

USN

BCO402

Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Analysis and Design of Algorithm

Time: 3 hrs.

Max. Marks: 100

		Module – 1	Μ	L	С
Q.1	a.	Describe the Asymptotic Notations and Basic efficiency classes.	10	L2	CO1
-					
	b.	Apply application of brute - force approach to design a selection sort,	10	L3	CO1
		Bubble sort algorithm and explain its time complexity.			
		OR			
Q.2	a.	Describe the mathematical analysis of recursive algorithms, Also describe	10	L2	CO1
		the tower of Honoi problem and obtain its time complexity.			
	b.	Develop an algorithm to multiply two matrices and obtain its time	10	L3	CO1
		complexity.			
		Module – 2			
Q.3	a.	Apply Brute - force approach to explain the exhaustive search (Travelling	10	L3	CO2
3		sales man and knapsack problem).			
	b.	Solve using divide and conquer method, multiply the following two	10	L3	CO2
		matrices with the help of Stassen's matrix multiplication			
-	Т	OR	10	L3	CO2
Q.4	a.	Apply Decrease and conquer to explain the insertion sort with an example.	10	LJ	02
	-	D 1 mothed and trace	10	L3	CO2
	b.	Develop merge sort algorithm using divide and conquer method and trace	10	LJ	02
		60, 50, 25, 10, 35, 25, 75, 30.			
	1	Module – 3	1		L
0.5	1	Develop a bottom – up heap algorithm with an example and explain its time	10	L3	CO3
Q.5	a.		10	113	005
		complexity.			
	h	Develop an algorithm of sorting by comparison counting and sort these	10	L3	CO3
	b.	62, 31, 84, 96, 19, 47 using comparison counting.	10		000
		62, 31, 84, 90, 19, 47 using comparison counting.			
		OR		1. A.	1
04	6	Develop a Horspool's string matching algorithm along with its shift table	10	L3	CO3
Q.6	a.	algorithm and give example.	10		000
		algorithm and give example.			
	-	Apply different types of rotation to construct an AVL tree for the list	10	L3	CO3
	b.	5, 6, 8, 3, 2, 4, 7 and explain its time complexity.			
10		5, 0, 0, 5, 2, 4, 1 and explain its time complexity.			0

BCO402

		Module – 4			
Q.7	a.	Develop C/C ++ program to find minimum cost spanning tree of a given connected graph using prims algorithm.	10	L3	CO4
	b.	Develop a coin-Row problem algorithm and solve the problem by Dynamic programming for the coin-Row 5, 1, 2, 10, 6, 2.	10	L3	CO4
		OR			
Q.8	a.	Apply the Dijkstra's algorithm to find the shortest distance and shortest path from vertex 5 (five) to vertex 0 (zero). Using Dijkstra algorithm.	10	L3	CO4
		$\begin{array}{c} 0 \\ 15 \\ 10 \\ 3 \\ \hline \end{array}$			
	b.	Solve the all pair of shortest path problem using Floyd's algorithm for the digraph shown Fig Q8(b) below.	10	L3	CO4
			×		
		Fig Q8(b)			
	1	Module – 5			1
Q.9	a.	Build the Decision trees for searching a sorting array (Binary search tree)	10	L3	CO5
	b.	Apply backtracking to solve the following instance of the subset sum problem. $A = \{3, 5, 6, 7\}$ and $d = 15$	10	L3	CO5
0.10	t l	OR	10	L3	CO5
Q.10	a .	Develop C/C++ program to solve the discrete and continuous knapsack problem using greedy approximation method.	10	LS	
	b.	Solve the following instance of the knapsack problem by the branch and bound algorithm and construct state space tree. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	L3	COS
÷		The knapsack capacity w is 10.			
-		* * * * *			

2 of 2

Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Database Management System

Time: 3 hrs.

