USN

BCS401

Fourth Semester B.E./B.Tech. Degree Supplementary Examination, June/July 2024

CBCS SCHEME

Analysis and Design of Algorithms

Time: 3 hrs.

Ĉa

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

dia

		Module – 1	Μ	L	C
Q.1	a.	What is Algorithm? And List the important points to be considered in designing of algorithms.	4	L1	CO1
	b.	Develop a recursive algorithm for computing factorial of a positive number.	6	L3	CO1
		Calculate the efficiency in terms of order of growth.			
	c.	Develop a linear search algorithm and calculate the best-case, worse-case	10	L3	C01
		and average-case efficiency in terms of order of growth.			
		OR			Gat
Q.2	a.	Write the block diagram of algorithm design and analysis process and	6	L1	C01
		define the following notations i) Big-oh(O) ii) Big-Theta (θ).			
	b.	Calculate and compare the orders of growth of the following:	9	L3	CO1
		i) $\log_2 n$ and \sqrt{n}			
		$1 n(n-1)$ and $n^2 1$			
		ii) $\frac{1}{2}n(n-1)$ and n^2			
		iii) n! and 2^n			
		6 3 19	÷		
	c.	Make use of the definition of asymptotic notation to prove the following:	5	L3	CO1
		if $t_1(n) \in O(g_1(n))$ and		*	
		$t_2(n) \in O(g_2(n))$, then			
		$t_1(n) + t_2(n) \in O (\max \{g_1(n), g_2(n)\}).$			
		Module – 2	1		T
Q.3	a.	Define exhaustive search algorithm design strategy. Develop a algorithm	10	L3	CO2
	11	for sorting of keys using quicksort technique and calculate the efficiency of		•	
		algorithm.			
	×				
	b.	Distinguish between decrease and conquer and divide and conquer	10	L3	CO2
		algorithm design technique. Develop the insertion sort algorithm to sort a		1	
		list of integers and calculate its efficiency.	*	1	
		OP.		· ·	
0.1		OR Define master theorem. Show how Strassen's matrix multiplication reduce	10	L3	CO2
Q.4	a.	the number of multiplications in multiplying $n \times n$ matrices and calculate	10	13	02
		the efficiency.			
		the efficiency.			
		A part of the second seco	L		
		1 of 3			
		1015			6
L		17			
		H			
	L.				

	h				
	b.	Define topological sorting. Develop a merge sort algorithm to sort the elements.	10	L3	CO2
		Module – 3			
Q.5	a.	Define AVL tree with an example. Build 2-3 tree for the list of keys : 9, 5, 8, 3, 2, 4, 7 by indicating each step of key insertion and node splits.	10	L3	CO3
	b.	Develop a comparison counting sort algorithm and demonstrate it for the following test of keys: 62, 31, 84, 96, 19, 47.	10	L3	CO3
		OR			
Q.6	a.	What is Heap tree? Develop the bottom-up-heap construction algorithm. Construct the heap tree for the list 2, 9, 7, 6, 5, 8 and demonstrate the heap sort algorithm.	10	L3	CO3
	b.	Develop the Horspool's String Matching algorithm and demonstrate to search the pattern string: "BARBER" in the text string: "JIM_SAW_ME_IN_A_BARBER_SHOP" by using Horspool's algorithm.	10	L3	CO3
		Module – 4			
Q.7	a.	Define transitive closure of directed graph. Develop the Warshell algorithm to compute the transitive closure and demonstrate with a suitable example. Prove that the time efficiency of Warshall's algorithm is cubic.	10	L3	CO4
	b.	Define spanning tree. Apply prims algorithm and construct minimum spanning tree for the following graph:	10	L3	CO4
		OR			
Q.8	a.	Develop the Floyd's algorithm to compute all pair-shortest-paths and demonstrate it for the following graph. Show that the time efficiency of Floyd's algorithm is cubic. 2 3 4 4 4 4 4 4 4 4 4 4	10	L3	CO4
	b.	Apply Dijkstra's algorithm to compute single source shortest path for the following graph by considering 'a' as the source vertex.	10	L3	CO4
		2 of 3			Ŷ.
		2015			

