

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Mathematics – III for Computer Science Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. VTU Mathematics Hand Book is permitted. 3. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	a.	A random variable x has the following prob. density function for various	07	L2	C01
Q.1	a.	values of x.	•7		001
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		Find the value of k and evaluate $P(x < 6)$, $P(3 < x \le 6)$ and $(x \ge 6)$.			
	b.	Derive the mean and variance of Poisson distribution.	06	L2	CO2
	c.	In a certain town the duration of a shower is exponentially distributed with	07	L3	CO2
		mean 5 minutes. What is the probability that a shower will last for?			
		(i) less than 10 minutes (ii) more than 10 minutes and (iii) between 10			
		and 12 minutes.			
		OR	0=	TO	001
Q.2	a.	The probability density function of	07	L3	CO1
		$f(x) = \begin{cases} Kx^2, & -3 < x < 3\\ 0, & \text{elsewhere} \end{cases}$			
		0, elsewhere			
		Find the value of K and evaluate (i) $P(x < 2)$, $P(x > 1)$ (ii) $P(1 \le x \le 2)$			
	b.	When a coin is tossed 4 times, find the probability of getting (i) exactly	06	L2	CO2
		one head (ii) at least three heads and (iii) less than two heads.			
	c.	The marks of 1000 students in an examination follows a normal distribution	07	L2	CO2
		with mean > 0 and S.D 5. Find the number of students whose marks will be			
		(i) less than 65 (ii) more than 75 and (iii) between 65 and 75.			
		Module – 2			
		Module – 2	07	TA	CON
Q.3	a.,	If the joint probability distribution of x and y is given by	07	L2	CO2
		$f(x, y) = \frac{1}{30}(x + y), \text{ for } x = 0, 1, 2, 3 ; y = 0, 1, 2$ Find (i) $P(x \le 2, y = 1)$ (ii) $P(x > y)$			
		Find (1) $P(x \le 2, y = 1)$ (1) $P(x > y)$			8
	h	Find the unique fixed probability yester of	06	L2	CO3
	b .	Find the unique fixed probability vector of	00		005
		$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1/6 & 1/2 & 1/3 \\ 0 & 2/3 & 1/3 \end{bmatrix}$			
		0 2/3 1/3			
	c.	Three boys A, B and C are throwing a ball to each other. A always throw	07	L3	CO3
		the ball to B. B always throw the ball to A and C is just as likely to throw		×	
		the ball to A as to B. Find the probability that C has the ball after three			
		throws, if C starts the game.			

BCS/BAD/BAI/BDS301

 \sim

		OR			
Q.4	a.	Y -2 -1 4 5 Y -2 -1 4 5 1 0.1 0.2 0.0 0.3 2 0.2 0.1 0.1 0	07	L2	CO2
	b.	Show that the matrix $P = \begin{bmatrix} 0 & 0 & 1 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}$ is a regular stochastic matrix.	06	L2	CO3
	c.	A gambler's luck follows pattern. If he wins a game the prob. of winning the next game is 0.6. However, if he loses a game, the prob. of losing the next game is 0.7. There is an even chance of the gambler winning the first game. What is the prob. of he winning the second game.	07	L3	CO3
<u> </u>		$\frac{\text{Module} - 3}{\text{Module} - 3}$	07	L1	CO4
Q.5	a.	Define (i) Null hypothesis (ii) A statistic (iii) Standard error (iv) Level of significance (v) Test of significance.	0/	LI	04
	b.	A coin was tossed 400 times and head turned up 216 times. Test the hypothesis that the coin is unbiased at 5% LOS.	06	L3	CO4
	c.	In a city A 20% of a random sample of 900 school boys had a certain slight physical defect. In another city B, 18.5% of a random sample of 1600 school boys had the same defect. Is the difference between the proportions significant at 5% significance level?	07	L3	CO5
0 (OR 7	07	L1	CO4
Q.6	a.	Explain the following terms: (i) Type-I and Type-II errors (ii) Statistical hypothesis (iii) Critical region (iv) Alternate hypothesis	UĮ	LI	04
	b.		06	L2	CO5
	c.	One type of aircraft is found to develop engine trouble in 5 flights out of a total of 100 and another type in 7 flights out of a total of 200 flights. Is there a significance difference in the two types of aircrafts so far as engine defects are concerned? Test at 0.05 significance level.	07	L3	CO4
0 -		$\frac{\text{Module} - 4}{\text{Module} - 4}$	07	12	COA
Q.7	a.	State central limit theorem. Use the theorem to evaluate $P(50 < x < 56)$ where \bar{x} represents the mean of a random sample of size 100 from an infinite population with mean $\mu = 53$ and variance $\sigma^2 = 400$.	07	L2	CO4
	b.	Suppose that 10, 12, 16, 19 is a sample taken from a normal population with variance 6.25. Find 95% confidence interval for the population mean. Given that $Z(0.15) = 0.0596$.	06	L2	CO5
	c.	x01234f4193521545619	07	L3	CO5

