CBCS SCHEME

LICN					
USIN					

BMATEC301/BBM301

Third Semester B.E./B.Tech. Degree Examination, June/July 2024 AV Mathematics – III for EC/BM Engineering

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book and statistical table are permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Find the Fourier series for $f(x) = \begin{cases} -K, & \text{in } (-\pi, 0) \\ K & \text{in } (0, \pi) \end{cases}$ and hence deduce	6	L2	CO1
and the second second second second		$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$	7	L2	C01
	b.	Expand $f(x) = 2x - 1$ as a cosine half range Fourier series in $0 < x < 1$.	,		COI
	c.	Express y as a Fourier series upto the first harmonics given the following values:	7	L3	COI
		OR	A	1	
Q.2	a.	Find the Fourier series for $f(x) = x - x^2$ in $-1 < x < 1$.	6	L2	CO1
	b.	Show that half range sine series of $f(x) = \pi x - x^2$ in the interval $(0, \pi)$ is $\frac{8}{\pi} \sum_{h=0}^{\infty} \frac{1}{(2n+1)^3} \sin(2n+1)x$	7	L2	CO1
	c.	Obtain the Fourier series of y upto 2^{nd} harmonics $f(x)$ is given by	7	L3	CO1
	7	Module – 2	T	1.0	COA
Q.3	a.	Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & x < 1 \\ 0 & x \ge 1 \end{cases}$ and hence find the value of $\int_0^\infty \frac{x \cos x - \sin x}{x^3} dx$	6	L2	CO2
	b.	Find the Fourier sine and cosine transform of $f(x) = e^{-\alpha x}$, $\alpha > 0$.	7	L2	CO2
В	c.	Solve the integral equation $\int_{0}^{\infty} f(\theta) \cos \alpha \theta d\theta = \begin{cases} 1 - \alpha, & 0 \le \alpha \le 1 \\ 0, & \alpha > 1 \end{cases}$ and hence	7	L3	CO2
		evaluate $\int_{0}^{\infty} \frac{\sin^2 t}{t^2} dt$.			
		1 of 3		-	

BMATEC301/BBM301 Find the Fourier transform of $e^{-a^2x^2}$, a > 0. L2 CO₂ Q.4 CO₂ L2 Find the Fourier sine transform of $f(x) = e^{-|x|}$ and hence evaluate $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx, m > 0$ Find the discrete Fourier transform of the sequence $\{1, 2, 1, 3\}^{T}$. L3 CO₂ Module - 3 Obtain the Z-transform i) $Cosn\theta$ ii) $Sinn\theta$. L2 CO₃ Q.5 Find the inverse Z-transform of $\frac{3z^2 + 2z}{(5z - 1)(5z + 2)}$ L2 CO₃ Solve by using Z-transforms: $y_{n+2} + 2y_{n+1} + y_n = n$ with $y_0 = 0 = y_1$. L3 CO₃ L2 CO₃ Find the Z-transform of $2n + \sin\left(\frac{n\pi}{4}\right) + 1$ Q.6 L2 CO₃ Find the inverse Z-transform of $\frac{4z^2-2z}{(z-1)(z-2)^2}$. L3 CO₃ c. If $u(z) = \frac{2z^2 + 3z + 12}{(Z-1)^4}$ find the value of u_0 , u_1 , u_2 . Module – 4 Solve $(D^4 + 8D^2 + 16)$ y = 0. Q.7 L1 CO₄ **b.** Solve $\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 13y = e^{3t} \cosh 2t$. CO₄ Solve $x^3 + x^2y'' + xy' + 8y = 65 \cos(\log x)$. L3 CO₄ OR CO₄ Q.8Solve $y'' + 9y = \cos 2x \cos x$. 6 L₂ Solve $(2x+1)^2 y'' - 2(2x+1)y' - 12y = 6x + 5$. L2 CO₄ In an LCR circuit, the charge q on a plate of a condenser is given by L3 CO₄ $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = E \sin pt$. Solve the equation for q.

