CBCS SCHEME

First Semester M.Tech. Degree Examination, Jan./Feb. 2023 Mathematical Foundation of Computer Science

Time: 3 hrs. Max. Marks: 100

		Module – 1	M	L	C
Q.1	a.	Define vector space and give an example.	10	L1	CO1
	b.	Prove that set of all polynomials is a vector space over F.	10	L2	CO1
	0.	Trove that set of an polynomials is a vector space over 1.	10	1.2	COI
		OR	4.0		604
Q.2	a.	Show that the intersection of two subspace of a vector space $V(F)$ is subspace of $V(F)$.	10	L2	CO1
N	b.	Define the Linear Transformation and find the dimension of the subspaces $H = \left\{ \begin{bmatrix} a - 3b + 6c \\ 5a + 4d \\ b - 2c - d \\ 5d \end{bmatrix} \right\} a, b, c, d EIR$	10	L2	CO1
		Module – 2			
Q.3	a.	Define the following terms i) Inner product ii) Orthogonal sets iii) Orthogonal projections.	10	L1	CO2
	b.	Find the least – squares solution of AX = b for $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} -3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1 \end{bmatrix}$	10	L1	CO2
		OR			Ι
Q.4	a.	Find the curve of best fit of the type $y = ae^{bx}$ to the following data by the method of least squares	10	L2	CO2
	b.	Fit a second degree parabola a by the method of least squares. x	10	L2	CO2

		Module – 3		Andrew Printers	
Q.5	a.	Find the eigen valves and eigen vectors of			I
Q.D					
		$A = \begin{bmatrix} 2 & -1 & 0 \\ 3 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	4.0		602
		$A = \begin{bmatrix} 3 & -2 & 0 \end{bmatrix}$	10	L2	CO3
	b.	Define orthogonal sets and show that {u ₁ , u ₂ , u ₃ } is an orthogonal set,			
		(3) (-1) $(-1/)$			
		where $u_1 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$, $w_3 = \begin{pmatrix} -\frac{1}{2} \\ -2 \\ \frac{7}{2} \end{pmatrix}$	10	L2	CO3
		where $u_1 = 1$, $w_2 = 2$, $w_3 = -2$	10	1.2	003
		(1) (1) (2)			
		OR			
		[1 0 0]			
Q.6	a.	Find QR factorization of $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$			
			10	L2	CO3
			40	T .	GOA
	b.	Explain the principal component analysis.	10	L2	CO3
	L	Module – 4			
Q. 7	a.	Explain the following:			T
~· ′		i) Level of significance			
		ii) Testing of hypothesis	10	L1	CO4
		iii) Alternative hypothesis			-
	b.	Define the student's t-test and A machinist is making engine parts with			
		axle diameter of 0.7 inch. A random sample of 10 parts shows that means			
		diameter 0.742 inch with S.D of 0.04 inch. On the basis of this sample	10	L2	CO4
		would you say that the work is inferior?			
	1	OR			
Q.8	a.	The following table gives the number of aircraft accidents that occurred			T
4.0	a.	during the various days of the week. Find whether the accidents are			,
		uniformly distributed over the week.			
		Day S M T W T F S Total	10	L2	CO4
		No. of accidents 14 16 8 12 11 9 14 84			
	b.	Explain the one-way classification of ANOVA.	10	L2	CO4
					4

22SCN/SAM/SCS/SDS/SAD11

		Module – 5			
Q.9	a.	Define the periodic function and obtain the Fourier series of $f(x) = x \sin x$	10	L2	CO5
2072		$\sin 0 < x < 2\pi$.			
				72	
	b.	Define integral transform and find the Fourier transform $f(x) = \begin{cases} 1 & x < 1 \\ 0 & x > 1 \end{cases}$ and hence deduce that $\int_0^\infty \frac{\sin x}{x} dx$.	10	L2	CO5
		OR			
Q.10	a.	State and prove convolution theorem.	10	L2	CO5
	b.	Derive the formula for Parseval's formula.	10	L2	CO5

USN			^								22SCN/SAM/SCS/SDS/SAD12
-----	--	--	---	--	--	--	--	--	--	--	-------------------------

First Semester M.Tech. Degree Examination, Jan./Feb. 2023 Fundamentals of Data Sciences

Time: 3 hrs.

