


Third Semester B.E./B.Tech. Degree Supplementary Examination, June/July 2024 Mechanics of Materials

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	a.	Describe with a neat sketch, stress-strain diagram of mild steel and cast iron	05	L1	CO1
		indicating salient points.			
	b.	State Hooke's law and determine an expression for shortening/extension of	05	L2	CO1
		bar.			
	c.	The tensile test was conducted on a mild steel bar. The following data was	10	L3	CO1
		obtained from the test: diameter of the steel bar = 16 mm; gauge length of			
		the bar = 80 mm, load at proportionality limit = 72 kN, extension at a load		8	
		of 60 kN = 0.115 mm, load at failure = 80 kN, final gauge length of the			
		bar = 104 mm, diameter of the rod at failure = 12 mm. Determine: (i) Young's modulus (ii) Proportionality limit			
		(i) Young's modulus(ii) Proportionality limit(iii) True breaking stress(iv) Percentage elongation			
		(iii) The breaking stress (iv) refeentage clongation			
		CO OR			
Q.2	a.	Derive a relation between modulus of elasticity and bulk modulus.	04	L2	CO1
X	b.	A member is of total length 2m, its diameter is 40 mm for the first 1m		L3	C01
	~.	length. In the next 0.5 m length, its diameter gradually reduces from 40 mm			
		to 'd' mm. For the remaining length of the member, the diameter remains			
		'd' mm uniform. When this member is subjected to an axial tensile force of			
		150 kN, the total elongation observed is 2.39 mm. Determine diameter 'd'.			×
		Assume Young's modulus = 2×10^5 MPa.			
	c.	A stepped bar of steel, held between two supports as shown in Fig.Q2(c) is	08	L3	CO1
		subjected to loads $P_1 = 80$ kN and $P_2 = 60$ kN. Find the reaction developed			
		at the ends A and B.			
		12 In Der H			
	3	All mm - P2 of B			
		150mm 150 mm 300 mm			а х
		Fig.Q2(c)			
		Module – 2			
Q.3	a.	Derive an expression for normal and shear stress on a inclined plane of a	10	L2	CO2
		member subjected to bi-axial stress system.			
	b.	A closed cylindrical vessel made of steel plates 4 mm thick with plane	10	L3	C01
		ends, carries fluid under a pressure of 3 N/mm ² . The diameter of the		r,	
		cylinder is 25 cms and the length is 75 cms. Calculate the longitudinal and			
		hoop stresses in the cylinder wall and determine the change in diameter length and up huma of the cylinder. Take $E = 2.1 \times 10^5$ MPa and			
		length and volume of the cylinder. Take $E = 2.1 \times 10^5$ MPa and $1/m = 0.286$			
	10	1/m = 0.286.			

				BM	E301
		Module – 4	ι.		
Q.7	a.	A simply supported beam having cross section of 20 mm \times 20 mm fails when a central point load of 400 N is applied span of beam is 2m. What UDL will break a cantilever of same material 40 mm wide, 60 mm deep and 3m long.	10	L3 L4	CO2 CO3
	b.	A cast iron bracket subject to bending has the cross-section of I-form with unequal flanges. The dimension of the section are shown in Fig.Q7(b). Find the position of the Neutral axis and moment of inertia of the section about the neutral axis. If the maximum bending moment on the section is 40 MN- mm. Determine the maximum bending stress. What is the nature of the stress?	10	L3 L4	CO1 CO2
		Success:			
0.8	0	OR // Derive an expression for bending stresses in beams.	10	L2	C01
Q.8	a. b.	A 5m cantilever beam of cross-section 150 mm \times 300 mm fails when a load	05	L2 L3	CO2
	D .	of 30 kN is applied at the free end. Find the stress at failure.	05	113	
	c.	List assumptions made in pure bending theory.	05	L1	CO
	I	Module – 5			1
Q.9	a.	A solid shaft has to transmit 150 KW of power at 180 rpm. If allowable shear stress is 70 MPa and allowable angle of twist is 1° in a length of 4m. Find the suitable diameter of solid circular shaft. Take $G = 84$ GPa.	10	L4	CO2
	b.	Derive Euler's crippling load for a column when both its ends are hinged.	10	L2	CO1
		OR A			
Q.10	a.	A 150 mm diameter solid steel shaft is transmitting 450 KW power at 90 rpm, compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm.	10	L4	CO2
	b. ,	A 1.5m long column has a circular cross-section of 50 mm diameter. One end of the column is fixed in direction and position and other end is free. Taking factor of safety as 3, calculate the safe load using :	10	L4	CO2
		(i) Rankine's formula taking yield stress 560 N/mm ² and $a = \frac{1}{600}$ (ii) Euler's formula taking $E = 1.2 \times 10^5$ MPa			

