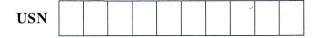
Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Technological Innovation and Management Entrepreneurship

CBCS SCHEME


Time: 3 hrs.

USN

Max. Marks: 100

BEC501

		Module – 1	Μ	$\mathbf{L}_{\mathbf{k}}$	C
Q.1	a.	Explain the different roles played by Managers.	10	L1	CO1
	b.	Describe the managerial skills required using skill-mix diagram.	10	L1	CO1
		OR			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Q.2	a.	Explain the various steps involved in planning.	10	L2	C01
	b.	Explain all the steps in rational decision making with a neat diagram.	10	L2	CO1
		Module – 2			44134
Q.3	a.	Define organization. Briefly explain the principles of organizing.	10	L2	CO2
	b.	What is recruitment? Explain the steps in the selection process.	10	L2 . .202	CO2
		ORation			0.00
Q.4	a.	Explain Maslow's need hierarchy theory with a neat diagram along with examples.	10	L2	CO2
	b.	Discuss Autocratic, Democratic and Free-rein leadership styles.	10	L2	CO2
		Module – 3	ra ú	de.	
Q.5	a.	Define Social Audit. Explain the benefits and limitations of social audit.	10	L2	CO3
	b.	Explain the different views on social responsibility of business.	10	L2	CO3
5.4. J	. 1	OR anagers.	r	<u></u>	1.1.1
Q.6	a.	Explain different types of entrepreneurs by defining an entrepreneur.	10	L2	CO3
	b.	Explain entrepreneurial development cycle.	10	L2	CO3
$\langle (\lambda, \lambda) \rangle$	e der	Module – 4		1.2	(11)
Q.7	a.	Explain the different Government policy and development of the small scale sector in India.	10	L2	CO4
	b.	Explain the problems for small scale industries.	10	L2	CO4
	. j.	OR	1.0	h	1. S. 1. 2. 2.
Q.8	a.	Explain the identification of business opportunities in India.	10	L2	CO4
	b.	Explain in detail the project feasibilities.	10	L2	CO 4
		Module – 5		al e al	
Q.9	a.	What are the reasons for failure of some business plans?	10	L2	CO4
	b.	Explain the Government schemes for funding business.	10	L2	CO4
· · · ·	1.	OR Statian audit.	; \$0	112.	1 6 4
Q.10	a.	Explain the challenges and difficulties in starting an enterprise.	10	L2	CO4
	b.	Describe the limitations and differences of PERT and CPM.	10	L2	CO4

Fifth Semester B.E/B.Tech. Degree Examination, Dec.2024/Jan.2025 Digital Signal Processing

CBCS SCHEME

Time: 3 hrs.

Max. Marks:100

BEC502

		Module – 1	M	L	С
1	a.	List and discuss different discrete time signals.	7	L2	CO1
	b.	Explain the steps of converting along to digital signal interms of frequencies.	7	L2	CO1
	C.	Discuss the advantages and limitations of Digital Signal Processing (DSP).	6	L2	CO1
		OR			
2	a.	With an example, explain how to verify any signal is periodic or Not.	6	L2	C01
	b.	Derive the equation for output of a LTI system and list the steps of	8	L3	CO2
		convolution.	(12	CON
	c.	Write a program to generate :	6	L3	CO2
		i) Circuit step sequence			
		ii) Sinusoidal sequence.			
		Module – 2			
3	a.	Describe the properties of Z – transformation.	7	L3	CO2
5	b.	Show that Discrete Fourier Transform (DFT) is a Liner Transformation.	7	L3	CO2
	с.	Compute the A-point DFT of $x(n) = \{1, 1, 0, 0\}$.	6	L3	CO2
		OR			
4	a.	Compute the N-point DFT of, $x(n) = e^{j\omega mn}$.	6	L3	CO2
	b.	State and prove symmetry property of DFT for real valued sequence.	6	L3	CO2
	c.	Compute circular convolution of sequences :	8	L3	CO2
		$x_1(n) = \{2, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}$.			
	1	Module – 3	6	L3	CO2
5	a.	State and prove circular item shift property of DFT.	6	L3 L2	CO2 CO3
	b.	Compare DFT and FFT with examples. Compute Radix -2 DIT FFT of the following $-$ sequence, $x(n) = n + 1$, for	8	L2 L3	CO3
	c.		U	LJ	
		$0 \le n \le 7.$			
		OR		L	L
6	a.	State and prove Parseval's theorem for – DFT's.	6	L3	CO2
	b.	Explain overlap – save method used for the convolution of long input	6	L2	CO3
	0.	sequences.			
	с.	Develop an algorithm for Radix – 2 FFT without using built in function.	8	L3	CO3
		1 of 2			

