CBCS SCHEME

USN							18ME81
	L						

Eighth Semester B.E. Degree Examination, June/July 2023 Energy Engineering

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. What is pulvarised coal? What are the advantages and limitations of pulvarised coal?
 - b. Briefly explain the various steps involved in coal handling.

(10 Marks) (10 Marks)

OR

- 2 a. Explain the working principle of Benson boiler, with a neat sketch. (10 Marks)
 - b. Explain common methods used for controlling super heat temperature of the steam.

(10 Marks)

Module-2

- 3 a. Explain the working principle of pyranometer and pyrheliometer with a neat sketch.
 - b. With the help of a neat sketch, explain the extraction of solar energy from solar ponds.

(10 Marks)

OR

4 a. Explain the working of floating drum biogas plant with a neat sketch.

(10 Marks)

b. Explain the working of updraft gasifier with a neat sketch.

(10 Marks)

Module-3

5 a. With a neat sketch, explain the working of vapor dominated geothermal power plant.

(10 Marks)

b. With a neat sketch explain the harnessing tidal energy by the arrangement of double basin tidal power plant. (10 Marks)

OR

6 a. What are the properties of wind and explain the problems associated with the wind power.

b. With a neat sketch, explain Darrieus type wind machines and list the advantages and disadvantages. (10 Marks)

Module-4

- 7 a. With a neat sketch, explain medium and low head power plant (hydroelectric). (10 Marks)
 - b. The mean monthly discharge for 12 months at a particular site of river is tabulated below:

Month	Discharge in millions of	Month	Discharge in millions of
	Cubic meter/month		Cubic meter/month
May	500	October	2000
June	200	November	1500
March	1500	December	1500
July	2500	January	1000
August	3000	February	800
September	2400	March	600

18ME81

(10 Marks)

- Draw hydrograph and flow duration curve for the above and find average monthly
- Determine the power available at mean flow of water if available head is 80 m at the (ii) site and overall efficiency of generation is 80%. Take 30 days in a month.

OR

- With a diagram, explain Open cycle or Claude cycle OTEC system. (10 Marks) (10 Marks)
 - With a diagram, explain Closed or Anderson OTEC system.

Module-5

- Explain the principle of radioactive decay, half life, fusion and fission in nuclear energy. (10 Marks)
 - Explain with neat sketch of components of nuclear reactor.

- OR Explain the working principle of pressurized water reactor with a neat sketch. (10 Marks)
 - Explain the working principle of homogeneous graphite reactor and gas cooled reactor (10 Marks) (indirect circuit gas cooled reactor) with a neat sketch.

Eighth Semester B.E. Degree Examination, June/July 2023 Tribology

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the term Tribology. Discuss industrial importance of Tribology. (10 Marks)
 - b. Briefly explain the mechanism of lubrication with the help of Stribeck curve. (10 Marks)

OR

a. Define viscosity. State and explain Newton's law of viscosity, with a neat sketch. (10 Marks)
b. With a neat sketch, explain any two types viscometer. (10 Marks)

Module-2

- 3 a. Explain Bowden and Tabor's adhesion theory of friction. (10 Marks)
 - b. What are the theories of friction? Explain any two theories and test measurement. (10 Marks)

OR

- 4 a. Define Wear. Briefly explain different types of Wear. (10 Marks)
 - b. How do you classify mechanism of wear and explain any one measurement of test method?

 (10 Marks)

Module-3

- 5 a. State the assumptions of Petroff's equation. Derive Petroff's equation for coefficient of bearing of friction in a lightly loaded bearing. (10 Marks)
 - b. A full journal bearing having the following: Shaft diameter 45mm, bearing length 65mm, radial clearance ratio is 0.001, Speed 2000 rpm, radial load 800 N, Viscosity of the lubricant at effective temperature of oil 1.2×10^{-6} Reyn. Considering the bearing as lightly loaded, determine
 - i) Friction torque at the shaft ii) Coefficient of friction iii) Power loss. (10 Marks)

OR

6 State clearly the assumptions made in the derivation of Reynold's equation in 2D. Derive the equation. (20 Marks)

Module-4

- 7 a. A rectangular slider bearing with fixed shoe has the following specification:

 Bearing length = 0.0762m; Shoe width = 0.065, Slider velocity = 2.54 m/s, load on bearing = 5383 N, Minimum of oil film thickness = 1.27×10⁻⁵m, Mean viscosity of oil = 0.06803 N-s/m³, find the inclination of the surface in radians, degree and coefficient of friction.

 (10 Marks)
 - b. Derive an expression for the load carrying capacity of a plane slider bearing with fixed shoe.
 (10 Marks)

OR

8 a. Derive an expression for the load carrying capacity and rate of flow of oil through a hydrostatic step bearing. (10 Marks)

b. A hydrostatic circular thrust bearing has the following data:

Shaft diameter = 300mm, diameter of packet = 200mm, shaft speed = 100 rpm, Pressure at the pocket = 500 kN/m², Film thickness = 0.07mm, Viscosity of lubricant = 0.5 Pas.

Determine (i) Load carrying capacity (ii) Oil flow rate (iii) Power loss due to friction.

(10 Marks)

Module-5

9 a. Discuss any ten desirable properties of a good bearing material. (10 Marks)
b. Briefly discuss the common bearing materials that are used in practice. (10 Marks)

OR

a. What is Surface Engineering? Explain the scope of surface engineering.
b. Briefly explain different techniques to achieve surface modifications.
(10 Marks)
(10 Marks)

* * * * *