BCS/BAD/BAI/BDS301

		O.D.			
0.0	1	OR C	0.5		COL
Q.8	a.	Height of a random sample of 50 college student showed a mean of	07	L2	CO4
		174.5 cms and a S.D 6.9 cms. Construct 99% confidence limits for the			
1000 CF		mean height of all college students.	0.6		COI
	b.	A random sample of 10 boys had the following I.Q : 70, 120, 110, 101, 88,	06	L3	CO5
		83, 95, 98, 107, 100. DO these data support the assumption of a			
		population mean I.Q of 100 (at 5% LOS)?			
	c.	The theory predicts the propositions of beans in the four groups, G_1 , G_2 ,	07	L3	CO5
		G_3 , G_4 should be in the ratio $9:3:3:1$. In experiment with 1600 beans			
		the numbers in the groups were 882, 313, 287 and 118. Does the			
		experimental support the theory.			
		Module – 5			
Q.9	a.	The varieties of wheat A, B, C were shown in four plots each and the	10	L3	CO6
		following yields in quintals per acre were obtained.		2	
		A 8 4 6 7			
		B 7 6 5 3	8		
		C 2 5 4 4			
		Test the significance of difference between the yields of varieties, given			
		that 5% tabulated value of $F = 4.26$ with (2, 9) d.f. Set up one-way			
		ANOVA and using direct method.			
	b.	Present your conclusion after doing ANOVA to the following results of the	10	L3	CO6
		Latin-square design conducted in respect of five fertilizers which were used			
		on plots of different fertility.			
		A(16) B(10) C(11) D(9) E(9)			
		E(10) C(9) A(14) B(12) D(11)			
		B(15) D(8) E(8) C(10) A(18)			
		D(12) E(6) B(13) A(13) C(12)			
		C(13) A(11) D(10) E(7) B(14)			
		OR			
Q.10	a.	Set up two-way ANOVA table for the data given below, using coding	10	L3	CO6
		method subtracting 40 from the given numbers.			
		Pieces of land Treatment			
		A B C D			
		P 45 40 38 37			
		Q 43 41 45 38			
	1	R 39 39 41 41			
		G			
	b.	There are three main brands of a certain power. A set of its 120 sales is	10	L3	CO6
		examined and found to be allocated among four groups (A, B, C, D) and			
		brands (I, II, III) as follows:			
		Brands Groups			
		A B C D			
		I 0 4 8 15			
		II 5 8 13 6			
		III 18 19 11 13			
		Is there any significant difference in brands preference? Answer at 5%			
		level, using one-way ANOVA. Take 10 as the code value to subtract it		¢	
		from all given values.			

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Digital Design and Computer Organization

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

	and the state of the				~
		Module 1	M	L	C
Q.1	a.	Determine the complement of the following function:	06	L3	CO 1
		(i) $F = xy' + x'y$ (ii) $F = x'yz' + x'y'z$			-
	b.	Describe map method for three variables.	04	L2	CO1
	c.	Apply K map technique to simplify the following function:	10	L3	CO1
		(i) $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$			
		(ii) $F(x, y, z) = x'y + yz' + y'z'$			
		OR			
Q.2	a.	Apply K map technique to simplify the function :	06	L3	CO1
		$F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ and $d(w, x, y, z) = \Sigma(0, 2, 5)$			
	b.	Determine all the prime implicants for the Boolean function F and also	10	L3	CO1
		determine which are essential $F(w, x, y, z) = \Sigma(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$			
	c.	Develop a verilog gate-level description of the circuit shown in Fig.Q2(c).	04	L3	CO1
		H			
		B G3			
		LAN EA			
		62 62			
		Fig.Q2(c)			
		Module – 2			
Q.3	a.	Explain the combinational circuit design procedure with code conversion	10	L2	CO2
		example.			
	b.	Design a full adder circuit. Also develop data flow verilog model for full	10	L3	CO2
		adder.			
des ett al la constante		OR			
Q.4	a.	Describe 4×1 MUX with block diagram and truth table. Also develop a	10	L2	CO2
		behavioral model verilog code for 4×1 MUX.			
	b.	What are storage elements? Explain the working of SR and D latch along	10	L2	CO2
		with logic diagram and function table.			
		Module – 3			
Q.5	a.	Explain the basic operational concepts between the processor and memory.	10	L2	CO3
	b.	Describe the following:	10	L2	CO3
		(i) Processor clock			
		(ii) Basic performance equation			
		(iii) Clock rate			
		(iv) SPEC rating			
		OR	1		1
Q.6	a.	Define addressing mode. Explain any four types of addressing mode with	10	L2	CO3
		example.			