		2.9 Phil		BE	C502
		Module – 4			
7	a.	Obtain the frequency response expression for the symmetric linear phase FIR8L3CCfilter.6L2CCDesign an FIR filter using hamming window for N = 7. The desired frequency response is given by $H_d(\omega) = \begin{cases} e^{-j3\omega} \omega \le \frac{3\pi}{4} \\ 0, \frac{3\pi}{4} < \omega \pi \end{cases}$ 6L3CCORDiscuss the characteristics of practical frequency selective filters.6L3CCConsume function of following FIR filter in cascade form.H (z) = 1 - 2z^{-1} + 1/2 z^{-2} + 1/2 z^{-3} - 1/2 z^{4} .Module - 5Explain the design procedure of analog Butter worth lowpass prototype -8L3CCConstruct the system function in S - domain for N = A.6L3CCRealize direct form - II for the IIR filter represented by $y(n) - \frac{1}{4}y(n-1) + \frac{1}{8}y(x-2) = x(n) + \frac{1}{2}x(n-2).$ 6L3CCConstruct the system function in S - domain for N = A.6L3CCConstruct the system function in S - domain for N = A.ORConstruct the system function in S - domain for N = A.Construct the system function in S - domain for N = A.Construct the system function of 15 db at 0.75 rads. Assume T_s = 15.Construct the system function in S - domain for N = A.Construct the system function in S - domain for N = A.Construct the system function of 15 db at 0.75 rads. Assume T_s = 15.Construct the significance of : </th <th>CO4</th>	CO4		
	b.		6	L2	CO4
	<u>о.</u> с.	Design an FIR filter using hamming window for $N = 7$. The desired frequency			CO4
0		response is given by			
		OR			
8	a.		6	L3	CO4
	b.	Explain the steps of designing linear phase FIR high pass filter.			CO4
	c.		6	L3	CO4
		$H(z) = 1 - 2z^{-1} + \frac{1}{2}z^{-2} + \frac{1}{2}z^{-3} - \frac{1}{2}z^{-4}.$			
0			8	13	CO5
9	a.	filter?			
	b.				
	с.	$y(n) - \frac{1}{4}y(n-1) + \frac{1}{8}y(x-2) = x(n) + \frac{1}{2}x(n-2).$			
10	2		8	1.3	CO5
10	a.		0	LJ	
	b.		6	L2	CO5
		i) Prewarping	-		
	c.		6	.L3	COS
				¢	

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Digital Communication

Time: 3 hrs.

