Third Semester B.E. Degree Examination, July/August 2022 **Engineering Mathematics – III**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Find the Fourier series expansion of $f(x) = 2x - x^2$ in (0, 3). 1

(08 Marks)

The turning moment T is given for a series of values of the Crank angle $\theta^{\circ} = 75^{\circ}$

θ_{o}	0	30	60	90	120	150	180
T	0	5224	8097	7850	5499	2626	0

Obtain the first four terms in a series of sires to represent T. Also calculate T for $\theta = 75^{\circ}$.

(08 Marks)

OR

Obtain Fourier series for the function f(x) given by

$$f(x) = \begin{cases} \pi + x & -\pi < x < 0 \\ \pi - x & 0 \le x < \pi \end{cases}$$
 Hence deduce $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$.

(08 Marks)

i) Define Half range Fourier sine series of f(x)

(02 Marks)

ii) Find the half range Cosine series of $f(x) = x^2$ in the range $0 \le x \le \pi$.

(06 Marks)

3 a. Find the Fourier transform of
$$f(x) = \overline{\begin{cases} 1 & \text{for } |x| < 1 \\ 0 & \text{for } |x| > 1 \end{cases}}$$
. Hence evaluate $\int_{0}^{\infty} \left(\frac{\sin x}{x}\right) dx$.

(06 Marks)

b. Find the inverse sine transform of
$$F_s(\alpha) = \begin{cases} 1 & 0 \le \alpha < 1 \\ 2 & 1 \le \alpha < 2 \\ 0 & \alpha \ge 2 \end{cases}$$

(05 Marks)

c. Find the inverse Z- transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$.

(05 Marks)

a. Find the Fourier Sine transform of $f(x) = e^{-|x|}$ and hence show that

$$\int_{0}^{\infty} \frac{x \sin mx}{1 + x^{2}} dx = \frac{\pi}{2} e^{-m}, m > 0.$$

(06 Marks)

b. Find the Z-transform of i) Coshnθ ii) Sinhnθ.

(05 Marks)

c. Using the Z- transform, solve $u_{n+2} + u_n = 0$ given $u_0 = 1$, $u_1 = 2$.

(05 Marks)

Module-3

5 a. Find the correlation coefficient between x and y

X	2	4	6	8	10
у	5	7	9	8	11

(06 Marks)

b. Fit the curve of the form $y = a + bx + cx^2$ to the following data:

X	0	1	2	3	4
у	-4	-1	4	11	20

(05 Marks)

c. Find the root of the equation $2x - \log_e x = 7$ using Regula-Falsi method. Carry out 3 iteration. (05 Marks)

OR

6 a. If θ is the angle between the two regression lines, show that $\tan \theta = \left(\frac{1-r^2}{r}\right)\left[\frac{\sigma_x\sigma_y}{\sigma_x^2+\sigma_y^2}\right]$.

Explain the significance when r = 0 and $r = \pm 1$.

(06 Marks)

b. Use the method of least squares fit a curve of the form $y = a e^{bx}$ for the following data:

X	0	2	4	6	8
у	150	63	28	12	5.6

(05 Marks)

c. Find the real root of the equation $x^4 - x = 10$ by using Newton –Raphson method, carryout 3 iteration. (05 Marks)

Module-4

7 a. Find f(x), using Newton's interpolation formula

X	0	1	2	3	4
f(x)	-5	-10	-9	4	35

(06 Marks)

b. Find f(g): Using Newton's divided difference formula

X	5	7	11	13	17
f(x)	150	392	1452	2366	5202

(05 Marks)

c. Evaluate, using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule for $\int_{0}^{\pi/2} \sqrt{\sin x} \, dx$ by taking 6 intervals.

(05 Marks)

OR

8 a. A curve passing through the points (0, 18) (1, 10) (3, -18) and (6, 90). Find f(x), using Lagrange's interpolation formula. (05 Marks)

b. Evaluate, using Weddle's rule $\int_{0}^{\infty} \frac{e^{x}}{1+x} dx$ by taking 7 ordinates.

(05 Marks)

c. The area 'A' of a circle of diameter 'd' is given for the following values

		0-			
d	80	85	90	95	100
Α	5026	5674	6362	7088	7854

Calculate the area of a circle of diameter 105.

