform, a warp transform (defined by a rectangle
and parallelogram), and an expansion, respectively.

Optionally, you can also create a solid, filled figure from separate line segments. To do
this, you first call the StartFigure() method. Then you add the required curves and lines using
the appropriate methods. When finished, you call the CloseFigure() method to close off the
shape by drawing a line from the endpoint to the starting point. You can use these methods
multiple times to add several closed figures to a single GraphicsPath object. Here’s an example
that draws a single figure based on an arc and a line:

Pens
When you use the DrawXxx() methods from the Graphics class, the border of the shape or
curve is drawn with the Pen object you supply. You can retrieve a standard pen using one
of the static properties from the System.Drawing.Pens class. These pens all have a width of
1 pixel. They differ only in their color.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1336

You can also create a Pen object on your own and configure all the properties described in
Table 29-3. Here’s an example:

Table 29-3. Pen Members

Member Description
DashPattern Defines a dash style for broken lines using an array of dashes and

spaces.

DashStyle Defines a dash style for broken lines using the DashStyle enumeration.

LineJoin Defines how connecting lines in a shape will be joined.

PenType The type of fill that will be used for the line. Typically this will be
 SolidColor, but you can also use a gradient, bitmap texture, or hatch
pattern by supplying a brush object when you create the pen. You
cannot set the PenType through this property, however, because it is
 read- only.

StartCap and EndCap Determines how the beginnings and ends of lines will be rendered.
You can also define a custom line cap by creating a CustomLineCap
object (typically by using a GraphicsPath) and then assigning it to the
 CustomStartCap or CustomEndCap property.

Width The pixel width of lines drawn by this pen.

The easiest way to understand the different LineCap and DashStyle properties is to create
a simple test page that loops through all the options and displays a short line segment of each.
The following web- page code creates a drawing that does exactly that:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1337

 Figure 29-6 shows the resulting web page.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1338

 Figure 29-6. Different pen options

Brushes
Brushes are used to fill the space between lines. Brushes are used when drawing text or when
using any of the FillXxx() methods of the Graphics class for painting the inside of a shape.

You can quickly retrieve a predefined solid brush using a static property from the Brushes
class, as shown here:

You can also create a custom brush. You need to decide what type of brush you are cre-
ating. Solid brushes are created from the SolidBrush class, and other classes allow fancier
options.

HatchBrush: A HatchBrush has a foreground color, a background color, and a hatch style
that determines how these colors are combined. Typically, colors are interspersed using
stripes, grids, or dots, but you can even select unusual pattern styles such as bricks, con-
fetti, weave, and shingles.

LinearGradientBrush: The LinearGradientBrush allows you to blend two colors in a gra-
dient pattern. You can choose any two colors (as with the hatch brush) and then choose to
blend horizontally (from left to right), vertically (from top to bottom), diagonally forward
(from the top- left corner to the bottom- right corner), or diagonally backward (from the
 top- right corner to the bottom- left corner). You can also specify the origin point for either
side of the gradient.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1339

TextureBrush: The TextureBrush attaches a bitmap to a brush. The image is tiled in the
painted portion of the brush, whether it is text or a simple rectangle.

You can experiment with all these brush types in your applications. Here’s an example of
the drawing logic you need to test all the styles of LinearGradientBrush:

 Figure 29-7 shows the result.

Tip You can also create a pen that draws using the fill style of a brush. This allows you to draw lines
that are filled with gradients and textures. To do so, begin by creating the appropriate brush and then create
a new pen. One of the overloaded pen constructor methods accepts a reference to a brush—that’s the one
you need to use for a brush- based pen.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1340

 Figure 29-7. Testing gradient styles

Embedding Dynamic Graphics in a Web Page
The Image.Save() approach has one problem that has been used in all the examples so far.
When you save an image to the response stream, you overwrite whatever information ASP.NET
would otherwise use. If you have a web page that includes other static content and controls,
this content won’t appear at all in the final web page. Instead, the dynamically rendered
graphics will replace it.

Fortunately, a simple solution exists. You can link to a dynamically generated image using
the HTML tag or the Image web control. But instead of linking your image to a static
image file, link it to the .aspx file that generates the picture.

For example, consider the graphic shown earlier in Figure 29-1. It’s stored in a file named
SimpleDrawing.aspx, and it writes a dynamically generated image to the response stream. In
another page, you could show the dynamic image by adding an Image web control and set-
ting the ImageUrl property to SimpleDrawing.aspx. You could then add other controls or even
multiple Image controls that link to the same content.

 Figure 29-8 shows an example that uses two tags that point to SimpleDrawing.aspx,
along with additional ASP.NET web controls in between.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1341

 Figure 29-8. Mixing dynamically drawn content and ordinary web controls

Tip Remember that creating a GDI+ drawing is usually an order of magnitude slower than serving a static
image. As a result, it’s probably not a good idea to implement graphical buttons and other elements that
you’ll repeat multiple times on a page using GDI+. (If you do, consider caching or saving the image file once
you’ve generated it to increase performance.)

Using the PNG Format
PNG is an all- purpose format that always provides high quality by combining the lossless
compression of GIFs with the rich color support of JPEGs. However, browsers such as Internet
Explorer often don’t handle it correctly when you return PNG content directly from a page.
Instead of seeing the picture content, you’ll receive a message prompting you to download the
picture content and open it in another program. However, the tag approach effectively
sidesteps this problem.

You need to be aware of two more quirks when using PNG. First, some older browsers
(including Netscape 4.x) don’t support PNG. Second, you can’t use the Bitmap.Save() method
shown in earlier examples.

Technically speaking, the problem is that you can’t use the Save() method with a non-
seekable stream. Response.OutputStream is a nonseekable stream, which means data must
be written from beginning to end. Unfortunately, to create a PNG file, .NET needs to be able
to move back and forth in a file, which means it requires a seekable stream. The solution is
fairly simple. Instead of saving directly to Response.OutputStream, you can create a System.
IO.MemoryStream object, which represents an in- memory buffer of data. The MemoryStream
is always seekable, so you can save the image to this object. Once you’ve performed this step,
you can easily copy the data from the MemoryStream to Response.OutputStream. The only
disadvantage is that this technique requires more memory because the whole graphic needs to
be held in memory at once. However, the graphics you use in web pages generally aren’t that
large, so you probably won’t observe any reduction in performance.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1342

Here’s the code you need to implement this solution, assuming you’ve imported the
 System.IO namespace:

Passing Information to Dynamic Images
When you use this technique to embed dynamic graphics in web pages, you also need to think
about how the web page can send information to the code that generates the dynamic graphic.
For example, what if you don’t want to show a fixed piece of text, but you want to generate a
dynamic label that incorporates the name of the current user? (In fact, if you do want to show
a static piece of text, it’s probably better to create the graphic ahead of time and store it in a
file, rather than generating it using GDI+ code each time the user requests the page.) One solu-
tion is to pass the information using the query string. The page that renders the graphic can
then check for the query string information it needs.

The following example uses this technique to create a data bound list that shows a thumb-
nail of every bitmap in a given directory. Figure 29-9 shows the final result.

This page needs to be designed in two parts: the page that contains the GridView and the
page that dynamically renders a single thumbnail. The GridView page will call the thumbnail page
multiple times (using tags) to fill the list.

It makes sense to design the page that creates the thumbnail first. In this example, the
page is named ThumbnailViewer.aspx. To make this component as generic as possible, you
shouldn’t hardcode any information about the directory to use or the size of a thumbnail.
Instead, this information will be retrieved through three query string arguments. The first step
that you need to perform is to check that all this information is supplied when the page first
loads, as shown here:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1343

 Figure 29-9. A data bound thumbnail list

Once you have the basic set of data, you can create your Bitmap and Graphics objects as
always. In this case, the Bitmap dimensions should correspond to the size of the thumbnail,
because you don’t want to add any additional content:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1344

Creating the thumbnail is easy. All you need to do is load the image (using the static
Image.FromFile() method) and then draw it on the drawing surface. When you draw the
image, you specify the starting point, (0, 0), and the height and width. The height and width
correspond to the size of the Bitmap object. The Graphics class will automatically scale your
image to fit these dimensions, using antialiasing to create a high- quality thumbnail:

Lastly, you can render the image and clean up, as follows:

The next step is to use this page (named ThumbnailViewer.aspx) in the page that con-
tains the GridView. In this example, the page that uses ThumbnailViewer.aspx is named
 ThumbnailsInDirectory.aspx.

The basic idea behind ThumbnailsInDirectory.aspx is that the user will enter a directory
path and click the submit button. At this point, your code can perform a little work with the
System.IO classes. First, you need to create a DirectoryInfo object that represents the user’s
choice of directory. Second, you need to retrieve a collection of FileInfo objects that represent
files in that directory using the DirectoryInfo.GetFiles() method. To narrow the selection down
so that it includes only bitmaps, you use the search expression *.bmp. Finally, the code binds
the array of FileInfo objects to a GridView, as shown here:

It’s up to the GridView template to determine how the bound FileInfo objects are dis-
played. In this example, you need to show two pieces of information—the short name of the

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1345

file and the corresponding thumbnail. Showing the short name is straightforward. You simply
need to bind to the FileInfo.Name property. Showing the thumbnail requires using an
tag to invoke the ThumbnailViewer.aspx page. However, constructing the right URL can be
a little tricky, so the best solution is to hand the work off to a method in the web- page class
called GetImageUrl().

Here’s the complete GridView declaration with the template:

The GetImageUrl() method examines the full file path, encodes it, and adds it to the
query string so ThumbnailViewer.aspx can find the required file. At the same time, the
 GetImageUrl() method also chooses a thumbnail size of 50 by 50 pixels. Note that the file
path is URL- encoded. That’s because filenames commonly include characters that aren’t
allowed in URLs, like the space:

All in all, this solution demonstrates a fairly impressive result without much code required.

Custom Controls That Use GDI+
Based on everything you learned in Chapter 27, you’re probably eager to use GDI+ to create
your own well- encapsulated custom controls. Unfortunately, ASP.NET doesn’t make it easy,
because of the way you need to embed GDI+ images in a page.

As you’ve seen, if you want to use GDI+, you need to create a separate web page. You can
then embed the content of this page in another page by using an tag. As a result, you
can’t just drop a custom control that uses GDI+ onto a web page. What you can do is create
a custom control that wraps an tag. This control can provide a convenient program-
ming interface, complete with properties, methods, and events. However, the custom control
won’t actually generate the image. Instead, it will collect the data from its properties and use
it to build the query string portion of a URL. The custom control will then render itself on the
page as an tag, which points to the page that performs the real work.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1346

Tip If you want, the custom control can also render other HTML elements above or below the tag,
such as a separating line, a title, and so on.

Essentially, the custom control provides a higher- level wrapper that abstracts the process
of transferring information to your GDI+ page. Figure 29-10 shows how this process works with
the example you’ll consider next, which uses the custom control approach to create a simple
label that renders with a gradient background. In this example, the custom control is named
GradientLabel. The GDI+ code is found in a separate web page named GradientLabel.aspx. To
see this example at work, you can request the GradientTest.aspx web page, which hosts a sin-
gle instance of the GradientLabel control.

 Figure 29-10. Using custom controls with GDI+

Tip If you’re worried about confusing your real web pages with the web pages you use to supply GDI+
drawing, consider using a custom HTTP handler to generate the image. With an HTTP handler, your image
generators can have a custom extension and use essentially the same code in the ProcessRequest() method.
HTTP handlers were first demonstrated in Chapter 5.

The Custom Control Class
The first step is to create the control class. As with any custom control, you can place it in the
App_Code folder of a website or, ideally, in a separate class library project, as described in
Chapter 27.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1347

The custom control class (named GradientLabel) derives from Control rather than
 WebControl. That’s because it won’t be able to support the rich set of style properties
because it renders a dynamic graphic, not an HTML tag.

The GradientLabel class provides five properties, which allow the user to specify the text,
the font size, and the colors that are used for the gradient and text, as follows:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1348

The properties are set to some sensible defaults in the GradientLabel constructor, as
shown here:

The GradientLabel renders itself as an tag that points to the GradientLabel.aspx
page. It’s the GradientLabel.aspx page that contains the actual GDI+ drawing code. When the
GradientLabel is rendered, it reads the information from all the properties and supplies the
information in the query string.

The Rendering Page
The first step for the GradientLabel.aspx page is to retrieve the properties from the query
string, as follows:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1349

The GradientLabel.aspx page has an interesting challenge. The text and font size are
supplied dynamically, so it’s impossible to use a fixed bitmap size without running the
risk of making it too small (so that some text content is cut off) or too large (so that extra
server memory is wasted and the image takes longer to send to the client). One way to try
to resolve this problem is to create the Font object you want to use and then invoke the
Graphics.MeasureString() argument to determine how many pixels are required to display
the desired text. The only caveat is that you need to be careful not to allow the bitmap to
become too large. For example, if the user submits a string with hundreds of characters,
you don’t want to create a bitmap that’s dozens of megabytes in size! To avoid this risk, the
rendering code imposes a maximum height and width of 800 pixels.

Tip You can also use an alternative version of the DrawString() method that accepts a rectangle in which
you want to place the text. This version of DrawString() automatically wraps the text if there’s room for more
than one line. You could use this approach to allow the display of large amounts of text over several lines.

Here’s the portion of the drawing code that retrieves the query string information and
measures the text:

You’ll see that in addition to the size needed for the text, an extra 20 pixels are added to
each dimension. This allows for a padding of 10 pixels on each side.

Finally, you can create the LinearGradientBrush, paint the drawing surface, and then add
the text, as follows:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1350

To test the label, you can create a control tag like this:

 Figure 29-11 shows the rendered result.

 Figure 29-11. A GDI+ label custom control

This control still has many shortcomings. Notably, it can’t size the drawing surface or
wrap its text dynamically, and it doesn’t allow the user to set the text font or the spacing
between the text and the border. To complete the control, you would need to find a way to
pass this extra information in the query string. Clearly, if you want to create a practical web
control using GDI+, you have a significant amount of work to do.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1351

Charting with GDI+
When the query approach works, it’s a great, logical way to solve the problem of sending
information from an ordinary page to a page that creates a dynamic graphic. However, it
won’t always work. One of the problems with the query string is that it’s limited to a relatively
small amount of string data. If you need to send something more complex, such as an object
or a block of binary data, you need to find another technique.

One realistic solution is to use the Session collection. This has more overhead, because
everything you put in the Session collection uses server memory, but it allows you to transmit
any serializable type of data, including custom objects. To get a feel for why you might want to
use the Session collection, it helps to consider a more advanced example.

The next example uses GDI+ to create a graphical pie chart. Because the pie chart is
drawn dynamically, your code can build it according to information in a database or informa-
tion supplied by the user. In this example, the user adds each slice of the pie using the web
page, and the image is redrawn automatically. The page that the user interacts with is named
CreateChart.aspx. The page that actually renders the pie chart using GDI+ code is called
DynamicChart.aspx. As in earlier examples, the output from the DynamicChart.aspx page is
shown in the CreateChart.aspx page through an element. However, the query string is
not involved. Instead, the information about the chart data is sent from the CreateChart.aspx
page to the DynamicChart.aspx page as a collection of PieSlice objects, using the Session
collection.

To create this example, the first step is to create the PieSlice object, which you can place
in the App_Code directory. Each PieSlice includes a text label and a numeric value, as shown
here:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1352

The PieSlice class overrides the ToString() method to facilitate display in a data bound
ListBox. When a ListBox contains custom objects, it calls the ToString() method to get the text
to show. (Another approach would be to use a GridView with a custom template.)

The test page (shown in Figure 29-12) has the responsibility of letting the user create pie
slices. Essentially, the user enters a label and a numeric value for the slice and clicks the Add
button. The PieSlice object is then created and shown in a ListBox.

 Figure 29-12. A dynamic pie chart page

The amount of code required is fairly small. The trick is that every time the page is fin-
ished processing (and the Page.PreRender event fires), all the PieSlice objects in the ListBox
are stored in session state. Every time the page is requested (and the Page.Load event fires),
any available PieSlice objects are retrieved from session state.

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1353

Here’s the complete code for the CreateChart.aspx page:

The pie drawing code is quite a bit more involved. It creates a new bitmap, retrieves the
PieSlice objects, examines them, and draws the corresponding pie slices and legend. This code
takes place in the DynamicChart.aspx page.

The first step is to create the drawing surface and retrieve the chart data from session
state, as follows:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1354

Next, the drawing code adds a title to the chart, as shown here:

The next step is to calculate the total of all the data points, as follows. This allows you to
size each slice proportionately in the pie.

Once you know the total, you can calculate the percentage of the pie that each slice occu-
pies. Finally, you can multiply this percentage by the total angle width of a circle (360 degrees)
to find the angle width required for that slice.

To draw each slice, you can use the Graphics.FillPie() method and specify the starting and
ending angle. When you draw each slice, you also need to ensure that you choose a new color
that hasn’t been used for a previous slice. This task is handled by a GetColor() helper method,
which chooses the color from a short list based on the slice’s index number:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+ 1355

The last drawing step is to render the legend. To create the legend, you need a rectangle
that shows the slice color, followed by the pie slice label. Once again, the GetColor() method
returns the correct color for the slice:

Finally, you can render the image. In this case, GIF format is acceptable because the draw-
ing code uses a fixed set of colors that are all in the basic 256- color GIF palette, as follows:

The only detail that has been omitted so far is the GetColor() method, which returns
a color for each pie slice, as shown here:

CHAPTER 29 DYNAMIC GRAPHICS AND GDI+1356

In its current implementation, GetColor() starts to return the same set of colors as soon as
you reach the seventh slice, although you could easily change this behavior.

The end result is that both pages work together without a hitch. Every time a new slice is
added, the image is redrawn seamlessly.

You could do a fair amount of work to improve this chart. For example, you could make
it more generic so that it could render to different sizes, display larger amounts of data in the
legend, and provide different labeling options. You could also render different types of charts,
such as line charts and bar graphs.

Summary
In this chapter, you learned how to master basic and advanced GDI+. Although these tech-
niques aren’t right for every web page, they give you a set of features that can’t be matched
by many other web application programming frameworks. You also explored how to create
 server- side image maps with the ImageMap control. For even more detailed information
about how GDI+ works and how to optimize it, you may want to check out a book like Pro
.NET Graphics Programming, by Eric White (Apress, 2005). For more graphical power, you
might be interested in using the client- side drawing features of Silverlight, a next- generation
browser plug- in discussed in Chapter 33.

1357

C H A P T E R 3 0

Portals with Web Part Pages

Websites are more sophisticated than ever. Nowadays it’s not enough if a website has a great
look and feel. It has to be easy to use and must present exactly the information that users want
to see. In addition, users want websites to present this information in a specific way—based on
their individual preferences. Therefore, personalization and user profiles have become more
important in web development.

But users want to be able to customize more than simple profile information. They want
to be able to customize the website’s user interface to fit their requirements, with the goal of
accessing the information they need for their daily business as soon as they are logged in. So,
in this chapter, you will learn how you can create modular and dynamically configurable web
pages to fulfill these sorts of requirements using the ASP.NET Web Parts Framework and per-
sonalization features.

Note If you are familiar with ASP.NET 2.0 web parts, you can skip this chapter, because the ASP.NET
team did not change anything in terms of web parts in ASP.NET 3.5.

CHAPTER 30 PORTALS WITH WEB PART PAGES1358

Note There is some overlap between some new functionality introduced with the ASP.NET Ajax exten-
sions that are part of ASP.NET 3.5. For example, the new Accordion control, which allows you to minimize
and restore parts of your web page, is very similar to what web parts will provide. Also, the Ajax drag-and-
drop panel overlaps with another part of web part pages: web part pages allow you to reposition modules
added to your web page via drag-and-drop. The same functionality is available through the DragPanel control
of ASP.NET Ajax. Now the question arises: when should you use which functionality? In our opinion, the
answer to that question is simple: web part pages are much more than just a single piece of functionality
such as the one provided with the Accordion control or the DragPanel control. The Web Parts Framework
is a complete framework for personalization. If you need this complete framework, then you should use
the Web Parts Framework. This functionality includes personalization of the appearance of your page for
groups of users and single users, personalization with custom settings for each module plugged into your
web application, dynamic extensibility with the possibility of adding new modules to your website at runtime
and without the need of recompilation, and so on. If you need all this together, then web parts are the right
way to go. If you just need a single piece of functionality, such as minimizing and restoring parts of your
web page, or functionality such as dragging content around the space of your web page, then the Web Parts
Framework might be too oversized for your application. If that’s the case, you might be better off just using
the appropriate ASP.NET Ajax controls. You can combine the two technologies as well, if you need both. You
will learn more about ASP.NET Ajax in Chapter 32.

Typical Portal Pages
In a personalized environment, users want specific information stored in a profile, as you
learned in Chapter 24. Furthermore, users want to be able to customize most of a website’s
appearance and the information it displays.

A good example of a personalized website is Microsoft’s MSN. As soon as you log into
MSN, you can configure the information displayed on your personal home page. For example,
MSN allows you to select the types of information items you can see and then displays those
pieces of information on your personal home page, as shown in Figure 30-1.

Some of the information items you can select are simple, such as the search item dis-
played in the upper-right corner of Figure 30-1, and others are more complex, such as the
stock quotes listed in the bottom-right corner. Interestingly, you have many more possibili-
ties than just selecting information items. You can specify where the information is displayed
on the page by dragging items into different positions on the web page. When you log off and
then later return to the page and log in, all the changes you have made will be present—the
page design will appear exactly how you left it.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1359

Figure 30-1. MSN: a good example of a personalized home page

These types of pages define content areas where the user can add or remove information
items. The user can select the information items from a list of available items, which are noth-
ing more than reusable user interface elements (or controls in ASP.NET), and add them to the
specified content areas of the web page. In most cases, a portal page defines multiple content
areas: a main area in the center of the page for displaying the most important information, a
navigational area in the left or right section of the page, and optionally another area (either on
the left or right side of the page) for small items (such as a weather item or a quick-links list). Most
web pages also include a header and footer (which you can create easily with master pages).

Using the ASP.NET Web Parts Framework, you can create customizable web pages on your
own easily. The framework consists of controls and components that perform the following
work for you:

Defining customizable sections: The framework allows you to structure your page and
specify customizable sections of the page through web part zones.

Offering components for item selection: In addition to customizable sections, the frame-
work ships with special sections that allow you to edit properties for information items
displayed on the page, or to add and remove information items to or from the page.

CHAPTER 30 PORTALS WITH WEB PART PAGES1360

Customizing the web page: As soon as the user is logged into your application, she can
customize the web page by dragging and dropping items displayed on the web page onto
different customizable sections. The user can even close or minimize content to create
more space for other, more interesting content.

Saving the customized appearance: ASP.NET automatically saves the user’s personalized
appearance of the web page through its personalization infrastructure.

A page that uses this framework is called a web part page, and the information items that
can be displayed on the page are called web parts. All the pieces you put together to display on
the page are controls, as you will see in the next section. Therefore, to create web part pages,
you just need to know how to put all your custom and prebuilt controls together to create a
customizable page. You will learn the details of how to do this in this chapter.

Basic Web Part Pages
The first thing you need to know is how to create a basic web part page. In the following sec-
tions, you will learn the major steps for creating such a page. After that, you will learn how to
create web parts: the information items that go on the web part page.

The steps for creating a web part page are as follows:

 1. Create the page: Create a simple ASP.NET page as usual with Visual Studio .NET. You
don’t need any special type of page—this is an .aspx page just like any other page.
Before you continue, you can structure the layout of your page using HTML tables to
create, for example, a page with a navigation area, a main area, and a side panel for
additional information (similar to the MSN page presented in Figure 30-1). This page
could be a master page to provide a consistent look and feel across your pages.

 2. Add a WebPartManager control: Next, you need to add a WebPartManager control to
your page. The WebPartManager control is available in the Web Parts toolbox of Visual
Studio when you have the visual designer for ASP.NET pages opened. This is an invisible
control that knows about all the available web parts on a page and manages personal-
ization. The WebPartManager needs to be the first control created on a web part page,
because every other web part–related control depends on it.

 3. Add WebPartZone controls: Every section on the page that should display your custom
web parts is encapsulated in an instance of the WebPartZone control. Add a WebPartZone
control on every section of your page that should contain web parts and be customizable.

 4. Add web parts: You can use simple user controls, prebuilt user controls, custom server
controls, or controls directly inherited from the WebPart base class. You can place all
these controls into a web part zone using the Visual Studio designer, by writing the tag
code manually or by writing custom code. The ASP.NET infrastructure does the rest
automatically.

 5. Add prebuilt zones and parts: If the user wants to add or remove web parts at runtime
or edit properties of web parts, you need to add prebuilt zones to your web page, such
as the CatalogZone (which allows the user to add web parts to the page).

After you have completed these steps, your web part page is ready to use. Remember
that you need to include authentication (either Windows or forms authentication) to your

CHAPTER 30 PORTALS WITH WEB PART PAGES 1361

application so that the framework can store personalized information on a per-user basis.
By default, this information is stored in the SQL Server 2005 file-based database ASPNETDB.
MDF, which is automatically created in the App_Data directory if you have SQL Server 2005
installed. Otherwise, you need to create the database on SQL Server using aspnet_regsql.exe,
as described in Chapter 21 (personalization information is stored in the same database as user
information). As is the case with any other part of the framework, and as you have learned for
the membership and roles APIs, your custom provider can replace the personalization infra-
structure without affecting the application itself.

Creating the Page Design
The first step of creating a web part page is to create an .aspx page in your solution. You don’t
have to add a special item—just add a simple web form to your project. Afterward, you can
structure the basic layout of your page as you’d like.

The following example uses a simple HTML table to structure the page with a main center
area, a configuration area on the left, and a simple information area on the right:

The first table row is just a simple header for the application. Within the second row,
the table contains three columns. The left one is used as a column for configuration controls
(such as a control for selecting available web parts), the center column is used for displaying
the main information, and the right column is used for little web parts with additional infor-
mation. Notice that the first row includes a second column for a menu; you will use this menu
later for switching between the modes of the page (for example, from the Browse mode that
merely displays information to the Design mode that allows the user to move web parts from
one zone to another). You can see the page layout in Figure 30-2.

CHAPTER 30 PORTALS WITH WEB PART PAGES1362

Figure 30-2. The basic layout of the page

WebPartManager and WebPartZone Controls
After you have created the web page’s design, you can continue adding the first web part con-
trols to your page. These controls are summarized in the WebParts section of Visual Studio’s
Toolbox. For this example, the first control to add at the top of your page is the WebPartManager
control. The WebPartManager works with all the zones added to the web page and knows about
all the web parts available for the page. Furthermore, it manages the personalization and makes
sure the web page is customized for the currently logged-on user. The following code snippet
shows the modified portion of the page code:

The WebPartManager also throws events that you can catch in your application to perform
actions when the user adds or deletes a web part or when a web part communicates with another

CHAPTER 30 PORTALS WITH WEB PART PAGES 1363

web part. (You will learn more about web part communication later, in the “Connecting Web
Parts” section.)

After you have added the WebPartManager to the page, you can add customizable sec-
tions to your web part. These sections are called web part zones, and every zone can contain
as many web parts as the user wants. With the web part zones added, the complete code looks
as follows:

As you can see, the page now contains three zones: two zones for adding custom web
parts to the page and one special zone. The special zone is a CatalogZone, which displays
every web part that is available for the current page. It displays the list of available web parts
and allows the user to select web parts from this list and add them to the page. In the designer,
the code presented previously looks like Figure 30-3.

CHAPTER 30 PORTALS WITH WEB PART PAGES1364

Figure 30-3. Web part pages in the Visual Studio designer

Adding Web Parts to the Page
Now you can start adding web parts to the web page. A web part is an ASP.NET control. You
can use any type of control as a web part on your web parts page, including existing server
controls, existing user controls, and custom server controls you have created on your own. You
don’t even need to implement any special interfaces if you don’t need to interact with the web
parts infrastructure or with other web parts on the page. Adding controls to a web part page is
as simple as adding controls to a basic page. The only difference is that you add the controls
to one of the previously added web part zones instead of to the page directly. For this purpose,
web part zones use templates. The concept is the same as with grid controls, where you can
specify a template that is created for every row in the grid. The template just defines the appear-
ance of the web part. You can add existing server controls to a zone as follows:

CHAPTER 30 PORTALS WITH WEB PART PAGES 1365

The previous example shows the web part zone you added earlier in this chapter for the
right section of your page. This zone now contains two controls: the standard Calendar control
as well as a FileUpload control. Figure 30-4 shows the page in the Visual Studio designer after
you have added this zone template.

Figure 30-4. A web part zone with controls added

You can create one or more user controls and add them to one of the web part zones. For
example, create the database tables shown in Figure 30-5, and fill in some test records so that
you can use these records to extend the sample later. The database is included in the book’s
downloads as a file-based SQL Server Express database as a part of the web part samples in
the App_Data ASP.NET directory. You can either use this database as a file-based database for
your training or attach it to your SQL Server instance—both approaches are possible.

CHAPTER 30 PORTALS WITH WEB PART PAGES1366

Figure 30-5. Database tables for the sample solution

Based on the Customer table, we will show you how to create your first web part now.
Just add a new user control to your solution, open the database in the Server Explorer, and
drag and drop the Customer table from the Server Explorer on your ASP.NET user control.
The designer automatically creates the data source as well as a GridView that displays the
data. (Don’t autoformat the GridView; this will happen automatically later, based on the
 WebPartZone controls.)

Now you can add the newly created user control to your main web part zone by drag-
ging it from the Solution Explorer onto the web part zone. The designer creates the necessary
entries for registering the control in your page and then adds the control to the web part zone,
including adding the <ZoneTemplate> tags containing the content for a web part zone for you,
as follows:

Finally, you can add a special web part to the previously added CatalogZone control.
Because this zone is used to display catalogs of web parts, you can add only special controls
such as the PageCatalogPart to this zone. You add special controls in the same way that you
add normal WebPartZone controls—through a ZoneTemplate.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1367

Before you start the web application, you can autoformat WebPartZone controls by open-
ing the smart tag for the corresponding zone. Note that in the Visual Studio designer, the
buttons for opening the smart tag sometimes overlap a little bit. Therefore, be careful to really
select the smart tag of the zone itself and not of its containing web parts. You will see that for-
matting applies automatically to every control that is placed directly into a zone. Also note that
every formatting action you perform on the web part itself overrides the formatting selected
on the web part zone. Next, test the application by running your created web part page, and
then you can debug the page. When you start the solution for debugging the page, you will see
the screen in Figure 30-6 (depending on your autoformat selections).

Figure 30-6. The web part page displayed in the browser

You may notice that for every web part a title and a box for minimizing, restoring, and
closing the web part is displayed with default captions. Later, in the “Customizing the Page”
section, you will learn how to customize these captions.

Because you have not configured any authentication method yet, by default the applica-
tion uses Windows authentication. Therefore, you can customize the web part page in terms
of minimizing single parts and closing single parts. Without any additional effort, the same is
true when you authenticate your users through forms authentication (either with or without
using the membership API introduced in Chapter 21). So far, you cannot move web parts from
one zone to another. To do this, you have to switch to a special page mode that you will learn
about in the next section. When you close the browser and start another browser session, the

CHAPTER 30 PORTALS WITH WEB PART PAGES1368

page appears in the same layout as when you left it. That’s because the WebPartManager stores
your changes in the personalization store.

Again, by default these settings are stored in the SQL Server 2005 Express Edition–based
ASPNETDB.MDF database that is stored in the App_Data directory if you have not changed
any configuration settings. You can change this default behavior by creating a database on the
server of your choice using aspnet_regsql.exe. (This tool works with SQL Server only; for other
databases, you have to create your own provider.) You can configure the provider with this
database in your web.config configuration file as follows:

You have to add the connection string (CustomSqlConnection in this example) to the
<connectionStrings> section of the configuration file, and it should point to the database cre-
ated with aspnet_regsql.exe.

Customizing the Page
At this point in the example, you can customize some parts of the web part page, you
can minimize and restore web parts, and you can close web parts. However, adding web
parts previously closed to the web part page is not possible, as the CatalogZone with the
 PageCatalogPart does not display automatically. In addition, you are not able to change the
position of web parts by simply dragging and dropping them from one zone to another.

The reason for this is that a web part page supports multiple display modes, and you
have to be in the correct mode to do this. You can configure these display modes through the
 WebPartManager’s DisplayMode property. Table 30-1 lists the available display modes that
are available as static properties of the WebPartManager class.

Table 30-1. Web Part Page Display Modes

Mode Description
BrowseDisplayMode This is the default mode and is used for displaying contents of a web part

page.

DesignDisplayMode When activating this mode, the user can change the position of web parts
by dragging and dropping.

CatalogDisplayMode If activated, the WebPartManager displays the catalog web part, which
allows the user to add web parts to the web part page.

ConnectDisplayMode When activated, the user can configure connections between connectable
web parts (more about this later in this section).

EditDisplayMode Allows the user to edit properties of web parts. This mode displays web
parts of an editor. The EditorZone control is one of the prebuilt web part
zones that allow you to display web part editor controls, which allow the
user to modify settings for web parts.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1369

Now, add a Menu control to the first row of your layout table, as follows:

Next, you can create code in your page that populates the menu with all the available
display modes for the WebPartManager. To do this, you just need to iterate through the
 DisplayModes property, which is a collection of WebPartDisplayMode items, and verify
whether the mode is enabled. This is necessary because certain modes are available only if
personalization is enabled. If personalization is disabled but a mode requires personalization
to be enabled, this property returns false and you cannot use the display mode. In addition,
you can query the property RequiresPersonalization of a WebPartDisplayMode to see whether
a display mode requires personalization to be enabled or not. Finally, if the display mode is
enabled, just add it to the menu.

Remember that you need to populate the menu only on the first request, because
with view state enabled, it remembers its state and therefore its child menu items. When
the user clicks the menu item, you have to switch to the appropriate web part page mode.
You can do this by setting the WebPartManager’s DisplayMode property to the selected
 WebPartDisplayMode, as follows:

CHAPTER 30 PORTALS WITH WEB PART PAGES1370

Now when the user selects the Catalog mode from the menu, the CatalogZone with the
PageCatalogPart will be visible, and you can add web parts you closed previously to the web
part page again (see Figure 30-7).

Figure 30-7. The CatalogZone displayed in the Catalog mode

Note Customizing the page via dragging and dropping uses special DHTML features of Internet Explorer
and therefore works only for Internet Explorer. All the other features—such as adding personalization, mini-
mizing and maximizing windows, and adding web parts from the catalog to specific zones—work with any
browser of your choice.

All the changes you make will be stored persistently in the personalization store based on
the personalization provider. Later, in the “Final Tasks for Personalization” section, you will
learn how you can enable and disable personalization at a per-page level. Furthermore, if you
are developing a custom web part from scratch, you can define properties on the class that are
stored in the personalization store. By doing this, you can specify whether personalization hap-
pens on a per-user basis or is shared across authenticated users. You will learn how to do this
in the next section.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1371

Creating Web Parts
Now that you know the steps for creating web part pages with ASP.NET, it’s time to take a
closer look at web part development. As you know, a web part can be any type of ASP.NET
control, including user controls, built-in or custom server controls, and ASP.NET controls
directly inherited from the WebPart base class of the System.Web.UI.WebControls.WebParts
namespace.

You have seen that every web part on your page automatically gets a default caption and
default menus for minimizing and restoring the web part. Now it’s time to learn how you can
customize this text and add menu entries (called verbs) to your custom web part. Any web part
can provide custom public properties that the user can modify through an editor web part,
which you can add to a web part called EditorZone. This EditorZone is displayed when the
web part page is switched to the Edit mode, as introduced in Table 30-1. To do this, you have
to create a separate editor part for your web part and somehow connect them. The next sec-
tion shows how to do this.

Finally, web parts can communicate with other web parts through a well-defined mecha-
nism. Therefore, these web parts exchange data and display information based on events that
happen in other web parts. You will learn how to connect web parts in the “Connecting Web
Parts” section.

Simple Web Part Tasks
You have already seen that the simplest way to create custom web parts is to create user con-
trols. The only difference is that you add these controls to the ZoneTemplate section of a web
part zone instead of directly to the page. The ASP.NET Web Parts Framework wraps your user
control into an instance of GenericWebPart. This GenericWebPart class makes sure your user
control gets the frame and the verbs menu for minimizing, restoring, and closing the web part.
The same is true for any other server control (either built-in or custom): as long as an ASP.NET
control is not inherited from System.Web.UI.WebControls.WebParts.WebPart, the Web Parts
Framework wraps this control into an instance of GenericWebPart.

If you want to access the properties and events of the controls you have added as web
parts to your page, you can do this as you do usually. For example, if you want to catch the
Calendar’s SelectionChanged event of your previously created web part page, double-click
the Calendar in the visual designer of Visual Studio. You’ll see your event procedure and can
add some code. The following code shows an example that sets the previously added Calendar
control’s SelectedDate property on the first request to the page:

CHAPTER 30 PORTALS WITH WEB PART PAGES1372

So, you have complete access to the controls added as web parts and don’t have to do
anything special here. But what if you want to access web part–specific properties such as
the title of the web part or web part–specific events? As mentioned, every web part that is not
inherited from System.Web.UI.WebControls.WebParts.WebPart is wrapped automatically
into an instance of GenericWebPart. If you want to access web part–specific properties, you
somehow have to retrieve the web part and then set or get the properties you need. Fortu-
nately, the WebPartManager class includes a WebParts collection property that contains all the
web parts available for the page. The advantage of accessing web parts directly through the
 WebPartManager is that you don’t have to know which Web Part zone they have been added
to (remember that the user can change this as she wants).

The following example uses the WebPartManager’s WebParts collection to iterate
through the web part and assign a default title for every web part that has been wrapped into
a GenericWebPart class by the framework:

You can also modify other aspects through the web part properties. Table 30-2 shows
some typical examples and gives you an overview of the most important properties of a Web-
Part control.

Table 30-2. Important Properties of the WebPart Class

Property Description
AllowClose Specifies whether the user can close the web part. If set to false, the close

menu verb is not displayed in the web part’s verbs menu.

AllowConnect Enables or disables connecting functionality of the web part.

AllowEdit Enables or disables editing properties of the web part through a custom
EditorPart.

AllowHide If set to true, the user can hide the web part on the page.

AllowMinimize If set to true, the user can minimize the web part through the web part’s
minimize menu entry.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1373

Property Description
AllowZoneChange When the user should be able to change the position of the web part by

dragging it from one WebPartZone to another, you have to set this prop-
erty to true and otherwise to false (the default is true).

CatalogIconImageUrl As you have seen previously, the PageCatalogPart displays a list of web
parts available for a page. If you want to add a special icon to be displayed
in the PageCatalogPart in the CatalogZone, you can set the CatalogIcon-
ImageUrl to a valid image.

ChromeType Customizes the appearance. You can specify whether the web part should
have a border, a title bar, and the verbs menu that contains the menu
actions for minimizing or closing your web part. This property is of type
PartChromeType, which supports the values None, BorderOnly, Title-
Only, TitleAndBorder, and Default.

ChromeState Defines the web part’s initial appearance state. This property is of type
PartChromeState and can have the values Minimized or Normal so that
the web part initially is minimized or displayed.

ConnectErrorMessage Specifies the error message that is displayed if an error occurs when con-
necting one web part to another. This could happen if the target web part
throws an exception when being connected to another web part.

Controls This important collection gives you access to all the controls that are con-
tained in the web part. You’ll learn more about this immediately following
this table.

Description Specifies a friendly, user-ready description for the web part.

Direction Specifies the content flow direction (LeftToRight or RightToLeft) within
the web part. If left at its default NotSet, it will use the default for the cur-
rent culture.

DisplayTitle Gets a string that returns the title that is displayed in the web part. If you
haven’t set the Title property, it returns either the automatically gener-
ated title or the title specified from the containing control.

ExportMode As you will see later in this chapter, in the “Uploading Web Parts Dy-
namically” section, you can export and import information and settings
from web parts. This property specifies which parts of a web part can be
exported or imported.

HasSharedData Specifies whether the web part contains personalized properties that are
persisted for multiple users.

HasUserData Specifies whether the web part contains personalized properties that are
persisted on a per-user bases.

HelpUrl Through the HelpUrl property, you can specify a URL that returns con-
tents to be displayed as help for the web part. This can point to a static
HTML page or to any other type of page, including an .aspx page. As soon
as you specify this URL, the web part displays an additional verb menu for
opening the help of this web part.

HelpMode When a HelpUrl is specified, you can determine where the help is
displayed. The help can be displayed in a modal or modeless pop-up win-
dow, or you can specify to navigate to the help page directly.

Hidden Gets or sets a value that determines whether the web part is hidden on the
page.

IsClosed Gets or sets a value that determines whether the web part is closed.

CHAPTER 30 PORTALS WITH WEB PART PAGES1374

Table 30-2.

Property Description
IsShared Gets or sets a value that determines whether the web part is visible for

all users or for specific users only. You will learn more about this in the
“Authorizing Web Parts” section.

IsStandalone Determines whether the web part is contained in a WebPartZone (false)
or is a stand-alone web part without being a part of a WebPart Zone
(true).

IsStatic Gets or sets a value that determines whether the web page is stati-
cally added to the web page through the designer (true) or dynamically
imported to the web page (which means that the part is added program-
matically to the page).

Title Gets or sets the title to be displayed in the title bar of the web part.

TitleUrl The title can be displayed as a URL to point to a details page for the web
part. If this URL is specified, the web part renders the title as a link that
points to this URL instead of static text.

Verbs Returns the entries in the web part’s menu that typically contains the
Minimize, Close, or Help verb. You can customize the verbs by modifying
this collection.

Zone Returns a reference to the WebPartZone to which the web part is cur-
rently added.

ZoneIndex Returns the WebPartZone’s index to which the web part is currently
added.

As mentioned in Table 30-2, the Controls collection of the WebPart control contains all
the controls hosted within the web part. When it comes to the GenericWebPart, this collection
contains the controls you have added to the WebPartZone. So, you can iterate through the
WebPart controls stored in the Controls collection to find your control and do something with
it. The following example shows how you can access the controls of the whole ASP.NET page
(through the WebPartManager added to the page) to set properties of the web part that con-
tains the Calendar control added earlier in this chapter:

Controls added to the WebPartZone are available directly from within the page. Therefore,
if you want to set any web part–specific properties when loading the page, you can do this the
other way around as well. Instead of iterating through the WebPartManager’s WebParts and
then accessing every web part’s Controls collection, it might be faster to catch the control’s
events and then access the web part’s properties through the control’s Parent property, as
follows:

(Continued)

CHAPTER 30 PORTALS WITH WEB PART PAGES 1375

This is definitely faster than searching controls in collections of controls as shown pre-
viously. The previous example is doing the same initialization work as shown in the other
example: it disables the close function for the web part that contains the calendar MyCalendar
and then specifies a help page for the calendar that can be displayed in a modeless pop-up
browser window. Figure 30-8 shows the result of these modifications. Take a close look at the
menu displayed for the web part. Because you have initialized the HelpUrl, it now displays an
additional Help menu entry. On the other hand, because you have set the AllowClose property
to false, it doesn’t contain a Close menu entry anymore.

Figure 30-8. The previously made changes in action

CHAPTER 30 PORTALS WITH WEB PART PAGES1376

Note that the Help window you see in Figure 30-8 is just a simple HTML page displayed
in a browser pop-up. You can see that by taking a look at the previous code snippet as well,
where you specify CalendarHelp.htm as a help page. The help page could be a dynamic page
such as an ASP.NET page as well, because the Web Parts Framework is doing nothing other
than adding necessary client-side script code for opening a pop-up window that just executes
an HTTP GET request to the URL configured in the HelpUrl property.

Implementing the IWebPart Interface
Until now you have accessed web parts from the outside only. But when creating a user con-
trol that will be used as a web part on a web part page, you can access properties of the web
part from inside the user control as well. To a certain degree, you can control the web part’s
appearance and behavior in a more detailed manner by implementing the IWebPart interface.

The IWebPart interface defines a contract between your control (a server control or user
control), which is used by the GenericWebPart wrapper class to communicate with your con-
trol for specific things such as automatically retrieving a control’s title so that you don’t need
to set it from outside every page where you are going to use this web part. Table 30-3 lists the
members you have to provide in your web part when implementing the IWebPart interface.

Table 30-3. The Members of the IWebPart Interface

Member Description
CatalogIconImageUrl Gets or sets the URL to an image displayed for the web part in the

 PageCatalogPart of a CatalogZone.

Description Gets or sets a string that contains a user-friendly description of the web
part.

Subtitle Specifies the user-friendly subtitle of the web part. This one is concatenat-
ed with the title contained in the Title property of the web part.

Title Specifies a title displayed for the web part. With this property specified,
you don’t need to set the title from outside, as previously described.

TitleIconImageUrl URL that points to an image displayed as an icon within the title bar of the
web part.

TitleUrl Specifies the URL to which the browser should navigate when the user
clicks the title of the web part. If this URL is set, the title renders as a link;
otherwise, the title renders as static text.

As you can see, implementing this interface is not too much work. You can now imple-
ment the interface in the previously created Customers user control as follows:

CHAPTER 30 PORTALS WITH WEB PART PAGES 1377

CHAPTER 30 PORTALS WITH WEB PART PAGES1378

When implementing the IWebPart interface, you should think about which property val-
ues you want to put into view state and which values are sufficient as private members. To
save bytes sent across the wire with the page, you should add as little information as possible
to the view state. You should use view state only for information that the user can edit while
browsing and that you don’t want to lose between page postbacks. In the previous example,
you used private members for every property of the web part, but not for the title property,
because it might change while browsing (for example, if you want to display the current page
of the GridView in the title bar as well). When implementing this interface, the information
(which is set from outside) is automatically passed in by the GenericWebPart to your control’s
implementation. Consider the following code in the code-beside of your Default.aspx page,
assuming that you have added an instance of the previously created Customer control and
associated the following event-handling procedure to its Load event:

When someone sets the web part’s title this way from outside, the GenericWebPart class
passes the value to the interface implementation of the Title property so that you can handle the
information. On the other hand, if someone queries information such as the Title or TitleUrl, the
GenericWebPart retrieves the information from your control by calling the appropriate prop-
erty in your IWebPart implementation. This way your control can return default values even for
properties that have not been explicitly set. Your implementation of the TitleIconImageUrl is
doing this. To reiterate, here is the fragment of the previous IWebPart implementation:

CHAPTER 30 PORTALS WITH WEB PART PAGES 1379

This property returns a default image URL if no TitleImage has been set. This means even
if you don’t set this property in the previously shown Load event procedure of your web part
page, the web part displays the CustomersSmall.jpg image as a title image (see Figure 30-9).
Although you have not set the TitleImageUrl in the MyCustomers_Load event procedure in the
web part page, the icon for the title is displayed because of its default value provided through
your implementation of IWebPart.

Figure 30-9. Customized Customers web part through the interface implementation

CHAPTER 30 PORTALS WITH WEB PART PAGES1380

Developing Advanced Web Parts
Implementing web parts through user controls is a fairly easy way to create web parts. But user
controls have some disadvantages as well:

Restricted reusability: You cannot add them dynamically to web part pages of other
web applications without manually copying the ASCX file to the directories of the other
web application. You can encapsulate manually implemented WebPart classes in sepa-
rate assembly DLLs, and you therefore can reuse them in multiple web applications by
referencing them through Add References or by copying the DLL into the target web
application’s Bin directory.

Restricted personalization: Personalization with user controls is restricted to common
properties such as title, title URL, and so on. You cannot have custom properties in the
user control that are stored in the personalization store. Only classes that inherit from
WebPart can have this sort of functionality.

Better control over rendering and behavior: When using custom server controls, you
have better control over the rendering process and can generate user interfaces more
dynamically.

Therefore, sometimes implementing advanced web parts as server controls inherited
from System.Web.UI.WebControls.WebParts.WebPart is useful. With the basic know-how for
creating custom ASP.NET server controls, you are ready to create this sort of web part. All you
have to keep in mind when creating a custom web part this way is that ASP.NET pages and
ASP.NET controls are processed by the runtime (which determines the order of control and
page events and what to do in each of these events). This makes it much easier, because you
always have the steps for the implementation in mind. For more information about creating
custom server controls, refer to Chapter 27.

The steps for creating a custom web part are as follows. (These steps will be familiar to you
if you keep the ASP.NET page and control life cycle from Chapter 27 in mind.)

 1. Inherit from WebPart: First you have to create a simple class that inherits from
 System.Web.UI.WebControls.WebParts.WebPart.

 2. Add custom properties: Next, add custom properties of your web part and specify
through attributes which of those properties can be edited by the user and which of
these properties are stored on a per-user or shared basis in the personalization store.

 3. Write initialization and loading code: Override any initialization procedure you need.
Typically you will override the OnInit method and the CreateChildControls method
if you want to create a composite control/WebPart. In most cases, you should create
composite controls, because that saves you from rendering HTML code manually. Dur-
ing the initialization phase, you can also load data from databases; in the loading phase
(catching the Load event or overriding the OnLoad method), you can initialize other
properties of the web part (or server control).

 4. Catch events of child controls: After the loading phase has been completed, controls
will raise their events. Next you can add the event handlers for your child controls to
your custom web part.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1381

 5. Prerender: Before the rendering phase starts, you should perform the last tasks, such
as setting the properties of your controls and building the control structure based on
data sources they are bound to (for example, calling the DataBind method if you don’t
use the DataSources programming model).

 6. Render the HTML: Finally, you have to write code to render your web part. This time
you don’t override the RenderControl method (as is the case for server controls). You
have to override the RenderContents method that is called from the base class in
between rendering the border, title bar, and title menu with the appropriate verbs.

Keeping these steps in mind, creating a custom web part is easy (although it’s not as easy
as creating web parts based on user controls). Let’s create a simple web part using this tech-
nique. The web part allows customers to add notes to the CustomerNotes table presented in
Figures 30-5 and 30-10.

Before You Start: Creating Typed DataSets
Before you dig into the details of developing the web part, you have to add special components
for easily accessing the data stored in the database. (You also need these components to com-
plete the code samples shown in this chapter.)

In the web parts that you will develop in this chapter, you need to access data from the
Customer table and the CustomerNotes table shown in Figure 30-5. You’ll create a simple typed
DataSet to access both tables (you can find more information about DataSets in Chapter 7
and Chapter 8), which you’ll add to your web application project, as shown in Figure 30-10.
To do so, right-click your project, select Add New Item, and then select DataSet from the Add
New Item dialog. Name the DataSet CustomerSet. After you have added the DataSet to your
project (remember that Visual Studio will add it to the App_Code directory), you can drag both
the Customer table and the CustomerNotes table from the Server Explorer of Visual Studio
onto the DataSet surface. (You need to have a connection configured in the Server Explorer for
that purpose. Note that if you use the database as a SQL Server Express file-based database,
you will find this connection in the Server Explorer automatically.) Also note that we provide
the required database introduced in Figure 30-5 as a part of the samples download (in the
App_Data directory of the samples, in the Source Code/ Download area of the Apress website
at), as mentioned earlier.

CHAPTER 30 PORTALS WITH WEB PART PAGES1382

Figure 30-10. The typed DataSets necessary for the solution

The typed DataSet extends the DataSet class and provides typed table adapters that
you will use to develop the remaining parts of the web application in this chapter. For
the CustomerNotes table, we added a second query to the typed DataSet, as you can see in
Figure 30-10 (right-click the DataTable in the designer and select Add Query). You’ll use
this later for querying notes that belong to a dedicated customer. Therefore, the query has
a parameter called customerId that enables you to pass in the customer’s ID for which you
want to retrieve notes. Just one last note: in general, you should always create the business
layer and data access layer before you start creating the actual user interface components—
and web parts are definitely user interface components. Components in the business layer
and data access layer are reusable across different applications, just as this typed DataSet is.

The Custom WebPart’s Skeleton
First, you have to create a custom class that inherits from WebPart. Also, you need to import
the System.Web.UI.WebControls.WebParts namespace so you have easy access to the Web
Parts Framework classes.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1383

Next, add some properties to your web part. For every property procedure in your class,
you can specify whether the property is personalizable on a per-user or on a shared basis, as
well as whether the property is accessible to users. For example, in your CustomerNotesPart,
you can include a property that specifies the default customer for which you want to display
the notes, as follows:

The WebBrowsable attribute specifies that the property is visible to end users, and the
Personalizable attribute specifies that the personalization scope for the property is on a per-
user basis.

Initializing the Web Part
To write the initialization code, you can optionally create child controls; you do this just as you
would create a composite web part. You can render the web part on your own if you don’t want
to use prebuilt controls in the RenderContents method; however, using composite controls
makes life much easier, because you don’t have to worry about the HTML details. To create con-
trols, you have to override the CreateChildControls method as follows. Don’t forget to declare
instance variables for every control you are going to create in your WebPart class.

CHAPTER 30 PORTALS WITH WEB PART PAGES1384

Within the CreateChildControls method, all controls used by the custom web part are cre-
ated. Don’t forget to add them to the Controls collection of the web part so that the ASP.NET
runtime is aware of these controls and can manage view state and all the other things that hap-
pen in the life cycle of the page (as described in Chapter 27). Furthermore, the method sets up
the event-handling routines as shown with the InsertNewNote button or the CustomerNotesGrid
GridView control.

Loading Data and Processing Events
The next phase in the control’s (web part’s) life cycle is the loading phase. Here you can con-
nect to your database and load data into your control. To do this, you have to override the

CHAPTER 30 PORTALS WITH WEB PART PAGES 1385

OnInit and OnLoad methods or catch the Init and Load events of the web part. Both ways have
the same effect. But when overriding the OnLoad method, for example, don’t forget to call
base.Onload() so that the base class’s loading functionality is executed as well. Therefore, it
makes sense to set up event handlers once and catch the events of your custom control so that
you can’t forget this, as follows:

You will see how to implement the PreRender event later. Now you can write functional-
ity for loading the data from the database. Let’s assume that you have already created a typed
DataSet for your CustomerNotes table. You can create a helper method for binding the previ-
ously created GridView to the data from the database and then call this method in the Load
event as follows. For simplicity, the method binds the information directly to the GridView and
doesn’t use caching for optimizing data access, because you should concentrate on web part
creation now. Note that you need to import the CustomersSetTableAdapters namespace cre-
ated with the previously designed, typed DataSet.

CHAPTER 30 PORTALS WITH WEB PART PAGES1386

Remember the call to EnsureChildControls; as you don’t know when ASP.NET really calls
CreateChildControls() and therefore creates the child controls (because it creates them as they
are needed), you need to make sure controls are available from within this method by calling
EnsureChildControls. (You can find more information about this in Chapter 27.)

Now you have loaded the data into the grid. During the next phase of the life cycle, events
are processed by the ASP.NET runtime. Your custom web part has to catch the event for the
previously added InsertNewNote button that submits a new note to the database and the
 CustomerNotesGrid that changes the page, as follows:

Finally, you have to load the data into the GridView in one more place in your code. As
soon as someone changes the value for the Customer property, you want your web part to dis-
play information associated with the newly selected customer. Therefore, you have to modify
the property’s code as follows:

CHAPTER 30 PORTALS WITH WEB PART PAGES 1387

You should reset the page index in case the new data displayed will not fill as many pages
as the previous data source filled.

The Final Rendering
You have now initialized the web part, created controls, wrote code for loading data, and
caught control events. So, it’s time to render the web part. Immediately before you render the
web part, you can set final property values on your controls that affect rendering. For example,
you should disable the InsertNewNote button if the user has not initialized the Customer
property. And of course the GridView can now create the necessary HTML controls for display-
ing the data to which it is bound. To do this, you need to call the DataBind method as follows:

In the RenderContents method, you can create the HTML code to lay out your web part.
If you don’t override the method, the web part automatically renders the previously added
controls in the order they have been inserted into the web part’s Controls collection within the
CreateChildControls method. Because this layout is simple (just a sequence of the controls),
you will now override the RenderContents method to create a better, table-based layout, as
follows:

CHAPTER 30 PORTALS WITH WEB PART PAGES1388

This code renders an HTML table through the HtmlTextWriter with two rows and one
column. The first row contains the text box and the button, and the second row contains the
GridView with the notes. Finally, your RenderControl method uses the RenderControl meth-
ods of the child controls to render the text box, button, and grid in a specific position within
the table. Therefore, you have easily overridden the default rendering of the WebPart base
class.

More Customization Steps
As previously shown, with the IWebPart interface a custom web part implemented this way
can override properties such as the title or description. Furthermore, you can specify default
values for other properties of the web part by just setting the values for them (which works
best in the Load method). You can even override the implementations of default properties
and methods from the web part. The following example shows how you can initialize the web
part and override web part properties:

This code initializes some of the web part’s properties in the Load event with default
values. It then overrides the AllowClose property to always return false, and it ignores any set
operation by just leaving the logic here. This way, you have created a web part where the caller
cannot override this behavior by just setting this property from outside. You really have com-
plete customization and control over what can and can’t be done with your web part. This is
the sort of power you can never get when working with user controls.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1389

Using the Web Part
Now it’s time to see how to use the custom web part in your web part page. To do this, register
the web part on your web part page using the <%@ Register%> directive at the top of the web
page, as follows:

Remember that you used the namespace Apress.WebParts.Samples in the class file of the
custom web part. The <%@ Register %> directive assigns the prefix Apress to this namespace.
Therefore, you can use the web part in one of the previously created WebPartZone controls, as
follows:

Now you can test your newly created web part by starting your web application. Figure 30-11
shows the results of your work.

Figure 30-11. The custom web part in action with the other web parts

CHAPTER 30 PORTALS WITH WEB PART PAGES1390

Web Part Editors
In the previous example, you created a custom web part with a personalizable property called
Customer. This property determined whether the content of the GridView in the web part dis-
plays information for just one customer or for all customers. You were not able to change this
property through the web part page’s user interface, so you will now see how you can accom-
plish this.

The ASP.NET Web Parts Framework provides functionality for editing properties of web
parts. As you saw when creating the Menu control for switching the page’s DisplayMode, it
includes an Edit mode. However, if you try to activate it now, you will get an exception about
missing controls on the page. The missing pieces for the Edit mode are the EditorWebZone
and some appropriate editor parts. Both are prebuilt; the WebPartZone hosts editor parts. You
can use them by adding an EditorZone and one of the prebuilt editor parts to your page, as
follows:

This code adds an AppearanceEditorPart to the zone, which allows you to configure the
appearance of the web part, including its title and chrome settings (see Table 30-2). Now you
can switch to the Edit mode on your page; Figure 30-12 shows the steps required for opening
an appropriate editor on your page.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1391

Figure 30-12. Editing properties of your web parts

CHAPTER 30 PORTALS WITH WEB PART PAGES1392

Table 30-4 lists the available editor web parts of the framework.

