
Oxford University Computing Services

Programming in C

Languages l9.2/2

Typographical Conventions

Listed below are the typographical conventions used in this guide.

Names of keys on the keyboard are enclosed in angle brackets; for example <Enter> represents the
Enter (or Return) key.

Two key names enclosed in angle brackets and separated by a slash (for example, <Ctrl/Z>) indicate
that the first key should be held down while the second is pressed; both keys can then be released
together.

Where two or more keys are each enclosed in separate angle brackets (for example,
<Home><Home><Up arrow>) each key in the sequence should be pressed in turn.

Characters typed in by the user are in lower-case non-bold characters in typewriter font.

Other options and button names are shown in lower-case non-bold characters in typewriter font.

Pull-down menu options are indicated by the name of the option enclosed in square brackets, for
example [File/Print] . To select the option [Print] from the [File] menu: click with the mouse
button on the [File] menu name; move the cursor to [Print] ; when [Print] is highlighted, click
the mouse button again.

Where menu items or large sections of output are included, they are shown as they would be displayed
on the screen.

Sections marked with a ‡ are more advanced and can be omitted on a first reading.

October 1996 OUCS

Programming in C l9.2/2

Contents

1 Introduction 1
1.1 About this Userguide 1
1.2 Why use C? 1

2 An Example C Program 2

3 Variables and Expressions 3
3.1 Variable Declaration 3
3.2 Variable Types 3
3.3 Variable Names 4
3.4 Assignment 5
3.5 Arithmetic Operators 6
3.6 Increment and Decrement Operators 7
3.7 Cast Operators 7
3.8 Bitwise Operators ‡ 7
3.9 Promotions and Conversions ‡ 8
3.10 Parsing Rules ‡ 10
3.11 Symbolic Constants and The Preprocessor 11

4 Input and Output 11
4.1 Formatted Output — printf 11
4.2 Conversion Specifiers 12
4.3 Literal Constants 13
4.4 Formatted Input — scanf 15
4.5 Character I/O — getchar & putchar 16
4.6 End-of-File 17

5 Flow of Control 17
5.1 Relational and Logical Operators 17
5.2 Conditional Branching — if 18
5.3 Conditional Selection — switch 19
5.4 Iteration — while, for 20
5.5 Local Jumps — goto ‡ 21
5.6 Short Circuit Behaviour ‡ 22
5.7 Problems 22
5.8 Declaring Array Variables 23
5.9 Initialising Array Variables 24

6 Functions 25
6.1 Building Blocks of Programs 25
6.2 Return Value 25
6.3 Function Parameters 25

OUCS October 1996

6.4 Variable Function Parameters 26
6.5 Function Definition and Declaration 26
6.6 Function Prototypes 27

7 Scope, Blocks and Variables 28
7.1 Blocks and Scope 28
7.2 Variable Storage Classes ‡ 29
7.3 Declaration versus Definition 29
7.4 Initialisation of Variables ‡ 30

8 Arrays, Pointers and Strings 31
8.1 Pointers are Addresses 31
8.2 Pointers are not Integers 31
8.3 The * and & Operators 31
8.4 Declaring Pointer Variables 31
8.5 Pointers and Arrays 32
8.6 Dynamically Sized Arrays 33
8.7 The NULL Pointer and Pointer to void 34
8.8 Pointer Arithmetic 35
8.9 Strings 35

9 Files 38
9.1 File Pointers 38
9.2 Opening a File 38
9.3 Program Arguments 40
9.4 I/O Streams ‡ 41
9.5 Redirection of I/O Streams ‡ 41

10 Structures, Unions and Fields 42
10.1 Enumerated Types 42
10.2 Defining New Names for Types with typedef 43
10.3 Structures 44
10.4 Unions ‡ 45
10.5 Fields ‡ 46

11 More Advanced Topics ‡ 46
11.1 Comma Operator 46
11.2 Conditional Operator 47
11.3 Name Spaces 47
11.4 Type Qualifiers ‡ 47
11.5 Functions as Parameters 48
11.6 Preprocessor Macros 49
11.7 Assertions 50

12 Managing C programs 51
12.1 Separate Compilation 51
12.2 Conditional Compilation 52

October 1996 OUCS

12.3 Using Projects in Borland C++ 53
12.4 Unix and C 53
12.5 Header file locations 54

13 Memory Usage ‡ 54
13.1 Text Area 54
13.2 Data Area 55
13.3 The Stack 55
13.4 The Heap 56
13.5 Possible Problems 56

14 C and the IBM PC ‡ 57
14.1 Memory Organisation 57
14.2 BIOS (Basic I/O System) Interrupts 58
14.3 DOS Interrupts 61
14.4 Dynamic Link Libraries (DLLs) 64
14.5 Windows Application Programming Interface (API) 64

15 Why C? 65
15.1 Evolution of the C Language 65
15.2 C and Operating Systems (esp. Unix) 65
15.3 Comparison with Pascal And Fortran 66
15.4 Availability 66
15.5 Portability 66
15.6 Efficiency 66
15.7 Modular Programming and Libraries 67
15.8 Applications 67
15.9 Kernighan & Ritchie C vs. ANSI C 68
15.10 Criticisms of C 68

16 Other Courses of Interest 68

17 Bibliography 68

18 Exercises 69

19 Operator Precedence Table 79

OUCS October 1996

References

[1] The C Programming Language, Brian Kernighan and Dennis Ritchie, Second Edition, Prentice
Hall, 1988

[2] Writing Solid Code, Steve Maguire, Microsoft Press, 1993
[3] C Traps and Pitfalls, Andrew Koenig, Addison-Wesley, 1989
[4] The Peter Norton Programmer's Guide to the IBM PC, Peter Norton, Microsoft Press, 1985
[5] Rationale for American National Standard for Information Systems – Programming Language

– C (see Bibliography for more details).
[6] Programming with ANSI C, Brian Holmes, DP Publications, 1995
[7] Software Developers Kit, Microsoft Press
[8] Mastering C, Anthony Rudd, Wiley-Qed,1994
 OUCS Userguides, Oxford University Computing Services.
[9] c9.1/1 Further use of Unix
[10] l9.5/1 Programming in C-Exercise solutions

Original Author: Stephen Gough
Revised by: Brevan Miles

Revision History:

C.T.C April 1990 Original publication
l9.2/1 April 1994 Second edition
l9.2/2 September 1996 Third edition

© Oxford University Computing Services 1996

Although formal copyright is reserved, members of academic
institutions may republish the material in this document subject to due
acknowledgement of the source.

l9.2/2 Programming in C

October 1996 1 OUCS

1 Introduction
1.1 About this Userguide

This userguide was written to complement the OUCS course Programming in C, but
also to serve as a reference to the essential aspects of C. It aims to introduce the C
language to those already familiar with programming in another language (as covered
on Introduction to programming in Pascal or Introduction to programming in Visual
Basic courses). It will show how fundamental programming structures are
implemented using the syntax of C.

This guide and the OUCS course will teach ANSI C (see [5]), but where it differs
significantly from Kernighan and Ritchie (K&R) C, the K&R method may have been
included. It is useful to see the K&R variants, as it is possible that you will encounter
K&R code.

Exercises are included in Chapter 18, along with a list of which exercises follow each
chapter. A set of solutions to these examples can be found in the OUCS user guide l9.5
Programming in C - Exercise Solutions [10] and are available on the World Wide Web
from the URL:
http:/info.ox.ac.uk/oucs/courseware/c/

1.2 Why use C?
C (and its object oriented version, C++) is one of the most widely used third generation
programming languages. Its power and flexibility ensure it is still the leading choice for
almost all areas of application, especially in the software development environment.

Many applications are written in C or C++, including the compilers for other
programming languages. It is the language many operating systems are written in
including Unix, DOS and Windows . It continues to adapt to new uses, the latest being
Java, which is used for programming Internet applications.

C has many strengths, it is flexible and portable, it can produce fast, compact code, it
provides the programmer with objects to create and manipulate complex structures (e.g
classes in C++) and low level routines to control hardware (e.g input and output ports
and operating system interrupts). It is also one of the few languages to have an
international standard, ANSI C [5]. The background and advantages of C are covered
in more detail in Chapter 15 (see page 65).

Programming in C l9.2/2

OUCS 2 October 1996

2 An Example C Program

/* This program prints a one-line message */

#include <stdio.h>

int main()
{
printf("Hello World\n");

return 0;
}

/* This program ... */ The symbols /* and */ delimit a comment.
Comments are ignored by the compiler 1, and
are used to provide useful information for
humans that will read the program.

main() C programs consist of one or more functions.
One and only one of these functions must be
called main . The brackets following the
word main indicate that it is a function and
not a variable.

{ } braces surround the body of the function,
which consists of one or more instructions
(statements).

printf() is a library function that is used to print on
the standard output stream (usually the
screen).

"Hello World\n" is a string constant.
\n is the newline character.
; a semicolon terminates a statement.
return 0; return the value zero to the operating system.

C is case sensitive, so the names of the functions (main and printf) must be typed
in lower case as above.

With a few exceptions, any amount of white space (spaces, tabs and newlines) can be
used to make your programs more readable. There are many conventions for program
layout, just choose one that suits you, or alternatively get a program to format your
code for you (such as the indent program).

1 Actually they are converted into a space in ANSI C; they are deleted completely in
K&R C.

l9.2/2 Programming in C

October 1996 3 OUCS

3 Variables and Expressions
3.1 Variable Declaration

Variables should be declared either outside a function or at the start of a block of code,
after the opening { and before any other statements. See section 7.1 for further
details. They must be declared before use and the type must normally be specified
(exceptions are external and static declarations where the type int is implicit, see
section 7.2).

int miles, yards; /* global variables */
main()
{
float kilometres; /* local variables */

3.2 Variable Types
There are a number of ‘built-in’ data types in C. These are listed below. Where a
shorter version of the type name exists, this is given in brackets; essentially the base
type int is implicit whenever short , long , or unsigned are used.

short int (short)
unsigned short int (unsigned short)
char
unsigned char
signed char
int
unsigned int (unsigned)
long int (long)
unsigned long int (unsigned long)
float
double
long double

The range of values that can be stored in variables of these types will depend on the
compiler and computer that you are using, but on an IBM PCs and the Borland Turbo
C compiler the ranges are:

short int -128 → 127 (1 byte)
unsigned short int 0 → 255 (1 byte)
char 0 → 255 or -128 → +127 2 (1 byte)
unsigned char 0 → 255 (1 byte)
signed char -128 → 127 (1 byte)
int -32,768 → +32,767 (2 bytes)
unsigned int 0 → +65,535 (2 bytes)
long int -2,147,483,648 → +2,147,483,647 (4 bytes)

2 Depends on compiler

Programming in C l9.2/2

OUCS 4 October 1996

unsigned long int 0 → 4,294,967,295 (4 bytes)
float single precision floating point (4 bytes)
double double precision floating point (8 bytes)
long doubl e extended precision floating point (10 bytes)

The ANSI C standard states only that the number of bytes used to store a long int
is equal to or greater than the number used to store an int , and that the size of an
int is at least as big as the size of a short int . The C operator, sizeof , reports
the number of bytes used to store a variable or a type 3, and so the above can be
rewritten as:

sizeof(long int) ≥ sizeof(int) ≥ sizeof(short int)

It may be the case, for your compiler and system, that the sizes for all three are the
same.

The same holds for the three floating point types:

sizeof(long double) ≥ sizeof(double) ≥ sizeof(float)

If you have an ANSI C compiler, the actual ranges for your system can be found in the
header files limits.h for integer types and float.h for floating point types.

ANSI C has the qualifier signed which can be applied to any of the integer types
(including char). signed is the default for all the int types, but is dependent on
the compiler for char .

3.3 Variable Names
Variable and function names (or identifiers) consist of a letter followed by any
combination of letters and digits. Underscore (_) is treated as a letter and it is possible
have identifiers that begin with an underscore. However, identifiers beginning with an
underscore followed by either another underscore or an upper case letter are reserved,
and identifiers beginning with an underscore followed by a lower case letter are
reserved for file scope identifiers. Therefore, use of underscore as the first letter of an
identifier is not advisable.

Upper and lower case letters are distinct, so fred and Fred are different
identifiers. ANSI C states that the first 31 characters of an identifier are significant
except for objects with external linkage. External variables are those declared outside
of any function, all functions are external; all external objects (variables and functions)
have external linkage unless they are declared to be static (see 7.2). As external

3 sizeof can be applied to types and objects; when used with an object, brackets are
not needed.

sizeof(char) is always 1.

l9.2/2 Programming in C

October 1996 5 OUCS

names are used by the linker, which is not part of C, the limits on the number of
significant characters are much worse, only six characters and no distinction between
upper and lower case. Some linkers will be better than this, but it cannot be relied
upon. For this reason, the following is dangerous, as the names of the variables do not
differ in the first six characters.

int integer1;
int integer2;

int main()
{
}

3.4 Assignment
Assignment is the process of storing a value in a variable, for example:

miles = 26;

The variable miles is known as the Left Hand Side modifiable value, i.e. it must
be modifiable to be able to store a new value.

3.4.1 Assignment Operators

C has many assignment operators. Pascal and Fortran have one.

= assign
+= assign with add
-= assign with subtract
*= assign with multiply
/= assign with divide
%= assign with remainder
>>= assign with right shift
<<= assign with left shift
&= assign with bitwise AND (see 3.8)
^= assign with bitwise XOR
|= assign with bitwise OR

All but the first assignment operator are shorthand methods of modifying a variable or
object. For example, the following two statements are equivalent:

a = a + 17;
a += 17;

The assign with operators come into their own where the specification of the object to
be modified is long and complicated, and the chance for error in specifying it twice is
large. As an example, consider the two statements below, both of which add one to a
particular array element:

Programming in C l9.2/2

OUCS 6 October 1996

data[abs(nums[x%val])] = data[abs(nums[x%val])] + 1;

data[abs(nums[x%val])] += 1;

An expression that refers to a modifiable object must appear on the left hand side of
each assignment operator. This is often simply the name of a variable, but as we will
see later includes structure and union members, dereferenced pointers and elements of
arrays. Such expressions are called modifiable lvalues.

Assignment operators also produce expressions, thus a = b is an expression that has
the same value as the value stored in a (which is not necessarily the value of b!) and
has the same type as the type of a. This permits statements like:

a = b = c = d = e = 0;

An example of a situation where the type and value of the assignment expression is not
the same as the value and type of the right hand operand, consider the following:

int main()
{
double x = 1.23, y;
int i;

y = i = x;
printf("%f\n", y);
return 0;
}

Here the assignment expression i = x has the int value 1, the double variable
y has the value 1.0 after the assignment, not 1.23 .

