USN

15CS834

Eighth Semester B.E. Degree Examination, Feb./Mar. 2022 **System Modelling and Simulation**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- What is simulation? Explain different steps involved in simulation study with neat 1
 - A grocery store has only one checkout counter. Customer arrives at this counter at random times that are from 1 to 8 minutes apart and each interval time has the same probability of occurrences. The service time vary from 1 to 6 minutes with probabilities give below:

2 3 4 6 Service (minutes) 1 0.10 0.20 0.30 0.25 0.10 0.05 Probability

Simulate the arrival for 10 customers and calculate:

- i) Average waiting Time
- ii) Probability of Idle server
- iii) Average service time

The random digits for arrivals are: 913, 727, 015, 948, 309, 922, 753, 235, 302

Random digits for service time are: 84, 10, 74, 53, 17, 79, 91, 67, 89, 38.

(08 Marks)

OR

- Explain the terms used in discrete event simulation with an example. 2
 - ii) Entity
- iii) Attribute iv) Activity.

(04 Marks)

A company uses 6 trucks to haul iron form Kolar to industry. There are two loaders, to load each truck, After loading, a truck moves to the weighing scale to be weighed. The Queue discipline is FIFO. When it is weighed, a truck travels to the industry and return to the loader Queue. The distribution of loading time, weighing time and travel time one as follows:

Loading time	10	5	5	10	15	10	10
Weigh time	12	12	12	16	12	16	
Travel time	60	100	40	40	80		

Depict the simulation table and estimate the loader and scale utilization. Assume 5 trucks are at the loaders and one is at the scale, at time '0' stopping time $T_E = 54$ min. (12 Marks)

Module-2

Explain discrete random variable and continuous random variable. 3

(06 Marks)

- Explain the following distributions
 - Binomial Distribution i)
 - ii) Uniform Distribution.

(10 Marks)

List Queuing notations for parallel server systems. 4

(08 Marks)

Explain Steady state parameters of M/G/1 Queue.

(08 Marks)

Module-3

- 5 a. Generate three 2-digit random numbers with $X_0 = 63$, a = 19, c = 0 and m = 100. (06 Marks
 - b. The sequences of numbers are 0.54, 0.73, 0.98, 0.11 and 0.68 has been generated. Use the Kolmogorov Smirnov test with $\alpha = 0.05$, test whether the hypothesis that the numbers are uniformly distributed on the interval [0, 1] can be rejected. Assume $D_{\alpha} = 0.565$. (10 Marks)

OR

- 6 a. Generate three Poisson variates with mean $\alpha = 0.2$ for the random numbers R = 0.4357, 0.4146, 0.8353, 0.9952, 0.8004.
 - b. Discuss the concept of inverse transform technique to generate random numbers using exponential distribution. (08 Marks)

Module-4

- 7 a. Explain data collection in input modeling. What are the suggestions which may enhance and facilitate data collection? (08 Marks)
 - b. Explain Chi-Square goodness of fit test. Apply it to Poisson assumptions with $\alpha = 3.64$. Data size = 100 and observed frequency $O_i = [12, 10, 19, 17, 10, 8, 7, 5, 5, 3, 3, 1]$. Assume $\chi^2_{0.05,5} = 11.1$. (08 Marks)

OR

- 8 a. Explain multivariate input model and Time series input model. (06 Marks)
 - b. Discuss the concept of measures of performance and their estimation.

Module-5

9 a. Explain output analysis for terminating simulation.

(06 Marks)

b. Explain output analysis for steady state simulation.

(06 Marks)

(10 Marks)

c. Explain concept of Quantitiles in detail.

(04 Marks)

OR

10 a. Explain with neat diagram model building verification and validation.

(08 Marks)

b. Explain three step approaches for validation process formulated by Nayler and Finger.

(08 Marks)

* * * * *