Table 30-4. Editor Web Parts Shipping with ASP.NET

Editor Part Description
AppearanceEditorPart Allows you to configure basic properties of the web part, including its

title and its ChromeStyle.

BehaviorEditorPart Includes editors for modifying properties that affect the behavior of
the web part. Typical examples of such properties are the AllowClose
or AllowMinimize properties, as well as properties such as TitleUrl,
 HelpMode, and HelpUrl. Every property modifies behavior such as
whether the web part can be minimized.

LayoutEditorPart Allows the user to change the web part’s zone as well as its ChromeState.
By the way, this editor enables browsers where changing a web part’s
zone through dragging and dropping doesn’t work manually through the
controls of this editor part.

PropertyGridEditorPart Displays a text box for every public property of your custom web part
that includes the attribute [WebBrowsable(true)].

The PropertyGridEditorPart editor part is a suitable way to enable the user to modify the
previously implemented Customer property of your web part. Just add the editor part to your
page as follows, and edit your custom web part:

Figure 30-13 shows the results. As soon as you switch to the Edit mode and edit your cus-
tom web part, you can change the value for the Customer property.

Because you have called BindGrid in the property’s set method previously, the appearance
of the web part changes as soon as you hit the Apply button of the EditorZone. Additionally,
if you add a [WebDisplayName] in addition to the [WebBrowsable] attribute to your custom
property, you can control the name of the property that the editor will display.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1393

Figure 30-13. The PropertyGridEditorPart in action

Creating a Custom Editor
Displaying a text box, where the user has to manually enter the customer ID to select a cus-
tomer, is not a great ergonomic solution. Creating a custom editor that enables the user to
select the customer from a list would be more helpful. That’s what you’ll learn in this section.

Creating a custom editor for a web part page is as easy as creating a custom web part or a
custom server control. The only difference is that you need to inherit from EditorPart instead
of WebPart or WebControl, as follows:

CHAPTER 30 PORTALS WITH WEB PART PAGES1394

Again, because the custom editor is nothing more than a composite control, you can add
child controls by overriding the CreateChildControls method. In this case, you need to create
a list for displaying the customers available in the database, as follows:

Now that you have created the list, you can load the data in the initialization phase of the
EditorPart control. Again, assuming you have already a typed DataSet for working with cus-
tomers in place, you can catch the Load event and then load the customers, as follows:

Finally, you have to synchronize changes between the EditorPart and the actual web
part. First we’ll show how to retrieve information from the web part. To do this, you have to
add code to your SyncChanges method, which you have to override when inheriting from
 EditorPart. Within this method, you get access to the web part that will be edited through the
base class’s WebPartToEdit property. Then you have access to all the properties of your web
part as usual.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1395

When the user updates the value in the editor by clicking Apply, you have to update the
web part’s property. You can do this in the ApplyChanges method, where again you can access
the web part through the base class’s WebPartToEdit property, as follows:

The method returns true if the value has been updated successfully and returns false
otherwise. That’s it—you have created a custom editor. But how can you use it? Somehow the
infrastructure has to know that this editor has to be used with only specific web parts—in this
case with the CustomerNotesPart. To do this, modify the originally created web part. It has to
implement the IWebEditable interface as follows:

CHAPTER 30 PORTALS WITH WEB PART PAGES1396

This method works for user controls and server controls. The GenericWebPart that
wraps user controls and server controls verifies whether the wrapped control implements
the IWebEditable interface. If the control implements the interface, it calls the control’s
implementation of the interface for providing the custom editors. The CreateEditorParts
method just returns a collection of EditorParts to be displayed for this WebPart, and the
 WebBrowsableObject property returns an instance of a class (typically the editable WebPart
control) containing the personalizable properties. Figure 30-14 shows the results.

Figure 30-14. The custom editor part in action

Connecting Web Parts
Web parts can also exchange information in a well-defined manner. For example, a web part
that displays a list of customers could notify another web part (or many other web parts) if a
specific customer has been selected so that the other web part can display information accord-
ing to the selection in the customer web part. The ASP.NET framework lets you create such

CHAPTER 30 PORTALS WITH WEB PART PAGES 1397

“connectable” web parts and offers the possibility of statically or dynamically connecting web
parts. For creating connectable web parts, you have to create and combine several pieces.
 Figure 30-15 shows these pieces and how they relate to one another.

Figure 30-15. The pieces for creating connectable web parts

You can see that Figure 30-15 has two primary types of web parts: providers make infor-
mation available to other web parts, and every web part that requires information from a
provider web part is a consumer web part. Finally, you have to establish a standardized way
for exchanging the information, which leads to the final missing piece: the communication
contract. Technically, the communication contract is an interface that has to be implemented
by the provider web part. This interface defines how a consumer web part can access informa-
tion from the provider web part. In other words, the provider web part makes its data available
through this interface. The steps for creating and connecting web parts are as follows:

 1. Create a communication contract: The first thing you should think about is, which
information needs to be exchanged? Based on the response to this question, you can
design an interface for data exchange that has to be implemented by the provider web
part.

 2. Create a provider web part: Next you can create the provider web part. This web part
has to perform two tasks: it needs to implement the previously defined communication
contract interface or know a class implementing this interface, and it needs to provide
a method that returns an instance of a class implementing the interface. This method
must be marked with the <ConnectionProvider> attribute.

 3. Create a consumer web part: Next, you can create a consumer web part. The con-
sumer web part does not need to implement any interfaces, but it needs to know how
to communicate with the provider. Therefore, it needs to know about the interface
(which means if you have the consumer in a separate DLL, it needs to reference an

CHAPTER 30 PORTALS WITH WEB PART PAGES1398

assembly that defines this interface). A consumer web part then needs to implement
a method that is marked with the <ConnectionConsumer> attribute. This method
accepts a variable as a parameter that implements the previously defined communica-
tion contract interface.

 4. Configure the connection: Finally, you have to configure the connection between
the consumer and the provider web part. You can do that statically through the
 <StaticConnections> section within the <WebPartManager> control tag in your
markup code of the .aspx page, or the user can configure connections at runtime. You
will learn more details about how to implement both ways later, in the “Static Connec-
tions Between WebParts” section.

You can connect only web parts inherited from WebPart; because user controls and
custom server controls are wrapped by the GenericWebPart, the framework has no direct
access to the methods marked with the <ConnectionProvider> and <ConnectionConsumer>
attributes.

Previously you created a web part for displaying customer notes in a grid. Because notes
can get long (remember, the column is a text column), it might be nice to have a larger text box
for editing the value of this field. To learn about web part connections, in the next sections you
will create a simple web part that displays the text for the notes, and then you will modify the
old web part to become a provider web part.

Defining the Communication Contract
The first step is to design the communication contract. Because your web part will provide just
simple text and date information, the communication contract is fairly simple:

This contract defines two properties: one for retrieving and updating the notes text for a
customer and the second for retrieving the date of a submitted entry. Now the provider has to
implement this interface, while the consumer needs be aware of the interface only.

Implementing the Provider Web Part
Now you will implement the provider that needs to implement the previously created con-
nection contract. In our example, the provider web part will be the previously created
CustomerNotesPart. You need to modify the CustomerNotesPart so it implements the
INotesContract communication contract interface and contains a public method with the
<ConnectionProvider> attribute. The code is as follows:

CHAPTER 30 PORTALS WITH WEB PART PAGES 1399

Within the property procedures, you need to add the appropriate code for retrieving the
values from the data source you have bound to the GridView in the web part’s original version.
Updating the data in the property’s set procedure means updating the value in the GridView’s
data source and then using, for example, a SqlCommand or a SqlDataAdapter for updating the
values on the database. Retrieving the SubmittedDate from the GridView’s data source might
look like this:

CHAPTER 30 PORTALS WITH WEB PART PAGES1400

You can verify whether an item has been selected in the GridView. (To do this, you need
to enable selection on the GridView.) If an item is selected, you retrieve the DataItemIndex,
which you then can use as an index for accessing the DataRow of the DataTable, which is
bound to the GridView. You can read the value from the DataRow and return it.

The next thing your provider web part has to support is a method marked with the
<ConnectionProvider> attribute. This method returns the actual implementation of the com-
munication contract interface, which is the web part in this case. Therefore, you need to
implement it as follows:

That’s it! Your provider web part is ready to use. Next you need to implement the consumer
web part, which is much easier.

Creating the Consumer Web Part
The consumer web part retrieves information from the provider web parts for its own
purposes. In this example, you just display the text for the currently selected note in the
 CustomerNotesPart that you have implemented as the provider.

For this purpose, you create a new web part server control from scratch. This control acts
as a consumer to your previously created CustomerNotesPart. Just add a new class that inher-
its from the WebPart base class. The web part uses the CreateChildControls for creating a label
that displays the date, a text box that displays the notes text, and a button that updates the
notes text.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1401

Next, you have to add a simple method that is called by the ASP.NET Web Parts Frame-
work automatically if the web part is connected to another web part. This method accepts
the other connection point (which is the provider) as a parameter and needs to be marked
with the <ConnectionConsumer> attribute so that the runtime knows this is the method to be
called for passing in the provider.

With the provider initialized, the web part can consume information from the provider
by just calling properties (or methods) defined in the communication contract. For example,
in the PreRender event you can initialize your controls, whereas in the button’s event proce-
dure you might think you can directly update the notes content by setting the Notes property
appropriately. But it is not that easy: actually you cannot predict when the Web Parts infra-
structure is going to initialize your provider, as you don’t know in which order web parts
are added to the page. You need to be aware of this. Therefore, whenever the user clicks the
button, you just set a flag telling your web part that it should not take the data out from the
provider and that it should update the provider instead of retrieving the value.

CHAPTER 30 PORTALS WITH WEB PART PAGES1402

You have to validate whether the provider has been initialized. If it hasn’t been, the web
part is not connected with any other web part, and therefore you cannot access any informa-
tion. However, with this code in place, you are basically finished. You have created a consumer
web part and a provider web part, and communication between the two takes place through
the communication contract interface. Next, you can connect these web parts either manually
or dynamically at runtime.

When testing the previous code, you will probably figure out that the connection provider’s
user interface might not be updated appropriately when you call the provider in the prerender-
ing phase of the life cycle. Again, you don’t know when your prerendering stage and when the
provider’s prerendering stage will be completed. Therefore, you have to complete the update
earlier. Because the infrastructure ensures that connection points will be initialized appropri-
ately before the prerendering stage takes place, you can perform the update in your connection
consumer method as follows:

Now that you have created both a connection consumer and a connection provider, you
will modify the web part page to support the connections between these two web parts.

Static Connections Between Web Parts
The simple way to connect web parts is through static connections. How can you do that?
Well, let’s think about the roles of the different controls involved in web part pages again. The
WebPartManager knows about all the web parts and manages features such as personaliza-
tion. WebPartZones are areas on your web page that can contain web parts, while the web
parts are independent controls. If you think about it a moment, you will recognize that the
WebPartManager might be a good starting point for taking a closer look at connection points.
You are right: static connection points are configured through the WebPartManager as follows:

CHAPTER 30 PORTALS WITH WEB PART PAGES 1403

The ID values used for the ProviderID and ConsumerID are just the ID values of the web
parts as they have been added to the WebPartZone. You can find these web parts in the zones
of your web part page, as you can see in the following code fragment:

When configuring this connection point, you will recognize that the consumer web part
always displays information from the selected entry of the CustomerNotes web part.

Dynamically Configuring Connection Points
If you don’t want to connect web parts statically but want the user to have the possibility of
connecting web parts at runtime, you cannot use the WebPartManager’s StaticConnections
configuration. But providing dynamic configuration of connection points is nearly as simple
as configuring static connection points. All you need to add to your page is a special zone
called ConnectionsZone, as follows:

The child tags of ConnectionsZone are optional and allow you to customize the default
user interface created for editing the connections. When having added such a zone onto
your web part page, the Web Parts Framework allows you to switch the DisplayMode to the
 ConnectDisplayMode (which is not possible otherwise). If you want to edit connections for

CHAPTER 30 PORTALS WITH WEB PART PAGES1404

a web part in the running web application at runtime, users need to perform the following
tasks to connect web parts:

 1. Switch to the Connect mode.

 2. Select the consumer web part, and select Connect from the web part’s menu.

 Now the connection editor appears in the previously added ConnectionsZone. Here
you can select a provider and click the Connect button.

 3. The web parts are connected now. You can release the connection by clicking the
Release button.

Figure 30-16 shows ConnectionsZone in action.

Figure 30-16. ConnectionsZone in action

Multiple Connection Points
A web part provider can make multiple connection points available, while a web part con-
sumer can consume multiple provider connection points. In that case, every connection point
requires a unique ID on both the consumer side and the provider side. On the provider side,
you specify the connection point ID in the [ConnectionProvider] attribute, as follows. Com-
pared to your previously created provider CustomerNotesPart, you just add a unique ID as
a second parameter to the ConnectionProvider attribute construction:

Similar to the provider, you can specify an ID for consumer endpoints in the same way if
a web part is a consumer of multiple providers, as follows (again, compared to the previously

CHAPTER 30 PORTALS WITH WEB PART PAGES 1405

created consumer CustomerNotesConsumer, you just add the unique ID as a second param-
eter of the attribute’s constructor):

These IDs have to be unique within the web part. This means other web parts can
define connection points with the same ID. When configuring static connections for web
parts that support multiple connection points, you have to specify those through additional
 ProviderConnectionPointID and ConsumerConnectionPointID parameters, as follows:

In the case of dynamic configuration, the user can select the connection point to connect to
based on the name specified as the first parameter in the previously used <ConnectionProvider>
and <ConnectionConsumer> attributes.

Custom Verbs and Web Parts
Web part verbs appear in the menu of the title bar that each web part supports. You have used
verbs frequently throughout this chapter because web parts come with lots of default verbs.
For example, if you close or minimize a web part, you have to click a verb in the web part’s
menu. Fortunately, verbs don’t require space on the screen when you don’t open the web
part’s verb menu. You can extend verbs as well—and it’s much simpler than you might think.

To extend verbs, you just need to override the Verbs property of your custom web part.
Within your overridden version of the Verbs property, you can create and return an array of
WebPartVerb objects where each represents one entry in the web part’s verb menu. You can
catch the click event of each verb in a web part event handler.

The following example is an extension of your previously implemented
 CustomerNotesConsumer web part and shows how simple extending the verbs menu is:

CHAPTER 30 PORTALS WITH WEB PART PAGES1406

The previous code adds a new verb, Refresh Now, to the previously created Customer
NotesConsumer web part. This verb provides the same update functionality as the button
added previously. For every verb you want to display for your web part, you need to create
an instance of WebPartVerb. This instance requires you to specify an ID for the verb as well as
a delegate reference to the event handler that is called when the user clicks the verb. Finally,
you need to create and return an instance of WebPartVerbCollection that contains all the verbs
you want to display for your web part. Because you have to make sure standard verbs such as
Edit, Minimize, and Close will not get lost, you create a WebPartVerbCollection containing
the verbs from the base class implementation as well as an array of new verbs. That’s it! When
you now launch and test your web part page, you will recognize a new verb in the verbs menu
of the CustomerNotesConsumer web part.

User Controls and Advanced Web Parts
You have seen lots of cool features of the ASP.NET Web Parts Framework. But when you
want to use built-in functionality such as web part connections or custom editors, you
have to deal with one essential drawback: the lack of designer support. The advanced web
parts you created in the previous sections have all been from scratch by inheriting from
System.Web.UI.WebControls.WebParts.WebPart. In your web part implementation, you have
to code all control instantiations as well as the layout of those controls. That’s funny for geeks,
but honestly, this approach really lacks in terms of productivity, doesn’t it? So, the question is,
how can you deal with this problem? How can you integrate the design-time support you get
from user controls with the powerful infrastructure of the Web Parts Framework with all of its
nice features such as web part connections, custom editors, and custom verbs? The answer is
much simpler than it seems.

On its own, a user control is just another ASP.NET control that is partially compiled at
runtime by the infrastructure. That’s why user controls have some limitations. Still, ASP.NET
allows you to load user controls dynamically through the Page.LoadControl method. This
means all you have to do is create a low-level web part directly inherited from WebPart as
before, and in its CreateChildControls method you just need to load the user control of your
choice through Page.LoadControl. The following example shows a simple web part that allows
you to dynamically select a user control that should be loaded into this web part. The user
control needs to be referenced through its relative virtual path within the web application.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1407

CHAPTER 30 PORTALS WITH WEB PART PAGES1408

As you can see, loading the user control dynamically is easy. The previous control provides
a property that you can modify through an editor web part and that allows the selection of a user
control that needs to be loaded. In the CreateChildControls method, the web part checks whether
a user control path is provided through the property, and if it is, it calls Page.LoadControl for
dynamically loading the user control and adding it to the controls collection. That’s it.

However, you do need to know when a control currently loaded into your web part host
gets replaced with another control. Think about the life cycle of an ASP.NET server control,
for example. When a control is loaded and the page is posted to the server, the control gets
created early in the life cycle of a page right before the view state is loaded into the control
if there is one (typically on postbacks a view state is available for a control). This means
when hitting the Apply button in the editor web part (for example, the property grid editor),
 CreateChildControls is called early in the processing stage of the postback—eventually before
the property CurrentUserControlPath is set in the UserControlHostPart. Therefore, you need
to capture this update and reload the newly selected control before the view state and proper-
ties get serialized, if the property has been updated by an editor web part. The right time to
do this is at the OnPreRender event, which is raised right before ASP.NET starts serializing
ViewState and ControlState into the page and before the actual rendering takes place. Figure 30-17
shows the control in action.

CHAPTER 30 PORTALS WITH WEB PART PAGES 1409

Figure 30-17. The UserControlHost web part in action

This technique provides you with the power of using web part connections, custom edi-
tors, or custom verbs offered by the Web Parts infrastructure, which originally are not available
for user control–based web parts. For example, if you want to connect a user control loaded
into the user control host, the UserControlHostPart just needs to implement the communi-
cation contract (if it is a provider) or needs to implement a ConnectionConsumer method
as introduced in the “Connecting Web Parts” section. You can establish the communication
to the hosted user control either by casting the control to its specific code-beside (or code-
behind) type or—in our opinion a better approach—by letting the user control implement an
interface that can be used as a communication contract between your UserControlHost web
part and the contained user control. Finally, this is really a powerful technique to bring the full
power of the Web Parts Framework to user controls and therefore combine this power with the
convenience of the user control designer in Visual Studio 2008.

CHAPTER 30 PORTALS WITH WEB PART PAGES1410

Uploading Web Parts Dynamically
Web part pages are all about personalization. But so far, the web parts you have used in
your pages are statically defined. You have added those web parts to ZoneTemplate controls
of several WebPartZone controls added to the page. Wouldn’t it be nice to have the ability
to dynamically upload web part definitions and new web parts onto an existing web part
page? If you take a close look at the Toolbox in Visual Studio 2008, you will recognize an
 ImportCatalogPart web part offered by ASP.NET. That’s the key for what you will do next—
dynamically add a web part to your previously created web part page.

First you must develop a custom web part—once again. But this time you will encapsulate
the web part in a class library project. All you need to do is create a class library project and
add a reference to the System.Web.dll assembly. Afterward, you can create a web part like the
following one:

CHAPTER 30 PORTALS WITH WEB PART PAGES 1411

This is really a simple web part, but it is interesting: take a close look at the constructor.
You need to mark web parts as exportable by setting their ExportMode property to an appro-
priate value. The ExportMode property is of the type WebPartExportMode and can be set to
None (meaning no property values will be exported at all), All (meaning all properties will be
exported), or NonSensitiveData. (NonSensitiveData means that only properties marked as
non-sensitive—by specifying the value false for the isSensitive parameter of the Personalizable
attribute’s constructor when applied on a property—will be included in the export. The default
value of the isSensitive parameter of the Personalizable attribute is false.) Note that export
means exporting the metainformation and current property values for a web part into an XML
file. In other words, it is not about downloading the binary with all the settings; it’s just about
downloading the current state of the web part. This means when you import an exported web
part on another web part page, you have to deploy the binary to this target website before you
can import the web part through the CatalogZone. You’ll learn more about that after you have
tested the web part and its exportability.

To test the web part, we recommend you create a simple web part page where you add a
reference to the web part class library created previously and load the web part into a simple
WebPartZone as follows:

CHAPTER 30 PORTALS WITH WEB PART PAGES1412

To be able to export the description of the web part, you need to enable export for the web
part page in your web.config file as follows:

When you now start the web part page created previously, you will recognize a new menu
verb in the title bar of the web part page, as shown in Figure 30-18. When you click this new
Export verb in the web part menu, ASP.NET will create an XML description file for your web
part, which you need to save on your hard disk as a .WebPart file. This .WebPart file contains
all the current property settings of your web part, as well as the basic type description of the
web part (namespace and class name), and looks as follows:

CHAPTER 30 PORTALS WITH WEB PART PAGES 1413

Figure 30-18. Exporting the previously created web part

You use this .WebPart file to import a web part description into an existing portal page.
But it is not as easy as just importing the .WebPart file. Before you can import a .WebPart file
successfully on the target page, you need to deploy the assembly DLL containing the imple-
mentation of the WebPart class into the Bin directory of your web application. Furthermore,
you need to modify the .WebPart file so the <type> tag in the <metadata> section contains the
assembly name in addition to the namespace name and class name. Furthermore, you have
to make sure the properties do not conflict with the settings of the target web part page. With
the default properties supported by every web part, the only property you have to take into
account for avoiding problems is the ExportMode property. If the target site does not allow

CHAPTER 30 PORTALS WITH WEB PART PAGES1414

exports (which is the default setting if you do not set the enableExport attribute in your web.
config file as demonstrated earlier) and the .WebPart file defines All or NonSensitive for the
ExportMode property, the import will fail. Therefore, you might need to modify the .WebPart
file as follows:

Now you are ready to import the web part on your target website. To complete the import,
you have to perform the following steps after you have created the web part and exported (or
manually created) the web part description introduced earlier:

 1. Add a CatalogZone with an ImportCatalogPart to your target web parts page.

 2. Deploy the assembly of your web part to the target site’s Bin directory.

 3. Launch the web part page, switch to the catalog mode, and upload the .WebPart file.

 4. Now you can add the web part through the PageCatalogPart to your page.

The easiest part is adding an ImportCatalogPart to the CatalogZone of your web part page
as follows:

Actually, in a real-world scenario, deploying the web part assembly you want to import is
the hardest challenge. For this simple example, it is sufficient to copy the class library’s assem-
bly DLL containing the implementation of the web part created earlier into the target site’s

CHAPTER 30 PORTALS WITH WEB PART PAGES 1415

Bin directory. In real-world scenarios, you would need to establish a well-defined process for
uploading web parts. You could also dynamically upload web parts, but that can become a
huge security risk for your website if you do not establish well-defined reviewing and testing
processes up front. You don’t ever want to let anyone upload web parts you have not reviewed
as the owner of a site. This should always be done by a website administrator or website
owner. As soon as you have copied the assembly, you can import the web part by switching
to the catalog zone and uploading the .WebPart file to the web part page. If the Web Parts
Framework cannot load the type for the web part defined in the .WebPart file, the import will
fail. Figure 30-19 shows the ImportCatalogPart in action, and Figure 30-20 shows the imported
web part added to the page.

Figure 30-19. ImportCatalog web part in action

If you take a closer look at Figures 30-19 and 30-20, you will recognize that ASP.NET
supports two types of web part catalogs by default: a page catalog and an imported web part
catalog. The first one shows all statically added web parts that are currently closed, and the
second catalog shows web parts that have been imported dynamically to the web part page.
Before you can import a web part, you need to switch to the imported web part catalog.

CHAPTER 30 PORTALS WITH WEB PART PAGES1416

Figure 30-20. The imported web part in action

Authorizing Web Parts
When you have all your web parts on your page, you might want to make some available to
specific groups of users. Fortunately, the ASP.NET Web Parts Framework includes a way to
specify such authorization information for web parts. All you need to do is catch one specific
event of the WebPartManager class called AuthorizeWebPart. Within this event procedure, you
can encapsulate logic for deciding whether a user is authorized to view a web part.

The following example shows how to display the CustomerNotes web part only if the user
browsing to the page is member of the local Administrators group:

CHAPTER 30 PORTALS WITH WEB PART PAGES 1417

Because authorization takes place on types of web parts and not on individual instances
of web parts, you get the type of the web part to be authorized from the WebPartManager
in the event arguments. You then can make authorization decisions based on the type of
the web part as demonstrated previously. As soon as you set the IsAuthorized property of
the WebPartAuthorizationEventArgs structure passed in to false, the WebPartManager will
not display web parts of this type—neither on the page nor in other situations such as a
 PageCatalogPart of a CatalogZone.

Final Tasks for Personalization
Finally, you should keep in mind a couple of final tasks for personalization. You can configure
personalization properties on a per-page level through the WebPartManager, as follows:

If you want to configure personalization settings for the whole application, you have to do
that through the <webParts> configuration element of the <system.web> section in the web.
config application configuration, as follows:

This code also shows that you can even configure the specific users for which personal-
ization is enabled or disabled. You do this through the <authorization> element; this element
works the same way as the <authorization> element you learned about in Chapter 23.

CHAPTER 30 PORTALS WITH WEB PART PAGES1418

Clearing Personalization
How can you delete personalization information from the store? To do this, you can use the
Personalization property of the WebPartManager class; this gives you access to the personal-
ization provider, the settings, and the functions for resetting personalization information. You
can do this as follows:

You can then include functionality in your application for resetting personalization in this
way. This could be an administration page, for example.

Summary
In this chapter, you learned how to create real-world web part pages. Such pages include
requirements such as personalization, as well as a modularized structure through web parts
that enable the user to select exactly the information that should be displayed. You also
learned what WebPartManagers, WebPartZones, and WebParts are and what their tasks are.

Then you learned about important advanced features such as connecting web parts and
authorizing web parts. You also learned how to add custom properties to WebParts that will be
stored on a per-user or shared basis, and you created custom editors for editing those properties.

The ASP.NET Web Parts Framework provides you with a huge set of functionality. You never
have to implement your own portal framework, as it is already included with the framework.
And, as it is part of the .NET Framework, you get this all for free!

P A R T 6

Client-Side
Programming

1421

C H A P T E R 3 1

JavaScript and Ajax Techniques

ASP.NET provides a rich server- based programming model. The postback architecture
allows you to perform all your work with object- oriented programming languages on the
server, which ensures that your code is secure and compatible with all browsers. However,
the postback architecture has its weaknesses. Because posting back the page always involves
some small but noticeable overhead, it’s impossible to react efficiently to mouse movements
and key presses. Additionally, certain tasks—such as showing pop- up windows, providing
real- time status messages, and communicating between frames—need browser interaction
and just aren’t possible with server- side programming.

To compensate for these problems, experienced ASP.NET developers often use client- side
programming to supplement their server- side web- page code. This client- side script allows
you to make more responsive pages and accomplish some feats that wouldn’t otherwise be
possible. Often, these considerations occur when creating custom controls that render rich
user interfaces (such as pop- up menus or rollover buttons). For the greatest browser compat-
ibility, the client- side script language of choice is JavaScript.

In this chapter, you’ll learn some tried-and- true techniques for integrating JavaScript with
ASP.NET. You’ll even build a few JavaScript- fortified controls and learn how to strengthen your
pages with Ajax, a particularly savvy style of JavaScript coding. These examples will also provide
you with valuable insight into the way that ASP.NET AJAX works.

Note ASP.NET AJAX has two key components: a client- side JavaScript library and a set of server- side
controls. You can use the JavaScript library to extend the capabilities of your client- side JavaScript code. You
can use the server- side controls to add client- side features to your web pages without needing to write (and
debug) the client- side code yourself. Through both mechanisms, ASP.NET AJAX standardizes, incorporates,
and extends many of the techniques you’ll see in this chapter.

JavaScript Essentials
JavaScript is an embedded language. This means that JavaScript code is inserted directly into
another document—typically, an HTML web page. The code is downloaded to the client com-
puter and executed by the browser.

You have two ways to embed JavaScript code in a web page:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1422

most straightforward approach for small amounts of code.

this code automatically when the page loads, or you can create a JavaScript function
that will be called in response to a client- side event.

Note By convention, named JavaScript code routines are called functions, even when they don’t explicitly
return a value. JavaScript code routines are not called methods, because the JavaScript language doesn’t
support true object- oriented programming.

In many cases, you’ll use both of these techniques at the same time. For example, you

using an event attribute. ASP.NET follows this pattern when it performs automatic postbacks.
The __doPostBack() function includes the code needed to trigger a postback and send the

function is then connected to different controls using JavaScript event attributes, such as
onchange, so that a client- side change causes a postback to the server.

you still have two choices about how you create your JavaScript code. Your first option is to
embed fixed JavaScript code in the .aspx portion of your page. This is the simplest approach.
Your second option is to add JavaScript code dynamically by using the methods of the Page
class. This gives you the greatest flexibility, including the ability to tweak the JavaScript code
on the fly and decide what you want to render at runtime. For example, you could tailor the
JavaScript code to suit different browsers or different property settings. When you create cus-
tom controls, the controls render the JavaScript code they need in this way.

The following sections explore the basic techniques for using JavaScript. You’ll learn how
to interact with the objects in your web page, handle client- side events, set properties, and move
your script into a separate .js file.

Note You can also use VBScript if your web application exists on a company intranet where Internet
Explorer is the standard. However, JavaScript is the only standard supported by a wide range of browsers.

The HTML Document Object Model
As a server- side programmer, you’re used to interacting with your web pages as a collection of
control objects. As a client- side programmer, you’ll work with a similar abstraction. The differ-
ence is that each object you work with maps directly to an individual HTML tag. This means
there aren’t any higher- level controls, such as ASP.NET’s Calendar and GridView. Instead,
almost everything boils down to paragraphs, headings, images, form controls, and tables. For

individually on the client side. It makes no difference whether you created these tags by writ-
ing raw HTML in the .aspx file or whether they were rendered by ASP.NET server controls.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1423

The ability to interact with your web page as a tree of objects is provided by the HTML
DOM (Document Object Model). The combination of JavaScript and the HTML DOM is called
DHTML (Dynamic HTML). In other words, DHTML isn’t a separate technology. Instead, it’s
a name that encompasses a specific way to use JavaScript. You’ll see a similar distinction when
you learn about Ajax later in this chapter. Ajax isn’t a new technology—it’s a small set of
 client- side programming techniques.

As is common in the world of the Web, not all browsers support the same level of JavaScript
and HTML DOM functionality. However, in this chapter, you’ll focus on techniques that are
known to work on the majority of modern browsers (including Firefox). As usual, if you are cre-
ating a web application for a large number of users, you should perform extensive testing.

Tip You can find event compatibility tables on the Internet (see, for example,
). For a comprehensive introduction to DHTML, you can refer to the MSDN

website, at .

Client-Side Events

Table 31-1. Common Events of HTML Objects

Event Description Applies To
onchange Occurs when the user changes the val-

ue in an input control. In text controls,
this event fires after the user changes
focus to another control.

select, text, text area

onclick Occurs when the user clicks a control. button, check box, radio, link, area

onmouseover Occurs when the user moves the mouse
pointer over a control.

link, area

onmouseout Occurs when the user moves the mouse
pointer away from a control.

link, area

onkeydown Occurs when the user presses a key. text, text area

onkeyup Occurs when the user releases
a pressed key.

text, text area

onselect Occurs when the user selects a portion
of text in an input control.

text, text area

onfocus Occurs when a control receives focus. select, text, text area

onblur Occurs when focus leaves a control. select, text, text area

onabort Occurs when the user cancels an image
download.

image

onerror Occurs when an image can’t be down-
loaded (probably because of an incor-
rect URL).

image

Continued

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1424

Table 31-1. Continued

Event Description Applies To

onload Occurs when a new page finishes
downloading.

window, location

onunload Occurs when a page is unloaded. (This
typically occurs after a new URL has
been entered or a link has been clicked.
It fires just before the new page is
downloaded.)

window

Note If you’re coding your pages in XHTML, you must write the JavaScript names in all lowercase, as in
onmouseover. If you aren’t using XHTML, you can use mixed- case, as in onMouseOver, which is easier to read.

triggered when a specific action occurs. For example, the following web- page code adds the
onmouseover attribute to two TextBox controls:

When the user moves the mouse over the appropriate text box, the client- side onmouseover
event occurs and the JavaScript alert() function is called, which shows a message box (as shown

 Figure 31-1. Responding to a JavaScript event

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1425

Note Keep in mind that ASP.NET already uses the onchange event to support the automatic postback
feature. If you add the onchange attribute and set the AutoPostBack property to true, ASP.NET is intelligent
enough to add both your JavaScript and the __doPostBack() function call to the attribute. Your client- side
JavaScript code will be executed first, followed by the __doPostBack() function.

Adding JavaScript Attributes Declaratively
The example you just looked at adds the JavaScript code programmatically, by manipulating
the Attributes collection that’s provided by every server control. Another option is to add your
event attributes declaratively to the control tag, like so:

In this example, ASP.NET is unable to match the onmouseover attribute to a control prop-
erty or server- side event, so it simply passes it along to the rendered tag. This technique obviously
won’t work if the JavaScript event name matches a VB event attached with the Handles keyword.

The OnClientClick Property
Usually, you attach client- side JavaScript events to the appropriate event- handling functions by
adding attributes. If you’re using ordinary HTML elements, you can set the attributes directly. If
you’re using web controls, you can manipulate them through the Attributes collection.

However, ASP.NET provides an alternative way to handle button clicks with JavaScript
code. Instead of using the Attributes collection in code, you can set the OnClientClick property,
which is defined in the Button, ImageButton, and LinkButton web controls. The OnClientClick
property accepts a string with JavaScript code. It’s up to you whether this code does its work
directly or calls another JavaScript function.

Here’s an example that uses OnClientClick to display a confirmation message before
a page is posted back:

The button click still posts back the page and raises server- side events. The difference is
that the OnClientClick client- side logic fires first and then triggers the server- side postback.

Tip You can use the OnClientClick attribute to cancel a postback. The basic pattern is to call a JavaScript
method. If this method returns false, the postback is canceled.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1426

Script Blocks
It’s impractical to place a large amount of JavaScript code in an attribute, particularly if you need
to use the same code for several controls. A more common approach is to place a JavaScript

can appear anywhere in the header or the body of an HTML document, and a single document

A typical inline script looks like this:

-
ceded by a JavaScript comment (//). This is because extremely old versions of Netscape will
throw a JavaScript parsing exception when encountering the closing HTML comment marker.
Modern browsers don’t suffer from these problems, and most browsers now recognize the

In this example, the script code is processed as soon as the browser encounters it while
rendering the page. If you want your code to occur later, when a specific event occurs, it makes
more sense to wrap it inside a function in the script block, like so:

Now you can hook it up to one or more HTML elements using an event attribute:

A script block can contain any number of functions. You can also declare page- level vari-
ables that you can access in any function:

Note Although JavaScript code has a superficial similarity to C#, it’s a much looser language. When
declaring variables and function parameters, you don’t need to specify their data types. Similarly, when
defining a function, you don’t indicate its return type.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1427

If you have too much JavaScript to fit neatly in a page or if you need to reuse the same set
of functions in more than one page, it makes sense to move your code to another file. Once

trick is to set the src attribute to point to the file, as shown here:

Moving JavaScript code to an external file is a common technique when dealing with com-
plex JavaScript routines. You can also embed a JavaScript resource in a DLL assembly when
you build a custom control using the WebResource attribute (as discussed in Chapter 28).

PLACING THE SCRIPT BLOCK

The content in an HTML document is processed in the order in which it appears, from top to bottom. If you
have a script block that uses immediate JavaScript code (loose JavaScript statements that are not wrapped
in a function), this code is executed as soon as it is processed. In order to avoid problems, you must place
this script block after any elements that it manipulates.

However, if your script block uses functions that are called later in the page life cycle (for example,
 event- handling functions that are triggered in response to a client- side event), you don’t need to worry. In
this situation, the browser will process the entire page before your functions are triggered. As a result, you
can place your script block anywhere in the HTML document, with the <head> section being a popular
choice.

Note Placing JavaScript in a separate file or even embedding it in an assembly doesn’t prevent users
from retrieving it and examining it (and even modifying their local copy of the web page to use a tampered
version of the script file). Therefore, you should never include any secret algorithms or sensitive information
in your JavaScript code. You should also make sure you repeat any JavaScript validation steps on the server,
because the user can circumvent client- side code.

Manipulating HTML Elements
Reacting to events is only half the story. Most JavaScript- enabled pages also need the ability to
change the content in the page. For example, you might want to refresh a label with up-to- date
text or inject entirely new content somewhere on a page. The HTML DOM makes this easy—all
you need to do is find the element you want and manipulate its innerHTML property.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1428

Note The innerHTML property represents the content between the start and end tag of an HTML element.
Some web pages use the innerText property instead, which automatically escapes HTML tags (for example,
it converts to). However, innerText is discouraged because it isn’t supported on Mozilla- based
browsers such as Firefox.

Unlike in your server- side code, JavaScript doesn’t provide member variables that give
you access to the HTML elements on your page. Instead, you need to look up the element you
need using the document.getElementById() method. Here’s an example:

This task is exceedingly common in JavaScript code. The only consideration is that you
need to make sure the elements you want to manipulate have unique identifiers (as set in the
ID attribute).

Once you’ve retrieved the object that represents the HTML tag you want to change,
you read and set its properties. All HTML objects have a wide range of basic properties, as

manipulate.

Table 31-2. Common Properties of HTML Objects

Event Description
innerHTML The HTML content between the start and end tag. May include other elements.

style Returns a style object that exposes all the CSS style properties for your element.
For example, you could use myObject.style.fontSize to change the font size of
an element. You can use the style object to set colors, borders, fonts, and even
positioning.

value In HTML form controls, the value attribute indicates the current state of the con-
trol. For example, in a check box it indicates whether the check box is checked, in
a text box it indicates the text inside the box, and so on.

tagName Provides the name of the HTML tag for this object (without the angle brackets).

parentElement The HTML object for the tag that contains this tag. For example, if the current

use this property (and other related properties) to move from one element to
another.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1429

Debugging JavaScript
One of the most useful improvements to Visual Studio 2008 is increased support for JavaScript.
In previous versions of Visual Studio, working with JavaScript was a chore, and developers got
little help when writing blocks of JavaScript or hunting down elusive errors. Now, Visual Studio
adds IntelliSense support to JavaScript (so lists of properties, methods, data types, and so on
will pop up as you type). Just as usefully, it adds integrated JavaScript debugging.

To use JavaScript debugging, you need to enable script debugging in Internet Explorer.
If script debugging isn’t enabled, you’ll receive a Script Debugging Disabled dialog box with
a warning message every time you debug an ASP.NET web page. However, this warning message
can be hidden (if you select Don’t Show This Dialog Again). To enable script debugging (or check
to make sure it is enabled), follow these steps:

 1. Choose Tools Internet Options from the menu in Internet Explorer.

 2. In the Internet Options dialog box, choose the Advanced tab.

 3. In the list of settings, under the Browsing group, remove the check mark next to Disable
Script Debugging (Internet Explorer). You can also remove the check mark next to Dis-
able Script Debugging (Other) to allow debugging for Internet Explorer windows hosted
in other applications.

 4. Click OK to apply your change.

When script debugging is switched on, you’ll be prompted to debug web pages with
script errors, even on websites that you don’t control. This can be more than a little annoying
because script errors are common, and one script error usually leads to more. In other words,
it won’t be long before your web browsing is interrupted with a series of dialog boxes, each one
prompting you to begin debugging the current page.

You might think you can solve this problem by turning off the Display a Notification About
Every Script Error setting, which appears just under the Disable Script Debugging settings.
Unfortunately, this setting only applies when debugging is off. For this reason, most developers
who test and surf in Internet Explorer switch the script debugging option on while testing and
off while surfing. (Sadly, Internet Explorer doesn’t have an option to limit script debugging to
local websites or websites with a specific domain.)

Once you’ve switched on script debugging, you can try it out by placing a breakpoint
in

the code, it enters debug mode in Visual Studio. You can now single- step through your code,
hover over variables to see their contents, use the Watch window, and so on, just as you would
with server- side VB code.

There’s a bit of magic that makes this work. When you place a breakpoint in your JavaScript,
you add it to the server- side ASP.NET page (the .aspx source file). However, when the browser
reaches your breakpoint, it’s using the rendered client- side HTML, which is a bit different. If you
look closely at a page while you’re debugging it in Visual Studio, you’ll notice that you’re dealing
with the client- side version. For that reason, you won’t see ASP.NET control tags—instead, you’ll

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1430

different than normal, and has a white dot in the center. The white dot indicates that this isn’t
the actual breakpoint, just a marker that tells the browser where to place its breakpoint in the
rendered HTML.) If your web page markup uses the JavaScript code in a separate .js file, you’ll
also see that file appear in the Solution Explorer. You can use all the same debugging tools with
.js files, including breakpoints and single- step debugging.

The Solution Explorer makes this distinction a bit clearer. It shows both versions of your
page, with the runtime version added under a special section named Windows Internet Explorer.
You can’t modify the rendered version of your page (because doing so wouldn’t make any last-
ing change), but you can edit the original server- side version and then run your page to see the
changes.

 Figure 31-2. A client- side breakpoint

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1431

 Figure 31-3. Debugging the rendered page

There’s one more neat trick you can pull off using Visual Studio’s JavaScript debugging.
You can add a reference to the JavaScript document object in the Watch window to take a look
at the DOM for the current web page. You can then browse through its properties (and even

document.childNodes collection, which contains the nested elements of the page. This first

continue this process to dig deeper into your page until you arrive
at the form and its controls.

Basic JavaScript Examples
Now that you’ve learned the key points of JavaScript, it’s easy to enhance your pages with a dash
of client- side code. In the following sections, you’ll use JavaScript to put a pretty face on pages
and pictures that take a long time to download.

Creating a JavaScript Page Processor
How many times have you clicked a web page just to watch the Internet Explorer globe spin for
what seems like an eternity? Did your Internet connection go down? Was there any error con-
necting to a back- end system? Or is the system just that slow? These issues often complicate

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1432

new web- based solutions, particularly if you’re replacing a more responsive rich client appli-
cation (such as a Windows application). In this situation, the easiest way to reassure your
application users is to provide them with progress messages that let them know the system is
currently working on their request.

One common way to give a status message is to use JavaScript to create a standard page
processor. When the user navigates to a page that takes a long time to process, the page pro-
cessor appears immediately and shows a standard message (perhaps with scrolling text). At
the same time, the requested page is downloaded in the background. Once the results are
available, the page processor message is replaced by the requested page.

You can’t solve the processing delay problem by adding JavaScript code to the target page,
because this code won’t be processed until the page has finished processing and the rendered
HTML is returned to the user. However, you can create a generic page processor that handles
requests for any time- consuming page in your site.

To create a page processor, you need to react to the onload and onunload events. Here’s
a page (named PageProcessor.aspx) that demonstrates this pattern. It shows a table with the

which you’ll consider shortly.

To use the page processor, you request this page and pass the desired page as a query
string argument. For example, if you want to load TimeConsumingPage.aspx in the back-
ground, you would use this URL:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1433

The page processor needs very little server- side code. In fact, all it does is retrieve the
originally requested page from the query string and store it in a protected page class variable.
(This is useful because you can then expose this variable to your JavaScript code using an
ASP.NET data binding expression, as you’ll see in a moment.) Here’s the complete server- side
code for the PageProcessor.aspx page:

The rest of the work is performed with client- side JavaScript. When the page processor
first loads, the onload event fires, which calls the client- side BeginPageLoad() function. The
BeginPageLoad() function keeps the current window open and begins retrieving the page that
the user requested. To accomplish this, it uses the window.setInterval() method, which sets
a timer that calls the custom UpdateProgressMeter() function periodically.

Here’s the code for the BeginPageLoad() JavaScript function:

The first code statement points the page to its new URL. Notice that the page you want
to download isn’t hard- coded in the JavaScript code. Instead, it’s set with the data binding

-
cally inserts the value of the PageToLoad variable in its place.

The last code statement starts a timer using the window.setInterval() function. Every 500
milliseconds, this timer fires and executes the line of code that’s specified. This line of code
calls another JavaScript function, which is named UpdateProgressMeter(), and keeps track of
the current loop counter.

The UpdateProgressMeter() function simply changes the status message periodically to
make it look more like an animated progress meter. The status message cycles repeatedly from
0 to 5 periods. Here’s the JavaScript code that makes it work:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1434

Finally, when the page is fully loaded, the client- side onunload event fires. In this exam-
ple, the onunload event is hooked up to a function named EndPageLoad(). This function stops
the timer, clears the progress message, and sets a temporary transfer message that disappears
as soon as the new page is rendered in the browser. Here’s the code:

No postbacks are made through the whole process. The end result is a progress message

To test the page processor, you simply need to use a target page that takes a long time to
execute on the server (because of the work performed by the code) or to be downloaded in the
client (because of the size of the page). You can simulate a slow page by placing the following
time delay code in the target page, like this:

study the progress message.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1435

 Figure 31-4. An automated progress meter

Note To try this with the sample code included for this chapter, request the PageProcessor_Start.aspx
page, which includes a button that takes you to the time- consuming PageProcessor_Target.aspx using the
page processor.

As you can see, with just a small amount of client- side JavaScript code, you can keep the
user informed that a page is processing. By keeping users informed, the level of perceived per-
formance increases.

Using JavaScript to Download Images Asynchronously
The previous example demonstrated how JavaScript can help you create a more responsive
interface. This advantage isn’t limited to page processors. You can also use JavaScript to down-
load time- consuming portions of a page in the background. Often, this requires a little more
work, but it can provide a much better user experience.

For example, consider a case where you’re displaying a list of records in a GridView. One

requires a dedicated page to retrieve the image, and, depending on your design, it may require
a separate trip to the file system or database for each record. In many cases, you can optimize
this design (for example, by preloading images in the cache before you bind the grid), but this
isn’t possible if the images are retrieved from a third- party source. This is the case in the next
example, which displays a list of books and retrieves the associated images from the Amazon
website.

Rendering the full table can take a significant amount of time, especially if it has a large
number of records. You can deal with this situation more effectively by using placeholder
images that appear immediately. The actual images can be retrieved in the background and

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1436

displayed once they’re available. The time required to display the complete grid with all its
pictures won’t change, but the user will be able to start reading and scrolling through the
data before the images have been downloaded, which makes the slowdown easier to bear.

The first step in this example is to create the page (named IncrementalDownloadGrid.
aspx) that displays the GridView. For the purposes of this example, the code fills a DataSet with
a static list of books from an XML file.

Here’s the content of the XML file:

As you can see, the XML data doesn’t include any picture information. Instead, these
details need to be retrieved from the Amazon website. The GridView binds directly to the
columns that are available (Title, isbn, and Publisher) and then uses another page (named
GetBookImage.aspx) to find the corresponding image for this ISBN.

Here’s the GridView control tag without the style information:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1437

Rather than
pointing this tag directly to GetBookImage.aspx, the src attribute is set to a local image file
(UnknownBook.gif), which can be quickly downloaded and displayed. Then the onload event
(which occurs as soon as the UnknownBook.gif image is first displayed) begins downloading
the real image in the background. When the real image is retrieved, it’s displayed, unless an
error occurs during the download process. The onerror event is handled in order to ensure
that if an error occurs, the UnknownBook.gif image remains (rather than the red X error icon).

The onload event completes its work with the help of a custom JavaScript function named
GetBookImage(). When the page calls GetBookImage(), it passes a reference to the current image
control (the one that needs the new picture) and the ISBN for the book, which is extracted
through a data binding expression. The GetBookImage() function calls another page, named
GetBookImage.aspx, to get the picture for the book. It indicates the picture it wants by passing
the ISBN as a query string argument.

The GetBookImage.aspx page performs the time- consuming task of retrieving the image
you want, which might involve contacting a web service or connecting to a database. In this
case, the GetBookImage.aspx page simply hands the work off to a dedicated class named
FindBook that does the work. Once the URL is retrieved, it redirects the page:

picture on the Amazon website. Unfortunately, Amazon’s image thumbnails don’t have a clear
naming convention that would allow you to retrieve the URL directly. However, based on the
ISBN you can find the book detail page, and you can look through the HTML of the book detail
page to find the image URL. That’s the task the FindBook class performs.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1438

Two methods are at work in the FindBook class. The GetWebPageAsString() method
requests a URL, retrieves the HTML content, and converts it to a string, as shown here:

The GetImageUrl() method uses GetWebPageAsString() and a little regular expression
wizardry.

Amazon image URLs are notoriously cryptic. However, most currently take the following
form:

For example, a typical URL is
pg.

Using the regular expression, the code matches the full URL for the book image (with the
ending character sequence) and returns it. Here’s the complete code for the GetImageUrl()
method:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1439

Note Using the dedicated Amazon web service would obviously be a more flexible and robust approach,
although it wouldn’t change this example, which demonstrates the performance enhancements of a little
JavaScript. You can get information about Amazon’s offerings at

.

 Figure 31-5. The initial view of the page

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1440

 Figure 31-6. The page with image thumbnails

Once loaded, the real book images will load in the background, but the user can begin
using the page immediately.

Rendering Script Blocks

the .aspx portion of your page. However, it’s often more flexible to render the script using the
Page.ClientScript property, which exposes a ClientScriptManager object that provides several
useful methods for managing script blocks. Two of the most useful are as follows:

RegisterClientScriptBlock(): Writes a script block at the beginning of the web form, right

RegisterStartupScript(): Writes a script block at the end of the web form, right before the

block and add it to the rendered HTML. RegisterClientScriptBlock() is designed for functions

in the HTML document. Placing them at the beginning of the web form is just a matter of
convention and makes them easy to find. The RegisterStartupScript() method is meant to
add JavaScript code that will be executed immediately when the page loads. This code might
manipulate other controls on the page, so to be safe you should place it at the end of the web
form. Otherwise, it might try to access elements that haven’t been created yet.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1441

When you use RegisterClientScriptBlock() and RegisterStartupScript(), you also specify a key
name for the script block. For example, if your function opens a pop- up window, you might
use the key name ShowPopUp. The actual key name isn’t important as long as it’s unique. The
purpose is to ensure that ASP.NET doesn’t add the same script function more than once. This
scenario is most important when dealing with server controls that render JavaScript. For example,
consider the ASP.NET validation controls. Every validation control requires the use of certain vali-

because each control uses the same key name when it calls RegisterClientScriptBlock(), ASP.NET
realizes they are duplicate definitions, and it renders only a single copy.

For example, the following code registers a JavaScript function named confirmSubmit().
This function displays a confirmation box and, depending on whether the user clicks OK or
Cancel, either posts back the page or does nothing. This function is then attached to the form
through the onsubmit attribute.

 Figure 31-7. Using a JavaScript confirmation message

In this example, there’s no real benefit from using the RegisterClientScriptBlock()
method. However, the ClientScriptManager methods become essential when you’re devel-
oping a custom control that uses JavaScript. Later in this chapter, you’ll see a control that
uses RegisterStartupScript() to show a pop- up window.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1442

Script Injection Attacks
Often, developers aren’t aware of the security vulnerabilities they introduce in a page. That’s
because many common dangers—including script injection and SQL injection—are surpris-
ingly easy to stumble into. To minimize these risks, technology vendors such as Microsoft
strive to find ways to integrate safety checks into the programming framework itself, thereby
insulating application programmers.

One attack to which web pages are commonly vulnerable is a script injection attack.
A script injection attack occurs when malicious tags or script code are submitted by a user (usu-
ally through a simple control such as a TextBox control) and then rendered into an HTML page
later. Although this rendering process is intended to display the user- supplied data, it actually
executes the script. A script injection attack can have any of a number of different effects from
trivial to significant. If the user- supplied data is stored in a database and inserted later into
pages used by other people, the attack may affect the operation of the website for all users.

The basic technique for a script injection attack is for the client to submit content with
, and

. Although the application can specifically check for these tags and use HTML encod-
ing to replace the tags with harmless HTML entities, that basic validation often isn’t performed.

Request Validation
Script injection attacks are a concern of all web developers, whether they are using ASP.NET,
ASP, or other web development technologies. ASP.NET includes a feature designed to auto-
matically combat script injection attacks, called request validation. Request validation checks

)
are found. In fact, request validation disallows any nonnumeric tags, including HTML tags

To test the script validation features, you can create a simple web page like the one shown

 Figure 31-8. Testing a script injection attack

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1443

Now, try to enter a block of content with a script tag and then click the button. ASP.NET
will detect the potentially dangerous value and generate an error. If you’re running the code

you’re requesting the page remotely, you’ll see only a generic error page.)

 Figure 31-9. A failed script injection attack

Disabling Request Validation
Of course, in some situations, the request validation rules are just too restrictive. For example,
you might have an application where users have a genuine need to specify HTML tags or
a block of XML data. (For example, consider a web application that requires that the user
submit a block of formatted HTML that represents an auction listing or an advertisement.) In
these situations, you need to specifically disable script validation using the ValidateRequest
property of the Page directive, as shown here:

You can also disable request validation for an entire web application by modifying the
web.config file. Add or set the validateRequest attribute , as shown
here:

Now, consider what happens if you attempt to display the user- supplied value in a label
with this code:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1444

 Figure 31-10. A successful script injection attack

Keep in mind that the script in a script injection attack is always executed on the client
end. However, this doesn’t mean it’s limited to a single user. In many situations, user- supplied
data is stored in a location such as a database and can be viewed by other users. For example,
if a user supplies a script block for a business name when adding a business to a registry,
another user who requests a full list of all businesses in the registry will be affected.

To prevent a script injection attack from happening when request validation is turned
off, you need to explicitly encode the content before you display it using the Server object, as
described earlier in this chapter.

Here’s a rewritten version of the Button.Click event handler that isn’t susceptible to script
injection attacks:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1445

 Figure 31-11. A disarmed script injection attack

Custom Controls with JavaScript
JavaScript plays an important role in many advanced web controls. In an ideal world, the
 web- page developer never needs to worry about JavaScript. Instead, web- page developers would
program with neat object- oriented controls that render the JavaScript they need to optimize their
appearance and their performance. This gives you the best of both worlds—object- oriented pro-
gramming on the server and the client- side frills of JavaScript.

You can create any number of controls with JavaScript and the HTML document model.
Common examples include rich menus, specialized trees, and advanced grids, many of which
are available (some for free) at Microsoft’s community site. In the following
sections, you’ll consider two custom controls that use JavaScript—a pop- up window generator
and a rollover button.

Pop-Up Windows
For most people, pop- up windows are one of the Web’s most annoying characteristics. Usu-
ally, they deliver advertisements, but sometimes they serve the slightly more valid purpose of
providing helpful information or inviting the user to participate in a survey or promotional
offer. A related variant is the pop- under window, which displays the new window underneath
the current window. This way, the advertisement doesn’t distract the user until the original
browser window is closed.

It’s fairly easy to show a pop- up window by using the window.open() function in
a JavaScript block. Here’s an example:

The window.open() function accepts several parameters. They include the link for the new
page and the frame name of the window (which is important if you want to load a new docu-
ment into that frame later, through another link). The third parameter is a comma- separated

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1446

string of attributes that configure the style and size of the pop- up window. These attributes
can include any of the following:

you want to display these elements

-
able window border

-
bars in the pop- up window

function, or you can use the window.open() function directly with a JavaScript event attribute.
You may want to use the same pop- up functionality for several pages and tailor the pop- up

URL based on user- specific information. For example, you might want to check whether the
user has already seen an advertisement before showing it, or you might want to pass the user
name to the new window as a query string argument so that it can be incorporated in the pop- up
message. In these scenarios, you need some level of programmatic control over the pop- up, so
it makes sense to create a component that wraps all these details. The next example develops

can place the code for this control in the App_Code directory, but a more robust approach is to
put it in a separate class library assembly (which is the approach you’ll find in the sample code).

Here’s the definition for the PopUp control:

By deriving this component from Control, you gain the ability to add your pop- up to the
Toolbox and drop it on a web form at design time.

To ensure that the PopUp control is as reusable as possible, it provides properties such as
PopUnder, Url, WindowHeight, WindowWidth, Resizable, and Scrollbars, which allow you to
configure the JavaScript that it generates. Here’s the code for the PopUp properties:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1447

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1448

Now that the control has defined these properties, it’s time to put them to work in the
Render() method, which writes the JavaScript code to the page. The first step is to make sure the
browser supports JavaScript. You can examine the Page.Request.Browser.JavaScript property,
which returns true or false, but this approach is considered obsolete (because it doesn’t give you
the flexibility to distinguish between different levels of JavaScript and HTML DOM support). The
recommended solution is to check that the Page.Request.Browser.EcmaScriptVersion is greater

If JavaScript is supported, the code uses a StringBuilder to build the script block. This code
is fairly straightforward—the only unusual detail is that the Boolean Scrollbars and Resizable
values need to be converted to integers and then to strings. That’s because the required syntax

a Boolean value directly to a string).
Here’s the complete rendering code:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1449

To use the PopUp control, you need to register the control assembly and map it to a con-
trol prefix with the Register directive. You can then declare the PopUp control on a page.
Here’s a sample web page that does this:

Tip Usually, custom controls register JavaScript blocks in the OnPreRender() method, rather than writ-
ing it directly in the Render() method. However, the PopUp control bypasses this approach and takes direct
control of writing the script block. That’s because you don’t want the usual behavior, which is to create one
script block regardless of how many PopUp controls you place on the page. Instead, if you add more than
one PopUp control, you want the page to include a separate script block for each control. This gives you the
ability to create pages that display multiple pop- up windows.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1450

 Figure 31-12. Showing a pop- up window

If you want to enhance the PopUp component, you can add more properties. For exam-
ple, you could add properties that allow you to specify the position where the window will be
displayed. Some websites use advertisements that don’t appear for several seconds. You could
use this technique with this component by adding a JavaScript timer (and wrapping it with
a control property that allows you to specify the number of seconds to wait). Once again, the
basic idea is to give the page developer a neat object to program with and the ability to use
the rendering methods to generate the required JavaScript in the page.

Rollover Buttons
Rollover buttons are another useful JavaScript trick that has no equivalent in the ASP.NET
world. A rollover button displays one image when it first appears and another image when the
mouse hovers over it (and sometimes a third image when the image is clicked).

handles the onclick, onmouseover, and onmouseout JavaScript events. These events will
call a function that swaps images for the current button, like this:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1451

Rollover buttons are a mainstay on the Web, and it’s fairly easy to fill the gap in ASP.NET
with a custom control. The easiest way to create this control is to derive from the WebControl

You also need to implement the IPostBackEventHandler
to allow the button to trigger a server- side event when clicked.