3.5 Arithmetic Operators
* multiplication
/ division
% remainder after division (modulo arithmetic)
+ addition
- subtraction and unary minus

The / operator is used for two different operations: integer and floating point
division. If both operands of the divide operator are of integral (char , int and its
derivatives) type then integer division is performed. If either operand is float ,
double or long double then real division is undertaken.

int main()
{
float a;

a = 1 / 3;

l9.2/2 Programming in C

October 1996 7 OUCS

printf("%f\n", a);
return 0;
}

would print 0.000000 as integer division was performed even though a is of type
float .

3.6 Increment and Decrement Operators
Increment and decrement operators give a shorthand method of adding/subtracting 1
from an object.

++ increment
-- decrement

These operators can be prefix or postfix. An example of the different behaviour of the
prefix and postfix forms is given below, but essentially with the prefix form the
variable is changed before the value of the expression in which it appears is evaluated,
and with the postfix form the variable is modified afterwards.

b = 3;
a = b++ + 6; /* a = 9, b = 4 */

b = 3;
a = ++b + 6; /* a = 10, b = 4 */

3.7 Cast Operators
Cast operators allow the conversion of a value of one type to another.

(float) sum; converts type to float

(int) fred; converts type to int

3.8 Bitwise Operators ‡
Bitwise operators allow manipulation of the actual bits held in each byte of a variable.
Each byte consists of a sequence of 8 bits, each of which can store the value 0 or 1

Operator Operation
~ one's complement
& bitwise AND
^ bitwise XOR
| bitwise OR
<< left shift (binary multiply by 2)
>> right shift (binary divide by 2)

Programming in C l9.2/2

OUCS 8 October 1996

Examples

AND XOR OR
0 & 0 = 0 0 ^ 0 = 0 0 | 0 = 0
1 & 0 = 0 1 ^ 0 = 1 1 | 0 = 1
0 & 1 = 0 0 ^ 1 = 1 0 | 1 = 1
1 & 1 = 1 1 ^ 1 = 0 1 | 1 = 1

For example, to obtain the two separate bytes of a two byte int (int may be more
than two bytes on your system, and not all computers have eight bit bytes, so this
example is not universal):

hiByte = (i >> 8) & 0xFF;
loByte = i & 0xFF;

If i = 1011010100110111 then
i >>8 = 0000000010110101 (shift I right by 8 bits).

(i>>8) & OxFF ANDs 0000000010110101 with 0000000011111111 giving
10110101 (bits 9-16 of i)

i & 000000011111111 = 00110111 (bits 1-8 of i).
OxFF is the hexadecimal representation of 11111111 .

See [6] for more on bitwise operators.

3.9 Promotions and Conversions ‡

3.9.1 Integral Promotions

Any value of type char or short int (signed or unsigned) is converted to a
value of type int (if it can represent all the values of the original type) when it
appears in an expression. If int cannot store all the values of the original type then
unsigned int is used.

For example, assuming the following declarations:

char a, b;

then

a + b has type int
printf("%c",a); the type of the second argument is int

Operator Operand Result
~ 0010111 1101000
<< 0010111 0101110
>> 0010111 0001011

l9.2/2 Programming in C

October 1996 9 OUCS

char a, b;

a=32;
b=76;
printf(“%c”,a+b); /* prints letter l (l=108) */

However, if a function prototype (see section 6.6) exists which states that the
parameter is char then the promotion to int will not take place, e.g.

void fred(char c);

int main()
{
char a;

fred(a);
return 0;
}

The argument to fred will be of type char .

3.9.2 Arithmetic Conversions
Sometimes values within expressions are converted to another type, this is done to
preserve information. For example, it is permitted to add a double to an int , the
int value will be converted to a double before the addition takes place rather than
vice versa. For every binary operator in an expression the following rules are used:

– if either operand is long double convert the other operand to long
double

– otherwise, if either operand is double convert the other operand to double
– otherwise, if either operand is float convert the other operand to float
– otherwise perform integral promotions on both operands, and then:

– if either operand is unsigned long int convert the other to
unsigned long int

– otherwise, if one operand is long int and the other is unsigned int
then:
– if a long int can represent all values of unsigned int then

convert unsigned int operand to long int
– if a long int cannot represent all the values of unsigned int,

then convert both operands to unsigned long int
– otherwise, if either operand is long int then convert the other to long

int
– otherwise, if either operand is unsigned int then convert the other to

unsigned int
– otherwise, both operands are of type int

Programming in C l9.2/2

OUCS 10 October 1996

3.9.3 Problems
Whilst integral promotions and arithmetic conversions usually act to preserve
information it is possible to get caught out. Consider the following on a system where
the type of char is actually unsigned char .
#include <stdio.h>

int main()
{
char c = EOF;
if (c == EOF)

...

return 0;
}

On most systems EOF is a preprocessor symbolic constant with the int value -1.
On systems where negative numbers are stored using the two's complement system
(this includes the IBM PCs used in class), -1 is stored by setting every bit in the
variable to 1. When this is copied into c above, we end up with a byte of
11111111 . When the comparison is made, one operand is unsigned char , the
other is int . According to the integral promotions rule above, the unsigned char
value is converted to int ; but unfortunately as the original type was unsigned
char the byte of 1s gets converted to the int value 255 . Thus the test becomes
if (255 == -1) which, not surprisingly, fails. Had the type of char been
signed char then the problem would not have occurred, as the value -1 would be
preserved in the conversion to int . In fact, most programmers use int to store
characters anyway (except in strings).

3.10 Parsing Rules ‡
The C compiler parses a C program by splitting up the program into its constituent
words and operators. Each separate entity is called a token. The C compiler uses a
simple rule when deciding where to split the C source. The compiler bites off as large a
chunk of your program as possible which will form a legal C token. This mechanism is
called greedy lexical analysis. Possible ambiguities when using the increment
operators can be eliminated if the greedy rule is followed.

a = b+++c; /* a = (b++) + c */
a = b+ ++c; /* a = b + (++c) */

What about the following?

a = b+++++c; /* a = (b++) + (++c) */

There can be no ambiguity about this statement, the meaning given in the comment is
the only sensible one, but the greedy lexical analysis rule means that a C compiler
cannot arrive at the correct interpretation, instead it thinks the programmer meant

l9.2/2 Programming in C

October 1996 11 OUCS

a = (b++)++ + c;

which is illegal, as the increment operator can only be applied to modifiable lvalues of
integral type.

3.11 Symbolic Constants and The Preprocessor

#define LIMIT 100
#define PI 3.14159
#define NAME "Steve"

The preprocessor allows the creation of symbolic constants (and more — see section
11.6)

#define LIMIT by convention the symbol is given an upper
case identifier.

100 an int constant
3.14159 a double constant
"Steve" a string constant (again, actually char *)

The preprocessor will replace all tokens which have been #define d by their
definition, e.g.

printf("%f\n", 2 * PI * radius);

becomes

printf("%f\n", 2 * 3.14159 * radius);

but

printf("%s\n", NAMES);

does not become

printf("%s\n", "Steve"S);

4 Input and Output

4.1 Formatted Output — printf

printf("%f km per hour\n", kilometres);

In the program statement above:

"%f km per hour\n" is the control string
kilometres is the variable to be printed

Programming in C l9.2/2

OUCS 12 October 1996

%f is a conversion specifier indicating that the
type of the corresponding variable to be
printed is double

The onus is on the programmer to ensure both that the number of conversion
specifications and the number of variables following the control string are the same
(except where * is used to specify a field width or precision), and that the conversion
character is correct for the type of the parameter.

4.2 Conversion Specifiers
The format of the conversion specifier in a printf format string is

1. Mandatory % character

2. Optional flags in any order

- print at left of output field
+ print number with a sign (even if positive)
space print a space if the first character to be printed is not a sign character
0 pad with leading zeros
alternate output format, see Kernighan & Ritchie [1] or manual

3. Optional field width

The output will take up at least this width on the screen. The output will be padded
with spaces (at left if the flag - is not present, otherwise at right) if the flag 0 is
not present, otherwise padded with zeros. If the output requires more characters
than the specified field width it will not be truncated. The field width may be
specified as * in which case the next argument after the format string is used to
determine the field width.

4. Optional precision

Must be preceded by a period. The precision is the number of decimal places of a
floating point value to print, or the number of characters of a string. The precision
may be specified as * in which case the next argument after the format string is
used to determine precision.

5. Optional length modifier

h argument is to be printed as a short or unsigned short (the
argument will have been promoted to int or unsigned int
before being passed to printf , see section 3.9.1, the h modifier
converts it back!)

l argument is long or unsigned long
L argument is long double

6. Mandatory conversion character, see 4.2.1.

l9.2/2 Programming in C

October 1996 13 OUCS

4.2.1 printf Control String Conversion Characters
A table of the control characters used in printf statements is given below:

Character Form of output Expected argument type
c character int
d or i decimal integer int
x hexadecimal integer int
o octal integer int
u unsigned integer int
e scientific notation floating point double
f “normal” notation floating point double
g e or f format, whichever is shorter double
s string pointer to char
p address format (depends on system) pointer

Arguments of type char and short int get promoted to int and arguments of
type float get promoted to double when passed as parameters to any function,
therefore use int conversion characters for variables of type char and short
int, and double conversion characters for a float variable or expression.

4.2.2 Examples

Statement Output Comment
char a;
a='a';
printf("what %c
day”,a);

what a day variable printed at position of the
conversion specifier

printf("Pi=%f:",PI); Pi=3.142857: print Pi
printf("%-10f",PI); Pi=3.142857

 :
print Pi in field width of 10, left
aligned.

printf("%10f",PI); Pi=
3.142857:

print Pi in field width of 10, right
aligned.

printf(“Pi=%e:”,Pi); Pi=3.142857e
+00

print Pi in scientific notation

printf("%06.2f",PI); Pi=003.14: print Pi in field width of 6 with
2 decimal places and padded with
leading zeros

4.3 Literal Constants
We need some method of writing literal values in our C programs. The most obvious is
the ability to write integer values in decimal form (to base 10); characters, digits and
punctuation; floating point numbers with decimal places and strings. C also allows the
writing of hexadecimal and octal constants.

Programming in C l9.2/2

OUCS 14 October 1996

Constant Type
'Y' int
77 int
77L long
77U unsigned
77UL unsigned long
0.003 double
0.003F float
0.003L long double
1.0 double
0.5e-2 double
"hello" string (actually const char [] , see 8.9)
0xA32C int written in hexadecimal form (41,772)
017 int written in octal form (15)
17 int written in decimal form (17)

The suffixes used to indicate unsigned , long , unsigned long , float and
long double can be written in upper or lower case, but watch out for the fact that a
lower case l (ell) often looks like the digit 1, and so L is preferred.

double constants will be shortened to float when necessary (for example when
assigning to a float variable).

Note that the type of a character constant is int , not char . The value will be the
value in the machine's native character set (usually ASCII) corresponding to the
character specified.

Also note the difference between 2 and '2' . The first is an int constant with the
value 2, the second is the int value of the character 2 in the character set of the
computer used (on ASCII machines it is the int value 50).

4.3.1 Character Escape Sequences
There are several character escape sequences which can be used in place of a character
constant or within a string. They are:

Escape sequence Meaning
\a alert (bell)
\b backspace
\f formfeed
\n newline
\r carriage return
\t tab
\v vertical tab
\\ backslash
\? question mark
\' quote
\" double quote
\ooo character specified as an octal number
\xhh character specified in hexadecimal

l9.2/2 Programming in C

October 1996 15 OUCS

4.4 Formatted Input — scanf
scanf is used to interpret characters input to the computer and to store the
interpretation in the specified variable(s).

scanf("%d", &x); read a decimal integer from the keyboard and
store the value in the memory address of the
variable x

The & character is vital with arguments that are not pointers. (See section 8).

4.4.1 scanf Control String Conversion Characters
scanf uses the same conversion characters as printf .

The arguments to scanf must be pointers (addresses), hence the need for the &
character above.

Character Form of output Expected argument
type

c character pointer to char
d decimal integer pointer to int
x hexadecimal integer pointer to int
o octal integer pointer to int
u unsigned integer pointer to int
i integer pointer to int
e floating point number pointer to float
f floating point number pointer to float
g floating point number pointer to float
s string pointer to char
p address format, depends on system pointer to void

The conversion characters e, f and g have exactly the same effect, they read a
floating point number which can be written with or without an exponent.

When reading integers using the i conversion character, the data entered may be
preceded by 0 or 0x to indicate that the data is in octal (base 8) or hexadecimal (base
16).

The d, x, o, u or i conversion characters should be preceded by l if the argument
is a pointer to a long rather than an a pointer to an int , or by h of the argument is
a pointer to short int . The e, f, or g conversion characters should be preceded by
l if the argument is pointer to double rather than pointer to float , or L for
pointer to long double .

Maximum field widths can be specified between the % and the conversion character.
For example, the following call to scanf will read no more than 50 characters into
the string variable str .

Programming in C l9.2/2

OUCS 16 October 1996

scanf("%50s",str);

A * between the % and the conversion character indicates that the field should be
skipped.

Spaces and tabs in the format string are ignored. scanf also skips leading white
space (spaces, tabs, newlines, carriage returns, vertical tabs and formfeeds) in the
input (except when reading single characters). However a subsequent space terminates
the string.

char a[50];
scanf("%s",&a); /* Input “Where is it” */
puts(a); /* Outputs “Where” */

To read the other strings add more conversion characters or use gets() (see 0)

scanf(“%s%s%s”,&a,&b,&c);

Other characters that appear in the format string must be matched exactly in the input.
For example, the following scanf statement will pick apart a date into separate day,
month and year values.

scanf("%d/%d/%d",&day,&month,&year);

It is also possible to use a scan set when reading input, the scan set lists the only
characters that should be read (or should not be read) from the input stream for this
conversion, for example:

scanf("%[a-z]c",&c); only read lower case alphabetic characters
scanf("%[^0-9]c",&d); do not read digits

4.5 Character I/O — getchar & putchar
getchar and putchar are used for the input and output of single characters
respectively.

getchar() returns an int which is either EOF
(indicating end-of-file, see 4.6) or the next
character in the standard input stream

putchar(c) puts the character c on the standard output
stream.

l9.2/2 Programming in C

October 1996 17 OUCS

4.6 End-of-File
It is important that we are able to detect when no more data is available on the
standard input stream. If standard input has been redirected from the contents of a file
on disk, then the “end-of-file” condition is when we have read all the data stored in that
file. It is also possible for a user to indicate end-of-file when standard input is left
connected to the keyboard; though the exact mechanism varies between different
operating systems. On MS-DOS, the user should type <Ctrl/Z> , on Unix
<Ctrl/D> . To aid portability between different operating systems, C provides an end-
of-file value, which is written EOF . This value will be returned by the input routines
scanf and getchar on end-of-file. The value of EOF is defined in the header file
stdio.h , and it is necessary to include this file before referring to the constant value
EOF. This is done by adding the preprocessor directive

#include <stdio.h>

before any statement where the identifier EOF is used. Normally, however, such
include commands are given at the beginning of the program.

