

USN											
-----	--	--	--	--	--	--	--	--	--	--	--

BCS501

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Software Engineering and Project Management

Time: 3 hrs.

Max. Marks: 100

		Module – 1	M	L	С
Q.1	a.	Explain software process and software engineering practices.	10	L2	CO1
	b.	Explain the waterfall model and incremental model, with diagram.	10	L2	CO1
		OR			
Q.2	a.	Explain Boehm Spiral process model with a neat diagram. Mention its	10	L2	CO1
		advantages and disadvantages.			
	b.	Explain the five activities of a generic process framework for software	10	L2	CO1
		engineering.			
		Module – 2			
Q.3	a.	Explain the distinct tasks of requirement engineering.	10	L2	CO ₂
	b.	Illustrate the UML use case diagram for safe home system.	10	L2	CO ₂
		OR			
Q.4	a.	Explain Class-Responsibility-Collaborator(CRC) modeling and data	10	L2	CO ₂
		modeling with an example.			004
	b.	Explain the elements of analysis model in requirement modeling.	10	L2	CO ₂
		Module – 3	40	T.0	600
Q.5	a.	Explain the principles of agile process development.	10	L2	CO3
	b.	Explain the following:	10	L2	CO3
		i) Adaptive software development			
		ii) SCRUM			
0.6	T	OR	10	Т 2	CO2
Q.6	a.	Explain the concepts of extremes programming with a neat diagram.	10	L2	CO3
	b.	Explain design modeling principles that guide the respective framework activity.	10	L2	CO3
		Module – 4			
0.7		Illustrate the project management life cycle with a neat diagram.	10	L2	CO4
Q.7	a. b.	Explain: i) Different ways of categorizing software projects	10	L2	CO4
	D.	ii) Smart objectives	10	112	004
		OR			
Q.8	a.	Explain the difference between traditional versus modern project	10	L3	CO4
Q.0	a.	management practices along with the role of management.	10		
	b.	Explain software development life cycle (ISO 12207) with a neat diagram.	10	L2	CO4
	_~-	G Module – 5			
Q.9	a.	Explain Quality Management System with principles of BS EN ISO-9001-	10	L2	CO5
4 .,		2000.			A 100 100 100 100 100 100 100 100 100 10
	b.	Explain the following:	10	L2	CO5
		i) McCall model ii) Garvin's Quality Dimensions.			
		OR			
Q.10	a.	Describe six generic functions allowed in automated estimation techniques	10	L3	CO5
		of software projects.			2
	b.	Explain COCOMO II model.	10	L2	CO5

USN			5.			= =	
	9 9	15		~	200		

BCS502

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Computer Networks

Time: 3 hrs.

Max. Marks: 100

		Module - 1	M	L	C
Q.1	a.	What is data communication? List and explain characteristics and components of communication model.	06	L1	CO1
	b.	Define switching. Explain Circuit Switched Network and Packet Switched Network.	06	L2	CO1
*.	c.	With neat sketch, explain different layers of TCP/IP protocol suite.	08	L2	CO1
	<u> </u>	OR		0	
0.2	0	What are guided transmission media? Explain twisted pair cable in detail.	06	L1	CO1
Q.2	a. b.	What is Virtual Circuit Network (VCN)? With neat diagram, explain three	08	L1	CO1
9	υ.	phases involved in VCN.			
	c.	Write a note on Encapsulation and decapsulation at Source Host for TCP/IP protocol suite.	06	L2	CO1
		Module – 2			
Q.3	a.	Define Redundancy. Explain CRC encoder and CRC decoder operation with block diagram.	08	L2	CO2
	b.	Distinguish between Flow Control and Error Control. Explain Stop and Wait Protocol.	08	L2	CO2
	c.	List and explain Control Fields of I-frames, S-frames and U-frames.	04	L2	CO2
-		OR			
Q.4	a.	What is Hamming distance? With example, explain Parity Check Code.	06	L1	CO ₂
V. .	b.	Define Framing. Explain character oriented framing and bit-oriented framing.	06	L1	CO2
	c.	With flow diagram, explain CSMA/CA.	08	L2	CO2
		Module – 3		L	
Q.5	a.	Explain virtual-circuit approach to route the packets in packet-switched	10	L2	CO3
8	b.	Illustrate the working of OSPF and BGP.	10	L3	CO3
	<u></u>	OR			-
0.6	Τ_		10	L2	CO3
Q.6	a.	Explain IPv6 datagram format. Write an Dijikstra's algorithm to compute shortest path through graph.	06	L1	CO3
	b.	Write a note on Routing Information Protocol (RIP) algorithm.	04	L1	CO3
		19			
		Module – 4	140		000
Q.7	a.	Explain Go-Back-N protocol working.	10	L2	CO4
	b.	With neat sketch, explain three-way handshaking of TCP connection establishment.	10	L2	CO4
			L		
		1 of 2			

