
Allen G. Taylor
Author of all previous editions of
SQL For Dummies

SQL

Learn to:
• Create relational databases with powerful

data retrieval capacity

• Use SQL with XML and Access® 2010

• Structure a database management
system and implement database design

• Work with all the core SQL features

7th Edition
Making Everything Easier!™

 Open the book and find:

• Essential database design
considerations

• How a database management
system differs from a database

• What SQL is and isn’t

• Different types of data

• Ten common database blunders

• How to use values, value
expressions, and relational
operators

• Tips on using XML data with SQL

• Common threats to your data

Allen G. Taylor is a nationally known lecturer and educator in the field

of database development. A 30-year veteran of the computer industry,

he has written more than 20 books. Through the magic of the Internet,

Allen teaches computer architecture both at Portland State University

and in Shanghai.

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-55741-9

Programming Languages/SQL

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Demystify database management
systems with this fun and
friendly guide to SQL
The secret is SQL, and once you get the hang of that, you
can build relational databases and get valuable information
into and out of them with ease. Here’s how to structure a
database management system with SQL, implement the
design, protect your data, access and work with it, maintain
your database, and much more, using the newest version
of SQL.

• Down to data basics — learn what a relational database is and
what goes into designing a good one

• SQL secrets revealed — get an overview of SQL fundamentals
and actually build a database

• Data in, data out — find out how to add, retrieve, display, delete,
or change data in your database

• What’s your query? — discover how to find what you need using
different queries

• Guarding your stuff — protect your data from theft, accidental
or malicious corruption, and loss due to equipment failure

• Getting SQL to play nice — use Open DataBase Connectivity
(ODBC) to solve the problems of combining SQL with other
languages

• XML is your friend — communicate with other applications using
XML with SQL

• Eliminating errors — understand what SQL is trying to tell you
when something goes wrong

SQ
L

Taylor

7th Edition

spine=.912”

2nd Edition

spine=.912”

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/sql

by Allen G. Taylor
Author of Database Development For Dummies,

SQL All-in-One For Dummies, and
Crystal Reports 2008 For Dummies

SQL
FOR

DUMmIES
‰

7TH EDITION

SQL For Dummies®, 7th Edition

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2009942830

ISBN: 978-0-470-55741-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport

About the Author
Allen G. Taylor is a 30-year veteran of the computer industry and the

author of 26 books, including Crystal Reports 2008 For Dummies, Database

Development For Dummies, Access Power Programming with VBA, and SQL
All-in-One For Dummies. He lectures internationally on databases, networks,

innovation, and entrepreneurship. He also teaches database development

through a leading online educational program. For the latest news on Allen’s

activities, check out www.DatabaseCentral.Info. You can contact Allen

at allen.taylor@ieee.org.

Dedication
This book is dedicated to my brother David Taylor, who is the hardware guru

of the family.

Author’s Acknowledgments
First and foremost, I would like to acknowledge the help of Jim Melton, editor

of the ISO/ANSI specifi cation for SQL. Without his untiring efforts, this book,

and indeed SQL itself as an international standard, would be of much less value.

Andrew Eisenberg has also contributed to my knowledge of SQL through

his writing. I would like to thank Michael Durthaler for helpful suggestions

regarding the coverage of cursors. I would also like to thank my project editor

Kim Darosett, my technical editor Robert Schneider, and my acquisitions

editor Kyle Looper for their key contributions to the production of this book.

Thanks also to my agent, Carole McClendon of Waterside Productions, for her

support of my career.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com. For

other comments, please contact our Customer Care Department within the U.S. at 877-762-2974, out-

side the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial

Project Editor: Kim Darosett

Acquisitions Editor: Kyle Looper

Senior Copy Editor: Barry Childs-Helton

Technical Editor: Robert Schneider

Editorial Manager: Leah Cameron

Editorial Assistant: Amanda Graham

Senior Editorial Assistant: Cherie Case

Cartoons: Rich Tennant

(www.the5thwave.com)

Composition Services

Project Coordinator: Katherine Crocker

Layout and Graphics: Samantha K. Cherolis,

Joyce Haughey, Melissa K. Jester,

Christine Williams

Proofreader: Laura Bowman

Indexer: Potomac Indexing, LLC

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Debbie Stailey, Director of Composition Services

Contents at a Glance
Introduction .. 1

Part I: Basic Concepts .. 5
Chapter 1: Relational Database Fundamentals .. 7

Chapter 2: SQL Fundamentals .. 23

Chapter 3: The Components of SQL .. 53

Part II: Using SQL to Build Databases 81
Chapter 4: Building and Maintaining a Simple Database Structure........................... 83

Chapter 5: Building a Multitable Relational Database... 107

Part III: Storing and Retrieving Data 137
Chapter 6: Manipulating Database Data ... 139

Chapter 7: Specifying Values .. 157

Chapter 8: Using Advanced SQL Value Expressions ... 183

Chapter 9: Zeroing In on the Data You Want.. 197

Chapter 10: Using Relational Operators ... 223

Chapter 11: Delving Deep with Nested Queries ... 247

Chapter 12: Recursive Queries ... 265

Part IV: Controlling Operations 275
Chapter 13: Providing Database Security ... 277

Chapter 14: Protecting Data ... 293

Chapter 15: Using SQL within Applications .. 313

Part V: Taking SQL to the Real World 327
Chapter 16: Accessing Data with ODBC and JDBC .. 329

Chapter 17: Operating on XML Data with SQL ... 339

Part VI: Advanced Topics ... 361
Chapter 18: Stepping through a Dataset with Cursors ... 363

Chapter 19: Adding Procedural Capabilities with Persistent Stored Modules 373

Chapter 20: Handling Errors ... 391

Chapter 21: Triggers .. 403

Part VII: The Part of Tens ... 409
Chapter 22: Ten Common Mistakes ... 411

Chapter 23: Ten Retrieval Tips .. 415

Appendix: SQL:2008 Reserved Words 419

Index .. 423

Table of Contents
Introduction ... 1

About This Book .. 1

Who Should Read This Book? .. 2

How This Book Is Organized .. 2

Part I: Basic Concepts ... 2

Part II: Using SQL to Build Databases .. 2

Part III: Storing and Retrieving Data .. 3

Part IV: Controlling Operations .. 3

Part V: Taking SQL to the Real World ... 3

Part VI: Advanced Topics ... 3

Part VII: The Part of Tens .. 4

Appendix and Glossary ... 4

Icons Used in This Book ... 4

Getting Started ... 4

Part I: Basic Concepts .. 5

Chapter 1: Relational Database Fundamentals. .7
Keeping Track of Things ... 8

What Is a Database? .. 9

Database Size and Complexity ... 9

What Is a Database Management System? ... 10

Flat Files .. 11

Database Models ... 12

Relational model .. 13

Why relational is better .. 13

Components of a relational database.. 14

Dealing with your relations .. 14

Enjoy the view .. 16

Schemas, domains, and constraints .. 19

The object model challenges the relational model 20

The object-relational model ... 20

Database Design Considerations ... 21

Chapter 2: SQL Fundamentals .23
What SQL Is and Isn’t .. 23

A (Very) Little History ... 25

SQL For Dummies, 7th Editionviii
SQL Statements .. 26

Reserved Words ... 28

Data Types .. 28

Exact numerics ... 29

Approximate numerics .. 31

Character strings ... 32

Binary strings ... 34

Booleans .. 35

Datetimes .. 35

Intervals .. 37

XML type ... 37

ROW types .. 40

Collection types ... 41

REF types .. 42

User-defi ned types ... 42

Data type summary.. 45

Null Values .. 47

Constraints ... 47

Using SQL in a Client/Server System ... 48

The server ... 48

The client .. 49

Using SQL on the Internet or an Intranet .. 50

Chapter 3: The Components of SQL .53
Data Defi nition Language .. 54

When “Just do it!” is not good advice ... 54

Creating tables ... 55

A room with a view .. 57

Collecting tables into schemas .. 62

Ordering by catalog ... 63

Getting familiar with DDL statements ... 64

Data Manipulation Language .. 66

Value expressions .. 66

Predicates ... 69

Logical connectives ... 70

Set functions ... 71

Subqueries .. 72

Data Control Language .. 73

Transactions ... 73

Users and privileges .. 74

Referential integrity constraints can jeopardize your data 77

Delegating responsibility for security ... 78

ix Table of Contents

Part II: Using SQL to Build Databases 81

Chapter 4: Building and Maintaining a Simple Database Structure. . . .83
Using a RAD Tool to Build a Simple Database ... 84

Deciding what to track .. 84

Creating a database table ... 85

Altering the table structure .. 92

Creating an index ... 94

Deleting a table... 96

Building POWER with SQL’s DDL ... 97

Using SQL with Microsoft Access .. 97

Creating a table .. 100

Creating an index ... 103

Altering the table structure .. 104

Deleting a table... 104

Deleting an index ... 105

Portability Considerations ... 105

Chapter 5: Building a Multitable Relational Database107
Designing a Database .. 107

Step 1: Defi ning objects ... 108

Step 2: Identifying tables and columns ... 108

Step 3: Defi ning tables ... 109

Domains, character sets, collations, and translations 113

Getting into your database fast with keys 114

Working with Indexes .. 116

What’s an index, anyway? ... 116

Why you should want an index .. 118

Maintaining an index ... 119

Maintaining Data Integrity .. 119

Entity integrity ... 120

Domain integrity .. 121

Referential integrity ... 122

Just when you thought it was safe 125

Potential problem areas .. 125

Constraints ... 127

Normalizing the Database .. 130

Modifi cation anomalies and normal forms 130

First normal form ... 132

Second normal form .. 133

Third normal form ... 134

Domain-key normal form (DK/NF) ... 135

Abnormal form ... 136

SQL For Dummies, 7th Editionx
Part III: Storing and Retrieving Data 137

Chapter 6: Manipulating Database Data .139
Retrieving Data .. 140

Creating Views ... 141

From tables ... 142

With a selection condition .. 143

With a modifi ed attribute .. 144

Updating Views .. 145

Adding New Data ... 146

Adding data one row at a time ... 146

Adding data only to selected columns .. 148

Adding a block of rows to a table .. 148

Updating Existing Data .. 151

Transferring Data ... 154

Deleting Obsolete Data ... 155

Chapter 7: Specifying Values .157
Values .. 157

Row values .. 158

Literal values .. 158

Variables ... 160

Special variables .. 162

Column references ... 162

Value Expressions ... 163

String value expressions ... 164

Numeric value expressions .. 165

Datetime value expressions.. 165

Interval value expressions .. 166

Conditional value expressions ... 166

Functions .. 167

Summarizing by using set functions .. 167

Value functions .. 170

Chapter 8: Using Advanced SQL Value Expressions183
CASE Conditional Expressions ... 183

Using CASE with search conditions ... 184

Using CASE with values ... 186

A special CASE — NULLIF ... 189

Another special CASE — COALESCE ... 190

CAST Data-Type Conversions .. 191

Using CAST within SQL ... 192

Using CAST between SQL and the host language 192

Row Value Expressions ... 193

xi Table of Contents

Chapter 9: Zeroing In on the Data You Want .197
Modifying Clauses ... 197

FROM Clauses .. 199

WHERE Clauses .. 200

Comparison predicates ... 201

BETWEEN .. 202

IN and NOT IN ... 203

LIKE and NOT LIKE .. 204

SIMILAR ... 206

NULL .. 206

ALL, SOME, ANY ... 207

EXISTS ... 210

UNIQUE .. 211

DISTINCT ... 211

OVERLAPS ... 212

MATCH .. 212

Referential integrity rules and the MATCH predicate 214

Logical Connectives .. 216

AND .. 217

OR .. 217

NOT .. 218

GROUP BY Clauses .. 218

HAVING Clauses ... 220

ORDER BY Clauses .. 221

Chapter 10: Using Relational Operators. .223
UNION ... 223

The UNION ALL operation .. 225

The CORRESPONDING operation... 226

INTERSECT ... 226

EXCEPT ... 228

Various Joins .. 229

Basic join ... 229

Equi-join .. 231

Cross join .. 233

Natural join ... 234

Condition join ... 234

Column-name join .. 235

Inner join ... 236

Outer join .. 236

Union join .. 240

ON versus WHERE ... 246

SQL For Dummies, 7th Editionxii
Chapter 11: Delving Deep with Nested Queries247

What Subqueries Do .. 248

Nested queries that return sets of rows ... 249

Nested queries that return a single value 252

The ALL, SOME, and ANY quantifi ers.. 255

Nested queries that are an existence test 257

Other correlated subqueries .. 259

UPDATE, DELETE, and INSERT... 262

Chapter 12: Recursive Queries. .265
What Is Recursion? .. 265

Houston, we have a problem .. 266

Failure is not an option ... 267

What Is a Recursive Query? ... 268

Where Might You Use a Recursive Query? ... 268

Querying the hard way .. 270

Saving time with a recursive query ... 271

Where Else Might You Use a Recursive Query? 274

Part IV: Controlling Operations 275

Chapter 13: Providing Database Security .277
The SQL Data Control Language .. 278

User Access Levels .. 278

The database administrator ... 278

Database object owners .. 279

The public ... 280

Granting Privileges to Users ... 280

Roles .. 281

Inserting data.. 282

Looking at data ... 282

Modifying table data .. 283

Deleting obsolete rows from a table.. 284

Referencing related tables .. 284

Using domains, character sets, collations, and translations 285

Causing SQL statements to be executed ... 287

Granting Privileges across Levels ... 287

Granting the Power to Grant Privileges .. 289

Taking Privileges Away ... 290

Using GRANT and REVOKE Together to Save Time and Effort 292

Chapter 14: Protecting Data .293
Threats to Data Integrity .. 293

Platform instability .. 294

Equipment failure .. 294

Concurrent access ... 295

xiii Table of Contents

Reducing Vulnerability to Data Corruption ... 297

Using SQL transactions ... 298

The default transaction ... 299

Isolation levels ... 300

The implicit transaction-starting statement................................... 303

SET TRANSACTION .. 303

COMMIT .. 304

ROLLBACK .. 304

Locking database objects ... 305

Backing up your data... 305

Savepoints and subtransactions .. 306

Constraints Within Transactions ... 307

Chapter 15: Using SQL within Applications .313
SQL in an Application .. 314

Keeping an eye out for the asterisk ... 314

SQL strengths and weaknesses .. 315

Procedural languages’ strengths and weaknesses 315

Problems in combining SQL with a procedural language 316

Hooking SQL into Procedural Languages ... 317

Embedded SQL ... 317

Module language .. 320

Object-oriented RAD tools .. 322

Using SQL with Microsoft Access .. 323

Part V: Taking SQL to the Real World 327

Chapter 16: Accessing Data with ODBC and JDBC329
ODBC ... 330

The ODBC interface ... 330

Components of ODBC .. 331

ODBC in a Client/Server Environment .. 332

ODBC and the Internet .. 332

Server extensions... 333

Client extensions .. 334

ODBC and an Intranet ... 335

JDBC .. 336

Chapter 17: Operating on XML Data with SQL 339
How XML Relates to SQL .. 339

The XML Data Type ... 340

When to use the XML type.. 341

When not to use the XML type ... 342

Mapping SQL to XML and XML to SQL .. 342

Mapping character sets .. 342

Mapping identifi ers .. 343

SQL For Dummies, 7th Editionxiv
Mapping data types ... 344

Mapping tables ... 344

Handling null values .. 345

Generating the XML Schema .. 346

SQL Functions That Operate on XML Data .. 347

XMLDOCUMENT... 347

XMLELEMENT .. 347

XMLFOREST .. 348

XMLCONCAT .. 348

XMLAGG .. 349

XMLCOMMENT .. 350

XMLPARSE .. 350

XMLPI .. 350

XMLQUERY ... 350

XMLCAST .. 351

Predicates ... 352

DOCUMENT .. 352

CONTENT .. 352

XMLEXISTS.. 352

VALID ... 353

Transforming XML Data into SQL Tables ... 354

Mapping Non-Predefi ned Data Types to XML .. 355

Domain .. 355

Distinct UDT ... 356

Row .. 357

Array .. 358

Multiset ... 358

The Marriage of SQL and XML ... 359

Part VI: Advanced Topics .. 361

Chapter 18: Stepping through a Dataset with Cursors 363
Declaring a Cursor ... 364

Query expression ... 365

ORDER BY clause ... 365

Updatability clause .. 367

Sensitivity ... 367

Scrollability ... 368

Opening a Cursor ... 369

Fetching Data from a Single Row ... 370

Syntax .. 370

Orientation of a scrollable cursor ... 371

Positioned DELETE and UPDATE statements 372

Closing a Cursor .. 372

xv Table of Contents

Chapter 19: Adding Procedural Capabilities with
Persistent Stored Modules. .373

Compound Statements .. 373

Atomicity ... 374

Variables ... 375

Cursors .. 376

Conditions ... 376

Handling conditions .. 377

Conditions that aren’t handled .. 380

Assignment ... 380

Flow of Control Statements .. 380

IF…THEN…ELSE…END IF ... 381

CASE…END CASE ... 381

LOOP…ENDLOOP .. 382

LEAVE .. 383

WHILE…DO…END WHILE ... 384

REPEAT…UNTIL…END REPEAT .. 384

FOR…DO…END FOR ... 385

ITERATE .. 385

Stored Procedures ... 386

Stored Functions .. 387

Privileges .. 387

Stored Modules .. 388

Chapter 20: Handling Errors .391
SQLSTATE ... 391

WHENEVER Clause .. 393

Diagnostics Areas .. 394

Diagnostics header area.. 395

Diagnostics detail area .. 396

Constraint violation example ... 398

Adding constraints to an existing table .. 399

Interpreting the information returned by SQLSTATE 400

Handling Exceptions ... 401

Chapter 21: Triggers .403
Examining Some Applications of Triggers .. 403

Creating a Trigger .. 404

Statement and row triggers .. 405

When a trigger fi res ... 405

The triggered SQL statement ... 405

An example trigger defi nition ... 406

Firing a Succession of Triggers .. 406

Referencing Old Values and New Values .. 407

Firing Multiple Triggers on a Single Table .. 408

SQL For Dummies, 7th Editionxvi
Part VII: The Part of Tens .. 409

Chapter 22: Ten Common Mistakes. .411
Assuming That Your Clients Know What They Need 411

Ignoring Project Scope .. 412

Considering Only Technical Factors ... 412

Not Asking for Client Feedback .. 412

Always Using Your Favorite Development Environment 413

Using Your Favorite System Architecture Exclusively 413

Designing Database Tables in Isolation .. 413

Neglecting Design Reviews ... 414

Skipping Beta Testing .. 414

Not Documenting Your Process .. 414

Chapter 23: Ten Retrieval Tips .415
Verify the Database Structure .. 415

Try Queries on a Test Database .. 416

Double-Check Queries That Include Joins ... 416

Triple-Check Queries with Subselects .. 416

Summarize Data with GROUP BY .. 416

Watch GROUP BY Clause Restrictions .. 417

Use Parentheses with AND, OR, and NOT .. 417

Control Retrieval Privileges ... 418

Back Up Your Databases Regularly ... 418

Handle Error Conditions Gracefully .. 418

Appendix: SQL:2008 Reserved Words 419

Index ... 423

Introduction

Welcome to database development using SQL, the industry-standard

database query language. Many database management system

(DBMS) tools run on a variety of hardware platforms. The differences among

the tools can be great, but all serious products have one thing in common:

They support SQL data access and manipulation. If you know SQL, you can

build relational databases and get useful information out of them.

About This Book
Relational database management systems are vital to many organizations.

People often think that creating and maintaining these systems must be

extremely complex activities — the domain of database gurus who possess

enlightenment beyond that of mere mortals. This book sweeps away the

database mystique. In this book, you

 ✓ Get to the roots of databases.

 ✓ Find out how a DBMS is structured.

 ✓ Discover the major functional components of SQL.

 ✓ Build a database.

 ✓ Protect a database from harm.

 ✓ Operate on database data.

 ✓ Determine how to get the information you want out of a database.

The purpose of this book is to help you build relational databases and get

valuable information out of them by using SQL. SQL is the international

standard language used to create and maintain relational databases. This

edition covers the latest version of the standard, SQL:2008.

This book doesn’t tell you how to design a database (I do that in Database
Development For Dummies, also published by Wiley). Here I assume that you

or somebody else has already created a valid design. I then illustrate how

you implement that design by using SQL. If you suspect that you don’t have a

good database design, then — by all means — fix your design before you try

to build the database. The earlier you detect and correct problems in a

development project, the cheaper the corrections will be.

2 SQL For Dummies, 7th Edition

Who Should Read This Book?
If you need to store or retrieve data from a DBMS, you can do a much better

job with a working knowledge of SQL. You don’t need to be a programmer to

use SQL, and you don’t need to know programming languages, such as Java,

C, or BASIC. SQL’s syntax is like that of English.

If you are a programmer, you can incorporate SQL into your programs. SQL

adds powerful data manipulation and retrieval capabilities to conventional

languages. This book tells you what you need to know to use SQL’s rich

assortment of tools and features inside your programs.

How This Book Is Organized
This book contains eight major parts. Each part contains several chapters.

You may want to read this book from cover to cover once, although you

don’t have to. After that, this book becomes a handy reference guide. You

can turn to whatever section is appropriate to answer your questions.

Part I: Basic Concepts
Part I introduces the concept of a database and distinguishes relational

databases from other types. It describes the most popular database

architectures, as well as the major components of SQL.

Part II: Using SQL to Build Databases
You don’t need SQL to build a database. This part shows you how to build a

database by using Microsoft Access, and then you get to build the same

database by using SQL. In addition to defining database tables, this part

covers other important database features: domains, character sets, collations,

translations, keys, and indexes.

Throughout this part, I emphasize protecting your database from corruption,

which is a bad thing that can happen in many ways. SQL gives you the tools

to prevent corruption, but you must use them properly to prevent problems

caused by bad database design, harmful interactions, operator error, and

equipment failure.

3 Introduction

Part III: Storing and Retrieving Data
After you have some data in your database, you want to do things with it:

Add to the data, change it, or delete it. Ultimately, you want to retrieve useful

information from the database. SQL tools enable you to do all this. These

tools give you low-level, detailed, brass-tacks control over your data.

Part IV: Controlling Operations
A big part of database management is protecting the data from harm, which

can come in many shapes and forms. People may accidentally or intentionally

put bad data into database tables, for example. You can protect yourself

by controlling who can access your database and what they can do with it.

Another threat to data comes from unintended interaction of concurrent

users’ operations. SQL provides powerful tools to prevent this problem

too. SQL provides much of the protection automatically, but you need to

understand how the protection mechanisms work so you get all the

protection you need.

Part V: Taking SQL to the Real World
SQL is different from most other computer languages in that it operates on a

whole set of data items at once, rather than dealing with them one at a time.

This difference in operational modes makes combining SQL with other languages

a challenge, but you can face it by using the information in this book. You can

exchange information with nondatabase applications by using XML.

Part VI: Advanced Topics
In this part, you discover how to include set-oriented SQL statements in your

programs and how to get SQL to deal with data one item at a time.

This part also covers error handling. SQL provides you with a lot of information

whenever something goes wrong in the execution of an SQL statement, and

you find out how to retrieve and interpret that information.

4 SQL For Dummies, 7th Edition

Part VII: The Part of Tens
This section provides some important tips on what to do, and what not to do,

in designing, building, and using a database.

Appendix and Glossary
The Appendix lists all of SQL’s reserved words, as of the 2008 release of Part 14

of the ANSI/ISO SQL standard. These are words that have a very specific

meaning in SQL and cannot be used for table names, column names, or

anything other than their intended meaning. Also, you can download a basic

glossary of some frequently used terms at www.dummies.com/go/sqlfd7e.

Icons Used in This Book
 Tips save you a lot of time and keep you out of trouble.

 Pay attention to the information marked by this icon — you may need

it later.

 Heeding the advice that this icon points to can save you from major grief.

Ignore it at your peril.

 This icon alerts you to the presence of technical details that are interesting

but not absolutely essential to understanding the topic being discussed.

Getting Started
Now for the fun part! Databases are the best tools ever invented for keeping

track of the things you care about. After you understand databases and

can use SQL to make them do your bidding, you wield tremendous power.

Coworkers come to you when they need critical information. Managers seek

your advice. Youngsters ask for your autograph. But most importantly, you

know, at a very deep level, how your organization really works.

Part I
Basic Concepts

In this part . . .

Part I presents the big picture. Before talking about

SQL itself, I explain what databases are and how

they’re different from data that 20th-century humans used

to store in crude, unstructured, Stone-Age computer files.

I go over the most popular database models and discuss

the physical systems on which these databases run. Then

I move on to SQL itself, giving you a brief look at what SQL

is, how the language came about, and what it is today,

based on the latest version of the international standard

SQL language.

Chapter 1

Relational Database Fundamentals
In This Chapter
▶ Organizing information

▶ Defining “database” in digital terms

▶ Deciphering DBMS

▶ Comparing database models

▶ Defining “relational database” (can you relate?)

▶ Considering the challenges of database design

SQL (pronounced ess-que-ell, not see’qwl, though database geeks still

argue about that) is a language specifically designed with databases

in mind. SQL enables people to create databases, add new data to them,

maintain the data in them, and retrieve selected parts of the data. Introduced

in 1970, SQL has grown and advanced over the years to become the industry

standard. It is governed by a formal standard maintained by the International

Standards Organization (ISO).

Various kinds of databases exist, each adhering to a different model of how

the data in the database is organized.

SQL was originally developed to operate on data in databases that follow the

relational model. Recently, the international SQL standard has incorporated

part of the object model, resulting in hybrid structures called object-relational

databases. In this chapter, I discuss data storage, devote a section to how the

relational model compares with other major models, and provide a look at

the important features of relational databases.

Before I talk about SQL, however, I want to nail down what I mean by the

term database. Its meaning has changed, just as computers have changed the

way people record and maintain information.

8 Part I: Basic Concepts

Keeping Track of Things
Today people use computers to perform many tasks formerly done with

other tools. Computers have replaced typewriters for creating and modifying

documents. They’ve surpassed electromechanical calculators as the best

way to do math. They’ve also replaced millions of pieces of paper, file folders,

and file cabinets as the principal storage medium for important information.

Compared to those old tools, of course, computers do much more, much

faster — and with greater accuracy. These increased benefits do come at a

cost, however: Computer users no longer have direct physical access to their

data.

When computers occasionally fail, office workers may wonder whether

computerization really improved anything at all. In the old days, a manila file

folder only “crashed” if you dropped it — then you merely knelt down, picked

up the papers, and put them back in the folder. Barring earthquakes or other

major disasters, file cabinets never “went down,” and they never gave you an

error message. A hard-drive crash is another matter entirely: You can’t “pick

up” lost bits and bytes. Mechanical, electrical, and human failures can make

your data go away into the Great Beyond, never to return.

Taking the necessary precautions to protect yourself from accidental data

loss allows you to start cashing in on the greater speed and accuracy that

computers provide.

If you’re storing important data, you have four main concerns:

 ✓ Storing data has to be quick and easy, because you’re likely to do it

often.

 ✓ The storage medium must be reliable. You don’t want to come back later

and find some (or all) of your data missing.

 ✓ Data retrieval has to be quick and easy, regardless of how many items

you store.

 ✓ You need an easy way to separate the exact information you want now

from the tons of data that you don’t want right now.

State-of-the-art computer databases satisfy these four criteria. If you store

more than a dozen or so data items, you probably want to store those items

in a database.

9 Chapter 1: Relational Database Fundamentals

What Is a Database?
The term database has fallen into loose use lately, losing much of its original

meaning. To some people, a database is any collection of data items (phone

books, laundry lists, parchment scrolls . . . whatever). Other people define

the term more strictly.

In this book, I define a database as a self-describing collection of integrated

records. And yes, that does imply computer technology, complete with

programming languages such as SQL.

 A record is a representation of some physical or conceptual object. Say, for

example, that you want to keep track of a business’s customers. You assign a

record for each customer. Each record has multiple attributes, such as name,

address, and telephone number. Individual names, addresses, and so on are

the data.

A database consists of both data and metadata. Metadata is the data that

describes the data’s structure within a database. If you know how your

data is arranged, then you can retrieve it. Because the database contains a

description of its own structure, it’s self-describing. The database is integrated

because it includes not only data items but also the relationships among data

items.

The database stores metadata in an area called the data dictionary, which

describes the tables, columns, indexes, constraints, and other items that

make up the database.

Because a flat file system (described later in this chapter) has no metadata,

applications written to work with flat files must contain the equivalent of the

metadata as part of the application program.

Database Size and Complexity
Databases come in all sizes, from simple collections of a few records to

mammoth systems holding millions of records.

 A personal database is designed for use by a single person on a single computer.

Such a database usually has a rather simple structure and a relatively small

size. A departmental or workgroup database is used by the members of a single

department or workgroup within an organization. This type of database is

generally larger than a personal database and is necessarily more complex;

such a database must handle multiple users trying to access the same data at

the same time. An enterprise database can be huge. Enterprise databases may

model the critical information flow of entire large organizations.

10 Part I: Basic Concepts

What Is a Database
Management System?

Glad you asked. A database management system (DBMS) is a set of programs

used to define, administer, and process databases and their associated

applications. The database being managed is, in essence, a structure that you

build to hold valuable data. A DBMS is the tool you use to build that structure

and operate on the data contained within the database.

You can find many DBMS programs on the market today. Some run only on

mainframe computers, some only on minicomputers, and some only on

personal computers. A strong trend, however, is for such products to

work on multiple platforms or on networks that contain all three classes of

machines. An even newer trend is to distribute data over a storage area
network (SAN) or even to store it out on the Internet.

 A DBMS that runs on platforms of multiple classes, large and small, is called

scalable.

Whatever the size of the computer that hosts the database — and regardless

of whether the machine is connected to a network — the flow of information

between database and user is always the same. Figure 1-1 shows that the

user communicates with the database through the DBMS. The DBMS masks

the physical details of the database storage so that the application only has

to concern itself with the logical characteristics of the data, not with how the

data is stored.

Figure 1-1:
Block

diagram of
a DBMS-

based
information

system.

Application
Program

User
User

Interface

DBMS Database

11 Chapter 1: Relational Database Fundamentals

Flat Files
Where structured data is concerned, the flat file is as simple as it gets. No, a

flat file isn’t a folder that’s been squashed under a stack of books. Flat files

are so called because they have minimal structure. If they were buildings,

they’d barely stick up from the ground. A flat file is simply a collection of

data records, one after another, in a specified format — the data, the whole

data, and nothing but the data — in effect, a list. In computer terms, a flat file

is simple. Because the file doesn’t store structural information (metadata),

its overhead (stuff in the file that is not data but takes up storage space) is

minimal.

Say that you want to keep track of the names and addresses of your company’s

customers in a flat file system. The system may have a structure something

like this:

Harold Percival 26262 S. Howards Mill Rd Westminster CA92683
Jerry Appel 32323 S. River Lane Rd Santa Ana CA92705
Adrian Hansen 232 Glenwood Court Anaheim CA92640
John Baker 2222 Lafayette St Garden Grove CA92643
Michael Pens 77730 S. New Era Rd Irvine CA92715
Bob Michimoto 25252 S. Kelmsley Dr Stanton CA92610
Linda Smith 444 S.E. Seventh St Costa Mesa CA92635
Robert Funnell 2424 Sheri Court Anaheim CA92640
Bill Checkal 9595 Curry Dr Stanton CA92610
Jed Style 3535 Randall St Santa Ana CA92705

The value is not in the data, but in the structure
Years ago, some clever person calculated that
if you reduce human beings to their compo-
nents of carbon, hydrogen, oxygen, and nitro-
gen atoms (plus traces of others), they would be
worth only 97 cents. However droll this assess-
ment, it’s misleading. People aren’t composed
of mere isolated collections of atoms. Our
atoms combine into enzymes, proteins, hor-
mones, and many other substances that would

cost millions of dollars per ounce on the phar-
maceutical market. The precise structure of
these combinations of atoms is what gives them
greater value. By analogy, database structure
makes possible the interpretation of seemingly
meaningless data. The structure brings to the
surface patterns, trends, and tendencies in the
data. Unstructured data — like uncombined
atoms — has little or no value.

12 Part I: Basic Concepts

As you can see, the file contains nothing but data. Each field has a fixed

length (the Name field, for example, is always exactly 15 characters long), and

no structure separates one field from another. The person who created the

database assigned field positions and lengths. Any program using this file

must “know” how each field was assigned, because that information is not

contained in the database itself.

Such low overhead means that operating on flat files can be very fast. On

the minus side, however, application programs must include logic that

manipulates the file’s data at a very detailed level. The application must

know exactly where and how the file stores its data. Thus, for small systems,

flat files work fine. The larger a system is, however, the more cumbersome a

flat-file system becomes.

 Using a database instead of a flat-file system eliminates duplication of effort.

Although database files themselves may have more overhead, the applications

can be more portable across various hardware platforms and operating

systems. A database also makes writing application programs easier because

the programmer doesn’t need to know the physical details of where and how

the data is stored.

Databases eliminate duplication of effort, because the DBMS handles the

data-manipulation details. Applications written to operate on flat files must

include those details in the application code. If multiple applications all

access the same flat-file data, these applications must all (redundantly)

include that data-manipulation code. If you’re using a DBMS, however, you

don’t need to include such code in the applications at all.

Clearly, if a flat-file-based application includes data-manipulation code that

only runs on a particular hardware platform, migrating the application to a

new platform is a headache waiting to happen. You have to change all the

hardware-specific code — and that’s just for openers. Migrating a similar

DBMS-based application to another platform is much simpler — fewer

complicated steps, fewer aspirin consumed.

Database Models
Different as databases may be in size, they are generally always structured

according to one of three database models:

 ✓ Hierarchical: These databases arrange their data in a simple hierarchical

structure that allows fast access. They suffer from redundancy problems

and their structural inflexibility makes database modification difficult.

 ✓ Network: Network databases have minimal redundancy but pay for that

advantage with structural complexity.

13 Chapter 1: Relational Database Fundamentals

 ✓ Relational: These databases store their data in tables that are related

to each other. Nowadays, new installations of database management

systems are almost exclusively of the relational type. Organizations that

already have a major investment in hierarchical or network technology

may add to the existing model, but groups that have no need to maintain

compatibility with such so-called legacy systems nearly always choose

the relational model for their databases.

The first databases to see wide use were large organizational databases that

today would be called enterprise databases, built according to either the

hierarchical model or the network model. Systems built according to the

relational model followed several years later. SQL is a strictly modern

language; it applies only to the relational model and its descendant, the

object-relational model. So here’s where this book says, “So long, it’s been

good to know ya,” to the hierarchical and network models.

 New database management systems that aren’t based on the relational model

probably conform to the (newer) object model or the (hybrid) object-relational

model.

Relational model
Dr. E. F. Codd of IBM first formulated the relational database model in 1970,

and this model started appearing in products about a decade later. Ironically,

IBM did not deliver the first relational DBMS. That distinction went to a small

start-up company, which named its product Oracle.

Relational databases have almost completely replaced earlier database types.

That’s largely because you can change the structure of a relational database

without having to change or modify applications that were based on the old

structures. Suppose, for example, that you add one or more new columns to

a database table. You don’t need to change any previously written applications

that process that table — unless, of course, you alter one or more of the

columns that those applications have to use.

 Of course, if you remove a column that an existing application has to use, you

experience problems no matter what database model you follow. One of the

quickest ways to make a database application crash is to ask it to retrieve a

kind of data that your database doesn’t contain.

Why relational is better
In applications written with DBMSs that follow the hierarchical or network

model, database structure is hard-coded into the application. That is, the

14 Part I: Basic Concepts

application is dependent on the specific physical implementation of the

database. If you add a new attribute to the database, you must change your

application to accommodate the change, whether or not the application

uses the new attribute. An unmodified application will expect the data to

be arranged according to the old layout, so it will produce garbage when it

writes data into the file that now contains the new attribute.

Relational databases offer structural flexibility; applications written for

those databases are easier to maintain than similar applications written for

hierarchical or network databases. That same structural flexibility enables

you to retrieve combinations of data that you may not have anticipated

needing at the time of the database’s design.

Components of a relational database
Relational databases gain their flexibility because their data resides in tables

that are largely independent of each other. You can add, delete, or change

data in a table without affecting the data in the other tables, provided that

the affected table is not a parent of any of the other tables. (Parent-child

table relationships are explained in Chapter 5, and no, they don’t involve

discussing allowances over dinner.) In this section, I show what these tables

consist of and how they relate to the other parts of a relational database.

Dealing with your relations
At holiday time, many of my relatives come to my house and sit down at my

table. Databases have relations, too, but each of their relations has its own

table. A relational database is made up of one or more relations.

 A relation is a two-dimensional array of rows and columns, containing single-

valued entries and no duplicate rows. Each cell in the array can have only one

value, and no two rows may be identical. If that’s a little hard to picture, here’s

an example that will put you in the right ballpark. . . .

Most people are familiar with two-dimensional arrays of rows and columns,

in the form of electronic spreadsheets such as Microsoft Excel. A major-

league baseball player’s offensive statistics, as listed on the back of baseball

card, are an example of such an array. On the baseball card are columns for

15 Chapter 1: Relational Database Fundamentals

year, team, games played, at-bats, hits, runs scored, runs batted in, doubles,

triples, home runs, bases on balls, steals, and batting average. A row covers

each year that the player has played in the Major Leagues. You can also store

this data in a relation (a table), which has the same basic structure. Figure

1-2 shows a relational database table holding the offensive statistics for a

single major-league player. In practice, such a table would hold the statistics

for an entire team — or perhaps the whole league.

Figure 1-2:
A table

showing
a baseball

player’s
offensive
statistics.

Roberts
Roberts
Roberts

1988
1989
1990

Padres
Padres
Padres

5
117
149

9
329
556

3
99

172

 0
15
36

0
8
3

0
3
9

.333

.301

.309

Year
At
BatPlayer Team Game Hits

1
81

104

Runs

0
25
44

RBI 2B 3B HR

 1
49
55

Walk

 0
21
46

Steals
Bat.
Avg.

Columns in the array are self-consistent: A column has the same meaning in

every row. If a column contains a player’s last name in one row, the column

must contain a player’s last name in all rows. The order in which the rows

and columns appear in the array has no significance. As far as the DBMS is

concerned, it doesn’t matter which column is first, which is next, and which

is last. The same is true of rows. The DBMS processes the table the same way

regardless of the organization.

Every column in a database table embodies a single attribute of the table,

just like that baseball card. The column’s meaning is the same for every row

of the table. A table may, for example, contain the names, addresses, and

telephone numbers of all an organization’s customers. Each row in the table

(also called a record, or a tuple) holds the data for a single customer. Each

column holds a single attribute — such as customer number, customer name,

customer street, customer city, customer state, customer postal code, or

customer telephone number. Figure 1-3 shows some of the rows and columns

of such a table.

 The relations in this database model correspond to tables in any database

based on the model. Try to say that ten times fast.

16 Part I: Basic Concepts

Figure 1-3:
Each data-

base row
contains
a record;

each
database

column
holds a

single
attribute.

ColumnsRow

Enjoy the view
One of my favorite views is of the Yosemite Valley from the mouth of the

Wawona Tunnel, late on a spring afternoon. Golden light bathes the sheer

face of El Capitan, Half Dome glistens in the distance, and Bridal Veil Falls

forms a silver cascade of sparkling water, while a trace of wispy clouds

weaves a tapestry across the sky. Databases have views as well — even if

they’re not quite that picturesque. The beauty of database views is their

sheer usefulness when you’re working with your data.

Tables can contain many columns and rows. Sometimes all that data

interests you, and sometimes it doesn’t. Only some columns of a table may

interest you, or perhaps you want to see only rows that satisfy a certain

condition. Some columns of one table and some other columns of a related

table may interest you. To eliminate data that isn’t relevant to your current

needs, you can create a view — a subset of a database that an application can

process. It may contain parts of one or more tables.

 Views are sometimes called virtual tables. To the application or the user, views

behave the same as tables. Views, however, have no independent existence.

Views allow you to look at data, but views are not part of the data.

17 Chapter 1: Relational Database Fundamentals

Say, for example, that you’re working with a database that has a CUSTOMER

table and an INVOICE table. The CUSTOMER table has the columns

CustomerID, FirstName, LastName, Street, City, State, Zipcode, and

Phone. The INVOICE table has the columns InvoiceNumber, CustomerID,

Date, TotalSale, TotalRemitted, and FormOfPayment.

A national sales manager wants to look at a screen that contains only the

customer’s first name, last name, and telephone number. Creating from the

CUSTOMER table a view that contains only the FirstName, LastName, and

Phone columns enables the manager to view what he or she needs without

having to see all the unwanted data in the other columns. Figure 1-4 shows

the derivation of the national sales manager’s view.

Figure 1-4:
The sales

manager’s
view derives

from the
CUSTOMER

table.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

SALES_MGR View

FirstName
LastName
Phone

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

A branch manager may want to look at the names and phone numbers of

all customers whose zip codes fall between 90000 and 93999 (southern and

central California). A view that places a restriction on the rows it retrieves, as

well as the columns it displays, does the job. Figure 1-5 shows the sources for

the columns in the branch manager’s view.

The accounts-payable manager may want to look at customer names

from the CUSTOMER table and Date, TotalSale, TotalRemitted, and

FormOfPayment from the INVOICE table, where TotalRemitted is less

than TotalSale. The latter would be the case if full payment hasn’t yet

been made. This need requires a view that draws from both tables. Figure 1-6

18 Part I: Basic Concepts

shows data flowing into the accounts-payable manager’s view from both the

CUSTOMER and INVOICE tables.

Figure 1-5:
The branch
manager’s

 view
includes

only
certain rows

from the
CUSTOMER

table.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

BRANCH_MGR View

FirstName
LastName
Phone

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

Zipcode > = 90000 AND Zipcode < = 93999

Views are useful because they enable you to extract and format database

data without physically altering the stored data. They also protect the

data that you don’t want to show, because they don’t contain it. Chapter 6

illustrates how to create a view by using SQL.

Figure 1-6:
The

accounts-
payable

manager’s
view draws

from two
tables.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

FirstName
LastName
Date
Total Sale
TotalRemitted
FormOfPayment

ACCTS_PAY View

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

TotalRemitted < TotalSale

19 Chapter 1: Relational Database Fundamentals

Schemas, domains, and constraints
 A database is more than a collection of tables. Additional structures, on

several levels, help to maintain the data’s integrity. A database’s schema

provides an overall organization to the tables. The domain of a table column

tells you what values you may store in the column. You can apply constraints

to a database table to prevent anyone (including yourself) from storing invalid

data in the table.

Schemas
The structure of an entire database is its schema, or conceptual view. This

structure is sometimes also called the complete logical view of the database.

The schema is metadata — as such, it’s part of the database. The metadata

itself, which describes the database’s structure, is stored in tables that are

just like the tables that store the regular data. Even metadata is data; that’s

the beauty of it.

Domains
An attribute of a relation (that is, a column of a table) can assume some finite

number of values. The set of all such values is the domain of the attribute.

Say, for example, that you’re an automobile dealer who handles the newly

introduced Curarri GT 4000 sports coupe. You keep track of the cars you

have in stock in a database table that you name INVENTORY. You name one

of the table columns Color, which holds the exterior color of each car. The

GT 4000 comes in only four colors: blazing crimson, midnight black, snowflake

white, and metallic gray. Those four colors are the domain of the Color

attribute.

Constraints
Constraints are an important, although often overlooked, component of a

database. Constraints are rules that determine what values the table attributes

can assume.

By applying tight constraints to a column, you can prevent people from

entering invalid data into that column. Of course, every value that is legitimately

in the domain of the column must satisfy all the column’s constraints. As I

mention in the preceding section, a column’s domain is the set of all values

that the column can contain. A constraint is a restriction on what a column

may contain. The characteristics of a table column, plus the constraints

that apply to that column, determine the column’s domain. By applying

constraints, you can prevent users from entering data into a column that falls

outside the column’s domain.

20 Part I: Basic Concepts

In the auto dealership example, you can constrain the database to accept

only those four values in the Color column. If a data entry operator then

tries to enter in the Color column a value of, for example, forest green,

the system refuses to accept the entry. Data entry can’t proceed until the

operator enters a valid value into the Color field.

You may wonder what happens when the Curarri AutoWerks decides to

offer a forest-green version of the GT 4000 as a mid-year option. The answer

is (drum roll, please) job security for database-maintenance programmers.

This kind of thing happens all the time and requires updates to the database

structure. Only people who know how to modify the database structure

(such as you) will be able to prevent a major snafu.

The object model challenges
the relational model
The relational model has been fantastically successful in a wide variety of

application areas. However, it does not do everything that anyone would ever

want. The limitations have been made more visible by the rise in popularity

of object-oriented programming languages such as C++, Java, and C#. Such

languages are capable of handling more complex problems than traditional

languages due to their advanced features, such as user-extensible type

systems, encapsulation, inheritance, dynamic binding of methods, complex

and composite objects, and object identity.

I am not going to explain all that jargon in this book (although I do touch on

some of these terms later). Suffice it to say that the classic relational model

doesn’t mesh well with many of these features. As a result, database

management systems based on the object model have been developed and

are available on the market. As yet, their market share is relatively small.

The object-relational model
Database designers, like everyone else, are constantly searching for the

best of all possible worlds. They mused, “Wouldn’t it be great if we could

have the advantages of an object-oriented database system, and still retain

compatibility with the relational system that we have come to know and

love?” This kind of thinking led to the hybrid object-relational model.

Object-relational DBMSs extend the relational model to include support for

object-oriented data modeling. Object-oriented features have been added

to the international SQL standard, allowing relational DBMS vendors to

transform their products into object-relational DBMSs, while retaining

21 Chapter 1: Relational Database Fundamentals

compatibility with the standard. Thus, whereas the SQL-92 standard

describes a purely relational database model, SQL:1999 describes an object-

relational database model. SQL:2003 has more object-oriented features, and

SQL:2008 goes even further in that direction.

In this book, I describe ISO/IEC international standard SQL. This is primarily

a relational database model. I also include the object-oriented extensions to

the standard that were introduced in SQL:1999, and the additional extensions

included in SQL:2003 and SQL:2008. The object-oriented features of the new

standard allow developers to apply SQL databases to problems that are too

complex to address with the older, purely relational, paradigm. Vendors of

DBMS systems are incorporating the object-oriented features in the ISO

standard into their products. Some of these features have been present for

years, while others are yet to be included.

Database Design Considerations
A database is a representation of a physical or conceptual structure, such as

an organization, an automobile assembly, or the performance statistics of all

the major-league baseball clubs. The accuracy of the representation depends

on the level of detail of the database design. The amount of effort that you

put into database design should depend on the type of information you want

to get out of the database. Too much detail is a waste of effort, time, and hard

drive space. Too little detail may render the database worthless.

 Decide how much detail you need now and how much you may need in the

future — and then provide exactly that level of detail in your design (no more

and no less). But don’t be surprised if you have to adjust the design eventually

to meet changing real-world needs.

 Today’s database management systems, complete with attractive graphical

user interfaces and intuitive design tools, can give the would-be database

designer a false sense of security. These systems make designing a database

seem comparable to building a spreadsheet or engaging in some other relatively

straightforward task. No such luck. Database design is difficult. If you do it

incorrectly, not only is your database likely to suffer from poor performance,

but it also may well become gradually more corrupt as time goes on. Often the

problem doesn’t turn up until after you devote a great deal of effort to data

entry. By the time you know that you have a problem, it’s already serious.

In many cases, the only solution is to completely redesign the database and

reenter all the data. The up side is that by the time you finish your second

version of the same database, you realize how much better you understand

database design.

22 Part I: Basic Concepts

Chapter 2

SQL Fundamentals
In This Chapter
▶ Understanding SQL

▶ Clearing up SQL misconceptions

▶ Taking a look at the different SQL standards

▶ Getting familiar with standard SQL commands and reserved words

▶ Representing numbers, characters, dates, times, and other data types

▶ Exploring null values and constraints

▶ Putting SQL to work in a client/server system

▶ Considering SQL on a network

SQL is a flexible language that you can use in a variety of ways. It’s the

most widely used tool for communicating with a relational database. In

this chapter, I explain what SQL is and isn’t — specifically, what distinguishes

SQL from other types of computer languages. Then I introduce the commands

and data types that standard SQL supports, and explain two key concepts:
null values and constraints. Finally, I give an overview of how SQL fits into

the client/server environment, as well as the Internet and organizational

intranets.

What SQL Is and Isn’t
The first thing to understand about SQL is that SQL isn’t a procedural language,
as are BASIC, C, C++, C#, and Java. To solve a problem in one of those

procedural languages, you write a procedure — a sequence of commands that

performs one specific operation after another until the task is complete. The

procedure may be a straightforward linear sequence or may loop back on

itself, but in either case, the programmer specifies the order of execution.

