CBCS SCHEME | USN | | | | | | | | BCS401 | |------|--|--|--|--|---|---|--|--------| | UBIN | | | | | 1 | 1 | | | ## Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Analysis and Design of Algorithms Time: 3 hrs. Max. Marks: 100 | | | Module – 1 | M | L | С | |-----|----|--|----|--|-----| | Q.1 | a. | What is an algorithm? Explain the fundamentals of algorithmic problem solving. | 10 | L2 | CO1 | | | b. | Develop an algorithm to search an element in an array using sequential search. Calculate the best case, worst case and average case efficiency of this algorithm. | 10 | L3 | CO1 | | | | OR | | | | | Q.2 | a. | Explain asymptotic notations with example. | 10 | L2 | CO1 | | | b. | Give the general plan for analyzing the efficiency of the recursive algorithm. Develop recursive algorithm for computing factorial of a positive number. Calculate the efficiency in terms of order of growth. | 10 | L3 | CO1 | | | | Module – 2 | | | | | Q.3 | a. | Explain Strassen's matrix multiplication approach with example and derive its time complexity. | 10 | L3 | CO2 | | | b. | What is divide and conquer? Develop the quick sort algorithm and write its best case. Make use of this algorithm to sort the list of characters: E, X, A, M, P, L, E. | 10 | L2 | CO2 | | | | OR | | | | | Q.4 | a. | Distinguish between decrease & conquer and divide & conquer algorithm design techniques with block diagram. Develop insertion sort algorithm to sort a list of integers and estimate the efficiency. | 10 | L3 | CO2 | | 2 | b. | Define topological sorting. List the two approaches of topological sorting and illustrate with examples. | 10 | L2 | CO2 | | - | | Module – 3 | | A STATE OF THE STA | Ana | | Q.5 | a. | Define AVL tree with an example. Give worst case efficiency of operations on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation. | 10 | L3 | CO3 | | | b. | Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. | 10 | L3 | CO3 | | | | OR | | | | | Q.6 | a. | Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of key insertion and node splits. | 10 | L3 | CO3 | | | b. | Design Horspool algorithm for string matching. Apply this algorithm to find the pattern BARBER in the text: JIM SAW ME IN A BARBERSHOP | 10 | L3 | CO3 | | | - | Module – 4 | | | | | Q.7 | a. | Apply Dijkstra's algorithm to find the single source shortest path for given graph [Fig.Q7(a)] by considering 's' as source vertex. Illustrate each step. | 10 | L3 | CO4 | | | | 1 of 2 | | | | | | | | | | | | | | | | BC | S401 | |------|----|---|----|----|------| | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | 5 | b. | Define transitive closure. Write Warshall's algorithm to compute transitive closure. Illustrate using the following directed graph. Fig.Q7(b) | 10 | L3 | CO4 | | Q.8 | a. | Define minimum spanning tree. Write Kruskal's algorithm to find minimum spanning tree. Illustrate with the following undirected graph. 3 5 5 Fig.Q8(a) | 10 | L3 | CO4 | | | b. | Construct Huffman Tree and resulting code for the following: Character A B C D - Probability 0.4 0.1 0.2 0.15 0.15 (i) Encode the text: ABACABAD (ii) Decode the text: 100010111001010 | 10 | L3 | CO4 | | 0.0 | T | Module – 5 | 10 | L2 | CO5 | | Q.9 | b. | Explain n-Queen's problem with example using backtracking approach. Solve the following instance of the knapsack problem by the branch-and-bound algorithm. Construct state-space tree. Item Weight Value | 10 | L3 | CO5 | | | | 1 4 \$ 40
2 7 \$ 42
3 5 \$ 25
4 3 \$ 12 | 5 | | | | | | 1 4 \$ 40
2 7 \$ 42
3 5 \$ 25 | | | | | Q.10 | a. | 1 4 \$ 40
2 7 \$ 42
3 5 \$ 25
4 3 \$ 12
The knapsack's capacity W is 10. | 10 | L3 | CO5 | | | | | | ВС | CS401 | |------|----|---|----|----|-------| | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | b. | Define transitive closure. Write Warshall's algorithm to compute transitive closure. Illustrate using the following directed graph. Fig.Q7(b) | 10 | L3 | CO4 | | Q.8 | a. | OR Define minimum spanning tree. Write Kruskal's algorithm to find | 10 | L3 | CO4 | | Q to | b. | minimum spanning tree. Illustrate with the following undirected graph. Spanning tree. Illustrate with the following undirected graph. Fig.Q8(a) Construct Huffman Tree and resulting code for the following: | 10 | L3 | CO4 | | | | Character A B C D - | | | | | | | Module – 5 | | | | | Q.9 | a. | Explain n-Queen's problem with example using backtracking approach. | 10 | L2 | CO5 | | | b. | Solve the following instance of the knapsack problem by the branch-and-bound algorithm. Construct state-space tree. Item Weight Value | 10 | L3 | CO5 | | | 7 | OR | | | | | Q.10 | a. | Differentiate between Branch and Bound technique and Backtracking. Apply backtracking to solve the following instance of subset-sum problem $S = \{3, 5, 6, 7\}$ and $d = 15$. Construct a state space tree. | 10 | L3 | CO5 | | | b. | Explain