BCS401

	T	Module – 5			
Q.9	a.	Explain the decision tree for the 3-element insertion sort with diagram.	10	L2	CO
	b.	Explain subset-sum problem and construct the state space tree for the set $S = \{3, 5, 6, 7\}$.	10	L3	CO
Q.10	0	OR Explain the following with an example:	10	L2	CO
Q.10	a.	i) P problem ii) NP problem	10	LZ	
		iii) NP complete problem iv) NH hard problem.		÷	
			10	1.2	00
	b.	Apply Branch and Bound algorithm to solve the below instance of knapsack problem:	10	L3	CO
		Item Weight Value			
		2 7 42			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

		CI IN IS			
		6	*		
		oto ARRA to to			
	C				
þ	1				
	Y				
		orton ton ton ton ton ton ton ton			
		ar to		a.	
		2 to the			
		21 + For For		÷	
		at the the			
		At the the			
		3 of 3			
		3 of 3			
		so the solution of the solutio			

Co

Computer Graphics and Visualization

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	M	T.	С
0.1		Explain co-ordinate reference frames in openGL.	10	L2	C01
Q.1	a.				
	b.	Explain Bresenhnam's line drawing algorithm, with an example.	10	L2	C01
	11	OR ()			
Q.2	a.	Explain openGL line functions and point functions.	10	L2	CO1
Q.2	a.				
	b.	Explain openGL vertex arrays with neat diagram.	10	L2	C01
		Module – 2			
Q.3	a.	Explain basic 2D geometric transformations.	10	L2	CO2
	b.	Explain 3D geometric transformations.	10	L2	CO2
angga sinte sinte sinte		OR CA			
Q.4	a.	Explain in detail homogeneous coordinate system with matrix representation in 2D.	10	L2	CO2
	b.	Write a openGL program to create and rotate a triangle about origin and a fixed point.	10	L3	CO2
		Module – 3			1
Q.5	a.	Explain input functions used for the graphical data.	10	L2	CO3
	b.	Explain in detail design animation sequence.	10	L2	CO3
		OR	10	TO	CO
Q.6	a.	Explain the steps used for designing a graphical user interface.	10	L2	CO:
	b.	Explain : i) Traditional Animation techniques ii) Character Animation	10	L2	CO
	1	Con Module – 4			
Q.7	a.	Explain the techniques used for normalization and viewport transformations.	10	L2	CO
	b.	Explain RGB and CMY color models.	10	L2	CO
		1 of 2	0	I	6

BCG402

		OR			
Q.8	a.	Explain cohen Sutherland line clipping algorithm with example.	10	L3	CO4
	b.	Explain the different ways of light sources.	10	L2	CO4
		Module – 5			
Q.9	a.	Explain with help of figure three dimensional viewing pipeline.	10	L3	CO5
	b.	Explain any two ways of perspective projections.	2 10	L2	CO5
		OR			
Q.10	a.	Explain the different concepts used for three dimensional viewing.	10	L2	CO5
	b.	Explain in detail Depth-Buffer method.	10	L3	CO5
	Ş	2 of 2			

Database Management System

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	What is DBMS? List the characteristics of database approach. Bring out major advantages of the database approach.	8	L2	CO1
	b.	Explain data independence. Draw 3 schema architecture and discuss the mapping.	7	L2	CO1
	c.	Define following : i) Database Administrator ii) Canned transaction iii) Weak entity iv) Meta data v) Database Instance.	5	L2	CO1
		OR			
Q.2	a.	Describe components modules of DBMS and its interaction with neat diagram.	8	L2	CO1
	b.	Draw ER diagram of library database schema atleast 4 entities. Also specify primary keys, structural constraints and explain.	8	L3	CO2
	c.	Briefly discuss different types of end users of Database.	4	L2	CO2
		Module – 2			
Q.3	а.	Briefly explain different types of update operation on relation database. Show an example of violation of referential and entity integrity in each of update operation.	10	L2	CO3
	b.	 Consider following schema : Suppliers (SID, SName, address) Parts (PID, PName, Colour) Catalog (Sid, PID, Price) Write relational algebra expression for following queries : i) Find the names of all red parts. ii) Find all prices for parts that were red or green. iii) Find the SID's of all suppliers who supply part that is red or green. iv) Find the SID's of all supplier who supply part that is red and green. 	10	L3	CO2
		OR			
Q.4	a.	Describe the steps of $ER - to - relational$ mapping with suitable examples and schema for each step.	10	L2	CO2
	b.	Explain with example : i)Division operation ii)Full outer joiniii)Aggregate functioniv)Project operationv)product.	10	L2	CO2