Here’s the declaration for the RollOverButton control class and its constructor:

The RollOverButton class provides two properties—one URL for the original image and
another URL for the image that should be shown when the user moves the mouse over the
button. Here are the property definitions:

The next step is to have the control emit the client- side JavaScript that can swap between
the two pictures. In this case, it’s quite likely that there will be multiple RollOverButton instances
on the same page. That means you need to register the script block with a control- specific key so
that no matter how many buttons you add there’s only a single instance of the function. By con-
vention, this script block is registered by overriding the OnPreRender() method, which is called
just before the rendering process starts, as shown here:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1452

This code explicitly checks whether the script block has been registered using the

as you use the same key, ASP.NET will render only a single instance of the script block. How-
ever, you can use the IsClientScriptBlockRegistered() and IsStartupScriptRegistered() methods
to avoid performing potentially time- consuming work. In this example, it saves the minor
overhead of constructing the script block string if you don’t need it.

Tip To really streamline your custom control code, put all your JavaScript code into a separate file, embed
that file into your compiled control assembly, and then expose it through a URL using the WebResource attribute,
as discussed in Chapter 28. This is the approach that ASP.NET uses with its validation controls, for example.

to supply are the attributes, such as name and src. Additionally, you need to handle the onclick
event (to post back the page) and the onmouseover and onmouseout events to swap the image.
You can do this by overriding the AddAttributesToRender() method, as follows:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1453

returns a reference to the client- side __doPostBack() function. Using this detail, you can build
a control that triggers a postback. You also need to be sure to specify the id attribute for your
control so that the server can identify it as the source of the postback.

The final ingredient is to create the RaisePostBackEvent() method, as required by the
IPostBackEventHandler interface, and use it to raise a server- side event, as shown here:

One way to improve this control is to add image preloading, so the rollover image is down-
loaded when the page is first rendered (rather than when the mouse moves over the image).
Without image preloading, you may notice a delay the first time you move your mouse over the
button.

The easiest way to perform preloading is to create a script that runs when the page is
loaded. This script needs to create a JavaScript Image object and set the Image.src property to
the image you want to preload. (If you have several images to preload, you can simply assign
the src property to each image, one after the other.) The Image object won’t actually be used
in your page, but the image files you’ve preloaded will be automatically stored in the browser’s
cache. If you use the same URL elsewhere in the page (for example, in the swapImg() func-
tion), the cached version will be used.

 Figure 31-13. Using a rollover button

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1454

Here’s the code you need to add to the OnPreRender() method to implement image
preloading:

Frames
Frames allow you to display more than one HTML document in the same browser window.
Frames can be used to provide navigational controls (such as a menu with links) that remain
visible on every page. Frames also give you the ability to independently scroll the content
frame while keeping the navigational controls fixed in place.

In modern day website design, frames are considered outdated. They have a notable list of
quirks, including poor support for varying screen sizes and devices (such as mobile phones).
The most obvious limitation with frames is the fact that the URL shown in the browser reflects
the frame’s page, but it doesn’t convey any information about what documents are currently
loaded in each frame. Thus, bookmarks and the browser history may not capture the current

In ASP.NET development, it’s far more common to create multipart pages using the mas-

some specialized uses, such as when bringing together existing documents from different
websites into a single window.

Tip For more information about frames, refer to the tutorial at
 or the FAQ at . Frames, like

JavaScript, are completely independent of ASP.NET. They are simply a part of the HTML standard.

Frame Navigation
Frames aren’t always that easy to integrate into an ASP.NET page. Showing separate frames
is easy— you simply need to create an HTML frames page that references the ASP.NET pages
you want to show and defines their positioning. However, developers often want an action in
one frame to have a result in another frame, and this interaction is not as straightforward. The
problem is that each frame loads a different page, and from the point of view of the web server,
these pages are completely separate. That means that the only way one frame can interact with
another is through the browser, using client- side script. (Another way to solve this problem is
to avoid frames altogether, and use the ASP.NET master pages feature instead. That way, the
separate pages are combined into one HTML document on the server, rather than simply dis-
played together on the client.)

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1455

For example, consider the following HTML page, which defines a frameset with two
frames (a sidebar on the left and a content frame on the right):

that set the content in the other frame. This is easy to do using static HTML, such as an anchor
tag. For example, if a user clicks the following hyperlink, it will automatically load the target
NewPage.aspx in the frame on the right, which is named content:

You can also perform the same feat when a JavaScript event occurs by setting the parent.

and use it to set the content on the right frame, as shown here:

However, navigation becomes more complicated if you want to perform programmatic
frame navigation in response to a server- side event. For example, you might want to log the
user’s action, examine security credentials, or commit data to a database and then perform the
frame navigation. The only way to accomplish frame navigation from the server side is to write
a snippet of JavaScript that instructs the browser to change the location of the other frame when
the page first loads on the client.

and then registers it in the page. When the page is posted back, the script executes and redi-
rects the rightmost frame to the requested page.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1456

 Figure 31-14. Using server- side code to control frame navigation

Tip Oddly enough, in this example the RegisterClientScriptBlock() method probably works slightly better
than the RegisterStartupScript() block method. No matter how you implement this approach, you will get a slight
delay before the new frame is refreshed. Because the script block doesn’t depend on any of the controls on the
page, you can render it immediately after the opening <form> tag using RegisterClientScriptBlock(), rather than
at the end. This ensures that the JavaScript code that triggers the navigation is executed immediately, rather
than after all the other content in the page has been downloaded.

Inline Frames
One solution that combines server- side programming with frame- like functionality is the

embedded, frame that you can position anywhere inside an HTML document. Both the main
document and the embedded page are treated as complete, separate documents.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1457

-

However, you can define static text that will be displayed in browsers that don’t recognize the
tag, as shown here:

ASP.NET

represented as an HtmlGenericControl.
Now you can set the src attribute at any point to redirect the frame:

Of course, you can’t actually interact with the page objects of the embedded page. In fact,
the page isn’t even generated in the same pass. Instead, the browser will request the page ref-
erenced by the src attribute separately and then display it in the frame. However, you can use
a variety of techniques for passing information between the pages, including session state and
the query string.

the user that a part of the page is still being processed.

 Figure 31-15. Using inline frames

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1458

Understanding Ajax
One of the main reasons developers use JavaScript code is to avoid a postback. For example,
consider the TreeView control, which lets users expand and collapse nodes at will. When you
expand a node, the TreeView uses JavaScript to fetch the child node information from the
server, and then it quietly inserts the new nodes. Without JavaScript, the page would need
to be posted back so the TreeView could be rebuilt. The user would notice a slightly sluggish
delay, and the page would flicker and possibly scroll back to the beginning. On the server side,
a considerable amount of effort would be wasted serializing and deserializing the view state
information in each pass.

You’ve already seen how you can avoid this overhead and create smoother, more stream-
lined pages with a little JavaScript. However, most of the JavaScript examples you’ve seen so
far have been self- contained—in other words, they’ve implemented a distinct task that doesn’t
require interaction with the rest of the page model. This approach is great when it suits your
needs. For example, if all you need to do is show a pop- up message or a scrolling status dis-
play, you don’t need to interact with the server- side code. However, what happens if you want
to make a truly dynamic page like in the TreeView example, one that can call a server- side
method, wait for a response, and insert the new information dynamically, without triggering
a full- page postback? To design this solution, you need to think of a way for your client- side
script to communicate with your server- side code.

Recently, a new buzzword has appeared in web programming circles. It’s Ajax (which was
originally shorthand for Asynchronous JavaScript and XML), and it’s an application of JavaScript
that’s distinguished by one special characteristic. Namely, Ajax- style pages communicate with the
server in the background to request additional information. When the client- side code receives
this information (which may be transmitted as an XML package), it carries out additional actions.
For example, a page that uses Ajax techniques might grab a live stock quote and refresh a por-
tion of the page, all without triggering a full- page postback. Furthermore, the communication
between the client and server happens asynchronously, so the client isn’t interrupted. The advan-
tages are greater responsiveness and a seamless browsing experience that’s free of page refreshes.

Note Conceptually, these examples are similar to the asynchronous image–downloading example you saw
earlier, which fetched additional information (the images) asynchronously and then updated the page. How-
ever, the image grid worked because images are really separate resources, not part of the page. You can’t use
the same technique to insert dynamic text or arbitrary HTML. Instead, you need to use Ajax techniques.

Programming Ajax pages can be complicated, not because the JavaScript techniques are
particularly difficult (they aren’t), but because you sometimes need messy workarounds to
ensure browser compatibility. In an ideal world, ASP.NET programmers wouldn’t need to
worry about writing Ajax- style pages at all. Instead, you would use a higher- level framework
on the server that could emit the JavaScript code you need. ASP.NET is heading in this direc-
tion, but it’s moving slowly—after all, Microsoft needs time to carefully consider the different
ways these client- side features can be integrated into ASP.NET’s server- side model. Later in
this chapter, you’ll learn about client callbacks, which are the first rudimentary example of
Ajax in ASP.NET.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1459

Note In the next chapter, you’ll learn about ASP.NET AJAX, which offers a higher- level way to build
 Ajax- style pages.

The XMLHttpRequest Object
The cornerstone of Ajax is the XMLHttpRequest object. XMLHttpRequest is both incredibly
useful and deceptively simple. Essentially, it allows you to send requests to the server asyn-
chronously and retrieve the results as text. It’s up to you to decide what you request, how you
handle the request on the server side, and what you return to the client.

Although there is wide support for the XMLHttpRequest object in modern browsers,
there’s a subtle difference in how you access the object. In some browsers, including Internet

 is implemented as a native

ActiveX object. Because of these differences, your JavaScript code needs to be intelligent
enough to use the correct approach when creating an instance of XMLHttpRequest. Here’s the
 client- side JavaScript code that Microsoft uses to perform this task for the client callback fea-
ture you’ll consider later in this chapter:

Note This code fails if the browser doesn’t provide the native or ActiveX version of the XMLHttpRequest
object. This problem occurs with really old browsers, such as Internet Explorer 4 and Safari 1. If you need
to support old clients like these, Ajax programming is not suitable. Pages that rely heavily on Ajax also fail
if JavaScript is not enabled in the browser. One option is to test for JavaScript support (by examining the
Request.Browser.EcmaScriptVersion property) and redirect the user to a simpler version of the page if
JavaScript is not supported.

Sending a Request
You’ll use two key methods to send a request with the XMLHttpRequest: open() and send().

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1460

The open() method sets up your call—it defines the request you want to send to the
server. It has two required parameters: the type of HTTP command (GET, POST, or PUT) and
the URL. Here’s an example:

Additionally, you can supply a third parameter to indicate whether the request should
be performed asynchronously and two more parameters to supply user name and password
information for authentication. It’s unlikely you’ll use the user name and password param-
eters, because this information can’t be safely hard- coded in your JavaScript code. Client- side
code is never the right place to implement security.

Note By default, all requests you make with the XMLHttpRequest object are asynchronous. There is
almost never a reason to change this behavior. If you choose to make the call synchronously, you may as
well force a postback—after all, the user will be unable to do anything while the page is stalled waiting for
a response. If it’s not asynchronous, it’s not Ajax.

The send() method fires off the request. Assuming your request is asynchronous, it returns
immediately.

Optionally, the send() method takes a single string parameter. You can use this to supply
additional information that’s sent with the request, like the values that are sent with a POST
request.

On Internet Explorer browsers, it’s acceptable to leave out the parameter for the send()
method. However, in Firefox you must supply a null reference, or the callback will behave
erratically. This is one of the many quirks you’ll find in cross- browser compatibility when writ-
ing client- side script.

Handling the Response
Clearly, one detail is missing here. You’ve learned how to send a request, but how do you handle
the response? The secret is to attach an event handler using the onreadystatechange property.
This property points to a client- side JavaScript function that is called when the request is fin-
ished and the data is available:

Of course, you need to attach the event handler before you call the send() method to start
the request.

When the response is returned from the server and your function is triggered, you can
extract the information you need from the xmlRequest object using the responseText and
responseXML properties. The responseText property gives you all the content in a single long
string. The responseXML property returns it as a tree of node objects.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1461

Note Even though the name Ajax implies XML content, you can also return something else from the
server, including plain text. For example, if the server is returning a single piece of data, there’s no reason to
wrap it up in a complete XML document.

An Ajax Example
Now that you’ve taken a quick tour of the XMLHttpRequest object, you’re ready to use it in
a simple page. To build an Ajax- style page in ASP.NET, you need two pieces:

through the XMLHttpRequest object

appropriate response

The first ingredient is obviously an .aspx web page. The second ingredient could be another
.aspx web page, or it could be a custom HTTP handler. The HTTP handler is a more lightweight
option, because it doesn’t use the full- page model.

Tip For a quick refresher about custom HTTP handlers, refer to Chapter 5.

The following example implements the server- side functionality as an HTTP handler.
The HTTP handler accepts information through the query string (in this case, it checks for
two parameters) and then returns two pieces of information. The first piece of information is
the sum of the two arguments that were passed in through the query string. The second piece
of information is the current time on the web server. The information is not a legitimate XML
document—instead, the two values are simply separated by a comma.

Here’s the complete code for the HTTP handler:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1462

Note In this example, the HTTP handler has an unrealistically easy job. After all, if you were simply inter-
ested in adding two numbers, your client- side code could accomplish the task without the Ajax request. This
pattern becomes more important when the server- side code needs to do something the client can’t, such as
look up information in a server- side resource (a file or database), use sensitive information (such as secret
numbers), or perform complex operations using classes that are available only in the .NET Framework.

Now that you have the HTTP handler in place, you can call it at any time using the

that fires off a request every time the user presses a key in either text box. The request supplies
the values from the two text boxes, and the result is displayed in the shaded box at the bottom
of the page. Just to prove that Ajax is at work, an animated GIF appears at the top of the page.
You’ll notice that the lava lamp keeps flowing without a pause while the callback takes place.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1463

 Figure 31-16. An Ajax- style page

Here’s the basic outline of the page, without the JavaScript code. You’ll notice that the
page plugs into the client- side JavaScript in two ways. First, the onload event in the
tag launches the CreateXMLHttpRequest() function, which creates the XMLHttpRequest
object. Second, the two text boxes use the onKeyUp event to trigger the CallServerForUpdate()
function.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1464

The CreateXMLHttpRequest() function uses the technique you saw earlier to instantiate
the appropriate version of the XMLHttpRequest object:

The CallServerForUpdate() function finds the text box objects, grabs their current values,
and uses them to build a URL that points to the HTTP handler. The code then sends an asyn-
chronous GET request to the HTTP handler.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1465

Finally, the ApplyUpdate() function runs when the response is received. Assuming no
error occurred, the new information is parsed out of the returned text and used to create
a message that’s displayed in the label:

This code checks the readyState value to ensure that the response has been received.

you call open(), then changes to 2 when the request is sent, then changes to 3 when the response

some sort of error (like a missing page, a busy web server, and so on).

Note It’s worth pointing out that Ajax doesn’t save you from any server round- trips, and it rarely reduces
the server processing time. The real difference is that round- trips occur silently in the background, which
gives the application a more responsive feel.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1466

Using Ajax with Client Callbacks
Using the Ajax approach, you can create impressive, highly responsive web pages. However,
writing the client- side script is time- consuming. Visual Studio can’t provide the same rich
design experience you get when writing server- side code, and it doesn’t provide debugging
tools to help you track down the inevitable errors that crop up in the loosely typed JavaScript
language. And even when you’ve successfully completed your task, you’ll need to test on
a wide range of other browsers, unless you’re intimately familiar with the minor variations in
JavaScript support on different browsers.

For these reasons, many developers don’t write their client- side script by hand, even when
designing an Ajax- style page. Instead, they prefer to deal with a higher- level component that can
generate the script code they need. One example is the free third- party Ajax.NET library, which
is available at le. Ajax.NET uses attributes
to flag methods, which then become remotely callable through a client callback and a custom
HTTP handler. Another example is ASP.NET AJAX, the more comprehensive Ajax toolkit that’s
discussed in the next chapter.

Although both ASP.NET AJAX and Ajax.NET are good choices, you can perform the most
essential Ajax task—sending an asynchronous request to the server—using ASP.NET’s more
straightforward client callback feature. Client callbacks give you a way to refresh a portion of
data in a web page without triggering a full postback. Best of all, you don’t need the script code
that uses the XMLHttpRequest object. However, you do still need to write the client- side script
that processes the server response.

Creating a Client Callback
To create a client callback in ASP.NET, you first need to plan how the communication will
work. Here’s the basic model:

 1. At some point, a JavaScript event fires, triggering the server callback.

 2. At this point, the normal page life cycle occurs, which means all the normal server- side
events fire, such as Page.Load.

 When this process is complete (and the page is properly initialized), ASP.NET executes
the server- side callback method. This method must have a fixed signature—it accepts
a single string parameter and returns a single string.

 3. Once the page receives the response from the server- side method, it uses JavaScript
code to modify the web page accordingly.

The ASP.NET architecture is designed to abstract away the communication process, so
you can build a page that uses callbacks without worrying about this lower level, in much the
same way you can take advantage of view state and the page life cycle.

In the next example, you’ll see a page with two drop- down lists boxes. The first list is pop-
ulated with a list of regions from the Northwind database. This happens when the page first
loads. The second list is left empty until the user makes a selection from the first list. At this
point, the content for the second list is retrieved by a callback and inserted into the list (see

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1467

 Figure 31-17. Filling in a list with a callback

 Figure 31-18. The stages of a callback

Building the Basic Page
The first step is to create the basic page, with two lists. It’s easy enough to fill the first list—you
can tackle this task by binding the list declaratively to a data source control. In this example,
the following SqlDataSource is used:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1468

And here’s the list that binds to the data source:

Implementing the Callback
To receive a callback, you need a class that implements the ICallbackEventHandler interface.
If you know your callback will be used in several pages, it makes sense to create a dedicated
class (much like the custom HTTP handler used in the previous Ajax example). However,
if you want to define functionality that’s intended for a single page, you can implement
ICallbackEventHandler in your web page, as shown here:

The ICallbackEventHandler interface defines two methods. RaiseCallbackEvent() receives
event data from the browser as a string parameter. It’s triggered first. GetCallbackResult() is
triggered next, and it returns the result back to the page.

Note The key limitation of ASP.NET client callbacks is that they force you to transmit data as single
strings. If you need to pass more complex information (such as the result set with territory information, as in
this example), you need to design a way to serialize your information into a string and deserialize it on the
other side. Depending on the complexity of your task, you may be better off using ASP.NET AJAX, as dis-
cussed in Chapter 32.

In this example, the string parameter passed to RaiseCallbackEvent() contains the RegionID
for the selected region. Using this information, the GetCallbackResult() method connects to the
database and retrieves a list of all the territory records in that region. These results are joined
into a single long string separated by the | character.

Here’s the complete code:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1469

You can’t use declarative data binding in this example, because the callback method can’t
directly access the controls on the page. Unlike in a postback scenario, when RaiseCallbackEvent()
is called, the page isn’t in the process of being rebuilt. Instead, the RaiseCallbackEvent() method is
called out-of- band to request some additional information. It’s up to your callback method to per-
form all the heavy lifting on its own.

Because the results need to be returned as a single string (and seeing as this string has to
be reverse- engineered in JavaScript code), the code is a little awkward. A single pipe (|) sepa-
rates the TerritoryDescription field from the TerritoryID field. Two pipes in a row (||) denote

this:

Clearly, this approach is somewhat fragile—if any of the territory records contain the pipe
character, this will cause significant problems.

Writing the Client- Side Script
Client-side scripts involve an exchange between the server and the client. Just as the server
needs a method to prepare the results, the client needs a function to receive and process
them. The JavaScript function that handles the server response can take any name, but it
needs to accept two parameters, as shown here:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1470

The result parameter has the serialized string. In this example, it’s up to the client- side
script to parse this string and fill the appropriate list box.

Here’s the complete client script code that you need for this task:

One detail is missing. Although you’ve defined both sides of the message exchange, you
haven’t actually hooked it up yet. What you need is a client- side trigger that calls the callback.
In this case, you want to react to the onchange event of the region list:

The callbackRef is the JavaScript code that calls the callback. But how exactly do you need
to write this line of code? Fortunately, ASP.NET gives you a handy GetCallbackEventReference()
method that can construct the callback reference you need. Here’s how you use it in this example:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1471

The first parameter is a reference to the ICallbackEventHandler object that will handle
the callback—in this case, the containing page. The second parameter is the information
that the client will pass to the server. In this example, a snippet of JavaScript is required to
look up the appropriate control (lstRegions) and extract the currently selected value.

Tip Many client callback samples use the JavaScript collection document.all to retrieve control objects.
This is not recommended, because document.all is an extension to JavaScript supported in Internet Explorer
but not in other browsers (such as Firefox). Instead, use the document.getElementById() method shown
previously.

The third parameter is the name of the client- side JavaScript function that will receive the
results from the server callback. The fourth parameter includes any context information that
you want to pass to the client- side function. This is helpful if you handle several callbacks with
the same JavaScript function and you need to distinguish which response is which. Finally,
the last parameter indicates whether you want to perform the callback asynchronously. This
should always be true to prevent locking up the page in the event of a network problem.

Disabling Event Validation
-

tion attacks are attacks in which a malicious user alters the HTTP POST request that’s sent to
the server so it includes a value that isn’t available in the corresponding control. For example,
a user might change a posted parameter to indicate a list selection that isn’t actually in the list.
Left unchecked, this can trick your code into revealing sensitive data.

ASP.NET defends against POST injection attacks using event validation. Event validation
works by verifying that all posted data makes sense before ASP.NET executes the page life cycle.
Unfortunately, event validation often causes problems with Ajax- style pages. In the current
example, items are dynamically added to the territory list. When the user chooses a territory
and posts back the page, ASP.NET will raise an “Invalid postback or callback argument” error
because the selected territory isn’t defined in the server- side control.

Note The event validation feature isn’t necessarily a feature of all controls. It’s implemented only for con-
trol classes that are decorated with the SupportsEventValidation attribute. In ASP.NET, most controls that rely
on posted data use this attribute (such as the ListBox, DropDownList, CheckBox, TreeView, Calendar, and so
on). The exception is controls that don’t restrict allowed values. For example, the TextBox control doesn’t use
event validation, because the user is allowed to type any value in it.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1472

You can work around the event validation problem in two ways. The safest approach is
to explicitly tell ASP.NET about additional values that it should allow in the control. (ASP.NET
keeps track of all the allowed values using a hidden input tag named __EVENTVALIDATION.)
Unfortunately, this approach is tedious and often impractical.

To use this approach, you must call the Page.ClientScript.RegisterForEventValidation()
method for each possible value. You need to perform this task at the rendering stage by over-
riding the Page.Render() method as shown here. Here’s an example that allows the user to

The obvious problem with this approach is that in many cases you won’t know all the pos-
sible values. They may be generated dynamically or retrieved from another source (such as
a web service). In the current example, you’d need to retrieve the full list of possible TerritoryID
values from the database, loop through them, and register each one. Not only does this create
extra work, but it also introduces problems if more regions are added after the page is served.

Instead, the only realistic approach in this situation is to disable event validation. Unfor-
tunately, you can’t disable event validation for a single control, so you must switch it off for the
entire page using the EnableEventValidation property of the Page directive:

Note You can also disable event validation for an entire website by setting the enableEventValidation
attribute of the pages element to false. However, this isn’t recommended because it can introduce security
risks to other pages.

To retrieve the selected territory in your code, you can’t use the lstTerritories control.
That’s because the lstTerritories control is the server- side version of the list, so it doesn’t con-
tain the dynamically added values. Instead, you need to retrieve the selection directly from the
Request.Forms collection:

Once you disable event validation, you need to think carefully about security. In this exam-
ple, you need to consider whether there is a possibility that a hacker might submit a TerritoryID
selection that isn’t in the list. If some territories or regions shouldn’t be available to all users,
you need to make sure your code includes the necessary security checks. Namely, when a user
chooses a territory, your code must check to make sure the requesting user is allowed to view
that territory before you go any further. This isn’t a concern in the current example, because the
full list of territories is available to all users. In this example, the only potential problem is the
possibility that an attacker will supply a territory ID that doesn’t exist and generate an error that
you must catch.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1473

Note Clearly, client callbacks represent a powerful feature that lets you build more seamless, dynamic
pages. But remember, client callbacks rely on the XMLHttpRequest functionality, which limits them to mod-
ern browsers. Some browsers may support JavaScript but not client callbacks. If in doubt, you can check
whether a browser appears to support Ajax callbacks using the Request.Browser.SupportsCallback property.

Client Callbacks “Under the Hood”
It’s worth noting that when the callback is performed, the target page actually starts executing
a trimmed- down life cycle. Most control events won’t execute, but the Page.Load and Page.Init
event handlers will. The Page.IsPostBack property will return true, but you can distinguish this
callback from a genuine postback by testing the Page.IsCallback property, which will also be
true. The page rendering process is bypassed completely. View state information is retrieved
and made available to your callback method, but any changes you make are not sent back to

The only problem with the current implementation of client callbacks is that the program-
ming interface is still fairly primitive, especially in its requirement that you exchange only
strings. The current trend in ASP.NET is to use the callback features to build dynamic features
into dynamic controls, rather than consuming them directly in the page. You’ll see an example
of this technique in the next section.

 Figure 31-19. Comparing postbacks and callbacks

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1474

Client Callbacks in Custom Controls
Integrating client callbacks into a page is a fair bit of work. However, a much better option is
to use them to build rich controls. You can then use these controls in as many pages as you
want. Best of all, you’ll get the Windows- style responsiveness without having to delve into the
 lower- level callback infrastructure.

Although there’s no limit to the types of controls you might build with dynamic callbacks,
many controls use callbacks to simply refresh a portion of their user interface (such as the
TreeView). With a little ingenuity, you can create a container control that provides this func-
tionality for free.

The basic idea is to create a new control that derives from Panel. This panel contains con-
tent that you want to refresh. At some point, a client- side JavaScript event will occur that causes
the panel to perform a callback. At this point, the panel will fire a server- side event to notify
your code. You can handle this event and tweak any of the controls inside the panel. When the
event finishes, the panel gets the new HTML for its contents and returns it. A client- side script
replaces the current panel contents with the new HTML using a little DHTML.

Note This control presents a straightforward example of how you can integrate Ajax techniques into
a custom control. The end result is also a relatively practical control. However, you probably won’t use the
DynamicPanel in a real web application. That’s because ASP.NET AJAX includes a similar but more powerful
version called the UpdatePanel, which you’ll learn how to use in Chapter 32.

 Figure 31-20. Refreshing a portion of the page through a callback

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1475

The DynamicPanel
The first step is to derive a class from Panel and implement ICallbackEventHandler:

As part of the ICallbackEventHandler, the DynamicPanel needs to implement the
RaiseCallbackEvent() and GetCallbackResult() methods. At this point it’s a two- step pro-
cess. First, the DynamicPanel needs to fire an event to notify your page. Your page can
handle this event and perform the appropriate modifications. Next, the DynamicPanel
needs to render the HTML for its contents. It can then return that information (along with
its client ID) to the client- side web page.

Here’s the client- side script code that finds the panel on the page and then replaces its
content with new HTML:

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1476

Rather than hard- code this script into every page in which you use the panel, it makes
sense to register it programmatically in the DynamicPanel.OnInit() method:

This completes the basics of the DynamicPanel. However, this example still has a signifi-
cant limitation—the page has no way to trigger the callback and cause the panel to refresh.
That means it’s up to your page code to retrieve the callback reference and insert it into your
page.

Fortunately, you can simplify this process by creating other controls that work with the
DynamicPanel. For example, you can create a DynamicPanelRefreshLink that, when clicked,
automatically triggers a refresh in the associated panel.

The first step in implementing this solution is to revisit the DynamicPanel and implement
the ICallbackContainer interface.

This interface allows the DynamicPanel to provide the callback reference, rather than
forcing you to go through the page.

To implement ICallbackContainer, you need to provide a GetCallbackScript() method that
returns the reference. Here the Panel can rely on the page, making sure to specify itself as the
callback target, and on RefreshPanel() as the client- side script that will handle the response.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES 1477

The DynamicPanelRefreshLink
Now you’re ready to implement the much simpler refresh button. This control, named
DynamicPanelRefreshLink, derives from LinkButton.

You specify the panel that it should work with by setting a PanelID property:

Finally, when it’s time to render itself, the DynamicPanelRefreshLink finds the associated
DynamicPanel control using FindControl() and then adds the callback script reference to the
onclick attribute.

The Client Page
To complete this example, create a simple text page, and add a DynamicPanel and a
DynamicPanelRefreshLink underneath it. Set the DynamicPanelRefreshLink.PanelID
property to create the link.

Next, place some content and controls in the panel. Finally, add an event handler for the
DynamicPanel.Refresh event and use it to change the content or formatting of the controls in
the panel.

CHAPTER 31 JAVASCRIPT AND AJAX TECHNIQUES1478

Now when you run the page, you’ll see that you can click the DynamicPanelRefreshLink

 Figure 31-21. The DynamicPanel

Summary
In this chapter, you saw how a bit of carefully chosen JavaScript code can extend your ASP.NET
web pages with more responsive interfaces and more dynamic effects. Along the way, you saw
how to develop .NET solutions for some traditional HTML and JavaScript techniques, such as
page processors, pop- up windows, rollover buttons, and frames. You also explored Ajax and
the new client callback feature that helps you implement seamless page updates. You can do
a lot more by creatively applying a little JavaScript. For more ideas, check out some of the cus-
tom controls available at Microsoft’s community website, or continue to
the next chapter where you’ll dip into ASP.NET AJAX, a server- side programming framework
for developing Ajax- style pages.

1479

C H A P T E R 3 2

ASP.NET AJAX

In the previous chapter, you entered the world of client- side programming. You learned a few
essential techniques for using JavaScript, and you considered how to create more responsive
pages with Ajax techniques, either on your own or through the client callback feature in ASP.NET.

These examples presented a fairly well- rounded foundation that you can use to build a vari-
ety of advanced pages. Unfortunately, the programming model leaves a lot to be desired. If you
rely on pure JavaScript, it’s up to you to bridge the gap between ASP.NET’s server- side abstrac-
tion and the more limited HTML DOM. Sadly, it’s not easy. Without the benefit of Visual Studio’s
IntelliSense and its debugging tools, it’s difficult to write error- free code and diagnose problems.
It’s also a challenge to create script code that works on all modern browsers, because minor
quirks and implementation differences abound.

The ASP.NET client callback feature partially addresses these problems by giving you
a server- side model that you can use to generate some of the client- side code you need (namely,
the code that performs asynchronous requests using the XMLHttpRequest object). However, the
client callback model is far from perfect. The interfaces feel a bit clunky, the integration into
the page model is a bit awkward, and data typing is nonexistent. It’s up to you to devise a way
to serialize the information you need to transmit into a single string, and it’s up to you to write
the JavaScript code that receives the callback, deserializes the string, and updates the page. All
in all, the client callback feature is an excellent tool for building Ajax- enabled controls but a less
appealing way to design complete web pages.

ASP.NET developers have another option. They can use the ASP.NET AJAX toolkit, which
provides several features that can help you build Ajax- style pages. In this chapter, you’ll explore
ASP.NET AJAX and learn how to use it to create the next generation of highly interactive,
dynamic web pages.

Introducing ASP.NET AJAX
ASP.NET AJAX consists of two key parts: a client- side portion and a server- side portion.

The client- side portion is a set of JavaScript libraries. These libraries aren’t tied to ASP.NET
in any way—in fact, non- ASP.NET developers can use them in their own web pages. The client
libraries don’t expose much in the way of features (for example, there aren’t any prebuilt pieces
of functionality you can drop into your web pages). Rather, they establish a basic foundation
you can use to develop ASP.NET AJAX pages. This foundation extends the JavaScript language
to fill in a few of its gaps (for example, by adding support for inheritance), and provides some
basic infrastructure (for example, methods for managing component lifetime, manipulating
common data types, and performing reflection).

CHAPTER 32 ASP.NET AJAX1480

The server- side portion of ASP.NET AJAX works at a higher level. It includes controls and
components that use the client- side JavaScript libraries. For example, a web form that contains
the DragPanel component (from the ASP.NET AJAX Control Toolkit) gives users the ability to
drag a panel around in the browser window. Behind the scenes, there’s some custom JavaScript
at work, and that JavaScript uses the client- side ASP.NET AJAX libraries. However, the DragPanel
renders all the JavaScript code it needs, saving you the trouble of writing it yourself.

Clearly, ASP.NET AJAX is the start of a new direction in ASP.NET development. Before
going any farther, it’s worth getting an overview of all the features that ASP.NET AJAX provides.
Here’s a quick rundown:

JavaScript language extensions: These extensions make JavaScript work a little more like
a modern object- oriented language, with support for namespaces, inheritance, interfaces,
enumerations, and reflection.

Remote method calls: This feature allows you to get information from the server without
performing a full- page postback. It solves the same problem as the client callback feature
you learned about in Chapter 31, but it lets you work with strongly typed methods instead
of stuffing all your data into a single string.

ASP.NET services: This feature allows you to call the server to interact with the ASP.NET
model. At present you can use two ASP.NET services—one that uses forms authentication
information and one that gets data from the current user profile.

Partial page refreshes: The new UpdatePanel control gives you a way to define a portion
of a page that will be updated without requiring a full- page postback. Best of all, you don’t
need to write any JavaScript code to manage the updating process.

Prebuilt controls: The popular ASP.NET AJAX Control Toolkit is stocked with over 30
controls that use the extend features of ASP.NET AJAX to great effect. You’ll find controls
that collapse and expand, add dynamic animations, and support for auto- completion and
 drag-and- drop. And once again, these controls handle the low- level JavaScript details so
you don’t need to.

You’ll explore all of these features in this chapter.

THE CHANGING FACE OF ATLAS AND ASP.NET AJAX

If you’ve been following the ASP.NET AJAX story for a while, you might have used one of the early beta versions,
which were named Atlas. ASP.NET AJAX replaces Atlas. It was released first as a separate component that can
be used in conjunction with ASP.NET 2.0, and now it’s a fully integrated part of the ASP.NET 3.5 platform.

ASP.NET AJAX includes many of the most important features of Atlas, but it also abandons a few. Most
notably, Atlas includes an XML- based markup standard called client script. Client script provides a declara-
tive way to define the controls on a page so they can be manipulated using client- side code (much like ASP.
NET control tags define server- side objects that can be manipulated using server- side code). For example,
if you were designing a page with two server- side TextBox controls and you wanted to access the text in
those text boxes on the client, you’d define them in the client script block. The client script block also pro-
vides a path to additional Atlas features, such as behaviors (declarative features like auto- completion and
mouse event handling), client- side data binding, and animations. For more information about Atlas, you can
refer to the previous edition of this book, Pro ASP.NET 2.0 in VB 2005: Special Edition.

CHAPTER 32 ASP.NET AJAX 1481

When Atlas evolved into ASP.NET AJAX, it left the client script standard behind, along with related
features, such as data binding. Some of these features are available in an ASP.NET AJAX Futures release.
(Futures releases provide work-in- progress technology that may eventually be integrated into the core .NET
platform.) However, there’s considerable doubt as to whether client script will be reintroduced in the future.
Not only does it introduce additional complexity, it overlaps with another XML- based standard—the more
powerful XAML language that’s used by the Silverlight applications you’ll learn about in Chapter 33.

ASP.NET AJAX on the Client: The Script Libraries
The client- side portion of ASP.NET AJAX relies on a small collection of JavaScript files. There
are two ways to deploy the ASP.NET AJAX script files. If you build an ASP.NET 3.5 application,
they’re always there, embedded in the System.Web.Extensions.dll assembly and served out
on demand. If you’re creating a non- ASP.NET application or adding client- side features to an
ordinary HTML page, you can download the JavaScript files separately from the ASP.NET AJAX
website () as part of the Microsoft AJAX Library.

Tip The Microsoft AJAX Library is also a worthwhile download if you want to take a closer look at the
actual JavaScript code. This download includes “debug” versions of each of the three core files, as well as
the final production versions. The production versions strip out all whitespace and comments in order to
make the file as small as possible. By comparison, the largest file is Microsoft.Ajax.js, which hits 254 KB in
its debug version but requires just 82 KB in its production version.

If you download the Microsoft AJAX Library, you’ll find that ASP.NET AJAX uses just three
core JavaScript files—MicrosoftAjax.js, MicrosoftAjaxWebForms.js, and MicrosoftAjaxTimer.js.
Along with these essentials are over 100 very small JavaScript files that store globalization infor-
mation (for example, data formats that apply to different cultures).

In ASP.NET, you won’t find individual JavaScript files for the client libraries. Instead, the
client libraries are embedded in the System.Web.Extensions.dll assembly and served up as
a script resource. A script resource is similar to the web resources that you learned about in
Chapter 28. Like web resources, script resources allow you to map a URL to a resource that’s
embedded in an assembly. For example, here’s a sample script block that extracts the ASP.NET
AJAX script library:

If you look in the web.config file for an ASP.NET 3.5 application, you’ll find a mapping
that links requests for ScriptResource.axd to the System.Web.Handlers.ScriptResourceHandler
class (which is stored in the System.Web.Extensions.dll assembly):

CHAPTER 32 ASP.NET AJAX1482

The ScriptResourceHandler class examines the passed- in query string argument and
returns the requested script file. In short, the ScriptResourceHandler processes script
resources in the same way that the WebResourceHandler processes web resources.

SCRIPT RESOURCES VERSUS WEB RESOURCES

All of this raises an excellent question—namely, why does ASP.NET include a web resource system and
a similar script resource system? After all, you can embed JavaScript files in an assembly using ordinary
web resources.

The answer is that script resources add a few refinements. When the requesting web browser
is IIS 7, script resources automatically use compression to minimize the download size. Furthermore, the
ScriptResourceHandler plugs in a little more neatly to the client- side ASP.NET AJAX infrastructure. Once a script
file has been loaded, the ScriptResourceHandler calls the client- side Sys.Application.notifyScriptLoaded()
function. If you use a script file that’s provided through a web resource, or one that isn’t embedded in an
assembly at all, it’s up to you to call Sys.Application.notifyScriptLoaded() at the end of your script. This step
notifies the client- side ASP.NET AJAX framework that the script has been loaded and the next one can now
be processed. Without this action, some ASP.NET AJAX features may not work correctly on certain browsers.

ASP.NET AJAX on the Server: The ScriptManager
Obviously, you wouldn’t want to type long URLs that point to script resources on every page that
requires ASP.NET AJAX. The solution is to use an ASP.NET control called the ScriptManager.

The ScriptManager is the brains of the server- side ASP.NET AJAX model. It’s a web control
that doesn’t have any visual appearance on the page. However, it performs a key task—it renders
the links to the ASP.NET AJAX JavaScript libraries.

To add the ScriptManager to a page, you can drag it from the AJAX Extensions tab of the
Toolbox. Here’s how the ScriptManager is declared in the .aspx file:

Each page that uses ASP.NET AJAX features requires an instance of the ScriptManager.
You can only use one ScriptManager on a page.

Along with rendering the links for the ASP.NET AJAX client libraries, the ScriptManager
also performs several other important tasks. It can render references to other script files
(often at the request of other ASP.NET AJAX–enabled controls and components), create proxies
that allow you to call web services asynchronously from the browser, and manage the way
UpdatePanel controls refresh their content. You’ll explore all of these topics in this chapter.

CHAPTER 32 ASP.NET AJAX 1483

Tip If you’re using ASP.NET AJAX features throughout your website, it makes sense to place the
ScriptManager in a master page. However, this can occasionally cause problems, because different
content pages may want to configure the properties of the ScriptManager differently (for example, add-
ing new scripts and web service references). In this scenario, the solution is to use the ScriptManager in
the master page and the ScriptManagerProxy in your content page. Each content page can configure the
ScriptManagerProxy control in the same way it would configure the ScriptManager.

Now that you’ve seen the bare essentials of the ASP.NET AJAX model—the client- side
libraries and the server- side ScriptManager control—you’re ready to begin building pages that
use ASP.NET AJAX features. You’ll begin by using ASP.NET AJAX as an alternative to the client
callback technique to get information from the server. Next, you’ll see how to use ASP.NET
AJAX–enabled web controls to get rich Ajax- style effects with little extra effort. Finally, you’ll
take a deeper look at the ASP.NET AJAX client libraries that support these features and learn
how to build your own ASP.NET AJAX component.

Server Callbacks
The first ASP.NET AJAX example you’ll consider is a revised version of the client callback page
from Chapter 31. This page includes two drop- down list boxes (see Figure 32-1). The first shows
a list of regions, and the second displays the territories in the selected region. The trick is that
the second list is filled each time the user makes a selection in the first. The process of filling the
list box requires a call to the server, which performs the database lookup and supplies the list.

 Figure 32-1. The dynamic list example revisited

CHAPTER 32 ASP.NET AJAX1484

To make this page work using the ASP.NET client callback feature, you need to imple-
ment the slightly cumbersome ICallbackEventHandler interface. ASP.NET AJAX uses a different
approach. In ASP.NET AJAX, callbacks are always made to a separate server- side method—
technically, a web service. This design improves the separation of logic, helping you organize
your code. More important, it takes care of the serialization work. That means you don’t need
to devise your own method to send complex data (like the string- splitting system that you saw
in Chapter 31, which clumsily separated values with the pipe character).

In the following sections, you’ll see how to build the web service you need, and you’ll con-
sider several options for consuming it.

Web Services in ASP.NET AJAX
When performing a server callback with ASP.NET AJAX, your client- side JavaScript code calls
a method in a server- side web service.

A web service is a collection of one or more server- side methods that can be called by
remote clients. To call a web service, that client sends a request message over HTTP. This
is similar to the process of performing a web- page postback, except the body of the request
contains the arguments that are being passed to the method. ASP.NET then creates the web
service object, runs the code in the corresponding web method, returns the result, and destroys
the web service object. The request and response message format varies—traditionally, it’s an
 XML- based standard called SOAP, but in ASP.NET AJAX, it’s a lighter- weight text- based alterna-
tive called JSON (JavaScript Object Notation), primarily for browser compatibility reasons.

It’s important to realize that although the ASP.NET AJAX callback mechanism uses web
services, it’s a specialized implementation. If you’re familiar with web services, you’ll find that
ASP.NET AJAX imposes some extra limitations. First, your web page can’t call non–ASP.NET
AJAX web services (for example, third- party web services created on other platforms). This is
because they won’t support the stripped- down, simplified JSON model that ASP.NET AJAX
uses. Second, your web page can’t call web services in different domains (on other web serv-
ers). This is because most web browsers prevent cross- domain use of the XMLHttpRequest
object to stop potential cross- site scripting attacks.

These limitations don’t prevent you from using the ASP.NET AJAX callback feature the
way it’s intended—as a mechanism for a page to perform server- side application tasks. How-
ever, if you’ve used web services to expose server- side functionality to rich clients, third- party
developers, and non- .NET applications, you need to realize that the use of web services in ASP.
NET AJAX is less ambitious.

Note There are ways around these limitations. For example, you could call a web method in your web
application, and have that web method call a web method that exists in another domain. This bridging tech-
nique works because the web server code doesn’t have the same restriction as the browser—it’s free to
launch cross- domain calls to other web services.

Creating the Web Service
Although web services are used in a specialized way in ASP.NET AJAX pages, the way they’re
defined is the same. Like any ASP.NET web service, the web services you’ll use with ASP.NET
AJAX consist of two pieces: an .asmx file that acts as the web service endpoint, and a .vb file

CHAPTER 32 ASP.NET AJAX 1485

that has the actual VB code. You add these files to the website that contains the ASP.NET AJAX
page that will use the web service.

The quickest way to create a web service in Visual Studio is to choose Website Add New
Item (or Project Add New Item for web projects), choose the Web Service template, supply
a filename (in the following example it’s TerritoriesService), and click Add. If you’re creating
a projectless website, the .asmx file will be placed in the web application directory, while the
matching .vb file is placed in the App_Code folder so that it will be compiled automatically.

Note You don’t need to host your web application in an IIS virtual directory in order to use web services
with ASP.NET AJAX. Instead, you can test it using the integrated web server in Visual Studio. This works
because the script code that calls your web service automatically uses a relative path. As a result, no matter
what port the Visual Studio web server chooses, the web page will be able to construct the right URL.

The .asmx file is unremarkable—if you open it, you’ll find a single line with a WebService
directive that identifies the language of the code, the location of the code- behind file, and the
name of the class:

In this example, a web service named TerritoriesService.asmx was created, with a code- behind
file named TerritoriesService.vb. The code- behind class defines a class named TerritoriesService,
which looks something like this:

The class derives from System.Web.Services.WebService, which is the traditional base class
for web services. However, this is just a convenience, and it isn’t necessary. By deriving from
WebService, you gain access to certain built- in objects (such as Application, Server, Session,
and User) without needing to go through the static HttpContext.Current property.

You’ll also notice that the web service class declaration is decorated with three attributes.
The first two—WebService (which sets an XML namespace that’s used in web service messages)
and WebServiceBinding (which indicates the level of standards compliance that the web ser-
vice supports)—only apply when you’re calling the web service using SOAP messages, and
aren’t relevant in ASP.NET AJAX pages. However, the third attribute—ScriptService—is much
more important. It configures the web service to allow JSON calls from JavaScript clients.
Without this detail, you won’t be able to use your web service in an ASP.NET AJAX page.

Note By default, the ScriptService attribute is commented out. Make sure you remove the comment
markers to create a web service that can be called from an ASP.NET AJAX page.

CHAPTER 32 ASP.NET AJAX1486

Creating the Web Method
With these details in place, you’re ready to write the code for your web service. Every web
service contains one or more methods that are marked with the WebMethod attribute. The
WebMethod attribute makes the method remotely callable. If you add a method that doesn’t
include the web method attribute, your server- side code will be able to use it, but your client- side
JavaScript won’t be able to call it directly.

It’s not necessary to make the method public (as done here), but it’s usually done as
a matter of convention and clarity.

Web methods have certain restrictions. The data types you use for parameter values and
return values must use one of the data types listed in Table 32-1.

Table 32-1. Web Service Data Types for Parameters and Return Values

Data Type Description
The basics Basic VB .NET data types such as integers (Short, Integer, Long), un-

signed integers (UShort, UInteger, ULong), nonintegral numeric types
(Single, Double, Decimal), and a few other miscellaneous types (Bool-
ean, String, Char, Byte, Date).

Enumerations Enumeration types (defined in VB .NET with the Enum keyword) are
supported. However, the web service uses the string name of the enu-
meration value (not the underlying integer).

Custom objects You can pass any object you create based on a custom class or struc-
ture. The only limitation is that only public data members and proper-
ties are transmitted, and all public members and properties must use
one of the other supported data types. If you use a class that includes
custom methods, these methods will not be transmitted to the client,
and they will not be accessible to the client.

Arrays and collections You can use arrays of any supported type. You can also use an ArrayList
(which is simply converted into an array), but you can’t use more
specialized collections such as the Hashtable. You can use generic
collections. In all these cases, the objects in the collection must also be
serializable.

XmlNode Objects based on System.Xml.XmlNode are representations of a portion
of an XML document. You can use this to send arbitrary XML.

DataSet and DataTable You can use DataSet and DataTable to return information from a rela-
tional database. Other ADO.NET data objects, such as Data- Columns and
DataRows, aren’t supported. When you use a DataSet or DataTable, it’s
automatically converted to XML in a similar way to using the GetXml() or
WriteXml() methods.

CHAPTER 32 ASP.NET AJAX 1487

SESSION STATE IN A WEB SERVICE

The WebMethod attribute accepts a number of parameters, most of which have little bearing in ASP.NET
AJAX pages. One exception is the EnableSession property, which is false by default, thereby rendering ses-
sion state inaccessible in your web service. This default makes sense in a traditional non–ASP.NET AJAX
web service, because there might not be any session information, and the client might not maintain the
session cookie at all. But with an ASP.NET AJAX web service, the web service calls are always being made
from the context of an ASP.NET web page, which is executing in the context of the current web application
user, and that user has a live session and a session cookie that’s transmitted automatically along with the
web service call.

Here’s an example that gives a web method access to the Session object:

For the drop- down list example, the web service must provide a way to retrieve the
regions that fall in a given territory. The following code shows a web service that contains
a web method named GetTerritoriesInRegion(), which retrieves the regions:

CHAPTER 32 ASP.NET AJAX1488

The code in the GetTerritoriesInRegion() method is similar to the code you used in
Chapter 31 to serve the client callback. However, this code has a key difference—instead of
returning a single long string with the results, the information is returned using a strongly
typed list of Territory objects. This is a much tidier approach that prevents casual errors.

The Territory class wraps two pieces of string information. It uses public member vari-
ables rather than properties because it’s intended solely as a data package that transports
information over the wire:

You can place this class definition in the same code file as the web service, or in a separate
file in the App_Code directory.

Calling the Web Service
Now that you’ve created the web service you need, the next step is to configure your page so
it knows about TerritoriesService. To do this, you need to add the ScriptManager control to
your page. Then, add the <Services> section in the tag for the ScriptManager control. This sec-
tion lists all the services your page uses and their locations, using ServiceReference elements.
Here’s how you add a reference for the TerritoriesService.asmx file shown earlier:

CHAPTER 32 ASP.NET AJAX 1489

The ScriptManager generates a JavaScript proxy, which you can use to make your calls. In
the current example, you use this proxy to call the web methods of the TerritoriesService web
service. Here’s a line of JavaScript code that calls the GetTerritoriesInRegion() method:

If you’ve programmed with ASP.NET web services before, you’ll notice that the client- side
syntax for calling a web service in ASP.NET AJAX is different than the .NET syntax. In a .NET
application, you must create the proxy object first, and then call the web service on that object.
In an ASP.NET AJAX page, you use a ready- made proxy object that has the same name as your
web service class.

Client-side web service calls are asynchronous, so you always need to supply the origi-
nal web method parameters along with one extra parameter, which identifies the client- side
JavaScript function that should be called when the result is received. Optionally, you can add
another reference that points out the functions to use when the call is completed:

The final step that’s needed to complete the list box example is to add the JavaScript code
that calls the web service and handles the result. In this case, you need at least two functions:
one to start the callback and one to receive the result. Here’s the JavaScript function that starts
the process:

Changing the selection in the first list box triggers the JavaScript function that performs
the callback and passes the regionID value from the current selection:

Technically, you could place all the code from the GetTerritories() function directly in the
onchange event attribute and reduce the number of JavaScript functions you need to write.
However, separating the code that calls the web service improves the readability of your code
and makes it easier to maintain.

The OnRequestComplete() function is triggered when the response arrives. It receives
the return value through its single parameter and then adds the information to the second
 drop- down list box on the web page:

CHAPTER 32 ASP.NET AJAX1490

The remarkable feature of this code is that it’s able to work with the result returned from
the web method without any extra deserialization work. That’s all the more impressive con-
sidering that the web method returns a generic list of Territory objects, which obviously has
no equivalent in JavaScript code. Instead, ASP.NET AJAX creates a definition for the Territory
object and returns the full list in an array. This allows your JavaScript code to loop over the
array and examine the ID and Description properties of each item.

Tip There’s one minor tweak that you can introduce here. Instead of using the document.getElementById()
method, you can use ASP.NET AJAX’s $get alias, which performs the same function and looks like this:

This is a common convention in ASP.NET AJAX pages.

Now this example works exactly as the client callback version in Chapter 31. The differ-
ence is that this version uses a strongly typed web method, with no messy string serialization
code. Also, you don’t need to add any server- side code to retrieve the callback reference and
insert it dynamically. Instead, you can use a straightforward proxy that provides access to your
web service.

As a finishing touch, you can add timeout and error- handling functions, as shown here:

The OnError() function receives an error object, complete with a get_message() method
that retrieves the error text and a get_stacktrace() method that returns a detailed call stack
showing where the error occurred. Figure 32-2 shows what happens when the web method
fails to connect to the database and throws a standard ApplicationException with this code:

CHAPTER 32 ASP.NET AJAX 1491

 Figure 32-2. Dealing with server- side errors on the client

This demonstrates the ASP.NET AJAX version of the client callback model. Although it has
the same plumbing as the ASP.NET client callback feature, the ASP.NET AJAX version provides
a stronger foundation that’s built on web services. However, both approaches have one feature
in common—no matter which technique you use, you still need to write your own JavaScript
code to update the page.

The Web Service Proxy
As you’ve already learned, in order to allow client- side JavaScript code to call a web service,
the web.config file requires a few additional configuration details. Fortunately, when you cre-
ate an ASP.NET application that targets .NET 3.5 in Visual Studio, these settings are added
automatically.

If you look in the web.config file, you’ll see that the .asmx extension is mapped to an HTTP
handler named ScriptHandlerFactory:

The ScriptHandlerFactory supports ordinary web service calls and adds support for JSON
requests. It replaces the standard ASP.NET 2.0 HTTP handler for .asmx requests, which expects
SOAP messages.

CHAPTER 32 ASP.NET AJAX1492

Note When you enable the HTTP handler for ASP.NET AJAX web services, you gain the ability to use
JSON calls. However, you don’t remove the ability to use other protocols. In other words, SOAP- based clients
can still interact with your web service.

If you’re curious, you can look at the JavaScript proxy that ASP.NET AJAX creates. To do
so, request your web service, but tack on /js at the end (as in TerritoriesService.asmx/js). When
you do, you’ll see code that creates the proxy class. Here’s a partial listing of the code for the
TerritoriesService proxy:

Figuring out what’s going on here takes a closer look. In JavaScript, classes can be defined
using a constructor (as you’ll learn later in this chapter, in the section “Object- Oriented Program-
ming in JavaScript”). This technique is used in this example to define the TerritoriesService class.
The constructor sets up the private data for the class. The prototype property is set with the public
members of the class. ASP.NET AJAX adds one client- side method for calling each web method.
In this example, that means you end up with a GetTerritoriesInRegion() method in the proxy class
that calls the GetTerritoriesInRegion() web method. Finally, the registerClass() method (which
is a feature that’s added by ASP.NET AJAX) registers the class with the client- side ASP.NET AJAX
framework.

Essentially, the TerritoriesService class stores the location of your web service and uses
a few magic bits from the ASP.NET AJAX script library to allow you to call it. In this example,
the proxy code will also include a JavaScript definition of the Territory class, because the
TerritoriesService uses Territory to return its data.

CHAPTER 32 ASP.NET AJAX 1493

Placing a Web Method in a Page
In most cases, it makes sense to create a separate web service to handle your ASP.NET AJAX call-
backs. This approach generally results in clearer pages and makes it easier to debug and refine
your code. However, in some situations you may decide you have one or more web methods
that are designed explicitly for use on a single page and that really shouldn’t be reused in other
parts of the application. In this case, you may choose to create a dedicated web service for each
page (just take the page name and add the word Service or Callbacks to the end), or you might
choose to move the web service code into the page.

Placing the web method code in the page is easy—in fact, all you need is a simple bit of
 cut-and- paste. First, copy your web method (complete with the WebMethod attribute) into the
 code- behind class for your page. Then, change it to a shared method, and add the System.Web.
Script.Services.ScriptMethod attribute. Here’s an example where the web method (named
GetTerritoriesInRegion) is placed in a web page named WebServiceCallback_PageMethods:

Next, remove the reference in the <Services> section of the ScriptManager tag and set the
ScriptManager.EnablePageMethods property to true:

Finally, change your JavaScript code so it calls the method through the PageMethods
object, as shown here:

The PageMethods object exposes all the web methods you’ve added to the current web
page.

One advantage of placing a web method in a page is that the method is no longer exposed
through an .asmx file. As a result, it’s not considered part of a public web service, and it’s not
as easy for someone else to discover. This is appealing if you’re trying to hide your web services
from curious users.

Another reason you might choose to code your web methods in the page class is to read val-
ues from view state or the controls on the page. When you trigger a page method, a stripped- down
version of the page life cycle executes, just like with the ASP.NET client callback feature you saw
in Chapter 31. Of course, there’s no point in trying to modify page details because the page isn’t
being rerendered, so any changes you make will simply be discarded.

CHAPTER 32 ASP.NET AJAX1494

ASP.NET AJAX CALLBACKS AND WCF SERVICES

It’s also possible to use a WCF (Windows Communication Foundation) service as the backend for an ASP.
NET AJAX page. Conceptually, this approach is the same as using an ordinary ASP.NET web service.
Practically, this approach might be preferred if you have an existing investment in WCF, such as an exist-
ing WCF service or other components that plug into the WCF pipeline. WCF is also slated to be the eventual
successor to ASP.NET web services—it’s a more comprehensive platform that encompasses web- based
messaging over open protocols and a host of other scenarios that ASP.NET web services don’t take into
account. All of the built- in ASP.NET AJAX application services (as described in the section “ASP.NET AJAX
Application Services”) are implemented as WCF services.

The trick to using a WCF service with ASP.NET AJAX is registering it correctly in the web.config file.
This configuration step configures the WCF service to use JSON serialization. It requires a bit more work
than ASP.NET web services (which you can configure with a simple attribute).

The easiest way to create a WCF service that has the required configuration settings is to choose Web-
site Add New Item from the Visual Studio menu, and then pick the AJAX- Enabled WCF Service template.
Visual Studio will create a .svc service endpoint (such as TerritoriesService.svc), which plays the same role
as the .asmx file. It will also create a linked code- behind file with the .vb extension, just as it does for ASP.
NET web services. Finally, it will register the service and configure its serialization approach in the web.
config file.

Note It makes no difference to the security of your application whether you place your web methods in
a page or a dedicated web service. Placing your web method in the page may hide it from casual users, but
a real attacker will start by looking at the HTML of your page, which includes a reference to the JavaScript
proxy. Malicious users can easily use the JavaScript proxy to make spurious calls to the web method. To
defend against threats like these, your web methods should always implement the same security measures
you use in your web pages. For example, any input you accept should be validated, your code should refuse
to return sensitive information to users who aren’t authenticated, and database access should use param-
eterized commands to prevent SQL injection attacks.

ASP.NET AJAX Application Services
Creating and calling custom web services is clearly a valuable technique in ASP.NET AJAX. You can
use web services to return additional data from a server- side database (as in the TerritoriesService
example), to trigger a server- side task, to get user- specific session information, and so on. To make
your life easier, ASP.NET AJAX also includes built- in services that you can use to access three com-
monly used features: forms authentication (Chapter 20), membership roles (Chapter 21), and user
profiles (Chapter 24). Although you could build similar services of your own, it makes more sense
for ASP.NET AJAX to provide a consistent web service model. In the future, it’s quite likely that ASP.
NET AJAX will provide more built- in services.

Before you can use any of these services, you need to enable them in the <system.web.
extensions> section of the web.config file:

CHAPTER 32 ASP.NET AJAX 1495

When using the services in your client- side JavaScript, you call them through the Sys.
Services property. For example, Sys.Services.AuthenticationService provides access to the
methods of the authentication service.

