

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Mechanics of Materials

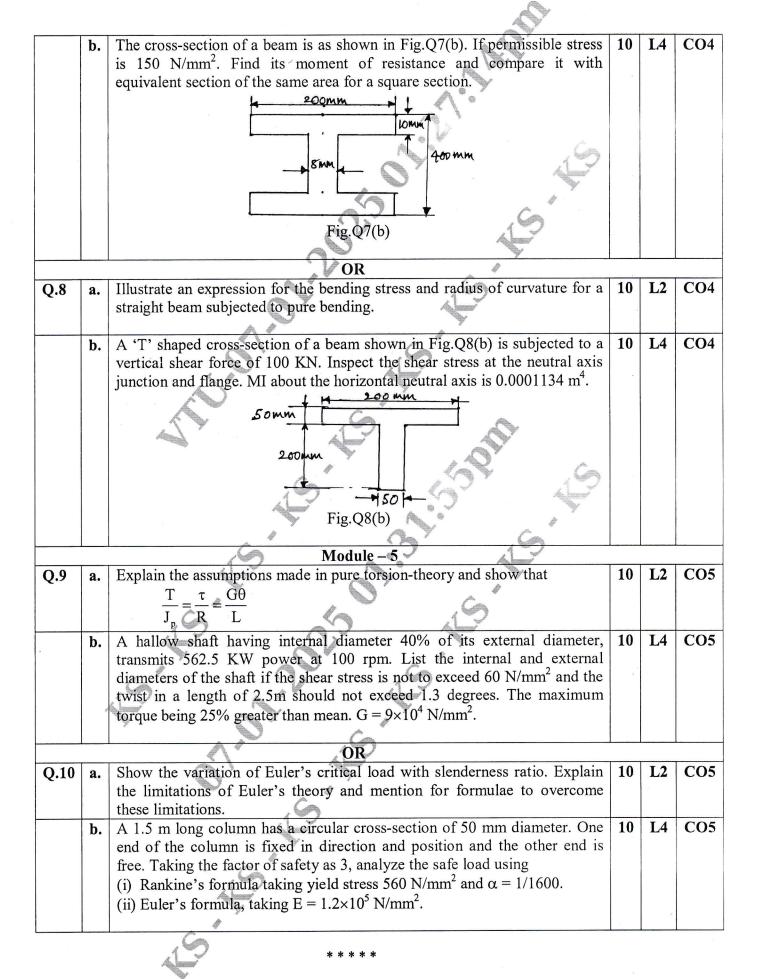
Time: 3 hrs.

dir.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module - 1	Μ	L	С
Q.1	a.	Define the following terms:	04	L1	CO
		(i) Poisson's ratio (ii) Factor of safety			
	b.	Show that the expression for the extension of uniformly tapering circular	06	L1	CO
		bar subjected to an axial load 'P' is given by, $\delta = 4PL/\pi d_1 d_2 E$			
			10		60
	c.	A bar with stepped portion is subjected to the forces shown in Fig.Q1(c).	10	L3	CO
		Solve for the magnitude of force 'P' such that net deformation in the bar			
		does not exceed 1 mm. E for steel is 200 GPa and that of aluminium is			
		70 GPa. Big end diameter and small end diameter of the tapering bar are 40mm and 12.5mm respectively.			
		40 mm and 12.5 mm respectively.			
		4p 2p p 200mm 3p			
					2
		Aluminian Steel Steel			
		Boomm 700mm 500mm			
		Fig.Q1(c)			
		OR			
Q.2		How do you relate Modulus of Elasticity and Bulk modulus?	10	L1	CO
Q.2	a. b.	Solve for the values of stress and strain in portion AC and CB of the steel		LI L3	CO
	0.	bar shown in Fig.Q2(b). A close fit exists at both the rigid supports at room	10	13	0
		temperature and the temperature is raised by 75°C. Take $E = 200$ GPa and	-		
		$\alpha = 12 \times 10^{-6}$ /°C for steel. Area of cross-section of AC is 400 mm ² and of			
		BC is 800 mm^2 .			
		c B			
	1				
		L 0.3m 1. 0.8m 1			
		Fig.Q2(b)			
		Modulo 2			
Q.3		A rectangular bar is subjected to two direct stresses ' σ_x ' and ' σ_y ' in two	10	L1	CO
Q.3	a.	A rectangular bar is subjected to two direct stresses σ_x and σ_y in two mutually perpendicular directions. Show that the normal stress ' σ_n ' and	10		
		shear stress 'r' an anablique plane which is inclined at an angle 'A' with			
		shear stress ' τ ' on an oblique plane which is inclined at an angle ' θ ' with the axis of minor stress are given by			
		the axis of minor stress are given by		,	