24 Part I: Basic Concepts

SQL, on the other hand, is nonprocedural. To solve a problem using SQL,

simply tell SQL what you want (as if you were talking to Aladdin’s genie)

instead of telling the system how to get you what you want. The database

management system (DBMS) decides the best way to get you what you

request.

All right. I just told you that SQL is not a procedural language — and that’s

essentially true. However, millions of programmers out there (and you’re

probably one of them) are accustomed to solving problems in a procedural

manner. So, in recent years, there has been a lot of pressure to add some

procedural functionality to SQL — and SQL now incorporates features of a

procedural language: BEGIN blocks, IF statements, functions, and (yes)

procedures. With these facilities added, you can store programs at the

server, where multiple clients can use your programs repeatedly.

To illustrate what I mean by “tell the system what you want,” suppose you

have an EMPLOYEE table from which you want to retrieve the rows that

correspond to all your senior people. You want to define a senior person as

anyone older than age 40 or anyone earning more than $60,000 per year. You

can make the desired retrieval by using the following query:

SELECT * FROM EMPLOYEE WHERE Age > 40 OR Salary > 60000 ;

This statement retrieves all rows from the EMPLOYEE table where either the

value in the Age column is greater than 40 or the value in the Salary column

is greater than 60,000. In SQL, you don’t have to specify how the information

is retrieved. The database engine examines the database and decides for

itself how to fulfill your request. You need only specify what data you want to

retrieve.

 A query is a question you ask the database. If any of the data in the database

satisfies the conditions of your query, SQL retrieves that data.

Current SQL implementations lack many of the basic programming constructs

that are fundamental to most other languages. Real-world applications

usually require at least some of these programming constructs, which is why

SQL is actually a data sublanguage. Even with the extensions that were added

in 1999, 2003, 2005, and 2008, you still have to use SQL in combination with a

procedural language (such as C++) to create a complete application.

You can extract information from a database in one of two ways:

 ✓ Make an ad-hoc query from a computer console by just typing an SQL

statement and reading the results from the screen. Console is the

traditional term for the computer hardware that does the job of the

keyboard and screen used in current PC-based systems. Queries from

the console are appropriate when you want a quick answer to a specific

question. To meet an immediate need, you may require information that

25 Chapter 2: SQL Fundamentals

you never needed before from a database. You’re likely never to need

that information again, either, but you need it now. Enter the appropriate

SQL query statement from the keyboard, and in due time, the result

appears on your screen.

 ✓ Execute a program that collects information from the database and

then reports on the information, either on-screen or in a printed

report. Incorporating an SQL query directly into a program is a good

way to run a complex query that you’re likely to run again in the future.

That way, you can formulate a query just once for use as often as you

want. Chapter 15 explains how to incorporate SQL code into programs

written in another programming language.

A (Very) Little History
SQL originated in one of IBM’s research laboratories, as did relational

database theory. In the early 1970s, as IBM researchers developed early

relational DBMS (or RDBMS) systems, they created a data sublanguage to

operate on these systems. They named the pre-release version of this

sublanguage SEQUEL (Structured English QUEry Language). However, when it

came time to formally release their query language as a product, they found

that another company had already trademarked the product name “Sequel.”

Therefore, the marketing geniuses at IBM decided to give the released

product a name that was different from SEQUEL but still recognizable as a

member of the same family. So they named it SQL (pronounced ess-que-ell).

 The syntax of SQL is a form of structured English, which is where its original

name came from. However, SQL is not a structured language in the sense that

computer scientists understand that term. Thus, despite the assumptions of

many people, SQL is not an acronym standing for “structured query language.”

It is a sequence of three letters that don’t stand for anything, just like the

name of the C language does not stand for anything.

IBM’s work with relational databases and SQL was well known in the industry

even before IBM introduced its SQL/DS relational database (RDBMS) product

in 1981. By that time, Relational Software, Inc. (now Oracle Corporation)

had already released its first RDBMS. These early products immediately

set the standard for a new class of database management systems. They

incorporated SQL, which became the de facto standard for data sublanguages.

Vendors of other relational database management systems came out with

their own versions of SQL. Typically these other implementations contained

all the core functionality of the IBM products, extended in ways that took

advantage of the particular strengths of their own RDBMS product. As a

result, although nearly all vendors used some form of SQL, compatibility

between platforms was poor.

26 Part I: Basic Concepts

 An implementation is a particular RDBMS running on a specific hardware

platform.

Soon a movement began to create a universally recognized SQL standard

to which everyone could adhere. In 1986, ANSI (the American National

Standards Institute) released a formal standard it named SQL-86. ANSI

updated that standard in 1989 to SQL-89 and again in 1992 to SQL-92. As

DBMS vendors proceed through new releases of their products, they try

to bring their implementations ever closer to this standard. This effort has

brought the goal of true SQL portability much closer to reality.

 The most recent full version of the SQL standard is SQL:2008 (ISO/IEC 9075-X:

2008). In this book, I describe SQL as SQL:2008 defines the language. Every

specific SQL implementation differs from the standard to a certain extent.

Because the complete SQL standard is comprehensive, currently available

implementations are unlikely to support it fully. However, DBMS vendors are

working to support a core subset of the standard SQL language. The full ISO/

IEC standard is available for purchase at webstore.ansi.org.

SQL Statements
The SQL command language consists of a limited number of statements that

perform three functions of data handling: Some of them define data, some

manipulate data, and others control data. I cover the data-definition statements

and data-manipulation statements in Chapters 4 through 12; I detail the

data-control statements in Chapters 13 and 14.

To comply with SQL:2008, an implementation must include a basic set of core

features. It may also include extensions to the core set (which the SQL:2008

specification also describes). Table 2-1 lists the core plus the extended

SQL:2008 statements. It’s quite a list. If you’re among those programmers

who love to try out new capabilities, rejoice.

Table 2-1 SQL:2008 Statements
ADD DEALLOCATE

PREPARE
FREE LOCATOR

ALLOCATE CURSOR DECLARE GET DESCRIPTOR

ALLOCATE
DESCRIPTOR

DECLARE LOCAL
TEMPORARY TABLE

GET DIAGNOSTICS

ALTER DOMAIN DELETE GRANT PRIVILEGE

ALTER ROUTINE DESCRIBE INPUT GRANT ROLE

ALTER SEQUENCE
GENERATOR

DESCRIBE OUTPUT HOLD LOCATOR

27 Chapter 2: SQL Fundamentals

ALTER TABLE DISCONNECT INSERT

ALTER TRANSFORM DROP MERGE

ALTER TYPE DROP ASSERTION OPEN

CALL DROP ATTRIBUTE PREPARE

CLOSE DROP CAST RELEASE
SAVEPOINT

COMMIT DROP CHARACTER
SET

RETURN

CONNECT DROP COLLATION REVOKE

CREATE DROP COLUMN ROLLBACK

CREATE ASSERTION DROP CONSTRAINT SAVEPOINT

CREATE CAST DROP DEFAULT SELECT

CREATE CHARACTER
SET

DROP DOMAIN SET CATALOG

CREATE COLLATION DROP METHOD SET CONNECTION

CREATE DOMAIN DROP ORDERING SET CONSTRAINTS

CREATE FUNCTION DROP ROLE SET DESCRIPTOR

CREATE METHOD DROP ROUTINE SET NAMES

CREATE ORDERING DROP SCHEMA SET PATH

CREATE PROCEDURE DROP SCOPE SET ROLE

CREATE ROLE DROP SEQUENCE SET SCHEMA

CREATE SCHEMA DROP TABLE SET SESSION
AUTHORIZATION

CREATE SEQUENCE DROP TRANSFORM SET SESSION
CHARACTERISTICS

CREATE TABLE DROP TRANSLATION SET SESSION
COLLATION

CREATE TRANSFORM DROP TRIGGER SET TIME ZONE

CREATE
TRANSLATION

DROP TYPE SET TRANSACTION

CREATE TRIGGER DROP VIEW SET TRANSFORM
GROUP

CREATE TYPE EXECUTE
IMMEDIATE

START
TRANSACTION

CREATE VIEW FETCH UPDATE

DEALLOCATE
DESCRIPTOR

28 Part I: Basic Concepts

Reserved Words
In addition to the statements, a number of other words have a special

significance within SQL. These words, along with the statements, are

reserved for specific uses, so you can’t use them as variable names or in

any other way that differs from their intended use. You can easily see why

tables, columns, and variables should not be given names that appear on the

reserved word list. Imagine the confusion that a statement such as the

following would cause:

SELECT SELECT FROM SELECT WHERE SELECT = WHERE ;

’Nuff said. A complete list of SQL reserved words appears in the appendix.

Data Types
Depending on their histories, different SQL implementations support a

variety of data types. The SQL specification recognizes seven predefined

general types:

 ✓ Numerics

 ✓ Binary

 ✓ Strings

 ✓ Booleans

 ✓ Datetimes

 ✓ Intervals

 ✓ XML

Within each of these general types may be several subtypes (exact numerics,

approximate numerics, character strings, bit strings, large object strings).

In addition to the built-in, predefined types, SQL supports collection types,

constructed types, and user-defined types, all of which I discuss later in this

chapter.

 If you use an SQL implementation that supports data types that aren’t

described in the SQL specification, you can keep your database more portable

by avoiding these undescribed data types. Before you decide to create and

use a user-defined data type, make sure that any DBMS you may want to port

to in the future also supports user-defined types.

29 Chapter 2: SQL Fundamentals

Exact numerics
As you can probably guess from the name, the exact numeric data types

enable you to express the value of a number exactly. Five data types fall into

this category:

 ✓ INTEGER

 ✓ SMALLINT

 ✓ BIGINT

 ✓ NUMERIC

 ✓ DECIMAL

INTEGER data type
Data of the INTEGER type has no fractional part, and its precision depends

on the specific SQL implementation. As the database developer, you can’t

specify the precision.

 The precision of a number is the maximum number of significant digits the

number can have.

SMALLINT data type
The SMALLINT data type is also for integers, but the precision of a SMALLINT

in a specific implementation can’t be any larger than the precision of an

INTEGER on the same implementation. In many implementations, SMALLINT

and INTEGER are the same.

If you’re defining a database table column to hold integer data and you

know that the range of values in the column won’t exceed the precision of

SMALLINT data on your implementation, assign the column the SMALLINT

type rather than the INTEGER type. This assignment may enable your DBMS

to conserve storage space.

BIGINT data type
The BIGINT data type is defined as a type whose precision is at least as great

as that of the INTEGER type (it may be greater). The exact precision of a

BIGINT data type depends on the SQL implementation used.

NUMERIC data type
NUMERIC data can have a fractional component in addition to its integer

component. You can specify both the precision and the scale of NUMERIC

data. (Precision, remember, is the maximum number of significant digits

possible.)

30 Part I: Basic Concepts

 The scale of a number is the number of digits in its fractional part. The scale of

a number can’t be negative or larger than that number’s precision.

If you specify the NUMERIC data type, your SQL implementation gives you

exactly the precision and scale that you request. You may specify NUMERIC

and get a default precision and scale, or NUMERIC (p) and get your specified

precision and the default scale, or NUMERIC (p,s) and get both your specified

precision and your specified scale. The parameters p and s are placeholders

that would be replaced by actual values in a data declaration.

Say, for example, that the NUMERIC data type’s default precision for your

SQL implementation is 12 and the default scale is 6. If you specify a database

column as having a NUMERIC data type, the column can hold numbers up

to 999,999.999999. If, on the other hand, you specify a data type of NUMERIC
(10) for a column, that column can hold only numbers with a maximum

value of 9,999.999999. The parameter (10) specifies the maximum number of

digits possible in the number. If you specify a data type of NUMERIC (10,2)

for a column, that column can hold numbers with a maximum value of

99,999,999.99. In this case, you may still have ten total digits, but only two of

those digits can fall to the right of the decimal point.

 NUMERIC data is used for values such as 595.72. That value has a precision

of 5 (the total number of digits) and a scale of 2 (the number of digits to the

right of the decimal point). A data type of NUMERIC (5,2) is appropriate for

such numbers.

DECIMAL data type
The DECIMAL data type is similar to NUMERIC. This data type can have a

fractional component, and you can specify its precision and scale. The

difference is that your implementation may specify a precision greater than

what you specify — if so, the implementation uses the greater precision. If

you do not specify precision or scale, the implementation uses default values,

as it does with the NUMERIC type.

An item that you specify as NUMERIC (5,2) can never contain a number

with an absolute value greater than 999.99. An item that you specify as

DECIMAL (5,2) can always hold values up to 999.99, but if your SQL

implementation permits larger values, then the DBMS won’t reject values

larger than 999.99.

 Use the NUMERIC or DECIMAL type if your data has fractional positions, and

use the INTEGER, SMALLINT, or BIGINT type if your data always consists of

whole numbers. Use the NUMERIC type if you want to maximize portability,

because a value that you define as NUMERIC (5,2), for example, holds the

same range of values on all systems.

31 Chapter 2: SQL Fundamentals

Approximate numerics
Some quantities have such a large range of possible values (many orders of

magnitude) that a computer with a given register size can’t represent all the

values exactly. (Examples of register sizes are 32 bits, 64 bits, and 128 bits.)

Usually in such cases, exactness isn’t necessary, and a close approximation

is acceptable. SQL defines three approximate NUMERIC data types to handle

this kind of data: REAL, DOUBLE PRECISION, and FLOAT (as detailed in the

next three subsections).

REAL data type
The REAL data type gives you a single-precision, floating-point number —

the precision of which depends on the SQL implementation. In general, the

hardware you use determines precision. A 64-bit machine, for example, gives

you more precision than does a 32-bit machine.

 A floating-point number is a number that contains a decimal point. The

decimal point can “float” to different locations in the number, depending on

the number’s value. Examples include 3.1, 3.14, and 3.14159 — and yes, all

three can be used as values for “pi” — each with a different precision.

DOUBLE PRECISION data type
The DOUBLE PRECISION data type gives you a double-precision floating-

point number, the precision of which again depends on the implementation.

Surprisingly, the meaning of the word DOUBLE also depends on the imple-

mentation. Double-precision arithmetic is primarily employed by scientific

users. Different scientific disciplines have different needs in the area of

precision. Some SQL implementations cater to one category of users, and

other implementations cater to other categories of users.

In some systems, the DOUBLE PRECISION type has exactly twice the capacity

of the REAL data type for both mantissa and exponent. (In case you’ve

forgotten what you learned in high school, you can represent any number as

a mantissa multiplied by ten raised to the power given by an exponent. You

can write 6,626, for example, as 6.626E3. The number 6.626 is the mantissa,

which you multiply by ten raised to the third power; in that case, 3 is the

exponent.)

You gain no benefit by representing numbers that are fairly close to 1 (such

as 6,626 or even 6,626,000) with an approximate NUMERIC data type. Exact

numeric types work just as well — and after all, they’re exact. For numbers

that are either very near 0 or much larger than 1, however, such as 6.626E-34

(a very small number), you must use an approximate NUMERIC type. Exact

NUMERIC data types can’t hold such numbers. On other systems, the

32 Part I: Basic Concepts

DOUBLE PRECISION type gives you somewhat more than twice the mantissa

capacity — and somewhat less than twice the exponent capacity as the REAL

type. On yet another type of system, the DOUBLE PRECISION type gives

double the mantissa capacity but the same exponent capacity as the REAL

type. In this case, accuracy doubles, but range does not.

 The SQL specification doesn’t try to dictate, arbitrate, or establish by fiat

what DOUBLE PRECISION means. The specification requires only that the

precision of a DOUBLE PRECISION number be greater than the precision of a

REAL number. Although this constraint is rather weak, it’s probably the best

possible, given the great differences you encounter in hardware.

FLOAT data type
The FLOAT data type is most useful if you think that you may someday

migrate your database to a hardware platform with register sizes different

from those available on your current platform. By using the FLOAT data type,

you can specify a precision — for example, FLOAT (5). If your hardware

supports the specified precision with its single-precision circuitry, then your

present system uses single-precision arithmetic. If, after you migrate your

database, the specified precision requires double-precision arithmetic, then

the system uses double-precision arithmetic.

 Using FLOAT rather than REAL or DOUBLE PRECISION makes moving your

databases to other hardware easier. That’s because the FLOAT data type

enables you to specify precision and lets the hardware fuss over whether to

use single- or double-precision arithmetic. (Remember, the precision of REAL

and DOUBLE PRECISION numbers is hardware-dependent.)

If you aren’t sure whether to use the exact NUMERIC data types (that is,

NUMERIC and DECIMAL) or the approximate NUMERIC data types (that is,

FLOAT and REAL), use the exact NUMERIC types. Exact data types demand

fewer system resources — and, of course, give exact (rather than approximate)

results. If the range of possible values of your data is large enough to require

you to use approximate data types, you can probably determine this fact in

advance.

Character strings
Databases store many types of data, including graphic images, sounds, and

animations. I expect odors to come next. Can you imagine a three-dimensional

1680-×-1050, 24-bit color image of a large slice of pepperoni pizza on your

screen, while an odor sample taken at DiFilippi’s Pizza Grotto replays

through your super-multimedia card? Such a setup may get frustrating — at

least until you can afford to add taste-type data to your system as well. Alas,

you can expect to wait a long time before odor and taste become standard

33 Chapter 2: SQL Fundamentals

SQL data types. These days, the data types that you use most commonly —

after the NUMERIC types, of course — are the character-string types.

You have three main types of CHARACTER data: fixed character data

(CHARACTER or CHAR), varying character data (CHARACTER VARYING or

VARCHAR), and character large-object data (CHARACTER LARGE OBJECT

or CLOB). You also have three variants of these types of character data:

NATIONAL CHARACTER, NATIONAL CHARACTER VARYING, and NATIONAL
CHARACTER LARGE OBJECT. Details coming right up.

CHARACTER data type
If you define the data type of a column as CHARACTER or CHAR, you can

specify the number of characters the column holds by using the syntax

CHARACTER (x), where x is the number of characters. If you specify a

column’s data type as CHARACTER (16), for example, the maximum length

of any data you can enter in the column is 16 characters. If you don’t specify an

argument (that is, you don’t provide a value in place of the x, SQL assumes

a field length of one character. If you enter data into a CHARACTER field of a

specified length and you enter fewer characters than the specified number,

SQL fills the remaining character spaces with blanks.

CHARACTER VARYING data type
The CHARACTER VARYING data type is useful if entries in a column can vary

in length but you don’t want SQL to pad the field with blanks. This data type

enables you to store exactly the number of characters that the user enters.

No default value exists for this data type. To specify this data type, use the

form CHARACTER VARYING (x) or VARCHAR (x), where x is the maximum

number of characters permitted.

CHARACTER LARGE OBJECT data type
The CHARACTER LARGE OBJECT (CLOB) data type was introduced with

SQL:1999. As its name implies, it’s used with huge character strings that are

too large for the CHARACTER type. CLOBs behave much like ordinary character

strings, but there are a number of restrictions on what you can do with them.

For one thing, a CLOB may not be used in a PRIMARY KEY, FOREIGN KEY,

or UNIQUE predicate. Furthermore, it may not be used in a comparison

other than one for either equality or inequality. Because of their large size,

applications generally do not transfer CLOBs to or from a database. Instead,

a special client-side data type called a CLOB locator is used to manipulate the

CLOB data. It’s a parameter whose value identifies a large character-string

object.

Note: A predicate is a statement that may either be logically True or logically

False.

34 Part I: Basic Concepts

NATIONAL CHARACTER, NATIONAL CHARACTER VARYING,
and NATIONAL CHARACTER LARGE OBJECT data types
Various languages have some characters that differ from any characters

in another language. For example, German has some special characters

not present in the English-language character set. Some languages, such as

Russian, have a very different character set from that of English. For example,

if you specify the English character set as the default for your system,

you can use alternate character sets because the NATIONAL CHARACTER,

NATIONAL CHARACTER VARYING, and NATIONAL CHARACTER LARGE
OBJECT data types function the same as the CHARACTER, CHARACTER
VARYING, and CHARACTER LARGE OBJECT data types — the only difference

is that the character set you’re specifying is different from the default

character set.

You can specify the character set as you define a table column. If you want,

each column can use a different character set. The following example of a

table-creation statement uses multiple character sets:

CREATE TABLE XLATE (
 LANGUAGE_1 CHARACTER (40),
 LANGUAGE_2 CHARACTER VARYING (40) CHARACTER SET GREEK,
 LANGUAGE_3 NATIONAL CHARACTER (40),
 LANGUAGE_4 CHARACTER (40) CHARACTER SET KANJI
) ;

Here the LANGUAGE_1 column contains characters in the implementation’s

default character set. The LANGUAGE_3 column contains characters in the

implementation’s national character set. The LANGUAGE_2 column contains

Greek characters. And the LANGUAGE_4 column contains Kanji characters.

After a long absence, Asian character sets, such as Kanji, are now available in

many DBMS products.

Binary strings
The BINARY string data types are new in SQL:2008. Considering that binary

data has been fundamental to digital computers since the Atanasoff-Berry

Computer of the 1930s, this recognition of the importance of binary data

seems a little late in coming to SQL. (Better late than never, I suppose.) There

are three different binary types, BINARY, BINARY VARYING, and BINARY
LARGE OBJECT.

BINARY data type
If you define the data type of a column as BINARY, you can specify the

number of bytes (octets) the column holds by using the syntax BINARY

35 Chapter 2: SQL Fundamentals

(x), where x is the number of bytes. If you specify a column’s data type as

BINARY (16), for example, the binary string must be 16 bytes in length.

BINARY data must be entered as bytes, starting with byte one.

BINARY VARYING data type
Use the BINARY VARYING or VARBINARY type when the length of a binary

string is a variable. To specify this data type, use the form BINARY VARYING
(x) or VARBINARY (x), where x is the maximum number of bytes permitted.

The minimum size of the string is zero and the maximum size is x.

BINARY LARGE OBJECT data type
The BINARY LARGE OBJECT (BLOB) data type is used with huge binary

strings that are too large for the BINARY type. Graphical images and music

files are examples of huge binary strings. BLOBs behave much like ordinary

binary strings, but SQL puts a number of restrictions on what you can do

with them.

For one thing, you can’t use a BLOB in a PRIMARY KEY, FOREIGN KEY, or

UNIQUE predicate. Furthermore, no BLOBs are allowed in comparisons other

than those for equality or inequality. BLOBs are large, so applications generally

don’t transfer actual BLOBs to or from a database. Instead, they use a special

client-side data type called a BLOB locator to manipulate the BLOB data. The

locator is a parameter whose value identifies a binary large object.

Booleans
The BOOLEAN data type consists of the distinct truth values True and False,
as well as Unknown. If either a Boolean True or False value is compared to a

NULL or Unknown truth value, the result will have the Unknown value.

Datetimes
The SQL standard defines five data types that deal with dates and times;

they’re called datetime data types, or simply datetimes. Considerable overlap

exists among these data types, so some implementations you encounter may

not support all five.

 Implementations that do not fully support all five data types for dates and

times may have problems with databases that you try to migrate from another

implementation. If you have trouble with a migration, check the source and

the destination implementations to see how they represent dates and times.

36 Part I: Basic Concepts

DATE data type
The DATE type stores year, month, and day values of a date, in that order.

The year value is four digits long, and the month and day values are both two

digits long. A DATE value can represent any date from the year 0001 to the

year 9999. The length of a DATE is ten positions, as in 1957-08-14.

TIME WITHOUT TIME ZONE data type
The TIME WITHOUT TIME ZONE data type stores hour, minute, and second

values of time. The hours and minutes occupy two digits. The seconds value

may be only two digits but may also expand to include an optional fractional

part. Therefore this data type can represent a time such as (for example) 32

minutes and 58.436 seconds past 9:00 a.m. as 09:32:58.436.

The precision of the fractional part is implementation-dependent but is at

least six digits long. A TIME WITHOUT TIME ZONE value takes up eight

positions (including colons) when the value has no fractional part, or nine

positions (including the decimal point) plus the number of fractional digits

when the value does include a fractional part. You specify TIME WITHOUT
TIME ZONE type data either as TIME, which gives you the default of no

fractional digits, or as TIME WITHOUT TIME ZONE (p), where p is the

number of digit positions to the right of the decimal. The example in the

preceding paragraph represents a data type of TIME WITHOUT TIME ZONE (3).

TIMESTAMP WITHOUT TIME ZONE data type
TIMESTAMP WITHOUT TIME ZONE data includes both date and time

information. The lengths and the restrictions on the values of the components

of TIMESTAMP WITHOUT TIME ZONE data are the same as they are for

DATE and TIME WITHOUT TIME ZONE data, except for one difference: The

default length of the fractional part of the time component of a TIMESTAMP
WITHOUT TIME ZONE is six digits rather than zero.

If the value has no fractional digits, the length of a TIMESTAMP WITHOUT
TIME ZONE is 19 positions — ten date positions, one space as a separator, and

eight time positions, in that order. If fractional digits are present (six digits

is the default), the length is 20 positions plus the number of fractional digits.

The 20th position is for the decimal point. You specify a field as TIMESTAMP
WITHOUT TIME ZONE type by using either TIMESTAMP WITHOUT TIME
ZONE or TIMESTAMP WITHOUT TIME ZONE (p), where p is the number

of fractional digit positions. The value of p can’t be negative, and the

implementation determines its maximum value.

TIME WITH TIME ZONE data type
The TIME WITH TIME ZONE data type is the same as the TIME WITHOUT

TIME ZONE data type except this type adds information about the offset

from universal time (UTC, also known as Greenwich Mean Time or GMT). The

37 Chapter 2: SQL Fundamentals

value of the offset may range anywhere from –12:59 to +13:00. This additional

information takes up six more digit positions following the time — a hyphen

as a separator, a plus or minus sign, and then the offset in hours (two digits)

and minutes (two digits) with a colon in between the hours and minutes. A

TIME WITH TIME ZONE value with no fractional part (the default) is 14

positions long. If you specify a fractional part, the field length is 15 positions

plus the number of fractional digits.

TIMESTAMP WITH TIME ZONE data type
The TIMESTAMP WITH TIME ZONE data type functions the same as the

TIMESTAMP WITHOUT TIME ZONE data type except that this data type

also adds information about the offset from universal time. The additional

information takes up six more digit positions following the timestamp (see

the preceding section for the form of the time-zone information). Including

time-zone data sets up 25 positions for a field with no fractional part and 26

positions — plus the number of fractional digits for fields that do include a

fractional part (six is the default number of fractional digits).

Intervals
The interval data types relate closely to the datetime data types. An interval

is the difference between two datetime values. In many applications that deal

with dates, times, or both, you sometimes need to determine the interval

between two dates or two times.

SQL recognizes two distinct types of intervals: the year-month interval and

the day-time interval. A year-month interval is the number of years and

months between two dates. A day-time interval is the number of days, hours,

minutes, and seconds between two instants within a month. You can’t mix

calculations involving a year-month interval with calculations involving a

day-time interval, because months come in varying lengths (28, 29, 30, or 31

days long).

XML type
The XML data type has a tree structure, so a root node may have child nodes,

which may, in turn, have children of their own. First introduced in SQL:2003,

the XML type was fleshed out in SQL/XML:2005, and further augmented in

SQL:2008. The 2005 edition defined five parameterized subtypes, while

retaining the original plain-vanilla XML type. XML values can exist as

instances of two or even more types, because some of the subtypes are

subtypes of other subtypes. (Maybe I should call them sub-subtypes, or even

sub-sub-subtypes. Fortunately, SQL:2008 defined a standard way of referring

to subtypes.)

38 Part I: Basic Concepts

The primary modifiers of the XML type are SEQUENCE, CONTENT, and

DOCUMENT. The secondary modifiers are UNTYPED, ANY, or XMLSCHEMA.

Figure 2-1 shows the tree-like structure illustrating the hierarchical

relationships among the subtypes.

Figure 2-1:
Relationships

of the XML
subtypes.

XML (SEQUENCE)

XML (CONTENT(ANY))

XML (CONTENT(XMLSCHEMA)) XML (CONTENT(UNTYPED))

XML (DOCUMENT(ANY))

XML (DOCUMENT(UNTYPED)) XML (DOCUMENT(XMLSCHEMA))

The following list is a rundown of the XML types you should be familiar with.

Don’t freak out if it looks like Greek (or worse yet, Linear A) to you. A more

detailed explanation of these types is given in Chapter 17. I’ve organized the

list to begin with the most basic types and end with the most complicated:

 ✓ XML(SEQUENCE): Every value in XML is either an SQL NULL value or

an XQuery sequence. That way, every XML value is an instance of the

XML(SEQUENCE) type. XQuery is a query language specifically designed

to extract information from XML data. This is the most basic XML type.

 XML(SEQUENCE) is the least restrictive of the XML types. It can accept

values that are not well-formed XML values. The other XML types, on

the other hand, aren’t quite so forgiving.

 ✓ XML(CONTENT(ANY)): This is a slightly more restrictive type than

XML(SEQUENCE). Every XML value that is either a NULL value or

an XQuery document node (or a child of that document node) is an

instance of this type. Every instance of XML(CONTENT(ANY)) is also an

instance of XML(SEQUENCE). XML values of the XML(CONTENT(ANY))

type are not necessarily well formed, either. Such values may be inter-

mediate results in a query that are later reduced to well-formed values.

 ✓ XML(CONTENT(UNTYPED)): This is more restrictive than XML(ANY
CONTENT), and thus any value of the XML(CONTENT(UNTYPED))

type is also an instance of the XML(CONTENT(ANY)) type and the

39 Chapter 2: SQL Fundamentals

XML(SEQUENCE) type. Every XML value that is either the null value or

a non-null value of type XML(CONTENT(ANY)) is an XQuery document

node D, such that the following is true for every XQuery element node

contained in the XQuery tree T rooted in D:

 The type-name property is xdt:untyped.

 The nilled property is False.

 For every XQuery attribute node contained in T, the type property

is xdt:untypedAtomic.

 For every XQuery attribute node contained in T, the type property

is a value of type-name XML(CONTENT(UNTYPED)).

 ✓ XML(CONTENT(XMLSCHEMA)): This is a second subtype of

XML(CONTENT(ANY)) besides XML(CONTENT(UNTYPED)). As such it

is also a subtype of XML(SEQUENCE). Every XML value that is either the

null value or a non-null value of type XML(CONTENT(ANY)) and is also

an XQuery document node D such that every XQuery element node that

is contained in the XQuery tree T rooted in D

 Is valid according to the XML Schema S, or

 Is valid according to an XML namespace N in an XML Schema S, or

 Is valid according to a global element declaration schema

component E in an XML schema S,

 Is a value of type XML(CONTENT(XMLSCHEMA)), whose type

descriptor includes the registered XML Schema descriptor of S,
and, if N is specified, the XML namespace URI of N, or if E is

specified, the XML namespace URI of E and the XML NCName of E.

 ✓ XML(DOCUMENT(ANY)): This is another subtype of the

XML(CONTENT(ANY)) type with the added restriction that instances

of XML(DOCUMENT(ANY)) are document nodes that have exactly one

XQuery element node, zero or more XQuery comment nodes, and zero

or more XQuery processing instruction nodes.

 ✓ XML(DOCUMENT(UNTYPED)): Every value that is either the NULL value or a

non-null value of type XML(CONTENT(UNTYPED)) that is an XQuery

document node whose children property has exactly one XQuery

element node, zero or more XQuery comment nodes, and zero

or more XQuery processing instruction nodes is a value of type

XML(DOCUMENT(UNTYPED)). All instances of XML(DOCUMENT(UNTYPED))

are also instances of XML(CONTENT(UNTYPED)). Furthermore,

all instances of XML(DOCUMENT(UNTYPED)) are also instances of

XML(DOCUMENT(ANY)). XML(DOCUMENT(UNTYPED)) is the most

restrictive of the subtypes, sharing the restrictions of all the other

subtypes. Any document that qualifies as an XML(DOCUMENT(UNTYPED))

is also an instance of all the other XML subtypes.

40 Part I: Basic Concepts

ROW types
The ROW data type was introduced with SQL:1999. It’s not that easy to

understand, and as a beginning to intermediate SQL programmer, you may

never use it. After all, people got by without it just fine between 1986 and

1999.

One notable thing about the ROW data type is that it violates the rules of

normalization that E. F. Codd declared in the early days of relational database

theory. (I talk more about those rules in Chapter 5.) One of the defining

characteristics of first normal form is that a field in a table row may not be

multivalued. A field may contain one and only one value. However, the ROW

data type allows you to declare an entire row of data to be contained within

a single field in a single row of a table — in other words, a row nested within

a row.

 The normal forms, first articulated by Dr. Codd, are defining characteristics of

relational databases. Inclusion of the ROW type in the SQL standard was the

first attempt to broaden SQL beyond the pure relational model.

Consider the following SQL statement, which defines a ROW type for a

person’s address information:

CREATE ROW TYPE addr_typ (
 Street CHARACTER VARYING (25),
 City CHARACTER VARYING(20),
 State CHARACTER (2),
 PostalCode CHARACTER VARYING (9)
) ;

After it’s defined, the new ROW type can be used in a table definition:

CREATE TABLE CUSTOMER (
 CustID INTEGER PRIMARY KEY,
 LastName CHARACTER VARYING (25),
 FirstName CHARACTER VARYING (20),
 Address addr_typ,
 Phone CHARACTER VARYING (15)
) ;

The advantage here is that if you’re maintaining address information

for multiple entities — such as customers, vendors, employees, and

stockholders — you only have to define the details of the address

specification once: in the ROW type definition.

41 Chapter 2: SQL Fundamentals

Collection types
After SQL broke out of the relational straightjacket with SQL:1999, data types

that violate first normal form became possible. It became possible for a field

to contain a whole collection of objects rather than just one. The ARRAY

type was introduced in SQL:1999, and the MULTISET type was introduced in

SQL:2003.

Two collections may be compared to each other only if they are both the

same type, either ARRAY or MULTISET, and if their element types are

comparable. Because arrays have a defined element order, corresponding

elements from the arrays can be compared. Multisets have no defined

element order, but can be compared if (a) an enumeration exists for each

multiset being compared and (b) the enumerations can be paired.

ARRAY type
The ARRAY data type violates first normal form (1NF), but in a different way

than the way the ROW type violates 1NF. The ARRAY type, a collection type,

is not a distinct type in the same sense that CHARACTER and NUMERIC are

distinct data types. An ARRAY type merely allows one of the other types to

have multiple values within a single field of a table. For example, say your

organization needs to be able to contact customers whether they’re at work,

at home, or on the road. You want to maintain multiple telephone numbers

for them. You can do this by declaring the Phone attribute as an array, as

shown in the following code:

CREATE TABLE CUSTOMER (
 CustID INTEGER PRIMARY KEY,
 LastName CHARACTER VARYING (25),
 FirstName CHARACTER VARYING (20),
 Address addr_typ,
 Phone CHARACTER VARYING (15) ARRAY [3]
) ;

The ARRAY [3] notation allows you to store up to three telephone numbers

in the CUSTOMER table. The three telephone numbers represent an example

of a repeating group. Repeating groups are a no-no according to classical

relational database theory, but this is one of several examples of cases

where SQL:1999 broke the rules. When Dr. Codd first specified the rules of

normalization, he traded off functional flexibility for data integrity. SQL:1999

took back some of that functional flexibility, at the cost of some added

structural complexity.

42 Part I: Basic Concepts

 The increased structural complexity could translate into compromised data

integrity if you are not fully aware of all the effects of the actions you perform

on your database. Arrays are ordered, in that each element in an array is

associated with exactly one ordinal position in the array.

MULTISET type
A multiset is an unordered collection. Specific elements of the multiset may

not be referenced; usually that’s because those elements are not assigned

specific ordinal positions in the multiset.

REF types
REF types are not part of core SQL. This means that a DBMS may claim

compliance with the SQL standard without implementing REF types at all.

The REF type is not a distinct data type in the sense that CHARACTER and

NUMERIC are. Instead, it’s a pointer to a data item, a row type, or an abstract

data type that resides in a row of a table (a site). Dereferencing the pointer

can retrieve the value stored at the target site.

If you’re confused, don’t worry, because you’re not alone. Using the REF

types requires a working knowledge of object-oriented programming (OOP)

principles. This book refrains from wading too deeply into the murky waters

of OOP. In fact — because the REF types are not a part of core SQL — you

may be better off if you don’t use them. If you want maximum portability

across DBMS platforms, stick to core SQL.

User-defined types
User-defined types (UDTs) represent another example of features that arrived

in SQL:1999 that come from the object-oriented programming world. As an

SQL programmer, you are no longer restricted to the data types defined

in the SQL specification. You can define your own data types, using the

principles of abstract data types (ADTs) found in such object-oriented

programming languages as C++.

One of the most important benefits of UDTs is the fact that you can use them

to eliminate the impedance mismatch between SQL and the host language that

is “wrapped around” the SQL. A long-standing problem with SQL has been the

fact the SQL’s predefined data types do not match the data types of the host

languages within which SQL statements are embedded. Now, with UDTs, a

database programmer can create data types within SQL that match the data

types of the host language.

43 Chapter 2: SQL Fundamentals

A UDT has attributes and methods, which are encapsulated within the UDT.

The outside world can see the attribute definitions and the results of the

methods — but the specific implementations of the methods are hidden from

view. Access to the attributes and methods of a UDT can be further restricted

by specifying that they are public, private, or protected. Public attributes or

methods are available to all users of a UDT. Private attributes or methods are

available only to the UDT itself. Protected attributes or methods are available

only to the UDT itself or its subtypes. You see from this that a UDT in SQL

behaves much like a class in an object-oriented programming language. Two

forms of user-defined types exist: distinct types and structured types.

Distinct types
Distinct types are the simpler of the two forms of user-defined types. A

distinct type’s defining feature is that it’s expressed as a single data type. It

is constructed from one of the predefined data types, called the source type.
Multiple distinct types that are all based on a single source type are distinct

from each other; thus, they are not directly comparable. For example, you

can use distinct types to distinguish between different currencies. Consider

the following type definition:

CREATE DISTINCT TYPE USdollar AS DECIMAL (9,2) ;

This definition creates a new data type for U.S. dollars (USdollar), based on

the predefined DECIMAL data type. You can create another distinct type in a

similar manner:

CREATE DISTINCT TYPE Euro AS DECIMAL (9,2) ;

You can now create tables that use these new types:

CREATE TABLE USInvoice (
 InvID INTEGER PRIMARY KEY,
 CustID INTEGER,
 EmpID INTEGER,
 TotalSale USdollar,
 Tax USdollar,
 Shipping USdollar,
 GrandTotal USdollar
) ;

CREATE TABLE EuroInvoice (
 InvID INTEGER PRIMARY KEY,
 CustID INTEGER,
 EmpID INTEGER,
 TotalSale Euro,
 Tax Euro,
 Shipping Euro,
 GrandTotal Euro
) ;

44 Part I: Basic Concepts

The USdollar type and the Euro type are both based on the DECIMAL type,

but instances of one cannot be directly compared with instances of the other

or with instances of the DECIMAL type. In SQL, as in the real world, it is

possible to convert U.S. dollars into euros, but doing so requires a special

operation (CAST). After conversion is complete, comparisons are possible.

Structured types
The second form of user-defined type — the structured type — is expressed

as a list of attribute definitions and methods instead of being based on a

single predefined source type.

Constructors
When you create a structured UDT, the DBMS automatically creates a

constructor function for it, giving it the same name as the UDT. The

constructor’s job is to initialize the attributes of the UDT to their default

values.

Mutators and observers
When you create a structured UDT, the DBMS automatically creates a

mutator function and an observer function. A mutator, when invoked, changes

the value of an attribute of a structured type. An observer function is the

opposite of a mutator function; its job is to retrieve the value of an attribute

of a structured type. You can include observer functions in SELECT statements

to retrieve values from a database.

Subtypes and supertypes
A hierarchical relationship can exist between two structured types. For

example, a type named MusicCDudt has a subtype named RockCDudt and

another subtype named ClassicalCDudt. MusicCDudt is the supertype of

those two subtypes. RockCDudt is a proper subtype of MusicCDudt if there is

no subtype of MusicCDudt that is a supertype of RockCDudt. If RockCDudt

has a subtype named HeavyMetalCDudt, HeavyMetalCDudt is also a

subtype of MusicCDudt, but it is not a proper subtype of MusicCDudt.

A structured type that has no supertype is called a maximal supertype, and a

structured type that has no subtypes is called a leaf subtype.

Example of a structured type
You can create structured UDTs in the following way:

/* Create a UDT named MusicCDudt */
CREATE TYPE MusicCDudt AS
/* Specify attributes */
Title CHAR(40),
Cost DECIMAL(9,2),
SuggestedPrice DECIMAL(9,2)
/* Allow for subtypes */
NOT FINAL ;

45 Chapter 2: SQL Fundamentals

CREATE TYPE RockCDudt UNDER MusicCDudt NOT FINAL ;

The subtype RockCDudt inherits the attributes of its supertype

MusicCDudt.

CREATE TYPE HeavyMetalCDudt UNDER RockCDudt FINAL ;

Now that you have the types, you can create tables that use them. Here’s an

example:

CREATE TABLE METALSKU (
 Album HeavyMetalCDudt,
 SKU INTEGER) ;

Now you can add rows to the new table:

BEGIN
 /* Declare a temporary variable a */
 DECLARE a = HeavyMetalCDudt ;
 /* Execute the constructor function */
 SET a = HeavyMetalCDudt() ;
 /* Execute first mutator function */
 SET a = a.title(‘Edward the Great’) ;
 /* Execute second mutator function */
 SET a = a.cost(7.50) ;
 /* Execute third mutator function */
 SET a = a.suggestedprice(15.99) ;
 INSERT INTO METALSKU VALUES (a, 31415926) ;
 END

Data type summary
Table 2-2 lists various data types and displays literals that conform to each

type.

Table 2-2 Data Types
Data Type Example Value

CHARACTER (20) ‘Amateur Radio ’

VARCHAR (20) ‘Amateur Radio’

CLOB (1000000) ‘This character string is a
million characters long . . .’

SMALLINT, BIGINT, or
INTEGER

7500

(continued)

46 Part I: Basic Concepts

Table 2-2 (continued)
Data Type Example Value

NUMERIC or DECIMAL 3425.432

REAL, FLOAT, or
DOUBLE PRECISION

6.626E-34

BINARY (1) ‘01100011’

VARBINARY (4) ‘011000111100011011100110’

BLOB (1000000) ‘1001001110101011010101010101. . .’

BOOLEAN ‘true’

DATE DATE ‘1957-08-14’

TIME (2) WITHOUT
TIME ZONE 1

TIME ‘12:46:02.43’ WITHOUT TIME
ZONE

TIME (3) WITH
TIME ZONE

TIME ‘12:46:02.432-08:00’ WITH
TIME ZONE

TIMESTAMP WITHOUT
TIME ZONE (0)

TIMESTAMP ‘1957-08-14 12:46:02’
WITHOUT TIME ZONE

TIMESTAMP WITH
TIME ZONE (0)

TIMESTAMP ‘1957-08-14 12:46:
02-08:00’ WITH TIME ZONE

INTERVAL DAY INTERVAL ‘4’ DAY

XML(SEQUENCE) <Client>Vince Tenetria</Client>

ROW ROW (Street VARCHAR (25), City
VARCHAR (20), State CHAR (2),
PostalCode VARCHAR (9))

ARRAY INTEGER ARRAY [15]

MULTISET No literal applies to the MULTISET type.

REF Not a type, but a pointer

USER DEFINED TYPE Currency type based on DECIMAL
1 Argument specifies number of fractional digits.

 Your SQL implementation may not support all the data types that I describe

in this section. Furthermore, your implementation may support nonstandard

data types that I don’t describe here. (Your mileage may vary, and so on. You

know the drill.)

47 Chapter 2: SQL Fundamentals

Null Values
 If a database field contains a data item, that field has a specific value. A field

that does not contain a data item is said to have a null value. Keep in mind

that

 ✓ In a numeric field, a null value is not the same as a value of zero.

 ✓ In a character field, a null value is not the same as a blank.

Both a numeric zero and a blank character are definite values. A null value

indicates that a field’s value is undefined — its value is not known.

A number of situations exist in which a field may have a null value. The

following list describes a few of these situations and gives an example of

each:

 ✓ The value exists, but you don’t know what the value is yet. You set

MASS to null in the Higgs boson row of the ELEMENTARY_PARTICLE

table before the mass of the Higgs boson is accurately determined.

 ✓ The value doesn’t exist yet. You set TOTAL_SOLD to null in the SQL
For Dummies, 7th Edition row of the BOOKS table because the

first set of quarterly sales figures is not yet reported.

 ✓ The field isn’t applicable for this particular row. You set SEX to null in

the C3PO row of the EMPLOYEE table because C3PO is a droid that has

no gender. (You knew that.)

 ✓ The value is out of range. You set SALARY to null in the Oprah
Winfrey row of the EMPLOYEE table because you designed the SALARY

column as type NUMERIC (8,2) and Oprah’s contract calls for pay in

excess of $999,999.99. (You knew that too.)

 A field can have a null value for many different reasons. Don’t jump to any

hasty conclusions about what any particular null value means.

Constraints
Constraints are restrictions that you apply to the data that someone can enter

into a database table. You may know, for example, that entries in a particular

numeric column must fall within a certain range. If anyone makes an entry

that falls outside that range, then that entry must be an error. Applying a

range constraint to the column prevents this type of error from happening.

48 Part I: Basic Concepts

Traditionally, the application program that uses the database applies any

constraints to a database. The most recent DBMS products, however, enable

you to apply constraints directly to the database. This approach has several

advantages. If multiple applications use the same database, you apply the

constraints only once (rather than multiple times). Also, adding constraints

at the database level is usually simpler than adding them to an application.

Often all you do is tack the appropriate clause onto your CREATE statement.

I discuss constraints and assertions (which are constraints that apply to more

than one table) in detail in Chapter 5.

Using SQL in a Client/Server System
SQL is a data sublanguage that works on a standalone system or on a

multiuser system. SQL works particularly well on a client/server system.

On such a system, users on multiple client machines that connect to a

server machine can access — via a local-area network (LAN) or other

communications channel — a database that resides on the server to which

they’re connected. The application program on a client machine contains

SQL data-manipulation commands. The portion of the DBMS residing on the

client sends these commands to the server across the communications

channel that connects the server to the client. At the server, the server

portion of the DBMS interprets and executes the SQL command and then

sends the results back to the client across the communication channel. You

can encode very complex operations into SQL at the client, and then decode

and perform those operations at the server. This type of setup results in the

most effective use of the bandwidth of that communication channel.

 If you retrieve data by using SQL on a client/server system, only the data you

want travels across the communication channel from the server to the client.

In contrast, a simple resource-sharing system, with minimal intelligence at the

server, must send huge blocks of data across the channel to give you the small

piece of data that you want. This sort of massive transmission can slow

operations considerably. The client/server architecture complements the

characteristics of SQL to provide good performance at a moderate cost on

small, medium, and large networks.

The server
Unless it receives a request from a client, the server does nothing; it just

stands around and waits. If multiple clients require service at the same time,

however, servers must respond quickly. Servers generally differ from client

49 Chapter 2: SQL Fundamentals

machines in terms of how much data they handle. They have large amounts

of very fast disk storage, optimized for fast data access and retrieval. And

because they must handle traffic coming in simultaneously from multiple

client machines, servers need a fast processor, or even multiple processors.

What the server is
The server (short for database server) is the part of a client/server system

that holds the database. The server also holds the server software — the part

of a database management system that interprets commands coming in from

the clients and translates these commands into operations in the database.

The server software also formats the results of retrieval requests and sends

the results back to the requesting client.

What the server does
The server’s job is relatively simple and straightforward. All a server needs to

do is read, interpret, and execute commands that come to it across the net-

work from clients. Those commands are in one of several data sublanguages.

A sublanguage doesn’t qualify as a complete language — it implements only

part of a language. A data sublanguage may, for example, deal only with data

handling. The sublanguage has operations for inserting, updating, deleting,

and selecting data, but may not have flow control structures such as DO

loops, local variables, functions, procedures, or input/output to printers.

SQL is the most common data sublanguage in use today and has become an

industry standard. In fact, SQL has supplanted proprietary data sublanguages

on machines in all performance classes. With SQL:1999, SQL acquired many

of the features missing from traditional sublanguages. However, SQL is still

not a complete general-purpose programming language; it must be combined

with a host language to create a database application.

The client
The client part of a client/server system consists of a hardware component

and a software component. The hardware component is the client computer

and its interface to the local-area network. This client hardware may be

very similar (or even identical) to the server hardware. The software is the

distinguishing component of the client.

What the client is
The client’s primary job is to provide a user interface. As far as the user is

concerned, the client machine is the computer, and the user interface is the

application. The user may not even realize that the process involves a server.

50 Part I: Basic Concepts

The server is usually out of sight — often in another room. Aside from the

user interface, the client also contains the application program and the client

part of the DBMS. The application program performs the specific task you

require (say, in accounts receivable or order entry). The client part of the

DBMS executes the application program’s commands and exchanges data

and SQL data-manipulation commands with the server part of the DBMS.

