

DIGITAL DESIGN AND COMPUTER
ORGANIZATION

DIGITAL DESIGN AND
COMPUTER

ORGANIZATION

HASSAN A.FARHAT

CRC PRESS

Boca Raton London New York Washington, D.C.

This edition published in the Taylor & Francis e-Library, 2005.

“To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of
thousands of eBooks please go to www.eBookstore.tandf.co.uk.”

Library of Congress Cataloging-in-Publication Data

Farhat, Hassan A.
Digital design and computer organization/Hassan A.Farhat.

p. cm.
Includes index.

ISBN 0-8493-1191-8 (alk. paper)
1. Digital electronics. 2. Logic circuits—Design and construction. 3. Computer

organization. I. Title.
TK7868.D5F37 2004

004.2�2–dc22 2003055805

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are listed.
Reasonable efforts have been made to publish reliable data and information, but the author and the
publisher cannot assume responsibility for the validity of all materials or for the consequences of

their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, microfilming, and recording, or by any

information storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion,
for creating new works, or for resale. Specific permission must be obtained in writing from CRC

Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2004 by CRC Press LLC

No claim to original U.S. Government works

ISBN 0-203-48669-2 Master e-book ISBN

ISBN 0-203-58540-2 (Adobe eReader Format)
International Standard Book Number 0-8493-1191-8 (Print Edition)

Library of Congress Card Number 2003055805

Dedication

TO MY FATHER

Acknowledgment

Sincere thanks go to the two acquiring editors from CRC Press: Nora Konopka
as the main editor and Gerald Papke for his initial letter of encouragement and
early correspondence. Nora’s deadline extensions and kindness have made this
task a reality. Many thanks for all their help go to the textbook’s project editor,
Gerry Jaffe, as well as to Jamie Sigal, Dawn Snider, and the other staff members
who worked on the textbook.

Thanks to the staff of Electronics Workbench for supplying the software to be
used with the text: in particular, Ian Suttie, vice president of sales, Joan Lewis-
Milne, director of educational marketing, Scott Duncan, and the technical support
staff that tested the circuits.

Thanks go to my students for their various inputs. Finally, sincere thanks and
love go to my wife, son, and daughter for their encouragement, help, and
understanding during the many hours it took to complete the textbook.

Preface

Digital Design and Computer Organization is an introduction to digital design
with application to computer organization. The tools studied in the text are used
in the design of digital systems. Many systems today are digital in nature. This
includes digital cameras and digital computers, for example. The book is suitable
for students majoring in Computer Science, Electrical Engineering, and
Computer Engineering. The contributions of the text are as follows:

1. The emphasis of the textbook is on logic design with minimal reference to
electrical properties. This is an advantage to computer science students that
have had no previous training in electrical engineering. The text assumes no
previous knowledge of electrical components (elementary coverage is
included and is optional). Electrical engineering students can also benefit
from the textbook since, if needed, the topics can be complemented with lab
supplements that consider electrical constraints.

2. Outside the use of a schematic capture tool used to simulate designs from
primitive gates, the textbook is written to be vendor independent. Minimal
coverage of actual chips and functionality is considered. As a result, the
discussion is presented in general terms that emphasize the principles of
digital design.

3. Topics are covered in the context of computer organization. The last two
chapters of the text introduce instruction set architecture and present a
complete design of a simple AC-based CPU. In this context students relate
the principles of digital design studied to the topic of computer organization.

4. To enhance topics coverage, the majority of the circuits presented in the text
are found in the accompanying CD. These circuits were designed and tested
using the Electronics Workbench package. Many of the circuits found in the
text are screen captures from the package. The Electronics Workbench
package was chosen due to its friendly graphical-user interface. With
minimal previous knowledge, the student can start the design process from
truth tables, for example, and progress through the textbook to more
complex design. The included circuits provide students the ability to
simulate the functionality of the circuits in a hands-on fashion.

5. Topics are introduced in a gradual fashion. The coverage starts with simple
cases and builds on these cases to introduce general cases.

Chapter 1 covers numbers representations and arithmetic in different bases. The
topics covered include positional number systems, data types and ranges,
conversion between the different bases, arithmetic in different bases, coding, and
floating-point number representation. Radix complements and diminished radix
complements are introduced. Arithmetic using this representation, however, is
deferred until Chapter 5.

Chapter 2 includes introduction to Boolean algebra and its properties,
algebraic simplification of Boolean expressions, gate representations in terms of
design and analysis. In addition, the chapter includes elementary electrical
topics. The concepts of voltage, current, and resistance are introduced. These are
then followed with Kirchhoff’s laws, voltage division, RC circuits, and
applications in CMOS gate design.

Chapter 3 begins with coverage of the canonical forms of Boolean functions
and logical completeness. The design of circuits from canonical forms is
considered; logical completeness is used to introduce additional gates and to
introduce different two-level designs. Design automation tools and the
Electronics Workbench are discussed.

Chapter 4 covers K-maps and the tabular method of minimizations for
completely and incompletely specified functions. The chapter also includes
multiple-output function minimization.

Chapter 5 deals with arithmetic and logic circuits. Topics covered include
binary adders, look-ahead carry generators, magnitude comparators, binary
subtractors, and multipliers. In addition, the chapter includes discussion of radix
arithmetic, and allowable ranges are discussed in detail. The discussion includes
the design of adders/subtractors based on the operands representation. The
chapter concludes by designing an arithmetic logic unit in relation to computer
organization. Bit-wise logic operations and multiplexers, as source selectors, are
discussed in the context of the ALU (arithmetic logic unit) design.

Chapter 6 covers decoders, encoders, multiplexers, and demultiplexers. The
design of Boolean functions, from decoder and multiplexers, and how to build
larger units from smaller ones is covered. In addition, the chapter covers

vii

programmable logic devices (Read Only Memory [ROM], Programmable Logic
Array [PLA], and Programmable Array Logic® [PAL®]). The design using
diodes as a conceptual realization at lower levels is given in the chapter as well.
Here students can use the Electronics Workbench to experiment. Switches are
included to simulate the process of programming the devices.

Chapter 7 starts the discussion of sequential circuits. It covers latches, latches
behavioral description (characteristic tables, equations, state diagrams, and
timing diagrams), gated latches, master-slave flip-flops, ones catching, edge-
triggered flip-flops, and introduces sequential circuit analysis.

Chapter 8 covers the design of sequential circuits by relating it to analysis as
covered in the previous chapter. Here, the constraints on the design are relaxed.
Design based on excitation equations is given, followed by design from
characteristic equations and design from word problems. The chapter includes
discussions of the two machine representations, Mealy and Moore, and how one
converts from one machine to the other. In addition, state minimization is
covered in the chapter.

Chapter 9 includes the design of registers, counters, and general-purpose
registers/counters. The chapter introduces memory design by designing larger
memory from smaller memory first. This is then followed with design of
memory cells and the internal design of a static RAM. The chapter concludes
with a discussion of register files and relates the discussion to CPU organization
and the ALU designed in Chapter 5.

Chapter 10 is an introduction to instruction set architectures. Two different
architectures (AC-based and general-purpose register-based) are discussed.
Instructions formats in relation to both architectures are covered. Covered as
well are translation of assembly instructions into machine instructions and the
different addressing modes. Finally, the concept of macros as an alternative to
hardware instructions is introduced. The homework section of this chapter
includes discussion of stack-based instruction set architecture.

The book concludes with Chapter 11, where the design of a simple AC-based
CPU is considered. To do this, we introduce the concept of a micro-operation
and register-transfer languages. The design of register-transfer languages using
direct connections and bus connections is then covered. This is followed with
instruction set completeness, the instruction set of the AC-based CPU, the data-
path and memory connections, and the control unit organization. The design of
the CPU is then covered by considering the design of the combinational part of
the control unit.

The instructor resources for the text include a solutions manual to the
exercises given at the end of the chapters. This is in addition to a detailed set of
lecture notes supplied in PowerPoint format.

The textbook is written to be suitable as 3-credit hour or 4-credit hour course.
In a traditional 3-credit hour course, the minimal suggested topics coverage is

viii

Chapter 1

Chapter 2 (Sections 2.6 through 2.11 are optional)

Chapter 3

Chapter 4

Chapter 5

Chapter 6 (Section 6.8 is optional)

Chapter 7

Chapter 8 (optional)

Chapter 9 (Sections 9.8 and 9.9 are optional)

The optional sections in Chapters 2 and 6 deal with the introductions to electrical
circuits and designs of programmable logic devices using diodes. The intention
is to give the reader with no electrical engineering background an elementary
introduction to the topics. Chapter 8 deals with design of sequential circuits. Some
instructors may cover the topic in a second digital course.

In a 4-credit hour course, the remaining chapters can be covered. This may be
suitable in computer science curricula with two courses in the hardware area
(digital design and computer architecture).

ix

Author

Hassan A.Farhat received his Ph.D. in Computer Science and Engineering in
1988 from the University of Nebraska at Lincoln. His research interests are in
very-large-scale integration (VLSI) testing and computer graphics. Among the
publications in VLSI testing, Dr. Farhat received best paper contributor award at
the IEEE International Conference in Computer Design (ICCD) in 1988. His
teaching interests are in the hardware track (digital design, computer
organization, and computer architecture); VLSI testing; and computer graphics.

Table of Contents

1 Numbers in Different Bases 1

1.1 Digital and Analog Data 2

1.2 Coding 3

1.3 Positional Number System 4

1.3.1 Numbers without Radix Point 4

1.3.2 Numbers with Radix Point 5

1.4 Octal and Hexadecimal Bases 6

1.5 Operands Types and Their Range 9

1.5.1 Data Types 10

1.5.2 Finite Range 10

1.6 Conversion of Decimal Numbers to Equivalent Numbers in
Arbitrary Bases

 12

1.6.1 Conversion of Integer Part 13

1.6.2 Converting the Fractional Part 14

1.7 Binary Arithmetic 16

1.7.1 Addition 16

1.7.2 Subtraction 19

1.7.3 Multiplication 20

1.8 Radix and Diminished Radix Complements 22

1.9 Representation of Negative Numbers 24

1.9.1 The Three Representations 24

1.9.2 Range of the Numbers 26

1.10 Coding and Binary Codes 27

1.10.1 BCD Code 28

1.10.2 The Excess-m Code 28

1.10.3 Gray Code 30

1.10.4 Character Codes 31

1.11 Floating-Point Numbers 32

1.11.1 Binary Representation of Floating-Point 32

1.11.2 Normalized and Biased Floating-Point Representation 34

Chapter 1 Exercises 35

2 Boolean Algebra, and Gate and Transistor Design 37

2.1 Boolean or Switching Algebra 38

2.1.1 Definitions 39

2.1.2 Boolean Expressions 39

2.1.3 Truth Tables 41

2.2 Properties of Boolean Algebra 43

2.2.1 Axioms 43

2.2.2 Principle of Duality 44

2.3 Simplification of Boolean Expressions 48

2.4 Boolean Function 50

2.4.1 Definitions 51

2.4.2 Representations (Realization) 52

2.4.3 Complement of Boolean Functions 54

2.5 Circuit Analysis and Gate Design 55

2.5.1 Circuit Analysis and Gate Representation 55

2.5.2 Circuit Design 57

2.5.3 Multiple Input Gates 58

2.6 Electrical Circuits 59

2.6.1 Voltage, Current, and Resistance 59

2.6.2 Ohm’s Law 60

2.7 Kirchhoff’s Laws and Voltage Division 61

2.7.1 Voltage Difference 61

xii

2.7.2 Kirchhoff’s Voltage Law 62

2.7.3 Voltage Division 63

2.8 Kirchhoff’s Current Law 66

2.9 RC Circuits 70

2.10 Transistors and Logic Gates 73

2.11 CMOS Gate Design 76

2.11.1 The AND CMOS Design 78

Chapter 2 Exercises 78

3 Canonical Forms and Logical Completeness 83

3.1 Canonical Forms of Boolean Functions 85

3.1.1 Canonical Sum Form 85

3.1.2 Canonical Product Form 90

3.2 Sum of Product and Product of Sum Forms 93

3.2.1 Sum of Product Form 93

3.2.2 Product of Sum Form 94

3.2.3 Verification of Function Equality Using Canonical Forms 95

3.3 Design of Functions in Standard Forms 96

3.3.1 Canonical Sum and Sum of Product Design 96

3.3.2 Canonical Product and Product of Sum Representation 97

3.4 Other Two Variable Functions 98

3.4.1 Number of Boolean Functions over Two Variables 99

3.4.1.1 The NAND Function 99

3.4.1.2 The NOR Function 99

3.4.1.3 The Exclusive OR Function 100

3.4.1.4 The Equivalence Function 100

3.5 Logical Completeness 101

3.5.1 Definition and Examples 101

3.5.2 The NAND and NOR Gates as Logically Complete Gates 102

3.6 HAND and NOR Design of Combinational Circuits 104

xiii

3.6.1 NAND Gate Design 105

3.6.2 NOR Gate Design 105

3.6.3 AND-OR-Invert and OR-AND-Invert Design 107

3.7 Design Automation Tools and Levels of Abstraction 108

3.7.1 Levels of Abstraction 109

3.7.2 Computer-Aided Design (CAD) Tools 110

3.7.2.1 Design Entry 111

3.7.2.2 Synthesis 112

3.7.2.3 Simulation 113

3.8 Application to the Electronics Workbench (EW) 114

3.8.1 The Electronics Workbench 114

3.8.2 Design Entry 115

3.8.2.1 Design Entry through Truth Tables 116

3.8.2.2 Design Entry through Equations 117

3.8.2.3 Design Entry Using Schematic Capture 117

3.8.3 Synthesis 120

3.8.3.1 Synthesis from Truth Table 121

3.8.3.2 Synthesis from Equations 122

3.8.3.3 Synthesis from Schematic Capture 122

3.8.4 Simulation 124

3.9 Integrated Circuits 126

3.9.1 Small-Scale Integration 127

3.9.2 Medium-Scale Integration 127

3.9.3 Large-Scale Integration 127

3.9.4 Very-Large-Scale Integration 128

Chapter 3 Exercises 129

4 Minimization of Boolean Functions 131

4.1 Logical Adjacencies and K-Map Construction 132

4.1.1 Logical Adjacency 132

xiv

4.1.2 K-Map Construction 134

4.1.2.1 The Inputs to the Table 135

4.1.2.2 How Is the Table Read? 135

4.2 Subcube Formations 136

4.2.1 Filling the Table Entries 136

4.2.2 Subcubes and Minimization 137

4.3 K-Map Minimization 140

4.3.1 Subcubes and Prime Implicants 140

4.3.2 K-Map Minimization 142

4.3.2.1 Relationship to Subcubes on a K-Map 143

4.3.2.2 The Minimization Process 145

4.3.2.3 Essential Prime Implicants and Examples 146

4.4 Incompletely Specified Functions 149

4.5 Product of Sum Minimization 152

4.6 The Quine-McCluskey or Tabular Method 153

4.6.1 Building Prime Implicants 153

4.6.2 Finding Minimal Cover 155

4.6.3 Algorithmic Procedure of the Tabular Method 156

4.6.3.1 Forming the Prime Implicants 156

4.6.3.2 Minimal Cover Procedure 159

4.6.4 Decimal Method of Building Prime Implicants 161

4.7 Multiple-Output Function Minimization 162

Chapter 4 Exercises 167

5 Arithmetic Logic Circuits and Programmable Logic
Devices

 170

5.1 Binary Adders 171

5.1.1 Iterative Circuits 171

5.1.2 Half and Full Adders 173

5.2 Look-Ahead Carry Generators 176

5.3 Magnitude Comparators 178

xv

5.3.1 1-Bit Magnitude Comparator 180

5.3.2 Boolean Equations for the Equal Output 180

5.3.3 Design of the A>B Output 181

5.3.4 Boolean Equations for A<B 181

5.3.5 Magnitude Comparators with Enable Lines 182

5.4 Binary Subtracters 182

5.4.1 Half Subtracters 182

5.5 Arithmetic Circuits Using Radix Complement 185

5.5.1 Unsigned Addition and Subtraction 186

5.5.2 Hardware Implementation of Unsigned Arithmetic 188

5.5.3 Signed Number Arithmetic in Radix Complement 189

5.5.3.1 An Alternative Method to Compute 2’s Complement 189

5.5.3.2 Signed Arithmetic 191

5.5.3.2.1 Case One (No Overflow or Underflow Is Possible) 191

5.5.3.2.2 Case Two (Overflow Is Possible to Occur) 191

5.5.3.2.3 Case Three (Underflow Is Possible to Occur) 192

5.5.4 Hardware Implementation of Signed Arithmetic 192

5.6 Multiplier Circuits 194

5.7 Multiplexers 196

5.7.1 Design of Multiple Output Multiplexers 198

5.8 Design of a Simple Arithmetic Logic Unit 198

5.8.1 Subtraction and the Arithmetic Unit 199

5.8.2 Bit-Wise Logic Operations 201

5.8.3 Combinational Shift Left 201

5.8.4 The Design of the ALU 202

Chapter 5 Exercises 203

6 Programmable Logic Devices 207

6.1 Decoders 208

6.1.1 Binary Decoders 208

xvi

6.1.2 Function Design Using Decoders 212

6.1.3 Building Larger Decoders from Smaller Ones 215

6.2 Encoders 216

6.2.1 Binary Encoders 217

6.2.2 Priority Encoders 219

6.3 Multiplexers 220

6.3.1 Design and Equations 221

6.3.2 Design of Larger Multiplexers from Smaller Ones 221

6.3.3 Design of Boolean Functions Using Multiplexers 222

6.4 Demultiplexers 226

6.5 Programmable Logic Arrays 227

6.5.1 Programmable Logic Devices (PLDs) 227

6.5.2 Programmable Logic Arrays 229

6.5.3 Tabular Description 234

6.5.4 AND-OR-NOT Design 236

6.6 Programmable Array Logic Devices 237

6.7 Read-Only Memory 240

6.8 Diodes and Programmable Logic Devices 242

6.8.1 Diodes 243

6.8.2 Programmable Logic Devices 245

6.8.3 Diode Design of Programmable Logic Arrays 246

Chapter 6 Exercises 247

7 Flip-Flops and Analysis of Sequential Circuits 250

7.1 Latches 252

7.1.1 Feedback Loops 252

7.1.2 SR Latches 253

7.2 Behavioral Description 256

7.2.1 Characteristic Table 256

7.2.2 Characteristic Equations 257

xvii

7.2.3 State Diagrams 257

7.2.4 Timing Diagrams 258

7.3 Other Primitive Latches 259

7.3.1 Characteristic Tables of the Three Latches 261

7.3.2 The Characteristic Equations 261

7.3.3 The State Diagrams 262

7.4 The Latches Gate Design 262

7.4.1 D Latch Design 262

7.4.2 The JK Latch 262

7.4.3 The T Latch 265

7.5 Gated Latches 265

7.6 Flip-Flops 268

7.6.1 Asynchronous and Synchronous Circuits 268

7.6.2 Master-Slave Flip-Flops 271

7.7 Glitches and Ones-Catching 271

7.8 Edge-Triggered Flip-Flops 274

7.8.1 Asynchronous Preset 274

7.8.2 Clock Value Equal to 1 276

7.8.3 Clock Makes a Transition from 1 to 0 277

7.8.4 Clock Value Is 0 277

7.8.5 Clock Makes Transition from 0 to 1 278

7.9 Block Diagrams and Timing Constraints 279

7.9.1 Timing Constraints 280

7.10 Analysis of Sequential Circuits 281

7.10.1 Sequential Circuits Block Diagram Model 283

7.10.2 Characteristic Equations 284

7.10.3 Characteristic or State Table Construction 286

7.10.4 State Diagrams 287

7.10.5 Timing Diagrams 289

xviii

7.10.6 Alternative Representations of State Tables 293

Chapter 7 Exercises 294

8 Design of Sequential Circuits and State Minimization 298

8.1 Block Diagrams and Design from Excitation Equations 300

8.1.1 Design of Sequential Circuits Given the External Outputs
and Excitation Equations

 300

8.2 Design Given the Characteristic Equations 302

8.2.1 Design Using D Flip-Flops 302

8.2.2 Design Using JK Flip-Flops 304

8.3 General Design Procedure of Sequential Circuits 306

8.3.1 Step 1 306

8.3.2 Step 2 307

8.3.3 Step 3 307

8.3.3.1 Flip-Flop Excitation Tables 309

8.3.4 Step 4 310

8.3.5 Step 5 311

8.4 Machine Equivalence and State Assignments 311

8.5 Mealy State Diagrams 316

8.6 Moore Machines 321

8.6.1 Conversion from Mealy to Moore Machines 323

8.7 Machine and State Equivalence 325

8.8 State Reduction and Minimal State Diagrams 329

8.8.1 The Reduced State Table 333

Chapter 8 Exercises 333

9 Registers, Counters, and Memory Elements 337

9.1 Registers 338

9.1.1 Parallel Registers 338

9.1.2 Shift Registers 341

9.2 Counters 343

9.2.1 Mod-2n Synchronous Counters 343

xix

9.2.2 Mod-M Counters for General M 346

9.2.3 Binary Counters with Decreasing Counts 348

9.3 Asynchronous, Ring, and Johnson Counters 350

9.3.1 Asynchronous Counters 350

9.3.2 Ring Counters 351

9.3.3 Johnson Counters 352

9.4 General-Purpose Register-Counter Circuits 354

9.5 Memory Block Diagram 359

9.6 Building Larger RAM from Smaller RAM 361

9.7 The Data Bus Connections 363

9.7.1 Connections Using Multiplexers 365

9.7.2 Connections Using Tristate Gates 367

9.8 Internal Design of Memory 367

9.8.1 Gate Design of a Single Memory Cell 367

9.8.2 RAM Design with Two Data Buses 368

9.8.3 RAM Design with a Single Data Bus 370

9.9 Register Files 373

Chapter 9 Exercises 376

10 Instruction Set Architecture 381

10.1 Instruction Set of a Computer 382

10.2 Accumulator-Based Instruction Set Architecture 383

10.2.1 Accumulator-Based Architecture 383

10.2.2 Accumulator-Based Instructions 384

10.2.2.1 Load and Store Instructions 385

10.2.2.2 Arithmetic and Logic Instructions 385

10.2.2.3 Register Transfer Languages 387

10.3 General Register-Based Architecture 389

10.4 Machine-Level Instructions 391

10.5 The Computer Instruction Cycles 394

xx

10.6 Common Addressing Modes 396

10.7 Macros 401

Chapter
10

 Exercises 402

11 Design of a Simple AC-Based CPU 406

11.1 Microoperation and Register Transfer Languages 407

11.2 Design of RTL Statements 409

11.3 Instruction Set of the Simple CPU 414

11.3.1 Instruction Set Completeness 414

11.3.1.1 Arithmetic Instructions 414

11.3.1.2 Logic Instructions 414

11.3.1.3 Branch (Jump Instructions) 414

11.3.1.4 CPU/and Memory Instructions 415

11.3.2 The Instruction Set of the Simple CPU 415

11.4 CPU Organization Data Path 416

11.5 The Control Unit 418

11.6 The Three Cycles 421

11.7 Computer Cycles Execute Microoperations 422

11.7.1 The Memory-Reference Instructions 423

11.7.1.1 The LW Instruction 423

11.7.1.2 The ST Instruction 423

11.7.1.3 The ADD Instruction 424

11.7.1.4 The AND Instruction 424

11.7.1.5 The JMP Instruction 424

11.7.1.6 The SKZ and the SKP Instructions 425

11.7.2 Register-Reference Instructions 425

11.8 Inputs and Outputs of the Combinational Part of Control Unit 426

11.8.1 Input Part 426

11.8.2 Output Part 427

11.9 The Control Unit Output Functions 428

xxi

11.10 Design of the AC-Based CPU 431

Chapter
11

 Exercises 432

Appendi
x A

 References 436

Appendi
x B

 Answers to Selected Problems 438

Index 462

xxii

1
Numbers in Different Bases

CONTENTS

1.1 Digital and Analog Data 2

1.2 Coding 3

1.3 Positional Number System 4

1.3.1 Numbers without Radix Point 4

1.3.2 Numbers with Radix Point 5

1.4 Octal and Hexadecimal Bases 6

1.5 Operands Types and Their Range 10

1.5.1 Data Types 10

1.5.2 Finite Range 10

1.6 Conversion of Decimal Numbers to Equivalent Numbers in
Arbitrary Bases

 12

1.6.1 Conversion of Integer Part 13

1.6.2 Converting the Fractional Part 14

1.7 Binary Arithmetic 16

1.7.1 Addition 16

1.7.2 Subtraction 19

1.7.3 Multiplication 20

1.8 Radix and Diminished Radix Complements 22

1.9 Representation of Negative Numbers 24

1.9.1 The Three Representations 24

1.9.2 Range of the Numbers 26

1.10 Coding and Binary Codes 27

1.10.1 BCD Code 28

1.10.2 The Excess-m Code 29

1.10.3 Gray Code 30

1.10.4 Character Codes 31

1.11 Floating-Point Numbers 32

1.11.1 Binary Representation of Floating-Point 32

1.11.2 Normalized and Biased Floating-Point Representation 34

Chapter 1 Exercises 35

1.1
Digital and Analog Data

This textbook is about the principle of digital computer design. The term
“digital” is a characterization of data in a set. We say a set of data is digital if it
contains a finite set of elements. Examples of digital data are the sets {0, 1}, {on,
off}, {red, blue, green}, and {x: x is a decimal digit}. In each of the examples,
the set of data is digital since the number of elements in the set is finite.

The set of data is analog if the set contains a continuous interval of data
elements. As a result, the set of data contains infinite number of elements since
continuous intervals contain infinite data elements. Examples of analog data are
the set of real numbers, the set of all colors, and the set of real numbers between
0 and 10.

We often approximate analog data by converting the data into digital format.
For example, time is analog. When communicating time, we usually give time in
hours and minutes. An example is the time display on computer monitors.

2 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Our discussion of digital design relates to digital computers. As the name
implies, computers are digital, which means they process digital data. In addition,
computers are programmable, i.e., the computer can be instructed to perform
specific tasks according to a user, the programmer. The program is stored in the
computer in digital format. The format is a sequence of 0 and 1 digits called bits.

1.2
Coding

Consider the schematic given in Figure 1.2.1 of a computer with a keyboard, a
processing unit, and a monitor. When programming, the user may enter the
program or data using the keyboard.

Note that the set that contains all keyboard data is digital since it contains a finite
set of elements.

Since the computer processes binary data (data composed of 0s and 1s), the
following three steps occur:

1. The keyboard data is encoded into a sequence of bits where letters, digits,
and other symbols are assigned a binary code, code word. Encoding is a
mapping that associates with each object in some set a unique element (code
word) in some other set. In this case, the set of objects is the set of keyboard
data. We would like to associate a binary code sequence with all keyboard
data.

2. The second step in this process is for the computer to perform the needed
task. This occurs in the central processing unit (CPU), which includes
special electrical circuits that accomplish these tasks.

FIGURE 1.2.1

A Computer with a Keyboard, Processing Unit, and Monitor

NUMBERS IN DIFFERENT BASES 3

3. The last step is to convert the binary results back into user format, for
example, in decimal digits and alphabets. This step is called decoding and is
the reverse of encoding. Figure 1.2.2 shows the three steps.

Discussing the details of the three steps is the subject of this text. Since
computers process binary data, this will be our starting point.

1.3
Positional Number System

In positional number systems, a number, N, is characterized by a base, b, also
called a radix, and the coefficients (0, 1, …, (b−1)) that make up the number. In
decimal numbers (base 10), the base is implicit and can be omitted if needed.
When other bases are considered, the base is explicitly identified in the
representation as (N)b, or Nb, where b is the base.

For example, in base 10 the coefficients of N are 0, 1, …, 9. Similarly, in base
5 the coefficients of the number are 0, 1, 2, 3, and 4, and for base 16 the
coefficients of the number are the decimal digits 0 through 9 and the letters of
the alphabet A, B, C, D, E, and F, representing the decimal numbers 10, 11, 12,
13, 14, and 15, respectively. The symbols are needed since the base of the
number exceeds base 10. The first six letters of the alphabet are customarily used
in addition to the ten decimal digits.

We consider two formats, numbers with no radix point and numbers with radix
(decimal) points.

1.3.1
Numbers without Radix Point

For a given number (N)b=nin(i−1)…n0 in some base, b, the expanded polynomial
representation of the number is

FIGURE 1.2.2

The Three Steps of Encoding, Processing, and Decoding

4 DIGITAL DESIGN AND COMPUTER ORGANIZATION

(N)b=ni×bi+n(i−1)×b(i−1)+n(i−2)×b(i−2)+…+n0×b0

The expanded representation is used to convert a number, in an arbitrary base, to
the equivalent representation in base 10. The following three examples make use
of the above equation.

Example 1.3.1

1. Write the decimal number 1023 in expanded form according to the format
given above.

2. Find the base 10 values of

i. (1023)5

ii. (10111)2

iii. (23AF)16

Solution of part 1: The number is composed of four digits with b=10 and i=3.
Hence, using the equation above, we have n3=1, n2=0, n1=2, and n0=3. The
expanded number is obtained by substituting these values above to obtain (1023)

10=1×103+0×102+2×101+3×100

Solution of part 2:

1. Here, we have i=3 and b=5. Hence
 (1023)5=1×53+0×52+2×51+3×50 =125+0+10+3=(138)10

2. (10111)2=1×24+0×23+1×22+1×21+1×20

 =16+ 0+4+2+1=(23)10

3. (23AF)16=(2×163)+(3×162)+(A×161)+(F×160)
 =(2×163)+(3×162)+(10×161)+(15×160)
 =8192+768+160+15=(9135)10

1.3.2
Numbers with Radix Point

A number, (N)b, with a radix point (similar to the decimal point) is represented
as

(N)b=(nin(i−1)…n0·n−1n−2…n−m)b

with two parts: (1) the integer part nin(i−1)…n0, and (2) the fractional part n−1n−2…
n−m. The subscripts correspond to the location of a given digit relative to the
radix point. The subscripts of the whole part start with 0, while the subscripts for
the fractional part start with −1. For base 10, the radix point is called a decimal
point. For base 2, the radix point is called a binary point.

NUMBERS IN DIFFERENT BASES 5

For a given number in some arbitrary base, b, the equivalent decimal number
is obtained by adding all the digits of the number after multiplying each by bi,
where i is the position of the digit.

Example 1.3.2

Find the equivalent decimal number for:

1. (1023.21)5

2. (10111.01)2

Solution: Using the procedure listed above for part 1, we obtain
(1023.21)5=1×53+0×52+2×51+3×50+2×5

−1+1×5−2 =125+0+10+3+2/5+1/25=(138.44)10

For part 2, we obtain
(10111.01)2=1×24+0×23+1×22+1×21+1×20

+0×2−1+1×2−2 =16+0+4+2+1+0+1/4=(23.25)10

Commonly used bases in digital design and machine level programming are base
2, base 8, and base 16, referred to as binary, octal, and hexadecimal bases,
respectively. We next discuss the conversion process between the three bases.

1.4
Octal and Hexadecimal Bases

Octal and hexadecimal bases are used to make the translation process between
the user and the computer easier. Computers process binary information. In
addition to data, programs that instruct the computer what to do are also
represented in binary format. Early computer designers and programmers found
that it is hard to recognize the meaning of instructions from their binary
representations. In addition to the length of a binary pattern, it is hard to
distinguish one binary pattern from another. Hence, it is difficult to distinguish
one computer instruction from another when instructions are given in binary
format. The use of the base 8 (octal base) and base 16 (hexadecimal base)
simplifies this process. The process of conversion between the three different
bases is discussed next. We first introduce some terminology.

The individual digits of a binary number are called bits. An n-bit number is a
binary number that is composed of n bits. The most-significant digit (MSD) is
the left-most digit (for binary numbers, it is called most-significant bit (MSB)).
Similarly, the least-significant digit (LSD) is the right-most digit of the number
(in the case of binary numbers, it is called least-significant bit (LSB)).

To convert a binary number to octal:

6 DIGITAL DESIGN AND COMPUTER ORGANIZATION

1. Group the binary numbers into sets of three bits. The reference point used is
the binary point. For the integer part, in grouping the number we move from
the binary point to the left; for the fractional part we move from the binary
point to the right.

2. If needed, we append zeros on the left of the integer part (the MSB) and
zeros on the right of the fractional part (the LSB), respectively. This is done
to form complete groups of 3 bits.

3. Replace each group formed in 1 and 2 with its equivalent octal number.

Note that appending zeros on the left of the integer part and/or on the right of the
fractional part does not change the value of the original number.

To convert a binary number to hexadecimal we follow the procedure listed
above; however, the bits are grouped into groups of 4 bits.

To accomplish step 3 in the above procedure, we use Table 1.4.1(a) and (b).
The following examples illustrate the use of the procedure outlined above.

TABLE 1.4.1 (a)
Used to Convert 3-Bit Binary Number to Equivalent Octal Digit

Binary Octal Equivalent

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

TABLE 1.4.1(b)
Used to Convert 4-Bit Binary Number to Equivalent Hexadecimal Digit

Binary Number Decimal Equivalent Hexadecimal Equivalent

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

NUMBERS IN DIFFERENT BASES 7

Binary Number Decimal Equivalent Hexadecimal Equivalent

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Example 1.4.1

Convert the binary number 11010110.00111 into octal representation.
On grouping the binary digits into groups of three, we note that we need to

append a zero on the left-hand side of the whole part and a zero on the right-hand
side of the fractional part. The modified number, the grouping, and the equivalent
octal number are given in Figure 1.4.1.

Example 1.4.2

Convert the binary number 111000110.001 into hexadecimal representation.
Similar to Example 1.4.1, on grouping the binary digits into groups of four, we

note that we need to append three zeros on the left-hand side of the whole part

8 DIGITAL DESIGN AND COMPUTER ORGANIZATION

and a zero on the right-hand side of the fractional part. The modified number, the
grouping, and the equivalent hexadecimal number are given Figure 1.4.2.

Before we leave this section we note that the above process can be reversed,
i.e., given a number in octal or hexadecimal form, one can find the binary
equivalence by associating with each group the needed bit sequence. In addition,
one can convert between the octal and hexadecimal bases by first converting the
number into binary format; this can then be followed by the conversion as
discussed above.

Example 1.4.3

Given the octal number (127.25)8, find its hexadecimal equivalence.
Solution: We first convert the number into binary. The bits of the equivalent

binary numbers are then grouped and the corresponding hexadecimal number is
found accordingly:

FIGURE 1.4.1

Conversion from Binary to Octal

FIGURE 1.4.2

Conversion from Binary to Hexadecimal

NUMBERS IN DIFFERENT BASES 9

1.5
Operands Types and Their Range

We start our discussion by considering data types as related to programming
languages and mathematics.

TABLE 1.5.1
Data Types

Computer Data Type Mathematics Equivalent Type Examples

Unsigned Natural numbers 0, 5, 10

Signed Integers −5, 0, 1, 6

Fixed-point Rational 1.2, 1.5

Floating-point Rational −2.1×105

Character – ‘A’

1.5.1
Data Types

In mathematics we characterize numbers in terms of their set of possible values.
In particular, the characterization includes the sets of natural numbers, integer
numbers, rational numbers, real numbers, and complex numbers. This
characterization is carried into computer representation of numbers. This is done
in programming languages, for example, under the variable declaration part.
Here, the concept of a variable of a certain data type is important. In computer
arithmetic we consider the representations shown in Table 1.5.1.

In computer arithmetic, with the exception of the last row, we deal with the
data types listed in column 1. We assume unsigned integers to mean nonnegative
integers (no sign is associated with the number); signed integers represent both
positive and negative integers. The remaining two representations are used to
approximate real numbers. Fixed-point representations include integers (signed or
unsigned) with a radix point that separates two parts, the integer part and the
fractional part. Floating-point representation is composed of two parts as well, a
fixed-point part and a base-exponent part. For example, −2.1×105 contains two
parts, −2.1 is the fixed-point part and 105 is the base-exponent part. We will say
more about the representation later in the chapter.

1.5.2
Finite Range

Mathematics uses sets with infinite cardinality (the cardinality of a set is the
number of elements in the set). Computers contain finite storage elements. As a
result, computers process only subsets of such sets. When arithmetic is
performed on operands (numbers), it is stored in registers having a finite number

10 DIGITAL DESIGN AND COMPUTER ORGANIZATION

of storage elements. A register is characterized by the number of bits it contains.
An n-bit register contains n storage elements; each element can store a bit for a
total of n-bits. The finite number of bits limits the range of numbers that can be
stored in the registers.

We relate our discussion to the odometer of a car in the case of storing
decimal digits. The number of digits in the odometer is finite in size. As a result,
the range of values that can be stored (recorded) is finite as well. For the case of
an odometer with 5 decimal digits, the range of numbers is from the smallest,
00000, to the largest, 99999=105−1. This yields a total of 105 numbers. The
numbers stored are unsigned. In the odometer analogy, numbers in computers are
stored in registers of finite size.

We relate the range of numbers in different bases to the process of counting in
decimal. From this we conclude equations for the smallest and largest numbers
of a given base.

In counting, the least-significant digit always changes. This digit is
incremented until it reaches its maximum value (9). The maximum value is 1
less than the base, b. The next count causes the least-significant digit to change
to 0. The next digit, however, is changed as well. In general, for a particular digit
to change (be incremented or reset to 0), all preceding digits must assume their
maximum value, b−1. In base 10, this occurs when all previous digits assume the
value 9. In binary this occurs when all preceding digits assume a value of 1, as
seen in Figure 1.5.1(b), rows 2 and 3. And, in hexadecimal this occurs when all
preceding digits assume a value of F, as shown in Figure 1.5.1(c), rows 3 and 4.

In Figure 1.5.1(a), the range of values that can be stored is 0 through 99999
(105–1) since the number of digits used is 5. Storing numbers outside this range
causes an error called overflow if the number is larger than 99999. Similarly, if
the number is smaller than 0, then an error called underflow occurs.

In general, the largest unsigned number that we could store in an n-bit register
storing digits in base b is bn−1. For counting in binary using an n-bit register, the

FIGURE 1.5.1

Counting in Different Bases

NUMBERS IN DIFFERENT BASES 11

largest unsigned integer that can be stored is equal to 2n−1. For example, for 3-,
4-, and 5-bit register one can store unsigned binary integers in the range (000)2 to
(111)2=7, (0000)2 to (1111)2=15 and (00000)2 to (11111)2=31, respectively.

The range of the numbers changes if the number is stored in fixed-point
format. For fixed-point format, we need to include the location of the radix
point. The common locations of the radix point are at the right-most location of
the register or at the left-most location, yielding an integer number and a
fractional number, respectively. If the contents of an n-bit register represent a
fraction, then the smallest range corresponds to 0 (all bits are 0). For the largest
range we have

Hence, the 3-bit number, (111)2, can be interpreted as the unsigned decimal
number 7 or the fractional number 7/8.

Before we move to the next section, we list common units of binary
measurements. Some of the common units of measurements used in the text are
(1) 1 k (kilo)=210=1024 (approximately 1000); 1 M (mega)=220 and 1 G (giga)
=230. Finally, the size of a register can be given in terms of bytes, with a byte
equaling 8 bits. Hence, a 4-byte register is a 32-bit register. The size of the
register is sometimes referred to as word. Hence, a 32-bit register has a word size
of 32 bits. The largest unsigned integer that can be stored in the register is 232−1,
which is approximately 4 G.

1.6
Conversion of Decimal Numbers to Equivalent Numbers in

Arbitrary Bases

Given the decimal number (N)10=(nin(i−1)…n0.n−1n−2…n−m)10; to find its
equivalent number in a different base, we use two procedures applied to the
integer and the fractional part of N.

12 DIGITAL DESIGN AND COMPUTER ORGANIZATION

1.6.1
Conversion of Integer Part

The process of converting a decimal number with no fractional part into an
equivalent number in some base, b, is given in Algorithm 1.

Algorithm 1: Given a decimal number, N, with no fractional part, the
equivalent number in some base, b, can be obtained by repeatedly dividing
the original number and all subsequent quotients by the base b. The
remainders are saved in the order they are formed. The process terminates

TABLE 1.6.1
Conversion from Base 10 to Arbitrary Bases

Remainders ri Original Number (N) and Successive Quotients
(qi)

N=138

r0=3 q0=27

r1=2 q1=5

r2=0 q2=1

r3=1 q3=0

when the final quotient obtained is 0. The equivalent number (in base b) is
obtained by listing the remainders from least-significant digit to most-
significant digit in the order they are formed.

The examples below illustrate the procedure outlined above.

Example 1.6.1

Convert the decimal number (138)10 into an equivalent number in base 5.
We apply the procedure outlined earlier, as shown in Table 1.6.1. In this

example, the original number, 138, is shown in the upper right. The reminder of
division of 138 by 5 is r0=3. The quotient (q0) is 27 as listed. Row 3 in the table
is obtained by repeating the division process, but by using the quotient, 27,
instead of the original number. Finally, the last row is obtained by dividing the
quotient 1 (q2=1) by 5 and saving the corresponding remainder and quotient in this
row. Since the new quotient is 0, the process of conversion stops.

The remainders obtained (listed in the order formed and from right to left)
constitute the equivalent number in base 5; that is

(138)10=(1023)5

NUMBERS IN DIFFERENT BASES 13

Example 1.6.2

Convert the decimal number 23 into an equivalent number in base 2. Using the
procedure outlined in Algorithm 1, we obtain the results shown in Figure 1.6.1.

The binary number representation of the decimal number 23 is then given as
(23)10=(10111)2

1.6.2
Converting the Fractional Part

The process of converting the fractional part of a decimal number into an
equivalent number in some arbitrary base, b, is obtained using Algorithm 2.

Algorithm 2: Repeatedly multiply the fractional part and all successively
generated fractions by the base b with the integer result of each
multiplication saved in the order it is formed. Continue until the fractional
part value is 0. The fractional equivalent in base b is obtained by (1) listing
the integer digits (in the order formed) from most significant (left) to least
significant (right), and (2) appending a radix point on the left side of the
number.

The examples below illustrate the use of Algorithm 2.

FIGURE 1.6.1

Conversion from Base 10 to Binary (Whole Part)

FIGURE 1.6.2

Conversion from Base 10 to Binary (Fractional Part)

14 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Example 1.6.3

Convert the decimal fraction 0.25 to an equivalent fraction in base 2.
Applying Algorithm 2, we obtain the results in Figure 1.6.2. The original

fraction, 0.25, is given in row 1. Row 2 contains two columns; the combined
columns are the result of 2* (0.25). On multiplying the fraction 5 in row 2 by the
number 2, we obtain the result shown in row 3. Since the updated fraction is 0,
the algorithm terminates.

The equivalent fractional number in base 2 is obtained by (1) listing the whole
parts from left to right in the order they are formed, and (2) appending a radix
point to the left of the number. That is,

(0.25)10=(0.01)2

Example 1.6.4

Convert the fractional number (0.44)10 to an equivalent fraction in base 5.
Following the procedure outlined in Algorithm 2, we obtain the results in

Figure 1.6.3, i.e., (0.44)10=(0.21)5.

Example 1.6.5

Convert (0.7)10 to an equivalent binary fraction.
Figure 1.6.4 shows the conversion process. As was discussed earlier, the result

in row 3 (0.8) is obtained from multiplying the fractional part in the previous row

FIGURE 1.6.3

Converting (0.44)10 to Base 5

FIGURE 1.6.4

Converting (0.7)10 to Binary

NUMBERS IN DIFFERENT BASES 15

(0.4) by 2. Now, referring to the last row, the fractional part under consideration
is 0.4. As a result, on repeated multiplication of the generated fractions by 2, the
sequence of whole digits obtained is (0110). This sequence is repeated
indefinitely since the criteria for stopping the algorithm (a fraction of 0) cannot be
satisfied.

The previous example points to an important fact about number conversions:
some numbers are stored in the computer in an approximate and not-exact
representation. (In mathematics, the equation x*1/x=1 is always true when x is
not equal to 0. This is not the case when testing the condition in programming
languages.)

To convert a fixed-point decimal number to an equivalent number in arbitrary
base, process the integer part and fractional parts as described above and
combine the two parts.

Example 1.6.6

Convert (138.44)10 to the equivalent number in base 5.
From Examples 1.6.1 and 1.6.4, we have (138)10=(1023)5, and (0.44)10= (0.21)

5. Combining the results yields (138.44)10=(1023.21)5.

1.7
Binary Arithmetic

In this section, we will discuss binary arithmetic with regard to the addition,
subtraction, and multiplication operations as applied to unsigned integers and
fixed-point numbers. We will first discuss decimal arithmetic. From this, we
deduce arithmetic procedures on arbitrary.

1.7.1
Addition

In adding the decimal numbers A and B, we add the digits associated with the
same location, including the carry that may be obtained from the previous
location. The sum may require two digits to represent; this occurs if the sum
exceeds 9 (1 less than the base value). The sum can be written as CS, with C the
carry used into the next MSD of the sum. For example, the sum of the digits 7+5
is 12. Hence, C is 1 and S is 2. The C and S terms satisfy:

S=(X+Y) MOD b C=(X+Y) DIV b
where X and Y are the two digits to be added, and b is the base. The MOD
operation returns the remainder of (X+Y)/b while the DIV operation returns the
quotient of the division.

In adding binary numbers, the individual digits used are 0 and 1. The result of
adding two binary digits is given in Table 1.7.1. The table can be modified to
include the addition of three binary digits. The modified table with a carry bit

16 DIGITAL DESIGN AND COMPUTER ORGANIZATION

included is given in Table 1.7.2. In adding two binary numbers, we use the above
table to compute the intermediate steps.

TABLE 1.7.1
Addition of Two Binary Bits, Result Requires Two Bits C and S

Original Digits Sum

A+B C S

0+0 0 0

0+1 0 1

1+0 0 1

1+1 1 0

TABLE 1.7.2
Addition of Three Binary Bits, Result Requires Two Bits C and S

Original Digits Sum

Carry Digit+A+B C S

0+0+0 0 0

0+0+1 0 1

0+1+0 0 1

0+1+1 1 0

1+0+0 0 1

1+0+1 1 0

1+1+0 1 0

1+1+1 1 1

Example 1.7.1

Add the two binary numbers 11011 and 11001.
Using Table 1.7.2, we have the result shown in Figure 1.7.1.
The previous discussion can be applied to additions in arbitrary bases. The

following example illustrates this for adding two numbers in base 5.

Example 1.7.2

Find x+y, where x=(123.4)5 and y=(241.1)5.
We illustrate the process by adding individual digits and recording the sum in

decimal; the sum can then be converted into two digits (in the CS form discussed
above) in base 5.

The addition proceeds from right to left. In determining the sum, carries are
recorded as well. The sum is shown in Table 1.7.3. The first column contains the
carry-in and the digits of the two numbers listed from least significant to most

NUMBERS IN DIFFERENT BASES 17

significant. The sum in decimal is obtained from corresponding row digits (this
includes the carry-in digits). The initial carry-in digit is 0. The remaining carries
are obtained from converting the decimal sum into base 5. For example, the first
row produces a decimal sum of 5, which is converted to (10)5. The carry of 1 is
moved to the next row, and the process of addition is repeated on this row.

TABLE 1.7.3
Base 5 Addition, 123.4+241.1

Carry+x+y Sum in Decimal Sum in Base 5

C S

0+4+1 5 1 0

1+3+1 5 1 0

1+2+4 7 1 2

1+1+2 4 0 4

TABLE 1.7.4
Base 16 Addition, 2397A.4+95CB.2

Carry+x+y Sum in Decimal Sum in Base 16

C S

0+4+2 6 0 6

0+A+B 21 1 5

1+7+C 20 1 4

1+9+5 15 0 F

0+3+9 12 0 C

0+2+0 2 0 2

The sum of the two numbers is obtained from the last column after including
the radix point; the sum obtained is (420.0)5.

FIGURE 1.7.1

Addition of Two Binary Numbers 11011+110001, Upper Row Shows the Carries

18 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Example 1.7.3

The sum x+y, where x=(2397A.4)16 and y=(95CB.2)16 is given in Table 1.7.4.
From Table 1.7.4, (2397A.4)16+(95CB.2)16=(2CF45.6)16. Note the added zero in
the last row of the column with label y.

1.7.2
Subtraction

The process of subtraction in arbitrary base is derived from subtracting decimal
numbers. We first illustrate by an example.

Example 1.7.4

Find (1230015)10−(1122124)10

Using common subtractions on decimal, we make the text box note shown in
Figure 1.7.2.

On applying the above, we get the result shown in Figure 1.7.3 with the
updated and original digits as shown. The result of subtraction is also given. As
can be seen from the figure, there are no additional borrows needed.

Note that in forming A−B, A is called the minuend and B is called the
subtrahend.

The above rule can be generalized to subtract numbers in a different base, b.
For a borrow, the zero digits to the left are changed to b−1, the digit that requires
the borrow, ai, is changed to (ai+b), and the digit that supplied the borrow, a(i+j),
is decremented by 1.

We consider the following examples to illustrate.

Example 1.7.5

In this example we find (12034)5−(11442)5.

FIGURE 1.7.2

Decimal Subtraction

NUMBERS IN DIFFERENT BASES 19

The subtraction procedure is shown in Figure 1.7.4 using the steps outlined
above.

Example 1.7.6

In this example, we find (1100001)2−(1011101)2.
Using the procedure, we obtain Figure 1.7.5.

Example 1.7.7

Find (1250A51)16−(1170F31)16.
The result of the subtraction is shown in Figure 1.7.6.
The adjusted minuends are shown in the shaded area in Figure 1.7.6. The first

row is the result of the first initiated borrow; the row above it is the result of the
second initiated borrow.

1.7.3
Multiplication

We restrict the process of multiplication to binary, and illustrate the process by
an example.

FIGURE 1.7.3

Decimal Subtraction

FIGURE 1.7.4

Base 5 Subtraction, 12034–11442

20 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Example 1.7.8

Form the product (11001)2×(1101)2.

Note that the multiplicand (11001) is copied as is if the bit in the multiplier
(1101) is 1. It is replaced by a row of zeros if the multiplier bit is 0. The process
is similar to regular multiplication. In regular multiplication, we form the partial
products as shown in the rows above. Each partial product is properly shifted one
bit position to the left. To obtain the product, we add all partial products as
shown in the last row.

FIGURE 1.7.5

Base 2 Subtraction, 1100001–1011101

FIGURE 1.7.6

Base 16 Subtraction, 1250A51–1170F31

NUMBERS IN DIFFERENT BASES 21

1.8
Radix and Diminished Radix Complements

The previous discussion dealt with number representations that are nonnegative.
In the next section, we discuss representation of negative numbers. First, however,
we discuss two forms of complements that are used in signed arithmetic, the
diminished radix and radix complement representations.

The diminished radix representation of a number is determined from three
parameters: the base, b, the number of digits in the number, n, and the number
itself, N. For a number N, the diminished radix representation of the number is

(bn−1)−N
The representation is referred to as (b−1)’s complement. For example, in base
10, b=10, the representation is referred to as 9’s complement. Similarly, in base 2
the diminished radix representation is referred to as 1’s complement.

Example 1.8.1

Form the 9’s complement of the decimal number 123.
Solution: Since N=123, the number of digits, n, is 3 and

bn−1=103−1=999
Hence

(bn−1)−N=999–123=876

What is (bn−1)? From the above example, we note that (bn−1) is a number with n
digits, with each digit equal to b−1, i.e., to obtain the diminished radix
complement of a number N, we subtract each digit in N from (b−1). The result is
the desired diminished radix.

Example 1.8.2

In this example, we form the 1’s complement of the binary number 10110.
Using the previous observation, we have

11111−10110=01001
as the 1’s complement of 10110.

Note that the diminished radix complement of a number is obtained from its
individual digits. The sum of the digit and the corresponding digit in the
diminished radix complement must add to (b−1). For the 1’s complement case,
we obtain the complement by complementing each bit of the number. For each
bit in the number, the sum of the bit and the corresponding bit in the 1’s
complement must add to (b−1=1). We apply the rule on a different base, using
the example below.

22 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Example 1.8.3

Find the 4’s complement of (1234)5.
Using the above observation, the 4’s complement is 3210 since

1+3=4, 2+2=4, 1+3=4, and 0+4=4
Similar to diminished radix complement, the radix complement representation is
determined from three parameters: the base, b, the number of digits in the number,
n, and the number itself, N. The representation is referred to as b’s complement.
It is called 10’s complement in base 10 and 2’s complement in base 2. For a number
N, the radix complement representation of the number is

Note that bn−N=((bn−1)−N)+1, i.e., for a given number N, we have b’s
complement of N=(b−1)’s complement of N+1.

Example 1.8.4

Form the 10’s complement and 2’s complement of the numbers 082110 and
0010112, respectively.

For 082110, n=4; the 10’s complement is 104–0821=1+9999–0821=9179. For
0010112, n=6; the 2’s complement is 26–001011=1+111111−001011= 110101.

FIGURE 1.8.1

Forming 2’s Complement. From the definition, no changes occur to the leftmost
consecutive zeros in the number and first 1 bit that initiates the borrow. All remaining bits
are complemented.

NUMBERS IN DIFFERENT BASES 23

An alternative method of finding the 2’s complement makes use of subtraction
discussed earlier. Given a number, N, with m consecutive zeros followed by a 1
in the m+1 position. As shown in Figure 1.8.1 with N= 100101000 for example,
each of the first m bits remains unchanged (0−0=0) when forming the 2’s
complement of N. The (m+1) bit is subtracted from 2, since this bit initiates a
borrow, and as a result, remains unchanged (2− 1=1). The remaining bits are
subtracted from 1, i.e., each bit is complemented. The example below illustrates
this.

Example 1.8.5

Form the 2’s complement of the binary number 100101000.
We show the details of the above procedure in Figure 1.8.1. The 2’s

complement is shown as the last row of binary numbers.

1.9
Representation of Negative Numbers

In Section 1.5.2, we discussed overflow and underflow as conditions that are
results of storing a number that is either too large or too small to fit in a
predefined register size. Using unsigned integers, consider the case of forming
00112−01102. The result is −310, which is too small to fit in a 4-bit register. In
this section, we discuss presentation of negative numbers. Since computers use
only binary data, negative numbers are represented using binary digits only.

1.9.1
The Three Representations

We consider three representations

1. Signed Magnitude
2. Diminished Radix Complement
3. Radix Complement

In the signed magnitude representation, the number is composed of a sign part
and a magnitude part. This is similar to the way we represent negative numbers.

FIGURE 1.9.1

Signed Magnitude Representation, Most-Significant Bit Used to Represent the Sign of the
Number

24 DIGITAL DESIGN AND COMPUTER ORGANIZATION

For example, “−123” represents a negative number in decimal. Its sign part is
“−”; its magnitude is “123.”

When representing the number in binary, since the allowable digits are 0 and 1,
we code one of the bits to represent the sign. The bit is the MSB with 0 to mean a
nonnegative number and a 1 to mean a negative number. Hence, −6 and +6 can be
represented as shown in Figure 1.9.1.

Negative numbers can also be represented using either complement
representation discussed in the previous section. (The advantage of the
representations will be presented in Chapter 5 when we discuss the design of
arithmetic units.) In both representations, the MSB is used as a sign bit with a 1
indicating the number is negative and a 0 indicating the number is positive.
When other bases are used to represent negative numbers, we use 0 and (b−1), for
positive and negative representation, respectively. To find the representation of a
negative number, we form its corresponding radix, or diminished, radix
complement.

Example 1.9.1

Assuming four-digit numbers, find the 10’s complement and 2’s complement
representation of the numbers −2310 and −112, respectively.

Solution: From the definition, we have 10’s complement of 23=104−23= 9999
−23+1=9977, i.e., −23 in this representation is 9977. Note the 9 indicates the
number is negative. For the 2’s complement, applying the previous observation
on 00112 we obtain 1101 as the 2’s complement representation of 00112 (1110),
i.e., (−11)10 in this representation is 1101.

Example 1.9.2

List the 10’s complement representations over positive and negative decimal
numbers with two digits.

TABLE 1.9.1
Two-Digit Negative Numbers and Corresponding Decimal Value

N+b's compl. of N=100 Decimal Value N+b's compl. of N=100 Decimal Value

?+90 −10 ?+95 −5

?+91 −9 ?+96 −4

?+92 −8 ?+97 −3

?+93 −7 ?+98 −2

?+94 −6 ?+99 −1

Note: In the table, 90 represents the negative number (−10)10. Other entries are read
similarly.

NUMBERS IN DIFFERENT BASES 25

Solution: Since the most-significant digit is used for the sign, we have a total
of ten nonnegative numbers (00, 01, 02, …, 09). For the negative representation,
the most-significant digit is 9. The negative representations are 90, 91, 92, …, 99.

To find the negative number associated with each representation, we make use
of the equation

N+b’s complement of N=bn

where bn=100. Table 1.9.1 makes use of the above equation.
Note that the negative representation of −10 is 90, and that the largest positive

number is +9, with representation 09 (0 for the sign indicating positive number
and 9 is the magnitude). This is a property of b’s complement where the smallest
negative number has no corresponding positive representation.

1.9.2
Range of the Numbers

For signed magnitude representation and an n-bit signed integer, the total
possible allowable binary combinations is 2n. Since one of the bits is used as a
sign bit, the total range of positive numbers is +0 through 2(n−1)−1. Similarly, the
total range of negative numbers is −(2(n−1)−1) to −0. Note that there are two
different representations of 0 (a positive and a negative 0). Finally, note that the
results apply to numbers in arbitrary bases with the positive range 0 to b(n−1)−1
and the negative range of −(b(n−1) to −0.

For b’s complement representation, we generalize the result in the previous
subsection. For such numbers, the nonnegative range is 0 to b(n−1)−1, where n is
the total number of digits and b is the base of the number. The negative range is
−b(n−1) to −1.

Similar analysis can be used on finding the diminished radix complement.
Table 1.9.2 summarizes the results for the three representations.

Table 1.9.3 shows the representation of a 3-bit binary number in the three
forms. Note that the three representations for positive numbers are the same.

TABLE 1.9.2
The Three Representations with Form, Ranges, MSD, and Remarks

Representatio
n

Form Positive
Range

Negative
Range

Remarks MSD

Signed
magnitude

Sign
(magnitude)

+0 to (b(n−1)

−1)−1)
−(b(n−1)−1) to
−0

Two zeros 0, (b−1)

Diminished
radix

(b(n−1)−1)−N +0 to (b(n−1)

−1)
−(b(n−1)−1–1)
to −0

Two zeros 0, (b−1)

Radix bn−N +0 to (b(n−1)

−1)−1)
−b(n−1)−1 to
−1

One zero 0, (b−1)

TABLE 1.9.3

26 DIGITAL DESIGN AND COMPUTER ORGANIZATION

The Three Representations over a 3-Bit Operand Range

Decimal Value Signed Magnitude 1's Complement 2's Complement

+0 000 000 000

+1 001 001 001

+2 010 010 010

+3 011 011 011

−0 100 111 No representation

−1 101 110 111

−2 110 101 110

−3 111 100 101

−4 No representation No representation 100

Note as well that there are two representations for zero in signed and 1’s
complement representation. Finally, note that 2’s complement representation
contains one negative number (−4) that has no corresponding positive number.

The complement representations are awkward from a user point of view.
They, however, are well suited for use in computer processing, as we will
discuss in Chapter 5. Today, computers represent signed integers in 2’s
complement where negative numbers are stored in this form.

1.10
Coding and Binary Codes

Consider Table 1.9.3 where we represented positive and negative integers in
three different forms. Each of the representations, in general, is called a code.

A code is an assignment that associates with each element in a set of objects
another element, called code word, in some other set of objects. For example, in
the 2’s complement representation we can think of the assignment 100 as the 2’s
complement code word of the decimal integer −4. Similarly, 101 is the code
word for the decimal integer −3. The set of objects considered in the table are the
decimal integers in the range of −4 to +3. Their 2’s complement code is as
shown. The process of determining the code associated with a given object is
called encoding. From a given code word, the process of determining the
original object is called decoding.

TABLE 1.10.1
BCD and Excess 3 for the 10 Decimal Digits

Decimal Digit BCD Code Excess-3 Code

0 0000 0011

1 0001 0100

2 0010 0101

3 0011 0110

NUMBERS IN DIFFERENT BASES 27

Decimal Digit BCD Code Excess-3 Code

4 0100 0111

5 0101 1000

6 0110 1001

7 0111 1010

8 1000 1011

9 1001 1100

In this section, we consider four types of codes: binary coded decimal (BCD)
code, Excess-m code, Gray code, and character code. For notation we use X(n) to
represent the code word of the object n, when code X is applied. For example,
BCD(5) represent the BCD code for object 5.

1.10.1
BCD Code

In this coding scheme, we associate with each decimal digit a binary code. Since
the number of digits is 10 (0 through 9), the minimum number of binary digits
(bits) needed in a code word is 4. The BCD code is derived from the polynomial
representation of binary numbers, i.e., the encoding of the decimal numbers 0, 1,
2, and 9 is given, respectively, as 0000, 0001, and 1001. Columns 1 and 2 of
Table 1.10.1 show the ten decimal digits and the corresponding BCD codes. The
BCD encoding requires larger number of bits than the previous encoding schemes
we discussed.

The code is called weighted code since the decoded decimal associated with a
given code word is the weighted sum of the digits making up the code word. The
weights are 8, 4, 2, and 1, corresponding to the MSB to the LSB, respectively.
The code is also called 8421 code.

Example 1.10.1

Find the code word, BCD(127), of 12710.
In the BCD code representation, the encoding is obtained by associating with

each digit the corresponding BCD code. The BCD codes for each digit are then
concatenated. As a result, we have

i.e., BCD(127)=000100100111.

Example 1.10.2

Decode the BCD code 0000100100110001, i.e., find the original number.

28 DIGITAL DESIGN AND COMPUTER ORGANIZATION

In finding the decimal equivalent of the above code, we group its bits into
groups of four. We then replace each code by the corresponding decimal. The
decimals are finally concatenated to obtain the desired results as shown below.

As can be seen from the example above, converting a decimal number to the
corresponding BCD code is (computationally) simpler than employing the
previous algorithms of finding the equivalent binary representation. Information
in a computer can be entered through the use of a keyboard. As a result, the
following takes place:

1. The alphanumeric (digits and nonnumeric characters) information is
encoded to form a binary string.

2. The computer processes the encoded information.
3. The computer decodes the results into alphanumeric code that can be

displayed on an output device such as a monitor. These tasks were shown in
Figure 1.2.1 or Figure 1.2.2.

For tasks that are input/output intensive, using a code similar to BCD will speed
up the process since the majority of the computation is done in the steps 1 and 3
discussed above. As a result, some computers may have special hardware for
performing BCD arithmetic. Such hardware is slower than the hardware that
processes information based on the straight binary representation discussed
earlier. The speed-ups, however, are due to the frequency of executing steps 1
and 3, as discussed above.

1.10.2
The Excess-m Code

The Excess-m code is obtained from a given code word, c, by adding the number
m to the code. For example, the Excess-3 code for the BCD code is obtained by
adding the number 3 to each code word. Columns 1 and 3 of Table 1.10.1 show
the decimal digits and the equivalent Excess-3 code of the BCD representation.

The Excess-3 code is not a weighted code and is an example of self-
complementing codes. A code is said to be self-complementing if, for any
decimal digit (0 through 9), one can obtain the code for 9’s complement of the
digit by complementing the individual digits of the code word. For example, in
Table 1.10.1, the Excess-3 code for the decimal digit 3 is

BCD(3)+3=0011+0011=0110

The Excess-3 representation for its 9’s complement (6) is obtained by
complementing the individual bits of 0110 to obtain 1001. An inspection of the
table confirms this.

NUMBERS IN DIFFERENT BASES 29

1.10.3
Gray Code

The next code we discuss is called Gray code. It is a special type of code that is
called cyclic. A code is said to be cyclic if, by applying a circular shift to any
code word, one would obtain another code word. It has the property that the
distance between any two consecutive code words is equal to 1. The distance
between two code words is equal to the number of bits where the two words
differ.

The Gray code is a member of a class of codes called reflected codes. In this
code, an (n+1)-bit code can be generated from n-bit code as follows. The total
number of (n+1)-bit code words is twice the total number of the n-bit code
words. The first half of the (n+1)-bit code words is obtained from the n-bit code
words by appending a zero to the left of MSB code words (see Figure 1.10.1).
The remaining code words are obtained by reflecting the first half of the code
words about the axis, as shown in Figure 1.10.1, and by replacing the MSB 0
with 1.

Gray code is used in cases where it is important not to obtain intermediate
incorrect results (values). Consider the two consecutive BCD code words for 7
and 8, for example. To change from 0111 to 1000, we require four changes in the
bit positions. If these changes do not occur simultaneously, then some (unwanted)
intermediate results occur; for example, first bit changes before all others results
in the intermediate code word 0110. We will see later in the text how these
intermediate changes could cause problems in digital design.

Before we leave this section, we discuss a final coding scheme that deals with
coding characters.

FIGURE 1.10.1

Forming Gray Code

30 DIGITAL DESIGN AND COMPUTER ORGANIZATION

1.10.4
Character Codes

In Figure 1.2.1, the computer receives encoded data for numbers and letters, as well
as punctuations marks and other control characters. Our discussion of coding has
been limited to numbers. We now consider alphanumeric binary codes. These are
codes for digits, letters, and special characters, as well as control characters.
Examples of special characters are ^, +, and $. Examples of control characters
are the “space” key and the “delete” key on the keyboard.

Table 1.10.2 shows a common alphanumeric coding scheme, the American
Standard Code for Information Interchange (ASCII, pronounced “ask-ee”).
Another, less common, encoding scheme is the Extended Binary Coded Decimal
Interchange Code (EBCIDIC).

TABLE 1.10.2
ASCII Character Set

b6b3b4(column in octal)

(row in
hex)
b3b2b1
b0

0 1 2 3 4 5 6 7

0 NUL OLE SP 0 @ P ’ P

1 SOH DC1 ! 1 A Q a q

2 SIX DC2 ” 2 B R b r

3 ETX DCS # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ’ 7 G W g W

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J z j z

B VT ESC + ; K [k {

C FF RS ’ < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O − o DEL

Note: The control codes abbreviations are NUL, null; SOH, start of heading; STX, start of
text; ETX, end of text; EOT, end of transmission; ENQ, enquiry; ACK,
acknowledge; BEL, Bell; BS, backspace; HT, horizontal tab; LF, line feed;
VT, vertical tab; FF, form feed; CR, carriage return; SO, shift out; SI, shift in;
SP, space; DLE, data link escape; DC1, device control 1; DC2, device control
2; DC3, device control 3; DC4, device control 4; NAK, negative acknowledge;

NUMBERS IN DIFFERENT BASES 31

b6b3b4(column in octal)

(row in
hex)
b3b2b1
b0

0 1 2 3 4 5 6 7

SYN, synchronize; ETB, end of transmission block; CAN, cancel; EM, end
medium; SUB, substitute; ESC, escape; FS, file separator; GS, group
separator; RS, record separator; US, unit separator; SP, space; DEL, delete or
rub out.

1.11
Floating-Point Numbers

Real numbers are presented in the computer in either fixed-point or floating-point
form. The floating-point format is used to represent very large (or very small)
numbers needed in scientific applications. Consider the number 7×264, for
example. Represented in binary, the number is (111)2 followed by 64 zero bits.
An alternative, more efficient representation is the floating-point form. Here, we
store the binary representations of the exponent part (64) and the whole part (7);
the base is implicit. The result is then

In general, a floating-point number, F, is represented as
F=M×rE

where M, the mantissa or significand, is a fixed-point number; E, the exponent
(also called the characteristics), is an integer; and r is the base of the number.

In general, a fixed-point number can be written in floating-point
representation. The representation, however, is not unique.

Example 1.11.1

Represent the fixed-point decimal number 1.23 in floating-point format, using
the exponents of 0, 1, and 2.

The representations are, respectively,
1.23=1.23×100 =0.123×101 =0.0123×102

We next look at the binary representation of floating-point numbers.

1.11.1
Binary Representation of Floating-Point

In binary representation of floating-point numbers, we have
F=(−1)sM×2E

32 DIGITAL DESIGN AND COMPUTER ORGANIZATION

where M and E are as stated above but with M representing a fractional part
only; s is a single bit representing the sign of the number with s=0 indicating a
positive number and s=1 indicating a negative number. The range of floating-
point numbers depends on the number of bits allocated for each part of the
significand and the exponent.

Example 1.11.2

Given the 7-bit code word, 1110101, decode the word assuming the code
represents:

1. An unsigned integer
2. A signed integer in 2’s complement
3. A character in ASCII code
4. A floating-point number of the form s, E, M, with M a 3-bit field

Solution:

1. As an unsigned integer, the code represents 26+25+24+22+20= (117)10

2. As a signed number in 2’s complement, the code represents −(128− 117)=
(−11)10

3. As an ASCII character and from Table 1.10.2, the code represents the letter
“u”

4. Finally, as a floating point number we have

or, the code represents
(−1)s M×2E=−(0.101)2×2(110)

2 =−0.625×26

In the previous example, we saw that the same code word could be used to
represent different data objects. Note that the number of maximum allowable
objects that can be encoded does not exceed the range imposed by the size of the
code word (27). As a result, if the code represents unsigned integers, then the
range is the integers 0 through 127. Similarly, if the code represents signed
numbers in 2’s complement, then this range is −64 to 63. Finally, if the code
represents a floating-point number, then the largest possible number in the range
corresponds to the code 0111111, which evaluates to 0.875×128=112. Similarly,
the smallest number in the range would correspond to −112.

Since the floating-point representation is used to represent real numbers and
since the maximum possible objects that can be encoded is 128, there are many
real numbers between −112 and +112 that have no corresponding floating-point

NUMBERS IN DIFFERENT BASES 33

representation. As a result, increasing the range size decreases the number of
possible representations within a given sub-range.

Example 1.11.3

From the previous example, find the range of floating-point numbers when the
exponent field is increased by 1 and the mantissa field is decreased by 1. Repeat
with the exponent field increased by 2 bits and the mantissa field is decreased by
2 bits, respectively.

Solution: With the new formats, the maximum positive range for the 1-bit
change is

(−1)s M×2E=(0.11)2×2(1111)
2 =0.75×215 =24576

The maximum range for the 2-bit change is
(−1)s M×2E=(0.1)2×2(11111)

2 =0.5×231 =1073741824
The smallest negative range is obtained using the same representation with the
sign bit, assuming a value of 1. We can represent only a maximum of 128 real
numbers in the above ranges.

1.11.2
Normalized and Biased Floating-Point Representation

The previous representation may lead to different code words that represent the
same encoded object. As an example, the two floating-point representations, 0.
010×2(101)

2 and 0.001×2(110)
2 represent the same decimal number, (8)10. To

remove this ambiguity, floating-point numbers are represented in normalized
form. A floating-point number is said to be in normalized form if the most-
significant digit of the mantissa is not 0.

In addition to representing a number in normalized form, the exponents of a
floating-point number is generally represented as a biased signed (Excess-m)
integer. The bias is equal to 2(n−1)−1, where n is the number of bits in the
exponent field. This bias is added to the exponent to produce a biased exponent.
We illustrate the above in two examples.

Example 1.11.4

Encode the fixed-point number (110.10)2 into a biased normalized floating-point
representation with the exponent and mantissa fields equal to 4 bits and 6 bits,
respectively.

Solution: We first write 110.10 in normalized floating-point as
(110.10)2=(0.110100)2×23

We then add the bias 7 to the exponent to get a biased exponent (10)10= (1010)2.

34 DIGITAL DESIGN AND COMPUTER ORGANIZATION

The representation then is

Example 1.11.5

Given the normalized biased floating-point number shown below, find its
decimal value.

Solution: The sign bit indicates the number is positive. Its mantissa is 0.1010,
which is

Its exponent is obtained by decrementing it by 26−1−1=31 to obtain 010011,
which is (19)10. Hence, the decimal value of the number is 0.625×219.

Chapter 1
Exercises

1.1 Find the base 10 values of
(a) (113)5

(b) (10110)2

(c) (23AAF)16

1.2 Find the equivalent decimal number for
(a) (102.211)5

(b) (1011.01)2

(c) (1111.11)2

(d) (AB.F1)16

1.3 Convert the binary number 110111110.00111 into octal
representation.
1.4 Convert the binary number 10110111110.01 into octal
representation.
1.5 Convert the binary number 1110111110.00111 into hexadecimal
representation.
1.6 Convert the binary number 10111110.111 into hexadecimal
representation.
1.7 Convert the octal number (156.2)8 into hexadecimal representation.
1.8 Convert the base 10 number 127 into (a) binary, (b) octal, and (c)
hexadecimal representation.
1.9 Repeat problem 1.8 on the base 10 number 508.101.

NUMBERS IN DIFFERENT BASES 35

1.10 Given a binary number in fixed-point representation with n bits for
the whole part and m bits for the fractional part. Give an equation in
decimal form for the largest binary number.
1.11 Form the binary sum 10111011+01101011.
1.12 Repeat the previous problem on 110111.11+010110.01.
1.13 Form the base 5 sum of 1234+1441.
1.14 Form the base 5 sum of 1234.214+1024.341.
1.15 Form the octal sum of 1234.214+1024.341.
1.16 Repeat problem 1.15 on the sum 17.777+65.27.
1.17 Form the binary subtraction of 10111011−01101011.
1.18 Repeat problem 1.17 on 10101011.01−01101011.11.
1.19 Form the octal subtraction 127001−117231.
1.20 Compute the hexadecimal arithmetic expression 1A00F.1−0AFFF.
7+ 123AA.2.
1.21 Form the 10’s complement and 9’s complement of the decimal
number 123.
1.22 Form the 2’s complement and 1’s complement of the binary
number 101100100.
1.23 Find the 8’s complement and 7’s complement of the octal number
1271001.
1.24 List all possible positive and negative numbers for an octal
number with two digits and using the three representations of negative
numbers signed, 7’s complement, and 8’s complement.
1.25 Given the binary code 1000100100110001. Determine the
meaning of this code if the code represents

(a) A BCD code
(b) An unsigned integer
(c) A signed integer in signed magnitude
(d) A signed integer in 1’s complement
(e) A signed integer in 2’s complement

1.26 Represent the fixed-point decimal number 12.3 in floating point
format using the exponents of 0, 1, and 2.
1.27 Encode the fixed-point number (1010.10)2 into a biased
normalized floating-point representation with the exponent and
mantissa fields equal to 4 bits and 6 bits, respectively.
1.28 Given the normalized biased floating-point number shown below.
Find its decimal value.

36 DIGITAL DESIGN AND COMPUTER ORGANIZATION

2
Boolean Algebra, and Gate and Transistor

Design

CONTENTS

2.1 Boolean or Switching Algebra 38

2.1.1 Definitions 39

2.1.2 Boolean Expressions 39

2.1.3 Truth Tables 41

2.2 Properties of Boolean Algebra 43

2.2.1 Axioms 43

2.2.2 Principle of Duality 44

2.3 Simplification of Boolean Expressions 48

2.4 Boolean Function 50

2.4.1 Definitions 51

2.4.2 Representations (Realization) 52

2.4.3 Complement of Boolean Functions 54

2.5 Circuit Analysis and Gate Design 55

2.5.1 Circuit Analysis and Gate Representation 55

2.5.2 Circuit Design 57

2.5.3 Multiple Input Gates 58

2.6 Electrical Circuits 59

2.6.1 Voltage, Current, and Resistance 59

2.6.2 Ohm’s Law 60

2.7 Kirchhoff’s Laws and Voltage Division 61

2.7.1 Voltage Difference 61

2.7.2 Kirchhoff’s Voltage Law 62

2.7.3 Voltage Division 63

2.8 Kirchhoff’s Current Law 66

2.9 RC Circuits 70

2.10 Transistors and Logic Gates 73

2.11 CMOS Gate Design 76

2.11.1 The AND CMOS Design 78

Chapter 2 Exercises 78

In this chapter, we present Boolean algebra as a mechanism in the description,
analysis, and design of digital systems. The algebra is fundamental to the field of
digital design, which ranges from designs of simple circuits that perform addition
in binary to the design of a complete functional microprocessor.

The design of circuits described by the algebra is considered at both the gate
level and at the transistor level. In considering the transistor-level design, we
introduce students with no electronics background to the fundamentals.

An understanding of the material in this chapter and the following chapter is
fundamental to understanding the field of digital design.

2.1
Boolean or Switching Algebra

Computers process binary data. Switching (also called Boolean) algebra is
defined over binary data. In particular, the algebra is defined over the set, S, of
two binary values where S={0, 1}. The set S constitutes the set of constants of
the switching algebra. In addition to the set, the definition of the algebra involves
the use of operations on the constants. In Boolean algebra, the operations defined
are

38 DIGITAL DESIGN AND COMPUTER ORGANIZATION

1. “+”
2. “.”
3. “’”

Formally, the definition of a switching algebra is given below.

2.1.1
Definitions

Definition: A switching algebra is defined over the set S={0, 1}, the binary
operations “.” and “+,” and the unary operation “’”, such that, for any two
Boolean variables x and y in the set S, we have

1. x+y=0, if x=y=0; x+y=1 otherwise.
2. x·y=1, if x=y=1; x·y=0 otherwise.
3. x�=0, if x=1; x�=1 if x=0.

The operations “+”, “·”, and “’“are called the logical OR, logical AND, and
logical complement (or NOT) operators, respectively.

• The term “x+y” is read as “x or y.”
• The term “x.y” is read as “x and y.”
• x� is read as “not x” or “complement of x.”
• x� can be written as .
• “+” and “·” are sometimes called addition and multiplication.

In words, the operations “+” and “·” require two operands. Each operand is a
Boolean constant, 0 or 1. The “+” operation evaluates to 1 whenever one or both
of the operands assume a value of 1. The “·” operation assumes a value of 1 only
when both operands assume a value of 1.

Note that we use xy to mean x·y, and x to replace x. Both are acceptable and
interchangeable notations.

2.1.2
Boolean Expressions

The operations in the above definition, with Boolean variables included, are
examples of Boolean expressions. Another example of a Boolean expression is
“x·y+z,” where x, y, and z are Boolean variables.

We distinguish between two forms of Boolean expression and call them
simple and compound expressions. We assume that simple expressions are
composed of a constant, a Boolean variable, or a combination of these with a
single Boolean operator. The expressions given in the definition are examples of
simple Boolean expressions. We assume that compound expressions contain at

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 39

least two Boolean operators. Finally, we refer to both types of Boolean
expression as expressions and identify their type when needed. The following are
examples of simple Boolean expressions with x as a Boolean variable

1. 0
2. x
3. x+1

The following are examples of compound Boolean expressions; x, y, and z are
Boolean variables.

1. x·y+z
2. x�·y�+z·z�
3. x·y·z+(x+y)�

The compound expressions above can be evaluated for a given binary
assignment to the Boolean variables x, y, and z. However, since each of the
expressions includes more than one Boolean operator [expression (2), for
example, contains six operators], we need to determine the order of using these
operators. The order of computing each operator may yield a different result, as
is the case in evaluating the arithmetic expression “2+3×4.” Here, the value of
the expression is 14 if multiplication is done before addition; however, the value
of the expression is 20 if addition is done before multiplication.

The rules that govern the order of computing operations are called precedence
rules. For Boolean expressions, we use the following precedence rules in the
order of highest to lowest precedence, as listed.

1. Parentheses (evaluated from innermost to outermost)
2. “’” (the NOT Boolean operator)
3. “·” (the AND Boolean operator)
4. “+” (the OR Boolean operator)

In the next section, we present algebraic properties of Boolean expressions. We
show that the rules of commutativity and associativity are satisfied under the “+”
and “·” operations. For now, we assume that in computing expressions that
involve operators with the same precedence rules the computation is done from
left to right. The example below is used to illustrate the use of precedence rules.

Example 2.1.1

Compute the value of the expressions

1. x·y+z
2. x�y�+z·z�

40 DIGITAL DESIGN AND COMPUTER ORGANIZATION

3. x·y·z+(x+y)�

For the assignment, x=1, y=0, and z=1.
We compute the above expressions by substituting the values of the variables

in the expressions and applying the precedence rules stated earlier. For the
expression in part 1, we have

x.y+z=1.0+1 =0+1 =1
For the expression in part 2, we have

x′.y′+z.z’=1′·0′+1.1′ =0.0′+1.1′ =0.1+1.1′ =0.1+1.0

 =0+1.0 =0+0 =0
For the expression in part 3, we have

x.y.z+(x+y)′=1.0.1+(1+0)′ =1.0.1+(0)′ =0.1+1 =0+1 =1

2.1.3
Truth Tables

Assume in the previous subsection we were asked to find all possible variable
assignments that cause the expressions given in the previous examples to
evaluate to 1. One possible solution to the problem is to use truth tables. A truth
table is composed of columns and rows. The columns in the table belong to two
sub-tables. One of the sub-tables is a collection of columns with the number of
columns equal to the number of different variables found in the expression. The
other sub-table includes columns that are associated with the value of one or
more expressions.

The number of rows in the table corresponds to the total number of possible
assignments to the variables found in the expression. These variables are called
input variables. This number is finite and is equal to 2n, where n is the number of
variables. For example: (1) for an expression over a singe variable, x, the number
of rows is two (x=0 and x=1); and (2) for an expression over two variables x and
y, the number of rows is four (xy=00, 01, 10, and 11). And, in general, for an
expression over n variables, the number of rows in the truth table is 2n.

The truth table for the AND, OR, and NOT given in the definition above are
given in Table 2.1.1. Row 1 of Table 2.1.1(a) is read as follows: For x= y=0, the
result of x+y is 0. Other rows are read similarly.

We illustrate the construction of truth tables for the expressions given in the
Example 2.1.1. In computing these expressions, we compute sub-expressions of
each as needed. A sub-expression is an expression within the original larger
expression. We then form the value of the expression from its component sub-
expressions.

TABLE 2.1.1

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 41

The Three Boolean Operations

x y x+y x y x ý x x�

0 0 0 0 0 0 0 1

0 1 1 0 1 0 1 0

1 0 1 1 0 0

1 1 1 1 1 1

(a) (b) (c)

TABLE 2.1.2
Truth Table for the Boolean Expression xy+z

x y z xya xy+zb

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 1 1

1 1 1 1 1
a Sub-expression xy.
b Expression value obtained from applying the logical OR operation on the columns with

label z and xy.

Example 2.1.2

Form the truth tables associated with the three expressions given in
Example 2.1.1.

The truth table for part (a) with the expression “x·y+z” is given in Table 2.1.2.
The truth table for part (b) with the expression “xy�+zz�” is given in Table 2.1.3.
And the truth table for the last expression in part (c) is given in Table 2.1.4.

Definition: Two Boolean expressions over the same set of variables are said
to be equal if and only if they are equal for all possible variable assignments in
the domain, i.e., if the two expressions have identical truth tables.

Observations:

1. From Example 2.1.2, the sub-expression (x+y)�=x�y� since the two
expressions have identical truth tables.

2. The sub-expression zz� evaluates to zero independent of the value of x, y, and
z.

3. x�y�+zz’=x�y� since the two expressions have identical truth tables.