greedy approximation algorithm to solve discrete knapsack problem. | 10 | L2 | CO5 | * * * * * #### CBCS SCHEME USN 1 4 5 9 8 C 6, 6 1 0 **BCG402** ## Fourth Semester B.E./B.Tech.Degree Examination, June/July 2024 Computer Graphics and Visualization Time: 3 hrs. Max. Marks: 100 Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes. | | | for many | , | , | **** | |--------------|----|---|-----|----|-----------------| | | | Module – 1 | M | L | С | | Q.1 | a. | What is computer graphics? Explain applications of computer graphics with examples. | 10 | L2 | CO1 | | | b. | Explain in detail graphics pipeline architecture. | 10 | L2 | CO1 | | | | OR # | 1 | | | | Q.2 | a. | With necessary steps explain Bresenham's line drawing algorithm. Consider the line from (6, 6) to (12, 8). Use the algorithm to rasterize the line. | 10 | L3 | CO1 | | | b. | Explain the various graphics functions with example. | 10 | L2 | CO1 | | | | Module – 2 | | 1 | | | Q.3 | a. | Explain 2D geometric transformations in detail. | 10 | L2 | CO ₂ | | | b. | Develop openGL program to create and rotate a triangle about the origin and fixed point. | 10 | L3 | CO2 | | | | OR | 1 | | 0 | | Q.4 | a. | Explain homogeneous co-ordinate representation. | 10 | L2 | CO ₂ | | | b. | Develop openGL program to create and rotate cube. | 10 | L3 | CO2 | | | • | Module – 3 | | | | | Q.5 | a. | Explain in detail various logical devices. | 10 | L2 | CO3 | | and a second | b. | Explain traditional animation technique in detail with example. | .10 | L2 | CO3 | | | | OR | • | • | | | Q.6 | a. | Explain input modes in detail with neat diagram. | 10 | L2 | CO3 | | | b. | Explain character animation and periodic motions in detail. | 10 | L2 | CO3 | | | | Module – 4 | | | - | | Q.7 | a. | Explain Cohen-Sutherland algorithm with example and neat diagram. | 10 | L3 | CO4 | | | b. | Explain in detail, The Phong Lighting model. | 10 | L2 |
CO4 | | | 1 | OR | - | | | | Q.8 | a. | Explain color models. | 10 | L2 | CO4 | | | b. | Write a short note on, | | | | | | | (i) Normalization and View port transformation. | 06 | L4 | CO3 | | | | (ii) 2D point clipping. | 04 | | | | | | Module – 5 | | | | | Q.9 | a. | Explain the concept of hidden surface removal. | 10 | L2 | CO5 | | | b. | Explain perspective projection with neat diagram. | 10 | L2 | CO5 | | | | OR | | | | | Q.10 | a. | Develop openGL program to draw a polygon and allow user to move the camera suitably to experiment with perspective viewing. | 10 | L3 | CO5 | | | b. | Explain orthographic and axonometric projection. Bring out the differences. | 10 | L2 | CO5 | | | | 1 1 2 1 | 1 | | | * * * * * USN 1 K S 2 2 A I 0 6 0 **BCS403** # Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Database Management Systems Time: 3 hrs. Max. Marks: 100 | | | Module – 1 | M | L | С | |------|----|--|----|----|-----| | Q.1 | a. | Define database. Elaborate component modules of DBMS and their interactions. | 10 | L2 | CO1 | | | b. | Describe the three-schema architecture. Why do we need mappings among schema levels? | 06 | L2 | CO1 | | | c. | Explain the difference between logical and physical data independence. | 04 | L2 | CO1 | | | | OR | | | | | Q.2 | a. | Draw an ER diagram for an COMPANY database with employee, department, project as strong entities and dependent as weak entity. Specify the constraints, relationships and ratios in the ER diagram. | 10 | L3 | CO3 | | | b. | Define the following terms with example for each using ER notations:
Entity, attribute, composite attribute, multivalued attribute, participation role. | 10 | L3 | CO3 | | | | Module – 2 | | | | | Q.3 | a. | Discuss the update operations and dealing with constraint violations with suitable examples. | 08 | L2 | CO2 | | | b. | Illustrate the relational algebra operators with examples for select and project operation. | 06 | L2 | CO2 | | | c. | Discuss the characteristics of relations that make them different from ordinary table and files. | 06 | L2 | CO2 | | **** | | OR | L | L | L | | Q.4 | a. | Perform (i) Student U instructor (ii) Student Student | 04 | L3 | CO2 | | | b. | Ernest Gilbert Consider the following relational database schema and write the queries in relational algebra expressions: EMP(Eno, Ename, Salary, Address, Phone, DNo) DEPT(DNo, Dname, DLoc, MgrEno) DEPENDENT(Eno, Dep_Name, Drelation, Dage) (i) List all the employees who reside in 'Belagavi'. (ii) List all the employees who earn salary between 30000 and 40000 (iii) List all the employees who work for the 'Sales' department (iv) List all the employees who have at least one daughter (v) List the department names along with the names of the managers | 10 | L3 | CO2 | | | c. | Consider the two tables T ₁ and T ₂ shown below: | 06 | L3 | CO2 | |-----|----|---|----|----|-----------------| | | | T_1 T_2 | | | | | | | PQRABC | | | | | | | 10 a 5 | | | | | | | 15 b 8 25 c 3 | | | | | | | 25 a 6 10 b 5 | | | | | | | Show the results of the following operations: | | | | | | | | 1 | | | | | | $(i) T_1 T_{1,P=T_2,A} T_2$ | | | | | | | $(ii) T_1 \bowtie_{T_1,Q=T_2,B} T_2$ | | | | | | | (iii) $T_1 \bowtie_{(T_1.P=T_2.A \text{ AND } T_1.R=T_2.C)} T_2$ | | | | | | | Module – 3 | | | | | Q.5 | a. | Discuss the informal design guidelines for relation schema design. | 08 | L2 | CO4 | | | b. | Define 1NF, 2NF, and 3NF with examples. | 06 | L2 | CO ₄ | | | c. | Write the syntax for INSERT, UPDATE and DELETE statements in SQL | 06 | L2 | CO ₃ | | | | and explain with suitable examples. | | | | | | | OR | | | | | Q.6 | a. | Discuss insertion, deletion and modification anomalies. Why are they | 10 | L2 | CO3 | | | | considered bad? Illustrate with examples. | | | | | | b. | Illustrate the following with suitable examples: | 10 | L2 | CO3 | | | | (i) Datatypes in SQL | | | | | | | (ii) Substring Pattern Matching in SQL. | | | | | | | Module – 4 | | | | | Q.7 | a. | Consider the following relations: | 10 | L3 | CO3 | | | | Student(Snum, Sname, Branch, level, age) | | | | | | | Class(Cname, meet_at, room, fid) | | | | | | | Enrolled(Snum, Cname) | | | | | | | Faculty(fid, fname, deptid) | | | | | | | Write the following queries in SQL. No duplicates should be printed in any | | | | | | | of the answers. | | | | | | | (i) Find the names of all Juniors (level = JR) who are enrolled in a | | | | | | | class taught by I. Teach. | | | | | | | (ii) Find the names of all classes that either meet in room R128 or | | | | | | | have five or more students enrolled. | | | | | | | (iii) For all levels except JR, print the level and rthe average age of | | | | | | | students for that level. | | | | | | | (iv) For each faculty member that has taught classes only in room | | | | | | | R128, print the faculty member's name and the total number of | | | | | | | classes she or he has taught. | | | | | | | (v) Find the names of students not enrolled in any class. | | | | | | b. | What do understand by correlated Nested Queries in SQL? Explain with | 04 | L2 | CO3 | | | | suitable example. | | | | | | c. | Discuss the ACID properties of a database transaction. | 06 | L2 | CO ₄ | | | | OR | , | , | , | | Q.8 | a. | What are the views in SQL? Explain with examples. | 04 | L3 | COS | | | b. | In SQL, write the usage of GROUP BY and HAVING clauses with suitable | 06 | L2 | CO3 | | | | examples. | | | | | | c. | Discuss the types of problems that may encounter with transactions that run | 10 | L2 | CO5 | | | | concurrently. | | | | | | - | | | | - | #### BCS403 | | | Module – 5 | | | - 8 | |------|----|--|----|----|-----| | Q.9 | a. | What is the two phase locking protocol? How does it Guarantee serializability. | 06 | L2 | CO5 | | | b. | Describe the wait-die and wound-wait protocols for deadlock prevention. | 08 | L2 | CO5 | | | c. | List and explain the four major categories of NOSQL system. | 06 | L2 | CO3 | | | 1 | OR | | | | | Q.10 | a. | What is Multiple Granularity locking? How is it implemented using intension locks? Explain. | 10 | L2 | CO5 | | | b. | Discuss the following MongoDB CRUD operations with their formats: (i) Insert (ii) Delete (iii) Read | 06 | L2 | CO4 | | E | c. | Briefly discuss about Neo4j data model. | 04 | L2 | CO4 | * * * * * | USN | | | | | | | | | BCS405A | |-----|---|---|---|---|---|-----|---|---|---------| | | 1 | ł | 1 | 1 | 1 | E . | 1 | 1 | | ## Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Discrete Mathematical Structures Time: 3 hrs. Max. Marks: 100 | | | Module – 1 | M | L | С | |-----|---|--|-------------|----|-----| | Q.1 | a. | Define tautology. Prove that for any propositions p, q, r the compound proposition. $[(p \land \exists q) \to r] \to [p \to (q \lor r)] \text{is a tautology}$ | 06 | L2 | CO1 | | | b. | Test whether the following is a valid argument: If Ram studies then he will pass 12 th . If Ram passes 12 th then his father gifts him a bike. If Ram doesn't play video game then he will pass 12 th . Ram did not get a bike. ∴ Ram played video game. | 07 | L3 | CO1 | | | c. | Give direct proofs of the statements: i) If k and l are odd then k + l is even. ii) If k and l are odd then k l is odd. | 07 | L2 | CO1 | | | | | | | | | Q.2 | a. | Define (i) Proposition (ii) Open statement (iii) Quantifiers | 06 | L2 | CO1 | | | b. | Using the laws of logic, prove the following logical equivalence: $[(1p \lor 1q) \land (F_0 \lor p) \land p] \Leftrightarrow p \land 1q$ | 07 | L2 | CO1 | | | c. | Write the following statement in symbolic form and find its negation: "If all triangles are right angled then no triangle is equilateral". | 07 | L2 | CO1 | | | *************************************** | Module – 2 | | | | | Q.3 | a. | Prove by using mathematical induction.