What the client does
The client part of a DBMS displays information on-screen and responds to

user input transmitted via the keyboard, mouse, or other input device. The

client may also process data coming in from a telecommunications link or

from other stations on the network. The client part of the DBMS does all the

application-specific “thinking.” To a developer, the client part of a DBMS is

the interesting part. The server part just handles the requests of the client

part in a repetitive, mechanical fashion.

Using SQL on the Internet or an Intranet
Database operation on the Internet and on intranets differs fundamentally

from database operation in a traditional client/server system. The difference

is primarily on the client end. In a traditional client/server system, much of

the functionality of the DBMS resides on the client machine. On an Internet-

based database system, most or all of the DBMS resides on the server. The

client may host nothing more than a Web browser. At most, the client holds

a browser and a browser extension, such as a Firefox add-on or an ActiveX

control. Thus the conceptual “center of mass” of the system shifts toward the

server. This shift has several advantages:

 ✓ The client portion of the system (browser) is low-cost or even free.

 ✓ You have a standardized user interface.

 ✓ The client is easy to maintain.

 ✓ You have a standardized client/server relationship.

 ✓ You have a common means of displaying multimedia data.

The main disadvantages of performing database manipulations over the

Internet involve security and data integrity:

 ✓ To protect information from unwanted access or tampering, both the

Web server and the client browser must support strong encryption.

51 Chapter 2: SQL Fundamentals

 ✓ Browsers don’t perform adequate data-entry validation checks.

 ✓ Database tables residing on different servers may become

desynchronized.

Client and server extensions designed to address these concerns make

the Internet a feasible location for production database applications. The

architecture of an intranet is similar to that of the Internet but security is less

of a concern. Because the organization maintaining the intranet has physical

control over all the client machines — as well as the servers and the network

that connects these components together — an intranet suffers much less

exposure to the efforts of malicious hackers. Data-entry errors and database

desynchronization, however, do remain concerns.

52 Part I: Basic Concepts

Chapter 3

The Components of SQL
In This Chapter
▶ Creating databases

▶ Manipulating data

▶ Protecting databases

SQL is a special-purpose language designed for the creation and

maintenance of data in relational databases. Although the vendors of

relational database management systems have their own SQL implementations,

an ISO/ANSI standard (revised in 2008) defines and controls what SQL is.

All implementations differ from the standard to varying degrees. Close

adherence to the standard is the key to running a database (and its associated

applications) on more than one platform.

Although SQL isn’t a general-purpose programming language, it contains

some impressive tools. Three languages within a language offer everything

you need to create, modify, maintain, and provide security for a relational

database:

 ✓ The Data Definition Language (DDL): The part of SQL that you use to

create (completely define) a database, modify its structure, and destroy

it when you no longer need it.

 ✓ The Data Manipulation Language (DML): The part of SQL that performs

database maintenance. Using this powerful tool, you can specify what

you want to do with the data in your database — enter it, change it, or

extract it.

 ✓ The Data Control Language (DCL): The part of SQL that protects your

database from becoming corrupted. Used correctly, the DCL provides

security for your database; the amount of protection depends on the

implementation. If your implementation doesn’t provide sufficient

protection, you must add that protection to your application program.

This chapter introduces the DDL, DML, and DCL.

54 Part I: Basic Concepts

Data Definition Language
The Data Definition Language (DDL) is the part of SQL you use to create,

change, or destroy the basic elements of a relational database. Basic elements

include tables, views, schemas, catalogs, clusters, and possibly other things

as well. In this section, I discuss the containment hierarchy that relates these

elements to each other and look at the commands that operate on these

elements.

In Chapter 1, I mention tables and schemas, noting that a schema is an overall

structure that includes tables within it. Tables and schemas are two elements

of a relational database’s containment hierarchy. You can break down the

containment hierarchy as follows:

 ✓ Tables contain columns and rows.

 ✓ Schemas contain tables and views.

 ✓ Catalogs contain schemas.

The database itself contains catalogs. Sometimes the database is referred to

as a cluster. I mention clusters again later in this chapter, in the section on

ordering by catalog.

When “Just do it!” is not good advice
Suppose you set out to create a database for your organization. Excited by

the prospect of building a useful, valuable, and totally righteous structure of

great importance to your company’s future, you sit down at your computer

and start entering SQL CREATE statements. Right?

Well, no. Not quite. In fact, that’s a prescription for disaster. Many database-

development projects go awry from the start as excitement and enthusiasm

overtake careful planning. Even if you have a clear idea of how to structure

your database, write everything down on paper before touching your

keyboard.

Here’s where database development bears some resemblance to a game

of chess. In the middle of a complicated and competitive chess game, you

may see what looks like a good move. The urge to make that move can be

overwhelming. However, the odds are good that you’ve missed something.

Grandmasters advise newer players — only partly in jest — to sit on their

hands. If sitting on your hands prevents you from making an ill-advised move,

55 Chapter 3: The Components of SQL

then so be it: Sit on your hands. If you study the position a little longer, you

might find an even better move — or you might even see a brilliant counter

move that your opponent can make. Plunging into creating a database

without sufficient forethought can lead to a database structure that, at best,

is suboptimal. At worst, it could be disastrous, an open invitation to data

corruption. Sitting on your hands probably won’t help, but it will help to pick

up a pencil in one of those hands and start mapping your database plan on

paper. For help in deciding what to include in your plan, check out my book

Database Development For Dummies (Wiley), which covers planning in depth.

Keep in mind the following procedures when planning your database:

 ✓ Identify all tables.

 ✓ Define the columns that each table must contain.

 ✓ Give each table a primary key that you can guarantee is unique.

(I discuss primary keys in Chapters 4 and 5.)

 ✓ Make sure that every table in the database has at least one column in

common with (at least) one other table in the database. These shared

columns serve as logical links that enable you to relate information in

one table to the corresponding information in another table.

 ✓ Put each table in third normal form (3NF) or better to ensure the

prevention of insertion, deletion, and update anomalies. (I discuss

database normalization in Chapter 5.)

After you complete the design on paper and verify that it’s sound, you’re

ready to transfer the design to the computer. You do this bit of magic by

using SQL CREATE statements.

Creating tables
A database table looks a lot like a spreadsheet table: a two-dimensional

array made up of rows and columns. You can create a table by using the SQL

CREATE TABLE command. Within the command, you specify the name and

data type of each column.

After you create a table, you can start loading it with data. (Loading data is a

DML, not a DDL, function.) If requirements change, you can change a table’s

structure by using the ALTER TABLE command. If a table outlives its usefulness

or becomes obsolete, you can eliminate it with the DROP command. The

various forms of the CREATE and ALTER commands, together with the DROP

command, make up SQL’s DDL.

56 Part I: Basic Concepts

Suppose you’re a database designer and you don’t want your database tables

to turn to guacamole as you make updates over time. You decide to structure

your database tables according to the best normalized form so that you can

maintain data integrity.

 Normalization, an extensive field of study in its own right, is a way of structuring

database tables so that updates don’t introduce anomalies. Each table you

create contains columns that correspond to attributes that are tightly linked

to each other.

You may, for example, create a CUSTOMER table with the attributes

CUSTOMER.CustomerID, CUSTOMER.FirstName, CUSTOMER.LastName,

CUSTOMER.Street, CUSTOMER.City, CUSTOMER.State, CUSTOMER.
Zipcode, and CUSTOMER.Phone. All these attributes are more closely

related to the customer entity than to any other entity in a database that may

contain many tables. These attributes contain all the relatively permanent

customer information that your organization keeps on file.

Most database management systems provide a graphical tool for creating

database tables. You can also create such tables by using an SQL command. The

following example demonstrates a command that creates your CUSTOMER

table:

CREATE TABLE CUSTOMER (
 CustomerID INTEGER NOT NULL,
 FirstName CHAR (15),
 LastName CHAR (20) NOT NULL,
 Street CHAR (25),
 City CHAR (20),
 State CHAR (2),
 Zipcode CHAR (10),
 Phone CHAR (13)) ;

For each column, you specify its name (for example, CustomerID), its data

type (for example, INTEGER), and possibly one or more constraints (for

example, NOT NULL).

Figure 3-1 shows a portion of the CUSTOMER table with some sample data.

 If the SQL implementation you use doesn’t fully implement the latest version

of ANSI/ISO standard SQL, the syntax you need to use may differ from the

syntax that I give in this book. Read the user documentation that came with

your DBMS for specific information.

57 Chapter 3: The Components of SQL

Figure 3-1:
Use the
CREATE

TABLE
command to

create this
CUSTOMER

table.

A room with a view
At times, you want to retrieve specific information from the CUSTOMER

table. You don’t want to look at everything — only specific columns and

rows. What you need is a view.

A view is a virtual table. In most implementations, a view has no independent

physical existence. The view’s definition exists only in the database’s metadata,

but the data comes from the table or tables from which you derive the view.

The view’s data is not physically duplicated somewhere else in online disk

storage. Some views consist of specific columns and rows of a single table.

Others, known as multitable views, draw from two or more tables.

Single-table view
Sometimes when you have a question, the data that gives you the answer

resides in a single table in your database. If the information you want exists

in a single table, you can create a single-table view of the data. For example,

suppose you want to look at the names and telephone numbers of all customers

who live in the state of New Hampshire. You can create a view from the

CUSTOMER table that contains only the data you want. The following SQL

statement creates this view:

CREATE VIEW NH_CUST AS
 SELECT CUSTOMER.FirstName,
 CUSTOMER.LastName,
 CUSTOMER.Phone
 FROM CUSTOMER
 WHERE CUSTOMER.State = ‘NH’ ;

Figure 3-2 shows how you derive the view from the CUSTOMER table.

58 Part I: Basic Concepts

Figure 3-2:
You derive

the NH_
CUST view

from the
CUSTOMER

table.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

NH_CUST View

FirstName
LastName

Phone

WHERE State = ‘NH’

 This code is correct, but a little on the wordy side. You can accomplish the

same task with less typing if your SQL implementation assumes that all table

references are the same as the ones in the FROM clause. If your system makes

that reasonable default assumption, you can reduce the statement to the

following lines:

CREATE VIEW NH_CUST AS
 SELECT FirstName, LastName, Phone
 FROM CUSTOMER
 WHERE STATE = ‘NH’;

Although the second version is easier to write and read, it’s more vulnerable

to disruption from ALTER TABLE commands. Such disruption isn’t a problem

for this simple case, which has no JOIN, but views with JOINs are more

robust when they use fully qualified names. I cover JOINs in Chapter 10.

Creating a multitable view
More often than not, you need to pull data from two or more tables to answer

your question. Suppose, for example, that you work for a sporting goods

store, and you want to send a promotional mailing to all the customers who

have bought ski equipment since the store opened last year. You need

information from the CUSTOMER table, the PRODUCT table, the INVOICE

table, and the INVOICE_LINE table. You can create a multitable view that

shows the data you need. After you create the view, you can use that same

view again and again. Each time you use the view, it reflects any changes that

occurred in the underlying tables since you last used the view.

The database for this sporting goods store contains four tables: CUSTOMER,

PRODUCT, INVOICE, and INVOICE_LINE. The tables are structured as shown

in Table 3-1.

59 Chapter 3: The Components of SQL

Table 3-1 Sporting Goods Store Database Tables
Table Column Data Type Constraint

CUSTOMER CustomerID INTEGER NOT NULL

FirstName CHAR (15)

LastName CHAR (20) NOT NULL

Street CHAR (25)

City CHAR (20)

State CHAR (2)

Zipcode CHAR (10)

Phone CHAR (13)

PRODUCT ProductID INTEGER NOT NULL

Name CHAR (25)

Description CHAR (30)

Category CHAR (15)

VendorID INTEGER

VendorName CHAR (30)

INVOICE InvoiceNumber INTEGER NOT NULL

CustomerID INTEGER

InvoiceDate DATE

TotalSale NUMERIC (9,2)

TotalRemitted NUMERIC (9,2)

FormOfPayment CHAR (10)

INVOICE_LINE LineNumber INTEGER NOT NULL

InvoiceNumber INTEGER NOT NULL

ProductID INTEGER NOT NULL

Quantity INTEGER

SalePrice NUMERIC (9,2)

Notice that some of the columns in Table 3-1 contain the constraint NOT
NULL. These columns are either the primary keys of their respective tables

or columns that you decide must contain a value. A table’s primary key must

uniquely identify each row. To do that, the primary key must contain a

non-null value in every row. (I discuss keys in detail in Chapter 5.)

60 Part I: Basic Concepts

 The tables relate to each other through the columns that they have in

common. The following list describes these relationships (as shown in

Figure 3-3):

 ✓ The CUSTOMER table bears a one-to-many relationship to the INVOICE

table. One customer can make multiple purchases, generating multiple

invoices. Each invoice, however, deals with one, and only one, customer.

 ✓ The INVOICE table bears a one-to-many relationship to the INVOICE_

LINE table. An invoice may have multiple lines, but each line appears on

one, and only one, invoice.

 ✓ The PRODUCT table also bears a one-to-many relationship to the

INVOICE_LINE table. A product may appear on more than one line on

one or more invoices. Each line, however, deals with one, and only one,

product.

Figure 3-3:
A sport-

ing goods
store’s

database
structure.

CUSTOMER

PK CustomerID PK InvoiceNumber

CustomerID

INVOICE

PRODUCT

PK ProductID PK LineNumber

InvoiceNumber
ProductID

INVOICE_LINE

Generates

Contains

Appears on

1:N

1:N

1:N

The CUSTOMER table links to the INVOICE table by the common

CustomerID column. The INVOICE table links to the INVOICE_LINE table

by the common InvoiceNumber column. The PRODUCT table links to the

INVOICE_LINE table by the common ProductID column. These links are

what makes this database a relational database.

To access the information about customers who bought ski equipment, you

need FirstName, LastName, Street, City, State, and Zipcode from the

CUSTOMER table; Category from the PRODUCT table; InvoiceNumber

from the INVOICE table; and LineNumber from the INVOICE_LINE table. You

can create the view you want in stages by using the following statements:

61 Chapter 3: The Components of SQL

CREATE VIEW SKI_CUST1 AS
 SELECT FirstName,
 LastName,
 Street,
 City,
 State,
 Zipcode,
 InvoiceNumber
 FROM CUSTOMER JOIN INVOICE
 USING (CustomerID) ;
CREATE VIEW SKI_CUST2 AS
 SELECT FirstName,
 LastName,
 Street,
 City,
 State,
 Zipcode,
 ProductID
 FROM SKI_CUST1 JOIN INVOICE_LINE
 USING (InvoiceNumber) ;
CREATE VIEW SKI_CUST3 AS
 SELECT FirstName,
 LastName,
 Street,
 City,
 State,
 Zipcode,
 Category
 FROM SKI_CUST2 JOIN PRODUCT
 USING (ProductID) ;
CREATE VIEW SKI_CUST AS
 SELECT DISTINCT FirstName,
 LastName,
 Street,
 City,
 State,
 Zipcode
 FROM SKI_CUST3
 WHERE CATEGORY = ‘Ski’ ;

These CREATE VIEW statements combine data from multiple tables by using

the JOIN operator. Figure 3-4 diagrams the process.

Here’s a rundown of the four CREATE VIEW statements:

 ✓ The first statement combines columns from the CUSTOMER table with a

column of the INVOICE table to create the SKI_CUST1 view.

 ✓ The second statement combines SKI_CUST1 with a column from the

INVOICE_LINE table to create the SKI_CUST2 view.

62 Part I: Basic Concepts

 ✓ The third statement combines SKI_CUST2 with a column from the

PRODUCT table to create the SKI_CUST3 view.

 ✓ The fourth statement filters out all rows that don’t have a category

of Ski. The result is a view (SKI_CUST) that contains the names and

addresses of all customers who bought at least one product in the Ski

category.

 The DISTINCT keyword in the fourth CREATE VIEW’s SELECT clause

ensures that you have only one entry for each customer, even if some

customers made multiple purchases of ski items. (I cover JOINs in detail

in Chapter 10.)

Figure 3-4:
Creating
a multi-

table view
by using

JOINs.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

PRODUCT Table

ProductID
Name
Description
Category
VendorID
VendorName

INVOICE_LINE Table

LineNumber
InvoiceNumber
ProductID
Quantity
SalePrice

SKI_CUST1 View

FirstName
LastName
Street
City
State
Zipcode
InvoiceNumber

SKI_CUST2 View

FirstName
LastName
Street
City
State
Zipcode
ProductID

SKI_CUST3 View

FirstName
LastName
Street
City
State
Zipcode
Category

SKI_CUST View

FirstName
LastName
Street
City
State
Zipcode

It’s possible to create a multitable view with a single SQL statement. However,

if you think that one or all of the preceding statements are complex, imagine

how complex a single statement would be that performed all their functions. I

tend to prefer simplicity over complexity, so whenever possible, I choose the

simplest way to perform a function, even if it is not the most “efficient.”

Collecting tables into schemas
A table consists of rows and columns and usually deals with a specific

type of entity, such as customers, products, or invoices. Useful work

generally requires information about several (or many) related entities.

Organizationally, you collect the tables that you associate with these entities

according to a logical schema. A logical schema is the organizational

structure of a collection of related tables.

63 Chapter 3: The Components of SQL

 A database also has a physical schema — which represents the physical

arrangement of the data and its associated items (such as indexes) on the

system’s storage devices. When I mention “the schema” of a database, I’m

referring to the logical schema, not the physical schema.

On a system where several unrelated projects may co-reside, you can assign

all related tables to one schema. You can collect other groups of tables into

schemas of their own.

 Be sure to name your schemas to ensure that no one accidentally mixes tables

from one project with tables from another. Each project has its own associated

schema; you can distinguish it from other schemas by name. Seeing certain

table names (such as CUSTOMER, PRODUCT, and so on) appear in multiple

projects, however, is common. If any chance exists of a naming ambiguity,

qualify your table name by using its schema name as well (as in SCHEMA_
NAME.TABLE_NAME). If you don’t qualify a table name, SQL assigns that table

to the default schema.

Ordering by catalog
For really large database systems, multiple schemas may not be sufficient.

In a large distributed database environment with many users, you may even

find duplicated schema names. To prevent this situation, SQL adds another

level to the containment hierarchy: the catalog. A catalog is a named collection

of schemas.

You can qualify a table name by using a catalog name and a schema name.

This safeguard is the best way to ensure that no one confuses the table in

one schema with a table that has the same name in some other schema that

has the same schema name. (Say what? Well, some folks just have a really

hard time thinking up different names.) The catalog-qualified name appears

in the following format:

CATALOG_NAME.SCHEMA_NAME.TABLE_NAME

 At the top of the database containment hierarchy are clusters. Systems rarely

require use of the full scope of the containment hierarchy; going to the catalog

level is enough in most cases. A catalog contains schemas; a schema contains

tables and views; tables and views contain columns and rows.

The catalog also contains the information schema. The information schema

contains the system tables. The system tables hold the metadata associated

with the other schemas. In Chapter 1, I define a database as a self-describing

collection of integrated records. The metadata contained in the system tables

is what makes the database self-describing.

64 Part I: Basic Concepts

Because catalogs are identified by name, you can have multiple catalogs in

a database. Each catalog can have multiple schemas, and each schema can

have multiple tables. Of course, each table can have multiple columns and

rows. The hierarchical relationships are shown in Figure 3-5.

Figure 3-5:
The

hierarchical
structure

of a
typical SQL

database.

Getting familiar with DDL statements
SQL’s Data Definition Language (DDL) deals with the structure of a database.

It’s distinct from the Data Manipulation Language (described later in this

chapter), which deals with the data contained within that structure. The DDL

consists of these three statements:

 ✓ CREATE: You use the various forms of this statement to build the

essential structures of the database.

 ✓ ALTER: You use this statement to change structures that you have

created.

 ✓ DROP: You apply this statement to structures created with the CREATE

statement, to destroy them.

In the following sections, I give you brief descriptions of the DDL statements.

In Chapters 4 and 5, I use these statements in examples.

CREATE
You can apply the SQL CREATE statement to a large number of SQL objects,

including schemas, domains, tables, and views. By using the CREATE SCHEMA

statement, you can not only create a schema, but also identify its owner and

specify a default character set. Here’s an example of such a statement:

65 Chapter 3: The Components of SQL

CREATE SCHEMA SALES
 AUTHORIZATION SALES_MGR
 DEFAULT CHARACTER SET ASCII_FULL ;

Use the CREATE DOMAIN statement to apply constraints to column values.

The constraints you apply to a domain determine what objects the domain

can and cannot contain. You can create domains after you establish a

schema. The following example shows how to use this statement:

CREATE DOMAIN Age AS INTEGER
 CHECK (AGE > 20) ;

You create tables by using the CREATE TABLE statement, and you create

views by using the CREATE VIEW statement. Earlier in this chapter, I show

you examples of these two statements. When you use the CREATE TABLE

statement, you can specify constraints on the new table’s columns at the

same time.

 Sometimes you may want to specify constraints that don’t specifically

attach to a table but apply to an entire schema. You can use the CREATE
ASSERTION statement to specify such constraints.

You also have CREATE CHARACTER SET, CREATE COLLATION, and CREATE
TRANSLATION statements, which give you the flexibility of creating new

character sets, collation sequences, or translation tables. (Collation
sequences define the order in which you carry out comparisons or sorts.

Translation tables control the conversion of character strings from one

character set to another.) There are a number of other things you can create

(which I won’t go into here), as you can deduce if you flip to Chapter 2 for a

glance at Table 2-1.

ALTER
After you create a table, you’re not necessarily stuck with that exact table

forever. As you use the table, you may discover that it’s not everything you

need it to be. You can use the ALTER TABLE statement to change the table

by adding, changing, or deleting a column in the table. Besides tables, you

can also ALTER columns and domains.

DROP
Removing a table from a database schema is easy. Just use a DROP TABLE

<tablename> statement. You erase all data from the table, as well as the

metadata that defines the table in the data dictionary. It’s almost as if the

table never existed. You can also use the DROP statement to get rid of

anything that was created by a CREATE statement.

66 Part I: Basic Concepts

 DROP won’t work if it breaks referential integrity. I discuss referential integrity

later in this chapter.

Data Manipulation Language
Although the DDL is the part of SQL that creates, modifies, or destroys

database structures, it doesn’t deal with data itself . Handling data is the

job of the Data Manipulation Language (DML). Some DML statements read

like ordinary English-language sentences and are easy to understand.

Unfortunately, because SQL gives you very fine-grained control of your data,

other DML statements can be fiendishly complex.

If a DML statement includes multiple expressions, clauses, predicates (more

about them later in this chapter), or subqueries, understanding what that

statement is trying to do can be a challenge. After you deal with some of

these statements, you may even consider switching to an easier line of work,

such as brain surgery or quantum electrodynamics. Fortunately, such

drastic action isn’t necessary. You can understand complex SQL statements

by breaking them down into their basic components and analyzing them one

chunk at a time.

The DML statements you can use are INSERT, UPDATE, DELETE, MERGE,

and SELECT. These statements can consist of a variety of parts, including

multiple clauses. Each clause may incorporate value expressions, logical

connectives, predicates, aggregate functions, and subqueries. You can make

fine discriminations among database records and extract more information

from your data by including these clauses in your statements. In Chapter 6, I

discuss the operation of the DML commands, and in Chapters 7 through 12, I

delve into the details of these commands.

Value expressions
You can use value expressions to combine two or more values. Several kinds

of value expressions exist, corresponding to the different data types:

 ✓ Numeric

 ✓ String

 ✓ Datetime

 ✓ Interval

 ✓ Boolean

67 Chapter 3: The Components of SQL

 ✓ User-defined

 ✓ Row

 ✓ Collection

The Boolean, user-defined, row, and collection types were introduced with

SQL:1999. Some implementations may not support them all yet. If you want to

use these data types, make sure your implementation includes the ones you

want to use.

Numeric value expressions
To combine numeric values, use the addition (+), subtraction (-),

multiplication (*), and division (/) operators. The following lines are

examples of numeric value expressions:

12 – 7
15/3 - 4
6 * (8 + 2)

The values in these examples are numeric literals. These values may also be

column names, parameters, host variables, or subqueries — provided that

those column names, parameters, host variables, or subqueries evaluate to a

numeric value. The following are some examples:

SUBTOTAL + TAX + SHIPPING
6 * MILES/HOURS
:months/12

The colon in the last example signals that the following term (months) is

either a parameter or a host variable.

String value expressions
String value expressions may include the concatenation operator (||). Use

concatenation to join two text strings, as shown in Table 3-2.

Table 3-2 Examples of String Concatenation
Expression Result

‘military ’ || ‘intelligence’ ‘military
intelligence’

‘oxy’ || ‘moron’ ‘oxymoron’

CITY|| ‘ ‘ ||STATE|| ‘ ‘||ZIP A single string with city, state,
and zip code, each separated by
a single space.

68 Part I: Basic Concepts

 Some SQL implementations use + as the concatenation operator rather than

||. Check your documentation to see which operator your implementation

uses.

Some implementations may include string operators other than concatenation,

but ISO-standard SQL doesn’t support such operators. Concatenation applies

to binary strings as well as to text strings.

Datetime and interval value expressions
Datetime value expressions deal with (surprise!) dates and times. Data of

DATE, TIME, TIMESTAMP, and INTERVAL types may appear in datetime value

expressions. The result of a datetime value expression is always another

datetime. You can add or subtract an interval from a datetime and specify

time zone information.

Here’s an example of a datetime value expression:

DueDate + INTERVAL ‘7’ DAY

A library may use such an expression to determine when to send a late

notice. The following example specifies a time rather than a date:

TIME ‘18:55:48’ AT LOCAL

 The AT LOCAL keywords indicate that the time refers to the local time zone.

Interval value expressions deal with the difference (how much time passes)

between one datetime and another. You have two kinds of intervals: year-
month and day-time. You can’t mix the two in an expression.

As an example of an interval, suppose someone returns a library book after

the due date. By using an interval value expression such as that of the

following example, you can calculate how many days late the book is and

assess a fine accordingly:

(DateReturned - DateDue) DAY

Because an interval may be of either the year-month or the day-time variety,

you need to specify which kind to use. (In the preceding example, I specify

DAY.)

Boolean value expressions
A Boolean value expression tests the truth value of a predicate. The following

is an example of a Boolean value expression:

(Class = SENIOR) IS TRUE

69 Chapter 3: The Components of SQL

If this was a condition on the retrieval of rows from a student table, only rows

containing the records of seniors would be retrieved. To retrieve the records

of all non-seniors, you could use the following:

NOT (Class = SENIOR) IS TRUE

Alternatively, you could use:

(Class = SENIOR) IS FALSE

To retrieve every row that has a null value in the CLASS column, use

(Class = SENIOR) IS UNKNOWN

User-defined type value expressions
User-defined data types are described in Chapter 2. If necessary, you can

define your own data types instead of having to settle for those provided

by “stock” SQL. Expressions that incorporate data elements of such a user-

defined type must evaluate to an element of the same type.

Row value expressions
A row value expression, not surprisingly, specifies a row value. The row value

may consist of one value expression, or two or more comma-delimited value

expressions. For example:

(‘Joseph Tykociner’, ‘Professor Emeritus’, 1918)

This is a row in a faculty table, showing a faculty member’s name, rank, and

year of hire.

Collection value expressions
A collection value expression evaluates to an array.

Reference value expressions
A reference value expression evaluates to a value that references some other

database component, such as a table column.

Predicates
Predicates are SQL equivalents of logical propositions. The following statement

is an example of a proposition:

“The student is a senior.”

70 Part I: Basic Concepts

In a table containing information about students, the domain of the CLASS

column may be SENIOR, JUNIOR, SOPHOMORE, FRESHMAN, or NULL. You can

use the predicate CLASS = SENIOR to filter out rows for which the predicate

is False, retaining only those for which the predicate is True. Sometimes the

value of a predicate in a row is Unknown (NULL). In those cases, you may

choose either to discard the row or to retain it. (After all, the student could
be a senior.) The correct course of action depends on the situation.

Class = SENIOR is an example of a comparison predicate. SQL has six

comparison operators. A simple comparison predicate uses one of these

operators. Table 3-3 shows the comparison predicates and some legitimate

as well as bogus examples of their use.

Table 3-3 Comparison Operators and Comparison Predicates
Operator Comparison Expression

= Equal to Class = SENIOR

<> Not equal to Class <> SENIOR

< Less than Class < SENIOR

> Greater than Class > SENIOR

<= Less than or equal to Class <= SENIOR

>= Greater than or equal to Class >= SENIOR

 In the preceding example, only the first two entries in Table 3-3 (Class =
SENIOR and Class < > SENIOR) make sense. SOPHOMORE is considered

greater than SENIOR because SO comes after SE in the default collation

sequence, which sorts in ascending alphabetical order. This interpretation,

however, is probably not the one you want.

Logical connectives
Logical connectives enable you to build complex predicates out of simple

ones. Say, for example, that you want to identify child prodigies in a database

of high-school students. Two propositions that could identify these students

may read as follows:

“The student is a senior.”

“The student’s age is less than 14 years.”

You can use the logical connective AND to create a compound predicate that

isolates the student records that you want, as in the following example:

71 Chapter 3: The Components of SQL

Class = SENIOR AND Age < 14

If you use the AND connective, both component predicates must be true for

the compound predicate to be true. Use the OR connective when you want

the compound predicate to evaluate to true if either component predicate is

true. NOT is the third logical connective. Strictly speaking, NOT doesn’t

connect two predicates, but instead reverses the truth value of the single

predicate to which you apply it. Take, for example, the following expression:

NOT (Class = SENIOR)

This expression is true only if Class is not equal to SENIOR.

Set functions
Sometimes the information you want to extract from a table doesn’t relate

to individual rows but rather to sets of rows. SQL provides five set (or

aggregate) functions to deal with such situations. These functions are COUNT,

MAX, MIN, SUM, and AVG. Each function performs an action that draws data

from a set of rows rather than from a single row.

COUNT
The COUNT function returns the number of rows in the specified table. To

count the number of precocious seniors in my example high-school database,

use the following statement:

SELECT COUNT (*)
 FROM STUDENT
 WHERE Grade = 12 AND Age < 14 ;

MAX
Use the MAX function to return the maximum value that occurs in the

specified column. Suppose you want to find the oldest student enrolled in

your school. The following statement returns the appropriate row:

SELECT FirstName, LastName, Age
 FROM STUDENT
 WHERE Age = (SELECT MAX(Age) FROM STUDENT);

This statement returns all students whose ages are equal to the maximum

age. That is, if the age of the oldest student is 23, this statement returns the

first and last names and the age of all students who are 23 years old.

This query uses a subquery. The subquery SELECT MAX(Age) FROM
STUDENT is embedded within the main query. I talk about subqueries (also

called nested queries) in Chapter 11.

72 Part I: Basic Concepts

MIN
The MIN function works just like MAX except that MIN looks for the minimum

value in the specified column rather than the maximum. To find the youngest

student enrolled, you can use the following query:

SELECT FirstName, LastName, Age
 FROM STUDENT
 WHERE Age = (SELECT MIN(Age) FROM STUDENT);

This query returns all students whose age is equal to the age of the youngest

student.

SUM
The SUM function adds up the values in a specified column. The column must

be one of the numeric data types, and the value of the sum must be within

the range of that type. Thus, if the column is of type SMALLINT, the sum must

be no larger than the upper limit of the SMALLINT data type. In the retail

database from earlier in this chapter, the INVOICE table contains a record of

all sales. To find the total dollar value of all sales recorded in the database,

use the SUM function as follows:

SELECT SUM(TotalSale) FROM INVOICE;

AVG
The AVG function returns the average of all the values in the specified

column. As does the SUM function, AVG applies only to columns with a

numeric data type. To find the value of the average sale, considering all

transactions in the database, use the AVG function like this:

SELECT AVG(TotalSale) FROM INVOICE

Nulls have no value, so if any of the rows in the TotalSale column contain

null values, those rows are ignored in the computation of the value of the

average sale.

Subqueries
Subqueries, as you can see in the “Set functions” section earlier in this

chapter, are queries within a query. Anywhere you can use an expression

in an SQL statement, you can also use a subquery. Subqueries are powerful

tools for relating information in one table to information in another table; you

can embed (or nest) a query into one table, within a query to another table.

By nesting one subquery within another, you enable the access of information

73 Chapter 3: The Components of SQL

from two or more tables to generate a final result. When you use subqueries

correctly, you can retrieve just about any information you want from a

database. Don’t worry about how many levels of subqueries your database

supports. When you start building nested subqueries, you will run out of

comprehension of what you are doing long before your database runs out of

levels of subqueries that it supports.

Data Control Language
The Data Control Language (DCL) has four commands: COMMIT, ROLLBACK,

GRANT, and REVOKE. These commands protect the database from harm, both

accidental or intentional.

Transactions
Your database is most vulnerable to damage while you or someone else is

changing it. Even in a single-user system, making a change can be dangerous

to a database. If a software or hardware failure occurs while the change is in

progress, a database may be left in an indeterminate state that’s somewhere

between where it was before the change operation started and where it

would be if the change operation completed successfully.

SQL protects your database by restricting operations that can change the

database so they can occur only within transactions. During a transaction,

SQL records every operation performed on the data in a log file. If anything

interrupts the transaction before the COMMIT statement ends the transaction,

you can restore the system to its original state by issuing a ROLLBACK

statement. The ROLLBACK processes the transaction log in reverse, undoing

all the actions that took place in the transaction. After you roll back the

database to its state before the transaction began, you can clear up whatever

caused the problem and attempt the transaction again.

 As long as a hardware or software problem can possibly occur, your database

is susceptible to damage. To minimize the chance of damage, today’s DBMSs

close the window of vulnerability as much as possible by performing all

operations that affect the database within a transaction and then committing

all these operations at once, at the end of the transaction. Modern database

management systems use logging in conjunction with transactions to guarantee

that hardware, software, or operational problems won’t damage data. After a

transaction has been committed, it’s safe from all but the most catastrophic of

system failures. Prior to commitment, incomplete transactions can be rolled

back to their starting points and applied again, after the problem is corrected.

74 Part I: Basic Concepts

In a multiuser system, database corruption or incorrect results are possible

even if no hardware or software failures occur. Interactions between two or

more users who access the same table at the same time can cause serious

problems. By restricting changes so that they occur only within transactions,

SQL addresses these problems as well.

By putting all operations that affect the database into transactions, you

can isolate the actions of one user from those of another user. Such isolation

is critical if you want to make sure that the results you obtain from the

database are accurate.

 You may wonder how the interaction of two users can produce inaccurate

results. Here’s a funny/scary example: Suppose Donna reads a record in a

database table. An instant later (more or less), David changes the value of a

numeric field in that record. Now Donna writes a value back into that field,

based on the value that she read initially. Because Donna is unaware of

David’s change, the value after Donna’s write operation is incorrect.

Another problem can result if Donna writes to a record and then David reads

that record. If Donna rolls back her transaction, David is unaware of the

rollback and bases his actions on the value that he read, which doesn’t

reflect the value that’s in the database after the rollback. This sounds like

the plot for an episode of I Love Lucy — it makes for good comedy but lousy

data management.

Users and privileges
Another major threat to data integrity is the users themselves. Some people

should have no access to the data. Others should have only restricted access

to some of the data but no access to the rest. Some (hint: not very many)

should have unlimited access to everything in the database. You need a

system for classifying users and for assigning access privileges to the users

in different categories.

The creator of a schema specifies who is considered its owner. As the owner

of a schema, you can grant access privileges to the users you specify. Any

privileges that you don’t explicitly grant are withheld. You can also revoke

privileges that you’ve already granted. A user must pass an authentication

procedure to prove his identity before he can access the files you authorize

him to use. The specifics of that procedure depend on the implementation.

SQL gives you the capability to protect the following database objects:

 ✓ Tables

 ✓ Columns

 ✓ Views

75 Chapter 3: The Components of SQL

 ✓ Domains

 ✓ Character sets

 ✓ Collations

 ✓ Translations

I discuss character sets, collations, and translations in Chapter 5.

SQL supports several different kinds of protection: seeing, adding, modifying,
deleting, referencing, and using databases. It also supports protections

associated with the execution of external routines.

 You permit access by using the GRANT statement and remove access by using

the REVOKE statement. By controlling the use of the SELECT statement, the

DCL controls who can see a database object such as a table, column, or view.

Controlling the INSERT statement determines who can add new rows in a

table. Restricting the use of the UPDATE statement to authorized users gives

you control of who can modify table rows; restricting the DELETE statement

controls who can delete table rows.

If one table in a database contains as a foreign key a column that is a

primary key in another table in the database, you can add a constraint to the

first table so that it references the second table. (Foreign keys are described

in Chapter 5.) When one table references another, a user of the first table

may be able to deduce information about the contents of the second. As the

owner of the second table, you may want to prevent such snooping. The

GRANT REFERENCES statement gives you that power. The following section

discusses the problem of a renegade reference — and how the GRANT
REFERENCES statement prevents it. By using the GRANT USAGE statement,

you can control who can use — or even see — the contents of a domain,

character set, collation, or translation. (I cover provisions for security in

Chapter 13.)

Table 3-4 summarizes the SQL statements that you use to grant and revoke

privileges.

Table 3-4 Types of Protection
Protection Operation Statement

Enable user to see a table GRANT SELECT

Prevent user from seeing a table REVOKE SELECT

Enable user to add rows to a table GRANT INSERT

Prevent user from adding rows to a table REVOKE INSERT

Enable user to change data in table rows GRANT UPDATE

(continued)

76 Part I: Basic Concepts

Table 3-4 (continued)
Protection Operation Statement

Prevent user from changing data in table
rows

REVOKE UPDATE

Enable user to delete table rows GRANT DELETE

Prevent user from deleting table rows REVOKE DELETE

Enable user to reference a table GRANT REFERENCES

Prevent user from referencing a table REVOKE REFERENCES

Enable user to use a domain, character
set, translation, or collation

GRANT USAGE ON DOMAIN,
GRANT USAGE ON CHARACTER
SET, GRANT USAGE ON
COLLATION, GRANT USAGE ON
TRANSLATION

Prevent user from using a domain, char-
acter set, collation, or translation

REVOKE USAGE ON DOMAIN,
REVOKE USAGE ON CHARACTER
SET, REVOKE USAGE ON
COLLATION, REVOKE USAGE
ON TRANSLATION

You can give different levels of access to different people, depending on their

needs. The following commands offer a few examples of this capability:

GRANT SELECT
 ON CUSTOMER
 TO SALES_MANAGER;

The preceding example enables one person — the sales manager — to see

the CUSTOMER table.

The following example enables anyone with access to the system to see the

retail price list:

GRANT SELECT
 ON RETAIL_PRICE_LIST
 TO PUBLIC;

The following example enables the sales manager to modify the retail price

list. She can change the contents of existing rows, but she can’t add or delete

rows:

GRANT UPDATE
 ON RETAIL_PRICE_LIST
 TO SALES_MANAGER;

77 Chapter 3: The Components of SQL

The following example enables the sales manager to add new rows to the

retail price list:

GRANT INSERT
 ON RETAIL_PRICE_LIST
 TO SALES_MANAGER;

Now, thanks to this last example, the sales manager can delete unwanted

rows from the table, too:

GRANT DELETE
 ON RETAIL_PRICE_LIST
 TO SALES MANAGER;

Referential integrity constraints
can jeopardize your data
You may think that if you can control who sees, creates, modifies, and

deletes data in a table, you’re well protected. Against most threats, you are.

A knowledgeable hacker, however, can still ransack the house by using an

indirect method.

A correctly designed relational database has referential integrity, which

means that the data in one table in the database is consistent with the data in

all the other tables. To ensure referential integrity, database designers apply

constraints to tables that restrict the data users can enter into the tables. But

here’s the downside of that protection: If you have a database with referential

integrity constraints, a user can possibly create a new table that uses a

column in a confidential table as a foreign key. That column then serves as

a link through which someone can possibly steal confidential information.

Oops.

Say, for example, that you’re a famous Wall Street stock analyst. Many

people believe in the accuracy of your stock picks, so whenever you

recommend a stock to your subscribers, many people buy that stock, and

its value increases. You keep your analysis in a database, which contains

a table named FOUR_STAR. Your top recommendations for your next

newsletter are in that table. Naturally, you restrict access to FOUR_STAR

so that word doesn’t leak out to the investing public before your paying

subscribers receive the newsletter.

You’re still vulnerable, however, if anyone else can create a new table that

uses the stock name field of FOUR_STAR as a foreign key, as shown in the

following command example:

78 Part I: Basic Concepts

CREATE TABLE HOT_STOCKS (
 Stock CHARACTER (30) REFERENCES FOUR_STAR
);

The hacker can now try to insert the name of every stock on the New York

Stock Exchange, American Stock Exchange, and NASDAQ into the table.

Those inserts that succeed tell the hacker which stocks match the stocks

that you name in your confidential table. It doesn’t take long for the hacker to

extract your entire list of stocks.

You can protect yourself from hacks such as the one in the preceding example

by being very careful about entering statements similar to the following:

GRANT REFERENCES (Stock)
 ON FOUR_STAR
 TO SECRET_HACKER;

 Avoid granting privileges to people who may abuse them. True, people don’t

come with guarantees printed on their foreheads. But if you wouldn’t lend

your new car to a person for a long trip, you probably shouldn’t grant him the

REFERENCES privilege on an important table, either.

The preceding example offers one good reason for maintaining careful

control of the REFERENCES privilege. Here are two other reasons why you

should maintain careful control of REFERENCES:

 ✓ If the other person specifies a constraint in HOT STOCKS by using a

RESTRICT option and you try to delete a row from your table, the DBMS

tells you that you can’t, because doing so would violate a referential

integrity constraint.

 ✓ If you want to use the DROP command to destroy your table, you find

you must get the other person to DROP his constraint (or his table) first.

 The bottom line: Enabling another person to specify integrity constraints on

your table not only introduces a potential security breach, but also means

that the other user sometimes gets in your way.

Delegating responsibility for security
To keep your system secure, you must severely restrict the access privileges

you grant, as well as the people to whom you grant these privileges. But

people who can’t do their work because they lack access are likely to hassle

you constantly. To preserve your sanity, you’ll probably need to delegate

some of the responsibility for maintaining database security. SQL provides

for such delegation through the WITH GRANT OPTION clause. Consider the

following example:

79 Chapter 3: The Components of SQL

GRANT UPDATE
 ON RETAIL_PRICE_LIST
 TO SALES_MANAGER WITH GRANT OPTION;

This statement is similar to the previous GRANT UPDATE example in that

the statement enables the sales manager to update the retail price list. The

statement also gives her the right to grant the update privilege to anyone she

wants. If you use this form of the GRANT statement, you must not only trust

the grantee to use the privilege wisely, but also trust her to choose wisely in

granting the privilege to others.

 The ultimate in trust — therefore the ultimate in vulnerability — is to execute

a statement such as the following:

GRANT ALL PRIVILEGES
 ON FOUR_STAR
 TO BENEDICT_ARNOLD WITH GRANT OPTION;

Be extremely careful about using statements such as this one.

80 Part I: Basic Concepts

Part II
Using SQL to Build

Databases

In this part . . .

The database life cycle encompasses four important

stages: Creating the database, filling it with data, manipu-

lating and retrieving selected data, and deleting data that’s

no longer useful. This book covers all these stages, but Part

II focuses on database creation. SQL includes all the facilities

you need for creating relational databases of any size or

complexity. I explain what these facilities are and how to

use them. I also describe some common problems that

relational databases suffer from and tell you how SQL can

help you prevent such problems — or at least minimize

their effects.

Chapter 4

Building and Maintaining a
Simple Database Structure

In This Chapter
▶ Using RAD to build, change, and remove a database table

▶ Using SQL to build, change, and remove a database table

▶ Migrating your database to another DBMS

Computer history changes so fast that sometimes the rapid turnover of

technological generations can be confusing. High-level (so-called third-
generation) languages such as FORTRAN, COBOL, BASIC, Pascal, and C were

the first languages used to build and change large databases. Later languages

included some specifically designed for use with databases — such as dBASE,

Paradox, and R:BASE. (So were these third-and-a-half-generation languages?

Never mind.) The next step in this progression was the emergence of

development environments such as Access, PowerBuilder, and C++ Builder,

the so-called fourth-generation languages (4GLs). Now things have moved

beyond the numbered generations to rapid application development (RAD)

tools and integrated development environments (IDEs) such as Eclipse and

Visual Studio .NET, which can be used with any of a number of languages

(such as C, C++, C#, Python, Java, Visual Basic, or PHP). You use them to

assemble application components into production applications.

 Because SQL is not a complete language, it doesn’t fit tidily into one of the

generational categories I just mentioned. Nor is it an IDE. It makes use of

commands in the manner of a third-generation language — but is essentially

nonprocedural, like a fourth-generation language. No matter how you classify

SQL, you can use it in conjunction with an IDE or with older third- and fourth-

generation development tools. You can write the SQL code yourself, or you

can move objects around on-screen and have the development environment

generate equivalent code for you. The commands that go out to the remote

database are pure SQL in either case.

In this chapter, I take you through the process of using a RAD tool to build,

alter, and drop a simple table, and then discuss how to build, alter, and drop

the same table using SQL.

84 Part II: Using SQL to Build Databases

Using a RAD Tool to Build
a Simple Database

People use databases because they want to keep track of important

information. Sometimes the information that they want to track is simple,

and sometimes it’s not. A good database management system provides what

you need in either case. Some DBMSs give you SQL. Others, such as RAD

tools, give you an object-oriented graphical environment. Some DBMSs

support both approaches. In the following sections, I show you how to build

a simple single-table database by using a graphical database design tool. I

use Microsoft Access in my examples, but the procedure is similar for other

Windows-based development environments.

Deciding what to track
The first step when you create a database is to decide what you want to

track. For example, imagine you’ve just won $248 million in the PowerBall

lottery. (It’s okay to imagine something like this. In real life, it’s about as

likely as finding your car squashed by a giant meteorite.) People you haven’t

heard from in years, and friends you’d forgotten you had, are suddenly

coming out of the woodwork. Some have surefire, can’t-miss business

opportunities in which they want you to invest. Others represent worthy

causes that could benefit from your support. As a good steward of your

new wealth, you realize that some business opportunities aren’t as good as

others, and some causes aren’t as worthy as others. You decide to put all

the options into a database so you can keep track of them and make fair and

equitable judgments.

You decide to track the following information about your friends and relations:

 ✓ First name

 ✓ Last name

 ✓ Address

 ✓ City

 ✓ State or province

 ✓ Postal code

 ✓ Phone

 ✓ How known (your relationship to the person)

 ✓ Proposal

 ✓ Business or charity

85 Chapter 4: Building and Maintaining a Simple Database Structure

You decide to put all the listed items into a single database table; you don’t

need something elaborate.

Creating a database table
When you fire up your Access 2007 development environment, you’re greeted

by the screen shown in Figure 4-1. From there, you can build a database table

in several different ways. I start with Datasheet view because that approach

shows you how to create a database from the ground up. Read on.

Figure 4-1:
Microsoft

Access
opening
screen.

Building a database table in Datasheet view
Follow these steps to build an Access database in Datasheet view:

 1. With Access 2007 open, select Blank Database.

 Alternatively, you can choose one of several templates that pertain to

common applications. Either way, the screen changes to that shown in

Figure 4-2. Access asks you for a file name, suggesting Database1 and

also suggesting a folder to put it in. You can fill in the file name of

your choice if you don’t like the default, and also browse for a more

appropriate folder to put your new database in.

 2. Change the default database name from Database1 to POWER, leave

the suggested folder as it is, and click the Create button.

86 Part II: Using SQL to Build Databases

 The name can be anything that reflects the use of the database (in

this case, to track PowerBall winnings). Your new database appears in

Datasheet view (the screen shown in Figure 4-3).

Figure 4-2:
Blank

Database
default
screen.

Figure 4-3:
Datasheet
view in the

Access
development
environment.

87 Chapter 4: Building and Maintaining a Simple Database Structure

 That’s the start-from-scratch method, but you have several different ways to

create an Access database table. This next one uses Design view.

Building a database table in Design view
In Datasheet view (refer to Figure 4-3), building a database table is pretty

easy: You just start entering data. That approach, however, is prone to errors

because details are easy to overlook. A better way to create a table is in

Design view by following these steps:

 1. With Access open in Datasheet view (the default), click View below

the icon in the upper-left corner of the window. Then select Design

View from the drop-down menu.

 When you click Design View, a dialog box pops up and asks you to enter

a table name.

 2. Enter POWER (for your PowerBall winnings) and click OK.

 The Design view (shown in Figure 4-4) appears.

Figure 4-4:
Design

view, start-
ing screen.

 Notice that the window is divided into functional areas. Two of them are

especially useful in building database tables:

 • Design view options: A menu across the top of the window offers

Home, Create, External Data, Database Tools, and Design options.