(06 Marks)

Module-5

- 9 a. By using Green's theorem, evaluate $\int_C [(y \sin x)dx + \cos x dy]$ where C is the plane triangle enclosed by the lines y = 0; $x = \frac{\pi}{2}$ and $y = \frac{2}{\pi}$ and $y = \frac{2}{\pi}$ and $y = \frac{2}{\pi}$ and $y = \frac{2}{\pi}$ by the lines y = 0 and $y = \frac{2}{\pi}$ and $y = \frac{2}{\pi}$
 - b. Apply Stoke's theorem evaluate $\int_C (x+y)dx + (2x-z)dy + (y+z)dz$ where C is the boundary of the triangle with vertices (2,0,0)(0,3,0) and (0,0,6). (05 Marks)
 - c. Find the curve on which the functional $\int_{0}^{1} (y')^{2} + 12xy \, dx$ with y(0) = 0 and y(1) = 1 can be extremized. (05 Marks)

OR

- 10 a. Derive the Euler's equation in the form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$. (06 Marks)
 - b. Show that the geodesics on a plane are straight lines. (05 Marks)
 - c. Evaluate $\iint_S \vec{F} \cdot \hat{n}$ ds where $\vec{F} = 4xz \, \hat{i} + y^2 \, \hat{j} + yz \, \hat{k}$ and S in the surface of the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (05 Marks)

* * * * *

G868 8615115

USN

15MATDIP31

Third Semester B.E. Degree Examination, July/August 2022 Additional Mathematics - I

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Express
$$\frac{(2-3i)(2+i)^2}{1+i}$$
 in the form of $x + iy$. (06 Marks)

b. If
$$x + \frac{1}{x} = 2 \cos \alpha$$
 then prove that $x^n + \frac{1}{x^n} = 2 \cos n\alpha$. (05 Marks)

c. Find the cosine of the angle between the vectors $\vec{a} = 5 \,\hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = 2 \,\hat{i} - 3 \,\hat{j} + 6 \,\hat{k}$.

(05 Marks)

2 a. Find the Fourth roots of 1 -
$$i\sqrt{3}$$
 and represent them on an Argand plane. (06 Marks)

b. Show that the vectors
$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
, $\vec{b} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + 4\hat{j} - \hat{k}$ are co-planar.

c. Prove that
$$[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2[\vec{a}, \vec{b}, \vec{c}].$$

(05 Marks)

3 a. Obtain the nth derivative of
$$e^{ax} \cos(bx + c)$$
.

(06 Marks)

b. Show that the curves
$$r = a(1 + \cos\theta)$$
 and $r = a(1 - \cos\theta)$ are orthogonal.

(05 Marks)

c. If
$$u = x(1-y)$$
, $v = xy$ find the Jacobians $J = \frac{\partial(u,v)}{\partial(x,y)}$ and $J' = \frac{\partial(x,y)}{\partial(u,v)}$. (05 Marks)

OR

4 a. If
$$y = a \cos(\log x) + b \sin(\log x)$$
, prove that $x^2 y_{n+2} + (2n+1) x y_{n+1} + (n^2+1) y_n = 0$.

(06 Marks)

b. If
$$u = \sin^{-1}\left(\frac{x^3 - y^3}{x - y}\right)$$
, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2$ Tan u. (05 Marks)

c. If
$$z = xy^2 + x^2y$$
, where $x = at^2$, $y = 2at$. Find $\frac{dz}{dt}$. (05 Marks)

Module-3

5 a. Evaluate
$$\int_{0}^{\pi} x \sin^6 x \, dx$$
. (06 Marks)

b. Evaluate
$$\int_{0}^{1} \int_{0}^{1} \frac{dxdy}{\sqrt{(1-x^2)(1-y^2)}}$$
. (05 Marks)

c. Evaluate
$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x + y + z) dx dy dz$$
. (05 Marks)

15MATDIP31

OR

6 a. Evaluate
$$\int_{0}^{1} x^{5} (1-x^{2})^{\frac{5}{2}} x. dx$$
. (06 Marks)

b. Evaluate
$$\int_{0}^{2a} \int_{0}^{\frac{x^2}{4a}} xy \, dy \, dx.$$
 (05 Marks)

c. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{y} xyz \, dx \, dy \, dz$. (05 Marks)

- a. A particle moves along the curve $\vec{r} = 2t^2 \hat{i} + (t^2 4t)\hat{j} + (3t 5)\hat{k}$. Find the components of velocity and acceleration at t = 2. (06 Marks)
 - Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) along $\vec{a} = 2\hat{i} \hat{j} 2\hat{k}$. (05 Marks)

Find div \vec{f} for $\vec{f} = \nabla (x^3 + y^3 + z^3 - 3xyz)$. (05 Marks)