5 Flow of Control
5.1 Relational and Logical Operators

The following relational operators produce a true or false value. True and false, when
generated by such an expression, are represented by the int values 1 and 0
respectively. Thus the expression

1 < 10

has the int value 1. Note, however, that C treats any non-zero value as being true!

int main()
{
int c;

c = getchar(); /* read a character and assign to c */
putchar(c); /* print c on the screen */

return 0;
}

Operator Meaning Precedence
> greater than 2
>= greater than OR equal 2
< less than 2
<= less than OR equal 2
== equal 1
!= not equal 1

Programming in C l9.2/2

OUCS 18 October 1996

Operators with higher precedence number get evaluated first (a complete list of C
operators and their relative precedence is given in section 19).

The following logical operators are used to combine logical values.

&& AND
|| OR
! NOT

5.2 Conditional Branching — if
In all of the following examples statement can be replaced by a compound
statement (or block) which consists of several statements enclosed within braces.

if (expression) /* if expression is true */
statement1; /* do statement1 */

else /* otherwise */
statement2; /* do statement2 */

The else part of the statement is optional. Note (especially Pascal programmers)
that the semicolon terminating the first statement is required, even if the else part is
present.

The whole construct above can be treated as a single statement in places where a
statement is expected, in particular an if-else statement can appear nested inside
another if-else statement. When nesting statements in this way, it should be noted
that an else always matches with the nearest unmatched if. Thus, in the example
below, statement2 will be executed only when a < b and c ≥ d.

if (a < b)
if (c < d)

statement1;
else

statement2;

If it is required to match an else with an earlier if than the nearest, then braces
are required. For example:

if (a < b)
{
if (c < d)

statement1;
}

else
statement2;

statement2 is now executed when a ≥ b.

l9.2/2 Programming in C

October 1996 19 OUCS

5.3 Conditional Selection — switch

switch (expression)
{
case value : statement; statement; ...
case value : statement; statement; ...
.
.
default : statement; statement; ...
}

switch is a mechanism for jumping into a series of statements, the exact starting
point depending on the value of the expression. In the example below, for example, if
the value 3 is entered, then the program will print three two one something
else!

int main()
{
int i;

printf("Enter an integer: ");
scanf("%d",&i);

switch(i)
{
case 4: printf("four ");
case 3: printf("three ");
case 2: printf("two ");
case 1: printf("one ");
default: printf("something else!");
}

return 0;
}

This may not be what was intended. This process of executing statements in
subsequent case clauses is called fall through. To prevent fall through, break
statements can be used, which cause an immediate exit from the switch statement. In
the example above, replacing

case 4: printf("four ");

with

case 4: printf("four "); break;

and adding break statements to the statements for the other labels, will result in a
program that prints only one string depending on the value of the integer input by the
user.

The values listed in the case part of the switch statement must be constant integer
values; integer expressions can be used as long as the value can be determined at
compile time.

Programming in C l9.2/2

OUCS 20 October 1996

The default label is optional, but if it is present acts as a catch all clause.

The labels can occur in any order; there is no need to have the default label last, for
example (but it usually reads better if it is!).

5.4 Iteration — while, for

while (expression) /* while expression is true do*/
statement; /* statement
*/

do /* do */
statement; /* statement */

while (expression); /* while expression is true
*/

for (expr1; expr2; expr3)
 statement;

expr1; /* equivalent (almost) to above */
while (expr2) /* for loop */

{
statement;
expr3;
}

The difference between the while and the do-while loops is the location of the
test. With a while loop the test is made before the statement that forms the body of
the loop is executed; it is possible that the statement is never executed. With the do-
while loop, the statement will always be executed at least once; the value of the
expression then determines if the statement is executed again.

for loops behave (more or less) like the equivalent while loop shown in the generic
example above. The first expression is executed as a statement first, the second
expression is then tested to see if the body of the loop should be executed. The third
expression is executed at the end of every iteration of the loop.

An example for loop, to execute a statement 10 times 4, is given below:

for (i = 0; i < 10; i++)
printf("%d\n",i);

4 An alternative way of executing a statement n times is:

i = n;
while (i--)

statement;

If you use this method, make sure that n is greater than zero, or make the test
i-- > 0.

l9.2/2 Programming in C

October 1996 21 OUCS

Any of the three expressions in the for loop can be omitted. Leaving out the first or
the third expressions means that no additional action is performed either before the
loop starts or after each iteration. Omitting the second expression results in a loop that
will always execute, the value of the controlling expression is assumed to be true. If
any expression is omitted, the separating semi-colons must still be included. The
following for loop does nothing before it starts, performs no additional action after
each iteration and will continue forever!

for (;;) /* do forever */
printf("hello\n");

The following two statements can be used within any of the three loops we have seen to
add additional control over the execution of the loop. Normally, they are used to abort
a process if something has gone wrong.

break exits immediately innermost enclosing loop
continue go immediately to next iteration of loop

When continue is used in a for loop, the third expression in the control statement
is guaranteed to be executed. This behaviour is different from the “equivalent” while
loop.

5.5 Local Jumps — goto ‡
It is possible to jump to any statement within the same function using goto . A label
is used to mark the destination of the jump. goto is rarely, if ever, needed, as if,
switch , while and for should provide all the branching and iteration structures
needed. However, there are times when a goto simplifies the code greatly. A
frequently cited example is when something goes disastrously wrong deep within
nested loops:

void fred(void)
{
while (...)

for(...)
if (disaster) goto error;

 error:
tidy up the mess
}

But in the example above, remember that the code could be rewritten as:

void fred(void)
{
while (...)

for(...)
if (disaster)

{

Programming in C l9.2/2

OUCS 22 October 1996

tidy up the mess
return; /* and get out of here! */
}

}

5.6 Short Circuit Behaviour ‡
Whenever expressions are connected together using the logical operators && (AND)
or || (OR), only as many expressions as are needed to determine the overall logical
value will be evaluated. This is known as short-circuit behaviour. For example, if two
expressions are connected with && and the first expression is false, then it is
guaranteed that the second expression will not be evaluated. The same is true of
expressions connected with || where the first expression is true. For example:

if (b != 0 && a / b > 1)
statement;

will prevent the evaluation of a / b if b is zero.

If the programmer accidentally uses & instead of && then the short-circuit behaviour
is lost, which, in the example above may lead to a run-time division by zero error.

5.7 Problems
5.7.1 && c.f. &

Unfortunately it is very easy to forget that the logical AND operator is represented by
two ampersands, and type only one by mistake (which is the bitwise AND operator).
The problem is made worse by the fact that the net result is often the same! The root of
the problem is that the value of true (when generated by a relational or logical
operator) is 1 and false is 0, but C treats any non-zero value as being true. So, as an
example, consider the two expressions:

(a) (a > b) && (c < d)

(b) (a > b) & (c < d)

The values of the two expressions are:

a > b c < d (a) (b)

false(0) false(0) 0 0
false(0) true(1) 0 0
true(1) false(0) 0 0
true(1) true(1) 1 1

In contrast, consider:
if (fred() && jim())

l9.2/2 Programming in C

October 1996 23 OUCS

where the functions return int values. If fred returns the value 2 and jim the
value 1 (both of which are treated as being true), then the test above is true. If & is
used by mistake, then the test will be the result of a bitwise AND of 2 (10) and 1
(01), which is 0 (00) or false.

5.7.2 Assignment c.f. Comparison
a = 1; 1 is assigned to the variable a
a == 1; variable a is compared with the constant 1

It is very easy to type = by mistake instead of ==. However, the problem is
compounded by the fact that most of the time the compiler will not pick up your
mistake. Why?

(a)

while (a == 6) /* while a is equal to 6 do the */
statement; /* statement */

(b)

while (a = 6)
statement

Code (a) is probably the intended statement. What happens if you accidentally type (b)
instead. The code given in (b) is perfectly legal C. What does it do?

– 6 is assigned to a.
– the expression a = 6 is tested — it has the value 6 which is non-zero and

therefore true.
– the loop will be executed forever as a = 6 is always true.
To avoid such problems, some programmers write the constant on the left hand side of
the == operator, then if they accidentally type = instead, the compiler will produce an
error as a constant is not an lvalue. This will only work for comparison with a
constant or expression.

5.8 Declaring Array Variables
The following declaration states that x is an array of three integer values.

int x[3];

Each individual part (or element) of x is accessed by adding an index value in square
brackets after the array name, e.g.

Programming in C l9.2/2

OUCS 24 October 1996

x[0] = 74;
printf("%d\n", x[2]);

Note that the index values range from 0 to one less than the number of elements.

Arrays can have any number of dimensions; to declare a 2-D array of double :

double matrix[10][10];

5.9 Initialising Array Variables

int ndigit[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
char greeting1[] = "hello";
char greeting2[] = { 'h', 'e', 'l', 'l', 'o', '\0' };

The last two declarations show the two alternative ways of initialising an array of
characters. They are exactly equivalent, but one is somewhat easier to type!

If the number of elements of the array is not specified, then the compiler will determine
this from the initialiser. The declarations of greeting1 and greeting2 above
both declare an array of 6 characters.

The values given in a brace delimited initialiser (first and last examples above) must be
constant expressions (one whose value can be determined at the time of compilation). If
the initialiser is a single expression, the restriction does not apply.

If the number of expressions in the initialiser is less than the number of elements in the
array then the remaining elements will be initialised as though they were static objects;
that is arrays of numeric values will be initialised with zeros whatever the storage class
of the array (external, static or automatic).

When initialising multi-dimensional arrays, extra braces can be used to show the
reader how the values are to be used:

int x[3][2] = { { 1, 2 }, { 3, 4 }, { 5, 6 } };

Extra braces are needed if values are to be omitted from the initialiser:

int x[3][2] = { { 1, 2 }, { 3 }, { 5, 6 } };

In this example we have omitted the initialiser for x[1][1] ; without the extra braces
the compiler would initialise x[1][1] with 5 and would leave x[2][1] (i.e. the
last element) uninitialised.

K&R C permits initialisation of static arrays only.

l9.2/2 Programming in C

October 1996 25 OUCS

6 Functions
6.1 Building Blocks of Programs

All C programs consist of one or more functions. Functions are the building blocks of
a program. All functions are at the same level — there is no nesting. One (and only
one) function must be called main .

6.2 Return Value
All functions can return a value, including main .

Functions can return arithmetic values (int, float etc.), structures, unions, pointers
or void . If the return type is specified as being void , then no value is returned by
the function. Functions cannot return a function or an array.

For functions that will return a value, the return statement is used in conjunction
with an expression of an appropriate type. This causes immediate termination of the
function, with the value of the expression being returned to the caller. return can
also be used with functions of type void , but no return value can be specified.

6.3 Function Parameters
All functions (including main) can accept parameters.

The example below shows the old Kernighan & Ritchie C function definition format.

double minimum(x, y)
double x, y;
{
if (x < y)

return x;
else

return y;
}

ANSI C will accept this old style definition, but introduces a newer, safer, definition
format:

double minimum(double x, double y)
{
if (x < y)

return x;
else

return y;
}

In both cases the parameter list must be specified, and their types must be declared.
The parameters to the function (the expressions given in the function call) are passed
by value only.

Programming in C l9.2/2

OUCS 26 October 1996

If, in a new style definition, the parameter list contains the single word void , then the
function does not take any parameters.

It is common to call the variables specified in the function definition parameters and
the expressions given in a function call arguments. For example, in the following call
of minimum , the expressions a and b * 2 are the arguments to the function. The
values of the two expressions will be copied into the parameters x and y. Sometimes
the terms formal argument and actual argument are used instead; the formal argument
being the variable given in the function definition, the actual argument being the
expression given in the function call.

minimum(a, b*2);

6.4 Variable Function Parameters
All function parameters are passed by value. To make a function alter a variable, the
address of the variable must be passed, i.e. pass the variable by reference.(See 8)

int max(int a, int b, int *c);

int main()
{
int x = 4, y = 5, z;
max(x, y, &z); /* generate a pointer to z */
return 0;
}

int max(int a, int b, int *c)
{
if (a > b)

c = a; / *c modifies the variable */
else /* whose address was passed */

c = b; / to the function */
}

6.5 Function Definition and Declaration
A function definition is where the function name, parameters, code and return type are
specified. A function declaration is where the name and return type of a function are
given. The definition of a function includes a declaration of that same function
implicitly.

A function can be declared many times (as long as the declarations declare the function
to be of the same type) but can only be defined once. Declarations of functions are
sometimes necessary to appease the compiler, which always assumes, if the
information is not available, that all functions return int .

/* declaration of minimum() */
double minimum(double x, double y);

l9.2/2 Programming in C

October 1996 27 OUCS

int main()
{
printf("%f\n", minimum(1.23, 4.56));
return 0;
}

/* definition of minimum() */
double minimum(double x, double y)

double x, y;
{
if (x < y)

 return x;
else

 return y;
}

The problem could also be solved by placing the function definition before the call to
the function.

6.6 Function Prototypes
The ANSI C standard introduces function prototypes. An example is given below. It
also allows function definitions to be written in the same form as the new prototypes.

double minimum(double, double);
/* prototype of minimum() */

int main()
{
printf("%f\n", minimum(1.23, 4.56));
return 0;
}

double minimum(double x, double y)
/* definition of minimum() */

{
if (x < y)

 return x;
 else

 return y;
}

The use of prototypes or the new style function definition allows the compiler to check
that the parameters to a function are sensible (not necessarily the same), as well as
checking the return type of the function; but only if the definition or prototype appears
before the function call.
ANSI C draws a distinction between the following two statements. The first is a
function declaration stating that fred takes an, as yet, unspecified number of
parameters. The second is a function prototype which states that jim takes no
parameters (see also 7.3).

