\square
Eighth Semester B.E. Degree Examination, Jan./Feb. 2023 System Modeling and Simulation

Time: 3 hrs .

Max. Marks: 80

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. What is Simulation? Explain with flowchart the steps involved in simulation study.
(10 Marks)
b. A supermarket has only one checkout counter. Customer arrives at this checkout counter at random from 1 to 5 minutes apart with equal probability. The service time varies from 1 to 6 minutes with probability $0.30,0.25,0.05, .10,0.10$ and 0.20 . Develop a simulation table for 10 customers and find the following :
i) Average service time
ii) Average time between arrivals

Use the following sets of random numbers for arrivals $84,10,74,53,17,79,03,87,27$. Random digit for service time $23,35,65,81,54,03,87,27,73,70$.
(06 Marks)

2 a. Explain the various concepts used in discrete event simulation with an example. (08 Marks)
b. Explain event - scheduling algorithm by illustrating old system snapshot and new system snapshot.
(08 Marks)

Module-2

3 a. Explain the following discrete distribution.
i) Binomial distribution
ii) Poisson distribution.
(08 Marks)
b. Explain the following continuous distribution.
i) Uniform distribution
ii) Exponential distribution.
(08 Marks)

OR

4 a. What are the characteristics of queuing systems? Explain with a neat diagram. (08 Marks)
b. Explain steady state parameters of $\mathrm{M} / \mathrm{G} / 1$ queue.
(08 Marks)

Module-3

5 a. What is a Random number? What are the different properties of a Random number? When a Random number is called pseudo - random number? Explain.
(08 Marks)
b. The sequence of numbers $0.54,0.73,0.98,0.11,0.08$ has been generated. Use Kolmogorov Smirnov test with $\alpha=0.05$ to determine if the hypothesis that the numbers are uniformly distributed on the interval $[0,1]$ can be rejected. Compare $\mathrm{F}(\mathrm{x})$ and $\mathrm{S}_{\mathrm{N}}(\mathrm{X})$ on a graph. $\mathrm{D}_{0.05}=0.565$.
(08 Marks)