			BC	S302
b.	Mention four types of operations to be performed by instructions in a computer. Explain the basic types of instruction formats to carry out. $C \leftarrow [A] + [B]$	10	L2	CO3
	Module – 4			L
Q.7 a.	With a neat diagram, explain the concept of accessing I/O devices.	10	L2	CO4
b.	What is bus arbitration? Explain centralized and distributed arbitration method with a neat diagram.	10	L2	CO4
	OR			
Q.8 a.	With neat sketches, explain various methods for handling multiple interrupts requests raised by multiple devices.	10	L2	CO 4
b.	What is cache memory? Explain any two mapping function of cache memory.	10	L2	CO4
· · ·	Module – 5			
Q.9 a.	Draw the single bus architecture and write the control sequence for execution of instruction ADD (R_3) , R_1 .	10	L3	CO5
b.	With suitable diagram, explain the concept of register transfer and fetching of word from memory.	10	L2	CO5
	OR			
Q.10 a.	With a neat diagram, explain the flow of 4-stage pipeline operation.	10	L2	CO5
b.	Explain the role of cache memory and pipeline performance.	10	L2	C05
	Stores to			

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Operating Systems

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	a.	Define Operating System. Explain dual mode of operating systems with a neat diagram.	06	L1 L2	CO1
	b.	Distinguish between the following terms: i) Multiprogramming and Multitasking ii) Multiprocessor and Clustered system	06	L2	CO1
	c.	Explain with a neat diagram VM-WARE Architecture.	08	L1 L2	CO1
		OR			
Q.2	a.	List and explain the services provided by OS for the user and efficient operation of system.	06	L2	CO1
	b.	Explain the different computing equipments.	06	L2	CO1
	c.	What are systems calls? List and explain the different types of systems calls.	08	L1 L2	CO1
		Module – 2			
Q.3	a.	What is process? Explain process state diagram and process control block with a neat diagram.	10	L1 L2	CO2
	b.	What is interprocess communication? Explain direct and indirect communication with respect to message passing system.	10	L1 L2	CO2
		OR			
Q.4	a.	List and explain the different types of multithreading models.	06	L1 L2	CO2
	b.	Calculate the average waiting time and average turnaround time by drawing the Gantt-chart using FCFS, SJF, RR (Q = 4ms) and priority scheduling (Higher Number is having highest priority). $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14	L3	CO2
	1	Module – 3			
Q.5	a.	What is critical section? Give the Peterson's solution to 2 processes critical section problem.	05	L1 L2	CO3
	b.	Explain Reader's and Writer's problem in detail.	07	L2	CO3
	c.	What is semaphore? Discuss the solution to the classical dinning philosopher problem.	08	L1 L2	CO3