The following sections show you how to enable and use each of these three services. To
see these services in action, you can refer to the downloadable code for this chapter, which
includes a sample website that demonstrates all three services.

Authentication Service
The authentication service allows you to use forms authentication by calling a web service. To
enable it, you use the <authenticationService> element in the web.config file, as shown here:

If requireSSL is set to true, the cookie is only transmitted back to the server when the
browser is requesting a page over SSL. Otherwise, the cookie is sent with every request.

Note One limitation of the authentication service is that it only supports cookie- based authentication.

When using the authentication service, you must also be using forms authentication.
Here’s a web.config file that supplies these details:

CHAPTER 32 ASP.NET AJAX1496

Once you’ve enabled the authentication service, you can use the members that are listed
in Table 32-2 in your client- side JavaScript code.

Table 32-2. Authentication Service Members

Member Description
login() Tests the supplied user name and password and logs the user in if they are valid.

The forms authentication ticket is generated and the authentication cookie
is returned, just as when logging in through server- side code on a login page.
When calling login(), you can use additional parameters to specify if a persistent
cookie should be used, and to provide a URL where the user will be redirected
after a successful login. The actual login process is asynchronous, so you must
supply callbacks to respond when the login process completes or fails.

logout() Removes the current user’s authentication ticket using an asynchronous call.
You can supply callbacks that are triggered when the logout process completes
or fails.

get_isLoggedIn() Returns true if the user is currently logged in, and false otherwise.

As with all the application services, the authentication service does its work asynchro-
nously. That means your code carries on while the login process is under way. To react when
the login has completed, you must supply a redirect URL (in the fourth parameter) or supply
a JavaScript callback (in the sixth parameter).

Here’s an example that uses the latter approach and calls the onLoginCompleted() func-
tion after the server responds, and onLoginFailed to inform the user when the asynchronous
call fails:

The last argument of the login() method accepts any object. It’s known as the user con-
text object, and this pattern is preserved in all of the ASP.NET asynchronous AJAX application
service calls. Essentially, the user context object is passed to your callbacks. This functionality
is primarily useful if you have more than one asynchronous operation under way at the same

CHAPTER 32 ASP.NET AJAX 1497

time, and they are both handled by the same callback function. In this case, you can pass addi-
tional information about the operation that triggered the callback using a custom user context
object.

Here’s what the login callback functions look like:

Notice that a complete login process simply means you’ve received the server response. It
doesn’t indicate that the user was successfully logged in. In order to determine if the user was
logged in, you must check the validCredentials parameter, as shown in this example.

Role Service
The role service allows you to use role- based authorization (as described in Chapter 23) by
calling a web service. To enable it, you use the <roleService> element in the web.config file, as
shown here:

To use the role service, the user must already be authenticated (through Forms authenti-
cation or Windows authentication). Although you don’t need to perform this authentication
through the forms authentication service, in many cases you’ll choose to implement both the
authentication service and role service at the same time.

Here’s a web.config that uses forms authentication (with the authentication service) and
roles (with the role service):

CHAPTER 32 ASP.NET AJAX1498

Once you’ve enabled the role service, you can use the members that are listed in
 Table 32-3 in your client- side JavaScript code.

Table 32-3. Role Service Members

Member Description
load() Retrieves the role information for the current user on the client side. You must

do this before you call isUserInRole() or get_roles(). The load process is asyn-
chronous, so you must supply callbacks to react when the process completes or
fails.

isUserInRole() Returns true if the user has been assigned the role that you indicate. You must
call load() before using this method.

get_roles() Returns an array of strings, one for each role that’s assigned to the current user.
You must call load() before using this property procedure.

The first step to using the role service is calling load() and supplying the appropriate call-
backs. You can then test the user’s role membership when the completed callback fires.

The following code shows the most common way to implement this pattern. It shows
a specific <div> when the current user is an administrator:

CHAPTER 32 ASP.NET AJAX 1499

Note As you’ll learn later in this chapter, ASP.NET AJAX automatically calls the pageLoad() function (if
you’ve added it) after the page is loaded and the client- side ASP.NET AJAX framework has been initialized.
It’s similar to handling the JavaScript onload event.

Remember, you should only call load() if you know the current user is authenticated.
That means you can safely call load() on a secured (non- anonymous) page, or after calling
Sys.Services.AuthenticationService.get_isLoggedIn() and verifying it’s true. If you call load()
and the user isn’t authenticated, the operation will appear to complete successfully, but no
role information will be returned.

MAINTAINING SECURITY WHEN USING APPLICATION SERVICES

When using forms authentication and role- based authorization, you must keep good security practices in
mind. For example, when you enable the role service, you must assume it’s possible for end users to dis-
cover their role membership (in other words, to determine the exact name of each role they belong to). If
this isn’t acceptable, you need to limit your role checking to server- side code.

Most importantly, you should never rely on client- side code to hide sensitive information. In the previ-
ous example, a <div> is displayed or hidden based on a role test. However, the content of that <div> is
easily retrievable in the client- side markup of the page, even if it’s not currently displayed. For that reason,
this <div> isn’t an acceptable place to put sensitive content (such as information that only administrators
should be able to see). It is a reasonable place to put controls that only apply to administrators (for example,
links that will fail with security exceptions for other types of users).

Lastly, if you provide a client- callable web method, you must assume it can be called by users in any
role (and even anonymous users if it’s in an unsecured part of your website). Your client- side code might
check role membership before allowing a call to a specific web method, but malicious users can call the
same method through other mechanisms. Thus, if you need to create a secure web method, your web
method needs to perform its own role checking, as described in Chapter 23.

CHAPTER 32 ASP.NET AJAX1500

Profile Service
The profile service allows you to use the profiles feature to retrieve user- specific information
that ASP.NET automatically stores in a server- side database (as described in Chapter 24).

To enable the profile service, you use the <profileService> element in the web.config file.

You must supply a comma- separated list of properties that will be made accessible on the
client (in the readAccess attribute) and changeable on the client (in the writeAccess attribute).
Remember, there are security implications to your choice. If you allow read access, logged- in
users can hack the system to read these properties in their profile at any time. If you allow
write access, logged- in users can circumvent your client- side code to arbitrarily change these
values in their profiles, avoiding any sort of validation or data checking. Neither one of these
possibilities is necessarily cause for alarm, but depending on the type of information you store
in a profile and the way you act on it, it may introduce a problem in some scenarios. Caution—
and a detailed threat analysis—is a good idea if you plan to use these services in a website that
has high security requirements.

Here’s a complete web.config file using the profile service (and the forms authentication
service to log the user in):

CHAPTER 32 ASP.NET AJAX 1501

Once you’ve enabled the profile service, you can use the members that are listed in
 Table 32-4 in your client- side JavaScript code.

Table 32-4. Profile Service Members

Member Description
load() Retrieves the profile properties (that you’ve listed in the readAccessProperties attri-

bute) for the current user on the client side. You must do this before you can access
the profile data through the properties collection. The load process is asynchronous,
so you must supply callbacks to react when the process completes or fails.

properties Provides a collection of profile data that you can read or change. You access indi-
vidual properties by name, as in Sys.ProfileService.properties.FirstName.

save() Passes the current values in the properties collection back to the web server, where
they will be updated. Values that aren’t listed in the writeAccessProperties attribute
won’t be passed back to the server—they’re simply ignored.

Here’s a small portion of client- side JavaScript that uses the profile service to display
property data in an alert box:

You can modify any value in the properties code and then use a similar call to save the
updated profile:

This gives you the ability to retrieve and change profile data without triggering a postback.

CHAPTER 32 ASP.NET AJAX1502

ASP.NET AJAX Server Controls
The web service features in ASP.NET AJAX give your client- side code a valuable window to the
server. However, they force you to shoulder most of the hard work. It’s up to you to craft the
right web methods, call them at the right times, and update the page appropriately using noth-
ing but JavaScript. In a complex application, this can be quite tedious.

For this reason, ASP.NET provides a higher- level server- side model that provides controls
and components you can use in a web form. Using these ingredients, you can work entirely
with server- side code. The ASP.NET AJAX controls will emit the ASP.NET AJAX script they need,
and they’ll use the ASP.NET AJAX script libraries behind the scenes. The potential drawback to
this approach is reduced flexibility. Although server- side controls are more productive, they can
also limit what you can do. For example, if you want to have several controls interact with one
another on the client side, you’ll almost certainly need to write some client- side script.

In the following sections, you’ll see how to use the three ASP.NET AJAX controls that are
included as part of ASP.NET 3.5. These controls include the remarkably powerful UpdatePanel,
the Timer, and the UpdateProgress control. All of these controls support partial rendering,
which is a key Ajax concept. Using partial rendering, you can seamlessly update content on
a page without forcing a full postback.

Note All the ASP.NET AJAX controls require a ScriptManager. If you place them on a page that doesn’t
contain a ScriptManager, they won’t work and will throw an InvalidOperationException.

Partial Rendering with the UpdatePanel
The UpdatePanel is a handy control that lets you take an ordinary page with server- side logic
and make sure it refreshes itself in flicker- free Ajax style.

The basic idea is that you divide your web page into one or more distinct regions, each of
which is wrapped inside an invisible UpdatePanel. When an event occurs in an UpdatePanel
that would normally trigger a postback, the UpdatePanel intercepts the event and performs an
asynchronous callback instead. Here’s an example of how it happens:

 1. The user clicks a button inside an UpdatePanel.

 2. Some client- side JavaScript code (that has been generated by ASP.NET AJAX) intercepts
the client- side click event and performs a callback to the server.

 On the server, your normal page life cycle executes, with all the usual events. Finally,
the page is rendered to HTML and returned to the browser.

 3. The client- side JavaScript code receives the full HTML and updates every UpdatePanel
on the page by replacing its current HTML with the new content. (If a change has
occurred to content that’s not inside an UpdatePanel, it’s ignored.)

CHAPTER 32 ASP.NET AJAX 1503

Note The ASP.NET AJAX UpdatePanel serves a similar purpose to the DynamicPanel custom control that
was developed using ASP.NET’s client callback feature in Chapter 31. Both controls use an asynchronous call
to fetch new content and update part of the page without a postback. However, the DynamicPanel in Chapter 31
is more limited, because you must use it with the DynamicPanelRefreshLink in order to trigger the asynchro-
nous update. The UpdatePanel can intercept a postback that’s triggered by any control inside the panel. Also,
UpdatePanels work in concert—by default, every UpdatePanel is updated after every postback, although you
can change this behavior.

The UpdatePanel control works in conjunction with the ScriptManager control. When
using the UpdatePanel, you must be sure that the ScriptManager.EnablePartialRendering
property is set to true (which is the default value). You can then add one or more UpdatePanel
controls to your page.

As you drag and drop controls in an UpdatePanel, the content appears in the
<ContentTemplate> section. Here’s an example of an UpdatePanel that contains a label
and a button:

The UpdatePanel is a template- based control. When it renders itself, if copies the content
from its ContentTemplate into the page. As a result, you can’t dynamically add controls to the
UpdatePanel using the UpdatePanels.Controls collection. However, you can insert controls
dynamically using the UpdatePanels.ContentTemplateContainer.Controls collection.

The UpdatePanel doesn’t derive from Panel. Instead, it derives directly from Control.
The UpdatePanel has one role in life—to serve as a container for content that you want to
refresh asynchronously. Unlike the standard ASP.NET Panel, an UpdatePanel has no visual
appearance and doesn’t support style settings. If you want to display a border around your
UpdatePanel or change the background color, you’ll need to place an ordinary Panel (or just
a static <div> tag) in your UpdatePanel.

Tip Nikhil Kothari of the ASP.NET team has released a derived version of UpdatePanel (named
StyledUpdatePanel) that allows you to use a CSS style to format your panel, making it easy to give the
panel a border and background color. He also provides an AnimatedUpdatePanel that uses animated
effects to signal when the panel’s content is refreshed. (For example, one possible animated effect is to
fade in the new content over the old content). You can find both controls at

.

CHAPTER 32 ASP.NET AJAX1504

On the page, the UpdatePanel renders itself as a <div> tag. However, you can configure
the UpdatePanel so it renders itself as an inline element by changing the RenderMode prop-
erty from Block to Inline. For example, you could take this step when you want to create an
UpdatePanel that wraps text inside a paragraph or some other block element.

 Figure 32-3 shows a sample web page that consists of three UpdatePanel controls (which
have been highlighted using an off- white background color). Each UpdatePanel features the
same content: a Label control and a Button control. Every time the page is posted to the server,
the Page.Load event fills all three labels with the current time:

 Figure 32-3. Using the UpdatePanel to avoid postbacks

This page demonstrates the flicker- free refreshing of an asynchronous callback. Click any
button, and all three labels will be quietly updated. The one exception is if the client browser
doesn’t support the XMLHttpRequest object. In this situation, the UpdatePanel will downgrade
to using full- page postbacks.

CHAPTER 32 ASP.NET AJAX 1505

Note When you use the UpdatePanel, you don’t reduce the amount of bandwidth being used or the time
taken to receive the response from the server, because the entire page is still sent. The only difference is
that the page is updated without a distracting flicker.

Handling Errors
When the UpdatePanel performs its callback, the web- page code runs in exactly the same
way as if the page had been posted back. The only difference is the means of communication
(the page uses as asynchronous XMLHttpRequest call to get the new data) and the way the
received data is dealt with (the UpdatePanel refreshes its inner content, but the remainder of
the page is not changed). For that reason, you don’t need to make significant changes to your
 server- side code or deal with new error conditions.

That said, problems can occur when performing an asynchronous postback just as they
do when performing a synchronous postback.

You can test this behavior by adding code like this to the event handler for the Page.Load
event:

When the web page throws an unhandled exception, the error is caught by the ScriptMan-
ager and passed back to the client. The ASP.NET AJAX client libraries then throw a JavaScript
error in the page.

What happens next depends on your browser settings. If you’ve enabled script debug-
ging (as described in Chapter 31), Visual Studio breaks on the line that caused the error. However,
because this error is being deliberately thrown by the ASP.NET AJAX infrastructure to notify
you about a server- side problem, this behavior isn’t much help. You can’t correct the server- side
problem by changing the client- side code that throws the error. Instead, you’ll simply need to
stop the application or continue running it and ignore the problem.

If you aren’t using script debugging, the browser may or may not notify you that a prob-
lem has occurred. Usually, most browsers are configured to quietly suppress JavaScript errors.
In Internet Explorer, an “Error on page” message appears in the bottom- left corner of the
status bar, indicating the problem. If you double- click this notification icon, a dialog box will
appear with the full error details, as shown in Figure 32-4. Alternatively, if you’ve enabled
the Display a Notification About Every Script Error setting in Internet Explorer, you’ll see the
message shown in Figure 32-4 when the error occurs, and you won’t need to double- click
the notification icon.

CHAPTER 32 ASP.NET AJAX1506

 Figure 32-4. Displaying a client- side message about a server- side error

You can change this behavior by handling the error with client- side JavaScript. To do so, you
need to register a callback for the endRequest event of the System.Web.PageRequestManager
class. (The PageRequestManager is a core part of the application model in ASP.NET AJAX. It man-
ages the refresh process for the UpdatePanel controls and fires events as the page moves through
the stages in its lifetime.)

Here’s a client- side script block that does exactly that. First, it defines a function that’s
triggered automatically when the page is first loaded. There’s no need to use the onload event
here, because ASP.NET AJAX automatically calls the pageLoad() function, if it exists. Similarly,
ASP.NET AJAX calls the pageUnload() function when the page is being unloaded. All other
events need to be hooked up manually—and that’s what this pageLoad() function does. It gets
a reference to the current instance of the PageRequestManager, and attaches a second func-
tion to the endRequest event:

CHAPTER 32 ASP.NET AJAX 1507

The endRequest event fires at the end of every asynchronous postback. In this example, the
endRequest() function checks if an error has occurred. If it has, the error message is displayed in
another control, and the set_errorHandled() method is called to suppress the standard ASP.NET
AJAX error- handling behavior (the error message box). Alternate steps you could take include
hiding or displaying a content region, displaying additional information, disabling controls,
prompting the user to try again, and so on.

 Figure 32-5 shows the new result of this error- handling code.
There’s another option for dealing with the errors that occur during an asynchronous

postback. You can use custom error pages, just as you do with ordinary web pages. All you
need to do is add the <customErrors> element to the web.config file, as you did in Chapter 5.

For example, here’s a <customErrors> element that redirects all errors to the page named
ErrorPage.aspx:

Now, when the PageRequestManager is informed of an error, it will redirect the browser
to ErrorPage.aspx. It also adds an aspxerrorpath query string argument to the URL that indi-
cates the URL of the page where the problem originated, as shown here:

The custom error settings override any other form of error handling, such as handling the
endRequest event. If your website uses custom error pages but you don’t want them to apply
to asynchronous postbacks, you must set the ScriptManager.AllowCustomErrorsRedirect
property to false.

CHAPTER 32 ASP.NET AJAX1508

 Figure 32-5. Showing error information in the page

Note ASP.NET 3.5 includes two controls that can’t be used in an UpdatePanel: the FileInput control and
the HtmlInputFile the control. However, these controls can be used on a page that contains an UpdatePanel,
so long as they aren’t actually in the UpdatePanel.

Conditional Updates
If you have more than one UpdatePanel and each is completely self- contained, you can
configure the panels to update themselves independently. Simply change the UpdatePanel.
UpdateMode property from Always to Conditional. Now, the UpdatePanel will refresh itself
only if you cause a postback by clicking a control in that UpdatePanel. So if you use this with
the example in Figure 32-3, when you click a button, the label in that panel will be updated.
The other panels will remain untouched.

There’s an interesting quirk here. Technically, when you click the button all the labels
will be updated, but only part of the page will be refreshed on the client side to show that fact.
Most of the time, this distinction isn’t important. However, it can lead to possible anomalies
because the new updated value of each label will be stored in view state. As a result, the next
time the page is sent back to the server, the labels will all be set to their most recent values.

CHAPTER 32 ASP.NET AJAX 1509

Tip For more complex page designs, you can nest one conditional UpdatePanel in another. When the par-
ent panel updates itself, all the contained panels will also update themselves. However, if one of the controls
in a child panel triggers an update in that child panel, the rest of the parent panel won’t be updated.

Interrupted Updates
There’s one caveat with the approach shown in the previous example. If you perform an
update that takes a long time, it could be interrupted by another update. As you know, ASP.
NET AJAX posts the page back asynchronously, so the user is free to click other buttons while
the postback is under way. ASP.NET AJAX doesn’t allow concurrent updates, because it needs
to ensure that other information—such as the page view state information, the session cookie,
and so on—remains consistent. Instead, when a new asynchronous postback is started, the
previous asynchronous postback is abandoned.

For the most part, this is the behavior you want. If you want to prevent the user from inter-
rupting an asynchronous postback, you can add JavaScript code that disables controls while
the asynchronous postback is under way. To do this, you need to attach an event handler to the
beginRequest event, in the same way that you added an event handler to the endRequest event
in the error handling example. Another option is to use the UpdateProgress control discussed
later in this chapter.

Triggers
When you use conditional update mode, you have a few other options for triggering an
update. One option is to use triggers to tell an UpdatePanel to render itself when a specific
event occurs in a specific control on the page.

Technically, the UpdatePanel always uses triggers. All the controls inside an UpdatePanel
automatically become the triggers for the UpdatePanel. In the current example, you’ve seen
how this works with nested buttons—when the Button.Click event occurs, an asynchronous
postback takes place. However, it also works with the default event of any web control (as
designated by the DefaultEvent attribute in that control’s code), provided that event posts
back the page. For example, if you place a TextBox inside an UpdatePanel and set the TextBox.
AutoPostBack property to true, the TextBox.TextChanged event will trigger an asynchronous
postback and the UpdatePanel will be updated.

Triggers allow you to change this behavior in two ways. For one, they allow you to set up
triggers to link to controls outside the panel. For example, imagine you have this button else-
where on your page:

Ordinarily, this button would trigger a full postback. But by linking it to an UpdatePanel,
you can change it to perform an asynchronous postback. To implement this design, you need
to add an AsyncPostBackTrigger to the UpdatePanel that specifies the ID of the control you’re
monitoring and the event that triggers the refresh:

CHAPTER 32 ASP.NET AJAX1510

The EventName attribute specifies the event you want to monitor. Usually, you don’t
need to set this because you’ll be monitoring the default event, which is used automatically.
However, it’s a good practice to be explicit.

Now, when you click the cmdOutsideUpdate button, the click will be intercepted on the
client side, and the PageRequestManager will perform an asynchronous postback. All the
UpdatePanel controls that have UpdateMode set to Always will be refreshed. All the UpdatePanel
controls that have UpdateMode set to Conditional and have an AsyncPostBackTrigger for
cmdOutsideUpdate will also be refreshed.

Note You can add multiple triggers to the same UpdatePanel, in which case any of those events will trig-
ger an update. You can add the same trigger to several different conditional UpdatePanel controls, in which
case that event will update them all. You can also mix and match triggers and nested controls in a conditional
UpdatePanel. In this case, both the events in the nested controls and the events in the trigger controls will
cause an update.

You can use triggers in one other way. Instead of using them to monitor more controls,
you can use them to tell the UpdatePanel to ignore certain controls. For example, imagine
you have a button in your UpdatePanel. Ordinarily, clicking that button will trigger an asyn-
chronous request and partial update. If you want it to trigger a full- page postback instead, you
simply need to add a PostBackTrigger (instead of an AsynchronousPostBackTrigger).

For example, here’s an UpdatePanel that contains a nested button that triggers a full post-
back rather than an asynchronous postback:

This technique isn’t as common, but it can be useful if you have several controls in an
UpdatePanel that perform limited updates (and so use asynchronous postbacks) and one that
performs more significant changes to the whole page (and so uses a full postback).

CHAPTER 32 ASP.NET AJAX 1511

Timed Refreshes with the Timer
The previous section showed you how to refresh self- contained portions of the page. Of course,
in order for this technique to work, the user needs to initiate an action that would ordinarily
cause a postback, such as clicking a button.

In some situations, you might want to force a full- or partial- page refresh without wait-
ing for a user action. For example, you might create a page that includes a stock ticker, and
you might want to refresh this ticker periodically (say, every 5 minutes) to ensure it doesn’t
become drastically outdated. ASP.NET AJAX includes a Timer control that can help you imple-
ment this design.

The Timer control is refreshingly straightforward. You simply add it to a page and set
its Interval property to the maximum number of milliseconds that should elapse before an
update. For example, if you set Interval to 60000, the timer will force a postback after one
minute elapses.

You can place the Timer anywhere on the page. It doesn’t need to be in an UpdatePanel.
(In fact, your page doesn’t need to include any UpdatePanel controls.)

Note Obviously, the timer has the potential to greatly increase the overhead of your web application and
reduce its scalability. Think carefully before introducing an automatic postback feature, and make the inter-
vals long rather than short.

The timer raises a server- side Tick event, which you can handle to update your page.
However, you don’t necessarily need to use the Tick event, because the full- page life cycle
executes when the timer fires. This means you can respond to other page and control events,
such as Page.Load.

The timer is particularly well suited to pages that use partial rendering, as discussed in
the previous section. That’s because a refresh in a partially rendered page might just need to
change a single portion of the page. Furthermore, partial rendering makes sure your refreshes
are much less intrusive. Unlike a full postback, a callback with partial rendering won’t cause
flicker and won’t interrupt the user in the middle of a task.

To use the timer with partial rendering, wrap the updateable portions of the page in
UpdatePanel controls with the UpdateMode set to Conditional, and add a trigger that forces
an update whenever the timer fires:

CHAPTER 32 ASP.NET AJAX1512

All the other portions of the page can be left as is, or you can wrap them in conditional
UpdatePanel controls with different triggers if you need to update them in response to other
actions.

To stop the timer, you simply need to set the Enabled property to false in server- side code.
For example, here’s how you could disable the timer after ten updates:

Time-Consuming Updates with UpdateProgress
ASP.NET AJAX also includes an UpdateProgress control that works in conjunction with partial
rendering of the UpdatePanel. Essentially, the UpdateProgress control allows you to show
a message while a time- consuming update is under way.

Note The UpdateProgress control is slightly misnamed. It doesn’t actually indicate progress; instead, it
provides a wait message that reassures the user that the page is still working and the last request is still being
processed. You saw one implementation of this technique with a JavaScript page processor in Chapter 31.

When you add the UpdateProgress control to a page, you get the ability to specify some
content that will appear as soon as an asynchronous request is started and disappear as soon
as the request is finished. This content can include a fixed message or image. Often, an ani-
mated GIF is used to simulate a progress bar.

 Figure 32-6 shows a page that uses the UpdateProgress control at three different points
in its life cycle. The top figure shows the page as it first appears, with a straightforward
UpdatePanel control containing a button. When the button is clicked, the asynchronous
callback process begins. At this point, the contents of the UpdateProgress control appear
underneath (as shown in the middle figure). In this example, the UpdateProgress includes
a text message, an animated GIF that appears as progress bar, and a cancel button. When
the callback is complete, the UpdateProgress disappears and the UpdatePanel is updated, as
shown in the bottom image of Figure 32-6.

CHAPTER 32 ASP.NET AJAX 1513

 Figure 32-6. A wait indicator

CHAPTER 32 ASP.NET AJAX1514

The markup for this page defines an UpdatePanel followed by an UpdateProgress:

This isn’t the only possible arrangement. Depending on the layout you want, you can
place your UpdateProgress control somewhere inside your UpdatePanel control.

The code for this page has a slight modification from the earlier examples. Because the
UpdateProgress control only shows its content while the asynchronous callback is under way,
it only makes sense to use it with an operation that takes time. Otherwise, the UpdateProgress
will only show its ProgressTemplate for a few fractions of a second. To simulate a slow process,
you can add a line to delay your code 10 seconds, as shown here:

There’s no need to explicitly link the UpdateProgress control to your UpdatePanel control.
The UpdateProgress automatically shows its ProgressTemplate whenever any UpdatePanel
begins a callback. However, if you have a complex page with more than one UpdatePanel, you
can choose to limit your UpdateProgress to pay attention to just one of them. To do so, simply
set the UpdateProgress.AssociatedUpdatePanelID property with the ID of the appropriate
UpdatePanel. You can even add multiple UpdateProgress controls to the same page, and link
each one to a different UpdatePanel.

CHAPTER 32 ASP.NET AJAX 1515

Cancellation
The UpdateProgress control supports one other detail: a cancel button. When the user clicks
a cancel button, the asynchronous callback will be canceled immediately, the UpdateProgress
content will disappear, and the page will revert to its original state.

Adding a cancel button is a two- step process. First, you need to add the JavaScript code
that performs the cancellation. Here’s the code you need:

Once you’ve added this code, you can use JavaScript code to call its AbortPostBack() func-
tion at any time and cancel the callback. Here’s the HTML button in the current example that
calls the AbortPostBack() function when it’s clicked:

Typically, you’ll place this button (or an element like this) in the ProgressTemplate of the
UpdateProgress control, because it only applies while the callback is under way.

Tip It makes sense to use an abort button for tasks that can be safely canceled because they don’t affect
external state. For example, users should be able to cancel time- consuming queries. However, it’s not a good
idea to add cancellation to an update operation, because the server will continue until it finishes the update,
even if the client has stopped listening for the response.

Deeper into the Client Libraries
So far, you’ve spent most of your time using the higher- level features that the ASP.NET AJAX
framework provides. You began by considering web service support, and then you explored
key server controls like the UpdatePanel, Timer, and UpdateProgress. Along the way you’ve

CHAPTER 32 ASP.NET AJAX1516

seen a few details of the client- side ASP.NET AJAX model—for example, the $get alias and the
events of PageRequestManager. However, you haven’t explored the underlying plumbing.

Many developers will prefer this approach. They’ll rely most on the server- side features in
ASP.NET AJAX and dip into the client model to handle the occasional event. However, there’s
one task that requires a better understanding of the client- side model: creating custom con-
trols that use ASP.NET AJAX features.

In the following sections, you’ll take a tour of the client libraries and learn how to use
them. Once you have a solid grasp of these basics, you’ll learn about how you can create
a basic client- side ASP.NET AJAX control. However, you won’t learn how to extend this exam-
ple into a full- blown ASP.NET web control. Custom control development with ASP.NET AJAX
is a complex, detailed topic. If you’re a business developer, you’ll probably prefer to use existing
ASP.NET AJAX controls rather than code your own. If you’re a component developer, you can
continue down the path to custom control development with another book. (One book that illu-
minates the entire ASP.NET AJAX toolkit in detail, including custom controls, is ASP.NET AJAX
in Action [Manning, 2007]. More specialized books that focus specifically on using ASP.NET
AJAX to develop custom controls are planned, but not in print at the time of this writing.)

Understanding the Client Model
The fundamental building block of ASP.NET AJAX is the client- side JavaScript libraries. They
provide the glue that holds all the other features together. Figure 32-7 shows a high- level look
at ASP.NET AJAX that shows where the client libraries fit in.

 Figure 32-7. The ASP.NET AJAX architecture

CHAPTER 32 ASP.NET AJAX 1517

The client libraries add a dash of .NET flavor to the JavaScript world. They consist of three
central parts:

JavaScript extensions: These give you a way to use object- oriented techniques with ordi-
nary JavaScript code.

Core classes: These establish a stripped- down framework with basic functionality that’s
required in an Ajax application. The core classes include classes for string manipulation,
components, networking, and web services.

UI Framework: This sits on top of the infrastructure established by the core classes. The
UI Framework adds the concept of client- side controls and the client- side page.

Note Altogether, the client libraries are quite compact, requiring the client to download less than 200 KB
of script code. When visiting an ASP.NET- powered site, this script code is only downloaded once, and then
cached by the browser. In addition, ASP.NET sends a compressed version of the script document if the
browser supports it. (ASP.NET only uses compression when receiving requests from Internet Explorer 7
or later. Even though earlier versions of Internet Explorer support compression, there is a bug that causes
browser cache settings to sometimes be ignored.)

Object-Oriented Programming in JavaScript
JavaScript is not a true object- oriented language, because it lacks support for core object- oriented
features like inheritance and interfaces. However, JavaScript is often described as an object- based
language, because JavaScript provides built- in objects (representing browser windows, the cur-
rent HTML document, and so on).

Unfortunately, JavaScript doesn’t include the ability to define custom classes. However,
there are popular workarounds that developers use to create code constructs that approximate
classes.

First, it’s easy enough to create a one- off object with any set of properties you choose. You
simply need to create an ordinary object (using the var keyword) and then create the proper-
ties you want by assigning to them. For example, this code creates an employee object with
two attached string variables: FirstName and LastName.

The problem with this code is that it doesn’t use a class. As a result, there’s no way to
verify that the object you’re using is truly an employee, and there’s no way to be sure that two
employee objects really expose the same set of members.

CHAPTER 32 ASP.NET AJAX1518

Note JavaScript is a very flexible and loose language. In the preceding example, the FirstName and
LastName properties are created automatically as soon as the code assigns values to them—there’s no need
to explicitly declare the properties first. This trick makes it easy to create objects, but it’s also rife with many
potential problems. For example, it’s easy to accidentally create a new property by referring to one of the
existing properties but inadvertently using the wrong name.

To create a more standardized object definition, JavaScript developers usually fall back on
one of two tricks: closures or prototypes.

Closures
Essentially, a closure is a function that encapsulates a class. You don’t actually run a closure
function. Instead, you run the nested functions inside it. These functions are effectively the
methods (and property procedures) of the class. They have access to any variables defined
inside the closure function.

The easiest way to understand the closure model is to consider an example. Here’s a clo-
sure that effectively defines an Employee class with a first and last name:

The variables that you define in the closure (in this example, _firstName and _lastName)
are local to the function, and can’t be accessed outside the function. On the other hand, the
methods (in this example, set_FirstName(), get_FirstName(), and so on) can be called at any
time.

CHAPTER 32 ASP.NET AJAX 1519

To create an employee object, you’d use code like this in the same script block or in a dif-
ferent script block that occurs later on the page:

The first line creates a variable named emp, and sets emp to hold a reference to the
Employee() function. In other words, your object instance is really just a function pointer—
one that points to the constructor that creates the object. Figure 32-8 shows the result.

 Figure 32-8. Creating a custom object in JavaScript

Early builds of ASP.NET AJAX used closures for object- oriented programming. However,
later builds switched to the prototype system.

Note Technically, the Employee() function gives itself four new properties: set_FirstName, get_FirstName,
set_LastName, and get_LastName. It assigns a function to each property. This allows you to invoke each
property as though it were a method. In other words, when you write emp.get_FirstName(), you are access-
ing the get_FirstName() property, which is actually a function.

This system introduces some possible errors. For example, you might refer to a function when you mean to
invoke it (by omitting the parentheses), or inadvertently remove a method from an object (by assigning to the
property). Developers must balance the value of objects in client- side script against the extra complexity they
entail.

Prototypes
The other approach developers use to define classes in JavaScript is with prototypes. For vari-
ous technical reasons, prototypes are preferred in ASP.NET AJAX. Prototypes offer better
performance in some browsers (such as Firefox), and they provide better support for reflection,
IntelliSense, and debugging. These differences are because prototypes have their members
“baked in,” while closures create their members each time an object is instantiated.

To use a prototype, you rely on the public prototype property that every JavaScript object
has. This property exposes the public interface for the object. To add publicly callable methods
to an object, you assign new properties to the prototype.

CHAPTER 32 ASP.NET AJAX1520

Here’s a refactoring of the code you saw earlier that defines an Employee object using the
prototype:

The Employee object itself is actually a reference to a function that plays the role of a con-
structor. It initializes all the private members. The public members are defined separately,
by adding to the prototype. The code that uses the prototype version of the Employee class
remains the same:

There’s a subtle difference in the way that closures and prototypes work. Essentially, a clo-
sure creates the specialized members for your object (set_FirstName, get_FirstName, and so on),
every time a new object is created based on that closure. But with the prototype approach, the
prototype object is created and configured once, and then copied into each new object. This is
the reason for the performance improvement on some browsers.

Just as importantly, prototypes make certain tasks, such as reflection, easier in ASP.NET
AJAX. Thus, the prototype approach is preferred.

Registering Classes with ASP.NET AJAX
Closures and prototypes are already available in the JavaScript language. In the following sec-
tions, you’ll see three ingredients that ASP.NET AJAX adds for object- oriented development:
namespaces, inheritance, and interfaces. But before you can use any of these features, you
need to register your JavaScript class with the ASP.NET AJAX framework.

CHAPTER 32 ASP.NET AJAX 1521

This step is easy. First, make sure your JavaScript code is on a web page that includes the
ASP.NET AJAX client libraries. (The easiest way to do this is to add the ScriptManager control
to the page, and make sure you script blocks fall after the ScriptManager control.) Once the
ASP.NET AJAX client libraries are available, you simply need to call the registerClass() method
on your constructor function after you’ve defined your prototype, as shown here:

Remember, technically the Employee variable is a reference to the constructor function
that you use to create employee objects. You can call the registerClass() method because the
ASP.NET AJAX client libraries extend the basic JavaScript function, adding methods for regis-
tering classes, namespaces, interfaces, and enumerations.

Note In the rest of this chapter, we’ll refer to the code structures you can create with ASP.NET AJAX as
classes. These aren’t the full- fledged, typesafe classes you see in .NET. More accurately, they are class- like
constructs that are registered as classes with the ASP.NET AJAX client libraries.

Even once you’ve registered the Employee class, you still use the same code to create
employee objects. However, ASP.NET AJAX is now aware of your class and provides it with
a bit more built- in functionality. One example is reflection, which allows you to get type infor-
mation from your class using code like this:

If you use this code with an instance of a unregistered class, you’ll see the class name
Object. However, if you’ve registered your Employee class, you’ll see the more precise name
Employee.

The Object class provides several more members that you can use to get type information
from a registered custom class, including implementsInterface (to test if the class implements
a specific interface), getInterfaces (to find out all the interfaces a class implements), inheritsFrom
(to test if the class inherits from a specific class directly or indirectly), and isInstanceOfType (to
test if an object is an instance of a specified class or a class derived from that class).

CHAPTER 32 ASP.NET AJAX1522

Tip When debugging, you can step into the JavaScript for the ASP.NET AJAX client libraries. For example,
if you enable client script debugging (as described in Chapter 31) and place a breakpoint on the code state-
ment that invokes registerClass(), you can step into the code for the registerClass() function. Best of all, the
ScriptManager is intelligent enough to realize that you’re running in debug mode, so it uses the debug ver-
sion of the JavaScript client libraries, which means you can look at a nicely formatted, commented version of
the JavaScript code. Using this trick is a great way to learn more about how ASP.NET AJAX works.

Base Types
The ASP.NET AJAX client libraries extend several core JavaScript types with helper functions.
In many cases, these extensions make these types work more a little more like their .NET
counterparts.

 Table 32-5 lists the JavaScript types that ASP.NET AJAX extends.

Table 32-5. Extended JavaScript Types in ASP.NET AJAX

Type Description
Array Adds static methods that allow you to add, remove, clear, and search the elements of

an array.

Boolean Adds a parse() method that allows you to convert a string representation of a Boolean
into a Boolean.

Date Adds formatting and parsing methods that allow you to convert a date to and from
a string representation, either using an invariant representation or using the appro-
priate representation for the current locale.

Number Adds formatting and parsing methods that allow you to convert a number to and
from a string representation, either using an invariant representation or using the
appropriate representation for the current locale.

String Adds a very small set of string manipulation methods for trimming strings and com-
paring the start or end of a string with another string. (The Sys.StringBuilder class
adds another way to build strings.)

Error Adds a number of properties for common error types, which return the appropriate
exception objects. For example, Error.argument returns a Sys.ArgumentException
object.

Object Adds a getType() and getTypeName() method, which are the starting points for re-
flecting on type information (as demonstrated in the previous section).

Function Adds methods for managing classes, including the methods for defining namespaces,
classes, and interfaces, as demonstrated in the following sections.

In the following sections, you’ll see how to build smarter classes that live in distinct
namespaces, inherit from other classes, and implement interfaces. Then, you’ll consider some
of the more advanced classes in the ASP.NET AJAX client libraries.

Namespaces
Traditionally, all JavaScript functions exist in the same global namespace. However, ASP.NET
AJAX adds the ability to separate the functions that represent classes into separate, logical

CHAPTER 32 ASP.NET AJAX 1523

namespaces. This is particularly useful for preventing any conflict between the built- in ASP.
NET AJAX classes and your own.

To register a namespace, you use the Type.registerNamespace() method before you cre-
ate your class. You then place the type in the namespace using a fully qualified name (as in
Business.Employee). Here’s an example:

If you use the Object.getTypeName() method now, you’ll get the fully qualified class
name.

The need to put the namespace name before each member makes the code more verbose
than it was before. To save some space, it’s a common convention to define each method
separately and then assign all the methods to the prototype in one step. Here’s an example of
this technique:

CHAPTER 32 ASP.NET AJAX1524

Both approaches are acceptable, but the one shown in the preceding example is the most
common approach, and the one you’ll find if you explore the ASP.NET AJAX JavaScript files.
Just remember that if you choose to use this two- part approach, the convention is to name
each member using the fully qualified namespace and class, but substituting the dollar sign ($)
for the dot (.), as in Business$Employee$set_FirstName.

Inheritance
ASP.NET AJAX also provides support for creating classes than inherit from other classes. When
you register the derived class, you provide the name of the base class as a second argument.
Here’s an example that creates a SalesEmployee class that derives from Employee. Note that
in order for this to work, the Employee class must be defined earlier in the script block (or in
a previous script block):

The registerClass() call passes in the name of the new class (as a string) and the name of
the parent class (as an reference to the parent class function). When you register a class in this
way, it gains all of the members in the parent class, along with its own members. Thus, you can
set and get the department, first name, and last name information from any SalesEmployee
object:

If the derived class supplies a member with the same name as the parent class, the ver-
sion in the derived class is automatically overridden. Unlike the VB language, there’s no way
to create members that must be overridden or prevent members from being overridden. Fur-
thermore, the derived class has access to all the variables that are defined in the parent class
(although you should avoid accessing them directly, and use the property accessor methods
instead).

The only magic in the SalesEmployee code is the initializeBase() call, which allows the
constructor to call the constructor of the base class so it can initialize the first and last name.
The initializeBase() method is one of the members that ASP.NET AJAX adds to the basic

CHAPTER 32 ASP.NET AJAX 1525

function type. Along with initializeBase(), you can callBaseMethod() to trigger a method that’s
present in the base class, but overridden in the derived class.

Interfaces
To define an interface in JavaScript, you use the same prototype pattern you use to create
a class. The prototype property exposes the members of the interface. However, you need to
go to additional lengths to ensure that your interface can’t be used like an object. These rules
aren’t enforced, so it’s up to you to create an interface that behaves properly.

First, the interface constructor should not contain any code, nor should it assign any
data. Instead, it should simply throw a NotImplementedException to prevent it from being
instantiated. Similarly, the members that are defined in the prototype should not contain any
code, and should throw a NotImplementedException when called. This requirement makes
JavaScript interface definitions quite a bit longer than VB interface definitions.

The easiest way to understand the ASP.NET AJAX interface model is to look at one of the
interfaces defined in ASP.NET AJAX. The Sys.IDisposable interface provides an ASP.NET AJAX
equivalent to the .NET System.IDisposable interface, which gives objects a way to release the
resources they’re using immediately. The Sys.IDisposable interface defines a single method,
named dispose().

Here’s the full code for the IDisposable interface:

To register an interface, you use the registerInterface() method instead of registerClass():

To use an interface, you must first ensure that your class includes the members with the
required names:

If they do, you can implement the interface by changing the way you register your class.
When you call registerClass(), simply supply the interface you want to implement as the third
argument.

CHAPTER 32 ASP.NET AJAX1526

Notice that the second parameter is null, because this class doesn’t derive from another
class. If you want to implement several namespaces, add as many additional arguments as you
need after the third argument—one for each interface.

Here’s some code you can use to test the dispose behavior. When the SalesEmployee
object is disposed, you’ll see the disposal message appear:

The Web- Page Framework
As you’ve learned, the ASP.NET AJAX client libraries use a multilayered design. At the lowest
level are a set of JavaScript language enhancements that allow object- oriented patterns, and
a set of extensions to the core JavaScript data types. ASP.NET AJAX also includes a set of core
 client- side classes and a client- side page model that’s built on top of this infrastructure. This
model includes classes for the web service callback feature you considered at the beginning of
this chapter, specific classes to support web controls like the UpdatePanel, and control classes
that wrap the page and its elements.

The Application Class
The starting point for the web- page model is the Sys.Application class. When an ASP.NET
AJAX–enabled web page is loaded in the web browser, an instance of the Sys.Application class
is created. The Application object manages the components on the page and loads any exter-
nal script files that are registered with the ScriptManager. The ScriptManager inserts the code
that creates the Application object, and the Application object does all the client- side work for
the server- side ScriptManager.

The Application object raises two key events. The load event occurs after the page is first
processed on the browser and after every postback, including asynchronous postbacks. The
unload event occurs when the user navigates away to a new page. To handle these events, you
simply need to add JavaScript functions with the names shown here:

Many of the earlier examples in this chapter have used the pageLoad() function—and now
you understand how it plugs into the ASP.NET AJAX infrastructure.

The Application class also provides an init event, which fires when all the scripts have been
loaded for the page but before its objects have been created. The init event fires once, when the
page is first processed. It doesn’t fire after asynchronous postbacks. You can attach an event

CHAPTER 32 ASP.NET AJAX 1527

handler to the init event using the Application.add_init() method. ASP.NET AJAX components
react to the init event to create client- side controls.

The PageRequestManager Class
Another keenly important class is the PageRequestManager. The PageRequestManager is cre-
ated if the page supports partial rendering, and uses one or more UpdatePanel controls on the
server side.

The PageRequestManager class fires a series of events that you can respond to with
 client- side JavaScript code. Table 32-6 lists these events. In previous examples in this chap-
ter, you’ve used the PageRequestManager to handle asynchronous callback errors with the
UpdatePanel control (by handing endRequest) and to implement cancellation with the
UpdateProgress control (by handling initializeRequest).

Table 32-6. PageRequestManager Events

Event Description
initializeRequest Occurs before an asynchronous postback begins. At this point, you can cancel

the postback using the Cancel property of the Sys.WebForms.InitializeRequest-
EventArgs object that’s passed to the event handler.

beginRequest Occurs before the asynchronous postback request is sent (but after
initializeRequest). At this point, you can initialize wait indicators on the
page (for example, start a “please wait” animation). This event provides a Sys.
WebForms.BeginRequestEventArgs object, which you can use to determine
what element caused the postback.

pageLoading Occurs after the asynchronous postback request is received, but before the
page is updated. At this point, you can remove wait indicators. This event pro-
vides a Sys.WebForms.PageLoadingEventArgs object that provides information
about the panels that will be updated as a result of the asynchronous postback
response.

pageLoaded Occurs after the asynchronous postback request has been received and the
page is updated. This event provides a Sys.WebForms.PageLoadedEventArgs
object that details which panels were updated and created.

endRequest Occurs after the asynchronous response has been processed (after the page-
Loaded event), or during the processing of the response if there is an error. You
can check for an error at this point and provide a customized error notification.
This event provides a Sys.WebForms.EndRequestEventArgs object that details
the error that occurred.

A Client- Side AJAX Control
The full web- page framework is beyond the scope of this chapter. (To learn more about the
 client- side model, refer to the documentation at

px.) However, you can learn a lot by considering a quick crash- course example.
In this section, you’ll explore one of the examples from the ASP.NET AJAX documentation:
a client- side button that updates its appearance when the mouse moves over it.

To create this control, you use the prototype pattern shown earlier. You begin by regis-
tering the namespace, you define the constructor for the control (with the private data), and
then you define the public interface using the prototype property. In this example, the class
is named HoverButton, and it exposes events that fire when the button is clicked, when the
mouse moves over it, and when the mouse moves away.

CHAPTER 32 ASP.NET AJAX1528

Here’s the overall structure of the code:

Notice that custom controls must always begin their constructor with a call to initialize-
Base(), which triggers the constructor in the base Control class.

The prototype includes methods for getting and setting the button text, and methods
for attaching event handlers to the three events. ASP.NET AJAX includes a higher- level event
model than pure JavaScript. One of the advantages of this event model is that it deals with
browser compatibility issues.

To attach event handlers in JavaScript, you use the addHandler() and removeHandler()
methods. Here’s the implementation code:

CHAPTER 32 ASP.NET AJAX 1529

There are two more methods in the prototype for the HoverButton class: an initialize()
method that’s called automatically when a HoverButton object is being created, and a dis-
pose() method that’s called when it’s being released.

The initialize() method sets up the link between the custom events that are defined in the
HoverButton class and the JavaScript events that exist in the page. For example, here’s the
code that sets up the hover event so it fires when the mouse moves over the button or when
focus passes to the button:

This code states that when the mouseover or focus events occur for the client- side element,
the _hoverHandler delegate should be triggered.

The _hoverHandler delegate is defined at the end of the prototype. It simply triggers the
linked event handler, as shown here:

Finally, the initialize() method calls the base initialize() method in the Control class:

The dispose() method has an easier task. It simply checks if the event handlers exist, and
removes them if they do. Here’s how it does its work for the hover event:

CHAPTER 32 ASP.NET AJAX1530

It ends by calling the base class implementation of the dispose() method, using this code:

There’s one final detail. The script must notify the Application class when it reaches the end
of its code. To make this happen, you need to add this code statement to the end of the page:

This isn’t necessary if you’re using script code in the page or embedded in an assembly. In
these cases, the notifyScriptLoaded() method is called automatically.

Tip To look at the full script code, you can refer to the downloadable samples for this chapter.

Now that you have the JavaScript code for your client- side component, you’re ready to
use it in a page. The first step is to register your script with the ScriptManager, as shown here:

This ensures that your script will be loaded after the ASP.NET AJAX client libraries, and
will have full access to the client- side model.

Next, you need to add the HTML element that will serve as the basis for your client- side
control. In this example, it’s the modest button shown here:

Lastly, you need to create the client- side control and hook up event handlers. To create
the control, you use the ASP.NET AJAX $create alias (which triggers the Sys.UI.Component.
create() method) when the page is first loaded. At this point, you supply the fully qualified
class name of the control, other properties you want to set (such as the text, style, and event
handlers), and a reference to the underlying object in the page (which you can retrieve using
the $get alias).

Here’s the script code that creates the HoverButton, sets its initial properties, and attaches
an event handler to the hover event:

Once you’ve registered a component by calling $create, you can retrieve a reference to it
at any later point by using $find. Here’s an event handler that changes the text of the button
when it’s hovered over:

CHAPTER 32 ASP.NET AJAX 1531

It’s important to realize the difference between $find and $get. The $get alias retrieves an
HTML element from the page (like the <button> element). The $find alias retrieves a full ASP.
NET AJAX client component (like the HoverButton object). Clearly, if you want to interact with
the properties you’ve defined in your custom control, you need to use $find to retrieve the
control object.

As you can see from this example, creating client- side ASP.NET AJAX components isn’t
a trivial process. Although there isn’t a high level of complexity, there are a lot of details to
manage, and the poor error- catching abilities of the loosely typed JavaScript language can
make debugging into a serious chore. For this reason, most ASP.NET developers will prefer
to use ready- made server- side controls and components that have ASP.NET AJAX plumbing,
rather than write their own. In future releases of Visual Studio, there may be better design sup-
port for creating client- side ASP.NET AJAX classes.

Note Custom controls aren’t the only type of client- side ASP.NET AJAX ingredient that you can use. You
can also create custom components, which have no visual appearance. (For example, the ASP.NET Timer
web control uses a client- side component.) Or, you can use behaviors (classes that derive from Behavior)
that extend the behavior of existing page elements. Behaviors are used by control extenders, which are the
topic of the next section.

Control Extenders
In the previous section, you saw how to build a client- side button with built- in behavior. At
this point, it might occur to you that you could build a custom ASP.NET control that renders
 client- side JavaScript code that uses the ASP.NET AJAX client libraries. In fact, that’s essen-
tially what the ASP.NET AJAX controls you’ve seen so far (the UpdatePanel, UpdateProgress,
and Timer) do. Implementing this design is fairly straightforward. You simply need to add the
code that registers your custom JavaScript with the ScriptManager in the page, and render the
basic HTML that you need and the JavaScript that creates the control.

Although this approach works, it’s often not ideal. The problem is that ASP.NET AJAX
doesn’t just allow you to design new types of controls, it also allows you to design effects that
could apply to countless controls. In fact, these multipurpose effects—such as automatic com-
pletion, drag-and- drop, animation, resizing, collapsing, masked editing, and so on—represent
the most common way to use ASP.NET AJAX.

For that reason, ASP.NET AJAX encourages a different model—one that uses control
extenders to add ASP.NET AJAX features to existing controls. Using control extenders, you can
add Ajax effects to an existing page without needing to change the control set that it uses.

ASP.NET doesn’t include any control extenders. However, the ASP.NET AJAX Control
Toolkit does. The ASP.NET AJAX Control Toolkit is a remarkable collection of controls and
control extenders that use ASP.NET AJAX features but can be dropped onto your web page like
any ordinary server control.

CHAPTER 32 ASP.NET AJAX1532

The most remarkable part of the ASP.NET AJAX toolkit is that it’s being developed using
a collaborative, open- source model that allows community participation. The ASP.NET AJAX
Control Toolkit is free and includes full source code, which makes it a great tool for developers
looking to outfit their web pages with Ajax effects and developers who want to learn to build
their own control extenders.

In the following sections, you’ll try out the AutoCompleteExtender from the ASP.NET
Control Toolkit, and you’ll take a quick look at what else it offers.

Installing the ASP.NET AJAX Control Toolkit
To get the ASP.NET AJAX Control Toolkit, surf to
and follow the links. Eventually, you’ll find your way to a download page. (At the time of this
writing, the download page is

.)
On the download page, you’ll see several download options, depending on the version of

.NET that you’re using and whether you want the source code. At the time of this writing, the
simplest download option is a 2 MB ZIP file named AjaxControlToolkit-Framework3.5SP1- No
Source.zip, which is designed for .NET 3.5 Service Pack 1 and doesn’t include the source code.
Once you’ve downloaded this ZIP file, you can extract the files it contains to a more permanent
location on your hard drive.

Inside the ZIP file, you’ll find a folder named SampleWebSite, which contains a huge
sample website that demonstrates all the ASP.NET AJAX Control Toolkit ingredients. Inside the
SampleWebSite\Bin subfolder are the key support files you need to use ASP.NET AJAX, includ-
ing a central assembly named AjaxControlToolkit.dll and a host of smaller satellite assemblies
that support localization for different cultures.

To get started developing with the ASP.NET AJAX Control Toolkit, you could simply copy
the contents of the SampleWebSite\Bin folder to the Bin folder of your own web application.
However, life is much easier if you get Visual Studio to help you out by adding the new compo-
nents to the Toolbox. Here’s how:

 1. Make sure the SampleWebSite folder is in a reasonably permanent location on your
hard drive. If you move the SampleWebSite folder after you complete this process,
Visual Studio won’t be able to find the AjaxControlToolkit.dll assembly. As a result, it
won’t be able to add the necessary assembly reference when you drag the controls onto
a web page. (The only way to fix this problem is to remove the controls from the Toolbox
and then repeat the process to add them from their new location.)

 2. First, you need to create a new Toolbox tab for the controls. Right- click the Toolbox
and choose Add Tab. Then, enter a name (like AJAX Toolkit) and press Enter.

 3. Now, you need to add the controls to the new tab. Right- click the blank tab you’ve cre-
ated and select Choose Items.

 4. In the Choose Toolbox Items dialog box, click Browse. Find the AjaxControlToolkit.dll
(which is in the SampleWebSite\Bin folder) and click OK.

 5. Now, all the components from AjaxControlToolkit.dll will appear in the list, selected
and with checkmarks next to each one. To add all the controls to the Toolbox in one
step, just click OK.

 Figure 32-9 shows some of the controls that will appear in the new Toolbox tab.

CHAPTER 32 ASP.NET AJAX 1533

Now you can use the components from the ASP.NET AJAX Control Toolkit in any web
page in any website. First, begin by adding the ScriptManager control to the web page. Then,
head to the new Toolbox tab you created and drag the ASP.NET AJAX control you want onto
your page. The first time you add a component from the ASP.NET AJAX Control Toolkit, Visual
Studio will copy the AjaxControlToolkit.dll assembly to the Bin folder of your web application,
along with the localization assemblies.

The ASP.NET AJAX Control Toolkit is stuffed full of useful components. In the following
sections, you’ll get your feet wet by considering the useful AutoCompleteExtender.

 Figure 32-9. Adding the ASP.NET AJAX Control Toolkit to the Toolbox

The AutoCompleteExtender
The ASP.NET team has been careful to avoid duplicating existing controls with ASP.NET AJAX
variants. For example, it might seem tempting to create an AutoCompleteTextBox server con-
trol. However, this design introduces several problems:

controls with AutoCompleteTextBox con-
trols to use this functionality. This is a major (and potentially disruptive) change to
make in an established page.

that extends the TextBox control, you need to sacrifice these features.

CHAPTER 32 ASP.NET AJAX1534

(say, a NumericOnlyTextBox that discards any key press that isn’t a digit), you won’t be
able to use both features at once.

for someone to create a control that encapsulates that functionality. A significant amount
of duplicated work is required to support all text- based controls.

forth between them depending on the scenario.

A better solution would allow you to add dynamic features to your website without replac-
ing the controls you’re already using. ASP.NET AJAX enables this with another new concept,
called control extenders. Control extenders are bits of Ajax- style functionality that plug into
ordinary server controls. To use a specific feature, you simply need to add the right control
extender and attach it to the appropriate control.

One example is the AutoCompleteExtender, which allows you to show a list of sug-
gestions while a user types in another control (such as a text box). Figure 32-10 shows the
AutoCompleteExtender at work on an ordinary TextBox server control. As the user types,
the drop- down list offers suggestions. If the user clicks one of these items in the list, the cor-
responding text is copied to the text box.

 Figure 32-10. Providing an autocomplete list of names

Creating this example is fairly easy. First, you need an ordinary text box, like this:

Next, you need to add an AutoCompleteExtender control that extends the text box with the
autocomplete feature. The trick is that the list of suggestions needs to be retrieved from a web
method, which you need to create. Here’s an example web service named AutoCompleteService
with a method named GetNames() that provides the list of suggestions:

CHAPTER 32 ASP.NET AJAX 1535

Here’s the tag you need to call this service:

You’ll notice that the AutoCompleteExtender links to the corresponding server control through
the AutoCompleteProperties.TargetControlID property. It also uses a MinimumPrefixLength prop-
erty, which allows you to wait until the user has entered a specific number of letters before using
the list of suggestions. This is a handy feature if the list is so long that a single character won’t pro-
vide a useful list of suggestions.

The most time- consuming part of this example is creating the GetNames() web method. It
accepts two parameters, which indicate the text the user has typed so far and the desired num-
ber of matches (which is ten by default).

Next, the code retrieves the complete list of possible suggestions, which is drawn from the
Northwind database. This list is cached for an hour to ensure quick retrieval:

With the list in hand, the next step is to cut down the list so it provides only the ten closest
suggestions. In this example, the list is already sorted. This means you simply need to find the
starting position—the first match that starts with the same letters as the prefix text. Here’s the
code that does it:

CHAPTER 32 ASP.NET AJAX1536

The search code then begins at the index number position and moves through the list in
an attempt to get ten matches. However, if it reaches the end of the list or finds a value that
doesn’t match the prefix, the search stops.

Finally, all the matches that were found are returned:

The ASP.NET AJAX Control Toolkit
The AutoCompleteExtender is only one of the many components that are included in the ASP.
NET AJAX Control Toolkit. Table 32-7 lists the control extenders that are currently available,
and Table 32-8 lists the controls.

CHAPTER 32 ASP.NET AJAX 1537

Table 32-7. Control Extenders in the ASP.NET AJAX Control Toolkit

Name Description
AlwaysVisibleControlExtender This extender keeps a control fixed in a specific position (such as

the top- left corner of the web page) even as you scroll through the
content in a page.

AnimationExtender This powerful and remarkably flexible extender allows you to add
animated effects such as resizing, moving, fading, color changing,
and many more, on their own or in combination.

AutoCompleteExtender This extender allows you to supply a list of suggested entries based
on partial user input. The list of entries is generated by a web service
method, as described in the previous section.

CalendarExtender This extender shows a pop- up calendar that can be attached to
a text box for easier entry of dates. When the user chooses a date, it’s
inserted in the linked control.

CascadingDropDownExtender This extender lets you link drop- down lists without coding the solu-
tion by hand (as shown in the first example of this chapter).

CollapsiblePanelExtender This extender lets you collapse and expand panels on your page.
The rest of the page content reflows around them automatically.