Programming in C l9.2/2

OUCS 28 October 1996

double fred(); /* declaration */
double jim(void); /* prototype */

6.6.1 Standard Header Files
Prototypes of the library functions are given in several standard header files. For
example, stdio.h contains prototypes for printf , scanf , putchar and
getchar . Other standard header files are:

assert.h assertions
ctype.h character class tests
float.h system limits for floating point types
limits.h system limits for integral types
math.h mathematical functions
setjmp.h non-local jumps
signal.h signals and error handling
stdarg.h variable length parameter lists
stdlib.h utility functions; number conversions, memory allocation,

exit and system , Quick Sort
 string.h string functions

time.h date and time functions

To include these standard header files in your code, use the preprocessor directive
#include and place angle brackets around the name of the file, e.g.

#include <math.h>

7 Scope, Blocks and Variables

7.1 Blocks and Scope
C is a block structured language. Blocks are delimited by { and }. Every block can
have its own local variables. Blocks can be defined wherever a C statement could be
used. No semi-colon is required after the closing brace of a block.

{
int a = 5;
printf("\n%d", a);

{
int a = 2;
printf("\n%d", a);
}

}

Reference to a variable will be to the variable of that name in the nearest enclosing
block.

l9.2/2 Programming in C

October 1996 29 OUCS

7.2 Variable Storage Classes ‡
auto The default class. Automatic variables are local to

their block. Their storage space is reclaimed on exit
from the block.

register If possible, the variable will be stored in a processor
register. May give faster access to the variable. If
register storage is not possible, then the variable will
be of automatic class. Use of the register class is not
recommended, as the compiler should be able to make
better judgement about which variables to hold in
registers, in fact injudicious use of register variables
may slow down the program.

static On exit from block, static variables are not reclaimed.
They keep their value. On re-entry to the block the
variable will have its old value.

extern Allows access to external variables. An external
variable is either a global variable or a variable
defined in another source file. External variables are
defined outside of any function. (Note: Variables
passed to a function and modified by way of a pointer
are not external variables)

static external External variables can be accessed by any function in
any source file which make up the final program.
Static external variables can only be accessed by
functions in the same file as the variable declaration.

7.3 Declaration versus Definition
Definition is the place where variable is created (allocated storage).

Declaration is a place where nature (type) of variable is stated, but no storage is
allocated.

Variables can be declared many times, but defined only once.

int v; /* definition of v */

int max(int a, int b)
{
extern int v; /* declaration of v */
....
}

Declaring a variable without defining it is more useful when a variable needs to be
accessed in more than one source file when a program is split between multiple source
files. For example:

Programming in C l9.2/2

OUCS 30 October 1996

a.c
b.c

int v; /* declaration and
 definition */

a()
{
v = 15;
}

extern int v; /* declaration
 only */

b()
{
printf("%d\n",v);
}

In fact, as variables can be declared more than once in the same source file, and to
ensure that the variable is declared identically in each source file, it is common to place
declarations of global variables in a header file which is then included in each source
file.

prog.h

extern int v;

a.c
b.c

#include "prog.h"

int v; /* definition */

a()
{
v = 15;
}

#include "prog.h"

b()
{
printf("%d\n",v);
}

7.4 Initialisation of Variables ‡
If variables are not explicitly initialised, then external and static variables are
initialised to zero; pointers (see 8) are initialised to NULL ; auto and register
variables have undefined values.

int x = 1;
char quote = '\'';
long day = 60 * 24;
int len = strlen(s);

external and static initialisation done once only
auto and register initialisation done each time block is entered

external and static variables cannot be initialised with a value that is not
known until run-time; the initialiser must be a constant expression.

l9.2/2 Programming in C

October 1996 31 OUCS

8 Arrays, Pointers and Strings

8.1 Pointers are Addresses

A pointer is really the address of something in memory.

Pointers are needed if it is required that a function change the value of an object
(though global variables could be used). For example, the scanf function takes
pointers as arguments (See 6.4).

8.2 Pointers are not Integers
It is possible to treat pointers as though they are integers since they hold actual
addresses in memory e.g 7232. printf , scanf , assignment and some of the
arithmetic operators work with pointers, but in many cases such operations should not
be used as the results will differ from one machine to another. It is not, for example,
guaranteed that a pointer will be the same size as an int . In fact, even on an IBM PC
the size of a pointer variable depends on the memory model used, and so the
assumption that it occupies two bytes is an extremely dangerous one.

8.3 The * and & Operators
& gives the address of something in memory, that is it generates a pointer to

the object
* gives what is pointed at by a pointer (called dereferencing)

For example, assuming the following declaration:

int i = 17;

Then the expression &i generates a pointer to the variable i. We can then find out
what this pointer is pointing at by applying the * operator to the newly generated
pointer; thus *&i should have the value 17.

8.4 Declaring Pointer Variables
To declare a pointer variable we must state the type of object that the pointer will point
at. To declare a pointer to an integer, we write:

int *ptr;

which says that the type of *ptr is int , that is the object that we find when
following the pointer ptr is an integer. Therefore the type of ptr is pointer to
int, or int * .

When declaring several pointers in a comma separated list, it is necessary to place a *
before the identifier of each pointer:

Programming in C l9.2/2

OUCS 32 October 1996

int *ptr1, *ptr2, *ptr3;

this declares three pointers to integers, whereas

int *ptr1, ptr2, ptr3;

declares one pointer variable and two integer variables.

When using initialisers with pointer variables, it is the variable itself that is being
initialiased (i.e the address the pointer holds) and not anything at the other end of the
pointer:

8.5 Pointers and Arrays
An array name behaves in many ways as though it is a pointer to the first element
of the array.

However, the name of an array is a constant, it is not possible to change its value,
otherwise it would be possible to lose access to the contents of the array. Also, an array
name is not an lvalue, it cannot appear on the left hand side of an assignment operator.

The following array declaration gives the following structure in memory:

int x[3] = { 23, 41, 17 };

main()
{
int i = 17; /* ordinary int variable */
int *pi = &i; /* a pointer to an integer

 initialis ed to point to i
pi now holds address of i */

pi = 25; / assign to what is pointed at
 by the pointer,

i now contains the value 25*/

printf(“%d”,*pi) /* prints the value of what is in
the address pi contains e.g 25*/

printf(“%d2,pi) /* prints the contents of pi
e.g 6582, (the address of i) */

return 0;
}

l9.2/2 Programming in C

October 1996 33 OUCS

Expression Value
x[0] 23
x[1] 41
x an address, where the data is stored
*x 23
x+1 an address, where the second element is stored
*(x+1) 41
x+2 an address, where the third element is stored
*(x+2) 17
&(x[0]) x
*&(x[0]) 23
&*(x[0]) illegal, the & and * do not simply “cancel”

[This would be a valid expression if the array was an
array of pointers!]

The operation of accessing what a pointer is pointing at via the * operator is called
dereferencing the pointer or pointer indirection.

8.6 Dynamically Sized Arrays
Pointers can be used to produce dynamically sized arrays.

Assuming the following declarations:

int x[3];
int *y = malloc(3*sizeof(int));

This gives the following structures in memory:

x 23 x[0]

41 x[1]

17 x[2]

Programming in C l9.2/2

OUCS 34 October 1996

x x[0] y → y[0]

x[1] y[1]

x[2] y[2]

The confusion is compounded by the fact that array notation can be used to access the
memory pointed to by y, thus y[0] , y[1] and y[2] access the memory allocated
with the call to malloc() .

However, on an IBM PC running MS-DOS and using the small memory model
sizeof(x) is 6 and sizeof(y) is 2.

8.7 The NULL Pointer and Pointer to void
The constant 0 when used in a pointer context (e.g. assigned to a variable of any
pointer type or compared with a pointer value) is replaced by a null pointer of the
appropriate type. Such a pointer is used to indicate that a pointer does not point
anywhere or is invalid. The preprocessor constant NULL (defined in the header file
stdio.h) can be used instead of the constant 0.

Library functions that return pointers return NULL if an error occurs. The value of a
pointer should always be checked to ensure that it is not NULL before attempting to
dereference it. Attempting to dereference a NULL pointer will give a run-time error on
some systems.
Pointer to void (void *) is ANSI C's generic pointer type (in K&R C it is
char *). Functions, such as malloc() , which return a generic pointer, return void
*. Values of type void * can be assigned to any other pointer type without a cast,
but this is potentially dangerous, as the object the pointer references may not be of the
same type as the pointer to which it is being assigned.

char *a;
void *b;
b="Hello";
a=b;
printf("%s",a);

l9.2/2 Programming in C

October 1996 35 OUCS

8.8 Pointer Arithmetic

char *p, s[100];
int *a, b[100];
double *f, g[100];

p = s; /* p points to s[0] */
a = b; /* a points to b[0] */
f = g; /* f points to g[0] */
p++; /* p points to s[1] */
a++; /* a points to b[1] */
f++; /* f points to g[1] */

Incrementing a pointer will always step the pointer the appropriate number of bytes so
that it skips onto the next object in memory, i.e. incrementing a pointer to a float
will move the pointer onto the next float .

8.9 Strings
A string is a contiguous sequence of char values terminated by the NULL character
(written as '\0'). Such character sequences can be stored in an array of char or
accessed via a pointer. If the latter approach is taken then care is needed ensure that
memory needed to store the string itself is allocated if needed.

The following shows the two alternative ways of declaring a string variable capable of
storing up to 50 characters (remember that the string needs to be terminated by '\0' ,
space must be reserved for this character). The first element of the string s is always
s[0] and s is a pointer to the first element in the array.

char s1[50];
char *s2 = malloc(50); /* s2 contains the address of
 s2[0] */

Note, however, that the call to malloc() may fail, so some run-time checking of the
value of s2 (to make sure that it is not NULL) should be included.

A common problem when using pointers to store strings is to forget to allocate any
memory to store the string itself, thus:

char *str;

allocates (on MS-DOS computers with the small memory model) two bytes of memory
in which to store the pointer to the first character of the string. No other memory is
reserved. If an attempt is made to store a string via this pointer, perhaps by reading a
string from the standard input stream:

scanf("%49s", str);

Programming in C l9.2/2

OUCS 36 October 1996

then the program may crash. The reason is that scanf will simply store characters
in consecutive memory locations starting at the current value of str . In this case str
was never initialised and therefore will contain some random value. scanf may well
be trying to write the characters read into memory where other variables are stored,
where the program itself is stored, or perhaps even where the operating system is
stored!

Whenever literal strings are used in a program, only the starting memory address of the
stored string is saved, the terminating '\0' will mark the end. Thus

printf("%s", "hello world");

will print hello world , whilst

printf("%p", "hello world");

will print the memory location where the string is stored.

It is useful to investigate the types and meanings of the various pointer operators when
applied to a string accessed through a pointer. For example:

char *s = "hello world";

declares a pointer to a char called s, and initialises it to point to the string "hello
world" . Remember that the type of *s is char , therefore the type of s is char
* or pointer to char .

meaning type

&s address of the pointer variable s pointer to pointer to char,
(char **)

s value of s, where the string
"hello world" is stored

pointer to char, (char *)

*s first character of the string ('h') char

s[0] first character of the string ('h') char

8.9.1 Library String Functions

The ANSI standard library includes the following string functions.

char *gets(a) reads a from standard input
int puts(a) prints a to standard output
char *strcpy(a, b) copies b to a, returns a
char *strcat(a, b) appends b onto a, returns a
int strlen(a) returns length of a
char *strchr(a, c) returns pointer to first occurrence of c

in a

l9.2/2 Programming in C

October 1996 37 OUCS

char *strrchr(a, c) returns pointer to last occurrence of c in
a

int strcmp(a, b) compares strings, returns < 0 if
a < b, > 0 if a > b and 0 if
a == b

a and b are strings, c is a char .

Prototypes for these functions are in the header file string.h , include this file for
proper checking of arguments to these functions.

It is the programmer's responsibility to ensure that enough memory has been allocated
to store the new strings that are formed by the functions strcpy and strcat .

strcmp performs a lexicographic comparison of the two string arguments using the
character set of the host computer, thus on an ASCII machine "Fred" is less than
"file" ('F' occurs before 'f' in the ASCII character set) and "100" is less
than "2". If you wish to perform string checking using some collating sequence other
than that given by the base character set, then use strcoll instead.

The following program illustrates use of the library string functions and some of the
problems with using string variables in C:

#include <stdio.h>
#include <string.h>

main()
{
char s1[100] = "hello"; /* initialise an array of

characters */
char s2[100] = "world";
char s3[100];
char *s4 = "HELLO"; /* initialise pointer s4

to point to the string
"HELLO" */

char *s5;
char *s6;

strcpy(s3,s1); /* copy "hello" into s3 */
strcat(s3," "); /* append " " */
strcat(s3,s2); /* append "world" */
printf("%s\n",s 3); /* should print "hello world" */
strcpy(s5,s4); /* BAD idea, copies 'h', 'e' ...

 into memory location starting
 at the current value of s5,
 s5 was never initialised and
 so contains some undefined value;
 the program may crash */

s5 = malloc(strlen(s4)+1);
/* MUCH better, set s5 to point

 enough memory to store the
 string;

 don't forget that we need to

Programming in C l9.2/2

OUCS 38 October 1996

 reserve space for the '\0' too,
 hence `strlen(s4)+1' */

strcpy(s5,s4);

s6 = strdup(s4); /* equivalent to malloc/strcpy
 combination above; but NOT ANSI
 so not always available */

gets(s5); /* read in s5 from stdin */

puts(s5); /* writes s5 to stdout */

free(s5); /* not really necessary as heap
 will be reset on program
 termination */

free(s6);
}

9 Files

9.1 File Pointers
There are many ways to use files in C. Many of them mirror the operating system use
of files.

The most straightforward use of files is via a file pointer.

FILE *fp; fp is a pointer to a file.

The type FILE , is not a basic type, instead it is defined in the header file stdio.h ,
this file must be included in your program.

9.2 Opening a File
fp = fopen(filename, mode);

The filename and mode are both strings.

The mode can be

"r" read
"w" write, overwrite file if it exists
"a" write, but append instead of overwrite
"r+" read & write, do not destroy file if it

exists
"w+" read & write, but overwrite file if it

exists
"a+" read & write, but append instead of

overwrite

l9.2/2 Programming in C

October 1996 39 OUCS

"b" may be appended to any of the above to force
the file to be opened in binary mode rather
than text mode

fp = fopen("data.dat","a"); will open the disk file data.dat for
writing, and any information written will be
appended to the file

The following useful table from the ANSI C Rationale [5] lists the different actions
and requirements of the different modes for opening a file:

r w a r+ w+ a+

file must exist before open

old file contents discarded on open

stream can be read

stream can be written

stream can be written only at end

fopen returns NULL if the file could not be opened in the mode requested. The
returned value should be checked before any attempt is made to access the file. The
following code shows how the value returned by fopen might be checked. When the
file cannot be opened a suitable error message is printed and the program halted. In
most situations this would be inappropriate, instead the user should be given the
chance of re-entering the file name.