The tools available in Design view are represented by the icons

just below the menu. In Figure 4-4, the highlighting shows that the

Design and Primary Key icons are selected.

88 Part II: Using SQL to Build Databases

 • Field Properties pane: In this area for defining database fields, the

cursor is blinking in the Field Name column of the first row. Access

is suggesting that you specify a primary key here, name it ID, and

give it the AutoNumber data type.

 AutoNumber, an Access data type, isn’t a standard SQL type; it

increments an integer in the field by one automatically every time

you add a new record to a table. This data type guarantees that the

field you use as a primary key won’t be duplicated and will thus

stay unique.

 3. In the Field Properties area, change the primary key’s Field Name

from ID to ProposalNumber.

 The suggested Field Name for the primary key, ID, just isn’t very

informative. If you get into the habit of changing it to something more

meaningful (and/or providing additional information in the Description

column), it’s easier to keep track of what the fields in your database are

for. Here the field name is sufficiently descriptive.

 Figure 4-5 shows the database table’s design at this point.

Figure 4-5:
Using a

descriptive
field name

to define the
primary key.

 4. In the Field Properties pane, check the assumptions that Access has

made automatically about the Proposal Number field.

 Figure 4-5 shows the following assumptions:

 • The Field Size has been set to Long Integer.

 • New Values are obtained by incrementing.

89 Chapter 4: Building and Maintaining a Simple Database Structure

 • Indexing is called for and duplicates are not allowed.

 • Text alignment is general.

 As is often the case, the assumptions Access makes are fine for what you

want to do. If any of the assumptions are incorrect, you can override

them by entering new values.

 5. Specify the rest of the fields you want this table to have.

 Figure 4-6 shows Design view after you’ve entered the FirstName field.

Figure 4-6:
The table-

creation
window,

after
FirstName
has been

defined.

 The data type for FirstName is Text, rather than AutoNumber, so

the field properties that apply to it are different. Here Access has given

FirstName the default Field Size for text data, which is 255 characters. I

don’t know too many people whose first names are that long. Why waste

the memory space? The next step changes this default value.

 Here the default Access assumption is that FirstName is not a required

field. You could enter a record in the POWER table and leave the

FirstName field blank, which takes into account folks who go by only

one name, such as Cher or Bono.

 6. Change the Field Size for FirstName to 15.

 For a rundown on why this is a good idea, see the accompanying

sidebar, “Thinking ahead as you design your table.”

90 Part II: Using SQL to Build Databases

 7. To ensure that you can retrieve a record from the POWER table

by LastName (which is likely), change the Indexed property for

LastName to Yes, as shown in Figure 4-7.

Figure 4-7:
The table-

creation
window,

after
LastName
has been

defined.

Thinking ahead as you design your table
Reducing the size of the FirstName field to
15 saves 240 bytes for every record in the data-
base if you’re using ASCII (UTF-8) characters,
480 bytes if you’re using UTF-16 characters,
or 960 bytes if you’re using UTF-32 charac-
ters. It adds up. While you’re at it, take a look
at other default assumptions for some other
field properties, and try to anticipate how you
might use them as the database grows. Some
of these fields require attention right away to
make them more efficient (FirstName is a
handy example); others apply only to relatively
obscure cases.

You may notice one other field property that
comes up a lot: the Indexed property. If you
don’t anticipate having to retrieve a record by a
given field, then don’t waste processing power
indexing it. Note, however, that in a large table
with many rows, you can speed up retrievals
immensely by indexing the field you use to
identify the record you want to retrieve. The
devil — or, in this case, a potential performance
boost — is in the details when you’re designing
your database tables.

91 Chapter 4: Building and Maintaining a Simple Database Structure

 The figure shows some changes I’ve made in the Field Properties pane:

 • I’ve reduced the maximum field size from 255 to 20, saving a bunch

more memory space.

 • I’ve changed Required to Yes, Allow Zero Length to No, and

Indexed to Yes (Duplicates OK). I want every proposal to include

the last name of the person responsible for it. A name of zero

length is not allowed, and the LastName field will be indexed.

 • I allow duplicates; two or more proposers might have the same last

name. This is practically certain in the case of the POWER table; I

expect proposals from all three of my brothers, as well as my sons

and unmarried daughter, not to mention my cousins.

 • The Yes (No Duplicates) option, which I did not choose, actually

would be appropriate for a field that is the primary key of a table.

A table’s primary key should never contain duplicates.

 8. Enter the rest of the fields, changing the default Field Size to

something appropriate in all cases.

 Figure 4-8 shows the result.

Figure 4-8:
The table-

creation
window,
after all

fields are
defined.

92 Part II: Using SQL to Build Databases

 As you can see in Figure 4-8, the field for business or charity

(BusinOrCharity) is not indexed. There’s no point in indexing a field

that has only two possible entries; indexing doesn’t narrow down the

selection enough to be worth it.

 Access uses the term field rather than attribute or column. The program’s

original file-processing systems weren’t relational and used the file, field,

and record terminology that are common for flat-file systems.

 9. Save your table by clicking the diskette icon in the upper-left corner.

 Access saves what you’ve built under the name you previously gave the

database, POWER.

 Keeping one eye on the future is wise as you develop your database. It’s

a good idea (for example) to save frequently as you develop; just click

that diskette icon now and then. Doing so could save you a lot of tedious

rework in the event of a power outage or other untoward event. Also,

though it won’t destroy the planet if you give the same name to a

database and to one of the tables that the database contains, it might

be mildly confusing for later administrators and users. As a rule, it’s

handier (and kinder) to just come up with two different names.

After you save your table, you may find that you need to tweak your original

design, as I describe in the next section, “Altering the table structure.”

Altering the table structure
Often newly created database tables need some tweaking. If you’re working

for someone else, your client may come to you after you create the database

and tell you that she wants to keep track of another data item — perhaps

several more. That means you have to go back to the drawing board.

If you’re building a database for your own use, deficiencies in its structure

inevitably become apparent after you create the structure (it’s probably a

clause in Murphy’s Law). For example, say you start getting proposals from

other countries and need to add a Country column. Or you have an older

database that didn’t include e-mail addresses — time to bring it up to date. In

this section, I show you how to use Access to modify a table. Other RAD tools

have comparable capabilities and work in a similar fashion.

 If a time comes when you need to update your database tables, take a moment

to assess all the fields they’re using. For example, you may as well add a

second Address field for people with complex addresses and a Country field

for proposals from other countries.

93 Chapter 4: Building and Maintaining a Simple Database Structure

 Although it is fairly easy to update database tables, you should avoid doing

so whenever possible. Any applications that depend on the old database

structure are likely to break and will have to be fixed. If you have a lot of

applications, this task could be a major undertaking. Try to anticipate

expansions that might be needed in the future and make provisions for them.

Carrying along a little extra overhead in the database is usually preferable to

updating a slew of applications written several years ago. The knowledge of

how they work is probably long gone, and they may be essentially unfixable.

To insert new rows and accommodate changes, open the table and follow

these steps:

 1. In the table-creation window, click in the small colored square to the

left of the City field to select that row and click Insert Rows in the

panel at the top.

 A blank row appears above the cursor position and pushes down all the

existing rows, as shown in Figure 4-9.

 2. Enter the fields you want to add to your table.

 I added an Address2 field above the City field and a Country field

above the Phone field.

 3. After you finish your modifications, save the table before closing it.

 The result should look similar to Figure 4-10.

Figure 4-9:
A blank
line has

opened up.

94 Part II: Using SQL to Build Databases

Figure 4-10:
Your revised

table
definition

should look
similar to

this.

Creating an index
In any database, you need a quick way to access records of interest. (This is

never truer than when you win the lottery — the number of investment and

charitable proposals you receive could easily grow into the thousands.) Say,

for example, that you want to look at all the proposals from people claiming

to be your brother. Assuming none of your brothers have changed their last

names for theatrical or professional reasons, you can isolate these offers by

basing your retrieval on the contents of the LastName field, as shown in the

following SQL ad-hoc query:

SELECT * FROM POWER
 WHERE LastName = ‘Marx’ ;

That strategy may not work for the proposals made by half brothers and

brothers-in-law, so you need to look at a different field, as shown in the

following example:

SELECT * FROM POWER
 WHERE HowKnown = ‘brother-in-law’
 OR
 HowKnown = ‘half brother’ ;

95 Chapter 4: Building and Maintaining a Simple Database Structure

SQL scans the table a row at a time, looking for entries that satisfy the WHERE

clause condition. If the POWER table is large (tens of thousands of records),

you may end up waiting a while. You can speed things up by applying indexes

to the POWER table. (An index is a table of pointers. Each row in the index

points to a corresponding row in the data table.)

You can define an index for all the different ways you may want to access

your data. If you add, change, or delete rows in the data table, you don’t have

to re-sort the table — you need only to update the indexes. You can update

an index much faster than you can sort a table. After you establish an index

with the desired ordering, you can use that index to access rows in the data

table almost instantaneously.

 Because the ProposalNumber field is unique as well as short, using that field

is the quickest way to access an individual record. Those qualities make it an

ideal candidate for a primary key. And because primary keys are usually the

fastest way to access data, the primary key of any and every table should
always be indexed; Access indexes primary keys automatically. To use this

field, however, you must know the ProposalNumber of the record you

want. You may want to create additional indexes based on other fields, such

as LastName, PostalCode, or HowKnown. For a table that you index on

LastName, after a search finds the first row containing a LastName of Marx,

the search has found them all. The index keys for all the Marx rows are stored

one right after another. You can retrieve Chico, Groucho, Harpo, Zeppo, and

Karl almost as fast as you could get the data on Chico alone.

Indexes add overhead to your system, which slows down operations. You

must balance this slowdown against the speed you gain by accessing records

through an index.

 Here are some tips for picking good indexing fields:

 ✓ Indexing the fields you frequently use to access records is always a good

idea. You can speedily access records without too much latency.

 ✓ Don’t bother creating indexes for fields that you never use as retrieval

keys. Creating needless indexes is a waste of time and memory space

and you gain nothing.

 ✓ Don’t create indexes for fields that don’t differentiate one record from

a lot of others. For example, the BusinOrCharity field merely divides

the table records into two categories; it doesn’t make a good index.

 The effectiveness of an index varies from one implementation to another. If

you migrate a database from one platform to another, the indexes that gave

the best performance on the first system may not perform the best on the new

platform. In fact, the performance may be worse than if you hadn’t indexed the

database at all. Try various indexing schemes to see which one gives you the

best overall performance, and optimize your indexes so that neither retrieval

speed nor update speed suffer from the migration.

96 Part II: Using SQL to Build Databases

To create indexes for the POWER table, just select Yes for Indexed in the

Field Properties pane of the table creation window.

 Access does two handy tricks automatically: It creates an index for

PostalCode (because that field is often used for retrievals) and it indexes the

primary key. (Ah, progress. Gotta love it.)

PostalCode isn’t a primary key and isn’t necessarily unique; the opposite

is true for ProposalNumber. We already created an index for LastName. Do

the same for HowKnown, because both are likely to be used for retrievals.

After you create all your indexes, don’t forget to save the new table structure

before closing it.

 If you use a RAD tool other than Microsoft Access, the info in this section

doesn’t apply to you. However, the overall process is fairly similar.

Deleting a table
In the course of creating a table (such as the POWER table I describe in this

chapter) with the exact structure you want, you may have to create a few

intermediate versions along the way. Having these variant tables on your

system may confuse people later, so delete them now while they’re still fresh

in your mind. To do so, right-click the table you want to delete from the All

Tables list on the left side of the window. A menu pops up, and one of the

options it offers is Delete. When you click Delete, as shown in Figure 4-11, the

table is removed from the database.

 Be really sure of what you’re doing. When you click Delete, that table, and all

the work you put into it, will be gone.

Figure 4-11:
Select

Delete to
delete a

table.

97 Chapter 4: Building and Maintaining a Simple Database Structure

 If Access deletes a table, it deletes all subsidiary tables as well, including any

indexes the table may have.

Building POWER with SQL’s DDL
All the database-definition functions you can perform with a RAD tool (such

as Access) are also possible if you’re using SQL to build your table. Of

course, using SQL isn’t as glamorous — instead of clicking menu choices

with the mouse, you enter commands from the keyboard. People who prefer

to manipulate visual objects find the RAD tools easy to understand and use.

People who are happier stringing words together into logical statements find

SQL commands easier to use.

 Becoming proficient at using both methods is worthwhile because some

things are more easily represented by using the object-oriented (mouse)

technique and others are more easily handled typing in SQL commands.

In the following sections, I use SQL to create the same table as before, and

then do the same alteration and deletion operations I did with the RAD tool

in the first part of this chapter.

Using SQL with Microsoft Access
Access is designed as a rapid application development (RAD) tool that does

not require programming. You can write and execute SQL statements in

Access, but you have to use a back door method to do it. To open a basic

editor where you can enter SQL code, follow these steps:

 1. Open your database and switch to the Create tab in the ribbon across

the top of the window.

 2. Click Query Design in the Other pane at the right, at the end of the

icon ribbon.

 The Show Table dialog box appears.

 3. Select any table. Click the Add button and then click the Close button

to close the dialog box.

 Okay, at this point the POWER table is the only one you have, so

presumably you clicked it. Doing so produces the display shown in

Figure 4-12.

98 Part II: Using SQL to Build Databases

Figure 4-12:
Query

screen with
POWER

table
selected.

 A picture of the POWER table and its attributes appears in the upper

part of the work area and a Query By Example (QBE) grid appears below

it. Crystal Reports expects you to enter a query now, using the QBE grid.

(You could do that, sure, but it wouldn’t tell you anything about how to

use SQL in the Access environment.)

 4. Click the View icon in the left-hand corner of the icon ribbon.

 A menu drops down, displaying the different views available to you in

query mode, as shown in Figure 4-13.

Figure 4-13:
Database

views avail-
able in

Query mode.

 One of those views is SQL View.

99 Chapter 4: Building and Maintaining a Simple Database Structure

 5. Click SQL View to display the SQL View Object tab.

 As Figure 4-14 shows, the SQL View Object tab has made the (very

rational) assumption that you want to retrieve some information from

the POWER table, so it has written the first part for you. It doesn’t know

exactly what you want to retrieve, so it only displays the part it feels

confident about.

Figure 4-14:
Object tab in

SQL view.

 Here’s what it’s written so far:

SELECT (blank)
FROM POWER ;

 6. Fill in an asterisk (*) in the blank area in the first line and add a

WHERE clause after the FROM line.

 If you had already entered some data into the POWER table, you could

make a retrieval with something like:

SELECT *
FROM POWER
 WHERE LastName = ‘Marx’ ;

 Be sure the semicolon (;) is the last thing in the SQL statement. You’ll

need to move it down from just after POWER to the end of the next line

down.

 7. When you’re finished, click the floppy-diskette Save icon.

 Access asks you for a name for the query you have just created.

 8. Enter a name and then click OK.

Your statement is saved and can be executed as a query later.

100 Part II: Using SQL to Build Databases

Creating a table
Whether you’re working with Access or a full-featured enterprise-level

DBMS — such as Microsoft SQL Server, Oracle 11g, or IBM DB2 — to create

a database table with SQL, you must enter the same information that you’d

enter if you created the table with a RAD tool. The difference is that the

RAD tool helps you by providing a visual interface — in the form of a table-

creation dialog box (or some similar data-entry skeleton) — and by preventing

you from entering invalid field names, types, or sizes.

 SQL doesn’t give you as much help. You must know what you’re doing at the

onset; figuring things out along the way can lead to less-than-desirable data-

base results. You must enter the entire CREATE TABLE statement before SQL

even looks at it, let alone gives you any indication of whether you made errors

in the statement.

In ISO/IEC standard SQL, the statement that creates a proposal-tracking table

(identical to the one created earlier in the chapter) uses the following syntax:

CREATE TABLE POWERSQL (
 ProposalNumber INTEGER PRIMARY KEY,
 FirstName CHAR (15),
 LastName CHAR (20),
 Address CHAR (30),
 City CHAR (25),
 StateProvince CHAR (2),
 PostalCode CHAR (10),
 Country CHAR (30),
 Phone CHAR (14),
 HowKnown CHAR (30),
 Proposal CHAR (50),
 BusinOrCharity CHAR (1));

The information in the SQL statement is essentially the same information you

enter using Access’s graphical user interface. The nice thing about SQL is

that the language is universal. The same standard syntax works regardless of

what standard-compliant DBMS product you use.

In Access 2007, creating database objects such as tables is a little more

complicated. You can’t just type a CREATE statement (such as the one just

given) into the SQL View Object tab. That’s because the SQL View Object

tab is only available as a query tool; you have to take a few extra actions to

inform Access that you’re about to enter a data-definition query rather than

a normal query that requests information from the database. A further

complication: Because table creation is an action that could possibly

compromise database security, it’s disallowed by default. You must tell

Access that this is a trusted database before it will accept a data-definition

query.

101 Chapter 4: Building and Maintaining a Simple Database Structure

 1. Select the Create tab in the main menu to display the icon ribbon for

creation functionality.

 2. Click Query Design in the Other panel on the right edge of the ribbon.

 This displays the Show Table dialog box, which at this point contains

only one table, POWER.

 3. Select POWER (if it isn’t already selected) and click the Add button.

 As you’ve seen in the previous example, a picture of the POWER table

and its attributes appears in the upper half of the work area.

 4. Click the Close button on the Show Table dialog box.

 5. Click the View icon at the left end of the icon ribbon and then select

SQL View from the drop-down menu that appears.

 As in the previous example, Access has “helped” you by putting SELECT
FROM POWER in the SQL editor. This time you don’t want the help.

 6. Delete SELECT FROM POWER and (in its place) enter the data-

definition query given earlier, as follows:

CREATE TABLE POWERSQL (
 ProposalNumber INTEGER PRIMARY KEY,
 FirstName CHAR (15),
 LastName CHAR (20),
 Address CHAR (30),
 City CHAR (25),
 StateProvince CHAR (2),
 PostalCode CHAR (10),
 Country CHAR (30),
 Phone CHAR (14),
 HowKnown CHAR (30),
 Proposal CHAR (50),
 BusinOrCharity CHAR (1));

 At this point, your screen should look something like Figure 4-15.

Figure 4-15:
Data-

definition
query to
create a

table.

102 Part II: Using SQL to Build Databases

 7. Double-click the red exclamation point Run icon in the icon ribbon.

 Doing so runs the query, which creates the POWERSQL table (as shown

in Figure 4-16).

Figure 4-16:
Behold the

POWERSQL
table.

 You should see POWERSQL listed under All Tables in the column at the

left edge of the window. In which case, you’re golden. Or you may not

see the table in the All Tables list. In that case, read (and slog) on.

 Access 2007 goes to great lengths to protect you from malicious

hackers and from your own inadvertent mistakes. Because running a

data-definition query is potentially dangerous to the database, Access

has a default that prevents the query from running. If this has happened

to you, POWERSQL won’t appear in the column at the left of the window,

because the query won’t have been executed. Instead, the Message Bar

may appear below the icon ribbon, with this terse message:

Security Warning: Certain content in the database has been disabled.

 If you see this message, move on to the next steps.

 8. Click the Options button in the Message Bar.

 The Microsoft Office Security Options Security Alert dialog box appears.

 9. Select Enable This Content and then click OK.

 You should now be able to execute the data-definition query. If you can,

congratulations! If the Message bar does not appear, well . . . keep going;

you’re almost there.

 10. Click the Office logo button in the upper-left corner, and then click

the Access Options button at the bottom of the menu.

 The Access Options dialog box appears.

103 Chapter 4: Building and Maintaining a Simple Database Structure

 11. Select Trust Center from the Access Options dialog box.

 12. Click the Trust Center Settings button when it appears.

 13. Specify Show the Message Bar.

 14. Click your way back to the place where you can execute the

data-definition query that creates the POWERSQL table.

 15. Execute the query.

 Becoming proficient in SQL has long-term payoffs because it will be around

for a long time. The effort you put into becoming an expert in a particular

development tool is likely to yield a lower return on investment. No matter

how wonderful the latest RAD tool may be, it will be superseded by newer

technology within three to five years. If you can recover your investment in

the tool in that time, great! Use it. If not, you may be wise to stick with the

tried and true. Train your people in SQL, and your training investment will pay

dividends over a much longer period.

Creating an index
Indexes are an important part of any relational database. They serve as

pointers into the tables that contain the data of interest. By using an index,

you can go directly to a particular record without having to scan the table

sequentially, one record at a time, to find that record. For really large tables,

indexes are a necessity; without indexes, you may need to wait years rather

than seconds for a result. (Well, okay, maybe you wouldn’t actually wait

years. Some retrievals, however, may actually take that long if you let them

keep running. Unless you have nothing better to do with your computer’s

time, you’d probably do best to abort the retrieval and do without the result.

Life goes on.)

Amazingly, the SQL standard doesn’t provide a means to create an index.

The DBMS vendors provide their own implementations of the function.

Because these implementations aren’t standardized, they may differ from

one another. Most vendors provide the index-creation function by adding a

CREATE INDEX command to SQL.

 Even though two vendors may use the same words for the command (CREATE
INDEX), the way the command operates may not be the same. You’re likely

to find quite a few implementation-dependent clauses. Carefully study your

DBMS documentation to determine how to use that particular DBMS to create

indexes.

104 Part II: Using SQL to Build Databases

Altering the table structure
To change the structure of an existing table, you can use SQL’s ALTER
TABLE command. Interactive SQL at your client station is not as convenient

as a RAD tool. The RAD tool displays your table’s structure, which you can

then modify. Using SQL, you must know in advance the table’s structure

and how you want to modify it. At the screen prompt, you must enter the

appropriate command to perform the alteration. If, however, you want to

embed the table-alteration instructions in an application program, then using

SQL is usually the easiest way to do so.

To add a second address field to the POWERSQL table, use the following DDL

command:

ALTER TABLE POWERSQL
 ADD COLUMN Address2 CHAR (30);

You don’t need to be an SQL guru to decipher this code. Even professed

computer illiterates can probably figure this one out. The command alters

a table named POWERSQL by adding a column to the table. The column is

named Address2, is of the CHAR data type, and is 30 characters long. This

example demonstrates how easily you can change the structure of database

tables by using SQL DDL commands.

Standard SQL provides this statement for adding a column to a table, and

allows you to drop an existing column in a similar manner, as in the following

code:

ALTER TABLE POWERSQL
 DROP COLUMN Address2;

Deleting a table
Deleting database tables that you no longer need is easy. Just use the DROP
TABLE command, as follows:

DROP TABLE POWERSQL ;

What could be simpler? If you DROP a table, you erase all its data and its

metadata. No vestige of the table remains. This works great most of the time.

The only time it doesn’t is if another table in the database references the one

you are trying to delete. This is called a referential integrity constraint. In such

a case, SQL will spit out an error message rather than delete the table.

105 Chapter 4: Building and Maintaining a Simple Database Structure

Deleting an index
 If you delete a table by issuing a DROP TABLE command, you also delete any

indexes associated with that table. Sometimes, however, you may want to

keep a table but remove an index from it. The SQL standard doesn’t define a

DROP INDEX command, but most implementations include that command

anyway. Such a command comes in handy if your system slows to a crawl and

you discover that your tables aren’t optimally indexed. Correcting an index

problem can dramatically improve performance — which will delight users

who’ve become accustomed to response times reminiscent of pouring

molasses on a cold day in Vermont.

Portability Considerations
Any SQL implementation you’re likely to use may have extensions that give

it capabilities that the SQL standard doesn’t cover. Some of these features

may appear in the next release of the SQL standard. Others are unique to a

particular implementation and are probably destined to stay that way.

Often extensions make it easier to create an application that meets your

needs, and you’ll find yourself tempted to use them. Using the extensions

may be your best course, but be aware of the tradeoffs: If you ever want

to migrate your application to another SQL implementation, you may

have to rewrite those sections in which you used extensions that your new

environment doesn’t support.

 The more you know about existing implementations and development trends,

the better the decisions you’ll make. Think about the probability of such a

migration in the future — and also about whether the extension you’re

considering is unique to your implementation or fairly widespread. Foregoing

use of an extension may be better in the long run, even if its use might save

you some time now. On the other hand, you may find no reason not to use the

extension. Your call.

106 Part II: Using SQL to Build Databases

Chapter 5

Building a Multitable
Relational Database

In This Chapter
▶ Deciding what to include in a database

▶ Determining relationships among data items

▶ Linking related tables with keys

▶ Designing for data integrity

▶ Normalizing the database

In this chapter, I take you through an example of how to design a

multitable database. The first step to designing any database is to

identify what to include and what not to include. The next steps involve

deciding how the included items relate to each other — and setting up

tables accordingly. I also discuss how to use keys, which enable you to

access individual records and indexes quickly.

A database must do more than merely hold your data. It must also protect

the data from becoming corrupted. In the latter part of this chapter, I

discuss how to protect the integrity of your data. Normalization is one of

the key methods you can use to protect the integrity of a database. I

discuss the various normal forms and point out the kinds of problems that

normalization solves.

Designing a Database
To design a database, follow these basic steps (I go into detail about each

step in the sections that follow this list):

 1. Decide what objects you want to include in your database.

 2. Determine which of these objects should be tables and which should

be columns within those tables.

108 Part II: Using SQL to Build Databases

 3. Define tables based on how you need to organize the objects.

 Optionally, you may want to designate a table column or a combination

of columns as a key. Keys provide a fast way to locate a row of interest

in a table.

The following sections discuss these steps in detail, as well as some other

technical issues that arise during database design.

Step 1: Defining objects
The first step in designing a database is deciding which aspects of the system

are important enough to include in the model. Treat each aspect as an object

and create a list of all the objects you can think of. At this stage, don’t try to

decide how these objects relate to each other. Just try to list them all.

 You may find it helpful to gather a diverse team of people who, in one way

or another, are familiar with the system you’re modeling. These people can

brainstorm and respond to each other’s ideas. Working together, you’ll

probably develop a more complete and accurate set of important objects

than you would on your own.

When you have a reasonably complete set of objects, move on to the next

step: deciding how these objects relate to each other. Some of the objects are

major entities (more about those in a minute) that are crucial to giving you

the results you want. Other objects are subsidiary to those major entities.

Ultimately you may decide that some objects don’t belong in the model at all.

Step 2: Identifying tables and columns
Major entities translate into database tables. Each major entity has a set of

attributes — the table columns. Many business databases, for example, have a

CUSTOMER table that keeps track of customers’ names, addresses, and other

permanent information. Each attribute of a customer — such as name, street,

city, state, zip code, phone number, and e-mail address — becomes a column

(and a column heading) in the CUSTOMER table.

If you’re hoping to find a set of rules to help you identify which objects

should be tables and which of the attributes in the system belong to which

tables, think again: You may have some reasons for assigning a particular

109 Chapter 5: Building a Multitable Relational Database

attribute to one table and other reasons for assigning the same attribute to

another table. You must base your judgment on two goals:

 ✓ The information you want to get from the database

 ✓ How you want to use that information

 When deciding how to structure database tables, involve the future users of

the database as well as the people who will make decisions based on database

information. If you come up with what you think is a reasonable structure,

but it isn’t consistent with the way that people will use the information, your

system will be frustrating to use at best — and could even produce wrong

information, which is even worse. Don’t let this happen! Put careful effort into

deciding how to structure your tables.

Take a look at an example to demonstrate the thought process that goes

into creating a multitable database. Suppose you just established VetLab, a

clinical microbiology laboratory that tests biological specimens sent in by

veterinarians. You want to track several things, including the following:

 ✓ Clients

 ✓ Tests that you perform

 ✓ Employees

 ✓ Orders

 ✓ Results

Each of these entities has associated attributes. Each client has a name,

address, and other contact information. Each test has a name and a standard

charge. Each employee has contact information as well as a job classification

and pay rate. For each order, you need to know who ordered it, when it was

ordered, and what test was ordered. For each test result, you need to know

the outcome of the test, whether the results were preliminary or final, and

the test order number.

Step 3: Defining tables
Now you want to define a table for each entity and a column for each attri-

bute. Table 5-1 shows how you may define the VetLab tables I introduce in

the previous section.

110 Part II: Using SQL to Build Databases

Table 5-1 VetLab Tables
Table Columns

CLIENT Client Name

Address 1

Address 2

City

State

Postal Code

Phone

Fax

Contact Person

TESTS Test Name

Standard Charge

EMPLOYEE Employee Name

Address 1

Address 2

City

State

Postal Code

Home Phone

Office Extension

Hire Date

Job Classification

Hourly/Salary/Commission

ORDERS Order Number

Client Name

Test Ordered

Responsible Salesperson

Order Date

RESULTS Result Number

Order Number

Result

Date Reported

Preliminary/Final

111 Chapter 5: Building a Multitable Relational Database

You can create the tables defined in Table 5-1 by using either a rapid appli-

cation development (RAD) tool or by using SQL’s Data Definition Language

(DDL), as shown in the following code:

CREATE TABLE CLIENT (
 ClientName CHAR (30) NOT NULL,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30)) ;

CREATE TABLE TESTS (
 TestName CHAR (30) NOT NULL,
 StandardCharge CHAR (30)) ;

CREATE TABLE EMPLOYEE (
 EmployeeName CHAR (30) NOT NULL,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 HomePhone CHAR (13),
 OfficeExtension CHAR (4),
 HireDate DATE,
 JobClassification CHAR (10),
 HourSalComm CHAR (1)) ;

CREATE TABLE ORDERS (
 OrderNumber INTEGER NOT NULL,
 ClientName CHAR (30),
 TestOrdered CHAR (30),
 Salesperson CHAR (30),
 OrderDate DATE) ;

CREATE TABLE RESULTS (
 ResultNumber INTEGER NOT NULL,
 OrderNumber INTEGER,
 Result CHAR(50),
 DateReported DATE,
 PrelimFinal CHAR (1)) ;

These tables relate to each other by the attributes (columns) that they share,

as the following list describes:

112 Part II: Using SQL to Build Databases

 ✓ The CLIENT table links to the ORDERS table by the ClientName

column.

 ✓ The TESTS table links to the ORDERS table by the TestName
(TestOrdered) column.

 ✓ The EMPLOYEE table links to the ORDERS table by the EmployeeName
(Salesperson) column.

 ✓ The RESULTS table links to the ORDERS table by the OrderNumber

column.

If you want a table to serve as an integral part of a relational database,

link that table to at least one other table in the database, using a common

column. Figure 5-1 illustrates the relationships between the tables.

Figure 5-1:
VetLab

database
tables and

links.

CLIENT TESTS

Are requested by

Books

Produce

Places

1:N

RESULTS

ORDERS

EMPLOYEE

1:N

1:N N:1

The links in Figure 5-1 illustrate four different one-to-many relationships. The

diamond in the middle of each relationship shows the maximum cardinality

of each end of the relationship. The number 1 denotes the “one” side of the

relationship and N denotes the “many” side.

 ✓ One client can make many orders, but each order is made by one, and

only one, client.

 ✓ Each test can appear on many orders, but each order calls for one, and

only one, test.

113 Chapter 5: Building a Multitable Relational Database

 ✓ Each order is taken by one, and only one, employee (or salesperson),

but each salesperson can (and, you hope, does) take multiple orders.

 ✓ Each order can produce several preliminary test results and a final

result, but each result is associated with one, and only one, order.

As you can see in the code, the attribute that links one table to another can

have a different name in each table. Both attributes must, however, have

matching data types. At this point, I have not included any referential

integrity constraints, wanting to avoid hitting you with too many ideas at

once. I cover referential integrity later in this chapter, after I have laid the

foundation for understanding it.

Domains, character sets, collations,
and translations
Although tables are the main components of a database, additional elements

play a part, too. In Chapter 1, I define the domain of a column in a table as the

set of all values that the column may assume. Establishing clear-cut domains

for the columns in a table, through the use of constraints, is an important

part of designing a database.

People who communicate in standard American English aren’t the only ones

who use relational databases. Other languages — even some that use other

character sets — work equally well. Even if your data is in English, some

applications may still require a specialized character set. SQL enables you

to specify the character set you want to use. In fact, you can use a different

character set for each column in a table if you need to. This flexibility is

generally unavailable in languages other than SQL.

A collation, or collating sequence, is a set of rules that determines how strings

in a character set compare with one another. Every character set has a

default collation. In the default collation of the ASCII character set, A comes

before B, and B comes before C. A comparison, therefore, considers A as less

than B and considers C as greater than B. SQL enables you to apply different

collations to a character set. This degree of flexibility isn’t generally available

in other languages, so you now have another reason to love SQL.

Sometimes you encode data in a database in one character set but want to

deal with the data in another character set. Perhaps you have data in the

German character set (for example) but your printer doesn’t support

German characters that aren’t included in the ASCII character set. SQL

allows translation of character strings from one character set to another. A

translation may change one character into two, as when a German ü becomes

an ASCII ue, or change lowercase characters to uppercase. You can even

translate one alphabet into another (for example, Hebrew into ASCII).

114 Part II: Using SQL to Build Databases

Getting into your database fast with keys
A good rule for database design is to make sure that every row in a database

table is distinguishable from every other row; each row should be unique.

Sometimes you may want to extract data from your database for a specific

purpose (such as a statistical analysis), and in doing so, end up creating

tables in which the rows aren’t necessarily unique. For such a limited

purpose, this sort of duplication doesn’t matter. Tables that you may use

in more than one way, however, should not contain duplicate rows.

A key is an attribute (or combination of attributes) that uniquely identifies a

row in a table. To access a row in a database, you must have some way of

distinguishing that row from all the other rows. Because keys must be

unique, they provide such an access mechanism.

 Furthermore, a key must never contain a null value. If you use null keys, you

may not be able to distinguish between two rows that contain a null key field.

In the veterinary-lab example, you can designate appropriate columns as

keys. In the CLIENT table, ClientName is a good key. This key can distinguish

each individual client from all other clients. Therefore entering a value

in this column becomes mandatory for every row in the table. TestName

and EmployeeName make good keys for the TESTS and EMPLOYEE tables.

OrderNumber and ResultNumber make good keys for the ORDERS and

RESULTS tables. Make sure that you enter a unique value for every row.

You can have two kinds of keys: primary keys and foreign keys. The keys I

discuss in the preceding paragraph are examples of primary keys; they

guarantee uniqueness. I zero in on primary and foreign keys in the next two

sections.

Primary keys
A primary key is a column in a table with values that uniquely identify the

rows in the table. To incorporate the idea of keys into the VetLab database,

you can specify the primary key of a table as you create the table. In the

following example, a single column is sufficient (assuming that all of VetLab’s

clients have unique names):

CREATE TABLE CLIENT (
 ClientName CHAR (30) PRIMARY KEY,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30)
) ;

115 Chapter 5: Building a Multitable Relational Database

The constraint PRIMARY KEY replaces the constraint NOT NULL, given in the

earlier definition of the CLIENT table. The PRIMARY KEY constraint implies

the NOT NULL constraint, because a primary key can’t have a null value.

Although most DBMSs allow you to create a table without a primary key,

all tables in a database should have one. With that in mind, replace the NOT
NULL constraint in all your tables. In my example, the TESTS, EMPLOYEE,

ORDERS, and RESULTS tables should have the PRIMARY KEY constraint, as

in the following example:

CREATE TABLE TESTS (
 TestName CHAR (30) PRIMARY KEY,
 StandardCharge CHAR (30)) ;

Sometimes no single column in a table can guarantee uniqueness. In such

cases, you can use a composite key — a combination of columns that guarantee

uniqueness when used together. Imagine that some of VetLab’s clients are

chains that have offices in several cities. ClientName isn’t sufficient to

distinguish between two branch offices of the same client. To handle this

situation, you can define a composite key as follows:

CREATE TABLE CLIENT (
 ClientName CHAR (30) NOT NULL,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25) NOT NULL,
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30),
 CONSTRAINT BranchPK PRIMARY KEY
 (ClientName, City)
) ;

As an alternative to using a composite key to uniquely identify a record, you

can let your DBMS assign one automatically, as Access does in suggesting

that the first field in a new table be named ID and be of the Autonumber type.

Such a key has no meaning in and of itself. Its only purpose is to be a unique

identifier.

Foreign keys
A foreign key is a column or group of columns in a table that corresponds to

or references a primary key in another table in the database. A foreign key

doesn’t have to be unique, but it must uniquely identify the column(s) in the

particular table that the key references.

If the ClientName column is the primary key in the CLIENT table (for

example), every row in the CLIENT table must have a unique value in the

ClientName column. ClientName is a foreign key in the ORDERS table. This

116 Part II: Using SQL to Build Databases

foreign key corresponds to the primary key of the CLIENT table, but the key

doesn’t have to be unique in the ORDERS table. In fact, you hope the foreign

key isn’t unique; if each of your clients gave you only one order and then

never ordered again, you’d go out of business rather quickly. You hope that

many rows in the ORDERS table correspond with each row in the CLIENT

table, indicating that nearly all your clients are repeat customers.

The following definition of the ORDERS table shows how you can add the

concept of foreign keys to a CREATE statement:

CREATE TABLE ORDERS (
 OrderNumber INTEGER PRIMARY KEY,
 ClientName CHAR (30),
 TestOrdered CHAR (30),
 Salesperson CHAR (30),
 OrderDate DATE,
 CONSTRAINT BRANCHFK FOREIGN KEY (ClientName)
 REFERENCES CLIENT (ClientName),
 CONSTRAINT TestFK FOREIGN KEY (TestOrdered)
 REFERENCES TESTS (TestName),
 CONSTRAINT SalesFK FOREIGN KEY (Salesperson)
 REFERENCES EMPLOYEE (EmployeeName)
) ;

In this example, foreign keys in the ORDERS table link that table to the

primary keys of the CLIENT, TESTS, and EMPLOYEE tables.

Working with Indexes
The SQL specification doesn’t address the topic of indexes, but that

omission doesn’t mean that indexes are rare or even optional parts of a

database system. Every SQL implementation supports indexes, but you’ll find

no universal agreement on how to support them. In Chapter 4, I show you

how to create an index by using Microsoft Access, a rapid application

development (RAD) tool. Refer to the documentation for your particular

database management system (DBMS) to see how the system implements

indexes.

What’s an index, anyway?
Data generally appears in a table in the order in which you originally entered

the information. That order may have nothing to do with the order in which

you later want to process the data. Say, for example, that you want to

117 Chapter 5: Building a Multitable Relational Database

process your CLIENT table in ClientName order. The computer must first

sort the table in ClientName order. Sorting the data this way takes time.

The larger the table, the longer the sort takes. What if you have a table with

100,000 rows? Or a table with a million rows? In some applications, such table

sizes are not rare. The best sort algorithms would have to make some 20 mil-

lion comparisons and millions of swaps to put the table in the desired order.

Even if you’re using a very fast computer, you may not want to wait that long.

Indexes can be a great timesaver. An index is a subsidiary or support table

that goes along with a data table. For every row in the data table, you have

a corresponding row in the index table. The order of the rows in the index

table is different.

Table 5-2 is a small example of a data table for the veterinary lab.

Table 5-2 CLIENT Table
ClientName Address1 Address2 City State

Butternut Animal
Clinic

5 Butternut Lane Hudson NH

Amber
Veterinary, Inc.

470 Kolvir Circle Amber MI

Vets R Us 2300 Geoffrey Road Suite 230 Anaheim CA

Doggie Doctor 32 Terry Terrace Nutley NJ

The Equestrian
Center

Veterinary 7890 Paddock
Parkway

Gallup NM

Dolphin Institute 1002 Marine Drive Key West FL

J. C. Campbell,
Credit Vet

2500 Main Street Los Angeles CA

Wenger’s Worm
Farm

15 Bait Boulevard Sedona AZ

Here the rows are not in alphabetical order by ClientName. In fact, they

aren’t in any useful order at all. The rows are simply in the order in which

somebody entered the data.

An index for this CLIENT table may look like Table 5-3.

118 Part II: Using SQL to Build Databases

Table 5-3 Client Name Index for the CLIENT Table
ClientName Pointer to Data Table

Amber Veterinary, Inc. 2

Butternut Animal Clinic 1

Doggie Doctor 4

Dolphin Institute 6

J. C. Campbell, Credit Vet 7

The Equestrian Center 5

Vets R Us 3

Wenger’s Worm Farm 8

The index contains the field that forms the basis of the index (in this case,

ClientName) and a pointer into the data table. The pointer in each index

row gives the row number of the corresponding row in the data table.

Why you should want an index
If you want to process a table in ClientName order, and you have an index

arranged in ClientName order, you can perform your operation almost as

fast as you could if the data table itself were already in ClientName order.

You can work through the index, moving immediately to each index row’s

corresponding data record by using the pointer in the index.

If you use an index, the table processing time is proportional to N, where

N is the number of records in the table. Without an index, the processing

time for the same operation is proportional to N lg N, where lg N is the

logarithm of N to the base 2. For small tables, the difference is insignificant,

but for large tables, the difference is great. On large tables, some operations

aren’t practical to perform without the help of indexes.

Suppose you have a table containing 1,000,000 records (N = 1,000,000), and

processing each record takes one millisecond (one-thousandth of a second).

If you have an index, processing the entire table takes only 1,000 seconds —

less than 17 minutes. Without an index, you need to go through the table

approximately 1,000,000 × 20 times to achieve the same result. This process

would take 20,000 seconds — more than five and a half hours. I think you can

agree that the difference between 17 minutes and five and a half hours is

substantial. That’s just one example of the difference indexing makes on

processing records.

119 Chapter 5: Building a Multitable Relational Database

Maintaining an index
After you create an index, you must maintain it. Fortunately, you don’t

have to think too much about maintenance — your DBMS maintains your

indexes for you automatically, by updating them every time you update the

corresponding data tables. This process takes some extra time, but it’s worth

it. When you create an index and your DBMS maintains it, the index is always

available to speed up your data processing, no matter how many times you

need to call on it.

 The best time to create an index is at the same time you create its

corresponding data table. If you create the index early and the DBMS starts

maintaining it at the same time, you don’t need to undergo the pain of building

the index later; the entire operation takes place in a single, long session. Try to

anticipate all the ways that you may want to access your data, and then create

an index for each possibility.

Some DBMS products give you the capability to turn off index maintenance.

You may want to do so in some real-time applications where updating

indexes takes a great deal of time and you have precious little to spare. You

may even elect to update the indexes as a separate operation during off-peak

hours. As usual, “do what works for you” is the rule.

 Don’t fall into the trap of creating an index for retrieval orders that you’re

unlikely ever to use. Index maintenance is an extra operation that the computer

must perform every time it modifies the index field or adds or deletes a data

table row — and this operation affects performance. For optimal performance,

create only those indexes that you expect to use as retrieval keys — and only

for tables containing a large number of rows. Otherwise indexes can degrade

performance.

 You may need to compile something such as a monthly or quarterly report

that requires the data in an odd order that you don’t ordinarily need. Create

an index just before running that periodic report, run the report, and then

drop the index so the DBMS isn’t burdened with maintaining the index during

the long period between reports.

Maintaining Data Integrity
A database is valuable only if you’re reasonably sure that the data it

contains is correct. In medical, aircraft, and spacecraft databases, for

example, incorrect data can lead to loss of life. Incorrect data in other

applications may have less severe consequences but can still prove

120 Part II: Using SQL to Build Databases

damaging. Database designers must do their best to make sure that

incorrect data never enters the databases they produce. This isn’t always

possible, but it is possible to at least make sure the data that is entered is

valid. Maintaining data integrity means making sure any data that is entered

into a database system satisfies the constraints that have been established

for it. For example, if a database field is of the Date type, the DBMS should

reject any entry into that field that is not a valid date.

Some problems can’t be stopped at the database level. The application

programmer must intercept these problems before they can damage the

database. Everyone responsible for dealing with the database in any way

must remain conscious of the threats to data integrity and take appropriate

action to nullify those threats.

Databases can experience several distinctly different kinds of integrity — and

a number of problems that can affect integrity. In the following sections, I

discuss three types of integrity: entity, domain, and referential. I also look at

some of the problems that can threaten database integrity.

Entity integrity
Every table in a database corresponds to an entity in the real world. That

entity may be physical or conceptual, but in some sense, the entity’s existence

is independent of the database. A table has entity integrity if the table is

entirely consistent with the entity that it models. To have entity integrity, a

table must have a primary key that uniquely identifies each row in the table.

Without a primary key, you can’t be sure that the row retrieved is the one

you want.

To maintain entity integrity, be sure to specify that the column (or group of

columns) making up the primary key is NOT NULL. In addition, you must

constrain the primary key to be UNIQUE. Some SQL implementations enable

you to add such constraints to the table definition. With other implementations,

however, you must apply the constraint later, after you specify how to add,

change, or delete data from the table.

 The best way to ensure that your primary key is both NOT NULL and UNIQUE

is to give the key the PRIMARY KEY constraint when you create the table, as

shown in the following example:

CREATE TABLE CLIENT (
 ClientName CHAR (30) PRIMARY KEY,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),

121 Chapter 5: Building a Multitable Relational Database

 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30)
) ;

An alternative is to use NOT NULL in combination with UNIQUE, as shown in

the following example:

CREATE TABLE CLIENT (
 ClientName CHAR (30) NOT NULL,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30),
 UNIQUE (ClientName)) ;

Domain integrity
You usually can’t guarantee that a particular data item in a database is correct,

but you can determine whether a data item is valid. Many data items have a

limited number of possible values. If you make an entry that is not one of the

possible values, that entry must be an error. The United States, for example,

has 50 states plus the District of Columbia, Puerto Rico, and a few possessions.

Each of these areas has a two-character code that the U.S. Postal Service

recognizes. If your database has a State column, you can enforce domain
integrity by requiring that any entry into that column be one of the recognized

two-character codes. If an operator enters a code that’s not on the list of

valid codes, that entry breaches domain integrity. If you test for domain

integrity, you can refuse to accept any operation that causes such a breach.

Domain integrity concerns arise if you add new data to a table by using either

the INSERT statement or the UPDATE statement. You can specify a domain

for a column by using a CREATE DOMAIN statement before you use that

column in a CREATE TABLE statement, as shown in the following example:

CREATE DOMAIN LeagueDom CHAR (8)
 CHECK (VALUE IN (‘American’, ’National’));
CREATE TABLE TEAM (
 TeamName CHAR (20) NOT NULL,
 League LeagueDom NOT NULL
) ;

122 Part II: Using SQL to Build Databases

The domain of the League column includes only two valid values: American

and National. Your DBMS doesn’t enable you to commit an entry or update

to the TEAM table unless the League column of the row you’re adding has a

value of either ‘American’ or ‘National’.

Referential integrity
Even if every table in your system has entity integrity and domain integrity,

you may still have a problem because of inconsistencies in the way one table

relates to another. In most well-designed databases, every table contains at

least one column that refers to a column in another table in the database.

These references are important for maintaining the overall integrity of the

database. The same references, however, make update anomalies possible.

Update anomalies are problems that can occur after you update the data in a

row of a database table. The next several sections look at a typical example

and suggest how to deal with it.

Trouble between parent and child tables
The relationships among tables are generally not bidirectional. One table is

usually dependent on the other. Say, for example, that you have a database

with a CLIENT table and an ORDERS table. You may conceivably enter a

client into the CLIENT table before she makes any orders. You can’t, however,

enter an order into the ORDERS table unless you already have an entry in

the CLIENT table for the client who’s making that order. The ORDERS table

is dependent on the CLIENT table. This kind of arrangement is often called a

parent-child relationship, where CLIENT is the parent table and ORDERS is the

child table. The child is dependent on the parent.

 Generally, the primary key of the parent table is a column (or group of columns)

that appears in the child table. Within the child table, that same column (or

group) is a foreign key. Keep in mind, however, that a foreign key need not be

unique.

Update anomalies arise in several ways between parent and child tables. A

client moves away, for example, and you want to delete her information from

your database. If she has already made some orders (which you recorded

in the ORDERS table), deleting her from the CLIENT table could present a

problem. You’d have records in the ORDERS (child) table for which you have

no corresponding records in the CLIENT (parent) table. Similar problems

can arise if you add a record to a child table without making a corresponding

addition to the parent table.

 The corresponding foreign keys in all child tables must reflect any changes

to the primary key of a row in a parent table; otherwise an update anomaly

results.

123 Chapter 5: Building a Multitable Relational Database

Cascading deletions — use with care
You can eliminate most referential integrity problems by carefully controlling

the update process. In some cases, you have to cascade deletions from a

parent table to its children. To cascade a deletion when you delete a row

from a parent table, you also delete all the rows in its child tables whose

foreign keys match the primary key of the deleted row in the parent table.