ConfirmButtonExtender This extender adds intercepts button clicks on a Button, LinkButton,
or ImageButton control and displays a confirmation message. The
click event is suppressed if the user chooses to cancel the operation
in the confirmation dialog box.

DragPanelExtender This extender allows you to drag a panel around the page.

DropShadowExtender This extender adds a graphical drop shadow effect around a panel.
The drop shadow can be partially transparent, and you can control
the size and roundness of its corners.

DynamicPopulateExtender This simple extender replaces the contents of a control with the
result of a web service method call.

FilteredTextBoxExtender This extender allows you to restrict certain characters from being
entered in a text box (such as letters in a text box that contains nu-
meric data). This is meant to supplement validation, not replace it,
as malicious users could circumvent the filtering by tampering with
the rendered page or disabling JavaScript in the browser.

HoverMenuExtender This extender allows content to pop up next to a control when the
user hovers over it.

ListSearchExtender This extender allows the user to search for items in a ListBox or
DropDownList by typing the first few letters of the item text. The
control searches the items and jumps to the first match as the user
types.

MaskedEditExtender This extender restricts the kind of input that can be entered in
a text box using a mask. (A mask is a string that defines a pattern for
 fixed- length text, and supplies prompt characters to help the user
enter the value. For example, a phone number mask might display
(___) ___- ____ in the text box. As the user types, the placeholders are
replaced with the valid numeric characters, and nonnumeric char-
acters are rejected.) You can use the MaskedEditExtender in conjunc-
tion with the MaskedEditValidator to make sure that the user can’t
circumvent the JavaScript code and enter an invalid value.

Continued

CHAPTER 32 ASP.NET AJAX1538

ModalPopupExtender This extender allows you to create the illusion of a modal dialog box
by darkening the page, disabling controls, and showing a superim-
posed panel on top.

MutuallyExclusiveCheckBoxExtender This extender allows you to associate a “key” with multiple Check-
Box controls. When the user clicks a check box that’s extended in
this way, any other check box with the same key will be unchecked
automatically.

NumericUpDownExtender This extender attaches to a text box to provide configurable up and
down arrow buttons (at the right side). These buttons increment the
numeric or date value in the text box.

PagingBulletedListExtender This extender attaches to a BulletedList and gives it client- side pag-
ing capabilities so that it can split a long list into smaller sections.

PasswordStrengthExtender This extender attaches to a text box. As you type, it ranks the cryp-
tographic strength of the text box value (the higher the ranking, the
more difficult the password is to crack). It’s meant to be used as
a guideline for a password- creation box.

PopupControlExtender This extender provides pop- up content that can be displayed next
to any control.

ResizableControlExtender This extender allows the user to resize a control with a configurable
handle that appears in the bottom- right corner.

RoundedCornersExtender This extender rounds the corners of any control for a clean, profes-
sional look.

SliderExtender This extender converts a text box into a graphical slider that allows
the user to choose a numeric value by dragging a thumb to a posi-
tion on a track.

SlideShowExtender This extender attaches to an image and causes it to display a se-
quence of images. The images are supplied using a web service
method, and the slide show can loop endlessly or use play, pause,
previous, and next buttons that you create.

TextBoxWatermark This extender allows you to automatically change the background
color and supply specific text when a TextBox control is empty.
For example, your text box might include the text Enter Value in
light gray writing on a pale blue background. This text disappears
while the cursor is positioned in the text box or once you’ve entered
a value.

ToggleButtonExtender This extender turns the ordinary ASP.NET CheckBox into an image
check box.

UpdatePanelAnimationExtender This extender allows you to use the same animations as the
AnimationExtender. However, it’s designed to work with an
UpdatePanel and perform these animations automatically when
an update is progress or once the panel has been refreshed.

ValidatorCalloutExtender This extender extends the client- side logic of the ASP.NET valida-
tion controls so that they use pop- up validation callouts that point
to the control with the invalid input.

Table 32-7. Continued

Name Description

CHAPTER 32 ASP.NET AJAX 1539

Table 32-8. Controls in the ASP.NET AJAX Control Toolkit

Name Description
Accordion This control stacks several content panels, and allows you to view one

at a time. When you click a panel, that panel is expanded and the other
panels are collapsed (so that just the header is visible). Additional fea-
tures include an automatic fading effect and an option to limit the size
of the control (in which case large content regions use scrolling when
visible).

NoBot This control performs several checks to attempt to detect whether an
automated program (a bot) is accessing the page rather than a human.
If NoBot determines that a bot is accessing the page, the request will be
denied. This technique is used to prevent programs that steal content
or submit comment spam to blog postings, although it can obviously
be circumvented. For example, NoBot forces the browser to perform
a JavaScript calculation that uses the HTML DOM and submit the
result, which aims to catch a non- browser application accessing the
page. NoBot can also reject requests that post the form back extremely
quickly, or post it back a large number of times in a specific time
interval. Both behaviors suggest that an automated program is at work
rather than a human.

Rating This control allows users to set a rating by moving the mouse over a se-
ries of stars until the desired number of stars are highlighted.

ReorderList This control creates a scrollable template list that allows the user to
rearrange the order of items by dragging and dropping them.

TabContainer This control resembles the tabs shown in a Windows application. Each
tab has a header, and the user moves from one tab to another by click-
ing the header.

To use any of these controls or control extenders, you simply need to drop them onto
a form, set the appropriate properties, and run your page. Figure 32-11 shows the collaps-
ible panel in both expanded and collapsed states. Figure 32-12 shows a draggable panel, both
before and after dragging.

 Figure 32-11. A collapsible panel

CHAPTER 32 ASP.NET AJAX1540

 Figure 32-12. A draggable panel

You can test drive all of the ASP.NET AJAX Control Toolkit components online at
.

Summary
The most exciting feature of ASP.NET AJAX is that it isn’t just another JavaScript library or
a simple .NET component that simplifies callbacks. Instead, it’s a multilayered platform that
allows you to build more responsive and dynamic pages—and, ultimately, an altogether differ-
ent type of web application.

As you saw in this chapter, you can plug into the ASP.NET AJAX framework on three sepa-
rate levels:

you expose the web methods you need and use automatically generated JSON proxies
to call them.

 AJAX- fortified ingredients such as the UpdatePanel or use snazzy new controls and
control extenders.

them independently or in conjunction with a custom ASP.NET server control.

Remember, the ASP.NET AJAX platform is still evolving rapidly. To keep up with the latest
developments, be sure to visit . You may also want to consult a ded-
icated book that delves deeper into more specialized ASP.NET AJAX features.

1541

C H A P T E R 3 3

Silverlight 2

Although the Web is easily the most popular environment for business software, there are
some things that web applications just can’t do, or can’t do very well. Even if you outfit your
ASP.NET web pages with the latest cutting- edge JavaScript and Ajax, you won’t be able to
duplicate many of the capabilities that desktop applications take for granted, such as anima-
tion, sound and video playback, and 3D graphics. And although you can use JavaScript to
respond on the client to focus changes, mouse movements, and other “real- time” events, you
still can’t build a complex interface that’s anywhere near as responsive as a window in a rich
client application. (The saving grace of web programming is that you usually don’t need these
frills. The benefits you gain—broad compatibility, high security, no deployment cost, and
a scalable server- side model—outweigh the loss of a few niceties.)

That said, developers are continuously pushing the limits of the Web. These days, it’s
not uncommon to watch an animated commercial or play a simple but richly designed game
directly in your browser. This capability obviously isn’t a part of the ordinary HTML, CSS, and
JavaScript standards. Instead, it’s enabled by a browser plug- in, sometimes for a Java applet,
but most commonly for Flash content.

Microsoft’s Silverlight technology is a direct competitor to Flash. Like Flash, Silverlight
allows you to create interactive content that runs on the client, with support for dynamic graph-
ics, media, and animation that goes far beyond ordinary HTML. Also like Flash, Silverlight is
deployed using a lightweight browser plug- in and supports a wide range of different brows-
ers and operating systems. At the moment, Flash has the edge over Silverlight, because of its
widespread adoption and its maturity. However, Silverlight boasts a few architectural features
that Flash can’t match—most importantly, the fact that it’s based on a scaled- down version of
.NET’s common language runtime (CLR) and thus allows developers to write client- side code
using pure VB .NET.

In this chapter, you’ll take a detailed tour of Silverlight. You’ll learn how it works, what
features it supports, and what features aren’t quite there yet. You’ll also consider how you can
use Silverlight to supplement ASP.NET websites.

Understanding Silverlight
Silverlight uses a familiar technique to go beyond the capabilities of standard web pages—it
uses a lightweight browser plug- in.

The advantage of the plug- in model is that the user needs to install just a single component to
see content created by a range of different people and companies. Installing the plug- in requires
a small download and forces the user to confirm the operation in at least one security dialog box

CHAPTER 33 S ILVERLIGHT 21542

(and usually more). It takes a short but definite amount of time, and it’s an inconvenience.
However, once the plug- in is installed, the browser can process any content that uses the plug- in
seamlessly, with no further prompting.

 Figure 33-1 shows two views of a page with Silverlight content. On the left is the page
you’ll see if you don’t have the Silverlight plug- in installed. At this point, you can click the Get
Microsoft Silverlight picture to be taken to Microsoft’s website (),
where you’ll be prompted to install the plug- in and then sent back to the original page. On the
right is the page you’ll see once the Silverlight plug- in is installed.

Note Silverlight is designed to overcome the limitations of ordinary HTML to allow developers to create
more graphical and interactive applications. However, Silverlight isn’t a way for developers to break out of
the browser’s security sandbox. For the most part, Silverlight applications are limited in equivalent ways
to ordinary web pages. For example, a Silverlight application is allowed to create and access files, but only
those files that are stored in a special walled- off isolated storage area. Conceptually, isolated storage works
like the cookies in an ordinary web page. Files are separated by website and the current user, and size is
severely limited.

 Figure 33-1. Installing the Silverlight plug- in

A key point to keep in mind when considering the Silverlight development model is that in
most cases you’ll use Silverlight to augment the existing content of your website (which is still
based on HTML, CSS, and JavaScript). For example, you might add Silverlight content that shows
an advertisement or allows an enhanced experience for a portion of a website (such as playing
a game, completing a survey, interacting with a product, taking a virtual tour, and so on). Your
Silverlight pages may present content that’s already available in your website in a more engaging
way, or they may represent a value- added feature for users who have the Silverlight plug- in.

CHAPTER 33 S ILVERLIGHT 2 1543

Although it’s easily possible to create a Silverlight- only website, it’s unlikely that you’ll
take that approach. The fact that Silverlight is still relatively new, and the fact that it doesn’t
support legacy clients (most notably, it has no support for users of Windows ME and Windows
98) mean it doesn’t have nearly the same reach as ordinary HTML. Many businesses that are
adopting Silverlight are using it to distinguish themselves from other online competitors with
 cutting- edge content.

Silverlight vs. Flash
The most successful browser plug- in is Adobe Flash, which is installed on over 90 percent of
the world’s web browsers. Flash has a long history that spans more than ten years, beginning
as a straightforward tool for adding animated graphics and gradually evolving into a platform
for developing interactive content.

It’s perfectly reasonable for ASP.NET developers to extend their websites using Flash
content. However, doing so requires a separate design tool, and a completely different program-
ming language (ActionScript) and programming environment (Flex). Furthermore, there’s no
straightforward way to generate Flash content using server- side .NET code, which means it’s dif-
ficult to integrate ASP.NET content and Flash content—instead, they exist in separate islands.

Note There are some third- party solutions that help break down the barrier between ASP.NET and Flash.
One example is the innovative SWFSource.NET (), which
provides a set of .NET classes that allow you to dynamically generate Flash (.swf) files. However, these tools
work at a relatively low level. They fall far short of a full development platform.

Silverlight aims to give .NET developers a better option for creating rich web content.
Silverlight provides a browser plug- in with many similar features to Flash, but one that’s
designed from the ground up for .NET. Silverlight natively supports the VB .NET language and
uses a range of .NET concepts. As a result, developers can write client- side code for Silverlight
in the same language they use for server- side code (such as VB and C#), and use many of the
same abstractions (including streams, controls, collections, generics, and LINQ).

The Silverlight plug- in has an impressive list of features, some of which are shared in common
with Flash, and some which are entirely new and even revolutionary. They include the following:

2D Drawing: Silverlight provides a rich model for 2D drawing. Best of all, the content you
draw is defined as shapes and paths, so you can manipulate this content on the client
side. You can even respond to events (like a mouse click on a portion of a graphic), which
makes it easy to add interactivity to anything you draw.

Controls: Developers don’t want to reinvent the wheel, so Silverlight is stocked with a few
essentials, including buttons, text boxes, lists, and a grid. Best of all, these basic building
blocks can be restyled with custom visuals if you want all of the functionality but none of
the stock look.

Animation: Silverlight has a time- based animation model that lets you define what should
happen and how long it should take. The Silverlight plug- in handles the sticky details, like
interpolating intermediary values and calculating the frame rate.

CHAPTER 33 S ILVERLIGHT 21544

Media: Silverlight provides playback of Windows Media Audio (WMA), Windows Media
Video (WMV7–9), MP3 audio, and VC- 1 (which supports high- definition). You aren’t tied
to the Windows Media Player ActiveX control or browser plug- in—instead, you can create
any front- end you want, and you can even show video in full- screen mode. Microsoft also
provides a free companion hosting service (at) that gives
you space to store media files. Currently, it offers a generous 10 GB.

The Common Language Runtime: Most impressively, Silverlight includes a scaled- down
version of the CLR, complete with an essential set of core classes, a garbage collector, a JIT
 (just-in- time) compiler, support for generics, threading, and so on. In many cases, devel-
opers can take code written for the full .NET CLR and use it in a Silverlight application
with only moderate changes.

Networking: Silverlight applications can call old- style ASP.NET web services (.asmx) or
WCF (Windows Communication Foundation) web services. They can also send manu-
ally created XML requests over HTTP and even open direct socket connections for fast
 two- way communication. This gives developers a great way to combine rich client- side
code with secure server- side routines.

Data binding: Although it’s not as capable as its big brother (WPF), Silverlight data
binding provides a convenient way to display large amounts of data with minimal code.
You can pull your data from XML or in- memory objects, giving you the ability to call a web
service, receive a collection of objects, and display their data in a web page—often with
just a couple of lines of code.

Of course, it’s just as important to note what Silverlight doesn’t include. Silverlight is a new
technology that’s evolving rapidly, and it’s full of stumbling blocks for developers who are
used to relying on .NET’s rich libraries of prebuilt functionality. Prominent gaps include lack of
database support (there’s no ADO.NET), no support for 3D drawing, no printing, no command
model, and few rich controls like trees and menus (although many developers and component
companies are building their own). All of these features are available in Windows- centric WPF
applications, and they may someday migrate to the Silverlight universe—or not.

Note In essence, Silverlight is a .NET- based Flash competitor. It aims to compete with Flash today, but
provide a path to far more features in the future. Unlike the Flash development model, which is limited in
several ways due to the way it’s evolved over the years, Silverlight is a starting-from- scratch attempt that’s
thoroughly based on .NET and WPF, and will therefore allow .NET developers to be far more productive. In
many ways, Silverlight is the culmination of two trends: the drive to extend web pages to incorporate more
and more rich client features, and the drive to give the .NET Framework a broader reach.

CHAPTER 33 S ILVERLIGHT 2 1545

SILVERLIGHT 1 AND SILVERLIGHT 2

Silverlight exists in two versions.

and the media playback features. However, it doesn’t include the CLR engine or support for .NET lan-
guages, so any code you write must use JavaScript.

developer excitement. It includes the CLR, a subset of .NET Framework classes, and a user interface
model based on WPF.

real first release of the Silverlight platform. It’s
the version you’ll consider in this chapter.

Silverlight System Requirements
With any web- centric technology, it’s keenly important to have compatibility with the widest
possible range of computers and devices. Although Silverlight is still evolving, it already stacks
up fairly well in this department:

Windows computers: Silverlight 2 works on PCs with Windows Vista and Windows XP.
The minimum browser versions that Silverlight 2 supports are Internet Explorer 6 and
Firefox 1.5. Silverlight 2 will also work in Windows 2000, but only with Internet Explorer 6.

Note

Mac computers: Silverlight works on Mac computers with OS X 10.4.8 or later, provided
they have Intel hardware (as opposed to the older PowerPC hardware). The minimum
browser versions that Silverlight 2 supports are Firefox 1.5 and Safari.

Linux computers: Although Silverlight 2 doesn’t currently work on Linux, the Mono team
is creating an open source Linux implementation of Silverlight 1 and Silverlight 2. This
project is known as Moonlight, and it’s being developed with key support from Microsoft.
To learn more, visit ht.

CHAPTER 33 S ILVERLIGHT 21546

Note The system requirements for Silverlight may change as Microsoft releases plug- ins for other
browsers. For example, the Opera browser currently works on PCs through an unsupported hack, but better
support is planned in the future. To see the latest system requirements, check

.

Installing Silverlight requires a small- sized setup (about 4 MB) that’s easy to download.
That allows it to provide an all- important “frictionless” setup experience, much like Flash (but
quite different from Java).

Installing the Silverlight Tools for Visual Studio
Although you could create a Silverlight page by hand, it’s not easy (and not worth the trouble).
Instead, it makes sense to use a design tool like Visual Studio or Expression Blend.

Currently, Visual Studio doesn’t have design- time support for creating Silverlight content.
However, Microsoft has released a free add- in that extends Visual Studio with support for cre-
ating Silverlight projects. To download this add- in, surf to
and download the Silverlight Tools for Visual Studio 2008 SP1.

This package includes the following:

The Silverlight 2 runtime: This is the browser plug- in that allows you to run Silverlight
content.

The Silverlight 2 Software Development Kit: This SDK includes additional documenta-
tion and Silverlight- powered web controls for ASP.NET.

Silverlight add- in for Visual Studio: This add- in makes it easy to create Silverlight proj-
ects, either on their own or as part of an ASP.NET website.

Note Although the Silverlight runtime weights in at less than 5 MB, the Silverlight Tools for Visual Studio

There’s also one other option—you can create Silverlight applications using Microsoft
Expression Blend 2.5, a graphic design tool that’s intended for user interface design (rather
than coding, testing, and debugging). Expression Blend 2 SP1 allows you to create desktop
applications that use WPF and web pages that use Silverlight, but it doesn’t allow you to create
ASP.NET web pages. Thus, if you use Expression Blend, it’s up to you to create the ASP.NET
web pages for the rest of your website in Visual Studio.

Expression Blend 2.5 is currently in an early beta stage, and it isn’t discussed in this chap-
ter. However, you can find entire books about Expression Blend 1, which allows you to create
 full- fledged WPF user interfaces (but not Silverlight content) using the same model.

CHAPTER 33 S ILVERLIGHT 2 1547

Creating a Silverlight Solution
Now that you’ve installed the Silverlight Tools for Visual Studio, you’re ready to create your
first Silverlight project. Here’s what you need to do:

 1. Select File New Project in Visual Studio, choose the Visual Basic group of project
types, and select the Silverlight Application template. It’s a good idea to use the “Create
directory for solution” option, so you can group together the two projects that Visual
Studio will create—one for the Silverlight assembly and one for the ASP.NET website.

 2. Once you’ve picked the solution name and project name, click OK to create it.

 3. You’ll be asked whether you want to create a host website. To create an ASP.NET web-
site for hosting your Silverlight application (rather than a simple HTML file), choose
the first option, “Add a new Web.” You’ll also need to supply a project name for the
ASP.NET website. By default, it’s your project name with the added word .Web at the
end, as shown in Figure 33-2.

 Figure 33-2. Creating an ASP.NET website to host Silverlight content

 4. You can choose to create a projectless ASP.NET website or an ASP.NET web project by
selecting the appropriate option in the Project Type list box. Either approach gives you
the same ability to host Silverlight content. Chapter 2 describes the difference.

 5. Finally, click OK to create the two projects.

When you follow these steps, you’ll end up with a single solution that holds two projects—
a familiar ASP.NET website, and a dedicated Silverlight project, as shown in Figure 33-3.

CHAPTER 33 S ILVERLIGHT 21548

 Figure 33-3. Creating an ASP.NET website to host Silverlight content

Silverlight Compilation
When you create a Silverlight solution, Visual Studio generates a new ASP.NET website that
can hold ordinary web forms, HTML pages, and web services. However, there’s a difference
between this website and the ones you’ve seen throughout this book—namely, it’s already set
up with the ability to host Silverlight content.

To understand how this works, you need to know a bit more about the Silverlight compila-
tion process. When you compile the project shown in Figure 33-3, here’s what happens:

 1. First, the Silverlight project is compiled into a DLL file. For example, if you have
a project named SilverlightApplication1, the csc.exe compiler will create the file
SilverlightApplication1.dll, with all the code and markup that the Silverlight project
contains.

 2. Next, the assembly is placed into a special application package called a XAP file. (You’ll
learn a bit more about XAP files in the “Understanding XAP Files” sidebar.) The XAP file
includes the DLL assembly for your project, any other dependent assemblies you’re using
(except for the ones that are a part of the core Silverlight runtime), and the application
manifest file AppManifest.xml, which lists the files that comprise your application. If you
add other content files to your Silverlight project (for example, images), they will be auto-
matically embedded in the XAP file.

 3. Finally, Visual Studio copies the XAP file to the ClientBin folder in the ASP.NET web-
site, as shown in Figure 33-4. (This is similar to assembly references—if an ASP.NET
website references a private DLL, Visual Studio automatically copies this DLL to the
Bin folder.) Once your Silverlight application is in the ClientBin folder, it’s accessible to
the pages in your ASP.NET website.

CHAPTER 33 S ILVERLIGHT 2 1549

 Figure 33-4. The compiled Silverlight application

These steps ensure that your ASP.NET application always gets the most recent version
of your Silverlight project. Technically, you don’t need to place the XAP file in the ClientBin
folder—it’s just a convenient standard that separates the Silverlight content from the rest of
your website.

UNDERSTANDING XAP FILES

Technically, the XAP file is a ZIP archive to
. You can then open the archive and view the files inside.

The XAP file system has two obvious benefits:

It compresses your content: Because this content isn’t decompressed until it reaches the client, it
reduces the time required to download your application. This is particularly important if your appli-
cation contains large static resources (see Chapter 6) that can be easily compressed such as XML
documents or blocks of text.

It simplifies deployment: When you’re ready to take your Silverlight application live, you simply
need to copy the XAP file to the web server, along with TestPage.html or a similar HTML file that
includes a Silverlight content region. You don’t need to worry about keeping track of the assemblies
and resources.

However, there’s one potential stumbling block. When hosting a Silverlight application, your web server
must be configured to allow requests for the XAP file type. This file type is included by default in IIS 7, pro-

to add a file type that maps the .xap extension to the MIME type application/x-silverlight- app. For IIS instruc-
tions, see .

CHAPTER 33 S ILVERLIGHT 21550

Entry Pages
Although the XAP package makes deployment easy, you still need to take an extra step to
allow users to run your Silverlight application. That’s because users can’t run a Silverlight
application by directly requesting the XAP file. Instead, they need to surf to an entry page that
instantiates the Silverlight plug- in.

In an ASP.NET website, you have two options for your entry page:

Use an HTML entry page: The only limitation of this approach is that your HTML file
obviously can’t include ASP.NET controls, because it won’t be processed on the server.

Use an ASP.NET entry page: To pull this trick off, you need the help of the Silverlight web
control, which renders the JavaScript that’s required to create a Silverlight content region.
You can also add other ASP.NET controls to different parts of the page. The only disadvan-
tage to this approach is that the page is always processed on the server. If you aren’t actually
using any server- side ASP.NET content, this creates an extra bit of overhead that you don’t
need when the page is first requested.

Of course, you’re also free to mingle both of these approaches, and use Silverlight content
in dedicated HTML pages and inside ASP.NET web pages in the same site. When you create a
Silverlight project with an ASP.NET website, you’ll start with both. For example, if your Silverlight
project is named SilverlightApplication1, you can use either SilverlightApplication1TestPage.html
or SilverlightApplication1TestPage.aspx, as shown in Figure 33-4.

The HTML Entry Page
The HTML test page simply sets up the content region for the Silverlight plug- in, using a small
amount of JavaScript. Here’s a slightly shortened version of the HTML test page that preserves
the key details:

CHAPTER 33 S ILVERLIGHT 2 1551

The key details in this markup are the two highlighted <div> elements. Both of these <div>
elements are placeholders that are initially left empty. The first <div> element is reserved for
error messages. If the Silverlight plug- in is launched but the Silverlight assembly fails to load
successfully, an error message will be shown here, thanks to this JavaScript code, which is fea-
tured earlier in the page:

CHAPTER 33 S ILVERLIGHT 21552

This second <div> element is more interesting. It represents the Silverlight content region.
It contains an <object> element that loads the Silverlight plug- in and an <iframe> element
that’s used to display it in certain browsers. The <object> element includes four key attributes:
data (which identifies it as a Silverlight content region), type (which indicates the required
Silverlight version), and height and width (which determine the dimensions of the Silverlight
content region).

The <object> element also contains a series of <param> elements that specify additional
options to the Silverlight plug- in, such as the location of the XAP file that contains the Silver-
light application you want to run:

Finally, the <object> element has some HTML markup that will be shown if the <object>
tag isn’t understood or the plug- in isn’t available. In the standard test page, this markup con-
sists of a “Get Silverlight” picture, which is wrapped in a hyperlink that, when clicked, takes the
user to the Silverlight download page.

Note By default, the HTML entry page configures the Silverlight content region to take up the entire space
in the web browser window. If you want to display other content in your page, you’ll need to tweak the style
rules that appear at the top of the entry page.

The ASP.NET Entry Page
As you’ve seen, the HTML entry page creates a Silverlight content region using an <div> place-
holder that contains an <object> element. Technically, you could use the same approach to

CHAPTER 33 S ILVERLIGHT 2 1553

place a Silverlight content region in an ASP.NET web form. However, there’s a shortcut that
you can use. Rather than adding the <object> element by hand, you can use ASP.NET’s Silver-
light web control.

The Silverlight web control has a single role in life—to create the Silverlight content region
in an ASP.NET web page. The markup that the Silverlight control generates is slightly different
than what you’ll find in the standard HTML entry page. The Silverlight does render a <div> ele-
ment, in which the Silverlight content is placed. However, it doesn’t render a nested <object>
element. Instead, it creates the Silverlight control using a custom JavaScript function named
Sys.UI.Silverlight.Control.createObject(), which is part of Silverlight.js file that Visual Studio
adds to your ASP.NET website when it’s first created.

Here’s the complete ASP.NET markup you’d use to show a Silverlight application named
SilverlightApplication1.xap:

Here’s what happens when this page is requested:

 1. The server creates all the server- side objects (in this example, that includes the Script-
Manager and Silverlight controls) and begins the ordinary ASP.NET page life cycle.

 2. After all the events have fired (and any event handling code has finished), the server
renders the page to ordinary HTML, one web control at a time. At this point, the Sil-
verlight control converts itself to a placeholder inside the <div> element, and
generates the JavaScript code that calls createObject().

 3. When the page is fully rendered, it’s sent to the client. The server- side objects are
released from memory.

CHAPTER 33 S ILVERLIGHT 21554

 4. When the browser receives the page, it begins processing it. It displays the HTML
content and runs the JavaScript. In turn, the JavaScript calls createObject(), which
launches the Silverlight application.

 5. The browser initializes the Silverlight plug- in, downloads the XAP file for the Silverlight
application, and starts the application.

 6. The Silverlight application runs in the client browser. No more server- side web page
code will be executed, unless the user navigates to another page or refreshes the cur-
rent page (both of which will shut down the current Silverlight application and restart
the entire process). If the user interacts with an ASP.NET control elsewhere on the
page, that control may post back the page (which will effectively end the currently run-
ning Silverlight application) or call back to the web server using ASP.NET AJAX (which
won’t disturb it). As you’ll see later in this chapter, the Silverlight application also has
the ability to trigger web server code by calling a web service.

You can set a number of properties on the Silverlight control to configure how the Silver-
light content region will be created. Most of these properties correspond to parameters you
can place inside the <object> element in an HTML- only test page. Table 33-1 lists the most
important.

Table 33-1. Properties of the Silverlight Web Control

Member Description
Source Identifies the XAML source file or XAP file that represents your

application. The Silverlight control will load this content.

Minimum Version Indicates the minimum required Silverlight version. For example,
if you use 2.0 (which is what ASP.NET uses in the test page), the Sil-
verlight control will only attempt to load the plug- in if the user has
Silverlight 2.0 installed. If the user doesn’t have Silverlight or has an
earlier version, they’ll see the alternate HTML content.

EnableHtmlAccess Determines whether the Silverlight control can access the HTML
elements in the page. If true, you can write code that uses the
HTML DOM, as described later in this chapter.

Windowless Determines whether the Silverlight control has a transparent back-
ground that lets the HTML content show through from the page
underneath. It’s false by default (for optimum performance), but
can be set to true to create integrated effects that combine HTML
and Silverlight.

InitParameters Holds custom parameters that you can use to pass information
from the hosting page to the Silverlight application (for example, to
influence the starting page).

PluginBackground Sets the color that’s used as the Silverlight background. If you are
creating a windowless Silverlight control, this must be Transparent.

PluginNotInstalledTemplate Specifies that the HTML content that’s shown in the Silverlight
 plug- in isn’t installed on the client, or isn’t the right version. If you
don’t specify anything, the Silverlight control will use the default
markup, which shows the Silverlight logo and provides a link to
install the Silverlight plug- in.

MaxFrameRate Sets the maximum frame rate for animation. Animation is dis-
cussed later in this chapter.

CHAPTER 33 S ILVERLIGHT 2 1555

Member Description
EnableFrameRateCounter Allows you to judge performance of your animation with a frame

rate counter. If you set this property to true, Internet Explorer
shows the current frame rate in the browser’s status bar. (This set-
ting doesn’t work for non- Internet Explorer browsers.) The frame
rate counter is intended for testing purposes only.

OnPluginError Allows you to react to unhandled Silverlight errors with a JavaScript
function. To use this feature, you must add the JavaScript function to
the page, and then set OnPluginError to the name of that function.

OnPluginFullScreenChanged Allows you to react when the Silverlight plug- in enters or exits
 full- screen mode. To use this feature, you must add the JavaScript
function to the page, and then set OnPluginFullScreenChanged to
the name of that function.

OnPluginLoaded Allows you to react when the Silverlight plug- in is initialized. To
use this feature, you must add the JavaScript function to the page,
and then set OnPluginLoaded to the name of that function.

OnPluginResized Allows you to react when the Silverlight control is given a different
size (for example, if it uses 100% sizing and the browser window is
resized, or if the width and height style properties are set through
code). To use this feature, you must add the JavaScript function
to the page, and then set OnPluginResized to the name of that
function.

HYBRID PAGES

Ambitious ASP.NET developers might use Silverlight to add new functionality (or just sugarcoat) existing
ASP.NET pages. Examples include Silverlight- powered ad content, menu systems, and embedded applets
(like calculators or games).

When dealing with this sort of interaction, it’s important to understand the lifetime of a Silverlight
application. Ordinarily, ASP.NET code runs on the web server, and ASP.NET controls post the page back to
the server. The problem is that when the page is posted back, the current Silverlight application ends. The
web server code runs, a new version of the page is sent to the browser, and the browser loads this new
page, at which point your Silverlight application restarts. Not only does this send the user back to the start-
ing point, it also takes additional time because the Silverlight environment must be initialized all over again.

If you want to avoid this disruption, you can use ASP.NET AJAX techniques. A particularly useful tool

ordinarily trigger a post back and any other controls that they modify into one or more UpdatePanel controls.
Then, when the user clicks a button, an asynchronous request is sent to the web server instead of a full
post back. When the browser receives the reply, it updates the corresponding portions of the page, without
disrupting the Silverlight content.

CHAPTER 33 S ILVERLIGHT 21556

Creating a Silverlight Project
Now that you understand how ASP.NET can host a Silverlight application, you’re ready to start
designing that application.

Every Silverlight project starts with a small set of essential files, as shown in Figure 33-5.
All the files that end with the extension .xaml use a flexible markup standard called XAML, which
you’ll dissect in this chapter. All the files that end with the extension .vb hold the VB .NET source
code that powers your application.

 Figure 33-5. A Silverlight project

Here’s a rundown of the files shown in Figure 33-5:

App.xaml and App.xaml.vb: These files allow you to configure your Silverlight applica-
tion. They allow you to define resources that will be made available to all the pages in your
application, and they allow you react to application events such as startup, shutdown, and
error conditions. In a newly generated project, the startup code in the App.xaml.vb file
specifies that your application should begin by showing Page.xaml.

Page.xaml: This file defines the user interface (the collection of controls, images, and text)
that will be shown for your first page. Technically, Silverlight pages are user controls—
custom classes that derive from UserControl. A Silverlight application can contain as
many pages as you need—to add more, simply choose Project Add New Item, pick the
Silverlight User Control template, choose a file name, and click Add.

Page.xaml.vb: This file includes the code that underpins your first page, including the
event handlers that react to user actions. Like all the code in a Silverlight application,
these events run on the client side.

Along with these four essential files, there are a few more ingredients that you’ll only find
if you dig around. Click the Show All Files button in the Solution Explorer toolbar, and under
the My Project node you’ll see a file named AppManifest.xml, which lists the assemblies that
your application uses. You’ll also find a file named AssemblyInfo.vb, which contains informa-
tion about your project (such as its name, version, and publisher) that’s embedded into your
Silverlight assembly when it’s compiled. Neither of these files should be edited by hand—
instead, they’re modified by Visual Studio when you add references or set projects properties.

CHAPTER 33 S ILVERLIGHT 2 1557

Designing a Silverlight Page
Every Silverlight page includes a markup portion that defines the visual appearance (the XAML
file) and a source code file that contains event handlers. To customize your first Silverlight
application, you simply need to open the Page.xaml file and begin adding markup.

Visual Studio gives you two ways to look at every XAML file—as a visual preview (known
as the design surface) or the underlying markup (known as the source view). By default, Visual
Studio shows both parts, stacked one on the other. Figure 33-6 shows this view and points out
the buttons you can use to change your vantage point.

 Figure 33-6. Viewing XAML pages

As you’ve no doubt guessed, you can start designing your XAML page by dragging controls
from the Toolbox and dropping them onto the design surface. However, this convenience won’t
save you from learning the full intricacies of XAML. In order to organize your elements into the
right layout containers, change their properties, wire up event handlers, and use Silverlight
features like animation, styles, templates, and data binding, you’ll need to edit the XAML
markup by hand.

To get started, you can try creating the page shown here, which defines a block of text and
a button. The portions in bold have been added to the basic page template that Visual Studio
generated when you created the project.

CHAPTER 33 S ILVERLIGHT 21558

This creates a page that has a stacked arrangement of two elements. On the top is a block
of text with a simple message. Underneath it is a button. These three elements are just a sam-
pling of what Silverlight provides—for more, just scan the Visual Studio Toolbox. You’ll find
the essential graphical widgets that rich client developers rely on, like text boxes, check boxes,
list boxes, and buttons. Table 33-2 gives you an at-a- glance look at your options, many of
which you’ll study in this chapter. More complex controls—such as trees, toolstrips, and but-
ton bars—are sure to come, or are already available from third- party component developers.

Note In Silverlight terminology, each graphical widget that meets these criteria (appears in a window and
is represented by a .NET class) is called an element. The term control is generally reserved for elements that
receive focus and allow user interaction. For example, a TextBox is a control, but the TextBlock is not.

Table 33-2. Silverlight Elements

Class Description Type of Element
Border A rectangular or rounded border, which is drawn

around the contained element.
Simple container

Button The familiar button, complete with a shaded gray
background, which the user clicks to launch a task.

Common control

Calendar* A one-month-at-a- time calendar view that allows the
user to select a single date.

Date control

Canvas A layout container that allows you to lay out a group
of child elements with precise coordinates.

Layout container

CheckBox A box that can be checked or unchecked, with op-
tional content displayed next to it.

Common control

ComboBox A drop- down list of items, out of which a single one
can be selected.

Common control

DataGrid* A multicolumn, multirow list filled with a collection
of data objects.

Rich control

DatePicker* A text box for date entry, with a drop- down calendar
for easy selection.

Date control

Ellipse A shape element that draws an ellipse. Shape primitive

Grid A layout container that arranges child elements in an
invisible grid of cells.

Layout container

CHAPTER 33 S ILVERLIGHT 2 1559

Class Description Type of Element
GridSplitter* A resizing bar that allows users to change the height

or adjacent rows or the width of adjacent columns in
a Grid.

Layout tool

HyperlinkButton A link that directs the user to another web page. Common control

Image An element that displays a supported image file. Sil-
verlight supports JPEG and PNG, but not GIF images.

Image display

Line A shape element that draws a line. Shape primitive

ListBox A list of items, out of which a single one can be
selected.

Common control

MediaElement A media file, such as a sound (which has no visual
appearance) or a video window.

Rich control

MultiScaleImage An element that supports Silverlight’s Deep Zoom
feature, and allows the user to zoom into a precise
location in a massive image.

Rich control

PasswordBox A text box that masks the text the user enters. Common control

Path A shape element that draws the shape that’s defined
by a geometry object.

Shape primitive

ProgressBar A colored bar that indicates the percent completion
of a given task.

Common control

RadioButton A small circle that represents one choice out of
a group of options, with optional content displayed
next to it.

Common control

Rectangle A shape element that draws a rectangle. Shape primitive

ScrollViewer A container that holds another element with large
content and provides a scrollable view onto it.

Simple container

Slider An input control that lets the user set a numeric
value by dragging a thumb along a track.

Common control

StackPanel A layout container that stacks a group of child ele-
ments from top to bottom or left to right.

Layout container

TabControl A container that places items into separate tabs, and
allows the user to view just one tab at a time.

Layout container

TextBlock An all- purpose text display control. If you wish to
give different formatting to multiple pieces of inline
text, you can nest one or more Run elements inside
the TextBlock element.

Text display

TextBox The familiar text- entry control. Common control

* These elements are not a part of the core Silverlight runtime. When you add them to a page, Visual Stu-
dio adds a reference to a separate assembly, which will be deployed in the compiled XAP file with your
application.

CHAPTER 33 S ILVERLIGHT 21560

SILVERLIGHT’S ADD- ON ASSEMBLIES

The architects of Silverlight have set out to keep the core framework as small as possible. This design
makes the initial Silverlight plug- in small to download and quick to install—an obvious selling point to web
surfers everywhere.

To achieve this lean-and- mean goal, the Silverlight designers have removed some functionality from the
core Silverlight runtime and placed it in separate add- on assemblies. These assemblies are still considered to
be part of the Silverlight platform, but if you want to use them, you’ll need to package them with your appli-
cation. This represents is an obvious trade- off, because it will increase the download size of your application.
(The effect is mitigated by Silverlight’s built- in compression, which you’ll learn about later in this chapter.)

Two commonly used Silverlight assemblies are as follows:

System.Windows.Controls.dll: This assembly contains a few new controls, including the Calendar,

System.Windows.Controls.Data.dll

Both of these assemblies add new controls to your Silverlight toolkit. In the near future, Microsoft plans to
make many more add- on controls available. Eventually, the number of add- on controls will dwarf the num-
ber of core controls.

When you drag a control from an add- on assembly onto a Silverlight page, Visual Studio automatically
adds the assembly reference you need. If you select that reference and look in the Properties window, you’ll
see that the Copy Local property is set to true, which is different from the other assemblies that make up the
core Silverlight runtime. As a result, when you compile your application, the assembly will be embedded in
the final package. Visual Studio is intelligent enough to recognize assemblies that aren’t a part of the core
Silverlight runtime—even if you add them by hand, it automatically sets Copy Local to true.

Understanding XAML
To understand the markup that underpins this page, you need to know a bit more about
XAML. Conceptually, XAML is a markup language that plays an analogous role to HTML.
HTML allows you to define the elements that make up an ordinary web page.

Every element in a XAML document maps to an instance of a Silverlight class. The name
of the element matches the name of the class exactly. For example, consider the elements that
were added in the previous example. The <StackPanel> element instructs Silverlight to create
a StackPanel object (which lays out a group of elements in a horizontal or vertical stack, one
next to the other). The <TextBlock> element instructs Silverlight to create a TextBlock object
(which displays a block of formatted text). As in HTML, the way you nest elements in XAML is
important. Because the <TextBlock> element is nested inside the <StackPanel> element, and
because the StackPanel is a container control, the TextBlock is rendered inside the StackPanel.

When you use an element like <TextBlock> in a XAML file, the Silverlight parser recognizes
that you want to create an instance of the TextBlock class. However, it doesn’t necessarily
know what TextBlock class to use. After all, even if the Silverlight namespaces only include
a single class with that name, there’s no guarantee that you won’t create a similarly named
class of your own. Clearly, you need a way to indicate the Silverlight namespace information in
order to use an element.

CHAPTER 33 S ILVERLIGHT 2 1561

In Silverlight, classes are resolved by mapping XML namespaces to Silverlight namespaces.
In the sample document shown earlier, two namespaces are defined in the root <UserControl>
element (followed by the Width and Height attributes that set the dimensions of the Silverlight
page):

You’ll find these two namespaces in every XAML document you create for Silverlight:

 is the core Silverlight 2
namespace. It encompasses all the Silverlight 2 classes, including the Grid, StackPanel,
TextBlock, and Button used in this example. Ordinarily, this namespace is declared
without a namespace prefix, so it becomes the default namespace for the entire docu-
ment. In other words, every element is automatically placed in this namespace unless
you specify otherwise.

 is the XAML namespace. It includes
various XAML utility features that allow you to influence how your document is inter-
preted. This namespace is typically mapped to the prefix x.

These two namespaces give you access to the core library of Silverlight elements.

MAPPING ADDITIONAL NAMESPACES

In many situations, you’ll want to have access to different namespaces in a XAML file. For example, you
might create a custom Silverlight control. Or, you might choose to use one of the few Silverlight controls

need to define a new XML namespace prefix and map it to the right assembly. Here’s the syntax you need:

The XML namespace declaration sets three pieces of information:

The XML namespace prefix: You’ll use the namespace prefix to refer to the namespace in your XAML
page. In this example, that’s w, although you can choose anything you want that doesn’t conflict with
another namespace prefix.

The .NET namespace: In this case, the classes are located in the Widgets namespace. If you
have classes that you want to use in multiple namespaces, you can map them to different XML
namespaces or to the same XML namespace (as long as there aren’t any conflicting class names).

The assembly: In this case, the classes are part of the Widgets.dll assembly. Assuming you’ve added
a reference to your Silverlight application that points to the Widgets assembly, it will be automatically
included in the final XAP package. This assembly can’t be an ordinary .NET assembly—instead, it
must be a Silverlight class library assembly (which you can easily create with Visual Studio).

CHAPTER 33 S ILVERLIGHT 21562

Once you’ve mapped your .NET namespace to an XML namespace, you can use it anywhere in your
XAML document. For example, if the Widgets namespace contains a control named HotButton, you could
create an instance like this:

Setting Properties
Each element in a XAML document corresponds to a class. Similarly, each attribute you set
corresponds to a property or event, just as in ASP.NET. Silverlight uses type converters to
convert the string value to the appropriate data type. In many cases, this is an easy task—for
example, there’s no difficulty in changing a string with a number into a number or a string
with a color name into the corresponding color value:

However, in other situations you need to set a property using an object that can’t be easily
represented as a single string. For example, instead of filling the page with a solid color back-
ground, you might prefer to create a more advanced brush that can paint a gradient.

In Silverlight, complex properties are handled with a nested element syntax. The nested
element takes a two- part name in the form ClassName.PropertyName. Inside this element, you
can instantiate the object you want with the appropriate element.

For example, the following markup sets the StackPanel.Background property by creating
a RadialGradientBrush. It does this using a <StackPanel.Background> element (rather than
setting the Background attribute of the <StackPanel> element, as in the previous example). To
configure the RadialGradientBrush, you need to supply a center point for the gradient, and the
gradient stops (the colors in the gradient). Figure 33-7 shows the result.

CHAPTER 33 S ILVERLIGHT 2 1563

 Figure 33-7. A Silverlight page with a RadialGradientBrush background

The XAML Code- Behind
XAML allows you to construct a user interface, but in order to make a functioning application,
you need a way to connect the event handlers that have your application code. XAML makes
this easy using the Class attribute shown here:

The x namespace prefix places the Class attribute in the XAML namespace, which means
the Class attribute is a more general part of the XAML language, not a specific Silverlight
ingredient.

In fact, the Class attribute tells the Silverlight parser to generate a new class with the speci-
fied name. That class derives from the class that’s named by the XML element. In other words,
this example creates a new class named SilverlightApplication1.Page, which derives from the
base UserControl class. The automatically generated portion of this class is merged with the
code you’ve supplied in the code- behind file.

Usually, every XAML file will have a corresponding code- behind class with client- side VB
.NET code. Visual Studio creates a code- behind class for the Page.xaml file named Page.xaml.
vb. Here’s what you’ll see in the Page.xaml.vb file:

CHAPTER 33 S ILVERLIGHT 21564

Currently, the Page class code doesn’t include any real functionality. However, it does
include one important detail—the default constructor, which calls InitializeComponent()
when you create an instance of the class. This parses your markup, creates the corresponding
objects, sets their properties, and attaches any event handlers you’ve defined.

Note The InitializeComponent() method plays a key role in Silverlight content. For that reason, you should
never delete the InitializeComponent() call from the constructor. Similarly, if you add another constructor,
make sure it also calls InitializeComponent().

There’s one more detail to consider. In your code- behind class, you’ll often want to
manipulate controls programmatically. For example, you might want to read or change prop-
erties or attach and detach event handlers on the fly. To make this possible, the control must
include the Name attribute. In the previous example, the TextBlock control does not include
a Name attribute, so you won’t be able to manipulate it in your code- behind file.

Here’s how you can attach a name to the TextBlock:

This model is surprisingly like developing an ASP.NET web page. However, the underlying
plumbing is completely different. XAML markup is parsed on the client side by the Silverlight
engine using a scaled- down version of the CLR. The final content is rendered using a specialized
Silverlight control that’s embedded in the page. ASP.NET markup is processed by the ASP.NET
engine on the server, along with any ordinary HTML that the page contains. The final result is
rendered to HTML and then sent to the client.

Handling Events
To attach an event, you use attributes. However, now you need to assign the name of your
event handler to the name of the event. This is similar to the approach used in ASP.NET web
pages, except for that fact that event attributes do not begin with the word On.

For example, the Button element exposes an event named Click that fires when the button
is triggered with the mouse or keyboard. To react to this event, you add the Click attribute to
the Button element, and set it to the name of a method in your code:

Tip Although it’s not required, it’s a common convention to name event handler methods in the form
ElementName_EventName. If the element doesn’t have a defined name (presumably because you don’t need
to interact with it in any other place in your code), consider using the name it would have.

CHAPTER 33 S ILVERLIGHT 2 1565

This example assumes that you’ve created an event handling method named cmdClickMe_
Click. Here’s what it looks like in the Page.xaml.vb file:

Tip You can’t coax Visual Studio into creating an event handler by double- clicking an element or using
the Properties window (as you can in other types of projects). However, once you’ve added the event han-
dler, you can use IntelliSense to quickly assign it to the right event. Begin by typing in the attribute name (for
example, Click), followed by the equal sign. At this point, Visual Studio will pop up a menu that lists all the
methods that have the right syntax to handle this event, and currently exist in your code behind class. Simply
choose the right event handling method. Or, choose <New Event Handler> to tell Visual Studio to create and
assign an event handler in one step.

 Figure 33-8 shows the previous example at work. When you click the button, the event
handling code runs and the text changes. This process happens entirely on the client—there
is no need to contact the server or post back the page, as there is in a server- side program-
ming framework like ASP.NET. All the Silverlight code is executed on the client side by the
 scaled- down version of .NET that’s embedded in the Silverlight plug- in.

 Figure 33-8. Running a Silverlight application (in Firefox)

You’ll find that Silverlight elements provide a subset of the full set of events found in rich
client platforms like WPF and Windows Forms. You’ll find most of the events that you expect,

CHAPTER 33 S ILVERLIGHT 21566

including change events (like TextChanged and SelectionChanged), keyboard events (KeyDown,
KeyUp, GotFocus, and LostFocus), mouse events (MouseLeftButtonDown, MouseLeftButtonUp,
MouseEnter, MouseLeave, and MouseMove), and initialization events (Loaded).

Browsing the Silverlight Class Libraries
In order to write practical code, you need to know quite a bit about the classes you have to
work with. That means acquiring a thorough knowledge of the core class libraries that ship
with Silverlight.

Silverlight includes a subset of the classes from the full .NET Framework. Although it would
be impossible to cram the entire .NET Framework into Silverlight—after all, it’s a 4 MB down-
load that needs to support a variety of browsers and operating systems—Silverlight includes
a remarkable amount of functionality.

The Silverlight version of the .NET Framework is simplified in two ways. First, it doesn’t
provide the sheer number of types you’ll find in the full .NET Framework. Second, the classes
that it does include often don’t provide the full complement of constructors, methods, prop-
erties, and events. Instead, Silverlight keeps only the most practical members of the most
important classes, which leaves it with enough functionality to create surprisingly compelling
code.

Note The Silverlight classes are designed to have public interfaces that resemble their full- fledged coun-
terparts in the .NET Framework. However, the actual plumbing of these classes is quite different. All the
Silverlight classes have been rewritten from the ground up to be as streamlined and efficient as possible.

Before you start doing any serious Silverlight programming, you might like to browse the
Silverlight version of the .NET Framework. One way to do so is to open a Silverlight project,
and then show the Object Browser in Visual Studio (choose View Object Browser). Along
with the assembly for the code in your project, you’ll see the following Silverlight assemblies:

mscorlib.dll: This assembly is the Silverlight equivalent of the mscorlib.dll assembly that
includes the most fundamental parts of the .NET Framework. The Silverlight version
includes core data types, exceptions, and interfaces in the System namespace, ordinary
and generic collections, file management classes, and support for globalization, reflection,
resources, debugging, and multithreading.

System.dll: This assembly contains additional generic collections, classes for dealing with
URIs, and classes for dealing with regular expressions.

System.Core.dll: This assembly contains support for LINQ. The name of the assembly
matches the full .NET Framework, which implements new .NET 3.5 features in an assem-
bly named System.Core.dll.

System.Net.dll: This assembly contains classes that support networking, allowing you to
download web pages and create socked- based connections.

CHAPTER 33 S ILVERLIGHT 2 1567

System.Windows.dll: This assembly includes many of the classes for building Silverlight
user interfaces, including basic elements, shapes and brushes, classes that support ani-
mation and data binding, and a version of the OpenFileDialog that works with isolated
storage.

System.Windows.Browser.dll: This assembly contains classes for interacting with HTML
elements.

System.Xml.dll: This assembly includes the bare minimum classes you need for XML pro-
cessing: XmlReader and XmlWriter.

Note Some of the members in the Silverlight assemblies are only available to .NET Framework code, and
aren’t callable from your code. These members are marked with the SecurityCritical attribute. However, this attri-
bute does not appear in the Object Browser, so you won’t be able to determine whether a specific feature is usable
in a Silverlight application until you try to use it. (If you attempt to use a member that has the SecurityCritical attri-
bute, you’ll get a SecurityException.) For example, Silverlight applications are only allowed to access the file system

class is decorated with the SecurityCritical attribute.

Layout
Silverlight inherits the most important part of WPF’s extremely flexible layout model. Using
the layout model, you organize your content in a set of different layout containers. Each
container has its own layout logic—one stacks elements, another arranges them in a grid of
invisible cells, and another uses a hard- coded coordinate system. If you’re ambitious, you can
even create your own containers with custom layout logic.

This is important, because the top- level UserControl that defines a Silverlight page can
hold only a single element. To fit in more than one element and create a more practical user
interface, you need to place a container in your page and then add other elements to that
container.

Silverlight provides three Panel- derived classes that you can use to arrange layout:
StackPanel, Canvas, and Grid. You’ve already seen the StackPanel, which places items in
a top-to- bottom or left-to- right stack (depending on the value of the Orientation property).
In the following sections, you’ll consider the Canvas and the Grid.

The Canvas
The Canvas is the simplest of Silverlight’s three layout containers. It allows you to place ele-
ments using exact coordinates, which is a poor choice for designing rich data- driven forms
and standard dialogs, but a valuable tool if you need to build something a little different (such
as a drawing surface for a diagramming tool). The Canvas is also the most lightweight of the
layout containers. That’s because it doesn’t include any complex layout logic to negotiate the
sizing preferences of its children. Instead, it simply lays them all out at the position they spec-
ify, with the exact size they want.

CHAPTER 33 S ILVERLIGHT 21568

To position an element in the Canvas, you use attached properties. Attached properties are
another concept that’s brought over from WPF. Essentially, an attached property is a property
that’s defined by one class but used by another. Attached properties are a key extensibility
mechanism, because they allow classes to interact in flexible ways even without prior planning.

The Canvas provides a good example. To position elements in a Canvas, you need to set
three details: the Left coordinate, the Top coordinate, and the ZIndex layer. The simplest pos-
sible design, which Silverlight doesn’t use, is to define Left, Top, and ZIndex properties in the
base FrameworkElement class. Because all elements inherit from FrameworkElement, this
would ensure that all elements have the layout properties that the Canvas needs. However,
this apparently straightforward solution quickly runs into serious problems. First, it risks clut-
tering the FrameworkElement with dozens of properties, because different layout containers
need to track different details. Confusingly, many of these properties will have no effect unless
the element is being used with a specific container. And if you want to devise a new layout
container that uses a different layout mechanism, you’re out of luck, because you can’t revise
the FrameworkElement class on your own.

Attached properties offer a solution to this problem. With attached properties, the Left, Top,
and ZIndex properties are defined with the element that uses them—the Canvas. However, the
elements inside the Canvas can “borrow” these properties to position themselves. This way,
elements don’t need to be specifically designed to work with the Canvas—they just do. It also
makes more sense conceptually for the properties to be “attached” to the Canvas, because it’s
the Canvas that reads these values and acts on them, not the contained element.

To set an attached property in XAML, you use a two- part syntax with a period. The portion
on the left of the period is the name of the class where the property is defined (like Canvas),
while the portion on the right of the period is the name of the property (like Top). Here’s an
example that places a TextBlock in a specific location in a Canvas:

Coordinates are measured from the top- left corner, so this places the element 30 pixels
from the top and left edges. If you don’t set the Top and Left properties, they default to 0, which
places the element in the top- left corner.

Note Because the Canvas uses absolute positioning, there’s no need to use properties that can influence
other layout containers, such as Margin, Padding, HorizontalAlignment, and VerticalAlignment. These have no
effect on the layout logic that the Canvas uses.

If you want to modify an attached property programmatically, you need to use
a slightly more convoluted syntax. You must call a method that’s named in the form
ClassName.SetPropertyName(). In other words, to set the Canvas.Top property you can
call Canvas.SetTop(). When calling this method, you must pass in two parameters: the
element you want to modify and the new value you want to set. You can call the corre-
sponding Get method (in this case, Canvas.GetTop()) to retrieve the current value of an
attached property.

CHAPTER 33 S ILVERLIGHT 2 1569

The following line of code uses this technique to change the Canvas.Top property that’s
applied to the TextBlock to 100:

Note Confusingly, you can set attached properties on an element even if it’s not in the right container. For
example, you can set Canvas.Top and Canvas.Left on elements that aren’t placed in a Canvas. In this case,
the attached property is set, but it has no effect.

Layering Elements in a Canvas
If you have more than one overlapping element, you can set the attached Canvas.ZIndex prop-
erty to control how they are layered.

Ordinarily, all the elements you add have the same ZIndex: 0. When elements have the
same ZIndex, they’re displayed in the same order that they’re declared in the XAML markup.
Elements declared later in the markup are displayed on top of elements that are declared earlier.

However, you can promote any element to a higher level by increasing its ZIndex. That’s
because higher ZIndex elements always appear over lower ZIndex elements. Here’s an exam-
ple that uses this technique to reverse the layering of two rectangles:

Now the blue rectangle will be superimposed over the yellow rectangle, despite the fact
that it’s declared earlier in the markup.

Note The actual values you use for the Canvas.ZIndex property have no meaning. The important detail is
how the ZIndex value of one element compares to the ZIndex value of another. You can set the ZIndex using
any positive or negative integer.

The ZIndex property is particularly useful if you need to change the position of an element
programmatically. Just call the Canvas.SetZIndex() method with the element you want to modify
and the new ZIndex value you want to apply. Unfortunately, there is no BringToFront() or
SendToBack() method—it’s up to you to keep track of the highest and lowest ZIndex values if
you want to implement this behavior.

Dragging Circles
You can put these concepts together using a simple example.

 Figure 33-9 shows a Silverlight application that allows you to draw and move small
circles. Every time you click the Canvas, a red circle appears. To move a circle, you simply

CHAPTER 33 S ILVERLIGHT 21570

click and drag it to a new position. When you click a circle, it changes color from red to green.
Finally, when you release your circle, it changes color to orange. There’s no practical limit to
how many circles you can add or how many times you can move them around your drawing
surface.

 Figure 33-9. Dragging shapes

Each circle is an instance of the Ellipse element, which is simply a colored shape that’s
a basic ingredient in 2D drawing. Obviously, you can’t define all the ellipses you need in your
XAML markup. Instead, you need a way to generate the Ellipse objects dynamically each time
the user clicks the Canvas.

Creating an Ellipse object isn’t terribly difficult—after all, you can instantiate it like any
other .NET object, set its properties, and attach event handlers. You can even use the SetValue()
method to set attached properties to place it in the correct location in the Canvas. However,
there’s one more detail to take care of—you need a way to place the Ellipse in the Canvas. This is
easy enough, because all layout containers include a Children property that holds a collection of
child elements. Once you’ve added an element to this collection, it will appear in the Canvas.

The XAML page for this example uses a single event handler for the
Canvas.MouseLeftButtonDown event. No other elements are defined.

In the code- behind class, you need two member variables to keep track of whether or not
an ellipse- dragging operation is currently taking place:

CHAPTER 33 S ILVERLIGHT 2 1571

Note Unlike ASP.NET, it’s perfectly acceptable to use instance variables to retain state in a Silverlight
application. That’s because a Silverlight application remains in memory for its entire lifetime. This is quite
different from the code- behind classes you create for ASP.NET pages. In ASP.NET, instance variables are
unreliable, because they’re dropped from memory every time the page is rendered and therefore aren’t avail-
able in subsequent post backs (unless you take additional steps to store them somewhere else).