42 DIGITAL DESIGN AND COMPUTER ORGANIZATION

These observations are part of a list of properties of Boolean algebra. The list of
properties is given next.

TABLE 2.1.3
Truth Table for the Boolean Expression xy+zz�

x y z x�y�a zz� xy+zz�b

0 0 0 1 0 1

0 0 1 1 0 1

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0
a Sub-expression x�.
b Expression value obtained from applying the logical OR operation on the columns with

label zz� and x�y�.

TABLE 2.1.4
Truth Table for the Boolean Expression xyz+(x+y)�

x y z (x+y)� xyz xyz+(x+y)�a

0 0 0 1 0 1

0 0 1 1 0 1

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 1 1
a Expression value obtained from applying the logical OR operation on the columns with

label xyz and (x+y)’.

2.2
Properties of Boolean Algebra

2.2.1
Axioms

Boolean algebra has a set of properties that are called axioms or theorems. These
properties are listed in Table 2.2.1. Associated with each property is the name of
the property. We refer to them as theorems.

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 43

In proving that the equalities hold true, one needs to show that the two
expressions on the opposite sides of the equality have identical truth tables. This
method of proof is called perfect induction since we show equality over all
possible values. The process of exhaustive proof is a result of the finite domain of
possible values (for n variable, there are 2n possible values in the domain).

TABLE 2.2.1
Boolean Algebra Properties

Properties Name of Property

1. x+0=x Identity

2. x+1=1 Null elements

3. x+y=y+x Commutative

4. (x+y)+z=x+(y+z) Associative

5. x+yz=(x+y)(x+z) Distributive

6. (x�)=x Involution

7. x+x=x Idempotance

8. x+x�=1 Complements

9. (x+y)�=x�· y� DeMorgan’s

To prove the equality of each theorem, we form the truth table associated with
both sides of the equalities. From the construction, we show that the expression
values have identical columns. It is worth noting that some of the properties that
hold in regular algebra hold as well in Boolean algebra. Some other theorems,
however, do not hold true in regular algebra. Theorems 1, 3, and 4 hold true in
both regular algebra and Boolean algebra.

Theorem 5 is the distributive property. In Boolean algebra, it is the case that
addition (OR) distributes over multiplication (AND). Figure 2.2.1 includes some
of the tables used to prove the equalities using perfect induction for the case of
one and two variables.

Figure 2.2.2 contains the truth tables used to prove the theorems for the case
of three variables.

2.2.2
Principle of Duality

The theorems above can be used to derive additional equalities using the
principle of duality. In Boolean algebra, the dual of an expression is formed from
the original expression as follows:

1. The constants in the expressions are changed; each occurrence of a 0 is
replaced by an occurrence of a 1, and vice versa.

44 DIGITAL DESIGN AND COMPUTER ORGANIZATION

2. The operations in expressions are changed; each occurrence of a “·” is
replaced by an occurrence of “+”, and vice versa.

In finding the duals of expressions, parentheses locations are preserved. It is
important to note that some parentheses occurrence is implicit. As a result, in
forming the dual, one may need to include the parentheses in the dual part of the
expression. When the dual of the axioms listed above is formed, we obtain
Table 2.2.2.

The dual property yields nine additional theorems. Some of these theorems,
however, are the same as the original theorem, as noted in theorem 6b. In
inspecting the theorems more closely, one can note that the dual of theorem 5b is

FIGURE 2.2.1

Proof of Equalities of Boolean Properties Using Perfect Induction. Remaining equalities
are shown in Figure 2.2.2

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 45

the distributive property of addition over multiplication. This property is
important in simplification of Boolean expressions.

The process of forming the dual of an expression can be applied to complex
expressions as well. To do this, we break the original expression into smaller sub-
expressions and repeatedly apply the dual operation on these expressions in a
recursive fashion until the dual of the original expression is found. We illustrate
this process in forming the dual of an expression in the following example.

Example 2.2.1

Form the dual of the expression
xyz+x′(y+z)

TABLE 2.2.2

FIGURE 2.2.2

Remaining Equalities

46 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Boolean Algebra Properties Expanded Using Dual of Expressions

Original Property Dual Name

1a. x+0=x 1b. x.1=x Identity

2a. x+1=1 2b. x.0=0 Null elements

3a. x+y=y+x 3b. x.y=y.x Commutative

4a. (x+y)+z=x+(y+z) 4b. (x.y).z=x.(y.z) Associative

5a. x+yz=(x+y)(x+z) 5b. x.(y+z)=(x.y)+(x.z) Distributive

6a. (x�)�=x 6b. (x�)�=x Involution

7a. x+x=x 7b. x.x=x Idempotance

8a. x+x�=1 8b. x.x�=0 Complements

9a. (x+y)�=x�.y� 9b. (x.y)�=x�+y� DeMorgan’s

Solution: To find the dual of the expression, we break the above expression into
smaller expressions and form the duals of each sub-expression.

Denote the dual of an expression e by ed. With this notation, we have
ed=e1d·e2d e1d=(x+y+z) e2d=(x′+y·z)

Replacing e1d and e2d with the corresponding value, in ed above, we obtain
ed=(x+y+z)(x′+y·z)

Before we conclude this section, it is important to state that the above theorems
apply as well when the Boolean variables are replaced by Boolean expressions.
This is due to the fact that these expressions when evaluated will result in a value
of 0 or 1 and, as a result, have the same effect on the overall equality as regular
Boolean variables. We illustrate the above by two examples.

Example 2.2.2

Show that xy+(xy)�=1, using the theorems found in Table 2.2.2; however, show
that xy+x�·y� is not equal to 1.

Solution: By substituting E=xy in the above expression, we obtain E+ E�=1.
The equality holds true (theorem 8a) in Table 2.2.2.

The expression xy+x�y� is not equal to 1. This can be verified using perfect
induction, as shown in Table 2.2.3.

TABLE 2.2.3
Verifying xy+x�y� Is Not Equal to 1

x y xy+x�y�

0 0 1

0 1 0

1 0 0

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 47

x y xy+x�y�

1 1 1

Example 2.2.3

Show that the expression x�y�+xyz+x�+x evaluates to 1.
Solution: According to precedence rules, the last three operations performed

are the three addition operations evaluated from left to right. As a result, the
expression x�y�+xyz+x�+x can be rewritten as

Example 2.2.4

Show that (x+y+z)�=x�y�z�.
Solution: We show the expression is true by referencing the theorems in

Table 2.2.2.

The above example is an application of DeMorgan’s rule to three variables; the
rule can be generalized as

and

where A1, A2, …, An are Boolean variables or Boolean expressions.
Note that we have used alternative representation for complement. We say

more about simplification next.

2.3
Simplification of Boolean Expressions

Simplification of a Boolean function is the process of obtaining an equivalent
Boolean function with less number of variables and/or operations. In
the simplification, we make use of the theorems found in Table 2.2.2. This

48 DIGITAL DESIGN AND COMPUTER ORGANIZATION

process of using the theorems to simplify functions is called deduction. We
illustrate the process in several examples. The process was introduced in the
previous section. We use the term function to mean expressions.

Example 2.3.1

Minimize the function ƒ(A,B)=A�+AB.
Using the theorems listed above, we have

ƒ(A,B)=A′+AB =(A′+A)(A′+B)
(Axiom 5)

 =1.(A′+B)
(Axioms 3 and 8)

 =A′+B (Axioms 3
and 1)

We listed axioms 3 and 8 above since (A�+A)=A+A� according to axiom 3 and A
+A�=1 according to axiom 8. This is done for completeness as a first example.
The use of these axioms is implicit in the following examples.

Example 2.3.2

Minimize the function ƒ(A,B)=A�+AB+B�.

ƒ(A,B)=A′
+AB+B′

 =(A′+A)
(A′+B)+B′
(Axiom 5)

 =1.(A′+B)
+B′ (Axiom

8)

 =A′+B+B′
(Axiom 1)

 =A′+1
(Axiom 8)

 =1
(Axiom 2)

Example 2.3.3

Minimize the function ƒ(A,B,C)=A�+AB+B�+BC.

ƒ(A,B,C)=A′
+AB+B′+BC

 =(A′+A)
(A′+B)+B′

+BC (Axiom
5)

 =1.(A′+B)
+B′+BC

(Axiom 8)

 =A′+B+B′
+BC (Axiom

1)

 =A′+1
+BC (Axiom

8)

 =1
(Axiom 2)

Axiom 2 is used above since (A�+BC) can be used as x in “1+x=1.”

Example 2.3.4

Minimize the function F(A,B,C)=ABC+ABC�+AB�C+A�BC.
In minimizing the function, we list the steps without reference to the

properties number.

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 49

An alternative method of minimization makes use of idempotance property “x
+x=x.” The property plays an important role in the K-map minimization
discussed later in the text.

Example 2.3.5

Minimize the function F(A,B,C)=ABC+ABC�+AB�C+A�BC by making repeated
use of the rule x+x=x.

Solution: The rule above states that in an expression a product term can be
repeated as many times as needed with the repetitions separated by “+.” Using
this rule on the term ABC in the equation, we obtain

In the next example, we minimize a property called the consensus theorem. In
order to minimize the property, we need first to modify it. The modification
expands the original expression.

Example 2.3.6

Minimize the function F(A,B,C)=AB+A�C+BC.
Solution: In order to minimize the function we first expand it as shown.

F(A, B, C)=AB+A′C+BC =AB+A′C+BC(A+A′) =AB+A′C+ABC+A′
BC

 =AB+A′C+ABC+A′BC =AB(1+C)+A′C(1+B) =AB+A′C
Note that the function simplifies to its first two terms, and in addition, the first
two terms contain the same variable (A) in complemented and uncomplemented
form; the last term is the product obtained from variables in the first two terms with
the A and A� variables excluded.

As the number of variables in a given function increases, the algebraic method
of minimization becomes more tedious.

2.4
Boolean Function

The expressions defined earlier generate Boolean functions. Like arithmetic
functions (for example, ƒ(x)=x2+x+1), Boolean functions are defined over
Boolean variables we call arguments or inputs to the function. In the arithmetic
expression above, the argument is the real number x.

50 DIGITAL DESIGN AND COMPUTER ORGANIZATION

2.4.1
Definitions

In arithmetic functions, many interesting functions are defined over a single
argument. This is not the case in Boolean algebra due to the small finite domain.
Examples of Boolean functions are

ƒ1(x,y)=x+y ƒ2(x,y)=xy+x′y′, and ƒ3(A,B,C)=A′B′C+A(B+C)
The inputs to the function ƒ1 and ƒ2 are x and y, respectively. The inputs to ƒ3 are
the Boolean variables A, B, and C. We evaluate functions for specific values of
arguments. For example, ƒ3(1, 1, 0)=1. We obtain this by substituting A=1, B=1,
and C=0 in the right side expression for f3.

The functions are described in truth-tables format in a similar fashion to
expressions descriptions.

Example 2.4.1

Consider the following voting scheme in a three-person committee. Each member
votes yes or no on a given item; the result of the vote is the same

TABLE 2.4.1
Majority Function Truth Table

x y z ¦(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

as that of the majority of the committee votes. For example, if two or three
committee members vote yes, then the result of the vote is communicated as yes.
Model this problem as a truth table.

Solution: In modeling, we need to decide what the Boolean function
represents and what its arguments are. The arguments of the function are
committee members, x, y, and z. The votes are modeled in binary with a vote of
yes modeled as 1 and a vote of no modeled as 0. The modeled Boolean function
ƒ is given in Table 2.4.1.

This function is called the majority function.

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 51

2.4.2
Representations (Realization)

If a Boolean function is described in truth table or algebraic form, then the
description is called behavioral description. Designing or implementing a circuit
that realizes a Boolean function is the process of generating a network of
building blocks that realizes the behavioral description of the function. The
design can be modeled at different levels of details. At the highest level, the
design is modeled as a functional block that shows the arguments of the function
as inputs to the block and the result of the function as an output of the block. The
example of the majority function is shown in Figure 2.4.1.

Note that the details of the design are not shown; inputs are applied to the A, B,
and C, and outputs are measured at F. The circuit is verified to be the majority
function by applying all inputs and measuring the corresponding outputs. An
application of an input means setting the value of the line to either 0 or 1. This
will be discussed later.

At another level, more details about the circuit are given. For example, at the
switch level (shown in Figure 2.4.2), the building blocks of the circuit are
switches that can be connected to a power source modeling the two binary

FIGURE 2.4.1

Block Diagram of the Majority Function. Only inputs and outputs are shown.

FIGURE 2.4.2

Switch Realization of the Majority Function. The switch labels represent the Boolean
variables

52 DIGITAL DESIGN AND COMPUTER ORGANIZATION

values. The switches represent the input Boolean variables. A switch is open if
the corresponding Boolean variable is 0. It is closed if the Boolean variable is 1.
The output of the circuit is determined by the indicator lamp (shown as a circle).
The lamp is on if it is connected to a voltage source (Vcc) through a closed path of
switches.

As shown in Figure 2.4.2, a path from Vcc to the lamp is established
(output=1) if A is closed and B is closed (in Boolean algebra, if AB=1), or if
switches A and C are closed, or B and C are closed. Translated to a Boolean
function we have F(A,B,C)=AB+AC+BC, with F measured at the lamp as a
voltage of 0 (binary zero) or a voltage Vcc (binary 1).

In this text, we model the building blocks as logic gates. Logic gates are
electrical circuits that model the behavior of simple logic operations (example,
the AND, OR, and NOT logic operations). The circuit designed using logic gates
is called a digital circuit. We will discuss logic gates in the next section. First,
however, we note that digital circuits may have multiple outputs.

To illustrate, assume we would like to modify the majority function
behavioral description so as to output the number of yes votes. This number is
presented in binary, since digital circuits process binary data. Clearly, a single
output is not sufficient since the maximum yes votes is 310=112. Table 2.4.2
shows the modified truth table. The truth table has the same set of inputs but it
has two columns of output instead of one column. The columns are labeled F1

and F2.
For the input xyz=000, the output is F1F2=00. For the input xyz=111, the output

is F1F2=(11)2=(3)10.

TABLE 2.4.2
Modified Voting (Majority Function) Truth Table, F1 and F2 Columns Represent Number
of Yes Votes

x y z F1F2

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

TABLE 2.4.3
An Example of a Function and Its Complement

A B f

0 0 1 0

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 53

A B f

0 1 0 1

1 0 0 1

1 1 1 0

2.4.3
Complement of Boolean Functions

The complement of a Boolean function, f, is defined as

By referring to the truth table of a function, the complement is obtained by
changing the entries corresponding to the function, f, in the table. The entries
with value 0 are replaced by entries with value 1, and vice versa. To illustrate,
we construct an example function and its complement in truth-table format, as
shown in Table 2.4.3.

The complement of the function can be found from the algebraic
representation as well. To find the complement, we make repeated use of
DeMorgan’s rule. We illustrate the method in the following two examples.

Example 2.4.2

Find the complement of .
Solution: Using DeMorgan’s rule, we have

In the above example, one can think of the function as a product of
subexpressions (A, B�, and (C+A�)) as shown. DeMorgan’s rule can then be
applied to a function with three product terms to yield the sum of the terms with
each term complemented.

Example 2.4.3

Given find the complement of f.
The above function can be rewritten as ƒ(A, B, C, D)=e1+e2, with e1= As a

result, we have

with

54 DIGITAL DESIGN AND COMPUTER ORGANIZATION

and

Substituting the above in the equation for , we get

An alternative method to obtaining the complement of a function is first to find
its dual. On the dual of the function, we replace all variables by the
corresponding complements.

To illustrate, consider the function given in the example above. The dual of
the function, ƒd, is

The complement is obtained from the dual by complementing the variables
above to obtain

2.5
Circuit Analysis and Gate Design

2.5.1
Circuit Analysis and Gate Representation

In digital circuit design, the problem of design is to convert a word problem to an
actual circuit that realizes (implements) the solution. From the word problem, the
process formalizes the problem as a set of Boolean functions and/or a set of truth
tables. A digital circuit is then designed so as to realize the set of functions.
Analysis is to determine the functionality of an already existing design. The
circuit design we study is done at what is called the gate level.

FIGURE 2.5.1

Gate Symbols of the Three Boolean Operations

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 55

The gate representation of the three Boolean operations (AND, OR, and NOT)
is given in Figure 2.5.1.

The gate level design can be thought of as one level above the transistor
(switch) level. At this level, each gate is composed of a number of transistors.
These transistors are connected to make the corresponding gate. The number of
transistors is a function of the type of gate designed, as well as the type of switches
used.

In the representation above, the variables A and B are treated as inputs to the
gates. The output is determined according to the gate chosen. Our goal is to
design the gate representations of functions from their word description. First,
however, we cover the analysis process of a function designed at the gate level.

We illustrate gate design and analysis by considering Figure 2.5.2. In the
figure, the inputs to the circuit are A, B, and C. The output is the function F
(A,B,C). In order to connect crossing lines, we use a dot “.”; in the diagram, lines
that are connected assume the same value. An example is given in Figure 2.5.3.
In Figure 2.5.3(a), the four line segments assume the same value assigned to A.
This is not the case for Figure 2.5.3(b).

To determine the input/output relation of the circuit (analyze the circuit), we
derive its truth table; or, alternatively, we derive the Boolean equation at the
output of the circuit. In order to derive the function of the circuit, we proceed

FIGURE 2.5.2

A Gate Design Example. Inputs are A, B, and C, and output is F.

FIGURE 2.5.3

Wire Connections Notation, (a) Crossing lines are connected, (b) Crossing lines are not
connected.

56 DIGITAL DESIGN AND COMPUTER ORGANIZATION

from inputs to outputs and assign the algebraic functions associated with each
line in the circuit. The circuit shown in Figure 2.5.2 includes the algebraic
assignments.

We formalize the analysis procedure as follows:

1. Associate with each line in the circuit a level number as follows:

i. All inputs are assigned level 0.
ii. For an output line of a gate, let all input levels be determined and let j=

maximum level assigned to one or more of its inputs. The output line of
the gate is assigned level j+1.

iii. Repeat step ii above until all line levels are determined.

2. Compute the algebraic representation of lines at level 1.
3. Assuming the algebraic representations of all lines at level i are computed,

compute the algebraic representation of the lines at level i+1.
4. Repeat step 3 until the algebraic representation of all the output lines is

computed.

It is worth mentioning that due to the commutative rule for two variables A and B,
the choice of assigning which input on an OR or AND gate is associated with a
particular variable is not important. Similarly, due to associativity the two designs
shown in Figure 2.5.4 are the same. This property does not hold true for some
other gates that we will consider later.

2.5.2
Circuit Design

In this subsection, we present circuit design at the gate level. We illustrate with
an example.

Example 2.5.1

Design (realize or implement) the gate representation of the Boolean function
ƒ(A,B,C,D)=AB+BC+A(B+D)

FIGURE 2.5.4

Associativity Property of AND Operation, (a) Circuit Realizes (AB)C, (b) Circuit
Realizes A(BC)

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 57

Solution: In order to design the function above we note that the OR (+)
operations (excluding the OR operation inside the parentheses) are done last.
Hence, f can be written as

ƒ(A,B,C,D)=(e1+e2)+e3
where e1=AB, e2=BC, and e3=A(B+D).

The design can proceed from the output back to the input of the circuit using
the above equations. As a result, we could obtain the design shown in
Figure 2.5.5 with e1, e2, and e3 as outputs of sub-circuits that are designed as well.

The design can be accomplished by proceeding from inputs as well. This is
similar to performing the design according the precedence of operations within
the expression. In the design, the B+D term is first constructed. The output of the
OR gate is then used as an input to the lower AND gate. The second input is the
A term. The output of the AND gate is the term A(B+D). The process of design is
repeated on the remaining terms until the design for the expression is obtained.

Note that the number of operations in the expression determines the number of
gates needed in the design and that the location of the gates is arbitrary. For
inputs we assume, in general, that inputs are to the left of the outputs.

2.5.3
Multiple Input Gates

Gate representations can be generalized to have more than two inputs.
Figure 2.5.6 (a) shows a four-input AND gate. Similar to a regular AND gate, the
output of this gate is 1 if all inputs assume the value of 1; the output is 0

FIGURE 2.5.5

Design of ƒ(A,B,C,D)=AB+BC+A(B+D)

FIGURE 2.5.6

(a) Four Input AND Gate, (b) Four Input OR Gate

58 DIGITAL DESIGN AND COMPUTER ORGANIZATION

otherwise. Figure 2.5.6(b) shows a four-input OR gate. The output of this gate is
1 whenever one or more inputs assume a value of 1. The output is 0 otherwise.

Actual gates are designed with different number of inputs. The number of
inputs to a gate is called fan-in. The maximum allowable fan-in is a function of
the actual design.

2.6
Electrical Circuits

In order to understand the discussion of transistors, we discuss the electrical
properties of a circuit with voltage source and resistance first. From the
discussion, we introduce voltage division and show how voltage division can be
used to interpret electrical signals as logical 0 or 1 signals.

2.6.1
Voltage, Current, and Resistance

A voltage source with proper connections induces a current. Examples of voltage
sources are the car battery, the laptop battery, and the flashlight batteries.
Voltage sources have polarities. The polarities are given as “+” and “−.” The
voltage is measured in volts and can be a measure of difference in electric
potential. The difference has to do with redistribution of electrons. Voltage
sources are modeled as shown in Figure 2.6.1.

Current is the name given to electrons flowing through a reference area. It is
related to the number of electrons that pass through a given area per unit of time.
An example of the area is a cross-section of a copper wire. Currents are
measured in amperes (A).

Material can be classified as a conductor, a semiconductor, or as an insulator.
A conductor is a medium that causes electrons to move freely within the material
structure, producing a current if needed (copper and metal wires are examples).
Semiconductors allow electrons to move, but less freely than conductors.
Insulators are poor mediums for electron movement.

Resistance is associated with the material that limits the amount of free
electron movement. Resistance is measured in ohms (�). Resistance is modeled
as shown Figure 2.6.2.

An example of a familiar resistance is the filament found in a flashlight or a
regular lamp. The filament has a resistance; the resistance is responsible for light
emission. The lamp converts electric energy into light and heat energy.

FIGURE 2.6.1

Three Different Representations of Voltage Sources

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 59

2.6.2
Ohm's Law

The voltage source, current, and resistance are related in an equation that is
called Ohm’s law. We illustrate the law in the diagram shown in Figure 2.6.3.

In the figure, the voltage source is given as 12 V. The resistance is labeled 1 k
� (1000 Ohm). The flow of the current is shown to flow from the positive voltage
node to the negative voltage node. For a current to flow there should be a closed
path of wires between the positive end and the negative end of the voltage source.

The closed path is shown in the figure. The lines represent conducting wires,
which are assumed to have zero resistance. An arrow represents the current, and
indicates the direction of the current. By convention, the current flow is defined
as opposite to the flow of electrons. In the circuit, electrons (negative charge)
flow from the negative side of the voltage source to the positive side.

The amount of current that flows in the wires of the circuit is limited by the
strength (value) of the resistance. Ohm’s law relates the three values by the
equation

V=IR
where V is the voltage source value in volts, I is the current through the wires in
amperes, and R is the value of the resistance to the flow of current measured in
ohms. The current value along the closed path is constant. The flow of electrons
on the wires and in the resistance is the same throughout the loop.
Example 2.6.1 illustrates the use of the equation.

Example 2.6.1

Compute the current value and its direction in the circuit given in Figure 2.6.3.

FIGURE 2.6.2

Symbolic Representation of a Resistor

FIGURE 2.6.3

An Example Circuit to Illustrate Ohm’s Law

60 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Solution: Ohm’s law yields I=V/R=12 V/1000� =0.012 A. The direction is as
shown in the figure.

A circuit may have multiple resistances. To find the current values in such a
circuit we make use of Kirchhoff’s voltage and current laws.

2.7
Kirchhoff's Laws and Voltage Division

Ohm’s law can be combined with Kirchhoff’s current and voltage laws to find
the different voltages of points in a given circuit. Before discussing Kirchhoff’s
law, we will discuss voltage difference.

2.7.1
Voltage Difference

Different points in a given circuit assume different voltage values. Consider a
circuit with a voltage source of 100 V that includes several resistances connected
to form one or more closed loops with the voltage source. For such a circuit, one
talks about a voltage difference between two different points in the circuit. For
example, for the 100-V voltage source, the 100 V means that the difference in
voltage between the positive side and the negative side of the circuit is 100 V; put
another way, we say that the positive side of the voltage is at 100 volts higher
than the negative side.

For electrical circuits, points on conducting wires assume the same voltage
value. However, when resistance is present in the circuit the points on the two
sides of the resistance have different voltage values. As the current passes
through the resistance, the resistance induces a voltage drop in the direction of
the current. We illustrate using the diagram given in Figure 2.7.1. In the
diagram, the voltage at point A is higher than the voltage at point B. The
direction of the current and the resistance cause the drop in voltage. The drop is
explained by Ohm’s law. Given that the voltage at point A is VA and that the
current across the resistor is I, then the voltage at point B, VB, is given as

VB=VA−IR
or, alternatively,

VA−VB=IR

FIGURE 2.7.1

A Is at a Higher Voltage Than B

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 61

2.7.2
Kirchhoff's Voltage Law

Kirchhoff’s voltage law is used to find the different voltage drops in a circuit
with several resistances or other elements that cause voltage drop. The rule states
that the sum of voltage drops in a closed loop is equal to the sum of the voltage
gains. As one travels along the loop in the direction of a current, a drop of IR
occurs across a resistance with value R. A gain is obtained if we move from the
negative to the positive nodes of a voltage source. In a circuit that is composed
of a single voltage source of value V volts and several resistances, the voltage
points in the circuit do not exceed the value V. We illustrate the use of
Kirchhoff’s law in the following example.

Example 2.7.1

For the circuit shown in Figure 2.7.2, find the current value through the circuit.
What are the voltage values at the points a, b, and c?

According to Kirchhoff’s voltage law, we have (current I flows in the direction
shown)

100=100I+400I
or

As for the voltages, we know that point a in the circuit is at the same voltage as
the voltage source since points on the same wire (with zero resistance) have the
same voltage value. As a result, point a has the voltage Va=100 V. As to the
voltage at point b, Vb is IR volts lower than point a since we move from a to b
through the resistance and in the direction of the current. Hence,

FIGURE 2.7.2

Circuit of Example 2.7.1

62 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Vb=Va−100I=100−0.2(100)=80 V
Similarly,

Vc=Vb−400I=80−0.2(400)=0 V
Note that in the above circuit the voltage at point c was computed to 0 volts. As
can be seen from the figure, the point c is at the same voltage as the point d, and
as a result the negative point of the voltage source is assumed to have the voltage
at 0 V. In electrical engineering terms, points at 0 V are said to be connected to
ground.

The loop structure in the circuit example can be converted into a linear
structure with the voltage source nodes (nodes a and b) separated, as shown in
Figure 2.7.3. In this diagram, the 0 V reference has a special symbol. The
symbol is that of ground reference voltage.

2.7.3
Voltage Division

If we refer to the example above and observe the voltage drops across the
resistors, we note that the voltage source of 100 V was split between the two
resistors. The amount of voltage drop across each resistor is a function of its
value. The circuit is an example of a voltage division circuit. We assume voltage
division works on two resistances as connected in the above example. The
connection of resistances shown is called series connection. An example of a
series connection is shown in Figure 2.7.4. In the diagram R1, R2, and R3 are
connected in series. The resistors are connected to form a single path and, as a
result, the same current passes through all resistances.

FIGURE 2.7.3

Removing Loop Representation as Shown in Figure 2.7.2. Note the 0 V (ground symbol).

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 63

We derive the voltage division equations by using the diagram shown in
Figure 2.7.5. The diagram contains two arbitrary resistances, R1 and R2, which
are connected in series.

From the previous discussion, we have
V=IR1+IR2

that is,

Using Ohm’s voltage law, we have
Vo=V−IR1

or, alternatively,
Vo=IR2

The second alternative equation is due to the fact that Vo is IR2 volts higher than
0 volts (ground) or Vo=0+IR2.

Substituting the value of I in Vo=IR2, we obtain

In the equation, the initial voltage was divided between the two resistances. We
illustrate the use of voltage division on the three circuits in the example below.

FIGURE 2.7.4

Series Connection of Resistors

FIGURE 2.7.5

Voltage Division Circuit

64 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Example 2.7.2

Find the current I and the voltage Vout for the three circuits shown in
Figure 2.7.6.

For the circuit in Figure 2.7.6(a), we obtain

For the circuit in Figure 2.7.6(b), we have

For the circuit in Figure 2.7.6(c), we have

All circuits have the same current value

Note that, in the above example, if the two resistances are equal, then the voltage,
Vout, is half that of the source voltage. For the other two cases, depending on the
relative resistance values, Vout is either closer to the source voltage value or to
the ground voltage value.

FIGURE 2.7.6

Circuits for Example 2.7.2

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 65

If the resistance value R2 is such that R2 R1, then Vout is approximately equal to
the voltage source (5 V). However, if the resistance R2 is chosen such that R1 R2,
then Vout is approximately equal to 0 V.

2.8
Kirchhoff's Current Law

Consider the example circuit shown in Figure 2.8.1. The circuit contains two
voltage sources and two loops. To find the currents and voltage drops in such a
circuit we make use of Kirchhoff’s current law; it states that at any node in the
circuit, the sum of currents entering the node is equal to the sum of currents
leaving the node.

In finding the values of the currents in the loops, we make initial assumptions
about the directions. Actual current directions are determined from the final
answers. Positive values imply the initial assumed direction is correct. Negative
values imply the current direction is opposite to the initial assumed direction.
With each inner loop, we apply Kirchhoff’s voltage law. In addition, with the
proper nodes we make use of Kirchhoff’s current law.

For a circuit with n current unknown values, one can always form a linear
system with n linear equations. This system of linear equations can then be
solved to find the current values in the circuit.

We illustrate this procedure in the two examples that follow.

Example 2.8.1

For the circuit shown in Figure 2.8.1 and for the initial current directions, apply
Kirchhoff’s voltage and current law to find the actual direction and value of the
currents in the circuit.

FIGURE 2.8.1

Circuit with Multiple Voltage Sources

66 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Solution: We apply Kirchhoff’s voltage laws on the inner two loops and form
the voltage drops by visiting the nodes in clockwise fashion. For the left-most
loop, from d to a, a gain of 10 volts is obtained (arbitrary start at d). A loss of
I1R1 volts is obtained from point a to point b. Finally, to close the loop, a voltage
gain of I3R3 is obtained from point b to point d. In equation form, we have

For the right-most loop, starting at point b and moving in clockwise fashion, we
have three drops in voltage: (1) across R2, (2) across the 15 volts, and (3) across
the resistor R3. In equation form, we have

−i2−15−i3=0
The above equations are combined to form a system of linear equations two
equations and three unknowns, i1, i2, and i3). To find a solution to the system, a
third equation is needed. The equation is obtained using Kirchhoff’s current law.
At node b, we obtain

i1+i3−i2=0
The above equations can be solved using Cramer’s rule. Cramer’s rule works on
a linear system with n equations and n variables. For a system of linear equations
of the form

a11x1+a12x2+a13x3=b1 a21x1+a22x2+a23x3=b2 a31x1+a32x2+a33x3=b3
the solution to the system is given as

where A is the coefficient matrix given as

and |A| is the determinant of the matrix A. Ai is a matrix obtained from A by
replacing column i in A by the constant matrix, B, where

To solve the above system using Cramer’s rule, we rewrite the system as

with

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 67

For the determinant of A, we obtain

and

Similarly, for A2 we have

and, for A3 we have

From the above, we obtain
i1=1, i2=7, i3=−8

From the equations above, we conclude that the original assumptions about the
currents for i1 and i2 are correct. The current for i3, however, is opposite to the
initial assumed direction.

The above procedure can be simplified by reducing the number of current
variables in the system of linear equations. We illustrate the procedure by
applying it to the circuit shown in Figure 2.8.2.

Example 2.8.2

In this example, we would like to find i1, i2, and i3 in Figure 2.8.2.
In the above circuit, we use a more efficient procedure to find the currents in

the circuit, as listed in the steps that follow.

1. The inner loops of the circuit are identified. With each loop we associate a
current in clockwise fashion. In the diagram, there are three loops. On the
outer branches of each we associate a current labeled i1, i2, and i3 (an outer
branch is a branch that is not shared by two or more loops).

68 DIGITAL DESIGN AND COMPUTER ORGANIZATION

2. For each branch we compute the current variables in terms of the variables
generated in step 1. Here, we again assume a clockwise direction. Note that
the direction chosen depends on the loop under consideration. For example,
for either of the 2 � resistors, if we choose to form the direction of the
corresponding current based on the upper loop, then the direction would be
from right to left. If, however, we choose the direction based on the lower
loops, then the directions of the currents would be from left to right. In the
diagram, we chose the lower loops for the 2 � resistor and the lower right
loop for the 3 � resistor, as seen in the diagram.

3. Once the currents are determined in the branches, the next step is to use
Kirchhoff’s voltage law for each loop. The equations for the three loops,
top, lower right, and lower left, respectively, are

4. The above equations are written in as a system of linear equations. The left-
hand side of each equation is composed of variables multiplied by the
proper coefficients and arranged in the order i1, i2, and i3. The right-hand
side of each equation is a constant. The above equations rewritten are

FIGURE 2.8.2

Circuit for Example 2.8.2

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 69

5. The last step is to solve the system of linear equations to find the values of
the currents i1, i2, and i3, and verify the results as applied to Kirchhoff’s
current laws. Using Cramer’s rule, we get

2.9
RC Circuits

In this section, we present circuits with resistive and capacitive (RC) elements.
Capacitors are components that store charge. The process of storing charge
introduces a measurable element of delay in signal propagation. Gates designed
using transistors, as will be discussed in the next section, include unintended RC
elements called parasitic RC elements. Figure 2.9.1(a) shows an example of a
capacitor composed of two plates separated as shown. The capacitor symbol is
shown in Figure 2.9.1(b).

In Figure 2.9.1(a), the plates are elements that are capable of storing charge.
Initially, there is no charge on the plates. However, when a voltage difference
occurs between the two plates (the top and bottom plates are connected to
positive voltage and ground, or have a voltage difference with the top plate at
higher voltage than the lower plate), positive charge is accumulated on the top
plate. An equal amount of negative charge is accumulated on the lower plate.
The charge (positive and negative) is protected from combining by the distance
separating the two plates.

The amount of charge that can be stored on the plates is a function of the
structure of the capacitor. The structure’s capacitive measure is called
capacitance. The capacitance unit of measurement is Farad (F). For the plate
capacitor shown in the Figure 2.9.1, the capacitance is proportional to the area of
the plate and, inversely, proportional to the distance separating the two plates.

For a given capacitor with a given capacitance, C, the amount of charge (Q)
that is present on one of the plates of the capacitor is measured according to the
relation

Q=CVc

FIGURE 2.9.1

70 DIGITAL DESIGN AND COMPUTER ORGANIZATION

where C is the capacitance of the capacitor and Vc is the voltage difference
between the top plate and the lower plate of the capacitor.

As mentioned earlier, current is a measure of electron (charge) flow per time.
In equation form, since

Q=CVc
we have

where � Q is the change in charge over the time interval � t.
The above equation states that as the voltage across a capacitor is applied,

charge is accumulated on the plates of the capacitor. The charge is accumulated
through the wires connecting the plates, resulting in a current through these
wires.

We next show that the process of charging a capacitor in a circuit that contains
resistive elements introduces a measurable element of delay.

Consider the circuit shown in Figure 2.9.2. According to Kirchhoff’s voltage
law, we have

V−IR−Vc=0
with

We have

The previous equation can be rewritten as

Taking the integral of both sides, we have

FIGURE 2.9.2

An Example of an RC Circuit

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 71

or

To find the value of K, we assume that at time t=0, Vc=0. Hence,

Substituting the value of K in the above, we have

which can be rewritten as

or

with

We have

or

which can be rewritten as

The equation above measures the voltage difference across the capacitor as a
function of time. Note that at time t=0, Vc(t)=0. Note in addition, as t increases
toward infinity the exponent term in the above equation drops to 0, i.e., Vc

becomes equal to V. The graph of Vc as a function of time is exponential. Its value
at t=0 is 0. As t approaches infinity, the value of Vc approaches V.

We make reference to the point t where t=RC. For this time, the exponent
value is equal to −1. Hence,

From the equation, for an RC value of 10−9, for t=10−9 seconds (1nanosecond),
the voltage across the capacitor reaches approximately two thirds the value of the

72 DIGITAL DESIGN AND COMPUTER ORGANIZATION

source voltage, V. The application of this in the design of digital circuits is as
follows:

1. Gates are designed using transistors as the basic switching elements. Inherent
in the design is the unintended creation of an RC element, as shown above.
Since RC creation is unintended, the term used is parasitic RC.

2. The inputs to the gate are voltage sources, the V in the circuit above.
3. The output of the gate is measured at Vc. As a result, a change in the input

(the voltage source) does not yield an immediate change in the output (Vc).
Instead, the RC combination produces a delayed response. The length of the
delay is proportional to the RC value; large RC values result in longer
delays.

In the next section, we discuss transistors as switching elements and show how
logic gates are designed using transistors.

2.10
Transistors and Logic Gates

The principle governing the design of large digital circuits today is the design of
the primitive elements called transistors. Millions of these elements can be
designed and compacted into a small area that does not exceed 0.25 in.2 A
transistor is an electrical component with three terminals. In the following, we
restrict our discussion to what is commonly referred to as metal oxide
semiconductor (MOS) transistors.

The term MOS is used due to an older method of generating a transistor by
layering three components: metal, silicon dioxide, and semiconductors.
Figure 2.10.1 is a schematic of a MOS transistor.

In Figure 2.10.1, the transistor acts as a switch. The switch is used to either
connect or disconnect the source to the drain. This is done under the control of
the gate, depending on the voltage applied to it.

The semiconductor layer is called a substrate. This layer is made out of silicon
as a semiconductor. To enhance the conductability of silicon, impurities are
added to it through a chemical process. These impurities can result in adding
excess positive charge or excess negative charge. In the diagram, we see that
excess negative charge is added in the proximity of both the source and the drain
area. The rest of the substrate, however, has an excess positive charge.

A connection of the source to the drain is accomplished through a current, i.e.,
through the flow of electrons (negative charge) from the source to the drain. For
this to happen, one needs to replace the positive charge between the source and
drain with negative charge so as to establish a path. This is the area directly
below the gate.

By observing the transistor schematic, we notice that the gate is separtated
from the substrate below it by the SiO2 layer. SiO2 is glass that is placed between

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 73

the substrate and the gate as an insulator. From our previous discussion, the
combination of the gate, the SiO2, and the substrate forms a capacitor.

The plates of the capacitor are the gates and the substrate. As a result, by
applying a voltage at the gate input an accumalation of charge occurs at the gate
plate. The charge applied is the cause of connecting the source to the drain
(creating a path of electrons, and hence a current).

To see how this process works, consider the case where we apply positive
voltage at the gate level. For this voltage, the net charge accumulated at the gate
is positive. However, on the substrate side an equivalent amount of negative
charge must be available close to the insulator. If one applies a large enough
voltage at the gate level, the channel area under the gate will become negatively
charged enough to create a path between the source and drain. Figure 2.10.2
shows the induced channel with negative charge.

Similarly, applying negative charge or leaving the voltage at zero ensures no
path connects the source to the drain.

The gate then, in the context of transistor design, controls the switch location.
For the transistor shown, a zero voltage applied to the gate simulates the
behavior of a switch that is open. A positive voltage (5 V), on the other hand,
causes a connection beween the source and drain to occur, in effect closing the
switch between the source and the drain.

A final remark about the function of the voltage at the gate: by applying
positive voltage at the gate level, the negative charge created in the channel
allows the current to flow through the channel with very little resistance. This is
not the case, however, when a zero or negative voltage is applied. For this case,
the absence of the negative charge in the channel creates a much larger resistance
to the flow of the current. The gate voltage then is controlling the resistance
within the switch itself. As a result, the transistor can be thought of as a voltage-
controlled resistance. The gate voltage controls the resistance.

FIGURE 2.10.1

A Schematic of a MOS Transitor

74 DIGITAL DESIGN AND COMPUTER ORGANIZATION

From the previous discussion, the transistor as a switch has two different
resistances associated with it, depending on the gate voltage. The resistance is
voltage controlled and may vary from 100 to over 1010 � . The presence of the
capacitance and the lack of current flow from the gate to the source or from the
gate to the drain is symbolized in Figure 2.10.3.

FIGURE 2.10.2

Induced Negative Charge Causes the Source and Drain to be Connected

FIGURE 2.10.3

MOS Symbolic Representation

FIGURE 2.10.4

Mapping of voltages to Boolean constants

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 75

We next discuss the mapping of actual voltage signals to Boolean logic
constants, as discussed earlier. The binary logic constants used in Boolean
algebra are realized using voltages. Voltages, however, are analog signals. As a
result, designers associate a range of voltage values with the logic signals 0 and
1. In general, the voltage ranges are between 0 and 5 V. Figure 2.10.4 shows an
example, in which it is assumed that voltage values between 3.5 and 5 V are
considered logic 1. Voltage values between 0 and 1.5 V are considered logic 0.
The area between the two voltages produces an undefined logic value.

2.11
CMOS Gate Design

The above transistor design is abbreviated as nMOS. The n in the abbreviation is
due to the fact that the areas close to the source and drain are negatively charged.
An opposite scenario exists in transistor design. In the design, the areas around
the drain and the source are positivly charged. The rest of the substrate, however,
is negatively charged. To distinguish between both types of transistors, the term.
pMOS is used for this type of design.

For the pMOS transistor to connect the source to the drain, we need to induce
positive charge in the channel area oppposite the gate. This can be done by
applying a negative voltage at the gate level.

We next discuss the design of logic gates using both types of transistors,
pMOS and nMOS. Gates designed using both types of transistors are called
CMOS. The c in the term stands for complementary.

We start our discussion of CMOS transistors by analyzing the function of
Figure 2.11.1.

As the names imply, Vin and Vout are the input and output voltages,
respectively. The input voltage can assume values between 0 and 5 V. The

FIGURE 2.11.1

CMOS Design of an Inverter. The input is Vin and the output is Vout.

76 DIGITAL DESIGN AND COMPUTER ORGANIZATION

voltage Vdd is assumed to be 5 V. From the figure, the source of the pMOS is
connected to the high voltage Vdd. Similarly, the drain of the lower transistor is
connected to 0 V (the ground). The pMOS transisitor is distinguished from the
nMOS by the presence of the bubble at the gate input.

As can be seen, the input voltage (Vin) constitutes the gate voltage for both
transistors. For this voltage, if the value it assumes is 0 V, then (according to the
previous discussion) the pMOS transistor will be on and the nMOS transistor
will be off. From the discussion as well, this input combination is equivalent to
creating a very large resistor for the lower transistor and a small resistance for
the upper transistor (assume 1010 � vs. 100 �). An application of 5 V on Vin results
in the opposite assignment of resistance values. Figure 2.11.2 shows the
equivalent connections with the transistors replaced by resistances. Figure 2.11.2
(a) is the equivalent circuit obtained for the case of Vin=0 V. Similarly,
Figure 2.11.2(b) is the equivalent circuit obtained for the case of Vin=5 V. The M
in the resistance measure units are 106.

Applying voltage division on both configurations for Figure 2.11.2(a), one
obtains

and for Figure 2.11.2(b)

From the logic mapping discussed, the circuit functions as an inverter (NOT)
gate. Actual CMOS inverters are fabricated so as to resemble the transistor
design given in Figure 2.11.1.

To simplify the discussion, we assume a transistor that connects the source to
the drain, an “on” transistor, is equivalent to a switch that is closed (the

FIGURE 2.11.2

Switch Representaion of Figure 2.11.1, (a) Vin=0, (b) Vin=5

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 77

resistance is very small). An “off” transistor is equivalent to a switch that is open
(the resistance is very high).

With the above simplification, the two cases disccused are shown in
Figure 2.11.3. Notice in the figure, Vout is connected to +5 V or 0 V, but not
both.

2.11.1
The AND CMOS Design

The AND CMOS design is shown in Figure 2.11.4. To illustrate, note that the
inverter circuit just designed is part of the circuit as shown. In effect, the output
of the inverter is the complement of the circuit that precedes it in the design. This
output is labeled Vout. In addition, note that the AND design is composed of two
parts, the nMOS part and the pMOS part. For the nMOS part, the switches
corresponding to the input variables are connected in series fashion. For the
pMOS part, however, the connection of the switches is done in parallel.

Finally, due to the fact that one of the switches is always off (causing very
large resistance), the circuit allows minimal current from Vdd to ground. With the
exception of transistors of output from 0 to 1 or vice versa, CMOS circuit uses
very little current.

Before we leave this section, we show the design of a four-input AND gate in
Figure 2.11.5.

Chapter 2
Exercises

2.1 Construct the truth table of the following expressions
(a) x·y+z
(b) x�·y�+z·z�

FIGURE 2.11.3

Resistor Representation Based on Vin Value in Figure 2.11.1, (a) Vin=0, (b) Vin=5

78 DIGITAL DESIGN AND COMPUTER ORGANIZATION

(c) x·y·z+(x+y)�
2.2 Construct the truth tables for the following expressions

(a) (x·y)�+z
(b) x�·y�+z·w
(c) x·y·z+(x+y)�+1

2.3 Form the duals of the expressions
(a) x·y+z(w+x�y�)
(b) x�·y�·(1+x)
(c) x·y·z+(x+y)�

2.4 Form the dual of the expression G�(AB(C�+D)+E(D�+F)(A+B)�)
2.5 Give an example of an expression that is equal to its dual.
2.6 Form the complements of the expressions

FIGURE 2.11.4

AND Gate CMOS Representation

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 79

(a) x·y+z(w+x�y�)
(b) x�·y�·(1+x)
(c) x·y·z+(x+y)�

2.7 Form the complement of the expression in question 2.4 from its
dual.
2.8 Form the complement of the expression in question 2.4 using De
Morgan’s rule.
2.9 Is it possible to find an expression where the expression is equal to
its complement? Please explain.
2.10 Simplify the expressions

(a) x·y+x�
(b) x�·y�·(1+x)
(c) x+y+(x+y)�

2.11 Simplify the expressions
(a) xyz+x�yz+xy�z+xyz�+x�
(b) xyz+x�yz+y�
(c) xyz+x�(w+z�)+yz(w+z�)

2.12 Simplify the following expressions by (1) forming the
complements of the expressions, (2) by simplifying the complemented
expression, and (3) by complementing the simplified expression.

FIGURE 2.11.5

4-Input AND Gate CMOS Representation

80 DIGITAL DESIGN AND COMPUTER ORGANIZATION

(a) (x+y+z)(x�+ y+z)(x+y�+z)
(b) y�(y+z+x)z�
(c) (x+y)(x�+y)(z+x)(z�+x)

2.13 Derive the algebraic equation of the circuit given in Figure E2.1.
If possible, simplify the algebraic equation of the circuit.
2.14 Show the gate design of the unsimplified and simplified Boolean
equations given in problem 2.11.
2.15 For solution of problem 2.14, verify the circuit designs of the
simplified and unsimplified expressions realize equal Boolean
functions by constructing the corresponding truth tables.
2.16 Find the current values I1, I2, and I3 in the circuit given in
Figure E2.2. Assume the loop currents are in clockwise direction.
2.17 Find the voltage at node A in the circuit in Figure E2.2.
2.18 Find the currents I1, I2, and I3 and the voltage VA and VB for the
circuit given in Figure E.2.3.
2.19 Repeat problem 2.18 on the circuit given in Figure E2.4.
2.20 Show the CMOS design of a 2-input OR gate.

FIGURE E2.1

FIGURE E2.2

Current Directions Are Assumed to Be in Clockwise Direction

BOOLEAN ALGEBRA, AND GATE AND TRANSISTOR DESIGN 81

FIGURE E2.3

Current Directions Are Assumed to Be in Clockwise Direction

FIGURE E2.4

Current Directions Are Assumed to Be in Clockwise Direction

82 DIGITAL DESIGN AND COMPUTER ORGANIZATION

3
Canonical Forms and Logical Completeness

CONTENTS

3.1 Canonical Forms of Boolean Functions 85

3.1.1 Canonical Sum Form 85

3.1.2 Canonical Product Form 90

3.2 Sum of Product and Product of Sum Forms 93

3.2.1 Sum of Product Form 93

3.2.2 Product of Sum Form 94

3.2.3 Verification of Function Equality Using Canonical Forms 95

3.3 Design of Functions in Standard Forms 96

3.3.1 Canonical Sum and Sum of Product Design 96

3.3.2 Canonical Product and Product of Sum Representation 97

3.4 Other Two Variable Functions 98

3.4.1 Number of Boolean Functions over Two Variables 99

3.4.1.1 The NAND Function 99

3.4.1.2 The NOR Function 99

3.4.1.3 The Exclusive OR Function 100

3.4.1.4 The Equivalence Function 100

3.5 Logical Completeness 101

3.5.1 Definition and Examples 101

3.5.2 The NAND and NOR Gates as Logically Complete Gates 102

3.6 NAND and NOR Design of Combinational Circuits 104

3.6.1 NAND Gate Design 105

3.6.2 NOR Gate Design 105

3.6.3 AND-OR-Invert and OR-AND-Invert Design 107

3.7 Design Automation Tools and Levels of Abstraction 108

3.7.1 Levels of Abstraction 109

3.7.2 Computer-Aided Design (CAD) Tools 110

3.7.2.1 Design Entry 111

3.7.2.2 Synthesis 112

3.7.2.3 Simulation 113

3.8 Application to the Electronics Workbench (EW) 114

3.8.1 The Electronics Workbench 114

3.8.2 Design Entry 115

3.8.2.1 Design Entry through Truth Tables 116

3.8.2.2 Design Entry through Equations 117

3.8.2.3 Design Entry Using Schematic Capture 117

3.8.3 Synthesis 120

3.8.3.1 Synthesis from Truth Table 121

3.8.3.2 Synthesis from Equations 122

3.8.3.3 Synthesis from Schematic Capture 122

3.8.4 Simulation 124

3.9 Integrated Circuits 126

3.9.1 Small-Scale Integration 127

84 CANONICAL FORMS AND LOGICAL COMPLETENESS

3.9.2 Medium-Scale Integration 127

3.9.3 Large-Scale Integration 127

3.9.4 Very-Large-Scale Integration 128

Chapter 3 Exercises 129

3.1
Canonical Forms of Boolean Functions

Forming the canonical sum representation of a Boolean function is one of the
standard forms of representing Boolean functions. Other forms are the sum of
product form, the canonical product form, and the product of sum form. In this
section, we discuss the canonical sum and canonical product form.

3.1.1
Canonical Sum Form

Definition: Over a set of variables, a minterm is a product term that includes all
variables, with each variable presented in complemented or uncomplemented
form.

Table 3.1.1 includes the minterms over one, two, and three variables. As can
be seen from the table, the number of minterms associated with a given set of
variables is equal to the number of different assignments the variables can
assume. As a result, the number of minterms over n variables is equal to 2n. We
make the following remarks and notations about the above minterms:

1. To form a minterm associated with a given input assignment, a given
variable in the minterm is represented in complemented form if it assumes a
value of 0. It is represented in uncomplemented form if it assumes a value of
1. For example, over the variables A and B in Table 3.1.1(b) and the
assignment A=0, B=1 the minterm associated with the input is A�B.

2. Minterms are associated with binary assignments to the input variables. For
an input assignment interpreted as a binary number with

TABLE 3.1.1

DIGITAL DESIGN AND COMPUTER ORGANIZATION 85

(a), (b), and (c) Minterm Tables over 1, 2, and 3 Variables, Respectively

(a
)

(b
)

(c
)

A M
in
te
r
m
s

A B M
in
te
r
m
s

A B C M
in
te
r
m
s

mi

0 A
�

0 0 A
�
B
�

0 0 0 A
�
B
�
C
�

m
0

1 A 0 1 A
�
B

0 0 1 A
�
B
’
C

m
1

1 0 A
B
�

0 1 0 A
�
B
C

m
2

1 1 A
B

0 1 1 A
�
B
C

m
3

1 0 0 A
B
�
C

m
4

1 0 1 A
B
�
C

m
5

1 1 0 A
B
C

m
6

1 1 1 A
B
C

m
7

decimal value i, denote the corresponding minterm as mi. The minterm
notation for the case of three variables is shown in Table 3.1.1(c).

3. Since minterms are algebraic expressions, an assignment to the input
variables causes these minterms to evaluate to a value of either 0 or 1. In

86 CANONICAL FORMS AND LOGICAL COMPLETENESS

fact, minterms can be thought of as functions; for example, over the three
variables A, B, and C we have m0(A,B,C)=A�B�C, m1(A,B,C)=A�B�C, etc.

4. A literal is a complemented or uncomplemented variable. From the
definition of minterms, the algebraic representations of two minterms differ
in at least one literal (there is at least one variable that is complemented in
one minterm but uncomplemented in the other). As a result, the logical AND
mi·mj evaluates to 0 if i is not equal to j. That is, there is no input assignment
that causes both minterms to assume a value of 1. For example, for the
minterms m5=AB�C and m4=AB�C�, we have m4·m5=(AB�C�).(AB�C)=0.

5. Finally, for a given minterm, mi the minterm assumes a value of 1 for only
one input assignment (the input assignment with decimal value i). For
example, for m5 we have m5(1, 0, 1)=1. For this input, all other minterms
assume a value of 0.

Definition: A Boolean function is said to be in canonical sum form if it is written
as a sum of minterms.

Associated with each truth table is a unique Boolean function written in
canonical sum form. To form the function, we include all minterms where the
function assumes a value of 1. We illustrate why the canonical sum form works
by the following example. Over two variables, assume the Boolean function is
given, as shown in Table 3.1.2.

The corresponding canonical sum function is ƒ(A,B)=AB+A�B�. Note that ƒ1 is
equal to 1 if and only if A=1 and B=1 or if A=0 and B=0. This is the desired
result, i.e., when we construct the truth table from the algebraic expression, we
obtain the original truth table. The canonical sum representation is unique. For
example, for this function there are four minterms to consider for

TABLE 3.1.2
Truth Table Used for Forming the Canonical Sum of a Boolean Function

A B ¦

0 0 1

0 1 0

1 0 0

1 1 1

inclusion (or exclusion) in the canonical sum form. Removing any of the two
minterms m0 or m1 will cause the function to assume a value of 0 for the inputs
00 and 11. As a result, one obtains the wrong truth table. Similarly, including any
of the other two minterms will produce the wrong function since the function
will assume a value of 1 when it should assume a value of 0.

In notation form and to simplify writing functions in canonical sum form, we
adopt three different methods of writing functions:

DIGITAL DESIGN AND COMPUTER ORGANIZATION 87

1. The algebraic form discussed earlier; for example, the function ƒ(A,B)=AB+A
�B�.

2. As a sum of mi, ƒ(A,B)=m0+m1.
3. Or, as an abbreviated sum form, ƒ(A,B)=� (0, 1)

One can convert from (1) to (2) by replacing each minterm by mi, with i
determined from the minterms in the equations. For example, the minterm AB is
associated with the input AB=11, which has decimal value 3. As a result, in (2) we
add the term m3. Similarly, one could convert the format in (2) to the format
given in (1). The format given in (3) is an abbreviation. The � (sigma) term
represents the logical OR of the minterms with indices as listed between
parentheses. In the example, (0, 3) indicates the function in canonical form is
obtained by OR-ing minterms m0 and m3, with each represented in the
corresponding algebraic form. We illustrate the steps in two examples.

Example 3.1.1

In this example, we form the canonical sum representation of the majority
function discussed in Chapter 2.

The first step in forming the canonical sum representation is to form the truth
table as given in Table 3.1.3.

The second step is to form all minterms where the function assumes a value of
1. The final step is to OR these minterms to obtain the canonical sum form

TABLE 3.1.3
Example 3.1.1, Majority Function

A B C f(A,B,C)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

88 CANONICAL FORMS AND LOGICAL COMPLETENESS

Note that we chose to write the function in the three different formats discussed
earlier.

Example 3.1.2

In this example, we construct the canonical sum representation for a Boolean
function that adds two binary numbers. Each binary number is composed of two
bits as follows.

Let the two binary numbers be A and B with the bits of A and B represented as
A=A2A1 and B=B2B1, respectively. The constructed function, F, requires multiple
outputs. To determine the number of outputs that make up the function, we
compute the maximum possible sum (3+3=6). The sum in binary is 110 and, as a
result, the function F requires three outputs. The truth table is given in
Table 3.1.4.

TABLE 3.1.4
Example 3.1.2, Addition of 2 2-Bits Binary Numbers

A2 A1 B2 B1 C3 S2 S1

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 1 0 1 0 0

1 0 1 1 1 0 1

1 1 0 0 0 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 1

1 1 1 1 1 1 0

In the table, the choice of the functions labels, C3, S2, and S1, reflect the
meaning of each. With each input A2A1B2B1, the sequence of functions C3S2S1

(we call F) represents the sum A2A1+B2. From the truth table, we obtain the
canonical sum representation of three functions with

DIGITAL DESIGN AND COMPUTER ORGANIZATION 89

3.1.2
Canonical Product Form

The canonical product form is an alternative algebraic representation of a
function. Formally, the representation is a product of maxterms as defined
below.

Definition: A maxterm, over a set of variables, is a sum term of literals where
each variable is presented in its complemented or uncomplemented form.

Maxterms are associated with binary assignments to the corresponding
variables. For a given assignment, represent the corresponding variable in its
complemented (uncomplemented) form if it assumes a value of 1 (0).

For example, over two variables, A and B, the maxterms A+B, A+B�, A�+B, and
A�+B�, correspond to the input assignments 00, 01, 10, and 11, respectively.
Similarly, for three variables one can generate eight maxterms, and in general,
the number of maxterms associated with n variables is 2n.

Definition: A Boolean function is said to be in canonical product form if the
function is represented as a product of maxterms.

Notation: Let Mi denote the maxterm representing the binary input with an
equivalent decimal value i. Table 3.1.5 shows the minterms and maxterms
associated with the three variables A, B, and C.

90 CANONICAL FORMS AND LOGICAL COMPLETENESS

TABLE 3.1.5
Minterms and Maxterms over Three Variables

A B C Minterms Maxterms

0 0 0 m0=AB�C M0=(A+B+C)

0 0 1 m1=A�B�C M1=(A+B+C)

0 1 0 m2=ABC M2=(A+B�+C)

0 1 1 m3=ABC M3=(A+B�+C)

1 0 0 m4=AB’C M4=(A+B+C)

1 0 1 m5=AB’C M5=(A�+B+C)

1 1 0 m6=ABC M6=(A+B�+C)

1 1 1 m7=ABC M7=(A+B�+C)

The canonical product representation of a function is obtained from the truth
table as follows:

1. Form all the maxterms where the function assumes a value of 0.
2. AND all the maxterms formed in item 1 above.

Example
3.1.3

Form the canonical product representation of the function with the truth table
given in Table 3.1.2.

Solution: The function assumes a value of 0 for the input combination AB= 01
and AB=10. The corresponding maxterms are (A+B�) and (A�+B), respectively.
The canonical product representation of the function is

ƒ(A,B)=(A+B′)(A′+B)
Similar to the canonical sum form, we represent the canonical product in three
forms:

1. In algebraic representation form; for example, ƒ(A,B)=(A+B�)(A�+B).
2. In product of maxterms, Mi, form; for example, ƒ(A,B)=M1.M2.
3. In abbreviated product (II) form; for example, ƒ(A,B)=� (1, 2) (or ƒ(A,B)

=� M1·M2)).

The symbol � (pi) represents the logical AND of the maxterms.
It is important to emphasize that the two representations of functions discussed

(the canonical sum and canonical product) forms are (1) unique, meaning that for
a given function described in truth-table form there exists one and only one
function in canonical sum (or canonical product) form; and (2) equal, meaning
that over the same truth table, although the two canonical representations have
different algebraic representations, the functions are equal since they have the
same truth table.

DIGITAL DESIGN AND COMPUTER ORGANIZATION 91

We discuss the relation between canonical sum and canonical product
representation. Recall the complement of a given function ƒ is defined as

TABLE 3.1.6
From Table 3.1.2 with Complement Function Included

A B ¦

0 0 1 0

0 1 0 1

1 0 0 1

1 1 1 0

By referring to truth tables, the complement of a function is obtained by
changing the entries corresponding to the function, ƒ, in the table. The entries
with a value of 0 are replaced by entries with a value of 1, and vice versa. To
illustrate, we reconstruct the function in Table 3.1.2 with the complement, as
shown in Table 3.1.6.

By referring to Table 3.1.5 we note that minterms and maxterms are related by
the equation

The canonical product of a function can be obtained from the canonical sum
representation of its complement. We illustrate by referring to the function in
Table 3.1.6. The complement of the function is

Forming the complement of the above function yields the algebraic
representation of f in canonical product form as shown

92 CANONICAL FORMS AND LOGICAL COMPLETENESS

The canonical product representation of the function above is the expected
function as given earlier. Hence, one can obtain the canonical product
representation of a function from its complement function in canonical sum form.
When the canonical sum form is complemented, the result is another function in
canonical product form.

Before we move to the next subsection, we conclude with the following:
Given the canonical sum representation of a function in abbreviated form (�),
one can generate the abbreviated canonical product representation (�) form by
including in the � form all numbers not found in the � form. For example, for
the majority function we have the abbreviated canonical sum representation � (3,
5, 6, 7). As a result, the abbreviated product of sum representation is � (0, 1, 2,
4).

3.2
Sum of Product and Product of Sum Forms

The previous representations of Boolean functions in canonical forms are called
standard forms. In this section we discuss two additional standard forms, the sum
of products and the product of sums representations.

3.2.1
Sum of Product Form

The sum of product form is a general case of the canonical sum form. Similar to
the canonical sum form, the algebraic representation is composed of sum of
terms. The terms, however, need not be minterms; instead, each term is a product
term. As a result, the canonical sum form is a special case of the sum of product
form. We assume that a single literal is considered a product term.

Example 3.2.1

Over three variables, A, B, and C, the following are examples of functions in sum
of product form:

1. ƒ(A,B,C)=AB+A�B�
2. ƒ(A,B,C)=ABC
3. ƒ(A,B)=A+B�

In example 2, the function is in sum of product form. Here, however, there is no
sum operation since the function includes a single product term. In addition, the
function is in canonical sum form. The product term is a minterm. In example 3,
the function is in sum of product form since it is a sum of two terms. Each term
is a product term that includes a single literal.

DIGITAL DESIGN AND COMPUTER ORGANIZATION 93

Example 3.2.2

Over three variables, A, B, and C, the following are examples of functions not in
sum of product form:

1. ƒ(A,B,C)=(AB)�+A�B�
2. ƒ(A,B,C)=AB(A+C)
3. ƒ(A,B,C)=(A+B�)(C�+B)

In example 1, the term (AB)� is not a product term since it is not a product of
literals.

3.2.2
Product of Sum Form

The product of sum form is a general case of the canonical product form. The
terms used are sum terms of literals. Note that a single literal is considered a sum
of literals (in this case, just one literal).

Example 3.2.3

Over three variables, A, B, and C, the following are examples of functions in
product of sum form:

1. ƒ(A,B,C)=(A+B)(A�+B�)
2. ƒ(A,B,C)=(A+B+C)(A�+B�+C�)
3. ƒ(A,B)=A+B�+C

In example 2, the function, in addition to being in product of sum form, is in
canonical product form. In example 3, the function is in canonical product of sum
form (the function contains one sum term (A+B�+C)). Is the function in canonical
product form as well?

Example 3.2.4

Over three variables, A, B, and C, the following are examples of functions not in
product of sum form:

1. ƒ(A,B,C)=(AB)�+A�B�
2. f(A,B,C)=AB(A+C)+A�

94 CANONICAL FORMS AND LOGICAL COMPLETENESS

3.2.3
Verification of Function Equality Using Canonical Forms

In Chapter 2, we defined equality of functions and stated that two functions over
the same set of variables are equal if the two functions have the same truth table.

An alternative method of showing equality of functions given in algebraic
forms is to expand each function algebraically and write the functions in
canonical sum or canonical product form. Since the canonical sum or canonical
product representation of a function is unique, the two functions are equal if they
have identical canonical sum or canonical product representation. We illustrate
this method of verification of equality in the two examples that follow.

Example 3.2.5

Show that ƒ1(A,B,C)=AB+AB�+A�B�C� is equal to the function ƒ2(A,B,C)= A+A�B�
C� by expanding each function to the corresponding canonical sum
representation.

Solution: In expanding the above function, we convert the terms in the
function into minterms, as shown:

ƒ1(A,B,C)=AB+AB′
+A′B′C′

 =AB(C+C′)+AB′
(C+C′)+A′B′C′

 =ABC+ABC′+AB
′C+AB′C+A′B

′C′
 =∑(0,4,5,6,7)

Similarly, for the function ƒ2 we have

ƒ2(A,B,C)=A
+A′B′C

′

 =A(B+B′)
+A′B′C

′

 =AB+AB
′ +A′B′

C′

 =AB(C+C
′)+AB′(C+C′)
+A′B′C

′

 =ABC
+ABC′+AB
′C+AB′C
+A′B′C

′

 =∑(0,4,5,
6,7)

Since the two functions have identical canonical sum forms, they are equal.

Example 3.2.6

Algebraically expand the function ƒ(A,B,C)=A+B into canonical product form.
Solution: In the previous example, where needed, we introduced variables

into products by multiplying by an expression that evaluates to 1. In the
canonical product form, we add the needed variables to an expression using the
rule x+0=x.

In the function ƒ(A,B,C)=A+B, the variable C is missing from the function. As
a result, the function can be rewritten and expanded as

ƒ(A,B,C)=A+B =A+B+CC′ =((A+B)+C)((A+B)+C
′) =(A+B+C)(A+B+C).

Note that in the above expansion we made use of the rule
x+y·z=(x+y)·(x+z)

DIGITAL DESIGN AND COMPUTER ORGANIZATION 95

3.3
Design of Functions in Standard Forms

In the design procedure discussed, we assume there is no restriction on the fan-in
(the number of allowable inputs to a given gate) associated with gates.

3.3.1
Canonical Sum and Sum of Product Design

For the canonical sum form, the gate-level design is composed of two levels, an
AND and an OR level (abbreviated as AND-OR). The second level is composed
of a single OR gate. The first level contains AND gates. Each AND gate realizes
one of the minterms found in the canonical sum.

For the sum of product, one follows a similar procedure as for the canonical
sum case. The AND gates in the first level, however, realize the product terms
found in the sum of product representation. For the cases where the product term
is a single literal, the corresponding AND gate in the first level is removed. We
illustrate the design procedure on the majority (voting) function described in
Chapter 2. The canonical sum representation of the voting function written in the
three forms discussed earlier are

1. F(A,B,C)=A�BC+AB�C+ABC�+ABC
2. F(A,B,C)=m3+m5+m6+m7

3. F(A,B,C)=� (m3,m5,m6,m7)=� (3,5,6,7)

The design is accomplished using a two-level AND-OR. The first level is
composed of four AND gates. Each AND gate realizes one of the minterms. The
second level is a single OR gate. Its inputs are the outputs of the AND gates (the
minterms) of level one. The design is shown in Figure 3.3.1.

We illustrate the design of functions written in sum of products by referring to
the majority function. From Chapter 2, Example 2.3.5, we found the minimized
function is

F(A,B,C)=AB+BC+AC
The design of the function is similar to the above design; the AND gates in the
first level, however, realize the product terms. As a result, the number of AND
gates is three instead of four. In addition, each AND gate realizes a smaller
product (2 vs. 3). The design is shown in Figure 3.3.2. To illustrate the saving,
we show in a later section the design of the above circuits by mapping the design
into a specific set of available gates. This process of design is called technology
mapping.

The design in Figure 3.3.2 represents the steps carried in the overall design
process of a circuit when a two-level AND-OR design is desired. The first step in
the design is to convert the word problem into a truth-table format. The second

96 CANONICAL FORMS AND LOGICAL COMPLETENESS

step is to generate the canonical sum representation of the function. The third
step is to minimize the function. The fourth step is to design.

3.3.2
Canonical Product and Product of Sum Representation

The design of functions in canonical product, or product of sum representations,
follows a similar procedure as the design of functions in canonical sum, or sum of
products. A two-level gate design is used. Here, however, the first level is
composed of OR gates. The second level is a single AND gate. For the case of
canonical product, the first level of OR gates realizes the maxterms found in the

FIGURE 3.3.1

Design of F(A,B,C)=A�BC+AB�C+ABC�+ABC

FIGURE 3.3.2

Design of F(A,B,C)=AB+BC+AC

DIGITAL DESIGN AND COMPUTER ORGANIZATION 97

canonical product. The number of OR gates is equal to the number of maxterms
found in the function. For the case where the function is written in product of
sum, the first level realizes the sum terms in the function. The number of gates is
equal to the number of sum terms composed of two or more literals.

We illustrate the design procedure on the function with description given in
Table 3.1.2. The canonical product form for the function is

ƒ(A,B)=(A′+B)(A+B′)
The design is shown in Figure 3.3.3.

3.4
Other Two Variable Functions

In this section, we consider additional two-variable functions. Some of the
functions are associated with specific gates that realize them, as will be shown.

TABLE 3.4.1
All Possible Boolean Functions over Two Variables

A B F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

TABLE 3.4.2

FIGURE 3.3.3

Design of ƒ(A,B)=(A�+B)(A+B�)

98 CANONICAL FORMS AND LOGICAL COMPLETENESS

Additional Two Variable Operations

(a) (b) (c) (d)

A B NAND A B NOR A B XOR A B Equivalence

0 0 1 0 0 0 0 0 0 0 0 1

0 1 1 0 1 0 0 1 1 0 1 0

1 0 1 1 0 0 1 0 1 1 0 0

1 1 0 1 1 0 1 1 0 1 1 1

3.4.1
Number of Boolean Functions over Two Variables

From the previous discussion, two functions over the same set of variables are
different (not equal) if they have different truth tables. Table 3.4.1 includes all
such possible functions over two variables. There are 16 different functions (the
number of possible 4-bit combinations) The functions are labeled F0 through F15

with F0 and F15, respectively, equal to 0 and 1, independent of the input
assignments. Note the presence of the AND (F1) and the OR (F7) functions. Of
the functions listed in the table, we discuss four functions of importance (in
addition to the AND and the OR functions).

3.4.1.1
The NAND Function

This function is the complement of the AND function. Its value is equal to 0 if
and only if both inputs assume the value of 1. The output is 0 otherwise. The
truth table of the function is given in Table 3.4.2(a). The algebraic equation is

ƒNAND(A,B)=(A·B)′=A′+B′
The symbol for the NAND operation is � , i.e., A� B=A�+B�. The gate
representation is shown in Figure 3.4.1(a).

3.4.1.2
The NOR Function

This function is the complement of the OR function. Its name is NOT OR, or
NOR. Its truth table is given in Table 3.4.2(b). Its algebraic equation is

FIGURE 3.4.1

Gate Symbols (a) NAND, (b) NOR, (c) XOR, (d) EQUIVALENCE

DIGITAL DESIGN AND COMPUTER ORGANIZATION 99

fNOR(A,B)=(A+B)′=A′B′
The symbol for the NOR operation is � , i.e., A� B=A�·B�. The gate representation
is shown in Figure 3.4.1(b).

3.4.1.3
The Exclusive OR Function

The Exclusive-OR (XOR) function evaluates to 1 when one of the inputs, but not
both, evaluate to 1. The truth table of the function is given in Table 3.4.2(c). The
algebraic representation is

ƒXOR(A,B)=AB�+A�B=AB
As can be seen from the equation, the symbol for the XOR operation is The gate
representation is shown in Figure 3.4.1(c).

3.4.1.4
The Equivalence Function

The equivalence function, Exclusive NOR or XNOR, is the complement of the
XOR function. Its truth table is given in Table 3.4.2(d). The algebraic equation is

fEquivalence(A,B)=A′B′+AB
The symbol for the Equivalence operation is. The gate representation of the
function is given in Figure 3.4.1(d).

For the case of the AND and the OR gates, we could extend the gate design to
include more than two inputs. This is due to the fact that the operations are both
associative and commutative. The NAND and NOR operations, however, are not
associative. As a result, one cannot extend the gate design from two inputs to
multiple inputs. To illustrate, the failure of the associativity case for the NAND
gate is referred to in Figure 3.4.2. As can be seen from the figure, the outputs are
different and depend on the order of forming the NAND operations.

To extend the NAND gate to more than two inputs, we define the generalized
NAND function as the complement of a multiple input AND gate. Similarly, we
define the general NOR function as the complement of the general multiple input
OR function. With these definitions, one can show the NAND and NOR

FIGURE 3.4.2

NAND Operation Is Not Associative

100 CANONICAL FORMS AND LOGICAL COMPLETENESS

operations are both associative and commutative. As a result, we can generate
gate representations for these. The XOR and the XNOR operations are both
associative and commutative. As a result, one can extend the gate representation
to include more than two inputs. For the XOR function, one can show the output
assumes a value of 1 when an odd number of the inputs assume a value of 1.
Similarly for the equivalence function, one can show the output assumes a value
of 1 when an even number of inputs assume a value of 1. Figure 3.4.3 shows
examples of three-input gates for the four functions discussed.

The outputs for Figure 3.4.3(a) and Figure 3.4.3(b) are
ƒNAND(A,B,C)=(A.B·C)′=A′+B′+C′, ƒNOR(A,B,C)=(A+B+C)′=A′B′C′

The outputs for Figure 3.4.3(c) and Figure 3.4.3(d) are left as an exercise.

3.5
Logical Completeness

Logical completeness has to do with sets that include logic operations
(functions) and constants, as given in the following definition.

3.5.1
Definition and Examples

Definition: A set, S, is said to be logically complete if and only if any Boolean
function can be designed using only elements of the set S.

Example 3.5.1

We show the set S={AND, OR, NOT} is logically complete as follows.
Any Boolean function is uniquely described in truth-table format. Earlier we

associated with any truth table a unique function in canonical sum form. Since
the canonical sum form includes only the three operations (AND, OR, and
NOT), the function can be designed using a two-level AND-OR design with the
inputs complemented using NOT gates if needed. As a result, any Boolean
function can be designed using only elements from the set S.

The set S is our first logically complete set. To show that other sets are
logically complete, we make use of this set. In general, one can show a given set,

FIGURE 3.4.3

3-input Gates

DIGITAL DESIGN AND COMPUTER ORGANIZATION 101

S�, is logically complete by showing all the operations found in already-known
logically complete set, S, can be generated using elements from the set S� only.

Example 3.5.2

We show the two sets, S�={OR, NOT} and S”={AND, NOT}, are both logically
complete sets.

For the set S�, in order to show the set is logically complete we need to show
the operation in the already-known logically complete set S= {AND, O-R, NOT}
can be generated using the operations in the set S�. By observation, the only
operation that one needs to generate is the AND operation. For this, we are
restricted to using the operations OR and NOT from the set S�. Using
DeMorgan’s rule we have

A·B=(A′+B)′
Note that the operations used in the right-hand side of the equality are those
found in the set S�. Since we were able to generate the AND operation using the
operations in S�, the set S� is logically complete.

One can also use gates to show logical completeness. Here, the function
desired to generate is written in a block diagram fashion with the inputs and
outputs specified. The details of the internal design of the block includes only
gates (operations) from the set S� (NOT and OR gates). We illustrate this in
Figure 3.5.1. The internal design of the AND gate is shown in Figure 3.5.2. Part
(a) of the figure shows the three gates used. Figure 3.5.2(b) uses an abbreviated
notation. The bubble at the input of the gate indicates the input variable is first
inverted. Figure 3.5.2(c) shows the equivalent AND gate.

In a similar fashion, we show the set S�={AND, NOT} is logically complete.
The OR operation is missing from S”. To generate it, we use DeMorgan’s rule
as

A+B=(A′·B)′

3.5.2
The NAND and NOR Gates as Logically Complete Gates

Each of the NAND and NOR gates are logically complete gates (operations). As
a result, these gates are called universal gates. In the next section, we present

FIGURE 3.5.1

Block Diagram with Input/Output Labels and Operations Used in the Block

102 CANONICAL FORMS AND LOGICAL COMPLETENESS

methods of designing circuits using NAND circuits or NOR circuits only. Here
we show the two gates are logically complete. To show the NAND is logically
complete, we use the gate notation. We show that using NAND we could
generate the set S={AND,NOT}; and as a result, the NAND gate is logically
complete. Figure 3.5.3(a) generates the NOT function. Using the gate above, we
could generate the AND gate by inverting the output of a NAND gate, as shown
in Figure 3.5.3(b).

We use a similar procedure to show the NOR gate is logically complete. Here,
however, we generate the operations OR and NOT. Figure 3.5.4 generates the
NOT and the OR gates.

Before we conclude this section, we show the switch design of the AND and
NAND gates at the CMOS transistor level. Figure 3.5.5(a) and Figure 3.5.5(b)
show the design of the AND and NAND gates, respectively. We make two
observations about the circuits:

1. The AND gate requires more transistor elements than the NAND gate
2. The delay in the NAND gate is shorter than that of the AND. For the AND

gate, the output of the first set of switches (NAND gate) is complemented

FIGURE 3.5.2

(a) Use of NOT and OR, (b) Equivalent Schematic, (c) Equivalent AND

FIGURE 3.5.3

(a) Generation of NOT from NAND, (b) Generation of AND from NAND

FIGURE 3.5.4

(a) Generation of NOT from NOR, (b) Generation of OR from NOR

DIGITAL DESIGN AND COMPUTER ORGANIZATION 103

using the second level to produce the AND gate. This is similar to the design
of AND from NAND, shown in Figure 3.5.3(b).

3.6
NAND and NOR Design of Combinational Circuits

Since both the NAND and NOR gates are logically complete, using either gate,
one can design any combinational circuit. We show the design of two-level gates
using both types of gates.

FIGURE 3.5.5

CMOS Design, (a) AND, (b) NAND

FIGURE 3.6.1

Example Circuit Used to Derive NAND-NAND Design

104 CANONICAL FORMS AND LOGICAL COMPLETENESS

3.6.1
NAND Gate Design

For the NAND gate design, we discuss the procedure by the example circuit of a
two-level AND-OR design, as shown in Figure 3.6.1. The gate design is that of
the XOR gate design. On the circuit, we would like to replace the gates by the
corresponding equivalent NAND gates. Using the previous discussion, we could
replace both the NOT and AND gates by NAND gates. The newly transformed
equivalent design is shown in Figure 3.6.2.

With the exception of the OR gate above, the circuit is composed of NAND
gates. The OR gate, however, can be combined with the NAND gates at its
inputs to form a NAND gate. Figure 3.6.3 shows the equivalence (both circuits
have the same output). Replacing the NAND-OR gates in Figure 3.6.3(a) by the
equivalent NAND gate in Figure 3.6.3(b), we obtain the circuit shown in
Figure 3.6.4. Note that the new circuit obtained is similar to the original AND-
OR circuit with one difference: the AND-OR gates are replaced by NAND gates.
This can serve as a procedure to the design of functions using a two-level NAND-
NAND gate. The procedure can be stated as follows:

1. From the word problem, construct the truth table behavioral description.
2. From the truth table, write the function in canonical sum form.
3. Minimize the canonical sum form obtained in (2) and write the minimum in

sum of product form.
4. Design the function as a two-level AND-OR design but with all the gates

(NOT, AND, and OR) replaced by NAND gates. (Single variables used as
inputs into second level NAND gate are first inverted.)

3.6.2
NOR Gate Design

A similar procedure is used to design circuits using NOR gates only. In the
previous example, we proceeded from a two-level AND-OR design to form a
two-level NAND-NAND design. To illustrate the design using NOR gates, we
start with the design of a two-level OR-AND. The design of the XOR function
using a two level OR-AND is shown in Figure 3.6.5. Replacing the NOT and the
OR gates with the equivalent NOR gate design we obtain the circuit shown in
Figure 3.6.6. The combination of the NOR and AND gates shown in
Figure 3.6.6 is equivalent to a NOR gate. We obtain Figure 3.6.7 by replacing
this combination with the equivalent NOR gate. Similar to the NAND gate
design, note that the new circuit obtained in Figure 3.6.7 is identical to the
original OR-AND circuit with one difference: all the gates are replaced by NOR
gates.

DIGITAL DESIGN AND COMPUTER ORGANIZATION 105

The previous can serve as a procedure to the design of functions using two-level
NOR-NOR gates. The procedure is similar to the NAND-NAND gate design.
Here, however, the function is designed using two-level OR-AND, i.e., the
minimized function is written in sum of product form.

Before we conclude this section, we will discuss other design alternatives that
we will be using in describing designs when programmable logic devices are
covered in Chapter 6.

FIGURE 3.6.2

AND-OR Design, Inverters Are Replaced with NAND Gates

FIGURE 3.6.3

NAND Gate, (a) NAND-OR Design, (b) Equivalent NAND

106 CANONICAL FORMS AND LOGICAL COMPLETENESS

3.6.3
AND-OR-lnvert and OR-AND-lnvert Design

The design of circuits using three-level gates, AND-OR-lnvert, can be
accomplished in a fashion similar to the design using AND-OR design. Due to
the presence of the inverter, however, the output of the circuit obtained is not the
function, but its complement. To obtain the original function at the output, we
simplify the complement of the function starting with its canonical sum
representation. We then design the complement function using a procedure
similar to the design using AND-OR, but with the inverter input attached to the
output of the AND gate. The output of the inverter then produces the correct
function.

For the case of the design using OR-AND-lnvert, a similar procedure is used
by starting with the complement of the function written in canonical product
form.

We illustrate the procedure for the case of the XOR gate. The function and the
complement equations in both the canonical sum and canonical product forms
are given below.

FIGURE 3.6.4

NAND-NAND Circuit of the XOR Function

DIGITAL DESIGN AND COMPUTER ORGANIZATION 107

For the design of the function using OR-AND-lnvert, we implement written in
canonical product. Figure 3.6.8(a) shows the design. Note the output of the
circuit. The output is the function in canonical sum form. To obtain the output in
canonical product form, we use AND-OR-lnvert, i.e., we implement as in
canonical sum form.

3.7
Design Automation Tools and Levels of Abstraction

Today, CPU designs include millions of transistors placed in an area of
approximately 0.25 in.2 To deal with the complexity of design, the
design process is seen at different levels of abstractions (modular levels similar
to programming). In addition, the design process is automated where computer-
aided design tools are used extensively to reduce the complexity of design. These
topics are discussed next.

FIGURE 3.6.5

OR-AND Design of the XOR Function

108 CANONICAL FORMS AND LOGICAL COMPLETENESS

3.7.1
Levels of Abstraction

In our study of topics thus far, we have encountered two levels of abstraction: the
gate and the transistor levels. In the gate level, the gate is composed of several
transistors. At this level, the detail of the internal transistor design is hidden.
Figure 3.7.1 shows two additional levels of abstraction. The design at each level
is an interconnection of components associated with the level. The components
constitute the library of the level.