A

Max. Marks: 100

Module 1 Q.1 a. Define the following terms: (i) (i) Database (ii)		M L	C
		5 L1	CO1
	(iii) Entity		
(iv) DDL (v) Degree of a relation			
b. Briefly explain characteristics of database approact		5 L2	CO1
c. List and explain advantages of using DBMS approx		0 L2	
C. Elist and explain advantages of using DBirle appre			001
OR	1		
Q.2 a. Define the following terms:	0	05 L1	CO1
	ram data independence		
(iv) DML (v) Value sets	1		
b. Describe three-schema architecture. Why do we	need mappings between 0	05 L2	CO1
schema levels?			
c. Explain different types of attributes in ER model	with suitable example for 1	0 L2	CO1
each.	GO G		
Ca t	2 19		
Module – 2	2 7		
Q.3 a. With suitable example, explain the entity integrit	y and referential integrity $ 0$	05 L2	CO2
constraints. Why each is considered important?			
b. Discuss equijoin and natural join with suitable	example using relational 0	05 L2	CO2
algebra notation.			
c. Given the relational tables:		0 L3	CO2
Employee: Departmen			
EID Name DepID Salary DeptI			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	· I I I I		
2 Bob 20 6000 20	IT		-
3 Eve 20 6500	Sales		
Project			
PID Project Name DeptID			
101 Project Alpha 10			
102 Project Beta 20			
103 Project Gamma 30			
Write relational algebra expression for the followi	ng:		
(i) Find the names and salaries of all employees		·	
(ii) Find the ID's and names of employees who			
and have a salary greater than 6000.			
(iii) Find the ID's and names of employees wh	o are either in the 'HR'		
department or have a salary greater than 6000			
(iv) Find the names of employees who are not in			1
(v) Find the names of employees along with their	r department names.		

BCS403

1								
	T	OR						
Q.4	a.	Explain any two operations that change the state of relation in a database.	05	L2	CO2			
		Provide suitable examples.						
	b.	Discuss the aggregation functions and grouping in relational algebra with	05	L2	CO2			
		suitable examples.						
	Ç.	Given the relational tables:	10	L3	CO2			
	Student: Project:							
		SID Name PID Project Name						
		a Alice p Alpha						
		b Bob q Beta						
		c Carol r Gamma						
		Language: Enrollment:						
		LID Language Name SID PID						
		x Python a p						
		y Java a q						
		z C++ b q						
		c r						
		Write relational algebra expression for the following:						
		(i) Rename the student table to Learner and display it.						
		(ii) Find the students (learners) who are not enrolled in any project.						
		(iii) Find the students who are enrolled in all projects.						
		(iv) Find the students who are not enrolled in any project.						
		(v) Find the students who are enrolled in both the Alpha' and 'Beta'						
		projects.						
		Module – 3						
Q.5	a.	Explain Armstrong inference rules.	05	L2	CO 4			
2.0	b.	What is the need for normalization? Explain 1NF, 2NF and 3NF with	05	L2	CO4			
		examples.			00.			
	c.	What is functional dependency? Write an algorithm to find minimal cover	10	L3	CO 4			
		for set of functional dependencies. Construct minimal cover M for set of						
		functional dependencies which are: $E = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$						
		OR						
Q.6	a.	Explain the types of update anomalies in SQL with an example.	05	L2	CO 4			
	b.	Explain types of JBBC drivers.	05	L2	CO5			
	c. *	Consider the schema $R = ABCD$, subjected to FDs $F = \{A \rightarrow B, B \rightarrow C\}$,	10	L3	CO 4			
		and the non-binary partition $D1 = \{ACD, AB, BC\}$. State whether D1 is a						
		lossless decomposition? [give all steps in detail].						
	1	Module – 4						
Q.7	a.	Define transaction. Discuss ACID properties.	05	L2	CO5			
	b.	With a neat diagram, explain transition diagram of a transaction.	05	L2	C05			
	c.	Demonstrate working of assertion and triggers in SQL with example.	10	L3	CO5			
	I	OR	L					
Q.8	a.	Explain cursor and its properties in embedded SQL with suitable example.	05	L2	CO5			
2.0	a. b.	Determine if the following schedule is serializable and explain your	05	L2 L2	CO5			
	0.	reasoning:	05	114	005			
		i) T1 : $R(X)W(X)$ T2 : $R(X)W(X)$ T1 : COMMIT T2 : COMMIT			82 () ()			