Max. Marks: 100

2		Module – 1	M	L	C
Q.1	a.	What is data science? What are the differences between data science and big data?	10	L2	CO1
	b.	Explain Datafication and current landscape.	10	L2	CO1
		OR			
Q.2	a.	Explain drew Conway's Venn diagram of data science representation.	10	L2	CO1
j.	b.	What are statistical inference, populations and samples?	10	L3	CO1
		Module – 2			
Q.3	a.	What is exploratory data analysis in data science?	10	L2	CO2
	b.	Illustrate data science process with the help of neat diagram.	10	L2	CO2
		OR			
Q.4	a.	What are Machine learning algorithms in data science and explain three classes of algorithms.	10	L2	CO2
	b.	What is the significance of linear regression in data science and what are the assumptions?	10	L3	CO2
		Module – 3		*	A
Q.5	a.	Why linear regression technique is not recommended for filtering spam?	10	L3	CO2
	b.	Explain Naïve Bayes algorithm appraising tree diagram to build intuition.	10	L2	CO2
		OR			
Q.6	a.	What are salient features of logistic regression in data science?	10	L2	CO2
	b.	Pronounce the underlying mathematics in M6D logistic regression and write down the differences between logit and inverse logit.	10	L3	CO2
		Module – 4	L	1	
Q.7	a.	What are feature generation, feature extraction and wrappers in data science?	10	L2	CO4
	b.	Explain selection criteria in feature extraction process.	10	L2	CO4
		f - m.	L	L	L

22SCN/SAM/SCS/SDS/SAD12

		OR			
Q.8	a.	Explain decision tree with an example.	10	L2	CO4
	b.	Explain Random Forest Algorithms in data science.	10	L2	CO4
		Module – 5			
Q.9	a.	. What are various terminologies in social network?			CO4
	b.	What is MapReduce in data science?	10	L2	CO4
		OR			
Q.10	a.	What are the basic principles of data visualization?	10	L2	CO4
	b.	Why does data scientist require clustering of data?	10	L2	CO4

USN							22SCN/SCS13
2000			1	1		1	

First Semester M.Tech. Degree Examination, Jan./Feb. 2023 Advances in Computer Networks

Time: 3 hrs.

Max. Marks: 100

		A. Leave			
		Module – 1	M	L	C
Q.1	a.	Explain network architecture.	10	L2	CO1
	b.	Explain sliding window algorithm.	10	L2	CO1
		OR			
Q.2	a.	Explain: i) Scalable connectivity ii) Manageability	10	L2	CO1
	b.	Difference between i) Bandwidth and latency ii) Delay and Bandwidth product	10	L2	CO1
		Module – 2			
Q.3	a.	Explain Bridges and LAN switches.	10	L2	CO1
	b.	Explain IPV ₄ packet header.	10	L2	CO1
		OR			
Q.4	a.	Explain Class A, Class B and Class C address.	10	L2	CO1
	b.	Explain subnetting and classless Address.	10	L2	CO1
		Module – 3			T
Q.5	a.	Explain how network is represented as graph and elaborate on Distance Vector (RIP)	10	L2	CO2
	b.	Explain flooding of link state packets.	10	L2	CO2
		OR			
Q.6	a.	Explain Dijkstra's shortest path algorithm and mention steps involve in this algorithm.	10	L2	CO2
	b.	Explain: i) Address and Routing ii) Address space allocation iii) Address notation	10	L2	CO2

22SCN/SCS13

		Module – 4			
Q.7	a.	Explain silly window syndrome and Nagle's algorithm.	10	L2	CO2
	b.	Explain FIFO and Fair Queuing.	10	L2	CO2
		OR			
Q.8	a.	Explain Fast Retransmit and Fast Recovery.		L2	CO2
	b.	Explain slow start Wien packet diagram.	10	L2	CO2
A. A. S. C.		Module – 5			
Q.9	a.	Explain Network Management (SNMP)	10	L2	CO3
-	b.	Explain Domain Hierarchy with neat diagram.	10	L2	CO3
	-	OR			•
Q.10	a.	Explain electronic mail considering SMTP, POP, IMAP, and MIME.	10) L2	CO3
	b.	Explain Source based congestion Avoidance	10) L2	CO3

USN												22SCS/SCN14
-----	--	--	--	--	--	--	--	--	--	--	--	-------------

First Semester M.Tech. Degree Examination, Jan./Feb. 2023 Internet of Things & Applications

Time: 3 hrs.