Here’s the event- handling code that creates an ellipse when the Canvas is clicked:

Not only does this code create the ellipse, it also connects an event handler that responds
when the ellipse is clicked. This event handler changes the ellipse color and initiates the
 ellipse- dragging operation:

CHAPTER 33 S ILVERLIGHT 21572

The ellipse isn’t actually moved until the MouseMove event occurs. At this point, the
Canvas.Left and Canvas.Top attached properties are set on the ellipse to move it to its new
position. The coordinates are set based on the current position of the mouse, taking into
account the point where the user initially clicked. This ellipse then moves seamlessly with the
mouse, until the left mouse button is released.

When the left mouse button is released, the code changes the color of the ellipse, releases
the mouse capture, and stops listening for the MouseMove and MouseUp events. The user can
click the ellipse again to start the whole process over.

CHAPTER 33 S ILVERLIGHT 2 1573

The Grid
The Grid is the most powerful layout container in Silverlight. In fact, the Grid is so useful that
when you add a new XAML document for a page in Visual Studio, it automatically adds the
Grid tags as the first- level container, nested inside the root UserControl element.

The Grid separates elements into an invisible grid of rows and columns. Although more
than one element can be placed in a single cell (in which case they overlap), it generally makes
sense to place just a single element per cell. Of course, that element may itself be another lay-
out container that organizes its own group of contained controls.

Tip to true to
take a closer look. This feature isn’t really intended for prettying up a page. Instead, it’s a debugging conve-

row heights.

Creating a Grid- based layout is a two- step process. First, you choose the number of
columns and rows that you want. Next, you assign the appropriate row and column to each
contained element, thereby placing it in just the right spot.

You create grids and rows by filling the Grid.ColumnDefinitions and Grid.RowDefinitions
collections with objects. For example, if you decide you need two rows and three columns,
you’d add the following tags:

CHAPTER 33 S ILVERLIGHT 21574

As this example shows, it’s not necessary to supply any information in a RowDefinition or
ColumnDefinition element. If you leave them empty (as shown here), the Grid will share the
space evenly between all rows and columns. In this example, each cell will be exactly the same
size, depending on the size of the containing page.

To place individual elements into a cell, you use the Row and Column attached proper-
ties. Both these properties take 0- based index numbers. For example, here’s how you could
create a partially filled grid of buttons:

Each element must be placed into its cell explicitly. This allows you to place more than
one element into a cell (which rarely makes sense) or leave certain cells blank (which is often
useful). It also means you can declare your elements out of order, as with the final two buttons
in this example. However, it makes for clearer markup if you define your controls row by row,
and from right to left in each row.

There is one exception. If you don’t specify the Grid.Row property, the Grid assumes that
it’s 0. The same behavior applies to the Grid.Column property. Thus, you leave both attributes
off of an element to place it in the first cell of the Grid.

 Figure 33-10 shows how this simple grid appears at two different sizes. Notice that the
ShowGridLines property is set to true so that you can see the separation between each column
and row.

 Figure 33-10. A simple grid

CHAPTER 33 S ILVERLIGHT 2 1575

Tip
remove the Height and Width attributes from the UserControl start tag at the top of your page. That way, the
UserControl will take up all the available space on the page.

Fine-Tuning Rows and Columns
As you’ve seen, the Grid gives you the ability to create a proportionately sized collection of
rows and columns, which is often quite useful. However, to unlock the full potential of the
Grid, you can change the way each row and column is sized.

The Grid supports three sizing strategies:

Absolute sizes: You choose the exact size using pixels. This is the least useful strategy
because it’s not flexible enough to deal with changing content size, changing container
size, or localization.

Automatic sizes: Each row or column is given exactly the amount of space it needs, and
no more. This is one of the most useful sizing modes.

Proportional sizes: Space is divided between a group of rows or columns. This is the stan-
dard setting for all rows and columns. For example, in Figure 3-9 you can see that all cells
increase in size proportionately as the Grid expands.

For maximum flexibility, you can mix and match these different sizing modes. For
example, it’s often useful to create several automatically sized rows and then let one or two
remaining rows get the leftover space through proportional sizing.

You set the sizing mode using the Width property of the ColumnDefinition object or the
Height property of the RowDefinition object to a number. For example, here’s how you set an
absolute width of 100 pixels:

To use automatic sizing, you use a value of Auto:

Finally, to use proportional sizing, you use an asterisk (*):

This syntax stems from the world of the Web, where it’s used with HTML frames pages. If
you use a mix of proportional sizing and other sizing modes, the proportionally sized rows or
columns get whatever space is left over.

If you want to divide the remaining space unequally, you can assign a weight, which you
must place before the asterisk. For example, if you have two proportionately sized rows and
you want the first to be half as high as the second, you could share the remaining space like
this:

CHAPTER 33 S ILVERLIGHT 21576

This tells the Grid that the height of the second row should be twice the height of the first
row. You can use whatever numbers you like to portion out the extra space.

Nesting Layout Containers
The Grid is impressive on its own, but most realistic user interfaces combine several layout
containers. They may use an arrangement with more than one Grid, or mix the Grid with other
layout containers like the StackPanel.

The following markup presents a simple example of this principle. It creates a basic dia-
log box with an OK and Cancel button in the bottom- right corner, and a large content region
that’s sized to fit its content (the text in a TextBlock). The entire package is centered in the
middle of the page by setting the alignment properties on the Grid.

You’ll notice that this Grid doesn’t declare any columns. This is a shortcut you can take if
your grid uses just one column and that column is proportionately sized (so it fills the entire
width of the Grid). Figure 33-11 shows the rather pedestrian dialog box this markup creates.

Note In this example, the Padding adds some minimum space between the button border and the content
inside (the word OK or Cancel). In controls that provide a Padding property, like the Button, it acts as an inter-
nal margin between the control borders and the inner content.

CHAPTER 33 S ILVERLIGHT 2 1577

 Figure 33-11. A basic dialog box

At first glance, nesting layout containers seems like a fair bit more work than placing con-
trols in precise positions using coordinates. And in many cases, it is. However, the longer setup
time is compensated by the ease with which you can change the user interface in the future.
For example, if you decide you want the OK and Cancel buttons to be centered at the bottom
of the page, you simply need to change the alignment of the StackPanel that contains them:

Similarly, if you need to change the amount of content in the first row, the entire Grid will
be enlarged to fit and the buttons will move obligingly out of the way.

Spanning Rows and Columns
You’ve already seen how you place elements in cells using the Row and Column attached
properties. You can also use two more attached properties to make an element stretch over
several cells: RowSpan and ColumnSpan. These properties take the number of rows or col-
umns that the element should occupy.

For example, this button will take all the space that’s available in the first and second cell
of the first row:

And this button will stretch over four cells in total by spanning two columns and two rows:

Row and column spanning can achieve some interesting effects and are particularly
handy when you need to fit elements in a tabular structure that’s broken up by dividers or lon-
ger sections of content.

CHAPTER 33 S ILVERLIGHT 21578

Using column spanning, you could rewrite the simple dialog box example from Figure 33-11
using just a single Grid. This Grid divides the page into three columns, spreads the text box over
all three, and uses the last two columns to align the OK and Cancel buttons.

Most developers will agree that this layout isn’t clear or sensible. The column widths are
determined by the size of the two buttons at the bottom of the page, which makes it difficult
to add new content into the existing Grid structure. If you make even a minor addition to this
page, you’ll probably be forced to create a new set of columns.

As this shows, when you choose the layout containers for a page, you aren’t simply inter-
ested in getting the correct layout behavior—you also want to build a layout structure that’s
easy to maintain and enhance in the future. A good rule of thumb is to use smaller layout con-
tainers such as the StackPanel for one- off layout tasks, such as arranging a group of buttons.
On the other hand, if you need to apply a consistent structure to more than one area of your
page, the Grid is an indispensable tool for standardizing your layout.

Animation
Animation is a key feature in Silverlight, as it provides some visual glitz that a server- based
programming framework (like ASP.NET) can’t easily emulate. In Silverlight, animation can be
used to apply effects—for example, icons that grow when you move over them, logos that spin,
text that scrolls into view, and so on—or as a way to design more ambitious commercials and
 browser- based games.

CHAPTER 33 S ILVERLIGHT 2 1579

Animations are a core part of the Silverlight model. That means you don’t need to use tim-
ers and event- handling code to put them into action. Instead, you can create them declaratively,
configure them using one of a handful of classes, and put them into action without writing a sin-
gle line of VB .NET code.

Animation Basics
Silverlight animation is a scaled- down version of the WPF animation system. In order to
understand Silverlight animation, you need to understand the following key rules:

state, and the duration of your animation. Silverlight calculates the frame rate.

-
tion can do only one thing: modify the value of a property over an interval of time. This
sounds like a significant limitation (and in many ways it is), but there’s a surprisingly
large range of effects you can create by simply modifying properties.

For example, if you want to change a property that uses the Double data type (which is
one of the most common scenarios), you must use the DoubleAnimation class. If you
want to modify the color that’s used to paint the background of your Canvas, you need
to use the ColorAnimation class.

Silverlight has relatively few animation classes, so you’re limited in the data types you can
use. At present, you can use animations to modify properties with the following data types:
Double, Object, Color, and Point.

As a rule of thumb, the property- based animation is a great way to add dynamic effects
to an otherwise ordinary application (like buttons that glow, pictures that expand when you
move over them, and so on). However, if you need to use animations as part of the core pur-
pose of your application and you want them to continue running over the lifetime of your
application, you probably need something more flexible and more powerful. For example,
if you’re creating a basic arcade game or using complex physics calculations to model colli-
sions, you’ll need greater control over the animation. Unfortunately, Silverlight doesn’t have
an option for frame- based animation, so you’ll be forced to create this sort of application the
 old- fashioned way—using a timer that fires periodically to update your visuals.

Defining an Animation
Creating an animation is a multistep process. You need to create three separate ingredients:
an animation object to perform your animation, a storyboard to manage your animation, and
an event trigger to start your storyboard. In the following sections, you’ll tackle each of these
steps.

The Animation Class
There are actually two types of animation classes in Silverlight. Each type of animation uses
a different strategy for varying a property value.

CHAPTER 33 S ILVERLIGHT 21580

Linear interpolation: With linear interpretation, the property value varies gradually over
the duration of the animation. Examples include DoubleAnimation, PointAnimation, and
ColorAnimation.

Key frame animation: With key frame animation, values can jump abruptly from one
value to another, or they can combine jumps and periods of linear interpolation. Exam-
ples include ColorAnimationUsingKeyFrames, DoubleAnimationUsingKeyFrames, and
PointAnimationUsingKeyFrames.

In this chapter, you’ll focus exclusively on the most commonly used animation class:
the DoubleAnimation class. The DoubleAnimation class uses linear interpolation to change
a Double from a starting value to its ending value. Like all animation classes, it’s defined in the
System.Windows.Media.Animation namespace. Animations are defined using XAML markup.
Although the animation classes aren’t elements, they can still be created with the same XAML
syntax. For example, here’s the markup required to create a DoubleAnimation:

This animation lasts 5 seconds (as indicated by the Duration property, which takes a time
value in the format Hours:Minutes:Seconds.FractionalSeconds). While the animation is run-
ning, it changes the target value from 160 to 300. If the DoubleAnimation is able to run at
Silverlight’s default maximum frame rate, it will adjust the value 60 times per second. Each
time, it sets a value that’s proportionately between the starting and ending values. For exam-
ple, a fast- paced animation might change 160 to 160.4, then to 160.8, then to 161.2, and so on,
making each change after just a fraction of a second. The overall effect is that the Double value
will appear to change smoothly and continuously for the entire duration of the animation.

There’s one important detail that’s missing from this markup. The animation indicates
how the property will be changed, but it doesn’t indicate what property to use. This detail is
supplied by another ingredient, which is represented by the Storyboard class.

The Storyboard Class
The storyboard manages the timeline of your animation. You can use a storyboard to group
multiple animations, and it also has the ability to control the playback of animation—pausing it,
stopping it, and changing its position. However, the most basic feature provided by the Storyboard
class is its ability to point to a specific property and specific element using the TargetProperty and
TargetName properties. In other words, the storyboard bridges the gap between your animation
and the property you want to animate.

Here’s how you might define a storyboard that applies a DoubleAnimation to the Width
property of a button named cmdGrow:

The Storyboard.TargetProperty property identifies the property you want to change in the
target element. (In the previous example, it’s Width.) If you don’t supply a class name, the sto-
ryboard uses the parent element. If you want to set an attached property (for example, Canvas.
Left or Canvas.Top), you need to wrap the entire property in brackets, like this:

CHAPTER 33 S ILVERLIGHT 2 1581

Both TargetName and TargetProperty are attached properties. That means you can apply
them directly to the animation, as shown here:

This syntax is more common, because it allows you to put several animations in the same
storyboard but allow each animation to act on a different element and property. Although you
can’t animate the same property at the same time with multiple animations, you can (and
often will) animate different properties of the same element at once.

All Silverlight elements provide a Resources property, which holds a collection where you
can store miscellaneous objects. The primary purpose of the Resources collection is to allow
you to define objects in XAML that aren’t elements, and so can’t be placed into the visual
layout of your content region. Resources can be retrieved in your code or used elsewhere in
your markup. The Resources collection is a convenient storage place for the button- growing
animation:

Notice that it’s now given a name, so you can manipulate it in your code. (You can also
add a name to the DoubleAnimation if you want to tweak its properties programmatically
before launching the animation.) You’ll also notice that you need to explicitly specify the
Storyboard.TargetName property to connect it to the right element when you’re using this
approach.

Now you simply need to call the methods of the Storyboard object in an event handler in
your Silverlight code- behind file. The methods you can use include Begin(), Stop(), Pause(),
Resume(), and Seek(), all of which are fairly self- explanatory.

CHAPTER 33 S ILVERLIGHT 21582

Now, clicking the button launches the animation, and the button stretches from 160 to
300 pixels, as shown in Figure 33-12.

 Figure 33-12. Animating a button’s width

Configuring Animation Properties
To get the most out of your animations, you need to look a little closer at the base Animation
class, which defines the properties that are provided by all animation classes. Table 33-3
describes them.

Table 33-3. Properties of the Animation Class

Name Description
From Sets the starting values for your animation. In many situations, you won’t

set From. In this case, Silverlight uses the current value of your element. For
example, if you didn’t set the initial width in the growing rectangle example,
it would start at whatever it is currently. This is particularly useful if you’re
animating a value that might be changed by other code or other animations.
In this situation, you want the animation to start from the current value, not
jump abruptly to a preset From value.

To Sets the ending value for your animation. In some situations, you won’t set
From or To. In this case, the property returns to whatever initial value is set
in the XAML markup. For example, you could use this technique to shrink the
rectangle in the previous example back to its original size when it’s clicked.

By Instead of using To, you can use By to create a cumulative animation. By sets
a number that will be added to the initial value. For example, if you replace the
To value in the rectangle- growing example with a By value of 10, the rectangle
will grow 10 pixels wider than its current width over the course of the anima-
tion. If you run this animation every time the rectangle is clicked, it will con-
tinue to grow and grow.

Duration The length of time the animation runs, from start to finish, as a Duration
object.

AutoReverse If true, the animation will play out in reverse once it’s complete, reverting to
the original value. This also doubles the time the animation takes.

CHAPTER 33 S ILVERLIGHT 2 1583

Name Description
RepeatBehavior Allows you to repeat an animation a specific number of times. Or, you can use

Forever to repeat the animation endlessly.

BeginTime Sets a delay that will be added before the animation starts (as a TimeSpan).
This delay is added to the total time, so a 5- second animation with a 5- second
delay takes 10 seconds. BeginTime is useful when synchronizing different ani-
mations that start at the same time but should apply their effects in sequence.

SpeedRatio Increases or decreases the speed of the animation. Ordinarily, SpeedRatio
is 1. If you increase it, the animation completes more quickly (for example,
a SpeedRatio of 5 completes five times faster). If you decrease it, the animation
is slowed down (for example, a SpeedRatio of 0.5 takes twice as long). You can
change the duration of your animation for an equivalent result. The SpeedRatio
is not taken into account when applying the BeginTime delay.

FillBehavior Determines what happens when the animation ends. Usually, it keeps the
property fixed at the ending value (FillBehavior.HoldEnd), but you can also
choose to return it to its original value (FillBehavior.Stop).

An Interactive Animation Example
Sometimes, you’ll need to create every detail of an animation programmatically in code. In
fact, this scenario is fairly common. It occurs anytime you have multiple animations to deal
with, and you don’t know in advance how many animations there will be or how they should
be configured. It also occurs if you want to use the same animation in different pages, or you
simply want the flexibility to separate all the animation- related details from your markup for
easier reuse.

It isn’t difficult to create, configure, and launch an animation programmatically. You
begin by creating the animation and storyboard objects you need and adding the animations
to the storyboard. You should also clean up your animations by reacting to the Storyboard.
Completed event that fires when they finish.

The following example demonstrates a slightly more realistic use of animation, which
is shown in Figure 33-13. It begins with a content region that’s filled with irregularly shaped
rectangles. When you click a rectangle, it begins to fall toward the bottom of the Canvas, and
simultaneously begins to change color. You can click several rectangles in quick succession to
start several simultaneous animations. To make this work, the page uses multiple storyboards,
one for each rectangle that’s currently falling. The storyboards are created as they’re needed
using code.

CHAPTER 33 S ILVERLIGHT 21584

 Figure 33-13. Falling rectangles

The markup for this example defines a simple page with a Border and a Canvas inside.
The markup doesn’t include a storyboard, because that detail needs to be created dynamically
when the rectangle is clicked.

You’ll also notice that the Canvas doesn’t contain any other elements. That’s because
this example uses a more flexible approach—it generates the rectangles dynamically. When
the Canvas is loaded, it creates 20 rectangles of random size, at random locations. It wires the
MouseLeftButtonDown event of each one to the same event handler.

CHAPTER 33 S ILVERLIGHT 2 1585

When a rectangle is clicked, the new storyboard needs to be created, along with the
appropriate animations. In this case, you need two animations, one for each property you plan
to modify. The first animation is a DoubleAnimation that changes the Canvas.Top property to
shift the rectangle down the page, while the second animation is a ColorAnimation that blends
its color.

This storyboard is added to a collection so you can easily track the currently running sto-
ryboards (and the corresponding animated elements). An event handler is hooked up so your
code can receive notification when the animation ends. Then the animation is started.

CHAPTER 33 S ILVERLIGHT 21586

This storyboard wraps two animations: a DoubleAnimation that moves the rectangle, and
a ColorAnimation that changes the color of the associated brush object. The ColorAnimation
uses linear interpolation, which means it will progressively blend the color from its initial
value (in this example, red) to its final value (blue). The code for setting up the animations is
fairly straightforward, once you’re used to the attached property syntax (which is used to set
Storyboard.Target and Storyboard.TargetProperty) and the PropertyPath object (which is used
to provide the string that points to the property you want to animate).

When the storyboard ends, it’s time to clean up. Here’s the simplest code you could use to
accomplish this task:

However, there’s a problem here. Animations don’t actually change the underlying value
of a property; they simply override it temporarily. But you won’t necessarily notice this fact,
because completed animations don’t actually stop. Instead, when an animation reaches its
end, it continues to hold the property at its final animated value. This means that after a sto-
ryboard has finished, the animated rectangle remains at the bottom of the page and is still
colored blue.

Here’s the problem. When you create storyboards dynamically, you open up the possibil-
ity that there could be a significant number of storyboards running at the same time. To ensure
good performance, it’s important to explicitly stop the storyboard when its animations are
finished. The code just shown does exactly that. However, stopping the animation returns your
animated properties to their original values. In this example, that means each time you stop

CHAPTER 33 S ILVERLIGHT 2 1587

the animation of a falling rectangle it will jump back up to its original position and revert to the
color red.

The solution is to retrieve the current value of the Canvas.Top property for the rectangle,
then stop the animation, and then set the animated value. This last step moves the rectangle
to its most recent animated position. The result is that every time a storyboard ends, the rect-
angle remains in its new position. Here’s the code that implements this design:

Although the Canvas.Top property is set manually after the animation is stopped, the
color is not. As a result, the rectangle reverts to its initial red color as soon as the storyboard is
stopped.

Note There is one possible exception to the behavior described here. If you set the FillBehavior prop-
erty of the animation class to FillBehavior.Stop, the storyboard will stop holding values when it ends. In the
 rectangle- dropping example, that means the rectangle would spring back to its original position and revert to
the color red, even if you didn’t explicitly stop the storyboard.

There’s another interesting quirk in this example. The animation always uses the same
duration (2 seconds). However, the square you click may be close to the bottom or far from the
bottom. As a result, squares closer to the bottom will fall more slowly, and squares farther from
the bottom will fall faster.

Transforms
As you’ve already learned, Silverlight animations work by modifying the value of a property.
Elements have several properties that can be usefully changed. For example, you can use
Canvas.Left and Canvas.Top to move an element around. Or, you can alter the Opacity setting
to make an element fade into or out of view. However, it’s not immediately clear how you can
perform more exciting alterations, like rotations.

The secret is transforms. A transform is an object that alters the way a shape or other ele-
ment is drawn by shifting the coordinate system it uses. You can use transforms to stretch,
rotate, skew, and otherwise manipulate the shapes, images, and text in your Silverlight user
interface. Transforms are useful for getting the right shape you want, but they’re even more

CHAPTER 33 S ILVERLIGHT 21588

interesting when you’re animating. By animating a property in a transform, you can rotate
a shape, move it from one place to another, or warp it dynamically.

 Table 33-4 lists the transforms that are supported in Silverlight.

Table 33-4. Transform Classes

Name Description Important Properties
TranslateTransform Displaces your coordinate system

by some amount. This transform is
useful if you want to draw the same
shape in different places.

X, Y

RotateTransform Rotates your coordinate system.
The shapes you draw normally are
turned around a center point you
choose.

Angle, CenterX, CenterY

ScaleTransform Scales your coordinate system up
or down so that your shapes are
drawn smaller or larger. You can
apply different degrees of scaling
in the X and Y dimensions, thereby
stretching or compressing your
shape.

ScaleX, ScaleY, CenterX,
CenterY

SkewTransform Warps your coordinate system by
slanting it a num ber of degrees. For
example, if you draw a square, it
becomes a parallelogram.

AngleX, AngleY, CenterX,
CenterY

MatrixTransform Modifies your coordinate system
using matrix multiplication with
the matrix you supply. This is the
most complex option—it requires
some mathematical skill.

Matrix

TransformGroup Combines multiple transforms so
they can all be applied at once. The
order in which you apply transfor-
mations is important—it affects the
final result. For example, rotating
a shape (with RotateTransform)
and then moving it (with Transla-
teTransform) sends the shape off
in a different direction than if you
move it and then rotate it.

N/A

Technically, all transforms use matrix math to alter the coordinates of your shape. How-
ever, using prebuilt transforms such as TranslateTransform, RotateTransform, ScaleTransform,
and SkewTransform is far simpler than using the MatrixTransform and trying to work out the
right matrix for the operation you want to perform. When you perform a series of transforms
with TransformGroup, Silverlight fuses your transforms together into a single MatrixTransform,
ensuring optimal performance.

CHAPTER 33 S ILVERLIGHT 2 1589

Using a Transform
To transform an element, you set its RenderTransform property with the transform object you
want to use. Depending on the type of transform object you’re using, you’ll need to fill in dif-
ferent properties to configure it, as detailed in Table 33-4.

For example, if you’re rotating an element, you need to use the RotateTransform and
supply the angle in degrees. Here’s an example that rotates a button clockwise by 25 degrees:

When you rotate an element in this way, you rotate it about the element’s origin (the
 top- left corner). If you want to rotate a shape around a different point, you can use the handy
RenderTransformOrigin property. This property sets the center point using a proportional
coordinate system that stretches from 0 to 1 in both dimensions. In other words, the point (0, 0)
is designated as the top- left corner, and (1, 1) is the bottom- right corner. (If the shape region
isn’t square, the coordinate system is stretched accordingly.)

With the help of the RenderTransformOrigin property, you can rotate any element around
its center point using markup like this:

This works because the point (0.5, 0.5) designates the center of the shape, regardless of its
size.

Tip
designate a point that appears outside the bounding box of your shape. For example, you can use this tech-
nique with a RotateTransform to rotate a shape in a large arc around a very distant point, such as (5, 5).

Animating a Transform
To use a transform in animation, the first step is to define the transform. (An animation can
change an existing transform but not create a new one.) For example, imagine you want to
allow a button to rotate. This requires the RotateTransform, which you can add like this:

CHAPTER 33 S ILVERLIGHT 21590

Tip You can easily use transforms in combination. In fact, it’s easy—you simply need to use the Trans-

Now here’s an animation that makes a button rotate when the mouse moves over it. It
acts on the Button.RotateTransform object, and uses the target property Angle. The fact that
the RenderTransform property can hold a variety of different transform objects, each with
different properties, doesn’t cause a problem. As long as you’re using a transform that has an
angle property, this animation will work.

If you place this animation in the Resources collection of the page, you can trigger it when
the user moves the mouse over the button, but adding the MouseEnter event is a must to make
it work:

The button rotates one revolution every 0.8 seconds and continues rotating perpetually.
While the button is rotating, it’s still completely usable—for example, you can click it and
handle the Click event.

To stop the rotation, you can react to the MouseLeave event. At this point, you could stop
the storyboard that performs the rotation, but this causes the button to jump back to its origi-
nal orientation in one step. A better approach is to start a second animation that replaces the
first. This animation leaves out the From property, which allows it to seamlessly rotate the but-
ton from its current angle to its original orientation in a snappy 0.2 seconds:

Here’s the event handler:

With a little more work, you can make these two animations and the two event handlers
work for a whole stack of rotatable buttons, like the one shown in Figure 33-14. The trick is to
handle the events of all the buttons with the same code, and dynamically assign the target of
the storyboard to the current button using the Storyboard.SetTarget() method:

CHAPTER 33 S ILVERLIGHT 2 1591

 Figure 33-14. Using a render transform

There are two limitations to this approach. First, because the code reuses the same story-
boards for all the buttons, there’s no way to have two buttons rotating at once. For example, if
you quickly slide the mouse over several buttons, the buttons you leave first might not rotate
all the way back to their initial position, because the storyboard is commandeered by another
button. If this behavior is a problem, you can code around it by creating the storyboards you
need dynamically in code, as demonstrated with the falling squares example.

Silverlight and ASP.NET
The examples you’ve seen in this chapter have focused on the features of the Silverlight plat-
form. The entry pages you’ve used haven’t contained any additional content, and the ASP.NET
website has been little more than a thin shell that serves out the real package—the client- side
Silverlight application.

Although it’s perfectly legitimate to have a website that includes Silverlight- only pages,
there are other techniques that allow you to extend the interaction between the client- side

CHAPTER 33 S ILVERLIGHT 21592

Silverlight world and the server- side ASP.NET world. In the following sections, you’ll look at
two possibilities. First, you’ll consider how you can create ASP.NET- hosted web services that
a Silverlight application can access. Then, you’ll consider the second of two Silverlight- powered
web controls: the MediaPlayer.

Using Web Services with Silverlight
Without a doubt, the most effective way for a Silverlight application to tap into server- side
code is through web services. The basic idea is simple—you include a web service with your
ASP.NET website, and your Silverlight application calls the methods in that web service. The
web service code can perform server- side tasks, access server- side databases, and so on. With
a little extra work, it can even use ASP.NET services like authentication and session state. Best
of all, because the page isn’t posted back, your Silverlight application continues running with-
out interruption.

Silverlight applications support a variety of web service technologies, including SOAP- based
services, simple REST services that return XML or JSON data, and full- featured WCF services that
are built with .NET.

In this chapter, you’ll concentrate on WCF (Windows Communication Foundation) ser-
vices, which are the best choice for Silverlight applications. The other networking options are
often more work, but they’re useful if you need to access third- party web services that are out-
side your control.

Creating the Web Service
Much like the JavaScript in an ASP.NET AJAX page, Silverlight applications can call WCF
(Windows Communication Foundation) services. To create a WCF service for a Silverlight
application, right- click your ASP.NET website in the Solution Explorer and choose Add New
Item. Choose the “Silverlight- enabled WCF Service” template, enter a file name, and click Add.

Note A Silverlight- enabled WCF service is a WCF service that supports basic HTTP binding (rather than
the more stringent WS- * standards, which Silverlight doesn’t support). Silverlight- enabled services can also
access the HTTP context for the current request, which provides everything from cookies to caching. To
interact with the current HTTP content, use the HttpContext.Current static property.

To add a new web service method, you simply add a new method to the code file, and
make sure that it’s decorated with the OperationContract attribute. For example, if you want
to add a method that returns the current time on the server, you might modify the interface
like this:

CHAPTER 33 S ILVERLIGHT 2 1593

Adding a Web Reference
You consume a web service in a Silverlight application in much the same way that you con-
sume one in a full- fledged.NET application. The first step is to create a proxy class by adding
a Visual Studio web reference.

Note Before you begin, you need to know the correct URL for your web service. When testing your appli-
cation, Visual Studio loads the test web server at a randomly chosen port. To add a web reference, you need
to know this port. To find out what it is, run your website just before you add the reference, copy the root

don’t worry—even though you use the dynamically chosen port number to add the web reference, you’ll
see how to set your Silverlight application so it can always find the right URL, even when the port number
changes.

To add the web reference, follow these steps:

 1. Right-click your Silverlight project in the Solution Explorer and choose Add Service
Reference. The Add Service Reference dialog box will appear (see Figure 33-15).

 Figure 33-15. Adding a service reference

CHAPTER 33 S ILVERLIGHT 21594

 2. In the Address box, enter the URL that points to the web service and click Go. (Or, just
click the Discover button to automatically find all the web services that are in your cur-
rent solution.)

 3. In the Namespace box, enter the VB namespace that Visual Studio should use for the
automatically generated classes. In Figure 33-15, we used ServiceReference1.

 4. Click OK. Visual Studio will create a proxy class—a class that you can interact with to
call your web service. The proxy class is named after the original web service class;
for example, Visual Studio will create a proxy class named TestServiceClient for the
TestService shown earlier. The proxy class contains methods that allow you to trigger
the appropriate web service calls, and it takes care of the heavy lifting (creating the
request message, sending it in an HTTP request, getting the response, and then notify-
ing your code).

 5. To see the file that contains this code, select the Silverlight project in the Solution
Explorer; click the Show All Files button; expand the Service References node, the ser-
vice reference, and the Reference.svcmap node inside; and open the Reference.vb file.

When you perform this task, Visual Studio creates a proxy class—a class that you can interact
with to call your web service. The proxy class is named after the original web service class—for
example, Visual Studio will create a proxy class named TestServiceClient for the TestService
shown earlier. The proxy class contains methods that allow you to trigger the appropriate web
service calls, and it takes care of the heavy lifting (creating the request message, sending it in an
HTTP request, getting the response, and then notifying your code).

Calling the Web Service
To use the proxy class in a Silverlight page, open the code- behind file for your XAML page.
Then import the namespace you specified for the service reference in step 3 in the previous list
of steps. Assuming your project is named SilverlightApplication1 and you used the namespace
ServiceReference1, you’d need this statement:

In Silverlight, all web service calls must be asynchronous. That means you call a method to
start the call (and send off the request). This method is named in the form MethodNameAsync().
For example, if your web service includes a method named GetServerTime(), your proxy class
will provide a method named GetServerTimeAsync(). This method returns immediately.

After you call an asynchronous method, your code can carry on to perform other tasks, or
the user can continue to interact with the application. When the response is received from the
web service, the proxy will trigger an event, which is named in the form MethodNameCompleted
(as in GetServerTimeCompleted). You must handle this event to process the results.

Note This two- part communication process means that it takes a bit more work to handle a web service
call then to interact with an ordinary local object. However, it also ensures that developers create responsive
Silverlight applications. After all, making an HTTP call to a web service can take as long as one minute (using
the default timeout setting), so it’s not safe to make the user wait. (And yes, Microsoft imposes this limitation
to ensure your code can’t give their platform a bad name.)

CHAPTER 33 S ILVERLIGHT 2 1595

Here’s how to call the TestService.GetServerTime() method shown earlier when a button
is clicked:

To get the results, you need to handle the completed event and examine the correspond-
ing EventArgs object. When generating the proxy class, Visual Studio also creates a different
EventArgs class for each method. The only difference is the Result property, which is typed
to match the return value of the method. For example, the GetServerTime() method works in
conjunction with a GetServerTimeCompletedEventArgs class that provides a DateTime object
through its Result property.

When accessing the Result property for the first time, you need to use exception handling
code. That’s because this is the point where an exception will be thrown if the web service call
failed—for example, if the server couldn’t be found, the web method returned an error, or the
connection timed out.

Here’s an event handler that reads the result (the current date and time on the server) and
displays it in a TextBlock:

Tip Even though web service calls are performed on a background thread, there’s no need to worry about
thread marshaling when the completed event fires. That’s because the web service proxy class ensures that
the completed event fires on the main user interface thread, allowing you to access the controls in your page
without worry.

By default, the web service proxy class waits for one minute before giving up if it doesn’t
receive a response. You can configure the timeout length by using code like this before you
make the web service call:

CHAPTER 33 S ILVERLIGHT 21596

Configuring the Web Service URL
When you add a service reference, the automatically generated code includes the web service URL.
As a result, you don’t need to specify the URL when you create an instance of the proxy class.

However, this raises a potential problem. All web service URLs are fully qualified—relative
paths aren’t allowed. If you’re using the test web server in Visual Studio, that means you’ll run
into trouble if you try to run your application at a later point, when the test web server has
chosen a different port number. Similarly, you’ll need to update the URL when you deploy
your final application to a production web server.

You can solve this problem by regenerating the service reference, but it’s usually easier to
change the address dynamically in your code. To do so, you need to create a new EndpointAddress
object with the appropriate URL, and then pass that as a constructor argument when creating an
instance of the proxy class.

For example, the following code ensures that the web service call always works, no matter
what port number the Visual Studio test web server chooses.

You could use similar code to create a URL based on the current Silverlight page, so that
the web service continues to work no matter where you deploy it, so long as you keep the web
service and Silverlight application together in the same web folder.

Cross-Domain Web Service Calls
Silverlight allows you to make web service calls to web services that are a part of the same web-
site with no restrictions. Additionally, Silverlight allows you to call web services on other web
services if they explicitly allow it with a policy file.

To make this possible, you must create a file named clientaccesspolicy.xml, and place that
in the root of your website (for example, in the c:\inetpub\wwwroot directory of an IIS web
server). The ClientAccessPolicy.xml file indicates what domains are allowed to access your
web service. Here’s an example that allows any Silverlight application that’s been downloaded
from any web server to access your website:

CHAPTER 33 S ILVERLIGHT 2 1597

When you take this step, third- party Silverlight applications will be able to call your web ser-
vices and make arbitrary HTTP requests (for example, download web pages). Ordinarily, neither
task would be allowed in a Silverlight application. (Desktop applications and server- side appli-
cations face no such restrictions—no matter what policy file you create, they will be able to do
everything an ordinary user can do, which means they can download any public content.)

Alternatively, you can limit to access to Silverlight applications that are running on web
pages in specific domains. Here’s an example that allows requests from Silverlight applications
that are hosted at www.sompecompany.com or www.someothercompany.com:

You can use wildcards in the domain names to allow subdomains. For example, *.some-
company.com allows requests from mail.somecompany.com, admin.somecompany.com, and
so on.

Furthermore, you can selectively allow access to part of your website. Here’s an example
that allows Silverlight applications to access the services folder in your root web domain, which
is presumably where you’ll place all your cross- domain web services:

CHAPTER 33 S ILVERLIGHT 21598

The MediaPlayer Control
The MediaPlayer web control gives you a server- side abstraction over the MediaElement class
from Silverlight, which allows you to play audio and video. Here’s an example of the markup
you might use to add a MediaElement to a XAML page:

This assumes you’ve deployed the Butterfly.wmv file in the ClientBin folder alongside
your Silverlight project. The result is a video window that shows the Butterfly.wmv movie.
Playback begins immediately, although you can change that by setting the AutoPlay property
to false. It’s then up to you to call MediaElement methods such as Play(), Pause(), and Stop() in
your Silverlight code.

On the other hand, the MediaPlayer works in an ASP.NET web form and must be defined
in the .aspx markup of a page.

The obvious question is whether you should use the MediaElement or the server- side
MediaPlayer web control. They both amount to the same thing—after all, the server- side
MediaPlayer web control renders a MediaElement, although it requires slightly more work
on the server to do so. There are two key advantages to using the MediaPlayer web control:

you could set the media URL based on information from a server- side database.

video content) and adds controls that allow the user to control playback. With the
MediaElement, it’s up to you to create playback controls, if you want them.

Here’s an example of how you might define the MediaPlayer control:

This creates a Silverlight content region with a media player in it, as shown in Figure 33-16.
The media player attempts to access the Butterfly.wmv file (in the root website folder) and
begins playing it immediately. The user can control playback using buttons that have a similar
style to Windows Media Player.

CHAPTER 33 S ILVERLIGHT 2 1599

 Figure 33-16. The default skin of the Silverlight media player

To get the most out of Silverlight’s media playing ability, you need to take a closer look
at the properties provided by the MediaPlayer control. Table 33-5 lists some of the most
important.

Table 33-5. Properties of the MediaPlayer Web Control

Property Description
MediaSource Identifies the location of the media file as a URL. You can specify a rela-

tive path for a file on your web server, or you can supply a full URL that
points to another location.

AutoLoad Sets whether the media file is downloaded immediately when the page
is initialized. The default is true. If false, the media file is downloaded
when the user starts playback by clicking the play button.

AutoPlay Sets whether playback starts immediately when the page is initialized.
The default is false, which means the user will need to use the playback
controls to initiate playback.

EnableCaptions Sets whether captions are shown. In order for this property to work,
your media file must contain the embedded captions and your skin
must support captioning.

Volume Sets the volume as a value between 0 (silent) and 1 (the maximum volume).

Continued

CHAPTER 33 S ILVERLIGHT 21600

Table 33-5. Continued

Property Description
Muted Determines whether the audio should be muted initially. The default is

false.

Height and Width Sets the dimensions of the MediaPlayer. Unfortunately, you must
explicitly size your playback window—there’s no setting that allows the
MediaPlayer to size itself to fit your skin or your video content.

ScaleMode Sets whether the MediaPlayer’s user interface should be resized to fit
the Width and Height dimensions you specify. Your options include
None (in which case the MediaPlayer is given the size that’s specified
in the corresponding skin file), Stretch (in which case the MediaPlayer
is stretched in both dimensions to fit the specified bounds), and Zoom
(in which the MediaPlayer is enlarged as much as possible to fit the
specified dimensions, without being stretched out of proportion). The
default is Zoom. To get better control over the size of the video window
(which is just one component of the MediaPlayer user interface), you
need to modify the skin by hand, as described in the next section.

PlaceholderSource Specifies a URL to a placeholder image that will be shown while the
media file is being opened. Once the media file is opened, this image is
replaced with the first frame of your video.

Tip The MediaPlayer control derives from the Silverlight control. Thus, it also includes the properties

PluginNotInstalledTemplate.

MediaPlayer Skins
With virtually no effort, you can transform the MediaPlayer’s standard look. The trick is using
MediaPlayer skins.

Technically, a MediaPlayer skin is a XAML file that defines the layout of the MediaElement
and playback controls, complete with a full complement of animations that make the playback
controls feel responsive and professional. The skin doesn’t include any code. Instead, the
MediaPlayer looks for elements that have predefined names (like PlayPauseButton and
VolumeSlider) and wires up the appropriate functionality automatically.

Although you could create your own skin, it’s easier to take an existing skin and modify it
to suit your needs. The easiest way to pick the theme for your MediaPlayer is using the Visual
Studio smart tag. While editing your ASP.NET page, switch to design mode or split mode
(using the Design or Split buttons at the bottom of the document window). Then find the box
that represents the MediaPlayer on the page, select it, and click the tiny arrow that appears
next to the top- right corner. Figure 33-17 shows the smart tag that appears, with a handful of
options for configuring the MediaPlayer.

CHAPTER 33 S ILVERLIGHT 2 1601

 Figure 33-17. Choosing a MediaPlayer skin

Under the Player Skin text box, click the Import Skin link. Visual Studio will show an Open
dialog box that’s pointed to the location where the prebuilt skins are installed. (Typically, it’s
c:\Program Files\Microsoft SDKs\Silverlight\v2.0\Libraries\Server\MediaPlayerSkins.) Your
options include AudioGray.xaml (a slimmed- down interface without a video window, for
audio only), Basic.xaml, Blitz.xaml, Classic.xaml, Console.xaml (themed to resemble the Xbox),
Expression.xaml (themed to resemble Microsoft’s Expression applications), Professional.xaml,
and Simple.xaml.

Once you import a skin, the corresponding XAML file will be added to your web project,
and the MediaPlayer.SkinSource property will be set to point to it. You can then open the skin
file and edit it by hand. If you do, you’ll quickly see that the MediaPlayer uses the Canvas to
organize elements, it uses the Path and Rectangle elements to build its playback controls, it
includes a MediaElement for the video window, and it declares a long list of storyboards and
animations for creating dynamic mouse- over and click effects.

CHAPTER 33 S ILVERLIGHT 21602

CUSTOM CONTROLS

With the Silverlight and MediaPlayer controls, you’ve seen how specialized web controls can bridge the gap
between ASP.NET and Silverlight. The Silverlight control works by rendering the code needed to host a Sil-
verlight application that you’ve prepared separately. The MediaPlayer control is more interesting—it renders
a complete Silverlight application based on the properties you set.

By this point, it may have occurred to you that crafty ASP.NET developers can duplicate the technique
that the MediaPlayer control uses by devising custom ASP.NET controls that render themselves into Silver-
light applications. For example, you could build a Silverlight version of the ASP.NET AdRotator control that
renders a Silverlight- powered ad bar, suitable for inclusion on an ordinary ASP.NET page.

Unfortunately, this model isn’t quite as simple as it seems at first. One challenge is the fact that Silver-
light applications depend on separate resources, like XAML files. These files can be embedded in your ASP.NET
assembly and retrieved when needed using the ASP.NET web resources model, but this design complicates
life. Furthermore, you need a way to customize the Silverlight content based on the properties of the custom
control. For example, you may need to examine properties set on the server control and use that to change
the details in the embedded XAML. ASP.NET AJAX has possible solutions for this sort of challenge, but they’re
fairly involved and out of the scope of this chapter.

In the future, developers will get better tools that make this scenario—building custom ASP.NET con-
trols that generate Silverlight content—easier and more practical. In the meantime, cutting- edge developers
who are planning to experiment can check out

Summary
In this chapter, you took a thorough look at Silverlight, a new platform that’s modeled after
two other technologies: .NET and WPF.

Although it’s still a bit too early to assess Silverlight’s browser plug- in and its performance
on other browsers and operating systems, there’s reason to expect the best. Silverlight is one
of Microsoft’s most highly anticipated new technologies, often inspiring more developer inter-
est than any other release since .NET 1.0. Developers who learn the Silverlight model now will
have a head start in mastering more mature future versions.

Tip In this chapter, you received a rapid tour that included some of Silverlight’s most important features.
However, there are entire feature areas that this chapter doesn’t have room to cover, including styles, control

check out Silverlight 2 Recipes: A Problem- Solution Approach

1603

Special Characters
$ expressions, 367–368
$find alias, 1531
$get alias, 1531
% (percentage) character, 143, 1227
& (ampersand) character, 79, 551
* (asterisk) character, 495, 552, 556, 679, 1091
.. relative path operator, 556
@ (at sign) character, 680
{ } (brackets), 680
| (pipe) character, 680
~ character, 766
~/ syntax, 790
= (equal sign) character, 79
: (colon) character, 652
/ (forward slash) character, 680
. (period) character, 680
? (question mark) character, 552, 555–556,

1091

Numerics
3DES (Triple Data Encryption Standard),

191–192

A
-A p command-line option, 1132
-A switch, 1000
<a> tag, 766
Abandon session state settings, 261
AbortPostBack() function, 1515
absolute positioning, 35
Absolute sizes, 1575
absoluteExpiration parameter, 504
abstract encryption classes, 1171–1172
AccessKey property, 140, 147
Accordion control, 1358, 1539
AccountOperator value, 1072
ACID properties, 308
AcquireRequestState class, 185
ActionList class, 1315–1317
ActiveDirectoryMembershipProvider class,

993
ActiveDirectoryMembershipUser class, 993
ActiveStepChanged event, 783–784
ActiveStepIndex property, 782, 783
ActiveViewIndex property, 776

ActiveViewIndexChanged event, 778
ActiveXControls property, 1253
adaptive rendering, 1255–1257
AdCreated event, 176
Add() method, 351, 513–514, 775
Add Application Pool link, 890
Add Reference command, 1240
Add Reference dialog box, 48
Add Virtual Directory option, 876
<add> tag, 501–502, 521, 1134, 1152, 1154
AddArc method, 1335
AddAt() method, 775
AddAttribute method, 1239
AddAttributesToRender method, 1245, 1262,

1452
AddBezier method, 1335
AddBeziers method, 1335
AddCacheDependency() method, 521
AddClosedCurve method, 1335
AddCurve method, 1335
AddDays() method, 983
AddEllipse method, 1335
addHandler() method, 1528
AddLine method, 1335
AddLines method, 1335
AddNode() method, 805
AddOnPreRenderCompleteAsync() method,

530, 540
AddParsedSubObject method, 1276
AddPath method, 1335
AddPie method, 1335
AddPolygon method, 1335
AddRectangle method, 1335
AddRectangles method, 1335
Add/Remove Windows Components dialog

box, 854
Address property, 1144
AddString method, 1335
AddStyleAttribute method, 1239
AddUsersToRole member, 1109, 1110
AddUsersToRoles member, 1109
AddUserToRole member, 1109
AddUserToRoles member, 1109
AddWithValue() method, 307
ADO.NET

architecture of, 278–283
class types, 282–283

Index

INDEX1604

Command class, 290–292
Connection class, 284–285, 287–290
data access without, 278
data providers, 279–280
DataReader class

ExecuteNonQuery() method, 299
ExecuteReader() method, 292–298
ExecuteScalar() method, 298–299
overview, 291–292
parameterized commands, 303
SQL injection attacks, 299–302
stored procedures, 304–307

disconnected access model, 334
JOIN queries versus DataRelation class,

342
overview, 277
provider-agnostic code, 316–320
transactions

client-initiated, 311–313
isolation levels, 313–314
overview, 307–309
savepoints, 315
stored procedure transactions, 309–310

AdRotator control, 173–176, 501
advanced breakpoints, 70–71
Advanced Settings link, 877, 890
Advanced Web Site Identification dialog box,

834
AdvertisementFile property, 175
AggregateCacheDependency class, 513–514
aggregation, 513–514, 587–590
Ajax (Asynchronous JavaScript and XML). See

also ASP.NET AJAX
client callbacks

creating, 1466–1468
in custom controls, 1474–1478
implementing callbacks, 1468–1469
writing client-side script, 1469–1471

controls, 126
example, 1461–1465
overview, 19–21, 1458
XMLHttpRequest object, 1459–1461

AjaxControlToolkit.dll, 1532
Ajax.NET library, 1466
AlgorithmName property, 1177
<allow users=*> rule, 1091, 1094
<allow> rule, 1091
allowAnonymous attribute, 1135
AllowClose property, 1372, 1375, 1388, 1392
AllowConnect property, 1372
AllowEdit property, 1372
AllowHide property, 1372
AllowMinimize property, 1372, 1392
allowOverride attribute, 195
AllowPaging property, 439, 466
AllowReturn property, 780, 784
AllowSorting property, 433

AllowZoneChange property, 1373
AlternateText element, 175
AlternatingItemTemplate mode, 448, 459,

1282
AlternatingRowStyle style, 423
AlwaysVisibleControlExtender control, 1537
ampersand (&) character, 79, 551
And operator, 586
AnimationExtender control, 1537
anonymous profiles, 1146–1149
anonymous types, 584
<anonymousIdentification> element, 1146
<AnonymousTemplate> template, 1107
AnswerLookupError event, 1026
antialiasing, 1331
AOL property, 1252
App_Browsers directory, 183
App_Code directory, 183, 213, 899, 906, 913,

1485, 1488
App_Data directory, 183
App_GlobalResources directory, 183
App_LocalResources directory, 183
App_Offline.htm file, 902
App_Themes directory, 183
App_WebReferences directory, 183
AppDomains class, 843
AppearanceEditorPart control, 1390, 1392
AppInitialize static method, 913
<applet> tag, 1442
Application class, 108, 571, 1526–1527
Application Development option, 878
application directory, 182–183, 904
application domains, 179–181, 844
application event, 185–186, 188
application integration, 648, 650
application lifetime, 181
Application lifetime events, 917
Application pool identity, 851
application pools, 848, 868–876, 889–892
application services, ASP.NET AJAX,

1494–1501
Application Settings feature, 880
Application state, 236–237, 269–273, 568
application updates, 182
Application_AuthenticateRequest event,

1110
Application_End() method, 524
Application_Error event, 1099
Application_OnEndRequest() method, 184
Application_Start() method, 524, 541
Application.add_init() method, 1527
applicationHost.config file, 882
application-level traces, 119–120
ApplicationName property, 1006, 1104, 1150,

1222, 1223
ApplicationPath method, 109, 113
Apply Styles window, 743

INDEX 1605

ApplyFormatInEditMode property, 419
ApplyStyle method, 1282
ApplyUpdate() function, 1465
AppManifest.xml file, 1556
appRequestQueueLimit setting, 897
AppSettings member, 201
<appSettings> element, 192
App.xaml file, 1556
App.xaml.vb file, 1556
ARGB color values, 144
Array class, 455, 1522
arrays, 1486
Arrays data type, 1486
.asax files, 42, 716, 719, 730, 734, 865
ASCII code, 563
AsDataView() method, 594
AsEnumerable() method, 593, 595, 603
.ashx files, 224–225, 865
.asmx files, 42, 180, 865
ASP feature, 879
asp: prefix, 142
<asp:BoundField> element, 641
<asp:CreateUserWizardStep> tag, 1034
<asp:MultiView> tag, 774
ASP.NET

2.0, 17
3.5, 18–22
coding model, 52–59
configuration

<system.web> settings, 196–197
encrypting configuration sections, 211–212
extending configuration file structure,

206–208, 210
machine.config file, 189–192
overview, 189
reading and writing configuration

sections programmatically, 201–204
settings, 198–200
web.config file, 192, 194–196
Website Administration Tool (WAT),

204–206
controls

creating dynamically, 106–107
HTML server, 128–136
input validation, 158–160, 162–173
list, 152–153, 154–157
rich, 173–178
server, 125–126, 127–128
web form, 138–152

deploying, 16
deploying applications in IIS

5.x, 893–898
6.0, 893–896
7.0, 896–897
compilation models, 898
Visual Studio, 902–904, 911

website, 174

ASPNET account, 931
ASP.NET AJAX

client libraries
client model, 1516–1517
object-oriented programming,

1517–1526
overview, 1515–1516
web-page framework, 1526–1531

control extenders, 1531–1540
Control Toolkit, 1480, 1531–1533
overview, 19–21, 1479–1481
script libraries, 1481–1482
ScriptManager control, 1482–1483
server callbacks

application services, 1494–1501
web service proxy, 1491–1492
web services, 1484–1491, 1493–1494

server controls
Timer control, 1511–1512
UpdatePanel control, 1502–1510
UpdateProgress control, 1512–1515

ASP.NET HTTP module, 885
aspnet_Applications table, 1132
aspnet_CheckSchemaVersion stored

procedure, 1133
aspnet_compiler.exe utility, 899, 906, 908
aspnet_isapi.dll file, 865, 915
aspnet_merge.exe utility, 906, 922
aspnet_Profile table, 1132
aspnet_Profile_DeleteInactiveProfiles stored

procedure, 1133
aspnet_Profile_GetNumberOfInactiveProfiles

stored procedure, 1133
aspnet_Profile_GetProfiles stored procedure,

1133
aspnet_Profile_GetProperties stored

procedure, 1133
aspnet_Profile_SetProperties stored

procedure, 1133
aspnet_regiis.exe utility, 865, 894
aspnet_regsql.exe utility, 264, 518–519, 998,

1000, 1004, 1131, 1361, 1368
aspnet_SchemaVersions table, 1132
aspnet_setreg.exe utility, 846
AspNet_SqlCachePollingStoredProcedure

stored procedure, 519
AspNet_SqlCacheQueryRegistered

TablesStoredProcedure stored
procedure, 519

AspNet_SqlCacheRegisterTableStored
Procedure stored procedure, 519

AspNet_SqlCacheTablesForChange
Notification table, 520

AspNet_SqlCacheUnRegisterTableStored
Procedure stored procedure, 519

AspNet_SqlCacheUpdateChangeIdStored
Procedure stored procedure, 519–520

INDEX1606

aspnet_Users table, 1132
aspnet_Users_CreateUser stored procedure,

1133
aspnet_Users_DeleteUser stored procedure,

1133
aspnet_wp.exe utility, 846
<asp:RoleGroup> tag, 1108
<asp:TreeNode> tag, 811
<asp:View> tag, 774, 775
<asp:WizardStep> tag, 780
.aspx (web form) files, 42, 180, 716, 719, 734,

811, 865, 893, 911, 967, 1340, 1433
assemblies, 6, 8, 182
<assemblies> element, 196
assembly references, 48–49
AssemblyInfo.vb file, 1556
AssociatedUpdatePanelID property, 1514
AssociateWith() method, 623
Association attribute, 617
asterisk (*) character, 495, 552, 556, 679, 1091
asymmetric encryption, 945–947, 1170–1171
asymmetric key pair, 945
AsymmetricAlgorithm class, 1168
Async attribute, 530
Asynchronous JavaScript and XML. See Ajax;

ASP.NET AJAX
asynchronous threads, 12
asynchronous web pages

creating, 530–532
handling errors, 534, 536–537
multiple tasks and timeouts, 539–541
overview, 529–530
querying data in, 532–534
using caching with, 537–539

AsyncPostBackTrigger property, 1509–1510
AsyncTimeout property, 541
at sign (@) character, 680
Atlas, 1503
Attach() method, 637
Attribute() method, 674
AttributeCount property, 661
Attributes() method, 674
Attributes property, 129, 547
auditing, 1131
Authenticate() method, 977–978
Authenticate event, 957, 1011, 1019,

1021–1022
Authenticate property, 1020
Authenticate Request event, 956–957
Authenticated property, 1020, 1022
AuthenticateRequest method, 185, 231, 957
authentication. See also forms

authentication; Windows
authentication

built-in authentication modules, 957–958
database, 284

IIS, 935–937, 940–942
indicating success, 109
overview, 955–957
process, 929–930
profiles, 1130
user, 1007–1009

<authentication /> section, 970, 980
Authentication feature, 879
authentication modules, 958
authentication service, 1495–1497
authentication tickets, 1057
<authentication> element, 957–958, 974
AuthenticationService property, 1495
<authenticationService> element, 1495
AuthenticationType property, 960
authorization and roles

authorization checks in code, 1097–1100
file authorization, 1096–1097
IIS, 937, 942–944, 1113–1117, 1118,

1120–1125
overview, 1089
Roles Service

accessing roles programmatically,
1108–1110

LoginView control, 1107–1108
overview, 1100–1106
Windows authentication, 1111–1112

URL authorization, 1089–1096
authorization rules, 1089
Authorization Rules feature, 879
<authorization> element, 196, 958–959,

973–974, 1090, 1091, 1093, 1417
AuthorizationStoreRoleProvider class, 1105
AuthorizeRequest event, 185, 956–957
AutoCompleteExtender control, 1533–1536
AutoCompleteTextBox server control, 1533
AutoDetect option, 971, 980
Autogenerate password setting, 846
AutoGenerateColumns property, 417
AutoGenerateDeleteButton property, 468
AutoGenerateEditButton property, 468
AutoGenerateInsertButton property, 468
AutoGenerateRows property, 467
AutoGenerateSelectButton property, 429
automatic data binding, 97
automatic postbacks, 82–83
Automatic sizes, 1575
AutomaticallyGenerateDataBindings

property, 700
automaticSaveEnabled attribute, 1142
AutoPostBack property, 82–83, 96, 149, 153,

176, 1509
Autos variable watch window, 69
AutoSaving event, 1143
Average() method, 523, 589
.axd files, 865

INDEX 1607

B
back reference, 1272
BackColor property, 140, 429
BackgroundSounds property, 1253
base tag, HTML, 1244
Base64 string, 84, 87, 246, 1191, 1217
BaseValidator class, 161–162, 165–166
Basic authentication, 937, 1052
Basic Settings link, 877
Basic VB.NET data types, 1486
BEGIN TRANSACTION statement, 309
BeginExecuteReader() method, 533, 539
BeginInvoke() method, 532
BeginPageLoad function, 1433
BeginRead() method, 532
BeginRequest event, 185
beginRequest event, 1527
BeginTask() method, 533
BeginTransaction() method, 311
BeginXxx() methods, 532
BehaviorEditorPart control, 1392
BelowNormal value, 508
benchmarks, 9
Beta property, 1252
Bin directory, 16, 183, 899
binary files, 564–565
Binary namespace, 574
Binary option, 1138
BinaryFormatter class, 574, 1141
BinaryWrite() method, 112
BinaryWriter class, 565
Bind() method, 453, 456
Bindable attribute, 1289
BindGrid() method, 1392
Bitmap class, 1328
bitwise arithmetic, 551–552
BlankImageUrl property, 817
<body> tag, 1463
BodyFileName property, 1026
Bold property, 145
Boolean type, 1522
Border element, 1558
BorderColor property, 140
BorderStyle property, 140, 143
BorderWidth property, 140, 143
BoundField column, 417, 421, 468
<BoundField> tag, 417
brackets ({ }), 680
breadcrumbs, 792–794
breakpoints, 66–70
Breakpoints window, 70
Browsable attribute, 1288, 1292
Browse permission, 862
BrowseDisplayMode mode, 1368
Browser property, 109, 1252

browsers
adaptive rendering, 1255–1257
detection, 1250–1252
HtmlTextWriter class, 1249–1250
overriding browser type detection,

1254–1255
overview, 1249
properties, 1252–1254

brushes, 1338–1339
BufferOutput member, 111
BuildSiteMap() method, 804, 807
BulletedList control, 156–157, 371
BulletList control, 752
Button control, 141, 750, 777, 1029
Button element, 1558, 1564
Button.Click event, 47, 96, 98, 99
ButtonField column, 417, 432
ButtonType property, 428
BytesReceived, 290

C
-C switch, 1000
C# language, 8
CA (certificate authority), 944–948, 1164
cache dependencies

aggregate dependencies, 513–514
custom, 525–529
file and cache item dependencies, 512–513
item removed callback, 514–516
notifications in SQL Server