1 00

BME301

al is a

	b.	The state of stress at a point in a stained material is shown in Fig.Q3(b).	10	L3	CO2
		Identify (i) Direction of principal planes (ii) Magnitude of principal			
		stresses (iii) Magnitude of maximum shear-stress and its direction.			
		AONTIMU2			
2		501/mail			
				0	
		16042			
	<				
		DAYMENT HONFILM			
		A HONYMM			
		Fig.Q3(b)		2	
		OR			
0.1	1		10	TA	GOO
Q.4	a .	Show that the change in volume of thin cylindrical shell is given by	10	L1	CO2
		$\delta_{\rm v} = \frac{\rm Pd}{\rm 4tE} (5 - 4M) v$			
		$\sigma_{v} = \frac{4}{4tE} (3 - 4W) v$			
	b.	A pipe of 500 mm internal diameter and 75 mm thick is filled with a fluid	10	L3	CO2
	0.	at a pressure of 6 N/mm^2 . Solve for the maximum and minimum hoop	10	LJ	002
		stress across the cross-section of the cylinder. Also construct the radial			
		pressure and hoop stress distribution sketch across the section.			
		Module – 3			
Q.5	a.	Explain with sketches, the different types of loads acting on a beam.	10	L2	CO3
	b.	A cantilever beam carries UdL and point loads as shown in Fig.Q5(b).	10	L3	CO3
	0.		10	LJ	COS
		Construct SFD and BMD.			
		LSKN 12KN/m 10kN 20KN			
		A			
		1 im 2m 1 im			
		1m 2m 1m			
					les:
		Fig.Q5(b)			
		OR			
Q.6	a.	Explain SFD and BMD for a cantilever beam with a uniformly varying	10	L2	CO3
2.0		load.	10		003
	1		10	TO	GOA
	b.	An overhanging beam ABC is located as shown in Fig.Q6(b). Develop the	10	L3	CO3
		SFD and BMD. Also locate point of contraflexure.			
		2KN			
		2knym 8			
		Think Go too			
		4m 2m			
		Fig.Q6(b)			
		Module – 4			
Q.7	a.	Explain the assumptions made in simple bending and show that the	10	L2	CO4
		maximum transverse shear stress is 1.5 times the average shear stress in a			
		beam of a rectangular section.			
		er a le la			
	1				1

BME301

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Manufacturing Process

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C		
Q.1	a.	Define manufacturing process. Classify manufacturing process.	8	L1	CO1		
	b.	Define pattern and explain with a neat sketches any four pattern allowances.	6	L2	C01		
	c.	With a neat sketch explain Jolt machine.	6	L2	C01		
		OR					
Q.2	a.	Discuss briefly the requirements of base sand in sand mould preparation.	6	L2	CO1		
	b.	List the commonly mixed ingredients in moulding sand. Illustrate the properties contribute by each of them to the sand mould.	10	L2	C01		
	c.	What is core? List the different types of cores.	4	L1	C01		
		Module – 2					
Q.3	a.	With a neat sketch explain resistance furnace.	10	L2	CO2		
	b.	Explain with a neat sketch CUPOLA furnace.	10	L2	CO2		
	T	OR					
Q.4	a .	With a neat sketches explain casting defects and remedies.	10	L2	CO2		
	b.	With a neat sketches explain slush casting.	10	L2	CO2		
		Module – 3			•		
Q.5	a.	Define Forming. With sketches explain the classification of forming process.	10	L2	CO3		
	b.	Differentiate between Hot Working and Cold Working.	10	L2	CO3		
		OR					
Q.6	a.	Explain the principle of : i) Forging ii) Extrusion.	10	L2	CO3		
	b.	Explain : i) Blanking ii) Piercing.	10	L2	CO3		
		Module 4					
Q. 7	a.	Define Welding. Explain oxy-acetylene gas welding.	10	L2	CO4		
	b.	With a neat sketch explain TIG welding.	10	L2	CO4		
		OR					
Q.8	a.	With a neat sketch explain Submerged Arc Welding (SAW).	10	L2	CO4		
	b.	With a neat sketches explain types of flames produced in oxy-acetylene gas welding.	10	L2	CO4		
	Module – 5						
Q.9	a.	With suitable sketches explain defects in welding and their remedial measures.	10	L2	C05		
	b.	With a neat sketch, explain : i) Soldering ii) Brazing.	10	L2 /	CO5		
	D .	OR	10		005		
Q.10	a.	With a neat sketches explain resistance welding process.	10	L2	CO5		
X.10	b.	With a neat sketch, explain friction stir welding process.	10	L2	CO5		
		in a new skotch, explain fretend on wording process.					