		Madala 5			
Q.9	a.	Module – 5 Fit a straight line for the following data:	6	L1	CO5
		x 50 70 100 120 y 12 15 21 25			
	b.	Obtain the lines of regression and hence find the coefficient of correlation for the data:	7	L2	CO5
	c.	Compute the rank correlation coefficient for the following data: x 68 63 75 50 62 80 78 40 55 60 y 62 58 68 45 81 60 68 48 50 70	7	L3	CO5
0.40		OR		T	
Q.10	a.	An experiment on life time 't' of cutting tool at different cutting speeds v(units) are given below	6	L2	CO5
	b.	The following data gives the age of husband (x) and the age of wife (y) in years. Form the 2 regression lines and calculate the age of husband corresponding to 16 years of age of wife.	7	L2	CO5
	c.	If the coefficient of correlation between the variables x and y is 0.5 and the acute angle between their lines of regression is $\tan^{-1}(3/5)$. Show that $\sigma_y = 2\sigma_x$.	7	L3	CO5

* * * * *

USN								BEC302
	1	1	1			1		

Third Semester B.E./B.Tech. Degree Examination, June/July 2024 Digital System Design using Verilog

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Define combinational logic. Give two examples.	4	L1	CO1
:1	b.	Explain the procedure to place a sum of products equation into canonical form. Express the function $P = f(a, b, c) = ab' + ac' + bc$ in canonical form.	6	L2	CO1
	c.	Solve the function $K = f(w, x, y, z) = \Sigma(0, 1, 4, 5, 9, 11, 13, 15)$ using Karnaugh map.	4	L2	CO1
	d.	Simplify the function $F = f(P, Q, R, S) = \Sigma m$ (0, 3, 5, 6, 7, 11, 14) using Quine-McCluskey method.	6	L2	CO1
	1	OR			
Q.2	a.	Define canonical sum of products and canonical product of sums. Give examples.	4	L1	CO1
	b.	Explain the procedure to place a product of sums equation into canonical form. Explain the function $T = f(a, b, c) = (a + b') (b' + c)$ in canonical form.	6	L2	CO1
	c.	Solve the function $G = f(a, b, c, d) = \pi(0, 4, 5, 7, 8, 9, 11, 12, 13, 15)$ using Karnaugh map.	4	L2	CO1
	d.	Simplify the function $F = f(P, Q, R, S) = \Sigma m(1, 2, 3, 5, 9, 10, 12)$ using Quine-McCluskey method.	6	L2	CO1
		Module – 2	***************************************		
Q.3	a.	Define encoder. Write the truth table, equations and circuit diagram of $8 - to - 3$ – line priority encoder.	4	L1	CO2
	b.	Explain the concept of carry-lookahead adder with related equations and block diagram.	6	L2	CO2
	c.	Design one-bit comparator with inputs A_i , B_i – bits to be compared, G_i , E_i , L_i – previous stage inputs and with the outputs G_{i+1} , E_{i+1} , L_{i+1} .	6	L4	CO2
	d.	Implement the function $f(w, x, y, z) = \sum m(0, 1, 5, 6, 7, 9, 12, 15)$ using $8 - to - 1$ – line multiplexer.	4	L3	CO2