		19			
		19			

Third Semester B.E./B.Tech. Degree Supplementary Examination, June/July 2024

Material Science and Engineering

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

					in the second
		Module – 1	Μ	L	С
Q.1	a.	Define Material Science and Engineering. List eight commonly	04	L1	C01
		encountered engineering material.			
	b.	What are the three metal crystal structures? List five metals that have each	08	L1	CO1
		of these crystal structures.			
	c.	What are imperfections? Explain different types of imperfections.	08	L2	CO1
		OR			
Q.2	a.	Define Atomic Packing Factor (APF). Calculate APF for BCC structure.	08	L3	CO1
	b.	Platinum is FCC and has a lattice constant of 0.39239nm. Calculate a value	06	L2	CO1
		for atomic radius of platinum atom in nanometer.			
	c.	Define and differentiate crystalline solids and amorphous solid.	06	L2	CO1
		Module – 2			
Q.3	a.	State I and II Fick's law of diffusion.	04	L1	CO2
	b.	What is diffusion? Explain the factors affecting the diffusion.	06	L2	CO2
	c.	Draw of neat Iron Carbon equilibrium diagram and label all the phases.	10	L3	CO2
		Write invariant reaction like eutectoid, eutectic and pretectic reactions.			
		OR			
Q.4	a.	Discuss the Hume – Rothery rules for formation of solid solution.	04	L2	CO2
	b.	Explain the diffusion mechanism.	06	L2	CO2
	c.	Explain the eutectic system binary phase diagram for two metals	10	L2	CO2
		completely soluble in liquid state but completely insoluble in solid state.			
		Module – 3			
Q.5	a.	Define homogeneous and heterogeneous nucleation. Obtain an expression	08	L3	CO3
		for critical radius of nucleus.			
	b.	What is heat treatment and mention the classification.	05	L1	CO3
	c.	With sketch explain flame hardening process.	07	L2	CO3
	4	OR			
Q.6	a.	Explain strain hardening and solid state hardening process of strengthening	07	L2	CO3
		of metals.			
	b.	Sketch and explain Annealing heat treatment process.	07	L2	CO3
	c.	What is hardenability? Discuss factors affecting hardenability.	06	L2	CO3
		Module – 4			
Q.7	a.	Explain the Physical Vapour Deposition (PVD) process, in brief.	06	L2	CO4
	b.	List advantages and disadvantages of surface coating.	04	L1	CO4
	c.	With a flow diagram explain the operations involved in making powder	10	L2	CO4
		metallurgy parts.			
		OR			(
Q.8	a.	Explain the characteristics of metal powder.	06	L2	CO4
	b.	What are the applications of powder metallurgy?	06	L1	CO4
	c.	Explain the Chemical Vapour Deposition (CVD) process with neat sketch.	08	L2	CO4

BME303

		Module – 5			
Q.9	a.	Classify engineering materials. Explain them with example.	10	L2	CO4
	b.	Sketch and explain the fabrication of MMC's using Stir Casting process.	10	L2	CO3
		OR S			
Q.10	a.	Give a broad classification of composites.	06	L2	CO3
11	b.	Discuss various applications of composites.	06	L2	CO3
	c.	Explain material selection process for various machine components.	08	L2	COS
		And ** * *			
		AD BAR S G A			
		LO LO BORNELO			
		ster protection for			
		E to the ter			
		Conton Contractor Conton			
		19			

Third Semester B.E./B.Tech Degree Supplementary Examination, June/July 2024

Basic Thermodynamics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M : Marks , L: Bloom's level , C: Course outcomes.
3. Used of thermodynamic data hand book is permitted.