USN

BME303

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Material Science and Engineering

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	\mathbf{L}	С
Q.1	a.	Differentiate between crystalline and non-crystalline solids.	06	L4	CO1
	b.	Explain briefly atomic bonding, ionic bonding and metallic bonding.	08	L2	CO1
	c.	Define (APF) Atomic Packing Factor. Calculate APF for BCC cell.	06	L4,L1	CO1
		OR			
Q.2	a.	Explain slip and twinning.	06	L2	CO1
	b.	Explain point defects and Edge dislocation with necessary diagram.	08	L2	CO1
	c.	With necessary diagram, explain Bragg's law.	06	L3	CO1
		Module – 2 🍬			
Q.3	a.	State and explain Hume-Rothery Rule governing the formation of	08	L2	CO2
		substitutional solid interstitial solid solution with examples.	0.6		~~~
	b.	Explain with neat sketch, substitutional and interstitial solid solutions	06	L2	CO2
		with examples.	0.0	TO	600
	c.	State and explain Fick's laws of Diffusion.	06	L3	CO2
0.4	-	OR Evalain Layar Dula and Cibba phase rule with an averable	00	T 2	COL
Q.4	a.	Explain Lever Rule and Gibbs phase rule with an example.	-08 -12	L3 L2	CO2
	b.	Draw Fe-Fe ₃ C diagram. Label all phases, temperatures. Explain solidification process for 0.8% C.	12	1.4	CO2
		Module – 3	1	-	L
Q.5	a.	Draw TTT diagram for 0.8% C and superimpose the cooling curves.	10	L2	CO3
Q.3	а.	Explain briefly.			005
	b.	With neat sketch, explain hardening and tempering heat treatment	10	L3	CO3
	~.	processes.		20	
		Co COR 19	1	<i>,</i>	
Q.6	a.	Explain Age hardening of Al + Cu alloys.	06	L2	CO3
	b.	With neat sketches, explain flame hardening.	06	L3	CO3
	c.	Draw the TTT diagram of austenite for eutectoid steel. Explain the	08	L2	CO3
		various transformations product of austenite.			
	đ	Module – 4			
Q.7	a.	Explain briefly common types of coatings.	10	L2	CO4
	b.	With a neat sketch, explain Physical Vapour Deposition (PVD) and	10	L3	CO4
		Chemical Vapour Deposition (CVD) process.			L
	1	OR OR			
Q.8	a.	Explain briefly about particle shape and particle size.	10	L2	CO4
	b.	Explain any two methods of powder production technique.	10	L2	CO4
		Module – 5	0.0		
Q.9	a.	Define composite. Give its classification.	06	L1,L2	CO5
	b.	Explain Metal Matrix Composite and Ceramic Matrix Composites.	08	L2	CO5
	c.	List the advantages and disadvantages of composite materials.	06	L4	CO5
		OR	10	TO	COF
Q.10	a.	Explain the evolution of Engineering materials with the help of block	10	L2	CO5
	b.	diagram. With the necessary flowchart, explain the design flow process chart.	10	L3	CO5
	D.	with the necessary now chart, explain the design now process chart.	10		

USN

BME304

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Basic Thermodynamics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M : Marks , L: Bloom's level , C: Course outcomes.
3. Use of steam table and thermodynamics data hand is permitted.