We consider first the highest level of abstraction, the processor level. At this
level, the components used in the design are the central processing units (CPUs),
memory, and input/output controllers, for example. These units form the building
blocks at the processor level. The interconnection of these components yields the
desired system.

At the register level, the internal design of the processor level is considered.
Here, the internal design of the processor level library elements is shown in more
detail. We consider the processor design as an example. Figure 3.7.2 shows a
schematic at the two levels. The register level is partially shown. For example,
the control unit diagrams are not included. In addition, the details of the
arithmetic logic unit (ALU) are not shown.

The purpose of the figure is to show that more details of the CPU internal
design are seen at the register level. At this level, we use components such as

FIGURE 3.6.6

Figure Obtained from Figure 3.6.5, Replace Inverters and OR Gates by NOR Gates

DIGITAL DESIGN AND COMPUTER ORGANIZATION 109

adders, registers, and register files as the basic building blocks in the design.
These components form the library elements of the register level.

The hierarchal view of design continues to lower levels with each lower level
showing more details of the design. For example, more details about each of the
building blocks used at the register level are studied at the gate level. Finally, at
the transistor level, the details of the internal designs of gates are studied.

The levels of abstraction help in simplifying the design process. This is similar
to modular programming where the program is broken into smaller sub-
programs. This process is repeated until the sub-programs are simple to design.
Our discussion in the text considers designs using the library components found
at the gate and register levels.

3.7.2
Computer-Aided Design (CAD) Tools

Due to the complexity of digital system design, computers are used to aid in the
overall design process through the use of special (tools) programs. We discuss
these tools in relation to a simple-to-use package called MultiSim (previously
known as the Electronics Workbench, EW). We relate the discussion of CAD
tools used in design to the design process. The steps carried in design depend on
the type of gates used. For example, if our objective is to design a given function
using two-level AND-OR gates, then we follow these steps:

FIGURE 3.6.7

NOR-NOR Design of XOR Gate Obtained from Figure 3.6.6

110 CANONICAL FORMS AND LOGICAL COMPLETENESS

1. From the word problem, we develop the behavioral description in truth-table
form.

2. From the truth table, construct the canonical sum representation of the
function.

3. Simplify the canonical sum function into some of the product format.
4. Design the sum of product function using a two-level AND-OR gate.
5. Verify the design is correct by constructing the truth table from the circuit

design.

The CAD tools (programs) used to realize the steps above are broken into
classes. Each class contains a set of programs. Depending on the set of CAD
tools used, the classes used may include programs that aid in design entry,
synthesis, simulation, and placement and routing. We discuss the first three
classes next.

3.7.2.1
Design Entry

These tools allow the user to enter the description of the circuit in many forms.
These forms include behavioral description where the user enters the description
in truth-table or algebraic equations format, for example. In addition, design
entry tools include schematic capture tools. A schematic capture tool allows the
user to enter a design using the graphical user interface (GUI) of the tool. Here,
the design entry tool contains graphical symbols of the gates/units that one can
use in the design. The set of allowable units forms the library the user can

FIGURE3.6.8

AND-OR-INVERT Design of XOR

DIGITAL DESIGN AND COMPUTER ORGANIZATION 111

employ in the design. We will illustrate this process later. Other methods of
design entry include entering the description in a Hardware Description
Language (HDL). HDLs are similar to programming languages. The language
has variable declarations, conditional statements, loop statements, and
assignment statements, for example. Unlike programming languages, however,
the purpose of the language is to describe circuit design.

3.7.2.2
Synthesis

After design entry of the circuit is completed, the next step is to synthesize the
design. Synthesis usually involves several steps, including an optimization step.
This step may, for example, optimize (minimize) the Boolean equations the user
has entered. Following this optimization step, the next step in synthesis may
involve generating the needed design. Here the target technology used in design
is specified; for example, AND-OR, OR-AND, NAND-NAND, etc., synthesis
may involve an already-existing design entered using schematic capture. The
design can then be optimized and a new, more efficient design may be generated.
The generated design may use a different set of gates.

FIGURE 3.7.1

Levels of Abstraction

112 CANONICAL FORMS AND LOGICAL COMPLETENESS

3.7.2.3
Simulation

Simulation is similar to analysis where the purpose of simulation is to verify the
synthesized circuit functions as intended. The simulation may involve the
generation of the Boolean functions and/or truth tables from the circuit. For large
circuits, the truth-table generation may not be feasible. Today, circuits may have
32 inputs requiring a truth table with 232 entries, 4 G. As a result, designers check
functionality by applying a predetermined set of inputs to the synthesized circuit.
The circuit response to these inputs is then compared to a stored response. The
process of generating the set of inputs is called test generation.

Test generation uses fault models. The model is chosen so as to resemble
actual physical failures. An example of a fault model that is commonly used is
called the single-stuck-at fault model. In this model, a single line in the circuit is
assumed to be permanently stuck-at-zero or permanently stuck-at-one.

FIGURE 3.7.2

Register Level Abstraction

DIGITAL DESIGN AND COMPUTER ORGANIZATION 113

3.8
Application to the Electronics Workbench (EW)

3.8.1
The Electronics Workbench

In this section, we introduce the Electronics Workbench package in the context of
the discussion of the CAD tools discussed in the previous section. The CD
provided with the text includes MultiSim (a modified version of the Electronics
Workbench). A MultiSim tutorial is found in the accompanying CD. We look
first at the GUI of the Electronics Workbench. We then look at the levels of
abstraction of representing design details. Finally, we look at the three classes
used in CAD tools (design entry, synthesis, and simulation).

The Electronics Workbench GUI is shown in Figure 3.8.1. The interface is
used to communicate with the package in order to synthesize and simulate circuit
design.

In the context of levels of abstraction, the interface allows us to perform the
design at different levels of abstraction. In the figure, an arrow points to the gates

FIGURE 3.8.1

Graphical User Interface of the Electronics Workbench

114 CANONICAL FORMS AND LOGICAL COMPLETENESS

button. When this button is pressed, a menu of available gates is shown. From
this we could choose the gates discussed in this chapter to perform the design.
Figure 3.8.2 shows an example of the gates menu (bin).

At a lower level, one can perform design at the transistor and resistor level.
Figure 3.8.3 shows an example.

At a higher level, the interface allows the use of circuits that are composed of
many gates. Each of the circuits performs a specific task. For example,
Figure 3.8.4 shows an example of a circuit called 1-bit full adder. The details of
the circuit will be studied in Chapter 5. Part (a) of the figure includes the bin
containing the 1-bit full adder. Part (c) of the figure shows another circuit labeled
muxer. This circuit will be discussed in Chapter 5 as well.

3.8.2
Design Entry

We consider three methods of design entry as discussed earlier.

FIGURE 3.8.2

Gate-Level Library

FIGURE 3.8.3

As Shown in the Bin Labels, the Electronics Workbench provides Transistor, Resistor,
and Diode Libraries

DIGITAL DESIGN AND COMPUTER ORGANIZATION 115

3.8.2.1
Design Entry through Truth Tables

Design entry through truth tables is accomplished by using the logic converter
software tool found in the instruments bin. To use the converter, click on
instruments. Then click and drag the logic converter icon. Double-click on the
icon to open the converter. The process is shown in Figure 3.8.5.

The converter can be used as a design entry, synthesis, and simulate tool. For
design entry using the logic converter, one needs to translate the problem at
hand to either a truth table or an algebraic form. The truth table is entered in the
logic converter window by (1) selecting the number of input variables, and (2)
setting the truth values of the function. To select the input variables, we click the
circles with labels A, B, C, etc., as shown above. To enter the truth values of the
function, we select the entries where the function assumes a value of 1 (use the
mouse to select the entry) and by typing a 1 in these entries (initially, all values of
the function are set to 0.)

FIGURE 3.8.4

(a) Medium-Scale Integration Library; (b) Block Diagram of 1-Bit Full Adder; (c) Block
Diagram Of A Generic Multiplexer

116 CANONICAL FORMS AND LOGICAL COMPLETENESS

3.8.2.2
Design Entry through Equations

The logic converter can be used to enter design description in Boolean equation
format as well. This is done by typing the equations in the text box at the bottom
of the converter (Figure 3.8.5). In the text box of the converter, we typed the
Boolean equation A(B+C)+A�.

3.8.2.3
Design Entry Using Schematic Capture

In this method of design, the user can generate a schematic (a circuit) by
choosing symbols from a set of graphics symbols supplied by the CAD tool. The
symbols represent the available basic units called libraries supplied by the CAD
tool. Figure 3.8.2, Figure 3.8.3, and Figure 3.8.4 show samples of the available
library components.

In schematic capture design entry, we select our basic units based on the level
of abstraction used. For example, at the gate level design, our basic units are the
logic gates found in the logic gates library. To generate a design, we move the
needed gates into the work area of the Electronics Workbench. We then apply
the needed connections between the gates.

FIGURE 3.8.5

Text Box at Bottom of Converter Can Be Used to Type Boolean Equations in Design
Entry

DIGITAL DESIGN AND COMPUTER ORGANIZATION 117

We illustrate the process of schematic capture by applying it to the design of a
1-bit magnitude comparator. The details of magnitude comparators are covered
in Chapter 5.

The comparator we will design compares two 1-bit numbers, x and y, and as a
result has two inputs only. It has three outputs, ƒ<, ƒ=, and ƒ>, corresponding to
x<y, x=y and x>y, respectively. The truth table of the circuit is shown in
Table 3.8.1. An output of a function is set to 1 if the corresponding relation
between the operands holds true. To design the circuit associated with the above
truth table, we first construct the algebraic equation for each function. The
algebraic equations are

TABLE 3.8.1
1-Bit Magnitude Comparator

x y ¦ < ¦ = ¦ >

0 0 0 1 0

0 1 1 0 0

1 0 0 0 1

0 1 0 1 0

We then design the three functions as shown in Figure 3.8.6. The circuit in the
figure contains seven gates with connecting lines. The gates and the connections
can be generated using the Electronics Workbench GUI. Similar to the logic
converter, one clicks on the unit of interest and drags the unit to the working area.
To generate the AND gates, we select these from the gates icon, as shown in
Figure 3.8.7.

We use connectors to connect lines to the inputs and outputs of gates. The
connectors are found in the “basic bin” shown in Figure 3.8.8. The connectors
are used to create input and output lines and to cause multiple connections to the
same signal. Each connector can have four connections, as shown in
Figure 3.8.9. Connectors can have labels. To form a label associated with a
connector, double-click on the connector. When this is done, one obtains the
dialog box shown in Figure 3.8.10.

In the circuit diagram, labels were given for the inputs x and y. The output
functions were labeled asƒ<, ƒ=, and ƒ>, respectively. In making the connections
between the connectors and the gates, we move the mouse to the proximity of the
desired object until the mouse changes to a hand shape. In bringing the mouse
closer to the object, the mouse shape changes from a hand shape to an arrow

118 CANONICAL FORMS AND LOGICAL COMPLETENESS

shape with a little black dot indicating a connection can be made. The mouse can
then be clicked and dragged to the next connection. An example is shown in
Figure 3.8.11.

One can repeat the connection process on the remaining lines in the circuit.
Note that lines can be connected. To connect a gate input to a line, we proceed in
a similar fashion by starting at the gate input/output. We then drag the mouse to
the line until a dot is displayed. The dot is an indicator that a connection can be
established by releasing the mouse. Figure 3.8.6 contains an inverter with output
pointing downward. The gate orientation can be changed using the rotate icons
shown in Figure 3.8.12.

FIGURE 3.8.6

Design of the 1-Bit Magnitude Comparator

FIGURE 3.8.7

Gates Bin

DIGITAL DESIGN AND COMPUTER ORGANIZATION 119

3.8.3
Synthesis

The purpose of synthesis is to realize the design of a circuit entered through the
CAD tools. In the realization of the circuit, the synthesis tool may perform the
following two tasks.

1. The tool may be instructed to optimize the description given in design entry.
In our case, we assume optimization is based on generating a circuit with the
least number of gates. This can be done by minimizing the set of Boolean
equations of the circuit.

2. The synthesis tool uses technology mapping to realize the design. Here the
tool is instructed to use a specific set of units from the library. We illustrate
the above using the Electronics Workbench.

FIGURE 3.8.8

Basic Bin

FIGURE 3.8.9

Connectors with Four Possible Connections

120 CANONICAL FORMS AND LOGICAL COMPLETENESS

3.8.3.1
Synthesis from Truth Table

The logic converter used with design entry can be used to synthesize the circuit
as well. The realization is based on two methods of technology mappings. One
uses AND-OR gates; the other uses NAND gates. To accomplish the synthesis
process from truth tables, we synthesize the majority function with a truth table
generated during design entry. To synthesize, we first generate the Boolean
functions by clicking the conversion button to convert it from the truth table to

FIGURE 3.8.10

Connectors Dialogue

FIGURE 3.8.11

Establishing Connections between Connectors and Gates: (a) When the dot is displayed
on the input of the AND gate, click and drag the mouse button toward the connector as
shown, (b) When a dot is displayed, release the mouse button to establish connection, (c)
Connection established.

FIGURE 3.8.12

Rotate Icons Used to Change Gate Orientation

DIGITAL DESIGN AND COMPUTER ORGANIZATION 121

an equation. We then click on the button that maps the equation to the proper set
of gates. Figure 3.8.13 shows this process. The figure includes a text box
indicating the buttons with corresponding conversions. When this is done, the
design of an unoptimized circuit is displayed on the screen. To generate an
optimized design, we repeat the steps above with step 1 replaced by .pressing the
truth table to minimized equation button. When this is done, the circuit generated
is a simplified circuit. Note that when the circuit is generated, one can move the
entire circuit by clicking and dragging the circuit where needed. Finally, if we
desire to synthesize the circuit using NAND gates, the last step is replaced by
pressing the equations to the NAND gate button.

3.8.3.2
Synthesis from Equations

To synthesize from equations, we follow a similar procedure to synthesize from
a truth table. First, however, we need to convert the equations to truthtable format.
This is done in order to generate the minimal function.

3.8.3.3
Synthesis from Schematic Capture

In this method of design, the circuit is already given (designed). The purpose of
this step of synthesis is either to map the design to a different technology (for
example, AND-OR to NAND-NAND) or to generate an optimized design. For a

FIGURE 3.8.13

Synthesis Process: Click on the truth table to equations button and note equations in the
bottom of the text box. Follow by clicking equations to the AND button to obtain the
circuit on the right.

122 CANONICAL FORMS AND LOGICAL COMPLETENESS

circuit with a single output, the logic converter can be used to provide an
alternative synthesized circuit. To do this, we connect the inputs of the circuit to
the inputs of the logic converter. Similarly, we connect the output part of the
circuit to the output of the logic converter. This process is shown in
Figure 3.8.14 on the majority circuit generated earlier.

To generate the alternative design, first double-click on the logic converter to
open it. Follow that by clicking the gate to truth table button. From the truth
table, we follow the synthesis steps discussed earlier. Figure 3.8.15 shows the
alternative optimized NAND gate design. The design is obtained by clicking the

FIGURE 3.8.14

The Logic Converter

FIGURE 3.8.15

Optimized Gate Design of the Majority Function as Generated by EW

DIGITAL DESIGN AND COMPUTER ORGANIZATION 123

truth table to optimized equations button and following that by clicking the
equations to NAND button.

3.8.4
Simulation

The purpose of simulation is to verify that the synthesized design performs
according to expectation. For a single output circuit and with the number of
inputs not exceeding eight, one can use the logic converter to generate the truth
table and/or canonical sum representation of a given design. The truth table or
the functions can then be compared to the expected known response of the
circuit. The connections of the circuit to the logic converter are similar to the
connections used for synthesis from schematic capture discussed earlier. For
circuits with multiple outputs, we use a set of switches and indicators. The
switches are used to adjust the input values, and the indicators are used to record
the output values. Figure 3.8.16 shows a schematic of the circuit with the needed
connections added.

FIGURE 3.8.16

Simulation Using EW, Switches Represent Inputs, Indicators Represent Outputs

124 CANONICAL FORMS AND LOGICAL COMPLETENESS

As seen in Figure 3.8.1.6, the voltage source is labeled Vdd and is found in the
sources bin. The switches are found in the basic bin described earlier. The
switches play the role of supplying a value of 0 or a value of 1 to the inputs of
the circuit, depending on the location of the switch. A value of 1 is supplied to
the input if Vdd is connected to the input via the switch. If no connection exists,
then a value of 0 is supplied as an input. In the diagram above, both of the x and
y input values are 0 since no connection is made between Vdd and any of the inputs.
The switch labels (x and y) identify the letters on the keyboard that cause the
switch to toggle between two different positions. In the case of the circuit above,
pressing the x or y keys on the keyboard causes the switches to toggle. To assign
letters to switches, doubleclick on the switch after selecting it to obtain the dialog
box shown in Figure 3.8.17, type the desired letter in the text box with label key,
and press the OK button.

The indicators are used to display the value of the function for a specific input
assignment. The indicator color changes to red if the function output is 1. The
indicators in the diagram are found in the indicator bin. After the circuit is
designed, to simulate the function of the circuit one needs to click on the activate
simulation switch found at the top right corner of the Electronic Workbench.

FIGURE 3.8.17

Assigning Labels to Switches

DIGITAL DESIGN AND COMPUTER ORGANIZATION 125

3.9
Integrated Circuits

In this section, we briefly discuss integrated circuits (ICs). Actual digital systems
are built from integrated circuit chips. A chip interface to the outside world is
through a set of pins connected to a rectangular (possibly plastic) box. The actual
circuit is enclosed inside the plastic box and may occupy a very small fraction of
the overall area of the chip. Figure 3.9.1 shows a schematic of an IC chip; part
(a) of the figure shows a side view, part (b) shows a top view. The pins and the
plastic box constitute the packaging part of the circuit. The packaging can be
done using different procedures. The schematic shown is called dual in-line
package (DIP). The pins of the chip correspond to the interface of the circuit with
the outside world, including inputs, outputs, and power supply inputs.

The functional relation between the inputs and outputs is characterized by a
pin-out diagram. An example pin-out diagram is shown in Figure 3.9.2. The
figure includes different chips with numbers distinguishing each chip. The
diagrams are pin-out diagrams of a popular logic family called TTL (transistor-
transistor logic). In the figure, the size of the gates is intended to indicate the
small area occupied by the actual circuit. We will give a design example using
these chips shortly.

Depending on the number of gates in a chip, chips are characterized as small-
scale integration (SSI), medium-scale integration (MSI), large-scale integration
(LSI), and very-large-scale integration (VLSI). We will discuss these next. In the
discussion, we relate these to the levels of abstraction discussed earlier. In
addition, we relate these characteristics to the topics covered in the text.

FIGURE 3.9.1

Schematic of an IC Chip, (a) Side View, (b) Top View

126 CANONICAL FORMS AND LOGICAL COMPLETENESS

3.9.1
Small-Scale Integration (SSI)

SSI is a classification of chips with very few gates, usually less than ten. An
example of such circuits is given in Figure 3.9.2. SSI chips fit into the gate
abstraction level.

3.9.2
Medium-Scale Integration (MSI)

MSI are a class of chips with functional units such as adders and magnitude
computers. Thus, MSI chips fit into the register level of abstraction. The number
of gates on an MSI circuit is usually greater than ten, but smaller than one
thousand.

3.9.3
Large-Scale Integration (LSI)

The number of gates found in an LSI chip is between 1,000 and 100,000 gates.
The chips may include the design of a simple processor, the control unit of a

FIGURE 3.9.2

Sample SSI Chips

DIGITAL DESIGN AND COMPUTER ORGANIZATION 127

processor, or other interface units. Discussion of the design of a simple processor
is covered in Chapter 11.

3.9.4
Very-Large-Scale Integration (VLSI)

VLSI is the next level of integration. At this level, the circuit complexity is
usually given in the number of transistors, with this number exceeding 106

transistors. The Pentium™ series of processors are part of this class. The first
Pentium processor, for example, contained a little over 3 million transistors. The
actual circuit occupied approximately 0.9 cm2 (0.25 in.2). VLSI and LSI chips fit
into the processor level of abstraction.

Our study in this text deals with the principles of digital design and application
of the principle to circuits found in the three levels, SSI, MSI, and LSI. The
emphasis is on the principle of digital design with no reference to actual chips
found in the market to accomplish the design. As a result, our library of circuits
will be built from primitive logic gates. Before we conclude this topic, however,
we give a sample example design using SSI chip circuits, as shown in
Figure 3.9.3.

FIGURE 3.9.3

Sample Majority Circuit Design Using 7400 IC Chips

128 CANONICAL FORMS AND LOGICAL COMPLETENESS

The screen capture in the figure is from the Electronics Workbench. It shows
the design of the majority function using the 7400 chip, shown in Figure 3.9.2.
The chip is found in the digital IC bin, as shown in the figure under “74xx.” The
power supply and ground connections are needed in order for the circuit to work.
The inputs to the circuit are supplied through the logic converter. The NAND
gate circuit shown is obtained from the logic converter by following the
synthesis steps discussed earlier. Trace the circuit to verify it does realize the set
of NAND gates shown in the figure. As homework, determine the number of
7400 chips needed to do the design of the majority function without simplifying
it first!

Chapter 3
Exercises

3.1 Show that the logical AND of any two minterms over the same
variables, x1, x2,…, xn is equal to 0 if the two minterms are different.
3.2 Show that the logical OR of any two maxterms over the same
variables, x1, x2,…, xn is equal to 1 if the two maxterms are different.
3.3 Given the truth table shown in Figure E3.1, construct

(a) The canonical sum representation of ƒ
(b) The canonical product representation of ƒ
(c) The canonical sum representation of f�
(d) The canonical product representation of f�

3.4 Write your answers in question 3.3 as a sum (or product) of mi (or
Mi) terms.
3.5 Write your answers in question 3.3 using the � or � form.
3.6 Given the canonical sum ƒ(A,B,C)=2(0, 4, 5).

(a) Form the canonical product representation of ƒ in � format.
(b) Form the canonical product representation of f in algebraic

format.

FIGURE E3.1

DIGITAL DESIGN AND COMPUTER ORGANIZATION 129

(c) Form the canonical sum representation of f� in the � format.
3.7 Identify each function according to representation in sum of
product, product of sum, canonical sum, or canonical product. Note
that a function may be represented in more than one format.

(a) F(A,B,C)=AB+(AB)�
(b) F(A,B,C)=AB+A�B�
(c) F(A,B,C)=ABC
(d) F(A,B,C)=A+B
(e) F(A,B,C)=A+B+C
(f) F(A,B,C)=AB+A�(B�+C)

3.8 Algebraically, expand the function F(A,B,C)=AB+A�B� into
canonical sum form.
3.9 Repeat problem 3.8 on the function F(A,B,C)=A+B.
3.10 A set is said to be weak logically complete if the set includes
Boolean constants. When Boolean constants are included in the set
they can be used as inputs to any of the operations in the set. Show that
the following sets are weak logically complete:

(a) S={1, , AND}
(b) S={F, 1} with F(A,B,C)=A�BC+AB�C+ABC�

3.11 Given the function described in Figure E3.1:
(a) Minimize the function in sum of product form.
(b) Minimize the complement of the function in sum of product

form.
(c) Design the function using a two-level
i. AND-OR
ii. OR-AND
iii. NAND-NAND
iv. NOR-NOR
(d) Design the function using
i. AND-OR-INYERT
ii. OR-AND-INVERT

3.12 Is it possible to design general functions using a two-level AND-
NOR? Please explain.
3.13 Is it possible to design general functions using a two-level OR-
NAND? Please explain.
3.14 Design the circuits generated in problem 3.11 using the
Electronics Workbench. Verify your design is correct by using the
logic converter to construct the truth tables from the circuit design. The
process was discussed in the previous chapter.

130 CANONICAL FORMS AND LOGICAL COMPLETENESS

4
Minimization of Boolean Functions

CONTENTS

4.1 Logical Adjacencies and K-Map Construction 131

4.1.1 Logical Adjacency 132

4.1.2 K-Map Construction 134

4.1.2.1 The Inputs to the Table 135

4.1.2.2 How Is the Table Read? 135

4.2 Subcube Formations 136

4.2.1 Filling the Table Entries 136

4.2.2 Subcubes and Minimization 137

4.3 K-Map Minimization 140

4.3.1 Subcubes and Prime Implicants 140

4.3.2 K-Map Minimization 142

4.3.2.1 Relationship to Subcubes on a K-Map 143

4.3.2.2 The Minimization Process 145

4.3.2.3 Essential Prime Implicants and Examples 146

4.4 Incompletely Specified Functions 149

4.5 Product of Sum Minimization 152

4.6 The Quine-McCluskey or Tabular Method 153

4.6.1 Building Prime Implicants 153

4.6.2 Finding Minimal Cover 155

4.6.3 Algorithmic Procedure of the Tabular Method 156

4.6.3.1 Forming the Prime Implicants 156

4.6.3.2 Minimal Cover Procedure 159

4.6.4 Decimal Method of Building Prime Implicants 161

4.7 Multiple-Output Function Minimization 162

Chapter 4 Exercises 167

4.1
Logical Adjacencies and K-Map Construction

The purpose of this chapter is to discuss Boolean functions’ minimization. This
topic was introduced in Chapter 2 where we used the properties of Boolean
algebra to minimize Boolean functions. We introduce alternative methods of
minimization and relate the discussion to knowledge gained from minimization
earlier. We start with a definition. The definition relates minterms based on their
algebraic representations.

4.1.1
Logical Adjacency

Definition: Two minterms are said to be logically adjacent (over the same set of
variables) if their algebraic representation differs in one location only where a
variable is presented as is in one minterm and complemented in the other. For
brevity, we call the minterms adjacent.

Example 4.1.1

Over the set of variables A, B, and C, the two minterms, m0 and m1, are logically
adjacent since their algebraic representation differs only in the C variable m0=A�B
�C� and m1=A�B�C.

Over n variables, each minterm is adjacent to n other minterms. This is the
case since with each variable we can associate an adjacent minterm. The

132 DIGITAL DESIGN AND COMPUTER ORGANIZATION

adjacent minterm has the variable complemented if it is uncomplemented in the
original minterm, and vice versa.

Example 4.1.2

Over the variables A, B, C, and D, the minterm m4 is adjacent to four other
adjacent minterms. The minterm m4=A�BC�D�. The adjacent minterms are
m12=ABC�D�, m0=A�B�C�D�, m6=A�BCD�, and m5=A�BC�D.

Logical adjacencies are used in the minimization process of Boolean functions
as follows. A function written in canonical sum format that includes adjacent
minterms can be minimized by combining the minterms into a single product
term.

Example 4.1.3

Consider the two adjacent minterms m0 and m1 over the set of variables A, B, and
C. If the minterms are part of the canonical sum representation of a given
function, then their sum can be simplified to

m0+m1=A′B′C′+A′B′C =A′B′
Note the product term includes one less variable than found in either minterm.
Note as well the variable missing in the product is the variable where the two
minterms differ.

The concept of adjacency can be used in minimization without first forming
the algebraic representation of minterms. To illustrate, note that the input
associated with the two minterms m0 and m1 is the same with the exception of the
C part. For this part, for one input the variable C assumes a value of 1, and in the
other the variable assumes a value of 0. When forming the algebraic product, the
product contains variables where the inputs are the same. The variable where the
minterms are different is dropped. In forming the product, if an input assumes a

FIGURE 4.1.1

Adjacency Determination from Truth Table

MINIMIZATION OF BOOLEAN FUNCTIONS 133

value of 1, then the corresponding variable is presented as is. If the input
assumes a value of 0, then the variable is presented in complemented form.

Example 4.1.4

Use the above observation to minimize the majority function without forming the
algebraic representation first.

Solution: We make use of the rule x+x=x. This rule is important as it allows
us to reuse a minterm as many times as needed. It is also important when we
discuss K-map minimization later. The truth table of the majority function is
given in Figure 4.1.1. The table contains arrows used to group adjacent minterms
(inputs). The corresponding simplified product term is shown as well. Note the
minterm m7 (input 111) is adjacent to the three other possible minterms. Note as
well the logically adjacent minterms are not physically adjacent. By “physically
adjacent” we mean minterms that are directly above or below the given minterm.

4.1.2
K-Map Construction

We consider two methods of minimization: the K-map method and the tabular
method. Both methods make repeated use of logical adjacencies. The K-map
method reconstructs the truth table entries in such a way to ensure that if two
minterms are physically adjacent, then they are logically adjacent. This
reconstruction makes it easier to identify logical adjacencies.

The truth table construction is one-dimensional; the minterms as the inputs
(minterms) are listed in rows. The K-map reconstructs the table as a two-
dimensional table for functions over two to four variables. This is done to
visually identify adjacencies, which we will discuss next.

FIGURE 4.1.2

Majority Function Truth Table Reconstructed

134 DIGITAL DESIGN AND COMPUTER ORGANIZATION

4.1.2.1
The Inputs to the Table

The rows and columns of the table are labeled in binary. The binary combination
of a specific row and column label represent an input in the truth table. The
corresponding entry in the table represents the value of a given Boolean
function. The value in the entry is 0 if the Boolean function assumes a value of 0
for the given input combination. The value of the entry is 1 otherwise. We
illustrate by reconstructing the truth table for the majority function.

Example 4.1.5

In this example, we reconstruct the truth table of the majority function as a two-
dimensional table. We arbitrarily choose the C variable as a row label of the
table and the AB combined assignment as a label for the columns of the table.
The number of rows in the table is two; one row is associated with the input C=0
and another with the input C=1. The number of columns in the table is four,
corresponding to the four possible input values of AB. The reconstructed table is
shown in Figure 4.1.2.

4.1.2.2
How Is the Table Read?

The row and column labels of the table are the input values of the variables A, B,
and C. The column label contains the possible values of AB. Similarly, the row
label lists the possible values of the variable C. The remaining entries in the table
contain the function values associated with the corresponding inputs. For
example, the value of the function for AB=10 and C=1 is the value of the entry with
column label 10 and row label 1. This entry is assigned the value

F(1,0,1)=1
By observing the table, we note the column labels do not follow the normal
binary sequence 00, 01, 10, and 11. Instead the labels are listed so that if two
minterms are physically adjacent, then they are logically adjacent as well. As
stated earlier, minterms over three variables satisfy the property that each

TABLE 4.1.1
Adjacent Entries,“--” Is Adjacent to Entries with Labels “o”

minterm is logically adjacent to three others. In the above table, for minterms that
are not located at a corner, the logically adjacent minterms are those that are
physically adjacent (either on the same row or the same column). For corner
minterms, the physically adjacent minterms in the same row or same column are
adjacent to the corner minterm (there are two such minterms for each corner).
The third adjacent minterm is obtained by noting that the last column and the first

MINIMIZATION OF BOOLEAN FUNCTIONS 135

column differ in one location. Hence, the third adjacent minterm is found in the
first or last column, depending on the corner minterm considered.

We illustrate this by constructing four-variable K-maps. The table format is
shown in Table 4.1.1. To construct the table, choose input labels that differ in
only one value as they are assigned in both the row and column order. This will
ensure that physical adjacencies of minterms will yield logical adjacencies as
well. In Table 4.1.1, the labels for the AB input differ in only one value as one
moves from one column to an adjacent column. This is also the case for the row
labels. With regard to logical adjacencies in this table, each minterm is adjacent
to four other minterms. For example, the minterm corresponding to the input
“ABCD=0101” is logically adjacent to the four physically adjacent minterms.
(Two of the adjacent minterms are the neighbor minterms found in the same
row; the other two adjacent minterms are in the neighbors found in the same
column.) Other adjacent minterms can be identified similarly, and by noting that
the first row is adjacent to the last row, and the first column is adjacent to the last
column. In the table, the cells with entry “o” are adjacent to the cell with entry
“--.”

4.2
Subcube Formations

4.2.1
Filling the Table Entries

In the previous section, we constructed three- and four-variable K-maps. To
enter the values of a Boolean function in a K-map, we form the truth table

TABLE 4.2.1
K-Map of Example 4.2.2, ƒ(A,B,C)=AB+AB�+A�B�C�

representation of the function or, equivalently, the canonical sum representation.
We then enter the value of the function in the table, based on the labels as inputs.

Example 4.2.1

Form the K-map representation of the majority function.
The table is formed from the truth table as shown in Figure 4.1.1 and

Figure 4.1.2.

Example 4.2.2

Form the K-map table for the function ƒ(A,B,C)=AB+AB�+A�B’C.

136 DIGITAL DESIGN AND COMPUTER ORGANIZATION

To form the table, we first expand the function to canonical sum form as
follows:

ƒ(A,B,C)=AB+AB′+A
′B′C′

 =AB(C+C′)+AB′
(C+C′)+A′B′C′

 =ABC+ABC′+AB
′C+AB′C′+A′B

′C′
 =∑(0,4,5,6,7)

The K-map for the above function is given in Table 4.2.1.

Example 4.2.3

Construct the K-map representation of the function ƒ(A,B,C,D)=� (0,1,5,7,8).
The K-map representation is given in Table 4.2.2.
A fast way to fill the table makes use of assigning decimal values with the

table entries based on the decimal value of the minterm labels. The decimal
values associated with the entries is shown in Table 4.2.3. We use this table in
the following example.

Example 4.2.4

Construct the K-map representation of the function ƒ(A,B,C,D)= � (0,1,2,4,6,7,8,
10,12,14).

TABLE 4.2.2
K-Map of Example 4.2.3, ƒ(A,B,C,D) � (0,1,5,7,8)

TABLE 4.2.3
K-Map with Entries Labeled with Decimal Values of Corresponding Minterms

TABLE 4.2.4
K-Map of Example 4.2.4, ƒ(A,B,C,D)= � (0,1,2,4,6,7,8,10,12,14)

The K-map representation based on the numbering in Table 4.2.3 yields
Table 4.2.4.

4.2.2
Subcubes and Minimization

The purpose of constructing K-maps is to aid in the simplification process of
Boolean functions. Earlier we mentioned the map makes repeated use of logical
adjacencies where two adjacent minterms in a Boolean function can

TABLE 4.2.5
K-Map of the Majority Function with “Boxes” Enclosing 1-Entries in the Table

MINIMIZATION OF BOOLEAN FUNCTIONS 137

be reduced to a single product term with one less variable. Two adjacent
minterms in a K-map form a subcube, which we will define later. On a map,
subcubes are circled to indicate their relation.

We illustrate by applying the above to the K-map of the majority function.
Table 4.2.5 shows the K-map of the majority function with the subcubes
enclosed in boxes. Note that the boxes describe visually the process of
minimization we discussed earlier where minterm m7 is reused with each of the
remaining minterms in the majority function. This can be done because of the
rule x+x=x. Note also that the algebraic product associated with each pair of
minterms can be derived from the table directly as follows.

The subcube with column label 11 represents the sum of minterms m6+ m7. In
the table these two minterms have the same AB representation since both assume
the same value over the two variables A and B. They differ in the C variable. As
a result, when added the C variable is dropped from the product. The common
product AB represents this subcube. Similar logic applies to the subcube
containing m3 and m7. Here, the C variable remains part of the product since the
two minterms assume the same value over this variable. In addition, in moving
from one column to the next, one of the column labels, the A variable in this case,
changes. As a result, the A variable is dropped from the algebraic representation
and the remaining common product, BC, is the algebraic representation of the
subcube. Similarly, we obtain the algebraic representation AC for the third
subcube. The minimized sum is given by the equation that adds the algebraic
representation of the three subcubes, i.e., F(A,B,C)=AB+BC+AC.

In forming subcubes we may need to form minterms at the edges/corners of
the K-map. We illustrate by the following example.

Example 4.2.5

Using K-maps, find the minimum function F(A,B,C)=� (0,3,4,7).
The K-map, subcubes, and algebraic representations are shown in

Figure 4.2.1.
Note that the minterms at the upper left and upper right corners are adjacent.

As a result, they are combined into a subcube, as shown. Since the minterms are
in the same row, they share the same row label (C=0). They differ in one of the
column variable labels, the A variable, as seen. When the A variable is removed,
the remaining product contains two variables B and C, with both variables
complemented since each assumes a value of 0. The product term B�C� represents
this subcube. When the product term representing the bottom subcube is formed,
we obtain the minimized function F(A,B,C)=BC+B�C�.

The previous two examples involved forming subcubes that included two
adjacent minterms. In the next example, we form subcubes that include four
minterms. A formal definition of subcubes is given in the next section. Here,
however, we mention that the subcube of interest contain 1-cells (entries in the
table where the function assumes a value of 1), and the number of 1-cells in the

138 DIGITAL DESIGN AND COMPUTER ORGANIZATION

subcube is always equal to 2k for some integer k. For k=0, 1, and 2, for example,
the corresponding subcubes will contain 1, 2, and 4 1-cells, respectively. A
subcube that contains a single 1-cell is identified by circling the single 1-cell in
the subcube.

Example 4.2.6

Figure 4.2.2 shows a sample subcube of size 4 of the function given in
Example 4.2.2.

The four minterms enclosed in the subcube of size 4 are minimized according
to the rules given below to result in a single variable A:
 AB′C+AB′C+ABC′+ABC =AB′(C′+C)+AB(C′+C) =AB′+AB =A
In the next section, we present methods of obtaining the algebraic representation
associated with a subcube without using the algebraic simplification above.

FIGURE 4.2.1

Subcube Formation and Corresponding Algebraic Representation

FIGURE 4.2.2

Subcube of Size 4 of Example 4.2.6

MINIMIZATION OF BOOLEAN FUNCTIONS 139

4.3
K-Map Minimization

4.3.1
Subcubes and Prime Implicants

The following definitions are in relation to 1-cells in a given K-map.
Definition: A subcube of 1-cells on a K-map satisfies the following

conditions:

1. The number of 1-cells in the subcube is 2k for some integer K� 0.
2. Each 1-cell in the subcube is adjacent to k other 1-cells in the subcube.

Example 4.3.1

The K-map considered previously is redrawn in Figure 4.3.1. The table shows
sample subcubes of sizes 1, 2, and 4.

All enclosed subcubes satisfy the first part of the definition, i.e., the sizes are a
power of 2. In addition, all subcubes satisfy the second part of the definition as
follows. The minterm with label 1 is adjacent to 0 other minterms in the subcube
since its size is 20. For the two subcubes of size 2, each minterm must be
adjacent to k other minterms in the subcube (in this case, k=1). Finally, the
subcubes of size 4 satisfies both conditions in the definition; for the second
condition each minterm must be adjacent to two other minterms in the subcube
(k=2).

On the K-map, subcubes form a rectangular shape, given the fact that the last
row and the first row are adjacent and the last column and first column are
adjacent as well. The next example includes cases of 1 cells that do not form
subcubes.

FIGURE 4.3.1

Sample Subcubes of Sizes 1, 2 and 4

140 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Example 4.3.2

The enclosed minterms in Figure 4.3.2 are not subcubes.
The enclosed box labeled 1 does not satisfy the adjacency condition (note the

shape is not rectangular). The box labeled 2 does not satisfy the first condition.
In the next example, we form the largest possible subcubes not contained in

any single larger subcube.

Example 4.3.3

Construct the K-map representation and form all subcubes not contained in any
single larger subcube of the function

ƒ(A,B,C,D)=∑(0,1,5,7,8,13)
The K-map representation is given in Table 4.3.1. To form the largest subcubes
not contained in any larger subcube, we start by attempting to form the largest
subcube possible. In a K-map with 16 entries, the largest possible subcube is of
size 16. For such a K-map, all entries must assume a value of 1. This is not the
case in the above function. The next possible subcube is of size 8. Since the
function does not contain eight Is, we consider the next possible subcube of size
4. From the construction of the map, no subcubes of size 4 are possible. There
are several subcubes of size 2, however, as shown in the diagram. None of these
subcubes are contained in a larger subcube (there are no subcubes of size 4).
Note that the subcube that contains the minterms m1 and m5 is not completely
contained in a single subcube. It is included as a result.

TABLE 4.3.1
K-Map and Subcube Formation of ƒ(A,B,C,D)=� (0,1,5,7,8,13)

The subcubes formed in the above example are called prime implicants, as
stated in the following definition. Forming all possible prime implicants is the
second step in the minimization process using K-maps. The first step is to form
the K-map.

FIGURE 4.3.2

Examples of 1-Entries That Do Not Form Subcubes

MINIMIZATION OF BOOLEAN FUNCTIONS 141

Definition: A prime implicant on a K-map satisfies the following conditions:

1. It is a subcube of 1-cells.
2. It cannot be contained completely in a single larger subcube, i.e., it is not a

subset of a larger subcube.

Example 4.3.4

Of the four subcubes given in Figure 4.3.1, only subcube 3 forms a prime
implicant. Subcubes 1 and 2 are contained in the larger subcube 3. As a result,
none is a prime implicant. Subcube 4 is not a s implicant since the figure is
missing a subcube of size 2 containing the minterms in the upper-left and upper-
right corners. Once this subcube is formed, the subcube with label 2 is
completely contained in this larger subcube.

Example 4.3.5

Construct the K-map representation and identify all prime implicants of the
function

The K-map representation and the corresponding prime implicants is given in
Table 4.3.2. The K-map includes three prime implicants. Similar to the
discussion in the previous example, we start by forming the largest possible prime
implicants. In this case, we could form an implicant of size 8, as shown in the
table. The prime implicant contains the four 1-cells in the first row and the four
1-cells in the last row. Note that since the rows are adjacent, the eight cells are
enclosed in a rectangular shape.

The eight 1-cells contained in the prime implicant cannot be used to generate
smaller prime implicants of sizes 4, 2, or 1 since these subcubes will

TABLE 4.3.2
K-Map and Subcube Formation of ƒ(A,B,C,D)=� (0,1,2,4,6,7,8,10,12,14)

be completely contained in the larger prime implicants. The two 1-cells outside
the prime implicant of size 8 are used to form two additional prime implicants, as
shown in the table.

Example 4.3.6

Construct the K-map representation and identify all prime implicants of the
function

142 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Both the K-map representation and the prime implicants are given in Table 4.3.3.
In the table, we first form the prime implicant of size 4 and follow that

TABLE 4.3.3
K-Map and Subcube Formation of
ƒ(A,B,C,D)=� (1,5,6,7,11,12,13,15)

with the formation of the four prime implicants of size 2.
We next discuss the relationship between minimal functions, subcubes, and

prime implicants.

4.3.2
K-Map Minimization

The minimization process of a K-map starts with first constructing the K-map
from the truth table or from a word problem. The minimization is based on a
relationship between prime implicants and the minimal function. The
minimization is based on the function being represented in sum of product form.
A function, ƒ, is said to be minimal if

1. The function is written in sum of products form with the smallest number of
product terms.

2. If another function, ƒ1, has the same number of product terms, then its product
terms are not smaller (the product term contains fewer literals) than the
function, ƒ.

In Boolean algebra, it is possible for two functions to satisfy conditions 1 and 2.
In this case, both functions are considered as an acceptable minimum. In
mathematics, when there is more than one acceptable minimum (the minimum is
not unique), the minimum function is referred to as a minimal function.

Example 4.3.7

In this example, we note the example function
F(A,B,C)=A+A′BC

is not minimal since the function can be simplified to
F(A,B,C)=A+BC

Both functions satisfy condition 1 of the definition (they contain the same
number of product terms, two such terms). Only the second function, however, is
minimal since its product terms contain fewer literals.

MINIMIZATION OF BOOLEAN FUNCTIONS 143

4.3.2.1
Relationship to Subcubes on a K-Map

Both the number and the size of product terms are related to subcubes in the K-map
as follows:

1. With each subcube, we associate a product term. The product term is
obtained by reducing the sum of the minterms found in the subcube to the
corresponding algebraic representation. We consider Figure 4.3.1, for
example. The product terms associated with the subcubes are listed in
Table 4.3.4.

2. As seen from the table, larger subcubes contain minterms that can be added
and reduced to a single product with fewer literals.

We apply the above two observations to the function in Example 4.3.1. The
original function contained five product terms (the minterms), with each product
composed of three literals. To reduce the function, we could write it as

TABLE 4.3.4
Subcubes and Corresponding Algebraic Representation of the K-Map in Figure 4.3.1

Subcube Algebraic Product

1 AB=ABC�+ABC

2 AB�=AB�C+AB�C

3 A=ABC+ABC�+AB�C+AB�C�

4 A�B�C

ƒ(A,B,C)=ABC+ABC′+AB
′C+AB′C′+A′B′C′

 =1algebraic+2algebraic+A′
B′C′ =AB+AB′ +A′B′C

In the above, 1algebraic and 2algebraic are the algebraic representation of the sum of
minterms found in subcubes 1 and 2. Alternatively, we could write the function
as
ƒ(A,B,C)=ABC+ABC′+AB′C+AB

′C′+A′B′C′ =3algebaic+A′B′C′ =A+A′B′C′

As can be seen from the alternative reductions based on the choice of subcubes,
the second alternative yields a better minimum. From the discussion we
conclude:

1. Subcubes are algebraically associated with product terms. As a result, the
number of subcubes chosen to include in the function is equal to the number
of product terms.

2. Since our objective at a minimum is to obtain the smallest number of product
terms, on a K-map we need to look for the least number of subcubes that
contain all minterms of a function.

144 DIGITAL DESIGN AND COMPUTER ORGANIZATION

3. The size of the subcube affects the product term size. In Table 4.3.4,
subcubes of size 2 are reduced to a single product term with one less
variable than the original. For the case of subcube 3, the reduction in the
number of variables is 2. In general, for a subcube of size 2k, the product
term representing the subcube contains k less variables.

4. Since our objective is to form product terms with the smallest number of
variables, given a choice over more than one subcube that covers some
minterms, we choose the largest possible subcube.

Thus, for a minimum we choose the smallest number of subcubes that cover the
minterms of the function. This guarantees that the condition on the least number
of product terms is met. In addition, we choose the largest possible subcubes.
This guarantees the product terms chosen are the smallest. As a result, subcubes
that are not prime implicants are disregarded and not considered since these
subcubes can be contained in larger subcubes; the larger subcubes require
smaller product terms. We formalize the minimization process next.

4.3.2.2
The Minimization Process

From the previous discussion, to minimize a function we

1. Construct the K-map representation of the function
2. Form all prime implicants of the function
3. Find the smallest number of prime implicants that cover (include) all the 1-

cells of the function
4. Form the algebraic representation of each prime implicant found in item 3

and add these terms to form the minimal algebraic representation

We illustrate these concepts further. Assume a given function over four variables
A, B, C, and D, and that during the minimization process we found that we need
to use at least three subcubes to cover the 1-cells in the corresponding K-map of
the function. Assume the coverage can be obtained in the following two ways:

1. The coverage is accomplished with three subcubes, each of size 2.
2. The coverage is accomplished with three subcubes. Two of the cubes are of

size 4, the third is of size 2.

Then, the algebraic representation associated with each option results in a
function with three product terms. For option 1, each of the product terms has
three literals. This is not the case for option 2, however, as two of the product
terms are of size 2 literals.

MINIMIZATION OF BOOLEAN FUNCTIONS 145

4.3.2.3
Essential Prime Implicants and Examples

We illustrate the minimization process on the example functions given earlier.
For these examples, the first two steps in the minimizations, the formation of a K-
map and prime implicants, were completed earlier. First, we introduce additional
definitions. In observing the previous examples, we note that some 1-cells in the
K-map are covered by only one prime implicant. Since in minimization the
prime implicants chosen must cover all 1-cells, those implicants must be
included in any selection.

Definition: A 1-cell in a K-map is said to be an essential 1-cell if, on forming
all possible prime implicants, the 1-cell is contained (covered) by only one prime
implicant.

Definition: An essential prime implicant is a prime implicant that contains
one or more essential 1-cells.

Essential 1-cells in a K-map can be identified by placing an “*” in the cells.
To form a minimum cover given all prime implicants, we follow the following
steps:

1. Identify all essential 1-cells and, accordingly, all essential prime implicants.
Add to the set of prime implicants the essential prime implicants identified.

2. In the K-map, replace the 1-cells covered by the essential prime implicants
with “-” to signify the 1-cells are already covered.

3. On the remaining 1-cells, find the minimum number of prime implicants
that cover the 1-cells and add to the set of prime implicants.

4. Form the minimal Boolean function by adding the algebraic representations
of all the prime implicants found in step 3.

We illustrate the procedure on the previous examples.

Example 4.3.8

We consider the function given in example 4.3.3. The process is given in
Figure 4.3.3.

Table 4.3.5 contains a list of prime implicants, the minterms they cover,
whether the implicant is essential or not, and the algebraic representation. (We
discuss how to obtain the algebraic representation later). From Figure 4.3.3(a),
prime implicants PI3, PI4, and PI5 are essential. As a result, they are included in
any minimum cover. Figure 4.3.3(b) shows the reduced K-map with the 1-cells
cvered by the essential prime implicants replaced by “-”.

Since all 1-cells must be covered, the remaining 1-cell can be covered by either
of the two prime implicants PI1 or PI2. Since each prime implicant is

TABLE 4.3.5

146 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Algebraic Representation of Prime Implicants of Figure 4.3.3

Prime Implicant (PIi)a Minterms Covered Algebraic Representation

1 0, 1 A�B�C�

2 2, 5 A�C�D

3* 5, 7 A�BD

4* 0, 8 B�C�D�

5* 5, 13 BC�D
a An “*” in column 1 indicates an essential prime implicant.

TABLE 4.3.6
Number of Variables in a Product as a Function of the Size of the Corresponding Prime
Implicant

Prime Implicant Size Size of Product Product Size over Four Variables

1 N 4

2 N−1 3

4 N−2 2

8 N−3 1

16 N−4 0 (the function equals 1)

of the same size, the function can be covered in two methods that yield two
possible minimal functions.

The minimal functions obtained by including PI1 in the cover is
ƒ(A,B,C,D)=A′BD+B′C′D′+BCD+A′B′C′

The minimal function obtained by including PI2 in the cover is
ƒ(A,B,C,D)=A′BD+B′C′D′+BC′D+A′C′D

The algebraic representation associated with a prime implicant can be found as
follows:

1. Over N variables, the number of variables in the product associated with an
implicant is equal to

N−log2m

FIGURE 4.3.3 K-Map Minimization, (a) Essential Prime Implicants Identified, (b) New
K-Map with Remaining Uncovered 1-Cells.

MINIMIZATION OF BOOLEAN FUNCTIONS 147

where m is the size of the implicant. Table 4.3.6 shows the size of the
product term as a function of the prime implicant size.

2. To form the product associated with a given prime implicant, we follow the
above rule to determine the size of the product term. To

TABLE 4.3.7
Implicants and Corresponding Algebraic Representation of Example 4.3.5

Prime Implicant
(PIi)a

Minterms Covered Algebraic
Representation

1* 0,2,4,6,8,10,12,14 D�

2* 0,1 A�B�C�

3* 6,7 A�BC
a An “*” in column 1 indicates an essential prime implicant.

determine the term, as we move across rows or columns, we keep variables
that have the same binary assignments and discard variables with different
binary assignment. For the product, the variable is presented as is, if it
assumes a value of 1; it is complemented if it assumes a value of 0.

Example 4.3.8

When the procedure above is applied to Example 4.3.5, the three prime
implicants formed are found to be essential prime implicants. These implicants
cover all the 1-cells in the K-map. As a result, the minimal function is unique and
is composed of the algebraic representation of the three essential implicants.
Table 4.3.7 includes the implicants and the corresponding algebraic
representations. The algebraic representation of the minimal function is

ƒ(A,B,C,D)=D′+A′B′C′+A′BC

Example 4.3.9

For Example 4.3.6, after removing the 1-cells covered by the essential prime
implicants, we obtain Table 4.3.8.

The essential prime implicants cover all the 1-cells. As a result, the function
has a unique minimal representation. The prime implicants and corresponding
algebraic representation is shown in Table 4.3.9. The minimal function is the sum
of the algebraic representation of the first four prime implicants.

TABLE 4.3.9
Implicants and Corresponding Algebraic Representation of Example 4.3.6

Prime Implicant (PIi)a Minterms Covered Algebraic Representation

1* 1,5 A�C�D

2* 6,7 A�BC

148 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Prime Implicant (PIi)a Minterms Covered Algebraic Representation

3* 12,13 ABC�

4* 11,15 ACD

5 5,7,13,15 BD

An “*” in column 1 indicates an essential prime implicant.

4.4
Incompletely Specified Functions

We discuss incompletely specified functions in the context of the following
problem.

The problem is to design a circuit with four inputs A, B, C, and D, and seven
outputs a, b, c, d, e, ƒ, and g. The input to the circuit is the binary representation
of one of the ten decimal digits. Its output is chosen so as to display the
equivalent decimal value using a seven-segment display Figure 4.4.1 shows a
schematic of the sevensegment display. The seven-segment display has seven
light-emitting diodes (LEDs). By assigning a logical 1 to a given segment, the
segment will emit light. The inputs to the display in Figure 4.4.1 are shown with

TABLE 4.3.8

K-Map of Example 4.3.6 with Covered 1-Cells Removed

FIGURE 4.4.1 Schematic of Seven-Segment-Display

MINIMIZATION OF BOOLEAN FUNCTIONS 149

labels “a” through “g”. The display is found in some calculators with the LEDs
replaced by liquid crystal displays (LCDs).

The circuit we want to design has seven outputs. The outputs serve as inputs to
the seven-segment display, and as a result are labeled “a” through “g” as well.
The block diagram given in Figure 4.4.2 below shows the inputs and outputs to
the circuit to be designed. The circuit is called a BCD-to-seven-segment decoder.

The inputs to the circuit are the A, B, C, and D inputs. The inputs represent a
decimal digit between 0 and 9. The output assigns values to “a” through “g” so
as to display the corresponding decimal digit using Figure 4.4.1. For example,
when the input ABCD=0000 is applied, the decimal digit 0 is displayed using
Figure 4.4.1. By inspection, this occurs when the “g” output is assigned a value
of 0 and all remaining outputs are assigned a value of 1. The truth table
associated with the BCD-to-seven-segment decoder circuit is shown in
Table 4.4.1.

TABLE 4.4.1
Truth Table of the BCD-Seven-Segment Display Decoder

A B C D a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

FIGURE 4.4.2

Block Diagram of a BCD-to-Seven Segment Display

150 DIGITAL DESIGN AND COMPUTER ORGANIZATION

A B C D a b c d e f g

1 0 1 0 X X X X X X X

1 0 1 1 X X X X X X X

1 1 0 0 X X X X X X X

1 1 0 1 X X X X X X X

1 1 1 0 X X X X X X X

1 1 1 1 X X X X X X X

Note that the table does not have output entries associated with binary
combinations with decimal values exceeding 9. These combinations do not occur
since the inputs are binary representations of one of the ten possible decimal
digits. The designer does not define the functions over these inputs. Such
functions are incompletely specified and are called partial functions in
mathematics. For these functions we could make the assumption that over these
input combinations, the function may assume any value (i.e., either a value of 0
or 1). The term used for the output in this case is a “don’t-care” output, i.e., the
output value is not important for the input combinations that exceed the,
equivalent, decimal value 9.

How does the minimization procedure take into consideration the existence of
don’t-care conditions? Since a don’t-care output can assume a value

TABLE 4.4.2
K-Map Minimization of Function a, a=A+C+BD+B�D�

of 0 or 1 without affecting the part of the circuit where the function is specified,
the function can be modified over these inputs so as to yield the best possible
minimum. How? In the K-map procedure, we enter a don’t-care value as “x” in
the table; each x is then changed to a 1 or a 0 such that:

1. The choice of setting a 0 or 1 is so as to yield the smallest number of
implicants to cover the original 1-cells

2. To result in the largest possible implicant sizes

Condition 1 reduces the number of product terms in the minimum. Condition 2
reduces the number of literals in the product terms.

We illustrate the minimization process for the first two functions. The
minimization of the other functions is left as an exercise. For the function “a”
we obtain the K-map with prime implicants as shown in Table 4.4.2. The algebraic
representation of the minimal function is

a=A+C+BD+B′D′
For the function “b”, we obtain the K-map shown in Table 4.4.3 The minimal
algebraic representation is b=B�+C�D�+CD.

MINIMIZATION OF BOOLEAN FUNCTIONS 151

4.5
Product of Sum Minimization

The minimization of Boolean functions in product of sums can be accomplished
in a similar fashion to the minimization in sum of product. The procedure is to
first minimize the complement of the function. This is done

TABLE 4.4.3
K-Map Minimization of Function b, b=B�+CD�+CD

TABLE 4.5.1
Finding Minimal Function in Product Of Sums, Minimize about the 0 Entries

by forming prime implicants around the 0 values of a given function. The
minimal algebraic value obtained is that of the complement of the function and is
written in sum of product form. Using DeMorgan’s rule and complementing the
function will result in the product of sum algebraic representation of the
function. We illustrate this for the case of the example function given in
Table 4.5.1. The four prime implicants on the K-map above are essential prime
implicant. The minimal complement is

(A,B,C,D)=AB�C�D�+A�BC+A�CD+BCD�

TABLE 4.5.2
Finding Minimal Function in Product of Sums with X Entries, X Are Treated as 0s to
Form Largest Possible Subcubes

Using DeMorgan’s rule we obtain

For incompletly specified functions, we treat don’t-cares as 0s so as to make the
largest possible subcubes. This is illustrated in the example in Table 4.5.2. The
minimized function is

Note that the prime implicant corresponding to entries two and six was not
included. The don’t-care entry 2 is treated as 0 so as not to add an extra unneeded
product term. The product of sum function can be obtained by complementing
the above function.

152 DIGITAL DESIGN AND COMPUTER ORGANIZATION

4.6
The Quine-McCluskey or Tabular Method

The previous discussion of minimizing Boolean functions using K-map relied on
visually identifying prime implicants and building the minimal set of prime
implicants that cover all 1-cells. The procedure is not algorithmic. We next
present an algorithmic procedure called the Quine-McCluskey or tabular
method. As we discuss this procedure, we relate previous knowledge of
minimization to the new procedure.

In the K-map method of minimization we partitioned the procedure into two
parts. In the first part, we construct a table and identify all prime implicants. In
the second part, we find a minimum set of prime implicants that cover all 1-cells
of the function. Similarly, the Quine-McCluskey method is divided into two
parts: in the first part, we construct all prime implicants; in the second part, we
find the minimum set of prime implicants that cover all 1-cells.

4.6.1
Building Prime Implicants

In the K-map method, forming prime implicants was accomplished by, first,
identifying the largest possible subcubes. In the tabular method, prime implicants
are formed by starting with smallest possible subcubes (subcubes of size 1). From
the initial set of subcubes, the algorithm proceeds in building larger ones. In
forming larger subcubes we make use of logical adjacency. We illustrate this
procedure in the example function given in Table 4.6.1.

When the K-map method is used on Table 4.6.1 we form prime implicants in
the order indicated by the labels (First is the implicant with label 1 and last is the
prime implicant with label 4). In the tabular method, the opposite occurs.
Initially, each subcube of 1-cell is assumed to be a prime implicant. During this
part, logical adjacency is used to combine subcubes of 1-cells. Those that are
found to be logically adjacent are removed and tagged as not prime implicants
since they are part of larger subcubes. We illustrate this for the example in
Table 4.6.1.

Initially, all 1-cells are assumed potential prime implicants of size 1, i.e., the
minterms corresponding to the inputs with decimal values 0, 5, 7, 10, 11, 13, and
15 are potential prime implicants. Next, logical adjacency is used to identify
those subcubes that are not prime implicants. This can be done algorithmically
by placing each minterm in a subgroup based on the number of Is in the binary
representation of the minterm. The subgroups are shown in Table 4.6.2.

TABLE 4.6.1
ƒ=� (0,5,7,10,11,13,15)

MINIMIZATION OF BOOLEAN FUNCTIONS 153

TABLE 4.6.2
Implicants Grouping Based on the Number 1’s in the Binary Representation

Number of 1sa Subgroup Prime Implicant

0 (0000)=(m0) P1

1 None exist

2 (0101,1010)=(m5,m6)

3 (0111,1011,1101)=(m7,m11,m13)

4 (1111)=(m15)
a The number of Is in the binary representation of minterms.

Next, observe that if two minterms are adjacent then a necessary condition for
the minterms is to be chosen from two adjacent subgroups (two subcubes chosen
from subgroups that are not adjacent cannot be logically adjacent as the
corresponding algebraic representation differ in more than one location). From
Table 4.6.2, minterm m0 is a prime implicant since it is not adjacent to any other
minterm. In the table we label this prime implicant as P1.

On inspecting the elements of subgroup 2 with the elements of subgroup 3, we
find that minterm m5 is adjacent to minterm m7 and minterm m13. As a result,
none of this minterms is a prime implicant. The subcubes (m5, m7) and (m5, m13)
are new possible prime implicants candidates of size 2. To represent these
subcubes in binary format we note

m5+m7=A′BC′D+A′BCD=A′BD
In binary this can be represented as

01X1 or 01–1
with “−” or “X” indicating the variable C is removed. On applying the adjacency
rule, we form two new subgroups of implicants based on the number of 1-cells in
an implicant. Table 4.6.3 shows the two new subgroups of subcubes. In the table,
we compare the elements of subgroup 2 to those in subgroup 3. We do this by
comparing each element in subgroup 2 with all elements in subgroup 3. Our goal
is to identify all prime implicants of size 2. Those that are found not to be prime
implicants of size 2 are part of a larger subcube of size 4.

Two subcubes are part of a larger subcube if and only if (1) the relative
location of the “−” is the same, and (2) if the remaining binary representation

TABLE 4.6.3
Subcubes of Size 2, Obtained from Table 4.6.2

Subgroups Subcubes in Subgroup Prime Implicant

2 (0 1–1, −1 0 1, 1 0 1−) P2:1 0 1−

3 (−1 1 1, 1−1 1, 1 1−1) P3:1–1 1

TABLE 4.6.4

154 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Subcubes of Size 4, Obtained from Table 4.6.3

Subgroup Subcubes in Subgroup Prime Implicant

4 −1−1 p4:−1−1

TABLE 4.6.5
Prime Implicant Table

Prime Implicants Cells Covered

P1:0000 (0000)

P2:101− (1010,1011)

P3:1–11 (1011,1111)

P4:−1–1 (0101,0111,1101,1111)

differs in exactly one location. As a result, we note that the subcube 101− and 1–
11 cannot be combined with any of the other subcubes. Hence, the two subcubes
form prime implicants of size 2. This is shown in Table 4.6.3. In addition, we
note that the subcubes 01–1 and 11–1 can be combined to produce a new
subcube −1–1. Similarly, subcubes −101 and −111 can be combined to produce
subcube −1–1 as well. Table 4.6.4 shows the new subcubes of size 4. Note that
the two combinations result in the same subcube. As a result we choose only 1
combination in the table.

Since we are left with only one subgroup, this subgroup is a prime implicant
and the process of forming prime implicants stops. Table 4.6.5 includes all prime
implicants generated in this first phase. The table is similar, in terms of contents,
to the list of prime implicants obtained by constructing them through the K-map
method.

4.6.2
Finding Minimal Cover

In the second part of the tabular method, we find a minimal number of prime
implicants that cover all the 1-cells. Similar to the K-map method, essential
prime implicants are always included. The process of finding a minimal number
of prime implicants can be done by representing Table 4.6.5 in the format shown
in Table 4.6.6. The table includes additional columns (not found in Table 4.6.5).
The columns are labeled with the minterms of the

TABLE 4.6.6
Prime Implicant Table, Reconstructed from Table 4.6.5

Prime Implicant 1-Cells Covered m0 m5 m7 m10 m11 m13 m15

P1:−0000 (0000) x

P2:101− (1010,1011) x x

P3:1–11 (1011,1111) x x

MINIMIZATION OF BOOLEAN FUNCTIONS 155

Prime Implicant 1-Cells Covered m0 m5 m7 m10 m11 m13 m15

P4:−1–1 (0101,0111,1101,1111) x x x x

function. The rows are identified by the prime implicants generated in part one
of the tabular method. With each prime implicant we identify the minterms it
covers by placing an x in the corresponding column.

The table helps in identifying essential prime implicants as follows. For each
column, if the column contains a single x, then the corresponding prime implicant
on the row that contains the x is an essential prime implicant. This is similar to
the K-map method; such a minterm is covered by only one prime implicant. This
makes the minterm an essential minterm and the corresponding implicant an
essential prime implicant. From the table, we find that minterms m0, m5, m7, m10,
and m13 are essential minterms. This makes prime implicant P1, P2, and P4

essential prime implicants.
Similar to the K-map method, we remove all minterms covered by essential

prime implicants from further consideration (these minterms are covered). This
will reduce the number of minterms to be considered. In the example function,
once these minterm are removed, there are no further minterms to cover. As a
result, step 2 of the method is completed.

Thus the minimal function is the sum of the algebraic representations of the
prime implicants P1, P2, and P4. From Table 4.6.6 P1 is represented as 0000. As
a result, its algebraic representation is

A′B′C′D′
Similarly, P2 is represented as 101−. As a result, its algebraic representation is

AB′C
Similarly, for P4 we obtain the algebraic product BD and hence the minimal
function is

ƒ(A,B,C,D)=A′B′C′D′+AB′C+BD

4.6.3
Algorithmic Procedure of the Tabular Method

We describe more formally the method of construction of prime implicants and
the selection of a minimal cover. We present the method and apply the
minimization procedure to the Boolean function F(A,B,C,D,E)=� (0,2,5,7, 10,13,
14,15,18,19,21,23,29,31). We first present the procedure for building prime
implicants.

4.6.3.1
Forming the Prime Implicants

In this step, we start with an initial table of potential implicants. We then identify
those that are actual implicants and generate a new table of potential implicants.

156 DIGITAL DESIGN AND COMPUTER ORGANIZATION

This process is repeated on the new table as an initial table until all implicants
are identified as discussed next.

TABLE 4.6.7
Tabular Method, Construction of Prime Implicants, (a) Initial Table, (b) Subcubes of Size
2 Obtained from (a)

Step 1: Initial table. Group the minterms according to the number of 1s found
in the corresponding binary representation. Table 4.6.7 shows the minterms are
divided into five groups based on the number of Is found in the binary
representations. Each of the minterms represents a subcube of size 1 as a
potential prime implicant.

Step 2: Successive tables. Build a new table of subcubes (from the initial
table) by checking for logical adjacencies. Logical adjacency is obtained if and
only if the following two conditions are met.

1. The two subcubes belong to two adjacent groups (here we compare a given
subcube with all subcubes in the group directly below it).

2. The subcubes’ binary representation differs in exactly one location (a bit is 0
in one subcube and 1 in the other). All other locations, including the relative
locations of the “-” (if it exists) must match.

Two subcubes that satisfy conditions 1 and 2 are marked “checked” in the initial
table to indicate the subcubes are not prime implicants. They are combined into a
larger subcube and are added to the new table (they are placed in the proper
subgroup based on the number of 1s). The subcube binary representation is
obtained from either subcube by replacing the bit position where they differ by a
“-.” Note that different combinations may lead to the same subcubes (subcubes
that contain the same minterms). For these combinations, only one representative
subcube is included in the new table.

Step 3: All unchecked subcubes in the initial table are prime implicants since
these subcubes are not part of any larger subcube.

These implicants are assigned labels. The table generated in step 2 is now the
initial table. If the initial table contains more than one group of subcubes then
repeat step 2 above.

We illustrate the procedure by applying it to the example function. The initial
table is shown in Table 4.6.7(a). The first column contains the minterms of the
function with each minterm constituting a subcube of size 1. Table 4.6.7(b) is
obtained by applying step 2 of the algorithm to Table 4.6.7(a). Consider the first
subcube in Table 4.6.7(b), for example. The subcube is obtained by combining
minterm 0 and minterm 2 into a larger subcube represented as (0, 2). Its binary
representation is “000–0” as seen in the table. Similar comparisons yield
Table 4.6.7(b).

MINIMIZATION OF BOOLEAN FUNCTIONS 157

In step 3, Table 4.6.7(b) becomes the initial table. Since it contains more than
one group we repeat step 2 on this new initial table. From the table, subcube (0,
2) cannot be combined with any of the elements in the adjacent group below it
(the dashes locations do not match). Hence, (0,2) constitutes a prime implicant
labeled as P1 in the table. Based on matching the “-” location, subcube (2,10) can
possibly be combined with subcube (5,13) only. The algebraic representations
for these two subcubes, however, differ in more than one location (0–010 and 0–
101). As a result, (2,10) becomes a prime implicant, P2, as seen in the table.
Similar analysis makes subcube (2,18) a prime implicant, P3, as well.

We next move to the third group and compare its elements to group four. For
subcube (5,7), we find that it can be combined with subcube (13,15) to yield a
larger subcube. As a result, we check these two subcubes as part of a larger
subcube. The new subcube formed is (5,7,13,15) with the binary representation
0–1–1. This subcube is added to a new table. To speed up the process, we search
the table for other subcubes that form (5,7,13,15). We find (5,13) from group
three and (7,15) from group four can be combined. These subcubes, as well as all
other combinations found, are checked. In this case, no other combination exists.
On completing step 2, we form the new table, Table 4.6.8.

TABLE 4.6.8
Subcubes of Size 4, Obtained from Table 4.6.7(b)

Subcubes Binary Representation

(5,7,13,15) 0–1–1 �

(5,7,21,23) −01–1 �

(5,13,21,29) − −101 �

(7,15,23,31) − −111 �

(13,15,29,31) −11–1 �

(21,23,29,31) 1–1–1 �

TABLE 4.6.9
Subcubes of Size 8, Obtained from Table 4.6.8

(5,743,15,21,23,29,31) − −1−1 P8

TABLE 4.6.10
Table of Prime Implicants Used to Find Minimal Cover

Prime Implicants 0* 2 5* 7* 10 13* 14 15 18 19 21* 23 29* 31*

(5,7,13,15,21,23,29,31)
*

x x x x x x x x

(0,2)* x x

(2,10) x x

(2,18) x x

(10,14) x x

158 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Prime Implicants 0* 2 5* 7* 10 13* 14 15 18 19 21* 23 29* 31*

(14,15) x x

(18,19) x x

(19,23) x x

* Indicates an essential prime implicant.

On applying step 3 and repeating step 2, we obtain Table 4.6.9. This
completes the procedure of finding the set of prime implicants. After identifying
the list of all prime implicants, we look for the minimal set that cover all 1-cells.
This is the second major step in the algorithm.

4.6.3.2
Minimal Cover Procedure

The minimal cover procedure we follow is similar to the previously mentioned
procedure. Table 4.6.10 shows the format used to find the minimal number of
prime implicants. The number of rows in the table is equal to the number of prime
implicants. The number of columns is equal to the number of minterms where
the function assumes a value of 1. For a given prime implicant and a given
minterm identifying an entry in the table, an x is placed in the entry if the
corresponding minterm is covered by the given prime implicant. With each
column in the table essential minterm are identified as well (these are columns that
contain one x only). The corresponding prime implicant is an essential prime
implicant. Both the essential minterms and the essential prime implicants are
identified by an “*” in the table.

The reduced table is obtained by removing (1) all rows containing the
essential prime implicant, and (2) all columns with minterms covered by the
essential prime implicants. The new reduced table is shown in Table 4.6.11. By
inspecting the table we note that of the remaining prime implicants no implicants
are essential. To proceed in the minimization process we make use of the
following definition.

Definition: Over the reduced table and with prime implicants of the same size
we say two prime implicants are equal if they cover the same minterms; we say
prime implicant x dominates prime implicant y if x is unequal to y and x covers
all minterms covered by y. Alternatively, we say y is dominated by x.

TABLE 4.6.11
Reduced Table of Prime Implicant

Prime Implicants Remaining Uncovered Minterms

10 14 18 19

(2,10) x

(2,18) x

MINIMIZATION OF BOOLEAN FUNCTIONS 159

Prime Implicants Remaining Uncovered Minterms

10 14 18 19

(10,14) x x

(14,15) x

(18,19) x x

(19,23) x

TABLE 4.6.12
Final Reduced Table of Prime Implicants

Prime Implicants 10 14 18 19

(10,14) x x

(18,19) x x

TABLE 4.6.13
Minimal Cover and Associated Algebraic Products

Prime Implicants Binary Representation Algebraic Product

(5,7,13,15,21,23,29,31) − −1 −1 CE

(0,2) 000–0 A�B�C�E�

(10,14) 01–10 A�BDE�

(18,19) 1 0 01− AB�C�D

Using the concept of equality and dominance, Table 4.6.11 can be modified to
create essential prime implicants by (1) with the exception of one implicant from
each set of equal implicants, removing all other implicants in a given set; and (2)
removing all dominated implicants.

On applying the above to Table 4.6.11, we note that implicants (2, 10) is
dominated by (10, 14). Similarly, we note that implicant (18, 19) dominates (2,
18). As a result, subcubes (2, 10) and (2, 18) are removed from the table. In
addition, we remove implicants (14, 15) and (19, 23). The new reduced table is
given in Table 4.6.12. From the table, prime implicants (10, 14) and (18, 19) are
new essential prime implicants. In removing these implicants, and the
corresponding columns, we have formed a minimal cover. Table 4.6.13 shows
the minimal cover and the associated algebraic products. The minimal function is
the sum of the algebraic products associated with the prime implicants chosen in
the cover, i.e.,

F(A,B,C,D,E)=CE+A′B′C′E′+A′BDE′+AB′C′D

160 DIGITAL DESIGN AND COMPUTER ORGANIZATION

4.6.4
Decimal Method of Building Prime Implicants

We can accelerate the process of finding the list of prime implicants by working
with decimal numbers instead of binary. To do this, we make the following
observations.

Observation 1: Two minterms, x1 and x2, that belong to adjacent groups are
logically adjacent if

1. The smaller number x1 is in group i (number of 1s is equal to i) while the
larger number is in the group that follows (group i+1).

2. And, if x2−x1=2k for some integer k.

Observation 2: If x1 contains more 1s than x2 and x1<x2, then x1 and x2 are not
logically adjacent.

Observation 1 states that the binary representations of the two numbers differ
in one location only, i.e., the minterms are adjacent. We apply the observations
to the above example. The table is constructed as before, minterms are placed in
groups according to the number of Is in their binary representations. However,
the table is composed of decimal numbers instead of binary numbers as shown in
Table 4.6.14. The steps of minimization are given below.

Step 1: Arrange minterms into groups depending on the number of Is in binary
representation. Present the minterms in decimal values. This step corresponds to
Table 4.6.14(a).

Step 2: Use the procedure discussed to combine minterms into larger
subcubes. This procedure yields a table with subcubes of size 2. The subcubes
are presented as a pair of decimal numbers. In addition, the difference between
the minterms is presented in parentheses. This step is shown in Table 4.6.14(b).

For example, minterms m0 and m2 are combined to form the entry “(0, 2) (2)”
since 2–0=21. The difference, 2, helps in locating the bit position where the two
minterms differ m0 corresponds to the input 00000 and m2 corresponds to the
input 00010. The difference is in bit 2 of the numbers, i.e., (0, 2) can be
represented as 000–0. Check marks are added as done previously. Table 4.6.14(b)
becomes the initial table as was done previously and the process is repeated.

In the comparisons to generate new tables, we compare smaller numbers in an
upper group to larger numbers in the next, consecutive lower, group and combine
the subcubes into larger subcubes. We restrict our comparison, however, to pairs
with the same parenthesized difference. This is equivalent to comparing pairs
with same relative location of the “−.” For example, in the table we find group (0,
2) cannot be combined with any of the groups (2, 10) and (2, 18) below it since
(2) is associated with (0, 2); (8) and (16) are associated with (2, 10) and (2, 18),
respectively. As a result, (0, 2) is marked as a prime implicant. Similar analysis
results in identifying the subcubes (2, 10) and (2, 18) as prime implicants. This is
true since (2, 10) can be matched with

MINIMIZATION OF BOOLEAN FUNCTIONS 161

TABLE 4.6.14
Decimal Procedure for Identifying Prime Implicants

only (5,13) in the table (due to 8 in parentheses). However, the difference 5–2
is not equal to 2k.

TABLE 4.6.15
Subcube of Size 4 Obtained from Table 4.6.14

Similar to the tabular method when two pairs are merged we check these pairs
and all other combinations that yield the same minterms in the new merged
group (for examples, (5,7) and (13,5), (5,13) and (7,15)). In applying this to
Table 4.6.14(b), we obtain Table 4.6.15.

On repeating step 2 in the above table, we combine rows 1 and 4 since
21–5=23–7=29–13=31–15=16

Hence, the newly formed table contains the group “(5, 7, 13, 15, 21, 23, 29, 31)
(2, 8, 6)”; the groups (5, 7, 13, 15) and (21, 23, 29, 31) are checked in
Table 4.6.14. In addition, the remaining groups are checked, since in merging
these groups one obtains the newly generated group (5, 7, 13, 15, 21, 23, 29, 31).
Table 4.6.16 shows the result. The subcube in the table is the last prime
implicant generated. To find its algebraic representation we form the binary
representation of any of the minterms in the group with locations 1,3, and 4
replaced by a dash corresponding to the exponents (21=2, 23=8, and 24,=16).

The binary representation is then converted to algebraic representation by (1)
placing the associated variable as is if it assumes a value of 1, (2) placing

TABLE 4.6.16
Subcubes of Size 8 Obtained from Table 4.16.15

(5, 7, 13, 15, 21, 23, 29, 31) (2, 8, 16) p8

the associated variable in complemented form if it assumes a value of 0, and (3)
removing the variables that correspond to “−” in the binary representation. For
example, for P8 we have (15)10=(01111)2 with location 1, 3, and 4 replace by “−”
the P8 binary representation is “− −1–1.” Hence the algebraic representation of
P8 is CE. For the construction of the minimum cover, we follow a procedure
similar to the procedure discussed earlier.

4.7
Multiple-Output Function Minimization

The minimization procedure discussed so far treats functions over the same set
of inputs as independent functions with the minimization procedure applied to
each function separately. Consider the two-output circuit realizing the functions

162 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Treated as separate functions, we have the K-map representations as shown in
Table 4.7.1. The minimized functions are

F1=B′C′+AB′ F2=A′B′C+ABC′D′+AB′C
The design of the above functions requires the generations of separate product
terms for each function. The product terms then are used as inputs into OR gates
(one OR gate per function).

An alternative method to designing the functions is to do multiple output
minimizations. In this context, we assume dependence between the two
functions. Common product terms that belong to both functions can be generated
only once. These terms are then routed to the proper OR gate accordingly. For
example, by inspecting the above two tables, we note that the shaded region in
the table for F2 can be used to help in reducing the total number of product
terms. How? When the functions are treated independently, the number of
product terms needed is five. When we assume dependence, then F1 and F2 can
be written as

F1=A′B′C′+AB′ F2=A′B′C′+ABC′D′+AB′C
The common product term is shown in bold. This reduced the number of product
terms by one term. Note that independent of F2, the algebraic representation of
F1 is not minimal. When we assume dependence, our task is no longer to find the
minimum associated with a single given function. The task instead is to reduce
the total number of product terms needed in the design of both functions. The
design of the functions is shown in the Figure 4.7.1.

Note the use of the common product term A�B�C� for both functions.
The minimization procedure of multiple output function is computationally

expensive. It involves consideration of not only the given functions but all
possible product functions as well. The product functions considered ranges from
the product of two functions to products that include all functions. For a set of k
functions, F1, F2, …, Fk, the number of product functions that are considered in
the minimization is equal to 2k−(k+1). This number includes all products of the
form Fi. Fi·Fj·Fk, …, F1.F2 … Fk.

TABLE 4.7.1

Multiple-Output Function Minimization, (a) F1=� (0, 1, 8, 9, 10, 11), (b) F2=� (0, 1, 10,
11, 12)

MINIMIZATION OF BOOLEAN FUNCTIONS 163

The number 2k−(k+1) is obtained from observing that the above products can
be thought of as elements of the power set (set of all subsets of {F1, F2,…, Fk}).
The number of elements in the power set is 2k. With the sets that contain a single
element (there are k of those) and the empty set (there is one empty set)
removed, we are left with the total possible products of 2k−(k+1). We explain the
minimization procedure by applying it to the given three functions

1. F1=� (0, 1, 2, 3, 6, 7, 14, 15)
2. F2=� (6, 8, 9, 10, 11, 14)
3. F3=� (4, 7, 12, 15)
The first step is to form all the needed products: F1.F2, F1·F3, F2·F3, and

F1.F2.F3. By inspecting the above functions we find the only nonempty (non-
zero product) corresponds to the two products F1·F2, and F1·F3 with F1·F2= � (6,
14) and F1·F3=� (7, 15). Note that the products formed are the common elements
to the functions in the product term.

The second step is to form the prime implicant tables (using the tabular
method) for each of the individual original functions and each of the
corresponding product functions. For our case, we would need to form five prime
implicant tables; three for the individual functions F1, F2, F3; and two for the
product functions F1.F2 and F1.F3. Noimplicant table is needed for the product
F2.F3, and F1.F2.F3 sincethese functionsassume a valueof 0 for all possible input
combinations. In identifying the prime implicants we use K-maps since the
number of input variables is small (4). Figure 4.7.2 shows the results.

The third step is to do simultaneous minimum prime-implicant cover. To
accomplish this we create a common table as follows. The table columns are
divided into groups. Each group lists all the minterms associated with each of the
functions F1, F2,…, Fk. In our case, there are three functions and hence we

FIGURE 4.7.1

Circuit Realization of Functions in Table 4.7.1

164 DIGITAL DESIGN AND COMPUTER ORGANIZATION

require three such groups. The rows of the table are labeled with the prime
implicants found above. The rows form different groups as well depending on
the function (product of functions) the prime implicant belongs to. As a result,
the rows of the table are divided into five groups. Each group contains row labels
of the function it belongs to (F1, F2, F3; and two for the product functions F1.F2

and F1.F3). Table 4.7.2 shows the prime implicant table.
In the table, we included groups for the products F2.F3 and F1.F2.F3 for

completeness. Note, however, no prime implicants are associated with these
functions. In addition, the entries of the table are filled according to the prime
implicant characteristic. For prime implicants associated with each of the
original functions, an x is placed in the column part of the corresponding
function only. For example, for the function F1 and its prime implicant, P2, an x
is placed in the column with label 6 for F1 but not in the column labeled 6 of the
function F2. For other entries representing products of functions and a given
prime implicant covering a given minterm, mi, an x is placed in all

TABLE 4.7.2

FIGURE 4.7.2

K-Maps for F1=� (0, 1, 2, 3, 6, 7, 14, 15), F2=� (6, 8, 9, 10, 11, 14), F3=� (4, 7, 12, 15),
and Corresponding Products

MINIMIZATION OF BOOLEAN FUNCTIONS 165

Multiple-Output Prime-Implicant Table of Functions in Figure 4.7.2

Minterms for F1 Minterms for F2 Minterms for F3

Implicants 0* 1 2 3 6 7 14 15 6 8* 9 10 11 14 4* 7 12 15

F1 P1* x x x x

P2 x x x x

p3 x x x x

F2 P1* x x x x

P2 x x

P3 x x

F3 P1* x x

P2 x x

F1·F2 P1 x x x x

F1.F3 P2 x x x x

F2·F3

F1·F2·
F3

*Indicates an essential prime implicant.