Take a look at the following example:

CREATE TABLE CLIENT (
 ClientName CHAR (30) PRIMARY KEY,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25) NOT NULL,
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30)
) ;

CREATE TABLE TESTS (
 TestName CHAR (30) PRIMARY KEY,
 StandardCharge CHAR (30)
) ;

CREATE TABLE EMPLOYEE (
 EmployeeName CHAR (30) PRIMARY KEY,
 ADDRESS1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 HomePhone CHAR (13),
 OfficeExtension CHAR (4),
 HireDate DATE,
 JobClassification CHAR (10),
 HourSalComm CHAR (1)
) ;

CREATE TABLE ORDERS (
 OrderNumber INTEGER PRIMARY KEY,
 ClientName CHAR (30),
 TestOrdered CHAR (30),
 Salesperson CHAR (30),
 OrderDate DATE,
 CONSTRAINT NameFK FOREIGN KEY (ClientName)
 REFERENCES CLIENT (ClientName)
 ON DELETE CASCADE,
 CONSTRAINT TestFK FOREIGN KEY (TestOrdered)
 REFERENCES TESTS (TestName)
 ON DELETE CASCADE,

124 Part II: Using SQL to Build Databases

 CONSTRAINT SalesFK FOREIGN KEY (Salesperson)
 REFERENCES EMPLOYEE (EmployeeName)
 ON DELETE CASCADE
) ;

The constraint NameFK names ClientName as a foreign key that references

the ClientName column in the CLIENT table. If you delete a row in the

CLIENT table, you also automatically delete all rows in the ORDERS table that

have the same value in the ClientName column as those in the ClientName

column of the CLIENT table. The deletion cascades down from the CLIENT

table to the ORDERS table. The same is true for the foreign keys in the

ORDERS table that refer to the primary keys of the TESTS and EMPLOYEE

tables.

Alternative ways to control update anomalies
You may not want to cascade a deletion. Instead, you may want to change the

child table’s foreign key to a NULL value. Consider the following variant of

the previous example:

CREATE TABLE ORDERS (
 OrderNumber INTEGER PRIMARY KEY,
 ClientName CHAR (30),
 TestOrdered CHAR (30),
 SalesPerson CHAR (30),
 OrderDate DATE,
 CONSTRAINT NameFK FOREIGN KEY (ClientName)
 REFERENCES CLIENT (ClientName),
 CONSTRAINT TestFK FOREIGN KEY (TestOrdered)
 REFERENCES TESTS (TestName),
 CONSTRAINT SalesFK FOREIGN KEY (Salesperson)
 REFERENCES EMPLOYEE (EmployeeName)
 ON DELETE SET NULL
) ;

The constraint SalesFK names the Salesperson column as a foreign key

that references the EmployeeName column of the EMPLOYEE table. If a

salesperson leaves the company, you delete her row in the EMPLOYEE table.

New salespeople are eventually assigned to her accounts, but for now,

deleting her name from the EMPLOYEE table causes all of her orders in the

ORDER table to receive a null value in the Salesperson column.

 You can also keep inconsistent data out of a database by using one of these

methods:

 ✓ Refuse to permit an addition to a child table until a corresponding

row exists in its parent table. If you refuse to permit rows in a child

table without a corresponding row in a parent table, you prevent the

occurrence of “orphan” rows in the child table. This refusal helps

maintain consistency across tables.

125 Chapter 5: Building a Multitable Relational Database

 ✓ Refuse to permit changes to a table’s primary key. If you refuse to

permit changes to a table’s primary key, you don’t need to worry about

updating foreign keys in other tables that depend on that primary key.

Just when you thought it was safe . . .
The one thing you can count on in databases (as in life) is change. Wouldn’t

you know? You create a database, complete with tables, constraints, and

rows and rows of data. Then word comes down from management that the

structure needs to be changed. How do you add a new column to a table that

already exists? How do you delete one that you don’t need any more? SQL to

the rescue!

Adding a column to an existing table
Suppose your company institutes a policy of having a party for every

employee on his or her birthday. To give the party coordinator the advance

warning she needs when she plans these parties, you have to add a

Birthday column to the EMPLOYEE table. As they say in the Bahamas, “No

problem!” Just use the ALTER TABLE statement. Here’s how:

ALTER TABLE EMPLOYEE
 ADD COLUMN Birthday DATE ;

Now all you have to do is add the birthday information to each row in the

table, and you can party on. (By the way, where did you say you work?)

Deleting a column from an existing table
Now suppose that an economic downturn hits your company and it can no

longer afford to fund lavish birthday parties. Even in a bad economy, DJ fees

have gone through the roof. No more parties means no more need to retain

birthday data. With the ALTER TABLE statement, you can handle this

situation too.

ALTER TABLE EMPLOYEE
 DROP COLUMN Birthday ;

Ah, well, it was fun while it lasted.

Potential problem areas
Data integrity is subject to assault from a variety of quarters. Some of these

problems arise only in multitable databases; others can happen even in

databases that contain only a single table. You want to recognize and

minimize all these potential threats.

126 Part II: Using SQL to Build Databases

Bad input data
The source documents or data files that you use to populate your database

may contain bad data. This data may be a corrupted version of the correct

data, or it may not be the data you want. A range check tells you whether the

data has domain integrity. This type of check catches some — but not all —

problems. (For example, incorrect field values that are within the acceptable

range — but still incorrect — aren’t identified as problems.)

Operator error
Your source data may be correct, but the data entry operator may incorrectly

transcribe the data. This type of error can lead to the same kinds of

problems as bad input data. Some of the solutions are the same, too. Range

checks help, but they’re not foolproof. Another solution is to have a second

operator independently validate all the data. This approach is costly,

because independent validation takes twice the number of people and twice

the time. But in some cases where data integrity is critical, the extra effort

and expense may prove worthwhile.

Mechanical failure
If you experience a mechanical failure, such as a disk crash, the data in the

table may be destroyed. Good backups are your main defense against this

problem.

Malice
Consider the possibility that someone may want to corrupt your data. Your

first line of defense against intentional corruption is to deny database access

to anyone who may have a malicious intent, and restrict authorized users so

they can access only the data they need. Your second defense is to maintain

data backups in a safe place. Periodically re-evaluate the security features of

your installation. Being just a little paranoid doesn’t hurt.

Data redundancy
Data redundancy — the same data items cropping up in multiple places — is

a big problem with the hierarchical database model, but the problem can

plague relational databases, too. Not only does such redundancy waste

storage space and slow down processing, but it can also lead to serious

data corruption. If you store the same data item in two different tables

in a database, the item in one of those tables may change while the

corresponding item in the other table remains the same. This situation

generates a discrepancy, and you may have no way of determining which

version is correct. That’s a good reason to keep data redundancy to a

minimum.

 Although a certain amount of redundancy is necessary for the primary key of

one table to serve as a foreign key in another, you should try to avoid the

repetition of any data items beyond that.

127 Chapter 5: Building a Multitable Relational Database

 After you eliminate most redundancy from a database design, you may find

that performance is now unacceptable. Operators often purposefully use a

little redundancy to speed up processing. In the VetLab database, for example,

the ORDERS table contains only the client’s name to identify the source of

each order. If you prepare an order, you must join the ORDERS table with the

CLIENT table to get the client’s address. If this joining of tables makes the

program that prints orders run too slowly, you may decide to store the client’s

address redundantly in the ORDERS table as well as in the CLIENT table. Then,

at least, you can print the orders faster — but at the expense of slowing down

and complicating any updating of the client’s address.

 A common practice is to initially design a database with little redundancy

and with high degrees of normalization, and then, after finding that important

applications run slowly, to selectively add redundancy and denormalize. The

key word here is selectively. The redundancy that you add back in must have

a specific purpose, and because you’re acutely aware of both the redundancy

and the hazard it represents, you take appropriate measures to ensure that

the redundancy doesn’t cause more problems than it solves. (For more

information, jump ahead a bit to the “Normalizing the Database” section.)

Exceeding the capacity of your DBMS
A database system might work properly for years and then start experiencing

intermittent errors that become progressively more serious. This may be a

sign that you’re approaching one of the system’s capacity limits. There are,

after all, limits to the number of rows that a table may have. There are also

limits on columns, constraints, and various other database features. Check

the current size and content of your database against the specifications

listed in the documentation of your DBMS. If you’re near the limit in any

area, consider upgrading to a system with a higher capacity. Or you may

want to archive older data that is no longer active and then delete it from

your database.

Constraints
Earlier in this chapter, I talk about constraints as mechanisms for ensuring

that the data you enter into a table column falls within the domain of that

column. A constraint is an application rule that the DBMS enforces. After you

define a database, you can include constraints (such as NOT NULL) in a table

definition. The DBMS makes sure that you can never commit any transaction

that violates a constraint.

 You have three different kinds of constraints:

 ✓ A column constraint imposes a condition on a column in a table.

 ✓ A table constraint puts a specified constraint on an entire table.

 ✓ An assertion is a constraint that can affect more than one table.

128 Part II: Using SQL to Build Databases

Column const raints
An example of a column constraint is shown in the following Data Definition

Language (DDL) statement:

CREATE TABLE CLIENT (
 ClientName CHAR (30) NOT NULL,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30)
) ;

The statement applies the constraint NOT NULL to the ClientName column,

specifying that ClientName may not assume a null value. UNIQUE is another

constraint that you can apply to a column. This constraint specifies that

every value in the column must be unique. The CHECK constraint is particularly

useful because it can take any valid expression as an argument. Consider the

following example:

 CREATE TABLE TESTS (
 TestName CHAR (30) NOT NULL,
 StandardCharge NUMERIC (6,2)
 CHECK (StandardCharge >= 0.0
 AND StandardCharge <= 200.0)
) ;

VetLab’s standard charge for a test must always be greater than or equal

to zero. And none of the standard tests costs more than $200. The CHECK

clause refuses to accept any entries that fall outside the range 0 <=
StandardCharge <= 200. Another way of stating the same constraint is as

follows:

CHECK (StandardCharge BETWEEN 0.0 AND 200.0)

Table constraints
The PRIMARY KEY constraint specifies that the column to which it applies

is a primary key. This constraint applies to the entire table — and is

equivalent to a combination of the NOT NULL and UNIQUE column con-

straints. You can specify this constraint in a CREATE statement, as shown in

the following example:

129 Chapter 5: Building a Multitable Relational Database

CREATE TABLE CLIENT (
 ClientName CHAR (30) PRIMARY KEY,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30)
) ;

Assertions
An assertion specifies a restriction for more than one table. The following

example uses a search condition drawn from two tables to create an

assertion:

CREATE TABLE ORDERS (
 OrderNumber INTEGER NOT NULL,
 ClientName CHAR (30),
 TestOrdered CHAR (30),
 Salesperson CHAR (30),
 OrderDate DATE
) ;

CREATE TABLE RESULTS (
 ResultNumber INTEGER NOT NULL,
 OrderNumber INTEGER,
 Result CHAR (50),
 DateOrdered DATE,
 PrelimFinal CHAR (1)
) ;

CREATE ASSERTION
 CHECK (NOT EXISTS (SELECT * FROM ORDERS, RESULTS
 WHERE ORDERS.OrderNumber = RESULTS.OrderNumber
 AND ORDERS.OrderDate > RESULTS.DateReported)) ;

This assertion ensures that test results aren’t reported before the test is

ordered.

130 Part II: Using SQL to Build Databases

Normalizing the Database
Some ways of organizing data are better than others. Some are more logical.

Some are simpler. Some are better at preventing inconsistencies when you

start using the database. Yep, modifying a database opens another whole

nest of troubles and (fortunately) their solutions, known respectively as . . .

Modification anomalies and normal forms
A host of problems — called modification anomalies — can plague a database

if you don’t structure the database correctly. To prevent these problems,

you can normalize the database structure. Normalization generally entails

splitting one database table into two simpler tables.

Modification anomalies are so named because they are generated by the

addition of, change to, or deletion of data from a database table.

To illustrate how modification anomalies can occur, consider the table

shown in Figure 5-2.

Figure 5-2:
This SALES

table
leads to

modification
anomalies.

1024

1010

1007

1001

Customer_ID

SALES

Laundry detergent

Toothpaste

Product

Chlorine bleach

Toothpaste

12

3

Price

4

3

Suppose, for example, that your company sells household cleaning and

personal-care products, and you charge all customers the same price for

each product. The SALES table keeps track of everything for you. Now

assume that customer 1001 moves out of the area and no longer is a customer.

You don’t care what he’s bought in the past, because he’s not going to buy

anything from your company again. You want to delete his row from the

table. If you do so, however, you don’t just lose the fact that customer 1001

has bought laundry detergent; you also lose the fact that laundry detergent

costs $12. This situation is called a deletion anomaly. In deleting one fact

(that customer 1001 bought laundry detergent), you inadvertently delete

another fact (that laundry detergent costs $12).

131 Chapter 5: Building a Multitable Relational Database

You can use the same table to illustrate an insertion anomaly. For example,

suppose you want to add stick deodorant to your product line at a price of

$2. You can’t add this data to the SALES table until a customer buys stick

deodorant.

The problem with the SALES table in the figure is that this table deals with

more than one thing: It covers not just which products customers buy, but

also what the products cost. You have to split the SALES table into two

tables, each dealing with only one theme or idea, as shown in Figure 5-3.

Figure 5-3:
Splitting the
SALES table

into two
tables.

1001

1007

Customer_ID

1010

1024

Laundry detergent

Toothpaste

Product Product

Chlorine bleach

Toothpaste

Laundry detergent

Toothpaste

Chlorine bleach

12

3

Price

4

CUST_PURCH PROD_PRICE

Figure 5-3 shows the SALES table divided into two tables:

 ✓ CUST_PURCH, which deals with the single idea of customer purchases.

 ✓ PROD_PRICE, which deals with the single idea of product pricing.

You can now delete the row for customer 1001 from CUST_PURCH without

losing the fact that laundry detergent costs $12 (the cost of laundry detergent

is now stored in PROD_PRICE). You can also add stick deodorant to PROD_

PRICE, whether anyone has bought the product or not. Purchase information

is stored elsewhere, in the CUST_PURCH table.

The process of breaking up a table into multiple tables, each of which has a

single theme, is called normalization. A normalization operation that solves

one problem may not affect other problems. You may have to perform

several successive normalization operations to reduce each resulting table to

a single theme. Each database table should deal with one — and only one —

main theme. Sometimes (as you probably guessed) determining that a table

really deals with two or more themes can be difficult.

132 Part II: Using SQL to Build Databases

 You can classify tables according to the types of modification anomalies to

which they’re subject. In a 1970 paper, E. F. Codd, the first to describe the

relational model, identified three sources of modification anomalies and

defined first, second, and third normal forms (1NF, 2NF, 3NF) as remedies to

those types of anomalies. In the ensuing years, Codd and others discovered

additional types of anomalies and specified new normal forms to deal with

them. The Boyce-Codd normal form (BCNF), the fourth normal form (4NF),

and the fifth normal form (5NF) each afforded a higher degree of protection

against modification anomalies. Not until 1981, however, did a paper, written

by Ronald Fagin, describe domain-key normal form or DK/NF (which gets a

whole section to itself later in this chapter). Using this last normal form

enables you to guarantee that a table is free of modification anomalies.

The normal forms are nested in the sense that a table that’s in 2NF is

automatically also in 1NF. Similarly, a table in 3NF is automatically in 2NF,

and so on. For most practical applications, putting a database in 3NF is

sufficient to ensure a high degree of integrity. To be absolutely sure of its

integrity, you must put the database into DK/NF; for more about why, flip

ahead to the “Domain-key normal form (DK/NF)” section.

 After you normalize a database as much as possible, you may want to make

selected denormalizations to improve performance. If you do, be aware of the

types of anomalies that may now become possible.

First normal form
To be in first normal form (1NF), a table must have the following qualities:

 ✓ The table is two-dimensional, with rows and columns.

 ✓ Each row contains data that pertains to some thing or portion of a thing.

 ✓ Each column contains data for a single attribute of the thing it’s describing.

 ✓ Each cell (intersection of a row and a column) of the table must have

only a single value.

 ✓ Entries in any column must all be of the same kind. If, for example, the

entry in one row of a column contains an employee name, all the other

rows must contain employee names in that column, too.

 ✓ Each column must have a unique name.

 ✓ No two rows may be identical (that is, each row must be unique).

 ✓ The order of the columns and the order of the rows are not significant.

133 Chapter 5: Building a Multitable Relational Database

A table (relation) in first normal form is immune to some kinds of modification

anomalies but is still subject to others. The SALES table shown in Figure 5-2

is in first normal form, and as discussed previously, the table is subject to

deletion and insertion anomalies. First normal form may prove useful in some

applications but unreliable in others.

Second normal form
To appreciate second normal form, you must understand the idea of functional

dependency. A functional dependency is a relationship between or among

attributes. One attribute is functionally dependent on another if the value of

the second attribute determines the value of the first attribute. If you know

the value of the second attribute, you can determine the value of the first

attribute.

Suppose, for example, that a table has attributes (columns)

StandardCharge, NumberOfTests, and TotalCharge that relate through

the following equation:

TotalCharge = StandardCharge * NumberOfTests

TotalCharge is functionally dependent on both StandardCharge

and NumberOfTests. If you know the values of StandardCharge and

NumberOfTests, you can determine the value of TotalCharge.

Every table in first normal form must have a unique primary key. That key

may consist of one or more than one column. A key consisting of more than

one column is called a composite key. To be in second normal form (2NF),

all non-key attributes (columns) must depend on the entire key. Thus, every

relation that is in 1NF with a single attribute key is automatically in second

normal form. If a relation has a composite key, all non-key attributes must

depend on all components of the key. If you have a table where some non-key

attributes don’t depend on all components of the key, break the table up into

two or more tables so that — in each of the new tables — all non-key attributes

depend on all components of the primary key.

Sound confusing? Look at an example to clarify matters. Consider a table

like the SALES table back in Figure 5-2. Instead of recording only a single

purchase for each customer, you add a row every time a customer buys an

item for the first time. An additional difference is that charter customers (those

with Customer_ID values of 1001 to 1007) get a discount off the normal

price. Figure 5-4 shows some of this table’s rows.

134 Part II: Using SQL to Build Databases

Figure 5-4:
In the

SALES_
TRACK

table, the
Customer_

ID and
Product
columns

constitute a
composite

key.

1024

1010

1001

1010

1007

1001

Customer_ID

SALES_TRACK

Laundry detergent

Toothpaste

Product

Chlorine bleach

Toothpaste

Laundry detergent

Toothpaste

11.00

2.70

Price

4.00

3.00

12.00

2.70

In Figure 5-4, Customer_ID does not uniquely identify a row. In two rows,

Customer_ID is 1001. In two other rows, Customer_ID is 1010. The

combination of the Customer_ID column and the Product column uniquely

identifies a row. These two columns together are a composite key.

If not for the fact that some customers qualify for a discount and others

don’t, the table wouldn’t be in second normal form, because Price (a

non-key attribute) would depend only on part of the key (Product).

Because some customers do qualify for a discount, Price depends on both

CustomerID and Product, and the table is in second normal form.

Third normal form
Tables in second normal form are especially vulnerable to some types of

modification anomalies — in particular, those that come from transitive

dependencies.

 A transitive dependency occurs when one attribute depends on a second

attribute, which depends on a third attribute. Deletions in a table with such a

dependency can cause unwanted information loss. A relation in third normal

form is a relation in second normal form with no transitive dependencies.

Look again at the SALES table in Figure 5-2, which you know is in first normal

form. As long as you constrain entries to permit only one row for each

Customer_ID, you have a single-attribute primary key, and the table is in

second normal form. However, the table is still subject to anomalies. What if

customer 1010 is unhappy with the chlorine bleach, for example, and returns

the item for a refund? You want to remove the third row from the table,

135 Chapter 5: Building a Multitable Relational Database

which records the fact that customer 1010 bought chlorine bleach. You have

a problem: If you remove that row, you also lose the fact that chlorine bleach

has a price of $4. This situation is an example of a transitive dependency.

Price depends on Product, which, in turn, depends on the primary key

Customer_ID.

Breaking the SALES table into two tables solves the transitive dependency

problem. The two tables shown in Figure 5-3, CUST_PURCH and PROD_PRICE,

make up a database that’s in third normal form.

Domain-key normal form (DK/NF)
After a database is in third normal form, you’ve eliminated most, but not

all, chances of modification anomalies. Normal forms beyond the third

are defined to squash those few remaining bugs. Boyce-Codd normal form

(BCNF), fourth normal form (4NF), and fifth normal form (5NF) are examples

of such forms. Each form eliminates a possible modification anomaly but

doesn’t guarantee prevention of all possible modification anomalies.

Domain-key normal form (DK/NF), however, provides such a guarantee.

 A relation is in domain-key normal form (DK/NF) if every constraint on the

relation is a logical consequence of the definition of keys and domains. A

constraint in this definition is any rule that’s precise enough that you can

evaluate whether or not it’s true. A key is a unique identifier of a row in a

table. A domain is the set of permitted values of an attribute.

Look again at the database in Figure 5-2, which is in 1NF, to see what you

must do to put that database in DK/NF.

Table: SALES (Customer_ID, Product, Price)

Key: Customer_ID

Constraints: 1. Customer_ID determines Product
 2. Product determines Price
 3. Customer_ID must be an integer > 1,000

To enforce Constraint 3 (that Customer_ID must be an integer greater than

1,000), you can simply define the domain for Customer_ID to incorporate this

constraint. That makes the constraint a logical consequence of the domain of the

CustomerID column. Product depends on Customer_ID, and Customer_ID

is a key, so you have no problem with Constraint 1, which is a logical conse-

quence of the definition of the key. Constraint 2 is a problem. Price depends on

(is a logical consequence of) Product, and Product isn’t a key. The solution is

to divide the SALES table into two tables. One table uses Customer_ID as a key,

and the other uses Product as a key. This setup is what you have in Figure 5-3.

The database in Figure 5-3, besides being in 3NF, is also in DK/NF.

136 Part II: Using SQL to Build Databases

 Design your databases so they’re in DK/NF if possible. If you can do that, then

enforcing key and domain restrictions causes all constraints to be met — and

modification anomalies aren’t possible. If a database’s structure is designed in

a way that prevents you from putting it into domain-key normal form, then

you have to build the constraints into the application program that uses

the database. The database itself doesn’t guarantee that the constraints will

be met.

Abnormal form
As in life, so in databases: Sometimes being abnormal pays off. You can get

carried away with normalization and go too far. You can break up a database

into so many tables that the entire thing becomes unwieldy and inefficient.

Performance can plummet. Often the optimal structure for your database

is somewhat denormalized. In fact, practical databases (the really big ones,

anyway) are almost never normalized all the way to DK/NF. You want to

normalize the databases you design as much as possible, however, to

eliminate the possibility of data corruption that results from modification

anomalies.

After you normalize the database as far as you can, make some retrievals

as a dry run. If performance isn’t satisfactory, examine your design to see

whether selective denormalization would improve performance without

sacrificing integrity. By carefully adding redundancy in strategic locations

and denormalizing just enough, you can arrive at a database that’s both

efficient and safe from anomalies.

Part III
Storing and

Retrieving Data

In this part . . .

SQL provides a rich set of tools for manipulating data

in a relational database. As you may expect, SQL has

mechanisms for adding new data, updating existing data,

retrieving data, and deleting obsolete data. Nothing’s

particularly extraordinary about these capabilities (heck,

human brains use ’em all the time). Where SQL shines is

in its capability to isolate the exact data you want from all

the rest — and present that data to you in an understand-

able form. SQL’s comprehensive Data Manipulation

Language (DML) provides this critically important

capability.

In this part, I delve deep into the riches of DML. You dis-

cover how to use SQL tools to massage raw data into a

form suitable for your purposes — and then to retrieve

the result as useful information (what a concept).

Chapter 6

Manipulating Database Data
In This Chapter
▶ Dealing with data

▶ Retrieving the data you want from a table

▶ Displaying only selected information from one or more tables

▶ Updating the information in tables and views

▶ Adding a new row to a table

▶ Changing some or all of the data in a table row

▶ Deleting a table row

Chapters 3 and 4 reveal that creating a sound database structure is

critical to maintaining data integrity. The stuff you’re really interested

in, however, is the data itself — not its structure. At any given time, you

probably want to do one of four things with data: add it to tables, retrieve

and display it, change it, or delete it from tables.

In principle, database manipulation is quite simple. Understanding how to

add data to a table isn’t difficult — you can add your data either one row

at a time or in a batch. Changing, deleting, or retrieving one or more table

rows is also easy in practice. The main challenge to database manipulation is

selecting the rows that you want to change, delete, or retrieve. The data you

want may reside in a database that contains a large volume of data you don’t
want. Fortunately, if you can specify what you want by using an SQL SELECT

statement, the computer does all the searching for you. I guess that means

manipulating a database with SQL is a piece of cake. Adding, changing,

deleting, and retrieving are all easy! (Hmmm. Perhaps that might be a slight

exaggeration.) At least let’s start off easy, with simple data retrieval.

140 Part III: Storing and Retrieving Data

Retrieving Data
The data-manipulation task that users perform most frequently is retrieving

selected information from a database. You may want to retrieve the contents

of one row out of thousands in a table. You may want to retrieve all rows

that satisfy a condition or a combination of conditions. You may even want

to retrieve all rows in the table. One particular SQL statement, the SELECT
statement, performs all these tasks for you.

The simplest use of the SELECT statement is to retrieve all the data in all the

rows of a specified table. To do so, use the following syntax:

SELECT * FROM CUSTOMER ;

 The asterisk (*) is a wildcard character that means everything. In this

context, the asterisk is a shorthand substitute for a listing of all the column

names of the CUSTOMER table. As a result of this statement, all the data in all

the rows and columns of the CUSTOMER table appear on-screen.

SELECT statements can be much more complicated than the statement in

this example. In fact, some SELECT statements can be so complicated that

they’re virtually indecipherable. This potential complexity is a result of the

fact that you can tack multiple modifying clauses onto the basic statement.

Chapter 9 covers modifying clauses in detail; in this chapter, I briefly discuss

the WHERE clause — the most commonly used method of restricting the rows

that a SELECT statement returns.

A SELECT statement with a WHERE clause has the following general form:

SELECT column_list FROM table_name
 WHERE condition ;

The column list specifies which columns you want to display. The statement

displays only the columns that you list. The FROM clause specifies from

which table you want to display columns. The WHERE clause excludes rows

that don’t satisfy a specified condition. The condition may be simple (for

example, WHERE CUSTOMER_STATE = ‘NH’), or it may be compound

(for example, WHERE CUSTOMER_STATE=‘NH’ AND STATUS=‘Active’).

The following example shows a compound condition inside a SELECT

statement:

SELECT FirstName, LastName, Phone FROM CUSTOMER
 WHERE State = ’NH’
 AND Status = ’Active’ ;

141 Chapter 6: Manipulating Database Data

This statement returns the names and phone numbers of all active customers

living in New Hampshire. The AND keyword means that for a row to qualify

for retrieval, that row must meet both conditions: State = ‘NH’ and
Status = ‘Active’.

Creating Views
The structure of a database that’s designed according to sound principles —

including appropriate normalization (see Chapter 5) — maximizes the

integrity of the data. This structure, however, is often not the best way to

look at the data. Several applications may use the same data, but each

application may have a different emphasis. One of the most powerful features

of SQL is its capability to display views of the data that are structured

differently from how the database tables store the data. The tables you use

as sources for columns and rows in a view are the base tables. Chapter 3

discusses views as part of the Data Definition Language (DDL); this section

looks at views in the context of retrieving and manipulating data.

A SELECT statement always returns a result in the form of a virtual table. A

view is a special kind of virtual table. You can distinguish a view from other

virtual tables because the database’s metadata holds the definition of a view.

This distinction gives a view a degree of persistence that other virtual tables

don’t possess.

 You can manipulate a view just as you can manipulate a real table. The

difference is that a view’s data doesn’t have an independent existence. The

view derives its data from the table or tables from which you draw the view’s

columns. Each application can have its own unique views of the same data.

SQL in proprietary tools
Using SQL SELECT statements is not the only
way to retrieve data from a database. If you’re
interacting with your database through a
DBMS, this system probably already has propri-
etary tools for manipulating data. You can use
these tools (many of which are quite intuitive)
to add to, delete from, change, or query your
database.

Many DBMS front ends give you the choice of
using either their proprietary tools or SQL. In

some cases, the proprietary tools can’t express
everything that you can express by using SQL.
If you need to perform an operation that the
proprietary tool can’t handle, you may need
to use SQL. So becoming familiar with SQL
is a good idea, even if you use a proprietary
tool most of the time. To successfully perform
an operation that’s too complex for your
proprietary tool, you need a clear understanding
of how SQL works and what it can do.

142 Part III: Storing and Retrieving Data

Consider the VetLab database that I describe in Chapter 5. That database

contains five tables: CLIENT, TESTS, EMPLOYEE, ORDERS, and RESULTS.

Suppose the national marketing manager wants to see from which states the

company’s orders are coming. Some of this information lies in the CLIENT

table; some lies in the ORDERS table. Suppose the quality-control officer

wants to compare the order date of a test to the date on which the final test

result came in. This comparison requires some data from the ORDERS table

and some from the RESULTS table. To satisfy needs such as these, you can

create views that give you exactly the data you want in each case.

From tables
For the marketing manager, you can create the view shown in Figure 6-1.

Figure 6-1:
The

ORDERS_
BY_STATE

view for the
marketing
manager.

CLIENT Table

ClientName
Address1
Address2
City
State
PostalCode
Phone
Fax
ContactPerson ORDERS_BY_STATE View

ClientName
State
OrderNumberORDERS Table

OrderNumber
ClientName
TestOrdered
Salesperson
OrderDate

The following statement creates the marketing manager’s view:

CREATE VIEW ORDERS_BY_STATE
 (ClientName, State, OrderNumber)
 AS SELECT CLIENT.ClientName, State, OrderNumber
 FROM CLIENT, ORDERS
 WHERE CLIENT.ClientName = ORDERS.ClientName ;

143 Chapter 6: Manipulating Database Data

The new view has three columns: ClientName, State, and OrderNumber.

ClientName appears in both the CLIENT and ORDERS tables and serves as

the link between the two tables. The new view draws State information from

the CLIENT table and takes the OrderNumber from the ORDERS table. In the

preceding example, you declare the names of the columns explicitly in the

new view.

Note that I prefixed ClientName with the table that contains it, but did not

do that for State and OrderNumber. That is because State appears only

in the CLIENT table and OrderNumber appears only in the ORDERS table, so

there is no ambiguity. However, ClientName appears in both CLIENT and

ORDERS, so the additional identifier is needed.

 You don’t need this declaration if the names are the same as the names of the

corresponding columns in the source tables. The example in the following

section shows a similar CREATE VIEW statement, except that the view column

names are implied rather than explicitly stated.

With a selection condition
The quality-control officer requires a different view from the one that the

marketing manager uses, as shown by the example in Figure 6-2.

Figure 6-2:
The

REPORTING_
LAG view

for the
quality-
control
officer.

ORDERS Table

OrderNumber
ClientName
TestOrdered
Salesperson
OrderDate REPORTING_LAG View

OrderNumber
OrderDate
DateReportedRESULTS Table

ResultNumber
OrderNumber
Result
DateReported
PreliminaryFinal

144 Part III: Storing and Retrieving Data

Here’s the code that creates the view in Figure 6-2:

CREATE VIEW REPORTING_LAG
 AS SELECT ORDERS.OrderNumber, OrderDate, DateReported
 FROM ORDERS, RESULTS
 WHERE ORDERS.OrderNumber = RESULTS.OrderNumber
 AND RESULTS.PreliminaryFinal = ‘F’ ;

This view contains order-date information from the ORDERS table and

final-report-date information from the RESULTS table. Only rows that have

an ‘F’ in the PreliminaryFinal column of the RESULTS table appear in

the REPORTING LAG view. Note also that the column list in the ORDERS_BY_

STATE view is optional. The REPORTING_LAG view works fine without such a

list.

With a modified attribute
The SELECT clauses in the examples in the two preceding sections contain

only column names. You can include expressions in the SELECT clause as

well. Suppose VetLab’s owner is having a birthday and wants to give all his

customers a 10-percent discount to celebrate. He can create a view based on

the ORDERS table and the TESTS table. He may construct this table as shown

in the following code example:

CREATE VIEW BIRTHDAY
 (ClientName, Test, OrderDate, BirthdayCharge)
 AS SELECT ClientName, TestOrdered, OrderDate,
 StandardCharge * .9
 FROM ORDERS, TESTS
 WHERE TestOrdered = TestName ;

Notice that the second column in the BIRTHDAY view — Test — corresponds to

the TestOrdered column in the ORDERS table, which also corresponds to the

TestName column in the TESTS table. Figure 6-3 shows how to create this view.

Figure 6-3:
The view

created to
show

birthday
discounts.

ORDERS Table

OrderNumber
ClientName
TestOrdered
Salesperson
OrderDate

ClientName
Test
OrderDate
BirthdayCharge

TestName
StandardCharge

*0.9

BIRTHDAY View

TESTS Table

145 Chapter 6: Manipulating Database Data

You can build a view based on multiple tables, as shown in the preceding

examples, or you can build a view based on a single table. If you don’t need

some of the columns or rows in a table, create a view to remove these

elements from sight and then deal with the view rather than the original

table. This approach ensures that users see only the parts of the table that

are relevant to the task at hand.

 Another reason for creating a view is to provide security for its underlying

tables. You may want to make some columns in your tables available for

inspection while hiding others. You can create a view that includes only

those columns that you want to make available and then grant broad access

to that view, while restricting access to the tables from which you draw the

view. (Chapter 13 explores database security and describes how to grant and

revoke data-access privileges.)

Updating Views
After you create a table, that table is automatically capable of accommodating

insertions, updates, and deletions. Views don’t necessarily exhibit the same

capability. If you update a view, you’re actually updating its underlying table.

Here are a few potential problems you may encounter when you update

views:

 ✓ Some views may draw components from two or more tables. If you

update such a view, the underlying tables may not be updated properly.

 ✓ A view may include an expression in a SELECT list. Since expressions

don’t map directly to rows in tables, your DBMS won’t know how to

update an expression.

Suppose you create a view by using the following statement:

CREATE VIEW COMP (EmpName, Pay)
 AS SELECT EmpName, Salary+Comm AS Pay
 FROM EMPLOYEE ;

You may think you can update Pay by using the following statement:

UPDATE COMP SET Pay = Pay + 100 ;

Unfortunately, this approach doesn’t make any sense. That’s because the

underlying table has no Pay column. You can’t update something that

doesn’t exist in the base table.

 Keep the following rule in mind whenever you consider updating views: You

can’t update a column in a view unless it corresponds to a column in an

underlying base table.

146 Part III: Storing and Retrieving Data

Adding New Data
Every database table starts out empty. After you create a table, either by

using SQL’s DDL or a RAD tool, that table is nothing but a structured shell

containing no data. To make the table useful, you must put some data into it.

You may or may not have that data already stored in digital form. Your data

may appear in one of the following forms:

 ✓ Not yet compiled in any digital format: If your data is not already in

digital form, someone will probably have to enter the data manually, one

record at a time. You can also enter data by using optical scanners and

voice-recognition systems, but the use of such devices for data entry is

relatively rare.

 ✓ Compiled in some sort of digital format: If your data is already in

digital form — but perhaps not in the format of the database tables you

use — you have to translate the data into the appropriate format and

then insert the data into the database.

 ✓ Compiled in the correct digital format: If your data is already in digital

form and in the correct format, you’re ready to transfer it to a new

database.

The following sections address adding data to a table when it exists in each

of these three forms. Depending on the current form of the data, you may

be able to transfer it to your database in one operation, or you may need to

enter the data one record at a time. Each data record you enter corresponds

to a single row in a database table.

Adding data one row at a time
Most DBMSs support form-based data entry. This feature enables you to

create a screen form that has a field for every column in a database table.

Field labels on the form enable you to determine easily what data goes into

each field. The data-entry operator enters all the data for a single row into

the form. After the DBMS accepts the new row, the system clears the form to

accept another row. In this way, you can easily add data to a table one row at

a time.

Form-based data entry is easy — and less susceptible to data-entry errors

than using a list of comma-delimited values. The main problem with form-based

data entry is that it is nonstandard; each DBMS has its own method of

creating forms. This diversity, however, is not a problem for the data-entry

operator. You can make the form look generally the same from one DBMS to

another. (The data-entry operator may not suffer too much, but the application

developer must return to the bottom of the learning curve every time he or

147 Chapter 6: Manipulating Database Data

she changes development tools.) Another possible problem with form-based

data entry is that some implementations may not permit a full range of

validity checks on the data that you enter.

The best way to maintain a high level of data integrity in a database is to

keep bad data out of the database. You can prevent the entry of some bad

data by applying constraints to the fields on a data-entry form. This approach

enables you to make sure that the database accepts only data values of the

correct type and within a predefined range. Applying such constraints can’t

prevent all possible errors, but they can catch some errors.

 If the form-design tool in your DBMS doesn’t let you apply all the validity

checks that you need to ensure data integrity, you may want to build your

own screen, accept data entries into variables, and check the entries by using

application program code. After you’re sure that all the values entered for a

table row are valid, you can then add that row by using the SQL INSERT

command.

If you enter the data for a single row into a database table, the INSERT

command uses the following syntax:

INSERT INTO table_1 [(column_1, column_2, ..., column_n)]
 VALUES (value_1, value_2, ..., value_n) ;

As indicated by the square brackets ([]), the listing of column names is

optional. The default column list order is the order of the columns in the

table. If you put the VALUES in the same order as the columns in the table,

these elements go into the correct columns — whether you specify those

columns explicitly or not. If you want to specify the VALUES in some order

other than the order of the columns in the table, you must list the column

names in the same order as the list of values in the VALUES clause.

To enter a record into the CUSTOMER table, for example, use the following

syntax:

INSERT INTO CUSTOMER (CustomerID, FirstName, LastName,
 Street, City, State, Zipcode, Phone)
 VALUES (:vcustid, ‘David’, ‘Taylor’, ‘235 Nutley Ave.’,
 ‘Nutley’, ‘NJ’, ‘07110’, ‘(201) 555-1963’) ;

The first VALUE in the third line, vcustid, is a variable that you increment

with your program code after you enter each new row of the table. This

approach guarantees that you have no duplication of the CustomerID

(which is the primary key for this table and must be unique). The rest of

the values are data items rather than variables that contain data items. Of

course, you can hold the data for these columns in variables, too, if you want.

The INSERT statement works equally well whether you use variables or an

explicit copy of the data itself to form the arguments of the VALUES keyword.

148 Part III: Storing and Retrieving Data

Adding data only to selected columns
Sometimes you want to note the existence of an object, even if you don’t

have all the facts on it yet. If you have a database table for such objects,

you can insert a row for the new object without filling in the data in all the

columns. If you want the table in first normal form, you must insert enough

data to distinguish the new row from all the other rows in the table. (For the

intricacies of the normal forms, including first, see Chapter 5.) Inserting

the new row’s primary key is sufficient for this purpose. In addition to the

primary key, insert any other data that you have about the object. Columns

in which you enter no data contain nulls.

The following example shows such a partial row entry:

INSERT INTO CUSTOMER (CustomerID, FirstName, LastName)
 VALUES (:vcustid, ‘Tyson’, ‘Taylor’) ;

You insert only the customer’s unique identification number and name into

the database table. The other columns in this row contain null values.

Adding a block of rows to a table
Loading a database table one row at a time by using INSERT statements

can be tedious, particularly if that’s all you do. Even entering the data into a

carefully human-engineered ergonomic screen form gets tiring after a while.

Clearly, if you have a reliable way to enter the data automatically, you’ll find

occasions in which automatic entry is better than having a person sit at a

keyboard and type.

Automatic data entry is feasible, for example, if the data already exists in

electronic form because somebody has already entered the data manually. If

so, there’s no reason to repeat history. Transferring data from one data file

to another is a task that a computer can perform with minimal human

involvement. If you know the characteristics of the source data and the

desired form of the destination table, a computer can (in principle) perform

the data transfer automatically.

Copying from a foreign data file
Suppose you’re building a database for a new application. Some data that you

need already exists in a computer file. The file may be a flat file or a table in

a database created by a DBMS different from the one you use. The data may

be in ASCII or EBCDIC code or in some arcane proprietary format. What do

you do?

149 Chapter 6: Manipulating Database Data

The first things you do are hope and pray that the data you want is in a

widely used format. If the data is in a popular format, you have a good chance

of finding a format-conversion utility that can translate the data into one or

more other popular formats. Your development environment can probably

import at least one of these formats; if you’re really lucky, your development

environment can handle the current data format directly. On personal

computers, the Access, xBASE, and MySQL formats are the most widely

used. If the data you want is in one of these formats, conversion should be

easy. If the format of the data is less common, you may have to put it through

a two-step conversion.

 If the data is in an old, proprietary, or defunct format, as a last resort, you can

turn to a professional data-translation service. These businesses specialize

in translating computer data from one format to another. They deal with

hundreds of formats — most of which nobody has ever heard of. Give one of

these services a tape or disk containing the data in its original format, and you

get back the same data translated into whatever format you specify.

Transferring all rows between tables
A less severe problem than dealing with foreign data is taking data that

already exists in one table in your database and combining that data with

compatible data in another table. This process works great if the structure

of the second table is identical to the structure of the first table — that is,

every column in the first table has a corresponding column in the second

table, and the data types of the corresponding columns match. In that case,

you can combine the contents of the two tables by using the UNION relational

operator. The result is a virtual table (that is, one that has no independent

existence) that contains data from both source tables. I discuss the relational

operators, including UNION, in Chapter 10.

Transferring selected columns and rows between tables
Generally, the structure of the data in the source table isn’t identical to the

structure of the table into which you want to insert the data. Perhaps only

some of the columns match — and these are the columns that you want to

transfer. By combining SELECT statements with a UNION, you can specify

which columns from the source tables to include in the virtual result table.

By including WHERE clauses in the SELECT statements, you can restrict

the rows that you place into the result table to those that satisfy specific

conditions. (I cover WHERE clauses extensively in Chapter 9.)

Suppose that you have two tables, PROSPECT and CUSTOMER, and you want

to list everyone living in the state of Maine who appears in either table. You

can create a virtual result table that contains the desired information; just

use the following command:

150 Part III: Storing and Retrieving Data

SELECT FirstName, LastName
 FROM PROSPECT
 WHERE State = ‘ME’
UNION
SELECT FirstName, LastName
 FROM CUSTOMER
 WHERE State = ‘ME’ ;

Here’s a close r look:

 ✓ The SELECT statements specify that the columns included in the result

table are FirstName and LastName.

 ✓ The WHERE clauses restrict the rows included to those with the value

‘ME’ in the State column.

 ✓ The State column isn’t included in the results table but is present in

both the PROSPECT and CUSTOMER tables.

 ✓ The UNION operator combines the results of the SELECT statement on

PROSPECT with the results of the SELECT on CUSTOMER, deletes any

duplicate rows, and then displays the result.

 Another way to copy data from one table in a database to another is to nest

a SELECT statement within an INSERT statement. This method (known as a

subselect and detailed in Chapter 11) doesn’t create a virtual table; instead, it

duplicates the selected data. You can take all the rows from the CUSTOMER

table, for example, and insert those rows into the PROSPECT table. Of course,

this only works if the structures of the CUSTOMER and PROSPECT tables are

identical. If you want to place only those customers who live in Maine into the

PROSPECT table, a simple SELECT with one condition in the WHERE clause

does the trick, as shown in the following example:

INSERT INTO PROSPECT
 SELECT * FROM CUSTOMER
 WHERE State = ‘ME’ ;

 Even though this operation creates redundant data (you’re now storing

customer data in both the PROSPECT table and the CUSTOMER table), you

may want to do it anyway to improve the performance of retrievals. Beware of

the redundancy, however! To maintain data consistency, make sure that you

don’t insert, update, or delete rows in one table without inserting, updating, or

deleting the corresponding rows in the other table. Another potential problem

is the possibility that the INSERT statement might generate duplicate primary

keys. If even one pre-existing prospect has a primary key of ProspectID that

matches the corresponding primary key (CustomerID) of a customer you’re

trying to insert into the PROSPECT table, the insert operation will fail. If both

tables have autoincrementing primary keys, you don’t want them to start with

the same number. Make sure the two blocks of numbers are far apart from

each other.

151 Chapter 6: Manipulating Database Data

Updating Existing Data
You can count on one thing in this world — change. If you don’t like the

current state of affairs, just wait a while. Before long, things will be different.

Because the world is constantly changing, the databases used to model

aspects of the world also need to change. A customer may change her

address. The quantity of a product in stock may change (because, you

hope, someone buys an item now and then). A basketball player’s season

performance statistics change each time he plays in another game. If your

database contains such items, you have to update it periodically.

SQL provides the UPDATE statement for changing data in a table. By using a

single UPDATE statement, you can change one, some, or all rows in a table.

The UPDATE statement uses the following syntax:

UPDATE table_name
 SET column_1 = expression_1, column_2 = expression_2,
 ..., column_n = expression_n
 [WHERE predicates] ;

 The WHERE clause is optional. This clause specifies the rows that you’re

updating. If you don’t use a WHERE clause, all the rows in the table

are updated. The SET clause specifies the new values for the columns

that you’re changing.

Consider the CUSTOMER table shown as Table 6-1.

Table 6-1 CUSTOMER Table
Name City Area Code Telephone

Abe Abelson Springfield (714) 555-1111

Bill Bailey Decatur (714) 555-2222

Chuck Wood Philo (714) 555-3333

Don Stetson Philo (714) 555-4444

Dolph Stetson Philo (714) 555-5555

Customer lists change occasionally — as people move, change their phone

numbers, and so on. Suppose that Abe Abelson moves from Springfield to

Kankakee. You can update his record in the table by using the following

UPDATE statement:

152 Part III: Storing and Retrieving Data

UPDATE CUSTOMER
 SET City = ‘Kankakee’, Telephone = ‘666-6666’
 WHERE Name = ‘Abe Abelson’ ;

This statement causes the changes shown in Table 6-2.

Table 6-2 CUSTOMER Table after UPDATE to One Row
Name City Area Code Telephone

Abe Abelson Kankakee (714) 666-6666

Bill Bailey Decatur (714) 555-2222

Chuck Wood Philo (714) 555-3333

Don Stetson Philo (714) 555-4444

Dolph Stetson Philo (714) 555-5555

You can use a similar statement to update multiple rows. Assume that Philo

is experiencing explosive population growth and now requires its own area

code. You can change all rows for customers who live in Philo by using a

single UPDATE statement, as follows:

UPDATE CUSTOMER
 SET AreaCode = ‘(619)’
 WHERE City = ‘Philo’ ;

The table now looks like the one shown in Table 6-3.

Table 6-3 CUSTOMER Table after UPDATE to Several Rows
Name City Area Code Telephone

Abe Abelson Kankakee (714) 666-6666

Bill Bailey Decatur (714) 555-2222

Chuck Wood Philo (619) 555-3333

Don Stetson Philo (619) 555-4444

Dolph Stetson Philo (619) 555-5555

Updating all the rows of a table is even easier than updating only some of

the rows. You don’t need to use a WHERE clause to restrict the statement.

Imagine that the city of Rantoul has acquired major political clout and has

now annexed not only Kankakee, Decatur, and Philo, but also all the cities

and towns in the database. You can update all the rows by using a single

statement, as follows:

153 Chapter 6: Manipulating Database Data

UPDATE CUSTOMER
 SET City = ‘Rantoul’ ;

Table 6-4 shows the result.

Table 6-4 CUSTOMER Table after UPDATE to All Rows
Name City Area Code Telephone

Abe Abelson Rantoul (714) 666-6666

Bill Bailey Rantoul (714) 555-2222

Chuck Wood Rantoul (619) 555-3333

Don Stetson Rantoul (619) 555-4444

Dolph Stetson Rantoul (619) 555-5555

When you use the WHERE clause with the UPDATE statement to restrict which

rows are updated, the contents of the WHERE clause can be a subselect — a

SELECT statement, the result of which is used as input by another SELECT

statement.

For example, suppose that you’re a wholesaler and your database includes

a VENDOR table containing the names of all the manufacturers from whom

you buy products. You also have a PRODUCT table containing the names of

all the products that you sell and the prices that you charge for them. The

VENDOR table has columns VendorID, VendorName, Street, City, State,

and Zip. The PRODUCT table has ProductID, ProductName, VendorID,

and SalePrice.

Your vendor, Cumulonimbus Corporation, decides to raise the prices of all its

products by 10 percent. To maintain your profit margin, you must raise your

prices on the products that you obtain from Cumulonimbus by 10 percent.

You can do so by using the following UPDATE statement:

UPDATE PRODUCT
 SET SalePrice = (SalePrice * 1.1)
 WHERE VendorID IN
 (SELECT VendorID FROM VENDOR
 WHERE VendorName = ‘Cumulonimbus Corporation’) ;

The subselect finds the VendorID that corresponds to Cumulonimbus. You

can then use the VendorID field in the PRODUCT table to find the rows that

you want to update. The prices on all Cumulonimbus products increase by 10

percent; the prices on all other products stay the same. (I discuss subselects

more extensively in Chapter 11.)