BCS303

	b.	occur? Consider the following snap shot of the system. Process Allocation Max Available	14	L2	1
	D.			TO	000
		riocess Anocation Max Available	14	L3	CO2
		A B C A B C			
		$\frac{1}{P_0} \begin{array}{cccccccccccccccccccccccccccccccccccc$			
		P_1 2 0 0 3 2 2			
		P_2 3 0 2 9 0 2			
		P_3 2 1 1 2 2 2			
		$P_4 0 0 2 4 3 3$			
		Answer the following questions:			
		i) What is the content of the matrix need?			
		ii) Is the system on a safe state? If so, find safe sequence.			
		iii) If P_1 requirements for $(1, 0, 2)$ additional resources can P_1 be granted.			
		Module – 4			
Q.7	a.	What is paging? Explain with a neat diagram paging hardware with TLB.	10	L1	CO4
				L2	
	b.	Explain the different strategies used to select a free hole from available	05	L1	CO4
		holes.			
	c.	What is Fragmentation? List and explain its types.	05	L2	CO4
		OR			
Q.8	a.	What is page fault? With a neat diagram explain steps in handling page fault.	08	L2	CO4
	b.	Consider the page reference string for a memory with 3 frames determine	12	L3	CO4
		the number of page faults using FIFO, optimal and LRU replacement			
		algorithms. Which algorithms is more efficient?			
		7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1			
		Module – 5			
Q.9	a.	Define File. List and explain different file operations and file attributes.	10	L1	C05
	b .	Explain the different file allocation methods.	10	L2	C05
0.40		OR			
Q.10	a.	What is Access Matrix? Explain the implementation of Access Matrix.	10	L2	CO5
	Ŀ	A drive has 5000 all days 1 al 0 4 4000 The 1 i i i i	10	TA	00-
	b .	A drive has 5000 cylinders numbered 0 to 4999. The drive is currently	10	L3	CO5
		servicing at a request 143 and previously served a request at 125. The			
		queue of pending request in FIFO order.			
		86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130			
		starting from current head position. What is the total distance travelled			
		(in cylinders) by a disk arm to satisfy the request using			
		FCFS, SSTF, SCAN, LOOK and C-Look algorithm			
		* * * * *			ž.
		t-			
		.19			

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Data Structures and Applications

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	Μ	L	C
Q.1	a.	Define Data Structures. Explain the classification of data structures with a neat diagram.	8	L2	CO1
	b.	Write a C Functions to implement pop, push and display operations for stacks using assays.	7	L2	CO2
	c.	Differentiate structures and unions.	5	L2	CO1
		OR			•
Q.2	a.	Write an algorithm to evaluate a postfix expression and apply the same for the given postfix expression. 62/3-42*+.	7	L3	CO2
	b.	Explain the dynamic memory allocation function in detail.	8	L2	C01
	с.	What is Sparse matrix? Give the triplet form of a given matrix and find its transpose $A = \begin{bmatrix} 0 & 0 & 3 & 0 & 4 \\ 0 & 0 & 5 & 7 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 6 & 0 & 0 \end{bmatrix}$	5	L3	CO1
		Module – 2			
Q.3	a.	Define Queue. Discuss how to represent a queue using dynamic assays.	8	L2	CO2
	b.	Write a C Function to implement insertion (), deletion () and display () operations on circular queue.	6	L3	CO2
	c.	Write a note on Multiple stacks and queues with suitable diagram.	6	L2	CO2
	1	OR	T	1	1
Q.4	a.	What is a linked list? Explain the different types of linked list with neat diagram.	6	L2	CO3
	b.	 Write a C function for the following on singly linked list with example : i) Insert a node of the beginning ii) Delete a node at the front iii) Display. 	8	L3	CO3
	c.	Write the C function to add two polynomials.	6	L2	·CO3

BCS304

	,	Module – 3			1
Q.5	a.	Discuss how binary trees are represented using : i) Assay ii) Linked list.	6	L2	CO4
	b.	Define Threaded binary tree. Discuss In – threaded binary tree.	6	L2	CO4
	c.	Write the C function for the following additional list operation :i) Inverting Singly linked list ii) Concatenating Singly linked list.	8	L3	CO3
		OR			
Q.6	a.	Discuss Inorder, Preorder, Postorder and Level order traversal with suitable function for each.	8	L3	CO4
	b.	Define the threaded binary tree. Construct threaded binary tree for the following element : A, B, C, D, E, F, G, H, I.	6	L2	CO4
	c.	 Write a C function for the following : i) Insert a node at the beginning of doubly linked list. ii) Deleting a node at the end of the doubly linked list. 	6	L3	CO3
		Module – 4			
Q.7	a.	Define Forest, Transform the forest into a binary tree and traverse using inorder, preorder and postorder traversal with an example.	8	L1	CO5
	b.	Define Binary search tree. Construct a binary search tree for the following elements : 100, 85, 45, 55, 120, 20, 70, 90, 115, 65, 130, 145.	6	L2	CO5
	c.	Discuss Selection tree with an example.	6	L2	CO5
		OR			
Q.8	a.	Define Graph. Explain adjacency matrix and adjacency list representation with an example.	8	L2	CO5
10	b.	Define the following terminology with example : i) Digraph ii) Weighted graph iii) Self loop iv) Connected graph.	6	L2	CO5
	c.	Briefly explain about Elementary graph operations.	6	L3	CO5
		Module – 5			
Q.9	a.	Explain in detail about Static and Dynamic Hashing.	6	L2	CO5
	b.	What is Collision? What are the methods to resolve collision?	7	L2	CO5
	c.	Explain Priority queue with the help of an examples.	7	L2	CO5
Q.10	a.	OR Define Hashing. Explain different hashing functions with suitable examples.	12	L2	CO5
	b.	Write short note on : i) Leftist trees ii) Optimal binary search tree.	8	L3	CO5
		****			,
		2 of 2			