			··········		*
				BC	S502
		OR			
Q.8	a.	With an outline, explain selective repeat protocol.	10	L2	CO ₄
	b.	List and explain various services provided by User Datagram Protocol (UDP).	10	L2	CO4
		Module – 5			
Q.9	a.	Briefly explain Secure Shell (SSH).	10	L2	CO ₄
	b.	Write a note on Request message and response message formats of HTTP.	10	L2	CO4
		OR			8
Q.10	a.	With neat diagram, explain the basic model of FTP.	04	L2	CO4
	b.	Describe the architecture of electronic mail (e-mail).	06	L3	CO4
	c.	Briefly explain Recursive Resolution and Iterative Resolution in DNS.	10	L2	CO4
		E La			

A Broth Carlo Carl

CBCS SCHEME

USN				-			BCS503
	ı	1		1	1		

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Theory of Computation

Time: 3 hrs.

Max. Marks: 100

		Module – 1	M	L	C
Q.1	a.	Define the following with example !	3	L1	CO1
		i) Language ii) String iii) Power of an alphabet.			
	w g				
8	b.	Define DFA. Draw a DFA to accepts.	10	L3	CO1
		i) The set of all strings that contain a substring aba.			
		ii) To accept the stings of a's and b's that contain not more than there b's.			
		iii) $L = \{w \in \{a, b\}^* : \text{No 2 consecutive characters are same in } w\}.$			
		19			
	c.	Convert the following NFA to DFA.	7	L2	CO1
		0 1			
		$\rightarrow p \mid \{p,q\} \{p\}$			
		q {r} {r}			
		r {s} ф			
		* s {s} {s}			
				4	
		OR			
Q.2	a.	Define the following with example :	3.	L1	CO1
C		i) Alphabet			
		ii) Reversal of string			
		iii) Concatenation of Languages.			
		6- 10-19			
	b.	Design a DFA for the Language:	7	L3	CO1
		$L = \{w \in \{0, 1\}^* : w \text{ is a string divisible by 5}\}.$			
	c.	Define NFA. Obtain an ε - NFA which accepts strings consisting of 0 or	10	L2	CO1
		more a's, followed by 0 or more b's followed by 0 or more C's. Also			
		convert it to DFA.			
		Module – 2			
Q.3	a.	Define Regular expression. Write the regular expression for the following	10	L2	CO2
		languages :			
		i) Strings of a's and b's starting with a and ending with b.			
		ii) Set of strings that consists of alternating 0's and 1's.			
		iii) $L = \{a^n bm, (n+m) \text{ is even}\}.$			
	. = = 5	iv) $L = \{w : / w / \text{mod } 3 = 0 \text{, where } w \in \{a, b\}^*\}.$			
	1 2 5				- , s m(
2.5					
					,
		1 of 2			