#include <stdio.h>

int main()
{
char filename[80];
FILE *fp;

printf("File to be opened? ");
scanf("%79s", filename);

fp = fopen(filename,"r");
if (fp == NULL)

{
fprintf(stderr, "Unable to open file %s\n", filename);
return 1; /* Exit to operating system */
}

code that accesses the contents of the file

return 0;
}

Programming in C l9.2/2

OUCS 40 October 1996

Sequential file access is performed with the following library functions.

fprintf(fp, formatstring, ...) print to a file
fscanf(fp, formatstring, ...) read from a file
getc(fp) get a character from a file
putc(c, fp) put a character in a file
ungetc(c, fp) put a character back onto a file (only

one character is guaranteed to be
able to be pushed back)

fopen(filename, mode) open a file
fclose(fp) close a file

The standard header file stdio.h defines three file pointer constants, stdin ,
stdout and stderr for the standard input, output and error streams. It is
considered good practice to write error messages to the standard error stream (so that
error messages do not get redirected to files with the Unix and MS-DOS > redirection
operator, or disappear down pipes). Use the fprintf() function to do this:

fprintf(stderr,"ERROR: unable to open file %s\n", filename);

The functions fscanf() and getc() are used for sequential access to the file,
that is subsequent reads will read the data following the data just read, and eventually
you will reach the end of the file. If you want to move forwards and backwards
through the file, or jump to a specific offset from the beginning, end or current location
use the fseek() function (though the file must be opened in binary mode). The
function ftell() reports the current offset from the beginning of the file.

If you wish to mix reading and writing to the same file, each switch from reading to
writing (or vice versa) must be preceded by a call to fseek() , fsetpos() ,
rewind() or fflush() . If it is required to stay at the same position in the file then
use fflush() or fseek(fp,0L,SEEK_CUR) which will move 0 bytes from the
current position!

9.3 Program Arguments

int main(int argc, char *argv[])
{
....
}

argc number of arguments
argv array of strings (the arguments themselves)

For example, if your program is called fred and you type at the operating system
prompt:

fred tom dick harry

l9.2/2 Programming in C

October 1996 41 OUCS

then argv[0] will be the string "fred" (the program name), argv[1] will be
"tom" , argv[2] will be "dick" , argv[3] will be "harry" and argc will be
4.

Some systems will set argv[0] to be the complete path to the executable program,
and some set it to be a null string (i.e. a string containing only the '\0' character).

ANSI states that argv[argc] exists, and has the value NULL .

It is conventional to call the arguments to main , argc and argv , in fact any name
can be used, but the types must be the same as shown above. Some systems also
permit an optional third parameter, often called env , which is an array of strings
holding the current set of environment variables. As there is no integer value which
holds the number of elements of this array, the final NULL value held in the array
must be used to determine the number of entries. The following example shows how to
print both the argv and env arrays:

int main(int argc, char *argv[], char *env[])
{
int i;

for (i = 0; i < argc; i++)
printf("%s\n", argv[i]);

for (i = 0; env[i] != NULL; i++)
printf("%s\n", env[i]);

return 0;
}

9.4 I/O Streams ‡

There are three standard I/O streams available for use; standard input, standard
output and standard error. The identifiers stdin , stdout and stderr (defined in
the header file stdio.h) refer to the three different streams. Normally stdin is
connected to the keyboard and stdout & stderr are connected to the screen. All
input routines refer to the stdin stream and all output routines refer to stdout
unless otherwise directed.

9.5 Redirection of I/O Streams ‡

With many operating systems (including Unix and MS-DOS) it is possible (when
running the program) to redirect the standard streams to other devices (e.g. a printer)
or to a file instead of the screen or keyboard. With both Unix and MS-DOS redirection
is obtained with the < and > operators. For example, if your program is called fred ,
then typing

fred

Programming in C l9.2/2

OUCS 42 October 1996

at the OS command line would connect stdin to the keyboard and stdout and
stderr to the screen. If, instead, you typed (on an MS-DOS system):

fred < jim.dat > lpt1

then all input routines would read from the file jim.dat and all output routines
would write to the parallel printer. MS-DOS does not permit redirection of the stderr
stream, but Unix does; under the Bourne shell the following command would direct the
standard output stream to a printer and standard error to the file errors .

fred < jim.dat > /dev/lp 2> errors

Unix and MS-DOS also permit piping of data from one program to another, thus

fred | jim

Here the stdout stream of fred is connected to the stdin stream of jim The
same effect (though with the addition of the creation of a temporary file which would
need to be deleted later) could be achieved by typing

fred > temp.tmp
jim < temp.tmp

The exact mechanism by which pipes are constructed should not interest us, but it is
interesting to note that on a multi-tasking OS like Unix all the programs which make
up a pipe are run concurrently.

It is considered good practice to write all error messages to the stderr stream so
that any error messages stand a good chance of appearing on the screen, instead of
disappearing into an output file or “down” a pipe.

10 Structures, Unions and Fields
10.1 Enumerated Types

enum day { sun, mon, tues, weds, thur, fri, sat } d1, d2;
enum suit { spades, hearts, clubs, diamonds } s1;

enum suit s 2, s3;

The identifiers in the enumerated type list can be used in assignments or tests, for
example:

d1 = thur;
s1 = hearts;

if (d1 == sat) ...

switch (s1) {
case spades :
...

l9.2/2 Programming in C

October 1996 43 OUCS

Each value of the enumerated type list is given an int value. If no extra information
is provided by the programmer, the values start at zero and increase by one from left to
right. The value of any constant in the enumeration list can be set by the programmer;
subsequent enumeration constants will be given values starting from this value. There
is no need for the values given to the enumeration constants to be unique.

The following (non-sensical) code fragment illustrates these three points:

enum day { sun=1, mon, tues, weds, thur, fri=1, sat } d1;

the values of the enumeration constants will be:

sun 1, mon 2, tues 3, weds 4, thurs 5, fri 1, sat 2

Enumeration constants must be unique across all enumerated types currently in scope;
the following would be illegal:

enum day { sun, mon, tues, weds, thur, fri, sat } d1;
enum weekend { sat, sun } d2;

The base type of an enumerated type is int , and values of type int can be assigned
to variables of an enumerated type, although such use may be meaningless, e.g.

enum day { sun, mon, tues, weds, thur, fri, sat } d1 = 76;

Some debuggers are able to show the values of variables of enumerated type using the
identifiers used in the enumeration list, this helps with debugging.
As with structures and unions, declarations of enumerated types are local to the block
in which the declaration occurs.

10.2 Defining New Names for Types with typedef
It is possible to create new names for existing types with typedef . This is frequently
used to give shorter or less complicated names for types, making programming safer
and hopefully easier.

For example, consider declaring a function parameter which is a pointer to a function
which itself takes an array of strings as a parameter and returns a string:

typedef char *string; /* string is a pointer to a char */
typedef string strfn(string []);

/* strfn is a function that takes
 an array of strings as a
 parameter and returns a string */

typedef strfn *pstrfn; /* pstrfn is a pointer to a strfn */

void fred(pstrfn f)
{
}

Programming in C l9.2/2

OUCS 44 October 1996

Without using typedef the declaration would be somewhat more complicated:

void fred(char *(*fn)(char *[]))
{
}

typedef declarations are local to the block in which they appear.

10.3 Structures
Structures are variables that have several parts; each part of the object can have
different types. Each part of the structure is called a member of the structure.

There are two ways to declare structured variables. You can declare a type of your
own and use that type name to declare as many variables as you wish of that type, e.g.

struct date {
int day, month, year, yearday;
char monname[4];
};

struct date d;
struct date d1 = {4, 7, 1776, 186, "Jul"};

Or you can declare the variables directly:

struct date {
int day, month, year, yearday;
char monname[4];
} d, d1 = {4, 7, 1776, 186, "Jul"};

The two declarations of d1 above show that initialisation of structures takes the same
form as that of arrays.

The word following the keyword struct is the tag name of the structure, it gives the
structure definition a type name that can be used in later declarations of variables,
function parameters and return values. The tag identifier can be omitted if the type
name is not needed for subsequent declarations.

Individual members of the structure are accessed by use of the . (pronounced ‘dot’)
operator (as in Pascal). If the structure is accessed through a pointer, the -> operator
can be used.

struct date {
int day, month, year, yearday;
char monname[4];
};

struct date d1;
struct date *d2 = malloc(sizeof(struct date));

l9.2/2 Programming in C

October 1996 45 OUCS

d1.month = 7;

(*d2).year = 1993;
d2->year = 1993;

The last two statements show the alternative ways of accessing the structure through a
pointer and they are exactly equivalent. The brackets are required to dereference the
pointer d2 before accessing the structure element.

K&R compilers will not permit structures to be passed by value to a function or to be
returned from a function (pointers must be used instead in both circumstances), nor
will they allow automatic structures to be initialised. No such restrictions exist in
ANSI C.

Declarations of structures and unions obey the usual scoping rules, thus it is possible
to localise a declaration of a structure to a block.

Whole structures cannot be compared directly, instead a member by member
comparison is needed.

10.4 Unions ‡
A variable of union type may hold (at different times) objects of different types and
sizes, the objects all occupying the same area of storage.

union tag {
members;
} variables;

For example:

union value {
int intval;
float fval;
char *pval;
} uval;

The variable uval can hold three different types of object, an int , a float or a
string. It is the responsibility of the programmer to ensure that they access the variable
in the appropriate manner.

Access to the union members is via the . operator as with structures, e.g. the data in
the union above may be accessed as

uval.intval
uval.fval
uval.pval

Programming in C l9.2/2

OUCS 46 October 1996

Also, as with structures, the tag identifier can be omitted if the type is not needed for
further declarations.

When initialising a union, the initialiser must be a valid initialiser for the first member
of the union enclosed within braces. It is only possible to initialise the int member of
the example union above, e.g.

union value u = { 6 };

10.5 Fields ‡
A field is a member of a structure whose bit length is specified. This can be useful for
economic storage (not nearly as important as it used to be); but be warned that the
code required to access bit fields becomes more complicated and so the program may
have both a larger code size and also run more slowly.

struct {
unsigned is_keyword : 1;
unsigned is_extern : 1;
unsigned is_static : 1;
} flags;

Fields are also used when access to individual bits of some part of memory is required.
An example might be access to the status bits of an I/O port.

11 More Advanced Topics ‡

11.1 Comma Operator
expr1, expr2

evaluate expr1 then evaluate expr2 . The complete expression has the value of
expr2 .

The three separate code fragments below are equivalent, but increasing use of the
comma operator reduces the number of lines of code. This is not always a good thing!

sum = 0;
for (i = 1; i < n; i++)

sum += i;

for (sum = 0, i = 1; i < n; i++)
sum += i;

for (sum = 0, i = 1; i < n; sum += i, i++);

l9.2/2 Programming in C

October 1996 47 OUCS

11.2 Conditional Operator
expr1 ? expr2 : expr3

Evaluate expr1
– if non-zero (true) evaluate expr2
– if zero (false) evaluate expr3

The value of the whole expression is the value of whichever of expr2 or expr3
was evaluated.

double maximum(double a, double b)
{
return (a > b) ? a : b;
}

11.3 Name Spaces

C keeps four different name spaces for the following categories:

– objects (variables and function parameters), function names, typedef names
and enum constants

– labels (for goto)
– struct , union and enum tags
– struct and union members (actually a different name space for each struct

and union)

Identifiers from one name space will not clash with names from another. Thus, it is
possible to have a function and a structure tag with the same name.

The following declaration is legal in ANSI C.

typedef struct fred {
int fred;
} fred;

/* create a new type name fred, which is a structure whose
tag is fred, and which has an integer member called fred */

11.4 Type Qualifiers ‡
The qualifiers const and volatile can be added to the declaration of variables
(or function parameters) to indicate:

const the variable can be initialised, but cannot
subsequently be modified

volatile the variable might change its value at any time (an
example might be a status register) and therefore it
should not be optimised out of loops or expressions

Programming in C l9.2/2

OUCS 48 October 1996

const is preferred over the use of symbolic constants, as the constant object obeys
the scope rules in the same way as variables. But note that const values cannot be
used as a size specifier for an array, whilst a symbolic constant can.

When const is applied to an array, it indicates that the array elements cannot be
modified.

const double pi = 4 * atan(1.0);
const char usage[] = "USAGE: ";

With pointer objects (see section 8) there are three alternatives for using const :

– a constant pointer (Address to which it points cannot be modified)
– a pointer to a constant object (Objects value cannot be changed)
– a constant pointer to a constant object (Neither the address or the value can

change)

Examples of these are given below:
char * const p;

/* p is a constant pointer to a char */
const char *q;

/* q is a pointer to constant char */
const char * const r;

/* r is a constant pointer to constant char */

11.5 Functions as Parameters

double sum(double (*f)(int), int m, int n)

The function sum has three parameters; the first is a pointer to a function that returns
a double and takes an int as a parameter. One way of specifying such a pointer is
by using the name of a function of the appropriate type. For example,

sum(xSquared, 0, 10);

where xSquared is a function which returns double. Within the function sum , the
function that was passed in as a parameter can be called in either of the following two
ways:

#define N 10
const int M = 10;

int main()
{
int n[N]; /* OK */
int m[M]; /* illegal */
}

l9.2/2 Programming in C

October 1996 49 OUCS

(*f)(m);
f(m);

The latter is not permitted in K&R C.

11.6 Preprocessor Macros
You can use the preprocessor to create powerful macros.

#define identifier replacement

For example:

#define SQ(x) ((x) * (x))
#define MIN(x,y) (((x) < (y)) ? (x) : (y))
#define PI 3.14159

In effect you can write often used simple functions as a macro rather than a function,
the advantage is speed (there is no function call overhead) and no type definition is
necessary (it can be resused for ints, doubles, floats etc.); the disadvantages
are that if you use the macro several times, then the code will appear in your program
several times, and there can be side effects caused by not creating new copies of the
parameters (which is what happens when a function is called).

When defining a macro there cannot be any spaces between the macro name and the
parameter list; when calling a macro no such restriction holds.

Macros need not take parameters; these are sometimes called symbolic constants.

Why are so many brackets needed? The brackets are required to give the correct result
when expressions are passed to the macro. For example:

#define SQ(x) ((x) * (x))
#define sq(x) x * x

SQ(a + b) ⇒ ((a + b) * (a + b))
sq(a + b) ⇒ a + b * a + b

The second macro gives the result a + a*b + b which is obviously not what was
intended.