TABLE 4.7.3
Reduced Multiple-Output Prime Implicant Table Obtained from Table 4.7.2

Implicants Minterms for F1 Minterms for F2 Minterms for F3

6 7 14 15 6 14 7 15

F1 P2 x x

P3 x x x x

F2 P2 x

P3 x x

F3 P2 x x

F1.F2 x x

F1.F2 x x x x

TABLE 4.7.4
Reduced Multiple-Output Prime Implicant Table Obtained from Table 4.7.3

Implicants Minterms for F1 Minterms for F2 Minterms for F3

6 7 14 15 6* 14* 7* 15*

F1 P2 x x

P3 x x x x

F1.F2* P1 x x x x

F1.F3* P1 x x x x

* Indicates an essential prime implicant.

166 DIGITAL DESIGN AND COMPUTER ORGANIZATION

i columns of the functions included in the product. For example, for the prime
implicant P1 of the product F1·F2 an x is placed in column 6 of F1 and column 6
of F2.

Following the construction of the prime implicant table we find a minimum
cover of all functions (F1, F2, and F3). Here essential prime implicants are
identified and removed from the table for single output function. From the table
above, the essential prime implicants for each function are identified by an “*”
next to the implicant. For each implicant the row of the table of the implicant is
removed. In addition, the corresponding columns covered by the implicant are
removed. Table 4.7.3 shows the reduced prime implicant table.

Applying the dominance definition to the above table we note that implicant
P2 of F3 and F2 can be removed. The reduced table is shown in Table 4.7.4. The
reduced table shows the implicants P1 of F1·F2 and P1 of F1 are essential
implicants. When these implicants are included in the minimal function and the
corresponding columns are removed the reduced prime implicant table obtained
is empty.

The final step in the minimization process is to associate the products of the
implicants with the three Boolean functions. The multiple-output minimized
functions for F1 is the sum of the algebraic representations for prime implicants
P1 of F1 P1 of F1.F2, and P1 of F1.F3.

Similarly for F2 the multiple-output minimized function is the sum P1 of F2,
and P1 of F1.F2. And, for the function F3 the multiple-output minimized function
is the sum of the algebraic representations for prime implicants P1 of F3, and P1

of F1.
The algebraic representations of the functions are

F1=A′B′+BCD′+BCD F2=AB′+BCD′ F3=BC′D′+BCD
Note the algebraic representation for F1 is not minimal if treated independently.
Note as well the total number of product terms was reduced from eight to seven
terms.

Chapter 4
Exercises

4.1 Given the function ƒ(A, B, C)=� (0, 1, 4, 5). Form the algebraic
representation of the function and show that each minterm is adjacent
to two other minterms.
4.2 Algebraically, simplify the function given in problem 4.1.
4.3 Given the function ƒ(A, B, C)=� (0, 1, 4, 5, 6).

(a) Construct the K-map representation of ƒ.
(b) Form all subcubes of size 1 and give the corresponding

algebraic representation.
(c) Form all possible subcubes of size two of ƒ and give the

corresponding algebraic representation of each.
(d) Is it possible to form subcubes of size 3? Explain.

MINIMIZATION OF BOOLEAN FUNCTIONS 167

(e) Form all possible subcubes of size 4 of ƒ.
(f) Of the subcubes generated in the previous parts, identify those

that are prime implicants and give the corresponding algebraic
representation of each.
4.4 Given the function ƒ(A, B, C, D)=� (0, 2, 4, 5, 6, 8, 10, 13, 15).
Form all prime implicants of size 4 and give the corresponding
algebraic representation.
4.5 Given the function ƒ(A, B, C, D)=� (0, 2, 4, 6, 8, 10, 11, 12, 13, 14,
15). Form all prime implicants of size 8 and give the corresponding
algebraic representations.
4.6 Form all prime implicants of the function given in problem 4.4 and
give the algebraic representation of each.
4.7 Form all prime implicants of the function given in problem 4.5 and
give the algebraic representation of each.
4.8 Identify all essential prime implicants of the function given in
problem 4.4 and find all minimal functions.
4.9 Identify all essential prime implicants of the function given in
problem 4.5 and find all minimal functions.
4.10 Given the function ƒ(A, B, C, D)=� (0, 1, 2, 6, 7, 8, 9, 13, 15)+d
(3, 10).

(a) Form the K-map representation of ƒ.
(b) Form all prime implicants of ƒ.
(c) Identify all essential prime implicants.
(d) Find a minimal function of ƒ

4.11 Use K-maps to minimize the functions c(A, B, C, D) of the seven-
segment decoder discussed in section 4.4.
4.12 Use K-maps to minimize the functions d(A, B, C, D) of the seven-
segment decoder discussed in section 4.4. Note the d in the above
represents a function and not the “don’t-care” symbol.
4.13 Use K-maps to minimize the functions e through ƒ of the seven-
segment decoder discussed in section 4.4.
4.14 Given the function ƒ(A, B, C, D)=� (0, 2, 4, 5, 6, 8, 10, 13, 15).
Form the minimal function in product of sums form.
4.15 Repeat problem 4.14 on the function ƒ(A, B, C, D)=� (0, 1, 2, 6,
7, 8, 9, 13, 15)+d(3, 10, 11).
4.16 Given the function ƒ(A, B, C, D)=� (0, 4, 5, 10, 11, 13, 15). Form
all prime implicants of the table using the tabular method.
4.17 For the function given in problem 4.16 form all prime implicants
using the tabular method with decimal entries representing minterms.
4.18 Minimize the function given in problem 4.16 using the tabular
method. Verify your answer is correct by minimizing the function
using the K-map method.
4.19 Given the function ƒ(A, B, C, D)=� (0, 2, 4, 5, 6, 7, 10, 12, 13, 15,
16, 18, 20, 21, 22, 23, 26, 28, 29, 31). Minimize the function using the

168 DIGITAL DESIGN AND COMPUTER ORGANIZATION

tabular method. Verify your minimization is correct by using the logic
converter of the Electronics Workbench.
4.20 Given the functions ƒ1(A, B, C, D)=(0, 5, 6, 8, 9, 11, 14, 15) and ƒ2

(A, B, C, D)=� (0, 1, 5, 6, 8, 11, 12, 14, 15). Minimize each function using
the K-map method. Use the multiple-output minimization procedure to
minimize both functions simultaneously.

MINIMIZATION OF BOOLEAN FUNCTIONS 169

5
Arithmetic Logic Circuits and Programmable

Logic Devices

CONTENTS

5.1 Binary Adders 171

5.1.1 Iterative Circuits 171

5.1.2 Half and Full Adders 173

5.2 Look-Ahead Carry Generators 176

5.3 Magnitude Comparators 178

5.3.1 1-Bit Magnitude Comparator 180

5.3.2 Boolean Equations for the Equal Output 180

5.3.3 Design of the A>B Output 181

5.3.4 Boolean Equations for A<B 181

5.3.5 Magnitude Comparators with Enable Lines 182

5.4 Binary Subtracters 182

5.4.1 Half Subtracters 182

5.5 Arithmetic Circuits Using Radix Complement 185

5.5.1 Unsigned Addition and Subtraction 186

5.5.2 Hardware Implementation of Unsigned Arithmetic 188

5.5.3 Signed Number Arithmetic in Radix Complement 189

5.5.3.1 An Alternative Method to Compute 2’s Complement 189

5.5.3.2 Signed Arithmetic 191

5.5.3.2.1 Case One (No Overflow or Underflow Is Possible) 191

5.5.3.2.2 Case Two (Overflow Is Possible to Occur) 191

5.5.3.2.3 Case Three (Underflow Is Possible to Occur) 192

5.5.4 Hardware Implementation of Signed Arithmetic 192

5.6 Multiplier Circuits 194

5.7 Multiplexers 196

5.7.1 Design of Multiple Output Multiplexers 198

5.8 Design of a Simple Arithmetic Logic Unit 198

5.8.1 Subtraction and the Arithmetic Unit 199

5.8.2 Bit-Wise Logic Operations 201

5.8.3 Combinational Shift Left 201

5.8.4 The Design of the ALU 202

Chapter 5 Exercises 203

5.1
Binary Adders

5.1.1
Iterative Circuits

The previous discussion of digital circuit design converted a word problem into a
truth table. The algebraic equations associated with the circuit were then derived
(based on the implementation used (AND-OR, OR-AND, etc.)). The equations
were then minimized and the implementation (design) was finally accomplished
at the gate level.

Iterative design uses an alternative approach where the design is done in
hierarchal fashion similar to programming. Here the larger problem is solved in
terms of smaller problems. The smaller problems are then solved and used as a
solution to the larger problem. We illustrate with an example of an n-bit binary
adder. The adder inputs are two n-bit numbers A and B. Its output is the sum of

DIGITAL DESIGN AND COMPUTER ORGANIZATION 171

the two binary numbers with an additional possible carry; i.e., the sum is an (n+1)-
bit number. The block diagram of the adder is shown in Figure 5.1.1. The solid
lines shown with the dash indicate multiple inputs or outputs. The n indicates
there are n such inputs. The dash can be removed from the figure.

The standard design procedure is not suitable in the design of a binary adder.
Consider the case of adding two 16-bit numbers. The first step in the design is to
generate the truth table for the above circuit. Since the number of inputs to the
circuit is 32 bits (16 bits per number), one would need a truth table of size 232

rows. As a result, this design procedure is not used.
An alternative design procedure is to make use of the properties of addition, as

was done in Chapter 1, where addition was accomplished by adding two bits at a
time with a previous carry included. We use a similar iterative approach in the
design. Figure 5.1.2 shows an example of a binary adder that makes use of
smaller 1-bit adders, called 1-bit full adders or 1-bit half adders. The circuit is
called a ripple carry adder.

FIGURE 5.1.1

Block Diagram of n-Bit Binary Adder

FIGURE 5.1.2

Ripple Carry Adder

172 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

In the figure, each of the circuits adds the corresponding bits associated with
two numbers, X and Y, with X=Xn…X1 and Y=Yn…Y1. The first circuit from the
right adds the first two bits of the number. There is no carry from previous
stages. Such a circuit is called a half adder (HA). The remaining circuits add the
corresponding bits and the additional carry generated by the previous bits. As a
result, such a circuit has three inputs and is called a full adder. It generates a sum
bit and an additional carry bit to use in the next consecutive stage. The adder is
abbreviated as FA in the figure.

From the figure we note that the larger design problem has been reduced to a
simpler design problem, mainly the design of the building blocks that are used in
the figure.

5.1.2
Half and Full Adders

The design of the half and full adders follows the design procedure mentioned
earlier, i.e., we first generate the truth tables of the circuits. From the truth tables,
we then generate the needed equations and perform the design.

For the half-adder circuit, the circuit requires two inputs. It outputs the sum of
its inputs in binary. Since this sum requires 2 bits, the circuit output is 2 bits as well.
The truth table of the half adder is given in Table 5.1.1.

From the table, we note that the equations of the half adder are
C=AB

and
S=AB

TABLE 5.1.1
Truth Table of a Half Adder

AB C S

00 0 0

01 0 1

10 0 1

11 1 0

TABLE 5.1.2
Truth Table of a Full Adder

ABCi Co S

000 0 0

001 0 1

010 0 1

DIGITAL DESIGN AND COMPUTER ORGANIZATION 173

ABCi Co S

011 1 0

100 0 1

101 1 0

110 1 0

111 1 1

The design of the half adder is given in Figure 5.1.3. For the full adder circuit,
we follow a similar procedure. Here, however, the circuit truth table requires
three inputs, the two bits to be added and the previous carry. The truth table for
the full adder is given in the Table 5.1.2.

To distinguish between the carry-in and carry-out, we used Q to represent the
carry-in from the previous stage. The carry-out into the next stage is represented
as Co. The design of the full adder can be accomplished by forming the Boolean
equations and minimizing them. The sum equation, S, cannot be minimized,
however, as can be verified by constructing the K-map. The Co equation is that
of the majority function and, as a result, requires a total of 4 gates (three AND
and one OR gates). An alternative design procedure is to make use of half adders
by rewriting the Boolean equations as

For the carry equation, we have

FIGURE 5.1.3 Design of a Half Adder

174 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

The design of a full adder is shown in Figure 5.1.4.
The design of the n-bit adder from half adders and full adders, as shown in

Figure 5.1.2, introduces delays in producing the sum. This delay is proportional
to the size of the adder. The cause of the delay is related to the method by which
the iterative circuit is designed. In this method, a carry ripples through the full
adders to the next most-significant stages. The carry may have to propagate
through all adders from the least-significant to most-significant digits; this can be
seen in adding the two numbers 100000001+ 011111111. The correct sum is
produced at the output after the initial carry produced by adding the two least-
significant bits (LSB) is propagated through all adders of the circuit. The add
operation is among the most commonly used arithmetic operations. As a result, it
is useful to make such circuits faster. In the next section, we discuss carry look-
ahead generator circuits. These circuits remove the ripple carry that causes the
delay discussed earlier.

FIGURE 5.1.4

Design of a Full Adder from Two Half Adders

DIGITAL DESIGN AND COMPUTER ORGANIZATION 175

5.2
Look-Ahead Carry Generators

The delay introduced by the carry ripple adders is caused by the carry discussed
at the end of the previous section. A carry look-ahead generator computes all
carries in approximately the same amount of time (assuming no fan-in restrictions
are imposed on the gates). We discuss how such a circuit functions and how it is
designed by observing the carry equation generated earlier. We consider the ith bit
full adder, as shown in Figure 5.2.1.
We assume the half adder (adding the least-significant bits) is replaced with a
full adder with an input C1 given as an initial carry (this carry will be used in
signed arithmetic later in the chapter). For the above For the above circuit, the
carry-out, Ci+1, is written as

In the above equation, the cause of the delay is the term Ci. In order to generate
the proper carry-out, Ci+1, the variable Ci must have the correct value. Since this
term depends on previous terms, it is the source of the delay. In general, all bits
of the two operands A and B as well as the initial carry C1 are given at the inputs
of the adder at the same time. As a result, if we could write the carry equations in
a form that uses the operands and C1, we could remove the source of the delay,
as shown next.

We first introduce two equations, the carry-generate, Gi, and carry-propagate,
Pi, equations

In the above equations, the carry-generate and carry-propagate equations can be
generated in parallel for all i. This can be obtained by applying the proper bits of

FIGURE 5.2.1

ith Bit Full Adder

176 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

the n-bit operands A and B to the inputs of n half adders. The look-ahead
generator circuit is implemented by rewriting the carry equations in terms of the
available Gi and Pi (independent of Ci). Since Gi and Pi are generated in parallel,
the carries needed in the sum can be generated in parallel as well. We illustrate
this next by rewriting the carry-out equations.

For the first carry from the least-significant added bits we have
C2=G1+C1P1

The equation can be realized by a two-level AND-OR circuit. For the carry
generated by the next added bits, our objective is to write the equations so as to
include the carry-generate and carry-propagate equations only. We do this as

C3=G2+C2P2 =G2+(G1+C1P1)P2 =G2+G1P2+C1P1P2
The above equation can be realized by implementing a two-level AND-OR
circuit as well.

As can be concluded from the above discussion, the process can be repeated
on all carries to rewrite the equations independent of previous carries and as a
function of the operand inputs only. These equations are written in sum of
products form and, as a result, can be implemented using a two-level AND-OR
realization. The above equations can be generalized for the case of computing C5,
for example, to obtain

C5=G4+G3P4+G2P4P3+G1P4P3P2+C1P4P3P2P1
In general, we obtain

Ci+1=Gi+Gi−1Pi+Gi−2PiPi−1+Gi−3PiPi−1Pi−2+….+C1PiPi−1Pi−2….P1
As can be seen from the equation, the number of product terms found in the sum
is equal (i+1). The maximum number of variables in a product term is equal to (i
+1) as well. As a result, the realizations of such equation for large values of i
require multiple levels of gates due to the physical fanin limitation. Before we
conclude this section, we show the design of a 4-bit adder that uses a 4-bit carry
generator as described by the equations given above. In the design, the carry-
generate and -propagate inputs are realized using half adders first. The design of
the adder with look-ahead carry generator circuit is shown in Figure 5.2.2.

The circuit is composed of three parts. The first part generates the needed
carry-propagate and carry-generate signals through the four half adders shown in
the figure. The second part generates the needed carries through the set of AND-
OR gates shown; this part is the look-ahead carry-generator circuit. Finally, the
third part forms the sum through the XOR gates. This can be verified by making
use of the sum equations since

The above circuit can be modified so as to include an additional carry-out (C5)
by implementing the equation for C5 given above. In block diagram, the above
circuit can be represented as shown in Figure 5.2.3.

DIGITAL DESIGN AND COMPUTER ORGANIZATION 177

The circuit can be then cascaded to generate an 8-bit full adder, as shown in
Figure 5.2.4.

5.3
Magnitude Comparators

Magnitude comparators are circuits that compare the magnitudes of two binary
operands. The circuits are hardware realizations of comparison operations
that are done in programming languages. An n-bit magnitude comparator
compares the magnitudes of two n-bit binary operands, A and B. The circuit in
block diagram is shown in Figure 5.3.1. Each of the operands is n bits.

The circuit has three outputs, labeled A<B, A=B, and A>B. Only one of the
outputs assumes a value of 1, depending on the relative magnitudes of the
operands A and B. An output of 1 on the line with label A<B indicates the
magnitude of operand A is less than the magnitude of operand B. The outputs on
the other lines are interpreted similarly.

Similar to the design of adders, the standard design procedure of constructing
a truth table and forming the minimized function is not suitable in the design of
magnitude comparators. Here, just as is the case for adders,

FIGURE 5.2.2

Design of a 4-Bit Adder with Lookahead Carry Generator Circuit Included

178 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

TABLE 5.3.1
Truth Table of a 1-Bit Magnitude Comparator

AB A<B A=B A>B

00 0 1 0

01 1 0 0

10 0 0 1

11 0 1 0

we could use an iterative approach in the design. First, we design a 1-bit
magnitude comparator.

FIGURE 5.2.3

Block Diagram of a 4-Bit Binary Adder

FIGURE 5.2.4

Constructing an 8-Bit Binary Adder from 4-Bit Adders

DIGITAL DESIGN AND COMPUTER ORGANIZATION 179

5.3.1
1-Bit Magnitude Comparator

A 1-bit magnitude comparator has a block diagram as shown in Figure 5.3.1,
with each of the A and B operands of size 1 bit. The truth table of a 1-bit
magnitude comparator is given in Table 5.3.1.

The design of the comparator is given in Figure 5.3.2. Note the equal output is
designed using AND-OR-Invert so as to make use of the AND outputs.

The design of an n-bit magnitude comparator can be obtained from the design
of a 1-bit magnitude comparator as discussed next.

5.3.2
Boolean Equations for the Equal Output

Let the two operands be
A=AnAn−1An−2…A1

and
B=BnBn−1Bn−2…B1

Then, in order for A to be equal to B, each bit Ai in A must be equal to the
corresponding bit Bi in B; i.e., for A to equal B we must have

When translated to Boolean equations, the Boolean equation for equality is

In the above equation, we use

The above equation is realized by (1) using a 1-bit magnitude comparator for
each pair of bits in the operands A and B, and (2) by using the equal outputs of the

FIGURE 5.3.1

Block Diagram of a Magnitude Comparator

180 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

comparators as inputs to a single AND gate. The output of the AND corresponds
to the output for A=B.

5.3.3
Design of the A>B Output

For the A>B Boolean equation, we note that A is greater than B if the most-
significant bit (MSB) of A, An, is greater than the MSB of B, Bn. This occurs if
An=1 and Bn=0, which is represented as the Boolean product AnB’n. It could also
occur if the two most-significant bits are equal and An−1>Bn−1. In Boolean
equation form, the condition is written as

The above analysis can be applied to the remaining bits to obtain the following
Boolean function for the case of A>B:

When applied to a 3-bit magnitude comparator, the above equation becomes

5.3.4
Boolean Equations for A<B

Similar analysis can be applied for the case of B<A to obtain the Boolean
equation

FIGURE 5.3.2

Design of a 1-Bit Magnitude Comparator

DIGITAL DESIGN AND COMPUTER ORGANIZATION 181

By inspecting the above Boolean equation, we note that the equations can be
realized by processing the outputs of 1-bit magnitude comparators. We illustrate
the design of a 3-bit magnitude comparator as shown in Figure 5.3.3. The design
makes use of three 1-bit magnitude comparators. The outputs of the comparators
are used as inputs to a two-level AND-OR gate to realize the needed equations.

5.3.5
Magnitude Comparators with Enable Lines

Magnitude comparators can be built with enable lines, which are inputs that
cause a functional block to be in two modes: active (also called normal mode) or
inactive. In the active mode, the comparator functions as intended. In the inactive
mode, however, the comparator does not respond to inputs. This can be indicated
by setting all output lines to zero. The enable line is a control line with input labeled
E. For E=1, the comparator functions in normal mode. For E=0, all outputs are
set to zero. Figure 5.3.4 shows a 1-bit magnitude comparator with a control
enable input, E.

5.4
Binary Subtracters

In designing adders, we first considered the design of half adders. We then
designed a 1-bit full adder and used the 1-bit full adder iteratively to design n-bit
full adders. We use the same procedure in the design of n-bit subtractors.

5.4.1
Half Subtracters

In forming A−B, both A and B are single bits. To compute the difference, we may
need to borrow a 1 from a more-significant bit (example 0–1). Half subtractors
send the borrow request in the form of an output that will serve as an input to the
next significant stage, as we will discuss later.

The truth table for the half subtractor is shown Table 5.4.1.
We discuss the second row of subtracting 0–1. For this case, a borrow is

needed from the next-significant stage. The subtractor informs the next-
significant stage of the needed borrow (outputs a 1 on the borrow line) and then
(assuming the borrow is satisfied) computes the difference. Since a borrow into A
is made, the decimal value of the borrow is 2. As a result, the difference becomes
2–1=1.

A 1-bit full subtractor is a circuit that has two outputs, as in the case of the
half subtractor. We call these outputs Bn (borrow from next stage) and

TABLE 5.4.1

182 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

Truth Table of a 1-Bit Half Subtracter

A B Borrow Difference

0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 0

D. For the inputs, in addition to the two bits to be subtracted, the subtractor has
an input representing the borrow requests from the previous less-significant
stage. We call the borrow Bp (borrow from previous stages). These three inputs
are sufficient to compute the difference and to inform, through Bn, the next stage
of a borrow if needed. The truth table of the 1-bit full subtractor is shown
Figure 5.4.1. The figure includes discussion of forming the results of two rows of

FIGURE 5.3.3

Design of a 3-Bit Magnitude Comparator from 1-Bit Magnitude Comparators

DIGITAL DESIGN AND COMPUTER ORGANIZATION 183

the truth table. The remaining row values can be completed using similar
analysis.

The design of the half subtractor and 1-bit full subtractor follows similar
procedures discussed for the case of 1-bit full adder, i.e., in order to design the 1-
bit full subtractor, we use two half subtractors and a single OR gate. Figure 5.4.2
shows the design of a 1-bit full subtractor from two half subtractors. The
Boolean equations for the borrow and difference outputs are computed in a
fashion similar to those of a 1-bit full adder. The 1-bit full subtractor can then be
used to construct 4-bit subtractors using the iterative approach used in the design
of full adders. The subtractor can be used for signed operands. To subtract two
numbers represented in signed magnitude, we use the following procedure:

1. The two numbers are compared using the magnitude comparator discussed
in Section 5.3.

2. Depending on the relative magnitudes, we subtract the smaller magnitude
from the larger one using the subtractor discussed in this section.

3. We append the proper sign to the result obtained in step 2.

These three steps are computationally expensive. A faster method of forming
subtraction is by making use of radix complements, as we discuss in the next
section.

FIGURE 5.3.4

Design of a 1-Bit Magnitude Comparator with Enable Line

184 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

5.5
Arithmetic Circuits Using Radix Complement

In the discussions that follow, we make use of two concepts we discussed earlier.
The first is the case of overflow and underflow as side effects of finite storage.
(Recall an overflow occurs if the result of arithmetic is too large to fit in the
allocated storage and underflow indicates the result is too small.) The second
concept has to do with coding and the interpretation of stored data. For example,
if the same bit sequence, 1001, is interpreted as an unsigned number, its decimal
value is 9. However, if the stored number is interpreted as a signed number in 2’s
complement, then its value is −7.

FIGURE 5.4.1

Truth Table of a 1-Bit Full Subtracter

FIGURE 5.4.2

Design of a 1-Bit Full Subtracter from 1-Bit Half Subtracters

DIGITAL DESIGN AND COMPUTER ORGANIZATION 185

We first discuss subtraction of unsigned integers. The goal is to use addition to
perform subtraction, i.e., the same unit (the adder) is used for both addition and
subtraction. This leads to simpler designs.

5.5.1
Unsigned Addition and Subtraction

In unsigned addition and subtraction, both operands are stored as unsigned
integers. As a result, an n-bit register is used to store integers in the range of 0 to
2n−1. If the result of an arithmetic operation exceeds 2n−1, we say an overflow
occurred. Similarly, if the result is negative (smaller than 0), we say an underflow
has occurred. Both conditions are possible when we apply addition and
subtraction to unsigned numbers.

For addition, we realize the answer using the adder circuits discussed earlier.
Here, an overflow occurs if the carry-out of the most-significant bit is equal to 1.
For subtraction, we make use of radix complement (2’s complement in the case
of binary). The purpose is to simplify the hardware realization, as will be
discussed later.

In forming x−y (x is called the minuend and y is called the subtrahend), we

1. Add x to 2’s complement of y, i.e., we form the arithmetic operation x+(2n

−y).
2. If x� y, then the result in step 1 is � 2n. By dropping the most-significant bit

(value 2n), the remaining bits form the correct result (x−y).
3. If x<y, then the result is <2n. The actual result is negative, which cannot be

represented as an unsigned number. As a result, an under-flow occurs since
the smallest possible number we could store is 0 unsigned.

The above procedure applies to unsigned numbers in any base. We illustrate this
process in two examples.

FIGURE 5.5.1

Example 5.5.1, Forming (99)10−(77)10 and (77)10−(99)10 Using 10’s Complement

186 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

Example 5.5.1

Form (99)10−(77)10 and (77)10−(99)10 using the previous procedure. Assume both
numbers are stored as unsigned integers.

Solution: Since we are considering unsigned number representation, each
number is stored as a two-digit number. To subtract, we form the 10’s
complement of the subtrahend (102–77=23 in the first case and 102–99= 01 in the
second case). We then add the result to the minuend to obtain the results shown
in Figure 5.5.1(a) and (b), respectively.

As can be seen from the figure, when a carry-out of the most-significant digits
occurs, the correct result is obtained when this carry is dropped from the result.
The second case in the figure shows a carry-out of 0 out of the most-significant
digits; this indicates a negative result, which causes an underflow.

Example 5.5.2

Compute (11010)2−(01100)2 using 2’s complement arithmetic. Assume the two
operands are stored as unsigned operands.

Figure 5.5.2(a) shows the process of binary subtraction without applying the
above procedure. The figure includes the subtraction done in decimal.
Figure 5.5.2(b) shows the result when the above procedure is applied. In part (b)
of the figure, we employ the addition operation to perform subtraction.

As can be seen from the figure, a carry-out of 1 from the most-significant bits
does not indicate an overflow. The previous examples produced the correct
result when the carry-out of the most-significant digits is not 0. The result
obtained is not correct, however, if no carry-out of the most-significant bit is 0.
This occurs only if x<y, leading to a negative result.

In summary, to perform x−y of unsigned binary numbers using 2’s complement:

1. We add the 2’s complement of y to x.

FIGURE 5.5.2

Example 5.5.2, Forming (11010)2−(01100)2 Using 2’s Complement Arithmetic

DIGITAL DESIGN AND COMPUTER ORGANIZATION 187

2. If the carry-out of the most-significant digit is equal to 1, the carry is ignored
and the remaining bits constitute the correct result.

3. If the carry-out of the most-significant bit is 0, then this results in underflow
since the result is negative, and hence is out of the allowable range.

5.5.2
Hardware Implementation of Unsigned Arithmetic

In the above procedure, we used the addition operation for both addition and
subtraction operations, assuming the hardware of obtaining the 2’s complement
exists. In forming the 2’s complement of the subtrahend, we form its 1’s
complement and add 1 to the result. Figure 5.5.3 shows the implementation of a
circuit that is used for both addition and subtraction.

In Figure 5.5.3, the use of the XOR gate is as follows. The carry-in bit is used
to select the circuit for either addition or subtraction. If the circuit is selected for
addition, then the carry-in bit is set to 0. Setting this bit to 0 causes each XOR
gate to output the B value as is. As a result, the circuit performs A+B. If the carry-
in bit is 1, however, then the output of each XOR gate is the complement of its B
input; as a result, the adder performs A+B�+1. Using the above discussion, if a
carry-out=1 occurs, then the carry-out is ignored and the result in S3S2S1S0 is the
correct subtraction result. An underflow occurs if the carry-out obtained is equal
to 0.

Note that the choice of the arithmetic operation to perform is determined from
a set of instructions that store the operation to be performed as well as the
operands associated with the operation. We will discuss this later. We next

188 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

extend the discussion to include signed operands. Our discussion deals
specifically with 2’s complement representations of negative numbers.

5.5.3
Signed Number Arithmetic in Radix Complement

The previous discussion dealt with arithmetic on unsigned numbers and the use
of radix complement to perform both addition and subtraction. In this section, we
consider arithmetic on signed numbers presented in radix complement. Here, the
interpretation of the operands differs. For example, in the previous section, the
operand 11010 is interpreted as (26)10. In 2’s complement representation, this
same operand represents the negative number (−6)10. Before we discuss
arithmetic on signed numbers, we present an alternative method of interpreting
signed numbers in 2’s complement.

5.5.3.1
An Alternative Method to Compute 2's Complement

Consider an n-bit signed binary number
x=an−1an−2…a0

represented in 2’s complement form. Our objective is to find a polynomial
representation that converts the number from its 2’s complement representation
to its decimal representation with the sign of the decimal number included. To do
this, we note, if x is positive, then its decimal value is determined directly from
the binary representation using the polynomial expanded form discussed in
Chapter 1. If x is negative, however, we could find its decimal value by first

FIGURE 5.5.3

Circuit Design of 4-Bit Adder/Subtracter

DIGITAL DESIGN AND COMPUTER ORGANIZATION 189

finding its magnitude. From the magnitude we append a negative sign. For the
magnitude of the number, we have

The above equation is obtained from the definition of 2’s complement; the x term
is written in binary. The |x| term is the base 10 positive number. By appending a
negative sign to the above equation and expanding the binary part into
polynomial form, we obtain

The above equation can be rewritten to account for the sign bit as follows:

The above equation holds true if it represents a positive number (upper equality)
or negative number (lower equality). In all cases, the decimal value of x is found
using the equation

Example 5.5.3

In this example we, use the above equation to compute the decimal values of the
three signed numbers, 01110, 11011, and 1000, represented in 2’s complement.

Solution: Using the above equations, we obtain

190 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

5.5.3.2
Signed Arithmetic

Similar to unsigned arithmetic, signed arithmetic may lead to overflow or
underflow, depending on the result of arithmetic. Here, however, the range
includes positive as well as negative representation. For n-bit numbers, an
overflow occurs if the result of the arithmetic is larger than the maximum
positive number in the range (2(n−1)−1). Similarly, an underflow occurs if the
result is smaller than the smallest negative number (−2(n−1)). We consider three
cases. In the first case, no overflow or underflow is possible. In the second and
third cases, it is possible that overflow and underflow occurs.

5.5.3.2.1
Case One (No Overflow or Underflow Is Possible)

When one performs arithmetic that results in the addition of a positive number to
a negative number or vice versa, the sum can be represented as

result=−2n+x+y
with both x and y being binary numbers with decimal value in the range 0 � x� 2(n

−1)−1 and 0� y� 2(n−1)−1. The above equation is deduced from the notation given
in the preceding subsection, and the fact that each of the signed numbers is n-bits.
Since one of the bits is used for the sign, the remaining n−1 bits are used to
represent each of the positive x and y values. To show no overflow or underflow
occurs, we use the range of the x and y values to obtain

−2(n−1)≤result≤−2(n−1)+2(n−1)−1+2(n−1)−1=2(n−1)−2
The result is always within the allowable range, between −2(n−1) and 2(n−1)− 1.
Before we consider the next case, we make an observation about the sign bits.
For the sign bits, since the operands are of opposite signs, their sum without the
carry-in to the sign bit is 1. As a result, for all cases we have the carry-in to the
sign bit is equal to the carry-out of the sign bits. This can be verified by
considering both cases (a carry of 1 and a carry of 0 into the sign bits).

5.5.3.2.2
Case Two (Overflow Is Possible to Occur)

Here we consider signed arithmetic that yields the equivalence of adding positive
operands. As a result, the arithmetic is equivalent to adding two (n−1)-bit
numbers x and y (the nth-most significant bit in both is equal to 0), with the sum
x+y satisfying the condition

0≤x+y≤(2(n−1)−1)+(2(n−1)−1)=2n−2
As can be seen from the above equation, an overflow occurs if the sum exceeds
the maximum allowable range 2(n−1)−1. This occurs if the result causes a carry-in
of 1 to the sign bits. Since both numbers are positive, the carry-out of the sign bit
is 0. If the sum is less than 2(n−1)−1, then the carry-in to the sign bits is equal to

DIGITAL DESIGN AND COMPUTER ORGANIZATION 191

the carry-out of the sign bits. As a result, we note an overflow occurs if the two
carries (into and out of the sign bits) are unequal. If the two carries are equal,
then the sum is within the allowable range.

5.5.3.2.3
Case Three (Underflow Is Possible to Occur)

The final case considers the equivalent process of adding two negative operands,
which is equivalent to adding the expression

−2(n−1)+x−2(n−1)+y=−2n+(x+y)
with the ranges of x and y as given earlier. In order for the sum to be within the
acceptable range, we require

−2n−1≤−2n+(x+y)≤−1
The above inequality can be rewritten as

2n−1≤(x+y)≤2n−1

The lower bound on the sum indicates that a carry of 1 into the sign bit must take
place in order to obtain a result within the specified range. If such a carry does
take place, since the sign bit for each number is equal to 1, an equal carry of 1 out
of the sign bit takes place as well. If the condition is not met, then underflow
occurs. From the discussion, if the carry into the sign bit is equal to the carry-out
of the sign bit, then the result is within the acceptable range. On the other hand,
if the two carries are not equal, then an underflow has occurred.

Summary: From the three cases considered, we note the condition of
detecting an underflow or overflow is the same. An overflow or underflow
occurs (when performing signed addition or subtraction on operands represented
in 2’s complement) if and only if the carry-in to the sign bit is not equal to the
carry-out of the sign bit. In performing subtraction using 2’s complement, the 2’s
complement of the subtrahend is first formed. The test of overflow or underflow
then depends on the nature of the operands (signed or unsigned), as discussed
earlier.

We conclude this section with several examples. In all cases, we assume 5-bit
binary number. As a result, the range of the negative numbers is −16 to −1.
Similarly, the range of the positive numbers is 0 to 15. In the examples, we let Ci

represent the carry-in to the sign bit. Similarly, we let C0 represent the carry-out
of the sign bit. Figure 5.5.4 shows the arithmetic examples. The figure includes
tests for overflow and underflow.

5.5.4
Hardware Implementation of Signed Arithmetic

The design of an arithmetic circuit that performs addition and subtraction of
signed numbers represented in 2’s complement is similar to the circuit shown in
Figure 5.5.3. The circuit differs from Figure 5.5.3 in the added hardware to

192 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

FIGURE 5.5.4

Arithmetic Using Signed 2’s Complement Representation, Each Row Represents Decimal
Arithmetic and Corresponding 2’s Complement Arithmetic

DIGITAL DESIGN AND COMPUTER ORGANIZATION 193

detect overflow and underflow. The circuit that detects unequal carries into and
out of the sign bit is the XOR gate. Figure 5.5.5 shows the modified circuit.

5.6
Multiplier Circuits

Multiplication of binary numbers was considered in Chapter 1. In this section,
we build circuits that realize binary multiplication. By referring to Chapter 1, we
note that in forming A×B, the bits of multiplicand A are multiplied by the bits of
the multiplier B from least significant to most significant. The multiplicand is
copied as is if the corresponding multiplier bit assumes a value of 1. It is
replaced by a row of zeros if the corresponding multiplier bit assumes a value of
0. Our task is to convert the above process into a set of Boolean equations. From
the Boolean equations, we could then implement the circuit.

Let A=AnAn−1An−2…A1 and B=BnBn−1Bn−2…B1. Then the result of multiplying
A by bit B1 of B can be written as the sequence of Boolean products

AnB1
 An−1B1 An−2B1…A1B1

with each AiBj realized by an AND gate. For the case of 3-bit operands, A× B
yields

FIGURE 5.5.5

4-Bit Binary Adder/Subtractor of Signed Numbers in 2’s Complement Representation

194 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

To form the product, we apply binary additions to the columns showing the
partial products above (P1 through P6). The multiplication above can be
accomplished using two binary adders as follows. First, we add the contents of
row 1 to the contents of row 2. Second, the result is added to row 3 to obtain the
correct product. Note that, when adding, one needs to account for the shifts used
to form each row.

The design of a multiplier circuit that computes P1 through P6, is shown in the
Figure 5.6.1.

The AiBj terms shown in the three rows are generated using rows of AND
gates. The outputs of the AND gates are used as inputs to the first 3-bit full
adder. Note the 0 used in the sum of the first 3-bit adder (MSB). Note as well,
the first bit of the sum forms P2 of the product P (P=P6P5P4P3P2P1). Finally,
note that the carry-out of each adder is used in the next stage of the addition. A
sample circuit design is shown in Figure 5.6.2.

The above procedure can be generalized to multiply two binary numbers of
arbitrary sizes. To multiply two n-bit numbers, A and B, one would need (n−1) n-
bit adders. The first adder is used for rows 1 and 2 (after proper shifting). The
next adder adds row 3 to the outputs of the first adder (shifted to the left). This
process continues on the remaining rows. The last adder produces the remaining
bits of the final product (P2n,…, P(n−1)).

In the remainder of the chapter, we use the above circuits and concepts to
study the logic design of an arithmetic logic unit. To design the unit, we make
use of multiplexers circuits. The circuits are introduced in the next section and
studied in more details in the next chapter.

FIGURE 5.6.1

Multiplier Circuit, (A=A3A2A1)×(B=B3B2B1)=P6P5P4P3P2P1

DIGITAL DESIGN AND COMPUTER ORGANIZATION 195

5.7
Multiplexers

Consider the circuit shown in Figure 5.7.1. The circuit has a total of six inputs, I0,
I1, I2, I3, S1, and S0. The six inputs are split into two groups according to the
input labels, as seen in the figure. The circuit has a single output F with the
algebraic equation

F=S′1S′0I0+S1S′0I1+S1S′1S0I0+S1S0I0

TABLE 5.7.1
Abbreviated Truth Table of 4-to-Multiplexer

S1 S0 Value of Function F

0 0 I0

0 1 I1

1 0 I2

1 1 I3

FIGURE 5.6.2

Multiplier Circuit Gate Design, (A=A3A2A1)×(B=B3B2B1)=P6P5P4P3P2P1

196 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

By assigning binary values to the inputs S1 and S0, we obtain the outputs shown
in Table 5.7.1.

The truth table above is an abbreviated truth table as the data inputs are not
shown as part of the table and the output is written as a function of the data
inputs, instead of 0s and 1s. The data inputs can be included in the table. This,
however, will increase the size of the table from 4 to 64 rows (26). The
functionality of the circuit is better captured using the abbreviated table above.

The circuit is an example of a four-way switch. The switch connects one of the
inputs to the single output F. The switch is controlled by the S inputs, called

FIGURE 5.7.1

4-to-1 Multiplexer

FIGURE 5.7.2

Switch Multiplexer Representation as a Function of the Select Inputs

DIGITAL DESIGN AND COMPUTER ORGANIZATION 197

select or control inputs. By applying the proper binary assignment on the select
inputs, we can connect one of the four I inputs, called data inputs, to the output F.
The four possible switch locations as a function of the select inputs are shown in
Figure 5.7.2. The multiplexer given in the figure is called a 4-to-1 multiplexer,
sometimes abbreviated as 4-to-1 mux.

Since the function of the select lines is to determine which of the data lines is
connected to the output of the multiplexer, for m data lines one needs at least n=
[log2 m] select lines, where [x] is an integer value of the result rounded up; the
value is called the ceiling of x. In general, the number of select lines, n, is related
to the number of data lines, m, by the equation m=2n. Hence, the multiplexers 2-
to-1, 4-to-1, 8-to-1, and 16-to-1 have one, two, three, and four select lines,
respectively.

5.7.1
Design of Multiple Output Multiplexers

Multiplexers are used to connect several data sources to a common line of
communication (output). In such a case, the multiplexer acts as a large switch
that causes one source to place its contents on the common line. Each of the
sources, however, could be several bits (lines). Figure 5.7.3 is an example.

In Figure 5.7.3, each of the data inputs is 2 bits; the output is 2 bits as well.
The number of data sets in the figure is four (set 1 is I00 and I01; similarly, the
other sets are I10 and I11; I20 and I21; and I30 and I31). Since the number of data
sources is four, we need two select inputs to choose which of the data sets is
connected to the outputs.

The multiplexer in the figure is called a dual 4-to-1 multiplexer (four is the
number of data sets to be connected to the output). The term “dual” means the
circuit is composed of two 4-to-1 multiplexers, as can be observed from the
figure. In block diagram fashion, the dual 4-to-1 mux is shown in Figure 5.7.4.

We use the block diagram shown in Figure 5.7.5 to represent an abbreviated m
n-to-1 multiplexer. The diagram represents m multiplexers; each multiplexer is n-
to-1. The dash can be removed from the figure.

We will discuss multiplexers in more detail in the next chapter. In the next
section, we use multiplexers in the design of a small arithmetic logic unit.

5.8
Design of a Simple Arithmetic Logic Unit

The arithmetic logic unit (ALU) is found in the central processing unit of a
computer. As the name implies, the unit performs both arithmetic and logic
operations. We illustrate the design of a simple ALU using the design concepts
discussed thus far. In our example, we assume:

1. The operands processed by the unit are 4 bits each.

198 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

2. The arithmetic operations performed are addition and subtraction.
3. The logic operations performed are the bit-wise AND, OR, and NOT. (We will

give examples of bit-wise logic operations later).
4. In addition to the operations in 2 and 3, the unit could pass one of the

operands to the output either as is, or shifted to the left by 1 bit.

The block diagram of the ALU is shown Figure 5.8.1. In the figure, the operands
are two 4-bit numbers, A and B. The output is given at C; note that

C is 5 bits. The m lines, labeled S, are used to choose the proper operation to
be performed by the ALU. The shape of the ALU is a traditional shape used by
convention. We next discuss the units used in the design.

5.8.1
Subtraction and the Arithmetic Unit

The arithmetic unit is composed of two parts—an addition part and a subtraction
part. Both were discussed earlier in the chapter.

TABLE 5.8.1

FIGURE 5.7.3

Dual 4-to-1 multiplexer design

DIGITAL DESIGN AND COMPUTER ORGANIZATION 199

Bit-Wise Logic Operations, (a) Bit-Wise AND, (b) Bit-Wise OR

(a) (b)

Bit-Wise AND Bit-Wise OR

A = 1 1 0 1 A = 1 1 0 1

B = 1 1 0 0 B = 1 1 0 0

1 1 0 0 1 1 0 1

FIGURE 5.7.4

Design of dual 4-to-1 multiplexer from 4-to-1 multiplexers

FIGURE 5.7.5

Block diagram representation of an m n-to-1 multiplexer

200 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

5.8.2
Bit-Wise Logic Operations

Bit-wise logic operations are performed on operands with multiple bits. For our
case, each of the operands is 4-bit wide. The example below illustrates the use
each of the bit-wise logic operations.

Example 5.8.1

Form the bit-wise AND and OR operations on the operands A=1101 and B=1100;
also form the bit-wise complement of the operand A.

Solution: In forming the bit-wise logic operations for the AND and the OR,
we apply the logic operations on the individual bits of the operand A and the
corresponding bits in the operand B. The results are shown in Table 5.8.1 (a) and
(b), respectively. For the complement operation, we complement the individual
bits of A to obtain 0010. The design of the bit-wise operations can be accomplished
using an array of AND, OR, or NOT gates.

5.8.3
Combinational Shift Left

The shift left operation can be used as a method of multiplying an unsigned
binary number by 2. In shifting an operand left, the most-significant bit is shifted
into an extra bit. The bit is used in computations that require additional bits such
as the carry-out that may be produced from adding two 4-bit operands. The least-
significant bit is set to 0. For example, when the binary operand 0101 (510) is
shifted left, the new shifted value is 01010 (1010). The shift left we design is

FIGURE 5.8.1

A block diagram of a 4-bit ALU

DIGITAL DESIGN AND COMPUTER ORGANIZATION 201

combinational in nature. This is different than shift operations that are done by
sequential circuits. We will discuss sequential circuits in later chapters.

Assuming the ALU outputs are C4C3C2C1C0 with A=A3A2A1A0, the shift left
operation results in

C4=A3,C3=A2,C2=A1,C1=A0,C0=0

5.8.4
The Design of the ALU

By inspecting the ALU block diagram, we notice the multiple functions
performed by the ALU appear at the set of common output lines. The ALU
functions as follows. Depending on the specific request applied to the select lines
of the ALU, the ALU responds by accomplishing the specific request and placing
the result at its outputs. One method to accomplish the request is to have the
multiple functional units compute the associated tasks and place the
corresponding results on the data inputs of a multiplexer. The multiplexer in turn
routes the correct result to its outputs, and hence the outputs of the ALU.

The multiplexer requires five outputs needed to place the results of the
arithmetic and shift operations on the outputs of the ALU unit. For the data sets,
the multiplexer inputs are the arithmetic results (two data sets for the addition
and subtraction). Additional data sets needed are three sets for the logic
operations, one to output operand A as is, and one additional input for the shift
left operation. The number of the data inputs needed is seven. As a result, the
multiplexer would require a minimum of three select lines ([log27]=3).

From the discussion, we conclude that five 8-to-1 multiplexers are needed in
the design. The multiplexer requires three select lines, S0, S1, and S2, used to
route the proper result to the outputs of the ALU. The select lines assignment and
corresponding associated functions are shown in Table 5.8.2. The choice of the
assignments is arbitrary.

Note that the plus (+) symbol is used to represent regular binary addition as
well as the bit-wise OR operation. The assignment S2S1S0=011 is used to perform
the logic OR and the assignment S2S1S0=101 is used to perform the add
operation. The block diagram of the ALU is shown in the Figure 5.8.2.

TABLE 5.8.2
ALU Function Table, Select Inputs Determine the ALU Function

S2S1S0 Function S2S1S0 Function

000 Shift left A 100 A�

001 A 101 A+B

010 A AND B 110 A−B

011 A+B 111 —

202 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

With the exception of the sum data input, note the application of zero as one
of the inputs. Note as well, data set 7 is unused. We illustrate the function of the
above circuit for the first case in Table 5.8.2. For this case, the bits of the A
operand are shifted to the left by 1 bit by applying the input 000 on the select
lines of the five multiplexers. Each multiplexer will route data line 0 to its output.
As can be seen from the figure, the first bit of the output is set to 0 (the right-
most multiplexer first data input is 0). The remaining multiplexers output the
value of A. As a result, the effect of the circuit is to shift the contents of A to the
left by 1 bit.

Chapter 5
Exercises

5.1 A 3-bit ripple adder can be drawn as shown in Figure E5.1.
Assume the gate delays in the circuit are 2 ns, 2 ns, and 3 ns for the
AND, OR and XOR gates, respectively. Compute the delay of C2 and
C3 of the circuit.
5.2 Generalize your results in question 1 for an arbitrary carry-out Cn.
Write your answer in terms of n.

FIGURE 5.8.2

Block diagram design of the ALU

DIGITAL DESIGN AND COMPUTER ORGANIZATION 203

5.3 Compute C6 of the carry lookahead generator equations.
5.4 Using the delays of gates as given in question 5.1 and a generalized
design based on the lookahead carry generators equations, find the
delay for each of the carry equations C2, C3, C4, C5, and C6. Assume no
additional delay is incurred by increasing the number of inputs to a
gate. Generalize your answer to an arbitrary Cn.
5.5 Show the design of 2-bit adder with carry lookahead generator.
5.6 Assume A and B are two 5-bit unsigned operands. Compute the
Boolean equations for A>B, A<B, and A−B.
5.7 Show the design of a 2-bit magnitude comparator.
5.8 An n-bit magnitude comparator can be designed from 1-bit
magnitude comparators with enable lines. Show the design of a 5-bit
magnitude comparator from 1-bit magnitude comparators with enable
lines. Hint—the design can be accomplished with five 1-bit
comparators and 2 additional gates.
5.9 Compute the maximum delays in the outputs of the 2-bit magnitude
comparator given in question 5.7. Assume the delays through the gates
are as given in question 5.1 and are not affected by the number of
inputs to the gate. Assume as well the delay in the inverter or the NOR
gate is 1 ns. Generalize your answer for an n-bit magnitude
comparator.

FIGURE E5.1

204 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

5.10 For the same magnitude comparator sizes, is the delay in your
design in question 5.8 larger than the maximum delay obtained in
question 5.0? Please explain.
5.11 Design a 2-bit binary subtractor from 1-bit full subtractors. The
subtractor inputs are A=A2A1, B=B2B1 and previous borrow Bp. Its
outputs are D=D2D1 and Bn. The subtractor performs A−B.
5.12 Assign binary values to all lines in the design of the subtractor in
question 5.11 based on the inputs A=10 and B=01 with Bp=0 and Bp=1.
Verify the output is correct by constructing truth table entry for the
input combinations given.
5.13 Repeat question 5.12 on A=10 and B=11.
5.14 Compute 1001011–0110101 using 2’s complement. Assume the
operands are stored as unsigned binary numbers. State if an overflow
or underflow has occurred.
5.15 Repeat problem 5.14 on 0101101–1000111.
5.16 Using the polynomial representation of signed numbers
represented in 2’s complement (section 5.5.3) find the values of

(a) 00110111,
(b) 10010101,
(c) 10000000,
(d) 11111111, and
(e) 10000001

5.17 Assume one is to store the two 2’s complement signed number A=
0011 and B=1011 as 8-bit numbers. Determine how each should be
represented as an 8-bit signed number in 2’s complement. Generalize
your answer to include arbitrary binary numbers.
5.18 Determine the maximum positive and minimum negative range of
the following.

(a) An 8-bit binary number represented in signed 2’s complement.
(b) A 5-digit decimal number represented in 10’s complement.
(c) A 5-digit octal number represented in 7’s complement.

5.19 Form the following arithmetic expressions based on signed
number representation in radix complement as indicated with each
expression.

(a) 10001010–10010100 (2’s complement)
(b) 10001010+10010100 (2’s complement)
(c) 90010–00501 (10’s complement)
(d) 91501+02345 (10’ complement)

5.20 Determine which of the previous arithmetic expressions resulted
in overflow or underflow.
5.21 Assume one is to design a multiplier for A×B with A a 16-bit
binary number and B an 8-bit binary number. Determine the number of
adders used in the design and the size of each adder. In addition to the
adders used in the design, what is the total number of AND gates?

DIGITAL DESIGN AND COMPUTER ORGANIZATION 205

What is the total number of AND gates if A is an n-bit number and B is
an m-bit number?
5.22 Show the design of a multiplier that performs A×B with A=
A3A2A1A0 and B=B2B1B0.
5.23 Form the bitwise AND, OR and NOT of the following:

(a) A=1111000 and B=10101100,
(b) A=0000000 and B=10101111,
(c) A=(AF)16 and B=(91)16

5.24 Show the complete design of a 2-bit ALU with function as
described in Figure E5.2. ALU.S1 and ALU.S2 are used to select the
proper operation to perform.

FIGURE E5.2

206 ARITHMETIC LOGIC CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

6
Programmable Logic Devices

CONTENTS

6.1 Decoders 207

6.1.1 Binary Decoders 208

6.1.2 Function Design Using Decoders 212

6.1.3 Building Larger Decoders from Smaller Ones 215

6.2 Encoders 216

6.2.1 Binary Encoders 217

6.2.2 Priority Encoders 219

6.3 Multiplexers 220

6.3.1 Design and Equations 221

6.3.2 Design of Larger Multiplexers from Smaller Ones 221

6.3.3 Design of Boolean Functions Using Multiplexers 222

6.4 Demultiplexers 226

6.5 Programmable Logic Arrays 227

6.5.1 Programmable Logic Devices (PLDs) 227

6.5.2 Programmable Logic Arrays 229

6.5.3 Tabular Description 234

6.5.4 AND-OR-NOT Design 236

6.6 Programmable Array Logic Devices 237

6.7 Read-Only Memory 240

6.8 Diodes and Programmable Logic Devices 242

6.8.1 Diodes 243

6.8.2 Programmable Logic Devices 245

6.8.3 Diode Design of Programmable Logic Arrays 246

Chapter 6 Exercises 247

6.1
Decoders

In Chapter 1, we discussed coding as a mapping between two sets of objects. In
general, decoders are combinational circuits that are used as code converters. For
example, the BCD-to-seven-segment decoder discussed in Section 4.4 is an
example of such a decoder. In the circuit, a BCD code is presented at the input
(the input is 4 bits). The output of the decoder is chosen to display the equivalent
decimal value on a seven-segment display. As a result, the decoder acts as a code
converter. It converts a BCD code into a decimal code.

6.1.1
Binary Decoders

There are several types of decoders. Of these, binary decoders are the most
common type. An n-bit binary decoder has n inputs and a maximum of 2n

outputs. We consider two types of binary decoders. With each, for n inputs the
decoder has 2n outputs. The decoders are called n-to-2n binary decoders. In an n-
to-2n binary decoder, the n inputs represent a binary code. For each binary input,
exactly one of the 2n outputs is activated (selected). From our previous
discussions of minterms and maxterms, one method to select exactly one of the 2n

outputs (for each input combination) is to have the outputs realize the minterms
associated with inputs. Here, each input causes exactly one output to assume a
value of 1. All others assume a value of 0. For a given input, the output selected
is the line that assumes a value of 1. Figure 6.1.1 (a) and (b) show block
diagrams of a 2-to-4 and a 3-to-8 decoder.

208 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Note the minterm outputs of the decoders; due to these outputs an input on the
decoder causes one output to assume a value of 1. All other outputs assume a
value of 0. The gate design of the decoders is shown in Figure 6.1.2.

The truth table representation of a 3-to-8 binary decoder is given in
Table 6.1.1.

In general, for an n-to-2n decoder, the decoder design contains 2n AND gates.
The outputs of the AND gates are the minterms associated with the inputs.
Another way to abbreviate decoders is to use the notation n×2n pronounced as n
by 2n.

An alternative method to selection can be accomplished by associating the
outputs with maxterms instead of minterms. Since for each input combination

TABLE 6.1.1
Truth Table Representation of a 3-to-8 Binary Decoder with Minterms as Outputs

Inputs Outputs

A B C D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

exactly one output assumes a value of 0, the selected output is the one that assumes
a value of 0. Figure 6.1.3 shows a block diagram of a 2-to-4 and a 3-to-8
decoder, with maxterms as the outputs. The gate design of a 3-to-8 decoder with

FIGURE 6.1.1

(a) Block Diagram of a 2-to-4 Decoder, (b) Block Diagram of and 3-to-8 Decoders

PROGRAMMABLE LOGIC DEVICES 209

maxterms as outputs is shown in Figure 6.1.4. The truth table representation is
shown in Table 6.1.2.

TABLE 6.1.2

FIGURE 6.1.2

(a) Gate Design of a 2-to-4 Decoder, (b) Gate Design of a 3-to-8 Decoders

FIGURE 6.1.3

Block Diagrams of 2-to-4 and 3-to-8 Decoders with Maxterms as Outputs

210 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Truth Table Representation of a 3-to-8 Binary Decoder with Maxterms as Outputs

Inputs Outputs

A B C D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 0 1 1 1 1 1 1 1

0 0 1 1 0 1 1 1 1 1 1

0 1 0 1 1 0 1 1 1 1 1

0 1 1 1 1 1 0 1 1 1 1

1 0 0 1 1 1 1 0 1 1 1

1 0 1 1 1 1 1 1 0 1 1

1 1 0 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 0

FIGURE 6.1.4

Gate Design of a 3-to-8 Decoder with Maxterms as Outputs

PROGRAMMABLE LOGIC DEVICES 211

6.1.2
Function Design Using Decoders

In Chapter 3, we presented a procedure to design functions from canonical sum
representations. The design procedure uses two-level AND-OR gates, with the
AND gates in the first level forming all the needed minterms. The minterms
generated correspond to the inputs where the function assumes a value of 1.
Since one type of the binary decoders considered outputs all possible minterms
associated with a set of inputs, the AND gates in the decoder can serve as the
first level in the two-level AND-OR design process. As a result, one can design
combinational circuits by using a decoder of the proper size and an OR gate.

The design procedure is similar to the design of functions in canonical sum
representation. The decoder supplies all the possible minterms. The needed
minterms in the design are selected and used as inputs to an OR gate.

Example 6.1.1

Design the majority function using a decoder and a single OR gate.
Solution: Since the majority function has three inputs (A, B, and C), the

decoder chosen must have three inputs as well. The majority function assumes a
value of 1 for the inputs with decimal values 3, 5, 6, and 7. As a result, the inputs
to the OR gate are the minterms m3, m5, m6, and m7. The minterms are found as
the outputs D3, D5, D6, and D7 of the decoder. Figure 6.1.5 shows the design of
the majority function.

By observing the circuit design in the previous example, one notices that the
total number of gates used in the design exceeds what is needed. (The total
number of gates is nine; the design of the simplified function requires the use of
four gates and the design of the nonsimplified function requires the use of five
gates.) The advantages of using decoders in the design process are attributed to
two factors. First, the process can be automated, as discussed later in the text
when we discuss programmable logic devices. Second, the design may be more
efficient when one considers the design of multiple-output functions over the
same set of variables.

In multiple-output circuits over the same set of variables, the same decoder
can be used as the minterm generator circuit for all functions considered. With
each output we associate an OR gate. The gate is used to OR (sum the needed
minterms). We illustrate this in the design of the circuit that evaluates ƒ(x)=x2+1,
as discussed next.

Example 6.1.2

Use a single decoder and the needed OR gates to design the circuit that computes
the function ƒ(x)=x2+1. Assume both x and ƒ(x) are represented in binary with
the decimal value of x ranging from 0 to 3 inclusive.

212 DIGITAL DESIGN AND COMPUTER ORGANIZATION

TABLE 6.1.3
Truth Table of ƒ(x)=x2+1 Given in Example 6.1.2

A B F4 F3 F2 F1

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 1

1 1 1 0 1 0

FIGURE 6.1.5

Design of the Majority Function Using 3-to-8 Binary Decoder

PROGRAMMABLE LOGIC DEVICES 213

The first step in the design is to generate the truth table of the function. The
number of inputs in the table is determined from the argument x of the function.
Since x assumes the decimal value 0, 1, 2, and 3, the input is 2 bits, which we
will call A and B. Similarly, the number of outputs in the table depends on the
maximum decimal value of the function ƒ(x). This occurs for the input x=3 with
ƒ(x)=1.0. When this maximum value is converted to binary, the number of bits
needed is four. As a result, the number of outputs is four as well. We will call
these outputs F4, F3, F2, and F1. The truth table is shown in Table 6.1.3. The
design of the above function uses a single 2-to-4 decoder with 2 OR gates. The
circuit has four outputs as shown in Figure 6.1.6.

The design of functions using decoders with maxterms as outputs can be
accomplished using a similar procedure as above. Here, however, one uses
NAND gates instead of OR gates. The procedure is similar to the design using
two-level NAND-NAND, as outlined in Chapter 3. Figure 6.1.7 shows the design
of the function using a 2-to-4 binary decoder with maxterms as outputs. (Note
the need of the NAND gates to act as inverters so as to generate the minterms).

FIGURE 6.1.6

Design of ƒ(x)=x2+1. Using a 2-to-4 Decoder with Minterms as Outputs

214 DIGITAL DESIGN AND COMPUTER ORGANIZATION

6.1.3
Building Larger Decoders from Smaller Ones

It is possible to build larger decoders from smaller decoders. To accomplish this,
we use decoders with enable lines. Enable lines are inputs that cause a functional
block such as a decoder to be in one of two modes: active or inactive (this was
discussed in Chapter 5.) In the active mode, the decoder functions as intended. In
the inactive mode, however, the decoder does not respond to inputs. For the case
of decoders with minterms as outputs with a single enable line input, E, we
assume that for E=1 the decoder is in the active mode. For E=0, however, the
decoder is in the inactive mode with all outputs assuming a value of 0
independent of the value on the inputs. Figures 6.1.8(a) and (b) show,
respectively, the design of a 1-to-2 and a 2-to-4 decoder with enable line. The truth
tables and block diagram symbols are shown in Figure 6.1.9.

To construct larger decoders from smaller ones, we make use of the enable
line inputs. For example, using two 2-to-4 decoders and one 1-to-2 decoder with
enable lines, we could construct a 3-to-8 decoder, as shown in Figure 6.1.10.
Note the use of the most-significant input, A, as an input into the 1 2 decoder.
The input value, A, determines which of the two decoders is enabled. For A=0,
the upper decoder is enabled. For A=1, however, the lower decoder is enabled.

FIGURE 6.1.7

Design of ƒ(x)=x2+1. Using a 2-to-4 Decoder with Maxterms as Outputs

PROGRAMMABLE LOGIC DEVICES 215

This can be related to the value of A in a three-input truth table. For the upper
half of the table, A assumes a value of 0. For the lower half, A assumes a value of
1.

Within each part of the table (upper half or lower half), the values on the
variables B and C determine the relative minterm location within the half. As a
result, the two 2-to-4 decoders receive the same inputs B and C. Finally, the enable
line to the equivalent 3-to-8 circuit is the enable line for the l-to-2 decoder.

6.2
Encoders

Encoder and decoder circuits are code converter circuits. Encoders assign a code
to objects (inputs). In decoders, the set of inputs is usually much smaller than the
set of outputs. In encoders, the opposite is true. Consider the process of
interactively entering information into the computer through the keyboard. Since
information stored is in binary, an encoding process converts

TABLE 6.2.1
Abbreviated Truth Table of a 4-to-2 Encoder

I3 I2 I1 I0 Y1 Y0

0 0 0 1 0 0

0 0 1 0 0 1

FIGURE 6.1.8

(a) Design of 1-to2 Decoder with Enable Line, (b) Design of 2-to-4 Decoder with Enable
Line

216 DIGITAL DESIGN AND COMPUTER ORGANIZATION

I3 I2 I1 I0 Y1 Y0

0 1 0 0 1 0

1 0 0 0 1 1

each key on the keyboard to a unique binary representation. This can be modeled
as shown in Figure 6.2.1.

6.2.1
Binary Encoders

In the previous section on decoders, we considered n-to-m binary decoders. For
these decoders, the input is a binary number with n bits. The output activated is
Di, where i is the decimal value of the binary input. A binary encoder works in an
opposite fashion; for a given input representing a decimal value, the
corresponding binary combination is produced at the output. In binary encoders,
we assume that only one input is activated at a specific instant of time. This is
similar to pressing a single key on a keyboard. The key pressed constitutes the
input.

Similar to binary decoders, the number of inputs is related to the number of
outputs. For n outputs, the number of inputs, m, does not exceed 2n (the encoder
is called m-to-n binary encoder). Table 6.2.1 shows an abbreviated truth table of
a 4-to-2 encoder. The table contains four rows since it is assumed that exactly

FIGURE 6.1.9

Truth Tables and Block Diagram Symbols of 1-to-2 and 2-to-4 Decoders with Enable
Lines

PROGRAMMABLE LOGIC DEVICES 217

one input assumes a value of 1. The corresponding binary code associated with
the input is displayed at the outputs.

The design of a 4-to-2 binary encoder is given in Figure 6.2.2(a). Due to the
above assumption, the design is a set of OR gates since we have

Y1=I3+I2
and

Y0=I3+I1
In Figure 6.2.2(a), the output of the encoder is the same if no input is activated (all
inputs are 0) or if the input activated is the I0 input (I0=1). This causes
ambiguity. To remove the ambiguity, an additional output that indicates a valid

FIGURE 6.1.10

Design of a 3-to-8 Decoder from 1-to-2 and 2-to-4 Decoders with Enable Lines

FIGURE 6.2.1

Encoding and Decoding of Data in Block Diagram

218 DIGITAL DESIGN AND COMPUTER ORGANIZATION

encoder output can be added. The output assumes a value of 1 when I0 is equal to
1. The modified circuit is shown in Figure 6.2.2(b).

6.2.2
Priority Encoders

Priority encoders are used when more than one input may be activated at the same
time. An analogy can be made when multiple requests are made to print
documents on a common printer. In priority encoders, the input with highest
priority gets processed first. Table 6.2.2 shows the function of a 4-to-2 priority
encoder with the priority assigned according to the subscript of the input. Inputs
with higher subscripts have higher priorities.

TABLE 6.2.2
Abbreviated Function of a 4-to-2 Priority Encoder with the Priority Assigned According
to the Subscript of the Input

I3 I2 I1 I0 Y1 Y0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 – 0 1

0 1 – – 1 0

1 – – – 1 1

The above table is an abbreviated version of the 16 rows in the equivalent
truth table. The “-” in the table are treated in a similar fashion as the tabular

FIGURE 6.2.2

Designs of 4-to-2 Binary Encoder

PROGRAMMABLE LOGIC DEVICES 219

method. For example, the entry “01--” represents a subcube of 1 cells, where the
variables I3 and I2 assume the values of 0 and 1, respectively. The algebraic
expression for this subcube is I�3I2. We illustrate how the above table is obtained
by first referring to the last row. For this row, an assignment of 1 to I3 results in
Y1Y0=11, independent of the binary assignments for the remaining input
variables. For row 4 of the table, an output of 10 occurs only if the I3 input
assumes a value of 0, and the I2 input assumes a value of 1. Similar analysis is
applied to the rows 3 and 2.

The minimized algebraic equation for the two outputs Y1 and Y0 can be
obtained by constructing the K-map for each function and following the
minimization procedure discussed in Chapter 3. In the construction, the entry
“01--” in the truth table corresponds to the four entries 0100, 0101, 0110, and
0111 in the K-map. The function value assigned to these entries is the same
assignment given to the entry “01--.” Alternatively, from the original table we
could write the equation for Y1 as

Y1=I3+I′3I2
The first term is the algebraic representation of the subcube “1---” while the
second term is the algebraic representation for the subcube “01--.” On using
algebraic simplification, we have

Y1=I3+I′3I2 =(I3+I′3)+(I3+I2) =I3+I2
For the output Y0, we have

Y0=I3+I′3I′2I′1 =I3+I′2I1
The design of the priority encoder is shown in Figure 6.2.3.

6.3
Multiplexers

Multiplexer circuits were discussed in the previous chapter in the context of
being data selectors. The circuits act as switches connecting a set of data inputs

FIGURE 6.2.3

Design of the 4-to-2 Priority Encoder

220 DIGITAL DESIGN AND COMPUTER ORGANIZATION

to a common data output using the control inputs. In this section, we expand on
the use of multiplexers as function implementers and discuss constructing larger
multiplexers from smaller ones. First, we consider the general design of
multiplexers.

6.3.1
Design and Equations

From Chapter 5, the algebraic equation of a 4-to-1 multiplexer can be written as
a sum of product terms. Each product term has the form Ijmj, with mj

representing the minterm of the select inputs with decimal value j, and Ij is the
corresponding data line. A similar procedure can be applied to obtain the
algebraic equation of a larger multiplexer. For example, the algebraic equation of
an 8-to-1 multiplexer is

The circuit design of an 8-to-1 multiplexer is shown in Figure 6.3.1. Note that
the circuit has a certain commonality with a 3-to-8 decoder as follows: (1) the
number of AND gates are equal, and (2) each AND gate produces the minterms
as part of the product. They differ in the added data inputs and in the additional
OR gate, as shown. In general, for a 2n-to-1 multiplexer, the number of control
inputs is equal to n. The algebraic equation of the multiplexer is given as

Assuming there is no fan-in restrictions on the design, such a circuit will have a
total of 2n (n+1)-input AND gates and a single 2n-input OR gate.

6.3.2
Design of Larger Multiplexers from Smaller Ones

Larger multiplexers can be constructed from smaller multiplexers. We illustrate
this by designing an 8-to-1 multiplexer from 4-to-1 and 2-to-1 multiplexers. The
circuit will require three control inputs, S2, S1, and S0. Similar to decoders, the
most-significant bit (S2) assumes a value of 0 for the upper half of the data lines
and a value of 1 or the lower half of the data lines. The most-significant bit of the
control inputs, S2, is used to select from two sets of data. If S2=0, then one of the
data inputs in the set {I0, I1, I2, I3} is connected to the output. If S2=1, then one of
the data inputs in the set {I4, I5, I6, I7} is connected to the output. Finally, the

PROGRAMMABLE LOGIC DEVICES 221

remaining control lines are used to select the relative data location within a set to
connect to the output.

Using the above observations, we obtain the circuit shown in Figure 6.3.2. In
the figure, we show the connection from the data inputs to the output on the
select inputs S2S1S0=111.

6.3.3
Design of Boolean Functions Using Multiplexers

In Chapter 3, we showed that there are 16 Boolean functions over two variables
and, in general, there are functions over n variables. A multiplexer with n control
lines can be used to implement any of the functions. This is done by assigning
Boolean constants to the select inputs of a multiplexer. Figure 6.3.3 shows the
design of the XOR and OR functions.

FIGURE 6.3.1

Design of an 8-to-1 Multiplexer

222 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Note that the inputs to the circuit (function) are applied at the select (control)
part of the multiplexer. The output of the circuit is the multiplexer output.

The design is accomplished by setting the data lines of the multiplexer to the
truth values of the function found in the truth table. We illustrate the design in
the context of the input to the function, which acts as the select input to the
multiplexer. In particular, we use the input AB=00, for example. For this input,
the function outputs the value 0 for the XOR circuit design. Since this input
selects the first data line of the multiplexer and places it at the output, we set this
data line value to 0. Similar logic applies to the other entries of the multiplexer.

In using multiplexers in the design of functions, we choose multiplexers with
the number of control inputs equal to the number of inputs in the function to be
designed. The design is completed by setting the data inputs to the truth values
of the Boolean function found in its truth table. The design can be accomplished
with multiplexers with one less control input (n−1 select lines). In the design,
one of the variables and/or its complement is used as an input to the data lines
instead of the select lines. We illustrate this in the following example.

FIGURE 6.3.2

Design of an 8-to-1 Multiplexer from Smaller Multiplexers

PROGRAMMABLE LOGIC DEVICES 223

Example 6.3.1

Design the majority function using a multiplexer with two select lines.
Solution: Two of the inputs of the majority function are the inputs to the

select lines of the multiplexer. Arbitrarily, we choose A and B while the inputs to
the function are A, B, and C. The remaining input, C, its complement, and the
constants 0 and 1 are used as inputs to the data lines as determined in the truth
table given in Figure 6.3.4.

As noted in the figure, when AB=00 the output of the function is zero
independent of C, i.e., the data input I0 is set to zero. On AB=01, however, the
output is dependent on the value of C. From the table, we have the value of the
majority function is F=C, as observed. Similar analysis produces the reduced
table given in Figure 6.3.5(a). The value of the function is given in terms of the
Boolean constants as well as the literal C. The design is shown in Figure 6.3.5(b).
Note the outer box containing the circuit design with the inputs and outputs. The
design of the multiplexer is given in block diagram form.

We illustrate the function of the circuit for the input ABC=010 and ABC= 011.
Since the A and B values are the same (AB=01) for both inputs, the multiplexer
data input, I1, is connected to the output. Since I1 connected to the input C, the
value seen at the output is C, i.e., the output is 0 for the input ABC=010, and 1
for the input ABC=011. These values agree with the truth table. Similar analysis
can be applied to other entries. Alternative designs can be obtained by using other
variables as inputs to the select lines. To use BC as inputs, for example, we
reconstruct the truth table as shown in Figure 6.3.6(a). The data input values to
the multiplexer are shown in Figure 6.3.6(b). The design is given in Figure 6.3.6
(c)

Field programmable gate arrays (FPGA) are devices that can be programmed
to realize different functions. The term “programmed” will be discussed later.

FIGURE 6.3.3

Design of the XOR, and OR Functions from 4-to-1 Multiplexers

224 DIGITAL DESIGN AND COMPUTER ORGANIZATION

The circuits contain multiplexers that allow for the design of arbitrary functions.
This is accomplished by setting the data inputs of the multiplexer to specific
values. The data inputs are memory elements that can store 0 and 1 values and,
as a result, allow for realization of arbitrary functions without the need to do any
wiring. In addition, multiplexers can be used as crossbar switches to establish
different connections between several lines. The circuit design itself is, again,
not changed. Instead, the multiplexer select and data values are set to specific
values.

We illustrate the design of a 2×2 (pronounced “2-by-2”) crossbar switch. An
example of the function of a 2×2 crossbar switch in block diagram form is shown
in Figure 6.3.7. The switch has two input sources, a and b, and two destinations,
F1 and F2. Depending on the select inputs, the input sources can be connected to
the outputs, as shown. The design of the crossbar switch can be accomplished
using multiplexers as shown in Figure 6.3.8. Figure 6.3.8(a) shows the design

FIGURE 6.3.4

Majority Function Truth Table

FIGURE 6.3.5

(a) Abbreviated Majority Function, (b) Design using 4-to-1 Multiplexer

PROGRAMMABLE LOGIC DEVICES 225

using two 4-to-1 multiplexers. Figure 6.3.8(b) shows the outputs as a function of
the select lines.

6.4
Demultiplexers

Similar to the relation between encoders and decoders, demultiplexers are related
to multiplexers. In a multiplexer, one of n sources can be connected to a single
output. In demultiplexers, one source can be connected to any of n outputs. For
both circuits, a set of control inputs (select inputs) is used to select the line to be
connected to the output. The schematic of a demultiplexer is shown in
Figure 6.4.1(a). In the figure, a single input can be routed to any of four outputs.
To select the correct output, the circuit contains two control (select) inputs.
Figure 6.4.1(b) shows an example of routing the data input D to the top output,
based on the select input AB=00. The design of a demultiplexer can be realized
using a decoder with an enable line. The enable line acts as the data input to the
demultiplexer. The inputs to the decoder act as the control inputs to the
demultiplexer. Figure 6.4.2 shows an example. Note the enable line to the
decoder was moved, as shown, to indicate the enable line is the data line.

FIGURE 6.3.6

(a) Reconstructed Majority Function Truth Table, (b) Abbreviated Table, (c) Design
Using 4-to-1 Multiplexer

226 DIGITAL DESIGN AND COMPUTER ORGANIZATION

6.5
Programmable Logic Arrays

6.5.1
Programmable Logic Devices (PLDs)

In the previous sections, we presented procedures for designing Boolean
functions using decoders and multiplexers. In this section, we introduce
programmable logic devices (PLDs). These devices are used in design
automation where different designs are mapped to the same circuit architecture.
The implementation of different functions is accomplished by programming the
device. The term “programming” refers to altering the connections of the device
using special tools.

FIGURE 6.3.7

An Example of a 2×2 Crossbar Switch in Block Diagram

FIGURE 6.3.8

Design of a 2×2 crossbar switch using multiplexers

PROGRAMMABLE LOGIC DEVICES 227

We discuss programmable logic arrays (PLA), programmable array logic
(PAL®), and Read-Only Memory (ROM). The three devices are constructed so
as to implement functions in sum of product form and, as a result, include a level
of AND gates (called AND array) and an additional level of OR gates (called OR
array). The second level of the OR gate is used for the design of multiple output
functions. By properly programming the device, one can implement different

FIGURE 6.4.1

(a) 1-to-4 Demultiplexer in Block Diagram, (b) Switch Notation as a Function of the
Select inputs

FIGURE 6.4.2

Design of a 1-to-4 Demultiplexer from a Decoder with Enable Line

228 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Boolean functions. We next discuss the three types of PLDs and show how they
are used in the design of Boolean functions. In the discussion, we use simple
examples that illustrate the definitions of each. Actual programmable logic
devices may contain thousands of gates.

6.5.2
Programmable Logic Arrays

A sample schematic of a programmable logic array (PLA) is shown in
Figure 6.5.1. The PLA is composed of two programmable arrays: an AND array
and an OR array. Each of the cross-hatches (×) in Figure 6.5.1 represents a
programmable connection. Initially, all the inputs (including the corresponding
complements) are connected as inputs to each of the AND gates. This constitutes
the AND array part of the PLA. Similarly, the OR array of the PLA is composed
of inputs to three OR gates. The inputs to each OR gate are the AND outputs in
the first level. Programming the PLA to realize a specific function is the process
of establishing which connections to leave intact and which connections to take
out. We illustrate this in the following example.

Example 6.5.1

Program the PLA given in Figure 6.5.1 to realize the majority function.
Solution: The truth table of the majority function is given in Table 6.5.1.
In designing the circuit using the PLA given in Figure 6.5.1, the PLA needs to

meet the following three conditions:

1. The number of inputs to the PLA should not be less than the number of the
inputs to the function. In the example, the number of inputs to the PLA is
equal to the number of inputs to the function (three inputs).

2. The algebraic representation of the function must be in sum of product form
and the number of products in the function should not exceed the number of
AND gates in the PLA. For our example, the function in canonical sum form
contains four product terms. The function in simplified form is composed of
three product terms.

3. The number of outputs in the function should be less than or equal to the
number of outputs of the PLA. This condition is met as well

TABLE 6.5.1
Majority Function

A B C ¦ 1

0 0 0 0

0 0 1 0

0 1 0 0

PROGRAMMABLE LOGIC DEVICES 229

A B C ¦ 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

since the PLA contains three outputs and the majority function is a single
output function. The schematic of the programmed PLA is shown in
Figure 6.5.2. Note that the PLA realizes the function in canonical sum form
and not minimized form. This was done since the remaining AND gates
were not used. The upper AND gate realizes ABC; the remaining AND gates
realize the other three minterms. The output of the majority function is
measured at the ƒ1 output of the PLA. Note that the outputs of each of the
remaining AND gates is 0.

FIGURE 6.5.1

Sample schematic of a programmable Logic Array (PLA)

230 DIGITAL DESIGN AND COMPUTER ORGANIZATION

To simplify presentations, the PLA given above is presented in a different form
and is based on the notation given in Figure 6.5.3; part (b) of the figure is an
alternative representation of part (a). In this representation, the AND gate is
represented with a single input. A crossing of an input line with the AND gate
input represents an input to the AND gate if an × (represents a programmable
connection) or an • (represents a permanent connection, see Figure 6.6.1) is

FIGURE 6.5.2

Design of majority function using a PLA

PROGRAMMABLE LOGIC DEVICES 231

placed at the intersection. To illustrate, the PLA given in Figure 6.5.1 is
presented as shown in Figure 6.5.4.
In the diagram, the columns represent the AND array. An×placed on intersecting
lines represents a programmed connection. Initially, all inputs are connected to

FIGURE 6.5.3

(a) 3-Input AND Gate, (b) Alternative Representation

FIGURE 6.5.4

Reconstructed PLA of That Given in Figure 6.5.2

232 DIGITAL DESIGN AND COMPUTER ORGANIZATION

the inputs of each AND gate. For the OR array, all AND outputs are connected to
each of the OR arrays.

Example 6.5.2

Show the design of a 1-bit full adder with inputs A, B, and C, using a PLA with
seven AND gates in the AND array and three OR gates in the OR array.

Solution: The equations for the full adder are
Co(A,B,C)=∑(m3,m5,m6,m7)=∑(3,5,6,7)

and
S(A,B,C)=∑(m1,m2,m4,m7)=∑(1,2,4,7)

As can be seen from the equations, in the AND array we need to generate the
seven product terms. Of these, minterm m7 is common to both functions. Once
these terms are generated, the next step is to generate the needed connections in
the OR array. The design is shown Figure 6.5.5.

TABLE 6.5.2

FIGURE 6.5.5

Design of a Full Adder Using PLAs

PROGRAMMABLE LOGIC DEVICES 233

Programming Table for the Full Adder with Minimized Carry Equation

Product Terms Inputs Outputs

A B Ci CoS

AB 1 1 – 10

BCi 1 – 1 10

ACi – 1 1 10

A�B’Ci 0 0 1 01

A�BCi 0 1 0 01

AB�Ci 1 0 0 01

ABCi 1 1 1 01

An alternative design is to first minimize the functions at hand. Here,
however, the alternative design does not yield a better design as the number of
terms needed remains the same. (The sum equation cannot be minimized and the
carry equation can be minimized to C(A,B,Ci)=BCi+ACi+AB). In both cases, the
number of product terms needed is seven.

When using PLAs, it is less important to minimize the number of literals in a
product term than it is to reduce the number of product terms. Reducing the
number of product terms results in the use of less AND gates to design a
function. Reducing the number of literals does not contribute to the overall
saving since all AND gates are designed (programmed) to be connected to all
possible inputs.

6.5.3
Tabular Description

The description of the design can be supplied in tabular form (programming
table). The programming table for the full adder with minimized carry equation
is given in Table 6.5.2. The table is formed as follows:

1. The number of rows in the table is equal to the number of product terms
found in the sum of product representation of the functions to be designed.
The product terms found in different functions are listed once in the table
since these terms can be shared.

2. With each product term, we associate a string of symbols from the set {0, 1,
-}. The string length is equal to the number of variables. For a given product
term, the corresponding symbols of the string are set to 1, 0, or -. If a
variable is absent from the product, then the corresponding location in the
string is set to “-”; otherwise, the location is set to 0 or 1, depending on the
variable in the product being complemented or uncomplemented,
respectively. In the above table, columns 1 and 2 contain the product terms
and the corresponding strings for the minimized 1-bit full adder equations.

234 DIGITAL DESIGN AND COMPUTER ORGANIZATION

3. The final column in the table contains a string of 0s and 1s. The number of bits
in the string is equal to the number of output functions of the PLA, with each
bit corresponding to a specific function. The bit assignment is 0 if the
corresponding product term is not used by the function; otherwise, the bit
assignment is 1.

Example 6.5.3

Form the PLA programming table for the circuit given in Figure 6.5.6.
Solution: The table contains seven rows (one row per product term or AND

gate). Column 1 of the table includes all product terms. The terms can be read
from the diagram as BC�, AB�C, A�BC, A�B�, A�C�, AB, and B�C�. Column 2
contains the binary assignment associated with each product term, as shown in
Table 6.5.3. Finally, column 3 contains three bit strings corresponding to the
three functions. Note that this column can be read from the circuit as well. For
example, row 1 of this column is read as 001, corresponding to the output of the
left-most AND gate (an×on the output of the gate

FIGURE 6.5.6

PLA Used in Example 6.5.3

PROGRAMMABLE LOGIC DEVICES 235

TABLE 6.5.3
Programming Table for Example 6.5.3

Product Terms Inputs Outputs

A B C f3 ¦ 2¦ 1

BC� – 1 0 0 01

AB�C 1 0 1 0 01

A�BC 0 1 1 0 10

A�B� 0 0 – 0 11

A�C 0 – 0 0 10

AB 1 1 – 1 10

B�C� – 0 0 0 10

and the line connected to the OR gate of ƒ1 is presented as 1). Similarly, the
last row is assigned 010.