Max. Marks: 100

		Module – 1	M	L	C
Q.1	a.	Explain with appropriate figures H ₂ H, H ₂ M and M ₂ M environment.	10	L2	CO1
	b.	Explain with block diagram communication supported in MIPV $_6$ through HA.	10	L2	CO1
		OR			
Q.2	a.	Explain with block diagram direction of standardization according to IOT definition.	10	L2	CO1
	b.	Explain with block diagram advanced metering infrastructure.	10	L2	CO2
		Module – 2			
Q.3	a.	Explain in detail properties and requirements of M ₂ M applications.	7	L2	CO2
	b.	Explain in detail with respect to IOT applications: (i) Device intelligence. (ii) Communication capabilities (iii) Mobility support (iv) Device power.	8	L2	CO2
	c.	Explain with block diagram RFID reader operation.	5	L2	CO2
		OR			
Q.4	a.	Explain in detail: (i) Abstract layering of COAP. (ii) Overall protocol stack in COAP's environment.	10	L2	CO2
,	b.	Explain with block diagram: (i) M ₂ M in 3GPP – Service model (ii) M ₂ M in 3GPP – Architecture.	10	L2	CO2
		Module – 3			
Q.5	a.	Compare WBAN, WSN and Cellular wireless networks.	6	L3	CO2
	b.	Explain with block diagram, Zigbee protocol stack (details).	7	L2	CO2
	c.	Explain with block diagrams different frame formats used in IEEE 802.15.4.	7	L2	CO2
	•	OR			
		With the second of the second			

22SCS/SCN14

Q.6	a.	Explain with appropriate figures IPV6 tunneling : unidirectional ; bidirectional.	10	L2	CO2
	b.	Explain with block diagram IpSec Network environment.	10	L2	CO2
		Module – 4	L		
Q.7	a.	Explain in detail Home automation IOT system.	10	L2	CO3
V .,		Dapiem in detail Frome determanes to 1 system.			
	b.	Explain with block diagrams Home intrusion detection IOT system.	10	L2	CO3
·		OR			
Q.8	a.	Explain with block diagram Smart Parking IOT system.	10	L2	CO3
	b.	Explain with block diagrams weather monitoring IOT system.	10	L2	CO3
		Module – 5			
Q.9	a.	Explain with block diagram, components of a Hadoop cluster and Hadoop Map Reduce job execution.	10	L2	CO4
	b.	Explain with block diagram Hadoop Map Reduce Next Generation (YARN) job execution.	10	L2	CO4
		OR			
Q.10	a.	Explain in detail Oozie workflow for IOT data analysis.	10	L2	CO4
	b.	Explain with block diagram components of a storm cluster and also explain	10	L2	CO4
		example of a storm topology.			
					2
		2 of 2			,

22SCS15

First Semester M.Tech. Degree Examination, Jan./Feb. 2023 Advanced Algorithms

Time: 3 hrs. Max. Marks: 100

		Module – 1	M	L	C
Q.1	a.	Describe the asymptotic notations used for running time of an algorithm with examples.	10	L2	CO1
	b.	Using substitution method, solve the following recurrence relation to give an upper and lower bound: $T(n) = 2T (n/2) + n.$	5	L3	CO1
	c.	Construct a recursion tree for the recurrence, $T(n) = 3T (n/4) + cn^2$ and indicate the running time.	5	L2	CO1
		OR			T
Q.2	a.	Using master method, solve the following recurrences: i) $T(n) = 3T (n/4) + n \log(n)$ ii) $T(n) = 4T (n/2) + n$ iii) $T(n) = 9T(n/3) + n$ iv) $T(n) = 8T(n/2) + n^2$ v) $T(n) = T(2n/3) + 1$	10	L3	CO1
	b.	Define amortized analysis. Explain accounting method with an example.	10	L2	CO1
	L	Module – 2	•		
Q.3	a.	Find the single source 'S' shortest path using Bellman-Ford algorithm for the given graph. Write the analysis of the algorithm (Refer Fig.Q.3(a)).	10	L2	CO2
	b.	Briefly explain the following: i) Flow N/Ws ii) Residual networks iii) Cuts iv) Augmenting paths.	10	L2	CO2

