|--| **BCS401** ## Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Analysis and Design of Algorithms Time: 3 hrs. Max. Marks: 100 | | | Module – 1 | M | L | C | |-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----|-----| | Q.1 | a. | Explain the various steps in algorithm design and analysis process with the flow diagram. | 08 | L1 | CO1 | | | b. | Give formal and informal definitions of asymptotic notations. | 06 | L1 | CO | | | c. | Explain the general plan of mathematical analysis of recursive algorithm with an example. | 06 | L1 | CO | | | | OR | | | | | Q.2 | a. | Design algorithm for tower of Hanoi problem and obtain time complexity. | 10 | L1 | CO | | | b. | Write an algorithm to search an element in an array using sequential search. Discuss the best case, worst case and average case efficiency of this algorithm. | 10 | L1 | CO | | | | Module – 2 | Lacron Constitution | | | | Q.3 | a. | Write an algorithm to sort the numbers using insertion sort. Discuss its efficiency. | 10 | L2 | CO | | | b. | Design quick sort algorithm and obtain its best, average and worst case efficiency. | 10 | L2 | CO | | | | OR | | | | | Q.4 | a. | Write merge sort algorithm and sort the list E X A M P L E. | 08 | L2 | CO | | | b. | Apply the DFS based algorithm to solve the topological sorting problem for the following graph, Fig.Q4(b) Fig.Q4(b) Write the ricks for two order traversels of a traversels of a traversels of a traversely | 06 | L3 | CO2 | | | c. | Write algorithm for pre-order, post order and in order traversals of a tree. Write pre-order, in-order and post order for the given tree. | | | | | | - 1 | | | | | |------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----------------| | | | | | В | CS401 | | | | Module – 3 | | | | | Q.5 | a. | 11. 2 tree for the list 3, 0, 0, 3, 2, 7, 7. | 10 | L3 | CO3 | | | b. | The first terms in the first of the appoint. | 10 | L3 | CO3 | | | | HEAPSORT (in alphabetical order) | - | | | | 0.6 | | OR | | | | | Q.6 | a. | but the state of t | 10 | L2 | CO ₄ | | | b. | and the string matering. Apply Holspools | 10 | L3 | CO ₄ | | | | algorithm to find the pattern BARBER on the text | | | | | | | JIM_SAW_ME_IN_BARBERSHOP | | | | | 0.7 | | Module - 4 | | | | | Q.7 | a. | and apply the same to compute transitive | 10 | L3 | CO ₃ | | | | closure of a directed graph. | | | | | | | a b c d e | | | | | | | $a \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \end{bmatrix}$ | | | | | | | b 0 1 0 0 0 | | | | | | | | | | | | | | c 0 0 0 1 1 | | | | | | | d 1 0 0 0 0 | | | | | | | e 0 1 0 0 1 | | | | | | b. | Construct minimum cost spanning tree using Kruskal's algorithm for the | 10 | T 2 | 004 | | | | following graph, Fig.Q7(b). | 10 | L3 | CO4 | | | | 60 | | | | | | | 40 | | | | | | | 10 72/20 | | | | | | | (D) 19 (3) (B) | | | | | | | 80 30 | | | | | | | 80 (5) 30 | | | | | | | Fig.Q7(b) | | | | | | | OR | | | | | Q.8 | a. | Solve the following single source shortest path problem assuming vertex | 10 | L3 | CO4 | | | | '5' as the source. | 10 | LS | CO4 | | | | 45 | | | | | | S S | | | | | | | | 15 0 20 XI | | | | | | | 25 | | | | | | | 300 10 10 32 | | | | | | | 29 15 30 5 | | | | | | | 20 4 | | | | | | | Fig.Q8(a) | | | | | | b. | Write Huffman's algorithm. Construct Huffman tree and resulting code | 10 | L4 | CO4 | | | | word for the following: | | | 201 | | | | Character A B C D E - | | | | | | | Probability 0.5 0.35 0.5 0.1 0.4 0.2 | | | | | | | Encode the text DAD_CBE. | | | | | | | Module – 5 | | | | | 9.9 | a. | Explain the following with example: (i) P problem (ii) NP problem | 06 | L1 | CO5 | | | b. | What is decision tree? Construct decision tree for the three element | | L2 | CO5 | | | | insertion sort. | 00 | 112 | 203 | | | c. | Construct state space tree to solve 4 queens problem. | 06 | L3 | CO5 | | | | 1 1 | 00 | LUJ | 003 | | | | | | ž. | 5 | |------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|------| | | | | | BC | S401 | | | | | | | | | | | OR | | | | | Q.10 | a. | What is backtracking? Apply back tracking to solve the below instance of | 10 | L3 | CO6 | | | | sum of subset problem: $s = \{3, 5, 6, 7\}, d = 15$ | | | | | | b. | Solve the following instance of knapsack problem using branch and bound | 10 | L4 | CO6 | | | | technique knapsack capacity = 10. | | | | | | | Item Weight Value 1 4 40 | | | | | | | $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 40 \\ 42 \end{bmatrix}$ | | | | | | | 3 5 25 | | | | | | | 4 3 12 | | | | | | | 97 ,9 | | | | | | | * * * * | | | | | | | | | | | | | | At the second se | | | | | | | | | | | | | | | | | | | | | | | | | | | | 413 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | | | | | | | | 19 | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 49 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A TOTAL CONTRACTOR OF THE PROPERTY PROP | | | | | USN | | | | | | | | BCS402 | |-----|---|---|---|---|---|---|---|--------| | COL | 1 | l | 1 | 1 | 1 | 1 | 1 | | # Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Microcontroller Time: 3 hrs. Max. Marks: 100 | | | Module - 1 | M | L | C | |------------|----|-------------------------------------------------------------------------------|-----|-----|-----------------| | Q.1 | a. | Explain the purpose of various fields of current program status register with | 05 | L2 | CO ₁ | | V | | a neat diagram. | | | | | | b. | Explain the ARM design philosophy. | 06 | L2 | CO ₁ | | | c. | Explain the core extensions of ARM processor with neat block diagram. | 09 | L2 | CO ₁ | | | | OR | | | | | Q.2 | a. | Explain Embedded systems hardware with a neat block diagram. | 06 | L2 | CO ₁ | | | b. | What is pipelines in ARM? Illustrate with an example the pipeline stage of | 09 | L2 | CO ₁ | | | | ARM 9 and ARM 10. | | | | | | c. | Describe the RISC design philosophy with 4 design rules. | 05 | L2 | CO ₁ | | | | Module – 2 | | | | | Q.3 | a. | Explain the following with examples: | 10 | L2 | CO ₂ | | | | (i) RSC (ii) MLA (iii) STRH (iv) SWP | | | | | | b. | Explain the different data processing instruction in ARM. | 10 | L2 | CO ₂ | | | | ♦ OR | | | | | Q.4 | a. | Explain Barrel shifter instruction in ARM with suitable examples. | 10 | L2 | CO ₂ | | | b. | Explain the different branch instruction of ARM processor. | 05 | L2 | CO ₂ | | | c. | Explain co-processor instruction of ARM processor. | 05 | L2 | CO ₂ | | | | Module – 3 | | | , | | Q.5 | a. | Explain the different basic data types in C. Provide examples of how each | 08 | L2 | CO3 | | | | data type can be used in a C program. | | | | | | b. | Discuss the concept of register allocation in compiler optimization. | 07 | L2 | CO3 | | | | Illustrate its significance with an example. | | | | | | c. | Describe the process of a function call in C. | 05 | L2 | CO ₃ | | | | OR | | | | | Q.6 | a. | Discuss the common portability issues faced when writing C programs. | 07 | L2 | CO3 | | | | How can these issues be mitigated. | | | | | | b. | Explain the concept of pointer aliasing with example. | 07 | L2 | CO3 | | | c. | How are function calls handled efficiently in calling function in C? | 06 | L2 | CO ₃ | | | _ | Module – 4 | 0.5 | | 000 | | Q.7 | a. | What are interrupts? Discuss interrupt vector table with diagram for ARM | 06 | L2 | CO4 | | | | processor. | | T 0 | 60.4 | | | b. | Describe the sequence of operations that occurs when an ARM processor | 06 | L2 | CO4 | | | | handles an IRQ exceptions. | 0.0 | 7.0 | 60 | | | c. | Discuss the priority system for exception in ARM processor. | 08 | L2 | CO ₄ | | | | OR | 0.0 | T 4 | 60. | | Q.8 | a. | Explain the role of the link register in ARM exception handling. | 08 | L2 | CO4 | | | b. | Explain the design and implementation of an interrupt stack in a ARM- | 08 | L2 | CO ₄ | | | | based system. Explain the steps involved. | 0.4 | TA | CO | | | c. | What are the key differences between a boot loader and firmware? | 04 | L2 | CO ₄ | | | Module – 5 | | | | |----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | a. | Explain the basic operation of a cache controller. | 06 | L2 | CO5 | | b. | With a neat diagram, explain the basic architecture of a cache memory. | 10 | L2 | CO5 | | c. | Mention any 4 relationship between cache and main memory. | 04 | L2 | CO ₅ | | | | | | | | | OR | | | | | a. | Write a note on cache write policy both write back or write through. | 10 | L2 | CO5 | | b. | | | | CO5 | | c. | | 06 | L2 | CO ₅ | | | | | | | | | (ii) Cache efficiency | | | | | 8 | E TO TO TO TO THE TEST OF | | | | | | a. b. c. | a. Explain the basic operation of a cache controller. b. With a neat diagram, explain the basic architecture of a cache memory. c. Mention any 4 relationship between cache and main memory. OR a. Write a note on cache write policy both write back or write through. b. Describe the allocation policy on a cache miss. c. Write a note on following: (i) Write buffers | a. Explain the basic operation of a cache controller. b. With a neat diagram, explain the basic architecture of a cache memory. c. Mention any 4 relationship between cache and main memory. OR a. Write a note on cache write policy both write back or write through. b. Describe the allocation policy on a cache miss. 04 c. Write a note on following: (i) Write buffers (ii) Cache efficiency ****** | a. Explain the basic operation of a cache controller. b. With a neat diagram, explain the basic architecture of a cache memory. c. Mention any 4 relationship between cache and main memory. OR a. Write a note on cache write policy both write back or write through. b. Describe the allocation policy on a cache miss. c. Write a note on following: (i) Write buffers (ii) Cache efficiency ****** | **BCS403** ## Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Database Management System Time: 3 hrs. Max. Marks: 100 | | | Module – 1 | M | L | C | |-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----| | Q.1 | a. | Define the following terms: | 05 | L1 | CO1 | | _ | | (i) Database (ii) Schema (iii) Entity | 1 | | | | | | (iv) DDL (v) Degree of a relationship | | | | | | b. | Briefly explain characteristics of database approach. | 05 | L2 | CO1 | | | c. | List and