- Find the unit tangent vector to the curve $\vec{r}=t^2\ \hat{i}+2t\ \hat{j}-t^3\ \hat{k}$ at $t=\pm\ 1$. (06 Marks) 8
 - Find the unit normal vector to the surface xy + yz + zx = c at the point (-1, 2, 3). (05 Marks)
 - Show that $\vec{f} = (z + \sin y) \hat{i} + (x \cos y z) \hat{j} + (x-y) \hat{k}$ is irrotational. (05 Marks)

9 a. Solve
$$\frac{dy}{dx} = \frac{y}{x} + \sin\left(\frac{y}{x}\right)$$
. (06 Marks)

b. Solve
$$\frac{dy}{dx} + y \cot x = \sin x$$
. (05 Marks)
c. Solve $(x^2 + y) dx + (y^3 + x) dy = 0$. (05 Marks)

c. Solve
$$(x^2 + y) dx + (y^3 + x) dy = 0$$
. (05 Marks)

OR

10 a. Solve
$$\frac{dy}{dx} = (4x + y + 1)^2$$
. (06 Marks)

b. Solve
$$\frac{dy}{dx} + \frac{2}{x}y = \frac{3x^2 + 1}{x^2}$$
. (05 Marks)

c. Solve
$$[y(1+\frac{1}{x}) + \cos y] dx + (x + \log x - x \sin y) dy = 0.$$
 (05 Marks)

USN

Third Semester B.E. Degree Examination, July/August 2022 Network Analysis

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the current 'I' in 5Ω using Mesh analysis for Fig. Q1(a).

(08 Marks)

b. Find the voltage V_x using Node Analysis for Fig. Q1(b).

(08 Marks)

OR

2 a. Determine the resistance between A and B using Δ to Y conversion for Fig. Q2(a).

(04 Marks)

Fig. Q2(a)

b. Find the current I₁, I₂ using Mesh Analysis for Fig. Q2(b).

(06 Marks)

Fig. Q2(b)

c. Calculate I₁, I₂, I₃, V_a, V_b using Node analysis for Fig. Q2(c).

(06 Marks)

Fig. Q2(c)

Module-2

- 3 a. State and prove Thevenin's theorem.
 - b. Find I_x using Super position theorem for Fig. Q3(b).

(05 Marks)

(05 Marks)

c. Verify the Reciprocity theorem for the circuit in Fig. Q3(c).

(06 Marks)

OR

4 a. State and prove Milliman's theorem.

(05 Marks)

b. Determine I through 8Ω using Norton's theorem for Fig. Q4(b).

(05 Marks)

c. Find the value of R_L and Maxi Power delivered to R_L using Maxi Power theorem for Fig. Q4(c). (06 Marks)

Module-3

5 a. S – opened at t = 0 for the circuit Fig. Q5(a). Calculate $V(0^+)$

(05 Marks)

b. S-is moved from 1 to 2 at t=0 find $I(0^+)$, $\frac{dI(0^+)}{dt}$, $\frac{d^2I(0^+)}{dt^2}$ for the circuit in Fig. Q5(b).

(05 Marks)

c. S - is moved from 1 to 2 at t = 0. Determine I(t) using Laplace Transformation for t > 0 in the circuit Fig. Q5(c). (06 Marks)

OR

6 a. Find Inverse Laplace Transform of $\frac{1}{s(s+1)}$.

(04 Marks)

(06 Marks)

b. S - is changed from 1 to 2 at t = 0, find I(t) for t > 0 in the circuit Fig. Q6(b).

c. A series R, L circuit with initial current I_0 in inductor is connected to a D.C voltage V at t = 0. Derive an expression for I(t) through the inductor for t > 0. (06 Marks)

Module-4

- 7 a. Show the resonance frequency $f_0 = \sqrt{f_1 + f_2}$ for series resonance circuit. (05 Marks)
 - b. Derive an expression for resonance frequency f_o in case of parallel resonance circuit when inductor L resistance R_L is considered. (05 Marks)
 - A series resonance circuit $C = 1\mu F$ and its inductor L resistance is 16Ω . If the Bandwidth is 500rad/sec. Determine f_o , Q, L. (06 Marks)

OR

- 8 a. Define Q factor, Bandwidth, selectivity of series resonance circuit. (06 Marks)
 - b. Determine the frequency w_c, when the voltage across the capacitor is maximum incase of series resonance circuit. (05 Marks)

c. The inductor value L = 0.1H for the circuit Fig. Q8(c) and its Q value is 5. The resonance frequency of the circuit is 500rad/sec. Determine the values of capacitance C and R.

(05 Marks)

Module-5

9 a. Determine Z – parameters for the circuit Fig. Q9(a). Using interrelationship between parameters, find Y parameters. (08 Marks)

b. Determine the h – parameters for the circuit Fig. Q9(b).