		Module – 1	Μ	L	С
Q.1	a.	State and explain zeroth law of thermodynamics.	10	L1	CO1
	b.	Two Celsius thermometers 'A' and 'B' agree at ice point and steam point and the related equation is $t_A = L + Mt_B + Nt_B^2$, where L, M and N are constants, when both thermometer are immersed in fluid, 'A' registers 26°C while 'B' registers 25°C. determine the reading of 'A' when 'B' reads 37.4°C	10	L3	CO1
		OR C			
Q.2	a.	Derive an expression for work done during : i) Isothermal process ii) Adiabatic process.	10	L2	CO1
Q.3	b. a. b.	A cylinder contains 1 kg of a certain fluid at an initial pressure of 20 bar. The fluid is allowed to expand reversibly behind a piston according to a law $PV^2 = constant$ until the volume is doubled. The fluid is then cooled reversibly at constant pressure until the piston regains its original position, heat is then added reversibly with the piston firmly locked in position until the pressure rises to the original value of 20 bar. Calculate the network done by the fluid for an initial volume of 0.05 m ³ and draw a neat PV diagram. Module – 2 Explain Joule's experiment with sketch. Air flows steady at the rate of 0.4 kg/s through an air compressor, entering at 6 m/s with a pressure of 1 bar and a specific volume of 0.85 m ³ /kg and leaving at 4.5 m/s with a pressure of 6.9 bar and a specific volume of 0.16 m ³ /kg. The internal energy of the air leaving is 88 kJ/kg greater than that of the air entering. Cooling water in a jacket surrounding the cylinder absorbs	10 10 10	L3 L1 L3	CO1 CO2 CO2
		heat from the air at the rate of 59 W. Calculate the power required to drive the compressor and the inlet and outlet cross-sectional areas.			
		OR			
Q.4	a.	Derive Steady Flow Energy Equation (SFEE) with a neat sketch.	10	L2	CO2
	b.	A turbine operates in a steady flow conditions, receiving steam at the following state : pressure 1.2 MPa, temperature 188°C, enthalpy 2785 kJ/kg, velocity 34 m/s, and elevation 3 m. The steam leaves the turbine at the following state : pressure 20 KPa, enthalpy 2512 kJ/kg, velocity 100 m/s and elevation 0 m. Heat is lost to the surroundings at the rate of 0.29 kJ/s. If the rate of the steam flow through the turbine is 0.42 kg/s. What is the power output of the turbine in KW?	10	L3	CO2
		Module – 3	1		T
Q.5	a.	State and explain Kelvin – Plank and clausius statements of II law of thermodynamics.	10	L2	CO3
	b.	A heat engine receives half of its heat at 1000 K and the rest at 500 K while rejecting heat to a sink at 300 K. What is the maximum possible efficiency of this heat engine?	10	L3	CO3