			-	
-		M		C
a.	Explain Zeroth law of thermodynamics.	4	L2	C01
b.	Define heat and work in thermodynamics. Show that work is a path function.	8	L1	CO1
c.	The temperature 'T' on thermometric scale is defined in terms of property 'P' by the relation $T = a \log_e P + b$, where a and b are constants. The temperature at ice point and steam point are 0 and 100°C respectively. Instrument gives values of 'P' 1.86 and 6.81 at ice and stream point respectively. Evaluate temperature corresponding to a reading of P = 2.5.	8	L3	C01
1		10		<u> </u>
a.	Derive an expression for displacement work for : i) Isothermal process ii) Isentropic process.	10	L2	C01
b.	a volume of 0.125m ³ . The final pressure being 6 bar. Find : i) The mass of the gas ii) Value of 'n' iii) The heat transferred iv) Internal energy.	10	L3	C01
		-	8	
a.	State the first law of thermodynamics applied to cyclic process and non cyclic process.	6	L1	CO2
b.	Show that internal energy is a property of system.	6	L2	CO2
c.	A closed system undergoes a cycle. The energy transfer are as obtained : i) Complete the table ii) Determine rate of work in KW. $\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	L3	CO2
	b. c. a. b.	b. Define heat and work in thermodynamics. Show that work is a path function. c. The temperature 'T' on thermometric scale is defined in terms of property 'P' by the relation T = a $\log_e P$ + b, where a and b are constants. The temperature at ice point and steam point are 0 and 100°C respectively. Instrument gives values of 'P' 1.86 and 6.81 at ice and stream point respectively. Evaluate temperature corresponding to a reading of P = 2.5. OR a. Derive an expression for displacement work for : i) Isothermal process ii) Isentropic process. b. A cylinder contains 0.5m ³ of gas at 1 bar and 90°C. The gas compressed to a volume of 0.125m ³ . The final pressure being 6 bar. Find : i) The mass of the gas ii) Value of 'n' iiii) The heat transferred iv) Internal energy. Module -2 a. State the first law of thermodynamics applied to cyclic process and non cyclic process. b. Show that internal energy is a property of system. c. A closed system undergoes a cycle. The energy transfer are as obtained : i) Determine rate of work in KW. Process Q(kl/min) W(kJ/min) DE(kJ/min) AB 400 150 - BC 200 - 300 ii) Output 	a. Explain Zeroth law of thermodynamics. 4 b. Define heat and work in thermodynamics. Show that work is a path function. 8 c. The temperature 'T' on thermometric scale is defined in terms of property 'P' by the relation T = a log_P + b, where a and b are constants. The temperature at ice point and steam point are 0 and 100°C respectively. Instrument gives values of 'P' 1.86 and 6.81 at ice and stream point respectively. Evaluate temperature corresponding to a reading of P = 2.5. 8 a. Derive an expression for displacement work for : i) Isothermal process ii) Isothermal process. 10 b. A cylinder contains $0.5m^3$ of gas at 1 bar and 90°C. The gas compressed to a volume of $0.125m^3$. The final pressure being 6 bar. Find : i) The mass of the gas ii) Value of 'n' iii) The heat transferred iv) Internal energy. 10 b. State the first law of thermodynamics applied to cyclic process and non cyclic process. 6 c. A closed system undergoes a cycle. The energy transfer are as obtained : i) Complete the table ii) Determine rate of work in KW. Process Q(kJ/min) W(kJ/min) DE(kJ/min) AB 400 150 - BC 200 - 300 4	a. Explain Zeroth law of thermodynamics. 4 L2 b. Define heat and work in thermodynamics. Show that work is a path function. 8 L1 c. The temperature 'T' on thermometric scale is defined in terms of property 'P' by the relation T = a log.P + b, where a and b are constants. The temperature at ice point and steam point are 0 and 100°C respectively. Instrument gives values of 'P' 1.86 and 6.81 at ice and stream point respectively. Evaluate temperature corresponding to a reading of P = 2.5. 8 L3 c. Derive an expression for displacement work for : i) Isothermal process ii) Isentropic process. 10 L2 b. A cylinder contains 0.5m ³ of gas at 1 bar and 90°C. The gas compressed to a volume of 0.125m ³ . The final pressure being 6 bar. Find : i) The mass of the gas ii) Value of 'n' iii) The heat transferred iv) Internal energy. 10 L3 c. A closed system undergoes a cycle. The energy transfer are as obtained : i) Complete the table ii) Determine rate of work in KW. 6 L1 ii) Energies a group of system. 6 L2 c. A closed system undergoes a cycle. The energy transfer are as obtained : i) Complete the table ii) Determine rate of work in KW. 8 L3 iii) Energies 200 - 300 - 8 L3