BCS403

100 m

Q.5	a.	What is the need for normalization? Explain 2 nd normal form. Consider	10	L3	CO4
		the relation EMP $PROJ = \{SSn, Pnumber, Hours, Ename, Pname, \}$			
		Plocation}. Assume {SSn, Pnumber} as a primary key. The dependencies			
		are			
		SSn; Pnumber \rightarrow {Hours}			
		$SSn \rightarrow \{Ename\}$			
		Pnumber \rightarrow {Pname, Plocation},			
		Normalize above relation into 2NF.			
	b.	Illustrate the informal design guidelines for relation schemes with	10	L2	CO4
		examples.			
	1	OR	10		~~~
Q.6	a.	Write syntax with example in SQL for the DDL and DML SQL	10	L2	CO3
		statements.			
	h	Consider the schema for college database.	10	L3	CO3
	b.	Student (USN, Sname, Address, Phone, Gender)	10	LS	CUS
		SemSec (SSID, Sem, Sec)			
		Class (USN, SSID)			
		Subject (Subcode, Title, Sem, Credits)			
		IAmarks (USN, Subcode, SSID, Test1, Test2, Test3, Final IA)			
		Write SQL Query.			
		i) List all the students studying in 4 th sem 'C' section.			
		ii) Compute total number of male students in each semester.			
		iii) List Test1 marks of all students in all subjects.			
		Module – 4			
Q.7	a.	How are triggers and assertion defined in SQL? Explain with example.	10	L2	CO4
	h	Write the syntax and example of view in SOL Explain officient view	10		COA
	b.	Write the syntax and example of view in SQL. Explain efficient view	10	L2	CO4
	b.	Write the syntax and example of view in SQL. Explain efficient view implementation.	10		CO4
	b.	implementation	10		CO4
0.8		implementation.		L2	
Q.8	b. a.	implementation. OR List the problems that occur during concurrency control and also explain	10 10		CO4
Q.8		implementation.		L2	
Q.8	a.	implementation. OR List the problems that occur during concurrency control and also explain		L2	CO5
Q.8	a.	implementation. OR List the problems that occur during concurrency control and also explain them with supporting transaction diagrams.	10	L2 L2	CO5
Q.8	a.	implementation. OR List the problems that occur during concurrency control and also explain them with supporting transaction diagrams. Explain the various DBMS – Specific Buffer replacement policies. Module – 5	10	L2 L2	CO5
	a.	implementation. OR List the problems that occur during concurrency control and also explain them with supporting transaction diagrams. Explain the various DBMS – Specific Buffer replacement policies. <u>Module – 5</u> Demonstrate with example deadlock in transaction. Discuss deadlock	10	L2 L2	C05
	a.	implementation. OR List the problems that occur during concurrency control and also explain them with supporting transaction diagrams. Explain the various DBMS – Specific Buffer replacement policies. Module – 5	10 10	L2 L2 L2	C05
	a.	implementation. OR List the problems that occur during concurrency control and also explain them with supporting transaction diagrams. Explain the various DBMS – Specific Buffer replacement policies. <u>Module – 5</u> Demonstrate with example deadlock in transaction. Discuss deadlock prevention algorithm.	10 10	L2 L2 L2 L2	CO5 CO5 CO5
Q.8 Q.9	a.	implementation. OR List the problems that occur during concurrency control and also explain them with supporting transaction diagrams. Explain the various DBMS – Specific Buffer replacement policies. <u>Module – 5</u> Demonstrate with example deadlock in transaction. Discuss deadlock prevention algorithm. What are Binary locks? Explain with Lock and unlock operations with	10 10	L2 L2 L2	
	a. b. a.	implementation. OR List the problems that occur during concurrency control and also explain them with supporting transaction diagrams. Explain the various DBMS – Specific Buffer replacement policies. <u>Module – 5</u> Demonstrate with example deadlock in transaction. Discuss deadlock prevention algorithm.	10 10 10	L2 L2 L2 L2	CO5 CO5 CO5
	a. b. a.	implementation. OR List the problems that occur during concurrency control and also explain them with supporting transaction diagrams. Explain the various DBMS – Specific Buffer replacement policies. Module – 5 Demonstrate with example deadlock in transaction. Discuss deadlock prevention algorithm. What are Binary locks? Explain with Lock and unlock operations with algorithm.	10 10 10	L2 L2 L2 L2	CO5 CO5 CO5
Q.9	a. b. a. b.	implementation. OR List the problems that occur during concurrency control and also explain them with supporting transaction diagrams. Explain the various DBMS – Specific Buffer replacement policies. Module – 5 Demonstrate with example deadlock in transaction. Discuss deadlock prevention algorithm. What are Binary locks? Explain with Lock and unlock operations with algorithm. OR	10 10 10	L2 L2 L2 L2 L2	C05 C05 C05
Q.9	a. b. a. b.	implementation. OR List the problems that occur during concurrency control and also explain them with supporting transaction diagrams. Explain the various DBMS – Specific Buffer replacement policies. Module – 5 Demonstrate with example deadlock in transaction. Discuss deadlock prevention algorithm. What are Binary locks? Explain with Lock and unlock operations with algorithm. OR ite a short note on :	10 10 10	L2 L2 L2 L2	C05 C05 C05
Q.9	a. b. a. b. Wr. i)	implementation. OR List the problems that occur during concurrency control and also explain them with supporting transaction diagrams. Explain the various DBMS – Specific Buffer replacement policies. Module – 5 Demonstrate with example deadlock in transaction. Discuss deadlock prevention algorithm. What are Binary locks? Explain with Lock and unlock operations with algorithm. OR ite a short note on : Properties of NOSQL system ii) The CAP theorem	10 10 10	L2 L2 L2 L2 L2	CO5 CO5 CO5
	a. b. a. b. Wr. i)	implementation. OR List the problems that occur during concurrency control and also explain them with supporting transaction diagrams. Explain the various DBMS – Specific Buffer replacement policies. Module – 5 Demonstrate with example deadlock in transaction. Discuss deadlock prevention algorithm. What are Binary locks? Explain with Lock and unlock operations with algorithm. OR ite a short note on :	10 10 10	L2 L2 L2 L2 L2	C((C((