	b.	Minimize the following finite automata using Table filling algorithm:	10	L2	CO2
		$\delta \mid a \mid b$			
		\rightarrow A B A			
		B A C			
		$C \mid D \mid B$			
		* D D A		¥	
		E D F			
		F G E			
		$G \mid F \mid G$			
		$H \mid G \mid D$			
		The last			
					L
		OR			
Q.4	a.	Construct ε - NFA for the following Regular expression:	6	L1	CO2
		i) $(0+1) 0 1 (1+0)$ ii) $1 (0+1)^* 0$ iii) $(0+1)^* 0 1 1^*$			
		(0+1)(1+0)	21		
	b.	Obtain the Regular expression that denotes the language accepted by	6	L3	CO2
		Fig. Q4(b).			
		0'19 00,1			
		Fig. Q4(b)			
		$\rightarrow (40) \rightarrow ((41))$			
		Using Kleene's theorem.			
	+	State the Dumming I amme for the Degular I anguages. And also prove that	8	L1	CO2
	c.	State the Pumping Lemma for the Regular Languages. And also prove that	0	LI	COZ
		the following languages are note regular.			
		i) $L = \{0^n \ 1^m \mid n \le m\}$ ii) $L = \{0^n \ 1^m \ 2^n \mid n, m \ge 1\}$.		-	
		Module -3			L
0.5	T		10	Т2	CO2
Q.5	a.	Design CFG for the following languages:	10	L3	CO3
		i) $L = \{a_{n}^{n} b_{n+3}^{n+3}, n \ge 0\}$			
		ii) $L = \{a^i b^j c^k, j = i + k, i \ge 0, k \ge 0\}$			
		iii) $L = \{w / /w / \text{ mod } 3 > 0 \text{ where } w \in \{a\}^*\}$			
		iv) $L = \{a^m b^n / m \neq n\}$			
	(4)	v) Palinderomes over 0 and 1.			
	b.	Consider the grammar G with productions.	10	L2	CO3
		$S \rightarrow A b B / A / B$; $A \rightarrow aA / \epsilon$; $B \rightarrow a B / b B / \epsilon$.	- "		
	14				
	4	Obtain LMD, RMD and parse tree for the string aaabab.			1 1
	7	Is the given grammar ambiguous?			
	100				
	1	OR			
01	T		4	T 4	CCC
Q.6	a.	Define the following with example:	4	L1	CO3
		i) Context free grammar ii) Left most Derivation			
		iii) Parse tree iv) Ambiguous grammar.			
		1) 1 1110 1101			
		D. ' DDA C1. 1.	10	Ta	CO2
	b.	Design PDA for the language:	10	L3	CO3
	80	$L = \{a^i b^j c^k / i + k = j, i \ge 0, k \ge 0\}$ and show the moves made by the PDA			
		for the string aabbbe.			
			L		

	c.	Convert the following CFG's to PDA:	6	L2	CO3
		$S \rightarrow a A$; $A \rightarrow a ABC/bB/a$; $B \rightarrow b$; $C \rightarrow c$.			
		Module – 4		l	
Q.7	a.	Define CNF. Convert the following CFG to CNF	10	L2	CO4
		$E \rightarrow E + T/T$			
		$T \rightarrow T * F / F$			
		$F \rightarrow (E)/I$			
		$I \rightarrow Ia / Ib / a / b$.			
	b.	Show that $L = \{0^n \ 1^n \ 2n \ / \ n \ge 1\}$ is no context free.	4	L2	CO4
	c.	Prove that the family of context free languages is closed under union and	6	L1	CO4
		concatenation.			
	1	OR			
Q.8	a.	Define Greibach Normal Form. Convert the following CFG to GNF.	6	L2	CO4
Q.o	a.	S \rightarrow AB ; A \rightarrow aA/bB/b ; B \rightarrow b.		112	CO4
		B TIB , TI WIT BE TO , TO			
	b.	Consider the following CFG:	10	L3	CO4
		$S \rightarrow ABC/BaB$			
		$A \rightarrow aA / BaC / aaa$			
		$B \rightarrow bBb/a/D$			
		$C \rightarrow CA / AC$			
		$D \rightarrow \varepsilon$			
		i) What are useless symbols?			
		ii) Eliminate ε - productions, Unit productions and useless symbols from the grammar.		.3 16	
		the graninar.			
	c.	Prove that the following languages are not context free.	4	L2	CO3
		i) $L = \{ai / i \text{ is prime}\}$ ii) $L = \{a^{n^2} / n \ge 1\}.$			
		Module – 5	_		601
Q.9	a.	Define a turing machine and explain with neat diagram, the working of a	6	L1	CO4
		basic turing machine.			
	h	Design a Turing machine to accept the language, $L = \{a^n \ b^n \ c^n / n \ge 1\}$.	14	L4	CO4
	D.	Draw the transition diagram and show the moves for the string aabbcc.	1.4	LT	004
	3	Draw the transition diagram and show the moves for the same access.			
		OR			L
Q.10	a.	Design a Turing machine to accept palindrome over {a, b} and draw the	12	L4	CO5
-		transition diagram.			
	b.	Write a short notes on :	8	L1	CO5
		i) Recursively Enumerable Language.			
		ii) Multitape Turing Machine.			