The outer set of parentheses are required to protect the whole expression from the
vagaries of operator precedence:

1 / SQ(a) ⇒ 1 / ((a) * (a))
1 / sq(a) ⇒ 1 / a * a = a / a (except when a is large)

Programming in C l9.2/2

OUCS 50 October 1996

The SQ macro still has one problem, which is shown by the following code:

SQ(a++) ⇒ ((a++) * (a++))

The variable a ends up being incremented twice! This is certainly a surprise to the
user of the macro. Watch out for any macro where the argument appears more than
once in the replacement text.

11.7 Assertions
Assertions provide a good method of debugging. assert is a macro that tests to see
if the value of the parameter is true or false. If the value is false, execution of the
program is halted, and a suitable error message is printed onto the standard error
stream.

Assertions are not available in K&R C.

The following example from [2] shows the use of assertions to verify that the initial
conditions for a string copy operation are correct (size_t is the ANSI C type name
for values holding size information, on the Borland Turbo C compiler, used in class, it
is a synonym for unsigned int):

#include <assert.h>

char *CopySubStr(char *strTo, char *strFrom, size_t size)
{

char *strStart = strTo;

assert(strTo != NULL && strFrom != NULL);
assert(size <= strlen(strFrom));

while (size-- > 0)
*strTo++ = *strFrom++;

*strTo = '\0';

return (strStart);
}

If either assertion failed then an error message something like the following would be
displayed:

Assertion failed: file C:\PROGRAMS\STRING.C, line 7

This may help you debug your programs more quickly. After you have finished
debugging, do not remove the assertions from your code, instead add the following
before the file assert.h is included:

#define NDEBUG

l9.2/2 Programming in C

October 1996 51 OUCS

This will turn off all the assertions, but it is then very easy to turn them back on again.
Alternatively if your compiler allows the specification of symbolic constants as a
command line parameter when compiling, add -DNDEBUG to the other compiler flags.

Do not use assertions to deal with situations that can legitimately occur during the run
of your program; for example failure to open files. The following example is not the
way to use fopen :

int main()
{
FILE *fp;
char filename[50];

scanf("%49s",filename);
fp = fopen(filename, "r");
assert(fp != NULL);

...
}

If the file cannot be opened the program will halt. It would be better to give the user
the chance to enter the filename again.

12 Managing C programs

12.1 Separate Compilation

By making use of definition and declaration of functions we can split a program into
sections in separate files. This allows us to manage large programs by breaking them
down into smaller, more easily understood sections. It also makes testing easier (when
a section is changed, you only have to retest that section and the files that depend on it)
and encourages re-use of code.

When a program is compiled it only requires the declaration of a function (the function
name, the number and type of parameters and the return type). This is enough to allow
the calling code to be checked and compiled. The statements in the function (the
definition) are only required when linking the program to form the excutable code.

However, the functions will need to be declared both in the file containing the functions
and in the calling code to allow them to be compiled separately. It is not necessary to
declare them twice though, a single header file is used for the declaration which then
can be included (using a #include <header.h> statement) in as many other files
as required. This also ensures consistency between declarations across the files.
In the following example three files are used:

Main program file main() function calling library functions
Function Definition file Code statements for the library functions

(definition)
Header file Declarations for the library functions

Programming in C l9.2/2

OUCS 52 October 1996

/* mainprog.c */
#include <funcdecl.h> /* get function declarations*/
main()

{
function1(); /* Call function1 */
function2(“Fred”); /* Call function2 */
return 0;
}

/* function.c */

/* define the functions */

int function1(void)

{
printf(“A function from a separate file\n”);
return 0;
}

void function2(char *instring)
{
printf(“Hello %s\n”,instring);
}

/* funcdecl.h */

/* Function declarations */

int function1(void);

void function2(char *instring);

12.2 Conditional Compilation
It is possible to make the compiler compile parts of a program only if certain
conditions are met. This is frequently used where the same program is to be used with
different C compilers (whether on the same computer or on a completely different
system). For example, the “standard” library function to determine if a particular
character exists in a string is strchr in Turbo C and on Unix C compilers, whilst
the equivalent function is index in Zortech C. To produce a single source file which
is compilable under all three systems, conditional compilation can be used.

#define UNIX 0 /* set to 1 the compiler used */
#define ZORTECH 0 /* all others should be */
#define TURBO 1 /* set to 0 */

#if ZORTECH
index(str, ch);

#else
strchr(str, ch)

#endif

l9.2/2 Programming in C

October 1996 53 OUCS

12.3 Using Projects in Borland C++
Projects are used in Borlands C/C++ compiler for DOS and Windows to manage
programs that consist of multiple source files. A project file tracks not only which
source and header files the project contains, but also which files depend on each other.
When a file in a project is changed and the project recompiled, the compiler can
recompile all the files that depend on that file, and thus check the effects of the change.
Files that do not depend on the edited file do not need to be recompiled and this saves
time when dealing with large projects.

The first step in creating a project is to create the source code and header files using an
editor and save them. Then create a project by selecting [Project/Open
Project] and type a filename. A project window will open. To add files to the
project select [Project/Add to Project] and select the file required. The
order in which files are added to a project is important. A file B which depends on
another file A must be added after file A in the list. Repeat this step until all the files
have been added to the project. The project file can be saved using
[Project/Save Project]. Once added to a project files can be edited by
double clicking on their entry in the project window.

To create an executable file use [Compile/Build All] while in the project
window. The project will be compiled. If a file has changed, all the files depending on
that file will be recompiled automatically. Any errors will be reported and clicking on
the message will open the appropriate file for editing. Use [Project/Close
Project] to close the project file.

12.4 Unix and C
The command to compile a C source file under Unix will depend on what C compiler
you have on your system. A typical example would be to use the cc command

cc program.c -o runfile

The -o flag allows the name of the executable file to be specified (the default is
a.out). Make the runfile executable and run it using ./runfile

Note: In order to use the math.h library under Unix the -lm flag should be used
with the cc command.

In order to manage multiple files the make command is used to process a makefile.
These work in the same way as project files in Borland C. The make facility is
included in most C compilers , even those for DOS/Windows. The make command
reads the names of files and the instructions for compiling and linking them from a file
called a makefile. (See [9] for more information] or use man make).

To use the make facility under Unix create a file containing the following
- a list of all the the object files to be linked after the run: instruction.
- a list of compile commands and the object files to link.
- a list of the source files and header files.

Save it as makefile or another filename.

Programming in C l9.2/2

OUCS 54 October 1996

For example, to compile the files used in the example in the previous section the
makefile should contain:

run: function.o mainprog.o
cc function.o mainprog.o -o run

function.c mainprog.c : funcdecl.h

Use the command make to compile the file makefile or make -f filename if
using a name other than makefile.

The executable file will be called run . (See appendix C, [6])

12.5 Header file locations
The location of the header file can be specified in the argument to the #include
statement by using brackets or quotes.

 < > Looks for header fille in default path specified by your system.
“ “ Looks in location specified in the quotes
Examples
“funcdecl.h” Current working directory
“c:\cprog\funcdecl.h” Specifies a directory in DOS or windows

13 Memory Usage ‡
When a C program is loaded into memory, the program instructions (code) and the
external variables are usually placed in different areas in memory. The part of memory
where the code exists is called the text area, and the memory where the external
variables reside is called the data area. In addition automatic variables are allocated
space on the stack, and dynamic memory is allocated on the heap.

13.1 Text Area
This is the memory used for the executable instructions of the program. This memory
is usually read-only, which means that programs cannot modify their own code.
Pointers to this region are permitted, in the form of pointers to functions, e.g.

int fred();

int main()
{
int (*funcPtr)() = fred;

/* funcPtr now points to fred() */

(*funcPtr)();
/* call the function that funcPtr points to */

return 0;
}

l9.2/2 Programming in C

October 1996 55 OUCS

The text area can sometimes be shared between several versions of the same program,
which will help save memory. With the Unix operating system, shared text is the
default for every program.

13.2 Data Area
The data area is used for external static, external and internal static variables.
External variables are those defined outside of any function. Internal variables are
those defined inside functions. Static variables are those declared to be static .
Internal variables are of class auto by default.

int fred; /* external */
static int jim; /* external static */

void fred()
{
float x, y; /* internal automatic */
static double z; /* internal static */

 }

13.3 The Stack

The stack is used for the values of actual function parameters, function return
addresses and internal automatic variables. When a function returns the stack space
used is marked as being free, but is not necessarily cleared, which can sometimes cause
confusion, e.g.

void fred()
{
int a;

a = 15;
}

void jim()
{
int b;

printf("%d\n", b);
}

int main()
{
fred();
jim();
return 0;
}

The printf call in jim will probably print 15 as that will have been the value
left in that memory location by the internal variable a in function fred .

Programming in C l9.2/2

OUCS 56 October 1996

13.4 The Heap
The heap is used to store dynamically objects in memory during the life of the
program. It is up to the programmer to allocate storage on the heap for data, and to
relinquish that space when it is no longer required. Space allocated on the heap remains
in use until the end of the program or until freed with free() .

The heap is most often used to store dynamic objects which grow (and shrink) during
the life of the program, such as linked lists and binary trees.

The library functions malloc() , calloc() and free() are used to allocate
space on the heap and to free it. calloc() fills the allocated memory space with
zeros, malloc() leaves it uninitialised.

A common problem with the heap is to allocate space but then to lose the pointer which
gives access to that part of memory.

void fred()
{
char *ptr;

ptr = malloc(100);
/* allocate enough room store 100 chars */

scanf("%s", ptr);
/* read in a string and store it on the heap */

}
/* OOPS, just lost our pointer to the data, as ptr was

stored on the stack. The string is still on the heap
but we have no means of accessing it! */

Another common mistake is to forget to free heap memory. In fact in the example
above it is quite likely that the programmer intended the string to act as a local
variable, in which case the statement

free(ptr);

should be added at the end of the function.

13.5 Possible Problems
Automatic variables are not implicitly initialised, which would involve a run-time
overhead. External and static variables are initialised by the loader before the program
starts running.

Not all compilers place constant strings in the data area, some compilers place constant
strings into the text area which would make them unmodifiable (which ANSI C says
they must be anyway).

Duplicated constant strings are probably duplicated in memory, but most compilers
give the option to merge duplicated strings.

l9.2/2 Programming in C

October 1996 57 OUCS

External and static variables cannot be initialised with values that are not known until
run time. This is because the data area is filled by the loader before the program starts
running.

void fred(char *msg)
{
int l1 = strlen(msg); /* legal */
static int l2 = strlen(msg); /* illegal */
}

Note that sizeof is an operator and can therefore be used to initialise any class of
variable.

14 C and the IBM PC ‡

14.1 Memory Organisation

The IBM PC and compatibles all use the Intel 8086 family of processor. IBM XTs use
the 8086, IBM ATs use the 80286 and PS2s use the 80386. More recent IBM PC (and
compatible) computers use the 80486 and Pentium processors. Many of the features of
the five processors are the same, but the 80286, 80386, 80486 and Pentium offer
superior memory access modes over the 8086 (but they are compatible with the 8086
when they are put into real mode).

The 8086 family (with the exception of the Pentium) all use segmented memory when
using real mode. The memory of the computer is divided into 64k (64 * 1024) byte
chunks. Each of these 64k byte blocks is called a segment. To access any given
memory location in your computer's memory you need to specify the address of the
segment and then the offset of the memory location within that given segment. The
designers of the 8086 decided that the way the segment address and offset address
should be combined to produce a physical memory address should be:

segment << 4 + offset

As the segment address and offset are specified by 16 bit integers, the resulting
physical address is 20 bits, which gives a range of addresses of exactly 1M (1024 *
1024) bytes. This is the maximum amount of memory that the 8086 can access. Some
IBM PCs do have more than 1MB of memory, but some “trick” must be employed to
make it look as though there is still only 1MB of “real” memory. One technique
employed is to swap segments of memory to/from any memory over the 1MB limit into
the real 1MB address space. An example of this is the LIM (Lotus Intel Microsoft)
expanded memory system. Pentium processors use 32 bit Memory adressing, giving up
to 4GB of address space.
Most of this is of little interest to C programmers until they start writing large
programs. By large, I mean that either the amount of C code used is large or that the
total memory size of variables used is large (or both). Then you need to start thinking
about which memory model you should employ for any given C program.

Programming in C l9.2/2

OUCS 58 October 1996

There are seven different memory models (but not all are available with some
compilers):

Model Code size Data size
tiny 64kB for code and data together
small 64kB 64kB
medium 1MB 64kB
compact 64kB 1MB
large 1MB for code and data together (using unnormalised

pointers)
huge 1MB for code and data together (using normalised

pointers)
flat 4GB for code and data together

The flat memory model (with 4GB of data space) is available on the 80386 and higher
processors (including Pentium processors). Some DOS compilers are not able to use
the flat memory model - one that can is D.J. Delorie's port of the GNU C compiler,
gcc. Windows based compilers will have an option allowing you to select the memory
model required.

The default memory model for most MS-DOS C compilers is small. This is adequate
for most programs. However, you may find if you use large arrays in your program
that the compiler or linker will warn you that your total variable storage exceeds 64kB.
You should then recompile using the compact or large memory model. Changing from
one model to another is simply done by menu options Borland C or Zortech C, or by
command line arguments with command line compilers; see your compiler's
documentation for exact details.

With the tiny, small and medium models near pointers (2 bytes) are used to address
variables. Near pointers store only the offset within the data segment. As there is only
one data segment this is all the information necessary. If the compact, large or huge
memory models are used then far pointers (4 bytes) are used to access variables. The
use of far pointers increases the size of the executable program and increases the time
taken to access any variable. Similarly, the tiny, small and compact models use near
pointers for function calls, whilst the medium, large and huge models use far pointers.
This introduces a similar overhead on function calls. Therefore, if possible, use the
small memory model.

14.2 BIOS (Basic I/O System) Interrupts
All MS-DOS computers have some basic routines stored in read-only memory in the
computer. These routines provide a mechanism for communicating with the keyboard
and screen, amongst others, and hence this part of memory is given the title BIOS
(Basic Input/Output System). The BIOS can be thought of as coming between our C
programs and the hardware of the computer itself. When we use a printf statement
in our program, the compiler produces machine code which calls a subroutine in the
BIOS to make characters appear on the computer screen. So generally we need not
trouble ourselves with trying to understand exactly how the BIOS works.

l9.2/2 Programming in C

October 1996 59 OUCS

However, the BIOS provides many routines that your C compiler may not support.
Examples include communicating with serial/parallel ports, video card control
(scrolling, writing, reading etc.), disk access, keyboard access (read key states, is a key
waiting to be read, changing auto-repeat delay etc.) and many others. Remember C is
supposed to be a portable language, and the examples given above are all specific to
the IBM PC and the 8086 processor. Some versions of C do provide access to some of
these routines via library functions.