Max. Marks: 100

		Module – 1	Μ	L	С
Q.1	a.	Explain Hilbert transform and its properties.	6	L2	CO1
	b.	Describe the canonical representation of bandpass signal.	7	L2	CO1
	c.	Describe the correlation receiver with neat diagram.	7	L2	CO1
		OR	-		
Q.2	a.	Apply gram Schmidt orthogonalization procedure find the set of orthonormal basis function to represent the signals $S_1(t)$, $S_2(t)$ and $S_3(t)$ as shown in Fig.Q2(a). Also express each of these figures interms of set of basis function.	10	L3	CO1
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	b.	Derive the equation for converting continuous AWGN channel into a vector	10	L2	CO1
		channel.			
		Module – 2	i.		
Q.3	a.	Describe with a neat diagram, the generation and detection of BPSK signal.	8	L2	CO2
2	b.	Define bandwidth efficiency. Tabulate the comment on the bandwidth efficiency of M-ary PSK signal.	8	L2	CO2
	c.	Encode the binary sequence using DPSK 11011011. Assume reference bit as 1.	4	L2	CO2
		OR CA			
Q.4	a.	Derive the expression for probability of error of QPSK signal.	8	L2	CO2
	b.	Discuss the non-coherent detection of BFSK signal.	8	L2	CO2
	c.	Calculate the average power required for a DPSK signal operation gat a data rate of 1000 bit/sec, over a band-pass channel having a bandwidth of 3000 Hz, $\frac{N_0}{2} = 10^{-10} \text{ w/H}_z$ probability of error $P_e = 10^{-5}$.	4	L3	CO2
		Cas Module – 3			
Q.5	a.	Define entropy and summaries its properties.	6	L2	CO3
	b.	A source has five symbols $S = \{S_1, S_2, S_3, S_4, S_5\}$ with probabilities $P = \{0.4, 0.2, 0.2, 0.1, 0.1\}$ respectively. compute the source code using Huffman binary coding. Also find the average length and entropy.	8	L3	CO3
	c.	Briefly discuss instantaneous code with an example.	6	L2	CO3
		OR			1
Q.6	a.	Derive the expression for mutual information and summarize its properties.	10	L2	CO3
2.0	b.	Derive the expression for the channel capacity of binary symmetric	10	L3	CO3
		channel.			

		Module – 4		DE	C503
Q.7	a.	Indicate the advantages and disadvantages of error control coding. Also	8	L2	CO4
~ •'		differentiate between block code and convolution code.			÷
	b.	If 'C' is a valid code vector then show that $CH^{T} = 0$ where H is parity check	5	L2	CO4
		matrix of code.			
	c.	Design an encoder for the (7, 4) binary cyclic code generated by :	7	L3	CO4
		$g(x) = 1 + x + x^3$ for the message vector [1001].			
		OR			
Q.8	a.	Describe the block diagram of generator and parity check matrix with	10	L2	CO4
	- -	equation. Also write the syndrome equation and list its properties.	1.0		GO
	b.	A (7, 4) Linear block code has :	10	L3	CO ²
		$\mathbf{P} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$			
		i) All possible code vector			
		ii) Determine the Hamming weight of each code word			
		iii) If the received vector is [1100010]. Determine its syndrome correct the			3 CO4
		codeword.			
		Module – 5	10	1.0	00
Q.9	a.	For a given convolutional encoder shown in Fig.Q9(a), with $D = 10011$.	10	L3	CO
		Compute output sequence using transform domain approach. Also draw the			
		code free diagram.			
		Wedulo - Zallder			
		G y output			
		FIFT FIFT P			
		Input 1			
		yell sol so			
		19 Long All			
		Fig.Q9(a)			
	b.	Describe the recursive systematic convolutional code encoder with an	10	L3	CO
		example.			
		ÓR		1	
Q.10	a.	A convolution encoder has two flip-flop with two states, three modulo -2	10	L3	CO
		adders and an output multiplexer. The generator sequences of the encoder.			
		$g^{(1)} = (1, 0, 1), g^{(2)} = (1, 1, 0), g^{(3)} = (1, 1, 1).$	1		
	4	i) Generator matrix [G]			
		ii) Draw the encoder block diagram			
		iii) Calculate the codeword for the message input vector 11101.	10		00
	b.	For a given convolution encoder shown in Fig.Q10(b). Build state table,	10	L3	CO
		state transaction table, sketch diagram and describe the Trellis diagram for			
		the input message vector (10111).			
		A A			
		× × × × × ×			
	and the second s	Brown FIEL FIEL DC OV			
	2	Lot IV	~	l é	
			~		
			E.	1	
		A			

.

USN

Question Paper Version : B

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Environmental Studies and E Waste Management

Time: 1 hr.]