				BE	C302
		OR			
Q.4	a.	Define decoder. Write the truth table, equations and circuit diagram of $3 - to - 8 - line$ decoder.	4	L1	CO2
	b.	Explain the operation of $8 - to - 1$ line multiplexer with block diagram, truth table, equation.	6	L2	CO2
	c.	Construct parallel binary adder/subtractor using full adder block and EX-OR gates. Also explain the operation of it.	6	L3	CO2
	d.	Design two-bit comparator using cascade connection of one-bit comparators and explain its operation.	4	L4	CO2
		Module – 3	L	1	
Q.5	a.	State transparency property in latches. What is the need for master-slave flip flops?	4	L1	CO3
	b.	With neat block diagram and truth-table explain the operation of master-slave JK flipflop.	6	L2	CO3
	c.	Design a synchronous mod-6 counter using JK flipflops.	6	L4	CO3
	d.	Implement mod-4-ring counter using shift registers.	4	L3	CO3
		OR		1	1
Q.6	a.	Define register and shift register. Mention two applications of shift registers.	4	L1	CO3
	b.	With logic diagram and timing diagram explain the operation of positive edge triggered D-flip flop.	6	L2	CO3
	c.	Design a four-bit binary ripple up-counter with logic diagram and counting sequence and briefly explain its operation.	6	L4	CO3
	d.	Implement Mod-8 twisted ring counter using shift registers and write the count sequence.	4	L3	CO3
	<u> </u>	Module – 4			L
Q.7	a.	List the different relational operators available in verilog language.	4	L1	CO4
	b.	Explain different verilog data types with examples.	6	L2	CO4
	c.	For the circuit diagram shown in Fig.Q.7(c), develop a verilog program for the output Y in: i) data flow description ii) behavioral description.	6	L3	CO4
		c d S_2 Fig.Q.7(c)			
		0. ((-)			
		2 of 3			

				BE	C302
	d.	Develop a verilog program to implement 2×1 multiplexer using conditional operator. Also write the truth table of 2×1 multiplexer.	4	L4	CO4
		OR	L	J	L
Q.8	a.	List the different styles of descriptions in verilog programming.	4	L1	CO4
	b.	Explain verilog shift operators and arithmetic shift operators with examples.	6	L2	CO4
	c.	Let $A = 5'b11011$, $B = 5'b10101$, $C = 4'd3$. Determine the output of the following verilog program statements: i) $d = \&A$ ii) $e = \sim^{\wedge} 4'b1011$ iii) $f = \sim(A \& (\sim B))$ iv) $g = A \parallel B$ v) $b = 3 ** 2$ vi) $i = \{2\{A\}\}$.	6	L3	CO4
×	d.	Develop a verilog program for half subtractor using data flow description style by providing truth table and expressions.	4	L4	CO4
	L	Module – 5	1	1	1
Q.9	a.	Write the verilog format of if-else statement and explain it.	4	L1	CO4
	b.	Explain the operation of positive triggered JK flipflop by writing verilog code using case statement and truth table.	6	L2	CO4
	c.	Develop a verilog behavioral description code for calculating the factorial of positive integers.	6	L3	CO4
	d.	Develop a verilog program for D-latch using behavioral description style by providing truth table.	4	L4	CO4
	L	OR			
Q.10	a.	Write the verilog format of case statement and explain it.	4	· L1	CO4
	b.	Explain the operation of 2-to-1-line multiplexer by writing verilog structural description program and block diagram.	6	L2	CO4
	c.	Develop a verilog behavioral description code for three-bit binary up counter.	6	L3	CO4
w.	d.	Develop a verilog program for half adder using structural description style by providing truth table and expressions.	4	L4	CO4

* * * *

USN

BEC303

Third Semester B.E./B.Tech. Degree Examination, June/July 2024 **Electronic Principles and Circuits**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