2 of 2

Discrete Mathematical Structures

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

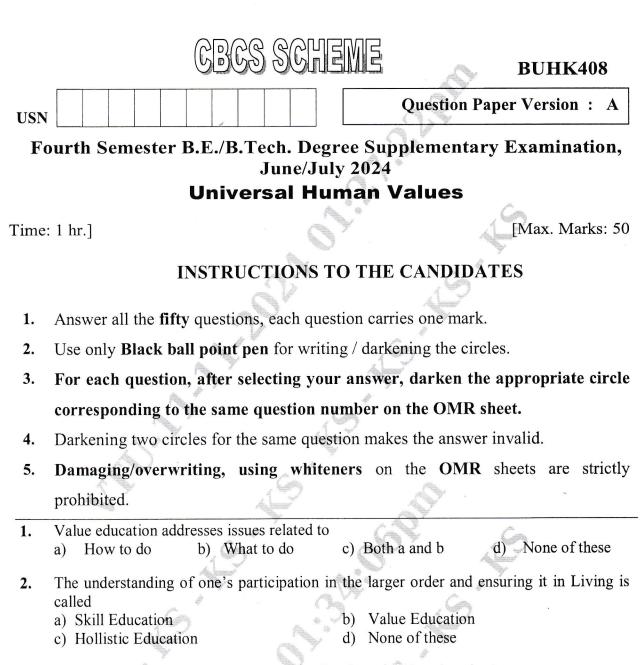
		Module – 1	Μ	L	С
Q.1	a.	Define Tautology. Show that $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$ is a tautology by constructing the truth table.	6	L1	CO1
	b.	Prove the following using the laws of logic: $P \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$	7	L2	CO1
	c.	Give i) Direct proof ii) indirect proof iii) proof by contradiction for the following statement: "If n is an odd integer then $n + 9$ is an even integer".	7	L3	CO1
		OR			~~ 1
Q.2	а.	Test whether the following arguments are valid: $p \rightarrow q$ $r \rightarrow s$ $\sim q \lor \sim s$ $\therefore \sim (p \land r)$	6	L2	CO1
	b.	 Write the following argument in symbolic form and then establish the validity. If a triangle has two equal sides, then it is isosceles. If a triangle is isosceles, then it has two equal angles. The triangle ABC does not have two equal angles. ∴ ABC does not have two equal sides. 	7	L1	CO1
	с.	For the following statements, the universe comprises all non-zero integers. Determine the truth value of each statement: i) $\exists x \exists y [xy = 1]$ ii) $\exists x \forall y [xy = 1]$ iii) $\forall x \exists y [xy = 1]$ iv) $\exists x \exists y [(2x + y = 5) \land (x - 3y = -8)]$ v) $\exists x \exists y [(3x - y = 7) \land (2x + 4y = 3)]$	7	L2	CO1
		Module – 2			0.00
Q.3	a.	Prove that $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 =$ $\frac{n(2n+1)(2n-1)}{3}$ by mathematical Induction.	6	L2	CO2
		1 of 3			7