		OR		· ·	
Q.4	a.	Write the Johnson algorithm to solve all pairs shortest path problem for sparse graphs and run the algorithm on the graph given in the Fig.Q.4(a).	10	L3	CO2
	b.	Write the basic Ford-Fulkerson algorithm for maximum flow problem and apply the algorithm on the graph shown in Fig.Q.4(b) and Find the maximum flow.	10	L2	CO2
		Module – 3			L
Q.5	a.	Write the extended Euclid's algorithm and also find a GCD (99, 78) using the same.	10	L2	CO2
	b.	Define Group. When it is called abelian group? Give a table for group operation multiplication modulo 15 and show that it is an abelian group.	10	L2	CO2
		OR	L		1
Q.6	a.	Apply the Chinese remainder theorem to the following equations: $a \equiv 2 \pmod{5}$ $a \equiv 3 \pmod{13}$ Generate all the solutions in the form of a table.	10	L3	CO2
	b.	Write the procedure for RSA public-key crypto system. Apply it for the following input $p = 3$ and $q = 11$, $e = 7$ compute d and encrypt $M = 2$.	10	L3	CO2
	1	Module – 4	L		I
Q.7	a.	Write a Rabin-Karp string matching algorithm. Search for a pattern 26 in the text string 3141592653589793 with $9 = 1$.	10	L2	CO3
	b.	Discuss KMP matcher algorithm with steps. Find pattern 001002 in text 00100100200100201.	10	L2	CO3
		T. T	L		L

		OR				
Q.8	a.	Explain finite – automation algorithm and construct the string matching automatic for pattern P = ababaca and illustrate its operation on the text string T = abababacaba.	10	L2	CO3	
	b.	Write Boyer-Moore algorithm for string matching problem. Illustrate it on the following input: Text: BESS_KNEW_ABOUT_BAOBAB Pattern: BAOBAB.	10	L2	CO3	
		Module – 5				
Q.9						
		OR				
Q.10		Explain Monte Carlo and Las Vegas algorithms with example.	20	L2	CO3	

OBIT	USN										
------	-----	--	--	--	--	--	--	--	--	--	--

22RMI16

First Semester M.Tech. Degree Examination, Jan./Feb. 2023 Research Methodology and IPR

Time: 3 hrs.

Max. Marks: 100

		Module – 1	M	L	C					
Q.1	a.	What do you mean by research? Explain its significance in modern times and also list the objectives of research.	10	L2	CO1					
	b.	Briefly describe the different steps involved in a research process.	10	L2	CO1					
	OR									
Q.2										
Q.2	b.	List all the criterias satisfied by the scientific research.	10 10	L2 L2	CO1					
	D.	Module – 2	10		CO					
Q.3	a.	What is the importance of literature review in research.	10	L2	CO2					
Q.3	b.	Explain how to review the literature (steps) and searching for the existing	10	L2	CO2					
	D.	literature.	10							
		L		L						
Q.4	a.	OR Explain meaning of Research Design and Features of a good design.	10	L2	CO2					
Q.T	b.	Describe important concepts relating to a Research design.	10	L2	CO2					
1	D.	Module – 3	10		002					
Q.5	a.	Explain the main steps in sampling design.	10	L2	CO2					
Q.5			10	L2	CO2					
	b. List and explain types of sampling design. OR									
Q.6	a.	Explain the classification of measurement scales.	10	L2	CO2					
Q.U	b.	What is the Goodness of measurement scales? Explain.	10	L2	CO2					
1	D.	Module – 4	10		002					
Q.7	a.	What is a hypothesis? List the characteristics of hypothesis.	10	L2	CO2					
Q.,	b.	The procedure of testing hypothesis requires a researcher to adopt several	10	L3	CO3					
	ν.	steps. Describe in brief all such steps.	10							
		OR	L							
Q.8	a.	Find the value of χ^2 for the following information:								
2.0		Class A B C D E		L3	CO3					
		Observed frequency 8 29 44 15 4								
		Theoretical frequency 7 24 38 24 7		* ×						
	b.	A die is turn on 132 times with following results:	10	L3	CO3					
	υ.	Number turned up 1 2 3 4 5 6	10							
		Frequency 16 20 25 14 29 28								
		Is the die unbiased?		et .						
	L	Module – 5								
Q.9	a.	Explain the significance of a research report and narrate the various steps	10	L3	CO3					
Q.J	a.	involved in writing such a report.								
	b.	Mention the different types of report, particularly pointing out the	10	L3	CO3					
1	٠,	difference between a technical report and a popular report.								
		OR	1							
Q.10	a.	What is TRIPS? Explain in brief?	10	L2	CO2					
۷.10	b.	What is Patent Cooperation Treaty (PCT)? Write its advantages and basic	10	L2	CO2					
	D.	principles.								