$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$ | 06 | L2 | C01 | | | b. | How many words can be made with or without meaning from the letters of the word "STATISTICS"? In how many of these a and c are adjacent? In how many vowels are together? | 07 | L3 | CO2 | | | c. | Find the coefficient of x^3y^8 in the expansion of $(2x - y)^{11}$. | 07 | L2 | CO2 | | | | OR | | | | | Q.4 | a. | Obtain the recursive definition for the sequence in each of the following cases:
(i) $a_n = 5n$ (ii) $a_n = 3n + 7$ (iii) $a_n = n^2$ (iv) $a_n = 2 - (-1)^n$ | 06 | L2 | CO2 | | - | b. | A woman has 11 close relations and wishes to invite 5 of them to dinner. In how many ways can she invite them if (i) there is no restriction on her choice. (ii) 2 persons will not attend separately (iii) 2 persons will not attend together. | 07 | L3 | CO2 | | | c. | In how many ways can we distribute 7 apples and 5 oranges among 3 children such that each child gets atleast one apple and one orange? | 07 | L3 | CO2 | | | | M - J1 - 2 | | bes | 405A | |----------|-------
--|-----|-----|------| | 0.5 | T | Module – 3 | 0.0 | 12 | CO2 | | Q.5 | a. | State pigeon hole principle. Using pigeon hole principle find the minimum number of persons chosen so that atleast 5 of them will have their birthday | 06 | L3 | CO3 | | | | in the same month. | | | | | | b. | Let $A = \{a, b, c, d\}$ and $B = \{1, 2, 3, 4, 5\}$. Find the number of 1-1 | 07 | L2 | CO3 | | | ļ | functions and onto functions from (i) A to B (ii) B to A | 9 | | | | | c. | Let $A = \{1, 2, 3, 4, 5\}$. Define a relation R on $A \times A$ by $(x_1, y_1) R (x_2, y_2)$ | 07 | L2 | CO3 | | | | $\inf x_1 + y_1 = x_2 + y_2.$ | | | | | | | (i) Verify that R is an equivalence relation | | | | | | 1 | (ii) Determine the equivalence class of [(2, 4)] | | | | | <u> </u> | | OR | 100 | T.0 | 000 | | Q.6 | a. | Consider the functions f and g from R to R defined by $f(x) = 2x + 5$ and $g(x) = \frac{1}{2}(x - 5)$. Prove that g is inverse of f. | 06 | L2 | CO3 | | | b. | Let $A = \{1, 2, 3, 4\}$ and R be the relation on A defined by xRy if and only | 07 | L2 | CO3 | | | | if $x < y$. Write down R as a set of ordered pairs. Write the relation matrix | | | | | | | and draw the digraph. List out the in degrees and out degrees of every | | | | | | | vertex. | | | | | | c. | Let $A = \{1, 2, 3, 6, 9, 12, 18\}$ and define R on A by xRy iff 'x divides y'. | 07 | L2 | CO3 | | | | Prove that (A, R) is a POSET. Draw the Hasse diagram for (A, R). | | | | | | _ | Module – 4 | | | | | Q.7 | a. | How many integers between 1 and 300 (inclusive) are divisible by | 06 | L3 | CO4 | | | | (i) at least one of 5, 6 or 8. (ii) None of 5, 6 and 8. | | | | | | b. | At a restaurant 10 men handover their umbrellas to the receptionist, In how | 07 | L3 | CO4 | | | | many ways can their umbrellas be returned so that (i) no man receives his | | | | | | | own umbrella. (ii) atleast one gets his own umbrella. (iii) atleast two gets | | | | | | - | their own umbrellas. | | | | | | c. | The number of virus affected files in a system is 1000 (to start with) and | 07 | L3 | CO4 | | | | this increases by 250% every 2 hours. Use a recurrence relation to | | | | | | | determine the number of virus affected files in the system after 12 hours. | | ļ., | | | 0.0 | T | OR | 0.6 | ¥ 0 | 664 | | Q.8 | a. | In how many ways one can arrange the letters of the word | 06 | L3 | CO4 | | | | "CORRESPONDENTS" so that there are (i) no pair (ii) atleast 2 pairs of | | | | | | la la | consecutive identical letters. | 07 | T 2 | 604 | | | b. | 4 persons P_1 , P_2 , P_3 , P_4 who arrive late for a dinner party find that only one chair at each of five tables T_1 , T_2 , T_3 , T_4 and T_5 is vacant. P_1 will not | 07 | L3 | CO4 | | | | sit at T_1 or T_2 . P_2 will not sit at T_2 . P_3 will not sit at T_3 or T_4 . P_4 will not sit | | = | | | | | at T_4 or T_5 . Find the number of ways they can occupy the vacant chairs. | | | | | | c. | Solve the recurrence relation | 07 | L2 | CO4 | | | | $a_n - 6a_{n-1} + 9a_{n-2} = 0$ for $n \ge 2$ with $a_0 = 5$, $a_1 = 12$. | 07 | 1.2 | 004 | | | 1 | Module - 5 | | | | | Q.9 | a. | If * is an operation on Z defined by $xy = x + y + 1$, prove that $(Z, *)$ is an | 06 | L2 | CO5 | | ٧.> | | abelian group. | 00 | | COS | | | b. | Explain Klein-4 group with example. | 07 | L2 | CO5 | | | c. | State and prove Lagrange's theorem. | 07 | L2 | CO5 | | | | OR | U/ | 14 | 003 | | Q.10 | a. | Prove that intersection of two subgroups of a group G is also a subgroup of | 06 | L2 | CO5 | | | | G. | | | | | | b. | Prove that $(Z_4, +)$ is a cyclic group. Find all its generators. | 07 | L2 | CO5 | | | | Let $C = S$, $C = S = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ | 07 | L3 | CO5 | | | c. | Let $G = S_4$ for $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$ | | | | | | | Find the subgroup $H = \langle \alpha \rangle$ determine the left cosets of H in G. | | | | | | • | * * * * * | | | | #### CBCS SCHEME | USN | | | | | | | BBOC407 | |-----|--|--|--|--|--|--|---------| | | | | | | | | | # Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Biology for Engineers (CSE) Time: 3 hrs. Max. Marks: 100 | | | Module – 1 | M | Promoti | С | |-----|----------|---|------|---------|-----| | Q.1 | a. | Discuss the various components of Eukaryotic cells. | 10 | L3 | CO1 | | | b. | Identify the applications of stem cells. | 5 | L2 | CO1 | | | c. | Explain the functions of vitamins. | 5 | L2 | CO1 | | | <u> </u> | OR | | | | | Q.2 | a. | Compare Prokaryotic and Eukaryotic cells. | 10 | L3 | CO1 | | | b. | Explain the properties of Carbohydrates. | 5 | L2 | CO1 | | | c. | Explain the functions of Lipids. | 5 | L2 | CO1 | | | L | Module – 2 | | | | | Q.3 | a. | Highlighting the properties of cellulose, justify cellulose as an effective water filter. | 10 | 1.3 | COI | | | b. | Explain the working and development of DNA vaccines by taking suitable example. | 10 | L2 | CO1 | | | | OR | , | | T | | Q.4 | a. | What are Bioplastics? Justify the use of PHA as Bioplastic mentioning its properties and applications. | 10 | L3 | COI | | | b. | Discuss the following: (i) Meat analogs of protein. (ii) Lipids as cleaning agents. | 10 | L2 | COI | | | | Module – 3 | | l | | | Q.5 | a. | What is Electro Encephalogram (EEG)? Discuss the types of Brain activity detected with EEG. Write any three applications. | A () | L3 | CO2 | | | b. | What are Pace Makers? Explain basic design and construction of Pace Makers. | 10 | 1,2 | CO2 | | | | OR | 1 | T | | | Q.6 | a. | Justify Lungs as purification system. | 10 | L3 | CO2 | | | b. | Explain architecture of Rod and Core cells with suitable diagram. | 10 | L2 | CO2 | | | | Module – 4 | | 1-2-2 | | | Q.7 | a. | What is ultrasonography? Explain the uses and working principle. | 10 | L2 | CO: | | | b. | What is lotus leaf effect? Explain the mechanism and applications of super Hydrophobic effect. | 10 | L2 | CO3 | | | | . OR | | | | | Q.8 | a. | The structure and design of Kingfisher beak lead to the design of Bullet trains. Explain. | 10 | L2 | CO. | | | b. | Explain the working and applications of Bionic Leaf Technology. | 10 | L2 | CO: | #### BBOC407 | | | Module – 5 | | , | | |------|----|--|-----|----|-----| | Q.9 | 10 | L2 | CO4 | | | | *** | b. | Explain the advantages and limitations of Artificial Intelligence for disease diagnosis. | 10 | L2 | CO4 | | | | OR | | | | | Q.10 | a. | Explain Bioengineering solutions for muscular dystrophy and Osteroporosis. | 10 | L2 | CO4 | | | b. | Explain most commonly used Bioprinting Techniques. | 10 | L2 | CO4 | ale ale ale ale a | USN | | | | | | | Question Paper Version: | A | |-----|------|------|---|------|--|--|-------------------------|------| | |
 |
 | - |
 | | | |
 | #### Fourth Semester B.E. Degree Examination, June/July 2024 UI/UX | Γime | :: 1 hr.] | [Max. Marks: 50 | |------|--|--| | | INSTRUCTION | IS TO THE CANDIDATES | | 1. | Answer all the fifty questions, each | question carries one mark. | | 2. | Use only Black ball point pen for w | vriting / darkening the circles. | | 3. | For each question, after selecting | your answer, darken the appropriate circle | | | corresponding to the same questio | n number on the OMR sheet. | | 4. | Darkening two circles for the same of | question makes the answer invalid. | | 5. | | hiteners on the OMR sheets are strictly | | | prohibited. | * | | _ | | | | 1. | Usability is an established, as a part of t
a) Technology World | b) Computation World | | | c) Designer's World | d) None of these | | 2. | Example of extracting a requirement sta | otement for | | 4. | a) Ticket Kiosk system | b) Software system | | | c) Website design system | d) All of these | | 3. | The term translate each user need into o | one or more introduction design that is | | | a) Extracting statement | b) Requirement statement | | | c) Requirement structure | d) Terminology statement | | 4. | What UX encompasses of | | | •• | a) Only visual elements | b) Only functional element | | | c) Both visual and functional element | d) Either visual nor functional element | | 5. | A business – a – case a user experience | typically includes | | | a) Technical specification of the produc | | | | b) Analysis of competitor pricing strate | | | | c) Justification of investment based on o | | | | d) Historical data on employee turn ove | er rate. | | 6. | The primary goal of UI design is to | | | | a) To maximize user satisfaction and us | sability | | | b) To optimize loading times | | | | c) To minimize user engagement d) All of these | | | | GI ZII OI HICSC | | | 7. | Which of the follow a) Learn ability c) Memorability | ving is not a usability pr | b) Efficiency
d) Cost-effectiveness | | | | | | |-----|---|--|---|------------------|--|--|--|--| | 8. | In concern to design a) User involvement c) User interaction | t UI stands for | b) User interface d) User inspection | | | | | | | 9. | a) UI focuses on virb) UI and UX are inc) UI focuses on fur | nterchangeable terms
nctionality, while UX fo | X focuses on functionali
ocuses on elements
uses on user satisfaction | | |
 | | | 10. | a) The psychologicab) How user feel wlc) The technical per | s user experience designal effects of color choice
then they interact with a
formance of the websit
eatures available to user | es on users product or service e or app | | | | | | | 11. | Design concept incl
a) Usability | | c) Both (a) and (b) | d) None of these | | | | | | 12. | creativity and collab | poration. | problems solving that