6.5.4
AND-OR-NOT Design

For functions that assume values of 1 over a large portion of the set of inputs, the
canonical sum representation of the complement of the function contains less
product terms. For these functions, one can save on the number of AND gates if
the complement of the function is designed in the AND-OR array. To get the
correct output, however, one needs to complement the output of the PLA. As a
result, some PLDs contain additional circuitry used to complement the outputs
from the AND-OR array. For this, the circuits contain XOR gates at the outputs
of the OR array. One of the inputs of each of the XOR array is an output of an
OR gate output, Y. The second input, X, is a programmed input. If the input X is
0, then the XOR gate output is that of Y. If the programmed input is 1, however,
then the XOR outputs the complement of Y. We illustrate the design process in
the next example.

Example 6.5.4

Use a PLA to realize the design of a circuit with four inputs, A2, A1, B2, B1, and
with two outputs, F1 and F2. The inputs correspond to the two 2-bit numbers
A=A2A1 and B=E2B1. F1 assumes a value of 1 if and only if A is equal to B. F2

assumes a value of 1 if and only if the sum A+B is greater than or equal to 2.
Solution: The truth table for the above functions is given in Table 6.5.4.
Without minimization, the smallest possible number of product terms needed

is obtained by designing F1 and the complement function of F2. The OR gate for
F2 is then complemented to produce the correct output. The PLA chosen needs to
(1) have at least four inputs, (2) have at least six product terms, and (3) have at

236 DIGITAL DESIGN AND COMPUTER ORGANIZATION

least one XOR gate associated with one of the outputs. The design is shown in
Figure 6.5.7. Note the use of the XOR gates in the design.

TABLE 6.5.4
Truth Table of Example 6.5.4

A2 A1 B2 B1 F1 F2

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 1

0 0 1 1 0 1

0 1 0 0 0 0

0 1 0 1 1 1

0 1 1 0 0 1

0 1 1 1 0 1

1 0 0 0 0 1

1 0 0 1 0 1

1 0 1 0 1 1

1 0 1 1 0 1

1 1 0 0 0 1

1 1 0 1 0 1

1 1 1 0 0 1

1 1 1 1 1 1

6.6
Programmable Array Logic Devices

The cost of programmable logic devices is due to two factors: the cost of the
programmable switching elements and the cost of the gates in the device.
Programmable array logic (PAL®) devices are PLDs with the connections in the
OR array fixed (nonprogrammable). In addition, each AND gate is used as input
to a single OR gate, i.e., OR gates do not share product terms. This property
allows the minimization of Boolean functions independent of each other.
Figure 6.6.1 shows an example of a PAL. The connections to the OR array in the
figure are fixed (presented as solid circles). In addition, the OR gates do not
share common product terms. For some PALs, the OR gate’s output is fed back
as input terms to the AND gates. This is shown in the figure as well. The table
representation of a PAL is similar to that of a PLA with the OR array part
removed.

We illustrate the design and table formation on the 1-bit adder equations. From
earlier discussion the canonical sum representation:
Co(A,B,C)=∑(m3,m5,m6,m7)=∑(3,5,6,7) S(A,B,C)=∑(m1,m2,m4,m7)=∑(1,2,4,7)

PROGRAMMABLE LOGIC DEVICES 237

With the carry equation reduced to Co(A,B,C)=AB+BC+AC, the PAL design is
shown in Figure 6.6.2. Note the need to use one of the OR gates to form the sum
equations as the sum requires four product terms. In particular, we use the second
OR gate to form the expression A�B�C+A�BC+AB�C. This sum then is fed back to
the AND array. The expression and the product term ABC are then OR-ed
together to form the sum equation, S=A�B�C+ A�BC+AB�C+ABC, as the output of
the top OR gate.

The table associated with the above design is given in Table 6.6.1. In the
table, we associated numbers with the product terms and separated them into
groups based on the corresponding OR gates’ inputs. In addition, since

TABLE 6.6.1
Programming Table of PAL Design in Figure 6.6.2

Gate, Product AND Inputs

A B C f2 ¦ 3 OR Outputs

1 AB 1 1 – – – ƒ3=AB+BC+AC

2 BC – 1 1 – –

3 AC 1 – 1 – –

FIGURE 6.5.7

PLA Design of Example 6.5.4

238 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Gate, Product AND Inputs

A B C f2 ¦ 3 OR Outputs

4 A�B�C 0 0 1 – – ƒ2=� (m1,m2,m4)=� (l,2,4)

5 A�BC� 0 1 0 – –

6 AB�C� 1 0 0 – –

7 ABC 1 1 1 – – ƒ1=� (m1,m2,m4,m7)=� (1,2,4,7)

8 ƒ2 – – – 1 –

some of the OR outputs are used as inputs in the AND array F, these functions
are included as part of the product terms. We illustrate by referring to the first
row of the table. For this row, the gate that forms the product is gate 1 (column 1
of the table). The product term is AB and the AND inputs are given as (11---).
The OR output is the logical OR of the three product terms, as shown in the
figure.

FIGURE 6.6.1

An Example of a PAL Circuit

PROGRAMMABLE LOGIC DEVICES 239

6.7
Read-Only Memory

Read-only memory (ROM) circuits are among the oldest programmable logic
devices. In PLA design, both the AND and the OR arrays are programmable. In
PAL, the OR array connections were fixed but the AND array was
programmable. In ROM, the AND array connections are fixed and the OR array
connections are programmable. Furthermore, the AND array connections output
all minterms associated with the inputs, i.e., the AND array is a decoder. Finally,
in general there is no feedback from the OR array to the AND array and there are
no inversion circuits at the outputs. From the description of ROM devices, one
can model the design as shown in Figure 6.7.1. An example schematic of a ROM
with three inputs and six OR gates in the OR array is given in Figure 6.7.2. As
can be seen from the figure, the top part of the figure is a 3-to-8 decoder with
permanent connections. The OR array is programmable.

To design functions using a ROM device, the function is represented in
canonical sum form. This is equivalent to generating the needed truth tables of

FIGURE 6.6.2

Design of a 1-Bit Adder Using the PAL circuit given in Figure 6.6.1

240 DIGITAL DESIGN AND COMPUTER ORGANIZATION

the functions. From the truth table, one can establish the needed connections in
the OR array. As a result, no minimization procedure is needed to complete the
design. This is an advantage; the disadvantage, however, is the number of AND
gates found in ROM circuits.

As an example, we illustrate the design procedure using the the functions as an
example:

In order to design the above functions using a ROM device, we first write the
equations in canonical sum form to get

FIGURE 6.7.1

ROM Block Diagram

PROGRAMMABLE LOGIC DEVICES 241

We next design the circuit for the above functions by selectively connecting the
needed minterms associated with each function as shown in Figure 6.7.3.

Note that the design requires a ROM with a 3-to-8 binary decoder. In addition,
the OR array requires at least three OR gates. Finally, note that there is no need
to minimize a given function to design it using ROM. In fact, the function should
be expanded to its canonical sum form.

6.8
Diodes and Programmable Logic Devices

This section is intended to illustrate how programmable logic devices can be
designed at the transistor level. For simplicity, we discuss the design using
diodes and present the discussion in a conceptual fashion. We first consider
diode design.

FIGURE 6.7.2

ROM Gate Representation

242 DIGITAL DESIGN AND COMPUTER ORGANIZATION

6.8.1
Diodes

Similar to transistors, diodes are electrical elements whose design is based on
semiconductors. Programmable logic devices can be designed using transistor
switches as well as diodes.

The schematic of a diode is shown in Figure 6.8.1. As can be seen from
Figure 6.8.1(a), the diode is composed of two types of semiconductors: a P type
and an N type. By properly connecting the two sides of the diodes to voltage
sources, the diode can function in one of two different modes. In one mode, the P
side is attached to a positive voltage as compared to the negative side, N. In this
mode, the diode conducts electricity and is said to be forward-biased. The
voltage drop across the diode is minimal and can be approximated as 0 V. In the
second mode, the negative side (N) is connected to a higher voltage than the
positive side. In this mode, the diode is said to be reverse-biased and does not
conduct electricity but behaves as an open switch. The graphic symbol of a diode
is shown in Figure 6.8.1(b).

We illustrate the use of diodes in the design of the three logic operations
(NOT, AND, and OR). Consider the three circuits shown in Figure 6.8.2.
The inputs to the circuits in the figure are controlled by a switch and labeled A

FIGURE 6.7.3

Design of ƒ1(A3,A2,A1)=A3A1+� 2A1, ƒ2=A3A2, and ƒ3=� (0,1,2,7). Using ROM Circuits

PROGRAMMABLE LOGIC DEVICES 243

and B; depending on the position of the switch, the input is connected to logic 1
(Vcc) or logic 0 (ground). The output to the circuit is measured by the indicator
as shown and is labeled V0.

If A is connected to Vcc (logic 1) in Figure 6.8.2(a), then the diode is in
reverse-bias. As a result, there is no current flowing in the 1-k � resistor and the
output assumes a value of 1. Similarly, if the input is connected to logic 0
(ground), then the diode is in forward bias, i.e., the diode is in the conducting
mode and the voltage drop across the diode is approximately 0. In other words the
output is at logic value 0 V. From the discussion, the circuit in Figure 6.8.2(a) is
a diode design of an inverter.

If both A and B are connected to Vcc in Figure 6.8.2(b), then both diodes are in
reverse-bias and no current passes through the 1-k � resistor, i.e., the output is
equal to Vcc. If either input is connected to ground, however, then the
corresponding diode is in the forward-bias mode, causing a voltage drop of 0
across the diode, i.e., the output voltage is 0. The circuit in Figure 6.8.2(b)
therefore is that of an AND gate.

Similar analysis can be applied to the circuit in Figure 6.8.2(c); the design is
that of an OR gate.

FIGURE 6.8.1

(a) Schematic of a Diode, (b) Graphic Symbol

FIGURE 6.8.2

Diode Design of Logic Operations, (a) NOT Gate, (b) AND Gate, (c) OR Gate

244 DIGITAL DESIGN AND COMPUTER ORGANIZATION

6.8.2
Programmable Logic Devices

We discuss the diode implementation of programmable logic devices by
referring to Figure 6.8.3. We look at the column labeled Output 1. What does
this part of the circuit do? In answering this question, we note that the output is
connected to Vcc through the 1-k � resistor. We also note that along the path of
Vcc to the output we have four diodes with one end of each diode connected to
the path and the other end connected to one of the inputs. If none of the inputs is
connected to logic 0 (i.e., the value of each input is 1), then none of the diodes is
in forward-bias mode. As a result, there is no current that flows through the path
and Output 1 assumes the value of Vcc. If any of the inputs assume a value of 0,
however, then the corresponding diode is in forward bias. As a result, the voltage
across the conducting diode assumes a value of 0, and as a result, the output
assumes a value of 0. The above discussion indicates that Output 1 is the logical
AND of the four input variables. Similar analysis results in each of the remaining
outputs acting as the logical AND of the four input variables as well.

Now, consider the modified circuit shown in Figure 6.8.4. What does this
circuit do? In answering this question, we note that it is similar to the circuit
presented earlier. The difference with regard to Output 1 is as follows. The
connection of the diode to input D is removed. As a result, input D does not
affect the value of Output 1 and Output 1 is now a realization of the product ABC.
By observation, similar notes can be made about Output 2, Output 3, and Output
4.

FIGURE 6.8.3

Design of an AND Array, Each Output Is the AND of the Four Input Variables

PROGRAMMABLE LOGIC DEVICES 245

The above discussion illustrates the concept of programmable devices. The
device to be programmed is the original device with all diode connections made.
Programming the device means translating the specification of a circuit to be
designed into a binary pattern that can be used to remove (program) diode
connections. Since the structure is a realization of AND gates and since it is
organized in an array fashion, the circuit structure is called an AND array.

Devices such as AND arrays can be manufactured in mass quantities
independent of a specific design. The same generic device can then be
programmed to satisfy the realization of a specific Boolean function. The
programming can be done by the manufacturer on the generic design or it can be
done by the end user. In the latter case, the device is called field-programmable.
In either case, special tools are used to break the established diode connections.
Finally, some field-programmable devices are designs that allow the device to be
reprogrammed. Here, special tools are used to establish new connections and/or
remove old connections.

6.8.3
Diode Design of Programmable Logic Arrays

The simplified presentations of PLAs, used earlier, can be related to the diode
design shown in Figure 6.8.5. The diagram contains two arrays: the AND array

FIGURE 6.8.4

Programmable AND Array

246 DIGITAL DESIGN AND COMPUTER ORGANIZATION

as discussed earlier and the OR array, composed of a single set of diodes
connected in row order, as shown in the diagram. The output of each row
constitutes the output of one of the OR gates. As a result of the discussion, the
number of columns in the diagram constitutes the number of AND gates. In the
diagram, the AND array contains four AND gates. Similarly, the number of rows
is equal to the number of OR gates. Note that this array of OR gates contains
switches that can be programmed using the Electronics Workbench.

Chapter 6
Exercises

6.1 Given the function ƒ(A, B, C)=� (0, 1, 4, 5). Design the function
using a 3-to-8 binary decoder with minterms as the decoder’s outputs.
6.2 Design the function given above using a 3-to-8 decoder with
maxterms as the decoder outputs.

FIGURE 6.8.5

Diode Design of a PLA

PROGRAMMABLE LOGIC DEVICES 247

6.3 Design the function ƒ(A, B, C)=A+BC using a 3-to-8 decoder.
6.4 Show the design of the function ƒ(x)=x2+x+1 where x is a decimal
number between 0 and 7 inclusive. Use a design procedure similar to
the procedure given in Example 6.1.2.
6.5 Show the design of a 2-bit binary adder using a 4-to-16 decoder.
6.6 Show the design of a 2-bit magnitude comparator using a 4-to-16
decoder.
6.7 Design a 4-to-16 decoder using 2-to-4 decoders with enable lines.
6.8 Show the design of the function in problem 6.1 using an 8-to-1
multiplexer.
6.9 Show the design of the function in problem 6.1 using a 4-to-1
multiplexer.
6.10 Design a 1-bit full adder using 8-to-1 multiplexers.
6.11 Design a 1-bit full subtractor using a 4-to-1 multiplexer.
6.12 Construct the truth table for a 2-bit binary subtractor and show the
design of the function using a PLA of the proper size. If needed,
minimize the function to reduce the total number of product terms.
Construct the tabular representation (programming table) of the design.
6.13 Show the design of a 2-bit full adder using a PLA with AND-OR-
NOT construct. Form the programming table of the design.
6.14 Show the design of a 1-bit full subtractor using a PAL of the
proper size.
6.15 Show the design of a 2-bit magnitude comparator of a PAL with
the proper size.
6.16 Form the design of a 2-bit magnitude comparator using a PAL
with the three inputs to each of the OR gates in the OR plane. Form the
number of feedbacks required to accomplish the design. Before the
design, if possible, minimize the number of product terms first.
6.17 Show the design of the 2-bit magnitude comparator using a ROM
of the proper size.
6.18 Assume a committee of four members, A, B, C, and D, votes on a
specific task. The vote of each member is weighted by the number of
stocks he/she owns. Assume a vote of yes by member A has a weight
of 4. Similarly, assume the weights associated with a yes vote for each
of B, C and D is 3, 2, and 1, respectively.

(a) Model the above as a truth table. The inputs to the table are the
yes or no votes of the members. The output is the sum of the weights
of the yes votes represented in binary.

(b) Design the function using a PLA of the proper size.
(c) Design the function using a PLA with AND-OR-NOT

structure.
(d) Design the circuit with a PAL of the proper size.
(e) Design the function using a PAL with 3-input OR gates. Form

the needed feedback from the OR array to the AND array.

248 DIGITAL DESIGN AND COMPUTER ORGANIZATION

6.19 Form the programming table of each part of problem 6.18.

PROGRAMMABLE LOGIC DEVICES 249

7
Flip-flops and Analysis of Sequential Circuits

CONTENTS

7.1 Latches 252

7.1.1 Feedback Loops 252

7.1.2 SR Latches 253

7.2 Behavioral Description 256

7.2.1 Characteristic Table 256

7.2.2 Characteristic Equations 257

7.2.3 State Diagrams 257

7.2.4 Timing Diagrams 258

7.3 Other Primitive Latches 259

7.3.1 Characteristic Tables of the Three Latches 261

7.3.2 The Characteristic Equations 261

7.3.3 The State Diagrams 262

7.4 The Latches Gate Design 262

7.4.1 D Latch Design 262

7.4.2 The JK Latch 262

7.4.3 The T Latch 265

7.5 Gated Latches 265

7.6 Flip-Flops 268

7.6.1 Asynchronous and Synchronous Circuits 268

7.6.2 Master-Slave Flip-Flops 271

7.7 Glitches and Ones-Catching 271

7.8 Edge-Triggered Flip-Flops 274

7.8.1 Asynchronous Preset 274

7.8.2 Clock Value Equal to 1 276

7.8.3 Clock Makes a Transition from 1 to 0 277

7.8.4 Clock Value Is 0 277

7.8.5 Clock Makes Transition from 0 to 1 278

7.9 Block Diagrams and Timing Constraints 279

7.9.1 Timing Constraints 280

7.10 Analysis of Sequential Circuits 281

7.10.1 Sequential Circuits Block Diagram Model 283

7.10.2 Characteristic Equations 284

7.10.3 Characteristic or State Table Construction 286

7.10.4 State Diagrams 286

7.10.5 Timing Diagrams 289

7.10.6 Alternative Representations of State Tables 293

Chapter 7 Exercises 294
The previous chapters dealt with modeling and design of combinational

circuits. Digital logic circuits can be characterized broadly as combinational or
as sequential. In combinational circuits, the output of the circuit is a function of
its current inputs only, irrespective of the previous inputs applied to the circuit.
The behavior of combinational circuits can be described using truth tables or
Boolean functions, for example. The description using either form shows the
circuit response is a function of the current inputs only.

DIGITAL DESIGN AND COMPUTER ORGANIZATION 251

Not all digital circuits are combinational in nature as the behavior of some
circuits depends not only on the current input, but also on previous inputs to the
circuit. These circuits are called sequential circuits. Consider the case of a soda
vending machine. The machine contains a digital circuit responsible for keeping
track of the amount of money entered for a each transaction (a transaction is the
input applied to obtain a can of soda). The circuit contains a single input (coin
deposit input). Its output (ignoring the change output) is a signal to release/
unrelease a can of soda. The circuit is sequential as the output depends on the
coin entered currently as well as previous inputs. For example, on the same input
of 25 cents the machine may release a can or wait for additional coins, depending
on the previous inputs.

In this chapter, we discuss the primitive building blocks of sequential circuits
and methods to describe (analyze) these circuits. The remaining chapters use the
primitive sequential circuits as building blocks in the design and analysis of
circuits found in digital computers. We start our discussion with latches.

7.1
Latches

7.1.1
Feedback Loops

In digital design, memory can be obtained using feedback loops where outputs of
gates are fed back as inputs. To illustrate, consider the cross-coupled circuit
diagram shown in Figure 7.1.1 (by cross-coupled we mean that the output of
each gate is used as an input to the other gate). The circuit has no inputs but
illustrates the fact that a binary value (placed in the circuit in some fashion) will
be stored in the circuit indefinitely (as long as the power is on).

For example, if the output at Q is equal to 1, then due to the bottom inverter
this output is converted to 0 on the output of the bottom inverter, which in turn is
converted back to 1 by the upper inverter. This situation is repeated indefinitely.
Note the use of the output labels Q and Q� to reflect the fact that one output is the
complement of the other.

FIGURE 7.1.1

Cross-Coupled Circuit

252 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

As another example, consider the circuit of an XOR gate with the output fed
back as one of the inputs to the XOR gate, as shown in Figure 7.1.2. The circuit
has a single external input and a single output. The circuit functions as a
sequential circuit, since on the application of the same input (x=1), the next
output alternates between 0 and 1, or vice versa. In other words, the next output
is a function of both the external input and current output.

We next discuss cross-coupled latches and see how the initial value to be
stored in the cross-coupled network can be supplied in different ways leading to
different types of latches.

7.1.2
SR Latches

A latch is a memory element that is used to store one bit of information. Latches
in sequential circuits are analogous to the primitive gates in combinational
circuits (AND, OR, NOT, etc.). We consider four types of latch memory
elements SR, D, JK, and T latches. All four latches have two outputs where a binary
bit and its complement are stored. The outputs are called Q and Q�. The number
of inputs to each latch is either one or two inputs (depending on the nature of the
latch) as indicated in Table 7.1.1. Columns 1, 2, 3, and 4 of the table represent,
respectively, the latch type, the number of inputs, the label of each input, and the
meaning of each input. Each of the four latches has two outputs, Q, and its
complement, Q�.

In the table, the terms “set” and “reset” mean to set an input/output to 1 or
reset it to 0. In this case, the value to be set (reset) is Q, the latch output.

TABLE 7.1.1
The Four Types of Latches Considered Are SR, D, JK, and T

Latch Number of Inputs Labels of Inputs Meaning

SR 2 S, R S=Set, R=Reset

D 1 D D=Delay

JK 2 J, K —

T 1 T T=Toggle

FIGURE 7.1.2

An Example of a Simple Sequential Circuit

DIGITAL DESIGN AND COMPUTER ORGANIZATION 253

We show the design and function of each of the four latches by presenting a
detailed discussion of the SR latch first. Other latches are built from
modifications to the design of the SR latch

Consider the circuit shown in Figure 7.1.3. The circuit is an SR latch
representing a 1-bit memory element. The contents of the memory element are
the lines with label Q and its complement Q�. By applying the proper inputs we
could store a 1 or 0 at the output Q. We will say more about what we mean by
“store” later.

To distinguish between the current and next value at the output Q, we use the
notation Q and Q+, respectively. Q and Q+ are measured at the same output but
at different times. In relative terms, Q is measured before Q+. Hence, if Q is the
current output, then Q+ is the next output. Similarly, if Q represents previous
output, then Q+ represents the current output.

In block diagram the circuit above is shown in Figure 7.1.4. Its inputs are S
and R; its outputs are Q and Q�, with Q� the complement of Q. The function of
the circuit can be determined from analysis of the gate representation above. In
the analysis we make use of the following observations:

1. For the NOR gates connected in a cross-coupled fashion, by applying a 1 to
one of the NOR inputs, the output is forced to 0, irrespective of the values
assumed by other inputs.

2. An application of 0 to one of the inputs of the NOR gates causes the gate to
behave as an inverter; its output is the complement of the other input.

3. We assume the propagation delays of the NOR gates are equal.

FIGURE 7.1.3

An SR Latch Circuit

FIGURE 7.1.4

Block Diagram of an SR Latch

254 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

Initially, we assume the current values of Q and Q� are not known. With an input
S=R=0, the latch circuit reduces to the equivalent cross-coupled inverter circuit
shown in Figure 7.1.5 with the outputs Q and Q� labeled “?” (not known). As a
result, if the current output Q� is the complement of Q, the stored value at Q is
unchanged, i.e., Q+=Q. The output remains unchanged as long as the input
values are unchanged. If, somehow, Q and Q� assume the same value, then the
output Q+ will be the complement of Q. Similar logic applies to Q�. As a result,
the outputs at Q and Q� continue to oscillate between 0 and 1 indefinitely
(assuming S=R=0). The oscillation is called critical race.

For an input of S=R=1, both next output values (Q+ and Q�+) are forced to 0,
irrespective of the current Q and Q� values. Latches require that the output at Q�
is the complement of the output at Q. As a result, for the SR latch we say that the
input S=R=1 is not allowed since it contradicts the condition of having the latch
outputs as complements of each other. In fact, if this input occurs followed by an
input of S=R=0, the latch will enter oscillation as discussed above.

There are two other cases to consider: (1) S=1 and R=0 and (2) S=0 and R=1.
We consider the case of S=1 and R=0, which corresponds to setting the latch
output. By “setting” we mean the output is 1 (store 1). On placing a 1 on S, the
output at Q� (Q�+) is forced to 0, irrespective of its current value (if the current
value is 0, then no change occurs). With R assuming a value of 0, the upper NOR
gate acts as an inverter. It inverts the value on Q� and, as a result, Q+=1. As can
be concluded, the next value stored at Q is 1, the latch is set. The S and R inputs
are an abbreviation of set and reset, respectively.

For the case of S=0 and R=1, a similar analysis results in the next state, Q+,
assuming a value of 0.

FIGURE 7.1.5

Effect of Assigning 0s to S and R

DIGITAL DESIGN AND COMPUTER ORGANIZATION 255

7.2
Behavioral Description

7.2.1
Characteristic Table

The behavior of an SR latch can be captured in a tabular form similar to the truth
table representation called a characteristic table, as shown in Table 7.2.1(a) and
(b). Note the difference as Q the current state (output) is used as part of the
input. The last two entries in Table 7.2.1(a) assign “?” to Q+, indicating the input
S=R=1 is not allowed. To illustrate how the table is read, consider the entry
SRQ=011. For this entry, the current state is Q=1 and the inputs are S=0 and R=1
From the table, the next state Q+=0. In generating the table we note that the state
Q represents the output of the circuit before the application of the inputs S and R.
The sequence of steps to generate the table is first to obtain the needed Q output,
and then apply the inputs S and R. The observed output constitutes Q+.

An abbreviated characteristic table can be obtained by using S and R in the
input columns as shown in Table 7.2.1(b) In the context of our earlier discussion
of memory elements, to leave the contents of memory unchanged (Q+=Q) we
keep the values of S and JR at 0. To store a 1, we assign 1 to S

TABLE 7.2.1
Characteristic Tables of an SR Latch

(a) (b)

SRQ Q+ SR Q+

000 0 00 Q

001 1 01 0

010 0 10 1

011 0 11 ?

100 1

101 1

110 ?

111 ?

and keep R at 0. Once a 1 is stored, S can be reset to 0. Finally, to store a 0, we
assign a 1 to R and keep S at 0. We use the term “store” in the discussion since
on the input S=R=0 the output at Q remains unchanged, i.e., this value is stored
at Q. Note that this condition is not possible in combinational circuits. In
combinational circuits, on the same input S=R=0 the output at Q will be either
always 0 or always 1!

To summarize, from Table 7.2.1(b) during normal mode, the inputs S and R
assume a value of 0. To store a 1 in the latch, we temporarily change the inputs

256 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

from the normal mode values by setting S to 1 and resetting it back to the normal
mode of 0. Similarly, to store a 0 we repeat the two steps with input R
temporarily set to 1 instead.

7.2.2
Characteristic Equations

The characteristic equations of a sequential circuit are similar to Boolean
functions in combinational circuits. The characteristic equations, however, are a
function not only of external inputs but of current states as well. The
characteristic equation for an SR latch can be derived from the characteristic
table in a similar fashion to deriving Boolean functions from truth tables. For
example, the canonical sum representation of the SR next state equation is
determined from the table to be

Q+=m1+m4+m5 =S′R′Q+SR′Q′+SR′Q
The above equation gives the next, Q+, state value in terms of the current state,
Q, and the current inputs, S and R. The characteristic equation can be treated as a
Boolean function that can be minimized using standard procedures such as K-
maps or the tabular method, for example. Using K-maps, the equation can be
minimized to

Q+=S+R′Q
In the minimization, the entries corresponding to S=R=1 are treated as “don’t-
care” conditions. Note that given the characteristic equation above, one can
construct the characteristic table in a straightforward fashion by assigning all
possible values to the inputs and current states and, accordingly, determining the
next state value. For example, for S=1, R=0 and Q=0, we obtain

Q+=S+R′Q =1+1.0=1
This corresponds to the fifth entry in Table 7.2.1.

7.2.3
State Diagrams

We will discuss state diagram construction in the context of sequential circuit
analysis later in this chapter. For the SR latch and other latches, the state diagram

FIGURE 7.2.1

Partial State Diagram of an SR Latch

DIGITAL DESIGN AND COMPUTER ORGANIZATION 257

is composed of labeled nodes (circles). The label indicates the current/next output
of the latch Q. The nodes are connected with labeled directed edges. The edges
are labeled as well. Each edge is labeled with one of the latch input
combinations. We illustrate the construction of the diagram by considering
Figure 7.2.1. In the figure, the node labels are 0 and 1, corresponding to the
output of the latch. The edge labeled 10 corresponds to an input of SR=10 with
the current output 0 (the current output is the label of the node where the edge
starts). As can be seen from the figure, the edge destination is the node with label
1, indicating the next output is 1. Similarly, the node with label 0 and input 00
corresponds to the current Q value of 0 and the current SR input of 00. On this
input, the next output is 0 (Q+=Q). As a result, the edge in the diagram starts at
node 0 and loops back to 0.

When we apply the above to all possible inputs of an SR latch, the state
diagram will have two nodes (labels 0 and 1). From each node we process three
edges starting at each node. The labels of the edges are SR=00, 01, and 10. Note
that no edge with label 11 is processed since this input is not permitted on an SR
latch. Figure 7.2.2 shows the complete state diagram.

7.2.4
Timing Diagrams

We have used characteristic tables, characteristic equations, and state diagrams
to describe the behavior of the SR latch. The behavior of the latch can be
described using timing diagrams as well. In these diagrams, the horizontal axis
represents time. The vertical axis contains the timing waveforms of inputs and
outputs. We illustrate the timing diagram for an SR latch with NOR gates of
equal delays. Figure 7.2.3 shows an example timing diagram. In the diagram, the
inputs S and R assume one of two possible values, 0 or 1, as indicated by the top
two waveforms. The low part of the form indicates an assignment of 0.
Similarly, the high part of the waveform indicates an assignment of 1. In the
diagram, each of the NOR gates has a generic propagation delay � t, as shown.
The delay � t is measured from the time a change in the input occurs until the time

FIGURE 7.2.2

State Diagram of an SR Latch

258 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

the corresponding gate responds at its output. The illustration of the timing
diagram is captured in the text boxes of the figure. Note the oscillation as a result
of the application of the sequence SR=11 followed by SR=00.

We will revisit the above diagram in the discussion related to delays toward
the end of this chapter. Until then, we adopt a simpler timing diagram that
assumes the delay � t approaches 0. With this assumption, the response to the
inputs by the designated gates is assumed to be instantaneous. The modified
timing diagram is given in Figure 7.2.4. The description of the diagram is
captured in the text boxes as well.

7.3
Other Primitive Latches

We consider three additional types of latches (later we present a modification of
the latches design and call them flip-flops). Latches have two outputs, which are
called Q and its complement Q�. The number of inputs to the latches varies from
one to two inputs. The SR latch considered had two inputs, S (set) and R (reset).
The additional latches considered are (1) the D (Delay) latch, (2) the JK latch,

FIGURE 7.2.3

An Example Block Diagram

DIGITAL DESIGN AND COMPUTER ORGANIZATION 259

and (3) the T (toggle) latch. The number of inputs to each of the D and T latches
is one; the number of inputs to the JK latch is two. The labels to the inputs follow
the names of each latch; for example, the inputs to the JK latch are labeled J and
K. Figure 7.3.1 is a block diagram (also called logic symbol) of each of the
latches.

We first discuss the behavior of the three latches using the three forms: (1)
characteristic tables, (2) characteristic equations, and (3) state diagrams. We then
follow the discussion by analysis of the design of each.

TABLE 7.3.1
Characteristic Tables of SR and JK Latches

SRQ Q+ JKQ Q+

000 0 000 0

001 1 001 1

010 0 010 0

010 0 011 0

FIGURE 7.2.4

Timing Diagram of an SR Latch with the Delay � t Approaches Zero

FIGURE 7.3.1

Block Diagram (Also Called Logic Symbol) of Each of the Latches

260 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

SRQ Q+ JKQ Q+

100 1 100 1

101 1 101 1

110 ? 110 1

111 ? 111 0

TABLE 7.3.2
Characteristic Tables of T and D Latches

(a) (b)

TQ Q+ DQ Q+

00 0 00 0

01 1 01 0

10 1 10 1

11 0 11 1

7.3.1
Characteristic Tables of the Three Latches

In the previous section and the analysis of the SR latch, we found that the SR
latch does not function properly on the input S=R=1 (Q+ and Q�+ are equal,
which contradicts the condition that the outputs of the latch are the complements
of each other). The JK latch is obtained from an SR latch, with ƒ playing the role
of S and R playing the role of K. For the JK latch, an input of J=K=1 is allowed.
The characteristic tables for both SR and JK are shown in Table 7.3.1. Note the
similarity of both latches for the inputs 000 through 101. For the last two rows,
on the input ƒ=K=1, the next state Q+ is the complement of the current state Q.

The characteristic tables for the T and D latches are given in Table 7.3.2(a)
and (b), respectively. By inspecting the table entries, we note the following.

• For the T latch: An input of 0 leaves the contents of the latch unchanged (Q
+=Q); an input of 1, however, causes the next state to be the complement of
the current state.

• For the D latch: The next state (Q+) is equal to the input at D.

7.3.2
The Characteristic Equations

The characteristic equation of the three latches can be derived from their
characteristic tables using algebraic simplification or the K-map method, for
example. For the JK latch, the characteristic equation is found to be

Q+=m1+m4+m5+m6 =JQ′+K′Q
For the D latch, we obtain

DIGITAL DESIGN AND COMPUTER ORGANIZATION 261

Q+=D
And, for the T latch, we obtain

7.3.3
The State Diagrams

The state diagrams for the three latches JK, D, and T are shown in Figure 7.3.2.

7.4
The Latches Gate Design

The gate design for each of the four latches can be derived from the design of the
SR latch.

7.4.1
D Latch Design

From the characteristic table for the D latch, we see that the output Q+ is the same
as the input D. The circuit shown in Figure 7.4.1 uses an SR latch to implement a
D latch. The D input is used as an input into the S part of the SR latch. Its
complement is used as input into the R input of the SR latch.

For this circuit, an input of D=1 produces an S=1 and an R=0. This input
combination on the SR latch causes Q+ to be set to 1, irrespective of the previous
value of Q. Similarly, an input of D=0 results in the assignment S=0 and R=1,
which in turn causes Q+=0, irrespective of the previous value Q. The design is a
D latch since the table generated from the design is that of a D latch. In block
diagram, the design of a D latch from an SR latch is shown in Figure 7.4.2.

7.4.2
The JK Latch

The characteristic tables for the JK and SR latches are similar except for the last
two rows, as seen in Table 7.3.1. For these two inputs, SR=11 is not allowed for
the SR latch, and for the JK latch the output Q+ is equal to Q�. The design of the
JK latch makes use of this fact, as shown in Figure 7.4.3. As shown in the figure
the design uses an SR latch in its block diagram form.

In verifying the circuit above is that of a JK latch, we make use of the
characteristic table of the SR latch. We assign binary values to the J and K inputs
and propagate the inputs through the AND gates. The outputs of the AND gates
constitute the S and R inputs, which in turn determine the next output Q+. To
determine Q+, we refer to the SR latch table. The verification in tabular form is
given in Table 7.4.1. In the table, the Q+ output corresponds to the output of the

262 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

SR latch, which is also the JK latch output, as shown in the figure. We consider
the last row of the table for illustration. For this row, the external inputs J and K
are set to 1. In addition, the current output Q is set to 1. For these conditions, the
corresponding inputs to the SR latch are

S=JQ′=0
and

R=KQ=1
Since the inputs to the SR latch are SR=01, the output of the latch is Q+= 0 (this
follows from the characteristic table of the SR latch). Since this output

TABLE 7.4.1

FIGURE 7.3.2

State Diagrams for the Three Latches JK, D, and T Are, Respectively, Shown in Parts (a),
(b) and (c)

FIGURE 7.4.1

Circuit Design of a D Latch

DIGITAL DESIGN AND COMPUTER ORGANIZATION 263

Table Used in Determining Next Outputs of Figure 7.4.3

Inputs
JKQ

Resulting S and R values Output
Q+

S=JQ� R=KQ Q

000 0 0 0 0

001 0 0 1 1

010 0 0 0 0

011 0 1 1 0

100 1 0 0 1

101 0 0 1 1

110 1 0 0 1

111 0 1 1 0

is that of JK, we have Q+ for the equivalent JK latch is 0. Other rows in the table
are interpreted in a similar fashion. The procedure in determining Q+ of a JK
latch is an analysis procedure. We will formalize the procedure in the analysis part
of sequential circuits later in the chapter.

FIGURE 7.4.2

Block Diagram Design of a � Latch from an SR Latch.

FIGURE 7.4.3

Design of a JK Latch from an SR Latch

264 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

7.4.3
The T Latch

The T latch is obtained from the JK latch by connecting the input T to both of the
J and K inputs, as shown in Figure 7.4.4. An input T=0 will result in both inputs
J and K assuming a value of 0, and hence the output Q+ assumes the same value
of the previous output Q (Q+=Q). An input of T=1, however, results in JK=11
and, as a result, Q+=Q�. In block diagram, the design of a T latch from a JK latch
is shown in Figure 7.4.5.

7.5
Gated Latches

In the design of the latches shown earlier, the outputs to the latches could change
any time the inputs change, after accounting for delays through the gates. When
inputs to a latch directly affect the outputs, the outputs are called transparent. In
many cases, we would like the latch to respond to inputs during specific intervals
of time. During these intervals, the inputs are sampled by the latch in order to

FIGURE 7.4.4

Circuit Design of a T Latch from a JK Latch

FIGURE 7.4.5

Block Diagram of a JK Latch with T Latch Design

DIGITAL DESIGN AND COMPUTER ORGANIZATION 265

possibly change the output. This is done so as to synchronize the changes in a
sequential circuit with many memory elements.

One method to cause changes during specific instances of time is through an
additional input to create a gated latch or level sensitive latch. Figure 7.5.1
shows a gated SR latch. The additional input labeled C is used as follows: If C=0,
then changes in the input on S and R do not affect the outputs; if C=1, however,
the latch becomes transparent where changes in the input affect the output. In
effect, C can be thought of as the enable input to the latch.

In the normal mode (when no changes to the outputs are desired), the control
input C is set to 0.

TABLE 7.5.1
Characteristic Table of a Gated SR Latch

CSR Q+

0xx Q

100 Q

101 0

110 1

111 ?

The characteristic table for the gated SR latch above is given in Table 7.5.1. In
the table, when C= 0 then the values on S and R do not play a role in determining
the output and are effectively blocked from changing Q. In the table they are
represented by “x” as don’t-care conditions. The remaining three gated latches
can be constructed in a similar fashion, as shown in Figure 7.5.2. The block
diagram (logic symbol) representation of the gated latches is given in
Figure 7.5.3.

In general, the gated input, C, to the latch is called a clock. A clock is a
periodic square signal that changes between the logical values of 0 and 1 as a
function of time. In periodic signals, one associates the following. The period of

FIGURE 7.5.1

Circuit Design of a Gated SR Latch

266 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

the clock, T, is time of one cycle of the clock. The frequency, ƒ, is the number of
clock cycles per second with ƒ=1/T. The units of T is time, the units of ƒ is Hertz
(Hz) with 1 Hz=1 cycle per second. Figure 7.5.4 shows the schematic of a clock.
In digital design, we make use of the following:

• Rising edge of the clock is the edge where the clock changes value from 0 to 1
• Falling edge of the clock is the edge where the clock changes value from 1 to

0
• High level is the period of time the clock assumes a value of 1

FIGURE 7.5.2

Gated Latches, (a) JK, (b) T, (c) D

FIGURE 7.5.3

Block Diagram (Logic Symbol) Representation of the Gated Latches

DIGITAL DESIGN AND COMPUTER ORGANIZATION 267

• Low level of the clock is the period where the clock assumes a value of 0
• Duty cycle is the percentage of clock cycle time the clock assumes a value of

1

Figure 7.5.4 shows a schematic with these terms identified in the diagram. From
the figure, the period of the clock is 1/10 second and the frequency is 10 Hz. The
duty cycle is 50%. A schematic of the timing diagram of a gated SR latch is
shown in Figure 7.5.5.

In Figure 7.5.5, the clock controls the time interval the latch could respond to
changes in the input. During the low level parts of the clock, changes in the
inputs do no affect changes in the outputs. During the high level part of the clock,
input changes affect outputs. For the high level labeled 1 in the diagram, the
output changes two times. During the high level labeled 2 no changes take place
since the inputs keep the outputs the same. Finally, during the high level labeled
3 the outputs change three times.

7.6
Flip-Flops

7.6.1
Asynchronous and Synchronous Circuits

The previous discussion of gated latches imposes restrictions on when the
outputs can respond to inputs. As a result, many of the memory elements in a
sequential circuit can be activated during the same time intervals as dictated by a
master clock of the circuit. When the latch inputs are allowed to affect outputs
during specific instants of time, we say it is a synchronous latch. The latches in
the system are synchronized by the master clock. Non-gated latches are called

FIGURE 7.5.4

A Schematic of a Clock

268 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

asynchronous latches since the outputs of the latch are transparent (any changes
in the inputs could cause changes in the outputs). The synchronous gated latches
discussed are level-sensitive latches as the changes in the output can occur
during the high level of the clock (see Figure 7.5.5).

In synchronous circuits, it is desirable that, at most, one change in the output of
a latch occurs during a clock cycle. The clock is used to cause the selected
latches to make one change during the corresponding cycle. One method to
achieve this for the SR latch is to keep its inputs unchanged during the time the
clock assumes a value of 1. This is the case for Figure 7.5.5 and for the cycle
with label 2. It is not the case for the cycles with labels 1 and 3, however. For the
level-sensitive latches with changes occurring during the high level of the clock,
many changes are possible during the high level with the final change in state
(output) occurring near the falling edge of the clock.

The property of causing no more than one change to occur during a clock
cycle can be satisfied for the SR and D latches. This is done by keeping the
inputs unchanged (allow one change) during the high level of the clock, as
discussed. The property fails, however, when gated JK or T latches are used. To
illustrate, consider Figure 7.6.1.

From the design of the JK latch discussed earlier, the outputs Q and Q� are fed
back as inputs to the JK latch design (refer to JK latch design). Assume the time
delay from inputs to the outputs (at Q) is � t time units. On the input J=K=1 (in
the figure this occurs during the high level of clock cycle 1), the following takes
place. It takes � t time for the output at Q to change (to be complemented). Since
the clock is still at 1 and since J and K assume a value of 1, the new value of Q is

FIGURE 7.5.5

A Schematic of the Timing Diagram of a Gated SR Latch

DIGITAL DESIGN AND COMPUTER ORGANIZATION 269

fed back and processed through the JK latch. At � t time later, the Q value at the
output is complemented again. This pattern continues as long as the input
conditions do not change and the clock input is 1. This pattern of oscillation
occurs during the first cycle of the clock. Its period is 2� t.

One method to solve the above problem is to use two latches to break the
feedback that causes the oscillation. The combination of the two latches used in
the design is called master-slave flip-flop. We will discuss master-slave flip-
flops next.

FIGURE 7.6.1

A Timing Diagram Showing Many Changes in JK During 1 Clock Cycle

FIGURE 7.6.2

A Circuit Design of a Master-Slave Flip-Flop

270 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

7.6.2
Master-Slave Flip-Flops

The design of a master-slave flip-flop is composed of two latches. The outputs of
the first latch (called the master) are connected to the inputs of the second latch
(called the slave). The slave latch acts a D latch. Its function is to pass the master
output when activated by the clock. To break the feedback loop from outputs to
inputs, only one of the latches is activated at any instant of time. We illustrate the
design of a JK master-slave flip-flop, as shown in Figure 7.6.2.

In Figure 7.6.2, the first SR latch acts as the master latch. The second latch
acts as the slave. As seen from the figure, the slave latch acts as a D latch (its
inputs are Qm and its complement Qm’ as shown in the figure). Both are gated
latches, with the slave latch activated during the low level of the clock and the
master latch activated during the high level of the clock. Inputs are applied to the
master latch and outputs are measured at the slave latch. The outputs of the
master and inputs of the slave are internal to the design. One of the two latches is
on at any time. In the figure, when clock=1, the master is on and the slave is off.
Similarly, when clock=0, the master is off and the slave is on. We will discuss
the function of the above circuit in the context of the timing diagram shown in
Figure 7.6.3.

The diagram is an extension of Figure 7.6.2 with the new outputs for the
master latch, Qm, and the slave latch, Qs, shown. The observed output is the
output of the slave latch Qs. As can be seen from the figure, the correct output of
the slave latch is made available at (or shortly after) the falling edge of the clock.
The oscillation problem is removed since at any instant of time only one of the
latches is on (for details, please refer to the text boxes of the figure). The master-
slave latch is pulse-triggered, since on the first transition of the clock (the leading
edge) the master latch is turned on. On the second transition of the clock (the
falling edge), the slave is turned on.

Similar to the design of a JK master-slave flip-flop, an SR, a D, and a T
master-slave flip-flop design requires the use of two latches. The design of a
master-slave SR latch in block diagram is shown in Figure 7.6.4 When forming
timing diagrams of a master-slave flip-flop, we consider changes in the diagram
at or shortly after the falling edge of the clock. No changes in the output take
place until the next falling edge of the clock, i.e., the timing diagram remains the
same over a clock cycle with the exception of a short interval that starts with the
falling edge of the clock.

7.7
Glitches and Ones-Catching

The construction of master-slave flip-flops solved the problem of oscillation
discussed earlier. The design, however, is incomplete due to a property called
ones-catching. We discuss ones-catching by discussing glitches.

DIGITAL DESIGN AND COMPUTER ORGANIZATION 271

A glitch is a pulse that is not part of the correct function of the circuit and is
caused by the design. A circuit is said to have a hazard if its design may result in
glitches. Glitches are side effects of physical designs that are not part the logical
behavior (truth table description) of a Boolean function. We illustrate glitches by
considering an arbitrary function

ƒ=ƒ1+ƒ2
The function is a logical OR of two Boolean functions ƒ1 and ƒ2. In terms of
design, the outputs of the circuits that realize the functions ƒ1 and ƒ2 can be used
as inputs to a single OR gate to realize the function ƒ. This is shown in
Figure 7.7.1. Assume the circuits of ƒ1 and ƒ2 have propagation delays d1 and d2

with d1<d2. An input assignment that causes ƒ1 to change from 1 to 0, and ƒ2 to
change from 0 to 1 should keep the value of ƒ unchanged. However, since ƒ1

changes to 0 faster than ƒ2 changes to 1, the inputs to the OR gates assume a
value of 0 for a short duration of time and, as a result, the output is incorrectly
set to 0 during this period of time.

Figure 7.7.2 shows a timing diagram that illustrates this. In the figure, the
common input to both circuits occurs at time t. The difference in propagation
delays is shown in the figure as well. Note the temporary wrong output of 0; the

FIGURE 7.6.3

Timing Diagram of a Master-Slave Flip-Flop

272 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

circuit is said to have static-zero hazard (a temporary unwanted glitch of 0
occurs). A circuit is said to have static-one hazard when a temporary unwanted
glitch of 1 occurs due to change in the input assignment. The complement of the
function ƒ, ƒ� with the above restrictions produces a static-one hazard.

Glitches may cause problems when using JK master-slave flip-flops. Assume
the output of ƒ� is used as the J input of a master-slave flip-flop; we use timing
diagrams to show the effect of the above-described glitch. The timing diagram is
given in Figure 7.7.3.

In the figure, the short pulses on the J signal represent glitches caused by the
hardware, i.e., the actual input should be J=0 and K=0. The output should not
change and remain at 0, as shown in the figure. Due to the glitches, however, the
output incorrectly stores a value of 1. From the diagram, the first glitch occurs
during the high level of the clock where the master is turned on. During this
time, the master reads a 1 on J and a 0 on K. As a result, its output is set to 1.
Following the glitch, this value is not changed since both J and K assume a value
of 0. Shortly after the falling edge of the clock, this value is moved to the slave,

FIGURE 7.6.4

Design of a Master Slave SR Latch in Block Diagram

FIGURE 7.7.1

Circuits for ƒ1 and ƒ2 Have Different Delays d1 and d2 with d1<d2

DIGITAL DESIGN AND COMPUTER ORGANIZATION 273

i.e., Qs=1! Note that the second glitch does not affect the circuit since it occurs
while the master latch is off.

7.8
Edge-Triggered Flip-Flops

The above property is not present in edge-triggered flip-flops. In edge-triggered
flip-flops the changes in output occur during the falling (or the rising) edge of the
clock. In the design, there is no master latch that is turned on for half of a clock
cycle. The diagram in Figure 7.8.1 is used to describe edge-triggered flip-flops.
We will consider the concept of asynchronous preset first.

7.8.1
Asynchronous Preset

The diagram is composed of three SR latches. The output of the edge-triggered
flip-flop is that of latch 3, as shown. The input line with label preset is used to
force the output of the flip-flop to the value of 1 (output of gate 5) independent
of the clock and other input values. To illustrate, on the input of preset=1, the
outputs of the NOR gates with preset as one of the inputs are forced to 0. Hence,
the inputs to latch 3 from latch 1 and latch 2 assume a value of 0 (outputs of
gates 2 and 3 are forced to 0). In addition, the lower NOR gate (6) of latch 3 is

FIGURE 7.7.2

A Timing Schematic of a Glitch

274 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

forced to 0 since preset is used as an input to this NOR gate as well. The inputs
and outputs to latch 3 are shown in Figure 7.8.2.

The values in the figure are obtained independent of the values on other lines
of the circuit. From the diagram, the output at Q assumes a value of 1 since the
inputs to the upper NOR gate are both 0. As a result, the output of the circuit is
set asynchronously to 1. The first row in Table 7.8.1 corresponds to the above
discussion. In the table, an x entry means the value of the variable does not play
a role in determining the output, i.e., x can be set to either 0 or 1.

During the normal operation of the circuit, the preset input is assigned the
value of 0. With the preset input assigned a value of 0, the function of the NOR
gates depends on the remaining inputs only since (x+y+0)�=x�y�. As a result, for
the remaining part of the analysis, we ignore the preset input since its value is set
to 0. We will discuss asynchronous preset, however, later in this chapter and in
the next chapter.

TABLE 7.8.1
Early Triggered Flip-Flop of Figure 7.8.1

Preset D C Q+

1 x x 1

0 x 1 Q

0 0 � 0

0 1 � 1

0 x 0 Q

0 x � Q

FIGURE 7.7.3

Timing Diagram Showing Ones Catching Property

DIGITAL DESIGN AND COMPUTER ORGANIZATION 275

Preset D C Q+

� represents falling edge;
� represents rising edge.

We analyze the circuit while the clock input assumes a value of 1, a value of 0,
and on transitions from 1 to 0 or 0 to 1.

7.8.2
Clock Value Equal to 1

When the clock input C is equal to 1, the inputs to latch 3 are forced to 0 as
discussed above for the case of the preset input. Since latch 3 is an SR latch,
SR=00 leaves the contents of the latch unchanged. This is shown in row 2 of the
table. In addition, the lower NOR gate of latch 2 (gate 4 in Figure 7.8.1) is set to
the complement of the input D, D� (recall since one of the inputs to the lower

FIGURE 7.8.1

Schematic of an Edge-Triggered D Flip-Flop

276 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

gate is 0, the gate complements the other input). By tracing this output, we note
that it is used as an input to the top NOR gate (gate 1) of latch 1. The other input
to the gate assumes a value of 0. As a result, the output of the top NOR gate is D.

7.8.3
Clock Makes a Transition from 1 to 0

With the above conditions, as the clock makes a transition from 1 to 0, the lower
NOR gate (gate 2) in latch 1 behaves as an inverter of the top NOR gate. Hence,
its output is D�. Thus the inputs to the upper NOR gate of latch 2 (gate 3) are D�,
D�, and 0, which makes the output of this NOR gate equal to D. These values are
used as inputs to latch 3, which results in Q+=D. In rows 3 and 4 of Table 7.8.1,
i.e., on the falling edge of the clock, the input value D is stored in the flip-flop.
The symbol � represents the falling edge of the clock.

7.8.4
Clock Value Is 0

When the clock value is 0, the above condition stated during the falling edge of
the clock remains, i.e., the outputs of the NOR gates for latch 1 and latch 2 from
top to bottom remain D, D�, D, and D�, respectively. If during this phase the
input D changes, then the new value D is different from the old value D. Since
the lower NOR gate of latch 2 receives both the old and new value of D, its
output is forced to 0. This in turn forces one of the inputs of the top NOR gate of
latch 1 to 0. Since c=0, two of the inputs to the lower gate of latch 1(gate 2) 2)
assume a value of 0 (c=0 and preset=0). As a result, the top latch behaves as a
cross-coupled inverter that stores the old values of D and its complement, D�.
Similarly, the top NOR gate of latch 2 acts as an inverter that outputs D.
Figure 7.8.3 shows a schematic of the discussion.

The effect of changing the D value while the clock assumes a value of 0 is
summarized in Figure 7.8.4. The NOR gates were replaced with inverters based

FIGURE 7.8.2

Input Assignment to Latch 3 from Figure 7.8.1 on Asynchronous Preset

DIGITAL DESIGN AND COMPUTER ORGANIZATION 277

on the input conditions. As can be seen from the figure, the old values of D
remain on the inputs of latch 3 and, as a result, changes in D while the clock
assumes a value of 0 do not affect the outputs of the edge-triggered flip-flop.
Row 5 in Table 7.8.1 reflects this discussion.

7.8.5
Clock Makes Transition from 0 to 1

As the clock makes a transition from 0 to 1, the lower NOR gate of latch 1 and
the upper NOR gate of latch 2 (gates 2 and 3) are forced to 0 and, as a result, the
contents of the flip-flop remain unchanged. This is reflected in the sixth row of
Table 7.8.1.

From this discussion, over an entire clock cycle, the flip-flop changes states
during the falling edge of the clock only, i.e., the inputs to the flip-flop are
sampled at the falling (negative) edge of the clock to determine their effect on
the outputs.

FIGURE 7.8.3

Schematic of Latch 1 and Latch 2 of Figure 7.8.1 with Clock, C=0 and with D Changing

278 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

7.9
Block Diagrams and Timing Constraints

In this section, we present the block diagrams (or logic symbols) of the latches
and flip-flops discussed earlier. In addition, we discuss timing constraints on the
inputs imposed by actual designs. First, we summarize the results obtained.

In the discussion of latches and flip-flops, we considered when the outputs
sample the inputs as an important factor. In asynchronous latches, the outputs
continually sample the inputs and can change whenever the inputs change. Gated
latches are subject to change during specific time intervals (for example, the high
level of a clock). During this interval, the latch outputs continually sample the
inputs and change accordingly.

Both types of latches cause oscillation. To remove oscillation, we used master-
slave flip-flops in which the master samples the inputs during the high (or low
level) of the clock. The output, however, is seen at the falling edge (or rising
edge) of the clock. The design of a master-slave flip-flop removed the problem
of oscillation but the design included a ones-catching property. To remove the
ones-catching property, we use edge-triggered flip-flops in which the outputs
sample inputs during the falling (or rising) edge of the clock only.

We use different logic symbols to distinguish between the different types of
latches and flip-flops, as shown in Figure 7.9.1. In Figure 7.9.1 (a), we see the
logic symbol of a D latch. We introduce a small bubble to represent the
complement of Q. The bubble interpretation depends on its use with the
associated signal as follows in the discussion. Figure 7.9.1(b) shows the logic
symbol of a gated D latch. The enable input to the latch is shown as C.
Figure 7.9.1(c) shows the logic symbol of a master-slave flip-flop. Note the use

FIGURE 7.8.4

Figure 7.8.3 Redrawn with the NOR Gates Replaced by Inverters

DIGITAL DESIGN AND COMPUTER ORGANIZATION 279

of the pulse symbol by the outputs; the symbol indicates the slave outputs are
present on the falling edge of the clock. To represent a master-slave latch with
outputs changing on the rising edge of the clock, we replace the above symbol
with a.

Figure 7.9.1(d) and (e) represent the logic symbols for edge-triggered D flip-
flop. In both cases, we use the triangular shape by the clock input to indicate the
flip-flop is an edge-triggered flip-flop. The absence of a bubble indicates the flip-
flop is sampled at the rising (positive) edge of the clock. A bubble in front of the
clock indicates that the flip-flop is sampled on the falling (negative) edge of the
clock.

In Figure 7.9.1(e), the additional inputs with labels “preset” and “clear”
represent asynchronous preset and clear inputs. For the preset input, the presence
of a bubble indicates that in order to preset the latch output to a value of 1, this
input should be assigned a value of 0. For the clear input, in order to
asynchronously clear the input to 0, the input is assigned a value of 1. Finally, in
order for the flip-flop in Figure 7.9.1(e) to function in normal mode (as
intended), the preset and clear inputs should have no effect (preset is assigned a
value of 1 and clear is assigned a value of 0).

The above diagram can be used to construct the logic symbols of the
remaining latches and flip-flops. For each latch or flip-flop, we replace the D
input with the proper latch or flip-flop inputs.

7.9.1
Timing Constraints

From an actual design point of view, the responses of latches to input signals
must conform to the following constraints:

1. Setup time, tsu, is the minimum time window the input signal should remain
unchanged before it is sampled.

2. Hold time, th, is the minimum time window where the input should not
change after it is sampled.

FIGURE 7.9.1

Logic Symbols of Latches with Different Input/Output Notation

280 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

The two times ensure that the input does affect the outputs as intended. The
times are a result of the propagation delays and feedback loops found in the
design of the latches and the flip-flops.

We use Figure 7.9.2 to show a sample timing diagram with the timing
constraints included. In the figure, we assume the changes in the memory elements
(flip-flops) occur at the falling edge of the clock. As a result, the times given are
relative to the falling edge event.

From the figure, assuming the falling edge occurs at time t, the D input remains
unchanged in the time window t−tsu to t+th. Since the input satisfies the setup and
hold times indicated, the edge-triggered flip-flop responds to the input correctly
by storing 0 as the next output of the flip-flop. In general, this output is produced
after some time delay, as was discussed earlier.

With this discussion of the primitive memory elements of a sequential circuit,
we will next discuss the analysis aspects of sequential circuits; by “analysis,” we
mean determining the input output relation of the circuit.

7.10
Analysis of Sequential Circuits

Consider the circuit shown in Figure 7.10.1. What does this circuit do? This
question is similar to questions asked with regard to the analysis part of
combinational circuits, where the schematic of the circuit is given and the
functionality of the circuit is to be determined. In combinational circuits,
the primitive building blocks used were logic gates. In sequential circuits, the
primitive blocks used in the circuit include the logic gates and the flip-flops (or
latches) we discussed earlier.

For combinational circuits, the analysis part may involve the creation of a truth
table by applying inputs to the circuit and propagating the inputs through the
gates to determine the outputs. The analysis part of sequential circuits may use a
similar table, the characteristic or state table. An additional analogy to the

FIGURE 7.9.2

Sample Timing Diagram with the Timing Constraints

DIGITAL DESIGN AND COMPUTER ORGANIZATION 281

analysis of combinational circuits, sequential circuits analysis may involve the
computation of the external output equations as well as the next output equations
of its memory elements.

In the following discussion, we present some of the common forms of
analyzing sequential circuits:

• Characteristic or state table
• Characteristic equations
• State diagrams
• Timing diagram

Before we discuss the different representations, we first discuss the functionality
of the above circuit.

The circuit is composed of two D edge-triggered flip-flops. The input to each
flip-flop is the output of the other flip-flop in the circuit. We will assume the flip-
flops are master-slave flip-flops, with the master latch turned on during the low
level of the clock and the slave turned on during the high level of the clock.

For the circuit, the same clock signal is used as clock input to the two flip-
flops. As a result, when one of the master latches is turned on, the other master
latch is turned on as well, and both slave latches are turned off. Hence, during the
low level of the clock the master latches store the current latch outputs. When the
clock makes a transition from 0 to 1, both slave latches are turned on and both
master latches are turned off. In this transition, the stored values in the master
latches are moved to the outputs.

FIGURE 7.10.1

An Example of a Sequential Circuit

282 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

The timing diagram in Figure 7.10.2 is used as an illustration. Note on the first
clock transition the current state of each flip-flop is seen on the left of the
positive transition. The next state is seen on the right of the clock transition. From
the timing diagram, we note that the above circuit continually swaps the inputs
of the two latches on each positive clock transition. It is important to note that
the master latch processes the current outputs of slave latch, Q, and not the next
latch output, Q+.

We next formalize the analysis procedure for arbitrary circuits. First, we
present a block diagram model of sequential circuits.

7.10.1
Sequential Circuits Block Diagram Model

We model sequential circuits as shown in the block diagram shown in
Figure 7.10.3. Other alternative models exist by rearranging the sequential and
combinational blocks. In the model, the combinational circuit block is used to
realize the external outputs to the circuit and the next state equations (these are
labeled excitation equations in the diagram). The inputs to the combinational
circuit are the external inputs and the current memory element values as seen.
The memory element block is composed of flip-flops. The circuit is called a
synchronous sequential circuit since the memory elements sample their inputs by
a clock signal.

In this model, the effect of previous inputs to the circuit is captured in the
memory elements’ values. Based on these values and the current external inputs,
the circuit will produce a specific output and cause the circuit to assume a new

FIGURE 7.10.2

Timing Diagram of Circuit Given in Figure 7.10.1

DIGITAL DESIGN AND COMPUTER ORGANIZATION 283

memory configuration. We will look at the details of the model in the remainder
of this chapter and in the next chapter.

7.10.2
Characteristic Equations

The characteristic equations of the circuit are used to describe its behavior in
algebraic form. By referencing the circuit in Figure 7.10.3, the equations should
include external output equations as well as equations that cause transitions in
the memory blocks (the excitation equations). The equations are based on two
types of variables entering the combinational block: the external input variables
and the current outputs (stored values) of the memory elements (flip-flops) in the
circuit. With each memory element of the circuit, we associate a characteristic
equation. Similarly, we associate a Boolean equation with each external output.

In forming the characteristic equations of a sequential circuit, the following
steps are carried:

1. All outputs of the memory elements in the circuit are assigned variable
names. This is done to distinguish between the different memory elements
found in the circuit, since these elements are usually given at the outputs of
flip-flops and, as a result, they have the same label (Q or Q�).

2. According to the variable names assigned to the outputs of the flip-flops, the
corresponding input labels are assigned the same name of the input but with
a subscript used to identify the output it will affect. For example, if the flip-
flop used in the design is a JK flip-flop and the output is assigned the label X,
then the J input of the flip-flop will be assigned the label Jx and its K input is
assigned the label Kx.

FIGURE 7.10.3

Model of a Sequential Circuit in Block Diagram

284 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

3. The inputs to each flip-flop are, in general, functions that involve both
external inputs and current outputs of memory elements in the circuit. For
each flip-flop input, the Boolean function associated with the input is
derived. The equations derived are called excitation equations.

4. The characteristic equation of a flip-flop can then be derived from the
corresponding characteristic equation by (1) replacing the Q+ and Q outputs
with the name assigned to the flip-flop, and (2) replacing each input in the
flip-flop equation with the corresponding excitation equation.

We illustrate the above procedure on the example circuit given in Figure 7.10.4.
In the example circuit in the figure, the sequential circuit has two JK flip-flops as
the memory elements. According to the above procedure, we do the following:

1. Assign variable names to the outputs of the flip-flops. In the figure, the flip-
flop outputs are named X and Y.

2. The input labels to the flip-flops would then be Jx, Kx, Jy, and Ky.
3. The excitation equations for each of the flip-flop inputs are then derived.

The excitation equations are Boolean equations into the inputs of the flip-
flops. From the figure, the equations are

Jx=IY Kx=I′+Y Jy=I′+x Ky=I

FIGURE 7.10.4

An Example Sequential Circuit Used in Analysis

DIGITAL DESIGN AND COMPUTER ORGANIZATION 285

4. The characteristic and output equations are then derived from the
characteristic equations for the flip-flops and the above excitation equations.
Both flip-flops used in the design of the above circuit are JK type flip-flops
with the general characteristic equation

Q+=JQ′+K′Q
Using X, X+, Jx, and Kx to substitute, respectively, for Q, Q+, J, and K in the
above equation, we obtain

X+=JXX′+K′,X
Substituting the excitation equations for Jx and Kx in the above equation, we get

X+=(IY)X′+(I′+Y)′X
Similarly, for the characteristic equation for Y+, we get

Y+=(I′+X)Y′+I′Y
The output equation is

Output=I′XY
The characteristic equations for the circuit and the output equations are grouped
below.

X+=X′YI+XIY′ Y+=(I′+X)Y′+I′Y Out=XYI′
It is important to note that the output produced is a function of the current
memory elements and external input values.

7.10.3
Characteristic or State Table Construction

The above equations are similar to the Boolean equations we discussed in
combinational circuits with one difference. The equations are based on the
current memory elements as well as external outputs. The characteristic (state)
table for a sequential circuit is a tabular representation similar to truth tables. The
table can be constructed from its characteristic equations. This can be done by

1. Assigning values to its external inputs and the memory elements
2. Evaluating the outputs and the next value of the memory elements

The table constructed will have in its input section a column corresponding to
each of the external inputs and a column corresponding to each of the current
memory elements. The output part of the table will include a column for each of
the external outputs and an additional column for each of the next memory
element values. To complete the table, we compute the output and characteristics
equations corresponding to each entry in the table. We illustrate the state table
construction on the example circuit given in Figure 7.10.4.

The characteristic table for the above circuit has three columns in its input
section. One column corresponds to the external input I; the other two columns
correspond to the current X and current Y values, respectively. The output section
has a column corresponding to each of the memory elements X+ and Y+ and an

286 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

additional column for the output. To complete the table for the output section,
each of the equations for X+, Y+, and output is computed for the given input
assignment.

We illustrate the construction of the table in the figure by referring to the row
with input part XYI=011. For this input, we have

X+=X′YI+XY′=1+0=1 Y+=(I′+X)Y′+I′Y=0+0=0 Output=I′XY=0
The above values are found in the corresponding output part. In the computation,
it is important to note that the X+ and Y+ are computed concurrently on the old X
and Y values. With respect to timing, we will look at when the transitions in the
above table take place when we discuss timing diagrams.

7.10.4
State Diagrams

The analysis part of sequential circuits may involve the construction of state
diagrams as well. State diagrams are also called transition diagrams. The state
diagram associated with a sequential circuit is a directed graph with labeled
edges. A directed graph is composed of nodes (vertices) and directed edges. For
the case of a sequential circuit, the diagram constructed has the following
properties:

1. The number of vertices in the diagram is equal to the number of states. By
“state” we mean the collective set of values associated with its memory
elements at a specific instant of time. The collective binary assignment is the
state of the sequential circuit. For the example above, the memory elements
of the circuit are X and Y. As a result, the number of memory values the
circuit could have is equal to four (one for each possible combination of the
XY values, i.e., XY=00, 01, 10, or 11). The machine could then be in one of
the four states: 00, 01, 10, or 11 state. Each vertex will be labeled by the
state it represents.

2. The edges are labeled directed edges. A label to an edge has the form “x/y,”
where x represents a specific input assignment to all external inputs and y
represents a specific output value. For the sequential circuit example, each
edge will have a label with one bit representing its external input, I, and one
bit representing its external output.

FIGURE 7.10.5

Figure Used to Illustrate Construction of State-Diagrams

DIGITAL DESIGN AND COMPUTER ORGANIZATION 287

We use Figure 7.10.5 to illustrate state diagram construction. The interpretation
of the partial state diagram is

If the current state of the machine is A and its current input is x, then its
output is y and its next state is B.

In the sequential circuit example given above, one can construct the state diagram
from its characteristic table by converting each row in the table to a state
transition as follows:

1. The current flip-flop outputs represent the label A in Figure 7.10.5.
2. The input, I, represents the label x.
3. The output represents the label y.
4. The next flip-flop output corresponds to the label B.

TABLE 7.10.1
Characteristic Table of Figure 7.10.4

X Y I X+ Y+ Output

0 0 0 0 1 0

0 0 1 0 0 0

0 1 0 0 1 0

0a 1 1 1 0 0

1 0 0 0 1 0

1 0 1 1 1 0

1 1 0 0 1 1

1 1 1 0 0 0
a On current memory XY=01 and input I, the output is 0 and the next state is 10.

As an example, the first row of Table 7.10.1 produces the partial state diagram as
shown in Figure 7.10.6. The diagram in the figure is read as follows:

If the current state of the circuit is 00 and the current input is 0, then the
output is 0 and the next state of the circuit is 01.

FIGURE 7.10.6

Partial State Diagram of Figure 7.10.4

288 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

The complete state diagram can be computed from the characteristic table as
shown in Figure 7.10.7. We make the following remarks about the figure:

• The nodes of the sequential circuits represent the memory of the circuit.
• The number of nodes associated with the circuit is determined from the

number of flip-flops. With each binary assignment to the flip-flop output
values, we associate a node in the state diagram. This is the case since each
binary combination represents a different state of the circuit. For a circuit with
n flip-flops, the number of nodes, in the corresponding state diagram, is 2n.

• The number of edges leaving each node depends on the number of external
inputs to the circuit. For a given node and a list of inputs, each possible input
assignment is used to label one of the edges leaving the given node. For
example, for a circuit with two inputs, the number of edges leaving each node
is four (the input labels of the edges are 00, 01, 10, and 11). In general, for a
circuit with m external inputs, the number of edges leaving a given node is
2m.

7.10.5
Timing Diagrams

We could capture the description of sequential circuits in timing diagrams
similar to the diagrams used to discuss flip-flops and latches. Timing diagrams
have the advantage of describing changes in the circuit as a function of the
clocking sequence applied. We illustrate the construction of the timing diagrams
using Figure 7.10.4. The flip-flops in the circuit are JK flip-flops with the inputs
sampled at the positive edge of the clock. This is due to the inverter circuit
preceding the clock input. The timing diagram is given in Figure 7.10.8.

FIGURE 7.10.7

State Diagram of Sequential Circuit in Figure 7.10.4

DIGITAL DESIGN AND COMPUTER ORGANIZATION 289

We note two properties of the timing diagram. The first property has to do
with state transitions. By observing the timing diagram, state transitions occur at
the rising edge of the clock only. As a result, over the remaining period of the
clock (until the next transition), the state values remain unchanged. The second
property has to do with the observed output. The observed output is a function of
both the current state and the current input. As a result, changes in the output could
occur any time there are changes in the current state or the current input.

When the external outputs are a function of current states as well as external
inputs, the machine (sequential circuit) designed is called a Mealy machine.
Similarly, the state diagram is called a Mealy state diagram. When the external
outputs of the circuit are a function of the current states only, the circuit is called
a Moore machine.

As another analysis example, consider the circuit shown in Figure 7.10.9. The
circuit is composed of two types of flip-flops. The circuit is a synchronous
sequential circuit. The model layout is different than the block diagram model
given earlier. Here, the memory part of the sequential circuit is modeled on the
right-hand side of the circuit. The combinational part is shown on the left-hand
side of the circuit. The external input to the circuit is X. The external output is
OUT. Note that the D flip-flop is sampled on the positive edge of the clock and

FIGURE 7.10.8

Timing Diagram of the Sequential Circuit in Figure 7.10.4

290 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

the JK flip-flop is sampled on the negative edge of the clock. To cause both flip-
flops to sample inputs on the same edge of the clock, we added the inverter gate
as shown in the figure.

As can be seen from the circuit diagram, the output is a function of the current
state only. As a result, the circuit represents a Moore machine. Hence, unlike
Mealy machines, the output of the circuit does not change as long as the memory
element values do not change. Since the memory element values change only on
the negative edge of the clock, the external outputs remain constant for a
complete clock cycle that extends from one falling edge of the clock to the next
falling edge.

We derive the characteristic and output equations of the circuit. For the
memory element with label A, we use a D flip-flop. As a result we have

Since for a D flip-flop we have Q+=D and since Q+ is A+ and D is DA, we have

For the JK flip-flop, using a similar procedure as was done earlier, we have
JB=XA

and
KB=XA

Substituting the above excitation equations in the characteristic equation for a JK
flip-flop, we have
B+=JBB′+K′BB =XAB′+(X′+A′)B =XAB′+X′B+A′B =∑(1,3,5,6)
The output equation is

FIGURE 7.10.9

Sequential Circuit Used as an Example in Analysis

DIGITAL DESIGN AND COMPUTER ORGANIZATION 291

OUT=AB
The characteristic table for the above circuit has three columns in its input
section. One column corresponds to the external input X; the other two columns
correspond to the current A and B values. The output section has

TABLE 7.10.2
Characteristic Table of Circuit in Figure 7.10.9

X A B A+ B+ out

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 1 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 0 1 1

1 1 1 0 0 1

a column corresponding to each of the memory elements A+, B+, and an
additional column for the output. To complete the table for the output section,
each of the equations for A+, B+, and OUT is computed for the given input
assignments. Table 7.10.2 is the derived characteristic table of the circuit.

The edge of a state diagrams for the Mealy machine are labeled associated
with the input and output data. For Moore machines, since the output of the

FIGURE 7.10.10

State Diagram of Circuit in Figure 7.10.9

292 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

machine is independent of the external inputs and depends only on the current
state of the machine, the output is associated with a state instead of an edge of
the diagram. Figure 7.10.10 illustrates this. Note that each state in the state
diagram has a state label as well as an output associated with the node. We will
discuss this in the next chapter. Before we move to the next chapter, however,
we will discuss alternative representations of state tables.

TABLE 7.10.3
State Table Format

Current State Input Next State (NS) Output

25 cents 10 cents 35 cents 0

40 cents 10 cents 0 cents 1

7.10.6
Alternative Representations of State Tables

Consider Table 7.10.2, representing the state table of the circuit given in
Figure 7.10.9. As discussed earlier, the input part of the table is composed of two
parts, the external input part and the internal values of the flip-flop outputs
(collectively representing the state of the circuit). The output part of the table is
composed of two parts as well. The parts represent the external output and the
next flip-flop output values (collectively representing the next state of the
circuit).

When designing sequential circuits, the first step in the design is to generate
state tables. As a result, there is no circuit used to derive the table. Instead, the
first step in the design is to convert a word problem into a formal description,
such as the construction of a state table, for example. This step initially may not
involve the use of binary data. Instead, the states are given as generic labels that
eventually have to be translated into binary labels as one of the steps in the overall
design process (this will be discussed in the next chapter).

To illustrate the format of such state tables, we use the vending machine
example by referring to the partial state table, as shown in Table 7.10.3. We
assume a can of soda costs 50 cents. The states seen represent the total amount of
coins deposited for a given transaction to complete (details of the construction
will be given in several examples in Chapter 8). Two rows in the table are read
as follows. Row 1 represents the current coin deposited (10 cents) and the
previous total amount of coins deposited (current state, 25 cents). On this input
and the current values, the next state (new memory) is 35 cents. In addition, the
table contains an output of 0, indicating a can of soda is not released. The next
row is read similarly for the input part. For the next state part and output part, the
next state and output are 0 cents and 1, respectively. The 1 in the output indicates
a can is released. The 0 cents represents the next state, a new transaction can be
started with no coins deposited yet. The 0 cents state is called the initial state. All

DIGITAL DESIGN AND COMPUTER ORGANIZATION 293

state tables have such an initial state representing the startup configuration of the
circuit.

The state table representation obtained in circuit analysis and discussed for the
vending machine example is not unique. Two alternative representations are
shown in Table 7.10.4(a) and (b). In both representations, the present state is
used as labels of the rows. In Table 7.10.4(a), the input, x, is used to label the
columns of the table. The next state, NS, and output are the entries in the table
and are given in the form NS/Output. For example,

TABLE 7.10.4
Alternative Representations of State Tables

(a) (b)

NS/Output Next State Output

Present State x=0 x=1 Present State x=0 x=1 X=0 x=1

A B/0 C/0 A B C 0 0

B C/0 D/1 B C D 0 1

C B/0 E/1 C B E 0 1

D D/1 F/1 D D F 1 1

E E/1 F/1 E E F 1 1

F F/0 A/1 F F A 0 1

for the present state B and for the input x=1, the NS/output is read from the table
as D/1. The alternative representation separates the next state and output into two
sub-tables, as shown in Table 7.10.4(b).

Chapter 7
Exercises

7.1 In Figure 7.1.3, we showed the design of an SR latch using NOR
gates. Replace the NOR gates by NAND gates and construct the
characteristic table of the latch. Replace the S and R labels by X and Y,
respectively.
7.2 Figure 7.1.3 of the design of an SR latch can be modified to
include asynchronous preset and clear inputs. The inputs are used as
inputs to the NOR gates. Modify the circuit design to include a preset
and clear inputs.
7.3 Show the design of a gated SR latch using NAND gates only.
7.4 Construct the characteristic equations of the complement output (Q
�) of a JK latch.
7.5 Show the design of a JK flip-flop using T flip-flops.
7.6 Show the design of a T flip-flop using D flip-flops.

294 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

7.7 Given that a clock cycle width is 10 ns and that the clock assumes a
value of 1 for 2 ns of the cycle time. Determine the frequency of the
clock. Determine the duty cycle.
7.8 Complete the timing diagram of the SR latch shown in
Figure E.7.1. Assume the top NOR gate delay is 1 ns and the lower
NOR gate delay is 2 ns. Assume, initially, Q=0 and Q�=1.
7.9 Show the design of a master-slave T flip-flop with changes
occurring at the rising edge of the clock. Use block diagrams for the
master and slave part of the flip-flop.
7.10 Show the design of a master-slave D flip-flop with changes
occurring at the falling edge of the clock.
7.11 Given a sequential circuit with two JK flip-flops X and Y, an
external input I, output out, and with

Jx=I, Kx=I, Jy=IX, Ky=IX, OUT=IXY
Construct the characteristic equations of X and Y.

7.12 Draw the circuit schematics corresponding to the equations given
in the previous question.
7.13 Construct the state diagram of the circuit with equations given in
question 7.11.
7.14 Given the circuit shown in the Figure E7.2

(a) Find the excitation equations of the inputs to the flip-flops.
(b) Find the characteristic equations of the flip-flops.
(c) Construct the state diagram of the circuit.

7.15 Construct the three alternative characteristic tables of the circuit
given in the previous question.
7.16 For the circuit given in Figure E7.2, determine the sequence of
states and outputs on the input 0110011101. Assume the initial state is
AB= 00.

FIGURE E7.1

DIGITAL DESIGN AND COMPUTER ORGANIZATION 295

7.17 Given the circuit shown in the Figure E7.3. The circuit input is x
as shown. The top T flip-flop input is set to 1.
(a) Find the characteristic and output equations of the circuit.

(b) Construct the state diagram of the circuit (note that the circuit
represents a Moore circuit).
7.18 Complete the following timing diagram (Figure E7.4) of the
circuit given in the previous question. Assume the changes occur on

FIGURE E7.2

FIGURE E7.3

296 FLIP-FLOPS AND ANALYSIS OF SEQUENTIAL CIRCUITS

the rising edge of the clock (no delay). Assume the initial WZ value is
00.

FIGURE E7.4

DIGITAL DESIGN AND COMPUTER ORGANIZATION 297

8
Design of Sequential Circuits and State

Minimization

CONTENTS

8.1 Block Diagrams and Design from Excitation Equations 300

8.1.1 Design of Sequential Circuits Given the External Outputs
and Excitation Equations

 300

8.2 Design Given the Characteristic Equations 302

8.2.1 Design Using D Flip-Flops 302

8.2.2 Design Using JK Flip-Flops 304

8.3 General Design Procedure of Sequential Circuits 306

8.3.1 Stepl 306

8.3.2 Step 2 307

8.3.3 Step 3 307

8.3.3.1 Flip-Flop Excitation Tables 309

8.3.4 Step 4 310

8.3.5 Step 5 311

8.4 Machine Equivalence and State Assignments 311

8.5 Mealy State Diagrams 316

8.6 Moore Machines 321

8.6.1 Conversion from Mealy to Moore Machines 323

8.7 Machine and State Equivalence 325

8.8 State Reduction and Minimal State Diagrams 328

8.8.1 The Reduced State Table 333

Chapter 8 Exercises 333
In this chapter, we consider design procedures of sequential circuits. We

discuss three methods of design in order of complexity with simplest considered
first. We then discuss two different sequential circuit machines, the Mealy
machine and the Moore machine, and consider conversions between the two
machines. Finally, we discuss state minimization as a method to reduce the total
design cost by reducing the number of circuit components needed in the design.
We start with the simplest of the three methods of design.

FIGURE 8.1.1

Block Diagram Schematic of a Sequential Circuit

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 299

8.1
Block Diagrams and Design from Excitation Equations

Before we discuss the three design procedures, we revisit the block diagram
schematic of a sequential circuit, as shown Figure 8.1.1. The figure is a modified
version of the block diagram given in Figure 7.10.3, which is used in the analysis
section of the chapter. The block diagram shows m external inputs, I external
outputs, and n memory elements with labels A1, A2,…, An. In analysis, the
details of the gate design within the combinational block as well as the type of
memory elements used are given.

In sequential circuit design, our task is to

1. Determine the number of external inputs and external outputs
2. Determine the number of memory elements needed in the design and the type

of these memory elements
3. Form the design of the combinational circuit part

To accomplish the itemized tasks, we move from an informal description of the
problem (word problem description) to a formal representation using one or
more of the representations discussed in analysis. The representation could be in
the form of a state diagram, a state table, and/or state equations and output. From
the formal description, a set of well-formed procedures are used to generate the
design. In fact, using one of the formal descriptions of the functional behavior of
the circuit, we could employ automated CAD tools that generate the design.
These tools can be used to verify the correctness of design as well.

Since sequential circuit design is the reverse of analysis, our discussion of
design starts with different initial conditions in the design process as related to
analysis. Our goal is to relax these conditions until we tackle the general design
procedure. The general procedure progresses by starting with the word
description of the problem and ending in the design. We start with the simplest;
we assume the excitation equations (input equations to flip-flops) and external
output equations are given.

8.1.1
Design of Sequential Circuits Given the External Outputs

and Excitation Equations

Having the excitation equations and the external output equations as the initial
formal description of a sequential circuit reduces the problem of design to that of
a combinational circuit. Here, the function of the combinational circuit block is
described by the set of the equations. As a result, we employ standard
combinational design procedures. These procedures may include minimizations
of the given equations, for example.

300 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Example 8.1.1

In the example, we design the sequential circuit with the following excitation and
output equations:
JA(A,B,x)=xB KA(A,B,x)=x′+B JB(A,B,x)=x′+A KB(A,B,x)=x Out(A,B,x)=ABx′
From these equations, we conclude that the sequential circuit has two JK flip-
flops as its memory elements. The circuit has a single external input, x, and a
single external output, Out. The combinational circuit part is designed to realize
the above equations. It has five outputs, Out, JA, KA, JB, and KB. The inputs to the
circuit are the memory element outputs and the external input.

Before the design is completed, we minimize the above equations. By
inspection, however, we find that each of the above equations is already given in
its minimal form. The design of the circuit with the above equations is given in
Figure 8.1.2.

We can conclude from the above that the design procedure from a set of
excitation and output equations can be accomplished in a straightforward fashion.
In fact, in any design, the goal of the design is to produce the needed excitation
and output equations as the last step before the design. We will explain how
these equations are obtained as we progress in our discussion of design.