All MS-DOS C compilers do provide a mechanism for calling BIOS routines directly
though. Armed with a good guide to the BIOS routines (like Peter Norton's
Programmers Guide To The IBM PC [4]) we can make our PC sing and dance at
lightning speed.

I give some simple examples below, but for more information I suggest you consult [4].

The program below will move the cursor to any valid screen location - any subsequent
screen output will start at this point.

#include <dos.h>

void GotoXY(int x, int y)
/* positions cursor at line y, column x */

{
union REGS regs;

regs.h.ah = 2;
regs.h.dh = y;
regs.h.dl = x;
regs.h.bh = 0;
int 6(0x10, ®s, ®s);
}

The int86 function copies the variable regs into the processor registers, executes
the BIOS interrupt (routine) specified – in this case 0x10 (the video interrupt) - and
then copies the processor registers into regs again. Modifying regs does not
change the processor registers directly.

The following program will set the attribute bits of a given file.

Programming in C l9.2/2

OUCS 60 October 1996

#include <stdio.h>
#include <dos.h>

int attrib(char *, int);

int main(int argc, char *argv[])
{
int attributes;

if (argc != 3)
{
fprintf(stderr, "USAGE: %s attributes filename\n",

argv[0]);
 fprintf(stderr, " eg: %s 33 fred.c\n", argv[0]);

fprintf(stderr, " would set archive & read-
only ");
 fprintf(stderr, " attributes of fred.c\n");

return 1;
}

if ((attributes = atoi(argv[1])) > 0xFF)
/* atoi converts an ASCII string to an int */

{
fprintf(stderr, "ERROR: invalid attributes %d\n",

attributes);
 return 2;

}

switch (attrib(argv[2],attributes))
{
case 0 : /* OK */

break;
case 2 : fprintf(stderr,"ERROR: file %s not

found\n",argv[2]);
return 3;

case 3 : fprintf(stde rr,"ERROR: path %s not
found\n",argv[2]);

return 4;
case 5 : fprintf(stderr,"ERROR: access denied on file

%s\n",
 argv[2]);

return 5;
}

return 0;
}

int attrib(char *filename,int attributes)
{
union REGS regs;

regs.x.dx = (int) filename;
regs.x.cx = attributes;
regs.h.al = 1;
regs.h.ah = 67;
int86(0x21, ®s, ®s);
return regs.x.ax;
}

l9.2/2 Programming in C

October 1996 61 OUCS

No real damage can be achieved with this program, except to hide files without
realising it (these can be discovered with a small findfirst /findnext program or
with dir/ah in DOS 5 or higher).

14.3 DOS Interrupts
The MS-DOS operating system provides a great many subroutines for disk handling,
video card manipulation, keyboard access, file operations, time & date functions and
so on. These routines are generally at a higher level than the BIOS routines, but they
are invoked in a similar manner.

One visual representation of the inter-relation of the computer, the BIOS, DOS and our
C program is to think of the whole system as an onion, viz.

The nearer the outside of the onion, the more machine independent our code should be,
the nearer the centre of the onion the more dependent our code is upon the computer we
are using. Thus we would expect printf to work satisfactorily on most machines
with a C compiler. We would hope that DOS interrupts will work in the same way on
all computers with the same version of MS-DOS, whereas BIOS interrupts will only
work correctly on computers with an IBM compatible BIOS system.

The following program shows the use of DOS interrupts to find files on a DOS disk.

C

BIOS

DOS

Hardware

Figure 1 Layering of PC system architecture

Programming in C l9.2/2

OUCS 62 October 1996

#include <stdio.h>
#include <dos.h>

char *farstrcpy(char *dst, char far *src)
{
char *str = dst;

while (*dst++ = *src++)
;

return str;
}

int main()
{
union REGS inregs, outregs;
char str[13];
char *filespec = "c:*.c";

inregs.h.ah = 78; /* 78 = find first function */
inregs.x.dx = (unsigned)filespec;

/* file specification */
inregs.x.cx = 0; /* file attributes */

int os(&inregs,&outregs);
/* call DOS "find first" interrupt */

while (outregs.x.cflag == 0)
{
printf("Found: ");

farstrcpy(str,MK_FP(_psp,128+30));
/* find first writes the matching file name 30 bytes
 into the "disk transfer area", which itself is 128
 bytes into the "program segment prefix" or PSP */

printf("%s\n", str);

inregs.h.ah = 79;
/* 79 = find next func tion */

intdos(&inregs,&outregs);
/* call DOS "find next" interrupt */

}

return 0;
}

Borland C compilers provide two library functions findfirst() and findnext()
 to find files matching a given path name and attribute, but these functions are merely
“front-ends” to the two DOS interrupts.

findfirst() initialises the search and fills in a structure giving details of the first
matching file (if there is one). Repeated calls to findnext() will find all remaining
matching files. Both functions return -1 if no match is found.

int findfirst(const char *pathname,
struct ffblk *ffblk, int attrib);

l9.2/2 Programming in C

October 1996 63 OUCS

int findnext(struct ffblk *ffblk);

The prototypes for findfirst() and findnext() are in dir.h .

The structure called ffblk is defined in dir.h to be

struct ffblk /* struct used by findfirst() and findnext()
*/

{
char ff_reserved[21]; /* reserved by DOS */
char ff_attrib; /* attribute found */
int ff_ftime; /* file time */
int ff_fdate; /* file date */
long ff_fsize; /* file size */
char ff_name; /* found file name */

 };

The file attributes are set by MS-DOS (they are nothing to do with C). They are

Bit Hex Indicates
0 0x01 read only
1 0x02 hidden
2 0x04 system
3 0x08 volume label
4 0x10 sub-directory
5 0x20 archive bit
6 0x40 unused
7 0x80 unused

Each individual attribute is set by setting a particular bit of an 8 bit byte.

The rules for finding files with specific attributes are rather strange, again this is a
“feature” of MS-DOS and has nothing to do with the functions provided by Borland or
other compiler manufacturers:

“Any combination of the hidden, system or directory attribute bits will match
normal files as well as those with the attributes given. If a volume label
attribute is used, then only the disk label will match. The archive and read-
only bits do not apply to the search.”

To find files with combinations of attributes the separate attributes must be bitwise
ORed together.

The following program will print the names of all C source files in the current
directory.

/* findfirst and findnext example */

#include <stdio.h>
#include <dir.h>

Programming in C l9.2/2

OUCS 64 October 1996

int main(void)
{
struct ffblk ffblk;
int done;

printf("Directory listing of *.*\n");
done = findfirst("*.*",&ffblk,0);
while (!done)

{
printf(" %s\n", ffblk.ff_name);
done = findnext(&ffblk);
}

return 0;
}

It is usually best to use the highest level interface available to a given operation, that is:

ANSI C
Vendor specific C function
DOS interrupt
BIOS interrupt

The higher the level, the more protected you are from specific models of the IBM PC,
specific versions of MS-DOS and specific compilers. Choose an ANSI C function if at
all possible for the most portable solution.

14.4 Dynamic Link Libraries (DLLs)
A DLL is a file containing compiled functions which can be linked into your program
at run time. This makes your program smaller but does require the correct DLLs to be
available when your program runs. The declarations for functions in the common
DLLs are usually supplied in a text file, and the appropriate declarations can be copied
into your code as required. The Windows operating system and applications written for
it make extensive use of DLL’s for common functions.

Some compilers allow you to compile your code to a DLL file. The source code
language is not important, however variables and functions that are going to be used
from outside the DLL must have the correct declarations. Consult your compiler
documentation for further details on how to do this.

14.5 Windows Application Programming Interface (API)
Windows is an operating system made up from a set of functions, messages, data
structures, data types and statements that work together to create applications that run
under the Windows operating system. The functions that make up the Windows API
can be used from within your own C programs. This involves copying the declarations
for the data and functions from the API into your own code before you can use them.
The declarations are usually held in text files. For more information see the help
system for your compiler or the Microsoft Software Developers Kit (SDK) [7].

l9.2/2 Programming in C

October 1996 65 OUCS

15 Why C?
15.1 Evolution of the C Language

The C Programming language was written by Dennis Ritchie of Bell Laboratories. The
first C compiler ran on a DEC PDP -11 computer running the Unix operating system.
Later versions of Unix were written almost entirely in C! The language was designed
by Ritchie to help him with his work on designing and implementing the Unix operating
system.

C is based on the languages BCPL and B, hence the name C. B was written in 1970 by
Ken Thompson for the first version of Unix, which ran on the PDP -7 computer. Many
of the characteristics of B and BCPL are found in C, but C differs from these two
languages in one very important respect. BCPL and B are typeless languages, the only
data type is the machine word. This data type is used directly or indirectly (via special
operators) to store all the data used in any program. In C there are several “built-in”
data types (e.g. char , int , float , double) and any number of derived data types
(arrays, structures etc.).

C is a relatively “low level” language in that C has few operators which act on
collections of data such as arrays, strings and sets. Neither does the C programming
language have any way of communicating with the outside world - there are no input or
output routines in C. These operations are provided by a collection of standard library
functions which are available with every implementation of C (i.e. C compiler).

15.2 C and Operating Systems (esp. Unix)
As mentioned above, the first C compiler was written for the Unix operating system.
The language was then used to write many of the plethora of Unix utilities. The logical
step, then, was to write the next version of Unix in C itself. This set the trend in
operating system development. Being able to write an operating system in a high level
language has obvious benefits in terms of development time, bug detection and
correction, and maintenance of the software. All versions of Unix since the
development of C have been written in C. Most versions of MS-DOS have been
written in C. Numerous other operating systems and environments have been developed
in C, even if parts are later converted to assembler. Examples include Microsoft
Windows, Atari TOS, Amiga OS etc.

Programmers writing systems programs in C have the entire computer under their
control. There is not one part of the computer memory they cannot access. All the bit
manipulation routines are available. Control over memory organisation can easily be
achieved. And yet they are writing in a high level language with all the benefits that
HLLs bring, like type checking, loops, branching, variables, arrays etc.

Goodbye assembler - hello C!

Programming in C l9.2/2

OUCS 66 October 1996

15.3 Comparison with Pascal And Fortran

Although C is not a typeless language as BCPL was, it does not have the strict type
checking that Pascal (or Algol 68) has. You will find as you write your own C
programs that the C compiler will not always inform you about any mistakes you have
made regarding type mismatches.

There is no run-time checking of array subscripts and with non-ANSI C compilers
there is no verification of function argument types as there is in Pascal and Fortran.

Many Unix systems have lint a program that is designed to check C source files
removing the “fluff”such as errors, non-portable statements and inefficient code. lint
is also available (commercially) for other operating systems. lint answers many of
the criticisms of C compilers given above, but lint is not always available.
Otherwise there are many similarities between C and Pascal & FORTRAN. Of course
there are differences: C and Pascal permit recursion whereas FORTRAN (pre
FORTRAN 90) does not; C and FORTRAN permit modular compilation whereas
standard Pascal does not (some, notably Turbo Pascal, do); C and Pascal have pointer
types whereas FORTRAN does not (FORTRAN 90 does!); parameters to C functions
cannot be passed by reference as they can with Pascal and must be with FORTRAN.

Overall C stands for speed and power. But it is not for the uninitiated. It can be a very
unforgiving language. The compiler believes that you know what you are doing; you
are in control! It's a bit like riding a bike, terrifying when you are being pushed along
at the start, and you may fall off a few times. But once you have found your balance
and plucked up your courage you will find it much quicker to get to your destination!

15.4 Availability
The C language is almost certainly available on more machines then any other
programming language. The fact that C is used to provide the operating system and
system tools for most new computers means (ipso facto) that a C compiler for that
machine has been developed (actually it doesn't — but it usually does).

15.5 Portability
With care your C programs can be written in such a way that the programs can be
easily transferred from one C compiler to another. One problem when porting
programs to a new compiler or new machine are differences in the “standard” library
routines provided with the compiler. ANSI C does now specify a standard library that
all ANSI compilers must provide.

15.6 Efficiency
Efficiency has many meanings. It could mean any of the following:
– ability to produce programs which run quickly
– production of small executable programs
– being able to write a given algorithm in fewer program statements

l9.2/2 Programming in C

October 1996 67 OUCS

15.6.1 Speed
As a direct result of the first C compiler being produced for the PDP -11 computer,
many of the C operators (especially increment & decrement) convert to single
instructions in PDP-11 assembler. This meant that some C programs were faster than
equivalent Fortran programs on the PDP -11. To a certain extent this still holds, some
operations still match well with most processors. However, a good Fortran compiler
may well produce faster code than a C compiler, it really all depends on the quality of
the compiler.

15.6.2 Size of Executable File
The calling mechanism that C uses for functions produces smaller and less complex
machine code than the Pascal or Fortran system does. Thus the overhead in calling
functions is reduced. Also, as described above, many C operators translate to single
machine instructions. C programs are often smaller than Pascal or Fortran equivalents.

15.6.3 Size of Source Code
C has many tricks and short-cuts which allow the programmer to write in a couple of
lines something that would require 10 or more lines of Pascal. Whether this is of any
real advantage is debatable, as updating the program, either at a later date by the same
programmer or by another programmer entirely, becomes progressively more difficult
as more of the shortcuts are used. We will come to something of a compromise between
shorthand methods and readable and maintainable code.

15.7 Modular Programming and Libraries
C provides the ability to split large programming tasks into separate modules. Each
module can consist of a C source file which can be compiled separately from all the
other modules. With careful use of static external variables, a certain amount of
information hiding can be performed - but not in anything like the secure methods of
Modula-2, Ada or C++. To produce a single executable program the separately
compiled modules are linked together, along with any library routines used, by a
special program called (surprisingly enough) a linker. Fortran supports modular
compilation, ISO standard Pascal does not. For almost all real applications this feature
is a must.

15.8 Applications
As we have already seen, C is the de facto standard for systems programming.
Virtually all new operating systems are written in C. C is also used for many
commercial programs where speed of program execution or the time taken to produce
the program is of vital importance. Examples include operating systems (Windows),
applications programs (wordprocessors, databases and spreadsheets) and so on. In the
good old days, parts or all of such programs would be written in assembler (the
original version of the WordStar word processor was written entirely in assembler).
Now such programs are written in C, which means that development time (and
therefore cost) is significantly reduced.