* * * * *

CBCS SCHEME

USN									Question Paper Version: D)
		l .	1	l .	art.	1	1	1		_

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025

E	Environmenta	I Studies and	d E - Was	ste Mana	agement
ime:	1 hr.]			, di	Max. Marks: 50
	IN	STRUCTIONS T	O THE CA	NDIDATES	5
1.	Answer all the fifty	questions, each ques	stion carries o	ne mark.	
2.	Use only Black ball	point pen for writin	ng / darkening	g the circles.	
3.	For each question,	after selecting your	r answer, da	rken the app	oropriate circle
	corresponding to th	ne same question nu	umber on the	OMR sheet	
4.	Darkening two circle	es for the same quest	tion makes th	e answer inva	ılid.
5.	Damaging/overwrit	ting, using whiter	ners on the	OMR shee	ets are strictly
	prohibited.				
1.	What is the Dissolved a) 7 mg/L	oxygen value required b) 8.2 mg/L	d for the surviv c) 6.5 mg/L	val of aquatic s	species? 4 mg/L
2.	Which among the folloa) Land fills	owing is used to dump b) Ocean	the waste col c) River		ties? All of these
3.	Which type of waste in a) Hazardous waste c) Bio – medical wast		leftover food, b) Organic v d) Electroni	waste	yard trimmings?
4.	Which of the integrate a) Source Reduction	AND THE RESERVE OF THE PERSON	is reduced on a c) Disposal		evel? Burning
5.	What is called for the furnace under suitable a) Landfill	temperature and oper		ns?	
6.	The process of decompa) Landfill	position of biodegrada b) Vermicomposting			ns is called Shredding
7.	is a liquid that pa a) Leachate	asses through solid wa b) Sludge	este and extrac c) Distilled v	-	mpurities from it Municipal
8.	The colour code of pla a) black	astic bag for disposing b) red	g of microbial l c) blue		ure waste white
9.	Average hospital wast a) 1.5 to 2 kg	e produced per bed per b) $0.5-4 \text{ kg}$	er day in Gover c) 0.5 to 1 k		ll is 0.5 – 2 kg

10.	Which of the following are the main contributors of the e –waste in the world? I. Refrigerators / freezers, washing machines, dishwashers. II. Small household appliances III. Personal computers, telephones, laptops, printers. IV. Gas cylinders, chimneys and home appliances
11.	a) Only I, II, III b) Only I & II c) Only I, III, IV d) All of these Which of the following conceptual spheres of the environment is having the least storage
•	capacity for matter? a) Atmosphere b) Lithosphere c) Hydrosphere d) Biosphere
12.	The ratio between energy flows at different points in a food chain is known as a) Ecological capacity b) Ecological efficiency c) Ecological assimilation d) Ecological potential
13.	A predator is a) An animal that is fed upon another animal b) Animal that feeds upon both plants and animals
	c) An animal that feeds upon another animald) A primary consumer
14.	 Why Rann of Kutch attracts aquatic birds in monsoon season? a) Because desert land is converted to forest land b) Because desert land is converted to snow c) Because desert land do not convert d) Because desert land is converted to salt marshes
15.	Which kind of soil we can find on the surface of Thar desert? a) Rocky b) Moist c) Fertile d) Aeolian
16.	Which of the following type of forest important for watersheds? a) Tropical Evergreen forests b) Tropical Deciduous forests c) Tropical Montana forests d) Grassland forest
17.	Hot spots areas have a) Low density of biodiversity c) High density of hot springs b) Only endangered plants d) High density of biodiversity
18.	Sustainable Development means a) meeting present needs without compromising on future needs b) progress of human beings c) balance between human needs and the ability of earth to provide the resources d) all of these
19.	The term Alpha diversity refers to a) Genetic diversity b) Community and ecosystem diversity c) Species diversity within a community or ecosystem d) Diversity among the plant
20.	Algae, green plants and photosynthetic bacteria are a) Autotrophic b) Heterotrophic c) Decomposers d) Consumers