In keeping with relating design to analysis, the next step in the analysis
procedure is to form the characteristic equations of the memory elements and

FIGURE 8.1.2

Circuit Design from Excitation Equations JA=xB, KA=x�+B, JB=x�+A, KB=x, Out=ABx�

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 301

external outputs. As a result, to expand our task in terms of design, we assume
the characteristic and output equations are given and the task is to design the
sequential circuit from these equations.

8.2
Design Given the Characteristic Equations

In the analysis part of the previous chapter, we derived a set of characteristic and
output equations from the given circuit. In obtaining the equations, we made use
of the excitation equations that can be derived directly from the circuit. Here,
however, our task is to design the circuit. How? From the above example, given
the excitation equations, the design is reduced to a combinational circuit design
that can be realized directly from the equations. As a result, our task in this
method of design can be reduced to the task of obtaining the needed excitation
equations.

We will see that the excitation equations can be derived directly from the
characteristic equations, assuming we use D or JK flip-flop memory elements in
the design. The examples below provide illustrations.

8.2.1
Design Using D Flip-Flops

Example 8.2.1

Assume one is to implement the sequential circuit described by the following
characteristic and output equations using D flip-flops.

where x is an external input.
Procedure

1. We determine the number of memory elements. The circuit requires two
memory elements (D flip-flops), one for each of the “A” and “B”
characteristic equations. To distinguish between the two, we use A for the
output of one of the flip-flops and B for the output of the other, as given in
the equations.

2. We determine the number of inputs and outputs. The combinational circuit
inputs are the memory element inputs (A, B, and their complements) and the
external input x. The circuit has three outputs (one for the external output,

302 DIGITAL DESIGN AND COMPUTER ORGANIZATION

one for each of the inputs to the D flip-flops, and “out”). The design of the
output is a simple AND gate of the inputs listed in the equation.

3. We determine the excitation equations (the flip-flop inputs). The excitation
equations are chosen so that the flip-flops realize the next state outputs A+

and B+. Since for the case of the D flip-flop we know that Q+=D, to realize A
+ we use it as an input into DA. Similarly, we use B+ as an input to DB. As a
result, the excitation equations are

In obtaining the excitation equations, we have transformed this design problem
to the problem of design from excitation equations as given above. Before the
design, we could minimize the above equations if needed.

The excitation equations given above can be simplified to yield

FIGURE 8.2.1

Design of Sequential Circuit from Characteristic Equations A+(A,B,x)=� (3,5), B+=� (0,2,4,
5,6), out=� (6)

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 303

4. We design the circuit. The circuit design is shown in Figure 8.2.1.

Before we discuss design using JK flip-flops, we relate the above design to the
characteristic equations in terms of time. In the above circuit, the combinational
circuit computes the flip-flops input equations A+ and B+ as a function of the
current memory elements outputs (A and B) and the external output x. The
changes in the next state value occur only at the rising edge of the clock. On the
rising edge of the clock, these inputs are sampled and, in effect, are moved to the
outputs of the D flip-flops. Finally, note that the circuit output is not
synchronized with the clock; it could change any time the input x changes in
value. We next discuss design using JK flip-flops.

8.2.2
Design Using JK Flip-Flops

In design using JK flip-flops, we follow a similar procedure used for design
using D flip-flops. The number of memory elements needed is equal to the
number of characteristic equations. The combinational circuit inputs are the
memory elements outputs (including their complements) and the external inputs
as given by the equations. In terms of the outputs, the combinational circuit
associates an external output with each external output equation and two
excitation equations with each memory element. The excitation equations are for
the J and K parts of each flip-flop. The design task is complete once the
excitation equations are computed and the circuit is generated from these
equations. We illustrate how one obtains the excitation equations from the state
characteristic equations next.

FIGURE 8.2.2

304 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Consider the circuit shown in Figure 8.2.2. In the circuit, JA and KA represent
the excitation equations that the combinational circuit realizes for the JK flip-flop
with label A. In order to find these equations, we make use of the characteristic
equation for a JK flip-flop. In particular, we know that for a JK flip-flop with
label A we have

A+=JAA′+K′AA
As can be seen from the equation, the JA and KA terms can be found from the
characteristic equations by rewriting the equation in the form

A+=ƒ1A′+ƒ′2A, to obtain JA=ƒ1, and KA=ƒ2

How does one find the functions ƒ1 and ƒ2 from a given set of characteristic
equations? A given characteristic equation can be converted to a characteristic
equation similar to the characteristic equation of a JK flip-flop by collecting all
terms that include the Q� variable and factoring Q� out of these terms. The
resulting term constitutes the Boolean function, f1, associated with the f input.
Similarly, to obtain the complement of the function, ƒ2, associated with the K
input, we collect all the terms in the equation that include the variable Q. The
resulting term formed after factoring the Q is the function ƒ�2 associated with the
input K.

Note that it is possible that some of the terms found in the characteristic
equation may not contain the literal Q. These terms can be expanded to include
the literal Q by using the rule

x=x(Q+Q′)=xQ+xQ′
We illustrate the design process using the following example.

Example 8.2.2

Given the characteristic and output equations described below.
A+(A,B,x)=A’Bx+AB′x B+(A,B,x)=x′+AB′ out(A,B,x)=ABx′

We would like to design the circuit realizing the above equations using JK flip-
flops. The sequential circuit has a single input, x; a single output, out) and two
memory elements (JK flip-flops) with outputs labeled A and B. To design the
circuit, we need to implement the input (excitation) functions to each of the flip-
flops (JA, KA, JB, and KB). To find the excitation equations for the A flip-flop, we
rewrite the A+ equation as

A+(A,B,x)=A′Bx+AB′x =(Bx)A′+(B′x)A =(JA)A′+(K′A)A
That is, the Boolean functions associated with the inputs are

JA=Bx and KA=(B′x)′
When applying a similar procedure to the B flip-flop, we obtain
B+(A,B,x)=x′+AB′ =x′(B+B′)+AB′ =(x′+A)B′+x′B =JBB′+K′BB
That is, the Boolean functions associated with the inputs are

JB=x′+A and KB=x

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 305

The excitation equations obtained are the same equations used in the design
example from excitation equations. As a result, the sequential circuit design
produces the same circuit given earlier (Figure 8.1.2).

The design of sequential circuits does not start by forming the excitation
equations or characteristic equations. Instead, it usually starts with an informal
description of the problem. From this description we progress into formal
descriptions using one of the behavioral description methods such as a state table
or a state diagram. From the formal descriptions we proceed to designing the
circuit by establishing the needed excitation equations. The discussion that
follows tackles the design problem presented in state table or state diagram form.
The design is general in nature as it applies to any of four memory elements. The
previous design procedure was restricted to using D or JK flip-flops.

8.3
General Design Procedure of Sequential Circuits

Following is the general design procedure of the sequential circuits in the
context of an example. We would like to design a sequential circuit with one
input, x, and one output, y. On the input x=0, the circuit makes transition between
the state A, B, C, D, and back to A in the order listed. When the input is x=1, the
circuit makes transitions in the opposite order. The output of the circuit is 1 when
the current state is D, i.e., the circuit output is independent of the current input.

8.3.1
Step 1

The first step in the design of sequential circuit is to derive the state table or state
diagram from the word problem. For the above word problem, we obtain the
state table shown in Table 8.3.1.

TABLE 8.3.1
An Example State Table

Next State Output

Present State x=0 x=1 x=0 x=1

A B D 0 0

B C A 0 0

C D B 0 0

D A C 1 1

306 DIGITAL DESIGN AND COMPUTER ORGANIZATION

8.3.2
Step 2

The second step in the design procedure is to apply state minimization. State
minimization is applied to the state table above. In state minimization, the
objective is to reduce the number of states but maintain the same input and output
relation. We will discuss state minimization in Section 8.7.

8.3.3
Step 3

The third step is to apply state assignment. What is state assignment?
Table 8.3.1 is a description of the problem without reference to sequential
circuits. Our task is to design a circuit that simulates the behavior as described in
the table. Since the design processes binary data only, we need an encoding
scheme that assigns a binary code word to each state in the state table. Since the
states in the table represent the memory of the table, the binary codes in the
design are associated with the memory elements of the circuit.

We determine the number of bits in a code word by relating the discussion to
analysis. In analysis, the state of the machine is the current binary assignment on
the outputs of its memory elements. For a circuit with two memory elements, the
states are 00, 01, 10, and 11. Similarly, for a circuit with three and four memory
elements, the number of states the machine could be in is eight and sixteen,
respectively; and in general, for a machine with n memory elements, the machine
could be in any of 2n possible states.

In our case, we need two memory elements; call their outputs W and Z. The
outputs of the memory elements are codes that represent the states in the state
table. Since we have four states, the first state, A, could be assigned any of the
four possible code words (there are four possible codes). For state B, we could
assign any of the three remaining binary codes. Similar logic applies to the
remaining states C and D, yielding a total of 4!=24 possible assignments.
Arbitrarily, we choose the assignment XY=00, 01, 10, and 11 as code words for
the states A, B, C, and D, respectively. With these assignments we reconstruct the
state table as .shown in Table 8.3.2; in (a) we have the original state table, and in
(b) we have the modified state table based on the outputs of flip-flops in the
sequential circuit to be designed.

TABLE 8.3.2
State Assignment, (a) Original Table, (b) Table with State Assignment

(a) (b)

Next State Output Next State Output

P.S. x=0 x=1 x=0 x=1 P.S.WZ x=0 x=1 x=0 x=1

A B D 0 0 00 01 11 0 0

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 307

(a) (b)

Next State Output Next State Output

P.S. x=0 x=1 x=0 x=1 P.S.WZ x=0 x=1 x=0 x=1

B C A 0 0 01 10 00 0 0

C D B 0 0 10 11 01 0 0

D A C 1 1 11 00 10 1 1

We relate this table to the sequential circuit design. In the design, if the
contents of the current memory elements are WZ=00, and if the current input is
x=0, then from the table the next memory elements values are WZ= 01 and the
output is 0. When we decode the states, 00 represents the current state A and 01
represents the next state B, as shown in Table 8.3.2(a).

Before we continue our discussion of the gen- eral design procedure, we note
that Table 8.3.1 and Table 8.3.2 can be used to generate the characteristic
equations of the memory elements as well as the output equations. To illustrate,
Table 8.3.2(b) can be rewritten as shown in Table 8.3.3, from which the next
state equations for Z and W as well as the output equation Y can be derived. The
table contains truth values of Boolean functions (W+, Z+, and Y). As a result, the
algebraic equations of these functions can be formed and minimized. From the
minimized functions we could design the circuit using D or JK flip-flops as
discussed earlier.

TABLE 8.3.3
Reconstructed Part (b) of Table 8.3.2

xwz w+ z+ Y

001 1 0 0

010 1 1 0

011 0 0 1

100 1 1 0

101 0 0 0

110 0 1 0

111 1 0 1

Since our objective is to design these functions using any of the memory
elements, we continue the process of design and discuss how one can obtain the
excitation equations for any of the four memory elements.

308 DIGITAL DESIGN AND COMPUTER ORGANIZATION

8.3.3.1
Flip-Flop Excitation Tables

The general procedure used to implement sequential circuits using any of the
four types of flip-flops makes use of the excitation table of the circuit. The
excitation table of the circuit is derived from the excitation tables of the
individual flip-flops.

The excitation table for the flip-flops is composed of two parts. In the first
part, we list the current flip-flop output and the desired next output. In the second
part, we list the input requirements that will cause the flip-flop to change its
value when its inputs are sampled. Hence, the first part contains the possible
current Q and the desired Q+ values. The second part contains

TABLE 8.3.4
Excitation Tables of the Four Flip-Flops

Q Q+ S R J K D T

0 0 0 x 0 x 0 0

0 1 1 0 1 x 1 1

1 0 0 1 x 1 0 1

1 1 x 0 x 0 1 0

the needed input values at the flip-flop inputs (SR, JK, D, or T) that cause the
desired transition from Q to Q+ as shown in Table 8.3.4.

The first and second columns of the table correspond to the current Q output
and the desired next output Q+ of a given flip-flop. The remaining columns of the
table include the values on the proper flip-flops inputs that will cause the change.
We illustrate the table construction for all flip-flops by referring to the row with
Q=1 and Q+=0. For this row:

1. Using SR flip-flops, we could cause this transition from 1 to 0 by having
R=1 and S=0 (this is shown in the third row, columns 3 and 4).

2. Using JK flip-flops, we could cause this transition from 1 to 0 by having the
J input set to 0 and the K input set to 1. We could also cause Q+ to become 0
by complementing the previous Q=1 value, i.e., by setting both J and K to 1.
In both cases, K must assume a value of 1. The J input, however, could be
either 0 or 1. In the table, this is indicated by assigning an x to J and a 1 to K.
An x indicates J can assume any of the two values.

3. Using D flip-flops, we could cause this transition from 1 to 0 by having the
D input set to 0 since Q+=D.

4. Finally, using T flip-flops, we could cause this transition from 1 to 0 by
setting the T input to 1.

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 309

We will use the above flip-flops excitation tables in the design of sequential
circuits as seen next.

8.3.4
Step 4

Step four in the design process of sequential circuits is to form the excitation
table of the circuit. What is the excitation table of the circuit? The excitation
table of a circuit consists of two major parts. The first part is the characteristic
(state) table of the circuit. The second part lists the conditions on the flip-flop
inputs that cause the transitions as described in the first part (the characteristic
table). The format of the excitation table for the circuit at hand is given in
Figure 8.3.1. The figure includes the associated function description of each of
the flip-flops inputs (Sw, Rw, Sz, and Rz). It also includes the output description of
the circuit.

The figure contains all the information needed in the design of the
combinational circuit as given in Figure 8.3.2. This information includes the
external output functions. It also includes the description of the input functions to
the individual flip-flop inputs. The input functions are used to cause the
transitions between states as described in the characteristic table. Note that the W
+ and Z+ columns were used only to derive the input equations. With these columns
removed, the table is reduced to a form similar to a truth table format: its inputs

FIGURE 8.3.1

Excitation Table Used in Sequential Circuit Design of Table 8.3.3

310 DIGITAL DESIGN AND COMPUTER ORGANIZATION

are W, Z, and X, its outputs are out, Sw, Rw, Sz, and Rz. The circuit design
associated with the table will then follow standard procedures of designing
Boolean functions from their truth table descriptions.

8.3.5
Step 5

The fifth step is to form the minimized excitation and output functions. When the
K-map method of minimization is used, we obtain the tables in Figure 8.3.3. The
design of the sequential circuit implementation is shown in Figure 8.3.4.

8.4
Machine Equivalence and State Assignments

In the general design procedure discussed in the previous section, we arbitrarily
used SR flip-flops in the design. In addition, we arbitrarily used a specific state
assignment in terms of states and the corresponding memory elements in the
design. Changing the memory elements types or changing the state assignment
produces different designs that realize the same functional behavior. In terms of
the input and output behavior, the designs are equivalent, meaning that on the
same inputs all designs produce the same outputs. The internal design of the

FIGURE 8.3.2

Block Diagram Circuit of Table in Figure 8.3.1

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 311

circuit and the transitions within the internal memory elements are different,
however.

This is similar to combinational circuits. In combinational circuits, the internal
design of the same function may be different but the logical input and output
behavior remains the same. This section considers additional design examples.
First, we design the same problem as stated in the previous section using different
flip-flops and different state assignments.

Example 8.4.1

We would like to apply the general design procedure on the same problem
discussed in the previous section using JK flip-flops (instead of SR).

TABLE 8.4.1
Excitation Table of Circuit in Previous Section Using JK Flip-Flops

Previous Characteristic Table Flip-Flop Inputs

W Z X W+ Z+ Out Jw Kw Jz KZ

0 0 0 0 1 0 0 x 1 x

0 0 1 1 1 0 1 x 1 x

0 1 0 1 0 0 1 x x 1

0 1 1 0 0 0 0 x x 1

1 0 0 1 1 0 x 0 1 x

1 0 1 0 1 0 x 1 1 x

1 1 0 0 0 1 x 1 x 1

FIGURE 8.3.3

K-Maps of Table in Figure 8.3.1

312 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Previous Characteristic Table Flip-Flop Inputs

W Z X W+ Z+ Out Jw Kw Jz KZ

1 1 1 1 0 1 x 0 x 1

FIGURE 8.3.4

Circuit Design of Table in Figure 8.3.1

FIGURE 8.4.1

K-Maps of Table 8.4.1

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 313

Solution: Steps 1 and 2 are to form the state table and apply state
minimizations. Both of these steps are done independent of design and, as a
result, are the same. The third step is to apply a state assignment (in the process,
we determine the number of memory elements needed). For this step, we use the
same state assignment. Step 4 is to form the excitation tables. Since we are using
JK flip-flops in the design with the same labels for the outputs, we obtain the
excitation table shown in Table 8.4.1.

Step 5 is to form the minimized flip-flop input functions and the minimized
output functions. The output function is out=WZ. The minimized flip-flop input
functions can be found using the K-map method, as shown in Figure 8.4.1. The
final step is the design of the output equations and the above excitation equations,
as shown in Figure 8.4.2. Note that the circuit design is similar in construction
(in terms of having a combinational part and a

TABLE 8.4.2
Excitation Table Using T Flip-Flops

Previous Characteristic Table Flip-Flop Inputs

W Z X W+ Z+ Out Tw Tz

0 0 0 0 1 0 0 1

0 0 1 1 1 0 1 1

0 1 0 1 0 0 1 1

0 1 1 0 0 0 0 1

1 0 0 1 1 0 0 1

1 0 1 0 1 0 1 1

1 1 0 0 0 1 1 1

1 1 1 1 0 1 0 1

FIGURE 8.4.2

Circuit Design of Table 8.4.1

314 DIGITAL DESIGN AND COMPUTER ORGANIZATION

sequential part). The circuit can be reconstructed to the sequential circuit format
given in block diagram format, as shown in Figure 8.1.1.

Example 8.4.2

In this example, we design the same word problem using T flip-flops. The
inputs, outputs, state assignments, and number of memory elements is assumed
to be similar to the previous two examples. As for the memory elements, we use
T flip-flops. The excitation table with T flip-flops is given in Table 8.4.2. The
minimized functions and the circuit design are shown in Figure 8.4.3.

Before we conclude this section, we present a final example of design of the
same word problem using JK flip-flops but with different state assignments.

Example 8.4.3

This example deals with an alternative design of the same word problem using
the following state assignments. The states A, B, C, and D are assigned the binary
codes 00, 10, 11, and 01, respectively. The state assignment produces the new
excitation table shown in Table 8.4.3. The minimized equations are

TABLE 8.4.3
Excitation Table with Different State Assignment

Previous Characteristic Table Flip-Flop Inputs

W Z X W+ Z+ Out Jw Kw Jz Kz

0 0 0 1 0 0 1 x 0 x

0 0 1 0 1 0 0 x 1 x

FIGURE 8.4.3

K-Map and Circuit Design of Table 8.4.2

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 315

Previous Characteristic Table Flip-Flop Inputs

W Z X W+ Z+ Out Jw Kw Jz Kz

0 1 0 0 0 1 0 x x 1

0 1 1 1 1 1 1 x x 0

1 0 0 1 1 0 x 0 1 x

1 0 1 0 0 0 x 1 0 x

1 1 0 0 1 0 x 1 x 0

1 1 1 1 0 0 x 0 x 1

The design of the circuit is given in Figure 8.4.4. The design includes the switch
inputs for the external inputs and the clock. In addition, it includes indicators for
the outputs. As homework, using the Electronics Workbench verify the circuit
above is a realization of the word problem given earlier. In your verification,
construct the state diagram of the word problem first; then, using the state
assignments, show that the same state diagram is obtained from the circuit
except for the labels of the nodes in the state diagram.

The examples above are intended to illustrate the following. First, different
initial state assignments yield different designs that realize the same
word problem. As a result, the initial state assignment affects the overall cost of
design in terms of the number of gates used. Second, for the same state the use of
different memory elements affects the design as well. For example, when T flip-
flops were used in the design the combinational circuit part contained a single
XOR gate and a single AND gate for the output. When SR flip-flops are used in
the design, the combinational circuit included eight gates. We will next look at
additional examples of sequential problems and discuss conversion between the
two different representations of state machines: the Moore machine and the
Mealy machine.

8.5
Mealy State Diagrams

Earlier we introduced state tables and state diagrams. State diagrams are directed
graphs with labeled edges. When the output is part of the labeling of the edges of
the diagram, the state diagram represents a Mealy model. In the Mealy model,
the output is a function of both the current state as well as the current input. An
alternative representation associates the output with the current state instead, i.e.,

316 DIGITAL DESIGN AND COMPUTER ORGANIZATION

the output does not depend on the current external input. This model is called a
Moore model. In this section, we present several examples. A Mealy model
construction of each example is given. In the next section, we consider the
equivalent Moore model.

Example 8.5.1

Construct the state diagram for a simplified circuit of a soda vending machine
with a single input and a single output. The input is one of two coins deposited
(dimes or quarters). The output is a binary signal with 0 indicating no can of soda
is released and 1 indicating a can is released. We assume the cost of a can of
soda is 35 cents. In addition, we assume a different circuit handles the change
returned.

Solution: In constructing the state diagram, we note that the memory of the
circuit is the amount of coin deposited for a new transaction. An initial state is
needed to indicate no coins have been deposited. We call this state “0,”
representing an amount of 0 cents deposited. From this state, we process two edges:
one edge for an input of 10 cents and another edge for an input of 25 cents. On
an input of 10 cents, we create a new state that represents a total of 10 cents is
deposited. The output associated with the edge is 0 since the total amount
deposited is less than 35 cents. Similarly, we generate a new state and label it 25
to represent the memory that 25 cents have been deposited.

FIGURE 8.4.4

Circuit design of Table 8.4.3

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 317

We proceed from the two new states and process inputs from each state. From
the 25 cents state, an input of 10 or 25 produces an output of 1 since the total
amount deposited is at least 35 cents. The edges from this state are directed to the
start state, indicating the transaction is complete and a new transaction can start.
Following a similar analysis procedure on other states, we obtain the Mealy state
diagram shown in Figure 8.5.1. Note that, with the exception of node 30, the
number of edges leaving each node is equal to the number of possible input
combinations. For simplicity, from node 30 we combined two edges into a single
edge labeled 25/1, 10/1. This is equivalent to two edges labeled 25/1 and 10/1,
respectively.

To gain familiarity with state diagrams, we trace the states of the diagram on
the input, 10, 10, and 25 cents. Initially, the diagram is in state 0. On the first
input of 10 cents, the diagram makes a transition to state 10 and outputs a 0. On
the second input of 10 cents and starting in the current state 10, the diagram
makes transition to the next state 20 and outputs a 0 as well. Finally, from state
20 and on input 25 cents, the diagram outputs a 1 (a can is released) and a
transition is made to the initial state to begin a new transaction.

The next two examples are sequence detector examples. The examples
monitor the input for a specific binary sequence. The output is 0 when the
sequence is not detected and 1 when the sequence is detected. For both
examples, the circuit has a single input and a single output.

Example 8.5.2

Construct the state diagram of a sequential circuit with a single binary input and
a single binary output. The circuit keeps track of the previous inputs as well as

FIGURE 8.5.1

State Diagram for the Soda Vending Machine. The node with label 0 is the start node. The
node labels represent the memory (coins deposited). The edge labeled 25/1, 10/1
represents two edges with indicated labels.

318 DIGITAL DESIGN AND COMPUTER ORGANIZATION

the current input. The output of the circuit is 0 until three consecutive 0s are
entered at the input. The output is 1 afterward.

Solution: The circuit is sequential since it keeps track of the previous input.
For the state diagram, the circuit requires at least four nodes:

1. An initial start node (no input is entered yet)
2. A node that represents a 0 is entered last
3. A node to represent two consecutive 0s are entered
4. A node to represent three consecutive 0s entered. The output is 1 on any

input afterward.

The state diagram is shown in Figure 8.5.2. Note the need for the fourth node and
that the state diagram loops in state A as long as the input entered is 1. As soon
as a 0 is entered while in A, a transition is made to state B indicating a first 0 is
entered. Now from B we process two inputs. On an input of 0, we move to
another state, C, indicating two consecutive 0s entered. (Note that from A we get
to C exactly when two consecutive 0s are entered.) On an input of 1, we move
back to state A, indicating a restart of the process. Finally, once in state D (three
consecutive 0s have been detected), the output produced is 1, independent of the
current input. This is shown

TABLE 8.5.1
Input 0000, Output 0011

Input 1 0 1 0 0 0 0 0 1 0

Output 0 0 0 0 0 1 1 1 0 0

by the edge that starts at D and loops back to D. Note that this edge cannot end in
any of the previous states (A, B, or C).

FIGURE 8.5.2

On the Input 01010001, the Circuit Output is 00000011. Assume inputs (outputs) are
applied (observed) from left to right.

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 319

Example 8.5.3

Construct the state diagram of a modified circuit as described in Example 8.5.2.
For this circuit, the output is 1 whenever three consecutive 0s are entered. The
output is 0 otherwise. To illustrate, Table 8.5.1 shows a sample of an input/output
sequence. Note the overlap in the sequence, i.e., on an input of four consecutive
0s, the output is 1 on the third and fourth 0.

Solution: Similar to the previous problem, we use states as memory of how
much of the string of 0s is recognized. Here, we need a state to indicate no string
of the sequence is recognized; call it state A, the start state. Similarly, we need
states as memory for the first 0 in the sequence is recognized and the second 0 in
the sequence is recognized. Call these states B and C, respectively.

While in A, on input of 1 we loop back to A, on input of 0 we move to state B,
indicating the last symbol entered is a 0. Similarly, from B on an input of 0 we move
to C and an input of 1 we move back to A to start over. Since state C indicates
the last two consecutive symbols are 0, on an input of 0 from this state the output
should be 1 since the last three symbols entered would be the desired sequence
(000). In addition, on this input the edge in the state diagram loops back to C due
to the allowable overlap in the sequence. From C and on an input of 1, the next
state is A, indicating that we need to start over. Therefore, no other states are
needed. The complete state diagram is shown in Figure 8.5.3. The state diagram
is not a unique solution. Similar analysis can be applied to the state diagram
shown in Figure 8.5.4 to show that it is a solution to the above problem as well.

In the next section, we show that both state diagrams are solutions to the same
problem (the state diagrams are equivalent). The next example we consider
deals with binary data for both inputs and outputs, as is the case for the previous
two examples. For the example it is convenient to use binary data to label the
states as well.

Example 8.5.4

A serial adder is a circuit that has two binary inputs and one binary output. The
circuit adds two n-bit binary numbers, A and B. The numbers are entered in
sequence, one bit at a time starting with the least-significant bits. For each pair of

FIGURE 8.5.3

State Diagram of Example 8.5.3

320 DIGITAL DESIGN AND COMPUTER ORGANIZATION

bits, the adder outputs the sum of three bits, the two bits to be added, and the
carry from the previous addition. The diagram shown in Figure 8.5.5 is an
example of two 4-bit numbers, A and B.

The diagram shows the direction of the inputs as applied. The inputs are
applied from least significant to most significant. On the application of each input,
the proper sum is produced. To produce the correct sum, the adder keeps track of
the previous carry generated. As a result, the adder is a sequential circuit. The state
diagram of the circuit contains two memory nodes representing a previous carry
of 0 or 1, and labeled as 0 and 1, respectively. The number of edges leaving each
node is four, corresponding to the four possible input combinations 00, 01,10,
and 11. The state diagram for the above circuit is shown in Figure 8.5.6.

8.6
Moore Machines

The output of a Moore machine is a function of the current state only. As a result,
the nodes in a state diagram corresponding to a Moore machine contain a label of
the node, as well as the output associated with the node. In general, Moore
machine state diagrams have a larger number of nodes as compared to the Mealy
machine state diagrams. We illustrate the construction of Moore state diagrams
based on the examples presented earlier.

FIGURE 8.5.4

An Alternative State Diagram of Example 8.5.3

FIGURE 8.5.5

Block diagram of a 4-bit serial adder

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 321

Example 8.6.1

Construct the Moore machine state diagram for the soda machine example
(example 8.5.1).

Solution: In constructing the Moore machine state diagram, we refer to the
Mealy model shown in Figure 8.5.1. A Moore state diagram can be constructed
from this model by adding one extra state we call “done.” This state represents
an amount of deposited that is at least 35 cents. Note that this state cannot be any
of the other states since the output in all other states should be 0. Figure 8.6.1
shows the Moore machine solution. Note that each state contains a label as well
as an output.

The state diagrams can be modified so as to output the change associated with
a transaction as well. For the case of the Mealy machine, the number of states in
the modified diagram remains the same. For the Moore machine example,
however, the number of states will increase. The details of the construction will
serve as an exercise.

Example 8.6.2

Construct the Moore machine state diagram of example 8.5.4.
Solution: In the Mealy machine solution, the state diagram contained two

states representing a carry of either a 0 or a 1. Since from each state it is possible
to output a sum of 0 or 1, the Moore state diagram will contain two states associated
with each state in the Mealy machine. The Moore model state diagram is shown
in Figure 8.6.2.

We illustrate by processing inputs from the start state. The label of the state is
0 and the output is 0. On an input of 00, the sum is equal to 0 (the sum of the
three bits 0, 0, and the carry of 0 is equal to 0). The carry is 0 as well. As a
result, the edge loops back to this state. On an input of 01 or 10, however, we
move to a new state since the sum is 1, even though the carry is still 0. Similar

FIGURE 8.5.6

The State Diagram of Example 8.5.4. Note that the three edges are represented by a single
edge with multiple input/output labels.

322 DIGITAL DESIGN AND COMPUTER ORGANIZATION

analysis can be applied on the remaining nodes. We next present a procedure
that converts a Mealy state diagram to an equivalent Moore state diagram.

8.6.1
Conversion from Mealy to Moore Machines

The conversion from a Mealy state diagram to a Moore state diagram can be
accomplished by replacing each state in the Mealy model with multiple
representative states in the corresponding Moore model. In the Mealy model, for

FIGURE 8.6.1

Moore Machine State Diagram of Soda Machine

FIGURE 8.6.2

Moore Machine State Diagram of Example 8.5.4. The carry/output is listed in the upper/
lower part of each node.

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 323

each state, s, with multiple edges entering the state and with n of these edges
labeled with different outputs, we create n states in the corresponding Moore
model. A transition into the original state, s, in the Mealy model is mapped to a
transition into one of the representative states, as shown in Figure 8.6.3. In
particular, the representative state with the same output is shown in the node.

Figure 8.6.3(a) shows the transitions into a state S in the Mealy model. Each
of the edges produces a different output, Yi. With each such output we create a
representative state, with label SYi and output Yi. This edge is then directed into
the generated state, as shown in Figure 8.6.3(b). Finally, edges starting at state S
in the Mealy model are converted to edges that leave each of the representative
states in the Moore model. This is shown in the figure for the edge with label X/Y.
We illustrate the construction procedure on the two examples discussed earlier.

Example 8.6.3

Convert the Mealy machine state diagram example for the soda machine to an
equivalent Moore machine state diagram using the procedure outlined above.

Using the procedure above, we first determine the number of states of the
Moore machine. For each set of edges with different outputs, Yi, and each
destination state, S, we create a set of representative states as discussed above.
From the Mealy state diagram of the soda machine example, new states are
generated for state 0 only, since no other states receive edges with different
outputs. Edges leaving each of the representative states are the same edges
leaving the original state 0. Figure 8.6.4 shows the Moore machine state
diagram. Note the similarity to the state diagram given in Figure 8.6.1.

FIGURE 8.6.3

(a) Mealy State Transitions and (b) Equivalent Moore Transitions. Entering edges into S
in (a) are routed to the proper representative state in (b). Edges starting at S are converted
to edges starting at each of the representative states.

324 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Example 8.6.4

Use the conversion process of Mealy to Moore state diagram to construct the
Moore state diagram for the serial adder circuit.

Solution: Since each state (0 or 1) receives edges with two different outputs,
with each such state we associate two representative states. From each state we
process four possible edges and choose the proper destination state using the
conversion rules mentioned above. To obtain the diagram, replace the state names
0, 0, 1, and 1 in Figure 8.6.2, visited in clockwise fashion, with the names 00, 01,
11, and 10, respectively.

As we discussed earlier, the second step in the design of sequential circuits is
to apply state minimization. State minimization is the process reducing the
number of states in a state table or state diagram without affecting the input and
output functionality of the circuit. We discuss state minimization next.

8.7
Machine and State Equivalence

We say that two state diagrams (machines) are equivalent if, on applying the same
input to the two machines, the machines always produce the same output, i.e.,
one cannot distinguish between the two machines in terms of input and output. In
the previous section, we presented different diagrams for the same problem (the
Mealy and Moore machines). These state diagrams are then equivalent. In the
section previous to that, we discussed different designs of the same problem
based on using different state assignments and memory elements. The machines
designed are equivalent since their input/ output relationships are the same.

Equivalency can be applied to a pair of states instead of machines. Two sates,
Si and Sj, are said to be 1-equivalent if starting from either state and for any input,
the output produced is the same. In the state table, two states are 1-equivalent if
they have identical output rows.

FIGURE 8.6.4

Moore Machine State Diagram of Soda Machine. Except for state names, the diagram is
similar to the solution diagram of Example 8.5.1.

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 325

Definition: In general, we say that two sates, Si and Sj, are k-equivalent if,
starting from either state and for any input of length k, the output produced is the
same.

Definition: We say that two states, Si and Sj, are equivalent if, on any input of
any length, the output produced by starting at state Si is the same as the output
produced by starting at state Sj. Alternatively, we say that two states are
equivalent if they are k-equivalent for any choice of k. Machine and state
equivalence forms an equivalence relation. Each equivalence relation over a set,
A, partitions the set A into equivalence classes.

Definition: A partition of a set, A, is a set P={A1, A2,…, An} such that (1) each
element Ai of P is a subset of the set A, (2) the intersection of any pair of element
of P is empty, and (3) the union of all the elements of P is the entire set A.

Figure 8.7.1 shows a schematic of a partition with three sets. The original set
is the entire rectangular area. In the figure, each Ai is called an equivalence class.
Any two elements in an equivalence class are related (under the equivalence
relation). Similarly, any two elements from two different Ai’s are not related. In
our discussion, the relation is 1-equivalence, k-equivalence, or machine
equivalence. In addition, the original set A is entire set of states. The partitions
will be a set of equivalence classes (each class is a set of states that are related
under the equivalence relation). We illustrate the definitions and equivalence
classes through the following examples.

Example 8.7.1

Find the 1-equivalence partition, P1, for the state table shown in the Table 8.7.1.

TABLE 8.7.1

FIGURE 8.7.1

An Example of a Partition. The elements of the original set are contained within the
rectangular

326 DIGITAL DESIGN AND COMPUTER ORGANIZATION

An Example Table Used to Find 1 Equivalence

Present State Next State Output

x=0 x=1 x=0 x=1

A B C 0 0

B D E 0 0

C F G 0 0

D A E 0 0

E D F 0 0

F D E 0 0

G A G 0 1

In forming the partition we note that the union of the partitions is the entire set
of states given in the state table. In addition, we note that two states belong to the
same partition, if from these two states and on all possible single inputs, the
outputs produced are identical. This is the same as saying the two rows produce
the same outputs. From the state table, states A, B, C, D, E, and F have identical
rows of output (0 for x=0 and 0 for x=1). As a result, the states form a 1-
equivalence class. State G is in equivalence class by itself. The partition P1 is
then composed of two subsets A1={A, B, C, D, E, F} and A2={G}.

Notation: To simplify, in the above example we write A1 and A2 as A1=
(ABCDEF) and A2=(G). In addition, we write the partition obtained by the 1-
equivalance as P1=(ABCDEF)(G) with 1 corresponding to 1-equivalence.

Definition: A refinement of a given partition, P, is another partition where
some of the original elements (subsets) of P are further partitioned into smaller
subsets.

In Figure 8.7.2, the original solid lines are the partition lines of some partition
P. In the refinement, to obtain some other partition P’, the original partitions
boundaries (solid lines) are not changed. Instead, additional boundaries are
added. As can be seen from the figure, the refinement produces five subsets A11,
A12, A13, A2, and A3; the original element A1 from P is further partitioned with
A1=A11 A12 A13.

TABLE 8.7.2
Shows the Output Responses for All 2-Bit Inputs, in Construction Refer to Table 8.7.1

Present State Output

x=00 x=01 x=10 x=11

A 00 00 00 00

B 00 00 00 00

C 00 00 00 01

D 00 00 00 00

E 00 00 00 00

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 327

Present State Output

x=00 x=01 x=10 x=11

F 00 00 00 00

G 00 00 10 11

In the context of our discussions, the partitions formed from (k+1)-
equivalences classes are refinements of k-equivalence classes.

Example 8.7.2

Form the 2-equivalence partition of the previous example.
To form the 2-equivalence partition, we could construct the output produced

by all inputs of length 2 by using states A through G as initial states. Table 8.7.2
shows the output responses for all 2-bit inputs. To generate the table, we refer to
the original table (Table 8.7.1). On the input 00 and starting in state A, we move
to state B and output 0 on the first 0 input. On the second 0 input, from state B
we obtain the output 0. As a result from state A and input 00, the output produced
is 00. This is shown in row 1 (current state A) and column 1 (input 00) of
Table 8.7.2. Other entries are formed similarly.

From the table, the rows with labels A, B, D, E, and F have identical outputs.
As a result, the corresponding states belong to the same equivalence class. Each
of the remaining states is in a separate equivalence class. Hence, the partition,
P2, is P2={A1, A2, A3} with A1=(ABDEF), A2=(C) and A3=(G). Note that P2 is a
refinement of P1. The new boundaries are added to the element (ABCDEF) to
produce two elements (ABDEF) and (C). We will next discuss state
minimization. Our discussion is based on the above definitions.

FIGURE 8.7.2

An Example of a Refinement. The original set of elements P1 is partitioned into three
disjoint subsets, as shown.

328 DIGITAL DESIGN AND COMPUTER ORGANIZATION

8.8
State Reduction and Minimal State Diagrams

Based on the previous discussion, we develop a procedure that reduces the
number of states in a given state machine. For each state machine, the algorithm
applied generates another equivalent machine with a minimum number of states.
The reduction in number of states may yield a reduction in the number of
memory elements needed in the design.

The algorithm we adopt is based on k-equivalence. It starts with partitions of
the set of states formed from applying 1-equivalence. We obtain refinement of
partitions by forming subsequent k-equivalence classes. The process of
minimization stops when no further refinements are possible. This occurs when
the partitions formed for some (k+1)-equivalence are the same as those formed in
the earlier k-equivalence partition. The procedure to form the successive
refinements follows. It uses the following definitions.

Definition: For a given state, Sj, and a given input, i, define the i-successor
(Sj) to be the state Sk, where Sk is reached from state Sj on input i.

For example, in the state table given in Table 8.7.1, 1-successor(C) is G.
Similarly, 0-successor(A) is B. The above definition can be extended to a set of
states.

Definition: For an input, i, and a set, Aj, the set of next states obtained by
applying the input i to each state in the set Aj is called i-successor(Aj).

For example, assume given the partition, P1=(ABCDEF)(G)=A1A2 as discussed
in the previous section with regard to Table 8.7.1. Then, 0-successor(A1)=
(BDFADD).

We will make use of the above definitions in minimizing the number of states.
To minimize the number of states in a given state machine, we:

Step 1: Form the partition of states, P1 (example 8.7.1 is an illustration).
On this set, we apply further refinements.

Step 2: Partition P(k+1) is obtained from partition Pk by processing each
element of Pk. For each input, i, and each element, Aj, we form i-successor
(Aj). The elements of Ai are partitioned according to i-successor(Aj). Two
states in the set Ai are placed in two different sets if the i-successor states
are in two different sets of PK. To illustrate, assume Pk=(A)(BCD)(F) with
i-successor(BCD)=(AFF). From the discussion, the element (BCD) in Pk is
partitioned to (B)(CD) in P(k+1) since states A and F belong two different sets
in Pk.

Step 3: Step 2 is repeated until the new partition P(k+1) satisfies P(k+1)=
Pk, i.e., until the new partition is no longer a refinement partition. Note that
step 2 is repeated a finite number of times since the number of states in a
state machine is finite.

We illustrate the refinement procedure on the examples below.

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 329

Example 8.8.1

Construct all possible partitions Pk for the example state table given in
Table 8.7.1.

From the example, we have P1=(ABCDEF)(G). This is step 1 of the algorithm
above.

For each set of states in the partition and for each input, we form the set of next
states. Since our objective is to refine previous partitions, we consider sets with
more than one state only.

For the set (ABCDEF) and input 0, the 0-successor(ABCDEF) set is
(BDFADD). Since the next states are elements of the same set in P1, no partition
on input 0 occurs. For the 1 input, the 1-successor(ABCDEF) is (CEGEFE). Of
the states in the successor set state, G is not in the same set of states found in P1

as the remaining successor sets. As a result, the set (ABCDEF) is partitioned to
(ABDEF)(C) resulting in P2=(ABDEF)(C)(G).

Since P2 is not equal to P1, step 2 of the algorithm is repeated. On the set
(ABDEF) and the input 0, the next states set obtained is (BDADD). As a result,
no separation (partition) of states occurs since the successor states belong to the
same set in P2. On the same set and an input of 1, the set of next sates obtained is
(CEEFE). The successor state results in P3= (A)(BDEF)(C)(D)(G).

Since P3 is not equal to P2, we continue the above process on (BDEF) with 0-
successor(BDEF)=(DADD) resulting in the refinement (BEF)(D), and 1-
successor(BDEF)=(EEFE). For P4, we have P4=(A)(BEF)(C)(G). On applying
this step further, no additional refinements are made.

Since no separation of states occurs, the step of refinements stops with the
states B, E, and F are equivalent states.

Example 8.8.2

Form all possible state equivalence partitions on the state table shown in
Table 8.8.1.

From the table, we have Pl=(A)(BCF)(DE). Table 8.8.2 shows the successive
application of step 2. Column 1 of the table contains the partitions with the
corresponding elements to process. Column 2 contains the successor set for the
given input. Column 3 contains the resulting partitions. In the table, since P2=P3

the process of refinement stops.
Before we consider another example, we could make use of the definition to

identify equivalent states from the state table in a preprocessing step. From the
definition, two states are equivalent if they have identical rows, i.e., the next state
rows as well as the output rows are the same. In Figure 8.8.1, A is equivalent to B
since for any input sequence the output produced by starting at state A is the
same as the output produced by starting at state B.

TABLE 8.8.1

330 DIGITAL DESIGN AND COMPUTER ORGANIZATION

State Table of Example 8.8.2

Present State Next State Output

x=0 x=1 x=0 x=1

A B C 0 0

B C D 0 1

C B E 0 1

D D F 1 1

E E F 1 1

F F A 0 1

TABLE 8.8.2
Partitions Obtained from Table 8.8.1

Partition i-successors

i=0 i=1 New Partitions

P1= (A)(BCF)(DE)

(BCF) (CBF) (DEA) (BC)(F)

(DE) (DE) (FF) (DE)

p2 = (A)(BC)(F)(DE)

(BC) (CB) (DE) (BC)

(DE) (DE) (FF) (DE)

In a preprocessing step, we could identify equivalent states and from each set
of equivalent states we could choose a representative element in a revised table.
We illustrate the process in an example.

Example 8.8.3

Form the minimized reduced table of the state table given in Table 8.8.3.

FIGURE 8.8.1

From the Definition of State Equivalence. States A and B are equivalent

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 331

From the table, in a preprocessing step we note that states A and H are
equivalent since they have identical next state and output rows. In addition,

TABLE 8.8.3
Equivalent States, A and H Are Equivalent, B and G Are Equivalent

Present State Next State Output

x=0 x=1 x=0 x=1

A E E 1 1

B C D 1 0

C D H 1 1

D B D 1 1

E F D 1 1

F A B 0 1

G C D 1 0

H E E 1 1

TABLE 8.8.4
Reduced Table, Obtained from Table 8.8.3

Present State Next State Output

x=0 x=1 x=0 x=1

A E E 1 1

B C D 1 0

C D A 1 1

D B D 1 1

E F D 1 1

F A B 0 1

state B and G are equivalent for the same reason. From this preprocessing step
we form a reduced table with the G and H states removed. Note that state H is
referenced from state C and on input x=1. Since state H is removed from the
reduced table, H is replaced by its equivalent state, A. The reduced table is given
in Table 8.8.4.

From the above discussions for the partitions, we have P1=(ACDE)(B)(F). For
P2 we process the 0 and 1 successors of (ACDE) to get

and

As a result, the new partition P2 is P2=(AC)(D)(E)(B)(F). Since P1 is not equal to
P2, we continue the process of refinement. Note that there is at most one
additional partition P3 possible. If no refinements occur we stop the process

332 DIGITAL DESIGN AND COMPUTER ORGANIZATION

(P2=P3); if there is refinement on the other hand, then the refinement splits (AC)
into (A) and (C) and, as a result, no additional refinements are possible.

For the 0-successors of (AC), we have

Since each state is placed in its own partition, no further partitions are possible.
Since P3 is equal to (A)(B)(C)(D)(E)(F). The reduced table above is the minimal
state table.

8.8.1
The Reduced State Table

The above partition procedure is used to form the reduced state table as follows.
The number of elements in the final partition is equal to the number of states in
the reduced state table. Each element in the partition represents a state in the
reduced state table. To form the transitions between states, we

TABLE 8.8.5
Final Reduced Table with Needed Transitions for Example 8.8.2, (a) the Equivalent States
from Table 8.8.2, (b) Table with Renamed States

(a) (b)

Present State Next State Output Present State Next State Output

x=0 x=1 x=0 x=1 x=0 x=1 x=0 x=1

(A) (BC) (BC) 0 0 A1 A2 A2 0 0

(BC) (BC) (DE) 0 1 A2 A2 A3 0 1

(DE) (DE) (F) 1 1 A3 A3 A4 1 1

(F) (F) (A) 0 1 A4 A4 A1 0 1

consult the original state table and the i-successors of the last partition formed.
Table 8.8.5 shows the reduced table with needed transitions for example 8.8.2.
The equivalent states shown in Table 8.8.2 are (A), (BC), (DE), and (F).

To simplify from a notation point of view, the state labels can be renamed.
Table 8.8.5(b) of the table shows the equivalent state table. In the table, the
labels (A), (BC), (DE), and (F), are replaced, respectively, with the labels A1, A2,
A3, and A4.

Note that with the reduced state table the number of memory elements needed
in the design has decreased from three to two memory elements.

Chapter 8
Exercises

8.1 Given the characteristic equations, A+ and B+, and the output
equation, out, such that

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 333

A+(A,B,x)=A+xA′ B+(A,B,x)=B+(xA)′ Out=A+B
Design the sequential circuit that realizes the above functions using D flip-flops.

8.2 Verify the circuit designed in question 1 is correct by generating
the characteristic equations from the circuit design.
8.3 Given the characteristic equations, A+ and B+, and the output
equation, out, such that

A+(A,B,x)=ABx+A′B B+(A,B,x)=Bx+AB′ Out=AB
(a) Show the design of the circuit using JK flip-flops.

(b) Verify your design is correct by deriving the characteristic
equations of the circuit and showing the equations are equal to above
given equations.
8.4 Given the characteristic equations, A+ and B+, and the output
equation, out, such that

A+(A,B,x)=x+A′B B+(A,B,x)=x+B Out=(AB)′
Design the circuit that realizes the above functions using JK flip-flops.

8.5 Given the state diagram constructed in example 8.5.2. Form a new
state diagram with two memory elements X and Y and with the
assignment XY=00, 01, 10, and 11 representing the states A, B, C, and
D, respectively.
8.6 Show the complete design procedure of example 8.5.2 based on the
assignment given in question 8.5. Use D flip-flop for X and SR flip-
flop for Y.
8.7 Repeat question 8.6 based on the assignment XY=00, 01, 10, 11
representing A, C, D, and B, respectively. Use JK flip-flops for both
memory elements X and Y.
8.8 Show the complete design of the soda vending machine example
given in Example 8.5.1. Use a normal binary encoding scheme to
represent the states with 000 representing the state with the label 0, 001
representing the state with label 10, etc. Design your circuit using JK
flip-flops.
8.9 Construct the Mealy state diagram of a sequential circuit with a
single input. The circuit outputs a 1 whenever the binary input entered
thus far is divisible by 5. Assume the number is entered from most
significant to least significant. For example, on the input 110101 the
output produced is 000001.
8.10 Construct the Moore machine state diagram of the circuit
description given in question 8.9.
8.11 Construct the Mealy state diagram of a circuit that receives a
single input. The circuit outputs a 0 until either of the sequences 000,
001, or 111 are detected. The output is 1 on all inputs afterward.
8.12 Show the design of the state diagram of the adder circuit given in
example 8.5.4 using

(a) D flip-flops
(b) JK flip-flops

334 DIGITAL DESIGN AND COMPUTER ORGANIZATION

(c) T flip-flops
(d) SR flip-flops

8.13 Show the design of the circuit of the state diagram given in
example 8.6.2 using

(a) D flip-flops
(b) JK flip-flops
(c) T flip-flops
(d) SR flip-flops

8.14 Show the design of a sequence detector detecting the sequence
10111 using D flip-flops.
8.15 Show the design of a sequence detector detecting the sequence
10111 using JK flip-flops.
8.16 Given the state table shown in Figure E8.1. Find the minimal state
table.
8.17 Given the state table shown in Figure E8.2. Find the minimal state
table.
8.18 Given the state table shown in Figure E8.3. Construct the
corresponding state diagram. From the state diagram, construct the
equivalent Moore state diagram.

FIGURE E8.1

FIGURE E8.2

DESIGN OF SEQUENTIAL CIRCUITS AND STATE MINIMIZATION 335

FIGURE E8.3

336 DIGITAL DESIGN AND COMPUTER ORGANIZATION

9
Registers, Counters, and Memory Elements

CONTENTS

9.1 Registers 338

9.1.1 Parallel Registers 338

9.1.2 Shift Registers 341

9.2 Counters 343

9.2.1 Mod-2n Synchronous Counters 343

9.2.2 Mod-M Counters for General M 346

9.2.3 Binary Counters with Decreasing Counts 348

9.3 Asynchronous, Ring, and Johnson Counters 350

9.3.1 Asynchronous Counters 350

9.3.2 Ring Counters 351

9.3.3 Johnson Counters 352

9.4 General-Purpose Register-Counter Circuits 354

9.5 Memory Block Diagram 359

9.6 Building Larger RAM from Smaller RAM 361

9.7 The Data Bus Connections 363

9.7.1 Connections Using Multiplexers 365

9.7.2 Connections Using Tristate Gates 367

9.8 Internal Design of Memory 367

9.8.1 Gate Design of a Single Memory Cell 367

9.8.2 RAM Design with Two Data Buses 368

9.8.3 RAM Design with a Single Data Bus 370

9.9 Register Files 373

Chapter 9 Exercises 376
In this chapter, we discuss some of the common sequential circuits used in

computer organization and design. The discussion is analogous to the discussion
in Chapter 5, where we discussed iterative design procedures of common
combinational circuits. In this chapter, we discuss common sequential circuits
using an iterative procedure where needed. In particular, we discuss registers,
counters, general-purpose registers/counters, register files, and random access
memory (RAM). The circuits discussed are widely used as components in digital
computer design. We start our discussion with registers.

9.1
Registers

A register is a sequence of storage memory elements that are treated as a single
memory unit. Registers are used to hold temporary data for processing or for
communication between two units in the computer. They are characterized
according to (1) their size (the number of memory elements, flip-flops, they
contain), (2) the method of reading the memory elements, and (3) the method of
writing to the memory elements.

9.1.1
Parallel Registers

Information can be stored in a register in parallel. An n-bit parallel register is a
register with n inputs. Each of the n inputs is used to store information in one of
the n memory elements. Similarly, an n-bit parallel read register has n outputs;
each output is used to read one of the 1-bit memory elements. The diagram in
Figure 9.1.1 shows an example of a 4-bit parallel load and parallel read register.
The design uses D flip-flops.

338 DIGITAL DESIGN AND COMPUTER ORGANIZATION

The inputs to the circuit, I0 through I3, can be stored into the memory elements
during one clock cycle. This is the case since the same clock pulse samples all
flip-flops simultaneously. The term “parallel load” is used since the contents of
the memory elements are loaded in parallel during the same clock cycle.
Similarly, the contents of the register can all be read at once at the output leads,
Out0 through Out3, as shown in the diagram.

The 4-bit register shown in Figure 9.1.1 is modified during each clock cycle.
At the rising edge of the clock, the contents of the input lines are moved into the
register, and hence possibly erasing the previous stored values. As we will see
later in this chapter, it is possible to connect many registers to the same set of
input lines. During a given clock cycle, the circuit may require that only one of
theses registers be modified. As a result, one needs a mechanism by which only
the desired register can store information while the contents of all other registers

FIGURE 9.1.1

An Example of a 4-Bit Parallel Load and Parallel Read Register

FIGURE 9.1.2

An Example of a 4-Bit Parallel Load and Parallel Read Register with a Load Control Input

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 339

are left unchanged. To accomplish this, we add a control line. The line is used to
control loading information into a register.

The circuit in Figure 9.1.2 shows this for a 4-bit register with the control line
added. The register is similar to the circuit in Figure 9.1.1 but with an additional
load input. In order for the inputs to be stored in the register, the load line must
assume a value of one, and the clock must make a transition in logic value from
low to high. When the load line value is 0, the contents of the registers are not
affected by the values on the input line.

In Chapter 7, we discussed glitches as unwanted outputs that are caused by the
different propagation delays of a given circuit. In synchronous sequential circuits,
it is desired that the different memory units in the circuit are sampled at the same
time. Here, a clock is used to send the needed signals in a synchronous fashion to
all the circuit units. When gates are inserted in the path of a clock, the arrival
time to the units will differ. The phenomenon is called “clock skew.” To reduce
clock skew, it is desirable to minimize the number of gates in the path of the
clock signal. This will reduce the delay in arrival times of the clock signal to the
different components of the circuit. Figure 9.1.3 shows a 4-bit register with the
clock signal connected directly to the clock inputs of the flip-flops.

In the figure, if the load input is 0, then the inputs to each of the memory
elements is the previous output value of the corresponding memory element. As
a result, for this input the flip-flop contents do not change. If the load input
assumes a value of 1, however, then the input to each flip-flop is
the corresponding external input, Ij. On the rising edge of the clock the inputs are
stored in the corresponding memory elements. In block diagram, we could show

FIGURE 9.1.3

A 4-Bit Register with a Load Control Input and with the Clock Signal Connected Directly
to the Clock Inputs of the Flip-Flops

340 DIGITAL DESIGN AND COMPUTER ORGANIZATION

the 4-bit register as given in Figure 9.1.4. Note that the register has four inputs
and four outputs. This is not the case for shift registers, which are discussed next.

9.1.2
Shift Registers

Shift registers are used to store information in the register one bit at a time.
Similarly, they can be designed to read information from register one bit at a
time as well. Shift registers act on the stored information in a register by shifting
its contents to the left or to the right. The topic of shifting an operand to the left
was discussed in the arithmetic and logic unit (ALU) design section of
Chapter 5.

In shift registers, the contents of one flip-flop are connected to the input of the
adjacent flip-flop depending on method of shifting the stored information. In
Figure 9.1.5, the diagram represents a 4-bit shift register. The information to be
stored in the register is applied to the line with the input label. On the rising edge
of the clock, the input is stored in the left-most memory element. At the same
time, the values stored in the flip-flops are shifted to the flip-flop directly on

FIGURE 9.1.4

Block Diagram of a 4-Bit Register with a Load Input

FIGURE 9.1.5

A 4-Bit Shift Register

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 341

their right. The register is a shift-right register. In order to store the needed data
in the register, we apply the data in a serial fashion one bit at a time. By applying
the input one bit a time, on the fourth clock cycle the register will contain the
desired data.

Table 9.1.1 illustrates this for the input 1100. The symbol “?” is used to
indicate that the contents of the register are not known. Initially, all outputs are
assigned “?.” On the rising edge of the first clock cycle, the left-most flip-flop
input is sampled. As a result, its output stores the value at the input x. Note that
all other flip-flop inputs are sampled as well; however, these flip-flop values
remain “?.” On the next clock cycle, the input x is stored in the left-most flip-
flop (output Y1). Similarly, the output of the left-most flip-flops is moved into
Y2. This is indicated in the table using arrows as shown.

As can be seen from the table, it takes four clock cycles to store information in
the register. Similarly, in order to read information out, one must move the
contents of the memory elements to the output of the flip-flop with label “Y4.” In
its current form, reading information out of the register will modify its contents.
In general, when one reads information from a storage device, it is desired that
the contents of the device do not change as a result of reading. The register

TABLE 9.1.1

Input X=1100 Is Shifted from LSB to MSB into 4-Bit Shift Register

FIGURE 9.1.6

A 4-Bit Shift Register with Parallel Out

342 DIGITAL DESIGN AND COMPUTER ORGANIZATION

design above can be modified to read information in parallel; Figure 9.1.6
illustrates this. The contents of the register are read at the outputs with labels Y1

through Y4. The contents of the register can be read during a single clock cycle.
To incorporate a load line, one can use the clock input as was done earlier for

the case of the parallel register. Here, however, in order to store information in
the register the load line should be held at one for four clock cycles. Figure 9.1.7
shows the modified register. The circuit design can be modified to remove clock
skew. The design is used as an exercise.

9.2
Counters

Counters are sequential circuits similar to registers but follow a predetermined
periodic sequence of outputs. When the periodic sequence of outputs is the
binary counting sequence, the counter is called a binary counter. The counters we
consider count the clock pulses generated externally. In the discussion that
follows, we characterize counters as synchronous or asynchronous. In
synchronous counters, all memory elements receive the same clock signal at
their inputs. This is not the case for asynchronous circuits.

9.2.1
Mod-2n Synchronous Counters

A modulo-m (mod-m) binary counter is a sequential circuit that counts in binary
from 0 to m−1. On application of the clock pulses, the binary sequence with
decimal values equal to 0, 1,…(m−1) is repeated with 0 following the (m−1)
count. When m is equal to 2n, for some arbitrary n, the design of the counter can

FIGURE 9.1.7

A 4-Bit Shift Register with Parallel Out and with a Control Load Input

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 343

be achieved iteratively using n JK or T flip-flops. We illustrate the design using
the standard design procedure first on the example that follows. From the
example, we conclude an iterative generalized design procedure.

Example 9.2.1

We would like to design a mod-8 binary counter. The circuit has no inputs. Its
outputs are the flip-flop outputs. On the application of clock cycles, the circuit
repeatedly outputs the binary counts 000, 001,…, 111, 000,….

In the design, we would like to use T flip-flops. The number of flip-flops
needed is three as shown in the generated binary count (1 flip-flop per bit of
counting is needed). The excitation table for the design is shown in Table 9.2.1.
The K-maps with the minimized functions are shown in Table 9.2.2. For the C
flip-flop, the input Tc is equal to 1 since this bit of the counter changes on the
application of each clock cycle. The design of the counter is

TABLE 9.2.1
Excitation Table of a Mod-8 Counter Using T Flip-Flops

A B C A+ B+ C+ TA TB Tc

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 1

0 1 0 0 1 1 0 0 1

0 1 1 1 0 0 1 1 1

1 0 0 1 0 1 0 0 1

1 0 1 1 1 0 0 1 1

1 1 0 1 1 1 0 0 1

1 1 1 0 0 0 1 1 1

TABLE 9.22
K-maps Generated from the Excitation Table Given in Table 9.2.1

shown in Figure 9.2.1. Note the design is shown using JK flip-flops which are
converted to T flip-flops. The design in the example is that of a synchronous
counter. The counter design is synchronous since all flip-flops are sampled at the
same time by the same falling edge of the clock. We contrast this with other
designs shortly.

The above design can be generalized to design mod-2n binary counters for an
arbitrary large n. To illustrate we refer to the design above and a property of binary
counting discussed in earlier chapters. In binary counters, in order for the bit at
location i to change (toggle from 0 to 1 or from 1 to 0) all previous bits must be
equal to 1. This is similar to the case of a decimal counter; in order for the
decimal 6 to change to 7 in the number 672, for example, all previous digits must

344 DIGITAL DESIGN AND COMPUTER ORGANIZATION

be equal to 9. Similarly for the binary number 1010, in order for the third bit (0)
to change, all previous bits must assume a value of 1.

This property holds true in the design above. When using JK or T flip-flops, to
change the output of the flip-flop the inputs are assigned a value of 1. For the
case of the A flip-flop, for example, the flip-flop output changes if all the
previous bits assume a value of 1, i.e., the input to the flip-flop should be the
product term BC. When both B and C assume a value of 1 and when the flip-flop
inputs are sampled at the falling edge of the clock, the flip-flop output is changed
(complemented).

Using this observation, we can extend the design procedure to a mod-2n
counter with outputs YnY(n−1)…Y1. For each flip-flop with output Yi, we form the
product Y(i−1)…Y1. This product is used as an input to the flip-flop with output Yi.
The circuit diagram in Figure 9.2.2 shows an example of a mod-32 counter. We

FIGURE 9.2.1

Mod-8 Counter Design of Excitation Table Given in Table 9.2.1

FIGURE 9.2.2

Design of a Mod-32 Binary Counter Using JK Flip-Flops

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 345

make three observations about the diagram. First, the circuit contains an
additional input called count, as seen in the figure. When this input is assigned a
value of 0, the inputs to all flip-flops assume a value of 0. As a result, the circuit
outputs do not change. On the input count=1, the circuit counts the clock pulses
as intended. The count input is used as an enable to the circuit; when count=1,
the circuit counts the clock pulses as intended. On the other hand, the circuit stops
counting when count=0.

The second observation has to do with the AND gates. The gates are cascaded
with the outputs of one gate used as inputs to the other. The cascading results in
delays in obtaining a valid output at these gates. For example, consider the inputs
to the flip-flop with output Y5, the changes in Y1 are rippled through four AND
gates.

The final observation is with regard to the left-most AND gate. This gate is
included to generate larger counters. For example, two mod-16 counters can be
cascaded to generate a mod-28 binary counter. The two mod-16 counters receive
the same clock signal at their clock inputs. The output of the AND gate
associated with Y4 is used as a count input into one of the cascaded counters as
shown in Figure 9.2.3.

9.2.2
Mod-M Counters for General M

The above design procedures can be applied to mod-m counters when m is equal
to 2n for some integer n. For other cases where m is not a power of 2, we could
apply the design procedure discussed in the previous chapter and applied in
example 9.2.1. Alternatively, we could make use of the memory elements
asynchronous clear. To accomplish the design, we use mod-2n counters with

n=[log2m]
We present examples of the two design procedures next.

FIGURE 9.2.3

Design of Counters from Smaller Counters

346 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Example 9.2.2

In the first example, we would like to design a mod-5 counter. The counter has
no inputs. Its output is the repeated binary sequence 000, 001, 010, 011, 100.
Following the 100 output, the circuit repeats the sequence by starting at 000.

The excitation tables for the circuit, using T flip-flops, are shown in
Table 9.2.3. The K-maps and minimized outputs are shown in Figure 9.2.4. The
design is given in Figure 9.2.5.

An alternative method of designing the above circuit is to make use of the
asynchronous reset inputs of a mod-8 counter. In the design, when the count
value is 100 the circuit is reset asynchronously to 0. This is done by using the
output A as an input to the asynchronous clear of the flip-flops. We illustrate the
design procedure in the following example.

TABLE 9.2.3
Excitation Table of a Mod-5 Counter Using T Flip-Flops

A B C A+ B+ C+ TA TB Tc

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 1

0 1 0 0 1 1 0 0 1

0 1 1 1 0 0 1 1 1

1 0 0 0 0 0 1 0 0

1 0 1 x x x x x x

1 1 0 x x x x x x

1 1 1 x x x x x x

FIGURE 9.2.4

K-Map of Excitation Table, Table 9.2.3

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 347

Example 9.2.3

We would like to design a mod-10 counter using a mod-16 counter with
asynchronous preset and clear. The design is accomplished by causing the circuit
to reset to the count 0000 following the maximum count value, 1001. This is
shown in Figure 9.2.6.

In the figure, the counter functions in normal mode (counts as needed) if count
is less than 1001. When the count output reaches 1001 (on the falling edge of the
clock), the output of the AND gate with inputs Y1 and Y4 is set to 1. This output
is used as an asynchronous clear input to each of the flip-flops. As a result,
shortly after the output assumes a value of 1001, the circuit is reset to 0000
independent of the clock. Hence, the output at Y1 is seen as a pulse with very
short duration. This may result in undesirable design since the short duration of
the pulse may not be observed by other units in the design.

9.2.3
Binary Counters with Decreasing Counts

The above design procedures can be used to design circuits that can count
downward as well. The previous counters are called mod-m up-counters. The
counters considered here are called mod-m down-counters. In the design, we
consider the design of mod-2n down-counter. As discussed earlier, one can make
use of counting properties to realize the design. For the case of counting up, the
inputs to a specific flip-flop (JK or T) received the product of all previous bits in
the count. In counting down, in order for a specific bit to change (toggle), all the
previous bits in the count must assume a value of 0, as shown in Figure 9.2.7.
Hence, to cause the bit to change, we form the product of the previous

FIGURE 9.2.5

Circuit Design of Excitation Table, Table 9.2.3

348 DIGITAL DESIGN AND COMPUTER ORGANIZATION

complemented bits. This product is used as an input to the corresponding flip-
flop.

Figure 9.2.8 shows the design of a mod-16 down-counter using JK flip-flops.
Note the complemented outputs of the memory elements in the figure. These
outputs are used as inputs into the AND gates, as is the case for counting up in
binary counters.

FIGURE 9.2.6

Design of a Mod-10 Counter from a Mod-16 Counter. Note the use of the asynchronous
clear.

FIGURE 9.2.7

Counting Down in Binary

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 349

9.3
Asynchronous, Ring, and Johnson Counters

9.3.1
Asynchronous Counters

Counters can be realized asynchronously as shown in the circuit example given
in Figure 9.3.1. The design is asynchronous since the flip-flops are not sampled
by the same clock signal. As can be seen from the figure, the clock input to the
first flip-flop (with output Y1) is the external clock input. This is not the case for
the remaining flip-flops. The clock input to the flip-flop with output Y2 is Y1

Similarly, the clock input to the flip-flops with output Y3 and Y4 are,
respectively, Y2 and Y3. If count=1, then the inputs to all flip-flops causes each
flip-flop to toggle when sampled.

FIGURE 9.2.8

Mod-16 Count Down Binary Counter

FIGURE 9.3.1

Ripple Counter

350 DIGITAL DESIGN AND COMPUTER ORGANIZATION

The circuit design is called a ripple counter. Ripple counters are among the
simplest counters to design. In the design of ripple counters, the correct count is
not obtained shortly after a clock transition. The delay in the memory elements
are rippled through the counter with the least-significant bit producing the
correct output first and the most-significant memory element producing the
correct output last. We illustrate this using the timing diagram given in
Figure 9.3.2. In the timing diagram, note the ripple delay effect from the falling
edge of the clock (similar to the delay found in ripple adders). Assume the output
associated with each flip-flop is delayed by At time units from the time the flip-
flop inputs are sampled. With this assumption, the delay associated with Y4 is
4� t time units, as shown in the figure.

Earlier, we defined a counter as a circuit that periodically produces a sequence
of outputs. The binary counter discussed earlier produced a sequence of binary
counts. This sequence need not be a counting binary sequence but any arbitrary
sequence that repeats periodically; ring counters and Johnson counters are
examples. We will discuss the use of such counters when we look at the design
of the control unit of a computer.

9.3.2
Ring Counters

Ring counters are generated from shift registers. The counter is constructed by (1)
connecting the last output of the shift register to the input of the first flip-flop,

FIGURE 9.3.2

Ripple Counter Timing Diagram

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 351

and (2) initializing exactly one bit in the register to 1 (the first bit). With these
conditions, on the applications of clock pulses, the 1 bit is shifted to adjacent flip-
flops in a circular fashion. Figure 9.3.3 is an example of a 4-bit ring counter. The
initial memory element outputs are Y1Y2Y3Y4=1000. On each rising edge of the
clock, the output follows the sequence 1000, 0100, 0010, 0001. This sequence is
repeated with 1000 following 0001.

Note that the outputs of the circuit satisfy the following two conditions. First,
over one clock cycle, exactly one output assumes a value of 1. Second, the
output is ordered where during the first clock pulse Y1 assumes a value of 1.
During the second clock pulse, Y2 assumes a value of 1. Similar logic applies to
the remaining outputs. We will see the importance of such circuits when we
discuss computer cycles in Chapter 11. The timing diagram shown in
Figure 9.3.4 reflects the order discussed.

An alternative method to generate the above sequence can be accomplished by
using a 2-bit binary counter and a 2-to-4 decoder. Figure 9.3.5 illustrates this for
a larger case. In the figure, the counter output is 000 initially. As a result, the
output of the 3-to-8 decoder is 10000000. On the application of the clock pulses,
the counter output follows the sequence 000, 001, 010, 111, 000. As a result, the
decoder output follows the sequence 10000000, 01000000, 00100000,
000100000, 000000000.

9.3.3
Johnson Counters

Consider the circuit shown in Figure 9.3.6. The circuit is similar to a ring counter
with the feedback connection changed. The complemented output of the last flip-
flop is now connected to the input of the first flip-flop. Assuming the initial

FIGURE 9.3.3

Ring Counter

352 DIGITAL DESIGN AND COMPUTER ORGANIZATION

outputs of all flip-flops are 0, on the application of clock cycles we obtain the
repeated sequence 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000, etc.

We illustrate as follows. During the first clock pulse, the complement of the
last flip-flop (right-most flip-flop) is shifted into the first flip-flop (left-most).
Zeros are shifted in the remaining flip-flops. As a result, following the 0000

FIGURE 9.3.4

Timing Diagram Obtained from Ring counter in Figure 9.3.3

FIGURE 9.3.5

An Example Circuit that Generates 8 Timing Signals Instead of 4 Timing Signals as
Given in Figure 9.3.4

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 353

output, the next output obtained is 1000. On the next clock pulse, the last flip-
flop output is still 0. As a result, 1 is shifted into the first flip-flop. The result of
the shift is to obtain the next output in the sequence, 1100. This process
continues until the output becomes 1111. Folio wing this output, since the
complement of the right-most flip-flop is 0, on the next clock pulse we obtain the
new output 0111. The same logic is applied to obtain the remaining outputs in
the sequence.

As can be seen from the sequence given above, with k-bit Johnson counter we
generate 2k different sequences. In this sequence, one can inspect the binary code
for each state and derive a unique expression. The expression should evaluate to
1 only when a particular sequence is currently at the output. The expression
generated should evaluate to 0 otherwise. This is done so as to distinguish
between the patterns in the sequence. Generating the minterms corresponding to
each element of the sequence is sufficient. By inspection of outputs, however, one
can generate a simpler set of product terms. Finding the set of product terms will
be done as an exercise.

9.4
General-Purpose Register-Counter Circuits

In this section, we expand on the pool of sequential circuits by considering
circuits that serve as both a register and a counter. We start by considering the
diagram in Figure 9.4.1. In the circuit, if the T input assumes a value of 0, then
the output of the XOR gate is Q. As a result, when the flip-flop inputs are
sampled, we have Q+=Q, i.e., the flip-flop outputs remain unchanged. If the
input T is 1, however, the output of the XOR gate is Q�. As a result, the next
output Q+ will be the complement of Q. From the discussion, the circuit
functions as a T flip-flop.

The rationale for generating a T flip-flop from a D flip-flop is due to the fact
that in register design it is best to use D flip-flops as the component memory

FIGURE 9.3.6

Johnson Counter

354 DIGITAL DESIGN AND COMPUTER ORGANIZATION

elements. For binary counters, however, it is best use T flip-flops. With the T
flip-flop design, the binary counter circuits discussed in the previous section can
be designed iteratively using D flip-flops as well. To accomplish this, we replace
each of the JK flip-flops (T flip-flops) by the circuit shown in Figure 9.4.1.

Our goal is to design circuits that could function as counters as well as being
able to function as registers. Multiplexers can be used to design a circuit that
serves as both a register and a counter. To illustrate we construct three circuits. The
first circuit is used as a counter or a parallel register, as shown in the next
example.

Example 9.4.1

In this example, we would like to design a circuit that functions as a 4-bit binary
counter or a 4-bit register. We assume the circuit has a single control input, C. If
C is equal to 1, then the circuit functions as a register. If C is equal to 0, however,
the circuit functions as a binary counter.

Solution: To design the circuit, we make use of 2-to-1 multiplexers. The
control input to the multiplexers is the C input. The circuit in Figure 9.4.2 shows
the design using the T flip-flop construction from D flip-flops. The circuit
function is based on the two possible values of the control input C. First for C=0,
the outputs of the multiplexers, from right to left, are I0, I1, I2, and I3. When the
flip-flop inputs are sampled, these inputs are stored into the circuit. Hence, the
circuit functions as a register.

Second for C=1, the output of the right-most multiplexer is the complement of
Y0. Hence, on successive clock pulses this flip-flop output is continually
complemented. This property is similar to counting. For the second multiplexer
from the right, its output is either Y1 or its complement. If the previous Y0 value
is 0, then the output of the multiplexer is Y1. Hence Q1+= Q1. If Y0 is 1, however,
the output of the multiplexer is the complement of Y1. This property is again
similar to the counting property in binary counters. By inspecting the circuit, we
note that in order for Y2 to change (from 0 to 1 or vice versa) both Y0 and Y1 must
assume a value of 1. Similarly, in order for Y3 to change, all least-significant bits

FIGURE 9.4.1

Design of T Flip-Flop from a D Flip-Flop

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 355

Y0, Y1, and Y2 must assume a value of 1; thus from the discussion, the circuit
function as a mod-16 binary counter.

The previous circuit is always in one of two possible states: a count state or a
register state. In general, we would like to have control inputs that cause the
contents of the circuit to remain unchanged. To do this, we follow a procedure
similar to that discussed above with a larger multiplexer and additional control
inputs. We illustrate this with a second example.

Example 9.4.2

In this example, we would like to design a circuit that serves as a 4-bit register or
a mod-16 binary counter as discussed earlier. Here, however, additional control
inputs are used to allow for keeping the contents of the register circuit
unchanged. We would like the circuit to function according to the description
given in Table 9.4.1.

FIGURE 9.4.2

A Circuit That Functions as a Counter or a Register. On S=0 the circuit is a register. On
S=1 the circuit is a counter.

356 DIGITAL DESIGN AND COMPUTER ORGANIZATION

The circuit can be designed by expanding the design procedure given in the
above example. In the design, we use 4-to-1 multiplexers. The circuit design is
given in Figure 9.4.3. From the figure, if S1S0=00, then the multiplexer

TABLE 9.4.1
Function Description of Register in Figure 9.4.3

S1 S0 Circuit Function

0 0 Leave contents unchanged

0 1 Store inputs I0 to I3

1 0 Count up

outputs are the previous Yi outputs of the flip-flops. As a result, the circuit
contents remain unchanged. For S1S0=01, the circuit function as a register since
the flip-flops inputs are I0 through I3. Finally, if the control inputs are S1S0=10,
then the circuit functions as a mod-16 counter.

In the circuit design, the function of the circuit is not specified when both of
the control inputs assume a value of 1. We could increase the functionality of the

FIGURE 9.4.3

General-Purpose Register, Control Is S1S0

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 357

circuit by making use of this unused case. To illustrate, we consider a third
example.

TABLE 9.4.2
Function Description of Register in Figure 9.4.4

S1 S0 Circuit Function

0 0 Leave contents unchanged

0 1 Store inputs I0 to I3

1 0 Count up

1 0 Count down

Example 9.4.3

In this example, we would like to expand on the functionality of the previous
example by designing a circuit that functions as a down-counter as well. The new
function of the circuit is given in Table 9.4.2.

Using a procedure similar to what was done in the previous two examples we
obtain the circuit shown in Figure 9.4.4. In the circuit, the unused previous
multiplexer input is now used to cause the circuit to count down. In counting
down, as discussed earlier, a particular bit is left unchanged until all previous bits

FIGURE 9.4.4

General-Purpose Register. Control is S1S0

358 DIGITAL DESIGN AND COMPUTER ORGANIZATION

assume a value of 0. These conditions are satisfied by the circuit design given in
Figure 9.4.4.

Before we conclude this section, we return to designing mod-m binary
counters where m is not a power of 2. (The three examples presented in
this section realize counters that are mod-2n.) In the previous section, for
designing counters that count from binary 0 to binary m where m is not a power
of 2, we considered two methods of design. In the first method, we followed the
general design procedure where we formed the excitation tables from the circuit
description. From these tables we then could form the minimized flip-flop
equations and complete the design. The method is tedious for counter circuits
with many flip-flops. In the second method of the design procedure, we used a
mod-2n counter with asynchronous reset where

n=[log2m]
The asynchronous reset caused the circuit output to assume the maximum value
(m−1) for a very short duration of time. The short duration may result in design
errors.

An alternative design procedure is to synchronously cause the counter to count
mod-m by using the circuit given in example 9.4.1. To accomplish the design, we
assign zeros to the parallel inputs of the register. When the count reaches the
correct value of m−1, we send a signal on the multiplexer select inputs to change
the circuit function to store the contents of the inputs. As a result, on the next
clock pulse, the memory elements are all set to 0. This pattern repeats, causing
the circuit to function as a mod-m counter. The design of a mod-10 counter using
this procedure is shown in Figure 9.4.5.

9.5
Memory Block Diagram

In this section, we discuss the block diagram organization of random access
memory (RAM). RAM is a memory unit in the computer that is used to hold
programs and data while the program is running. RAM is an example of a set of
storage devices that hold information. Other devices include registers, hard
disks, and diskettes. An example organization of RAM in a block diagram is
shown in Figure 9.5.1.

In the figure, memory is composed of words. A word is a set of memory
locations that can be moved out of or into memory as a single entity. As can be
seen from the example block diagram, the memory contains 1024 words (word 0
to word 1023). A word is characterized by its content and its address. In the
diagram, word 1 is the address of word 1; its content (or value) is (10101111).
The contents of the word could represent either data or instructions, as will be
discussed later. The size of the memory unit is the total number of bits. In the
example, the memory unit size is 1024×8 (number of words×the size of each
word).

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 359

The contents of a memory word can be accessed through the use of buses. A
bus is a set of lines used to communicate between different units (e.g., the CPU
and memory). In Chapter 5, we considered the output of the ALU as a bus. In the
figure, the memory block diagram shows three buses: the address bus, the data-in
bus, and the data-out bus. The size of a bus is the number of lines used. In the
figure, the data buses are 8 bits each. The address bus is 10 bits. The address and
bus sizes are a function of the memory organization. In general, for a RAM with
n words and m-bit word size, the number of address lines is given as

[log2n]
The number of data-in and data-out lines is given as m, the size of each word. In
the example figure, the size of the bus is 10 bits ([log2 1024]=10), with the
address of word 0 given as (0000000000)2=(0)10 and the address of the last word
given as (1111111111)2=(1023)10.

Reading from memory is the process of retrieving the contents of a word by
placing its content on the data-out bus. This is done by placing the address on the
address bus and informing memory of a read request (using read and write input
signals). In the figure, there is one input line labeled read/write; a 1 on the line
indicates a read request and a 0 indicates a write request. We will discuss the
chip select later. Writing to memory is the process of modifying the contents of a

FIGURE 9.4.5

Synchronous Mod-10 Counter. On output 1001 the circuit functions as a register.

360 DIGITAL DESIGN AND COMPUTER ORGANIZATION

memory word. Similar to reading, in order to write to memory we specify the
address of the word on the address lines and place word contents on the data-in
bus. We also indicate a write request on the read/write line.

In the block diagram of RAM given in Figure 9.5.1, the CS line is used to
select a specific chip for reading or writing. This is done since general designs
may have multiple RAM chips. These RAM chips may share a common set of
data-in and data-out lines. The CS line is used to choose one of these chips for
communication.

Before we conclude this section, however, we mention that the term “RAM” is
used to indicate that words in memory can be accessed in any random fashion in
approximately equal time. Contrast this with accessing information on a tape;
accessing information at the beginning of the tape takes less time than accessing
information toward the end of the tape (assuming the tape is rewound to the
beginning). Another name used for RAM is read/write memory (RWM) to
distinguish it from read-only memory (ROM).

9.6
Building Larger RAM from Smaller RAM

Physical limitations on the design of RAM impose a limit on the number of
words that can be placed within a single memory chip. In this section, we present
methods of constructing larger memories from individual smaller RAM chips.
First, we look at Figure 9.6.1, a block diagram that represents the communication
between the CPU and external memory. In the figure, the RAM representation is
hypothetical; instead of a single RAM memory chip, the memory is formed from
several RAM chips. To illustrate this, consider a CPU with 32-bit address bus
(today, CPU address buses are 32 or 64 bits). As a result, the RAM needed may

FIGURE 9.5.1

The Contents of Memory Location Is (AF)H

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 361

exceed 232 words, approximately 4 G words. Today, RAM-chip word capacities
are much smaller than 4 G. Hence, RAM is built from an array of smaller RAM
chips. We use the following example to illustrate generating larger RAM circuits
from smaller ones. The example uses a small address bus for illustration
purposes only.

Example 9.6.1

Consider a CPU with an 8-bit address bus. With an 8-bit address bus, one can
address 256 words of memory. Assume the available RAM chips contain 64
words, i.e., the address bus for each chip is 6 bits. The diagram in Figure 9.6.2
illustrates how one could create a larger memory with 256 words using four
RAM chips.

To illustrate, assume the CPU issues the address (0000 0000)2. Using the
diagram in Figure 9.6.2, the location of the word with this address is found to be
in location 0 of each of the RAM chips. From these, however, only one RAM
chip (RAMO) is selected using the CS enable line. Similarly, the address (1011
1111)2 is translated to the address of the last word in the third RAM chip
(RAM2). As can be seen from the diagram, the first 6 bits in the address line of
the CPU are used to identify the words within each RAM. This is due to the fact
that words with the same six least-significant bits on the address bus are mapped
to the same relative location with respect to each RAM. Similarly, by inspecting
the figure, one notes that the two most-significant digits of the CPU address bus
are the same for all words corresponding to a given RAM, 00, 01, 10, and 11,
respectively.

In general, for a CPU with an address bus of n bits and RAM chips with 2m

words, in order to generate memory with 2n words, one needs 2(n−m) RAM chips
and an (n−m)×2(n−m) decoder. The diagram in Figure 9.6.3 illustrates this for the
case of a CPU with a 16-bit address bus and a RAM with 210 words. From the
above, one needs 2(16−10)=64 RAM chips. In addition, one needs a 6×64
decoder.

FIGURE 9.6.1

Block Diagram Schematic of Data and Address Buses between the CPU and Memory

362 DIGITAL DESIGN AND COMPUTER ORGANIZATION

9.7
The Data Bus Connections

The previous discussion dealt with connections associated with the address bus
component. The following discussion deals with the connections associated with

FIGURE 9.6.2

Building RAM with 256 Words from RAMs with 64 Words

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 363

the data bus. In the discussion, we use the concept of a common data bus that is
used to communicate between the CPU and memory. In order for a unit to
communicate with another unit, its contents must first be placed on the data bus.