				BCS ²	105A
	b.	Prove that every positive integer $n \ge 24$ can be written as a sum of 5's and / or 7's.	7	L3	CO2
	c.	Obtain a recursive definition for the sequence $\{a_n\}$ in each of the following cases: i) $a_n = 5n$ ii) $a_n = 3n + 7$ iii) $a_n = 2 - (-1)^n$	7	L3	C02
		OR	6	L2	CO2
Q.4	a.	Prove that for any positive integer n , $\sum_{i=1}^{n} \frac{F_{i-1}}{2^{i}} = 1 - \frac{F_{n+2}}{2^{n}}$, F_{n} denote the fibonacci number.	0	1.2	02
	b.	 How many arrangement are there for all the letters in the word "SOCIOLOGICAL". In how many of these arrangements. i) A and G are adjacent ii) All vowels are adjacent. 	7	L2	CO2
×	c.	Determine the coefficient of $a^2b^3c^2d^5$ in the expansion of $(a + 2b - 3c + 2d + 5)^{16}$.	7	L2	CO2
Q.5	a.	$\frac{Module - 3}{Let A = \{1, 2, 3, 4, 6\} and R be a relation on A defined by a^R b if and only if "a is a multiple of b". Write down the relation R, relation matrix M(R) and draw its digraph. List out its indegree and out degree.$	6	L2	CO3
	b.	Let f and g be functions from R to R defined by $f(x) = ax + b$ and $g(x) = 1 - x + x^2$. If (gof) (x) = $9x^2 - 9x + 3$ determine a and b.	7	L3	CO3
	c.	State Pigeon hole principle. Show that if $n + 1$ numbers are chosen from 1 to 2n then at least one pair add to $2n + 1$.	7	L2	CO3
Q.6	a.	OR Let $f : R \to R$ be defined by $f(x) = \begin{cases} 3x - 5, \text{if } x > 0\\ 1 - 3x, \text{if } x \le 0 \end{cases}$ find f(-1), f(5/3), $f^{1}(0), f^{1}(-3), f^{1}([-5, 5]) \text{ and } f^{1}([-6, 5]).$	6	L1	CO3
	b.	Let f, g, h be functions from Z to Z defined by $f(x) = x - 1$, $g(x) = 3x$, $h(x) = \begin{cases} 0, \text{if } x \text{ is even} \\ 1, \text{if } x \text{ is odd} \end{cases}$ Determine (fo(goh)) (x), ((fog)oh)(x) and verify that fo(goh) = (fog)oh.	7	L2	CO3
	c.	Draw the Hasse (POSET) diagram which represents positive divisors of 36.	7	L2	CO:
Q.7	a.	Module – 4In how many ways 5 number of a's, 4 number of b's and 3 number of c's, can be arranged so that all the identical letters are not in a single block.	6	L3	CO
		2 of 3			E