c) User perspectives | | | | | | | 13. | Generation of new a) Critiquing | | c) Idea creation | d) Sketching | | | | | | 14. | Interaction perspect
a) How the system
c) How the system | work | b) How the user operad) How a system inter | - | | | | | | 15. | The long term designa) Sketching | n documentation is
b) Design | c) Drawing | d) ideation | | | | | | 16. | Critiquing is about a) Review and judg c) Idea creation | | b) Joy and enjoyment d) Theme or ideas | | | | | | | 17. | Rapid creation of fr
a) Drawing
c) Designing | eehand drawing is | b) Sketching
d) Intellectual drawing | | | | | | | 18. | Story board is a seq
a) Frame clips
c) Sketches | uence of | b) Visual frames
d) Graphics frames | | | | | | | 19. | Ideation is ana) Active | b) Fast moving | c) Collaboration | d) All of these | | | | | | 20. | Use mental model is a description of a) How the system work c) Something works in the real world | b) Explanation of so d) None of these | meone's thought | |-----|--|---|-------------------------| | 21. | The purpose of wire framing in UI/UX do
a) to create a final polished design
c) to select color schemes | | ayout and functionality | | 22. | UX measure is a) Usage of your interaction design c) Usage of design thinking | b) Usage of concepts
d) Usage of ideations | | | 23. | Measuring instrument is a description of a) Providing values for the particular UX b) Providing values for the UX targets c) Providing values for the UX metrics d) Providing values for UX goals. | measure | | | 24. | Detailed design includes
a) Visual frames
c) Visual comps | b) Visual clips
d) Visual wire frame | ·s | | 25. | Bread and butter tool of interaction desig a) Sketching c) Detailed design | b) Wireframes d) None of these | | | 26. | In which software tool is used in wirefrar a) Adobe XD b) Keil | nec) Xlinx | d) None of these | | 27. | Subjective of the UX design is
a) UX metrics
c) UX measure | b) UX goals
d) UX target | | | 28. | Quantitative statement is
a) UX metrics b) UX goals | c) UX measure | d) UX target | | 29. | Wire frames are frames a) Low fidelity wire frames c) Median fidelity wireframes | b) High fidelity wire
d) None of these | eframes | | 30. | The drawing aspects of wireframes are us
a) Square boxes
c) Rectangular boxes | b) Paralleogram boxed
d) None of these | es | | 31. | A sense is a design representation is a) Interaction design c) Prototype | b) Wire frame
d) Design thinking | | | 32. | The ideas of prototyping is a) Timeless and universal c) Choice and approach | b) Build and real thind) all of these | ng | | 33. | Which prototype is demonstrating the p product overview? | roduct concept and for conveying an early | |-----|---|---| | | a) Vertical prototype c) Horizontal prototype | b) Upper prototype
d) None of these | | 34. | In which prototype combines the advantage good compress for system evaluation? | ges of both horizontal and vertical, offering a | | | a) 'R' prototypec) 'T' prototype | b) 'Y' prototype
d) 'D' prototype | | | | d) D prototype | | 35. | A vertical prototype is associated with a) User actions, in depth c) Stake holder actions in depth | b) Customer actions, in depth d) All of these | | 36. | Prototype that are not faithful representation | ons of the details of look, feel and behavior is | | | a) Vertical prototype
c) Horizontal prototype | b) Local prototype
d) Low fidelity prototype | | 37. | In which prototype are more detailed repres
a) High fidelity prototype
c) Horizontal prototype | b) Local prototype d) Low fidelity prototype | | 38. | Which one of the fidelity is not independen a) Interactivity of prototype c) Horizontal prototype | b) Local prototype d) Low fidelity prototype | | 39. | Paper prototype can act as | | | | a) Coding blocker c) Prototype blocker | b) View blocker
d) All of these | | 40. | A 'T' prototype combines
a) Both paper and local prototype
c) Both low fidelity and high fidelity | b) Both horizontal and local prototype d) None of these | | 41. | Some of the guidelines and much of practic a) The concepts of over satisfaction c) The concepts of human working memory | b) The concepts of UX guidelines | | 42. | Sensory memory is of
a) Small brief duration
c) Very brief duration | b) Large brief duration
d) None of these | | 43. | The selected UX design guidelines are gene a) UAF structure c) GUI structure | b) API structure d) All of these | | 44. | Design examples of UX guidelines from eva
a) Hair dryers
c) Public doorways | | | a) Users | es are the support
b) Servants | c) Public | | d) None of these | |--|---|---|---|--| | a) When tasks or | steps to do | | | | | Translation guide a) Users | lines are to support
b) Customers | c) Peoples | | d) None of these | | _ | | b) Flexibility | ey | | | a) Typingb) Clicking | | | actions | including | | a) Users through ob) User's interaction | complete and correct "ba