				2000 P		
21.	What is Extended Proin India?	oducer Responsibili	ty (EPI	R) as per the $e - w$	aste 1	management rules
	a) The responsibilityb) The responsibility				out 1	the product life
	cyclec) The responsibilityd) The responsibility	of retailers to mana of informal recycle	ge e – rs to m	waste disposal anage e – waste.	{	Ģ
22.	Which international waste, including e – va) Kyoto Protocol			transboundary mor	veme	ents of hazardous
	c) Montreal Protoco	1	d)	Basel convention		
23.	Which colour bin is u a) Blue	sed for e – waste? b) Green	c)	Yellow	d)	Black
24.	What are the health ha) Lung cancer	azards which can be b) DNA damage		d by E – waste? Brain	d)	All of these
25.	Preparation of Guide		entally o	sound Management	ofe	e – waste is a duty
25.	assigned to	incs for Environme		attion	OIC	waste is a daily
	a) Producer	b) Consumer	c)	MOEFCC	d)	SP CB/PCC
26.	What is India's globa a) 3	l rank in e –waste? b) 13	c)	23	d)	33
27.	When did the Karna	taka State Pollutio	n Cont	rol Board for prev	venti	on and control of
	water pollution const	ituted?		1982		
	a) 1974	b) 1978	(c)	1982	d)	1986
28.	Aerosol consisting of		`		11	A 1
	a) Mist	b) Dust	c)	Fog	d)	Aerosol
29.	Which of the following	ng is non – point so				
	a) Factoriesc) Urban and subur	han land	b) d)	Sewage treatment All of these	plan	it "
4			(1-7)	All of these		
30.	When is World Wate a) January 26 th	r day celebrated? b) June 5 th	c)	September 22 nd	d)	March 22 nd
31.	Jr. 769	rinking water high in				
	a) Cholerac) Liver problem	Cal	,	Kidney problem Methomoglobinen	nia	
32.	Bhopal gas tragedy to	ook place in the year				was
	a) 1964, Hydrogen f	60"		1974, Methyl chlo		
	c) 1984, methyl ISO	– суапіае	a)	1994, Methyl sulp	mate	
33.	The major chemical p				0	DAN
	a) NO, NO₂, VOC,c) NO, NO₂, VOC,			N ₂ O , NO ₂ , VOC NO, N ₂ O ₅ , VOC,		
	c) No, No2, VOC,	Ver	-D-3		~ ₅ ,	

34.	The international protocol to protect the Oz a) Vienna protocol	b)	Kyoto protocol		
	c) Cartagena protocol	d)	Montreal protocol		
35.	Which is the best and the worst method of p	olun	ne behavior for pollu	ition	dispersion?
	a) Lofting and fumigation	b)			
	c) Conning and fumigation	d)	Fanning and Loft	ing	
36.	What is called for a Temporary hearing loss	s?	A	\$	
	a) Temporary ear pain	b)	Temporary hearing	ig pr	oblem
	c) Temporary threshold shift	d)	Temporary heari	ng s	hift
37.	What timings loud speakers shouldn't use is	กกม	blic areas?		
37.	a) 10.00 pm to 5.00 am	b)	11.00 pm to 6.00 a	am	
	c) 1.00 am to 7.00 am	d)	10.00 pm to 6.00		
••					
38.	In which section, if a person violates the no			s , is	s liable for penalty
	according to Environmental Protection Act, a) Section 12 b) Section 15		Section 18	4)	Section 19
	a) Section 12	ς,	Section 16	u)	Section 19
39.	'Minamata Disease" is caused due to				
	a) Lead b) Arsenic	c)	Mercury	d)	Cadmium
40.	The process of reducing the fluoride conten	t fro	m water is called as		
	a) Chlorination		Fluoridation	Z	
	c) Defluoridation	d)	Fanning and Loftin	ng	
41.	Veld type grasslands are located at	A	•	97	
41.	a) South Africa b) South America	c)	Australia C	d)	Britain
		6	4		
42.	Which pyramid is always upright?		November 201	٦/	Dan Jahain
	a) Energy b) Biomass	c)	Numbers	d)	Food chain
43.	In what form is solar energy is radiated from	n the	e Sun?		
	a) Ultraviolet Radiation	b)	Infrared Radiation		
	c) Electromagnetic waves	d)	Transverse waves		
44,	What does MHD stands for in the energy fie	eld?			
. 4	a) Magneto Hydro Dynamic	b)	Metal Hydrogen D	etox	K
	c) Micro Hybrid Drive	d)	Metering Head Di	ffere	ential
45.	The 'Miracle Material' that can turn CO ₂ in	to li	anid firel is :		
4 3.	a) Propane b) Copper		Graphene	d)	Potassium
			•	ω)	1 Otassiaiii
46.	A tide whose difference between high and le				
	a) Diurnal tide b) Neap tide	c)	Spring tide	d)	Ebb tide
47.	Which of the turbine can be mounted vertical	ally :	and horizontally.		
	a) Pelton wheel b) Kaplan turbine	-	Gorlov turbine	d)	Francis turbine