				BC	CS403
	с.	Consider the tables below: Sailors (<u>sid : integer</u> , sname : string, rating : integer, age : real) Boats (<u>bid : integer</u> , bname : string, color : string); Reserves (<u>sid : integer</u> , <u>bid : integer</u> , day : date) Write SQL queries for the following: (i) Write create table statement for reserves. (ii) Find all information of sailors who have reserved boat number 101.	10	L3	CO5
		 (iii) Find the names of sailors who have reserved at least one boat. (iv) Find the names of sailors who have reserved a red boat. (v) Find the average age of sailors for each rating level. 	-		
		Module – 5			
Q.9	a.	Explain the CAP theorem.	05	L2	CO6
	b.	What is NOSQL graph database? Explain Neo4j.	05	L2	CO6

b.	What is NOSQL graph database? Explain Neo4j.	05	L2	CO6	
c.	Why concurrency control and recovery are needed in DBMS? Demonstrate	10	L3	CO5	
	with suitable examples types of problems that may occur when two simple				ĺ
	transactions run concurrently.				

		Module – 5			
Q.9	a.	Explain the CAP theorem.	05	L2	CC
	b.	What is NOSQL graph database? Explain Neo4j.	05	L2	CC
	c.	Why concurrency control and recovery are needed in DBMS? Demonstrate	10	L3	CC
		with suitable examples types of problems that may occur when two simple			
		transactions run concurrently.			
		OR (S			
Q.10	a.	Explain basic operations CRUD in MongoDB.	05	L2	CC
	b.	Explain deadlock prevention protocols.	05	L2	CC
	c.	Briefly discuss the two-phase looking techniques f_0 concurrency control.	10	L3	CC
		Lo to all all all all all all all all all al	•		
		Kor Ko			
		49 49	÷		

Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Discrete Mathematical Structures

Time: 3 hrs.

Max. Marks: 100

		Module – 1	Μ	L	С
Q.1	a.	Define a tautology. Prove that for any propositions p, q, r the compound	06	L2	CO1
•		propositions $\{(p \rightarrow q) \land (q \rightarrow r)\} \rightarrow (p \rightarrow r)$ is tautology.			
	b.	Establish the validity of the following argument using the rules of	07	L2	CO1
		inference: $\{p \land (p \rightarrow q) \land (s \lor t) \land (r \rightarrow \neg q)\} \rightarrow (s \lor t)$		19	2
	c.	For any two odd integers m and n, show that:	07	L2	CO1
		(i) m + n is even (ii) mn is odd			
1. S. S.		OR			
Q.2	a.	Show that the compound proposition $[(p \lor q) \rightarrow r] \Leftrightarrow [(p \rightarrow r) \land (q \rightarrow r)]$	06	L2	CO 1
		for primitive statements p, q, r is logically equivalent.			604
	b.	Prove the following using law of logic: $p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$	07	L2	C01
	c.	Determine the truth value of each of the following quantified statements,	07	L3	CO 1
		the universe being the set of all non-zero integers:			
		(i) $\exists x, \exists y, [xy=1]$ (ii) $\exists x, \forall y, [xy=1]$			
		(iii) $\forall x, \exists y, [xy = 1]$ (iv) $\exists x, \exists y, [(2x + y = 5) \land (x - 3y = -8)]$			
		$\begin{array}{c} (1) & \exists x, \exists y, [xy = 1] \\ (iii) & \forall x, \exists y, [xy = 1] \\ (v) & \exists x, \exists y, [(3x - y = 17) \land (2x + 4y = 3)] \end{array}$			
	-	Module – 2	06	TA	000
Q.3	a.	Prove that for each $n \in z^+$, $1^2 + 2^2 + 3^2 + + n^2 = \frac{n(n+1)(2n+1)}{6}$	06	L2	CO2
		6			
	b.	Let $a_0 = 1$, $a_1 = 2$, $a_2 = 3$ and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ for $n \ge 3$, prove that	07	L2	CO2
		$a_n \leq 3^n \forall n \in \mathbb{Z}^+$.			
	c.	How many positive integers n can be we form using the digits $3, 4, 4, 5, 5$,	07	L3	CO2
		6, 7 if we want n to exceed 5,000,000?			
		OR			
Q.4	a.	By mathematical induction prove that	06	L2	CO2
-		$1.3 + 2.4 + \dots + n(n+2) = \frac{n(n+1)(2n+7)}{6}$			
		$1.3 + 2.4 + \dots + n(n+2) = \frac{6}{6}$			
	b.	Find the number of permutations of the letters of the word ENGINEERING	07	L3	CO2
		such that:			
		(i) All the E's are together (ii) Arrangement begin with N			
		(iii) All the vowels are adjacent.			
	c.	Find the coefficient of $a^2b^3c^2d^5$ in the expansion of $(a+2b-3c+2d+5)^{16}$.	07	L3	CO2
		Module – 3			
Q.5	a.	State pigeon hole principle. Prove that if 30 dictionaries in a library contain	06	L3	CO3
		a total of 61,327 pages then atleast one of the dictionaries must have atleast			
		2045 pages.			
	1	Let f: P > P be defined by $f(x) = \int 3x - 5$ if $x > 0$ Find $f^{-1}(0) = f^{-1}(1)$	07	L2	CO3
	D.	$\begin{bmatrix} \text{Let } 1 : K \to K \text{ be defined by } I(X) = \\ 1 - 3x \text{ if } x \le 0 \end{bmatrix}$			
		Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x-5 & \text{if } x > 0 \\ 1-3x & \text{if } x \le 0 \end{cases}$. Find $f^{-1}(0), f^{-1}(1), f^{-1}(-1), f^{-1}(3), f^{-1}(-6), f^{-1}(-6, 5])$ and $f^{-1}(-5, 5]$.			
	c.	Draw the Hasse diagram representing the positive divisor of 36.	07	L3	CO3
allowed and the state of			1		