explain advantages of using DBMS approach. | 10 | L2 | CO1 | | | | | | | | | | | OR | | | Γ | | Q.2 | a. | Define the following terms: | 05 | L1 | CO1 | | | | (i) Cardinality (ii) Weak entity (iii) Program data independence | | | | | | | (iv) DML (v) Value sets | 0.5 | T.A. | 601 | | | b. | Describe three-schema architecture. Why do we need mappings between | 05 | L2 | CO1 | | | - | schema levels? | 10 | TA | 601 | | | c. | Explain different types of attributes in ER model with suitable example for | 10 | L2 | CO1 | | | | each. | | | | | | <u> </u> | Madala 2 | | | | | 0.2 | T_6 | Module – 2 With suitable example, explain the entity integrity and referential integrity | 05 | L2 | CO2 | | Q.3 | a. | constraints. Why each is considered important? | 03 | LL | COZ | | | b. | Discuss equijoin and natural join with suitable example using relational | 05 | L2 | CO2 | | | D. | algebra notation. | 03 | | COZ | | | c. | Given the relational tables: | 10 | L3 | CO2 | | | \ C. | Employee: Department: | 10 | | 002 | | | | EID Name DepID Salary DeptID DeptName | | | | | | | 1 Alice 10 5000 10 HR | | | | | | | 2 Bob 20 6000 20 IT | | | | | | | 3 Eve 20 6500 30 Sales 30 | | | | | | | | | | | | | | Project | | | | | | | PID Project Name DeptID | | | | | | | 101 Project Alpha 10 | | | | | | | 102 Project Beta 20 | | | | | | | 103 Project Gamma 30 | | | | | | | Write relational algebra expression for the following: | | | | | | | (i) Find the names and salaries of all employees in the 'IT' department.(ii) Find the ID's and names of employees who are in the 'IT' department | | | | | | | and have a salary greater than 6000. | | | | | | | (iii) Find the ID's and names of employees who are either in the 'HR' | | | | | | | department or have a salary greater than 6000. | | | 9 | | | | (iv) Find the names of employees who are not in the 'IT' department | | | | | | | (v) Find the names of employees who are not in the Tr department (v) Find the names of employees along with their department names. | | | 0 | | | | (1) I me the hames of employees along with their department hames. | | | | | | | | l | | L | | - | | | | - | - | |--------------|--------------|----|---|-----|---| | | \mathbf{C} | ₽, | 4 | 4 B | - | | \mathbf{r} | | | 4 | | | | | | | | | | | 1 | | | | BC | S403 | |-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|-----------------| | | | OR | | | | | Q.4 | a. | Explain any two operations that change the state of relation in a database. Provide suitable examples. | 05 | L2 | CO2 | | - | b. | Discuss the aggregation functions and grouping in relational algebra with suitable examples. | 05 | L2 | CO2 | | | c. | Given the relational tables: Student: SID Name a Alice b Bob q Beta c Carol r Gamma Language: LID Language Name x Python y Java z C++ b q c r Write relational algebra expression for the following: (i) Rename the student table to Learner and display it. (ii) Find the students (learners) who are not enrolled in any project. | 10 | L3 | CO2 | | | | (iii) Find the students who are enrolled in all projects. (iv) Find the students who are not enrolled in any project. (v) Find the students who are enrolled in both the 'Alpha' and 'Beta' projects. Module - 3 | | | | | Q.5 | a. | Explain Armstrong inference rules. | 05 | L2 | CO ₄ | | | b. | What is the need for normalization? Explain 1NF, 2NF and 3NF with examples. | 05 | L2 | CO4 | | | c. | What is functional dependency? Write an algorithm to find minimal cover for set of functional dependencies. Construct minimal cover M for set of functional dependencies which are: $E = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$ | 10 | L3 | CO4 | | 0.6 | | OR III i GOV cit | 0.5 | TA | 604 | | Q.6 | a. | Explain the types of update anomalies in SQL with an example. | 05 | L2 | CO4 | | | b.