- **48.** Which type of fuel is removed from the reactor core after reaching end of core life service?
 - a) Burnt fuel
- b) Spent fuel
- c) Engine oil
- d) Radioactive fuel

- **49.** What is a fuel cell?
 - a) Converts heat energy to chemical energy
 - b) Converts heat energy to electrical energy
 - c) Converts chemical energy to electrical energy
 - d) Converts kinetic energy to heat energy
- **50.** Which one of the following is the apex organization in our country in the field of pollution control?
 - a) Water Pollution Control Board
- b) State Pollution Control Board
- c) Central Pollution Control Board
- d) Air Pollution Control Board

						 -
		1	10		1	
			10			
TICINI		i i				
	1 3		le .		1	
COL					1	

BCS515B

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Artificial Intelligence

Time: 3 hrs.

Max. Marks: 100

		2. M: Marks, L: Bloom's level, C: Course outcomes.			
		Module - 1	M	L	C
Q.1	a.	Define the following:	5	L2	CO1
		i) Intelligence ii) Artificial Intelligence iii) Agent iv) Rationality			
		v) Logical reasoning.			
			_		601
	b.	Examine the AI literature to discover whether the following tasks can	8	L2	CO1
		currently be solved by computers.i) Playing a decent game of table tennis (ping-pong)			
		i) Playing a decent game of table tennis (ping-pong)ii) Discovering and proving new mathematical theorems			
		iii) Giving competent legal advice in a specialized area of law			
		iv) Performing a complex a surgical operation.			
		.,,			
	c.	Implement a simple reflex agent for the vacuum environment. Run the	7	L3	CO1
		environment with this agent for all possible initial dirt configurations and	17		
		agent locations. Record the performance score for each configuration and			
		the overall score.			
		OR	_		604
Q.2	a.	Is AI a science, or is it engineering or neither or both? Explain.	5	L2	CO1
	b.	Write pseudocode agent programs for the goal based and utility based	8	L1	CO1
		agents.	¥	se	
	c.	For each the following activities give a PEAS description.	7	L1	CO1
		i) Playing a tennis match			
		ii) Performing a high jump			
		iii) Bidding on an item in an auction.			
		Module – 2			
Q.3		Explain why problem formulation must follow goal transformation.	5	T.1	CO1
Ų.S	a.	Explain why problem formulation must lonew gour transformation.		L2 L3 L1	
	b.	Give complete problem formulation for each of the following choose a	8	L2	CO2
		formulation that is precise enough to be implemented.			
		i) Using only four colors, you have to color a planar graph in such a way			
		that no two adjacent regions have the same color.			
		ii) A 3 – foot – tall monkey is in a room where some bananas are			
		suspended from the 8-foot ceiling. He would like to get the bananas.			
		The room contains two stackable, moveable, climbable 3-foot high			
		crates.			
	c.	Prove each of the following statements or given counter example:	7	1.2	CO2
	٠.	i) Breadth – first search is a special case of uniform – cost search.			
		ii) Uniform – cost search is a special case of A* search.			
		1 of 3			