		OD		BCS	405A
Q.6	a.	ORLet $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5, 6\}$,(i) How many functions are there from A to B?(ii) How many of these are one to one?(iii) How many functions are there from B to A?(iv) How many functions are there from B to A?	06	L2	CO
18	b.	(iv) How many of these are onto? Let f and g be functions from R to R defined by $f(x) = ax + b$ and $g(x) = 1 - x + x^2$. If $(g \circ f)(x) = 9x^2 - 9x + 3$, determine a and b.	07	L2	CO
	c.	Let $A = \{1, 2, 3, 4, 6\}$ and R be a relation on A defined by aRb if and only if "a is multiple of b". Write down the relation R, relation matrix M(R) and draw the digraph. List out in degree and out degree.	07	L3	CC
		Module 4			
Q.7	a.	In how many ways 5 number of a's, 4 number of b's and 3 number of c's can be arranged so that all the identical letters are not in a single block?	06	L3	CC
÷	b.	Determine the number of positive integers n such that $1 \le n \le 100$ and n is not divisible by 2, 3, or 5.	07	L3	CC
	c.	Solve the recurrence relation $a_{n+2} - 3a_{n+1} + 2a_n = 0$, $a_0 = 1$, $a_1 = 6$.	07	L2	C
К. 		OR			
Q.8	a.	In how many ways can the 26 letters of the English alphabet be permuted so that none of the patterns CAR, DOG, PUN or BYTE occurs?	06	L3	C
	b.	Five teachers T_1 , T_2 , T_3 , T_4 are to be made class teachers for five classes, C ₁ , C ₂ , C ₃ , C ₄ , C ₅ , one teacher for each class. T ₁ and T ₂ do not wish to become the class teachers for C ₁ or C ₂ , T ₃ and T ₄ for C ₄ or C ₅ , and T ₅ for C ₃ or C ₄ or C ₅ . In how many ways can the teachers be assigned the work? (Without displeasing any teacher)	07	L3	C
	c.	Solve the recurrence relation $F_{n+2} = F_{n+1} + F_n$ where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$.	07	L2	C
Q.9	a.	Module – 5 If G be a set of all non zero real numbers and let $a * b = \frac{ab}{2}$ then show that (G, *) is an abelian group.	06	L2	C
	b.	Define Klein group and if $A = \{e, a, b, c\}$ then show that this is a Klein-4 group.	07	L2	C
	c.	State and prove Lagrange's theorem.	07	L2	C
Q.10	a.	OR If H and K are subgroups of group G, prove that $H \cap K$ is also a subgroup of G. Is $H \cup K$ a subgroup of G?	06	L2	C
	b. 4	Define cyclic group and show that (G, *) whose multiplication table is as given below is cyclic. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07	L2	C
	c.	Let $G = S_4$, for $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$, find the subgroup $H = \langle \alpha \rangle$. Determine the left cosets of H in G.	07	L3	C

.