ion cycle functionality | nckend" functions | ality | | | | a) Users User actions to de a) When tasks or st c) How tasks or st Translation guidel a) Users Including human a) Design simplic c) Efficiency Physical actions g a) Typing b) Clicking c) Dragging in a C d) All of these The outcomes par a) Users through c b) User's interactic c) Dragging in a C | User actions to determinea) When tasks or steps to do c) How tasks or step to do Translation guidelines are to supporta) Users b) Customers Including human memory support in the ta) Design simplicity c) Efficiency Physical actions guidelines support users a) Typing b) Clicking c) Dragging in a GUI, scrolling on a web d) All of these The outcomes part of the interaction cycle a) Users through complete and correct "bab b) User's interaction cycle functionality c) Dragging in a GUI, scrolling on a web | a) Users b) Servants c) Public User actions to determine a) When tasks or steps to do b) What tasks c) How tasks or step to do d) Why tasks Translation guidelines are to support a) Users b) Customers c) Peoples Including human memory support in the task structure a) Design simplicity b) Flexibility c) Efficiency d) Concurrence Physical actions guidelines support users is doing physical a) Typing b) Clicking c) Dragging in a GUI, scrolling on a web page d) All of these The outcomes part of the interaction cycle is about support a) User's interaction cycle functionality c) Dragging in a GUI, scrolling on a web page functionality c) Dragging in a GUI, scrolling on a web page functionality c) Dragging in a GUI, scrolling on a web page functionality c) Dragging in
a GUI, scrolling on a web page functionality | a) Users b) Servants c) Public User actions to determine a) When tasks or steps to do b) What tasks or steps c) How tasks or step to do d) Why tasks or steps Translation guidelines are to support a) Users b) Customers c) Peoples Including human memory support in the task structure a) Design simplicity b) Flexibility c) Efficiency d) Concurrency Physical actions guidelines support users is doing physical actions a) Typing b) Clicking c) Dragging in a GUI, scrolling on a web page d) All of these The outcomes part of the interaction cycle is about supporting a) Users through complete and correct "backend" functionality b) User's interaction cycle functionality c) Dragging in a GUI, scrolling on a web page functionality | Ver-A 5 of 5 | USN | | | | | | Question Paper Version: | : C | |-----|--|--|--|--|--|-------------------------|------------| | | | | | | | | | ## Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 | Time: 1 hr.] | [Max. Marks: 50 | |-----------------|-----------------| | 1 11110. 1 111. | | | | Universal riuman values Course | |------|---| | ime: | 1 hr.] [Max. Marks: 50 | | | INSTRUCTIONS TO THE CANDIDATES | | | | | 1. | Answer all the fifty questions, each question carries one mark. | | 2. | Use only Black ball point pen for writing / darkening the circles. | | 3. | For each question, after selecting your answer, darken the appropriate circle | | | corresponding to the same question number on the OMR sheet. | | 4. | Darkening two circles for the same question makes the answer invalid. | | 5. | Damaging/overwriting, using whiteners on the OMR sheets are strictly | | | prohibited. | | | promoted. | | | All the units of nature can be classified into orders | | | a) Two b) Three c) Four d) Six | | 2 | Which of the following does not form an order in nature? a)BIO b) Animal c) Consciousness d) Human | | | Which of the following statements is true, a) Material units have only two kinds of activities recognizing and fulfilling b) Material units have three kinds of activities assuming, recognizing and fulfilling | | | c) Material units have only four kinds of activities knowing, assuming, recognizing and fulfillingd) None of the statement | | | | - Which of the following statement is not true? - a) There is inter connectedness in nature - b) There is recyclability and self regulation in nature - c) There is struggle for survival in nature - d) There is mutual fulfillment in nature - According to quantity, which of the following is true for the orders in nature 5 - a) Bio order >> Physical order >> Animal order >> Human order - b) Animal order >> Bio order >> Physical order >> Human order - c) Physical order >> Bio order >> Animal order >> Human order - d) None of the above ### REAS SALEME | | | | | | | | BI | UHK408 | |-------|-------------------|---------------|------------------------|--|-------------|--------------------|--------------|---------------| | USN | | | | | 78 | Question | Paper Ve | rsion : C | | F | ourth So | | | Гесh. Deg
Huma ı | a line | | - | uly 2024 | | Time: | : 1 hr.] | | | | | | [Max. | . Marks: 50 | | | | I | NSTRU(| CTIONS T | го тне | CANDII | DATES | | | 1. | Answer | all the fifty | question | is, each que | stion carr | ies one ma | rk. | | | 2. | Use only | Black bal | ll point p | en for writi | ng / darke | ening the c | ircles. | | | 3. | For eacl | 1 question | , after se | electing you | ır answei | , darken | the approp | riate circle | | | correspo | onding to 1 | the same | question n | umber oi | the OMF | R sheet. | | | 4. | Darkenir | ng two circ | les for th | e same ques | stion make | es the ansv | ver invalid. | | | 5. | Damagi | ng/overwr | iting, us | sing white | ners on | the OM | R sheets | are strictly | | | prohibite | ed. | | | | | | | | 1 | All the un a) Two | its of nature | e can be cl
b) Thre | assified into | orc | | d) Six | | | 2 | Which of a)BIO | the followi | ng does no
b) Ani | ot form an oi
mal | | ure?