Programming in C l9.2/2

OUCS 68 October 1996

15.9 Kernighan & Ritchie C vs. ANSI C
Dennis Ritchie, the creator of C, is also the author (with Brian Kernighan) of, possibly,
the most important C text book The C Programming Language [1]. As there was not
an international standard for C, the appendix of the first edition of this book (C
Reference Manual) formed the de facto C “standard”. Compiler writers were not
obliged to keep to the behaviour specified in the book, but in the main they did. This
informal C standard is called Kernighan and Ritchie C or K&R C.

In 1989 the ANSI C standard was finalised, and shortly after became an ISO
(International Standards Organisation) international standard. C that complies with the
standard is called ANSI C. ANSI C offers many useful extensions to K&R C and
tightens up some loopholes. ANSI C is superior to K&R C, especially in the area of
function declarations and prototypes.

15.10 Criticisms of C
Some of my own personal criticisms of the language are that C

– overuses operators
– allows misuse of types
– can be difficult to read
– can be good at (temporarily) killing PCs!

although some of these are addressed, partially at least, by ANSI C.

16 Other Courses of Interest
Object Oriented Programming in C++ introduces the differences between C and C++, and
the concepts and syntax of classes and objects. Most programs are written using Objects
and knowledge of C++ is a widely sought after skill in the programming market.

17 Bibliography
The recommended book for the course is:

– Programming with ANSI C, Brian J. Holmes, DP Publications 1995.

For further reading, I suggest the following:

– The C Programming Language, Brian Kernighan & Dennis Ritchie, Prentice
Hall, Second Edition, 1988.

– C by Dissection, Al Kelley & Ira Pohl, Benjamin/Cummings, Second Edition,
1992

– C Traps and Pitfalls, Andrew Koenig, Addison-Wesley, 1989
– Advanced C, Tips and Techniques, Paul Anderson & Gail Anderson, Hayden,

1988
– Writing Solid Code, Steve Maguire, Microsoft Press, 1993

l9.2/2 Programming in C

October 1996 69 OUCS

The C Programming Language, Second Edition (often referred to as K&R2) is an
excellent reference on ANSI C. It is clear and succinct. If you only want to buy one C
book, and you want it to last you a lifetime, get this one. However, K&R2 is not for
beginners, it is most useful if you have experience (perhaps a lot!) of programming in
another language.

18 Exercises

Example solutions to these exercises can be found in the OUCS guide l9.5
Programming in C - Exercise solutions [10].

Exercise 1 - “Hello world”

Type in the following program

#include <stdio.h>

int main()
{
printf("Hello World\n");
printf("Hello World\n");
return 0;
}

Then compile and run the program.

Exercise 2 - Run-Time Error

The following program has a run-time error in it.

int main()
{
int x, y = 0;
x = 1 / y;

return 0;
}

Run the program to see what the effect of the error is. Rewrite the program without the
variable y, but keeping the error in the program. What happens when you try to
compile the program?

Exercise 3 - Increment (++) Operator

Write a program containing the line

a -= a++;

What happens to the value of a?

Programming in C l9.2/2

OUCS 70 October 1996

Exercise 4 - printf() and stdio.h

Write a C program that prints on the screen the words

Now is the time for all good men to come to the aid of their
country

– all on one line;
– on three lines;
– inside a box composed of * characters.

Exercise 5 - printf() Formats, Mixed Mode Arithmetic

The following program contains three statements which either lead to error messages
or print unpredictable values. Correct them by changing the printf conversion
characters and try to predict the output of the revised program. Run the program to
verify your predictions.

#include <stdio.h>

int main()
{
int i = 2;

printf("%d\n", 8*i/3);
printf("% d\n", 8.0*i);
printf("%f\n", 8*i);
printf("%f\n", 8*i/3);
printf("%d\n", 8*i%3);
printf("%f\n", 8.0*i/3);
return 0;
}

Exercise 6 - Using printf() Format Specifiers

Write a test program to find out whether the printf function truncates or rounds
when printing out a float with a fractional part.

Exercise 7 - Using for Loops

Write a program that prints a table of powers. The first few lines might look like this

 integer square cube quartic quintic
 --
 0 0 0 0 0
 1 1 1 1 1
 2 4 8 16 32
 3 9 27 81 243
 4 16 64 256 1024

l9.2/2 Programming in C

October 1996 71 OUCS

Exercise 8 - scanf(), Printing Numbers In Different Bases

Write a program that reads in an integer and prints out the given integer in decimal,
octal and hexadecimal formats.

Exercise 9 - if ... else Decisions

What gets printed?

#include <stdio.h>

int main()
{
int i, j;

i = j = 2;
if (i == 1)

if (j == 2)
printf("%d\n", i = i + j);

else
printf("%d\n", i = i - j);

printf("\n%d", i);

return 0;
}

Try it on paper first and then verify your answer with the computer.

Exercise 10 - while and for Loops

Rewrite (on paper) the following code as a single for loop with a body that consists
of a simple (not a compound) statement.

i = 0;
while (c != ' ' && c != '\n' && c != '\t' && c != EOF)

{
word[i++] = c;
c = getchar ();
}

Exercise 11 - unsigned int Type

Explain the output of the following program. What is the effect of changing the
declaration of x from unsigned to int? What is the effect of changing the format
from %u to %d.

Programming in C l9.2/2

OUCS 72 October 1996

/* compute powers of two */

#include <stdio.h>

int main()
{
int i = 0;
unsigned x = 1;

while (i < 35)
{
printf("%8d:%8u\n", i, x);
/* %u is unsigned decimal format */
++i;
x *= 2;
}

x = -1;
printf("\n\nminus one = %8d%8u\n\n", x, x);

return 0;
}

Exercise 12 - getchar(), putchar() and if Statements

Write a program to check the proper pairing of braces. The program will have two
variables, one to keep track of the left braces and the other to keep track of the right
braces. They both start at value 0 and the appropriate one is incremented each time a
brace is encountered. If the right brace variable ever exceeds the value of the left brace
variable, the program inserts the character pair ?? at that point in the output. If, at
the end of the input file, the left brace variable is greater than the right brace variable,
the program should print a message that include the number of missing right braces as
a series of that many }s. Use getchar() and putchar() to do the input/output.
What output is produced for the input }{}{? Do you think that the output is correct?
Try to rectify the algorithm so that the output is }??{}{ 1 missing } .

Exercise 13 - getchar() and EOF

Write a program that counts the number of blanks, tabs and newlines that are typed on
the keyboard. The program should terminate when the EOF character is read. The tab
character is '\t' .

Exercise 14 - User Defined Functions and scanf()

Write a function FtoC(double f) which converts the Fahrenheit temperature f into
the equivalent Celsius value. The function should return a value of type double .
Use the formula:

c = 5/9 * (f - 32)

Test your function with the temperatures 32 °F (0°C), 212°F (100°C) and -40°F
(-40°C).

l9.2/2 Programming in C

October 1996 73 OUCS

Exercise 15 - User Defined Funtions, Prototypes and math.h

Write a function power(x, n) that will compute the nth power of x, where x is a
double and n is an int . As the power will be an integer, repeated multiplication
using a for loop is one solution. Your function should return 1 when n is 0. Extend
your function to deal with negative n.

Exercise 16 - Passing Parameters to Functions By Reference

Write a function called swap that will exchange the two double parameters given.
Test the function by assigning two different values to two variables and using the
function to swap the two values. Print out the values of the two variables after the
function call to check that the function has performed the correct action.

Swapping is used in many applications, but particularly in sorting. If you feel
adventurous write a bubble sort program.

Exercise 17 - #define

Andrew Koenig states in C Traps and Pitfalls [3] states that the following causes an
infinite loop on some systems. Can you work out why?

#define N 10

int main()
{
int i;
int a[N];

for (i = 0; i <= N; i++)
a[i] = 0;

return 0;
}

Exercise 18 - register Variables, rand() and stdlib.h

Write a program to store 1000 random numbers in an array. Use an integer as a loop
counter and to access the array. Print out the array. Time the program.

Try the program again but with the loop counter/array element variable as a register
variable. Time the program again.

Was there any difference in the timings?

Exercise 19 - Pointer Variables, *(indirection) and &(address) Operators Strings: Arrays of
Characters

Write a program with the declarations

Programming in C l9.2/2

OUCS 74 October 1996

char a, b, c, *p, *q, *r;

and print out the locations that are assigned to all these variables by your compiler
(that is print the values of the expressions &a, &b, &c, &p, &q and &r; use %u as
the conversion specifier for each expression).

What can you deduce about the sizes of char and pointer variables on your system?

Add the following statements to your program:

a = 'A';
b = 'B';
c = 'C';
p = "hello";
q = "world";

and print out the values of the following expressions (the appropriate conversion
specifier is given alongside each expression):

a %c
b %c
c %c
*p %c
*q %c
p %s
q %s

Exercise 20 - Pointers to NULL

What is printed and why?

#include <stdio.h>

int main()
{
char *pc = 0;
int *pi = 0;
double *pd = 0;

printf("%8d%8d%8d\n%8d%8d%8d\n",
 pc + 1, pi + 1, pd + 1, pc + 3, pi + 5, pd + 7);

return 0;
}

Exercise 21 - Strings: Arrays of Characters

Write a program which reads a word and prints the word reversed. Use an array of
characters to store the word read.

l9.2/2 Programming in C

October 1996 75 OUCS

Exercise 22 - String Functions in string.h: gets() and strlen()

Write a function called strlen which will return the length of a string.

Exercise 23 - String Functions: strcmp(), stricmp(), toupper()

The C library function strcmp compares two strings. It is case sensitive. Write a
function called striccmp (string ignore case compare) which will compare two
strings ignoring case. The function should return 0 if the strings are the same,
otherwise the difference in value between the first two non-matching characters.

striccmp("Word", "wOrd") would return 0
striccmp("steve", "steven ") would return -110
striccmp("box", "book") would return 9

You may like to use the C library function toupper in your compare function.
toupper converts its int parameter to upper case. It returns an int value.

toupper('c') returns 'C'
toupper('C') returns 'C'

[Warning: some older C libraries only guarantee that toupper(character) works
if the argument is a lower case letter.]

Finish off by writing a program that tests the function in several different ways. This
need only be a group of function calls printing the result returned by the function.

Exercise 24 - User Defined String Functions

Write a function called strchr which finds the first occurrence of a specific
character in a given string. The function should return a pointer to the occurrence of
the given character, or NULL if the character is not found.

strchr("hello world", 'l') would return "llo world"
strchr("C programming", 'z') would return NULL

Test your function by calling it several times with different literal strings (as shown
above) and printing the result returned by the function. Unexpected results can occur if
you try to print out a string which is actually a NULL pointer, so you will need to test
that function did not return NULL before you try to print the string.

Exercise 25 - User Defined String Functions, atoi()

The parameters passed to a program are always strings. Sometimes you may wish to
write a program that takes as its parameter an integer value, e.g. add 6 2 would call
a program called add which would add up all its parameters and print the result on the
screen.

Programming in C l9.2/2

OUCS 76 October 1996

Write a function which takes a string (pointer to char) as a parameter and returns the
integer equivalent.

str2int("1658") would return the value 1658

To improve your program change the function to accept strings with a leading - sign to
indicate a negative number.

One last improvement might be to print a warning if the string represents a number
that is outside the range of an int .

The ANSI C function atoi() performs this task, do not use it to complete the
exercise!

Exercise 26 - getc() and putc()

Write getstring() and putstring() routines. They should use getc() and
putc() to read and write strings from a designated file.

Exercise 27 - Input from Files

The standard way to list a file on the screen with MS-DOS is to type at the keyboard:

type filename

This can be extremely annoying as the text shoots past your eyes so fast that it is
impossible to read it!

Write a program called more that asks for a name of a file to list on the screen and
then displays the file on the screen. Use getc() to read the characters in turn from
the file and then display the characters on the screen using putchar() . Remember to
use an int to store the character read, as you will need to test the character against
the EOF character.

Modify your program so that it displays the first 24 lines only of the screen on the
screen. It should then display a message like

-- More --

and wait for any key to be pressed. Once a key has been pressed the program should
display the next 24 lines of the file, and so on. You might like to use the getch()
function which “bypasses” the keyboard buffer. getch() is unique to MS-DOS
compilers, it is not part of ANSI C.

You can count the number of lines that have been printed by counting the number of
'\n' characters that have been displayed. This doesn't always work — why?

l9.2/2 Programming in C

October 1996 77 OUCS

Exercise 28 - Passing Parameters to main()

The MS-DOS utility echo prints its parameters. For example, typing

echo hello world
will produce the output:

hello world

Write a program which will perform this task.

Exercise 29 - Using unlink() to Delete Files

The following program will delete a file from your directory (use with care!).

int main(int argc, char *argv[])
{
unlink(argv[1]);
return 0;
}

Modify the program to check that a program parameter has been supplied, to print the
name of the file it is just about to delete, and to ask the user for confirmation before the
file is deleted.

Modify the program so that it will accept a list of file names as parameters to the
program and then will step through each file in turn deleting the file if the user
confirms the delete.

Exercise 30 - Structures and Arrays of Structures

Write a program that stores the names, two line addresses and ages of a group of
people. Each person should be stored in a structure. Use an array of such structures
to hold the data for the whole group. Write functions for reading a person's details
from the standard input stream and for printing a person.

Exercise 31 - Matrix Multiplication, typedef

Matrix multiplication is defined as

a b

c d

 *
e f

g h

 =
a* e+b* g a* f +b* h

c*e+d* g c* f +d * h

Programming in C l9.2/2

OUCS 78 October 1996

Define a new type called matrix with

typedef float matrix[2][2];

Write a function which will take two matrices as parameters and return the product
through a third parameter.

Exercise 32 - Preprocessor Macros

Define a macro swap(t, x, y) that interchanges two variables of the type
specified, e.g.

int i = 10, j = 64;
float x = 1.23, y = 2.34

swap(int,i,j);
fswap(float,x,y);

Exercise 33 - Pointers to Functions

Write a function which will tabulate values of any given function from a given starting
value up to (and including) a given final value. The size of the each step from the
starting value to the final value should also be a parameter of the function.

For example,

#define PI 3.14159

tab_func(sin, 0.0, PI, PI/8.0);

would print

 x f(x)

0.0000 0.0000
0.3927 0.3827
0.7854 0.7071
1.1781 0.9239
1.5708 1.0000
1.9635 0.9239
2.3562 0.7071
2.7489 0.3827
3.1416 0.0000

l9.2/2 Programming in C

October 1996 79 OUCS

19 Operator Precedence Table
Operator Associativity
() [] -> . left
! ~ ++ -- - (type) * & sizeof right
* / % left
+ - left
<< >> left
< <= > >= left
== != left
& left
^ left
| left
&& left
|| left
?: right
assignments right
, left