				BCS	405A
× *	b.	Four persons P_1 , P_2 , P_3 , P_4 who arrive late for a dinner party find that only one chair at each of five tables T_1 , T_2 , T_3 , T_4 and T_5 is vacant. P_1 will not sit at T_1 or T_2 , P_2 will not sit at T_2 , P_3 will not sit at T_3 or T_4 and P_4 will not sit at T_4 or T_5 . Find the number of ways they can occupy the vacant chairs.	7	L2	CO4
	c.	Solve the recurrence relation $a_n = na_{n-1}$ where $n \ge 1$ and $a_0 = 1$.	7	L2	CO4
	L	OR A		2	
Q.8	a.	In how many ways can the 26 letters of the English alphabet be permuted so that none of the patterns CAR, DOG, PUN or BYTE occurs?	6	L2	CO4
	b.	Find the rook polynomial for the 3 * 3 board by using the expansion formula.	7	L2	CO4
	c.	Solve the recurrence relation $F_{n+2} = F_{n+1} + F_n$ where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$.	7	L2	CO4
		Module – 5			
Q.9	a.	Define Group. Show that fourth roots of unity is an abelian group under \otimes .	6	L2	CO5
	b.	Define Klein 4 group. Verify $A = \{1, 3, 5, 7\}$ is a Klein 4 group under \otimes_{8} .	7	L2	CO
	c.	State and prove Lagrange's theorem.	7	L2	COS
Q.10	a.	OR If H, K are subgroups of a group G, prove that $H \cap K$ is also a subgroup of G. Is $H \cup K$ a subgroup of G?	6.	L2	COS
,	b.	Define cyclic group and show that $(G, *)$ whose multiplication table is as given below is cyclic. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L2	COS
	c.	Prove that the only left coset of a subgroup H of a group G which is also a subgroup of G is H itself.	7	L2	CO
		***** 3 of 3			,

4 -

Biology for Engineers (CSE)


Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	a.	Explain the structure and function of power house of cell and Endoplasmic	10	L2	CO1
		reticulum with neat diagram.			
	b .	What are stem cells? Explain the properties classification and application of	10	L1	CO1
		stem cells.	č.		
				-	
	T	OR	10		994
Q.2	a.	Explain the structures properties and function of nucleic acid focusing on	10	L2	CO1
		DNA.			
	-		10	T 1	001
	b.	Define Vitamins. Explain the properties, function, source and deficiency of	10	L1	CO1
		vitamins.			
0.2	1	$\frac{Module - 2}{Module - 2}$	10	L2	CO2
Q.3	a.	Illustrate the steps involved in biodiesel production. Add a note principle	10	LZ	02
		and limitation of biodiesel.			
	b.	Develop the protocol for PLA polymer synthesis. Add a note on	10	L3	CO2
	0.	engineering application of PLA.	10	LJ	002
		engineering application of LEX.			
	1	OR			
Q.4	a.	Define Biosensor. Outline the principle, working and application of enzyme	10	L2	CO2
v		in glucose biosensor.			
	b.	Construct the procedure for the production of RNA vaccines against	10	L3	CO2
		Covid-19. Add a note on how RNA vaccines different from DNA vaccines.			
	1				
	1	Module -3			
Q.5	a.	Compare and contract brain as CPU system and eye as a camera.	10	L2	CO3
	b.	Explain the mechanism of filtration in Human Kidney.	10	L2	CO3
		OR			
Q.6	a.	Write in detail Heart Lung Machine.	10	L2	CO3
		23			
	b.	Explain how lung act as purification system. Add a note on principle and	10	L2	CO3
		working of spirometry as a diagnostic tool for assessing lung function.			
2.0		1 of 2			/

				BBO	C40
		Module – 4			
Q.7	a.	Apply the concept of bioecholocation in the field of Navigation and detection. Write the principle, working and instrumentation and application of the technique.	10	L3	CO
	b.	HBOCs and PFCs act as human blood substitutes. Explain.	10	L4	CO
	L	OR A CA	L	I	I
Q.8	a.	Identify and explain the process, application of technique involved in conversion of light energy into electric energy.	10	L3	CC
	b.	Velcro and friction less swimsuits are the nature bioinspired material. Explain the principle and engineering application of the technology.	10	L4	CC
Q.9	a.	Module – 5 Apply the process of biomining via microbial surface adsorption for the removal of heavy metals.	10	L3	CC
	b.	Analyze the principle, working and instrumentation of e-tongue, highlighting its application in food and beverage industries.	10	L4	CC
		OR			
Q.10	a.		10	L3	CC
QIII		application of 3D skin.		10	
	b.	Bio imaging and artificial intelligence technique plays important role in disease diagnosis. Explain the concept and add a note on its limitation.	10	L4	CC