[Max. Marks: 50

INSTRUCTIONS TO THE CANDIDATES

- Answer all the fifty questions, each question carries one mark. 1.
- Use only Black ball point pen for writing / darkening the circles. 2.
- For each question, after selecting your answer, darken the appropriate circle 3. corresponding to the same question number on the OMR sheet.
- Darkening two circles for the same question makes the answer invalid. 4.
- Damaging/overwriting, using whiteners on the OMR sheets are strictly 5. prohibited.
- What is Extended Producer Responsibility (EPR) as per the e waste management rules 1. in India?
 - a) The responsibility of consumer to manage e waste
 - b) The responsibility of manufactures to manage e waste throughout the product life cvcle
 - c) The responsibility of retailers to manage e waste disposal
 - d) The responsibility of informal recyclers to manage e waste.
- Which international agreement regulates the transboundary movements of hazardous 2. waste, including e - waste?
 - a) Kyoto Protocol b) Paris agreement
 - c) Montreal Protocol
- d) Basel convention
- Which colour bin is used for e waste? 3. a) Blue Yellow d) Black b) Green
- What are the health hazards which can be caused by E waste? 4. d) All of these b) DNA damage c) Brain a) Lung cancer
- Preparation of Guidelines for Environmentally sound Management of e waste is a duty 5. assigned to b) Consumer d) SP CB/PCC a) Producer c) MOEFCC
- What is India's global rank in e-waste? 6. 33 b) 13 c) 23 d) a) 3
- When did the Karnataka State Pollution Control Board for prevention and control of 7. water pollution constituted? d) 1986 c) 1982 b) 1978

Ver - B - 1 of 5

a) 1974

8.	Aerosol consisting of liquid droplets is call a) Mist b) Dust	ed as c) Fog d) Aerosol
9.	 Which of the following is non – point sour a) Factories c) Urban and suburban land 	ce of water pollution?b) Sewage treatment plantd) All of these
10.	When is World Water day celebrated? a) January 26 th b) June 5 th	c) September 22^{nd} d) March 22^{nd}
11.	What is the Dissolved oxygen value requir a) 7 mg/L b) 8.2 mg/L	ed for the survival of aquatic species? c) 6.5 mg/L d) 4 mg/L
12.	Which among the following is used to dun a) Land fills b) Ocean	ap the waste collected in the cities?b) Riverc) Riverd) All of these
13.	Which type of waste includes items such aa) Hazardous wastec) Bio – medical waste	 s leftover food, fruit peels and yard trimmings? b) Organic waste d) Electronic waste
14.	Which of the integrated waste managemen a) Source Reduction b) Recycling	t is reduced on an individual level? c) Disposal d) Burning
15.	What is called for the process of burning furnace under suitable temperature and ope a) Landfill b) Recycling	
16.	The process of decomposition of biodegrad a) Landfill b) Vermicompostin	
17.	is a liquid that passes through solid was a) Leachate b) Sludge	vaste and extracts suspended impurities from it c) Distilled water d) Municipal
18.	The colour code of plastic bag for disposin a) black b) red	g of microbial laboratory culture waste c) blue d) white
19.	Average hospital waste produced per bed p a) 1.5 to 2 kg b) $0.5 - 4$ kg	ber day in Government hospital is c) 0.5 to 1 kg d) $0.5 - 2$ kg
20.	 Which of the following are the main contri I. Refrigerators / freezers, washing mac II. Small household appliances III. Personal computers, telephones, lapte IV. Gas cylinders, chimneys and home ap a) Only I, II, III b) Only I & II 	chines, dishwashers.
21.	Veld type grasslands are located at a) South Africa b) South America	c) Australia d) Britain
22.	Which pyramid is always upright?	c) Numbers d) Food chain
	Ca	B - 2 of 5