2000, 517–522
2005, 522–524
7.0, 517–522
overview, 516–517

overview, 511–512
Cache member, 111
Cache object, 108, 340, 503
Cache property, 497, 498
<cache> element, 502
CacheDependency class, 512–514, 517,

525–526
CacheDuration property, 508
CacheExpirationPolicy property, 508
CacheItemRemovedReason enumeration,

515–516
CacheKeyDependency property, 508
CachePriority enumeration, 507–508
CacheProfile attribute, 501
cacheRolesInCookie option, 1103
caching. See also cache dependencies

asynchronous web pages, 537–539
callback, 514
data

adding items to cache, 504–506
with data source controls, 508–511

INDEX1608

overview, 492, 503–504
priorities, 507–508
simple cache test, 506–507

data source, 492
disabling while testing, 494
keys, 512
output

custom control, 496–497
declarative, 493–494
fragment caching, 492, 499
HttpCachePolicy class, 497–498
overview, 492
post-cache substitution, 499–501
profiles, 501–502
query string, 494–496

overview, 491–492
reusability of pages, 494
scavenging, 507
sharing controls, 737
verification, 913

<caching> element, 502
Calendar autoformatting, 36
Calendar control, 173, 176–178, 1365, 1374
Calendar element, 1558
CalendarExtender control, 1537
callBaseMethod() method, 1525
CallServerForUpdate() function, 1463–1464
Cancel button, 1515, 1576
Cancel property, 727, 1027
CancelButtonClick event, 783
CancelButtonStyle style, 785
CancelDestinationPageUrl property, 783
CanConvertFrom method, 1301–1302
CanConvertTo method, 1301, 1303
Canvas element, 1558
Cascading Style Sheets (CSS), 26, 129, 132,

739–740, 742–743, 745, 750, 752, 762,
1012–1013, 1257

CascadingDropDownExtender control, 1537
CaseSensitive property, 434
CatalogDisplayMode mode, 1368
CatalogIconImageUrl property, 1373, 1376
CatalogZone control, 1360, 1363, 1366, 1368,

1370, 1417
CategoriesDataTable class, 357–358
CategoriesRow class, 359
Category attribute, 1288
CategoryName field, 354
CausesValidation property, 160–163, 170–171
CellPadding property, 154
Cells collection, 427
CellSpacing property, 154
certificate authority (CA), 944–948, 1164
CGI (Command Gateway Interface), 4–5
change event, 96
changed-value updating, 331
ChangeMode() method, 470

ChangePassword() method, 1010, 1029–1030,
1217, 1219

character class, 976
charting, with GDI, 1351–1354, 1356
CheckBox control, 141, 1558
CheckBoxField column, 417
CheckBoxList control, 152–155, 371, 745
CheckBoxStyle style, 1014
Checked property, 817
child controls, 100, 127, 135
ChildNodes collection, 664, 668, 799, 805
ChildNodesPadding property, 817
Choose Location dialog box, 30
ChromeState property, 1373
ChromeStyle property, 1392
ChromeType property, 1373
cHTML (compact HTML), 1249
ChtmlTextWriter class, 1249
c:\Inetpub\wwwroot directory, 860–861
class declaration, 614
class definition, 614
class libraries, 7, 222
Class Library project, 217
Class View window, 40
classic precompilation model, 898
ClassName attribute, 271
Clear() method, 808
Clear object, 261
ClearTypeGridFit option, 1331
Click attribute, 1564
Click event, 149
client callbacks

creating, 1466–1468, 1473
in custom controls, 1474–1478
implementing, 1468–1469
writing client-side script, 1469–1471

client libraries
client model, 1516–1517
client script, 1480
OOP in JavaScript, 1517–1526
web-page framework, 1526–1531

client server development, 3
ClientBin folder, 1548
ClientCertificate property, 109
ClientID property, 127
client-initiated transactions, 308, 311–314
ClientScript property, 1440
ClientScriptManager object, 1440
client-side AJAX control, 1527–1531
client-side events, 1423–1425
client-side JavaScript, 83, 158, 167–168
ClientValidationFunction class, 168
Close method, 285, 287, 292, 562
CloseFigure() method, 1335
closures, JavaScript, 1518–1519
CLR (common language runtime), 6, 10,

12–13, 180, 182, 287, 896, 1168, 1287

INDEX 1609

ClrVersion property, 1253
CLS (common language specification), 11
cmdOutsideUpdate property, 1510
CMS (Cryptographic Message Syntax), 1164
CN (Common Name), 950
Code Document Object Model (CodeDOM),

368
Code Editor, 48–52
code serialization

attributes, 1306–1311
overview, 1297
type converters, 1297–1306
type editors, 1308–1311

code-behind model, 53, 180
CodeDOM (Code Document Object Model),

368
CodeExpression object, 369
CodeFile attribute, 56
CodeMethodInvokeExpression class, 370
ColdFusion, 4
CollapseImageUrl property, 817
CollapsiblePanelExtender control, 1537
collection object, 583
colon (:) character, 652
Color data type, 1311
Color property, 35, 144
Colors object, 144
ColorTranslator class, 144
Column attribute, 615
Column property, 1574
column spanning, 1578
ColumnDefinition element, 1574, 1575
columns, defining, 416–420
Columns collection, 336, 351–352, 641
Columns property, 420
<Columns> section, 416–417
ColumnSpan property, 474
COM+ transactions, 308
Combine method, 554–556
Command class, 279, 290–292, 337, 339
Command Gateway Interface (CGI), 4–5
CommandArgument property, 451
CommandBehavior class, 295
CommandField column, 417, 428, 429, 452,

457
command-line encryption, 212
CommandName property, 451–452, 457–458,

1018, 1028–1030
CommandType enumeration, 290
Commit() method, 311
committing changes

CLR, 1541
LINQ to SQL, 631–637

Common Gateway Interface (CGI), 5
common language runtime (CLR), 6, 10,

12–13, 180, 182, 287, 896, 1168, 1287
common language specification (CLS), 11

Common Name (CN), 950
compact HTML (cHTML), 1249
CompareAllValues property, 406
CompareValidator control, 159, 163–164
compilation, 8–9, 198, 213–214, 222–223
compilation element, 196
Compilation tab, 910
<compilation> element, 196, 198, 884, 893
compilationTempDirectory setting, 898
CompletedSyncResult class, 537–538
Component class, 402
Component property, 1313
ComponentModel namespace, 402, 409, 1287
composite controls, 1267–1269
compression, 572–573
concurrency, 330–331, 636–637
Condition option, 71
conditional updates, 1509
.config files, 220, 865
configSections element, 193
Configuration button, 835, 864
configuration files, 753–754, 766
configuration inheritance, 194–195
Configuration namespace, 199–200, 1149
<configuration> tag, 196, 197, 1004, 1094
ConfigurationProperty attribute, 208
ConfigurationSettings class, 199–200
Configure Data Source Wizard, 409
ConfirmButtonExtender control, 1540
ConflictDetection property, 393, 394, 395,

406, 488
Connect To drop-down list, 903
ConnectDisplayMode mode, 1368, 1403
ConnectErrorMessage property, 1373
Connection class, 279, 281, 284–285, 287–290,

339, 376
Connection Lifetime settings, 288
connection pooling, 287–289
connection strings, 284–285, 880
connection-based objects, 282
<ConnectionProvider> attribute, 1397–1398,

1400–1401
ConnectionStringExpressionBuilder class,

368
ConnectionStringName parameter, 919, 1104
ConnectionStrings member, 201, 285
<connectionStrings> element, 192, 1004,

1368
ConnectionsZone control, 1403–1404
ConnectionTime statistic, 289
ConsumerConnectionPointID parameter,

1405
Container class, 446
Contains() method, 1226
Content control, 760, 762
<Content> tag, 762
content-based objects, 282

INDEX1610

ContentPlaceHolder control, 758, 760,
762–763, 764, 766–767, 769

ContentPlaceHolderID property, 760
<ContentTemplate> tag, 1108, 1503
ContentType member, 111
Context property, 1143
ContextTypeName property, 640
Continue command, 69
ContinueButtonClick event, 1033
control adapters, 1255
control attributes, 1286–1287
Control class, 127–128, 1238
control designers, 1286, 1311–1314
control extenders, 1531–1540
Control Panel, 856
control state, 85, 1257–1266
control tags, 56, 58, 99
Control Toolkit, 1502, 1527, 1531–1533,

1536–1540
control tree, 100–104, 116
ControlDesigner class, 1312–1313, 1319
Controls collection, 100, 127, 1503
Controls property, 127, 1373
ControlStyle property, 419, 785
ControlToCompare property, 164
ControlToValidate property, 162–164, 171
ControlValuePropertyAttribute() method,

1289
Conversion Wizard, 64
ConvertEmptyStringToNull property, 419
ConvertFrom method, 1301–1302
ConvertTo method, 1301–1302
ConvertXmlTextToHtmlText method, 1271
cookieless forms authentication, 980
cookieless option, 266–267, 971, 980
cookieName option, 1103
cookiePath option, 1103
cookieProtection option, 1104
cookieRequireSSL option, 1104
cookies

authentication, 968
custom, 236, 256–257
persistent, 982–983
SessionID, 259
state management options, 236

Cookies Collection, 116, 256
Cookies property, 109, 1253
cookieSlidingExpiration option, 1104
cookieTimeout option, 1104
Copy() method, 545
-copyattrs parameter, 907
CopyFrom method, 1282
CopyTo()method, 548
core class libraries, 1566
Core classes, 1517
COUNT() function, 351–352, 523
Count() method, 261, 588, 589, 610, 680

CountEmployees() method, 441
cpuMask configuration, 845
Crawler property, 1253
Create() method, 547, 1171
CREATE DATABASE command, 630
CREATE EVENT NOTIFICATION command,

522
Create method, 547, 563
CREATE TABLE statement, 1186
Create Virtual Directory Wizard, 893
CreateChildControls() method, 1267–1268,

1274, 1277–1278, 1380, 1383–1384,
1386–1387, 1394, 1400, 1406, 1408

createConstraints parameter, 343
CreateDatabase() method, 630
CreateDecryptor() method, 1172
CreateDirectory method, 544
CreatedUser event, 1033–1035, 1110
CreateEditorParts method, 1396
CreateEncryptor() method, 1172
CreateMachineKey() method, 191–192
CreateMembershipFromInternalUser()

method, 1220
CreateNavigator method, 668, 689
createPersistentCookie option, 1104
CreatePlaceHolderDesignTimeHtml method,

1313
CreateRole() method, 1223
CreateRole member, 1109
CreateSubdirectory() method, 547
CreateText() method, 563
CreateUser() method, 1044–1045, 1217, 1219,

1223
CreateUserError event, 1033
CreateUserIconUrl property, 1016
CreateUserText property, 1016
CreateUserUrl property, 1016
CreateUserWizard control, 1010, 1030–1032,

1034–1035, 1110
CreateXMLHttpRequest() function,

1463–1464
CreateXxx() methods, 317
CreatingUser event, 1033
CreationTime property, 547
<credentials /> element, 973, 979
cross-page posting, 80, 250–256
CryptoAPI library, 1164, 1168, 1170, 1171
Cryptographic Message Syntax (CMS), 1164
cryptography

encrypting query string
creating test page, 1193–1194
overview, 1189
wrapping, 1189–1192

encrypting sensitive data
in databases, 1185–1188
managing secrets, 1174–1176
overview, 1174

INDEX 1611

using asymmetric algorithms, 1182–1184
using symmetric algorithms, 1176–1182

.NET
classes, 1168–1174
namespace, 1164–1167

overview, 1163–1164
<cryptographySettings> section, 1179
CryptoStream class, 1172–1174, 1179–1180
CryptoStreamMode enumeration, 1173
.cs files, 865
CSharpSamples.zip, 604
.csproj files, 865
CSS (Cascading Style Sheets), 26, 129, 132,

739–740, 742–743, 745, 750, 752, 762,
1012–1013, 1257

CSS Outline window, 741
CSS Properties window, 744
CssClass property, 140, 423, 740, 743, 753,

1012, 1014
Currency data type, 422–423
Current() method, 1209
Current class, 960
Current property, 123, 1485
Current static property, 1592
CurrentNode property, 799
CurrentNodeStyle style, 794
CurrentNodeTemplate template, 794
CurrentPageIndex property, 439
CurrentStore property, 1223
CurrentUserControlPath property, 1408
cursors, firehose, 291
Custom Errors tab, 867
Custom objects, 1486
Custom setting, 266
Customer property, 625
CustomerDetails property, 626
CustomerID field, 635
<customErrors> element, 196, 1089, 1507
CustomersSetTableAdapters namespace,

1385
CustomImageButton control, 1266
CustomServerControlsLibrary, 1290
CustomTextBox control, 1290, 1293–1294
CustomValidator control, 159, 167–168

D
-d switch, 518, 1000
DashPattern member, 1336
DashStyle member, 1336
data access class, 322
data binding

automatic, 97
custom expression builders, 368–371
data source controls, 379–381, 410–413
to DataReader, 376–377
to methods, 449–451
ObjectDataSource, 398–408

overview, 364
repeated-value, 371–373, 375–379
single value, 364–366
to site maps, 791–792
SqlDataSource

disadvantages of, 397–398
error handling, 390–391
overview, 381–382
parameterized commands, 385–389
selecting records, 382–385
updating records, 391–395

XML and
binding content from other sources,

704–705
hierarchical binding, 700–702
nested grids, 698–699
nonhierarchical binding, 694–696
overview, 693–694
updating through XmlDataSource, 705
using XPath, 696–698
using XSLT, 702–704

data caching
adding items to cache, 504–506
with data source controls, 508–511
with ObjectDataSource, 511
overview, 492, 503–504
priorities, 507–508
with SdlDataSource, 509–511
test, 506–507

data classes, generating automatically, 610–616
Data Definition Language (DDL), 1001
Data Encryption Standard (DES), 191, 1168,

1170–1173, 1177, 1181
data entity classes, 598–600
Data property, 814
Data Protection API (DPAPI), 211, 1163,

1176–1178, 1181, 1183, 1189,
1191–1192

data providers, 279–280, 283, 287–289
data source caching, 492
data source controls

data caching with, 508–511
limits of, 410–412
overview, 17, 379–380

data types, 5–6, 236, 283, 422–423
Data Utility class, 325–331
DataAdapter class, 279, 337–344
Database Markup Language (DBML), 610,

643
DataBind() method, 128, 349, 364, 365, 366,

373, 376, 582, 1259, 1279–1280, 1381,
1387

DataBinder class, 446, 455
DataBound event, 473–474
DataColumn object, 336, 341, 351
DataContext class, 600–601, 608, 615–616,

629, 631, 637, 640, 645

INDEX1612

DataField property, 419, 433
DataFile property, 704, 1486
DataFormatString property, 419, 421, 425
DataGrid control, 152, 298, 415–416, 439, 441,

476, 556–561, 1435–1436, 1558
DataGridView control, 752
DataItem property, 427, 446, 826
DataKeyNames property, 394, 430, 641, 1044
DataList control, 415, 724, 1342, 1344–1345
DataLoadOptions object, 623, 626
DataMember property, 153
DataObject attribute, 409
DataObjectMethod attribute, 409
DataObjectTypeName property, 405
DataPager class, 464
DataQuery object, 602
DataReader class

binding to, 376–377
ExecuteNonQuery() method, 299
ExecuteReader() method, 292–298
ExecuteScalar() method, 298–299
GetValue method, 297
overview, 291–292
parameterized commands, 303
SQL injection attacks, 299–302
stored procedures, 304–307

DataRelation object, 341–343, 352
DataRow class, 337, 339, 342, 594, 1400
DataRowCollection implement, 593
DataRowExtensions class, 593–594
DataRowView control, 428
DataSet class

DataRow class, 337
DataTable class, 336, 1486
Date type, 1522
filling, 339–340
generic nature of, 281
overview, 336–337
ReadXml method, 337
ReadXmlSchema method, 337
sorting rows, 705–706
typed, 354–362, 595–596, 1381–1382
using in data access class, 344–345
Web applications and, 335
WriteXmlSchema method, 337
XML and, 705–710

DataSetName element, 707
DataSource property, 153, 364, 372, 455, 1259
DataSourceID property, 372, 411, 641, 791
DataSourceMode property, 434, 510
DataTable class, 336, 434, 511, 804–805, 1400
DataTableExtensions class, 593
DataTextField property, 372, 375–376
DataTextFormatString property, 153, 372
DataValueField property, 153, 372
DataView class, 346–353, 379, 433–435
Date data types, 422

DatePicker element, 1558
DateTime class, 512
DayRender event, 177
DBML (Database Markup Language), 610, 643
DbProviderFactories class, 316
DDL (Data Definition Language), 1001
-debug parameter, 907
Debug window, 71
debugging

commands in break mode, 68
disabling caching while testing, 494
JavaScript, 1429–1431
Visual Studio, 65–71

declarative output caching, 493–494
DecryptData() method, 1178, 1181
decryptionKey value, 191
Default Document feature, 879
Default Website item, 861, 864
<default> option, 998, 1000
DefaultAppPool class, 869
default.aspx file, 899, 920
DefaultEvent attribute, 1289
DefaultFocus property, 146
DefaultProperty attribute, 1289
defaultProvider attribute, 1005, 1103
defaultUrl attribute, 972, 974
defaultValue attribute, 1135, 1288
deferred execution, 581–582
deferred loading, 622
DeferredLoadingEnabled property, 623, 626
DeflateStream class, 572–573
delaysign parameter, 907
delegates, 58
Delete() method, 411, 544, 545, 547, 1045
DeleteCommand property, 337–338, 382
DeleteInactiveProfiles() method, 1145, 1150
DeleteMethod command, 400, 405
DeleteProfile() method, 1145
DeleteProfiles() method, 1145, 1150
DeleteRole() method, 1109, 1223
Demand() method, 1098
<deny> rule, 1090–1091
DependencyChanged value, 516
DependencyDispose() method, 526
Depth property, 816
derived controls, 1270–1273
DES (Data Encryption Standard), 191, 1168,

1170–1173, 1177, 1181
Description property, 1006, 1104, 1288, 1373,

1376, 1490
design surface, 1557
design time support, 1288
DesignDisplayMode, 1368
DesignerActionHeaderItem class, 1318
DesignerActionItem class, 1315, 1317–1319
DesignerActionMethodItem() method, 1318,

1319

INDEX 1613

DesignerActionPropertyItem class, 1318
DesignerActionTextItem class, 1318
DesignerSerializationVisibility attribute,

1306–1307
designer.vb file, 613
DesignOnly attribute, 1289
design-time behavior, 1292
design-time support

control designers, 1312–1314
design-time attributes, 1286–1294
overview, 1285
smart tags, 1314–1319
Web resources, 1294–1297

DestinationPageUrl property, 1016
DetailsView control, 377, 403, 413, 415–416,

466–468, 474, 486–490, 638
DHTML (Dynamic HTML), 1370, 1423, 1474
Dictionary class, 241
dictionary collections, 108, 238, 269
DictionaryEntry class, 506
DictionaryStructure class, 373
Digest authentication, 937, 1053
Direction property, 1373
Directory Browsing feature, 879
Directory class

attributes, 550–552
DirectoryInfo class, 546–549
DriveInfo class, 549–550
file browser, 556–561
overview, 543–544
Path class, 554–556
retrieving file version information,

553–554
wildcards, 552

Directory property, 548
DirectoryInfo class, 543, 546–550, 552, 557,

1344
DirectoryName property, 548
dirty reads, 314
Disabled HtmlControl property, 129
Disabled property, 129, 156
disableExpiration setting, 502
disableMemoryCollection setting, 502
disconnected data

data model, 277
DataAdapter class, 338–339
DataSet class, 336–337
DataView class, 349–353
overview, 321–334

disk-based output caching, 503
Display a Notification About Every Script

Error setting, 1505
Display property, 162
DisplayCancelButton property, 783, 785
displaying data

dispose() method, 1529
LinqDataSource control, 638–641

DisplayMode property, 168, 1368–1369, 1390,
1403

DisplayModes property, 1369
DisplayRememberMe property, 1016
DisplaySideBar property, 779
DisplayTitle property, 1373
Dispose() method, 402, 1330
Dispose event, 231, 287
Disposed event, 97
<div> tag, 39, 761, 763, 1257, 1504, 1551
DLL (Dynamic Link Library) files, 181, 223,

1174, 1380, 1397, 1427, 1548
dllhost.exe file, 846
DNS names, 110
DOCUMENT object, 748
document structure, 653
document type definitions, 90
document vocabulary, 653
Document window, 40, 43
Documents tab, 866
domain option, 972, 1104
__doPostBack() function, 82, 1264
DOTaspx extension, 500–501, 893
DoubleAnimation class, 1580
DPAPI (Data Protection API), 211, 1163,

1176–1178, 1181, 1183, 1189,
1191–1192

DragPanel component, 1480
DragPanel control, 1358
DragPanelExtender control, 1537
DrawArc method, 1332
DrawClosedCurve method, 1332
DrawCurve method, 1332
DrawEllipse method, 1332
DrawIcon method, 1332–1333
DrawIconUnstretched method, 1332
DrawImage method, 1332–1333
DrawImageUnscaled() method, 1332
DrawImageUnscaledAndClipped() method,

1332
Drawing namespace, 144
DrawLine method, 1332
DrawLines method, 1332
DrawPath() method, 1332, 1334
DrawPie method, 1332
DrawPolygon method, 1332
DrawRectangle method, 1332
DrawRectangles method, 1332
DrawString method, 1329, 1332–1333, 1349
DrawXxx methods, 1332, 1335
DropDownList control, 152, 371, 410–411,

455, 731
DropShadowExtender control, 1537
durable caching, 503
Duration attribute, 493
DvdList.xml file, 1270–1271
dynamic compilation, 899

INDEX1614

dynamic control creation, 106–107
Dynamic HTML (DHTML), 1370, 1423, 1474
Dynamic Link Library (DLL) files, 181, 223,

1174, 1380, 1397, 1427, 1548
dynamic panels, 1475–1478
dynamic user interfaces, 80–81
DynamicHoverStyle style, 824
DynamicMenuItemStyle style, 824
DynamicMenuItemTemplate property, 825
DynamicMenuStyle style, 824
DynamicPanel class, 1475–1477
DynamicPanelRefreshLink control, 1503
DynamicPopulateExtender control, 1537
DynamicSelectedStyle style, 824

E
-E switch, 518, 1000, 1002
EcmaScriptVersion property, 1253
-ed command-line switch, 518
EditDisplayMode mode, 1368
EditItemIndex property, 452
EditItemTemplate property, 448, 452–453,

457, 459, 470
EditorPart control, 1393–1394
EditorWebZone control, 1390
EditorZone control, 1368, 1371, 1390, 1392
EditRowStyle style, 423
EditValue method, 1309
Element() method, 674
Elements() method, 674
Ellipse element, 1558
email addresses, 166
<embed> tag, 1442
embedded code, 99, 115
embedding dynamic graphics

custom controls that use GDI+, 1345–1350
overview, 1340–1341
passing information to dynamic images,

1342–1345
using PNG format, 1341–1342

Employee() function, 1519
Employee class, 1518, 1524
Employee object, 627
EmployeeDetails object, 598, 601
EmployeeID field, 628
EmployeeTerritories table, 642
EmployeeTerritory class, 627, 642
EmptyDataRowStyle style, 423
EmptyDataTemplate mode, 448, 459, 470
EmptyItemTemplate mode, 459
enable configuration, 844
Enable CPU Monitoring option, 850
Enable Pinging option, 849
ENABLE_BROKER flag set, 523
EnableCaching property, 508
EnableClientScript property, 162
EnableConstraints property, 343

enableCrossAppRedirects option, 972
Enabled BaseValidator class property, 162
Enabled option, 1103
Enabled property, 140, 162, 1512
Enabled Trace option, 121
EnableEventValidation attribute, 304
enableKernelOutputCache setting, 897
enableObsoleteRendering attribute, 91
EnablePageMethods property, 1493
EnablePaging property, 441
EnablePartialRendering property, 1503
EnablePasswordReset property, 1006
EnablePasswordRetrieval property, 1006
EnableSession property, 1487
EnableSortingAndPagingCallbacks property,

445, 451
EnableTheming attribute, 750, 754
enableVersionHeader setting, 897
EnableViewState property, 85, 127, 245, 643,

1259
EnableViewStateMAC property, 246, 927
encoded tags, 114
encoding, 563, 949–950
EncryptData() method, 1178, 1184
EncryptedQueryString class, 1189–1190,

1192–1193
encrypting configuration sections, 211
encrypting data

in databases, 1185–1186
defined, 932
Machine.config file, 191–192
managing secrets, 1174–1176
overview, 932, 1174
using asymmetric algorithms, 1182–1184
using symmetric algorithms, 1176–1182
view state, 88

encryption classes, 932
encryption keys, 892
enctype attribute, 130
EndCap member, 1336
EndExecuteReader() method, 534, 538–539
EndPageLoad() function, 1434
EndRead() method, 532
endRequest() function, 1507
EndRequest() method, 186
EndRequest event, 184
endRequest event, 1506, 1509, 1527
EndTask() method, 533, 538
EndXxx() methods, 532
enforcing SSL connections, 949
EnsureChildControls() method, 1279, 1386
EntityRef object, 624, 626, 627, 628, 635
EntitySet object, 617, 622, 624, 626, 627, 628
Enumerable class, 581, 589, 591, 593
EnumerableRowCollection() object, 594
enumerated values, 143
Enumerations data type, 1486

INDEX 1615

equal sign (=) character, 79
error handling, 12, 390–391, 534–537, 917,

1505–1508
Error List, 40, 44–45
Error method, 188
Error Pages feature, 879
Error type, 1522
error underlining, 52
@@ERROR value, 310
ErrorMessage property, 162–163, 170
ErrorPage.aspx file, 1507
-errorstack parameter, 907
-et parameter, 519
Eval() method, 428, 446, 453, 455
event handlers, 58–59, 81, 96–98, 100, 107,

136, 150, 183–185, 1509, 1564
event trackers, 149–150
event validation, 304
EventArgs object, 151, 486, 726
EventLogWebEventProvider class, 919
<eventMappings> element, 917, 920
EventName attribute, 1510
Exception property, 390
ExceptionHandled property, 644
exceptions, 546
exclusive locks, 313
Execute permission, 862
ExecuteCommand() method, 630
ExecuteDynamicDelete() method, 644
ExecuteDynamicInsert() method, 644
ExecuteDynamicUpdate() method, 644
ExecuteMethodCall() method, 630
ExecuteNonQuery() method, 291, 299
ExecuteQuery() method, 630
ExecuteReader() method, 291–298
ExecuteScalar() method, 291, 298–299
executionTimeout setting, 897
Exists() method, 544, 545
Exists property, 547
ExpandableObjectConverter class, 1304–1306
ExpandDepth property, 812
ExpandImageUrl property, 817
Expired value, 516
Expires property, 111
ExpiresAbsolute property, 111
Exponential data type, 422–423
ExportMode property, 1373, 1411
Expression property, 351
ExpressionBuilder class, 368
expressions

lambda, 592
LINQ, 583–593
multipart, 592–593

extensible data provider model, 279
eXtensible Markup Language. See XML
Extensible Stylesheet Language (XSL),

687–688

extension method, 590, 591
Extension property, 547

F
FactoredProfileProvider class, 1153–1160
Failed Request Tracing Rules feature, 879
FailureAction property, 1016
FailureStyle style, 1014
FailureText property, 1015
Ferguson, Derek, 126
Field() method, 593, 596
file access, 543, 546, 571–572
file authorization, 1096–1097
File class

attributes, 550–552
DriveInfo class, 549–550
file browser, 556–561
FileInfo class, 546–549
methods, 545
overview, 543–544
Path class, 554–556
retrieving file version information,

553–554
wildcards, 552

file item dependencies, 512–513
file mapping, 223, 833–834, 864–865, 1114
File Transfer Protocol (FTP), 902
FileAccess value, 568
FileAttributes enumeration, 550–551
FileAuthorizationModule, 1096
FileExists method, 915
FileInfo class, 543, 546–550, 557, 559, 563,

1344–1345
FileMode value, 562, 568
FileName property, 1223
filenames, unique, 568–571
FileStream class, 562, 568, 572, 1117, 1173,

1567
FileSystemInfo object, 546, 557
FileUpload control, 1365
FileVersionInfo object, 553–554, 561
Fill() method, 338, 339
FillBehavior property, 1587
FillClosedCurve method, 1332
FillEllipse method, 1332
FillPath method, 1332, 1334
FillPie method, 1332, 1354
FillPolygon method, 1332
FillRectangle method, 1329, 1332
FillRectangles method, 1332
FillSchema() method, 338
FillXxx methods, 1332, 1338
Filter option, 71
FilterExpression class, 511
filtering, 221, 510, 586–587
<FilterParameters> section, 510
FindAll() method, 1220

INDEX1616

FindBook class, 1437–1438
FindControl() method, 106–107, 128, 171,

730, 768, 1021, 1029, 1186, 1477
FindInactiveProfilesByUserName() method,

1145, 1151
FindProfilesByUserName() method, 1145,

1151
FindSiteMapNode() method, 799
FindUsersByEmail() method, 1220
FindUsersInRole member, 1109
FindUsersInRoles() method, 1226
FinishButtonClick event, 783–784, 1034
FinishNavigationTemplate style, 786
FinishPreviousButtonStyle style, 785
Firefox browser, 496
firehose cursors, 291
FirstDayOfWeek property, 177
FirstName variable, 1517
FirstPageImageUrl property, 444
FirstPageText property, 444
Fixed Decimal data type, 422–423
-fixednames switch, 902
Focus() method, 146–147
Folder with globe icon, 863
Font object, 1329
Font property, 140, 144
FontInfo object, 1304, 1329
Fonts property, 144–146
FontUnit type, 145
FooterRow property, 472
FooterStyle property, 419, 423
FooterTemplate mode, 448, 470
For Each block, 609
ForEach loop, 582–583
ForeColor property, 140, 144
Form property, 109
<form> tag, 80, 84, 103, 142
Format property, 720–721, 1307
Format Selection command, 39
Formatting property, 656
<forms /> tag, 973–974, 980
forms authentication

advantages of, 965–966
classes, 969
configuring, 970–973, 996–997
custom credentials store, 981
custom login pages, 974–980
denying access to anonymous users,

973–974
disadvantages of, 966–968
IIS 7.0, 983–989
implementing, 968
overview, 963–964
persistent cookies, 982–983

Forms collection, 79
Trace Log, 116

<forms> element, 982

FormsAuthentication class, 969, 974, 977
FormsAuthenticationEventArgs class, 969
FormsAuthenticationModule class, 957–958,

969–970
FormsAuthenticationTicket class, 969
FormsIdentity class, 960, 969
FormView control, 377, 413, 415–416, 468,

470, 490, 778
forward slash (/) character, 680
fragment caching, 492, 498, 499, 734
Frame1.aspx file, 1455
frames, JavaScript, 1454–1457
Frames property, 1253
FrameworkElement class, 1568
From clause, 583
FromBase64String() method, 1181
FromImage() method, 1328
FromString custom type converter, 1301
FromXml() method, 1183
FrontPage Server Extensions, 902
FTP (File Transfer Protocol), 902
Full Unicode (UTF-16), 563
FullName property, 547, 557
full-text match algorithm, 288
function overloading, 295
Function type, 1522

G
GAC (global assembly cache), 49, 182, 886,

892
garbage collection, 12, 97
gatekeepers, 928
GDI+

charting, 1351–1356
custom images, 1334
drawing, 1327–1335
embedding in web pages, 1340–1350
Graphics class, 1333–1334
GraphicsPath class, 1335
ImageMap control, 1321–1327
overview, 1321
pens, 1335–1338

GenerateKey() method, 1172, 1178, 1183,
1184

GenericIdentity class, 960
GenericPrincipal class, 969
GenericWebPart class, 1371–1372, 1374,

1376, 1378, 1396
get_isLoggedIn() method, 1499
GetAccessControl() method, 544, 545
GetAllEmployees() method, 630
GetAllEmployees stored procedure, 629
GetAllInactiveProfiles() method, 1145, 1151
GetAllProfiles() method, 1145, 1151
GetAllRoles member, 1109
GetAllUsers() method, 1042
GetAttributes() method, 545

INDEX 1617

GetAuthCookie() method, 982, 983
GetBookImage.aspx file, 1437
GetBytes() method, 1180, 1192
GetCallbackEventReference() method, 1470
GetCallbackScript() method, 1476
GetChangeText() method, 635
GetChar method, 292
GetChildRows() method, 342
GetCodeExpression() method, 368–369
GetColor method, 1354–1356
GetCoordinates() method, 1326
GetCreationTime() method, 544, 545
GetCurrentDirectory() method, 544
GetCustomers() method, 622–623
GetDateTime method, 292
GetDesignTimeHtml method, 1312–1313
GetDirectories() method, 544, 547, 552
GetDrives() method, 550
GetEditStyle method, 1309
GetElementById() method, 1428, 1471, 1491
GetElementsByTagName method, 678–682
GetEmployees() method, 606
GetEmptyDesignTimeHtml method, 1312,

1313
GetErrorDesignTimeHtml method,

1312–1313
GetFactory() method, 316
GetFileName method, 555, 569
GetFiles() method, 544, 547, 552, 1344
GetFullPath method, 555
GetHierarchicalView() method, 700
GetHistory() method, 784
GetImageUrl method, 1345, 1438
GetInt32 method, 292
GetLastAccessTime() method, 544, 545
GetLastWriteTime() method, 544, 545
GetLogicalDrives() method, 544
GetNames() method, 1534
GetNumberOfInactiveProfiles() method,

1145, 1151
GetNumberOfProfiles() method, 1145
GetNumberOfUsersOnline() method, 1221
GetPaintValueSupported method, 1309
GetParent() method, 544
GetPassword() method, 1044
GetPostBackEventReference method,

1264–1265
GetProductCategories() method, 511
GetProductsByCategory() method, 511
GetProfile() method, 1143, 1144, 1148
GetPropertyValue() method, 1136
GetPropertyValues() method, 1150, 1154
GetRandomNumber() method, 369–370
GetRedirectUrl() method, 983
GetRole() method, 1206, 1224
GetRolesForUser member, 1109
GetRolesForUsers() method, 1226

GetSection() method, 202
GetSiteMap stored procedure, 807
GetSortedActionItems() method, 1318
GetString() method, 1180, 1192
GetTable() method, 600, 601, 609, 615, 629,

633, 634
GetTerritories() function, 1489
GetUser() method, 1041, 1044, 1219, 1221
GetUserByName() method, 1220
getUserProcedure attribute, 1152
GetUsers() method, 993
GetUsersInRole member, 1109
GetValidators() method, 172
GetValue() method, 292, 297
GetVaryByCustomString() function, 497
GetVersionInfo method, 553
GetVersionInfoString method, 561
GetWebPageAsString method, 1438
GetWebResourceUrl() method, 1295
GetXmlDocument() method, 705
GetXxx methods, 292
.gif files, 865, 1355
global application events, 180, 230, 955, 957
global assembly cache (GAC), 49, 182, 886,

892
global.asax file, 42, 180, 183–186, 188, 496,

955, 957
globally unique identifiers (GUIDs), 568–569
GradientLabel control, 1346–1348
GradientLabel.aspx file, 1348
graphical configuration tool, 895
graphical pie charts, 1351
Graphics class, 1328, 1332–1334
GraphicsPath class, 1334–1335
greedy matching, 1271
green bits, 21–22
Grid element, 1558
GridSplitter element, 1559
GridView control

defining columns, 416–420
editing field using lookup table, 477–479
formatting, 421–428
overview, 416
paging, 438–444
parent/child view in single table, 474–476
row selection, 428–433
serving images from database, 479–484
sorting, 433–438
summaries in, 472–474
templates

binding to methods, 449–451
editing with, 452–458
handling events in, 451–452
multiple, 448
overview, 445–447
Visual Studio, 448–449

GridViewRow control, 427

INDEX1618

<group> element, 1139
grouping feature, 462–464
grouping LINQ expressions, 587–590
GroupSeparatorTemplate mode, 459
GroupTemplate mode, 459
GUIDs (globally unique identifiers), 568–569
GZipStream class, 572–573

H
Handler Mappings feature, 840, 879
Handles keyword, 99, 136, 1425
HasChanged property, 525
HasChildNodes property, 799
HasControls method, 128
hash codes, 88, 246–247
HashAlgorithm class, 1168
HashForStoringInConfigFile method, 979
hashing passwords, 979–980
HashPasswordForStoringInConfigFile

property, 1219
hashtables, 241–243, 375
HasSharedData property, 1373
HasUserData property, 1373
HatchBrush class, 1338
HeaderImageUrl property, 419
headers, 497
Headers collection, 116
Headers property, 109
HeaderStyle property, 419, 423, 426, 785
HeaderTemplate style, 448, 470, 786
HeaderText property, 168, 419, 785
health monitoring process, 916–921
<healthMonitoring> element, 917, 919
Height property, 140, 1292, 1575
HelpMode property, 1373, 1392
HelpPageIconUrl property, 1016
HelpPageText property, 1016
HelpPageUrl property, 1016
HelpUrl property, 1373, 1375, 1376, 1392
hexadecimal color numbers, 144
hidden input field, 86–87
Hidden property, 1373
hierarchically rendered pages, 103–104
High value, 508
Hit Count option, 71
Home Directory tab, 835
HorizontalPadding property, 817
HotSpotMode property, 1324
hotspots, 1322–1327
HotSpots property, 1322
HoverButton class, 1529
_hoverHandler delegate, 1529
HoverMenuExtender control, 1537
HoverNodeStyle property, 819
HTML (Hyper Text Markup Language)

color names, 144
design-time, 1312–1313

DOM, 1422–1423, 1427
encoding, 113–115
formatting, 38–40
forms, 78–80
manipulating elements, 1427–1428
overview, 3–5
server controls

control events, 135
EventArgs object, 151
HtmlContainerControl class, 129
HtmlControl class, 129
HtmlInputControl class, 130
methods, 128
overview, 14–15, 128
programmatically creating, 133–135
properties, 127–129
server-side events, 135–136
style attributes, 132–133

special characters, 114–116
static tags, 36–37
tables, 37–38

Html32TextWriter class, 1249
HtmlAnchor class, 130
HtmlButton class, 130
HtmlContainerControl class, 129
HtmlControl class, 129
HtmlDecode() method, 112
HtmlDecode class, 114
HtmlEncode() method, 112, 114, 419, 927,

1270
HtmlForm class, 103, 130
HtmlGenericControl class, 125, 129, 131, 1457
HtmlHead control, 105, 131
HtmlImage class, 130, 766
HtmlInputButton class, 130–131
HtmlInputCheckBox class, 131
HtmlInputControl class, 130
HtmlInputFile class, 131
HtmlInputHidden class, 131
HtmlInputImage class, 131
HtmlInputImage control, 151–152
HtmlInputRadioButton class, 131
HtmlInputText class, 131, 132–133
HtmlSelect class, 131
HtmlTable class, 131
HtmlTableCell class, 131
HtmlTableRow class, 131
HtmlTextArea class, 131
HtmlTextWriter class, 1238–1240, 1249–1250,

1269, 1388
HtmlTextWriterAttribute enumeration, 1239
HtmlTextWriterStyle enumeration, 1239
HtmlTextWriterTag enumeration, 1239
HtmlTitle control, 131
HTTP (Hyper Text Transfer Protocol)

context, accessing, 122–123
errors, 198

INDEX 1619

handlers
advanced, 225–227
configuring, 222–223
custom, 221–229, 1116–1117
for non-HTML content, 227–229
registering without configuring IIS,

224–225
session state, 230

headers, 109
modules, 181, 219–220, 230–232
overview, 3
requests, 108, 179

HttpApplication object, 108, 957
HttpApplicationState class, 108
HttpBrowserCapabilities class, 1252–1254
HttpCachePolicy class, 497–498
HttpContext class, 123, 499, 957, 958–960,

1143
HttpCookie class, 257, 983
<httpHandlers> section, 1117
HttpModule class, 197, 839, 887, 969
HttpRequest class, 108, 109, 1252
HttpResponse class, 111, 499
<httpRuntime> element, 567, 897
HttpServerUtility class, 112–115, 249
HttpSessionState class, 108, 260–261, 267, 504
HTTP.SYS driver, 847
HTTP.SYS kernel-mode driver, 847
Hyper Text Markup Language. See HTML
Hyper Text Transfer Protocol. See HTTP
HyperLink control, 141, 157, 727, 1247
HyperlinkButton element, 1559
HyperlinkField column, 417
HyperLinkStyle style, 1014

I
-i switch, 1002
IAsyncResult class, 531, 535
IButtonControl interface, 148, 777
ICallbackContainer interface, 1476
ICallbackEventHandler interface, 1468, 1471,

1475, 1484
ICollection interface, 440
ICryptoTransform interface, 1172, 1173
ID property, 127, 730, 1490
IDbTransaction interface, 311
Identity password, 852
<identity> element, 196, 846
IdentityReference class, 1073–1075
IDisposable interface, 402, 1525
Idle timeout, 844, 850, 898
IEnumerable() class, 398, 581, 583, 587,

589–593, 600, 602, 606, 633
IETF (Internet Engineering Task Force), 1056
IExecuteResult() interface, 630
IFormatter interface, 574
<iframe> element, 1552

IGrouping() interface, 587
IHttpAsyncHandler class, 530
IHttpHandler interface, 221, 530, 842, 1116,

1117
IHttpModule interface, 842, 955, 957, 958
IHttpSessionState interface, 259
IIdentity class, 968–969
IIdentity interface, 960
IIPrincipal object, 960
IIS (Internet Information Services)

application pools
6.0, 868–876
7.0, 889–892

architecture of
5.x, 835–846
6.0, 835–839, 846–852
7.0, 839–843, 852–853

authorization, 1069–1070, 1118–1125
configuration settings, 878
configuring, 831–833, 848, 1062–1064
configuring SSL in, 950–954
custom providers, 1230–1232
deploying ASP.NET applications

5.x, 893–898
6.0, 893–896
7.0, 896–897
compilation models, 898
Visual Studio, 902–911

file mapping, 833–834
forms authentication, 983–989
handlers, 866
installing

5.x, 854
6.0, 854–855
7.0, 856–860

installing certificates in, 946–948
management console, 831–833, 892
registering handlers and modules in, 221
security

7.0, 939–944
authentication, 935–937
authorization, 937
overview, 934–935

virtual directories
5.x, 861–867
6.0, 861–867
7.0, 876, 889
mapping to URLs, 833–834

websites
5.x, 861–867
6.0, 861–867
7.0, 876, 889
mapping to URLs, 833–834

IIS Manager, 878
IIS Metabase Path for Source Input option,

910
IIS Worker Process Group (IIS_WPG), 874

INDEX1620

IIS Worker Process identities, 891
IIS_IUSRS group, 891
IIS_WPG (IIS Worker Process Group), 874
IL (intermediate language), 8, 11
ildasm.exe utility, 10–11, 1174
Image controls, 141
Image element, 1559
ImageButton control, 141, 151–152, 451, 752,

777, 1029, 1321
ImageClickEventArgs object, 151
ImageField column, 417
ImageMap control, 1321–1322, 1324–1327
ImageUrl property, 141, 175, 812, 817, 822,

824
 tag, 765–766
ImmutableObject attribute, 1289
impersonation, 930
implementsInterface class, 1521
implicit data types, 307
ImportCatalog web part, 1410
INamingContainer interface, 1267, 1273,

1277
Indentation property, 656
IndexOf() method, 455
inheritance, 194–195, 1524–1525
inheritsFrom class, 1521
Init() method, 231, 233
Init event, 95–96, 98, 100, 762, 769
initialization, 81, 94–95, 181
Initialize() method, 1150, 1154, 1155, 1207,

1222
initialize() method, 1529
initializeBase() method, 1524–1528
initializeRequest event, 1527
InitialValue class, 163
inline code model, 53
inline frame, 1456–1457
in-memory resources, 180
in-memory XML processing

overview, 663
XDocument, 671–675
XmlDocument, 664–668
XPathNavigator, 668–670

InnerHtml property, 129, 1427–1428
InnerHtmlContainerControl property, 114
InnerProperty property, 1307
InnerText property, 114, 129
INotifyPropertyChanged interface, 633
INotifyPropertyChanging interface, 633
InProc setting, 262
input controls, 128, 130, 1261–1262
<input type=file> tag, 565–566
input validation controls

BaseValidator class, 161–162
CompareValidator control, 163–164
CustomValidator control, 167–168
overview, 158–159

process, 160
RangeValidator control, 163
RegularExpressionValidator control,

164–167
RequiredFieldValidator control, 163
using validators programmatically,

169–171
ValidationSummary control, 168–169

InputParameters collection, 403
InputStream property, 567
Insert() method, 411, 504, 521, 526
InsertCommand property, 337–338, 382, 391
InsertItemTemplate mode, 448, 459, 470
InsertMethod command, 400, 405
InsertVisible property, 419
InstallCommon.sql file, 1001
installing IIS, 853–860
InstallMembership.sql file, 1001
InstallPersistSqlState.sql file, 265, 1001
InstallPersonalization.sql file, 1001
InstallProfile.sql file, 1001
InstallRoles.sql file, 1001
InstallSqlState.sql file, 1001
InstallWebEventSqlProvider.sql file, 919
instance management, 631–633, 916
InstantiateIn method, 1274
InstructionText property, 1015
InstructionTextStyle style, 1014
integrated state serialization mechanism,

84–88
integrated Windows authentication, 1054
IntelliSense, 50–52
intermediate language (IL), 8, 11
Internet Engineering Task Force (IETF), 1056
Internet Explorer, 496, 651, 1459
Internet Information Management, 866
Internet Information Services. See IIS
Internet Protocol (IP), 934, 937
Internet Server Application Programming

Interface (ISAPI), 5, 181, 221, 837,
839, 864, 872, 895, 915

interrupted updates, 1509
Intersect() method, 1099
InvalidOperationException control, 541, 603,

1502
IO namespace, 563
IP (Internet Protocol), 934, 937
IP addresses, 110, 833
IPostBackDataHandler interface, 1261–1262,

1264
IPostBackEventHandler interface, 1451, 1453
IPrincipal class, 115, 959–960, 968, 1097
IQueryable() method, 601, 606
IsAnonymous member, 1072
ISAPI (Internet Server Application

Programming Interface), 5, 181, 221,
837, 839, 864, 872, 895, 915

INDEX 1621

IsAuthenticated property, 109, 960
IsAuthorized property, 1417
IsCallback property, 1473
IsClientConnected property, 111
IsClientScriptBlockRegistered method, 1452
IsClosed property, 1373
IsCookieless setting, 261
IsCrossPagePostBack property, 253–254
IsEnabled property, 117
ISingleResult interface, 630
IsInRole() method, 960, 1097–1098, 1106
isInstanceOfType class, 1521
IsLockedOut property, 1044
IsNewSession setting, 261
IsolationLevel enumeration, 314
IsPostBack property, 95, 108, 253–254, 1473
IsReusable property, 222
IsSecureConnection property, 109, 949
isSensitive parameter, 1411
IsShared property, 1374
IsStandalone property, 1374
IsStartupScriptRegistered method, 1452
IsStatic property, 1374
isUserInRole() method, 1109, 1226, 1498
IsValid property, 96, 162, 167, 977
item removed callback, 514–516
ItemCommand event, 559
ItemCreated event, 451
ITemplate object, 1274
Items collection, 724, 1143
Items property, 153, 724
ItemSeparatorTemplate mode, 459
ItemStyle property, 419
ItemTemplate control, 446, 448, 459, 470,

560, 1275–1276
ItemUpdated event, 486, 488
iterator class, 582, 584
IWebEditable interface, 1395
IWebPart interface, 1376, 1378–1379

J
JavaApplets property, 1253
JavaScript

attributes, 1425
client callbacks, 1473
code, 1253–1254, 1490
custom controls, 1445–1453
debugging, 1429–1431
events, 1423–1425
extensions, 1519
frames, 1454–1457
function, 1489
language extensions, 1480
OOP in, 1517–1526
overview, 1421–1422
proxies, 1492–1494
script blocks, 1426–1427, 1432–1439

script injection attacks, 1442–1445
validation routines, 158, 167–168

JavaScript Object Notation (JSON), 1484
JavaScript property, 1448
JIT (just-in-time) compilation, 8
JOIN query, 342
JSON (JavaScript Object Notation), 1484
just-in-time (JIT) compilation, 8

K
KDC (key distribution center), 1057
KeepCurrentValues option, 633
Kerberos, 937, 994
key distribution center (KDC), 1057
Key property, 1178
-keyfile parameter, 906, 907, 1179
keywords, 11, 175

L
Label control, 141, 731, 750
LabelStyle style, 1014
lambda expressions, 589, 592
language compilers, 26
Language Integrated Query. See LINQ
language preferences, 110
LastAccessTime property, 547
LastActivityDate() method, 1144, 1216, 1220,

1221
Last-in-wins concurrency strategy, 330, 636
LastLoginDate property, 1216
LastName property, 584
LastPageImageUrl property, 444
LastPageText property, 444
LastUpdatedDate property, 1144
LastWriteTime property, 547, 557
LayoutEditorPart control, 1392
LayoutTemplate control, 459, 1019
lazy initialization, 181
LeafNodeStyle property, 819
leeching, 227
Length property, 548, 557
LevelMenuItemStyles collection, 824
LevelSelectedStyles collection, 824
LevelSubMenuStyles collection, 824
.licx files, 865
LIKE keyword, 602
limited-length fields, 167
Line element, 1559
linear processing model, 81
LinearGradientBrush, 1338–1339, 1349
LineCap properties, 1336
LineJoin member, 1336
<link> element, 742
LinkButton class, 141, 157, 727, 777, 1029,

1477
LinkClicked event, 727
LinkTable control, 722, 724

INDEX1622

LinkTableEventArgs class, 727
LinkTableItem object, 724
LinkWebControl class, 1244–1245, 1258–1259
LINQ (Language Integrated Query)

deferred execution, 581–582
expressions

aggregation, 587–590
extension methods, 591
filtering, 586–587
grouping, 587–590
lambda, 592
multipart, 592–593
projections, 584–586
sorting, 586–587

LastName variable, 1517
LinqDataSource control, 638–645
overview, 18–19, 579
searching XmlDocument with, 682–684

LINQ to DataSet, 18, 579, 593–597
LINQ to Entities, 598
LINQ to Objects, 18, 579–580
LINQ to SQL

committing changes, 631–637
data entity classes, 598–600
database components, 606–609
DataContext class, 600–601
generating data classes automatically,

610–616
generating methods for stored procedures,

629–630
ListSearchExtender control, 1537
load() method, 1498–1501
local path, 863
Local Service, 874
Local System, 874
overview, 18
queries, 602–606
selecting single records/values, 609–610

LINQ to XML, 18, 579, 691–693
LinqDataSource control, 638–645
List() method, 581
list controls, 152–157
ListBox control, 152, 371, 375, 401, 748,

1352–1355, 1559
ListControl class, 153
ListModifiedDocuments macro, 73
ListView control, 415–416, 459, 461–464
Literal control, 102–103, 666, 1029, 1268
Live ID, 937, 958
Load() method, 538, 661, 664, 666, 1388
Load event, 95, 101, 106–107, 137, 155, 244,

493, 498, 506, 720, 722, 730, 732, 762,
1328, 1394, 1504

Load event handler, 666
LoadControl class, 730
LoadControlState() method, 1260
LoadOptions property, 623

LoadPostData method, 1262–1263
LoadViewState method, 1260
LoadWith() method, 623
LoadXml() method, 666
localOnly option, 121
Locals variable watch window, 69
Location option, 71
Location property, 210
<location> tags, 1094
Lock() method, 270, 568
locked settings, 195
locking file access objects, 571–572
Log() method, 569, 575
-log parameter, 907
Log property, 635
LogEntry object, 575
LoggedIn event, 1019–1020
<LoggedInTemplate> template, 1107
Logger class, 572
LoggingIn event, 1019
login() method, 1496–1497
Login control, 126, 997, 1010–1022,

1026–1027, 1215
login page, 974–980
LoginButtonImageUrl property, 1015
LoginButtonStyle style, 1014
LoginButtonText property, 1015
LoginButtonType property, 1015
LoginError event, 1019–1020
LoginImageUrl property, 1023
LoginStatus control, 1010, 1022
LoginText property, 1023
loginUrl option, 971
LoginView control, 1010, 1023–1024,

1107–1108
LogMessage() method, 572
logout() method, 1496
LogoutAction property, 1023
LogoutImageUrl property, 1023
LogoutPageUrl property, 1023
LogoutText property, 1023
Long Date data types, 422
lookup tables, 477–479
loopback addresses, 284, 834
low memory usage, 503
Low value, 508

M
machine.config file, 181, 189–192, 194, 196,

219–221, 262, 970, 1179, 1215, 1254
Macro Explorer, 40
macros, 71–73
MailDefinition property, 1029
MailWebEventProvider class, 919
Main() method, 10
MajorVersion property, 1252
Manage Styles window, 743

INDEX 1623

Manage Your Server Wizard, 854
managed applications, 10–12
managed code, 12
Managed Pipeline Mode setting, 890
managed stored procedures, 282
management console, 831–833
Manager utility, 861
many-to-many relationships, 627
MapPath() method, 112, 113, 1117
mapping

file, 223, 833–834, 864–865, 1114
file extensions, 866
file type, 1114
virtual directories, 833–834
websites, 833–834

marker files, 516
MarkupName property, 1326
MARS (multiple active result sets), 282
MaskedEditExtender control, 1537
Master directive, 757
master pages

applying through configuration files, 766
default content, 762
dynamically setting, 769
formatting, 761
interacting with master page class,

767–768
nesting, 769–771
overview, 17, 739, 757
practical example, 762–764
relative paths, 765–766
simple, 757–759
simple content page, 760–762
titles and metatags, 761–762

Master property, 767, 768
MasterPageFile attribute, 760, 766, 767, 770
MasterPageFile property, 769
MasterType directive, 768
Match timestamp concurrency strategy, 636
match-all updating, 330
Match-all-values concurrency strategy, 636
MAX() function, 351–352, 523
Max() method, 589
Max Pool Size setting, 288
maxCachedResults option, 1104
MaximumRowsParameterName property,

441, 443
MaximumValue property, 163
MaxInvalidPasswordAttempts property, 1006
maxIoThreads configuration, 845, 852
MaxLength property, 302
maxPageStateFieldLength attribute, 88
maxRequestLength attribute, 567, 898
maxWorkerThreads configuration, 845, 852
MD5 hashing algorithm, 979
Me variable, 69
MeasureString method, 1349

MediaElement element, 1559
member list, 50–51
member variables, 185
membership

membership API
authenticating users, 1007–1009
connection string, 1003–1005
creating data store, 997–1003
forms authentication, 996–997
overview, 992–995

Membership class
deleting users, 1044–1045
overview, 1040–1041
retrieving users, 1041–1044
updating users, 1044
validating users, 1045
in Windows Forms, 1046–1047

overview, 17, 991
security controls

ChangePassword control, 1029–1030
CreateUserWizard control, 1030–1035
LoginStatus control, 1022
LoginView control, 1023–1024
overview, 1009–1011
PasswordRecovery control, 1024–1029

<membership /> section, 993, 1004–1005
Membership class

deleting users, 1044–1045
overview, 1040–1041
retrieving users, 1041–1044
updating users, 1044
validating users, 1045
in Windows Forms, 1046–1047

membership providers
architecture of, 1196–1197
custom store, 1199–1206
overall design, 1198
overview, 1195
provider classes

creating users and adding to store,
1211–1215

implementing, 1206
overview, 1207–1211
salted password hashes, 1217–1219
validating users on login, 1215–1217
XmlRoleProvider, 1221–1227

using, 1227–1232
<membership> section, 1007
MembershipCollection class, 1044
MembershipCreateStatus class, 1045
MembershipCreateUserException class, 993
MembershipProvider class, 993, 1041,

1197–1198, 1206–1207
MembershipProviderCollection class, 993
MembershipUser class, 993, 1006, 1040–1041,

1044, 1185, 1188, 1197–1198, 1212–1213,
1220

INDEX1624

MembershipUserCollection() method, 1220
MembershipUserCollection class, 993, 1042,

1220
memory, 6, 12, 81, 96–97, 181, 244, 256, 258,

260–261, 268, 294, 296, 851, 869
memoryLimit configuration, 845
MemoryStream class, 572, 914, 1173, 1341
Menu control, 773, 791–792, 800, 821–827,

1369, 1390
MenuItem class, 821–822, 825–826
MenuItemClick event, 821
MenuItemDataBound control, 800
MenuItemStyle class, 824
MenuStyle class, 824
MergableProperty attribute, 1289
Merge changes concurrency strategy, 636
MergeWith method, 1282
Message class, 527
Message property, 302, 1027
message queues, 526–529
MessageQueue class, 527
MessageQueueCacheDependency class,

526–527
metabase, 833
metacharacters, 165–166
metadata, 12, 16
Metadata property, 105
metatags, 761–762
method names, 183–185
Methods pane, 629
Microsoft Intermediate Language (MSIL)

code, 8, 11
Microsoft Management Console (MMC),

1003, 1166
Microsoft Messaging Queuing (MSMQ)

queue, 526
Microsoft .NET Framework directory, 899
MicrosoftAjax.js file, 1481
MicrosoftAjaxTimer.js file, 1481
MicrosoftAjaxWebForms.js file, 1481
Microsoft.WebDeployment.targets file, 905
Microsoft.WebDeployment.Tasks.dll file, 905
MigrateAnonymous event, 1148
MIME types, 836, 879, 1549
MIN() function, 351–352, 523
Min() method, 589
Min Pool Size setting, 288
minFreeLocalRequestFreeThreads setting,

898
minFreeThreads setting, 898
MinimumPrefixLength property, 1535
MinimumValue property, 163
MinorVersion property, 1252
MinRequiredPasswordLength property, 1006
MMC (Microsoft Management Console),

1003, 1166
mobile controls, 126

mobile devices, 15
Mobile .NET, 126
ModalPopupExtender control, 1538
mode attribute, 198, 970
Mode property, 444
mode session state setting, 261, 262–265
modified URL (munged URL), 259
Modules feature, 879
Mono project, 11
mostRecent option, 121
MouseEnter event, 1590
Move() method, 544, 545
MoveNext property, 787
MoveTo() method, 547
MoveToFirstAttribute method, 670
MoveToFirstChild method, 670
MoveToNextAttribute method, 661
MSBuild, 905
msbuild.exe file, 905
mscorlib.dll assembly, 48
MSDN, 7, 230
MSDomVersion property, 1253
MSIL (Microsoft Intermediate Language)

code, 8, 11
MSMQ (Microsoft Messaging Queuing)

queue, 526
MSN portal, 1358, 1360
multipart expressions, 592–593
multiple active result sets (MARS), 282
multiple attribute, 136
MultiScaleImage element, 1559
multitargeting, 26, 32–33
multithreading, 12
MultiView control, 173, 774–779, 782, 827
munged URL, 259
MutuallyExclusiveCheckBoxExtender

control, 1538
MyProvider class, 914

N
name attribute, 1135
Name method, 1150
name option, 971
Name property, 145, 547, 960, 1006, 1104,