4,400		2. M: Marks, L: Bloom's level, C: Course outcomes.			
		Module – 1	M	L	C
Q.1	a.	With a neat circuit diagram, explain the voltage divider biasing circuit and also derive the expression.	10	L3	CO1
	b.	What is the collector-emitter voltage in Fig.Q1(b)	10	L3	CO ₁
		Nec = lov			
		RS SRc			
		10x2 3.6k.2	=		
		(2×3) (04) V _{CE}			
		2522Kn 200			
		J SKe			
		Fig.Q1(b)	, v		
		OR	т		
Q.2	a.	With diagram explain the two transistors model. Also derive Z_{in} (base).	10	L3	CO ₁
	b.	Explain the base biased amplifier circuit. Also explain AC equivalent circuit.	10	L3	CO1
		Module – 2			
Q.3	a.	With diagram explain the enhancement model MOSFET. Draw Drain and Transconductance curve.	10	L3	CO2
	b.	Derive an expression of i_D – V_{DS} relationship of NMOS transistor.	10	L3	CO ₂
		OR			
Q.4	a.	Derive an expression of DC bias point and voltage gain of small signal	10	L3	CO2
~ ··		operation of MOSFET.			
	b.	With a neat diagram explain the MOSFET T-equivalent circuit.	10	L3	CO2
		Module – 3			
Q.5	a.	With diagram explain the R-2R ADC converter derive V _{out} .	10	L3	CO3
	b.	Derive V_{ref} and f_c of comparators with non zero reference to linear Amplifier.	10	L3	CO3
		OR			
Q.6	a.	With neat diagram explain the operational amplifier base wein bridge oscillator circuit.	10	L3	CO3
	b.	Explain the operation of RC phase shift oscillator.	10	L3	CO3
	10.	Module – 4	1		
Q.7	a.	Briefly explain the four types of negative feedback.	10	L3	CO4
×.,	b.	With diagram explain the ICVS amplifier circuit.	10	L3	CO4
		OR			
Q.8	a.	With diagram explain the passband and stopband attenuation.	10	L3	CO4
£.0	b.	Explain with circuit diagram of VCVS High pass filter.	10	L3	CO4
		Module – 5			
Q.9	a.	With neat diagram explain the DC and AC two load line of VDB amplifier.	10	L3	CO5
	b.	Derive an expression of A _p of Class A power amplifier.	10	L3	CO5
		OR			
Q.10) a.	With circuit and waveform explain the 1-\$\phi\$ RC triggering circuit.	10	L3	COS
	h	With next diagram explain the Triac - Diac based bidirectional phase	10	L3	CO5

USN												BEC304
-----	--	--	--	--	--	--	--	--	--	--	--	--------

Third Semester B.E./B.Tech. Degree Examination, June/July 2024 Network Analysis

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
0.1	Ta	Reduce the network shown in Fig. Q1 (a) to a single voltage source in	10	L3	CO1
Q.1	a.	series with resistance between terminals A and B. Use source	10	113	001
		transformation and source shifting technique.			
		16.2			
		10.72			
		41.			
	11	The state of the s			
		(A) 90 A (F) 60v			
		A D B			
12		The last of the same of the sa			
		101 121L			
		201			
		Fig. Q1 (a)	6		
	b.	Determine voltage V ₃ in the circuit shown in Fig. Q1 (b), using loop	10	L3	CO1
		analysis.		J#	
		10-12			
		1 10 mm			
		3201 (2)30v		2	
		80v (±)			
		150			
		32 4057 4			
		30n			
		Fig. Q1 (b)			
		OR			
Q.2	a.	For the network shown in Fig. Q2 (a), compute all node voltages V_1,V_2,V_3	8	L3	CO1
		and V ₄ using Node analysis.			
	A James	Vi qui vi			
		10-2 360 (1)-			2
		5v (\$5-2 \$5.			
		V ₃ V ₄			2
		20 \$ 20			
		21 \$22			2 7 E
		A second		-	
		=			
		Fig. Q2 (a)			
		I Was a second and			