BME304

Q.4	a.	OR Starting the assumptions, derive steady flow energy equation.	6	L2	CO2
•					
	b.	 A nozzle is a device for increasing the velocity of steadily flowing steam. Enthalpy of the fluid at inlet is 3000kJ/kg and velocity is 60m/s. Enthalpy at discharge end is 2762 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it : i) Find velocity at exit of nozzle ii) If inlet area is 0.1m² and specific volume is 0.187 m³/kg, find mass flow rate. iii) If specific volume at exit is 0.498m³/kg find diameter at exit of nozzle. 	8	L3	CO2
	c.	The power capacity of a system is 3000KW for the following data determine the fluid flow rate in kg/hour. The heat rejection from fluid = 100 kJ/s Inlet velocity = 300 m/s Inlet pressure = 600 KPa Inlet internal energy = 2000 kJ/kg Inlet volume = $0.2 \text{ m}^3/\text{kg}$ Outlet velocity = 120 m/s Outlet pressure = 150 Kpa Outlet internal energy = 1500 kJ/kg Final volume = $1.2 \text{ m}^3/\text{kg}$ The fluid enters and leaves the system at same elevation.	6	L3	CO2
		Module – 3			
Q.5	a.		10	L1	CO3
	b.	Explain PMMK – 1 and PMMK – 2.	4	L1	CO3
	c.	A series combination of two Carnot engines operate between temperature of 180°C and 20°C. Calculate the intermediate temperature, if engine produces : i) Equal amount of work ii) Engines having same efficiency.	6	L3	CO3
		Ø OR			
Q.6	a.	State and prove Clausius inequality.	8	L1	CO3
	b.	Show that entropy is a property of a system.	6	L2	CO3
	c.	5 kg of copper block of 200°C is dropped to an insulated tank with 100kg of oil at 30°C. Find the increase in entropy of the universe. Take $C_p(copper) = 0.4$ kJ/kg-k, $C_p(oil) = 2.1$ kJ/kg-k.	6	L3	CO3

BME304 Module – 4 With T - S diagram briefly explain the available energy and unavailable 6 L1 **CO4 b.** Obtain an expression for maximum work available in steady flow system. **CO**4 6 L2 Define the following with respect to the pure substance : 8 L1 **CO4** i) Latent heat of vapourisation ii) Sensible heat

Q.7

a.

c.

energy.

		iii) Saturation temperature			
		iv) Triple point			
		v) Dryness fraction			
		vi) Wet steam.			
		OR		1	
Q.8	a.	With a neat sketch explain the working of a separating and throttling	10	L1	CO4
X.C		calorimeter.			
	b.	In a test to find the quality of the steam in a pipe using a combined	10	L3	CO4
	D .	separating and throttling calorimeter, the following data was obtained :	10	13	04
		Pressure of steam in steam mains = 14 bar			
		Pressure of steam after throttling $= 1.19$ bar			
		Temperature after throttling $= 120^{\circ}C$			
		Water collected in separator $= 0.45 \text{ kg}$			
		Steam condensed after throttling $= 6.75 \text{ kg}$			
		Describe the condition of the steam in the mains. Take SP heat of	÷		
		superheated steam as 2.1 kJ/kg-k.			
	2	Module – 5			
Q.9	a.	Clearly distinguish between ideal and real gases.	6	L1	CO5
-					
r î	b.	Explain briefly Dalton's law and Amagat's law.	6	L1	CO5
	c.	Derive an expression for specific heat at constant pressure and constant	8	L2	CO5
		volume for mixture of gases.	U		005
		volume for mixture of gases.			
		OR		1	
0.10	0	Explain reduced properties and compressibility chart.	6	L1	C05
Q.10	a.	Explain reduced properties and compressionity chart.	U		003
	1	Weite Manual I all the second similar the terms involved	6	T 1	CO5
	b.	Write Maxwell relations and explain the terms involved.	6	L1	005
			0	TO	0.0.
	c.	Determine the pressure exerted by carbon-dioxide in a container of 1.5m ³	8	L3	C05
		capacity when it contains 5kg at 27°c using.			
		i) Ideal gas equation			
		ii) Vander walls equation			
		Take $a = 364.3 \text{ kN/m}^4/\text{kg mol}^2 \text{ b} = 0.0427 \text{ m}^3/\text{kg mol}.$			
		Co.			

* * * * *