c. | Explain types of JBBC drivers. Consider the schema $R = ABCD$, subjected to FDs $F = \{A \rightarrow B, B \rightarrow C\}$, and the non-binary partition $D1 = \{ACD, AB, BC\}$. State whether D1 is a lossless decomposition? [give all steps in detail]. | 10 | L2
L3 | CO5 | | | | Module – 4 | | 2 | | | Q.7 | a. | Define transaction. Discuss ACID properties. | 05 | L2 | CO5 | | | b. | With a neat diagram, explain transition diagram of a transaction. | 05 | L2 | CO5 | | | c. | Demonstrate working of assertion and triggers in SQL with example. | 10 | L3 | CO5 | | | | OR | | | | | Q.8 | a. | Explain cursor and its properties in embedded SQL with suitable example. | 05 | L2 | CO5 | | | b. | Determine if the following schedule is serializable and explain your reasoning: i) T1: R(X)W(X) T2: R(X)W(X) T1: COMMIT T2: COMMIT ii) T1: W(X)R(Y) T2: R(X)W(Y) T1: COMMIT T2: COMMIT | 05 | L2 | CO5 | | | | | | . 3.7 | Ų" | |------|-----|---|----|----------|------| | | | | | BC | S403 | | | c. | Consider the tables below: | 10 | L3 | CO5 | | | | Sailors (sid: integer, sname: string, rating: integer, age: real) Boats (bid: integer, bname: string, color: string); | | | | | | | Reserves (sid: integer, bid: integer, day: date) | | | - | | | | Write SQL queries for the following: (i) Write create table statement for reserves. | | | | | | | (ii) Find all information of sailors who have reserved boat number 101. | | | | | | | (iii) Find the names of sailors who have reserved at least one boat. (iv) Find the names of sailors who have reserved a red boat. | | | | | | | (v) Find the names of sanors who have reserved a red boat. (v) Find the average age of sailors for each rating level. | | | | | | | Module – 5 | | | | | Q.9 | a. | Explain the CAP theorem. | 05 | L2 | CO6 | | | b. | What is NOSQL graph database? Explain Neo4j. Why concurrency control and recovery are needed in DBMS? Demonstrate | 10 | L2
L3 | CO6 | | | · . | with suitable examples types of problems that may occur when two simple | 10 | L3 | COS | | | | transactions run concurrently. | | | *) | | | | OP | | | | | Q.10 | a. | OR Explain basic operations CRUD in MongoDB. | 05 | L2 | CO6 | | | b. | Explain deadlock prevention protocols. | 05 | L2 | CO5 | | | c. | Briefly discuss the two-phase looking techniques f ₀ concurrency control. | 10 | L3 | CO5 | | | | **** | | | | | | | | | | | | | | 419 3 | | | | | | | | | | | | | | 6 | ٠ | | | | | | | | | | | | | E LE DIDIO DE LE | | | | | | | 6 | | | | | | | | | | | | | | | ¥ | | | | | | 19 | | | | | | 1 | 46 | 19 | | | | | | | | | | , | 3 of 3 | | 11.0 | | | USN | | | | | | |-----|--|--|--|--|--| |-----|--|--|--|--|--| BCS405A ## Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Discrete Mathematical Structures Time: 3 hrs. Max. Marks: 100 | | - | Module - 1 | M | L | C | |---------------------------------------|--|---|-----|----------|-----------------| | Q.1 | a. | Define a tautology. Prove that for any propositions p, q, r the compound | 06 | L2 | CO1 | | | | propositions $\{(p \rightarrow q) \land (q \rightarrow r)\} \rightarrow (p \rightarrow r)$ is tautology. | | | | | | b. | Establish the validity of the following argument using the rules of | 07 | L2 | CO1 | | | | inference: $\{p \land (p \rightarrow q) \land (s \lor r) \land (r \rightarrow \sim q)\} \rightarrow (s \lor t)$ | 9) | | | | | c. | For any two odd integers m and n, show that: | 07 | L2 | CO1 | | | | (i) m + n is even (ii) mn is odd | | | | | | | OR | 0.0 | Τ. | CO1 | | Q.2 | a. | Show that the compound proposition $[(p \lor q) \to r] \Leftrightarrow [(p \to r) \land (q \to r)]$ | 06 | L2 | CO1 | | | | for primitive statements p, q, r is logically equivalent. | 07 | 12 | CO1 | | | b. | Prove the following using law of logic: $p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$ | 07 | | CO1 | | | c. | Determine the truth value of each of the following quantified statements, | 07 | L3 | CO1 | | | | the universe being the set of all non-zero integers: | | | | | | | $ \begin{array}{ll} (i) & \exists x, \exists y, [xy=1] \\ (iii) & \forall x, \exists y, [xy=1] \\ (iv) & \exists x, \exists y, [(2x+y=5) \land (x-3y=-8)] \\ \end{array} $ | | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | (v) $\exists x, \exists y, [(3x - y = 17) \land (2x + 4y = 3)]$
Module - 2 | | <u> </u> | | | Q.3 | T | | 06 | L2 | CO ₂ | | Q.S | a. | Prove that for each $n \in z^+$, $1^2 + 2^2 + 3^2 + + n^2 = \frac{n(n+1)(2n+1)}{6}$ | , | | | | | b. | Let $a_0 = 1$, $a_1 = 2$, $a_2 = 3$ and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ for $n \ge 3$, prove that | 07 | L2 | CO2 | | | " | | | | | | | - | $a_n \le 3^n \ \forall \ n \in \mathbb{Z}^+$ | 0= | 7.0 | 602 | | | c. | How many positive integers n can be we form using the digits 3, 4, 4, 5, 5, | 07 | L3 | CO2 | | | _ | 6, 7 if we want n to exceed 5,000,000? OR | L | | | | Q.4 | a. | By mathematical induction prove that | 06 | L2 | CO2 | | Q.4 | a. | | 00 | | 002 | | | | $1.3 + 2.4 + \dots + n(n+2) = \frac{n(n+1)(2n+7)}{6}$ | | | | | | b. | Find the number of permutations of the letters of the word ENGINEERING | 07 | L3 | CO2 | | | 0. | such that: | | | | | | | (i) All the E's are together (ii) Arrangement begin with N | | | | | | | (iii) All the vowels are adjacent. | | = | | | | c. | Find the coefficient of $a^2b^3c^2d^5$ in the expansion of $(a+2b-3c+2d+5)^{16}$. | 07 | L3 | CO2 | | | | Module – 3 | | | | | Q.5 | a. | State pigeon hole principle. Prove that if 30 dictionaries in a library contain | 06 | L3 | CO3 | | mm20 | | a total of 61,327 pages then atleast one of the dictionaries must have atleast | | | | | | | 2045 pages. | | | - | | | L | Let $f: P \to P$ be defined by $f(x) = \int 3x - 5$ if $x > 0$ Find $f^{-1}(0)$ $f^{-1}(1)$ | 07 | L2 | CO3 | | | b. | $1-3x ext{ if } x \le 0$ | | | | | | | Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x - 5 & \text{if } x > 0 \\ 1 - 3x & \text{if } x \le 0 \end{cases}$. Find $f^{-1}(0)$, $f^{-1}(1)$, $f^{-1}(-1)$, $f^{-1}(3)$, $f^{-1}(-6)$, $f^{-1}([-6, 5])$ and $f^{-1}([-5, 5])$ | | | | | · · · · · · · · · · · · · · · · · · · | c. | Draw the Hasse diagram representing the positive divisor of 36. | 07 | L3 | CO3 | | | | 1 00 | 1 | - | | | | | | | BCS | 405A | |------|------|--|------|-----------|-----------------| | | · | OR | | | | | Q.6 | a. | Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5, 6\}$, | 06 | L2 | CO3 | | | | (i) How many functions are there from A to B? (ii) How many of these are one to one? (iii) How many functions are there from B to A? | | | | | | | (ii) How many of these are one to one? (iii) How many functions are there from B to A? | | | | | | | (iii) How many functions are there from B to A? (iv) How many of these are onto? | 5 | | | | | b. | Let f and g be functions from R to R defined by $f(x) = ax + b$ and | 07 | L2 | CO3 | | | D. | $g(x) = 1 - x + x^2$. If $(g \circ f)(x) = 9x^2 - 9x + 3$, determine a and b. | 07 | 112 | COS | | | | | 0.5 | 7.0 | COA | | | c. | Let $A = \{1, 2, 3, 4, 6\}$ and R be a relation on A defined by aRb if and only | 07 | L3 | CO ₃ | | | | if "a is multiple of b". Write down the relation R, relation matrix M(R) and | | | | | | | draw the digraph. List out in degree and out degree. | | | | | 0.7 | | Module 4 | 06 | 12 | CO4 | | Q.7 | a. | In how many ways 5 number of a's, 4 number of b's and 3 number of c's can be arranged so that all the identical letters are not in a single block? | 06 | L3 | CO4 | | | h | | 07 | L3 | CO4 | | | b. | Determine the number of positive integers n such that $1 \le n \le 100$ and n is | 07 | LS | CU4 | | | | not divisible by 2, 3, or 5. | 07 | L2 | COA | | | c. | Solve the recurrence relation $a_{n+2} - 3a_{n+1} + 2a_n = 0$, $a_0 = 1$, $a_1 = 6$. | 07 | LZ | CO4 | | | T | OR | | | | | Q.8 | a. | In how many ways can the 26 letters of the English alphabet be permuted | 06 | L3 | CO4 | | | L | so that none of the patterns CAR, DOG, PUN or BYTE occurs? | 07 | Т 2 | 004 | | | b. | Five teachers T_1 , T_2 , T_3 , T_4 are to be made class teachers for five classes, | 07 | L3 | CO4 | | | | C_1 , C_2 , C_3 , C_4 , C_5 , one teacher for each class. T_1 and T_2 do not wish to become the class teachers for C_1 or C_2 , C_3 and C_4 or C_5 , and C_5 for C_5 | | | | | | | or C_4 or C_5 . In how many ways can the teachers be assigned the work? | | | | | | | (Without displeasing any teacher) | | | | | | c. | Solve the recurrence relation $F_{n+2} = F_{n+1} + F_n$ where $n \ge 0$ and $F_0 = 0$, | 07 | L2 | CO4 | | | •• | F ₁ = 1. | 0, | | 004 | | | | Module – 5 | l | | | | Q.9 | a. | | 06 | L2 | CO5 | | Q.J | a. | If G be a set of all non zero real numbers and let $a * b = \frac{ab}{a}$ then show that | UÜ | 112 | COS | | | | | | | | | | L | (G, *) is an abelian group. | 0.57 | Τ.Δ | COL | | | b. | Define Klein group and if A = {e, a, b, c} then show that this is a Klein-4 | 07 | L2 | CO5 | | | | State and prove Lagrange's theorem. | 07 | 1.2 | COF | | | c. | OR | 07 | L2 | CO5 | | Q.10 | a. | | 06 | L2 | CO5 | | Q.10 | a. | If H and K are subgroups of group G, prove that $H \cap K$ is also a subgroup of G. Is $H \cup K$ a subgroup of G? | 00 | Liz | COS | | | h | | 07 | T 2 | CO5 | | | D. # | Define cyclic group and show that (G, *) whose multiplication table is as given below is cyclic. | U/ | L2 | COS | | | | | | | | | | | | 0. | | | | | | a a b c d e f b b c d e f a | | | | | | | | | | | | | | c c d e f a b d d e f a b c | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | | (1 2 2 4) | | | | | | c. | Let $G = S_4$, for $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 \\ & & & 4 \end{bmatrix}$, find the subgroup $H = \langle \alpha \rangle$. Determine | 07 | L3 | CO5 | | | | 2 3 4 1) | | | | | | | the left cosets of H in G. | | | | | | | | | | | USN 1 K S 2 2 