BME304

		OR			
Q.6	a.	State and prove clausius inequality.	10	L1	COS
*	b.	A heat engine working on a Carnot cycle absorbs heat from three thermal	10	L3	COS
		reservoirs at 1000 K 800 K and 600 K respectively. The engine does 10			
		KW of net work and rejects 400 kJ/min of heat to the sink at 800 K, if heat			
		supplied by the reservoir at 1000 K 60% heat supplied by reservoir at			
		600 K. Find the quantifier of heat supplied by each reservoir.			
2		Module – 4			
Q.7	a.	Explain the concept of available and unavailable energy referred to a cycle.	10	L1	CO ⁴
	b.	In a steam generator, water evaporated at 260°C, while the combustion gas	10	L3	CO4
		$(C_P = 1.08 \text{ kJ/kg K})$ is cooled from 13000°C to 320°C. The surrounding are			
		at 30°C. Determine loss in energy available due to the above heat transfer			
		per kg of water evaporated (Latent heat of vaporization of water at $260^{\circ}C =$			
		1662.5 m ³ kgmole.			
		OR OR			
Q.8	a.	Sketch and explain throttling calorimeter.	10	L2	CO
Q.0	а. b.	A vessel of 0.04 m^3 contains a mixing of saturated water and saturated	10	L2 L3	CO ₄
	D.	steam at temperature of 240°C. The mass of the liquid is 8 kg. Find the	10	13	
		pressure, specific volume, enthalpy, entropy and internal energy. Module – 5			
0.0			10	L2	CO
Q.9	a.	Explain :	10		0.
		i) Vander Waal's equation of state			
		ii) Compressibility factor			
-	-	iii) Law of corresponding states.	10	т 2	CO
	b.	1 kg of CO ₂ has a volume of 0.86 m ³ at 120°C compute pressure using :	10	L3	COS
		i) Ideal gas equation	•		
		ii) Vander Waal's equation.			
		Take Vander Waal's constants for CO_2 a = 365.6 KNM ⁴ /kg mole and			
		$b = 0.0423 \text{ m}^3/\text{kg mole.}$			
-		OR	10		001
Q.10	a.	Discuss Maxwell's equations and Tds equation.	10	L2	COS
	b.	Volumetric analysis of a gaseous mixture yields the following results :	10	L3	COS
		$CO_2 = 12\%$, $O_2 = 4\%$, $N_2 = 82\%$, $CO = 2\%$.			
		Determine the analysis on mass basis, molecular weight and gas constant			
	à	for the mixture, assume ideal gas behavior.			
		Y			

		Ca			
		1 ST			
		4S			č
					5
		2 of 2			х х

USN

BME306A

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Electric and Hybrid Vehicle Technology

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	Μ	L	С	
Q.1	a.	Discuss the need of Electric and hybrid vehicles. List their advantages and	10	L1	CO1	
		limitations.				
	b.	Explain the basic architecture and types of EV and HV.	10	L2	CO1	
		OR				
Q.2	a.	Discuss the methods and technology used in disposal of batteries, cell,	10	L1	CO1	
		hazardous materials.				
	b.	Explain the impact on environment of conventional, EV, HEV.	10	L2	CO1	
		Module – 2				
Q.3	a.	Discuss the various power, energy management strategies and its general	10	L1	CO2	
		architecture in EV and HV.				
	b.	With a neat sketch, explain Fuel cells and their characteristics.	10	L2	CO2	
		OR	10	7.4	000	
Q.4	a.	Discuss briefly importance, advantages and application of super capacitors.	10	L1	CO2	
	b.	Discuss the various energy storage devices and also explain the selection	10	L1	CO2	
		criteria of them.			L	
		Module – 3	10	1.2	C02	
Q.5	a.	Explain various types of motors and size and selection criteria of them.	10	L2 L2	CO3 CO3	
	b.	Explain traction motors variable speed electric motor characteristics with a	10	LZ	COS	
neat sketch.						
0(Explain IPM motors and their characteristics.	10	L2	CO3	
Q.6	a.	Discuss the types of mechanical and electrical connections of motors.	10	L2	CO3	
	b.	Module – 4	10		005	
07		Sketch and explain rolling resistance and aero dynamic drag in electric	10	L2	CO4	
Q.7	a.	vehicles.	10		00.	
	b.	Discuss the design parameters of batteries ultra capacitors and Fuel cells.	10	L1	CO4	
	<u> </u>	OR OR			1	
Q.8	a.	Explain the total tractive effort, torque required, transmission efficiency of	10	L2	CO4	
2.0		the drive wheel.	-	79.1		
	b.	With a neat sketch, explain Lead-Ion batteries.	05	L2	CO4	
	c.	Explain major types of rechargeable in EV and HVE.	05	L2	CO4	
		Module – 5				
Q.9	a.	Define the term battery charging and termination. Name different methods	10	L1	CO5	
		of battery charging.				
	b.	Explain importance of power electronics converters for battery charging.	10	L2	CO5	
		OR		1	T	
Q.10	a.	Discuss the battery charging stations and its installation and	10	L1	CO5	
		commissioning.				
	b.	Discuss the domain related grid inter-connections of electric and hybrid	10	L1	CO5	
		vehicles.			ļ	