	b.	Determine the equivalent resistance between terminal A and B, in the	7	L3	CO1
		network shown in Fig. Q2 (b), using star Delta transformation.			13 0 0 1
		n			
		A			
		\$61 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
		7			
		2 31.			
		62 × 182			
		P			
		Bo m			
		0.51			
		Fig. Q2 (b)			
	_				
	c.	Find the potential difference between terminals M and N in the network	5	L3	CO1
		shown in Fig. Q2 (c), using source transformation.			
		9 M			
		15v(+) (7) \$42 (+)10v			
		TOIR			
		32 5 74 8 \$ 22			
		2A			
		• N			
		Fig. Q2 (c)			
		Module – 2			
0.2	T	P i i i i i i i i i i i i i i i i i i i			
Q.3	a.	Determine the voltage across 2Ω resistor in the circuit shown in Fig. Q3 (a),	10	L3	CO ₂
		using the super position theorem.			
		10-2 22			
		\$ \$3.4 \$ 50			
		12. A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
		(D)2A (2)20y			
					2
		Tri Co. ()			
		Fig. Q3 (a)			
	h	Find Theyenin's agriculant at tomain-1 A - 1 D : 11	4.0	7.4	000
	b.	Find Thevenin's equivalent at terminal A and B, in the network shown in	10	L3	CO2
		Fig. Q3 (b).			
		The state of the s			
		1 mm - 1 - A			
	7	32 52			5-
		A.1			
		3 , \$ V, (1) 10 A (1) VX			
		3-11 3 VL			
		~			
			e e		
		B	5		11
		Fig. Q3 (b)	9		
	1 1	Γ1g. Q3 (U)			
		The state of the s	- 1	- 1	

		OR			
Q.4	a.	Determine the load resistance to receive maximum power from the source. Also find the maximum power delivered to the load in the circuit shown in Fig. Q4 (a).	8	L3	CO2
		10-25 2320-2	ē		a 0
		100v = A WAT B 3023 8402			
		Fig. Q4 (a)			
	b.	For the circuit shown in Fig. Q4 (b), determine current I _L using Norton's theorem.	8	L3	CO2
		22 = +4v (1) 1A = 11.2		×	
		Fig. Q4(b)	12		
	c.	State Millman's theorem.	4	L2	CO2
		Module – 3	L	L	L
Q.5	a.	In the network shown in Fig. Q5 (a), a switch K is closed at $t = 0$. Determine $\frac{di_1}{dt}$, $\frac{di_2}{dt}$ at $t = 0^+$.	10	L3	CO3
		$V_{s(t)} = \begin{pmatrix} t \\ t \\ v_{osinwt} \end{pmatrix}$ $V_{c} = \begin{pmatrix} t \\ t$			10
		Fig. Q5 (a)			
	b.	In the Network shown in Fig. Q5 (b), the switch K is changed position from	10	L3	CO3
		a to b at $t = 0$. Solve for i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at $t = 0^+$. The circuit is reached steady			
		state before switching.			
		100V TO 14F			
ä		Fig. Q5 (b)			100

		OR			
Q.6	a.	In the network shown in Fig. Q6 (a), steady state has been reached with switch K open. At time $t=0$, the switch is closed. Deteremine the value of $V_a(0^-)$ and $V_a(0^+)$ at $t=0^+$.	10	L3	CO3
	ļ.,	Fig. Q6 (a)	10	L3	CO3
	b.	In the network shown in Fig. Q6 (b), a steady state is reached with switch K closed. At $t=0$, switch is opened. Determine voltage across switch V_K , $\frac{dV_K}{dt} \text{ at } t=0^+.$ Fig. Q6 (b)			
		Module – 4			
Q.7	a.	State and prove initial and final value theorem in Laplace transformation.	10	L3	CO3
	b.	Obtain the Laplace transform of the waveform shown in Fig. Q7 (b). Assume that waveform is periodic. Fig. Q7 (b)		L3	CO3
Q.8	Ta	OR In the series RL circuit shown in Fig. Q8 (a), the source voltage is	10	L3	CO3
y.o	a.	When switch K is closed at $t = 0$. Fig. Q8 (a) When $t = 0$ (a) Provided the source voltage is $t = 0$. Fig. Q8 (a)			