A 1 0 1 1 **BBOC407** ### Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Biology for Engineers (CSE) Time: 3 hrs. Max. Marks: 100 | | | A second | | | | |-----|----|--|---|----|-----| | | | Module – 1 | M | L | C | | Q.1 | a. | What is stem cell? Explain its types and list its applications. | 7 | L2 | CO1 | | | b. | Explain in detail the properties and functions of nucleic acids. | 6 | L2 | CO1 | | | c. | Explain the importance of special biomolecules. | 7 | L2 | CO1 | | | | OR | | | | | Q.2 | a. | What is a biomolecule? Explain the classifications of biomolecule. | 7 | L2 | CO1 | | | b. | Explain the properties and functions of carbohydrates. | 6 | L2 | CO1 | | | c. | Describe the structure and functions of a cell with a neat diagram. | 7 | L3 | CO1 | | | | Module – 2 | | | | | Q.3 | a. | What is the role of lipids? Outline the process of obtaining biodiesel from lipids. | 7 | L3 | CO2 | | | b. | Differentiate between PHA and PLA as a bioplastic materials. | 6 | L4 | CO1 | | | c. | Explain the role of DNA vaccine for rabies and RNA vaccine for COVID-19. | 7 | L2 | CO1 | | | | OR | | | , | | Q.4 | a. | What are the key properties, advantages and limitations of cellulose based water filters. | 7 | L3 | CO2 | | \$ | b. | How can DNA finger printing be applied to evaluate its effectiveness and reliability in forensic applications. | 6 | L4 | CO1 | | * | c. | Describe the use of meat analogue and plant protein as food. | 7 | L2 | CO2 | | | 1 | Module – 3 | | | | | Q.5 | a. | Deliberate the functioning of brain as CPU system. | 7 | L3 | CO2 | | | b. | Write a short note on spirometry and ventilator. | 6 | L2 | CO2 | | | c. | Explain heart as pump system. | 7 | L3 | CO2 | | | | 49 | | 9 | 5 | | · | | | | вво | C407 | |-----------|----|---|---|-----|------| | | | OD | 4 | | | | | | OR | | | | | Q.6 | a. | Explain eye as a camera system. | 7 | L3 | CO2 | | | b. | Write a short note on cardiac pacemaker. | 6 | L2 | CO2 | | | c. | Explain kidney as purification system. | 7 | L3 | CO2 | | <i>ii</i> | | Module – 4 | | 1 | | | Q.7 | a. | Describe the materials used and engineering applications of Velcro technology. | 7 | L3 | CO3 | | | b. | Compare the process of photosynthesis to the functioning of photovoltaic cells. | 6 | L4 | CO3 | | 8 | c. | Explain the HBOCs and PFCs as human blood substituents. | 7 | L3 | CO3 | | | | OR | | | | | Q.8 | a. | Explain the terms lotus leaf effect and bird flying. | 7 | L3 | CO3 | | | b. | Compare biological echolocation and technological echolocation highlighting their applications in navigation and detection. | 6 | L4 | CO3 | | ¥ | c. | Explain the terms shark skin, swim suits and bullet train using biological concepts. | 7 | L3 | CO3 | | | | Module – 5 | | | | | Q.9 | a. | Compare the functioning of electrical tongue and human tongue. | 7 | L4 | CO4 | | | b. | Explain muscle cells as scaffold for tissue growth. | 6 | L2 | CO4 | | | c. | Explain bioremediation and biomining via microbial surface adsorption. | 7 | L2 | CO4 | | - | | OR | , | | | | Q.10 | a. | Illustrate the basic steps of bioprinting process and list the various types of bioprinting techniques. | 7 | L4 | CO4 | | | b. | Write a short note on: i) Importance of DNA origami ii) Self healing bioconcrete. | 6 | L2 | CO4 | | | c. | Discuss the applications of artificial intelligence in the diagnosis of disease. | 7 | L2 | CO4 | * * * * *