sciousness | d) Human | , | | 3 | a) Materia | | e only two | ents is true,
kinds of act
kinds of ac | | | | nd fulfilling | | | fulfillin | | | kinds of act | ivities kno | owing, assur | ning, recogr | nizing and | - Which of the following statement is not true? - a) There is inter connectedness in nature - b) There is recyclability and self regulation in nature - c) There is struggle for survival in nature - d) There is mutual fulfillment in nature - According to quantity, which of the following is true for the orders in nature 5 - a) Bio order >> Physical order >> Animal order >> Human order - b) Animal order >> Bio order >> Physical order >> Human order - c) Physical order >> Bio order >> Animal order >> Human order - d) None of the above | 6 | What are the fundamental components of ecosystems? a) Plants and Animals b) Air and water c) Rocks and minerals d) All of these | | | | | | |----|--|---------------------------------------|--|------------------|--|--| | 7 | The third order of natura) Material order | re is
b) Animal order | c) Plant order | d) Human order | | | | 8 | The activities in humar a) Composition | | c) Respiration | d) All of these | | | | 9 | The systems in nature a a) Cyclic | are
b) Mutually fulfilling | g c) Both a and b | d) None of these | | | | 10 | The natural characteris a) Perseverance | tics/Svabhava of a hun
b) Bravery | | d) All of these | | | | 11 | The purpose of value –Education is to a) Foster universal core values b) Make syllabus easy c) Develop values in individual d) Both A and C | | | | | | | 12 | Self exploration uses two mechanisms i) Na a) Experiential validation c) Logical Thinking | | tural Acceptance ii)? b) Reason d) Theoretical concept | | | | | 13 | Once we know what is valuable to us, these values becomes the basis, the anch | | | | | | | | a) Knowledge | b) Actions | c) Society | d) None of these | | | | 14 | To fulfill Human Aspin
a) Both values and skil
c) Skills | | sary
b) Values
d) None of these | 15 | | | | 15 | Which the following are the encompassing principles underlying the successfu implementation of value education? A) Conviction B) Connection C) Critical thinking D) Commitment choose the most appropriate answer from the options given below: | | | | | | | | a) A, C and D only | b) B, C and D only | c) A, B and D only | d) None of these | | | | 16 | Value and skills should a) True | l go hand in hand
b) False | c) Cannot tell | d) None of these | | | | 17 | Are the content of self
a) Program | | c) Both a and b | d) None | | | | 18 | Human life is lived at a) Nature | four levels individual,
b) Nurture | Family, Society and c) World | d) Universe | | | | 19 | Any course content on a) Universal | value education needs
b) Rational | to be c) Natural | d) All of these | | | | 20 | Value education enables us to a) To understand our needs b) Visualize our goals correctly c) Indicate the direction for their fulfillment d) All of the above | | | | | | | 21 | The only effective way to ensure professional ethics is by developing a) Knowledge b) Ethical conduct c) Ethical competence d) Professional activities | | | | | |----|---|--|--|---|--| | 22 | How does unethical pra
a) Through skills
c) Through practical | ctices in various prof | ssions can be resolved
b) Through knowledge
d) Via right understanding | | | | 23 | What provides clear guidance and policy frame work conducive to the development of a un-fragmented human society and a universal human order a) Humanistic education b) Humanistic constitution c) Profession d) Ethical Human conduct | | | | | | 24 | The right understanding definitiveness of human a) Ethical Human conduct) Policy | conduct. What is thi | | ables us to identify the | | | 25 | Primary step to movunderstanding among hea) Do practical | umans and the comm | itment to | to develop the right (d) Teach others | | | 26 | The right understanding a) Samadhan | helps us identify the b) Samridhi | c) Sah-astitva | | | | 27 | The humanistic education continuous a) Education | on will facilitate the b) Self evolution | process of self explor
c) Development | ation which will lead to d) People friendly | | | 28 | The values of human be a) Nine | eing can be enumerate
b) Thirty | ed as
c) Eighteen | d) Twenty four | | | 29 | Which of the following a) Kindness | is not a characteristic b) Competency | e of professionalism?
e) Morality | d) Complacency | | | 30 | There are six characteria) Ethical | stics of a professiona
b) Emotional | l style which is not a c) Responsible | professional style?
d) Intellectual. | | | 31 | Harmony should be ma a) Between body and li b) Between self and soc c) Between life and env d) All of the above | fe
eiety | | | | | 32 | The foundational value a) Respect | e in relationship is
b) Love | c) Trust | d) Glory | | | 33 | Ensuring right understa a) Care | nding and feeling in t
b) Affection | the others is called c)
Gratitude | d) Guidance | | | 34 | Harmony in the family a) Society | is the building block
b) Individual | for harmony in the c) Friend | d) Relative | | | 35 | The total numbers of fe a) 5 | b) 10 | ionship
c) 9
- 3 of 4 | d) 8 | | | 36 | Comprehensive human a) Co-existance | goal is right understand
b) Happiness | ding prosperity, trust
c) Abhay | (fearlessness) and d) None | |----|---|--|--|----------------------------| | 37 | There is justice in relational Mutual fulfillment | onship when there is b) Self regulation | c) Freedom | d) None | | 38 | The extension of family a) Self | is
b) Body | c) Society | d) Nature | | 39 | The feeling of relatedne a) Love | ss to all human beings
b) Affection | is called c) Gratitude | d) Respect | | 40 | Acceptance of excellence a) Reverence | ee in others is called b) Glory | c) Gratitude | d) Guidance | | 41 | Harmony should be ma a) Between body and lift b) Between self and soc c) Between life and env d) All of these | e
iety | | | | 42 | I being the a) does, seer and Enjoye c) seer | er | b) doer
d) enjoy | | | 43 | Which of the following a) Knowing c) Recognizing | is NOT response of th | e self? b) Assuming d) Preconditioning | | | 44 | Activities of self (I) are a) Happiness c) Desire, thought and e | xpectation | b) Prosperity d) None | | | 45 | The requirement of bod a) Desire | y is right utilization an b) Protection | d nurturing
c) Thought | d) Expectation | | 46 | The is an instrum | b) Body, I | c) Both a and b | d) None | | 47 | The activity of desire, that a) Body | nought and expecting to b) Health | | d) Future | | 48 | Imaging is with t a) Continuous | ime
b) Discontinuous | c) Random | d) Different | | 49 | Where there is harmony a) Swasthya | among the parts of the b) Sanyam | e body it is known as c) Prosperity | d) None | | 50 | Knowing means having a) Assumption b) Right understanding c) Right feeling d) None | the | | |