		Develop the steps for 3D printing of skin. Highlight on materials used and application of 3D skin. Bio imaging and artificial intelligence technique plays important role in disease diagnosis. Explain the concept and add a note on its limitation.			

- 3. Which among the statement is not an implication of self exploration?
 - a) Knowing oneself
- b) Knowing Human conduct
- c) Process of self evolution d) Not being in harmony within
- 4. Right understanding can be recognized witha) It is assuringb) It is satisfyingc) Its Universald) All of these
- 5. Which of the following is NOT a component of fulfilling human aspirations?
 - a) Right understanding
 - b) Accumulating material wealth
 - c) Relationship and harmony
 - d) Physical facility
- 6. Holistic development involves the transformation from
 - a) Human consciousness to Animal consciousness
 - b) Ignorance to knowledge
 - c) Animal consciousness to Human consciousness
 - d) Materialism to Spirituality

7. The purpose of value education is to a) Foster universal core values b) Make the syllabus easy d) Both a and c c) Develop values in individuals 8. The continuity of prosperity can be ensured only if our production system is in harmony with the c) World a) Individual b) Society d) Nature Self exploration uses two mechanism - Natural Acceptance and 9. a) Experimental validation b) Reason c) Logical thinking d) Theoretical concepts **10.** Right understanding + Physical facilities in Human being a) Mutual property b) Mutual happiness c) Mutual fulfillment d) Mutual benefit 11. What Quality is the significance of relationship building in value education? a) Relationships are a distraction and hinder individual growth b) Relationships are solely based on material benefits c) Healthy relationships promote emotional well – being and empathy d) None of these 12. Beside physical facilities Human beings want c) Relationship d) None of these a) Name b) Fame 13. Which of the characteristics does not relate to self? a) Qualitative b) Continuous c) Temporary **Ouantitative** d) 14. Which of the response is common to both Self and Body? b) Accepting a) Knowing d) Assuming c) Recognizing 15. Activities like desiring, thinking, imaginary are of the a) I b) Body c) Self d) Me 16. How are the needs of the body and self distinguished? a) They are the same b) They are unrelated c) They must be fulfilled simultaneously d) They need to be fulfilled separately 17. What term is used to describe the activities of desire, thought and expectation collectively? a) Imagination b) Intuition c) Reality d) Instinct 18. What is the relationship between the Body and Self? a) Body dominates the self b) Self dominates body c) Body is an instrument of the self d) Body and self are separate entities **19.** What ensures harmony between the Self and Body? a) Competition b) Self regulation and health c) Ignoring bodily needs d) Constant desire fulfillment

BUHK408

				As.		
20.	There is an exchange ofa) Foodb)			body. Air	d)	Information
21.	What amongst the option a) Seer b)	is not said by the c Doer		ciousness? Experiencer	d)	Protector
22.	Sah – Astitva meansa) Co-existenceb)	Co-operation	c)	Co-option	d)	Corporate identity
23.	Harmony in the self is aca) Material possessionc) Social Norms	hieved when imagin		on is aligned with Natural Acceptanc Random Ideas	e	την 19
24.	Acceptance of excellence a) Reverence b)	e in others is called Gratitude	c)	Guidance	d)	Glory
25.	What is activity of the po a) Imaging b)	ower "Expectation" Analysing	? c)	Selecting/Testing	d)	Distributing
26.	Living on the basis of pro a) Enslaved b)	econditioning or ser Self organized			d)	Svantrata
27.	Which values serves as t a) Trust b)	he foundational pill Ambition		f a strong relationsh Competition		n the Family? Material wealth
28.	Which one is known as F a) Material order b)	Pranic order? Plant/Bio order	c)	Human order	d)	Animal order
29.	 How does harmony in the family contribute to a healthy society? a) It promotes competition and rivalry among family members b) It fosters a sense of co-operation and stability in the community c) It isolates individuals from society d) It encourages a disregard for societal norms. 					
30.	There is among all a) Recyclability c) Inter connectedness		b) d)	Justice Conformance		
31.	Which one is limited in s a) Space b)	ize? Values	c)	Unit	d)	All of these
32.	The basis for movement a) Animal order b)	of all animal , birds Material order		d fishes is provided Plant/Bio order		Human order
33.	 The activity in Human of a) Composition / Decord b) Composition / Decord c) (Composition / Decord d) (Composition / Decord in I and need for read 	nposition nposition + Respira mposition , Respira mposition , Respira	tion tior	a) in body + Selection b) in Body + (Select		