USN

BCS306A

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Object Oriented Programming with JAVA

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

Module – 1	M	L	C
Q.1 a. List and explain any three features of object oriented programm	ming. 6	L1	C01
b. What do you mean by type conversion and type casting? Give	examples. 8	L2	C01
c. How to declare and initialize 1-D and 2-D arrays in Java. Give	e examples. 6	L2	C01
OR	_		
Q.2 a. List the short circuit operators and show the concept using few	v examples. 4	L2	C01
b. With a java program, illustrate the use of ternary operator greatest of three numbers.	or to find the 6	L3	CO1
c. Develop a Java program to demonstrate the working of for ea for loop. Initialize the 2D array with values and print them using		L2	CO1
Module – 2			1
Q.3 a. Develop a program in Java to implement a stack of integers.	12	L3	CO2
b. What are constructors? Give the types and explain the constructors. Support with appropriate examples.	properties of 8	L2	CO2
OR			
Q.4 a. Illustrate with an example program to pass objects as argumen	nts. 10	L2	CO2
b. Explain different access specifies in Java with example progra	am. 10	L2	CO2
Module – 3			
Q.5 a. Define inheritance. List and explain different types of inheritance with code snippets.	itance in Java 10	L2	CO3
b. Compare and contrast between overloading and overriding example program for each.	in Java with 10	L2	CO3
OR			
Q.6 a. Analyze an interface in Java and list out the speed of an interface with the help of a program the importance of an interface.	face. Illustrate 10	L2	CO3
b. List the different uses of final and demonstrate each with snippets.	the of code 10	L2	CO3
1 of 2			1

		Module – 4		
Q. 7	a.	Module – 4 fine a package. Explain how to create user defined package with mple. 7 L2 C secuss about exception handling in Java. Give the framework of the seption handling block. List the types of exception. 8 L2 C velop a Java program to raise a custom exception for division by zero ng try, catch, throw and finally. 5 L3 C OR 0 0 10 L2 C mpare throw and throws keyword by providing suitable example of finally block. 5 L2 C orgram. 0 10 L2 C plain about the need for finally block. 5 L2 C scuss about chained exceptions. 5 L2 C Module – 5 10 L2 C fine thread. Demonstrate creation of multiple threads with a program. 10 L2 C plain the two ways in which Java threads can be instantiated. Support are explanation with a sample program. 10 L2 C or 0 0 10 L2 C plain the two ways in which Java threads can be instantiated. Support are explanation with a sample program. 10 L2 C or		
	b.	Discuss about exception handling in Java. Give the framework of the	8	L2
		exception handling block. List the types of exception.	defined package with7e the framework of the8ion for division by zero5iding suitable example1055reads with a program.10be instantiated. Support10) and valueof().101010	
	c.	Develop a Java program to raise a custom exception for division by zero using try catch throw and finally	5	L3
0.0	1		ocreateuserdefinedpackagewith7L2CinJava.Give the framework of the pes of exception.8L2Ccustomexception5L3Ccustomexception for division by zero5L3COR	
Q.8 Q.9 Q.10	a.	program.	10	L2
	b.	Explain about the need for finally block.	5	L2
	c.	Discuss about chained exceptions.	5	L2
		Module – 5	with 7 L2 the 8 L2 the 5 L3 nple 10 L2 5 L2 5 L2 5 L2 10 L2 port 10 L2 10 L2 10 L2 10 L2 10 L2 10 L2 10 L2	
Q.9	a.	Define thread. Demonstrate creation of multiple threads with a program.	10	L2
	b.	Explain the two ways in which Java threads can be instantiated. Support your explanation with a sample program.	10	L2
Q.10	a.	What is enumeration? Explain the methods values() and valueof().	10	
	b.	Explain about type wrappers and auto boxing.	10	L2

			2	
,				
,				
		BARANDA CONTRACTOR		
		And And As a fer a		
		to to the to the to		
		And About Sont Sont Sont Sont Sont Sont Sont Son		
		Ala Ala Contractor		
		2 of 2		
		2 of 2		