1345
namespaces, 7, 283, 651–653, 675–676,

1522–1524
name/value collection, 109
NavigateUrl property, 175, 812–813, 821–822
navigation, 126, 624–626
NavigationButtonStyle style, 785
NavigationStyle style, 785
nesting

controls, 103–104
grids, 698–699
HTML tags, 38
master pages, 769–771

INDEX 1625

.NET Compilation feature, 879

.NET Framework
classes, 887, 1237
components, 212–219
development model, 26, 27–28
language compilers, 26
standard, 726

.NET Framework Components tab, 1242

.NET Globalization feature, 880

.NET Profile feature, 880

.NET Roles feature, 880

.NET Trust Levels feature, 880

.NET Users feature, 874, 880, 1539
Netcraft, 16
NetworkStream class, 1173
New Project window, 29
New Web Site window, 29
NewPage.aspx file, 1455
NextButtonClick event, 783
NextPageImageUrl property, 444
NextPageText property, 444
NextPrevious property, 444
NextPreviousFirstLast property, 444
NextResult method, 292
NextSibling property, 799
NextView command, 778
NextViewCommandName field, 778
NodeIndent property, 817
Nodes() method, 674
<Nodes> section, 811
NodeSpacing property, 817
NodeStyle property, 794, 818, 819
NodeTemplate template, 794
NodeType property, 666, 670
-nologo parameter, 907
non-ASP.NET resources, protecting,

1113–1117
nonhierarchical data binding, 694–696
nonrepeatable reads, 314
NonSerialized attribute, 574
NonVisualControl() attribute, 1289
Normal value, 508
NorthwindDataContext class, 615, 642
Northwind.dbml. file, 611
Northwind.designer.vb file, 611
Nothing values, 596–597, 1527–1530
NotifyDependencyChanged() method,

525–527
NotifyParentProperty attributes, 1305
notifyScriptLoaded() function, 1482
NotRemovable value, 508
NotSupportedException class, 511, 1174
Now property, 983
NT LAN Manager (NTLM), 937, 960, 994
NTAccount class, 1074
null reference, 728, 735
null values, 596–597

NullDisplayText property, 419
NullReferenceException, 503, 1259
Number type, 1522
Numeric mode, 444
NumericFirstLast property, 444
NumericUpDownExtender control, 1538

O
-o parameter, 907
obfuscators, 11
Object Browser, 1566–1567
Object class, 1521
Object type, 1522
<object> tag, 1442, 1552
object-based language, 1517
ObjectCreating event, 402
ObjectDataSource class

custom pagination with, 440–444
data caching with, 511
handling extra options with, 412–413
overview, 380, 398–399
selecting records, 399–404
sorting with, 434–436
updating records, 404–408

ObjectDataSourceSelectingEventArgs class,
403

ObjectDisposing event, 402
Object.getTypeName() method, 1523
object-oriented programming (OOP),

1517–1526
object-relational mapping (ORM), 598
object-walker syntax, 140, 145–146
ODBC data provider, 279–280, 283
ODP.NET (Oracle Data Provider for .NET),

280
off setting, 262
OldValuesParameterFormatString property,

393, 488
OLE DB data provider, 279–280, 303
onblur event, 1423
onChange attribute, 83
onchange event, 1423
onClick attribute, 83, 1264–1265, 1477
onclick event, 1423, 1450
OnClientClick attribute, 1425
OnCreated() method, 616
OnError() function, 1490
onerror event, 1423
one-to-one relationships, 626
OnFieldChanging() method, 643
onfocus event, 1423
OnHireDateChanging() method, 643
OnInit() method, 1245, 1256, 1260, 1263,

1270, 1380, 1476
onkeydown event, 1423
onkeyup event, 1423
OnLastNameChanging() method, 644

INDEX1626

OnLoad() method, 1385
onload event, 1424
onLoginCompleted() function, 1496
onmouseout event, 1423, 1450
onmouseover event, 1423, 1450
OnPreRender() method, 1449
OnPreRenderComplete() method, 385, 411
OnRequestComplete() function, 1489
onselect event, 1423
OnSessionStart() event handler, 233
onSubmit attribute, 1441
onunload event, 1424
onUnload events, 1432
OnValidate() method, 643
OnXxx methods, 1263
OOP (object-oriented programming),

1517–1526
Open()method, 285, 287, 548, 913, 1460
OpenMachineConfiguration(), 201
OpenRead()method, 548, 563
OpenText()method, 548
OpenWebConfiguration(), 201
OpenWrite()method, 548, 565
OperationException property, 537
Operator property, 164
optimistic concurrency, 331
OptimisticConcurrencyException property,

636
Or operator, 586
Oracle data provider, 279–280, 283,

287–289
Oracle Data Provider for .NET (ODP.NET),

280
OracleClient.dll assembly, 48
ORDER BY clause, 433, 436
Order By operator, 586
OrderService class, 210
Ordinary folder icon, 863
ORM (object-relational mapping), 598
osql.exe utility, 1001
outlining, 50
output caching

cache profiles, 501–502
custom control, 496–497
declarative, 493–494
disk-based, 503
fragment caching, 499
HttpCachePolicy class, 497–498
overview, 492
post-cache substitution, 499–501
query string, 494–496

OutputCache directive, 493, 496–497,
499–501, 734

<outputCacheProfiles> tag, 501
OutputStream member, 111
Overline property, 145
OverwriteCurrentValues option, 633

P
-P switch, 1000
Package folder icon, 863
Padding, 1576
Page class, 57, 107–110, 113–120, 122–123
Page directive, 55–56, 62, 117, 753–754, 757,

760, 767
page event handlers, 98
page framework initialization, 95
page headers, 105
page initialization, 722
page life cycle, 380–381
Page property, 127
page template, 1557
page variables, 56–58
Page_Load() method, 59, 1186
PageButtonCount property, 444
PageCatalogPart control, 1366, 1368, 1370,

1373, 1417
PageHandlerFactory class, 884
PageIndexChanged event, 439, 470
PageIndexChanging event, 439
pageLoad() function, 1499, 1506, 1526
pageLoaded event, 1527
pageLoading event, 1527
PageMethods object, 1493
pageOutput option, 121
PageProcessor_Start.aspx file, 1435
PageProcessor_Target.aspx file, 1435
PageProcessor.aspx file, 1432
PageRequestManager class, 1507, 1510, 1527
PagerSettings property, 439, 444
PagerStyle property, 423, 439
PagerTemplate mode, 448, 470
Pages and Controls feature, 880
<pages> element, 88, 753–754, 766, 1443
PageSize property, 439, 441
pageUnload() function, 1506
Page.xaml file, 1556
Page.xaml.vb file, 1556
paging, 438–445
PagingBulletedListExtender control, 1538
PagingSettings property, 466
PagingStyle property, 466
PaintValue method, 1309
Panel class, 141, 489, 774, 1474–1475
PanelID property, 1477
<param> elements, 1552
ParamArray keyword, 672
parameter array, 672
Parameter attribute, 630
parameterized commands, 303
parameterized constructor, 586
Parent property, 127, 547
ParenthesizePropertyName attribute, 1289
ParentLevelsDisplayed property, 793
ParentNode property, 799

INDEX 1627

ParentNodeStyle property, 819
ParseChildren attributes, 1308
partial class declaration, 614
partial page refreshes, 1480
partial rendering, 1502, 1503
PartialCachingControl object, 735
Passport authentication service, 929, 937,

958
PassportAuthenticationModule module, 958,

960
PassportIdentity class, 960
PasswordAttemptWindow property, 1006
PasswordFormat property, 1214–1215
PasswordLabelText property, 1015
PasswordRecovery control, 1010,

1024–1029
PasswordRecoveryIconUrl property, 1016
PasswordRecoveryText property, 1016
PasswordRecoveryUrl property, 1016
PasswordRequiredErrorMessage property,

1015
PasswordStrengthExtender control, 1538
path attribute, 195–196, 223
Path class, 554–556
path option, 972
Path property, 809
PathDirection property, 793
PathSeparator property, 793
PathSeparatorStyle style, 794
PathSeparatorTemplate template, 794
.pdb files, 893
Pen object, 1335–1336
pens, 1335–1338
Pens class, 1335
PenType member, 1336
percentage (%) character, 143, 1227
Percentage data type, 422–423
percentagePhysicalMemoryUsedLimit

setting, 502
period (.) character, 680
PersistChildren attribute, 1276, 1308
PersistenceMode attribute, 1306–1308
Personalizable attribute, 1383
Personalization property, 1418
pessimistic concurrency, 331
phantom rows, 314
PhysicalPath property, 109
PieSlice object, 1351–1352
pipe (|) character, 680
pixels (px), 143
PKCS (Public-Key Cryptography Standard),

1164
PlaceHolder control, 106, 730–732
placeholders, 303
Platform property, 1252
PNG files, 1330, 1341–1342
polling, 517, 520–521

pooling, connection, 287–289
PopOutImageUrl property, 822
PopulateNodesFromClient property, 815
PopulateOnDemand property, 815
PopUp control, 1446, 1449–1450
pop-up windows, 1445–1446, 1448–1450
PopupControlExtender control, 1538
portal frameworks, 731–733
portals, 1358–1360
Position property, 1174
postbacks, 77, 176
PostBackTrigger property, 1510
post-cache substitution, 498, 499–501
post-injection attacks, 304
PostRequestHandlerExecute event, 186
Prebuilt controls, 1480
precompilation, 898
-prefix parameter, 907
preloading related data, 623
PreRender event, 97, 1401
PreRequestHandlerExecute event, 185
PreviousPageImageUrl property, 444
PreviousPageText property, 444
PreviousSibling property, 799
PrevView command, 778
PrevViewCommandName field, 778
primary key value, 599
Principal object, 959–960
PrincipalPermission class, 1098–1100
privateBytesLimit setting, 502
privateBytesPollTime setting, 502
<processModel> element, 844, 854, 897
ProcessRequest class, 222
ProductID parameters, 495
profile property, 1135
profile service, 1500–1501
<profile> element, 1134, 1142
ProfileAutoSaving event, 1142
ProfileBase object, 1143
ProfileCommon object, 1144
ProfileInfo class, 1145
ProfileManager class, 1145
ProfileMigrateEventArgs class, 1148
ProfileModule class, 1139
profiles

and authentication, 1130
versus custom data components,

1130–1131
custom providers

classes, 1149–1150
coding, 1153–1157
designing, 1151–1152
overview, 1149
testing, 1157–1160

data storage, 1129
overview, 17, 1127
performance, 1128–1129

INDEX1628

SqlProfileProvider
anonymous profiles, 1146–1149
API, 1143–1146
configuring, 1134
custom data types, 1140–1143
groups, 1139–1140
overview, 1131
properties, 1134–1137
serialization, 1137–1139
tables, 1131–1133

profiles feature, 237, 278
<profileService> element, 1500
%Program Files%\Microsoft Visual Studio 8\

Common7\Packages directory, 905
programmatic caching, 524
programmatic encryption, 211–212
Programs feature, 856
ProgressTemplate control, 1514
projections, 584–586
properties method, 1501
Properties node, 1556
Properties window, 40, 612, 863, 1243, 1285,

1287–1291, 1565
<properties> element, 1134
Property Pages dialog box, 909, 910
Property Pages dialog boxes, 909
PropertyChanged event, 614
PropertyChanging event, 614
PropertyGridEditorPart control, 1392
PropertyNames field, 1137
PropertyValuesBinary field, 1139
PropertyValuesString field, 1137
Proportional sizes, 1575
ProtectedData class, 1175, 1176, 1191
protection option, 972
ProtectKey flag, 1178
ProtectKey property, 1177
ProtectSection() method, 211
prototype property, 1525
prototypes

JavaScript, 1519–1520
ProviderBase class, 919

provider classes
creating users and adding to store,

1211–1215
implementing, 1206
overview, 1207–1211
salted password hashes, 1217–1219
validating users on login, 1215–1217
XmlRoleProvider, 1221–1227

Provider member, 1109
provider model, 17
Provider property, 799
ProviderBase class, 1149, 1207
ProviderConnectionPointID parameter, 1405
Providers feature, 880
Providers member, 1109

<providers> element, 917, 919, 1005
ProviderSpecific option, 1138
ProviderUserKey property, 1188, 1197, 1200
proxy class, 1594
Public key, 1170
public prototype property, 1519
Public-Key Cryptography Standard (PKCS),

1164
px (pixels), 143

Q
Query() object, 603
query string, 236, 248–249, 1189–1194
query string parameters, 494–496
Queryable class, 609
QueryDataFromDatabase() method, 505
querying

LINQ to SQL, 637
Rapid-Fail protection, 849
Rating control, 1539
Read permission, 862

QueryString property, 109, 116, 809, 1190
question mark (?) character, 552, 555–556,

1091
QuestionTemplateContainer template, 1029
queues, 522
QueueUserWorkItem() method, 532

R
-r parameter, 907
-R switch, 1000
RadioButton control, 141, 1559
RadioButtonList control, 152, 154, 371
RaiseCallbackEvent() method, 1468–1469
RaisePostBackEvent method, 1265, 1453
RaisePostDataChangedEvent method,

1262–1263
RAISERROR statement, 311
RandomNumberGenerator class, 1167
RangeValidator control, 159, 163
RawUrl property, 809
RC2 class, 1170
RDBMS (Relational Database Management

System), 479, 543
Read method, 292, 564
ReadAllBytes() class, 564
ReadAllText() class, 545, 564
ReadCommitted value, 314
ReadElementString class, 661
ReadEndElement class, 661
ReadInt32() method, 565
ReadKey() method, 1177, 1178
ReadLine() method, 564
ReadLines() method, 545
ReadOnly attribute, 419, 1135, 1288
read-only enumeration, 551
ReadStartElement class, 661

INDEX 1629

ReadString class, 565
ReadToEnd class, 564
ReadUncommitted value, 314
ReadXml method, 337, 660, 707
ReadXmlSchema method, 337
records, 609–610, 851, 1492, 1521–1525
Rectangle element, 1559
recursive searching logic, 106–107
recycle application domains, 181
red bits, 21–22
Redirect() method, 110, 111, 754, 949, 1023,

1192
RedirectFromLoginPage() method, 977–978,

981–982, 1092
RedirectToLoginPage option, 1023
Refresh() method, 547, 549, 606, 633, 637
Refresh event, 1477
Refresh option, 1023
RefreshMode enumeration, 633, 637
RefreshPanel() method, 1476
RefreshProperties attribute, 1289, 1305
Register directive, 1240, 1389
RegisterAsyncTask() method, 540
RegisterClientScriptBlock method, 1440–1441,

1456
registerInterface() method, 1525
RegisterRequiresControlState() method,

1260
RegisterRequiresPostback() method, 1263
RegisterRequiresViewStateEncryption()

method, 247, 1259
RegisterStartupScript class, 1440–1441, 1456
regular expressions, 166–167
RegularExpressionValidator control, 976
RegularExpressionValidator control, 159,

164–167, 1018
related data, preloading, 623
Relational Database Management System

(RDBMS), 479, 543
relationships

many-to-many, 627
one-to-one, 626
self-, 628

relative paths, 765–766
ReleaseRequestState event, 186
.rem files, 865
RememberMeSet property, 1016
Remote method, 1480
Remove() method, 517, 634, 642
RemoveAll() method, 634
Removed value, CacheItemRemovedReason

enumeration, 516
removeHandler() method, 1528
RemoveUserFromRole member, Roles class,

1109
RemoveUserFromRoles member, Roles class,

1109

RemoveUsersFromRole member, Roles class,
1109

RemoveUsersFromRoles() method, 1224
RemoveUsersFromRoles member, Roles

class, 1109
Render() method, ControlAdapter class,

1256–1257
Render method, 128, 1238, 1244, 1247–1248,

1448
RenderBeginTag() method, HtmlTextWriter

class, 1250
RenderBeginTag() method,

WebControlAdapter class, 1256
RenderBeginTag method, 1238–1239, 1244,

1247
RenderChildren() method, ControlAdapter

class, 1256
RenderChildren method, 1247–1248
RenderContents() method, 1244, 1246–1247,

1256, 1272, 1381, 1383, 1387
RenderControl method, 1247–1248
RenderCurrentNodeAsLink property, 793
RenderEndTag method, 1238–1239, 1244,

1247, 1256
RenderMode property, 1504
ReorderList control, 1539
RepeatableRead value, IsolationLevel

enumeration, 314
RepeatColumn property, Added

RadioButtonList and CheckBoxList
objects, 154

RepeatDirection property, 154
repeated-value building, 364, 371–373,

375–377
binding to DataView, 379
rich data controls, 377–378

Repeater control, 415, 1274
RepeatLayout property, 154
Replace() method, 114
ReportsTo field, 628
request handling

IIS 5.x, 835–839
IIS 6.0, 835–839
IIS 7.0, 839–843
Request queue limit, 850
requestLimit configuration, 844
requestPriority setting, 898
requestQueueLimit configuration, 844
ResizableControlExtender control, 1538
resource files, 893
responseDeadlockInterval, 852
responseDeadlockInterval configuration,

845
restartQueueLimit, 851
restartQueueLimit configuration, 844

Request object, 108
request-based events, 917

INDEX1630

RequestDetails class, 116
requestLimit option, 121
request-related events, 185
requests, HTTP, 108, 179
RequiredFieldValidator control, 159, 163,

976, 1018
RequirePasswordQuestionAndAnswer

property, 1207
RequiresQuestionAndAnswer property, 1006
requireSSL option, 972
RequiresUniqueEmail property, 1006
ResetPassword() method, 1217, 1219
ResolveRequestCache event, 185
ResourceExpressionBuilder class, 368
response caching, 734
Response class, 110, 500
response-based events, 917
responseText property, 1460
Result property, 538
result sets, 296, 298
.resx files, 865
rich controls. See also GridView control

AdRotator, 174–176
ASP.NET 1.X, 416
ASP.NET 2.0, 17
Calendar, 176–178
DetailsView, 466–468
detecting concurrency conflicts, 485–490
FormView, 470
overview, 173, 415

RichLabel control, 1298–1300
RichLabelFormattingOptions class,

1298–1302
RichLabelFormattingOptionsConverter class,

1300, 1305
RichLabelTextType enumeration, 1298
Role class, 1229
role service, 1497–1499
role-based authorization, 931
RoleExists() method, 1109, 1223
RoleGroups template, 1108
<roleManager> tag, 1102, 1103, 1109
RoleManagerModule class, 1105
roleName parameter, 1227
roleNames parameter, 1224–1225
RolePrincipal class, 1105–1106, 1111
RoleProvider class, 1105, 1197–1198, 1222
RoleProviderCollection class, 1105
roles. See authorization and roles
Roles API, 961, 1361
Roles class, 1105, 1109, 1224
Roles Service, 1105
<roleService> element, 1497
RoleStore class, 1198, 1226
Rollback() method, 311
rollover button, 1450–1453
Root property, 547

RootNode property, 799
RootNodeStyle property, 794, 818–819
RootNodeTemplate template, 794
RoundedCornersExtender control, 1538
round-trip, 113
Row property, 1574
row selection, 428–433
RowCommand event, 432, 451, 727
RowCreated event, 427–428
RowDataBound event, 427, 476
RowDefinition object, 1575
RowFilter property, 348, 510
ROWNUM operator, 442
ROWNUMBER() function, 442
Rows collection, 336
RowsAffected property, 486
RowStateFilter property, 351
RowStyle style, 423
RowUpdating event, 456
RSA algorithm, 1183–1184
RSA class, 1168
RSA provider, 211
<rules> element, 917, 920
Run scripts permission, 862
Run to Cursor command, 69
runat="server" attribute, 37, 80, 105, 125, 129,

130, 131

S
-S switch, 518, 1000, 1002
SalesEmployee class, 1524
salted password hashes, 1167, 1217, 1219
SampleWebSite subfolder, 1532
Save() method, 204, 655, 705, 1137, 1142,

1143, 1144, 1329, 1340, 1341
save() method, 1501
SaveAs() method, 566, 567
SaveControlState() method, 1260
savepoints, 315
SaveViewState method, 1260
scalability, 491
schedule files, 174
Schema namespace, 685
schemas, XML, 653–654
scope, 236
script blocks, JavaScript, 1426–1427,

1432–1441
script debugging, 66
script injection attacks, 1442–1445
script languages, 5–6
script libraries, 1481–1482, 1488, 1503, 1507
<script> tag, 1442
ScriptHandlerFactory handler, 1491
ScriptManager control, 1482–1483, 1503
ScriptManager tag, 1493
ScriptManagerProxy control, 1483
ScriptResource.axd file, 1481

INDEX 1631

ScriptResourceHandler plugs, 1482
ScriptService attribute, 1485
scrollable panels, 148–149
ScrollViewer element, 1559
SdlDataSource class, 509–511
Secure Sockets Layer. See SSL
securing session state, 268–269
security

ASP.NET, 17, 929–934
authentication, 955–958
authorization, 958–960
ClientCertificate property, 109
controls

ChangePassword, 1029–1030
CreateUserWizard, 1030–1035
Login, 1011–1022
LoginStatus, 1022
LoginView, 1023–1024
PasswordRecovery, 1024–1029

creating secure software, 925–928
directory permissions, 546
IIS, 16, 934–944
key, 191–192
Membership API, 961
overview, 925
Profiles API, 961
for query strings, 249
Roles API, 961
state management options, 236
view state, 88

Security audit events, 917
Security Identifier (SID), 930
security trimming, 809–811
SecurityCritical attribute, 1567
SecurityException class, 546
SecurityIdentifier class, 1074
Seek() method, 565, 1174
Select() method, 344, 411, 476, 591, 593, 595,

681
SELECT statement, 510, 523
selectable list controls, 154–156
Selectable property, 822
SelectAction property, 819
SelectCommand property, 337–338, 382
SelectCountMethod property, 441
Selected property, 155
SelectedChanged event, 1371
SelectedDataKeys property, 430
SelectedDate property, 1371
SelectedIndex property, 153, 429, 430, 432,

455
SelectedIndexChanged event, 153, 429,

431–432, 1043
SelectedIndexChanging event, 429
SelectedItem property, 153, 155, 727
SelectedItemStyle property, 558
SelectedItemTemplate mode, 459

SelectedNodeChanged event, 812, 813
SelectedNodeStyle property, 818–819
SelectedRowStyle property, 423, 429
SelectedValue property, 456, 1042
SelectImageUrl property, 428
SelectIndexChanged event, 452
Selecting event, 403, 412, 490
SelectionChanged event, 176
SelectionChanged events, 176
SelectionMode property, 177
SelectIterator() class, 581
SelectMethod property, 400, 511
selectors, 742
SelectRows class, 290
SelectText property, 428
self-relationships, 628
send() method, 1460
SendingEmail event, 1026, 1033
SendMailError event, 1026, 1033
SeparatorImageUrl property, 822
Serializable attribute, 573–575
serializable object, 573–575
Serializable value, 314
serializeAs attribute, 1135
server callbacks

application services, 1494–1501
web service proxy, 1491–1492
web services, 1484–1491

server controls
Atlas, 1503
custom

adaptive rendering, 1252–1254
control state and events, 1257–1266
creating basic, 1238–1239
different browsers and, 1249–1257
extending existing web controls,

1266–1273
overview, 1237
rendering process, 1247–1249
template controls, 1273–1284
that support style properties, 1243–1247
in Toolbox, 1241–1243
using, 1240–1241
in Visual Studio, 1243–1246

hierarchy of, 127–128
HTML

control events, 135
EventArgs object, 151
HtmlContainerControl class, 129
HtmlControl class, 129
HtmlInputControl class, 130
methods, 128
overview, 128
programmatically creating, 133–135
properties, 127–129
server-side events, 135–136
style attributes, 132–133

INDEX1632

overview, 126
types of, 125–126
UpdatePanel, 1502–1510
UpdateProgress, 1512–1515

Server Explorer, 40, 46
server memory, 491
Server object, 112–115
Server Variables section, 116
ServerChange event, 135–138
ServerClick event, 135–138, 151–152
ServerRoundtrips statistic, 289
server-side events, 135–138, 149–151
server-side execution, 77
server-side form tag, 142
server-side input validation, 158, 167–168
ServerUtility class, 112
ServerVariables property, 109
Service Broker, 522
Services property, 1495
<Services> section, 1488
session ID, 116, 258, 261, 267
Session object, 108, 340, 1351
session state, 116, 230, 236–237, 258–269, 505,

880
session ticket (ST), 1057–1058
sessionState element, 197
Set Next Statement command, 69
set_errorHandled() method, 1507
set_FirstName property, 1519
set_LastName property, 1519
SetAccessControl() method, 544
SetAttributes() method, 545
SetAuthCookie() method, 982
SetCacheability() method, 497
SetCurrentDirectory() method, 544
SetExpires() method, 497
SetPropertyValue() method, 1136
SetPropertyValues() method, 1150, 1156
SettingsContext object, 1154
SettingsPropertyCollection object, 1154
SettingsPropertyValueCollection object,

1154
SettingsProvider abstract class, 1149
SetValue() method, 1316
Sever Explorer window, 611
SHA1 algorithm, 192, 979
shadow copies, 182
shared locks, 313
Shared property, 737
SharePoint Services, 911, 1113
Short Date data type, 422
Show Friendly Http Errors option, 902
Show Next Statement command, 69
ShowCheckBox property, 817
ShowCheckBoxes property, 817
ShowDirectoryContents class, 558
ShowEditButton property, 452

ShowExpandCollapse property, 817
ShowFooter property, 472
ShowGridLines property, 1573, 1574
ShowHeader property, 557
ShowMessageBox property, 168
ShowSelectButton class, 428
ShowStartingNode control, 795, 796
ShowSummary property, 168
ShowToolTips property, 793
Shutdown time limit, 850
shutdownTimeout configuration, 844
SID (Security Identifier), 930
SideBarButtonClick event, 783
SideBarButtonStyle style, 785
SideBarStyle style, 785
SideBarTemplate style, 786
SignOut() method, 978, 982, 1022
Silverlight, 23
SilverlightApplication1TestPage.aspx file,

1550
SilverlightApplication1TestPage.html file,

1550
SilverlightApplication1.xap file, 1549
SilverlightApplication1.xap.zip file, 1549
Simple Mail Transfer Protocol (SMTP), 1006
Simple Object Access Protocol (SOAP), 574,

847, 1484
SimpleLogging instance, 885
SimpleRepeaterItem control, 1277, 1278
SimpleRole class, 1198
SimpleUser class, 1198
Single() method, 609
single value binding, 364–366
SingleBitPerPixelGridFit class, 1331
SingleOrDefault() method, 609
single-step debugging, 66–67, 69
site maps

adding custom information, 800
binding to, 791–792
breadcrumbs, 792–794
defining, 789–791
objects, 798–800
overview, 788
security trimming, 809–811
showing portions of, 794–798
SiteMapProvider, 801–808
URL mapping, 808–809

site precompilation model, 899
SiteMap class, 789, 799, 801
<sitemap> element, 789–790, 802
SiteMapDataSource control, 380, 508,

788–789, 791, 796–798
siteMapFile attribute, 797
SiteMapNode class, 799, 800, 803–805, 825
<siteMapNode> element, 789–790
SiteMapPath control, 792–794, 796
SiteMapProvider class, 790, 799, 801–808

INDEX 1633

Size property, 145
SkinID attribute, 749–751, 756
skins, 749–752
Slider element, 1559
SliderExtender control, 1538
SlideShowExtender control, 1538
slidingExpiration option, 504, 971
smart devices, 15
smart tags, 36, 1314–1319
SmoothingMode property, 1331
SmoothingQuality property, 1331
SMPProcessorAffinityMask class, 851
SMTP (Simple Mail Transfer Protocol),

1006
SMTP E-mail feature, 880
SOAP (Simple Object Access Protocol), 574,

847, 1484
.soap files, 865
Soap namespace, 574
SoapFormatter class, 574
social security numbers, 167
SolidBrush class, 1338
Solution Explorer, 40, 41–43
Sort() method, 433, 435, 438
Sorted event, 436
SortExpression property, 419, 433
sorting

GridView, 433–438
LINQ expressions, 586–587
source code files, 893

Sorting event, 437
SortParameterName property, 435
source view, 1557
source-code files, 180, 225
spaghetti code, 4–5
special characters, HTML, 114, 116
specific-length passwords, 166
SQL (Structured Query Language)

cache notifications, 516–517
injection attacks, 299–302, 344
queries, 340–341

SQL Server
cache notifications in

2000, 517–522
2005, 522–524
7.0, 517–522

data providers, 279–281, 287–289, 303
profiler, 635

SqlCacheDependency class, 517, 524–525
SqlCacheDependency property, 508, 521
<sqlCacheDependency> element, 520, 521
SqlCacheRegisterTableStoredProcedure

table, 519
SqlCacheTablesForChangeNotification table,

518–519
SqlClientFactory class, 316
sqlcmd.exe utility, 1001

SqlCommand class, 524, 597, 1399
SqlConnection object, 600
SqlDataAdapter control, 1399
SqlDataSource class

disadvantages of, 397–398
error handling, 390–391
handling extra options with, 412
overview, 380, 381–382
parameterized commands, 385–389
selecting records, 382–385
sorting with, 433–434
updating records, 391–395

SqlException class, 605
-sqlexportonly switch, 1000
SqlMembershipProvider class, 993, 995, 1005,

1227
SqlMetal utility, 610
SqlProfileProvider class

anonymous profiles, 1146–1149
configuring provider, 1134
custom data types, 1140–1143
groups, 1139–1140
overview, 1131
profiles API, 1143–1146
properties, 1134–1137
serialization, 1137–1139
tables, 1131–1133

SqlRoleProvider class, 1104, 1105
SqlServer setting, 264–265
SqlSiteMapProvider class, 802, 805
SqlWebEventProvider parameter, 919
Src attribute, 717
SSL (Secure Sockets Layer)

certificates, 944–945
configuring in IIS 7.0, 950–954
encoding information with, 949–950
encryption, 932
installing certificates in IIS, 946–948
overview, 944

SSL Settings feature, 879
ST (session ticket), 1057–1058
stacked image controls, 1321
StackPanel element, 1559
standardization, 281
Start() method, 524
start tag, 1238
StartCap member, 1336
StartFigure() method, 1335
StartFromCurrentNode control, 796, 798
StartingNodeOffset property, 796, 797, 798
StartingNodeUrl property, 796–797
StartNavigationTemplate style, 786
StartNextButtonStyle style, 785
StartRowIndexParameterName property,

441, 443
starts-with expression, 680
Startup time limit, 850

INDEX1634

state management
application state, 269–273
ASP.NET, 235–237
custom cookies, 256–257
overview, 235
session state, 258–263, 267–268
transferring information

with cross-page posting, 250–254
between pages, 247–249

view state, 238–247
state provider class, 258–259
statelessness, 77
StateServer setting, 263–264
static application variables, 271–273
static HTML tags, 36–37
<StaticConnections> section, 1398
StaticDisplayLevels property class, 824
StaticDynamicSelectedStyle style, 824
StaticHoverStyle style, 824
StaticMenuItemStyle style, 824
StaticMenuItemTemplate property, 825
StaticMenuStyle style, 824
StaticObjects setting, 261
StaticPartialCachingControl object, 735
StaticSiteMapProvider class, 801–802, 805
StaticSubMenuIndent property, 824
Step Into command, 68
Step Out command, 69
Step Over command, 68
StepNavigationTemplate style, 786
StepNextButtonImageUrl property, 785
StepNextButtonStyle property, 785
StepNextButtonText property, 785
StepNextButtonType property, 785
StepPreviousButtonStyle style, 785
StepStyle style, 785
StepType property, 780
storage locations, 236, 1166
stored procedures, 304, 308–310, 324–325,

387–388, 394–395, 629–630, 1133, 1525
StreamReader class, 563
streams

binary files, 564–565
compression, 572–573
making files safe for multiple users,

568–572
overview, 561–562
text files, 563–564
uploading files, 565–567

StreamWriter class, 563
strict concurrency checking, 392–394
Strikeout property, 145
String option, 1138
string values, 721
StringBuilder class, 668, 1448
StringCollection class, 1192
StringDictionary class, 1190

strings
HTML encoding and decoding, 112
URL encoding and decoding, 112–114

structured exception handling, 12
Structured Query Language. See SQL
Style Builder dialog box, 36–37
Style class, 132–133, 1281
style property, 129, 1243–1247, 1281–1282,

1428
Style Sheet toolbar, 744
StyleSheet property, 105
stylesheets, XSLT, 173, 688
StyleSheetTheme attribute, 748–749, 753
subdirectories, 179–180, 194–195
SubmitChanges() method, 633–634, 636, 642
Substitution control, 173, 500
Subtitle member, 1376
SuccessTemplateContainer template, 1029
SumResultSets class, 290
SuperSimpleReader example, 1280, 1282
SuperSimpleRepeater class, 1277–1278, 1280,

1312
SwitchViewByID command, 778
SwitchViewByIDCommandName field, 778
SwitchViewByIndex command, 778
SwitchViewByIndexCommandName field,

778
symmetric encryption, 945–947, 1169–1170
SymmetricAlgorithm class, 1168, 1178–1179
SymmetricEncryptionUtility class, 1180, 1182
<system.applicationHost> configuration,

881, 919
system.codedom element, 193
System.Configuration.dll assembly, 48
System.Configuration.Provider namespace,

1149, 1207
System.Core.dll assembly, 22
System.Data namespace, 283, 593
System.Data.dll assembly, 48
System.Data.Linq namespace, 598, 600
System.Data.Linq.dll assembly, 22
System.dll assembly, 48
System.Drawing namespace, 1328
System.Drawing.Design namespace, 1309
System.Drawing.dll assembly, 48
System.Drawing.Drawing2D namespace,

1328, 1334
System.EnterpriseServices.dll assembly, 48
System.Globalization namespace, 228
System.IO namespace, 228, 543, 544, 550
System.IO.Compression namespace, 1151
System.IO.Path class, 554
System.Linq namespace, 587, 591
System.Messaging namespace, 527
System.Security namespace, 1164
System.Security.AccessControl namespace,

1164

INDEX 1635

System.Security.Cryptography namespace,
192, 1151, 1164, 1168, 1175–1176,
1219

System.Security.Cryptography.
X509Certificates namespace, 1164

System.Security.Cryptography.Xml
namespace, 1164

System.Security.Principal namespace, 960
System.Text namespace, 1179
System.Text.RegularExpressions namespace,

1272
<system.web /> section, 1004
System.Web namespace, 799, 801
<system.web> element, 196, 197, 887, 897,

970, 1094, 1117, 1539
System.Web.dll assembly, 48, 222
<system.web.extensions> section, 193, 913,

917, 1481, 1493, 1494, 1506
System.Web.Extensions.dll assembly, 22
System.Web.Hosting namespace, 913
System.Web.Management namespace, 917
System.Web.Mobile.dll assembly, 48
System.Web.Profile namespace, 1145, 1149
System.Web.Security namespace, 960, 969,

1041, 1198, 1206
System.Web.Security.MembershipProvider

namespace, 993
<system.webServer> section, 193, 833, 882,

884
System.Web.Services.dll assembly, 48
System.Web.UI namespace, 446
System.Web.UI.Control namespace, 1021
System.Web.UI.HtmlControls namespace,

128
System.Web.UI.Page namespace, 959
System.Web.UI.WebControls namespace,

138, 144, 161, 1033, 1372
System.Web.UI.WebControls.WebParts

namespace, 1237, 1371, 1380, 1382
System.Windows.Media.Animation

namespace, 1580
System.Xml namespace, 654–655, 1195
System.Xml.dll assembly, 48
System.Xml.Linq.dll assembly, 22

T
TabControl element, 1559
TabIndex property, 140
Table() object, 601, 637
Table controls, 141
<table> tag, 39, 1257
TableAdapter wizards, 355, 360
TableCell controls, 141
TableName property, 640
TableRow controls, 141
Tables property, 1253
Tabular Data Stream (TDS) protocol, 281, 283

tag prefixes, 717
Tag Specific Options button, 39
TagName property, 129, 1240, 1428
TagPrefix property, 1240, 1289
Target property, 89, 812, 822
TargetControlID property, 1535
Task List, 40, 44–45
TCP (Transmission Control Protocol), 847
TCP/IP ports, 829
TDS (Tabular Data Stream) protocol, 281, 283
template controls, 1273–1284
TemplateContainer attribute, 1278
TemplateControl class, 716
TemplateField column, 417, 445, 474,

642–643
templates

GridView control, 445–458
PasswordRecovery, 1027–1029
Visual Studio, 29
for websites. See master pages

TerritoriesService class, 1488, 1492
TerritoriesService.asmx file, 1488
TerritoriesService.vb file, 1485
Territory class, 627, 1488, 1490, 1492
TestCompiledMerged.dll assembly, 906
TestName() method, 603
text encoding, 563
text files, 563–564
Text property, 162, 812, 821, 825, 1246
TextAlign property, 154
TextBlock element, 1559
TextBox control, 141, 750, 1033, 1533, 1559
TextBoxStyle style, 1014
TextBoxWatermark control, 1538
TextChanged event, 1143, 1268, 1509
TextRenderingHint property, 1331
TextureBrush class, 1339
TextWriter object, 635
Thawte certificate authority, 945
Theme attribute, 748–749, 753
themes

applying
dynamically, 754–756
simple, 747–748
through configuration files, 753–754

CSS, 752
folders, 746–747
handling conflicts, 748–749
overview, 17, 739–745
skins, 746–752

Thread class, 532
thread pool, 530
thumbnail page, 1342, 1344–1345
ThumbnailViewer.aspx file, 1345
Tick event, 1511
Time data types, 422
TimeConsumingPage.aspx file, 1432

INDEX1636

timeout, 261, 268, 844, 971
Timer control, 1511
timestamp-based updating, 330
Title property, 105, 724, 761, 780, 1374, 1376,

1378
TitledTextBox control, 1267–1268
TitleIconImageUrl property, 1376, 1378
TitleImageUrl property, 1379
TitleOfCourtesy field, 587
titles, specifying, 761–762
TitleText property, 1015
TitleTextStyle style, 1014
TitleUrl property, 1374, 1376, 1378, 1392
ToArray() method, 605
ToBase64String() method, 1181, 1191
TODO token tag, 44–45
ToggleButtonExtender control, 1538
token tags, 44
ToList() method, 605, 622, 632
Toolbox, 40, 43–44, 1242–1243, 1247–1248,

1292, 1294, 1557
ToolboxBitmap() attribute, 1290
ToolboxData attribute, 1290
Top property, 1585
ToString() method, 422, 602, 1190, 1192,

1301
ToXmlString() method, 1183
trace listeners, 118
Trace object, 115–120
trace.axd file, 120, 220
TraceMode property, 117, 121
tracepoints, 71
TraceWebEventProvider class, 919
tracing, 119–120, 121, 122
tracking, 614
transactions, 307–315
TransactionScope class, 634
Transact-SQL, 310
Transfer() method, 110, 112, 113, 754, 782,

809
Transform method, 689, 702, 1335
Transmission Control Protocol (TCP), 847
TreeNode class, 812–815, 821
TreeNodeDataBound control, 800
TreeNodePopulate event, 815–816
TreeNodeStyle class, 816
TreeView control, 700–702, 792, 795–796, 800,

811–824, 827, 1458, 1474
triggers, 1509–1510
Triple Data Encryption Standard (3DES),

191–192
TripleDES class, 1168, 1170, 1177
Trusted Root Certification Authorities store,

946
type attribute, 1117, 1135
type converters, 1286, 1297–1306
type editors, 1286

Type property, 130, 163, 164, 1252
type safety, 12
typed DataSets, 354–362
TypedTableBase() object, 358, 596
TypeName property, 399
Type.registerNamespace() method, 1523

U
-U switch, 1000
UI effects, 82
UI Framework, 1519
UITypeEditors class, 35, 1309
Underline property, 145
Underused value, 516
uniform resource names (URNs), 652
UninstallPersistSqlState.sql file, 265
UninstallWebEventSqlProvider.sql file, 919
UnionIterator() class, 581
unique filenames, 568–571
UniqueID, 1263
Unit structure, 143
UnitType enumeration, 143
Universal Resource Indentifiers (URIs),

651–652
Unload event, 97
UnloadAppDomain method, 181
UnLock() method, 270
UnlockUser() method, 1044
Update() method, 338, 392, 411
UPDATE command, 330, 392, 453, 485–486,

488, 637
UpdateCheck property, 636
UpdateCommand property, 337–338, 382, 456
UpdateEmployee stored procedure, 630
UpdateMethod property, 400, 405
UpdateMode control, 1508, 1511
UpdatePanel control

conditional updates, 1509
handling errors, 1505–1508
interrupted updates, 1509
triggers, 1509–1510

UpdatePanelAnimationExtender control,
1538

UpdateParameters collection, 395, 404, 406
UpdateProgress control, 1502, 1512, 1515
UpdateProgressMeter() method, 1433
updates

conditional, 1509
interrupted, 1509
LINQ to SQL, 633–637
SqlDataSource, 391–395

UpdateUser() method, 1044
updateUserProcedure attribute, 1152
Updating event, 406
uploading

files, 565–567
Web Parts, 1410–1415

INDEX 1637

Uri type, 555
URIs (Universal Resource Indentifiers),

651–652
url attribute, 791, 796, 809
URL authorization, 1089, 1090–1096
URL mapping, 808–809
Url property, 109
UrlAuthorizationModule module, 959, 1089,

1092
UrlDecode() method, 112
UrlEncode() method, 112, 114, 1190
<urlMappings> section, 809
UrlReferrer property, 109
UrlTokenDecode() method, 112
URNs (uniform resource names), 652
Use IIS Metabase Path for Source Input

option, 910
UseCookies option, 971, 980
UseDeviceProfile option, 971, 980
<user /> element, 845, 979
User class, 959
User Code initialization, 95
user controls

adding code to
custom objects, 722–725
events, 726–729
exposing inner web control, 729–730
handling events, 719–720
overview, 719
properties, 720–722

advanced Web Parts, 1406–1409
converting page to, 718–719
creating, 716–718
dynamically loading, 730–733
overview, 715–716
partial page caching, 734–736

User object, 115, 958
User property, 957, 959, 969
UserAgent property, 109
UserControl object, 730, 1573
user-defined data types, 282
UserHostAddress property, 110
UserHostName property, 110
UserIsOnlineTimeWindow property, 1221
UserLookupError event, 1026
UserName property, 1015
UserNameLabelText property, 1015
UsernameRequiredErrorMessage property,

1015
UserNameTemplateContainer template,

1029
Users_GetByUserName procedure, 1158
Users_Update procedure, 1158
UserStore class, 1198, 1219
UseUri option, 971, 980
UtcLastModified property, 525
UTF-16 (Full Unicode), 563

UTF-7 Unicode, 563
UTF-8 Unicode, 563, 1180

V
Validate() method, 162, 172, 977
validateRequest attribute, 1443
ValidateUser() method, 1221
ValidateUserInternal() method, 1219
validation

automatic, 160–161, 167–168
client-side input, 158–160, 167–168
controls for, 96, 126, 158–159, 161, 162
cross-page posting, 254–256
LinqDataSource control, 643–645
manual, 160–161
process of, 160
routine, 167–168
ValidatorCalloutExtender control, 1538
validCredentials parameter, 1497
XHTML, 93
XML content, 684–687

ValidationEventArgs class, 686
ValidationEventHandler event, 686
ValidationExpression property, 164
validationKey value, 191–192
ValidationProperty attribute, 159
ValidationSummary control, 159, 168–169
ValidatorTextStyle style, 1014
Value property, 14, 130, 132–133, 159, 812,

821, 1428
Values collection, 430
ValueToCompare property, 164
variable watches, 69–70
variant data types, 5–6
VaryByControl property, 735–736
VaryByCustom attribute, 496
VaryByHeader attribute, 497
VaryByParam attribute, 493–495, 501, 735
vary-by-parameter caching, 495
.vb files, 42, 220, 227, 865, 1485
VB .NET language, 571, 580, 584, 589
VB SyncLock statement, 272
.vbproj files, 831, 865
VBScript, 1253, 1422
verbs, 223, 1405–1406
Verbs property, 1374, 1405
VerifyingAnswer event, 1026
VerifyingUser event, 1026
Verisign certificate authority, 945
Version property, 1252
VerticalPadding property, 817
View control, 173
view state

assessing, 244–246
chunking, 88
data types, 236
example of, 238–240

INDEX1638

lifetime, 236
making secure, 246–247
overview, 238
performance, 236
retaining member variables, 243–244
scope, 236
security, 236
state management options, 236
storing objects in, 236, 240–243

ViewState collection, 340, 1258–1259
virtual directories

aliases
IIS 5.x, 861
IIS 6.0, 861

directories
IIS 5.x, 861
IIS 6.0, 861

folder settings
IIS 5.x, 863–867
IIS 6.0, 863–867

getting, 109
IIS 7.0

application settings, 877–881
ASP.NET integrated mode, 885–887
configuration model, 881–884

permissions
IIS 5.x, 862–863
IIS 6.0, 862–863

Virtual Directory Creation Wizard, 863
Virtual Directory tab, 863–864
VirtualFile class, 913
VirtualPathProvider class, 829, 911–915
Visible property, 127, 419, 774
VisibleWhenLoggedIn property, 1016
Visual Studio 2008

ASP.NET coding model, 52–59
Code Editor, 46–52
custom server controls in, 1246
debugging, 65–71
default doctype, 92
deploying ASP.NET applications, 902–911
editing templates in, 448–449
installing Silverlight tools for, 1546
macros, 71–73
multitargeting, 32–33
new features, 25–26
overview, 25
Visual Studio IDE, 27–28, 40–46
Visual Studio Web Deployment Projects

package, 904
Visual Web Developer Web Server, 838
web applications, 28, 32–34
Web Development Helper, 74–75
websites, 28–29, 32–34, 59–63

Visual Studio Automation model, 71
Visual Studio IDE, 27–28, 41–46
Visual Studio .NET, 29, 48, 69, 70, 1243

Visual Studio Team System, 28
Visual Studio Web Deployment Projects

package, 904
visualizer window, 604
.vsdisco files, 865

W
-w parameter, 907
\w* representation, 1227
W3C (World Wide Web Consortium), 648,

1164
WaitForMessage() method, 527
warn method, 118–119
Warp method, 1335
WAS (Windows Activation Service), 847, 853
WAT (Website Administration Tool), 204, 206
Watch variable watch window, 69
WCF (Windows Communication

Foundation) services, 18, 180, 1592
Web Control events, 149–152
Web controls, 14–15, 83, 133–135, 151,

1266–1273
Web Deployment Projects package, 904, 908
Web development, evolution of, 3
Web Development Helper, 74–75, 122
web form (.aspx) files, 42, 180, 716, 719, 734,

811, 865, 893, 911, 967, 1340, 1433
Web Form controls

classes, 140–142
Colors, 144
default button, 148
enumerated values, 143
event handling, 149–152
Focus() method, 146–147
Fonts, 144–146
overview, 138–139
properties, 140
rich controls, 125
scrollable panels, 148–149
Units, 143
WebControl base class, 139–140

Web Form designer, 27
web forms

overview, 77
page as control container, 100–104,

106–107
Page class, 107–110, 113–123
page headers, 105
page processing, 77–88
processing stages, 94–100

Web Garden, 850
web method code, 1486–1488
Web Part pages

adding to page, 1364–1368
connecting Web Parts

authorizing Web Parts, 1416–1417
clearing personalization, 1418

INDEX 1639

defining communication contract, 1398
dynamically configuring, 1403–1404
final tasks for personalization, 1417
implementing provider, 1398–1401
multiple connection points, 1404–1405
static connections, 1402–1403

controls, 126
creating page design, 1361–1362
custom verbs, 1405–1406
customizing page, 1368–1370
overview, 17
simple tasks

create typed DataSets, 1381–1382
custom WebParts skeleton, 1382–1383
customization steps, 1388
developing advanced Web Parts,

1380–1381
final rendering, 1387–1388
implementing IWebPart interface, 1376,

1378–1379
initializing WebPart, 1383
loading data and processing events,

1384–1386
using WebPart, 1389

uploading dynamically, 1410–1415
user controls and advanced Web Parts,

1406, 1408–1409
Web Part editors, 1390–1392, 1393–1396
WebPartManager and WebPartZones,

1362–1364
Web resources, 1285, 1294–1297
web service proxy, 1491–1492
web services, 1484–1491
WebApplicationLifetimeEvent event, 918
WebAuditEvent class, 917, 918
WebBaseErrorEvent event, 918
WebBaseEvent event, 918
WebBrowsable attribute, 1383
web.config file, 16
WebControl constructor, 139–140, 1237,

1243–1247
WebControls namespace, 161, 162, 165–166
WebErrorEvent event, 918
WebFailureAuditEvent event, 918
WebForm_AutoFocus(), 146
webGarden configuration, 845
WebHandler directive, 224
WebHeartBeatEvent event, 918
.webinfo files, 865, 1486–1487
WebPart class, 1371, 1372, 1374
WebPartDisplayMode enumeration,

1368–1369
WebPartManager class, 1360, 1362–1364,

1368–1369, 1372, 1398, 1402, 1416,
1417, 1418

<webParts> element, 1417
WebPartToEdit property, 1394–1395

WebPartVerb class, 1406
WebPartVerbCollection class, 1406
WebPartZone control, 1360, 1366, 1371–1374,

1389
WebRequestErrorEvent event, 918
WebRequestEvent class, 917, 918
WebResource attribute, 1427, 1452
WebResource.axd file, 834
WebResourceHandler class, 1482
WebService attribute, 1485
WebServiceBinding attribute, 1485
WebServiceCallback_PageMethods attribute,

1493
Website Administration Tool (WAT), 204,

206
website deployment

health monitoring process, 916–921
IIS

application pools, 868–876, 889–892
architecture of, 835, 853
ASP.NET web applications, 892, 911
configuration, 831–833
files, 833–834
installing, 853–860
management console, 831–833
virtual directories, 830–834, 861–867,

876, 889
websites, 830–834, 861–867, 876, 889

overview, 829
VirtualPathProvider class, 911–915

website navigation
Menu control, 821–827
overview, 773
pages with multiple views

MultiView control, 774–779
overview, 773–774
Wizard control, 779–788

site maps
adding custom information, 800
binding to, 791–792
breadcrumbs, 792–794
defining, 789–791
overview, 788
security trimming, 809–811
showing portions of, 794–798
site map object, 798–800
SiteMapProvider, 801–808
URL mapping, 808–809

TreeView control
overview, 811–812
populating nodes on demand, 815–816
styles, 816–820
TreeNode object, 812–814

Web.sitemap file, 789, 791, 796–797
websites. See also master pages; themes;

website deployment; website
navigation

INDEX1640

aliases
IIS 5.x, 861
IIS 6.0, 861

directories
IIS 5.x, 861
IIS 6.0, 861

folder settings
IIS 5.x, 863–867
IIS 6.0, 863–867

IIS 7.0
application settings, 877–881
ASP.NET integrated mode, 885–887
configuration model, 881–884

permissions
IIS 5.x, 862–863
IIS 6.0, 862–863

standardizing formatting for, 739–745
standardizing layout for, 756
Visual Studio 2008, 28–29, 32–34, 59–63
WebSuccessAuditEvent event, 918

WebUIValidation.js file, 1427
weight, 1575
well-formed XML, 650–651
WF (Windows Workflow Foundation), 18
When Hit option, 71
Where() method, 593
WHERE clause, 330, 393, 442, 486, 510, 586,

601
Where property, 641
WhereIterator() class, 581–582
Widen method, 1335
Width property, 140, 1297, 1336, 1575
Win16 property, 1253
Win32 property, 1253
window.open function, 1445–1446
Windows 2000, 1076–1077
Windows Activation Service (WAS), 847, 853
Windows authentication

Basic authentication, 1052
Digest authentication, 1053
impersonation

configured, 1083–1085
programmatic, 1085–1087
on Windows 2000, 1076–1077
on Windows Server 2003, 1078–1080
on Windows Server 2008, 1082
on Windows Vista, 1081–1082

implementing
accessing Windows user information,

1070–1072
IIS 7.0, 1069–1070
overview, 1060

integrated, 1054
overview, 1049
Roles Service, 1111–1112

Windows Communication Foundation
(WCF) services, 18, 180, 1592

Windows Forms, 1046–1047
Windows Live ID, 937, 958
Windows NT LAN Manager (NTLM), 937,

960, 994
Windows Presentation Foundation (WPF), 18
Windows roles, 1072
Windows Server 2003, 1078–1080
Windows Server 2008

impersonation, 1082
installing IIS 7.0 on, 858–860

Windows Service Control Manager, 874
Windows Vista

Control Panel, 856
impersonation, 1081–1082
installing IIS 7.0 on, 856–857

Windows Workflow Foundation (WF), 18
WindowsAuthenticationModule class, 958
WindowsBuiltInRole enumeration, 1097
window.serInterval() method, 1433
WindowsIdentity class, 960, 1072
WindowsPrincipal class, 1070
WindowsTokenRoleProvider class, 1105,

1111
Wizard control, 173, 774, 779–788, 827
WizardStepType enumeration, 780
WmiWebEventProvider class, 919
worker process, 179, 182
World Wide Web Consortium (W3C), 648,

1164
WPF (Windows Presentation Foundation), 18
Write() method, 71, 101, 563–564, 573, 1250
Write permission, 862
WriteAllText() method, 545
WriteAttribute method, 1240
WriteBeginTag method, 1240
WriteBytes() method, 545
WriteComment() method, 656
WriteEndElement() method, 657–658
WriteEndTag method, 1240
WriteFile() method, 112
WriteLine() method, 563–564
WriteLines() method, 545
WriteStartDocument method, 656
WriteSubstitution() method, 499–501
writeToDiagnosticsTrace option, 121
WriteXml() method, 655, 706, 707, 1486
WriteXmlSchema() method, 337, 706

X
X509 certificate, 944, 1164–1165
X509Certificate class, 1165
X509Certificate2 class, 1165
X509CertificateCollection class, 1165
X509Store class, 1165
XAP files, 1549
XDocument class, 664, 671–676, 687
XHTML, 88–93

INDEX 1641

xhtml11Conformance element, 91
XhtmlTextWriter class, 1249
XML (eXtensible Markup Language)

configuration files, 870
content, 1270–1271
data binding

binding content from other sources,
704–705

hierarchical binding, 700–702
nested grids, 698–699
nonhierarchical binding, 694–696
overview, 693–694
updating through XmlDataSource, 705
using XPath, 696–698
using XSLT, 702–704

DataSet and, 335, 705–710
DOM, 664
grammars, 651
in-memory processing

overivew, 663
XDocument, 671–676
XmlDocument, 664, 666–668
XPathNavigator, 668–670

overview, 647–651
reading and navigating files, 664, 691
schema, 684
searching content, 677–684
stream-based processing, 654–662
transforming content, 687–693
validating content, 684–687

Xml control, 126, 173, 691, 1270
Xml option, 1138
XML schedule file, 174
XML schema document (XSD), 355
XmlDataDocument class, 708
XmlDataSource control, 380, 492, 508, 693,

705, 814
-xmldocs parameter, 907
XmlDocument class, 655, 661, 663–664,

666–668, 677–686

XmlElement object, 678
XMLHttpRequest object, 1459–1461, 1466,

1484, 1504
XmlLabel control, 1271, 1272, 1298
XmlMappingSource object, 616
XmlMembershipProvider class, 1198, 1203,

1206, 1208, 1214, 1228
XmlNode class, 666, 678, 1486
XmlNodeList class, 666–667
xmlns attribute, 652
XmlRoleProvider class, 1198, 1221–1224,

1227, 1228
XmlSchemaException exception, 686
XmlSerializer class, 876, 1141, 1202, 1206
XmlSiteMapProvider class, 809
XmlSiteMapProvider control, 788–790,

796–797, 801
XmlTextReader class, 660–662
XmlTextWriter class, 655–656, 661
XmlValidatingReader object, 686
XPath, 679–681, 696–698
XPath property, 697–698
XPathNavigator class, 663, 668–670, 681, 689
XPathNodeType property, 670
XPathSelect() method, 699
XSD (XML schema document), 355
XSL (Extensible Stylesheet Language),

687–688
XSLT

data binding with, 702–704
stylesheets, 173, 1270

XslTransform class, 689

Z
ZIndex layer, 1568
ZIP files, 1549
Zone property, 1374
ZoneIndex property, 1374
ZoneTemplate control, 1371, 1410
<ZoneTemplate> tag, 1366

	Copyright
	P A R T 1Core Concepts
	C H A P T E R 1Introducing ASP.NET
	C H A P T E R 2Visual Studio
	C H A P T E R 3Web Forms
	C H A P T E R 4Server Controls
	C H A P T E R 5ASP.NET Applications
	C H A P T E R 6State Management
	P A R T 2Data Access
	C H A P T E R 7ADO.NET Fundamentals
	C H A P T E R 8Data Components and theDataSet
	C H A P T E R 9Data Binding
	C H A P T E R 1 0Rich Data Controls
	C H A P T E R 1 1Caching and AsynchronousPages
	C H A P T E R 1 2Files and Streams
	C H A P T E R 1 3LINQ
	C H A P T E R 1 4XML
	P A R T 3Building ASP.NETWebsites
	C H A P T E R 1 5User Controls
	C H A P T E R 1 6Themes and Master Pages
	C H A P T E R 1 7Website Navigation
	C H A P T E R 1 8Website Deployment
	P A R T 4Security
	C H A P T E R 1 9The ASP.NET Security Model
	C H A P T E R 2 0Forms Authentication
	C H A P T E R 2 1Membership
	C H A P T E R 2 2Windows Authentication
	C H A P T E R 2 3Authorization and Roles
	C H A P T E R 2 4Profiles
	C H A P T E R 2 5Cryptography
	C H A P T E R 2 6Custom Membership Providers
	P A R T 5Advanced User Interface
	C H A P T E R 2 7Custom Server Controls
	C H A P T E R 2 8Design-Time Support
	C H A P T E R 2 9Dynamic Graphics and GDI+
	C H A P T E R 3 0Portals with Web Part Pages
	P A R T 6Client-SideProgramming
	C H A P T E R 3 1JavaScript and Ajax Techniques
	C H A P T E R 3 2ASP.NET AJAX
	C H A P T E R 3 3Silverlight 2
	Index