FIGURE 9.6.3

Building 64 K RAM from 1 K RAM Chips

364 DIGITAL DESIGN AND COMPUTER ORGANIZATION

9.7.1
Connections Using Multiplexers

One way to connect multiple units to the same set of lines is to use multiplexers
as discussed in Chapter 5. Figure 9.7.1 illustrates this for the case of connecting
two units to a single bus (set of lines). The units are labeled A and B,
respectively, with each having two output lines. The bus is two lines labeled L0

and L1, as shown in the figure.
For this connection, one uses two 2-to-1 multiplexers, one for each line of the

bus; a single select line is used to select A or B to be placed on the bus. As can
be seen from the diagram, if a value of 0 is placed on the multiplexer select lines,
then L0 is connected to A0 and L1 is connected to A1, i.e., unit A is placed on the
bus. Similarly, if the select line of the multiplexer is set to 1, then unit B is placed
on the bus line.

In general, the number of multiplexers used in connecting multiple units to a
common bus is a function of the size of the bus; with n lines, the number of
multiplexers needed is equal to n. The number of data lines of each multiplexer
is equal to the number of units. Figure 9.7.2 illustrates this. In the figure, we
assume m units are connected to the bus. As a result, the multiplexers used are m-
to-1 multiplexers. In addition, we assume that each unit is n bits (the bus size is n
bits), and hence n multiplexers are needed.

We illustrate the function of the circuit by placing zeros on the select lines of
the multiplexers. Zeros on the inputs of the multiplexers cause each multiplexer
to place the contents of its first data line on the corresponding output. As a result,

FIGURE 9.7.1

Connect Multiple Units to Common Data Lines L1 and L0

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 365

the data bus line with label L0 receives the value A0. Similarly, the remaining
multiplexers outputs receive the values L1=A1,…, and Ln−1=An−l, i.e., the contents
of unit A are placed on the bus lines. Similar analysis can be used to verify that
other units can be placed on the bus lines. This is done by placing the proper
inputs on the select lines of each multiplexer.

FIGURE 9.7.2

Connecting m Units to a Common Bus. Each unit is n bits.

FIGURE 9.7.3

Tristate Connections

366 DIGITAL DESIGN AND COMPUTER ORGANIZATION

9.7.2
Connections Using Tristate Gates

The use of multiplexers requires the use of many gates and, as a result, may be
expensive. An alternative design uses tristate gates. A tristate gate is a circuit
with one control input, c, one input, x, and one output, y. If the control input is
equal to 1, then the output value follows the input value, i.e., y=x. If the control
input is 0, however, the output is floating and is not connected to anything.
Figure 9.7.3(a) shows the symbol for the tristate gate; Figure 9.7.3(b) and (c)
show the equivalent connections as a result of c=1 and c=0, respectively. When
the c control input is equal to 1, the value at the output, y, follows that of the
value at the input, x. If x=0, then y assumes a value of 0; similarly, if the input x
assumes a value of 1, then the output y assumes a value of 1. In the figure, the
arrow indicates that y receives the value of x but not vice versa.

In electrical engineering terms, Figure 9.7.3(c) corresponds to a connection
with high impedance (resistance). High impedance means in physical terms that
there is no connection between the input and output; that is, the value at the input
does not affect the value at the output. Tristate gates offer alternative methods of
connecting multiple units to the same bus. Figure 9.7.4 illustrates this for the
case of connecting two units. Each unit is of size 2 bits. The decoder input is
used to select between one of two units. In the figure, if the decoder input is 0,
then unit A places its contents on the bus lines. This is the case since the B unit is
not connected to the bus lines, as shown in Figure 9.7.5.

Figure 9.7.4 can be generalized to connect m units to a common bus with each
unit of size n bits. For m units, one needs to use a decoder of size k× 2k where

k=[log2m]
Figure 9.7.6 illustrates this for the general case involving m units.

9.8
Internal Design of Memory

In this section, we present a gate design of RAM memory called static RAM
(SRAM). Alternative designs of RAM are called dynamic RAM
(DRAM). DRAM designs are based on the concept of storing binary values as
electric charge using capacitors, for example. DRAM design is not considered in
the text.

9.8.1
Gate Design of a Single Memory Cell

At the gate level, static RAM can be modeled as composed of memory cells
where each memory cell is designed by using latches or flip-flops. For each
memory cell, one needs to be able to select the cell and indicate the request is for
reading or for writing. The circuit diagram shown in Figure 9.8.1 illustrates this.

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 367

The circuit in the diagram functions as shown in Table 9.8.1. Note that the access
to the memory cell output is at the output of the tristate gate; if the select input is
assigned the value of 0, then no changes to the memory cell can occur and the
output to the cell is floating. To read or write, the select input must be set to 1.
To read, a 1 on the R/W causes the output of the memory cell to be seen at the
tristate output labeled out; to write, a 0 on the R/W input causes the S and R
inputs to receive in and its complement, in’, respectively. As a result, this input
is stored in the memory cell.

9.8.2
RAM Design with Two Data Buses

To design a RAM with 2n words and with m bits per word, one needs 2n× m
memory cells. Selecting words within memory is accomplished using an n×2n

decoder. The decoder outputs are used to select one of the 2n words for reading
or writing. All the memory cells associated with a given word are selected
simultaneously by the same decoder output. Figure 9.8.2 shows an example of a

FIGURE 9.7.4

Connecting Multiple Units to Common Lines Using Tristate Gates with Decoders

368 DIGITAL DESIGN AND COMPUTER ORGANIZATION

RAM with four words; each word is 3 bits in size. In the diagram, a memory cell
(MC) corresponds to 1 bit of memory. The internal design of each is shown in
Figure 9.8.1. The combination of the three memory cells on the same row
constitutes the contents of a word in memory. The decoder is used to select
which word to read from or to write to. This is done by specifying the address of
the word on the address bus (the inputs to the decoder). The chip select of
memory is the enable part of the decoder. If this value is set to 0, then all outputs
of the decoder are set to 0; hence, no memory cell is selected.

TABLE 9.8.1

S R/W Q4 Out

0 x Q Floating

1 0 In Floating (write to memory cell)

1 1 Q Q (read from memory cell)

FIGURE 9.7.5

Effect of Assigning 0 to the Decoder Input

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 369

9.8.3
RAM Design with a Single Data Bus

The diagram in Figure 9.8.2 is an example of RAM with two data buses, one for

FIGURE 9.7.6

Connecting m Units to a Bus Using Tristate Gates

370 DIGITAL DESIGN AND COMPUTER ORGANIZATION

input and one for output. To reduce the number of communicating lines between
the CPU and memory, one can use a single data bus for both input and output.
This can be done using tristate gates. The diagram in Figure 9.8.3 shows this for
an example device. As can be seen from the diagram, the direction of
information flow will be into the device if the R/W line is set to 0. The direction
of information, however, will be out of the device if the R/W value is set to 1.
When applied to the RAM circuit given in Figure 9.8.2, we obtain the RAM
circuit shown in Figure 9.8.4. Note the pair of tristate gates found in Figure 9.8.3
carries into the design in Figure 9.8.4. These tristate gates are found as part of the
memory cells.

The examples of RAM given above are for instructional purposes. Actual
physical RAM could exceed 256 M bits in size. (This is especially true when the
RAM is designed based on DRAM technology.) For the 256 M memory, for
example, one needs a very large decoder; the decoder should generate all 228
possible minterms. The previous view of memory was based on a one-
dimensional address space view. In two-dimensional address decoding, one can
significantly reduce the size of the decoder used for addressing. Figure 9.8.5
illustrates this view on words 1-bit in size. As can be seen in the figure, memory
is organized into a two-dimensional array. To select a word, the CPU address is
split into two decoders, a column and a row decoder. The intersection determined
by the row and column addresses determines the 1-bit word for reading or
writing. The two-dimensional view can be extended to include words of arbitrary
size, as shown in Figure 9.8.6. In the figure, two decoders are used to select the
proper column and proper row in the memory organization as discussed above.

FIGURE 9.8.1

Design of a Memory Cell

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 371

The saving involved in using two-dimensional address decoding is given in
Table 9.8.2. The table assumes an equal number of rows and columns. The size
of the address on the address bus is given as n. This address is then split among
the row and column decoders. In general, the number of minterms generated for
a two-dimensional decoding is given as 2.2n/2=2(n/2)+1, where n is the size of the
address bus. The savings in the number of minterms (as compared to one-
dimensional decoding) is 2n−2(n/2)+1. This results in major savings in the cost of
generating minterms. For example, for an address bus of size 20 bits, the saving
in the minterm generation is approximately 98%.

FIGURE 9.8.2

Design of a Small RAM from Memory Cells in Figure 9.8.1 with Data-in and Data-Out
Separate Buses

372 DIGITAL DESIGN AND COMPUTER ORGANIZATION

9.9
Register Files

Register files are a form of memory that can be used within the CPU. An
example block diagram of a CPU is shown in Figure 9.9.1. The detail of the
design is given in the next chapter. In the diagram, the block labeled “Register
File” contains a set of registers that communicate with the outside through two
output buses and one input bus. The information placed on the bus can be
processed using the ALU, as discussed in Chapter 5. The processed information
can then be stored back in the register file using the input bus.

Selecting which register to place on the buses is done through the use of two
decoders. Similarly, a decoder can be used to select the destination register to store
the information found on the input bus. Figure 9.9.2 shows

TABLE 9.8.2
Saving When Two Dimensional Decoding Is Used, Saving Is Measured as a Reduction in
the Number of Minterms

Bus Size Number of Minterms

One Decoder Two Decoders

2 4 4

4 16 8

10 1024 64

FIGURE 9.8.3

The Figure Shows How the Same External Lines Can Be Used as Input or Output Lines
Using Tri-State Gates

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 373

Bus Size Number of Minterms

One Decoder Two Decoders

20 1 M 2048

a partial design of a register file with two registers, each register of size 2 bits.
The figure includes the bus system and a set of tristate gates to enable
information to be connected to the bus.

As can be seen from the diagram, in order to place the contents of the top
register on the bus with label A, one needs to enable the decoder associated with
the bus. In addition, the address of the register (0) is placed on the decoder
associated with the A bus. The tristate gates ensure that there are no conflicts in
requests; for example, a request to connect the A bus to both registers

FIGURE 9.8.4

Design of a Small RAM from Memory Cells in Figure 9.8.1 with a Common Data-in and
Data-Out Bus

374 DIGITAL DESIGN AND COMPUTER ORGANIZATION

simultaneously. Note that the design allows for placing the contents of the same
register on both buses simultaneously, however.

The design of the register file can be generalized to include many registers of
arbitary sizes. Figure 9.9.3 shows the general design of a register file with n
registers and with each register of size m bits. Missing from the design are the
tristate gates and the decoders needed to route information accordingly.

FIGURE 9.8.5

Two-Dimensional Address Decoding View of Memory. Word size is 1 bit.

FIGURE 9.8.6

Two-Dimensional Address Decoding View of Memory

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 375

Chapter 9
Exercises

9.1 Show the design of 4-bit parallel load register with a load line
using SR flip-flops.
9.2 Show the design of a 4-bit parallel load register with a load line
using T flip-flops.
9.3 Design a 4 bit shift-right register with a load line using D flip-
flops.
9.4 Design a 4-bit rotate right register with a rotate control input, R. If
R assumes a value of 0, then the contents of the register remain
unchanged. If R assumes a value of 1, then the contents of the register
are shifted to the right with the contents of the least-significant bit
shifted into the contents of the most significant bit. Use D flip-flops in
your design.
9.5 Repeat problem 9.4. Use JK flip-flops in the design.
9.6 Show the design of asynchronous mod-9 counter using mod-16
binary counters.
9.7 Show the design of a mod-5 asynchronous counter using a mod-8
binary counter.
9.8 Show the design of a mod-6 synchronous counter using a mod-8
counter.
9.9 Show the design of a counter with the sequence 1, 3, 5, 7. The
sequence repeats with the count 1 following count 7. Use JK flip-flops
in the design.
9.10 Show the design of a counter with an external input x. If x
assumes a value of 1, then the counter is a mod-16 count-up counter. If

FIGURE 9.9.1

Block Diagram of CPU

376 DIGITAL DESIGN AND COMPUTER ORGANIZATION

x= 0, then the counter is a mod-16 count-down binary counter. Use JK
flip-flops.
9.11 Design a 4-bit register with the following function. Use D flip-
flops and multiplexers in your design.

FIGURE 9.9.2

Register File Realization, Schematic Shows Two 2-Bit Registers Connected to Two Buses
A and B

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 377

Control Inputs (C1 C0) Function

00 Synchronous clear the
contents of the register

01 Load register in parallel

10 Serial shift-right contents

11 Serial shift-left contents

9.12 Repeat problem 9.11 with the design using JK-flip-flops instead.
9.13 Form the timing diagram for the circuit (Figure E9.1). The timing
diagram should include the clock signal as well as the output of
the decoder signals (T0 through T15). Include 20 clock cycles in the
timing diagram.
9.14 How many flip-flops are needed if one is to design a circuit with a
similar timing diagram as given in problem 9.13 using Ring counters?
9.15 How many flip-flops are needed to design a circuit with similar
output to problem 9.13 using Johnson counters?

FIGURE 9.9.3

Block Diagram Representation of Register File Connections

378 DIGITAL DESIGN AND COMPUTER ORGANIZATION

9.16 Show the design of a single memory cell using a D flip-flop.
Except for the use of a different flip-flop in the design, the
functionality of the cell should be similar to the memory cell discussed
in the chapter.
9.17 Given a RAM unit with 1024 words and 16-bit word, what is the
minimum number of inputs and outputs to the RAM unit? Construct
the block diagram of the RAM and label its inputs and outputs.
9.18 Assume we are to build 1024 16-bit word RAM. Assume as well,
the available RAM chips are 1024 8-bit words. Show the design of
such a RAM from the available memory chips. Include the bus and
data connections.
9.19 Construct a 1024 1-bit word RAM from 256 1-bit word RAM.
Show the address bus connections.
9.20 Repeat question 9.19 but show the address bus as well as the data-
bus connections. Assume two data buses are used in the design, a data-
in and a data-out bus.
9.21 Show the address bus and data bus connections in the design of a
64-word, 4-bit RAM from 16 1-bit word RAM. Assume a bidirectional
data bus RAM.
9.22 Assume one is to design a register file that contains 16 32-bit
registers with the outputs connected to a single data-out bus and the
inputs connected to a single data-in bus. Assume as well that
multiplexers are used to select which register to place on the bus
output and a decoder is used to select which register to load with the
data-in bus contents. Determine the number and size of the
multiplexers/decoders used in the design and the total number of gates
in each.
9.23 Show the design of the register file described in problem 9.22.
Use 2-bit registers, instead of 16-bit registers, for illustration.
9.24 Repeat problem 9.22, use tristate gates instead of multiplexers in
your design.

FIGURE E9.1

REGISTERS, COUNTERS, AND MEMORY ELEMENTS 379

9.25 Show the register file design of problem 9.24. Use 2-bit registers
for illustration.
9.26 Show the design of a register file with four registers, each register
is 4-bits. Assume the register file outputs are connected to two data
buses A and B. Assume as well the input to the register file is a C bus.
Use decoders and tristate gates to complete the bus connections.
Assume the register labels are R0, R1, R2 and R3. Give the decoder
values so as to simultaneously (1) place register R1 on the A bus, (2)
place register R2 on the B bus, and (3) to store the C bus in register R0.

380 DIGITAL DESIGN AND COMPUTER ORGANIZATION

10
Instruction Set Architecture

CONTENTS

10.1 Instruction Set of a Computer 381

10.2 Accumulator-Based Instruction Set Architecture 383

10.2.1 Accumulator-Based Architecture 383

10.2.2 Accumulator-Based Instructions 384

10.2.2.1 Load and Store Instructions 385

10.2.2.2 Arithmetic and Logic Instructions 385

10.2.2.3 Register Transfer Languages 387

10.3 General Register-Based Architecture 389

10.4 Machine-Level Instructions 391

10.5 The Computer Instruction Cycles 394

10.6 Common Addressing Modes 396

10.7 Macros 401

Chapter 10 Exercises 402

10.1
Instruction Set of a Computer

Instruction sets of a computer are associated with the organization of the central
processing unit (CPU) of the computer. We discuss the instruction sets of a
computer by relating them to high-level languages. Consider a C++ statement for
adding two variables, x=x+y. As you know from programming, the statement can
be executed using the same processor or using different processors, assuming an
appropriate compiler exists. The compiler is an example of a translator that
translates high-level languages (such as C++) to a machine-dependent language.
The language the compiler generates is a subset of instructions found in a
computer’s instruction set.

Each computer has a unique instruction set associated with it. The instruction
set is composed of individual primitive instructions that instruct the hardware of
the computer to specify a primitive task such as moving the contents of a
memory location to a register within the CPU, or adding the contents of two CPU
registers. The instructions generated depend on the organization or architecture of
the computer and, as a result, can be called instruction set architecture.

The instruction set of a computer is the language the computer can interpret. All
programs must first be translated to the computer’s instruction set before they
can be run by the underlying machine (computer). Figure 10.1.1 shows sample
programs such as Word, Windows, and C++ programs. In addition, we show the
block diagram of the hardware part of the CPU presented conceptually as a block
diagram. In order for those programs to run on the computer, they must first pass
through the buffer block (the instruction set).

FIGURE 10.1.1

An Abstract View of the Interface between the CPU and the User. All programs must first
be converted to the instruction set of the computer.

382 DIGITAL DESIGN AND COMPUTER ORGANIZATION

In the next sections, we present two different types of architectures and a
hypothetical sample of instruction set associated with each. We then describe
how one can translate high-level language constructs to the associated instruction
set. In the following chapter, we look at the complete design of a simple CPU.

10.2
Accumulator-Based Instruction Set Architecture

Instructions are written so as to be intimately associated with the organization of
the CPU. It addresses the question of which part of the CPU and/or memory a
user can access in software. In this section, we discuss the accumulator-based
instruction set and the corresponding CPU organization.

10.2.1
Accumulator-Based Architecture

First we emphasize that, in the context of memory of a computer system,
memory is used to hold both data and instructions. Memory is a passive unit that
is used exclusively for information storage. As a result, any processing of
information is done outside of memory. For example, consider the for-loop
construct in a high-level language. For this construct, memory can be used to
store the value of a counter variable, i, used in the “for” loop. In order to
increment the counter variable, the variable must first be read from memory into
the CPU. The CPU contains temporary storage elements called registers, as
discussed in the previous chapter. Once in the CPU the variable can be
incremented using the arithmetic logic unit (ALU) of a processor, as discussed in
Chapter 5. Finally, the incremented variable is stored back in memory.

In the accumulator-based architecture, in general, the user has control over one
storage register in the CPU (this will become clearer as we progress in the subject
discussion in this chapter). In order to process data, the data must be present in
this special register called the accumulator (AC). The type of instructions the
instruction set designer chooses is based on the functionality desired as well as
the underlying architecture. A possible block diagram of an accumulator-based
CPU is shown in Figure 10.2.1. The architecture includes additional registers
that will be discussed later.

The figure is somewhat similar to the CPU organization presented in the
previous chapter in the register file section. The three registers shown can be
placed in the block diagram representing the register file part of the CPU. As can
be seen from the diagram, the accumulator register serves as both a source and
destination for one of the ALU inputs (operands). The other input to the ALU is
the memory buffer register (MBR). As the name implies, the MBR is used to
hold information as a buffer between the CPU and memory. In this organization
of the CPU, all traffic, instructions, and data between the CPU and memory is
temporarily stored in MBR, which is connected to the data bus of the CPU. The

INSTRUCTION SET ARCHITECTURE 383

data bus was discussed in the previous chapter; it connects the CPU to the
outside memory. The data bus is shown as a bidirectional data bus, i.e., it is used
to move data out of and into the CPU.

In Figure 10.2.1, the register MAR (memory address register) contains the
address of an instruction or data found outside the CPU, in memory for example.
In the discussion of RAM in the previous chapter, we represented the data and
address bus connections to memory. These buses were connected to the CPU. As
can be seen from the diagram, the address bus contents are found in the register
MAR. The data to be read or written is placed in MBR. We will discuss the
details of these connections in the next chapter.

10.2.2
Accumulator-Based Instructions

With the accumulator-based (AC) CPU organization given earlier, the task of an
instruction set designer is to form a set of primitive instructions. These
instructions are used for communication between the outside and the hardware of
the computer. All programs written in high-level languages must first be
translated into the instruction set of the underlying computer before they can be
executed. The same high-level language program may be translated into different

FIGURE 10.2.1

A Block Diagram of an AC-Based CPU

384 DIGITAL DESIGN AND COMPUTER ORGANIZATION

instruction sets, depending on the computer used. We discuss some common
accumulator based instructions next.

10.2.2.1
Load and Store Instructions

We have mentioned earlier that all instructions (programs) and data are stored in
memory. We have also mentioned that processing data is done outside of
memory, as memory is a passive unit. As a result, in order to increment a
variable stored in memory, one needs to bring the variable from memory. The
instruction set architecture then needs to include instructions that transfer data
from memory to the CPU, load instructions, and store instructions. We use
symbolic names for these instructions and relate them to high-level languages
later.

A load instruction directs memory to place a content of a word on the data
bus. This word is then stored in the CPU. As we have mentioned earlier, the
word is stored in MBR. In the accumulator-based instruction, the accumulator is
used implicitly as the final destination to load the word. To read a specific word
in memory, one needs to specify its location. The method used in specifying the
locations is called addressing mode. For now, we consider a special type of
addressing mode called direct addressing. In direct addressing, one specifies the
address of the word in memory where information is to be retrieved or stored.
The specification is used as part of the instruction.

From the discussion, a load or store instruction will be composed of two parts,
one indicating the type of operation used and the other indicating the address of
the operand. For example, if we use the abbreviations LOD for load accumulator
and STO for store accumulator, then LOD 100 has two parts, the operation part
(LOD) and the address part (100). When this instruction is executed, the contents
of memory at address 100 (assume decimal base is used) are loaded into the
accumulator. Similarly, STO 100 will store the value of the accumulator into the
memory word at memory location 100. Other symbolic names for LOD and STO
are used such as LDA and Iw for load and STA and sw for store. The
abbreviations LDA, lw, STA, and sw stand for load accumulator, load word,
store accumulator, and store word, respectively.

10.2.2.2
Arithmetic and Logic Instructions

The power of a computer is attributed to both the ability to store information and
to process information with high speed. Performing arithmetic operations is part
of the overall procedures of processing information. The instruction set of the
computer is closely associated with the hardware design of the CPU. For
example, if the ALU part of the CPU includes hardware for addition and

INSTRUCTION SET ARCHITECTURE 385

subtraction, then the instruction set should include primitive add and subtract
instructions.

In the accumulator-based computer organization as shown in Figure 10.2.1,
for operations that require two operands such as add and subtract operations, one
of the operands is assumed to be in the accumulator. Since the only accessible
CPU register to a user is AC, the other operand (assuming direct addressing) is
found in memory. In addition, in programming one usually performs arithmetic
operations with the intention of storing the result in a variable using assignment
statements as in the example x=2+3. Here, the statement specifies the operation,
the operands, and the location to store the result. Similarly at the instruction set
architecture, one needs to specify the operation, the operands, and the location to
store the result.

In the accumulator-based instruction set, both the source of one of the operands
as well as the location to store the result is implicitly determined as the
accumulator. From the discussion, for example, if we use ADD and SUB as
abbreviations for add and subtract operations respectively, then ADD 100 would
mean to add the contents of the accumulator to the contents of the word found at
memory location 100. The result obtained is stored in the accumulator (replaces
the previous value of the accumulator). Similarly, SUB 100 would mean subtract
from contents of the accumulator the contents of the word found at memory
location 100. The result obtained is stored in the accumulator (replaces the
previous value of the accumulator).

TABLE 10.2.1
Example Register Transfer Instructions

Instruction Set Register Transfer

LOD x AC� M[x]

STO x M[x]� AC

ADD x AC� AC+M[100]

SUB x AC� AC−M[100]

AND x AC� ACM[x]

OR x AC� AC M[x]

In addition to add and subtract instructions, by referring to the ALU design in
Chapter 5, we could include additional logic instructions. For example, such
logic instructions maybe abbreviated as AND x and OR x.

In both cases, x is the address of one operand found in memory. The other
operand is found in the accumulator. Both operations perform the bit-wise logic
AND and logic OR, as discussed in Chapter 5.

386 DIGITAL DESIGN AND COMPUTER ORGANIZATION

10.2.2.3
Register Transfer Languages

The above operations can be described in register transfer notation as given in
Table 10.2.1. More details will be given about register transfer languages in the
next chapter. For now, we discuss the notation by referring to the table. In the
table, the “� ” is a symbol used to indicate transfer of information with the
source on the right-hand side and the destination on the left-hand side. The
transfer places a copy of the source in the destination without changing the
contents of the source. An alternative is to place the source on the left-hand side
of the transfer and use the symbol “� ” instead. Both notations are used.

The source and destinations can be registers or memory contents as seen in the
table. For memory, we use the symbol M to indicate a memory reference. In
addition, as discussed in the previous chapter, memory is an array of words. To
access a specific word for reading or writing, the register transfer language
includes an address notation. In the table, we use brackets to enclose the memory
address x. Hence M[100] refers to memory location 100. Finally, as can be seen
from the table, the last four notations represent arithmetic and logic operations.
For the add operation, for example, the symbol used is the “+” symbol to indicate
arithmetic addition. The register transfer instruction is interpreted as follows.
First, the contents of AC are added to the contents of memory location x using
the ALU part of the CPU. Second, the result is stored in AC (the destination
register) as indicated by the register transfer instruction. The remaining register
transfer instructions are interpreted similarly with “−,” “,” and “,” representing
arithmetic subtraction, bit-wise logical AND, and bit-wise logical OR,
respectively. Alternatively, the words AND, COMPLEMENT, and OR can be
used to represent the bit-wise logic operations.

The set of instructions found in an instruction set architecture is composed of
instructions that perform primitive tasks, e.g., ADD operation. As a result,
complex arithmetic expressions that can be written as a single statement using
high-level languages cannot be written as a single statement using the instruction
set of a given computer. Part of the function of a compiler is to translate these
complex arithmetic expressions to a set of instructions of the underlying
instruction set of the computer. Example 10.2.1 illustrates this. In the example, we
assume the variables x, y, z, and w are stored at memory locations with decimal
values 100, 101, 102, and 103, respectively.

Example 10.2.1

Translate the high-level program expression w=x−y+z into an accumulator-based
(AC-based) instruction using the instructions described above and given in
Table 10.2.1.

Solution: Using knowledge of precedence rules from high-level languages, we
know that addition and subtraction are of equal precedence and, as a result, the

INSTRUCTION SET ARCHITECTURE 387

expression is computed from left to right with subtraction done first and followed
by addition. To translate the expressions into the instructions found in
Table 10.2.1, we do the following steps:

1. Bring the needed operands from memory into the CPU (note that the
translated instruction set is assumed to be in memory).

2. Apply the needed arithmetic operations on the operands.
3. Store the result in the memory location indicated by the high level-level

expressions.

At this stage, we are not concerned with how this program is stored in memory.
To form the first operations (subtraction), we need an instruction to bring the
first operand (x at memory location 100) into the CPU (the accumulator). Once
this is done, we could subtract y and add z. The set of instructions below is the
solution desired.

To illustrate this process, we show the contents of memory and the
accumulator as the sequence of instructions is executed, as shown in
Figure 10.2.2. In the figure, we assume the operands for the variables x, y, z, and
w are as shown in the first row of the table. Changes in contents as a result of the
corresponding instruction are shown in bold.

The above discussion is intended to introduce AC-based instruction sets and
formats. In the next chapter, we add to the above set of instructions and present
the design of an AC-based CPU. In the next section, we discuss an alternative
instruction set architecture based on general purpose register-based architecture.

FIGURE 10.2.2

The Changes Due to Each Instruction are in Bold

388 DIGITAL DESIGN AND COMPUTER ORGANIZATION

10.3
General Register-Based Architecture

Consider the example of swapping the contents of two memory locations, x and
y. The C++ solution to swapping the contents is to assign one of the variables to
a temporary variable; call it temp. The code is

The accumulator-based (AC-based) instruction set solution to the above code
requires bringing the operands (variables) into the CPU and storing these
variables in the proper memory locations. A possible code is

In the above solution, we note that the temp memory location was stored in line 2
and then brought back into the CPU in line 5. This was needed because the user
cannot access other registers in the CPU (outside of the accumulator register as
defined by the instruction set). The process of moving information in and out of
memory is expensive in terms of speed as memory access is slower than the CPU
execution time. In a general register CPU organization, the CPU contains many
registers that are directly accessible by the user through the provided instruction
set. As a result, the user can store the temporary value of temp within one of the
CPU registers, and hence reduce CPU-memory traffic. Figure 10.3.1 shows a
hypothetical organization of a general register CPU organization. A similar
figure was presented in the discussion of register files in the previous chapter.

In the diagram, it is shown that any of the n registers can be used as one of the
operands to the ALU. For this organization, the instruction set may include load
instructions that specify destination registers in the CPU (other than the
accumulator). Similarly, store instructions may specify both the source register in
the CPU and the memory location where the information is to be stored.
Examples of such instructions are

TABLE 10.3.1
Examples of General Purpose, Register-Based Instructions

Instruction Register Transfer

LOD R1, 100 R1� M[100]

STO R3, 105 M[105]� R3

INSTRUCTION SET ARCHITECTURE 389

The register transfer interpretation of the instructions is given in Table 10.3.1. As
can be seen from the register transfer, the LOD instruction reads the contents of
memory into the register R1. Similarly, the STO instruction stores the contents of
R3 into memory location 105. With this general register instruction set, the swap
example can be rewritten as

FIGURE 10.3.1

CPU Organization of a General Purpose Register Organization. The registers R0 through
Rn−1 are used to replace the AC register.

390 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Note that with this CPU organization one reduces the number of memory access
from 6 to 4; or the memory traffic is reduced by one third of the amount used by
the accumulator-based instruction set. Note that although the high-level language
made use of a temp variable, the general register solution made no use of this
variable.

Associated with the above architecture is an instruction set that makes use of
the registers as discussed in the example swap given. Before we look at the type
of instructions included in such an instruction set, we look at the machine-level
representation of instructions.

10.4
Machine-Level Instructions

In describing the instruction set in the previous sections, we used symbolic
names for the type of operations used. At the machine level, these operations
must be translated to a binary sequence. Each symbolic instruction is called an
assembly instruction. In general, assembly instructions form a one-to-one
correspondence with the corresponding machine instruction. As a matter of fact,
assembly instructions are derived from machine instructions. This is done for
ease of understanding the function of a machine instruction; it is easier to
understand the function in symbolic notation rather than a sequence of binary
digits. In this section, we look at the instruction set of a computer at the machine
level and relate it to its representation at the assembly or symbolic level.

Consider the instruction “ADD X” in the accumulator-based instruction set
architecture. The instruction can be broken into two parts, an operation part and
an operand part.

This logical distinction between the two parts of the instruction is presented in
binary as a machine instruction with two fields: (1) a field that identifies the type
of operation to be performed, called the opcode field (operation field); and (2) a
field that identifies the operand location to be used, called the address field. For
machine instruction formats, it is customary to represent the instructions as a
rectangular block that contains sub-rectangles identifying the different fields. For
the set of accumulator-based instructions described earlier, this is represented as

Both the opcode field and the address field are stored in memory as a sequence
of binary digits (bits). We assume the instruction is stored in a memory word. As
discussed in the previous chapter, the memory word size (number of bits) is
determined by the data bus size. To determine the data bus size, we determine

INSTRUCTION SET ARCHITECTURE 391

the number of bits found in a machine instruction. As can be seen from the
instruction format, the word size is the sum of the sizes of the opcode field and
the address field.

To determine the size of each field, one needs to determine the maximum
allowable addressable memory as well as the maximum allowable machine
instructions of the form presented above. Both field sizes are parameters
determined by the instruction set designer. For the opcode field, for example, if
the designer desires m such instructions (with opcode and direct address field),
then the opcode field must include a binary code associated with each such
operation. Each binary code corresponds to an opcode representing one of the m
operations. Hence, the opcode field size is equal to

[log2m]
As for the address field, in direct addressing the address field is used to reference
words in memory. As a result, the size of this field is related to the addressable
memory In fact, the size of this field is equal to the size of the address bus.

Example 10.4.1

In this example, we would like to determine the instruction size for an
accumulator-based CPU with the following. For the external memory, assume a
maximum addressable memory of 64 k words. For the number of operations with
memory address, we assume a maximum of 16 allowable operations. In this
case, the opcode field is at least 4 bits in width. Each opcode binary assignment
represents one of the 16 operations. As to the address field size, since the
addressable external memory contains 64 k words=216 words, the address bus
size is 16 bits. As a result, the address field size of the machine instruction is 16
bits as well. The instruction format in rectangular form is given as

Example 10.4.2

In this example, we would like to convert the ADD (105)16 assembly instruction
into the corresponding machine instruction based on the previous conditions
found in example 10.4.1. We assume that the opcode field for the ADD operation
is (0)16 as determined by the instruction set designer. Note that the instruction
memory address part is given in hexadecimal format for simplicity of conversion.

By replacing the opcode field and address field by the proper binary code, we
obtain the machine instruction

392 DIGITAL DESIGN AND COMPUTER ORGANIZATION

As can be deduced from the above discussion, it is much easier to understand
the function of the instruction when it is represented in assembly form rather than
in machine form. The instruction in memory is stored in machine form, however.
To simplify the task of a designer/programmer, one can write the instructions in
assembly code and pass the code to an assembler program. Part of the function
of the assembler program is to translate the assembly code into machine code.
The machine code generated can then be stored in memory for program
execution.

Before we conclude this section, we discuss the machine instruction format of
a general register-based CPU in the context of the accumulator-based CPU
discussed previously. We consider the instruction LOD R1, X, for example. The
machine instruction associated with this instruction is composed of three fields.
Two of these fields are analogous to the accumulator-based machine instruction,
the opcode field and the address field. The third field represents an address of a
register within the CPU. To be able to address n registers within the CPU, the
size of the register field must not be less than

[log2n]

Example 10.4.3

In this example, we would like to determine the field sizes of a general register
CPU on an instruction of a form similar to LOD R1, X. Assume a maximum of
16 different operations are required. Assume as well the addressable memory is
64 k words. Finally, assume the CPU contains 16 general purpose registers.

In determining the field sizes for the opcode and address part, we follow a
similar procedure as given in the examples above. The instruction includes a
register address field as well. The size of this field is

As a result, the instruction format with field sizes is

Example 10.4.4

In this example, we assume the opcode for an LOD instruction is (7)16. We
would like to convert LOD 5, 1023 to machine instruction (we assume the
operands are presented in base 10 and the CPU contains 32 general purpose
registers). Assuming the same number of external memory words, we obtain the
following machine instruction:

INSTRUCTION SET ARCHITECTURE 393

The general register CPU instructions have two address fields: one field refers
to a register within the CPU, the other field refers to an address of an operand in
memory. Later in the discussion of instruction sets, we classify instructions based
on the number of address fields they contain.

The term addressing mode refers to the method of obtaining the actual operand
of an instruction. For example, in the above example one of the operands is the
value of a register, and the other is the content of a memory location.
Classification of instructions is also done according to the addressing mode
chosen.

10.5
The Computer Instruction Cycles

In this section, we consider the computer instruction cycle for the case of the
accumulator-based CPU. We first distinguish between instructions and data in
the CPU and use for this distinction the swap example presented earlier.

For this, we assume that the instruction size of the accumulator-based CPU is
20 bits with 16 bits reserved for the address field and 4 bits reserved for the
opcode field. Both instructions and data are stored in memory.

Table 10.5.1 lists the set of instructions used and the corresponding machine
instruction in tabular form. The format of the machine code is arbitrary and is
chosen as an example. Assume that instructions are stored

TABLE 10.5.1
Machine Instruction Examples

Assembly Instruction Machine Instruction

LOD x 0001 xxxxxxxxxxxxxxxx

STO x 0010 xxxxxxxxxxxxxxxx

in memory as words, i.e., the size of a memory word is 20 bits. In addition,
assume that instructions are stored starting at location, (0100)16; and the data for
the variables are stored in consecutive locations starting at memory location (50)

16, as shown in Figure 10.5.1. (The allocation of memory for storing instructions
and data is part of the overall task of converting a high-level language to
machine level through compilation. This topic is outside the scope of the text.)

In Figure 10.5.1, we show three labels: (1) the address of memory labels, (2)
the contents of the corresponding memory words, and (3) the symbolic
(assembly) code. In order for the computer to perform the swap operation, it
needs to execute the set of six instructions starting at location (0100)16. The
processing is done in the CPU. For each instruction, the CPU first brings the
instruction from memory. The process of bringing the instruction from memory
into the CPU is referred to as the fetch cycle. (We will discuss this and the
following steps in the next chapter.) Next, the control unit in the CPU determines

394 DIGITAL DESIGN AND COMPUTER ORGANIZATION

the type of instruction fetched from its opcode field. This process of finding the
type of instruction fetched is called the decode cycle. Here, the control
determines that the instruction is a load instruction. Finally, the computer
executes the instruction fetched; this process is called the execute cycle.

In order to execute the first instruction, the CPU needs to reference memory
again. This is the case since the operand is still in memory. This is done by
placing the address of the operand on the data bus (the address is
0000000001010000). A read is then initiated and the operand is brought into the
CPU, i.e., for the LOD instruction to be completed the CPU must reference
memory twice. The first reference is to fetch the instruction; the second reference
is to bring the operand into the CPU.

The state of the CPU is determined by the contents of its storage elements. Of
these storage elements we consider the two registers MAR and MBR found in
Figure 10.2.1. The memory address register, MAR, contains the address of the
instruction or of the operand that needs to be fetched from memory. For a read,
the memory buffer register (MBR) is used to retrieve the instruction or data. For
a write (store), MBR contains the data to be stored in memory. To illustrate, we
use Figure 10.5.2, which shows a schematic of the CPU and memory with
contents of MAR used to fetch the first instruction in the swap procedure. The
diagram includes the contents of the address bus and the data bus in hexadecimal

FIGURE 10.5.1

The Address, the Contents, and the Symbolic Codes are Read from Left to Right

INSTRUCTION SET ARCHITECTURE 395

notation. Note the contents of MAR are used to set the data bus values to point to
the first instruction in the assembly code. The read operation brings the contents
of this memory word (the LOD instruction) into the CPU and places it in MBR.
Once the instruction is decoded, the computer places the address of the operand
in MAR (address is 0000000001010000) and initiates a read signal. This is done
to bring the operand into the CPU. Note that the circuit is missing many
connections needed to complete the instruction cycle. These will be covered in
detail in the next chapter. By following similar analysis on the remaining
instructions, we determine the total number of memory accesses needed to
execute the program is 12.

10.6
Common Addressing Modes

In the previous sections, we considered a special kind of addressing mode called
direct addressing. Addressing modes have to do with the method of retrieving an
operand. We illustrate the need for different addressing modes by referring to
high-level languages. From high-level languages, we know that arithmetic
expressions may contain a constant as well as a variable as part of the
expression. Consider, for example, the expression x=w+2. Using direct
addressing, in order to write a set of instructions to compute the above
expression one needs to treat the constant 2 as a variable. That is, a memory
location must be preserved for the constant and the value 2 must be stored in it.
In doing so, an LOD instruction is first used to bring the number 2 into the CPU.
This instruction will take two memory accesses to complete, the fetch of the
instruction and the fetch of the operand.

Instruction set architecture designers realized that one can reduce the number
of memory accesses by including the constant as part of the instruction. As a
result, when the instruction is fetched, the operand is brought into the CPU as well.
This can be done by treating the address part of the instruction not as an address
but as an operand. For this to occur, the instruction needs to contain a mechanism
that tells the CPU how to interpret the address field. To distinguish between the
different interpretations of the address field of the instruction, the instruction
contains a special field called addressing mode field. This form of addressing is
called immediate addressing. For an instruction set architecture that allows for
two different addressing modes, one can simply add 1 bit to distinguish between
the two modes. A possible instruction format would then be

An add instruction is determined from the opcode field. The addressing mode
field determines the location of the operand. To illustrate, we write the code for
the expression x=w+2. In the example, we distinguish between direct and
immediate addressing modes by using the letter I for immediate. The code is

396 DIGITAL DESIGN AND COMPUTER ORGANIZATION

The solution contains comments similar to those found in high-level languages.
In the example, we use the # as an indicator of the start of a comment. The
comment terminates with the end of line marker. We now discuss other common
addressing modes; in the discussion, we refer to accumulator-based and the
general purpose register-based architectures. We start with an addressing mode
called implied addressing. To discuss this addressing mode, we refer to special
instructions. We consider the accumulator-based CPU and an instruction that
implicitly increments the accumulator. An abbreviated form for the instruction

FIGURE 10.5.2

Contents of MAR and MBR during a Fetch Instruction. MAR=(0100)16, MBR=(10050)16.

INSTRUCTION SET ARCHITECTURE 397

can be INC. When the instruction is fetched and executed, the result is to
increment the contents of the accumulator. The instruction INC has no operand
field; the operand AC is implied.

The next address mode field we consider is related to general purpose register
CPU organization. Consider the instruction LOD R1, X. This type of an
instruction has two address fields: (1) a field specifying the destination of the
load (in this case register R1,), and (2) a field specifying the address of the source
(in this case a memory location with address x). Instructions can be classified
according to the number of addresses/operands in the address field. A two-
address instruction may have the formwhere the interpretation of Fieldl and
Field2 depends on the addressing mode associated with each. In register
addressing mode, one of the address fields specifies the address of a register; the
contents of the specified register serve as one of the operands used in an
instruction. The register is found in the CPU of the computer. This has the
advantage of using a small address field, 5 bits in the case of a CPU with 32
registers.

As an example of two-address instructions with a register addressing mode,
consider ADD R1, X, with the register transfer interpretation R1� R1+ M[X].
From the register transfer, we conclude the instruction uses two addressing
modes, a register mode and a direct address mode.

Other addressing modes include indirect addressing and register indirect
addressing modes. In indirect addressing, the address of the operand is found in
the word with address given in the instruction. To illustrate this, we use the load
instruction in the accumulator-based CPU. Consider the memory organization as
shown in Figure 10.6.1.

For simplicity, we assume both the contents of memory as well as the memory
addresses are given in base 10. In addition we assume the addresses given in the
LOD instructions are given in base 10. Using the three addressing modes,

FIGURE 10.6.1

The Three Addressing Modes: Immediate, Direct, and Indirect

398 DIGITAL DESIGN AND COMPUTER ORGANIZATION

immediate, direct and indirect, respectively, we show the contents of the
accumulator as shown in the comment section of the instruction sets below:

Similar to indirect addressing, in register indirect addressing the instruction
contains an address of a register in the CPU. The CPU register identified in the
instruction holds the actual address of the operand in memory. Figure 10.6.2
illustrates this. As can be seen from the above figure, the contents of the register
specified in the instruction, in this case 3, are used as an address of the operand
in memory, i.e.,

The last two addressing modes we consider are the index and relative addressing
modes. Index addressing mode can be used in the implementation of the array
data structure. Arrays are normally stored in consecutive locations in memory.
By adding an index value to an offset, representing the location of the first
element of the array in memory, one can access the individual elements of the
array accordingly. In index addressing, a special CPU register, Ri, is identified as
the index register. For a given instruction containing x in its address field, x+Ri
constitutes the address of the operand in memory.

Relative addressing is similar to index addressing. Here, however, a special
register called the program counter, PC, is used in determining the address of the

FIGURE 10.6.2

Register Indirect Addressing

INSTRUCTION SET ARCHITECTURE 399

operand. For example in relative addressing, LOD X will result in AC� M[X
+PC]. We illustrate the addressing modes in the following example.

Example 10.6.1

Given the memory contents as shown in Figure 10.6.3, assume the values of the
program counter, PC, and register R1 are 96 and 200, respectively. Assume an
AC-based instruction set. Determine the accumulator value after the instruction
LOD x is performed with the addressing modes:

1. Immediate (address field, x, contains 100)
2. Direct (address field, x, contains 100)
3. Indirect (address field, x, contains 100)
4. Register indirect (address field, x, contains 1)
5. Register 1 index (address field, x, contains 3)
6. Relative (address field, x, contains 7)

The answers are given in register transfer form as

1. AC� 101
2. AC� M[100]=101
3. AC� M[M[100]]=M[101]=2
4. AC� M[R1]=M[200]=8
5. AC� M[R1+3]=M[203]=7
6. AC� M[PC+7]=M[103]=4

FIGURE 10.6.3

Memory Contents Used with the Different Addressing Modes

400 DIGITAL DESIGN AND COMPUTER ORGANIZATION

10.7
Macros

In the next chapter, we discuss the design of an instruction set that uses a small
number of instructions. For example, the instruction set is chosen so as to
perform addition only. In the context of our discussion, such an instruction is to
be realized in hardware as there is an adder unit found in the CPU to perform the
addition. As we have discussed in Chapter 5, subtraction can be performed using
addition. When the hardware does not include units that perform a specific
operation, the operation may be realized in software as a set of instructions.
These instructions can then be grouped together and referred to as a macro. The
macro is given a name. Whenever the name of the macro is present in symbolic
code, the set of instructions associated with the macro are inserted in place of the
macro reference. In this section, we give some examples and show how
additional operations can be realized in software.

Example 10.7.1

In this example, we would like to write a subtraction macro. We assume the
hardware does not contain a subtract instruction. We use the 2’s complement
procedure to perform subtraction. In addition, we do not test for overflow or
underflow.

To form A−B, we need to form the 2’s complement of B. We then add A to
the 2’s complement of B. The following set of instructions will accomplish this:

As can be seen from the example, to perform subtraction in software we have to
perform the above four instructions. Note that the two introduced instructions
(CMP and INC) have implied addressing mode, the AC register. As a result, each
of these instructions requires only one reference to memory (the fetch instruction).
The total number of memory references needed is six.

In the next example, we assume the instruction set contains two logic
operations only, the complement (as given in the above example) and the bit-
wise AND.

Example 10.7.2

In this example, we would like to write a macro for the bit-wise logic expression
A OR B. We assume the instruction set contains a COMPLEMENT and an AND
instructions logic expressions only.

INSTRUCTION SET ARCHITECTURE 401

We could form A OR B based on the use of DeMorgan’s rule, as discussed
earlier. In particular, we note A OR B=(A� AND B�)�, which can be written in
assembly as

The two examples are intended to illustrate the difference between operations
that are realized in hardware and those that are realized in software. The user
would like the instruction set to include many arithmetic and logic operations as,
in general, these will speed program execution. This increases the hardware
requirements, however, and makes the design more expensive. In the next chapter,
we present a small instruction set and discuss a CPU design for such a set.

Chapter 10
Exercises

10.1 Write an AC-based assembly instruction for the expression
X=(Y+Z*X)−W+D

Assume direct addressing mode.
10.2 Convert the address part of the above instruction solution into
hexadecimal. Assume the variables D, W, X, Y, and Z are in memory
locations 100, 101, 102, 103, and 104, respectively. (Each memory
location is given in base 10.) Assume the total addressable memory is
4096 words.
10.3 Determine the total number of memory references resulting from
your solution to problem 10.1.
10.4 Given the arithmetic expression X=(2+3)−W*D. Assume an AC-
based instruction set with a direct and immediate addressing mode.
Convert the expression into assembly. Your code should result in a
minimum number of memory references.
10.5 Assume the instruction set of an AC-based instruction set contains
7 instructions that require reference to memory. Assume the AC-based
instruction set uses three addressing modes and can address a total of
2048 memory words.

(a) In block representation (rectangular format), show the
instruction fields and give the size of each.

(b) Many instructions can be completed without the need to
reference memory; consider the CMP instruction in example 10.7.2.
With the instruction format as given, determine the total possible
number of such instructions that can be added.

402 DIGITAL DESIGN AND COMPUTER ORGANIZATION

10.6 An alternative to an AC-based instruction set architecture is to
have both operands of a binary operation in memory. In addition, the
result of the operation is stored in memory. An ADD X, Y, Z, for
example, may mean M[X]� M[Y]+M[Z]. Convert the expression

X=(Y+Z*X)−W+D
considered in question 1 to assembly instructions of the format in this question.

10.7 For the instruction set of question 10.6, assume 3 addressing
modes are possible with each operand. In addition, assume the total
number of addressable memory words is 4096. If the total number of
memory reference instructions is 15, determine the instruction format
in terms of the number fields and the size of each field.
10.8 Based on your answers to questions 10.6 and 10.7, determine

(a) The number of bits in the assembly solution to question 10.6
(b) The total number of memory reference instructions

10.9 An alternative to the instruction set architecture presented in
question 10.6 is an instruction set architecture called reduced
instruction set architecture. In this architecture, except for load and
store instructions, all operands are found in registers in the CPU. This
is done to reduce memory traffic. As a result ADD X, Y, Z, for
example, may mean Rx� RY+Rz with Rj representing register i in the
CPU. Convert the expression X=(Y+Z*X)−W+D into this instruction
set. Use the instructions Iw Ri, X and st Ri, X to mean Ri� M[X] and M
[x]� Ri, respectively.
10.10 Compute the total number of memory reference instructions in
your solution of problem 10.9.
10.11 Assume a total of 32 general-purpose registers are used in
question 10.9. Assume an opcode field of 4 bits, one addressing mode,
and a total of 4 G addressable words. Determine the instruction
formats in terms of number of fields and size of each field.
10.12 Assume an AC-based instruction set with one logic operation
only, NAND X to mean AC� (AC AND M[X])�, i.e., the AND and
CMP operations are replaced by the NAND operation.

(a) Write a set of instructions (macro) that perform the
complement of a memory locations X and places the result in AC.

(b) Write a set of instructions that performs the AND logic
operation (AND X means AC� AC AND M[X]).

(c) Write a set of instructions that performs the OR logic
operation (OR X means AC� AC OR M[X]).
10.13 Assume one is to perform the following set of expressions:
X=X+Y; Y=X−Y; W=X*Y; U=X/Y;

(a) Convert the above set of expressions to AC-based instructions.
(b) Convert the above instructions into the format presented in

question 10.6.

INSTRUCTION SET ARCHITECTURE 403

(c) Convert the above set of expressions into reduced instructions
set format.
10.14 Assume given the memory contents as shown in Figure E10.1.
Assume the values of the program counter, PC, and register R1 are 105
and 197, respectively. Assume an AC-based instruction set. Determine
the accumulator value after the instruction LOD x is performed with
the addressing modes:

(a) Immediate (address field, x, contains 100)
(b) Direct (address field, x, contains 101)
(c) Indirect (address field, x, contains 101)
(d) Register indirect (address field, x, contains 1)
(e) Register 1 index (address field, x, 99)
(f) Relative (address field, x, contains 3)

The remaining questions are with respect to an alternative instruction
set architecture called stack-based instruction set architecture. In this
architecture operands are stored as the top two elements of the stack. In
this architecture, the operands of an arithmetic instruction are
implicitly assumed to be the top of the stack. Examples are

ADD M[SP−1]
←M[SP]+M

[SP−1], SP←SP
−1

SUB M[SP−1]
←M[SP]−M

[SP−1], SP←SP
−1

MUL M[SP−1]
←M[SP]*M

[SP−1], SP←SP
−1

PUSH X M[SP]
←M[X],

SP←SP+1

POP X M[X]
←M[SP],
SP←SP−1

In this architecture, the stack is stored in memory with the top of the stack
address stored in a special register called the stack pointer, SP. For an example
of expression translation into this architecture, we consider the instruction

X=X+Y

The above expression can be translated to
PUSH X
PUSH Y
ADD

FIGURE E10.1

404 DIGITAL DESIGN AND COMPUTER ORGANIZATION

POP X
10.15 Construct the stack instructions of the expression

X=(X+Z)−W*D
10.16 Compute the total number of memory references used in solving
question 10.15.
10.17 Assume a total of 4096 addressable memory words. Assume a
total of two addressing modes and an opcode field of 3 bits. Based on
the stack-based instructions presented above, determine the different
instruction formats in terms of number of fields in an instruction and
the size of each field.

INSTRUCTION SET ARCHITECTURE 405

11
Design of a Simple AC-Based CPU

CONTENTS

11.1 Microoperation and Register Transfer Languages 407

11.2 Design of RTL Statements 409

11.3 Instruction Set of the Simple CPU 414

11.3.1 Instruction Set Completeness 414

11.3.1.1 Arithmetic Instructions 414

11.3.1.2 Logic Instructions 414

11.3.1.3 Branch (Jump Instructions) 414

11.3.1.4 CPU and Memory Instructions 415

11.3.2 The Instruction Set of the Simple CPU 415

11.4 CPU Organization Data Path 416

11.5 The Control Unit 418

11.6 The Three Cycles 421

11.7 Computer Cycles Execute Microoperations 422

11.7.1 The Memory-Reference Instructions 423

11.7.1.1 The LW Instruction 423

11.7.1.2 The ST Instruction 423

11.7.1.3 The ADD Instruction 424

11.7.1.4 The AND Instruction 424

11.7.1.5 The JMP Instruction 424

11.7.1.6 The SKZ and the SKP Instructions 425

11.7.2 Register-Reference Instructions 425

11.8 Inputs and Outputs of the Combinational Part of Control
Unit

 426

11.8.1 Input Part 426

11.8.2 Output Part 427

11.9 The Control Unit Output Functions 428

11.10 Design of the AC-Based CPU 431

Chapter 11 Exercises 432

11.1
Microoperation and Register Transfer Languages

Our discussion has progressed from Boolean algebra to designs of combinational
and sequential circuits. In the design, we moved from simple logic gates to
designs of arithmetic logic units, registers, counters, and memory elements. In
this chapter, we progress further by considering the units discussed in the
previous chapter as the building blocks in the design of larger systems. In
particular, we consider the design of a simple AC-based CPU.

The description of the design at this level can be accomplished by using a set
of microoperations. What is a microoperation? A microoperation is a primitive
hardware operation that can be accomplished during one clock cycle. With the
registers and counters used as part of the building blocks of a system, a
microoperation may mean clearing the contents of a register or incrementing the
contents of a counter, for example. These elementary operations can be
completed in one clock cycle. We will discuss this later.

In the previous chapter, we presented assembly code in symbolic format. For
example, when the AC-based architecture was discussed, ADD x was presented
as AC� AC+M[x]. A register transfer language follows a similar notation. The
intention of using the language is to provide a description of microoperations

DESIGN OF A SIMPLE AC-BASED CPU 407

that is more precise than using word sentences, for example. The term “register
transfer” is used because in general the language describes transfer of data
between registers. In addition to transfer of data, the language includes
operations to perform on the data before the transfer occurs. The+operation is an
example. Finally, the language allows a conditional transfer of data. We illustrate
as follows.

Let X, Y, and Z represent three registers and let C represent a Boolean
expression. The following are examples of register transfer statements:

X←Y, X←Y+Z, if (C=1) then Y←Z
This is three statements separated by commas. We say each of the register
transfer statements represents a microoperation that can be completed during one
clock cycle. To accomplish this, it is assumed the needed hardware exists to
accomplish the task. In the first example, the contents of register Y are copied
(replace) to the contents of register X without modifying the contents of register
Y. In the second statement, the sum of the contents of the two registers Y and Z is
computed. This sum is used then to replace the contents of register X. The last
example statement is a conditional statement. For this statement, the completion
of the transfer of the contents of register Z into register Y is based on the Boolean
condition C. The transfer occurs only if C is true.

In general, register transfer statements are executed under specific machine
conditions as indicated in the last register transfer statement example above. As a
result, the statement

if (C=1), then Y←Z
is abbreviated as

C: Y←Z
In this register transfer notation, the term to the left of the “:” represents a
Boolean condition. The term to the right represents the action to be performed if
the Boolean condition C is true. The Boolean condition C is a Boolean
expression. As a result, it may include Boolean operators. In the previous
chapters, we used+to represent the OR Boolean operator. In register transfer, we
distinguish between the sum operator (+) and the Boolean OR operator by using
the word OR or the symbol to represent the bit-wise OR. Similarly, we use the
symbol or the word AND to represent the bitwise AND. With this notation, for
example, the register transfer statement

C1·C2: Y←Z+X
is interpreted as follows: if the Boolean expression C1.C2 (the “.” represents
logical AND) is true, then the contents of register Y are replaced by the binary
sum of registers X and Z. Similarly, the register transfer

C1+C2: Y←Z X
is interpreted as follows: if the Boolean expression C1+C2 (the “+” represents
logical OR) is true, then the bit-wise AND of registers Z and X replace the
contents of register Y. Finally, the two register transfer statements

C1: Y←Z X
and

408 DIGITAL DESIGN AND COMPUTER ORGANIZATION

C1: � Z OR X
are identical. Before we conclude this section, we discuss two more notations that
we use in the design of the CPU.

First, it is possible that more than one register transfer is desired if a certain
Boolean condition holds true. To do this, we include the needed register transfers
under the same condition but separate the conditions by a “,”. For example, the
statement

C: Y←X, Z←0, W←W+1
means when C holds true, the three listed register transfers can be computed
simultaneously, i.e.,

1. The contents of X replace the contents of Y
2. The contents of register Z are cleared to 0
3. The contents of register W are incremented

By using the proper hardware design, we will see that it is possible to accomplish
the above statements simultaneously.

Second, the register transfer statements do not need to refer to registers only.
For example, the operands could be a single flip-flop, a subset of a register
contents, a memory location, or a bus line. To designate a specific part of the
register transfer, we use R[k-m] to mean bits k through m of register R. Similarly,
to designate a memory location with address R we use M[R], where M
represents memory and R represents the address of the word in memory. The
organization of memory was discussed in the previous chapter as composed of
words starting at word 0. For the register part, we assume the least-significant bit
of a register is assigned location 0. Hence, if R is a 16-bit register, then R[0–7]
refer to the 8 least-significant bits of register R.

11.2
Design of RTL Statements

In the previous section, we assumed that the register transfer statements are
associated with a hardware that realizes the statements. The hardware that
realizes the statements is not unique. We consider examples of statements and
possible hardware to realize them.

We start with the simple statement X� Y, from which we conclude that the
output of register Y must be connected to the inputs of register X explicitly
(through direct connections) or implicitly (through a bus system, for example).
Figure 11.2.1 shows the two possible block diagram realizations. In
Figure 11.2.1 (a), the outputs of register Y are directly connected to the inputs of
register X. The circuit is clocked. Hence, when the register inputs are sampled,
the contents of register Y are copied into register X. In Figure 11.2.1(b), the
registers are connected through the bus lines. As a result, control signals are
added to place the contents of register Y on the bus and for the contents of the

DESIGN OF A SIMPLE AC-BASED CPU 409

bus to be stored in register X. Since both are valid realizations, one of the steps
of the design is to determine a priori the type of hardware organization employed
in the design (is the design based on a bus system, for example).

To make the transfer conditional, as in C: X� Y, we use registers with a load
control as discussed in the previous chapter. For parallel-load register, we require
the C signal to assume a value of 1 for a complete clock cycle. During this cycle,
when the register inputs are sampled the transfer is completed. The design in
block diagram is shown in Figure 11.2.2(a). In the figure, C is used as an input into
the load line, L, of the register. In Figure 11.2.2(b), we show the timing relation
of C to the clock. As can be seen from the figure, the C control input is held at 1
for a complete clock cycle.

To realize the statement C: X� Y using a bus organization, we need to place
the contents of register Y on the bus. In addition we need to enable the load line
of register X so as to store the bus contents. Hence, additional hardware signals
are included in the design; in particular, the signals to place register Y on the bus.

FIGURE 11.2.1

Two Possible Realizations of X� Y: (a) Direct Connections; (b) Bus Connections

FIGURE 11.2.2

(a) Realization of C: X� Y; (b) Timing Relation

410 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Note that these signals are implied from the statement and the underlining
hardware organization. The bus system shown in Figure 11.2.1(b) is similar to
the register file organization discussed in the previous chapter. Hence, the
selection can be accomplished using a multiplexer realization of the bus
connections or, alternatively, the selection can be accomplished from a
combination of tristate and decoder realization of the bus connections.

We further illustrate the realization of RTL statements with several examples.

Example 11.2.1

In this example, we show the block diagram realization of C1.C2: R0� R9. We
assume a bus organization with 16 registers and the conditions C1 and C2 are
available. (Later we show that the control unit generates such signals.)

To realize the transfer, the contents of register R9 are placed on the bus. In
addition, the load line of register R0 is activated. This is done under the condition
C1·C2 holding true. To place the contents of the register R9 on the bus, we place
the binary value 1001 on the inputs of decoder associated with the bus (please

FIGURE 11.2.3 Bus Realization of C1·C2: R0� R9. C1·C2=1 for a Complete Clock
Cycle

DESIGN OF A SIMPLE AC-BASED CPU 411

refer to the tristate implementation of the register files in Chapter 9). Note that a
4-to-16 decoder is used to choose one of the 16 registers (registers R0 to R15).
The design is shown in Figure 11.2.3. Note the use of the AND gate with output
C1·C2 used as input to the load line of register R0 and as input to two of the 4-
to-16 decoder inputs. When the AND gate output assumes a value of 1, the
contents of register R9 are placed on the bus. In addition, when register R0

samples the inputs (since C1·C2=1), the contents of the bus are stored in R0.
In the next example, we expand on the design process by realizing multiple

register transfer statements simultaneously.

Example 11.2.2

In this example, we would like to realize the RTL statement C1�·C2: R0� R9,
R15� 0, R14� R14+1. In the realization, we use a bus system as discussed in the
previous example.

FIGURE 11.2.4

Bus Realization of C1�·C2: R0� R9, R15� 0, R14� R14+1

412 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Figure 11.2.4 shows the design. Similar to the previous example the condition
C1�.C2 is used to place the contents of register R9 on the bus and to store the
contents of the bus into register R0. In addition, the signal is concurrently used to
clear the contents of register R15 as well as increment the contents of register
R14.

As can be concluded, the registers used with the bus system are general
purpose registers that are capable of performing three operations (loading the
register, causing the register to function as a counter, and clearing the contents of
the register). The design of such general purpose registers is very similar to the
design of general purpose registers discussed in Chapter 9. Figure 11.2.5 shows
the design. Note the use of the three control inputs INC, CLR, and Load. At
most, one of the control inputs may assume a value of

TABLE 11.2.1
Description of Figure 11.2.5

CLR INC LOAD S1 S0 RTL Function

0 0 0 0 0 R� R

0 0 1 0 1 R� Input

0 1 0 1 0 R� R+1

1 0 0 1 1 R� 0

1. The function of the circuit is described in Table 11.2.1. When the control
inputs assume a value of 0, the contents of the register remain unchanged. The
contents of the register are cleared to 0 when the input CLR=1 zeros are placed

FIGURE 11.2.5

A General Purpose Register Used in the Design of the Simple CPU

DESIGN OF A SIMPLE AC-BASED CPU 413

at the outputs of the multiplexers. These values are stored in the flip-flops when
the clock makes a transition from 0 to 1.

Register transfer statements may refer to a single flip-flop. We will see the use
of such statements when we consider the design of a simple CPU. First, we
present the instruction set architecture of the simple CPU.

11.3
Instruction Set of the Simple CPU

11.3.1
Instruction Set Completeness

The instruction set of a computer is chosen so as to be able to translate high-level
languages to the instruction set of the computer. As a result, the instruction set
should allow for the following.

11.3.1.1
Arithmetic Instructions

The CPU should contain arithmetic instructions. The CPU we consider will
contain an add instruction. As discussed in Chapter 5 and Chapter 10, one can
perform subtraction with addition. Since multiplication can be obtained by
repeated addition, one can perform multiplication as well. As a result, in order
for a computer to perform the arithmetic operations, an add instruction could
serve as a representative instruction for the remaining arithmetic basic
instructions.

11.3.1.2
Logic Instructions

Logic instructions are needed for conditional statements as in the case of if-then-
else statements and loop statements. Earlier in the text we discussed logical
completeness. With an instruction set that includes the operations of a logically
complete set, one can generate all other logic operations. As a result, the
instruction set chosen needs to include at least the operations found in a
representative logically complete set.

11.3.1.3
Branch (Jump Instructions)

These instructions in conjunction with logic instructions are used to alter the
sequential execution of program statements. Their effect is to cause the program

414 DIGITAL DESIGN AND COMPUTER ORGANIZATION

conditionally or unconditionally to jump to specific locations in memory and, as
a result, simulate the behavior of a loop or if-then-else construct.

11.3.1.4
CPU and Memory Instructions

In addition to the above instruction types, the instruction set should include
instructions that move data between the CPU and memory. Input and output
instructions can be thought of as part of the CPU communication with memory.
That is, part of the CPU reference to memory can be interpreted as input/output
instruction. The CPU treats the reference to memory and input/output as if there
is no distinction between them. This scheme is called memory mapped.

11.3.2
The Instruction Set of the Simple CPU

With the previous subsection we present the instruction set shown in
Table 11.3.1 as our working AC-based CPU instruction set.

Table 11.3.1(a) represents memory-reference instructions. In order for these
instructions to complete, in addition to the fetch reference to memory, memory is
referenced again to obtain an operand or store an operand. Table 11.3.1(b)
contains register-reference instructions. With the exception of fetching the

TABLE 11.3.1
(a) Memory Reference Instructions, (b) Register Reference Instructions

Instruction Meaning Assigned Opcode

(a) Memory Reference

LW XXX AC� M[XXX] 0XXX

ST XXX M[XXX]� AC 1XXX

ADD XXX AC� AC+M[XXX] 2XXX

AND XXX AC� AC AND M[XXX] 3XXX

JMP XXX PC� XXX 4XXX

SKZ XXX If M[X]=0 then PC� PC+1 5XXX

SKP XXX If M[X]>0 then PC� PC+1 6XXX

(b) Register Reference

CMP AC� AC 8xxx

CLA AC� 0 9xxx

INC AC� AC+1 Axxx

CLV V� 0 Bxxx

SKV If V=1 then PC=PC+1 Cxxx

DESIGN OF A SIMPLE AC-BASED CPU 415

instruction, register-reference instructions do not need to access memory as the
operand of these instructions is found in the CPU.

The size of the memory address is given as xxx with each x representing a
hexadecimal number. As a result, the address field size is 12 bits. In addition, we
use an opcode field of size 4 bits. Finally, we use one addressing mode only
(direct addressing). As a result, no addressing mode field is needed. Since
memory words are used to store instructions and data, and since the instruction
size is 16 bits, we conclude that the memory word size is 16 bits. This word size
is used to store data as well. Based on the above, the instruction format is

In the instruction set given in Table 11.3.1, the V is an overflow bit used as an
extension of the accumulator for arithmetic operations that require additional bits
to store.

In addition to the absence of input/output instructions, the instruction set does
not include interrupt instructions. One of the functions of the interrupt
instructions is to be used by the operating system to switch between different
programs in a multi-user or Windows environment. This topic is not covered in
the text.

11.4
CPU Organization Data Path

The data path organization is based on bus connections as shown in
Figure 11.4.1, which is similar to Figure 9.7.6. The connections form the register
file part of the data path. The data path contains an ALU unit as well. As can be
seen from the figure, units A through M can place their contents on the bus. The
decoder ensures one of these units at most can place its contents on the bus. The
bus is connected to the inputs of all units. To move the contents of unit A to unit
B, for example, the decoder inputs are set to decimal 0. This places the contents
of unit A on the bus. In addition, unit B is activated to store the contents of the
bus.

The data path of the CPU used in the design is similar to Figure 11.4.1 with units
A through M replaced by needed registers and with an ALU added for
computations. To determine the needed registers, we refer to the type of
architecture used (AC-based, general purpose register-based, etc). The
architecture chosen is an AC-based instruction set architecture. As a result, the
CPU contains this single register to access by the user (this is in addition to a
single bit, V, discussed later). In addition to this register, we need registers used
for communication with the memory unit. In particular, we need a program
counter (PC), a memory address register (MAR), and a memory buffer register
(MBR). For the decoding aspect of the instruction, the CPU contains an
additional register, the instruction register (IR). The register is used to hold the

416 DIGITAL DESIGN AND COMPUTER ORGANIZATION

instruction on a temporary basis. These registers were discussed in the previous
chapter. More details on their use are given in this chapter.

In terms of the sizes of the registers, MAR and PC are 12 bits since these
registers hold the address of the instruction. AC and MBR are 16 bits each since
they hold the contents of a word (data or instruction). Since the instruction
register holds the contents of the instruction on a temporary basis, the size of the
register is 16 bits as well. Finally, the memory unit is composed of 212 16-bit

FIGURE 11.4.1

Registers (Units A through M). The figure contains one n-bit bus

DESIGN OF A SIMPLE AC-BASED CPU 417

words. The details of the connections between the registers and the details of the
contents of the control unit are the subject of chapter.

We progress by representing the data path in block diagram format as shown
in Figure 11.4.2. Note the use of a single bus to communicate between the
different registers, and that the AC register inputs are not directly connected to
the bus. In order to access the inputs of AC, the data must first be moved into
MBR. We make five additional observations:

1. The outputs of MAR are connected to the bus but are also routed separately
as an address bus into memory.

2. The data bus connecting the CPU to memory is connected to the CPU bus
and is bidirectional. The design of memory was covered in Chapter 9.

3. With the exception of AC, the inputs and outputs to/from the registers are
placed on the same side to simplify the schematic. Similarly, the decoder
and tristate gates are removed to simplify the schematic.

4. The registers used are capable of storing information in parallel, clearing to
0, and incremented. A schematic of these registers was given in
Figure 11.2.5.

5. The inputs to the ALU are directly connected to the outputs of MBR and AC,
i.e., the bus is not needed for these inputs.

11.5
The Control Unit

In the previous section, we presented the data path and the memory connection
of the simple CPU design. We continue the presentation of the simple CPU
design by discussing the design of the control unit. In the previous chapter, we
mentioned that both instruction and data are located in memory. The instructions
of a given program are executed by moving them into the CPU and by storing
the results back into memory, if needed. The control unit is that part of the CPU
that initiates the needed control signals to accomplish this. The order of initiating
the signals is important; for example, the decoding cycle must be preceded by the
fetch cycle.

The clock synchronizes the movement of information between the units of the
computer. Based on the clock signals one can impose an order on the control
signals where a control signal may remain active for a complete clock cycle. We
refer to the circuit given in Figure 9.3.5 and repeated in Figure 11.5.1 for the
case of mod-4 counter. The timing diagram for the circuit is shown in
Figure 11.5.2. The outputs are measured at T0 through T3. The counter counts the
clock pulses that are continually generated by a clock generator. The counter is
assumed to change states on the rising edge of the clock. In addition, the counter
is assumed to have a clear input that causes its value to be reset to 0
synchronously. Please refer to Figure 9.4.5 for illustration. From the timing

418 DIGITAL DESIGN AND COMPUTER ORGANIZATION

FIGURE 11.4.2

Data Path and Memory Connection of the AC-Based CPU

DESIGN OF A SIMPLE AC-BASED CPU 419

diagram (over the shaded area) we note that the Tj outputs are ordered with T0

preceding T1 and T1 preceding T2, etc. The diagram can be modified to output a
larger sequence of ordered signals. For example, using a mod-16 counter and a 4-
to-16 decoder, one can generate 16 such ordered signals.

FIGURE 11.5.1

A Schematic of Generating Four Nonoverlapping Control Signals T0,…, T3.

FIGURE 11.5.2

T0 Assumes a Value of 1 for an entire clock cycle. This is followed by T1, T2, and T3
assuming a value of 1 in the listed order. The sequence repeats.

420 DIGITAL DESIGN AND COMPUTER ORGANIZATION

As we will discuss later, the number of clock cycles needed to complete an
instruction depends on the type of instruction. As a result, in addition to the
counter and decoder circuit used to generate the ordered signals, the control unit
contains circuit elements used to determine the type of the current instruction
being executed. The schematic of the control unit we use is given in
Figure 11.5.3; the decoder used for the timing signals is removed (the reason will
be discussed later). We present next the details of the design of the
combinational part of the control unit, and the details of how the control signals
are connected to the data path and to memory. Note that since the sequence
counter is a 3-bit sequence counter, one can generate eight timing signals T0

through T7.

11.6
The Three Cycles

In the design of the computer, each instruction passes through the fetch, decode,
and execute cycles.

In fetch, the instruction is brought from memory. The program counter
contains the address of the next instruction. From the data path organization,
MAR addresses memory directly. As a result, the first step in the fetch cycle is to
place the contents of the program counter on MAR. Once this is done, memory is
read into IR where the instruction will be decoded next. In addition, PC is
incremented as the computer assumes the next instruction to be executed is the
next instruction in the sequence. (We will see how the PC contents change in
branch instructions later.) The sequence counter value distinguishes between the
three cycles. The fetch cycle, for example, is initiated by the condition SC=0,
T0=1. The fetch cycle can be described more formally using the following
microoperations.

T0: MAR←PC T1: IR←M[AR], PC←PC+1
At the end of the T1, the contents of the instruction are found in the instruction
register (IR) and the PC contains the address of the next instruction. The next
step is to decode the fetched instruction.

Decoding the instruction is to determine its type. This can be done in the
control unit during the timing signal T2, SC=2. During this time interval as well,
the address of the operand (in case the instruction is a memory-reference
instruction) is placed in MAR. If the instruction is a memory-reference
instruction, the operand can be brought into the CPU during the following timing
signal. As a result, the next microoperation is

T2: MAR←IR[0–11]
The next cycle considered is the execute cycle. The execute cycle starts at time T3.

DESIGN OF A SIMPLE AC-BASED CPU 421

11.7
Computer Cycles Execute Microoperations

Following decoding, the computer executes the instruction fetched from memory.
This is done starting at time T3 and depends on the opcode value found in the
opcode field of the instruction. We associate with each valid opcode the letter � i
where � i is true when the opcode decimal value is i (� i is similar to the minterms
discussed earlier).

Based on the opcode field, the control unit generates the needed control
signals used to complete the corresponding instruction. Figure 11.7.1 shows the
distinction between the two groups of instructions we will consider. If the most-
significant bit of the opcode field assumes a value of 1, then the instruction is a
register-reference instruction. If the bit assumes a value of 0, then the instruction
is a memory-reference instruction. We next list the microoperations associated
with each instruction.

FIGURE 11.5.3

Control Unit of the Basic Computer

422 DIGITAL DESIGN AND COMPUTER ORGANIZATION

11.7.1
The Memory-Reference Instructions

11.7.1.1
The LW Instruction

From Table 11.3.1, we note that the opcode field for this instruction is 000. The
microoperations needed to complete this instruction are

α0T3: MBR←M[MAR] α0T4: AC←MBR, SC←0
Before we move to the next instruction, we justify the above two
microoperations from a data path completion point of view. The LW xxx
instruction places the contents of memory location xxx into the accumulator.
During T2 the address xxx was stored in MAR. As a result, during T3 the
contents of memory at this location can be read into the CPU (stored into MBR).
Note that the contents cannot be directly stored into the AC as the AC inputs are
not connected to data bus. During T4, these contents can be moved into AC
through the ALU. (Recall from Chapter 5, the ALU designed at the end of the
chapter allowed moving the contents of one of the operands to its output.)

Since at the end of T4 the contents of AC contain the memory operand, the
instruction execution is complete and the CPU can start fetching the next
instruction in memory. Since the fetch cycle starts at time T0, the sequence
counter is reset synchronously to 0. On the next clock cycle, the process of fetch,
decode, and execute resumes.

11.7.1.2
The ST Instruction

The store instruction, ST xxx, moves the contents of the AC to memory location
xxx. This can be completed in one clock cycle at time T3 as given in the
microoperation.

α1T3: M[MAR]←AC, SC←0

FIGURE 11.7.1

The Two Groups of Instructions: (a) Memory-Reference, and (b) Register-Reference

DESIGN OF A SIMPLE AC-BASED CPU 423

We illustrate by referring to the data path as discussed earlier. In order for the
transfer from AC to memory to occur, the control unit places the contents of AC
on the CPU bus. This is done by placing the proper inputs on the decoder associated
with the bus. The bus is connected to the data bus of the memory unit. The
transfer occurs when the chip select input of memory is set to 1 and the read/
write input is set to 0 (please refer to the design of memory in the previous
chapter). In our discussion, we assume memory can be read or written in one
clock cycle. Since the instruction is completed, the sequence counter is reset to 0
to start fetching the next instruction. This is done by placing a 1 on the CLR input
of a 3-bit general purpose register (converted into a counter) as shown in
Figure 11.2.5. A 3-bit counter is generated by reducing the number of memory
elements by one flip-flop.

11.7.1.3
The ADD Instruction

The microoperations
α2T3: MBR←M[MAR] α2T4: AC←AC+MBR, V←ALU.CO, SC←0

are used to complete the add instruction. The ALU is assumed to contain the
needed hardware to perform the arithmetic and logic operations. The ALU
contains an additional output (ALU.CO) the carry-out needed for overflow. This
output is stored into the overflow flip-flop, V.

11.7.1.4
The AND Instruction

Similar to the ADD instruction, the following microoperations are used to
execute the AND instruction:

α3T3: MBR←M[MAR] α3T4: AC←AC AND MBR, SC←0

11.7.1.5
The IMP Instruction

The jump instruction, JMP xxx, causes the execution of the program to start at
location xxx. The PC contains the address of the next instruction in memory.
Since memory address xxx was stored in MAR during T2, during T3 we move
this address to PC. When the next instruction is fetched, execution starts at
memory location xxx. The above is captured in the single microoperation.

α4T3: PC←MAR, SC←0
The remaining two instructions are somewhat similar.

424 DIGITAL DESIGN AND COMPUTER ORGANIZATION

11.7.1.6
The SKZ and the SKP Instructions

Depending on the operand value of a memory location, both instructions may
cause the program to skip the next instruction in the sequence. Since PC contains
the address of the next instruction, on the condition being true the next
instruction is skipped by incrementing the contents of PC. The microoperations
for SKZ are

α5T3: MBR←M[MAR] α5T4: If MBR=0 then PC←PC+1, SC←0
For the SKP instruction, we obtain

α6T3: MBR←M[MAR] α6T4: If MBR>0 then PC←PC+1, SC←0

11.7.2
Register-Reference Instructions

The remaining instructions to consider are the register-reference instructions.
These instructions can be completed without having to get additional operands
from memory. The instructions are distinguished from memory-reference
instructions by the value in the opcode field. All register-reference instructions
have a 1 in the MSB of the opcode field.

TABLE 11.7.1
Microoperations of Register-Reference Instructions

Instruction Condition Register Transfer

CMP � 8T3 AC� AC�, SC� 0

CLA � 9T3 AC� 0, SC� 0

INC � 10T3 AC� AC+1, SC� 0

CLV � 11T3 V� 0, SC� 0

SKV � 12T3 If V=1 then PC� PC+1, SC� 0

TABLE 11.7.2
Microoperations for the Simple CPU

Instruction Time Operation

T0 MAR� PC

T1 IR� M[MAR], PC� PC+1

T2 MAR� IR[0−11]

LW � 0T3 MBR� M[MAR]

� 0T4 AC� MBR, SC� 0

ST � 1T3 M[MAR]� AC, SC� 0

ADD � 2T3 MBR� M[MAR]

� 2T4 AC� AC+MBR, V� ALU.CO, SC� 0

AND � 3T3 MBR� M[MAR]

DESIGN OF A SIMPLE AC-BASED CPU 425

Instruction Time Operation

� 3T4 AC� AC AND MBR, SC� 0

JMP � 4T3 PC� MAR, SC� 0

SKZ � 5T3 MBR� M[MAR]

� 5T4 If MBR=0 then PC� PC+1, SC� 0

SKP � 6T3 MBR� M[MAR]

� 6T4 If MBR>0 then PC� PC+1, SC� 0

CMP � 8T3 AC� AC�, SC� 0

CLA � 9T3 AC� 0, SC� 0

INC � 10T3 AC� AC+1, SC� 0

CLV � 11T3 V� 0, SC� 0

SKV � 12T3 If V=1 then PC� PC+1, SC� 0

The microoperations for the register-reference instructions are given in
Table 11.7.1. A summary of the microoperations associated with the simple AC-
based CPU is given in Table 11.7.2.

We are at a point where we consider the design of the AC-based CPU. The
design involves generating the needed control signals and routing these signals to
the proper units within the CPU as well as to the external memory. In the design,
we consider the needed inputs to the combinational part of the control units. We
will also consider the needed output signals.

11.8
Inputs and Outputs of the Combinational Part of Control

Unit

11.8.1
Input Part

To determine the needed inputs to the combinational part of the control unit, we
scan the table of microoperations. The list of conditions found on the left-hand
side of each microoperation is used to determine part of the set of inputs. From
Table 11.7.2 and our earlier discussion, the set of inputs should include the
opcode field part of IR (IR[12–115]) and the sequence counter inputs.

To determine other inputs, we inspect the right-hand side of each
microoperation as well. In particular, we identify those microoperations with a
conditional transfer (using if-then) found as part of the register transfer. The
table shows there are three such statements as shown with highlighted (bolded)
rows. The three statements cause PC to be incremented based on the contents of
the MBR register or the V bit. As a result, the control unit must inspect the

426 DIGITAL DESIGN AND COMPUTER ORGANIZATION

values of MBR and V as well. In the first section of this chapter, we mentioned
that a statement of the form

if (C=1) then Y←Z
can be written as

C: Y←Z
Hence, the “if” conditions associated with the right-hand side of each
microoperation can be moved to the left-hand side. For example, the statement

α5T4: If MBR=0 then PC←PC+1, SC←0
can be written as the two statements

(MBR=0) α5T4: PC←PC+1 α5T4: SC←0
By inspecting Table 11.7.2, we note that three additional inputs are required: an
input V and two inputs representing MBR>0 and MBR=0. We will determine
how these inputs are generated later.

11.8.2
Output Part

The output part of the control unit is the set of control lines used to initiate the
different functions in the proper order. Among the set of output lines, for
example, are the bus control lines used to move data between the
different registers and/or memory. As another example, one needs control lines
to select the proper data operation associated with the ALU.

We start with determining the needed lines of the ALU. Similar to the bus
select part, to minimize the needed ALU lines we use a decoding scheme. We
first determine the total number of arithmetic and logic operations needed. To do
this we refer to Table 11.7.2 and to the data path organization of the CPU. From
the table, we identify the microoperations that affect the AC register
(microoperations of the form AC� X). Note that the AC is the only register
considered since the AC is the only register connected to the output of the ALU.
As a result, other arithmetic operations that are performed on the remaining
registers (e.g., MBR� MBR+1 and PC� PC+ 1) are done independent of the
ALU. In fact, this is the reason the registers considered include an increment
input. To increment PC using the ALU, we could have placed its contents on
MBR using the bus. We then follow that by adding 1 to the contents of MBR
through the ALU unit. The result of the ALU is then stored on AC and routed
back to PC. As you may have concluded, this is a lengthy process.