		OR			
Q.4	a.	Define the following terms with example. i) State space ii) Search node iii) Transition model iv) Branching factor.	8	L2	CO2
d	b.	Show that the 8-puzzle states are divided in to two disjoint sets, such that any state is reachable from any other state in the same set, while no state is reachable from any state in the other set. Devise a procedure to decide which set a given state is in and explain why this is useful for generating random state.	7	L2	CO2
	c.	Describe a state space in which iterative deepening search performs much worse than depth first search for example, $O(n^2)Vs\ O(n)$.	5	L2	CO2
		Module – 3			
Q.5	a.	Devise a state space in which A* using GRAPH-SEARCH returns a suboptimal solution with h(n) function that is admissible but inconsistent.	7	L2	CO3
	b.	Which of the following are correct? i) $(A \lor B) \land (\neg C \lor \neg D \lor E)F(A \lor B)$ ii) $(A \lor B) \land (\neg C \lor \neg D \lor E)F(A \lor B) \land (\neg D \lor E)$ iii) $(A \lor B) \land \neg (A \Rightarrow B)$ is satistiable iv) $(A \Leftrightarrow B) \Leftrightarrow C$ has the same number of models as $(A \Leftrightarrow B)$	8	L1	CO3
v	c.	Consider a vocabulary with only four propositions, A, B, C and D. How many models are there for the following sentences? i) $B \lor C$ ii) $\neg A \lor \neg B \lor \neg C \lor \neg D$ iii) $(A \Rightarrow B) \land A \land \neg B \land C \land D$.	5	L1	CO3
		OR Construct on	8	L1	CO3
Q.6	a.	Prove that if a heuristic is consistent, it must be admissible. Construct an admissible heuristic that is not consistent.	0		COS
19	b.	Prove each of the following assertions: i) $\alpha \equiv \beta$ if and only if the sentence $(\alpha \Leftrightarrow \beta)$ is valid ii) $\alpha \neq \beta$ if and only if the sentence $\alpha \land \neg \beta$ is unsatisfiable.	7	L1	CO3
	c.	Prove, or find a counter example to each of the following assertions. i) If $\alpha \neq (\beta \land \gamma)$ then $\alpha \neq \beta$ and $\alpha \neq \gamma$ ii) If $\alpha \neq (\beta \lor \gamma)$ then $\alpha \neq \beta$ and $\alpha \neq \gamma$ (or) both	5	L1	CO3
		Module – 4		T = -	
Q.7	a.	Which of the following are valid necessary true sentences? i) $(\exists x \ x = x) \Rightarrow (\forall y \exists z \ y = z)$ ii) $\forall x \ P(x) \lor \neg p(x)$ iii) $\forall x \ smart(x) \lor (x = x)$	7	L1	CO4
	b.	Prove that universal Instantiation is sound that existential instanticition produces an inferentially equivalent knowledge base.	5	L1	CO4

,	write down logical representations for the following sentences, suitable for use with generalized modulus ponens: i) Horses, cows and pigs are mammals ii) Bluebeard is Charlie's parent iii) Offspring and parent are inverse relations	8	L1	CO4
Q.8	OR a. Consider a knowledge base containing just two sentence; P(a) and P(b) does this knowledge base entail ∀x P(x)? Explain your answer interms of models.	5	L2	CO4
	 b. Suppose a knowledge base contains just one sentence, ∃xAsHighAs(x.Everest) which of the following are legitimate results of applying existential instantiation? i) AsHighAs(Kilimanjaro, Everest) ii) AsHighAs(Kilimanjaro, Everest) ∧ AsHighAs (Benvevis, Everest) 	8	L2	CO4
	c. Explain how to write any 3-SAT problem of arbitrary size using a single first order definite clause and no more than 30 ground facts.	7	L2	CO4
Q.9	 i) Give a backward chaining proof of the sentence 7 ≤ 3 + 9. Show only the steps that leads to success ii) Give a forward chaining proof of the sentence 7 ≤ 3 + 9. Show only the steps that leads to success. 	8	L1	CO5
	b. Describe the differences and similarities between problem solving and planning.	5	L2	CO5
	c. Prove that backward search with PDDL problems is complete. OR	.7	L1	CO5
Q.10	a. The following prolog code defines a predicate P P(x, [x y]), P(x, [y z]):- P(x, z) i) Show proof trees and solutions for the queries P(A, [2, 1, 3]) and P(z,[1, A, 3]) ii) What standard list operation does P represent?	8	L1	CO5
,	b. Explain why dropping negative effects from every action schema in a planning problem results in a relaxed problems.	5	L2	CO5
	 c. Prove the following assertions about planning graphs: i) A literal that does not appear in the final level of the graph connot be achieved. ii) The level cost of a literal in a serial graph is no greater than the actual cost of an optimal plan for achieving it. 	7	L1	COS

GBCS SCHEME

USN												BCG515D
-----	--	--	--	--	--	--	--	--	--	--	--	---------

Fifth Semester B.E/B.Tech. Degree Examination, Dec.2024/Jan.2025 Designing Human Centred System

Time: 3 hrs.