(08 Marks)

10 a. Define Z – parameters and obtain the condition for symmetry.

(08 Marks)

b. Determine Z – parameters, using Interrelationship between parameters, determine h parameters for the circuit Fig. Q10(b). (08 Marks)

* * * *

USN

Third Semester B.E. Degree Examination, July/August 2022 Engineering Electromagnetics

GOGO OGIENE

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and prove Coulomb's law.

(05 Marks)

- b. Three equal charges of 1 μ C each are located at the three corners of a square of 10 cm side. Find the electric field intensity at the forth vacant corner of the square. (06 Marks)
- c. A charge $Q_1 = -20\mu C$ is located at P(-6,4,6) and a charge $Q_2 = 50\mu C$ is located at R(5, 8, -2) in a free space. Find the force exerted on Q_2 by Q_1 in vector form. The distance given in meter.

OR

2 a. Derive the expression of electric field intensity for infite line charge.

(08 Marks)

- b. Find the electric field \vec{E} at the origin, if the following charge distributions are present in free space:
 - (i) Point charge 12 nC at P(2, 0, 6)
 - (ii) Uniform line charge of linear 3 nC at x = 2, y = 3.

(08 Marks)

Module-2

3 a. State and prove the Gauss's law.

(05 Marks)

b. State and prove Divergence theorem.

(05 Marks)

c. If $\vec{D} = xy^2z^2\hat{a}_x + x^2yz^2\hat{a}_y + x^2y^2z\hat{a}_z$ C/m².

Find:

- (i) An expression for ρ_v
- (ii) The total charge within the cube defined by $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$. (06 Marks)

OK

4 a. Derive the expression for work done interms of line integral.

(06 Marks)

- b. Given $V = \frac{\cos 2\phi}{r}$ in the free space, in cylindrical system:
 - (i) Find \overrightarrow{E} at B(2, 30°, 1).
 - (ii) Find the volume charge density at point A(0.5, 60°, 1).

(10 Marks)

Module-3

5 a. Derive the expression for Poisson's and Laplace's equation.

(04 Marks)

- b. Determine whether or not the following potential field satisfy the Laplace's equation:
 - (i) $V = x^2 y^2 + z^2$
 - (ii) $V = r \cos \phi + z$

(04 Marks)

c. Use Laplace's equation to find the capacitance per unit length of a co-axial cable of inner radius 'a' in and outer radius 'b' m. Assume $V = V_0$ at r = a, V = 0 at r = b. (08 Marks)

OR

6 a. State and explain Biot-Savart law.

(05 Marks)

b. State and prove the Stoke's theorem.

(06 Marks)

Given $\overrightarrow{A} = (\sin 2\phi) \hat{a}_{\phi}$ in cylindrical coordinates. Find curl of \overrightarrow{A} at $\left(2, \frac{\pi}{4}, 0\right)$. (05 Marks)

Module-4

- 7 a. Derive the expression for the force on a differential current element. (06 Marks)
 - b. A point charge of Q = 1.2C has velocity $\vec{v} = (5\hat{a}_x + 2\hat{a}_y 3\hat{a}_z)$ m/s. Find the magnitude of the force exerted on the charge if,

(i)
$$\vec{E} = -18\hat{a}_x + 5\hat{a}_y - 10\hat{a}_z \text{ V/m}$$

(ii)
$$\vec{B} = -4\hat{a}_x + 4\hat{a}_y + 3\hat{a}_z T$$
. (10 Marks)

OR

8 a. Write short notes on Magnetization and Permeability.

(06 Marks)

b. Derive the boundary condition for tangential component in magnetic field.

(05 Marks)

c. A coil of 500 turns is wound on a closed iron ring of mean radius 10 cm and cross section area of 3 cm². Find the self inductance of the winding if the relative permeability of iron is 800.

(05 Marks)

Module-5

9 a. Write the Maxwell equations in point form and integral form.

(06 Marks)

b. Given $\vec{E} = E_m \sin(\omega t - \beta z) \hat{a}_y$ in free space. Find \vec{D} , \vec{B} and \vec{H} .

(06 Marks)

c. Prove that $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$.

(04 Marks)

OR

10 a. Derive the general expression for uniform plane in free space.

(05 Marks)

b. State and prove Poynting theorem.

(07 Marks)

c. Calculate the attenuation constant and phase constant for a uniform plane wave with frequency of 10 GHz in polythelene for which $\mu = \mu_o$, $\epsilon_r = 2.3$ and $\sigma = 256 \times 10^{-4}$ σ/m .

(04 Marks)

* * * * *