	b.	Find Laplace transform of the waveform shown in Fig. Q8 (b).	10	L3	CO3
**		Vo f(t)	×		
		0 1 2 3 7			
		Fig. Q8 (b)		,	- 4
Q.9	a.	Find Z and ABCD parameters for the network shown in Fig. Q9 (a). Also verify whether network is Reciprocal or Symmetrical.	10	L3	CO4
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		* *	
	2	Fig. Q9 (a)			y 2
	b.	A series RLC circuit has a resistance of $10~\Omega$, an inductance of $0.3~H$ and a capacitance of $100~\mu F$. The applied voltage is $230~V$. Find Resonance frequency, lower and upper cut-off frequencies, current at resonance, current at f_1 and f_2 , voltage across inductance at resonance.	10	L3	CO4
		OR			
Q.10	a.	Derive Z-parameters in terms of H parameter.	8	L3	CO4
	b.	Find the value of L for which the circuit resonates at frequency of 1000 rad/sec, for the circuit shown in Fig. Q10 (b).	7	L3	CO4
		$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = 1$			
		Fig. Q10 (b)			
	c.	Derive the relation between resonating frequency and half power frequencies i.e. $f_r = \sqrt{f_1 f_2}$	5	L2	CO4

CBCS SCHEME

USN									BH	EC306C
-						1				

Third Semester B.E./B.Tech. Degree Examination, June/July 2024 Computer Organization and Architecture

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	<u>C</u>
Q.1	a.	With a neat diagram, describe the functional units of a computer. Give examples for I/O.	10	L2	CO1
	b.	Write assembly language program for $X = (A * B) + (C * D)$ using one address, two address, and three address instructions formats.	06	L3	CO1
		address, two address, and three address instructions formats.	04	L2	CO1
	c.	Explain the Bus structures. OR			
Q.2	a.	With a neat diagram, discuss the operational concepts in a computer highlighting the role of PC, MAR, MDR, IR.	10	L2	CO1
	b.	Discuss IEEE standard for single precision and double precision floating point numbers with standard notations.	06	L3	CO1
	c.	Distinguish between Big-endian and Little-endian memory assignment. With a neat sketch, show how the value 26789435 is stored using these methods.	04	L3	C01
		Module – 2			
Q.3	a.	Define addressing mode. Explain any five addressing mode with syntax and examples.	10	L2	CO2
	b.	What is subroutine? With a pseudocode or program segment illustrate parameter passing using register.	05	L2	CO2
	-	Explain various assembler directives used in assembly language program.	05	L2	CO ₂
	c.	OR			
0.4		Explain stack operation with an example.	10	L2	CO ₂
Q.4	a.	Explain stack operation with an example. Explain the shift and rotate operations with examples.	06	L2	CO2
	b.	Write a program to add 'n' number using indirect addressing mode.	04	L3	CO2
	c.	Module – 3			
Q.5	a.	Showing the possible registers configuration in I/O interface. Explain program controlled input/output.	10	L2	CO
	b.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	L2	CO
		OR			,
Q.6	a.	What is an interrupt? With an example illustrate the concept of interrupt.	10	L2	CO.
Q.U	b.	1 1 DMA intentions to illustrate IMA	10	L2	CO
	υ.	Module – 4		7	
Q.7	a.	Illustrate internal structure of static memory.	10	L2	CO
2.7	b.	1 : 1 1 manufaction	10	L2	CO
	, D.	OR			T ===
Q.8	a.	Classify memory in a computer. With a neat diagram, describe the organization of $2M \times 8$ DRAM chip.	10	L2	CO
	b	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	06		CO
-	C.		04	L2	CO
	Γ.	1 of 2			

]	вес	306C
		Module – 5			
Q.9	a.	List different ways of improving CPU performance. With a neat diagram,	10	L2	CO ₅
		discuss three-bus organization of CPU.			
	b.	Discuss Hardwired control unit organization with relevant diagrams and	10	L3	CO ₅
		illustrate the logic to generate Z _{in} control signal.			
		OR			
Q.10	a.	Explain single-bus organization of data path in a processor with neat	10	L2	CO5
2.20		diagram, highlight the importance of gating signals.			
	b.	Develop the complete control signal sequence for the instruction Add(R ₁),	06	L3	CO5
	0.	R ₃ with appropriate remarks.			
	c.	Discuss micro programmed control unit design with relevant diagrams.	04	L2	CO5