23.	In what form is solar energy is radiated from the Sun?a) Ultraviolet Radiationb) Infrared Radiationc) Electromagnetic wavesd) Transverse waves
24.	 What does MHD stands for in the energy field? a) Magneto Hydro Dynamic b) Metal Hydrogen Detox c) Micro Hybrid Drive d) Metering Head Differential
25.	The 'Miracle Material' that can turn CO ₂ into liquid fuel is : a) Propane b) Copper c) Graphene d) Potassium
26.	A tide whose difference between high and low tide is greatest.a) Diurnal tideb) Neap tidec) Spring tided) Ebb tide
27.	Which of the turbine can be mounted vertically and horizontally.a) Pelton wheelb) Kaplan turbinec) Gorlov turbined) Francis turbine
28.	Which type of fuel is removed from the reactor core after reaching end of core life service?a) Burnt fuelb) Spent fuelc) Engine oild) Radioactive fuel
29.	 What is a fuel cell? a) Converts heat energy to chemical energy b) Converts heat energy to electrical energy c) Converts chemical energy to electrical energy d) Converts kinetic energy to heat energy
30.	 Which one of the following is the apex organization in our country in the field of pollution control? a) Water Pollution Control Board b) State Pollution Control Board c) Central Pollution Control Board d) Air Pollution Control Board
31.	Which of the following conceptual spheres of the environment is having the least storage capacity for matter?a) Atmosphereb) Lithospherec) Hydrosphered) Biosphere
32.	The ratio between energy flows at different points in a food chain is known as a) Ecological capacity c) Ecological assimilation b) Ecological efficiency d) Ecological potential
33.	 A predator is a) An animal that is fed upon another animal b) Animal that feeds upon both plants and animals c) An animal that feeds upon another animal d) A primary consumer
34.	 Why Rann of Kutch attracts aquatic birds in monsoon season? a) Because desert land is converted to forest land b) Because desert land is converted to snow c) Because desert land do not convert d) Because desert land is converted to salt marshes

Ver - B - 3 of 5

ŝ

35. Which kind of soil we can find on the surface of Thar desert? a) Rocky b) Moist c) Fertile Aeolian d) **36.** Which of the following type of forest important for watersheds? a) Tropical Evergreen forests b) Tropical Deciduous forests c) Tropical Montana forests Grassland forest d) **37.** Hot spots areas have a) Low density of biodiversity Only endangered plants b) c) High density of hot springs High density of biodiversity d) Sustainable Development means 38. a) meeting present needs without compromising on future needs b) progress of human beings c) balance between human needs and the ability of earth to provide the resources d) all of these **39.** The term Alpha diversity refers to a) Genetic diversity b) Community and ecosystem diversity c) Species diversity within a community or ecosystem d) Diversity among the plant 40. Algae, green plants and photosynthetic bacteria are c) Decomposers a) Autotrophic b) Heterotrophic Consumers d) 41. is caused by drinking water high in nitrates. b) Kidney problem a) Cholera d) Methomoglobinemia c) Liver problem 42. Bhopal gas tragedy took place in the year and the gas responsible was a) 1964, Hydrogen fluoride b) 1974, Methyl chloride c) 1984, methyl ISO – cyanide d) 1994, Methyl sulphate The major chemical pollutants in photochemical smog are 43. a) NO, NO₂, VOC, O₃, PAN >b) N_2O , NO_2 , VOC, O_3 , PAN c) NO, NO₂, VOC, O_2 , PAN d) *NO*, N₂O₅, VOC, O₃, PAN 44. The international protocol to protect the Ozone layer is a) Vienna protocol b) Kyoto protocol c) Cartagena protocol d) Montreal protocol **45.** Which is the best and the worst method of plume behavior for pollution dispersion? Lofting and fumigation b) Trapping and fanning a) Conning and fumigation d) Fanning and Lofting c) What is called for a Temporary hearing loss? 46. a) Temporary ear pain b) Temporary hearing problem c) Temporary threshold shift d) Temporary hearing shift What timings loud speakers shouldn't use in public areas? 47. a) 10.00 pm to 5.00 am b) 11.00 pm to 6.00 am c) 1.00 am to 7.00 am d) 10.00 pm to 6.00 am Ver - B - 4 of 5

- 48. In which section, if a person violates the noise pollution regulations, is liable for penalty according to Environmental Protection Act, 1986. a) Section 12 b) Section 15 c) Section 18 d) Section 19
- 49. 'Minamata Disease" is caused due to b) Arsenic a) Lead c) Mercury

d) Cadmium

- The process of reducing the fluoride content from water is called as 50.
 - a) Chlorination

b) Fluoridation

c) Defluoridation

- d) Fanning and Lofting

Fifth SemesterB.E./B.Tech.DegreeExamination, Dec.2024/Jan.2025 Data Structures using C++

Time: 3 hrs.