154 Part III: Storing and Retrieving Data

Transferring Data
In addition to using the INSERT and UPDATE statements, you can add data

to a table or view by using the MERGE statement. You can MERGE data from a

source table or view into a destination table or view. The MERGE can either

insert new rows into the destination table or update existing rows. MERGE is a

convenient way to take data that already exists somewhere in a database and

copy it to a new location.

For example, consider the VetLab database that I describe in Chapter 5.

Suppose some people in the EMPLOYEE table are salespeople who have

taken orders, whereas others are non-sales employees or salespeople who

have not yet taken an order. The year just concluded has been profitable,

and you want to share some of that success with the employees. You decide

to give a bonus of $100 to everyone who has taken at least one order and a

bonus of $50 to everyone else. First, you create a BONUS table and insert into

it a record for each employee who appears at least once in the ORDERS table,

assigning each record a default bonus value of $100.

Next, you want to use the MERGE statement to insert new records for those

employees who have not taken orders, giving them $50 bonuses. Here’s some

code that builds and fills the BONUS table:

CREATE TABLE BONUS (
 EmployeeName CHARACTER (30) PRIMARY KEY,
 Bonus NUMERIC DEFAULT 100) ;

INSERT INTO BONUS (EmployeeName)
 (SELECT EmployeeName FROM EMPLOYEE, ORDERS
 WHERE EMPLOYEE.EmployeeName = ORDERS.Salesperson
 GROUP BY EMPLOYEE.EmployeeName) ;

You can now query the BONUS table to see what it holds:

SELECT * FROM BONUS ;

EmployeeName Bonus
------------ -------------
Brynna Jones 100
Chris Bancroft 100
Greg Bosser 100
Kyle Weeks 100

Now, by executing a MERGE statement, you can give $50 bonuses to the rest

of the employees:

155 Chapter 6: Manipulating Database Data

MERGE INTO BONUS
 USING EMPLOYEE
 ON (BONUS.EmployeeName = EMPLOYEE.EmployeeName)
 WHEN NOT MATCHED THEN INSERT
 (BONUS.EmployeeName, BONUS.bonus)
 VALUES (EMPLOYEE.EmployeeName, 50) ;

Records for people in the EMPLOYEE table that don’t match records for

people already in the BONUS table are now inserted into the BONUS table.

Now a query of the BONUS table gives the following result:

SELECT * FROM BONUS ;

EmployeeName Bonus
-------------- -----------
Brynna Jones 100
Chris Bancroft 100
Greg Bosser 100
Kyle Weeks 100
Neth Doze 50
Matt Bak 50
Sam Saylor 50
Nic Foster 50

The first four records, which were created with the INSERT statement, are

in alphabetical order by employee name. The rest of the records, added

by the MERGE statement, appear in whatever order they were listed in the

EMPLOYEE table.

Note: The MERGE statement is a relatively new addition to SQL and may not

yet be supported by some DBMS products.

Deleting Obsolete Data
As time passes, data can get old and lose its usefulness. You may want to

remove this outdated data from its table. Unneeded data in a table slows

performance, consumes memory, and can confuse users. You may want to

transfer older data to an archive table and then take the archive offline. That

way, in the unlikely event that you ever need to look at that data again, you

can recover it. In the meantime, it doesn’t slow down your everyday processing.

Whether you decide that obsolete data is worth archiving or not, you

eventually come to the point where you want to delete that data. SQL

provides for the removal of rows from database tables by use of the DELETE

statement.

156 Part III: Storing and Retrieving Data

You can delete all the rows in a table by using an unqualified DELETE

statement, or you can restrict the deletion to only selected rows by adding

a WHERE clause. The syntax is similar to the syntax of a SELECT statement,

except that you don’t need to specify columns. After all, if you want to delete

a table row, you probably want to remove all the data in that row’s columns.

For example, suppose that your customer, David Taylor, just moved to

Switzerland and isn’t going to buy anything from you anymore. You can

remove him from your CUSTOMER table by using the following statement:

DELETE FROM CUSTOMER
 WHERE FirstName = ‘David’ AND LastName = ‘Taylor’ ;

Assuming that you have only one customer named David Taylor, this

statement makes the intended deletion. If you have two or more customers

who share the name David Taylor (which, after all, is a fairly common name

in English-speaking countries), you can add more conditions to the WHERE

clause (such as STREET or PHONE or CUSTOMER_ID) to make sure that you

delete only the customer you want to remove. If you don’t add a WHERE

clause, all customers named David Taylor will be deleted.

Chapter 7

Specifying Values
In This Chapter
▶ Using variables to eliminate redundant coding

▶ Extracting frequently required information from a database table field

▶ Combining simple values to form complex expressions

This book emphasizes the importance of database structure for maintaining

database integrity. Although the significance of database structure is

often overlooked, you must never forget that the most important thing is the

data itself. After all, the values held in the cells that form the intersections of

the database table’s rows and columns are the raw materials from which you

can derive meaningful relationships and trends.

You can represent values in several ways. You can represent them directly,

or you can derive them with functions or expressions. This chapter describes

the various kinds of values, as well as functions and expressions.

 Functions examine data and calculate a value based on the data. Expressions

are combinations of data items that SQL evaluates to produce a single value.

Values
SQL recognizes several kinds of values:

 ✓ Row values

 ✓ Literal values

 ✓ Variables

 ✓ Special variables

 ✓ Column references

158 Part III: Storing and Retrieving Data

Row values
The most visible values in a database are table row values. These are the

values that each row of a database table contains. A row value is typically

made up of multiple components, because each column in a row contains a

value. A field is the intersection of a single column with a single row. A field

contains a scalar, or atomic, value. A value that’s scalar or atomic has only a

single component.

Literal values
In SQL, either a variable or a constant may represent a value. Logically

enough, the value of a variable may change from time to time, but the value

of a constant never changes. An important kind of constant is the literal value.
You may consider a literal to be a WYSIWYG value, because What You See Is

What You Get. The representation is itself the value.

Just as SQL has many data types, it also has many types of literals. Table 7-1

shows some examples of literals of the various data types.

Notice that single quotes enclose the literals of the non-numeric types. These

marks help to prevent confusion; they can, however, also cause problems, as

you can see in Table 7-1.

Atoms aren’t indivisible either
In the nineteenth century, scientists believed
that an atom was the irreducible smallest
possible piece of matter. That’s why they
named it atom, which comes from the Greek
word atomos, which means indivisible.
Now scientists know that atoms aren’t
indivisible — they’re made up of protons,
neutrons, and electrons. Protons and neutrons,
in turn, are made up of quarks, gluons, and
virtual quarks. Even these things may not be
indivisible. Who knows?

The value of a field in a database table is
called atomic, even though many fields aren’t
indivisible. A DATE value has components of
month, year, and day. A TIMESTAMP value
has components of hour, minute, second, and
so on. A REAL or FLOAT value has compo-
nents of exponent and mantissa. A CHAR value
has components that you can access by using
SUBSTRING. Therefore, calling database field
values atomic is true to the analogy of atoms of
matter. Neither modern application of the term
atomic, however, is true to the word’s original
meaning.

159 Chapter 7: Specifying Values

Table 7-1 Example Literals of Various Data Types
Data Type Example Literal

BIGINT 8589934592

INTEGER 186282

SMALLINT 186

NUMERIC 186282.42

DECIMAL 186282.42

REAL 6.02257E23

DOUBLE PRECISION 3.1415926535897E00

FLOAT 6.02257E23

CHARACTER(15) ‘GREECE ’

Note: Fifteen total characters and spaces are between the quote marks above.

VARCHAR (CHARACTER
VARYING)

‘lepton’

NATIONAL CHARACTER(15) ‘ΕΛΛΑΣ ’1

Note: Fifteen total characters and spaces are between the quote marks above.

NATIONAL CHARACTER
VARYING(15)

‘λεπτον’2

CHARACTER LARGE
OBJECT(512) (CLOB(512))

(A really long character string)

BINARY(4) ‘0100110001110000111100011
1001010’

VARBINARY(4) (BINARY
VARYING(4))

‘0100110001110000’

BINARY LARGE OBJECT(512)
(BLOB(512))

(A really long string of ones and zeros)

DATE DATE ‘1969-07-20’

TIME(2) TIME ‘13.41.32.50’

TIMESTAMP(0) TIMESTAMP ‘2006-02-25-
13.03.16.000000’

TIME WITH TIMEZONE(4) TIME ‘13.41.32.5000-08.00’

TIMESTAMP WITH
TIMEZONE(0)

TIMESTAMP ‘2006-02-25-
13.03.16.0000+02.00’

INTERVAL DAY INTERVAL ‘7’ DAY
1This term is the word that Greeks use to name their own country in their own language.
(The English equivalent is Hellas.)
2This term is the word lepton in Greek national characters.

160 Part III: Storing and Retrieving Data

What if a literal is a character string that itself contains a phrase in single

quotes? In that case, you must type two single quotes to show that one of the

quote marks that you’re typing is a part of the character string and not an

indicator of the end of the string. You’d type ‘Earth’’s atmosphere’, for

example, to represent the character literal ‘Earth’s atmosphere’.

Variables
Although being able to manipulate literals and other kinds of constants while

dealing with a database gives you great power, having variables is helpful,

too. In many cases, you’d need to do much more work if you didn’t have

variables. A variable, by the way, is a quantity that has a value that can

change. Look at the following example to see why variables are valuable.

Suppose that you’re a retailer who has several classes of customers. You give

your high-volume customers the best price, your medium-volume customers

the next best price, and your low-volume customers the highest price. You

want to index all prices to your cost of goods. For your F-22 product, you

decide to charge your high-volume customers (Class C) 1.4 times your cost of

goods. You charge your medium-volume customers (Class B) 1.5 times your

cost of goods, and you charge your low-volume customers (Class A) 1.6 times

your cost of goods.

You store the cost of goods and the prices that you charge in a table named

PRICING. To implement your new pricing structure, you issue the following

SQL commands:

UPDATE PRICING
 SET Price = Cost * 1.4
 WHERE Product = ‘F-22’
 AND Class = ‘C’ ;
UPDATE PRICING
 SET Price = Cost * 1.5
 WHERE Product = ‘F-22’
 AND Class = ‘B’ ;
UPDATE PRICING
 SET Price = Cost * 1.6
 WHERE Product = ‘F-22’
 AND Class = ‘A’ ;

This code is fine and meets your needs — for now. But if aggressive

competition begins to eat into your market share, you may need to reduce

your margins to remain competitive. To change your margins, you need to

enter code something like this:

161 Chapter 7: Specifying Values

UPDATE PRICING
 SET Price = Cost * 1.25
 WHERE Product = ‘F-22’
 AND Class = ‘C’ ;
UPDATE PRICING
 SET Price = Cost * 1.35
 WHERE Product = ‘F-22’
 AND Class = ‘B’ ;
UPDATE PRICING
 SET Price = Cost * 1.45
 WHERE Product = ‘F-22’
 AND Class = ‘A’ ;

If you’re in a volatile market, you may need to rewrite your SQL code repeatedly.

This task can become tedious, particularly if prices appear in multiple places

in your code. You can minimize your work by replacing literals (such as

1.45) with variables (such as :multiplierA). Then you can perform your

updates as follows:

UPDATE PRICING
 SET Price = Cost * :multiplierC
 WHERE Product = ‘F-22’
 AND Class = ‘C’ ;
UPDATE PRICING
 SET Price = Cost * :multiplierB
 WHERE Product = ‘F-22’
 AND Class = ‘B’ ;
UPDATE PRICING
 SET Price = Cost * :multiplierA
 WHERE Product = ‘F-22’
 AND Class = ‘A’ ;

Now whenever market conditions force you to change your pricing, you need

to change only the values of the variables :multiplierC, :multiplierB,

and :multiplierA. These variables are parameters that pass to the SQL

code, which then uses the variables to compute new prices.

 Sometimes variables used in this way are called parameters or host variables.
Variables are called parameters if they appear in applications written in

SQL module language. They’re called host variables when they’re used in

embedded SQL.

 Embedded SQL means that SQL statements are embedded into the code of an

application written in a host language. Alternatively, you can use SQL module

language to create an entire module of SQL code. The host language application

then calls the module. Either method can give you the capabilities that you

want. The approach that you use depends on your SQL implementation.

162 Part III: Storing and Retrieving Data

Special variables
If a user on a client machine connects to a database on a server, this connection

establishes a session. If the user connects to several databases, the session

associated with the most recent connection is considered the current session;
previous sessions are considered dormant. SQL defines several special variables
that are valuable on multiuser systems. These variables keep track of the

different users. Here’s a list of the special variables:

 ✓ SESSION_USER: The special variable SESSION_USER holds a

value that’s equal to the user authorization identifier of the current

SQL session. If you write a program that performs a monitoring function,

you can interrogate SESSION_USER to find out who is executing SQL

statements.

 ✓ CURRENT_USER: An SQL module may have a user-specified authorization

identifier associated with it. The CURRENT_USER variable stores this

value. If a module has no such identifier, CURRENT_USER has the same

value as SESSION_USER.

 ✓ SYSTEM_USER: The SYSTEM_USER variable contains the operating

system’s user identifier. This identifier may differ from that same user’s

identifier in an SQL module. A user may log on to the system as LARRY,

for example, but identify himself to a module as PLANT_MGR. The value

in SESSION_USER is PLANT_MGR. If he makes no explicit specification

of the module identifier, and CURRENT_USER also contains PLANT_MGR,

SYSTEM_USER holds the value LARRY.

 The SYSTEM_USER, SESSION_USER, and CURRENT_USER special variables

track who is using the system. You can maintain a log table and periodically

insert into that table the values that SYSTEM_USER, SESSION_USER, and

CURRENT_USER contain. The following example shows how:

INSERT INTO USAGELOG (SNAPSHOT)
 VALUES (‘User ‘ || SYSTEM_USER ||
 ‘ with ID ‘ || SESSION_USER ||
 ‘ active at ‘ || CURRENT_TIMESTAMP) ;

This statement produces log entries similar to the following example:

User LARRY with ID PLANT_MGR active at 2010-01-07-23.50.00

Column references
Every column contains one value for each row of a table. SQL statements

often refer to such values. A fully qualified column reference consists of the

table name, a period, and then the column name (for example, PRICING.
Product). Consider the following statement:

163 Chapter 7: Specifying Values

SELECT PRICING.Cost
 FROM PRICING
 WHERE PRICING.Product = ‘F-22’ ;

Here PRICING.Product is a column reference. This reference contains the

value ‘F-22’. PRICING.Cost is also a column reference, but you don’t

know its value until the preceding SELECT statement executes.

 Because it only makes sense to reference columns in the current table, you

don’t generally need to use fully qualified column references. The following

statement, for example, is equivalent to the previous one:

SELECT Cost
 FROM PRICING
 WHERE Product = ‘F-22’ ;

Sometimes you may be dealing with more than one table — say, when two

tables in a database contain one or more columns with the same name. In

such a case, you must fully qualify column references for those columns to

guarantee that you get the column you want.

For example, suppose that your company maintains facilities in both

Kingston and Jefferson, and you maintain separate employee records for

each site. You name the Kingston employee table EMP_KINGSTON, and you

name the Jefferson employee table EMP_JEFFERSON. You want a list of

employees who work at both sites, so you need to find the employees whose

names appear in both tables. The following SELECT statement gives you what

you want:

SELECT EMP_KINGSTON.FirstName, EMP_KINGSTON.LastName
 FROM EMP_KINGSTON, EMP_JEFFERSON
 WHERE EMP_KINGSTON.EmpID = EMP_JEFFERSON.EmpID ;

Because each employee’s ID number is unique and remains the same

regardless of the work site, you can use this ID as a link between the two

tables. This retrieval returns only the names of employees who appear in

both tables.

Value Expressions
An expression may be simple or complex. The expression can contain

literal values, column names, parameters, host variables, subqueries,

logical connectives, and arithmetic operators. Regardless of its complexity,

an expression must reduce to a single value.

For this reason, SQL expressions are commonly known as value expressions.
Combining multiple value expressions into a single expression is possible, as

164 Part III: Storing and Retrieving Data

long as the component value expressions reduce to values that have

compatible data types.

SQL has five kinds of value expressions:

 ✓ String value expressions

 ✓ Numeric value expressions

 ✓ Datetime value expressions

 ✓ Interval value expressions

 ✓ Conditional value expressions

String value expressions
The simplest string value expression specifies a single string value. Other

possibilities include a column reference, a set function, a scalar subquery, a

CASE expression, a CAST expression, or a complex string value expression. (I

discuss CASE and CAST value expressions in Chapter 8; I get into subqueries

in Chapter 11.)

Only one operator is possible in a string value expression: the concatenation
operator. You may concatenate any of the value expressions I mention in the

bulleted list in the previous section with another expression to create a more

complex string value expression. A pair of vertical lines (||) represents the

concatenation operator. The following table shows some examples of string

value expressions.

Expression Produces

‘Peanut ‘ || ‘brittle’ ‘Peanut brittle’

‘Jelly’ || ‘ ‘ || ‘beans’ ‘Jelly beans’

FIRST_NAME || ‘ ‘ || LAST_NAME ‘Joe Smith’

B’1100111’ || B’01010011’ ’110011101010011’

‘’ || ‘Asparagus’ ‘Asparagus’

‘Asparagus’ || ‘’ ‘Asparagus’

‘As’ || ‘’ || ‘par’ || ‘’ || ‘agus’ ‘Asparagus’

As the table shows, if you concatenate a string to a zero-length string, the

result is the same as the original string.

165 Chapter 7: Specifying Values

Numeric value expressions
In numeric value expressions, you can apply the addition, subtraction,

multiplication, and division operators to numeric-type data. The expression

must reduce to a numeric value. The components of a numeric value

expression may be of different data types as long as all the data types are

numeric. The data type of the result depends on the data types of the

components from which you derive the result. Even so, the SQL standard

doesn’t rigidly specify the type that results from any specific combination

of source-expression components. That’s because of the differences among

hardware platforms. Check the documentation for your specific platform

when you’re mixing numeric data types.

Here are some examples of numeric value expressions:

 ✓ –27

 ✓ 49 + 83

 ✓ 5 * (12 – 3)

 ✓ PROTEIN + FAT + CARBOHYDRATE

 ✓ FEET/5280

 ✓ COST * :multiplierA

Datetime value expressions
Datetime value expressions perform operations on data that deal with dates

and times. These value expressions can contain components that are of the

types DATE, TIME, TIMESTAMP, or INTERVAL. The result of a datetime value

expression is always a datetime type (DATE, TIME, or TIMESTAMP). The

following expression, for example, gives the date one week from today:

CURRENT_DATE + INTERVAL ‘7’ DAY

Times are maintained in Universal Time Coordinated (UTC) — known in

Great Britain as Greenwich Mean Time — but you can specify an offset to

make the time correct for any particular time zone. For your system’s local

time zone, you can use the simple syntax given in the following example:

TIME ’22:55:00’ AT LOCAL

Alternatively, you can specify this value the long way:

TIME ‘22:55:00’ AT TIME ZONE INTERVAL ‘-08.00’ HOUR TO
MINUTE

166 Part III: Storing and Retrieving Data

This expression defines the local time as the time zone for Portland, Oregon,

which is eight hours earlier than that of Greenwich, England.

Interval value expressions
If you subtract one datetime from another, you get an interval. Adding one

datetime to another makes no sense, so SQL doesn’t permit you to do so. If

you add two intervals together or subtract one interval from another interval,

the result is an interval. You can also either multiply or divide an interval by

a numeric constant.

SQL has two types of intervals: year-month and day-time. To avoid ambiguities,

you must specify which to use in an interval expression. The following

expression, for example, gives the interval in years and months until you

reach retirement age:

(BIRTHDAY_65 - CURRENT_DATE) YEAR TO MONTH

The following example gives an interval of 40 days:

INTERVAL ‘17’ DAY + INTERVAL ‘23’ DAY

The example that follows approximates the total number of months that a

mother of five has been pregnant (assuming that she’s not currently expecting

number six!):

INTERVAL ‘9’ MONTH * 5

Intervals can be negative as well as positive and may consist of any value

expression or combination of value expressions that evaluates to an interval.

Conditional value expressions
The value of a conditional value expression depends on a condition. The

conditional value expressions CASE, NULLIF, and COALESCE are significantly

more complex than the other kinds of value expressions. In fact, these three

conditional value expressions are so complex that I don’t have enough room

to talk about them here. (I give conditional value expressions extensive

coverage in Chapter 8.)

167 Chapter 7: Specifying Values

Functions
A function is a simple (okay, no more than moderately complex) operation

that the usual SQL commands don’t perform but that comes up often in

practice. SQL provides functions that perform tasks that the application code

in the host language (within which you embed your SQL statements) would

otherwise need to perform. SQL has two main categories of functions: set (or

aggregate) functions and value functions.

Summarizing by using set functions
Set functions apply to sets of rows in a table rather than to a single row. These

functions summarize some characteristic of the current set of rows. The set

may include all the rows in the table or a subset of rows that are specified

by a WHERE clause. (I discuss WHERE clauses extensively in Chapter 9.)

Programmers sometimes call set functions aggregate functions because these

functions take information from multiple rows, process that information in

some way, and deliver a single-row answer. That answer is an aggregation of

the information in the rows making up the set.

To illustrate the use of the set functions, consider Table 7-2, a list of nutrition

facts for 100 grams of selected foods.

Table 7-2 Nutrition Facts for 100 Grams of Selected Foods
Food Calories Protein

(grams)
Fat
(grams)

Carbohydrate
(grams)

Almonds, roasted 627 18.6 57.7 19.6

Asparagus 20 2.2 0.2 3.6

Bananas, raw 85 1.1 0.2 22.2

Beef, lean hamburger 219 27.4 11.3

Chicken, light meat 166 31.6 3.4

Opossum, roasted 221 30.2 10.2

Pork, ham 394 21.9 33.3

Beans, lima 111 7.6 0.5 19.8
(continued)

168 Part III: Storing and Retrieving Data

Table 7-2 (continued)
Food Calories Protein

(grams)
Fat
(grams)

Carbohydrate
(grams)

Cola 39 10.0

Bread, white 269 8.7 3.2 50.4

Bread, whole wheat 243 10.5 3.0 47.7

Broccoli 26 3.1 0.3 4.5

Butter 716 0.6 81.0 0.4

Jelly beans 367 0.5 93.1

Peanut brittle 421 5.7 10.4 81.0

A database table named FOODS stores the information in Table 7-2. Blank

fields contain the value NULL. The set functions COUNT, AVG, MAX, MIN, and

SUM can tell you important facts about the data in this table.

COUNT
The COUNT function tells you how many rows are in the table or how many

rows in the table meet certain conditions. The simplest usage of this function

is as follows:

SELECT COUNT (*)
 FROM FOODS ;

This function yields a result of 15, because it counts all rows in the FOODS

table. The following statement produces the same result:

SELECT COUNT (Calories)
 FROM FOODS ;

Because the Calories column in every row of the table has an entry, the

count is the same. If a column contains nulls, however, the function doesn’t

count the rows corresponding to those nulls.

The following statement returns a value of 11, because 4 of the 15 rows in the

table contain nulls in the Carbohydrate column.

SELECT COUNT (Carbohydrate)
 FROM FOODS ;

169 Chapter 7: Specifying Values

 A field in a database table may contain a null value for a variety of reasons.

One common reason is that the actual value is not known (or not yet known).

Or the value may be known but not yet entered. Sometimes, if a value is

known to be zero, the data-entry operator doesn’t bother entering anything in

a field — leaving that field a null. This is not a good practice because zero is a

definite value, and you can include it in computations. Null is not a definite

value, and SQL doesn’t include null values in computations.

You can also use the COUNT function, in combination with DISTINCT, to

determine how many distinct values exist in a column. Consider the following

statement:

SELECT COUNT (DISTINCT Fat)
 FROM FOODS ;

The answer that this statement returns is 12. You can see that a 100-gram

serving of asparagus has the same fat content as 100 grams of bananas (0.2

grams) and that a 100-gram serving of lima beans has the same fat content

as 100 grams of jelly beans (0.5 grams). Thus the table has a total of only 12

distinct fat values.

AVG
The AVG function calculates and returns the average of the values in the

specified column. Of course, you can use the AVG function only on columns

that contain numeric data, as in the following example:

SELECT AVG (Fat)
 FROM FOODS ;

The result is 15.37. This number is so high primarily because of the presence

of butter in the database. You may wonder what the average fat content may

be if you didn’t include butter. To find out, you can add a WHERE clause to

your statement, as follows:

SELECT AVG (Fat)
 FROM FOODS
 WHERE Food <> ‘Butter’ ;

The average fat value drops down to 10.32 grams per 100 grams of food.

MAX
The MAX function returns the maximum value found in the specified column.

The following statement returns a value of 81 (the fat content in 100 grams of

butter):

170 Part III: Storing and Retrieving Data

SELECT MAX (Fat)
 FROM FOODS ;

MIN
The MIN function returns the minimum value found in the specified column.

The following statement returns a value of 0.4, because the function doesn’t

treat the nulls as zeros:

SELECT MIN (Carbohydrate)
 FROM FOODS ;

SUM
The SUM function returns the sum of all the values found in the specified

column. The following statement returns 3,924, which is the total caloric

content of all 15 foods:

SELECT SUM (Calories)
 FROM FOODS ;

Value functions
A number of operations apply in a variety of contexts. Because you need to

use these operations so often, incorporating them into SQL as value functions

makes good sense. ISO/IEC standard SQL offers relatively few value functions

compared to specific database management system implementations such

as Access, Oracle, or SQL Server, but the few that standard SQL does have

are probably the ones that you’ll use most often. SQL uses the following four

types of value functions:

 ✓ String value functions

 ✓ Numeric value functions

 ✓ Datetime value functions

 ✓ Interval value functions

String value functions
String value functions take one character string as an input and produce

another character string as an output. SQL has ten such functions:

 ✓ SUBSTRING

 ✓ SUBSTRING SIMILAR

171 Chapter 7: Specifying Values

 ✓ SUBSTRING_REGEX

 ✓ TRANSLATE_REGEX

 ✓ OVERLAY

 ✓ UPPER

 ✓ LOWER

 ✓ TRIM

 ✓ TRANSLATE

 ✓ CONVERT

SUBSTRING
Use the SUBSTRING function to extract a substring from a source string. The

extracted substring is of the same type as the source string. If the source

string is a CHARACTER VARYING string, for example, the substring is also a

CHARACTER VARYING string. Following is the syntax of the SUBSTRING

function:

SUBSTRING (string_value FROM start [FOR length])

The clause in square brackets ([]) is optional. The substring extracted

from string_value begins with the character that start represents

and continues for length characters. If the FOR clause is absent, the

substring extracted extends from the start character to the end of the

string. Consider the following example:

SUBSTRING (‘Bread, whole wheat’ FROM 8 FOR 7)

The substring extracted is ‘whole w’. This substring starts with the eighth

character of the source string and has a length of seven characters. On the

surface, SUBSTRING doesn’t seem like a very valuable function; if you have a

literal like ‘Bread, whole wheat’, you don’t need a function to figure out

characters 8 through 14. SUBSTRING really is a valuable function, however,

because the string value doesn’t need to be a literal. The value can be any

expression that evaluates to a character string. Thus, you could have a

variable named fooditem that takes on different values at different times.

The following expression would extract the desired substring regardless of

what character string the fooditem variable currently represents:

SUBSTRING (:fooditem FROM 8 FOR 7)

All the value functions are similar in that these functions can operate

on expressions that evaluate to values as well as on the literal values

themselves.

172 Part III: Storing and Retrieving Data

 You need to watch out for a couple of things if you use the SUBSTRING

function. Make sure that the substring that you specify actually falls within the

source string. If you ask for a substring that starts at (say) character eight

but the source string is only four characters long, you get a null result. You

must, therefore, have some idea of the form of your data before you specify a

substring function. You also don’t want to specify a negative substring length,

because the end of a string can’t precede the beginning.

If a column is of the VARCHAR type, you may not know how far the field

extends for a particular row. This lack of knowledge doesn’t present a

problem for the SUBSTRING function. If the length that you specify goes

beyond the right edge of the field, SUBSTRING returns whatever it finds. It

doesn’t return an error.

Say that you have the following statement:

SELECT * FROM FOODS
 WHERE SUBSTRING (Food FROM 8 FOR 7) = ‘white’ ;

This statement returns the row for white bread from the FOODS table, even

though the value in the Food column (‘Bread, white’) is less than 14

characters long.

 If any operand (value from which an operator derives another value) in the

substring function has a null value, SUBSTRING returns a null result.

SUBSTRING SIMILAR
The regular expression substring function is a triadic function (meaning it

operates on three parameters). The three parameters are a source character

string, a pattern string, and an escape character. It then uses pattern matching

(based on POSIX-based regular expressions) to extract and return a result

string from the source character string.

Two instances of the escape character, each followed by the double-quote

character, are used to partition the pattern string into three parts. Here’s an

example:

Suppose the source character string S is ‘Four score and seven years
ago, our fathers brought forth upon this continent, a new
nation’. Suppose further that the pattern string R is ‘and ‘/”’seven’/”’
years’, where the forward slash is the escape character.

Then

SUBSTRING S SIMILAR TO R ;

returns a result that is the middle piece of the pattern string, ‘seven’ in this

case.

173 Chapter 7: Specifying Values

SUBSTRING_REGEX
SUBSTRING_REGEX searches a string for an XQuery regular expression

pattern and returns one occurrence of the matching substring.

According to the ISO/IEC international standard JTC 1/SC 32, the syntax of a

substring regular expression is as follows:

SUBSTRING_REGEX <left paren>
 <XQuery pattern> [FLAG <XQuery option flag>]
 IN <regex subject string>
 [FROM <start position>]
 [USING <char length units>]
 [OCCURRENCE <regex occurrence>]
 [GROUP <regex capture group>] <right paren>

<XQuery pattern> is a character string expression whose value is an

XQuery regular expression.

<XQuery option flag> is an optional character string, corresponding to

the $flags argument of the [XQuery F&O] function fn:match.

<regex subject string> is the character string to be searched for

matches to the <XQuery pattern>.

<start position> is an optional exact numeric value with scale 0,

indicating the character position at which to start the search (the default is 1).

<char length units> is CHARACTERS or OCTETS, indicating the unit in

which <start position> is measured (the default is CHARACTERS).

<regex occurrence> is an optional exact numeric value with scale 0,

indicating which occurrence of a match is desired (the default is 1).

<regex capture group> is an optional exact numeric value with scale

0 indicating which capture group of a match is desired (the default is 0,

indicating the entire occurrence).

Here are some examples of the use of SUBSTRING_REGEX:

SUBSTRING_REGEX (‘\p{L}*’ IN ‘Just do it.’)=‘Just’
SUBSTRING_REGEX (‘\p{L}*’ IN ‘Just do it.’ FROM 2)=‘ust’
SUBSTRING_REGEX (‘\p{L}*’ IN ‘Just do it.’ OCCURRENCE 2) = ‘do’
SUBSTRING_REGEX (‘(do) (\p{L}*’ IN ‘Just do it.’ GROUP 2) = ‘it’

TRANSLATE_REGEX
TRANSLATE_REGEX searches a string for an XQuery regular expression

pattern and returns the string with either one or every occurrence of the

XQuery regular expression replaced by an XQuery replacement string.

174 Part III: Storing and Retrieving Data

According to the ISO/IEC international standard JTC 1/SC 32, the syntax of a

regex transliteration is as follows:

TRANSLATE_REGEX <left paren>
<XQuery pattern> [FLAG <XQuery option flag>]
IN <regex subject string>
[WITH <regex replacement string>]
[FROM <start position>]
[USING <char length units>]
[OCCURRENCE <regex transliteration occurrence>] <right paren>
<regex transliteration occurrence> ::=
<regex occurrence>
| ALL

where:

<regex replacement string> is a character string whose value is

suitable for use as the $replacement argument of the [XQuery F&O]

function fn:replace. Default is the zero-length string.

<regex transliteration occurrence> is either the keyword ALL, or an

exact numeric value with scale 0, indicating which occurrence of a match is

desired (default is ALL).

Here are some examples with no replacement string:

TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’) = ‘Bll dd st.’
TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ OCCURRENCE ALL) = ‘Bll dd st.’
TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ FROM 5) = ‘Bill dd st.’
TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ Occurrence 2) = ‘Bill dd sit.’

Here are a few examples with replacement strings:

TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ WITH ‘a’) = ‘Ball dad sat.’
TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ WITH ‘a’ OCCURRENCE ALL)=‘Ball dad sat.’
TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ WITH ‘a’ OCCURRENCE 2) = ‘Bill dad sit.’
TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ WITH ‘a’ FROM 5) = ‘Bill dad sat.’

OVERLAY
OVERLAY replaces a given substring of a string (specified by a given numeric

starting position and a given length) with a replacement string. When the

length specified for the substring is zero, nothing is removed from the

original string, but the replacement string is inserted into the original string,

starting at the specified starting position.

UPPER
The UPPER value function converts a character string to all-uppercase

characters, as in the examples shown in the following table.

175 Chapter 7: Specifying Values

This Statement Returns

UPPER (‘e. e. cummings’) ‘E. E. CUMMINGS’

UPPER (‘Isaac Newton, Ph.D.’) ‘ISAAC NEWTON, PH.D.’

The UPPER function doesn’t affect a string that’s already in all-uppercase

characters.

LOWER
The LOWER value function converts a character string to all-lowercase

characters, as in the examples in the following table.

This Statement Returns

LOWER (‘TAXES’) ‘taxes’

LOWER (‘E. E. Cummings’) ‘e. e. cummings’

The LOWER function doesn’t affect a string that’s already in all-lowercase

characters.

TRIM
Use the TRIM function to trim off leading or trailing blanks (or other

characters) from a character string. The following examples show how to

use TRIM.

This Statement Returns

TRIM (LEADING ‘ ‘ FROM ‘ treat ‘) ‘treat ‘

TRIM (TRAILING ‘ ‘ FROM ‘ treat ‘) ‘ treat’

TRIM (BOTH ‘ ‘ FROM ‘ treat ‘) ‘treat’

TRIM (BOTH ‘t’ from ‘treat’) ‘rea’

The default trim character is the blank, so the following syntax also is legal:

TRIM (BOTH FROM ‘ treat ‘)

This syntax gives you the same result as the third example in the table —

‘treat’.

176 Part III: Storing and Retrieving Data

TRANSLATE and CONVERT
The TRANSLATE and CONVERT functions take a source string in one character

set and transform the original string into a string in another character set.

Examples might be English to Kanji or Hebrew to French. The conversion

functions that specify these transformations are implementation-specific.

Consult the documentation of your implementation for details.

 If translating from one language to another were as easy as invoking an SQL

TRANSLATE function, that would be great. Unfortunately, it’s not that easy.

All TRANSLATE does is translate a character in the first character set to the

corresponding character in the second character set. The function can, for

example, translate ‘Ελλασ’ to ‘Ellas’. But it can’t translate ‘Ελλασ’ to

‘Greece’.

Numeric value functions
Numeric value functions can take a variety of data types as input, but

the output is always a numeric value. SQL has 15 types of numeric value

functions:

 ✓ Position expression (POSITION)

 ✓ Regex occurrences function (OCCURRENCES_REGEX)

 ✓ Regex position expression (POSITION_REGEX)

 ✓ Extract expression (EXTRACT)

 ✓ Length expression (CHAR_LENGTH, CHARACTER_LENGTH, OCTET_LENGTH)

 ✓ Cardinality expression (CARDINALITY)

 ✓ Absolute value expression (ABS)

 ✓ Modulus expression (MOD)

 ✓ Natural logarithm (LN)

 ✓ Exponential function (EXP)

 ✓ Power function (POWER)

 ✓ Square root (SQRT)

 ✓ Floor function (FLOOR)

 ✓ Ceiling function (CEIL, CEILING)

 ✓ Width bucket function (WIDTH_BUCKET)

POSITION
POSITION searches for a specified target string within a specified source

string and returns the character position where the target string begins. For a

character string, the syntax looks like this:

177 Chapter 7: Specifying Values

POSITION (target IN source [USING char length units])

You can optionally specify a character length unit other than CHARACTER,

but this is rare. If Unicode characters are in use, depending on the type, a

character could be 8, 16, or 32 bits long. In cases where a character is 16 or

32 bits long, you can explicitly specify 8 bits with USING OCTETS.

For a binary string, the syntax looks like this:

POSITION (target IN source)

If the value of the target is equal to an identical-length substring of

contiguous octets in the source string, then the result is one greater than

the number of octets preceding the start of the first such substring.

The following table shows a few examples.

This Statement Returns

POSITION (‘B’ IN ‘Bread, whole wheat’) 1

POSITION (‘Bre’ IN ‘Bread, whole wheat’) 1

POSITION (‘wh’ IN ‘Bread, whole wheat’) 8

POSITION (‘whi’ IN ‘Bread, whole wheat’) 0

POSITION (‘’ IN ‘Bread, whole wheat’) 1

POSITION (‘01001001’ IN
‘001100010100100100100110’)

2

For both character strings and binary strings, if the function doesn’t find

the target string, the POSITION function returns a zero value. Also for both

string types, if the target string has zero length (as in the last character

example), the POSITION function always returns a value of one. If any

operand in the function has a null value, the result is a null value.

OCCURRENCES_REGEX
OCCURRENCES_REGEX is a numeric function that returns the number of

matches for a regular expression in a string. The syntax is as follows:

OCCURRENCES_REGEX <left paren>
<XQuery pattern> [FLAG <XQuery option flag>]
IN <regex subject string>
[FROM <start position>]
[USING <char length units>] <right paren>

178 Part III: Storing and Retrieving Data

Here are some examples:

OCCURRENCES_REGEX (‘i’ IN ‘Bill did sit.’) = 3
OCCURRENCES_REGEX (‘i’ IN ‘Bill did sit.’ FROM 5) = 2
OCCURRENCES_REGEX (‘I’ IN “Bill did sit.’) = 0

POSITION_REGEX
POSITION_REGEX is a numeric function that returns the position of the

start of a match, or one plus the end of a match, for a regular expression in a

string. Here’s the syntax:

POSITION_REGEX <left paren> [<regex position start or after>]
<XQuery pattern> [FLAG <XQuery option flag>]
IN <regex subject string>
[FROM <start position>]
[USING <char length units>]
[OCCURRENCE <regex occurrence>]
[GROUP <regex capture group>] <right paren>

<regex position start or after> ::= START | AFTER

Perhaps some examples would make this clearer:

POSITION_REGEX (‘i’ IN ‘Bill did sit.’) = 2
POSITION_REGEX (START ‘i’ IN ‘Bill did sit.’) = 2
POSITION_REGEX (AFTER ‘i’ IN ‘Bill did sit.’) = 3
POSITION_REGEX (‘i’ IN ‘Bill did sit.’ FROM 5) = 7
POSITION_REGEX (‘i’ IN ‘Bill did sit.’ OCCURRENCE 2) = 7
POSITION_REGEX (‘I’ IN ‘Bill did sit.’) = 0

EXTRACT
The EXTRACT function extracts a single field from a datetime or an interval.

The following statement, for example, returns 08:

EXTRACT (MONTH FROM DATE ‘2006-08-20’)

CHARACTER_LENGTH
The CHARACTER_LENGTH function returns the number of characters in a

character string. The following statement, for example, returns 16:

CHARACTER_LENGTH (‘Opossum, roasted’)

 As I note in regard to the SUBSTRING function (in the “Substring” section,

earlier in the chapter), this function is not particularly useful if its argument is

a literal such as ‘Opossum, roasted’. I can just as easily write 16 as I can

CHARACTER_LENGTH (‘Opossum, roasted’). In fact, writing 16 is easier.

This function is more useful if its argument is an expression rather than a

literal value.

179 Chapter 7: Specifying Values

OCTET_LENGTH
In music, a vocal ensemble made up of eight singers is called an octet.
Typically, the parts that the ensemble represents are first and second

soprano, first and second alto, first and second tenor, and first and second

bass. In computer terminology, an ensemble of eight data bits is called a

byte. The word byte is clever in that the term clearly relates to bit but implies

something larger than a bit. A nice wordplay — but (unfortunately) nothing

in the word byte conveys the concept of “eightness.” By borrowing the

musical term, a more apt description of a collection of eight bits becomes

possible.

Practically all modern computers use eight bits to represent a single

alphanumeric character. More complex character sets (such as Chinese)

require 16 bits to represent a single character. The OCTET_LENGTH function

counts and returns the number of octets (bytes) in a string. If the string is

a bit string, OCTET_LENGTH returns the number of octets you need to hold

that number of bits. If the string is an English-language character string (with

one octet per character), the function returns the number of characters in

the string. If the string is a Chinese character string, the function returns a

number that is twice the number of Chinese characters. The following string

is an example:

OCTET_LENGTH (‘Beans, lima’)

This function returns 11, because each character takes up one octet.

 Some character sets use a variable number of octets for different characters.

In particular, some character sets that support mixtures of Kanji and Latin

characters use escape characters to switch between the two character sets.

A string that contains both Latin and Kanji (for example) may have 30

characters and require 30 octets if all the characters are Latin; 62 characters

if all the characters are Kanji (60 characters plus a leading and trailing shift

character); and 150 characters if the characters alternate between Latin and

Kanji (because each Kanji character needs two octets for the character and

one octet each for the leading and trailing shift characters). The OCTET_
LENGTH function returns the number of octets you need for the current value

of the string.

CARDINALITY
Cardinality deals with collections of elements such as arrays or multisets,

where each element is a value of some data type. The cardinality of the

collection is the number of elements that it contains. One use of the

CARDINALITY function might be:

CARDINALITY (TeamRoster)

180 Part III: Storing and Retrieving Data

This function would return 12, for example, if there were 12 team members

on the roster. TeamRoster, a column in the TEAMS table, can be either an

array or a multiset. An array is an ordered collection of elements, and a

multiset is an unordered collection of elements. For a team roster, which

changes frequently, multiset makes more sense.

ABS
The ABS function returns the absolute value of a numeric value expression.

ABS (-273)

In this case, the function returns 273.

MOD
The MOD function returns the modulus of two numeric value expressions.

MOD (3,2)

In this case, the function returns 1, the modulus of three divided by two.

LN
The LN function returns the natural logarithm of a numeric value expression.

LN (9)

Here this function returns something like 2.197224577. The number of digits

beyond the decimal point depends on the SQL implementation.

EXP
The EXP function raises the base of the natural logarithms e to the power

specified by a numeric value expression.

EXP (2)

Here the function returns something like 7.389056. The number of digits

beyond the decimal point depends on the SQL implementation.

POWER
The POWER function raises the value of the first numeric value expression to

the power of the second numeric value expression.

POWER (2,8)

Here this function returns 256, which is 2 raised to the eighth power.

181 Chapter 7: Specifying Values

SQRT
The SQRT function returns the square root of the value of the numeric value

expression.

SQRT (4)

In this case, the function returns 2, the square root of 4.

FLOOR
The FLOOR function rounds the numeric value expression to the largest

integer not greater than the expression.

FLOOR (3.141592)

This function returns 3.0.

CEIL or CEILING
The CEIL or CEILING function rounds the numeric value expression to the

smallest integer not less than the expression.

CEIL (3.141592)

This function returns 4.0.

WIDTH_BUCKET
The WIDTH_BUCKET function, used in online application processing (OLAP),

is a function of four arguments, returning an integer between 0 (zero) and the

value of the fourth argument plus 1 (one). It assigns the first argument to an

equiwidth partitioning of the range of numbers between the second and third

arguments. Values outside this range are assigned to either 0 (zero) or the

value of the fourth argument plus 1 (one).

For example:

WIDTH_BUCKET (PI, 0, 10, 5)

Suppose PI is a numeric value expression with a value of 3.141592. The

example partitions the interval from zero to 9.999999 . . . into five equal

buckets, each with a width of two. The function returns a value of 2, because

3.141592 falls into the second bucket, which covers the range from 2 to

3.999999. . . .

182 Part III: Storing and Retrieving Data

Datetime value functions
SQL includes three functions that return information about the current date,

current time, or both. CURRENT_DATE returns the current date; CURRENT_
TIME returns the current time; and CURRENT_TIMESTAMP returns (surprise!)

both the current date and the current time. CURRENT_DATE doesn’t take an

argument, but CURRENT_TIME and CURRENT_TIMESTAMP both take a single

argument. The argument specifies the precision for the “seconds” part of the

time value that the function returns. (Datetime data types and the precision

concept are described in Chapter 2.)

The following table offers some examples of these datetime value functions.

This Statement Returns

CURRENT_DATE 2009-12-31

CURRENT_TIME (1) 08:36:57.3

CURRENT_TIMESTAMP (2) 2009-12-31 08:36:57.38

The date that CURRENT_DATE returns is DATE type data. The time that

CURRENT_TIME (p) returns is TIME type data, and the timestamp that

CURRENT_TIMESTAMP(p) returns is TIMESTAMP type data. Because SQL

retrieves date and time information from your computer’s system clock, the

information is correct for the time zone in which the computer resides.

In some applications, you may want to take advantage of functions that

operate on character-type data; to do so, you convert dates, times, or

timestamps to character strings. You can perform such a type conversion

by using the CAST expression, which I describe in Chapter 8.

Interval value functions
An interval value function named ABS was introduced in SQL:1999. It’s similar

to the ABS numeric value function, but operates on interval-type data rather

than numeric-type data. ABS takes a single operand and returns an interval of

the identical precision that is guaranteed not to have a negative value. Here’s

an example:

ABS (TIME ’11:31:00’ – TIME ’12:31:00’)

The result is

INTERVAL +’1:00:00’ HOUR TO SECOND

Chapter 8

Using Advanced SQL Value
Expressions

In This Chapter
▶ Using the CASE conditional expressions

▶ Converting a data item from one data type to another

▶ Saving data-entry time by using row value expressions

SQL is described in Chapter 2 as a data sublanguage. In fact, the sole

function of SQL is to operate on data in a database. SQL lacks many of

the features of a conventional procedural language. As a result, developers

who use SQL must switch back and forth between SQL and its host language

to control the flow of execution. This repeated switching complicates matters

at development time and negatively affects performance at run time.

The performance penalty exacted by SQL’s limitations prompts the addition of

new features to SQL every time a new version of the international specification

is released. One of those added features, the CASE expression, provides a

long-sought conditional structure. A second feature, the CAST expression,

facilitates data conversion in a table from one type of data to another. A third

feature, the row value expression, enables you to operate on a list of values

where previously you could only operate on a single value. For example,

if your list of values is a list of columns in a table, you can now perform an

operation on all those columns by using a very simple syntax.

CASE Conditional Expressions
Every complete computer language has some kind of conditional statement

or command. In fact, most have several kinds. Probably the most common

conditional statement or command is the IF…THEN…ELSE…ENDIF structure.

If the condition following the IF keyword evaluates to True, the block of

commands following the THEN keyword executes. If the condition doesn’t

evaluate to True, the block of commands after the ELSE keyword executes.

184 Part III: Storing and Retrieving Data

The ENDIF keyword signals the end of the structure. This structure is great

for any decision that goes one of two ways. The structure doesn’t work as

well for decisions that can have more than two possible outcomes.

 Most complete languages have a CASE statement that handles situations in

which you may want to perform more than two tasks based on more than two

possible values of a condition.

SQL has a CASE statement and a CASE expression. A CASE expression is only

part of a statement — not a statement in its own right. In SQL, you can place

a CASE expression almost anywhere a value is legal. At run time, a CASE

expression evaluates to a value. SQL’s CASE statement doesn’t evaluate to a

value; rather, it executes a block of statements.

The CASE expression searches a table, one row at a time, taking on the value

of a specified result whenever one of a list of conditions is True. If the first

condition is not satisfied for a row, the second condition is tested — and if it

is True, the result specified for it is given to the expression, and so on until

all conditions are processed. If no match is found, the expression takes on a

NULL value. Processing then moves to the next row.

You can use the CASE expression in the following two ways:

 ✓ Use the expression with search conditions. CASE searches for rows

in a table where specified conditions are True. If CASE finds a search

condition to be True for a table row, the statement containing the CASE

expression makes a specified change to that row.

 ✓ Use the expression to compare a table field to a specified value. The

outcome of the statement containing the CASE expression depends

on which of several specified values in the table field is equal to each

table row.

The next two sections, “Using CASE with search conditions” and “Using CASE

with values,” help clarify these concepts. In the first section, two examples

use CASE with search conditions. One example searches a table and makes

changes to table values, based on a condition. The second section explores

two examples of the value form of CASE.

Using CASE with search conditions
One powerful way to use the CASE expression is to search a table for rows

in which a specified search condition is True. If you use CASE this way, the

expression uses the following syntax:

185 Chapter 8: Using Advanced SQL Value Expressions

CASE
 WHEN condition1 THEN result1
 WHEN condition2 THEN result2
 ...
 WHEN conditionn THEN resultn
 ELSE resultx
END

CASE examines the first qualifying row (the first row that meets the conditions

of the enclosing WHERE clause, if any) to see whether condition1 is True.