BBOC407

Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Biology for Engineers (CSE)

0

1

)

Time: 3 hrs.

1

KS

2

2

AI

USN

Max. Marks: 100

		Module – 1	Μ	L	С
Q.1	a.	What is stem cell? Explain its types and list its applications.	7	L2	CO1
	b.	Explain in detail the properties and functions of nucleic acids.	6	L2	CO1
	c.	Explain the importance of special biomolecules.	7	L2	CO1
		OR			
0.0			7	L2	CO1
Q.2	a.	What is a biomolecule? Explain the classifications of biomolecule.	'	1.4	COI
	b.	Explain the properties and functions of carbohydrates.	6	L2	CO1
	c.	Describe the structure and functions of a cell with a neat diagram.	7	L3	CO1
	1	Module – 2	-		
Q.3	a.	What is the role of lipids? Outline the process of obtaining biodiesel from	7	L3	CO2
		lipids.			
	b.	Differentiate between PHA and PLA as a bioplastic materials.	6	L4	CO1
	υ.	Differentiate between 1 fizz and 1 Ezy as a bioplastic materials.	Ŭ	1.1	
	c.	Explain the role of DNA vaccine for rabies and RNA vaccine for	7	L2	CO1
		COVID-19.			
		OR	1	1	
Q.4	a.	What are the key properties, advantages and limitations of cellulose based	7	L3	CO2
	2	water filters.			
	b.	How can DNA finger printing be applied to evaluate its effectiveness and	6	L4	C01
		reliability in forensic applications.			
	1				
	c.	Describe the use of meat analogue and plant protein as food.	7	L2	CO2
		Module – 3			~~~~
Q.5	a.	Deliberate the functioning of brain as CPU system.	7	L3	CO2
	b.	Write a short note on spirometry and ventilator.	6	L2	CO2
		12			
	c.	Explain heart as pump system.	7	L3	CO2
	1			I	
		1 of 2			
		¥ 1012			/

			а 1 Б	BBO	C407
		OR	*		
Q.6	a.	Explain eye as a camera system.	7	L3	CO
	b.	Write a short note on cardiac pacemaker.	6	L2	CO
b	c.	Explain kidney as purification system.	7	L3	CO
N.		Module – 4			
Q.7	a.	Describe the materials used and engineering applications of Velcro technology.	7	L3	CO
8	b.	Compare the process of photosynthesis to the functioning of photovoltaic cells.	6	L4	CO
2. 22	c.	Explain the HBOCs and PFCs as human blood substituents.	7	L3	CO
		OR			I
Q.8	a.	Explain the terms lotus leaf effect and bird flying.	7	L3	CO:
	b.	Compare biological echolocation and technological echolocation highlighting their applications in navigation and detection.	6	L4	CO:
2	c.	Explain the terms shark skin, swim suits and bullet train using biological concepts.	7	L3	CO.
		Module – 5		1	I
Q.9	a.	Compare the functioning of electrical tongue and human tongue.	7	L4	CO
	b.	Explain muscle cells as scaffold for tissue growth.	6	L2	CO4
÷	c.	Explain bioremediation and biomining via microbial surface adsorption.	7	L2	CO
<u> </u>	2	OR			
Q.10	a.	Illustrate the basic steps of bioprinting process and list the various types of bioprinting techniques.	7	L4	CO
	b.	Write a short note on: i) Importance of DNA origami	6	L2	CO
ŀ	1	ii) Self healing bioconcrete.			
	c.	Discuss the applications of artificial intelligence in the diagnosis of disease.	7	L2	CO4
	2				
					6
		2 of 2			