Max. Marks: 100

		Module – 1	Μ	L	C	
Q.1	a.	Explain four phases of software development process.	8	L1	CO1	
	b.	Explain the following with suitable example,	8	L2	CO1	
8		(i) new operator (ii) delete operator				
		(iii) friend function (iv) virtual function				
	c.	Explain the properties of constructors and destructors.	4	L2	CO1	
					<u> </u>	
Q.1a.Explain four phases of software development process.81.1b.Explain the following with suitable example, (i) new operator (ii) delete operator (iii) friend function (iv) virtual function81.2(i)new operator (i) delete operator (iii) friend function (iv) virtual function81.2c.Explain the properties of constructors and destructors.41.2Q.2a.Develop a C++ program to define base class rectangletype and the members to implement the properties of a rectangle. (i) Set Dimension (ii) Get length (iii) Get width (iv) Area (v) Perimeter (vi) Print (vii) Default constructor and constructor with parameters of the baseclass. And also define class BOXType which is delivered from the class rectangle Type and implement the properties of a box. (i) Set Dimension (ii) Get Length (iii) Get Width (iv) Get Height (v) Area (vi) Volume (vii) Print (viii) Default constructor and constructor with parameters of the baseclass. And also define class BOXType which is delivered from the class rectangle Type and implement the properties of a box. (i) Set Dimension (ii) Get Length (iii) Get Width (ivi) Default constructor and constructor with parameters of the baseclass.8L1viii) Default constructor and constructor with parameters of derived class.8L1b.Explain class inheritance (ii) Private inheritance5L1(ii) Public inheritance (iii) Protected inheritance (iii) Protected inheritance15001651160(iii) Current (iii) Current - info12001650160160(i) Current (ii) Current - info172800160160 </th						
Q.2	a.		12	L1	CO1	
		(vii) Default constructor and constructor with parameters of the baseclass.				
		And also define class BOXType which is delivered from the class				
	h		8	L1	C01	
	0.	(i) Public inheritance (ii) Private inheritance				
		Module – 2				
0.3	a.	Consider the linked list shown in Fig. Q3 (a). Assume that the nodes are in the	5	L1	CO2	
		usual info-link form. Find the output of each of the following C++ statements.				
		3600				
		1 2000 2000 2000 1000 1000 1000 1000 10				
	1	17100001 > 92 15007 > 63 3600 > 145 0 T				
					а » ж	
	1	190 link				
		round 2800 .				
		Luovar, L				
		Fig. Q3 (a)	8			
		(i) Current				
	1 - 1 - A	(iii) Current $\rightarrow link$		-		
		(iv) Current \rightarrow link \rightarrow info				
		(v) Head $\rightarrow link \rightarrow link$			2	
		(vi) Head $\rightarrow link \rightarrow link \rightarrow info$				
		(vii) Head $\rightarrow link \rightarrow link$				
		(viii) Current \rightarrow link \rightarrow link \rightarrow link				
		(ix) Current $\rightarrow link \rightarrow link \rightarrow link \rightarrow info$		- <u>^</u>	_l	