If it is, the CASE expression receives a value of result1. If condition1 is

not True, CASE evaluates the row for condition2. If condition2 is True,

the CASE expression receives the value of result2, and so on. If none of

the stated conditions are True, the CASE expression receives the value of

resultx. The ELSE clause is optional. If the expression has no ELSE clause

and none of the specified conditions are True, the expression receives a

null value. After the SQL statement containing the CASE expression applies

itself to the first qualifying row in a table and takes the appropriate action,

it processes the next row. This sequence continues until the SQL statement

finishes processing the entire table.

Updating values based on a condition
Because you can embed a CASE expression within an SQL statement almost

anywhere a value is possible, this expression gives you tremendous flexibility.

You can use CASE within an UPDATE statement, for example, to make

changes to table values — based on certain conditions. Consider the

following example:

UPDATE FOODS
 SET RATING = CASE
 WHEN FAT < 1
 THEN ‘very low fat’
 WHEN FAT < 5
 THEN ‘low fat’
 WHEN FAT < 20
 THEN ‘moderate fat’
 WHEN FAT < 50
 THEN ‘high fat’
 ELSE ‘heart attack city’
 END ;

This statement evaluates the WHEN conditions in order until the first True value

is returned, after which the statement ignores the rest of the conditions.

Table 7-2 in Chapter 7 shows the fat content of 100 grams of certain foods. A

database table holding this information can contain a RATING column that

186 Part III: Storing and Retrieving Data

gives a quick assessment of the fat content’s meaning. If you run the

preceding UPDATE on the FOODS table in Chapter 7, the statement assigns

asparagus a value of very low fat, gives chicken a value of low fat, and

puts roasted almonds in the heart attack city category.

Avoiding conditions that cause errors
Another valuable use of CASE is exception avoidance — checking for

conditions that cause errors.

Consider a case that determines compensation for salespeople. Companies

that compensate their salespeople by straight commission often pay their

new employees by giving them a draw against the future commissions they’re

expected to earn. In the following example, new salespeople receive a draw

against commission; the draw is phased out gradually as their commissions

rise:

UPDATE SALES_COMP
 SET COMP = COMMISSION + CASE
 WHEN COMMISSION <> 0
 THEN DRAW/COMMISSION
 WHEN COMMISSION = 0
 THEN DRAW
 END ;

If the salesperson’s commission is zero, the structure in this example avoids

a division-by-zero operation, which would cause an error if allowed to

happen. If the salesperson has a nonzero commission, the total compensation

is the commission plus a draw that’s reduced in proportion to the size of the

commission.

All of the THEN expressions in a CASE expression must be of the same type —

all numeric, all character, or all date. The result of the CASE expression is

also of the same type.

Using CASE with values
You can use a more compact form of the CASE expression if you’re comparing

a test value for equality with a series of other values. This form is useful

within a SELECT or UPDATE statement if a table contains a limited number of

values in a column and you want to associate a corresponding result value to

each of those column values. If you use CASE in this way, the expression has

the following syntax:

187 Chapter 8: Using Advanced SQL Value Expressions

CASE valuet
 WHEN value1 THEN result1
 WHEN value2 THEN result2
 ...
 WHEN valuen THEN resultn
 ELSE resultx
END

If the test value (valuet) is equal to value1, then the expression takes on

the value result1. If valuet is not equal to value1 but is equal to value2,

then the expression takes on the value result2. The expression tries each

comparison value in turn, all the way down to valuen, until it achieves a

match. If none of the comparison values equal the test value, then the

expression takes on the value resultx. Again, if the optional ELSE clause

isn’t present and none of the comparison values match the test value, the

expression receives a null value.

To understand how the value form works, consider a case in which you have

a table containing the names and ranks of various military officers. You want

to list the names preceded by the correct abbreviation for each rank. The

following statement does the job:

SELECT CASE RANK
 WHEN ‘general’ THEN ‘Gen.’
 WHEN ‘colonel’ THEN ‘Col.’
 WHEN ‘lieutenant colonel’ THEN ‘Lt. Col.’
 WHEN ‘major’ THEN ‘Maj.’
 WHEN ‘captain’ THEN ‘Capt.’
 WHEN ‘first lieutenant’ THEN ‘1st. Lt.’
 WHEN ‘second lieutenant’ THEN ‘2nd. Lt.’
 ELSE NULL
 END,
 LAST_NAME
 FROM OFFICERS ;

The result is a list similar to the following example:

Capt. Midnight
Col. Sanders
Gen. Washington
Maj. Disaster
 Nimitz

Chester Nimitz was an admiral in the United States Navy during World War II.

Because his rank isn’t listed in the CASE expression, the ELSE clause doesn’t

give him a title.

188 Part III: Storing and Retrieving Data

For another example, suppose Captain Midnight gets a promotion to major

and you want to update the OFFICERS database accordingly. Assume that the

variable officer_last_name contains the value ‘Midnight’ and that the

variable new_rank contains an integer (4) that corresponds to Midnight’s

new rank, according to the following table.

new_rank Rank

1 general

2 colonel

3 lieutenant colonel

4 major

5 captain

6 first lieutenant

7 second lieutenant

8 NULL

You can record the promotion by using the following SQL code:

UPDATE OFFICERS
 SET RANK = CASE :new_rank
 WHEN 1 THEN ‘general’
 WHEN 2 THEN ‘colonel’
 WHEN 3 THEN ‘lieutenant colonel’
 WHEN 4 THEN ‘major’
 WHEN 5 THEN ‘captain’
 WHEN 6 THEN ‘first lieutenant’
 WHEN 7 THEN ‘second lieutenant’
 WHEN 8 THEN NULL
 END
 WHERE LAST_NAME = :officer_last_name ;

An alternative syntax for the CASE expression with values is:

CASE
 WHEN valuet = value1 THEN result1
 WHEN valuet = value2 THEN result2
 ...
 WHEN valuet = valuen THEN resultn
 ELSE resultx
END

189 Chapter 8: Using Advanced SQL Value Expressions

A special CASE — NULLIF
The one thing you can be sure of in this world is change. Sometimes

things change from one known state to another. Other times, you think you

know something but later you find out you didn’t know it after all. Classical

thermodynamics and modern chaos theory both tell us that systems

naturally migrate from a well-known, ordered state into a disordered state

that no one can predict. Anyone who has ever monitored the status of a

teenager’s room for a one-week period after the room is cleaned can vouch

for the accuracy of these theories.

Database tables have definite values in fields containing known contents.

Usually, if the value of a field is unknown, the field contains the null value. In

SQL, you can use a CASE expression to change the contents of a table field

from a definite value to a null value. The null value indicates that you no

longer know the field’s value. Consider the following example.

Imagine that you own a small airline that offers flights between southern

California and Washington state. Until recently, some of your flights stopped

at San Jose International Airport to refuel before continuing. Unfortunately,

you just lost your right to fly into San Jose. From now on, you must make

your refueling stop at either San Francisco International Airport or Oakland

International Airport. At this point, you don’t know which flights stop at

which airport, but you do know that none of the flights are stopping at San

Jose. You have a FLIGHT database that contains important information

about your routes, and now you want to update the database to remove all

references to San Jose. The following example shows one way to do this:

UPDATE FLIGHT
 SET RefuelStop = CASE
 WHEN RefuelStop = ‘San Jose’
 THEN NULL
 ELSE RefuelStop
 END ;

 Because occasions like this one — in which you want to replace a known

value with a null value — frequently arise, SQL offers a shorthand notation

to accomplish this task. The preceding example, expressed in this shorthand

form, looks like this:

UPDATE FLIGHT
 SET RefuelStop = NULLIF(RefuelStop, ‘San Jose’) ;

You can translate this expression to English as, “Update the FLIGHT table by

setting the RefuelStop column to null if the existing value of RefuelStop

is ‘San Jose’. Otherwise make no change.”

190 Part III: Storing and Retrieving Data

NULLIF is even handier if you’re converting data that you originally

accumulated for use with a program written in a standard programming

language such as C or Java. Standard programming languages don’t have

nulls, so a common practice is to use special values to represent the concept

of “not known” or “not applicable”. A numeric –1 may represent a not-known

value for SALARY, for example, and a character string “***” may represent

a not-known or not-applicable value for JOBCODE. If you want to represent

these not-known and not-applicable states in an SQL-compatible database

by using nulls, you have to convert the special values to nulls. The following

example makes this conversion for an employee table, in which some salary

values are unknown:

UPDATE EMP
 SET Salary = CASE Salary
 WHEN -1 THEN NULL
 ELSE Salary
 END ;

You can perform this conversion more conveniently by using NULLIF,

as follows:

UPDATE EMP
 SET Salary = NULLIF(Salary, -1) ;

Another special CASE — COALESCE
COALESCE, like NULLIF, is a shorthand form of a particular CASE

expression. COALESCE deals with a list of values that may or may not

be null. Here’s how it works:

 ✓ If one of the values in the list is not null: The COALESCE expression

takes on that value.

 ✓ If more than one value in the list is not null: The expression takes on

the value of the first non-null item in the list.

 ✓ If all the values in the list are null: The expression takes on the null value.

A CASE expression with this function has the following form:

CASE
 WHEN value1 IS NOT NULL
 THEN value1
 WHEN value2 IS NOT NULL
 THEN value2
 ...
 WHEN valuen IS NOT NULL
 THEN valuen
 ELSE NULL
END

191 Chapter 8: Using Advanced SQL Value Expressions

The corresponding COALESCE shorthand looks like this:

COALESCE(value1, value2, ..., valuen)

You may want to use a COALESCE expression after you perform an OUTER
JOIN operation (discussed in Chapter 10). In such cases, COALESCE can save

you a lot of typing.

CAST Data-Type Conversions
Chapter 2 covers the data types that SQL recognizes and supports. Ideally,

each column in a database table has a perfect choice of data type. In this

non-ideal world, however, exactly what that perfect choice may be isn’t

always clear. In defining a database table, suppose you assign a data type to a

column that works perfectly for your current application. Suppose that later

on you want to expand your application’s scope — or write an entirely new

application that uses the data differently. This new use could require a data

type different from the one you originally chose.

You may want to compare a column of one type in one table with a column of

a different type in a different table. For example, you could have dates stored

as character data in one table and as date data in another table. Even if both

columns contain the same sort of information (dates, for example), the fact

that the types are different may prevent you from making the comparison.

In the earliest SQL standards, SQL-86 and SQL-89, type incompatibility posed

a big problem. SQL-92, however, introduced an easy-to-use solution in the

CAST expression.

The CAST expression converts table data or host variables of one type to

another type. After you make the conversion, you can proceed with the

operation or analysis that you originally envisioned.

 Naturally, you face some restrictions when using the CAST expression. You

can’t just indiscriminately convert data of any type into any other type. The

data that you’re converting must be compatible with the new data type. You

can, for example, use CAST to convert the CHAR(10) character string ‘2007-
04-26’ to the DATE type. But you can’t use CAST to convert the CHAR(10)

character string ‘rhinoceros’ to the DATE type. You can’t convert an

INTEGER to the SMALLINT type if the former exceeds the maximum size of a

SMALLINT.

You can convert an item of any character type to any other type (such as

numeric or date) provided the item’s value has the form of a literal of the

new type. Conversely, you can convert an item of any type to any of the

character types, provided the value of the item has the form of a literal of the

original type.

192 Part III: Storing and Retrieving Data

The following list describes some additional conversions you can make:

 ✓ Any numeric type to any other numeric type. If converting to a less

fractionally precise type, the system rounds or truncates the result.

 ✓ Any exact numeric type to a single component interval, such as

INTERVAL DAY or INTERVAL SECOND.

 ✓ Any DATE to a TIMESTAMP. The time part of the TIMESTAMP fills in with

zeros.

 ✓ Any TIME to a TIME with a different fractional-seconds precision or a

TIMESTAMP. The date part of the TIMESTAMP fills in with the current

date.

 ✓ Any TIMESTAMP to a DATE, a TIME, or a TIMESTAMP with a different

fractional-seconds precision.

 ✓ Any year-month INTERVAL to an exact numeric type or another

year-month INTERVAL with different leading-field precision.

 ✓ Any day-time INTERVAL to an exact numeric type or another day-time

INTERVAL with different leading-field precision.

Using CAST within SQL
Suppose you work for a company that keeps track of prospective employees

as well as the employees you’ve actually hired. You list the prospective

employees in a table named PROSPECT, and you distinguish them by their

Social Security numbers, which you store as a CHAR(9) type. You list the

employees in a table named EMPLOYEE, and you distinguish them by their

Social Security numbers, which are of the INTEGER type. You now want to

generate a list of all people who appear in both tables. You can use CAST to

perform the task:

SELECT * FROM EMPLOYEE
 WHERE EMPLOYEE.SSN =
 CAST(PROSPECT.SSN AS INTEGER) ;

Using CAST between SQL
and the host language
The key use of CAST is to deal with data types that are available in SQL but

not in the host language that you use. The following list offers some examples

of these data types:

193 Chapter 8: Using Advanced SQL Value Expressions

 ✓ SQL has DECIMAL and NUMERIC, but FORTRAN and Pascal don’t.

 ✓ SQL has FLOAT and REAL, but standard COBOL doesn’t.

 ✓ SQL has DATETIME, which no other language has.

Suppose you want to use FORTRAN or Pascal to access tables with

DECIMAL(5,3) columns, and you don’t want any inaccuracies to result from

converting those values to the REAL data type used by FORTRAN and Pascal.

You can perform this task by CASTing the data to and from character-string

host variables. You retrieve a numeric salary of 198.37 as a CHAR(10) value

of ‘0000198.37’. Then, if you want to update that salary to 203.74, you

can place that value in a CHAR(10) as ‘0000203.74’. First you use CAST

to change the SQL DECIMAL(5,3) data type to the CHAR(10) type for the

employee whose ID number you’re storing in the host variable :emp_id_
var, as follows:

SELECT CAST(Salary AS CHAR(10)) INTO :salary_var
 FROM EMP
 WHERE EmpID = :emp_id_var ;

The FORTRAN or Pascal application examines the resulting character-

string value in :salary_var, possibly sets the string to a new value of

‘000203.74’, and then updates the database by calling the following SQL

code:

UPDATE EMP
 SET Salary = CAST(:salary_var AS DECIMAL(5,3))
 WHERE EmpID = :emp_id_var ;

Dealing with character-string values such as ‘000198.37’ is awkward in

FORTRAN or Pascal, but you can write a set of subroutines to do the

necessary manipulations. You can then retrieve and update any SQL data

from any host language, and get — and set — exact values.

The general idea is that CAST is most valuable for converting between host

types and the database rather than for converting within the database.

Row Value Expressions
In the original SQL standards, SQL-86 and SQL-89, most operations dealt

with a single value or a single column in a table row. To operate on multiple

values, you had to build complex expressions by using logical connectives
(which I discuss in Chapter 9).

194 Part III: Storing and Retrieving Data

SQL-92 introduced row value expressions, which operate on a list of values or

columns rather than on a single value or column. A row value expression is

a list of value expressions that you enclose in parentheses and separate by

commas. You can code these expressions to operate on an entire row at once

or on a selected subset of the row.

Chapter 6 covers how to use the INSERT statement to add a new row to an

existing table. To do so, the statement uses a row value expression. Consider

the following example:

INSERT INTO FOODS
 (FOODNAME, CALORIES, PROTEIN, FAT, CARBOHYDRATE)
 VALUES
 (‘Cheese, cheddar’, 398, 25, 32.2, 2.1) ;

In this example, (‘Cheese, cheddar’, 398, 25, 32.2, 2.1) is a row

value expression. If you use a row value expression in an INSERT statement

this way, it can contain null and default values. (A default value is the value

that a table column assumes if you specify no other value.) The following

line, for example, is a legal row value expression:

(‘Cheese, cheddar’, 398, NULL, 32.2, DEFAULT)

You can add multiple rows to a table by putting multiple row value

expressions in the VALUES clause, as follows:

INSERT INTO FOODS
 (FOODNAME, CALORIES, PROTEIN, FAT, CARBOHYDRATE)
 VALUES
 (‘Lettuce’, 14, 1.2, 0.2, 2.5),
 (‘Margarine’, 720, 0.6, 81.0, 0.4),
 (‘Mustard’, 75, 4.7, 4.4, 6.4),
 (‘Spaghetti’, 148, 5.0, 0.5, 30.1) ;

You can use row value expressions to save yourself from having to enter

comparisons manually. Suppose you have two tables of nutritional values,

one compiled in English and the other in Spanish. You want to find those

rows in the English language table that correspond exactly to the rows in the

Spanish language table. Without a row value expression, you may need to

formulate something like the following example:

SELECT * FROM FOODS
 WHERE FOODS.CALORIES = COMIDA.CALORIA
 AND FOODS.PROTEIN = COMIDA.PROTEINAS
 AND FOODS.FAT = COMIDA.GRASAS
 AND FOODS.CARBOHYDRATE = COMIDA.CARBOHIDRATO ;

195 Chapter 8: Using Advanced SQL Value Expressions

Row value expressions enable you to code the same logic, as follows:

SELECT * FROM FOODS
 WHERE (FOODS.CALORIES, FOODS.PROTEIN, FOODS.FAT,
 FOODS.CARBOHYDRATE)
 =
 (COMIDA.CALORIA, COMIDA.PROTEINAS, COMIDA.GRASAS,
 COMIDA.CARBOHIDRATO) ;

 In this example, you don’t save much typing. You would benefit slightly more

if you were comparing more columns. In cases of marginal benefit like this

example, you may be better off sticking with the older syntax because its

meaning is clearer.

You gain one benefit by using a row value expression instead of its coded

equivalent — the row value expression is much faster. In principle, a clever

implementation can analyze the coded version and implement it as the row

value version. In practice, this operation is a difficult optimization that no

DBMS that I am aware of can perform.

196 Part III: Storing and Retrieving Data

Chapter 9

Zeroing In on the Data You Want
In This Chapter
▶ Specifying the tables you want to work with

▶ Separating rows of interest from the rest

▶ Building effective WHERE clauses

▶ Handling null values

▶ Building compound expressions with logical connectives

▶ Grouping query output by column

▶ Putting query output in order

A database management system has two main functions: storing data

and providing easy access to that data. Storing data is nothing special;

a file cabinet can perform that chore. The hard part of data management is

providing easy access. For data to be useful, you must be able to separate the

(usually) small amount you want from the huge amount you don’t want.

SQL enables you to use some characteristics of the data to determine

whether a particular table row is of interest to you. The SELECT, DELETE,

and UPDATE statements convey to the database engine (the part of the DBMS

that interacts directly with the data) which rows to select, delete, or update.

You add modifying clauses to the SELECT, DELETE, and UPDATE statements

to refine the search to your specifications.

Modifying Clauses
The modifying clauses available in SQL are FROM, WHERE, HAVING, GROUP
BY, and ORDER BY. The FROM clause tells the database engine which table

or tables to operate on. The WHERE and HAVING clauses specify a data

characteristic that determines whether or not to include a particular row in

the current operation. The GROUP BY and ORDER BY clauses specify how to

display the retrieved rows. Table 9-1 provides a summary.

198 Part III: Storing and Retrieving Data

Table 9-1 Modifying Clauses and Functions
Modifying Clause Function

FROM Specifies from which tables data should be taken

WHERE Filters out rows that don’t satisfy the search condition

GROUP BY Separates rows into groups based on the values in the
grouping columns

HAVING Filters out groups that don’t satisfy the search condition

ORDER BY Sorts the results of prior clauses to produce final output

 If you use more than one of these clauses, they must appear in the following

order:

SELECT column_list
 FROM table_list
 [WHERE search_condition]
 [GROUP BY grouping_column]
 [HAVING search_condition]
 [ORDER BY ordering_condition] ;

Here’s the lowdown on the execution of these clauses:

 ✓ The WHERE clause is a filter that passes the rows that meet the search

condition and rejects rows that don’t meet the condition.

 ✓ The GROUP BY clause rearranges the rows that the WHERE clause passes

according to the value of the grouping column.

 ✓ The HAVING clause is another filter that takes each group that the

GROUP BY clause forms and passes those groups that meet the search

condition, rejecting the rest.

 ✓ The ORDER BY clause sorts whatever remains after all the preceding

clauses process the table.

 As the square brackets ([]) indicate, the WHERE, GROUP BY, HAVING, and

ORDER BY clauses are optional.

SQL evaluates these clauses in the order FROM, WHERE, GROUP BY, HAVING,

and finally SELECT. The clauses operate like a pipeline — each clause

receives the result of the prior clause and produces an output for the next

clause. In functional notation, this order of evaluation appears as follows:

199 Chapter 9: Zeroing In on the Data You Want

SELECT(HAVING(GROUP BY(WHERE(FROM...))))

ORDER BY operates after SELECT, which explains why ORDER BY can only

reference columns in the SELECT list. ORDER BY can’t reference other

columns in the FROM table(s).

FROM Clauses
The FROM clause is easy to understand if you specify only one table, as in the

following example:

SELECT * FROM SALES ;

This statement returns all the data in all the rows of every column in the

SALES table. You can, however, specify more than one table in a FROM clause.

Consider the following example:

SELECT *
 FROM CUSTOMER, SALES ;

This statement forms a virtual table that combines the data from the

CUSTOMER table with the data from the SALES table. (For more about virtual

tables, see Chapter 6.) Each row in the CUSTOMER table combines with every

row in the SALES table to form the new table. The new virtual table that this

combination forms contains the number of rows in the CUSTOMER table

multiplied by the number of rows in the SALES table. If the CUSTOMER table

has 10 rows and the SALES table has 100, then the new virtual table has 1,000

rows.

 This operation is called the Cartesian product of the two source tables. The

Cartesian product is a type of JOIN. (I cover JOIN operations in detail in

Chapter 10.)

In most applications, when you take the Cartesian product of two tables,

most of the rows that are formed in the new virtual table are meaningless.

That’s also true of the virtual table that forms from the CUSTOMER and

SALES tables; only the rows where the CustomerID from the CUSTOMER

table matches the CustomerID from the SALES table are of interest. You can

filter out the rest of the rows by using a WHERE clause.

200 Part III: Storing and Retrieving Data

WHERE Clauses
I use the WHERE clause many times throughout this book without really

explaining it because its meaning and use are obvious: A statement performs

an operation (such as SELECT, DELETE, or UPDATE) only on table rows

WHERE a stated condition is True. The syntax of the WHERE clause is as follows:

SELECT column_list
 FROM table_name
 WHERE condition ;

DELETE FROM table_name
 WHERE condition ;

UPDATE table_name
 SET column1=value1, column2=value2, ..., columnn=valuen
 WHERE condition ;

The condition in the WHERE clause may be simple or arbitrarily complex.

You may join multiple conditions together by using the logical connectives

AND, OR, and NOT (which I discuss later in this chapter) to create a single

condition.

The following are some typical examples of WHERE clauses:

WHERE CUSTOMER.CustomerID = SALES.CustomerID
WHERE FOODS.Calories = COMIDA.Caloria
WHERE FOODS.Calories < 219
WHERE FOODS.Calories > 3 * base_value
WHERE FOODS.Calories < 219 AND FOODS.Protein > 27.4

The conditions that these WHERE clauses express are known as predicates. A

predicate is an expression that asserts a fact about values.

The predicate FOODS.Calories < 219, for example, is True if the value

for the current row of the column FOODS.Calories is less than 219. If the

assertion is True, it satisfies the condition. An assertion may be True, False,

or unknown. The unknown case arises if one or more elements in the

assertion are null. The comparison predicates (=, <, >, <>, <=, and >=) are

the most common, but SQL offers several others that greatly increase your

capability to filter out a desired data item from others in the same column.

These predicates give you that filtering capability:

 ✓ Comparison predicates

 ✓ BETWEEN

201 Chapter 9: Zeroing In on the Data You Want

 ✓ IN [NOT IN]

 ✓ LIKE [NOT LIKE]

 ✓ NULL

 ✓ ALL, SOME, ANY

 ✓ EXISTS

 ✓ UNIQUE

 ✓ OVERLAPS

 ✓ MATCH

 ✓ SIMILAR

 ✓ DISTINCT

Comparison predicates
The examples in the preceding section show typical uses of comparison

predicates in which you compare one value to another. For every row in

which the comparison evaluates to a True value, that value satisfies the

WHERE clause, and the operation (SELECT, UPDATE, DELETE, or whatever)

executes upon that row. Rows that the comparison evaluates to FALSE are

skipped. Consider the following SQL statement:

SELECT * FROM FOODS
 WHERE Calories < 219 ;

This statement displays all rows from the FOODS table that have a value of

less than 219 in the Calories column.

Six comparison predicates are listed in Table 9-2.

Table 9-2 SQL’s Comparison Predicates
Comparison Symbol

Equal =

Not equal <>

Less than <

Less than or equal <=

Greater than >

Greater than or equal >=

202 Part III: Storing and Retrieving Data

BETWEEN
Sometimes you want to select a row if the value in a column falls within a

specified range. One way to make this selection is by using comparison

predicates. For example, you can formulate a WHERE clause to select all the

rows in the FOODS table that have a value in the Calories column greater

than 100 and less than 300, as follows:

WHERE FOODS.Calories > 100 AND FOODS.Calories < 300

This comparison doesn’t include foods with a calorie count of exactly 100 or

300 — only those values that fall between these two numbers. To include the

end points (in this case, 100 and 300), you can write the statement as follows:

WHERE FOODS.Calories >= 100 AND FOODS.Calories <= 300

Another way of specifying a range that includes the end points is to use a

BETWEEN predicate in the following manner:

WHERE FOODS.Calories BETWEEN 100 AND 300

 This clause is functionally identical to the preceding example, which uses

comparison predicates. This formulation saves some typing — and it’s a little

more intuitive than the one that uses two comparison predicates joined by the

logical connective AND.

 The BETWEEN keyword may be confusing because it doesn’t tell you explicitly

whether the clause includes the end points. In fact, the clause does include

these end points. When you use the BETWEEN keyword, a little birdy doesn’t

swoop down to remind you that the first term in the comparison must be

equal to or less than the second. If, for example, FOODS.Calories contains a

value of 200, the following clause returns a True value:

WHERE FOODS.Calories BETWEEN 100 AND 300

However, a clause that you may think is equivalent to the preceding example

returns the opposite result, False:

WHERE FOODS.Calories BETWEEN 300 AND 100

 If you use BETWEEN, you must be able to guarantee that the first term in your

comparison is always equal to or less than the second term.

You can use the BETWEEN predicate with character, bit, and datetime data

types as well as with the numeric types. You may see something like the

following example:

203 Chapter 9: Zeroing In on the Data You Want

SELECT FirstName, LastName
 FROM CUSTOMER
 WHERE CUSTOMER.LastName BETWEEN ‘A’ AND ‘Mzzz’ ;

This example returns all customers whose last names are in the first half of

the alphabet.

IN and NOT IN
The IN and NOT IN predicates deal with whether specified values (such as

OR, WA, and ID), are contained within a particular set of values (such as the

states of the United States). You may, for example, have a table that lists

suppliers of a commodity that your company purchases on a regular basis.

You want to know the phone numbers of the suppliers located in the Pacific

Northwest. You can find these numbers by using comparison predicates,

such as those shown in the following example:

SELECT Company, Phone
 FROM SUPPLIER
 WHERE State = ‘OR’ OR State = ‘WA’ OR State = ‘ID’ ;

You can also use the IN predicate to perform the same task, as follows:

SELECT Company, Phone
 FROM SUPPLIER
 WHERE State IN (‘OR’, ‘WA’, ‘ID’) ;

This formulation is a bit more compact than the one using comparison

predicates and logical OR. It also eliminates any possible confusion between

the logical OR operator and the abbreviation for the state of Oregon.

The NOT IN version of this predicate works the same way. Say that you have

locations in California, Arizona, and New Mexico, and to avoid paying sales

tax, you want to consider using suppliers located anywhere except in those

states. Use the following construction:

SELECT Company, Phone
 FROM SUPPLIER
 WHERE State NOT IN (‘CA’, ‘AZ’, ‘NM’) ;

Using the IN keyword this way saves you a little typing — though (frankly)

that isn’t much of an advantage. You can do the same job by using comparison

predicates as shown in this section’s first example.

204 Part III: Storing and Retrieving Data

 You may have another good reason to use the IN predicate rather than

comparison predicates, even if using IN doesn’t save much typing: Your DBMS

probably implements the two methods differently, and one of the methods

may be significantly faster than the other on your system. You may want to

run a performance comparison on the two ways of expressing inclusion in (or

exclusion from) a group and then use the technique that produces the quicker

result. A DBMS with a good optimizer will probably choose the more efficient

method, regardless of which predicate you use.

The IN keyword is valuable in another area, too. If IN is part of a subquery,

the keyword enables you to pull information from two tables to obtain

results that you can’t derive from a single table. I cover subqueries in detail

in Chapter 11, but here’s an example that shows how a subquery uses the IN

keyword.

Suppose you want to display the names of all customers who’ve bought the

F-22A product in the last 30 days. Customer names are in the CUSTOMER

table, and sales transaction data is in the TRANSACT table. You can use the

following query:

SELECT FirstName, LastName
 FROM CUSTOMER
 WHERE CustomerID IN
 (SELECT CustomerID
 FROM TRANSACT
 WHERE ProductID = ‘F-22A’
 AND TransDate >= (CurrentDate - 30)) ;

The inner SELECT of the TRANSACT table nests within the outer SELECT

of the CUSTOMER table. The inner SELECT finds the CustomerID num-

bers of all customers who bought the F-22A product in the last 30 days.

The outer SELECT displays the first and last names of all customers whose

CustomerID is retrieved by the inner SELECT.

LIKE and NOT LIKE
You can use the LIKE predicate to compare two character strings for a

partial match. Partial matches are valuable if you don’t know the exact form

of the string for which you’re searching. You can also use partial matches

to retrieve multiple rows that contain similar strings in one of the table’s

columns.

To identify partial matches, SQL uses two wildcard characters. The percent

sign (%) can stand for any string of characters that have zero or more

characters. The underscore (_) stands for any single character. Table 9-3

provides some examples that show how to use LIKE.

205 Chapter 9: Zeroing In on the Data You Want

Table 9-3 SQL’s LIKE Predicate
Statement Values Returned

WHERE Word LIKE ‘intern%’ Intern

Internal

international

Internet

Interns

WHERE Word LIKE ‘%Peace%’ Justice of the Peace

Peaceful Warrior

WHERE Word LIKE ‘t_p_’ Tape

Taps

Tipi

Tips

Tops

Type

The NOT LIKE predicate retrieves all rows that don’t satisfy a partial match,

including one or more wildcard characters, as in the following example:

WHERE Phone NOT LIKE ‘503%’

This example returns all the rows in the table for which the phone number

starts with something other than 503.

 You may want to search for a string that includes an actual percent sign or

underscore. In that case, you want SQL to interpret the percent sign as a

percent sign and not as a wildcard character. You can conduct such a search

by typing an escape character just prior to the character you want SQL to take

literally. You can choose any character as the escape character, as long as

that character doesn’t appear in the string that you’re testing, as shown in the

following example:

SELECT Quote
 FROM BARTLETTS
 WHERE Quote LIKE ‘20#%’
 ESCAPE ‘#’ ;

The % character is escaped by the preceding # sign, so the statement

interprets this symbol as a percent sign rather than as a wildcard. You can

“escape” an underscore — or the escape character itself — in the same way.

The preceding query, for example, would find the following quotation in

Bartlett’s Familiar Quotations:

206 Part III: Storing and Retrieving Data

20% of the salespeople produce 80% of the results.

The query would also find the following:

20%

SIMILAR
SQL:1999 added the SIMILAR predicate, which offers a more powerful way of

finding partial matches than the LIKE predicate provides. With the SIMILAR

predicate, you can compare a character string to a regular expression. For

example, say you’re searching the OperatingSystem column of a software

compatibility table to look for Microsoft Windows compatibility. You could

construct a WHERE clause such as the following:

WHERE OperatingSystem SIMILAR TO
‘(‘Windows ’(3.1|95|98|ME|CE|NT|2000|XP|Vista|7))’

This predicate retrieves all rows that contain any of the specified Microsoft

operating systems.

NULL
The NULL predicate finds all rows where the value in the selected column

is null. In the FOODS table in Chapter 7, several rows have null values in the

Carbohydrate column. You can retrieve their names by using a statement

such as the following:

SELECT (Food)
 FROM FOODS
 WHERE Carbohydrate IS NULL ;

This query returns the following values:

Beef, lean hamburger
Chicken, light meat
Opossum, roasted
Pork, ham

As you might expect, including the NOT keyword reverses the result, as in the

following example:

SELECT (Food)
 FROM FOODS
 WHERE Carbohydrate IS NOT NULL ;

207 Chapter 9: Zeroing In on the Data You Want

This query returns all the rows in the table except the four that the preceding

query returns.

 The statement Carbohydrate IS NULL is not the same as Carbohydrate
= NULL. To illustrate this point, assume that, in the current row of the FOODS

table, both Carbohydrate and Protein are null. From this fact, you can

draw the following conclusions:

 ✓ Carbohydrate IS NULL is True.

 ✓ Protein IS NULL is True.

 ✓ Carbohydrate IS NULL AND Protein IS NULL is True.

 ✓ Carbohydrate = Protein is unknown.

 ✓ Carbohydrate = NULL is an illegal expression.

Using the keyword NULL in a comparison is meaningless because the answer

always returns as unknown.

Why is Carbohydrate = Protein defined as unknown, even though

Carbohydrate and Protein have the same (null) value? Because NULL

simply means “I don’t know.” You don’t know what Carbohydrate is, and

you don’t know what Protein is; therefore you don’t know whether those

(unknown) values are the same. Maybe Carbohydrate is 37, and Protein

is 14, or maybe Carbohydrate is 93, and Protein is 93. If you don’t know

both the carbohydrate value and the protein value, you can’t say whether the

two are the same.

ALL, SOME, ANY
Thousands of years ago, the Greek philosopher Aristotle formulated a system

of logic that became the basis for much of Western thought. The essence of

this logic is to start with a set of premises that you know to be true, apply

valid operations to these premises, and, thereby, arrive at new truths. An

example of this procedure is as follows:

Premise 1: All Greeks are human.

Premise 2: All humans are mortal.

Conclusion: All Greeks are mortal.

Another example:

Premise 1: Some Greeks are women.

Premise 2: All women are human.

Conclusion: Some Greeks are human.

208 Part III: Storing and Retrieving Data

By way of presenting a third example, let me state the same logical idea of

the second example in a slightly different way:

If any Greeks are women and all women are human, then some Greeks are

human.

The first example uses the universal quantifier ALL in both premises,

enabling you to make a sound deduction about all Greeks in the conclusion.

The second example uses the existential quantifier SOME in one premise,

enabling you to make a deduction about some Greeks in the conclusion. The

third example uses the existential quantifier ANY, which is a synonym for

SOME, to reach the same conclusion you reach in the second example.

Look at how SOME, ANY, and ALL apply in SQL.

Consider an example in baseball statistics. Baseball is a physically demanding

sport, especially for pitchers. A pitcher must throw the baseball from the

pitcher’s mound to home plate between 90 and 150 times during a game. This

effort can be exhausting, and if (as is often the case) the pitcher becomes

ineffective before the game ends, a relief pitcher must replace him. Pitching

an entire game is an outstanding achievement, regardless of whether the

effort results in a victory.

Suppose you’re keeping track of the number of complete games that all

major-league pitchers pitch. In one table, you list all the American League

pitchers, and in another table, you list all the National League pitchers. Both

tables contain the players’ first names, last names, and number of complete

games pitched.

ANY can be ambiguous
The original SQL used the word ANY for exis-
tential quantification. This usage turned out
to be confusing and error-prone, because
the English language connotations of any are
sometimes universal and sometimes existential:

 ✓ “Do any of you know where Baker Street
is?”

 ✓ “I can eat more hot dogs than any of you.”

The first sentence is probably asking whether
at least one person knows where Baker Street

is; here any is used as an existential quanti-
fier. The second sentence, however, is a boast
that’s stating that I can eat more hot dogs than
the biggest eater among all of you people can
eat. In this case, any is used as a universal
quantifier.

Thus, for the SQL-92 standard, the developers
retained the word ANY for compatibility with
early products, but they also added the word
SOME as a less confusing synonym. SQL con-
tinues to support both existential quantifiers.

209 Chapter 9: Zeroing In on the Data You Want

The American League permits a designated hitter (DH) (who isn’t required to

play a defensive position) to bat in place of any of the nine players who play

defense. The National League doesn’t allow designated hitters, but does allow

pinch-hitters. When the pinch-hitter comes into the game for the pitcher, the

pitcher can’t play for the remainder of the game. Usually the DH bats for the

pitcher, because pitchers are notoriously poor hitters. Pitchers must spend

so much time and effort on perfecting their pitching that they don’t have as

much time to practice batting as the other players do.

Suppose you have a theory that, on average, American League starting pitch-

ers throw more complete games than do National League starting pitchers.

This idea is based on your observation that designated hitters enable hard-

throwing, weak-hitting, American League pitchers to keep pitching as long

as they are effective, even in a close game. Because a DH is already batting

for these pitchers, their poor hitting isn’t a liability. In the National League,

however, under everyday circumstances the pitcher would go to bat. A pinch

hitter would only hit for the pitcher in a close game where getting a base hit

is more crucial than keeping an effective pitcher in the game. To test your

theory, you formulate the following query:

SELECT FirstName, LastName
 FROM AMERICAN_LEAGUER
 WHERE CompleteGames > ALL
 (SELECT CompleteGames
 FROM NATIONAL_LEAGUER) ;

The subquery (the inner SELECT) returns a list showing, for every National

League pitcher, the number of complete games he pitched. The outer query

returns the first and last names of all American Leaguers who pitched more

complete games than ALL of the National Leaguers. The entire query returns

the names of those American League pitchers who pitched more complete

games than the pitcher who has thrown the most complete games in the

National League.

Consider the following similar statement:

SELECT FirstName, LastName
 FROM AMERICAN_LEAGUER
 WHERE CompleteGames > ANY
 (SELECT CompleteGames
 FROM NATIONAL_LEAGUER) ;

In this case, you use the existential quantifier ANY instead of the universal

quantifier ALL. The subquery (the inner, nested query) is identical to the

subquery in the previous example. This subquery retrieves a complete list of

the complete game statistics for all the National League pitchers. The outer

query returns the first and last names of all American League pitchers who

210 Part III: Storing and Retrieving Data

pitched more complete games than ANY National League pitcher. Because

you can be virtually certain that at least one National League pitcher hasn’t

pitched a complete game, the result probably includes all American League

pitchers who’ve pitched at least one complete game.

If you replace the keyword ANY with the equivalent keyword SOME, the result

is the same. If the statement that at least one National League pitcher hasn’t

pitched a complete game is a true statement, you can then say that SOME

National League pitcher hasn’t pitched a complete game.

EXISTS
You can use the EXISTS predicate in conjunction with a subquery to

determine whether the subquery returns any rows. If the subquery returns

at least one row, that result satisfies the EXISTS condition, and the outer

query executes. Consider the following example:

SELECT FirstName, LastName
 FROM CUSTOMER
 WHERE EXISTS
 (SELECT DISTINCT CustomerID
 FROM SALES
 WHERE SALES.CustomerID = CUSTOMER.CustomerID);

Here the SALES table contains all of your company’s sales transactions. The

table includes the CustomerID of the customer who makes each purchase,

as well as other pertinent information. The CUSTOMER table contains each

customer’s first and last names, but no information about specific transactions.

The subquery in the preceding example returns a row for every customer

who has made at least one purchase. The outer query returns the first and

last names of the customers who made the purchases that the SALES table

records.

EXISTS is equivalent to a comparison of COUNT with zero, as the following

query shows:

SELECT FirstName, LastName
 FROM CUSTOMER
 WHERE 0 <>
 (SELECT COUNT(*)
 FROM SALES
 WHERE SALES.CustomerID = CUSTOMER.CustomerID);

211 Chapter 9: Zeroing In on the Data You Want

For every row in the SALES table that contains a CustomerID that’s equal

to a CustomerID in the CUSTOMER table, this statement displays the

FirstName and LastName columns in the CUSTOMER table. For every

sale in the SALES table, therefore, the statement displays the name of the

customer who made the purchase.

UNIQUE
As you do with the EXISTS predicate, you use the UNIQUE predicate with

a subquery. Although the EXISTS predicate evaluates to True only if the

subquery returns at least one row, the UNIQUE predicate evaluates to True

only if no two rows returned by the subquery are identical. In other words,

the UNIQUE predicate evaluates to True only if all the rows that its subquery

returns are unique. Consider the following example:

SELECT FirstName, LastName
 FROM CUSTOMER
 WHERE UNIQUE
 (SELECT CustomerID FROM SALES
 WHERE SALES.CustomerID = CUSTOMER.CustomerID);

This statement retrieves the names of all new customers for whom the SALES

table records only one sale. Because a null value is an unknown value, two

null values aren’t considered equal to each other; when the UNIQUE keyword

is applied to a result table that only contains two null rows, the UNIQUE

predicate evaluates to True.

DISTINCT
The DISTINCT predicate is similar to the UNIQUE predicate, except in the

way it treats nulls. If all the values in a result table are UNIQUE, then they’re

also DISTINCT from each other. However, unlike the result for the UNIQUE

predicate, if the DISTINCT keyword is applied to a result table that contains

only two null rows, the DISTINCT predicate evaluates to False. Two null

values are not considered distinct from each other, while at the same time

they are considered to be unique.

 This strange situation seems contradictory, but there’s a reason for it. In

some situations, you may want to treat two null values as different from each

other — in which case, use the UNIQUE predicate. When you want to treat the

two nulls as if they’re the same, use the DISTINCT predicate.

212 Part III: Storing and Retrieving Data

OVERLAPS
You use the OVERLAPS predicate to determine whether two time intervals

overlap each other. This predicate is useful for avoiding scheduling conflicts.

If the two intervals overlap, the predicate returns a True value. If they don’t

overlap, the predicate returns a False value.

You can specify an interval in two ways: either as a start time and an end

time or as a start time and a duration. Here are some examples:

(TIME ‘2:55:00’, INTERVAL ‘1’ HOUR)
OVERLAPS
(TIME ‘3:30:00’, INTERVAL ‘2’ HOUR)

This first example returns a True, because 3:30 is less than one hour after 2:55.

(TIME ‘9:00:00’, TIME ‘9:30:00’)
OVERLAPS
(TIME ‘9:29:00’, TIME ‘9:31:00’)

This example returns a True, because you have a one-minute overlap

between the two intervals.

(TIME ‘9:00:00’, TIME ‘10:00:00’)
OVERLAPS
(TIME ‘10:15:00’, INTERVAL ‘3’ HOUR)

This example returns a False, because the two intervals don’t overlap.

(TIME ‘9:00:00’, TIME ‘9:30:00’)
OVERLAPS
(TIME ‘9:30:00’, TIME ‘9:35:00’)

This example returns a False, because even though the two intervals are

contiguous, they don’t overlap.

MATCH
In Chapter 5, I discuss referential integrity, which involves maintaining

consistency in a multitable database. You can lose integrity by adding a row

to a child table that doesn’t have a corresponding row in the child’s parent

table. You can cause similar problems by deleting a row from a parent table if

rows corresponding to that row exist in a child table.

213 Chapter 9: Zeroing In on the Data You Want

Suppose your business has a CUSTOMER table that keeps track of all your

customers and a SALES table that records all sales transactions. You don’t

want to add a row to SALES until after you enter the customer making the

purchase into the CUSTOMER table. You also don’t want to delete a customer

from the CUSTOMER table if that customer made purchases that exist in the

SALES table.

 Before you perform an insertion or deletion, you may want to check the

candidate row to make sure that inserting or deleting that row doesn’t cause

integrity problems. The MATCH predicate can perform such a check.

Say you have a CUSTOMER table and a SALES table. CustomerID is the

primary key of the CUSTOMER table and acts as a foreign key in the SALES

table. Every row in the CUSTOMER table must have a unique CustomerID

that isn’t null. CustomerID isn’t unique in the SALES table, because repeat

customers buy more than once. This situation is fine; it doesn’t threaten

integrity because CustomerID is a foreign key rather than a primary key in

that table.

 Seemingly, CustomerID can be null in the SALES table, because someone can

walk in off the street, buy something, and walk out before you get a chance to

enter his or her name and address into the CUSTOMER table. This situation

can create trouble — a row in the child table with no corresponding row in the

parent table. To overcome this problem, you can create a generic customer in

the CUSTOMER table and assign all such anonymous sales to that customer.

Say that a customer steps up to the cash register and claims that she bought

an F-22A Stealth Fighter on December 18, 2009. Although she has lost her

receipt, she now wants to return the plane because it shows up like an

aircraft carrier on opponents’ radar screens. You can verify whether she

bought an F-22A by searching your SALES database for a match. First, you

must retrieve her CustomerID into the variable vcustid; then you can use

the following syntax:

... WHERE (:vcustid, ‘F-22A’, ’2009-12-18’)
 MATCH
 (SELECT CustomerID, ProductID, SaleDate
 FROM SALES)

If the MATCH predicate returns a True value, the database contains a sale of

the F-22A on December 18, 2009, to this client’s CustomerID. Take back the

defective product and refund the customer’s money. (Note: If any values

in the first argument of the MATCH predicate are null, a True value always

returns.)

214 Part III: Storing and Retrieving Data

SQL’s developers added the MATCH predicate and the UNIQUE predicate for

the same reason — they provide a way to explicitly perform the tests defined

for the implicit referential integrity (RI) and UNIQUE constraints.

The general form of the MATCH predicate is as follows:

Row_value MATCH [UNIQUE] [SIMPLE| PARTIAL | FULL]
Subquery

The UNIQUE, SIMPLE, PARTIAL, and FULL options relate to rules that come

into play if the row value expression R has one or more columns that are null.

(For more about using row value expressions, see Chapter 8.) The rules for

the MATCH predicate are a copy of corresponding referential integrity rules.

Referential integrity rules
and the MATCH predicate
Referential integrity rules require that the values of a column or columns in

one table match the values of a column or columns in another table. You

refer to the columns in the first table as the foreign key and the columns in

the second table as the primary key or unique key. For example, you may

declare the column EmpDeptNo in an EMPLOYEE table as a foreign key that

references the DeptNo column of a DEPT table. This matchup ensures that

if you record an employee in the EMPLOYEE table as working in department

123, a row appears in the DEPT table where DeptNo is 123.

If the members of the foreign key/primary key pair both consist of a single

column, the situation is pretty straightforward. However, the two keys can

consist of multiple columns. The DeptNo value, for example, may be unique

only within a Location; therefore, to uniquely identify a DEPT row, you

must specify both a Location and a DeptNo. If both the Boston and Tampa

offices have a department 123, you need to identify the departments as

(‘Boston’, ‘123’) and (‘Tampa’, ‘123’). In this case, the EMPLOYEE

table needs two columns to identify a DEPT. Call those columns EmpLoc and

EmpDeptNo. If an employee works in department 123 in Boston, the EmpLoc

and EmpDeptNo values are ‘Boston’ and ‘123’. And the foreign-key

declaration in the EMPLOYEE table looks like this:

FOREIGN KEY (EmpLoc, EmpDeptNo)
 REFERENCES DEPT (Location, DeptNo)

 Drawing valid conclusions from your data becomes immensely complicated

if the data contains nulls. That’s because sometimes you want to treat such

data one way, and sometimes you want to treat it another way. The UNIQUE,

215 Chapter 9: Zeroing In on the Data You Want

SIMPLE, PARTIAL, and FULL keywords specify different ways of treating data

that contains nulls. If your data does not contain any null values, you can save

yourself a lot of head-scratching by merely skipping from here to the next

section of this chapter, “Logical Connectives.” If your data does contain null

values, drop out of speed-reading mode now and read the following list slowly

and carefully. Each entry in the list given here presents a different situation

with respect to null values — and tells how the MATCH predicate handles it.

Here are scenarios that illustrate the rules for dealing with null values and

the MATCH predicate:

 ✓ The values are both one way or the other: If neither of the values of

EmpLoc and EmpDeptNo are null (or both are null), then the referential

integrity rules are the same as for single-column keys with values that

are null or not null.

 ✓ One value is null and one isn’t: If, for example, EmpLoc is null and

EmpDeptNo is not null — or EmpLoc is not null and EmpDeptNo is

null — you need new rules. When implementing rules, if you insert or

update the EMPLOYEE table with EmpLoc and EmpDeptNo values of

(NULL, ‘123’) or (‘Boston’, NULL), you have six main alternatives:

SIMPLE, PARTIAL, and FULL, each either with or without the UNIQUE

keyword.

 ✓ The UNIQUE keyword is present: A matching row in the subquery result

table must be unique in order for the predicate to evaluate to a True

value.

 ✓ Both components of the row value expression R are null: The

MATCH predicate returns a True value regardless of the contents of

the subquery result table being compared.