Ģ

÷

- 34. The relationship across all 3 order are in the order of
 - a) Material order, Plant / Bio order, Animal order
 - b) Plant/Bio order, Animal order, Human order
 - c) Animal order, Plant / Bio order, Human order
 - d) Human order, Plant / Bio order, Animal order
- **35.** Right utilization of one's professional skills towards the fulfillment comprehensive human goals and thus meaningfully participate in the larger order refers to
 - a) Profession

b) Unprofessional

c) Unethical conduct

- d) Ethical conduct of profession
- 36. What is the basis of mutual fulfillment among the 4 orders of nature?
 - a) Dominance and control
 - b) Competition for resources
 - c) Right utilization and understanding
 - d) Indifference towards other orders
- **37.** Competence in Professional ethics needs.
 - a) Clarity about comprehensive Human goals
 - b) Confidence in oneself as well as in the harmony, Co-existence, Self-regulation
 - c) Competence of mutual fulfilling behavior
 - d) All of these
- **38.** Developing _____ in the individuals (professionals) is the only effective way to ensure professional ethics.
 - a) Ethics b) Professional c) Competence d) Ethical competence
- **39.** Broad holistic criteria of evaluation of technology is/are
 - a) Catering to appropriate needs and lifestyles
 - b) People friendly
 - c) Eco friendly

d) All of these

- 40. What doe profession imply in relation to the larger order?
 - a) Isolation from society and nature
 - b) Participation in the comprehensive Human goal
 - c) Maximization of personal benefits
 - d) Pursuit of economic profits.
- 41. What is the main emphasis of holistic development?
 - a) Economic prosperity
 - b) Spiritual enlightenment
 - c) Scientific enlightenment
 - d) Shift from inhuman to humane society
- **42.** How can the urgency of the transformation be addressed?
 - a) Ignoring the need for change
 - b) Introducing punitive measures
 - c) Implementing mass scale value education
 - d) Focusing solely on technological advancements.

- 43. What is the role of value competence in ethical professional conduct?
 - a) Promoting competition
 - b) Aligning actions with societal norms
 - c) Guiding actions with comprehensive human goals
 - d) Focusing on personal achievements.
- 44. The concept of :Humanistic Constitution" in professional ethic refers to
 - a) A set of rigid rules and regulations for professional conduct
 - b) Neglecting the well being of individuals in the workplace
 - c) Ignoring the impact of ethical decisions on society
 - d) Recognizing the importance of Human values and dignity in professional settings.
- 45. What is the basis for ethical Human conduct?
 - a) Definiteness of values and character
- b) Fear of punishment
- c) Economic motives

d) Social pressure

- 46. What is the role of R & D in the context of holistic technologies and systems?a) Promote profit maximization
 - b) Focus on individual success
 - b) Focus on marviadal succes
 - c) Encourage competition
 - d) Develop systems aligned with right understanding.
- 47. What should professionals be sensitive towards in their interactions?
 - a) Individual success
- b) Mutual enrichmentd) Financial gain
- c) Technological advancements
- **48.** What is the main driver behind unethical practices in professions?
 - a) Lack of technological advancement
 - b) Neglecting comprehensive human goal
 - c) Societal pressure
 - d) Personal satisfaction

49. ______ is called foundation value.

- a) Respect b) Affection
- c) Love

d) Trust

- 50. Feeling for those who have made effort for excellence isa) Excellenceb) Reverencec) Glory
- d) None of these