BEC515C

	b.	Define a class stackADT, which performs basic operations of stack:	10	L2	CO2
		(i) Initialize stack			
		(ii) isEmptyStack		м. С	
		(iii) isFullStack			
		(iv) push			
		(v) top	с. 6		2
			5	L2	CO2
	c.	Write difference between arrays and linked lists.	3	L.Z	02
Q.4	a.	 (i) Define a class orderedlinkedList, which specifies the members to implement the basic properties of linked list. (ii) Draw the UML class diagram, of the class orderedLinkedList and 	6	L1	CO2
	h	inheritance hierarchy. Write a C++ code, to insert an item in an ordered linked list.	6	L2	CO2
	b.	Implement basic operation on a stack as linked list.	8	L3	CO2
	c.	Module – 3	0	115	COL
Q.5	a.	Define a queue and explain various queue operations.	7	L1	CO3
~~~	b.	Explain the working of binary search algorithm.	8	L1	CO3
	c.	Define the following functions for queue,	5	L2	CO3
		(i) Initialize queue.			
		(ii) Delete queue	2		
	4	OR			
Q.6	a.	Define the following hash functions :	6	L1	CO3
C.		(i) Mid-square			
		(ii) Folding			9
		(iii) Division			
And the second	b.	Explain various collision resolution techniques.	10	L1	CO3
	c.	Write a C++ program to implement selection sort.	4	L2	CO3
1		Module – 4			
<b>Q.7</b>	a.	Define :	-5	L1	CO4
		(i) Binary tree			
		(ii) Use struct to define a node of a binary trees.			
		(iii) Level of a node.	ĺ		
		(iv) Height of a binary tree.	10	TA	004
	b.	Explain three different binary tree traversals in detail.	10	L2	CO4
	c.	Write an algorithm for non-recursive post order traversal.	4	L3	<b>CO</b> 4
	1	OR	10	TI	COA
Q.8	a.	Define a class binarysearchtree, and implement the following operations :	10	L1	CO4
		(i) Insert			
		(ii) Delete	10	L3	CO4
	b.	What is a B-tree of order m and explain its properties and explain an algorithm	10		04
		to insert an item in a B-tree. Module – 5	<u> </u>		I
0.0			10	L1	CO5
Q.9	a. b.	Explain how to represent a graph in computer memory. Explain shortest path algorithm in detail.	10	$\frac{L1}{L1}$	C05
	U.	OR	10		1005
0.10		Explain Prim's minimum spanning tree algorithm.	10	L2	CO5
Q.10	a. b.	Explain Fully similarity for algorithm.	4	L2	CO4
	-	Explain Breadth first topological ordering algorithm.	6	L2	CO4
	<b>c.</b>	Explain Breadth first topological ordering algorithm.		14	104
		*****			
		2 of 2		1	
		Com.			



USN 1 K 5 2 3 A I 4 0 2

**BRMK557** 

### Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Research Methodology and IPR

Time: 3 hrs.

Max. Marks: 100

		Module – 1	Μ	L	С
Q.1	a.	Identify the meaning of Research and brief out the objective and motivation in engineering research.	10	L1	CO1
94 ₆	b.	Explain brief about research cycle and verify with the research flow diagram.	10	L1	CO1
2		OR			
Q.2	a.	Identify the types of engineering research and briefly explain them.	10	L1	CO1
	b.	Explain about the different types of research misconduct.	10	L1	C01
2		Module – 2			
Q.3	a.	Explain about the importance of literature review and technical reading.	10	L2	CO2
	b.	Mention the various benefits of bibliographic databases.	10	L1	CO2
		G OR AND AND			
Q.4	a.	Indentify the impact of technical reaction and brief about it.	10	L1	CO2
	b.	Enumerate the impact of title and keywords on citation with example.	10	L2	CO2
		Module – 3			<b>-</b>
Q.5	a.	Define Intellectual properties and explain about its types.	10	L1	CO3
	b.	Explain about the key aspect of patent law.	10	L2	CO3
		OR			
Q.6	a.	Explain about the assessment of novelty.	10	L1	CO3
	b.	Brief about the patent procedure in India.	10	L1	CO4
	-L.,	Module – 4			1
Q.7	a.	Mention and brief about the justification for copyright law.	10	L2	CO4
	b.	Explain about the basic concepts of under lying copyright law.	10	L1	CO4
		OR	1	I	L
Q.8	a.	Brief about the various representations of sound recordings.	10	L2	CO5
	b.	Explain about TRIPS agreement in detail.	10	L1	CO5

#### **BRMK557**

		Module – 5	<u>A</u>			
Q.9	a.	Explain about the justification of protection designs.		10	L2	1
	b.	Brief about the excluded subjected matter in the oprotection.	context of design	10	L1	
			John			
Q.10	a.	OR What are the rights of the owner of designs? Explain.		10	L1	
2.10						
	b.	Brief about the Assignment of Design Rights.	,9	10	L1	
		****	Acar			
		a los	-Ø			
		A				
		A 1 M Agent				
		S	S .			
			,6			
			T.			
		64 - 23 -	19			
		it is a				
			497 -			
		19 69 69				
					•	
	C	1 1× .6				
J	() L	and allowing to				
	Y					
	z	A - 12				
		- C				
		A land				
		2 of 2				
		And Annual The Contract of Con				
		p 4				
		.19				