From Table 11.7.2, the microoperations that affect the output of the ALU are

α0T4:
AC←MBR

α2T4:
AC←AC
+MBR

α3T4:
AC←AC

AND MBR

α8T3:
AC←AC′ α9T3: AC←0 α10T3:

AC←AC+1

Of the above microoperations, the last two (AC� 0, and AC� AC+1) can be
accomplished by using the clear and increment inputs of AC. The remaining four
can be realized through the ALU. As a result, similar to Chapter 5, we use select
lines to choose the function we would like the ALU to perform. We label the

DESIGN OF A SIMPLE AC-BASED CPU 427

select lines as ALU.S0 and ALU.Sj with the corresponding function as given in
Table 11.8.1. As can be seen from the table, depending on the select lines, one of
the four microoperations can be placed at the output of the ALU.

TABLE 11.8.1
ALU Function According to Select Lines

ALU.S1 ALU.S0 Function

0 0 AC� MBR

0 1 AC� AC+MBR

1 0 AC� AC AND MBR

1 1 AC� AC�

For the bus part, the control unit outputs three functions, BUS.S1 BUS.S2, and
BUS.S3. These outputs are used as inputs into the decoder to determine which of
the registers (memory included) is selected to place its contents on the bus. We
assume the association is as given in Table 11.8.2.

TABLE 11.8.2
Bus Connections

BUS
S2S1S0

Unit Connected

000 None

001 Memory

010 MAR

011 PC

100 MBR

101 AC

110 IR

111 None

In addition, the following outputs are needed: outputs associated with the
increment, load, and clear inputs of the registers; outputs that affect the value of
the V flip-flop; memory control outputs (chip select and read/write); and one
output that resets the sequence counter so as to start the fetch cycle when needed.

We next construct the functions for each of the above outputs.

11.9
The Control Unit Output Functions

In constructing the functions, we refer to the set of microoperations given in
Table 11.7.2. With each microoperation we determine the conditions that must
be satisfied to complete the microoperation.

428 DIGITAL DESIGN AND COMPUTER ORGANIZATION

We start at time T0. During this time, the control unit generates signals that
cause the contents of PC to be stored into MAR. To store PC into MAR, we
place PC on the bus, assigning 011 to the select lines of the bus which selects PC.
In addition, assigning 1 to the load input of MAR causes the contents of the BUS
to be stored into MAR on the rising edge of the clock. Note that from our
discussion of the timing signals earlier, T0 assumes a value of 1 for an entire
clock cycle. The changes in MAR occur during this clock cycle.

At time T1, the following two microoperations are to be completed
IR←M, and PC←PC+1

The first part, the memory read, is completed by reading memory on the bus and
activating the load line of IR. (Note we replaced M[MAR] by M for simplicity.)
To place the contents of memory on the bus we (1) set the chip select line to 1,
(2) set the read/write input to 1, and (3) place 001 on the select lines of the bus.
In addition, we set the load line of IR to 1. In addition to reading memory in IR,
the contents of the PC are incremented during T3. This can be done concurrently
with reading memory by assigning 1 to the increment input of the PC.

We give a more formal description of the above microoperations in rows 1 and
2 of Table 11.9.1. As can be seen from the table, we use MAR.L to refer

TABLE 11.9.1
Sample Microoperations with the Corresponding Control Outputs Needed in the Design

Time Operation Control Signals Needed

T0 MAR� PC BUS.SELECT=3, MAR.L=1

T1 IR� M, PC� PC+1 BUS.SELECT=1, CS=1, R/
W=1, IR.L=1, PC.INC=1

T2 MAR� IR[0–11] BUS.SELECT=6, MAR.L=1

� 0T4 AC� MBR, SC� 0 AC.L=1, ALU.SELECT=0,
SC.CLR=1

� 2T4 AC� AC+MBR, V� ALU.CO,
SC� 0

AC.L=1, ALU.SELECT=1,
V.L=1, SC.CLR=1

(MBR>0) � 6T4 PC� PC+1 PC.INC=1

� 6T4 SC� 0 SC.CLR=1

� 10T3 AC� AC+1, SC� 0 AC.INC=1, SC.CLR=1

� 11T3 V� 0, SC� 0 V.C=1, SC.CLR=1

to the load line of the MAR register. We also refer to the select lines of the bus
as BUS.SELECT. A decimal assignment of 3 indicates the contents of PC are
placed on the bus. Note that only 12 bits of the IR registers are moved in the
MAR during T2. This is done by connecting the 12 least-significant bits of the
bus to the inputs of MAR. The table contains additional sample representative
microoperations with the needed control signals. Later, we will use these to build
the complete input/output table of the combinational part of the control unit.

DESIGN OF A SIMPLE AC-BASED CPU 429

In the table, when the condition � 0 holds true, then MBR is moved into AC. In
this sample microoperation, we do not need to use the bus. Instead, we use the
ALU to move MBR into AC. From the description of the ALU function, we
assign ALU.SELECT the decimal value 0. In addition, we make AC.L=1.
Finally, the sequence counter value is cleared (SC.CLR=1). When the timing
signal T4 is completed, the sequence counter output is set to 0 and, as a result, a
new fetch cycle is started. The next microoperation associated with the condition
� 2T4 selects the add operation of the ALU. It also causes the carry-out of the sum
of to be stored in the overflow bit, V (the V� ALU.CO indicates this).

The microoperations discussed so far are pair-wise mutually exclusive. That is,
no two Boolean conditions associated with two microoperations can be equal to
1 simultaneously. The next two microoperations in the table are not mutually
exclusive. In fact, these two operations are derived from the microoperation

α6T4: if (MBR>0) then PC←PC+1, SC←0
The statement is written as two statements as shown in the table with (MBR>0)
evaluating to 1 if MBR>0 and evaluating to 0 otherwise.

The following microoperation in the table is associated with the condition
� 10T4. For this statement we note that to increment AC, the ALU is not
used. Instead, AC.INC is set to 1. The last statement causes the V bit to be
cleared to 0 (V� 0).

With the above sample conditions, and by inspecting the set of microoperations
found in Table 11.7.2, one can derive the input/output table given in
Table 11.9.2. In the table, column 1 corresponds to V. An entry in this column is
assigned one of three possible values 0, 1, or x. A 0 indicates that V assumes a
value of 1, a 1 indicates that V assumes a value of 0, and an x corresponds to a
“don’t-care” condition. The next two columns refer to MBR with one column
indicates MBR=0 and the other indicates MBR>0. For the output part, we
associate with each element the set of lines of interest. For example, with
memory we associate two columns with labels CS and R/W. A comma separates
the labels. As another example, we associate three columns with the AC
registers. The label L,C,I indicates that the AC field is 3 bits with the first bit
corresponding to load, the second to clear, and the third to increment.

As can be seen, the table contains an input part and an output part as well. The
output part was derived based on the discussion presented earlier in this section.
For each condition, we derive the input part and output part of the row containing
the condition. To illustrate, for the condition T0 to hold true the sequence counter
output must be 000 (this corresponds to T0). Note that this is the only requirement
that the inputs must satisfy. As a result, all remaining inputs in the table are
assigned x values, the don’t-care condition. As to the output part, it is derived
based on the discussion carried in constructing Table 11.9.1 above. The output
entries in the table with no assignments mean these outputs are assigned a value
of 0.

430 DIGITAL DESIGN AND COMPUTER ORGANIZATION

11.10
Design of the AC-Based CPU

The design of the CPU is based on the generation of the control signals found in
the previous section, and connecting these lines to the appropriate locations in
the data path. The data path does not include the V flip-flop. As a result, the
design includes determining the needed connections for this flip-flop.

We first start with the design of Table 11.9.2. By removing the control column
from the table, the table is reduced to a table similar to a truth table with 18
outputs and 10 inputs. The table is abbreviated as many of the entries in the input
part are don’t-care inputs. The number of rows in the table is 23. One can realize
the table using AND-OR gates or a programmable logic device, e.g., a PLA or
PAL. The PLA programming table is shown in Table 11.10.1. The PLA
programming table is obtained directly from 11.9.2. From the table, one can
generate (program) the needed connections of the PLA. The outputs of the PLA
are connected to the proper locations within the control unit (the sequence
counter) and to the data path signals (the bus, ALU, register controls, and
memory, for example).

We illustrate the relation of the PLA design to the overall design by
considering some examples. Consider the MAR.L output of the PLA. This
output is the logical OR of two entries (X2�X1�X0�+X2�X1X0�). When either of
these conditions holds true, the output of the OR gate assumes a value of 1 and,
as a result, the contents of MAR are cleared. Note that there is no other Boolean
condition that causes MAR.L to be set to 1. This can be deduced from the table
by observing the remaining input assignments to the MAR 1.

In order for the PLA circuit to work, all its inputs must be available. In our
discussion, the IR opcode and SC part are given as part of the control unit.
Missing are the inputs representing the status of V and the status of MBR. The
status of V can be obtained by directly connecting the V output to the input of
the PLA. The MBR part can be obtained with minor additional gates. For
example, the input to test if MBR=0 is obtained by simply feeding all the MBR bits
into a single NOR gate. The output of the NOR gate is 1 if and only if MBR=0.
We use a similar procedure to generate the input MBR> 0, with this input
assuming a value of 1 if and only if MBR>0. To do this, we assume the number
is presented in 2’s complement. As a result, in order for MBR to be greater than
0, the most-significant bit, MBR15 must be 0 and at least one of the remaining
bits must be equal to 1. To generate the inputs MBR=0 and MBR>0, we form the
circuit shown in Figure 11.10.1(a) and (b), respectively. The output of each OR
gate is used as an input to the PLA of the control unit.

The remaining circuit design not considered is that of the V flip-flop. As can be
concluded from Table 11.9.2, depending on the condition in the table, the V flip-
flop needs to be cleared or loaded from the ALU. The design of this flip-flop is
left as an exercise.

DESIGN OF A SIMPLE AC-BASED CPU 431

TABLE 11.9.2

Input and Output Relations of the Control Unit Combinational Part

432 DIGITAL DESIGN AND COMPUTER ORGANIZATION

TABLE 11.10.1

Programming Table of the Combinational Part of the Control Unit

DESIGN OF A SIMPLE AC-BASED CPU 433

Chapter 11
Exercises

Questions 11.1 through 11.5 deal with RTL design that is not bus based, i.e.,
assume connections can be made to the inputs of the registers or flip-flops
directly.

11.1 Show the design of the following RTL statements with X referring
to a single SR flip-flop, and PI and P2 are mutually exclusive signals.

P1: X←0 P2: X←1
11.2 Show the design of the following RTL with X referring to a JK
flip-flop. Assume P1, P2, and P3 are mutually exclusive signals.

P1: X←0 P2: X←1 P3: X←X′
11.3 Show the design of the following RTL statements using an SR
flip-flop. The P conditions are mutually exclusive Y and Z are outputs
of flip-flops.

P1: X←0 P2: X←1 P3: X←Y P4: if (P5=1), then X←Z
11.4 Repeat problem 3 on

P1: X←0 P2: X←1 P3: X←Y P4: if (P5=1), then X←Z P6: X←0 P7: X←1
11.5 In the design of the AC-based CPU, we left the design of the V
flip-flop as an exercise. Show the needed connections to the V flip-
flop. Assume V is a JK flip-flop.
11.6 Many of the Boolean conditions used in constructing the
programming table in the chapter are mutually exclusive. Identify and
list those that are not.
11.7 Use bus connections to show the design of the following RTL
Statements. Assume Ai refers to register I. Assume the bus connections
are accomplished through the use of tristate gates with only four
registers connected to the bus.

P1: A1←A2 P2: A1←A3 P3: A1←0 P4: if (P5=1) then A1←A1+1
11.8 Identify the PLA outputs that affect the fetch cycle of the AC-
based CPU.

FIGURE 11.10.1

(a) Design of MBR=0; (b) Design of MBR>0

434 DIGITAL DESIGN AND COMPUTER ORGANIZATION

11.9 For realizing the fetch cycle, show all needed connections from the
control unit to the data-path and memory of the AC-based CPU.
11.10 Assume the contents of PC are (100)16 and memory location 100
contains (9100)16. To complete the instruction from fetch to execute,
show the contents of PC, MAR, MBR, IR, SC, AC, IR, the bus
decoder inputs, and the ALU select inputs for each of the timing
signals (Ti. Use “?” for those entries that are not known.
11.11 By referring to question 11.10, assume the next instruction at
location (101)16 is (2020)16 with memory location (020)16 equal to
(AB11)16. To complete the instruction from fetch to execute, find the
contents of PC, MAR, MBR, IR, SC, AC, IR, the bus decoder inputs,
and the ALU select inputs for each of the timing signals (Ti). Use “?”
for those entries that are not known. Assume the previous instruction
was completed successfully.
11.12 Show the needed connections from the control unit to the data-
path and memory to complete the LW instruction from fetch to
execute.
11.13 Repeat question 12 for the SKZ instruction.
11.14 As discussed in the macro section of the previous chapter, one
can write macros for common tasks. Write the needed set of instruction
for the statement

if (A>=B) then A=0;
Assume A and B are memory locations. To exit the macro, use JMP EXIT.

11.15 Repeat problem 14 on
if (A>=B) then A=0 else A=A+B;

11.16 Write a macro for multiplying two positive numbers A and B.

DESIGN OF A SIMPLE AC-BASED CPU 435

Appendix A
References

1. J.Hayes, Introduction to Digital Logic Design, Addison-Wesley, 1993.
2. R.Tocci and N.Widmer, Digital Systems Principles and Applications, Prentice Hall,

1998.
3. M.Mano, Digital Design, 2nd edition, Prentice Hall, 1991.
4. A.Clements, The Principles of Computer Hardware, 3rd edition. Oxford, 2000.
5. G.Karam and J.Bryant, Principles of Computer Systems, Prentice Hall, 1992.
6. Richard S.Sandige, Cal Poly, San Luis Obispo, Digital Design Essentials and XILINX

SE 4.21 Package, Prentice Hall, 2003.
7. M.Morris Mano, Digital Design, 3rd edition, Prentice Hall, 2002.
8. M.Morris Mano, Logic and Computer Design fundamentals and Xilinx 4.2 Package,

2nd edition, Prentice Hall, 2002.
9. Daniel D.Gajski, Principles of Digital Design, Prentice Hall, 1997.
10. Victor P.Nelson, H.Troy Nagle, Bill D.Carroll, and David Irwin, Digital Logic Circuit

Analysis and Design, Prentice Hall, 1995.
11. Ken Coffman, Real World FPGA Design with Verilog, Prentice Hall, 2000
12. Jayaram Bhasker, VHDL Primer, A, 3rd edition, Prentice Hall, 1999
13. John Vyemura, A First Course in Digital System Design, Brook/Cole Publishing,

2000.
14. John Wakerly, Digital Design Principles and Practices, Prentice Hall, 2001.
15. Steve Waterman, Digital Logic Simulation with CPLD Programming, Prentice Hall,

2003.
16. William Stallings, Computer Organization and Architecture: Designing for

Performance, 6th edition, Prentice Hall, 2003.

17. Randal E.Bryant and David R.O’Hallaron, Computer Systems: A Programmer’s
Perspective, Prentice Hall, 2003.

18. G.Karam and J.Bryant, Principles of Computer Systems, Prentice Hall, 1992.
19. J.Carpinelli, Computer Systems Organization and Architecture, Addison-Wesley,

2001.
20. V.Hamacher, Z.Vranesic, and S.Zaky, Computer Organization, 4th edition, McGraw-

Hill, 1996.
21. V.Heuring and H.Jordan, Computer System Design and Architecture, Addison-

Wesley, 1997.
22. P.Abel, IBM PC Assembly Language and Programming, Prentice Hall, 1995.
23. J.Hayes, Computer Architecture and Organization, 3rd edition, McGraw-Hill, 1998.
24. M.Murdocca and V.Hearing, Principles of Computer Architecture, Prentice Hall,

2000.
25. J.Hennessy and D.Patterson, Computer Architecture: A Quantitative Approach, 2nd

edition, Morgan Kaufmann, 1996.
26. J.Hennessy and D.Patterson, Computer Organization and Design: The Hardware/

Software Interface, 2nd edition, Morgan Kaufmann, 1998.
27. M.Mano, Computer System Architecture, 3rd edition, Prentice Hall, 1993.
28. W.Stallings, Computer Organization and Architecture, 5th edition, Prentice Hall,

2000.
29. Andrew S.Tanenbaum, Structured Computer Organization, 4th edition, Prentice Hall,

1999.
30. James Evans, Itanium Architecture for Programmers: Understanding 64-Bit

Processors and EPIC Principles, Prentice Hall 2003.

437

Appendix B
Answers to Selected Problems

Chapter 1

1.1 (a) (33)10, (b) (22)10, (c) (146095)10

1.3 (676.16)8

1.5 (3BE.38)16

1.7 (6E.4)16

1.9 (a) (111111100.01)2, (b) (774.2)8, (c) (1FC.4)16

1.11 (100100110)2

1.13 (3230)5

1.15 (2260.555)8

1.17 (01010000)2

1.19 (007550)8

1.21 10’s complement: 877, 9’s complement: 876
1.23 8’s complement: 6506777, 7’s complement: 6506776
1.25 (a) 8931, (b) 35121, (c) −2353 (d) −30414, (e) −30415

1.27

Chapter 2

2.1

(a
)

(
b
)

(c
)

X Y Z X
Y
+
Z

X
�
Y
�
+
Z
Z
�

X
Y
Z
+
(
X
+
Y
)�

0 0 0 0 1 1

0 0 1 1 1 1

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 0 0 0

1 0 1 1 0 0

1 1 0 1 0 0

1 1 1 1 0 1

2.3 (a) (x+y)(z+w(x�+y�))
(b) x�+y�+0.x
(c) (x+y+z)(xy)�
2.5 The expression x where x is a Boolean variable
2.7 Complement individual variables in dual expression to get G+(A�+
B�+CD�)(E�+DF+(A�B�)�)
2.9 No, by definition the two expressions can not be equal.

2.11 (a) x′+y+z(b) y′+z(c) x′z′+x′w+xyz
2.13

ANSWERS TO SELECTED PROBLEMS 439

2.15 The verification can be done by connecting the outputs of the
circuits to the logic converter of the Electronics Workbench and
verifying the circuit and the corresponding simplified circuit produce
the same truth table.
2.17 VA=10−(100I1)=2.083
2.19

Chapter 3

3.1 Since the minterms are different then their representation differ in
at least one location where a variable xi is complemented in one
minterm but not in the other. Hence the product can be written as

e1xi·e2x′i=(e1·e2)(xi·x′i)=0
3.3 (a) ƒ(A,B,C)=A�B�C�+A’BC+AB�C+ABC+ABC
(b) ƒ(A,B,C)=(A+B+C�) (A+B
(c) ƒ�(A,B,C)=A�B�C+A�BC+AB�C
(d) ƒ�(A,B,C)=(A+B+C)(A+B�+C�)(A�+B+C�)(A�+B�+C)(A�+B�+C)
3.5 (a) ƒ(A,B,C)=� (0,3,5,6,7)
(b) ƒ(A,B,C)=� (l,2,4)
(c) ƒ�(A,B,C)=� (l,2,4)
(d) ƒ�(A,B,C)=� (0,3,5,6,7)
3.7 (a) None due to (AB)� term
(b) Sum of product
(c) Sum of product and canonical sum
(d) Sum of product and product of sum
(e) Sum of product, product of sum and canonical product
(f) None due to A� (B�+C) term
3.9 F(A,B,C)=A+B
 =A(B+B�)(C+C�)+B(A+A�)(C+C�)
 =A�BC+A�BC+AB�C�+AB�C+ABC�+ABC
3.11 (a) ƒ(A,B,C)=A�B�C+A�BC+AB�C+ABC+ABC
 =A�B�C+BC+AC+AB

440 DIGITAL DESIGN AND COMPUTER ORGANIZATION

(b) ƒ�(A,B,C)=A�B�C+A�BC�+AB�C� simplified
(c) For the design, first write the function in:
(i) sum of product
(ii) product of sum (complement ƒ�)
(iii) sum of product
(iv) product of sum
(d) For the design first:
(i) Design ƒ� in sum of product and then invert
(ii) Design ƒ� in product of sum and invert
3.12 Yes, when AND is followed with NOR the resulting circuit is
similar to AND-OR-Invert.
3.13 Similar to 3.12. The resulting circuit is OR-AND-Invert,
however.

Chapter 4

4.1 ƒ(A,B,C)=� (0,1,4,5)
 =A�B�C�+A�B�C+AB�C�+AB�C
The table below shows adjacency an x in the table means the minterms
are adjacent.

(a)

4.3

(b)
Algebraic are same as minterms.

ANSWERS TO SELECTED PROBLEMS 441

(c)

(d) No, subcube size must be 2k for some integer k.

(e)

(f) Prime implicants are shown in the table below.

4.5

4.7
4.9 Each implicant is essential. Hence one minimum D�+AB+AC.
4.11 c=B+C+D
4.13 e=B�D�+CD�
ƒ=A+B+C�D�
g=A+B�C+BC+BD�, or
g=A+B�C+BC+CD�

442 DIGITAL DESIGN AND COMPUTER ORGANIZATION

4.15 ƒ�=A�BC�+BCD�+ACD�. Hence
ƒ=ƒ”=(A+B�+C)(B�+C+D)(A�+C�+D)
4.17 Prime implicants, PI’s, P1=(0,4), P2=(4,5), P3=(5,13), P4=(10,
11), P5=(11,15), P6=(13,15).
4.19 ƒ=B�E�+CDE�+CD�+CE

Chapter 5

5.1 For C2 delay is 7 ns, for C3 delay is 14 ns.
5.3 C6=G5+G4P5+G3P5P4+G2P5P4P3+G1P5P4P3P2+C1P5P4P3P2P1

5.5

5.7

ANSWERS TO SELECTED PROBLEMS 443

5.9 7 ns. 7 ns.
5.11

5.13 The result for Bp=0 and Bp=1 is, respectively, D2D1Bn=111 and
D2D1Bn=101.

444 DIGITAL DESIGN AND COMPUTER ORGANIZATION

5.15 Form 0101101+0111001=1100110; MSB=0, overflow occurred.
5.17 Append the sign bit to the 4 most significant bits (A=00000011
and B=11111011). The sign bit is copied into the added bits. The
method is called sign extension.
5.19 (a) 10001010+01101100=11110110; cin into sign bit=cout, no
overflow.
(b) 10001010+10010100=00011110; cin into sign bit not equal cout,
overflow.
(c) 90010+99499=1 89509; overflow.
(d) 91501+02345=93846; no overflow.
5.21 Number of adders is 1 less than the size of B=7 adders. The size
of each is equal to the size of A, 16. The number of AND gates is the
equal to the product of the operand sizes, 16×8=128.
5.23 (a) 11110000 AND 10101100=10100000, 11110000 OR
10101100= 11111100, A=00001111 and B�=01010011.
(b) 00000000 AND 10101111=00000000, 00000000 OR 10101111=
10101111, A=11111111, B�=01010000.
(c) AF AND 91=10101111 AND 10010001=10000001; OR results in
10111111, A=01010000, B�=01101110.

Chapter 6

6.1

6.3

ANSWERS TO SELECTED PROBLEMS 445

6.5

6.7

446 DIGITAL DESIGN AND COMPUTER ORGANIZATION

6.9

6.11 From Figure 5.4.1 we obtain

A B Bn D

0 0 Bp Bp

0 1 1 Bp�

1 0 0 Bp�

ANSWERS TO SELECTED PROBLEMS 447

A B Bn D

1 1 Bp Bp

6.13

Inputs Outputs

P
ro
d
u
ct
T
er
m
s

A
2

A
1

B
2

B
1

C
3

S
2

S
1

A
�
2
A
�
1
B
�
2
B
�1

0 0 0 0 1 1 1

A
�
2
A
�
1
B
�
2
B
1

0 0 0 1 1 1 0

A
�
2
A
�
1
B
2
B
�1

0 0 1 0 1 0 1

448 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Inputs Outputs

P
ro
d
u
ct
T
er
m
s

A
2

A
1

B
2

B
1

C
3

S
2

S
1

A
2�
A
1�
B
2
B
1

0 0 1 1 1 0 0

A
�
2
A
1
B
�
2
B
�1

0 1 0 0 1 1 0

A
�
2
A
1
B
�
2
B
�1

0 1 0 1 1 0 1

A
�
2
A
1
B
2
B
�1

0 1 1 0 1 0 0

A
�

0 1 1 1 0 1 1

ANSWERS TO SELECTED PROBLEMS 449

Inputs Outputs

P
ro
d
u
ct
T
er
m
s

A
2

A
1

B
2

B
1

C
3

S
2

S
1

2
A
1
B
2
B
1

A
2
A
�
1
B
�
2
B
�1

1 0 0 0 1 0 1

A
2
A
�
1
B
�
2
B
1

1 0 0 1 1 0 0

A
2
A
�
1
B
2
B
�1

1 0 1 0 0 1 1

A
2
A
�

1 0 1 1 0 1 0

450 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Inputs Outputs

P
ro
d
u
ct
T
er
m
s

A
2

A
1

B
2

B
1

C
3

S
2

S
1

1
B
2
B
1

A
2
A
1
B
2
B
1

1 1 0 0 1 0 0

A
2
A
1
B
�
2
B
1

1 1 0 1 0 1 1

A
2
A
1
B
2
B
�1

1 1 1 0 0 1 0

A
2
A
1
B
2
B
1

1 1 1 1 0 0 1

ANSWERS TO SELECTED PROBLEMS 451

6.15 Equations can be minimized separately:
FA<B=A′2A′1B1+A′2B2

+A′1B2B1
FA=B can not be minimized FA>B=A1B′+A2B′2+B′

1A2A1
Hence the PAL needed should contain at least 3 OR gates and 10 AND gates.
One of the inputs to the OR gates must receive four product terms. Each of the
others must receive 3 inputs each.

6.17 From 6.5, the decoder of the ROM must be 4-to-16 decoder; the
OR array must include at least 3 OR gates.
6.19 Minimized equations needed for parts (b), (d) and (e) are

F1=ABC+ABD F2=A′BD+A′BC+AB′
+ACD′

F3=B′C+BCD′+CDF4=B′D+BD′

For part (c), the minimized equations needed are

F′1=A′+B′+CD F′2=A′B′+A′C′D′
+ABC+ABD F′3=CD+B′C+BCD′F′4=B′D′+BD

Chapter 7

7.1 Circuit design is

Characteristic table is

Y X Q Q+ Q�+

0 0 0 1 1

0 0 1 1 1

0 1 0 1 0

0 1 1 1 0

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 0

7.3 From question 7.1, X and Y can be thought of as S and R if they are
inverted first. Hence, design is

452 DIGITAL DESIGN AND COMPUTER ORGANIZATION

7.5

7.7 ƒ=1/T=1/10 ns=100 MHz. Duty cycle=% of T when clock is equal
to 1=2/10×100=20%.
7.9

7.11 X+=JXX�+K�XX=IX�+I�X
Y+=JyY�+K�yY=(IX)Y�+(IX)�Y
7.13

ANSWERS TO SELECTED PROBLEMS 453

7.15 The Three Representations

A B X A
+

B
+

O
U
T

0 0 0 0 1 0

0 0 1 0 0 0

0 1 0 0 1 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 1 1 1 0

1 1 0 0 1 1

1 1 1 0 0 0

(a)

Present State NS/output

x=0 x=1

00 01/0 00/0

01 01/0 10/0

10 01/0 11/0

11 01/1 00/0

(b)

Pr
ese
nt
St
ate

Next State Output

x=
0

x=
1

x=
0

x=
1

0
0

0
1

0
0

0 0

0
1

0
1

1
0

0 0

1
0

0
1

1
1

0 0

1
1

0
1

0
0

1 0

(c)

7.17

454 DIGITAL DESIGN AND COMPUTER ORGANIZATION

Chapter 8

8.1

8.3 (a) In the design use JA=B, KA=(BX)�, JB=A, and KB=X�. (b) In the
design we get the correct characteristic equations by deriving JA, kA,
JB, KB and substituting these in the characteristic equations of a JK flip-
flop.
8.5 From Figure 8.5.2 and the assignment XY=00, 01, 10, and 11
representing A, B, C, and D we have

8.7 Excitation equations obtained are
JX=I′, KX=Y, JY=X′I′, Ky=I+X′, and OUT=XY′

8.9 The states are used to store the remainders of division by 5.
8.11 The states keep track of the last three inputs entered.
8.13 The excitation equations are

(a) DW=WZ+WY+YZ DX=WY′Z′+WY′Z+WYZ+WYZ′ Out=x

(b)JW=YZKW=Y′Z′ JX=WY′Z′+WY′Z +WYZ
+W′YZ′

KX=WY′Z′+WY′Z+WYZ
+WYZ′

(c)

(d)SW=YZRW=Y′Z′SX=WY′Z′+W′Y′Z+WYZ
+WYZ′

RX=W′Y′Z′+WY′Z+W′
YZ+WYZ′

8.15 Need three memory elements A, B, and C with excitation
equations

JA=BCI, KA=1 JB=AI′+CI′, KB=C′I′+CI JC=I, Kc=B+I′ OUT=AI

ANSWERS TO SELECTED PROBLEMS 455

8.17 Partition P=(AG)(BF)(C)(DE)

Chapter 9

9.1

9.3

9.5 First convert the JK flip-flops into D. Follow that with design as in
question 9.4.
9.7 The design is similar to Figure 9.4.5. Use a 3-bit counter/register
instead. The inputs to the NAND gate are bits Y2 and Y0.
9.9 For the two most significant bits, the design is similar to a mod 4
counter. The least significant bit is always equal to 1.
9.11

456 DIGITAL DESIGN AND COMPUTER ORGANIZATION

9.13 The timing diagram is similar to the diagram given in
Figure 9.3.4. Here, however, the pattern repeats after 16 clock cycles
instead of 4.
9.15 Eight flip-flops are needed.
9.17 Twenty-eight inputs/outputs are needed as shown.

9.19

ANSWERS TO SELECTED PROBLEMS 457

Chapter 10

10.1 LOD Z
MUL X
ADD Y
SUB W
ADD D
STO X
10.3 12 memory references
10.5 (a)

458 DIGITAL DESIGN AND COMPUTER ORGANIZATION

(b) 8192
10.7

10.9
10.11 Two types of instructions: arithmetic and load/store. Arithmetic
4 fields of sizes 4,5,5, and 5. Three fields for load/store with field
widths of 4,5, and 32 bits.

10.13 (a)
(b)

10.15
10.17 Two types of instructions: arithmetic and push/pop.

Chapter 11

11.1

11.3

11.5 In the design we first find all RTL statements with V as the
destination flip-flop. We then follow with a design procedure similar to
problem 11.3.
11.7

ANSWERS TO SELECTED PROBLEMS 459

11.9 Bus connections are not shown.

460 DIGITAL DESIGN AND COMPUTER ORGANIZATION

11.13 The connections can be made to the figure given in the solution
of problem 11.9 with PC.LD connected to LD of the program counter.

11.15

ANSWERS TO SELECTED PROBLEMS 461

Index

A
Abstraction

levels of, 112, 113
register level, 114

AC, see Accumulator
Accumulator (AC), 393
Accumulator-based CPU, 403, 408

design of, 441
memory connection of, 429

Accumulator-based instruction, 398
Adder

block diagram of, 176
design of using PAL, 244
4-bit, block diagram of, 183
full, 177, 178
design of, 178, 238
programming table for, 239
truth table, 178

half, 177
ripple carry, 177
serial, 327

ADD instruction, 434
Addition, unsigned, 190
Address buses, 369
Addressing

index, 408
modes, 408
common, 405
memory content used with different,
409

register indirect, 409
Adjacency, use of, 134
Algebra, switching, definition of, 38
Alphanumeric information, 27
ALU, see Arithmetic logic unit
Analog data, 2
AND array(s), 234

design of, 250
manufacture of, 251
PAL, 245
programmable, 251

AND CMOS design, 80, 106
AND function, complement of, 101
AND gate(s), 98, 99, 323

four input, 59
levels of, 234
output of, 58
3-input, 237

AND instruction, 435
AND operation(s)

462

associative property of, 58
bit-wise, 205

AND-OR gates, 123
AND-OR-Invert design, 111
AND-OR-NOT design, 241
Answers to selected problems

arithmetic logic circuits and
programmable logic devices, 454–456
Boolean algebra, and gate and
transistor design, 450–451
Boolean functions, minimization of,
452–454
canonical forms and logical
completeness, 451–52
design of simple AC-based, 469–472
instruction set architecture, 467–469
numbers in different bases, 449
programmable logic devices, 457–460
registers, counters, and memory
elements, 465–467
sequential circuits
flip-flops and analysis of, 460–462
state minimization and design of,
463–464

Arithmetic instructions, 425
Arithmetic logic circuits and

programmable logic devices, 175–211
arithmetic circuits using radix
complement, 190–198
hardware implementation of signed
arithmetic, 198
hardware implementation of unsigned
arithmetic, 192
signed number arithmetic in radix
complement, 193–197
unsigned addition and subtraction,
190–192

binary adders, 176–180
half and full adders, 177–180
iterative circuits, 176–177

binary subtractors, 186–190
design of simple arithmetic logic unit,
203–207
bit-wise logic operations, 205
combinational shift left, 206
design of ALU, 206–207
subtraction and arithmetic unit, 204

exercises, 209–211

look-ahead carry generators, 180–182
magnitude comparators, 182–186
Boolean equations for A<B, 186
Boolean equations for equal output,
184–185
design of A>B output, 185–186
magnitude comparators with enable
lines, 186
1-bit magnitude comparator, 184

multiplexers, 200–202
multiplier circuits, 198–200

Arithmetic logic unit (ALU), 112, 203, 349,
393
bit-wise logic operations, 205
block diagram of, 205, 207
combinational shift left, 206
design of, 206
functions, 206, 438
function table, 207
needed lines of, 438
subtraction and, 204

ASCII, 29
Assembly

code, 404
instruction, 400

Associative theorem, 48
Asynchronous circuits, 273
Asynchronous counters, 357
Axioms, 43

B
Bases, counting in different, 10
BCD code, see Binary coded decimal code
BCD-to-seven-segment decoder circuit,

152
Bias, 32
Binary, counting down in, 356
Binary adders, 176–180

half and full adders, 177–180
iterative circuits, 176–177

Binary arithmetic, 15–20
addition, 15–17
multiplication, 19–20
subtraction, 17–19

Binary code(s), 2, 25, 314
Binary coded decimal (BCD) code, 26, 27,

214

INDEX 463

Binary counter
circuits, T flip-flop design, 362
design of Mod-32, 353
mode-16 count down, 357

Binary decoder(s), 214
ROM with, 247
truth table, 217

Binary encoders, 223, 224
Binary number

complement of, 21, 22
conversion of to hexadecimal, 8
conversion of to octal, 6, 7, 8
input assignment interpreted as, 88
representation, decimal number, 13

Binary sequence, operations translated to,
400

Binary subtraction, 186–190, 191, 192
Block diagram

model, sequential circuits, 287, 288
realizations, 420

Boolean algebra, and gate and transistor
design, 37–85
Boolean function, 51–55
complement of Boolean functions,
54–55
definitions, 51–52
representations, 52–54

Boolean or switching algebra, 38–43
Boolean expressions, 39–41
definitions, 38–39
truth tables, 41–43

circuit analysis and gate design, 56–59
circuit analysis and gate
representation, 56–57
circuit design, 57–59
multiple input gates, 59

CMOS gate design, 78–81
electrical circuits, 59–61
Ohm’s law, 60–61
voltage, current, and resistance, 59–60

exercises, 83–85
Kirchhoff’s current law, 66–71
Kirchhoff’s laws and voltage division,
61–66
voltage difference, 61–62
voltage division, 63–66
voltage law, 62–63

properties of Boolean algebra, 43–48

axioms, 43–44
principle of duality, 44–48

RC circuits, 71–75
simplification of Boolean expressions,
48–51
transistors and logic gates, 75–77

Boolean condition, 419
Boolean expression(s)

example of, 39
precedence rules, 40
simplification of, 48
truth table for, 42, 43

Boolean function(s)
complement of, 54
definition of, 89, 92
examples of, 51
number of over two variables, 101

Boolean functions, minimization of, 133–
174
exercises, 173–174
incompletely specified functions, 152–
154
K-map minimization, 142–152
K-map minimization, 145–152
subcubes and prime implicants, 142–
145

logical adjacencies and K-map
construction, 133–137
K-map construction, 135–137
logical adjacency, 134–135

multiple-output function minimization,
167–172
product of sum minimization, 154–156
Quine-McCluskey or tabular method,
156–167
algorithmic procedure of tabular
method, 160–164
building prime implicants, 157–159
decimal method of building prime
implicants, 165–167
finding minimal cover, 159–160

subcube formations, 137–142
filling of table entries, 137–139
subcubes and minimization, 139–142

Bus
connections, 439
organization, 421

464 DIGITAL DESIGN AND COMPUTER ORGANIZATION

C
C++, 392
CAD tools, see Computer-aided design

tools
Canonical forms and logical completeness,

87–132
application to Electronics Workbench,
116–126
design entry, 117–122
Electronics Workbench, 116–117
simulation, 125–126
synthesis, 122–125

canonical forms of Boolean functions,
88–95
canonical product form, 92–95
canonical sum form, 88–92

design automation tools and levels of
abstraction, 111–115
computer-aided design tools, 113–115
levels of abstraction, 112–113

design of functions in standard forms,
98–100
canonical product and product of sum
representation, 100
canonical sum and sum of product
design, 98–100

exercises, 131–132
integrated circuits, 127–132
large-scale integration, 128–129
medium-scale integration, 128
small-scale integration, 128
very-large-scale integration, 129–130

logical completeness, 103–106
definition and examples, 104–105
NAND and NOR gates as logically
complete gates, 105–106

NAND and NOR design of
combinatorial circuits, 106–111
AND-OR-Invert and OR-AND Invert
design, 111
NAND gate design, 107–108
NOR gate design, 108–111

other two variable functions, 100–103
sum of product and product of sum
forms, 95–98
product of sum form, 96
sum of product form, 95–96

verification of function equality using
canonical forms, 96–98

Canonical product, 93
function, 94
representation, 93, 100

Canonical sum
form, definition of, 88
representation, function, 95

Capacitance, unit of measurement, 72
Carry generators, look-ahead, 180
Central processing unit (CPU), 2, 112, 391,

see also CPU, design of simple AC-
based
adder unit found in, 410
address, splitting of into decoders, 379
arithmetic logic unit in, 203
block diagram of, 380, 383
communication between memory and,
378
data bus used to communicate between
memory and, 372
designs, 111
execution time, 398
instructions, general register, 403
internal design, 113
machine instruction format, 402
memory traffic, 399
microoperations, 436
organization
accumulator-based, 394
data path, 427
general purpose register organization,
399

registers, 391
Character codes, 26, 29
Characteristic equations, 308
Chips, characterization of, 127
Circuit(s)

algebra and design of, 38
analysis, 56
arithmetic, using radix complement,
190
asynchronous circuits, 273
BCD-to-seven-segment decoder, 152
Boolean function and, 52
characteristic equations of, 288
CMOS, 80
code converter, 222

INDEX 465

combinational, 106, 256, 286
cross-coupled, 257
current, linear equations, 71
design, 57
D latch, 267
excitation table, 355
4-bit adder/subtractor, 193
gated SR latch, 271
master-slave flip-flop, 275
multiplexer, 226, 227
sample majority, 129

electrical, 59
glitches and, 277
inner loops of, 70
iterative, 176
lookahead carry generator, 182
multiplier, 198, 199, 200
NAND, 105, 130
NAND-NAND, 109
PAL, 243
register-counter, 361
resistive and capacitive, 71, 73
ROM, 245
sequential, see Sequential circuits, flip-
flops and analysis of;
Sequential circuits, state minimization
and design of
SR latch, 258
state diagram of, 327
synchronous, 273
timing diagram, 287
voltage division, 63

Clock
cycle, 273, 274, 431, 434
registers modified and, 347
rising edge of, 349

pulses, 351, 359
schematic of, 272
signals, 430
skew, 347
value, 281

CMOS
design, 78, 106
inverters, 79

Code(s)
assembly, 404
BCD, 214
binary coded decimal, 26, 27

character, 26, 29
converter circuits, 222
Excess-m, 26, 27
Gray, 26, 28
symbolic, 410
weighted, 26
word, 25

Coding, 25
Combinational circuits, 256, 286
Commutative rule for two variables, 57
Complement representation, 24
Computer

control unit, 432, 439
decode cycle, 431
execute cycle, 431
fetch cycle, 431, 432, 439
instruction
cycles, 403
set, 391

keyboard, 3
monitors, time display on, 2
translation process between user and, 6

Computer-aided design (CAD) tools, 113,
114
automated, 306–307
design entry, 115
libraries supplied by, 119
simulation, 115
synthesis, 115, 122

Connectors dialogue, 121
Consensus theorem, 50
Control signals, nonoverlapping, 430
Counters, 351,

see also Registers, counters, and
memory elements
asynchronous, 357
design of counters from smaller, 354
Johnson, 357, 360, 361
mod-2n synchronous, 351
ring, 357, 358, 359

CPU, see Central processing unit
CPU, design of simple AC-based, 417–446,

see also Central processing unit
computer cycles executing
microoperations, 433–436
memory-reference instructions, 433–
435

466 DIGITAL DESIGN AND COMPUTER ORGANIZATION

register-reference instructions, 435–
436

control unit, 430–431
control unit output functions, 439–441
CPU organization data path, 427–429
design of AC-based CPU, 441–444
design of RTL statements, 420–424
exercises, 445–446
inputs and outputs of combinational
part of control unit, 437–439
input part, 437
output part, 437–439

instruction set of simple CPU, 424–426
instruction set completeness, 424–425
instruction set of simple CPU, 425–
426

microoperation and register transfer
languages, 418–420
three cycles, 431–433

Cramer’s rule, 68, 71
Crossbar switch

design of, 231
example of, 232

Cross-coupled circuit, 257
Current

definition of, 59, 72
direction, 66
variables, procedure reducing number
of, 69

D
Data

analog, 2
bus(es), 369
connections, 372, 374
RAM design with, 376

digital, 2
encoding of in block diagram, 223
keyboard, 2
path completion point, 433
types, 9

Decimal number(s)
binary number representation of, 13
conversion of to equivalent numbers in
arbitrary bases, 11
fixed point, 14

Decimal subtraction, 18

Decimal value, computing of, 194
Decoder(s), 213

binary, 214, 247
block diagrams of, 214, 216
building larger decoders from smaller
ones, 220
CPU address and, 379
design of with enable line, 221, 222
design of functions using, 220
function design using, 217
gate design of, 215, 216
majority function design using, 218
minterm outputs of, 214
truth table, 215, 221

Decoding, 3
Deduction, definition of, 49
DeMorgan’s rule, 54, 55, 155, 411
Demultiplexer(s), 231

block diagram, 233
design of, 233

Design automation tools, 111
D flip-flop(s), 296

design of T flip-flop from, 362
output equations using, 309

Digital circuit design, 56
Digital data, 2
DIO, see Dual in-line package
Diode(s), 247

definition of, 248
design, logic operations, 249, 251, 252
forward-biased, 248
schematic of, 249

D latch
circuit design, 267
design, 266
state diagram, 267

Don’t care conditions, 261, 270, 441
DRAM, see Dynamic RAM, 374
Dual in-line package (DIP), 127
Duality, principle of, 44
Duty cycle, 272
Dynamic RAM (DRAM), 374, 375

E
Edge-triggered flip-flops, 278, 284

asynchronous preset, 279
clock

INDEX 467

transition, 282
value, 281

schematic of, 280
Electrical circuits, 59
Electronics Workbench (EW), 113, 322

design entry, 117
graphical user interface of, 116, 120
simulation using, 125

Encoder(s), 222
binary, 223, 224
priority, 224, 226

Encoding
definition of, 25
reverse of, 3
steps of, 3

Equality, Boolean equation for, 185
Equations, design entry through, 119
Equivalence

example table used to find, 333
operation, symbol for, 102
relation, 332

Equivalent Moore model, 323
Essential rime implicant, definition of, 149
EW, see Electronics Workbench
Excess-m code, 26, 27
Excitation

equations
block diagrams and design from, 306
circuit design from, 308
simplified, 310

table(s)
circuit design of, 355
different state assignment, 322
flip-flop, 315, 316
JK flip-flops, 320
K-maps generated from, 352
mod-5 counter, 354
sequential circuit design, 317
T flip-flops, 321, 351

Exclusive-OR, see XOR
Exercises

arithmetic logic circuits and
programmable logic devices, 209–211
Boolean algebra, and gate and
transistor design, 83–85
Boolean functions, minimization of,
173–174

canonical forms and logical
completeness, 131–132
CPU, design of simple AC-based, 445–
46
instruction set architecture, 413–416
numbers in different bases, 35–36
programmable logic devices, 253–254
registers, counters, and memory
elements, 387–389
sequential circuits
flip-flops and analysis of, 301–303
state minimization and design of,
341–343

Expression, dual of, 45, 46, 47
Extended Binary Coded Decimal

Interchange Code, 29

F
Falling edge event, 285
Fault models, 115
Fetch instruction, 406
Field-programmable device, 251
Field programmable gate arrays (FPGA),

230
Fixed-point representation, 9
Flip-flop(s),

see also Sequential circuits, flip- flops
and analysis of
A, 352
asynchronous and synchronous
circuits, 273
characteristic equation of, 289
D, 296, 309, 362
edge-triggered, 278
excitation
equations for, 290, 312
tables, 315, 316

inputs to, 289, 307
JK, 296, 311
design of Mod-32 binary counter
using, 353
excitation table of circuit using, 320

master-slave, 274, 275
outputs, 292
register transfer statements and,
SR, 323
T, 323

468 DIGITAL DESIGN AND COMPUTER ORGANIZATION

V, 444
Floating-point

numbers, 30, 32, 33
representation, 9

Forward-biased diode, 248
FPGA, see Field programmable gate arrays
Full adder, 177, 178

design of, 178, 238
programming table for, 239
truth table, 178

Full subtractor, 189
design of, 189
truth table, 189

Function(s)
canonical product representation of, 95
circuit realization of, 168
description, register, 365
design, decoders and, 217
equality, verification of, 96
Exclusive-OR, 102
incompletely specified, 152
K-map minimization of, 154, 155
minimal, 146
minimization
multiple-output, 167
process, 148

NAND, 101
NOR, 101
XOR, design of from multiplexers,
228, 229

G
Gate(s)

AND, 98, 99, 323
output of, 58
3-input, 237

AND-OR, 123
bin, 120
connections between connectors and,
122
design, 56, 74,
see also Boolean algebra, and gate and
transistor design
CMOS, 78
decoder, 215, 216
example, 56
multiplier circuit, 200

fan-in associated with, 98
function of voltage at, 76
logic, 75
logically complete, 105
multiple input, 59
NAND, 123
design of, 107, 125
logically complete, 105

NOR
design of, 108
logically complete, 105

OR
four-input, 59
levels of, 234
majority function design using, 217

outputs of, 74
representation, ROM, 246
tristate, 374
XOR, 323
carry generator and, 182
design of, 107
NOR-NOR design of, 110
unsigned arithmetic and, 192

Glitch(es), 347
circuit, 277
timing schematic of, 278

Graphical user interface (GUI), 115, 116
Gray code, 26, 28
GUI, see Graphical user interface

H
HA, see Half adder
Half adder (HA), 177, 178
Half subtractor(s), 187

design of, 188
truth table, 188

Hardware Description Language (HDL),
115

Hardware implementation
signed arithmetic, 198
unsigned arithmetic, 192

HDL, see Hardware Description Language
Hexadecimal bases, 6

I
ICs, see Integrated circuits
Index addressing, 408

INDEX 469

Input
assignment, 88
equations, flip-flops, 307
gates, multiple, 59

Instruction(s)
ADD, 434
AND, 435
arithmetic, 425
classification of, 403
cycles, 403
fetch, 406
JMP, 435
jump, 425
load accumulator, 405, 408
logic, 425
memory, 425, 433
register (IR), 428, 432, 444
register-reference, 435, 436
set
completeness, 424
simple CPU, 424

SKZ, 435
two-address, 407

Instruction set architecture, 391–416
accumulator-based, 392–398
architecture, 393–394
instructions, 394–398

common addressing modes, 405–410
computer instruction cycles, 403–405
exercises, 413–416
general register-based architecture,
398–400
instruction set of computer, 391–392
machine-level instructions, 400–403
macros, 410–411

Integrated circuits (ICs), 127
Invertors, NOR gates replaced by, 283
IR, see Instruction register
Iterative circuits, 176

J
JK flip-flops, 296, 311

design of Mod-32 binary counter using,
353
excitation table of circuit using, 320

JK latch, 267
characteristic table of, 265

circuit design of T latch from, 269
inputs to, 264
state diagram, 267

JMP instruction, 435
Johnson counters, 357, 360, 361
Jump instructions, 425

K
Keyboard data, encoding of, 2
Kirchhoff’s current law, 66, 68
Kirchhoff s voltage law, 62, 67, 70, 72
K-map(s)

construction, 133, 135, 137
method of minimization, 317
minimization, 142, 145
prime implicant on, 144
purpose of constructing, 139
subcubes on, 143, 147

L
Large-scale integration (LSI) chip, 127,

128
Latch(es)

block diagrams of, 283
characteristic equations, 266
characteristic tables of, 265
D
circuit design, 267
design, 266
state diagram, 267

feedback loops, 256–257
gated, 270, 272
JK, 267
characteristic table of, 265
circuit design of T latch from, 269
inputs to, 264
state diagram, 267

level-sensitive, 274
logic symbol of, 265
master-slave, 275
outputs of, 264
SR, 257
behavioral description, 260
characteristic equations, 261
characteristic table of, 260, 265, 268,
270
circuit, 258, 271

470 DIGITAL DESIGN AND COMPUTER ORGANIZATION

example block diagram, 263
inputs, 264
state diagrams, 262
timing diagrams, 263, 264, 273

state diagrams, 266
T, 267, 269, 270
timing constraints, 284, 285
types of, 258

LCDs, see Liquid crystal displays Least-
significant bit (LSB), 6, 180

Least-significant digit (LSD), 6, 10
LEDs, see Light-emitting diodes
Light-emitting diodes (LEDs), 152
Linear equations, circuit current, 71
Liquid crystal displays (LCDs), 152
Load accumulator, 395, 400, 405
Logic

converter, 124, 125
gates, 53, 75
instructions, 395, 425
mapping, 79
operations
arithmetic logic unit, 203
bit-wise, 205
diode design of, 249
use of diodes in design of, 248

programmable array, 234
symbol, master-slave flip-flop, 284

Logical adjacency, 157
Logical completeness, see Canonical forms

and logical completeness
Look-ahead carry generators, 180
LSB, see Least-significant bit
LSD, see Least-significant digit
LSI chip, see Large-scale integration chip

M
Machine(s)

equivalence, 319, 331
instruction, 400, 404

Macro(s), 410
bit-wise logic expression, 411
subtraction, 410

Magnitude comparator(s), 182
block diagram of, 184
design of, 184, 185
with enable lines, 186

truth table, 184
Majority function, 91

abbreviated, 230
block diagram of, 52
design of, 229, 234, 236
K-map representation of, 138, 140
switch realization of, 53
truth table, 52, 230, 231

MAR, see Memory address register
Master-slave flip-flop, 274, 275

circuit design, 277
construction of, 277
logic symbol of, 284
timing diagrams of, 277

Maxterm, definition of, 92
MBR, see Memory buffer register
MC, see Memory cell
Mealy machine, 297, 305, 323, 328
Mealy model, 323, 330
Mealy state transitions, 330
Measurements, common units of, 11
Medium-scale integration (MSI) chip, 127,

128
Memory

address bus between CPU and, 369
address register (MAR), 394, 405
buffer register (MBR), 394, 405, 428
cell (MC), 376
design of, 378, 379, 381
output, access to, 375

chip select of, 376
communication between CPU and, 378
composition, 366
contents, addressing mode, 409
data bus used to communication
between CPU and, 372
definition of, 393
element(s),
see also Registers, counters, and
memory elements characteristic
equations of, 308
reduced state table, 339
sequential circuits, 273
SR latch representing, 258
types, changing of, 319

feedback loops and, 256
instructions, 425
internal design of, 374

INDEX 471

labels, 404
location, 367, 396
read/write, 368
reference instructions, 426, 433
writing to, 368

Metal oxide semiconductor (MOS)
symbolic representation, 77
transistor, schematic of, 75

Microoperation(s), 418, 433
CPU, 436
table of, 437

Minimal cover
algebraic products and, 164
formation, 164
procedure, 163
selection of, 160
table of prime implicants used to find,
163

Minimal function
algebraic representation of, 151
definition of, 151

Minimization
algebraic method of, 51
K-map method of, 317

Minterm(s), 89, 90
adjacent, 158
combining of, 165
logically adjacent, 134
outputs, decoder, 214
subcube, 143

Minuend, 190
Model(s)

fault, 115
Mealy, 323
Moore, 323
sequential circuits block diagram, 287,
288

Moore machine, 305, 323
conversion from Mealy to, 330
state diagram, 328, 329, 331

Moore model, 323
MOS, see Metal oxide semiconductor
Most-significant bit (MSB), 6, 23, 185
Most-significant digit (MSD), 6
MSB, see Most-significant bit
MSD, see Most-significant digit
MSI chip, see Medium-scale integration

chip

Multiple output multiplexers, 202
Multiplexer(s), 200, 201, 225

algebraic equation of, 226
block diagram representation of, 204
circuit design of, 226, 227
data bus connections using, 372
design, 203, 204, 226
Boolean functions using multiplexers,
228
crossbar switch using, 232
larger multiplexers from smaller ones,
227, 228
majority function using, 229
XOR functions from, 229

dual, 203, 204
multiple output, 202
representation, 202
truth table, 201

Multiplier circuits, 198, 199, 200
MultiSim, 113, 116

N
NAND

CMOS design, 106
function, 101
gates, 123
design, 107, 125
logically complete, 105

generation of AND from, 105
generation of NOT from, 105

Negative numbers, representation of, 22
diminished radix complement, 23
radix complement, 23
signed magnitude, 23

NOR
function, 101
gate(s)
design, 108
logically complete, 105

generation of NOT from, 106
generation of OR from, 106

Number(s)
binary
complement of, 21, 22
conversion of to hexadecimal, 8
conversion of to octal, 6, 7, 8

conversions, important fact about, 14

472 DIGITAL DESIGN AND COMPUTER ORGANIZATION

decimal
binary number representation of, 13
fixed point, 14

floating-point, 30, 32, 33
negative, 22, 23
real, 30, 32
system, positional, 3

Numbers in different bases, 1–36
binary arithmetic, 15–20
addition, 15–17
multiplication, 19–20
subtraction, 17–19

coding, 2–3
coding and binary codes, 25–29
BCD code, 26–27
character codes, 29
Excess-m code, 27–28
Gray code, 28

conversion of decimal numbers to
equivalent numbers, 11–14
fractional part, 13–14
integer part, 11–13

digital and analog data, 2
exercises, 35–36
floating-point numbers, 30–33
binary representation of floating-
point, 30–32
normalized and biased floating-point
representation, 32–33

octal and hexadecimal bases, 6–8
operands types and range, 8–11
data types, 9
finite range, 9–11

positional number system, 3–6
numbers with radix point, 5–6
numbers without radix point, 4–5

radix and diminished radix
complements, 20–22
representation of negative numbers,
22–25
range of numbers, 24–25
three representations, 23–24

O
Octal bases, 6
Ohm’s law, 60, 61, 62, 65
Ones catching property, 279

Opcode
field, 407
IR, 444
value, 433

Operands, 394
arithmetic logic unit, 203
interpretation of, 193
test of overflow or underflow and, 196
types, 8

OR
array, 234, 245
Boolean operator, 419
gate(s)
four-input, 59
levels of, 234
majority function design using, 217

logical, 44
operations, bit-wise, 205

OR-AND-Invert design, 111
Oscillation, 277

P
PAL, see Programmable array logic
Parallel registers, 346, 347
Partition

example of, 332
procedure, 338
refinement of, 333

Patches, types of, 264
Pentium processor, 129
Perfect induction, 44, 45
Pin-out diagram, example of, 127
PLA, see Programmable logic array
Plate capacitor, 72
PLDs, see Programmable logic devices
Positional number system, 3
Prime implicant(s)

algebraic representations, 150, 172
decimal procedure for identifying, 166
equal, 163
essential, 149
product associated with, 150
Quine-McCluskey method and, 157
reduced table of, 164
table(s), 159, 163
formation of, 169
multiple-output, 170, 171

INDEX 473

tabular method and construction of, 161
Priority encoders, 224, 226
Product

number of variables in, 150
terms, generation of, 168

Product of sum
form, 96
minimization, 154
representation, 100

Program counter, 409
Programmable array logic (PAL), 234

AND array, 245
circuit
design of 1-bit adder using, 244
example of, 243

design, programming table of, 245
devices, 243
OR array connections, 245

Programmable devices, concept of, 250–
251

Programmable logic array (PLA), 233,
234, 251, 252
design, 238, 242
programming table, 240, 241
reconstructed, 237
schematic of, 235
tabular description, 239
truth table, 242

Programmable logic devices (PLDs), 213–
254,
see also Arithmetic logic circuits and
programmable logic devices
decoders, 213–222
binary decoders, 214–217
building larger decoders from smaller
ones, 220–222
function design using decoders, 217–
220

demultiplexers, 231–233
diodes and programmable logic
devices, 247–252
diode design of programmable logic
arrays, 251–252
diodes, 248–249
programmable logic devices, 250–251

encoders, 222–225
binary encoders, 223–224
priority encoders, 224–225

exercises, 253–254
multiplexers, 225–231
design of Boolean functions using
multiplexers, 228–231
design and equations, 226–227
design of larger multiplexers from
smaller ones, 227–228

programmable array logic devices,
243–245
programmable logic arrays, 233–242
AND-OR-NOT design, 241–242
programmable logic arrays, 234–239
programmable logic devices, 233–234
tabular description, 239–241

read-only memory, 245–247
Programming table

full adder, 239
PAL design, 245

Proof, method of, 43

Q
Quine-McCluskey algorithmic procedure,

156, 157

R
Radix

complement, 23
arithmetic circuits using, 190
signed number arithmetic in, 193

point
common locations of, 10
numbers with, 5
numbers without, 4

representation, diminished, 20
RAM, see Random access memory
Random access memory (RAM), 345, 366

building of, 369, 370, 371
chips, 369, 371
design
data buses in, 376
single data bus and, 378

dynamic, 374
static, 374, 375

RC circuits, see Resistive and capacitive
circuits

Read-only memory (ROM), 234, 245, 368
block diagram, 246

474 DIGITAL DESIGN AND COMPUTER ORGANIZATION

circuits, 245
gate representation, 246

Read/write memory (RWM), 368
Real number, representation of, 30, 32
Reduced state table, 338
Refinement procedure, 335–336
Register(s)

-counter circuits, 361
definition of, 346
discuss, 345
function description, 365
general-purpose, 345, 361, 365
indirect addressing, 409
memory address, 394
memory buffer, 394
parallel, 346, 347
-reference instructions, 435, 436
shift, 348, 349
size of, 11

Registers, counters, and memory elements,
345–389
asynchronous, ring, and Johnson
counters, 357–361
asynchronous counters, 357–358
Johnson counters, 360–361
ring counters, 359–360

building larger RAM from smaller
RAM, 368–371
counters, 351–357
binary counters with decreasing
counts, 356–357
mod-M counters for general M, 353–
356
mod-2n synchronous counters, 351–
353

data bus connections, 372–374
connections using multiplexers, 372–
373
connections using tristate gates, 374

exercises, 387–389
general-purpose register-counter
circuits, 361–366
internal design of memory, 374–380
gate design of single memory cell, 375
RAM design with single data bus,
378–380
RAM design with two data buses,
376–377

memory block diagram, 366–368
register files, 380–385
registers, 346–350
parallel registers, 346–348
shift registers, 348–350

Register file(s), 345, 380
connections, 385
design of, 383
realization, 384

Register transfer, 418
instructions, 396
language statements
design of, 420
realization of, 421

statements, 419, 424
Resistance, 59

example of, 60
measurement of, 60
voltage-controlled, 77

Resistive and capacitive (RC) circuits, 71,
73

Resistors, series connection of, 64
Ring counters, 357, 358, 359, 360
Ripple carry adder, 177
ROM, see Read-only memory
RWM, see Read/write memory

S

Schematic capture, design entry through,
119

Semiconductors, 60
Sequential circuits, flip-flops and analysis

of, 255–303
analysis of sequential circuits, 285–299
alternative representations of state
tables, 298–299
characteristic equations, 288–290
characteristic or state table
construction, 291
sequential circuits block diagram
model, 287–288
state diagrams, 291–294
timing diagrams, 294–298

behavioral description, 260–264
characteristic equations, 261
characteristics table, 260–261

INDEX 475

state diagrams, 262
timing diagrams, 263–264

block diagrams and timing constraints,
283–285
edge-triggered flip-flops, 278–283
asynchronous preset, 279–281
clock makes transition from 0 to 1,
282–283
clock makes transition from 1 to 0,
281
clock value equal to 1, 281
clock value is 0, 281–282

exercises, 301–303
flip-flops, 273–277
asynchronous and synchronous
circuits, 273–275
master-slave flip-flops, 275–277

gated latches, 270–273
glitches and ones-catching, 277–278
latches, 256–260
feedback loops, 256–257
SR latches, 257–260

latches gate design, 266–270
D latch design, 266–267
JK latch, 267–269
Hatch, 269–270

other primitive latches, 264–266
characteristic equations, 266
characteristic tables of three latches,
265–266
state diagrams, 266

Sequential circuits, state minimization and
design of, 305–343
block diagrams and design from
excitation equations, 306–308
design given characteristic equations,
308–313
D flip-flops, 309–310
JK flip-flops, 311–313

exercises, 341–343
general design procedure of sequential
circuits, 313–319
machine equivalence and state
assignments, 319–323
machine and state equivalence, 331–
334
Mealy state diagrams, 323–328
Moore machines, 328–331

state reduction and minimal state
diagrams, 334–339

Serial adder, 327
Seven-segment display, schematic of, 152
Shift registers, 348, 349
Signed arithmetic

hardware implementation of, 198
overflow, 195
underflow, 195, 196

Simulation, purpose of, 125
SKZ instruction, 435
Small-scale integration (SSI) chip, 127,

128
SRAM, see Static RAM
SR flip-flops, 323
SR latch(es), 257

behavioral description, 260
characteristic equations, 261
characteristic table of, 260, 265, 270
circuit, 258, 271
design of JK latch from, 268
example block diagram, 263
inputs, 264
master slave, 276
partial state diagram of, 262
state diagrams, 262
table, 268
timing diagrams, 263, 264, 273

SSI chip, see Small-scale integration chip
State(s)

assignments, 315, 319, 322
minimization, 314
reduction, 334
transitions, Mealy, 330

State diagram(s)
alternative, 327
construction, 292, 324, 325
latch, 266
Mealy, 323, 328
minimal, 334
Moore machine, 328, 329, 331
partial, 293
SR latch, 262

State equivalence, 337, 339
definition of, 337
machines and, 331

State table(s)
alternative representations of, 299

476 DIGITAL DESIGN AND COMPUTER ORGANIZATION

format, 298
vending machine example, 298

Static RAM (SRAM), 374, 375
Store accumulator, 395, 400
Subcube(s)

algebraic representation of, 140, 141,
225
binary representation, 161
formations, 137, 140, 141
product terms and, 147
sample, 142
size of, 147

Sub-expression, definition of, 41
Subtraction

macro, 410
unsigned, 190

Subtrahend, 190
Sum of product form, 95
Switch(es)

assigning labels to, 126
crossbar
design of, 231
example of, 232

multiplexer representation, 202
representation, 79

Switching
algebra, definition of, 38
elements, transistors as, 75

Synchronous circuits, 273
Synthesis process, 123

T
Technology mapping, 99
T flip-flop(s), 323

construction, 362
design of, 362
excitation table, 321, 351

Timing diagram(s)
advantage of, 294
master-slave flip-flop, 276, 277
one catching property, 279
properties of, 294
ring counter, 358, 360
sequential circuit, 295
SR latch, 263, 264

T latch, 267, 269, 270
Transistor(s), 56, 75

design, see Boolean algebra, and gate
and transister design
metal oxide semiconductor, 75
pMOS, 78
-transistor logic (TTL), 127

Transition diagrams, 291
Tristate gates

connecting m units to bus using, 377
data bus connections using, 374

Truth table(s), 41, 42, 43
adjacency determination from, 135
binary decoder, 217
Boolean function and, 89
canonical sum representation from, 92
complement of function and, 94
decoder, 215, 221
design entry through, 117
full adder, 178
full subtractor, 189
half adder, 178, 178
half subtractor, 188
how to read, 136
magnitude comparator, 184
majority function, 52, 230, 231
modified voting, 54
multiplexer, 201
PLA, 242
reconstructed, majority function, 136
word problem and, 114
XOR function, 102

TTL, see Transistor-transistor logic

U
Unsigned arithmetic, hardware

implementation of, 192
Unsigned integers, 22, 191

V
Variable operations, 101
Vending machine

state diagram, 324
state tables, 298

Very-large-scale integration (VLSI) chip,
127, 129

V flip-flop, 444
VLSI chip, see Very-large-scale integration

chip

INDEX 477

Voltage(s)
difference, 61
division, 59, 61, 63
circuit, 63
equations, 64
illustration of use of, 65

drop in, 62
mapping of to Boolean constants, 77
sources, 59, 74

W
Weighted code, 26
Windows, 392, 426
Wire connections notation, 57
Word capacities, RAM-chip, 369

X
XOR (Exclusive-OR)

function, 102, 228, 229
gate(s), 323
carry generator and, 182
design, 107
NOR-NOR design of, 110
unsigned arithmetic and, 192

NAND-NAND circuit of, 109

478 DIGITAL DESIGN AND COMPUTER ORGANIZATION

	Book Cover
	Half-Title
	Title
	Copyright
	Dedication
	Acknowledgment
	Preface
	Author
	Table of Contents
	1 Numbers in Different Bases
	1.11 Floating-Point Numbers
	Example 1.11.1
	1.11.1 Binary Representation of Floating-Point
	Example 1.11.2
	Example 1.11.3
	1.11.2 Normalized and Biased Floating-Point Representation
	Example 1.11.4
	Example 1.11.5

	Chapter 1 Exercises
	1.10 Coding and Binary Codes
	1.10.1 BCD Code
	Example 1.10.1
	Example 1.10.2
	1.10.2 The Excess-m Code
	1.10.3 Gray Code
	1.10.4 Character Codes

	1.9 Representation of Negative Numbers
	1.9.1 The Three Representations
	Example 1.9.1
	Example 1.9.2
	1.9.2 Range of the Numbers

	1.8 Radix and Diminished Radix Complements
	Example 1.8.1
	Example 1.8.2
	Example 1.8.3
	Example 1.8.4
	Example 1.8.5

	1.7 Binary Arithmetic
	1.7.1 Addition
	Example 1.7.1
	Example 1.7.2
	Example 1.7.3
	1.7.2 Subtraction
	Example 1.7.4
	Example 1.7.5
	Example 1.7.6
	Example 1.7.7
	1.7.3 Multiplication
	Example 1.7.8

	1.6.2 Converting the Fractional Part
	Example 1.6.3
	Example 1.6.4
	Example 1.6.5
	Example 1.6.6

	1.6 Conversion of Decimal Numbers to Equivalent Numbers in Arbitrary Bases
	1.6.1 Conversion of Integer Part
	Example 1.6.1
	Example 1.6.2

	1.5 Operands Types and Their Range
	1.5.1 Data Types
	1.5.2 Finite Range

	1.4 Octal and Hexadecimal Bases
	Example 1.4.1
	Example 1.4.2
	Example 1.4.3

	1.3 Positional Number System
	1.3.1 Numbers without Radix Point
	Example 1.3.1
	1.3.2 Numbers with Radix Point
	Example 1.3.2

	1.2 Coding
	1.1 Digital and Analog Data

	2 Boolean Algebra, and Gate and Transistor Design
	2.1 Boolean or Switching Algebra
	2.1.1 Definitions
	2.1.2 Boolean Expressions
	Example 2.1.1
	2.1.3 Truth Tables
	Example 2.1.2

	2.2 Properties of Boolean Algebra
	2.2.1 Axioms

	2.2.2 Principle of Duality
	Example 2.2.1
	Example 2.2.2
	Example 2.2.3
	Example 2.2.4

	2.3 Simplification of Boolean Expressions
	Example 2.3.1
	Example 2.3.2
	Example 2.3.3
	Example 2.3.4
	Example 2.3.5
	Example 2.3.6

	2.4 Boolean Function
	2.4.1 Definitions
	Example 2.4.1
	2.4.2 Representations (Realization)
	2.4.3 Complement of Boolean Functions
	Example 2.4.2
	Example 2.4.3

	2.5 Circuit Analysis and Gate Design
	2.5.1 Circuit Analysis and Gate Representation
	2.5.2 Circuit Design
	Example 2.5.1
	2.5.3 Multiple Input Gates

	2.6 Electrical Circuits
	2.6.1 Voltage, Current, and Resistance
	2.6.2 Ohm’s Law
	Example 2.6.1

	2.7 Kirchhoff’s Laws and Voltage Division
	2.7.1 Voltage Difference
	2.7.2 Kirchhoff’s Voltage Law
	Example 2.7.1
	2.7.3 Voltage Division
	Example 2.7.2

	2.8 Kirchhoff’s Current Law
	Example 2.8.1
	Example 2.8.2

	2.9 RC Circuits
	2.10 Transistors and Logic Gates

	2.11 CMOS Gate Design
	2.11.1 The AND CMOS Design

	Chapter 2 Exercises

	3 Canonical Forms and Logical Completeness
	3.1 Canonical Forms of Boolean Functions
	3.1.1 Canonical Sum Form
	Example 3.1.1
	Example 3.1.2
	3.1.2 Canonical Product Form
	3.1.3 Example

	3.2 Sum of Product and Product of Sum Forms
	3.2.1 Sum of Product Form
	Example 3.2.1
	Example 3.2.2
	3.2.2 Product of Sum Form
	Example 3.2.3
	Example 3.2.4
	3.2.3 Verification of Function Equality Using Canonical Forms
	Example 3.2.5
	Example 3.2.6

	3.3 Design of Functions in Standard Forms
	3.3.1 Canonical Sum and Sum of Product Design
	3.3.2 Canonical Product and Product of Sum Representation

	3.4 Other Two Variable Functions
	3.4.1 Number of Boolean Functions over Two Variables
	3.4.1.1 The NAND Function
	3.4.1.2 The NOR Function
	3.4.1.3 The Exclusive OR Function
	3.4.1.4 The Equivalence Function

	3.5 Logical Completeness
	3.5.1 Definition and Examples
	Example 3.5.1
	Example 3.5.2
	3.5.2 The NAND and NOR Gates as Logically Complete Gates

	3.6 NAND and NOR Design of Combinational Circuits
	3.6.1 NAND Gate Design
	3.6.2 NOR Gate Design
	3.6.3 AND-OR-lnvert and OR-AND-lnvert Design

	3.7 Design Automation Tools and Levels of Abstraction
	3.7.1 Levels of Abstraction
	3.7.2 Computer-Aided Design (CAD) Tools
	3.7.2.1 Design Entry
	3.7.2.2 Synthesis
	3.7.2.3 Simulation

	3.8 Application to the Electronics Workbench (EW)
	3.8.1 The Electronics Workbench
	3.8.2 Design Entry
	3.8.2.1 Design Entry through Truth Tables
	3.8.2.2 Design Entry through Equations
	3.8.2.3 Design Entry Using Schematic Capture

	3.8.3 Synthesis
	3.8.3.1 Synthesis from Truth Table

	3.8.3.2 Synthesis from Equations
	3.8.3.3 Synthesis from Schematic Capture

	3.8.4 Simulation

	3.9 Integrated Circuits
	3.9.1 Small-Scale Integration (SSI)
	3.9.2 Medium-Scale Integration (MSI)
	3.9.3 Large-Scale Integration (LSI)
	3.9.4 Very-Large-Scale Integration (VLSI)

	Chapter 3 Exercises

	4 Minimization of Boolean Functions
	4.1 Logical Adjacencies and K-Map Construction
	4.1.1 Logical Adjacency
	Example 4.1.1
	Example 4.1.2
	Example 4.1.3
	Example 4.1.4
	4.1.2 K-Map Construction
	4.1.2.1 The Inputs to the Table

	Example 4.1.5
	4.1.2.2 How Is the Table Read?

	4.2 Subcube Formations
	4.2.1 Filling the Table Entries
	Example 4.2.1
	Example 4.2.2
	Example 4.2.3
	Example 4.2.4
	4.2.2 Subcubes and Minimization
	Example 4.2.5
	Example 4.2.6

	4.3 K-Map Minimization
	4.3.1 Subcubes and Prime Implicants
	Example 4.3.1
	Example 4.3.2
	Example 4.3.3
	Example 4.3.4
	Example 4.3.5
	Example 4.3.6
	4.3.2 K-Map Minimization
	Example 4.3.7
	4.3.2.1 Relationship to Subcubes on a K-Map
	4.3.2.2 The Minimization Process
	4.3.2.3 Essential Prime Implicants and Examples

	Example 4.3.8
	Example 4.3.8
	Example 4.3.9

	4.4 Incompletely Specified Functions
	4.5 Product of Sum Minimization
	4.6 The Quine-McCluskey or Tabular Method
	4.6.1 Building Prime Implicants
	4.6.2 Finding Minimal Cover
	4.6.3 Algorithmic Procedure of the Tabular Method
	4.6.3.1 Forming the Prime Implicants
	4.6.3.2 Minimal Cover Procedure

	4.6.4 Decimal Method of Building Prime Implicants

	4.7 Multiple-Output Function Minimization
	 Chapter 4 Exercises

	5 Arithmetic Logic Circuits and Programmable Logic Devices
	5.1 Binary Adders
	5.1.1 Iterative Circuits
	5.1.2 Half and Full Adders

	5.2 Look-Ahead Carry Generators
	5.3 Magnitude Comparators
	5.3.1 1-Bit Magnitude Comparator
	5.3.2 Boolean Equations for the Equal Output
	5.3.3 Design of the A>B Output
	5.3.4 Boolean Equations for A<B
	5.3.5 Magnitude Comparators with Enable Lines

	5.4 Binary Subtracters
	5.4.1 Half Subtracters

	5.5 Arithmetic Circuits Using Radix Complement
	5.5.1 Unsigned Addition and Subtraction
	Example 5.5.1
	Example 5.5.2
	5.5.2 Hardware Implementation of Unsigned Arithmetic
	5.5.3 Signed Number Arithmetic in Radix Complement
	5.5.3.1 An Alternative Method to Compute 2’s Complement

	Example 5.5.3
	5.5.3.2 Signed Arithmetic
	5.5.3.2.1 Case One (No Overflow or Underflow Is Possible)
	5.5.3.2.2 Case Two (Overflow Is Possible to Occur)
	5.5.3.2.3 Case Three (Underflow Is Possible to Occur)

	5.5.4 Hardware Implementation of Signed Arithmetic

	5.6 Multiplier Circuits
	5.7 Multiplexers
	5.7.1 Design of Multiple Output Multiplexers

	5.8 Design of a Simple Arithmetic Logic Unit
	5.8.1 Subtraction and the Arithmetic Unit
	5.8.2 Bit-Wise Logic Operations
	Example 5.8.1
	5.8.3 Combinational Shift Left
	5.8.4 The Design of the ALU

	Chapter 5 Exercises

	6 Programmable Logic Devices
	6.1 Decoders
	6.1.1 Binary Decoders
	6.1.2 Function Design Using Decoders
	Example 6.1.1
	Example 6.1.2
	6.1.3 Building Larger Decoders from Smaller Ones

	6.2 Encoders
	6.2.1 Binary Encoders
	6.2.2 Priority Encoders

	6.3 Multiplexers
	6.3.1 Design and Equations
	6.3.2 Design of Larger Multiplexers from Smaller Ones
	6.3.3 Design of Boolean Functions Using Multiplexers
	Example 6.3.1

	6.4 Demultiplexers
	6.5 Programmable Logic Arrays
	6.5.1 Programmable Logic Devices (PLDs)
	6.5.2 Programmable Logic Arrays
	Example 6.5.1
	Example 6.5.2
	6.5.3 Tabular Description
	Example 6.5.3
	6.5.4 AND-OR-NOT Design
	Example 6.5.4

	6.6 Programmable Array Logic Devices
	6.7 Read-Only Memory
	6.8 Diodes and Programmable Logic Devices
	6.8.1 Diodes
	6.8.2 Programmable Logic Devices
	6.8.3 Diode Design of Programmable Logic Arrays

	Chapter 6 Exercises

	7 Flip-flops and Analysis of Sequential Circuits
	7.1 Latches
	7.1.1 Feedback Loops
	7.1.2 SR Latches

	7.2 Behavioral Description
	7.2.1 Characteristic Table
	7.2.2 Characteristic Equations
	7.2.3 State Diagrams
	7.2.4 Timing Diagrams

	7.3 Other Primitive Latches
	7.3.1 Characteristic Tables of the Three Latches
	7.3.2 The Characteristic Equations
	7.3.3 The State Diagrams

	7.4 The Latches Gate Design
	7.4.1 D Latch Design
	7.4.2 The JK Latch
	7.4.3 The T Latch

	7.5 Gated Latches
	7.6 Flip-Flops
	7.6.1 Asynchronous and Synchronous Circuits
	7.6.2 Master-Slave Flip-Flops

	7.7 Glitches and Ones-Catching
	7.8 Edge-Triggered Flip-Flops
	7.8.1 Asynchronous Preset
	7.8.2 Clock Value Equal to 1
	7.8.3 Clock Makes a Transition from 1 to 0
	7.8.4 Clock Value Is 0
	7.8.5 Clock Makes Transition from 0 to 1

	7.9 Block Diagrams and Timing Constraints
	7.9.1 Timing Constraints

	7.10 Analysis of Sequential Circuits
	7.10.1 Sequential Circuits Block Diagram Model
	7.10.2 Characteristic Equations
	7.10.3 Characteristic or State Table Construction
	7.10.4 State Diagrams
	7.10.5 Timing Diagrams
	7.10.6 Alternative Representations of State Tables

	Chapter 7 Exercises

	8 Design of Sequential Circuits and State Minimization
	8.1 Block Diagrams and Design from Excitation Equations
	8.1.1 Design of Sequential Circuits Given the External Outputs and Excitation Equations
	Example 8.1.1

	8.2 Design Given the Characteristic Equations
	8.2.1 Design Using D Flip-Flops
	Example 8.2.1
	8.2.2 Design Using JK Flip-Flops
	Example 8.2.2

	8.3 General Design Procedure of Sequential Circuits
	8.3.1 Step 1
	8.3.2 Step 2
	8.3.3 Step 3
	8.3.3.1 Flip-Flop Excitation Tables

	8.3.4 Step 4
	8.3.5 Step 5

	8.4 Machine Equivalence and State Assignments
	Example 8.4.1
	Example 8.4.2
	Example 8.4.3

	8.5 Mealy State Diagrams
	Example 8.5.1
	Example 8.5.2
	Example 8.5.3
	Example 8.5.4

	8.6 Moore Machines
	Example 8.6.1
	Example 8.6.2
	8.6.1 Conversion from Mealy to Moore Machines
	Example 8.6.3
	Example 8.6.4

	8.7 Machine and State Equivalence
	Example 8.7.1
	Example 8.7.2

	8.8 State Reduction and Minimal State Diagrams
	Example 8.8.1
	Example 8.8.2
	Example 8.8.3
	8.8.1 The Reduced State Table

	Chapter 8 Exercises

	9 Registers, Counters, and Memory Elements
	9.1 Registers
	9.1.1 Parallel Registers
	9.1.2 Shift Registers

	9.2 Counters
	Mod-2n Synchronous Counters 9.2.1
	Example 9.2.1
	9.2.2 Mod-M Counters for General M
	Example 9.2.2
	Example 9.2.3
	9.2.3 Binary Counters with Decreasing Counts

	9.3 Asynchronous, Ring, and Johnson Counters
	9.3.1 Asynchronous Counters
	9.3.2 Ring Counters
	9.3.3 Johnson Counters

	9.4 General-Purpose Register-Counter Circuits
	Example 9.4.1
	Example 9.4.2
	Example 9.4.3

	9.5 Memory Block Diagram
	9.6 Building Larger RAM from Smaller RAM
	Example 9.6.1

	9.7 The Data Bus Connections
	9.7.1 Connections Using Multiplexers
	9.7.2 Connections Using Tristate Gates

	9.8 Internal Design of Memory
	9.8.1 Gate Design of a Single Memory Cell

	9.8.2 RAM Design with Two Data Buses
	9.8.3 RAM Design with a Single Data Bus

	9.9 Register Files
	Chapter 9 Exercises

	10 Instruction Set Architecture
	10.1 Instruction Set of a Computer
	10.2 Accumulator-Based Instruction Set Architecture
	10.2.1 Accumulator-Based Architecture
	10.2.2 Accumulator-Based Instructions
	10.2.2.1 Load and Store Instructions
	10.2.2.2 Arithmetic and Logic Instructions
	10.2.2.3 Register Transfer Languages

	Example 10.2.1

	10.3 General Register-Based Architecture
	10.4 Machine-Level Instructions
	Example 10.4.1
	Example 10.4.2
	Example 10.4.3
	Example 10.4.4

	10.5 The Computer Instruction Cycles
	10.6 Common Addressing Modes
	Example 10.6.1

	10.7 Macros
	Example 10.7.1
	Example 10.7.2

	Chapter 10 Exercises

	11 Design of a Simple AC-Based CPU
	11.1 Microoperation and Register Transfer Languages
	11.2 Design of RTL Statements
	Example 11.2.1
	Example 11.2.2

	11.3 Instruction Set of the Simple CPU
	11.3.1 Instruction Set Completeness
	11.3.1.1 Arithmetic Instructions
	11.3.1.2 Logic Instructions
	11.3.1.3 Branch (Jump Instructions)
	11.3.1.4 CPU and Memory Instructions

	11.3.2 The Instruction Set of the Simple CPU

	11.4 CPU Organization Data Path
	11.5 The Control Unit
	11.6 The Three Cycles
	11.7 Computer Cycles Execute Microoperations
	11.7.1 The Memory-Reference Instructions
	11.7.1.1 The LW Instruction
	11.7.1.2 The ST Instruction
	11.7.1.3 The ADD Instruction
	11.7.1.4 The AND Instruction
	11.7.1.5 The IMP Instruction
	11.7.1.6 The SKZ and the SKP Instructions

	11.7.2 Register-Reference Instructions

	11.8 Inputs and Outputs of the Combinational Part of Control Unit
	11.8.1 Input Part
	11.8.2 Output Part

	11.9 The Control Unit Output Functions
	11.10 Design of the AC-Based CPU
	Chapter 11 Exercises

	Appendix A References
	Appendix B Answers to Selected Problems
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11

	Index