Max. Marks:100

		Module – 1	M	L	C
1	a.	List the factors that biases our perception and explain briefly.	4	L1	CO1
	b.	Illustrate the gestalt principle of figure/ground with a neat diagram	6	L2	CO1
	c.	Organize perception biased by goals and experience.	10	L3	CO1
		OR			
2	a.	What is gestalt principles?	4	L1	CO1
	b.	Make use of various gestalt principles in designing the interface.	10	L2	CO1
	c.	Illustrate the perception biased by context.	6	L3	CO1
		Module – 2			
3	a.	What are the design implications for readings?	4	L1	CO2
	b.	Explain the much of reading required by software is unnecessary.	6	L2	CO2
	c.	Determine the guidelines for using color with examples.	10	L3	CO2
	-				
		OR			
4	a.	How color blinded people recognize the colors.	4	L1	CO2
	b.	Identify the ability to distinguish colors.	6	L2	CO2
	c.	Choose the different ways of readings and explain with example.	10	L3	CO2
		Module – 3			
5	a.	What is information "Scent" towards our goal?	4	L1	CO3
	b.	Illustrate the concept of recognition is easy and recall is hard with examples.	6	L2	CO3
	c.	Organic the implications for UI using recognition or recall and explain with	10	L3	CO3
		examples.			
		OR		,	
6	a.	List the external aids to keep track of achieving goal.	4	L1	CO3
	b.	Explain the implication of short-term memory characteristics for user	6	L2	CO3
		interface design.			
	c.	Organize and explain our thought cycle.	10	L3	CO3
		Module – 4			
7		How does the new brain act as brake on impulsive behavior.	4	L1	CO4
	a.	Explain the implication of Fitt's law in UI design.	6	L2	CO4
	_	Utilize the steering law and explain with example.	10	L3	CO4
	c.	OR	10	110	234
8	a.	What are the factors used to learn faster?	4	Ľ1	CO4
U	b.	Explain object action matrix.	6	L1	CO4
	c.	Illustrate the steps involved in design of software, service or application.	10	L3	CO4
	<u> </u>	1 of 2			
		1012			

D	~	CE	11	T
D		G5) []	L

				-	
	_	Module – 5			
9	a.	List and explain guidelines for achieving responsive interactive system.	4	L1	COS
	b.	Explain the time deadline for human computer interactions.	6	L2	COS
	c.	i) Examine and explain the following:	10	L3	CO:
		ii) Saccade (involuntary eye movement)			
		iii) Flinch reflex (involuntary motor response to possible danger) iv) Subliminal perception			
		v) Perceptual locking of events and sound.			
		OR			
10	a.	What is fake heavy weight computation?	4	L1	CO
	b.	Explain the design steps to avoid slips.	6	L2	CO
	c.	Explain relationship of mistakes and slips using examples.	10	L4	CO
					3

		Ca			
		Ca C			
		(2)			
		. Ca 12			
		2 of 2			
		2012			
		A many			
		and the second s			
		7		·	

USN 1 K 5 2 3 A I 4 0 2

BRMK557

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Research Methodology and IPR

Time: 3 hrs. Max. Marks: 100

		Module – 1	M	L	C
Q.1	a.	Identify the meaning of Research and brief out the objective and motivation in engineering research.	10	L1	CO1
	b.	Explain brief about research cycle and verify with the research flow diagram.	10	L1	CO1
9		OR			
Q.2	a.	Identify the types of engineering research and briefly explain them.	10	L1	CO1
	b.	Explain about the different types of research misconduct.	10	L1	CO1
		Module – 2			_
Q.3	a.	Explain about the importance of literature review and technical reading.	10	L2	CO2
	b.	Mention the various benefits of bibliographic databases.	10	L1	CO2
		OR			
Q.4	a.	Indentify the impact of technical reaction and brief about it.	10	L1	CO2
	b.	Enumerate the impact of title and keywords on citation with example.	10	L2	CO2
		Module – 3			
Q.5	a.	Define Intellectual properties and explain about its types.	10	L1	CO3
2	b.	Explain about the key aspect of patent law.	10	L2	CO3
		OR			
Q.6	a.	Explain about the assessment of novelty.	10	L1	CO3
	b.	Brief about the patent procedure in India.	10	L1	CO4
	1	Module – 4	•		•
Q.7	a.	Mention and brief about the justification for copyright law.	10	L2	CO4
	b.	Explain about the basic concepts of under lying copyright law.	10	L1	CO4
	1	OR	•		•
Q.8	a.	Brief about the various representations of sound recordings.	10	L2	CO5
	b.	Explain about TRIPS agreement in detail.	10	L1	CO5

		Module – 5			
Q.9	a.	Explain about the justification of protection designs.	10	L2	CO5
	b.	Brief about the excluded subjected matter in the context of design	10	L1	CO5
		protection.			
		OR			
Q.10	a.	What are the rights of the owner of designs? Explain.	10	L1	CO5
	b.	Brief about the Assignment of Design Rights.	10	L1	CO5
				•	
		2 of 2			