 ✓ Neither component of the row value expression R is null, SIMPLE

is specified, UNIQUE is not specified, and at least one row in the

subquery result table matches R: The MATCH predicate returns a True

value. Otherwise it returns a False value.

 ✓ Neither component of the row value expression R is null, SIMPLE is

specified, UNIQUE is specified, and at least one row in the subquery

result table is both unique and matches R: The MATCH predicate

returns a True value. Otherwise it returns a False value.

 ✓ Any component of the row value expression R is null and SIMPLE is

specified: The MATCH predicate returns a True value.

 ✓ Any component of the row value expression R isn’t null, PARTIAL

is specified, UNIQUE isn’t specified, and the non-null part of at least

one row in the subquery result table matches R: The MATCH predicate

returns a True value. Otherwise it returns a False value.

216 Part III: Storing and Retrieving Data

 ✓ Any component of the row value expression R is non-null, PARTIAL is

specified, UNIQUE is specified, and the non-null parts of R match the

non-null parts of at least one unique row in the subquery result table:

The MATCH predicate returns a True value. Otherwise it returns a False

value.

 ✓ Neither component of the row value expression R is null, FULL is

specified, UNIQUE is not specified, and at least one row in the sub-

query result table matches R: The MATCH predicate returns a True

value. Otherwise it returns a False value.

 ✓ Neither component of the row value expression R is null, FULL is

specified, UNIQUE is specified, and at least one row in the subquery

result table is both unique and matches R: The MATCH predicate

returns a True value. Otherwise it returns a False value.

 ✓ Any component of the row value expression R is null and FULL is

specified: The MATCH predicate returns a False value.

Logical Connectives
Often (as a number of previous examples show) applying one condition

in a query isn’t enough to return the rows you want from a table. In some

cases, the rows must satisfy two or more conditions. In other cases, if a row

satisfies any of two or more conditions, it qualifies for retrieval. On still

other occasions, you want to retrieve only rows that don’t satisfy a specified

condition. To meet these needs, SQL offers the logical connectives AND, OR,

and NOT.

Rule by committee
The SQL-89 version of the standard specified
the UNIQUE rule as the default, before anyone
proposed or debated the alternatives. During
development of the SQL-92 version of the stan-
dard, proposals appeared for the alternatives.
Some people strongly preferred the PARTIAL
rules and argued that those should be the only
rules. These people thought that the SQL-89
(UNIQUE) rules were so undesirable that they
wanted those rules considered a bug and the
PARTIAL rules specified as a correction.
Other people preferred the UNIQUE rules and

thought that the PARTIAL rules were obscure,
error-prone, and inefficient. Still other people
preferred the additional discipline of the FULL
rules. The issue was finally settled by provid-
ing all three keywords so users could choose
whichever approach they preferred. SQL:1999
added the SIMPLE rules. Of course, the pro-
liferation of rules makes dealing with nulls
anything but simple. If SIMPLE, PARTIAL,
or FULL isn’t specified, the SIMPLE rules are
followed.

217 Chapter 9: Zeroing In on the Data You Want

AND
If multiple conditions must all be True before you can retrieve a row, use the

AND logical connective. Consider the following example:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
 FROM SALES
 WHERE SaleDate >= ’2009-12-14’
 AND SaleDate <= ’2009-12-20’ ;

The WHERE clause must meet the following two conditions:

 ✓ SaleDate must be greater than or equal to December 14, 2009.

 ✓ SaleDate must be less than or equal to December 20, 2009.

Only rows that record sales occurring during the week of December 14 meet

both conditions. The query returns only these rows.

 Notice that the AND connective is strictly logical. This restriction can sometimes

be confusing because people commonly use the word and with a looser

meaning. Suppose, for example, that your boss says to you, “I’d like to retrieve

the sales data for Ferguson and Ford.” He said, “Ferguson and Ford,” so you

may write the following SQL query:

SELECT *
 FROM SALES
 WHERE Salesperson = ‘Ferguson’
 AND Salesperson = ‘Ford’;

Well, don’t take that answer back to your boss. The following query is more

like what the big kahuna had in mind:

SELECT *
 FROM SALES
 WHERE Salesperson IN (‘Ferguson’, ‘Ford’) ;

The first query won’t return anything, because none of the sales in the SALES

table were made by both Ferguson and Ford. The second query will return

the information on all sales made by either Ferguson or Ford, which is prob-

ably what the boss wanted.

OR
If any one of two or more conditions must be True to qualify a row for

retrieval, use the OR logical connective, as in the following example:

218 Part III: Storing and Retrieving Data

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
 FROM SALES
 WHERE Salesperson = ‘Ford’
 OR TotalSale > 200 ;

This query retrieves all of Ford’s sales, regardless of how large, as well as all

sales of more than $200, regardless of who made the sales.

NOT
The NOT connective negates a condition. If the condition normally returns a

True value, adding NOT causes the same condition to return a False value. If a

condition normally returns a False value, adding NOT causes the condition to

return a True value. Consider the following example:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
 FROM SALES
 WHERE NOT (Salesperson = ‘Ford’) ;

This query returns rows for all sales transactions completed by salespeople

other than Ford.

 When you use AND, OR, or NOT, sometimes the scope of the connective

isn’t clear. To be safe, use parentheses to make sure that SQL applies the

connective to the predicate you want. In the preceding example, the NOT

connective applies to the entire predicate (Salesperson = ‘Ford’).

GROUP BY Clauses
Sometimes, rather than retrieving individual records, you want to know

something about a group of records. The GROUP BY clause is the tool you

need.

Suppose you’re the sales manager of another location, and you want to look

at the performance of your sales force. If you do a simple SELECT, such as

the following query:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
 FROM SALES;

you receive a result similar to that shown in Figure 9-1.

219 Chapter 9: Zeroing In on the Data You Want

Figure 9-1:
A result

set for
retrieval of
sales from

12/01/2009 to
12/07/2009.

This result gives you some idea of how well your salespeople are doing

because so few total sales are involved. However, in real life, a company

would have many more sales — and it wouldn’t be so easy to tell whether

sales objectives were being met. To do the real analysis, you can combine

the GROUP BY clause with one of the aggregate functions (also called set
functions) to get a quantitative picture of sales performance. For example,

you can see which salesperson is selling more of the profitable high-ticket

items by using the average (AVG) function as follows:

SELECT Salesperson, AVG(TotalSale)
 FROM SALES
 GROUP BY Salesperson;

You receive a result similar to that shown in Figure 9-2.

Figure 9-2:
Average
sales for

each sales-
person.

220 Part III: Storing and Retrieving Data

As shown in Figure 9-2, the average value of Bennett’s sales is considerably

higher than that of the other two salespeople. You compare total sales with a

similar query:

SELECT Salesperson, SUM(TotalSale)
 FROM SALES
 GROUP BY Salesperson;

This query gives the result shown in Figure 9-3.

Figure 9-3:
Total sales

for each
salesperson.

Bennett also has the highest total sales, which is consistent with having the

highest average sales.

HAVING Clauses
You can analyze the grouped data further by using the HAVING clause. The

HAVING clause is a filter that acts similar to a WHERE clause, but on groups of

rows rather than on individual rows. To illustrate the function of the HAVING

clause, suppose the sales manager considers Bennett to be in a class by

himself. His performance distorts the overall data for the other salespeople.

(Aha — a curve-wrecker.) You can exclude Bennett’s sales from the grouped

data by using a HAVING clause as follows:

SELECT Salesperson, SUM(TotalSale)
 FROM SALES
 GROUP BY Salesperson
 HAVING Salesperson <> ‘Bennett’;

221 Chapter 9: Zeroing In on the Data You Want

This query gives you the result shown in Figure 9-4. Only rows where the

salesperson is not Bennett are considered.

Figure 9-4:
Total sales

for all
salespeople

except
Bennett.

ORDER BY Clauses
Use the ORDER BY clause to display the output table of a query in either

ascending or descending alphabetical order. Whereas the GROUP BY clause

gathers rows into groups and sorts the groups into alphabetical order, ORDER
BY sorts individual rows. The ORDER BY clause must be the last clause that

you specify in a query. If the query also contains a GROUP BY clause, the

clause first arranges the output rows into groups. The ORDER BY clause then

sorts the rows within each group. If you have no GROUP BY clause, then the

statement considers the entire table as a group, and the ORDER BY clause

sorts all its rows according to the column (or columns) that the ORDER BY

clause specifies.

To illustrate this point, consider the data in the SALES table. The SALES

table contains columns for InvoiceNo, SaleDate, Salesperson, and

TotalSale. If you use the following example, you see all the data in the

SALES table — but in an arbitrary order:

SELECT * FROM SALES ;

In one implementation, this may be the order in which you inserted the rows

in the table; in another implementation, the order may be that of the most

recent updates. The order can also change unexpectedly if anyone physically

reorganizes the database. That’s one reason it’s usually a good idea to

specify the order in which you want the rows. You may, for example, want to

see the rows in order by the SaleDate like this:

222 Part III: Storing and Retrieving Data

SELECT * FROM SALES ORDER BY SaleDate ;

This example returns all the rows in the SALES table in order by SaleDate.

 For rows with the same SaleDate, the default order depends on the

implementation. You can, however, specify how to sort the rows that share

the same SaleDate. You may want to see the sales for each SaleDate in

order by InvoiceNo, as follows:

SELECT * FROM SALES ORDER BY SaleDate, InvoiceNo ;

This example first orders the sales by SaleDate; then for each SaleDate,

it orders the sales by InvoiceNo. But don’t confuse that example with the

following query:

SELECT * FROM SALES ORDER BY InvoiceNo, SaleDate ;

This query first orders the sales by INVOICE_NO. Then for each different

InvoiceNo, the query orders the sales by SaleDate. This probably won’t

yield the result you want, because it’s unlikely that multiple sale dates will

exist for a single invoice number.

The following query is another example of how SQL can return data:

SELECT * FROM SALES ORDER BY Salesperson, SaleDate ;

This example first orders by Salesperson and then by SaleDate. After you

look at the data in that order, you may want to invert it, as follows:

SELECT * FROM SALES ORDER BY SaleDate, Salesperson ;

This example orders the rows first by SaleDate and then by Salesperson.

All these ordering examples are in ascending (ASC) order, which is the

default sort order. The last SELECT shows earlier sales first — and, within a

given date, shows sales for ‘Adams’ before ‘Baker’. If you prefer descending

(DESC) order, you can specify this order for one or more of the order columns,

as follows:

SELECT * FROM SALES
ORDER BY SaleDate DESC, Salesperson ASC ;

This example specifies a descending order for sale dates, showing the more

recent sales first, and an ascending order for salespeople, putting them in

alphabetical order. That should give you a better picture of how Bennett’s

performance stacks up against that of the other salespeople.

Chapter 10

Using Relational Operators
In This Chapter
▶ Combining tables with similar structures

▶ Combining tables with different structures

▶ Deriving meaningful data from multiple tables

You probably know by now that SQL is a query language for relational

databases. In previous chapters, I present simple databases, and in

most cases, my examples deal with only one table. In this chapter, I put the

relational in “relational database.” After all, the name means “a database

that consists of multiple related tables.” Here’s where we scrutinize those

relationships.

Because the data in a relational database is distributed across multiple

tables, a query usually draws data from more than one table. SQL has

operators that combine data from multiple sources into a single result table.

These are the UNION, INTERSECTION, and EXCEPT operators, as well as a

family of JOIN operators. Each operator combines data from multiple tables

in a different way.

UNION
The UNION operator is the SQL implementation of relational algebra’s union

operator. The UNION operator enables you to draw information from two or

more tables that have the same structure. Same structure means

 ✓ The tables must all have the same number of columns.

 ✓ Corresponding columns must all have identical data types and lengths.

When these criteria are met, the tables are union-compatible: The union of

the two tables returns all the rows that appear in either table and eliminates

duplicates.

224 Part III: Storing and Retrieving Data

Suppose you create a baseball-statistics database (like the one in Chapter 9).

It contains two union-compatible tables named AMERICAN and NATIONAL.

Both tables have three columns, and corresponding columns are all the same

type. In fact, corresponding columns have identical column names (although

this condition isn’t required for union compatibility).

NATIONAL lists the players’ names and the number of complete games

pitched by National League pitchers. AMERICAN lists the same information

about pitchers in the American League. The UNION of the two tables gives

you a virtual result table containing all the rows in the first table plus all the

rows in the second table. For this example, I put just a few rows in each table

to illustrate the operation:

SELECT * FROM NATIONAL ;
FirstName LastName CompleteGames
--------- -------- -------------
Sal Maglie 11
Don Newcombe 9
Sandy Koufax 13
Don Drysdale 12

SELECT * FROM AMERICAN ;

FirstName LastName CompleteGames
--------- -------- -------------
Whitey Ford 12
Don Larson 10
Bob Turley 8
Allie Reynolds 14

SELECT * FROM NATIONAL
UNION
SELECT * FROM AMERICAN ;

FirstName LastName CompleteGames
--------- -------- -------------
Allie Reynolds 14
Bob Turley 8
Don Drysdale 12
Don Larson 10
Don Newcombe 9
Sal Maglie 11
Sandy Koufax 13
Whitey Ford 12

225 Chapter 10: Using Relational Operators

The UNION DISTINCT operator functions identically to the UNION operator

without the DISTINCT keyword. In both cases, duplicate rows are eliminated

from the result set.

 I’ve been using the asterisk (*) as shorthand for all the columns in a table.

This shortcut is fine most of the time, but it can get you into trouble when you

use relational operators in embedded or module-language SQL. If you add one

or more new columns to one table and not to another, or you add different

columns to the two tables, the two tables are no longer union-compatible —

and your program will be invalid the next time it’s recompiled. Even if the

same new columns are added to both tables so they’re still union-compatible,

your program is probably not prepared to deal with the additional data.

You should explicitly list the columns you want, rather than relying on the *

shorthand. When you’re entering ad hoc SQL queries from the console,

the asterisk probably works fine, because you can quickly display a table

structure to verify union compatibility if your query isn’t successful.

The UNION ALL operation
As I mention previously, the UNION operation usually eliminates any

duplicate rows that result from its operation, which is the desired result

most of the time. Sometimes, however, you may want to preserve duplicate

rows. On those occasions, use UNION ALL.

Referring to the example, suppose that “Bullet” Bob Turley had been traded

in midseason from the New York Yankees in the American League to the

Brooklyn Dodgers in the National League. Now suppose that during the

season, he pitched eight complete games for each team. The ordinary UNION

displayed in the example throws away one of the two lines containing Turley’s

data. Although he seemed to pitch only 8 complete games in the season, he

actually hurled a remarkable 16 complete games. The following query gives

you the true facts:

SELECT * FROM NATIONAL
UNION ALL
SELECT * FROM AMERICAN ;

 You can sometimes form a UNION of two tables even if they’re not

union-compatible. If the columns you want in your result table are present

and compatible in both tables, you can perform a UNION CORRESPONDING

operation. Only the specified columns are considered — and they are the

only columns displayed in the result table.

226 Part III: Storing and Retrieving Data

The CORRESPONDING operation
Baseball statisticians keep different statistics on pitchers than they keep

on outfielders. In both cases, first names, last names, putouts, errors, and

fielding percentages are recorded. Outfielders, of course, don’t have a won/

lost record, a saves record, or a number of other stats that pertain only to

pitching. You can still perform a UNION that takes data from the OUTFIELDER

table and from the PITCHER table to give you some overall information about

defensive skill:

SELECT *
 FROM OUTFIELDER
UNION CORRESPONDING
 (FirstName, LastName, Putouts, Errors, FieldPct)
SELECT *
 FROM PITCHER ;

The result table holds the first and last names of all the outfielders and

pitchers, along with the putouts, errors, and fielding percentage of each

player. As with the simple UNION, duplicates are eliminated. Thus, if a player

spent some time in the outfield and also pitched in one or more games, the

UNION CORRESPONDING operation loses some of his statistics. To avoid this

problem, use UNION ALL CORRESPONDING.

 Each column name in the list following the CORRESPONDING keyword must be

a name that exists in both union-joined tables. If you omit this list of names,

an implicit list of all names that appear in both tables is used. But this implicit

list of names may change when new columns are added to one or both tables.

Therefore you’re better off explicitly listing the column names than you are if

you omit them.

INTERSECT
The UNION operation produces a result table containing all rows that appear

in any of the source tables. If you want only rows that appear in all the

source tables, you can use the INTERSECT operation, which is the SQL

implementation of relational algebra’s intersect operation. I illustrate

INTERSECT by returning to the fantasy world in which Bob Turley was

traded to the Dodgers in midseason:

227 Chapter 10: Using Relational Operators

SELECT * FROM NATIONAL;
FirstName LastName CompleteGames
--------- -------- -------------
Sal Maglie 11
Don Newcombe 9
Sandy Koufax 13
Don Drysdale 12
Bob Turley 8

SELECT * FROM AMERICAN;
FIRST_NAME LAST_NAME COMPLETE_GAMES
---------- --------- --------------
Whitey Ford 12
Don Larson 10
Bob Turley 8
Allie Reynolds 14

Only rows that appear in all source tables show up in the INTERSECT opera-

tion’s result table:

SELECT *
 FROM NATIONAL
INTERSECT
SELECT *
 FROM AMERICAN;

FirstName LastName CompleteGames
--------- -------- -------------
Bob Turley 8

The result table tells you that Bob Turley was the only pitcher to throw

the same number of complete games in both leagues (a rather obscure

distinction for old Bullet Bob). Note: As was the case with UNION,

INTERSECT DISTINCT produces the same result as the INTERSECT

operator used alone. In this example, only one of the identical rows

featuring Bob Turley is returned.

 The ALL and CORRESPONDING keywords function in an INTERSECT operation

the same way they do in a UNION operation. If you use ALL, duplicates are

retained in the result table. If you use CORRESPONDING, the intersected tables

don’t need to be union-compatible, although the corresponding columns must

have matching types and lengths.

228 Part III: Storing and Retrieving Data

Here’s what you get with INTERSECT ALL:

SELECT *
 FROM NATIONAL
INTERSECT
SELECT *
 FROM AMERICAN;

FirstName LastName CompleteGames
--------- -------- -------------
Bob Turley 8
Bob Turley 8

Consider another example: A municipality keeps track of the pagers carried

by police officers, firefighters, street sweepers, and other city employees.

A database table called PAGERS contains data on all pagers in active use.

Another table named OUT, with an identical structure, contains data on all

pagers that have been taken out of service. No pager should ever exist in

both tables. With an INTERSECT operation, you can test to see whether such

an unwanted duplication has occurred:

SELECT *
 FROM PAGERS
INTERSECT CORRESPONDING (PagerID)
SELECT *
 FROM OUT ;

 If this operation gives you a result table containing any rows at all, you know

you have a problem. You should investigate any PagerID entries that appear

in the result table. The corresponding pager is either active or out of service;

it can’t be both. After you detect the problem, you can perform a DELETE

operation on one of the two tables to restore database integrity.

EXCEPT
The UNION operation acts on two source tables and returns all rows that

appear in either table. The INTERSECT operation returns all rows that

appear in both the first and the second tables. In contrast, the EXCEPT (or

EXCEPT DISTINCT) operation returns all rows that appear in the first table

but that do not also appear in the second table.

Returning to the municipal pager database example (see the “INTERSECT”

section, earlier in this chapter), say that a group of pagers that had been

declared out of service and returned to the vendor for repairs have now been

fixed and placed back into service. The PAGERS table was updated to reflect

the returned pagers, but the returned pagers were not removed from the

229 Chapter 10: Using Relational Operators

OUT table as they should have been. You can display the PagerID numbers

of the pagers in the OUT table, with the reactivated ones eliminated, using an

EXCEPT operation:

SELECT *
 FROM OUT
EXCEPT CORRESPONDING (PagerID)
SELECT *
 FROM PAGERS;

This query returns all the rows in the OUT table whose PagerID is not also

present in the PAGERS table.

Various Joins
The UNION, INTERSECT, and EXCEPT operators are valuable in multitable

databases that contain union-compatible tables. In many cases, however, you

want to draw data from multiple tables that have very little in common. Joins

are powerful relational operators that combine data from multiple tables into

a single result table. The source tables may have little (or even nothing) in

common with each other.

SQL supports a number of types of joins. The best one to choose in a given

situation depends on the result you’re trying to achieve. The following

sections give you the details.

Basic join
Any multitable query is a type of join. The source tables are joined in the

sense that the result table includes information taken from all the source

tables. The simplest join is a two-table SELECT that has no WHERE clause

qualifiers: Every row of the first table is joined to every row of the second

table. The result table is the Cartesian product of the two source tables. The

number of rows in the result table is equal to the number of rows in the first

source table multiplied by the number of rows in the second source table.

For example, imagine that you’re the personnel manager for a company and

that part of your job is to maintain employee records. Most employee data,

such as home address and telephone number, is not particularly sensitive.

But some data, such as current salary, should be available only to authorized

personnel. To maintain security of the sensitive information, keep it in a

separate table that is password-protected. Consider the following pair of

tables:

230 Part III: Storing and Retrieving Data

EMPLOYEE COMPENSATION
-------- ------------
EmpID Employ
FName Salary
LName Bonus
City
Phone

Fill the tables with some sample data:

EmpID FName LName City Phone
----- ----- ----- ---- -----
 1 Whitey Ford Orange 555-1001
 2 Don Larson Newark 555-3221
 3 Sal Maglie Nutley 555-6905
 4 Bob Turley Passaic 555-8908

Employ Salary Bonus
------ ------ -----
 1 33000 10000
 2 18000 2000
 3 24000 5000
 4 22000 7000

Create a virtual result table with the following query:

SELECT *
 FROM EMPLOYEE, COMPENSATION ;

Here’s what the query produces:

EmpID FName LName City Phone Employ Salary Bonus
----- ----- ----- ---- ----- ------ ------ -----
 1 Whitey Ford Orange 555-1001 1 33000 10000
 1 Whitey Ford Orange 555-1001 2 18000 2000
 1 Whitey Ford Orange 555-1001 3 24000 5000
 1 Whitey Ford Orange 555-1001 4 22000 7000
 2 Don Larson Newark 555-3221 1 33000 10000
 2 Don Larson Newark 555-3221 2 18000 2000
 2 Don Larson Newark 555-3221 3 24000 5000
 2 Don Larson Newark 555-3221 4 22000 7000
 3 Sal Maglie Nutley 555-6905 1 33000 10000
 3 Sal Maglie Nutley 555-6905 2 18000 2000
 3 Sal Maglie Nutley 555-6905 3 24000 5000
 3 Sal Maglie Nutley 555-6905 4 22000 7000
 4 Bob Turley Passaic 555-8908 1 33000 10000
 4 Bob Turley Passaic 555-8908 2 18000 2000
 4 Bob Turley Passaic 555-8908 3 24000 5000
 4 Bob Turley Passaic 555-8908 4 22000 7000

231 Chapter 10: Using Relational Operators

The result table, which is the Cartesian product of the EMPLOYEE and

COMPENSATION tables, contains considerable redundancy. Furthermore, it

doesn’t make much sense. It combines every row of EMPLOYEE with every

row of COMPENSATION. The only rows that convey meaningful information

are those in which the EmpID number that came from EMPLOYEE matches

the Employ number that came from COMPENSATION. In those rows, an

employee’s name and address are associated with his or her compensation.

When you’re trying to get useful information out of a multitable database,

the Cartesian product produced by a basic join is almost never what you

want, but it’s almost always the first step toward what you want. By applying

constraints to the JOIN with a WHERE clause, you can filter out the unwanted

rows. The following section explains how to filter the stuff you don’t need

to see.

Equi-join
The most common join that uses the WHERE clause filter is the equi-join.

An equi-join is a basic join with a WHERE clause that contains a condition

specifying that the value in one column in the first table must be equal to the

value of a corresponding column in the second table. Applying an equi-join

to the example tables from the previous section brings a more meaningful

result:

SELECT *
 FROM EMPLOYEE, COMPENSATION
 WHERE EMPLOYEE.EmpID = COMPENSATION.Employ ;

This query produces the following results:

EmpID FName LName City Phone Employ Salary Bonus
----- ------ ----- ---- ----- ------ ------ -----
 1 Whitey Ford Orange 555-1001 1 33000 10000
 2 Don Larson Newark 555-3221 2 18000 2000
 3 Sal Maglie Nutley 555-6905 3 24000 5000
 4 Bob Turley Passaic 555-8908 4 22000 7000

In this result table, the salaries and bonuses on the right apply to the

employees named on the left. The table still has some redundancy because

the EmpID column duplicates the Employ column. You can fix this problem

by slightly reformulating the query, like this:

SELECT EMPLOYEE.*,COMPENSATION.Salary,COMPENSATION.Bonus
 FROM EMPLOYEE, COMPENSATION
 WHERE EMPLOYEE.EmpID = COMPENSATION.Employ ;

232 Part III: Storing and Retrieving Data

This query produces the following result table:

EmpID FName LName City Phone Salary Bonus
----- ----- ----- ---- ----- ------ -----
 1 Whitey Ford Orange 555-1001 33000 10000
 2 Don Larson Newark 555-3221 18000 2000
 3 Sal Maglie Nutley 555-6905 24000 5000
 4 Bob Turley Passaic 555-8908 22000 7000

This table tells you what you want to know, but doesn’t burden you with any

extraneous data. The query is somewhat tedious to write, however. To avoid

ambiguity, you can qualify the column names with the names of the tables

they came from. Typing those table names repeatedly provides good exercise

for the fingers, but has no other merit.

You can cut down on the amount of typing by using aliases (or correlation
names). An alias is a short name that stands for a table name. If you use

aliases in recasting the preceding query, it comes out like this:

SELECT E.*, C.Salary, C.Bonus
 FROM EMPLOYEE E, COMPENSATION C
 WHERE E.EmpID = C.Employ ;

In this example, E is the alias for EMPLOYEE, and C is the alias for

COMPENSATION. The alias is local to the statement it’s in. After you declare

an alias (in the FROM clause), you must use it throughout the statement. You

can’t use both the alias and the long form of the table name in the same

statement.

 Even if you could mix the long form of table names with aliases, you wouldn’t

want to, because doing so creates major confusion. Consider the following

example:

SELECT T1.C, T2.C
 FROM T1 T2, T2 T1
 WHERE T1.C > T2.C ;

In this example, the alias for T1 is T2, and the alias for T2 is T1. Admittedly,

this isn’t a smart selection of aliases, but it isn’t forbidden by the rules. If you

mix aliases with long-form table names, you can’t tell which table is which.

The preceding example with aliases is equivalent to the following SELECT

statement with no aliases:

SELECT T2.C, T1.C
 FROM T1 , T2
 WHERE T2.C > T1.C ;

233 Chapter 10: Using Relational Operators

SQL enables you to join more than two tables. The maximum number varies

from one implementation to another. The syntax is analogous to the two-

table case; here’s what it looks like:

SELECT E.*, C.Salary, C.Bonus, Y.TotalSales
 FROM EMPLOYEE E, COMPENSATION C, YTD_SALES Y
 WHERE E.EmpID = C.Employ
 AND C.Employ = Y.EmpNo ;

This statement performs an equi-join on three tables, pulling data from

corresponding rows of each one to produce a result table that shows the

salespeople’s names, the amount of sales they are responsible for, and their

compensation. The sales manager can quickly see whether compensation is

in line with production.

 Storing a salesperson’s year-to-date sales in a separate YTD_SALES table

ensures better computer performance and data reliability than keeping that

data in the EMPLOYEE table. The data in the EMPLOYEE table is relatively

static. A person’s name, address, and telephone number don’t change very

often. In contrast, the year-to-date sales change frequently (you hope).

Because the YTD_SALES table has fewer columns than the EMPLOYEE table,

you may be able to update it more quickly. If, in the course of updating

sales totals, you don’t touch the EMPLOYEE table, you decrease the risk of

accidentally modifying employee information that should stay the same.

Cross join
CROSS JOIN is the keyword for the basic join without a WHERE clause.

Therefore

SELECT *
FROM EMPLOYEE, COMPENSATION ;

can also be written as

SELECT *
FROM EMPLOYEE CROSS JOIN COMPENSATION ;

The result is the Cartesian product (also called the cross product) of the two

source tables. CROSS JOIN rarely gives you the final result you want, but it

can be useful as the first step in a chain of data-manipulation operations that

ultimately produce the desired result.

234 Part III: Storing and Retrieving Data

Natural join
The natural join is a special case of an equi-join. In the WHERE clause of an

equi-join, a column from one source table is compared with a column of a

second source table for equality. The two columns must be the same type

and length and must have the same name. In fact, in a natural join, all

columns in one table that have the same names, types, and lengths as

corresponding columns in the second table are compared for equality.

Imagine that the COMPENSATION table from the preceding example has

columns EmpID, Salary, and Bonus rather than Employ, Salary, and

Bonus. In that case, you can perform a natural join of the COMPENSATION

table with the EMPLOYEE table. The traditional JOIN syntax would look like

this:

SELECT E.*, C.Salary, C.Bonus
 FROM EMPLOYEE E, COMPENSATION C
 WHERE E.EmpID = C.EmpID ;

This query is a special case of a natural join. The SELECT statement will

return joined rows where E.EmpID = C.EmpID. Consider the following:

SELECT E.*, C.Salary, C.Bonus
 FROM EMPLOYEE E NATURAL JOIN COMPENSATION C ;

This query will join rows where E.EmpID = C.EmpID, where E.Salary =

C.Salary, and where E.Bonus = C.Bonus. The result table will contain only

rows where all corresponding columns match. In this example, the results of

both queries will be the same, because the EMPLOYEE table does not contain

either a Salary or a Bonus column.

Condition join
A condition join is like an equi-join, except the condition being tested doesn’t

have to be an equality (although it can be). It can be any well-formed predicate.

If the condition is satisfied, then the corresponding row becomes part of the

result table. The syntax is a little different from what you have seen so far:

The condition is contained in an ON clause rather than in a WHERE clause.

Say that a baseball statistician wants to know which National League pitchers

have pitched the same number of complete games as one or more American

League pitchers. This question is a job for an equi-join, which can also be

expressed with condition-join syntax:

235 Chapter 10: Using Relational Operators

SELECT *
 FROM NATIONAL JOIN AMERICAN
 ON NATIONAL.CompleteGames = AMERICAN.CompleteGames ;

Column-name join
The column-name join is like a natural join, but it’s more flexible. In a natural

join, all the source table columns that have the same name are compared

with each other for equality. With the column-name join, you select which

same-name columns to compare. You can choose them all if you want,

making the column-name join (effectively) a natural join. Or you may choose

fewer than all same-name columns. In this way, you have a great degree of

control over which cross-product rows qualify to be placed into your result

table.

Suppose you’re a chess-set manufacturer and have one inventory table that

keeps track of your stock of white pieces and another that keeps track of

black pieces. The tables contain data as follows:

WHITE BLACK
----- -----
Piece Quant Wood Piece Quant Wood
----- ----- ---- ----- ----- ----
King 502 Oak King 502 Ebony
Queen 398 Oak Queen 397 Ebony
Rook 1020 Oak Rook 1020 Ebony
Bishop 985 Oak Bishop 985 Ebony
Knight 950 Oak Knight 950 Ebony
Pawn 431 Oak Pawn 453 Ebony

For each piece type, the number of white pieces should match the number

of black pieces. If they don’t match, some chessmen are being lost or stolen,

and you need to tighten security measures.

A natural join compares all columns with the same name for equality. In this

case, a result table with no rows is produced because no rows in the WOOD

column in the WHITE table match any rows in the WOOD column in the BLACK

table. This result table doesn’t help you determine whether any merchandise

is missing. Instead, do a column-name join that excludes the WOOD column

from consideration. It can take the following form:

SELECT *
 FROM WHITE JOIN BLACK
 USING (Piece, Quant) ;

236 Part III: Storing and Retrieving Data

The result table shows only the rows for which the number of white pieces in

stock equals the number of black pieces:

Piece Quant Wood Piece Quant Wood
----- ----- ---- ----- ----- ----
King 502 Oak King 502 Ebony
Rook 1020 Oak Rook 1020 Ebony
Bishop 985 Oak Bishop 985 Ebony
Knight 950 Oak Knight 950 Ebony

The shrewd person can deduce that Queen and Pawn are missing from the

list, indicating a shortage somewhere for those piece types.

Inner join
By now, you’re probably getting the idea that joins are pretty esoteric and

that it takes an uncommon level of spiritual discernment to deal with them

adequately. You may have even heard of the mysterious inner join and

speculated that it probably represents the core or essence of relational

operations. Well, ha! The joke’s on you: There’s nothing mysterious about

inner joins. In fact, all the joins covered so far in this chapter are inner joins.

I could have formulated the column-name join in the last example as an inner

join by using the following syntax:

SELECT *
 FROM WHITE INNER JOIN BLACK
 USING (Piece, Quant) ;

The result is the same.

The inner join is so named to distinguish it from the outer join. An inner join

discards all rows from the result table that don’t have corresponding rows

in both source tables. An outer join preserves unmatched rows. That’s the

difference. Nothing metaphysical about it.

Outer join
When you’re joining two tables, the first one (call it the one on the left) may

have rows that don’t have matching counterparts in the second table (the

one on the right). Conversely, the table on the right may have rows that don’t

have matching counterparts in the table on the left. If you perform an inner

join on those tables, all the unmatched rows are excluded from the output.

Outer joins, however, don’t exclude the unmatched rows. Outer joins come in

three types: the left outer join, the right outer join, and the full outer join.

237 Chapter 10: Using Relational Operators

Left outer join
In a query that includes a join, the left table is the one that precedes the

keyword JOIN, and the right table is the one that follows it. The left outer join

preserves unmatched rows from the left table but discards unmatched rows

from the right table.

To understand outer joins, consider a corporate database that maintains

records of the company’s employees, departments, and locations. Tables

10-1, 10-2, and 10-3 contain the database’s example data.

Table 10-1 LOCATION
LOCATION_ID CITY

1 Boston

3 Tampa

5 Chicago

Table 10-2 DEPT
DEPT_ID LOCATION_ID NAME

21 1 Sales

24 1 Admin

27 5 Repair

29 5 Stock

Table 10-3 EMPLOYEE
EMP_ID DEPT_ID NAME

61 24 Kirk

63 27 McCoy

Now suppose you want to see all the data for all employees, including

department and location. You get this with an equi-join:

238 Part III: Storing and Retrieving Data

SELECT *
 FROM LOCATION L, DEPT D, EMPLOYEE E
 WHERE L.LocationID = D.LocationID
 AND D.DeptID = E.DeptID ;

This statement produces the following result:

1 Boston 24 1 Admin 61 24 Kirk
5 Chicago 27 5 Repair 63 27 McCoy

This result table gives all the data for all the employees, including location

and department. The equi-join works because every employee has a location

and a department.

Next, suppose you want the data on the locations, with the related department

and employee data. This is a different problem because a location without

any associated departments may exist. To get what you want, you have to

use an outer join, as in the following example:

SELECT *
 FROM LOCATION L LEFT OUTER JOIN DEPT D
 ON (L.LocationID = D.LocationID)
 LEFT OUTER JOIN EMPLOYEE E
 ON (D.DeptID = E.DeptID);

This join pulls data from three tables. First, the LOCATION table is joined to

the DEPT table. The resulting table is then joined to the EMPLOYEE table.

Rows from the table on the left of the LEFT OUTER JOIN operator that have

no corresponding row in the table on the right are included in the result.

Thus, in the first join, all locations are included, even if no department

associated with them exists. In the second join, all departments are included,

even if no employee associated with them exists. The result is as follows:

1 Boston 24 1 Admin 61 24 Kirk
5 Chicago 27 5 Repair 63 27 McCoy
3 Tampa NULL NULL NULL NULL NULL NULL
5 Chicago 29 5 Stock NULL NULL NULL
1 Boston 21 1 Sales NULL NULL NULL

The first two rows are the same as the two result rows in the previous

example. The third row (3 Tampa) has nulls in the department and employee

columns because no departments are defined for Tampa and no employees

are stationed there. The fourth and fifth rows (5 Chicago and 1 Boston)

contain data about the Stock and the Sales departments, but the Employee

columns for these rows contain nulls because these two departments have no

employees. This outer join tells you everything that the equi-join told you —

plus the following:

239 Chapter 10: Using Relational Operators

 ✓ All the company’s locations, whether they have any departments or not

 ✓ All the company’s departments, whether they have any employees or

not

The rows returned in the preceding example aren’t guaranteed to be in the

order you want. The order may vary from one implementation to the next. To

make sure that the rows returned are in the order you want, add an ORDER
BY clause to your SELECT statement, like this:

SELECT *
 FROM LOCATION L LEFT OUTER JOIN DEPT D
 ON (L.LocationID = D.LocationID)
 LEFT OUTER JOIN EMPLOYEE E
 ON (D.DeptID = E.DeptID)
 ORDER BY L.LocationID, D.DeptID, E.EmpID;

 You can abbreviate the left outer join language as LEFT JOIN because there’s

no such thing as a left inner join.

Right outer join
I bet you figured out how the right outer join behaves. Right! The right outer
join preserves unmatched rows from the right table but discards unmatched

rows from the left table. You can use it on the same tables and get the same

result by reversing the order in which you present tables to the join:

SELECT *
 FROM EMPLOYEE E RIGHT OUTER JOIN DEPT D
 ON (D.DeptID = E.DeptID)
 RIGHT OUTER JOIN LOCATION L
 ON (L.LocationID = D.LocationID) ;

In this formulation, the first join produces a table that contains all departments,

whether they have an associated employee or not. The second join produces

a table that contains all locations, whether they have an associated department

or not.

 You can abbreviate the right outer join language as RIGHT JOIN because

there’s no such thing as a right inner join.

Full outer join
The full outer join combines the functions of the left outer join and the right

outer join. It retains the unmatched rows from both the left and the right

tables. Consider the most general case of the company database used in the

preceding examples. It could have

240 Part III: Storing and Retrieving Data

 ✓ Locations with no departments

 ✓ Departments with no locations

 ✓ Departments with no employees

 ✓ Employees with no departments

To show all locations, departments, and employees, regardless of whether

they have corresponding rows in the other tables, use a full outer join in the

following form:

SELECT *
 FROM LOCATION L FULL OUTER JOIN DEPT D
 ON (L.LocationID = D.LocationID)
 FULL OUTER JOIN EMPLOYEE E
 ON (D.DeptID = E.DeptID) ;

 You can abbreviate the full-outer-join language as FULL JOIN because (this

may sound hauntingly familiar) there’s no such thing as a full inner join.

Union join
Unlike the other kinds of join, the union join makes no attempt to match a

row from the left source table with any rows in the right source table. It

creates a new virtual table that contains the union of all the columns in both

source tables. In the virtual result table, the columns that came from the left

source table contain all the rows that were in the left source table. For those

rows, the columns that came from the right source table all have the null

value. Similarly, the columns that came from the right source table contain

all the rows that were in the right source table. For those rows, the columns

that came from the left source table all have the null value. Thus, the table

resulting from a union join contains all the columns of both source tables —

and the number of rows it contains is the sum of the number of rows in the

two source tables.

The result of a union join by itself is not immediately useful in most cases;

it produces a result table with many nulls in it. But you can get useful

information from a union join when you use it in conjunction with the

COALESCE expression discussed in Chapter 8. Look at an example.

Suppose that you work for a company that designs and builds experimental

rockets. You have several projects in the works. You also have several design

engineers who have skills in multiple areas. As a manager, you want to know

which employees, having which skills, have worked on which projects.

Currently, this data is scattered among the EMPLOYEE table, the PROJECTS

table, and the SKILLS table.

241 Chapter 10: Using Relational Operators

The EMPLOYEE table carries data about employees, and EMPLOYEE.EmpID

is its primary key. The PROJECTS table has a row for each project that an

employee has worked on. PROJECTS.EmpID is a foreign key that references the

EMPLOYEE table. The SKILLS table shows the expertise of each employee.

SKILLS.EmpID is a foreign key that references the EMPLOYEE table.

The EMPLOYEE table has one row for each employee; the PROJECTS table

and the SKILLS table have zero or more rows.

Tables 10-4, 10-5, and 10-6 show example data in the three tables.

Table 10-4 EMPLOYEE Table
EmpID Name

1 Ferguson

2 Frost

3 Toyon

Table 10-5 PROJECTS Table
ProjectName EmpID

X-63 Structure 1

X-64 Structure 1

X-63 Guidance 2

X-64 Guidance 2

X-63 Telemetry 3

X-64 Telemetry 3

Table 10-6 SKILLS Table
Skill EmpID

Mechanical Design 1

Aerodynamic Loading 1

Analog Design 2

Gyroscope Design 2

Digital Design 3

R/F Design 3

242 Part III: Storing and Retrieving Data

From the tables, you can see that Ferguson has worked on X-63 and X-64

structure design and has expertise in mechanical design and aerodynamic

loading.

Now suppose that, as a manager, you want to see all the information about

all the employees. You decide to apply an equi-join to the EMPLOYEE,

PROJECTS, and SKILLS tables:

SELECT *
 FROM EMPLOYEE E, PROJECTS P, SKILLS S
 WHERE E.EmpID = P.EmpID
 AND E.EmpID = S.EmpID ;

You can express this same operation as an inner join by using the following

syntax:

SELECT *
 FROM EMPLOYEE E INNER JOIN PROJECTS P
 ON (E.EmpID = P.EmpID)
 INNER JOIN SKILLS S
 ON (E.EmpID = S.EmpID) ;

Both formulations give the same result, as shown in Table 10-7.

Table 10-7 Result of Inner Join
E.EmpID Name P.EmpID ProjectName S.EmpID Skill

1 Ferguson 1 X-63 Structure 1 Mechanical
Design

1 Ferguson 1 X-63 Structure 1 Aerodynamic
Loading

1 Ferguson 1 X-64 Structure 1 Mechanical
Design

1 Ferguson 1 X-64 Structure 1 Aerodynamic
Loading

2 Frost 2 X-63 Guidance 2 Analog Design

2 Frost 2 X-63 Guidance 2 Gyroscope
Design

2 Frost 2 X-64 Guidance 2 Analog Design

2 Frost 2 X-64 Guidance 2 Gyroscope
Design

3 Toyon 3 X-63 Telemetry 3 Digital Design

3 Toyon 3 X-63 Telemetry 3 R/F Design

3 Toyon 3 X-64 Telemetry 3 Digital Design

3 Toyon 3 X-64 Telemetry 3 R/F Design

243 Chapter 10: Using Relational Operators

This data arrangement is not particularly enlightening. The employee ID

numbers appear three times, and the projects and skills are duplicated for

each employee. Bottom line: The inner joins are not well suited to answering

this type of question. You can put the union join to work here, along with

some strategically chosen SELECT statements, to produce a more suitable

result. You begin with the basic union join:

SELECT *
 FROM EMPLOYEE E UNION JOIN PROJECTS P
 UNION JOIN SKILLS S ;

 Notice that the union join has no ON clause. It doesn’t filter the data, so an ON

clause isn’t needed. This statement produces the result shown in Table 10-8.

Table 10-8 Result of Union Join
E.EmpID Name P.EmpID ProjectName S.EmpID Skill

1 Ferguson NULL NULL NULL NULL

NULL NULL 1 X-63 Structure NULL NULL

NULL NULL 1 X-64 Structure NULL NULL

NULL NULL NULL NULL 1 Mechanical
Design

NULL NULL NULL NULL 1 Aerodynamic
Loading

2 Frost NULL NULL NULL NULL

NULL NULL 2 X-63 Guidance NULL NULL

NULL NULL 2 X-64 Guidance NULL NULL

NULL NULL NULL NULL 2 Analog
Design

NULL NULL NULL NULL 2 Gyroscope
Design

3 Toyon NULL NULL NULL NULL

NULL NULL 3 X-63 Telemetry NULL NULL

NULL NULL 3 X-64 Telemetry NULL NULL

NULL NULL NULL NULL 3 Digital Design

NULL NULL NULL NULL 3 R/F Design

Each table has been extended to the right or left with nulls, and those null-

extended rows have been union-joined. The order of the rows is arbitrary and

depends on the implementation. Now you can massage the data to put it in a

more useful form.

244 Part III: Storing and Retrieving Data

Notice that the table has three ID columns, two of which are null in any

row. You can improve the display by coalescing the ID columns. As I note in

Chapter 8, the COALESCE expression takes on the value of the first non-null

value in a list of values. In the present case, it takes on the value of the only

non-null value in a column list:

SELECT COALESCE (E.EmpID, P.EmpID, S.EmpID) AS ID,
 E.Name, P.ProjectName, S.Skill
 FROM EMPLOYEE E UNION JOIN PROJECTS P
 UNION JOIN SKILLS S
 ORDER BY ID ;

The FROM clause is the same as in the previous example, but now the three

EMP_ID columns are coalesced into a single column named ID. You’re also

ordering the result by ID. Table 10-9 shows the result.

Table 10-9 Result of Union Join with COALESCE Expression
ID Name ProjectName Skill

1 Ferguson X-63 Structure NULL

1 Ferguson X-64 Structure NULL

1 Ferguson NULL Mechanical Design

1 Ferguson NULL Aerodynamic Loading

2 Frost X-63 Guidance NULL

2 Frost X-64 Guidance NULL

2 Frost NULL Analog Design

2 Frost NULL Gyroscope Design

3 Toyon X-63 Telemetry NULL

3 Toyon X-64 Telemetry NULL

3 Toyon NULL Digital Design

3 Toyon NULL R/F Design

Each row in this result has data about a project or a skill, but not both. When

you read the result, you first have to determine what type of information is in

each row (project or skill). If the ProjectName column has a non-null value,

the row names a project on which the employee has worked. If the Skill

column is not null, the row names one of the employee’s skills.

 You can make the result a little clearer by adding another COALESCE to the

SELECT statement, as follows:

245 Chapter 10: Using Relational Operators

SELECT COALESCE (E.EmpID, P.EmpID, S.EmpID) AS ID,
 E.Name, COALESCE (P.Type, S.Type) AS Type,
 P.ProjectName, S.Skill
 FROM EMPLOYEE E
 UNION JOIN (SELECT “Project” AS Type, P.*
 FROM PROJECTS) P
 UNION JOIN (SELECT “Skill” AS Type, S.*
 FROM SKILLS) S
 ORDER BY ID, Type ;

In this union join, the PROJECTS table in the previous example is replaced

with a nested SELECT that appends a column named P.Type with a constant

value “Project” to the columns coming from the PROJECTS table. Similarly,

the SKILLS table is replaced with a nested SELECT that appends a column

named S.Type with a constant value “Skill” to the columns coming from

the SKILLS table. In each row, P.Type is either null or “Project”, and

S.Type is either null or “Skill”.

The outer SELECT list specifies a COALESCE of those two Type columns into

a single column named Type. You then specify Type in the ORDER BY clause,

which sorts the rows that all have the same ID in an order that puts all

projects first, followed by all skills. The result is shown in Table 10-10.

Table 10-10 Refined Result of Union Join with
 COALESCE Expressions
ID Name Type ProjectName Skill

1 Ferguson Project X-63 Structure NULL

1 Ferguson Project X-64 Structure NULL

1 Ferguson Skill NULL Mechanical Design

1 Ferguson Skill NULL Aerodynamic Loading

2 Frost Project X-63 Guidance NULL

2 Frost Project X-64 Guidance NULL

2 Frost Skill NULL Analog Design

2 Frost Skill NULL Gyroscope Design

3 Toyon Project X-63 Telemetry NULL

3 Toyon Project X-64 Telemetry NULL

3 Toyon Skill NULL Digital Design

3 Toyon Skill NULL R/F Design

246 Part III: Storing and Retrieving Data

The result table now presents a very readable account of the project

experience and skill sets of all employees in the EMPLOYEE table.

Considering the number of JOIN operations available, relating data from

different tables shouldn’t be a problem, regardless of the tables’ structure.

You can trust that if the raw data exists in your database, SQL has the means

to get it out and display it in a meaningful form.

ON versus WHERE
The function of the ON and WHERE clauses in the various types of joins is

potentially confusing. These facts may help you keep things straight:

 ✓ The ON clause is part of the inner, left, right, and full joins. The cross join

and union join don’t have an ON clause because neither of them does

any filtering of the data.

 ✓ The ON clause in an inner join is logically equivalent to a WHERE clause;

the same condition could be specified either in an ON clause or a WHERE

clause.

 ✓ The ON clauses in outer joins (left, right, and full joins) are different from

WHERE clauses. The WHERE clause simply filters the rows returned by the

FROM clause. Rows rejected by the filter are not included in the result.

The ON clause in an outer join first filters the rows of a cross product

and then includes the rejected rows, extended with nulls.

Chapter 11

Delving Deep with Nested Queries
In This Chapter
▶ Pulling data from multiple tables with a single SQL statement

▶ Comparing a value from one table with a set of values from another table

▶ Using the SELECT statement to compare a value from one table with a single value from

another table

▶ Comparing a value from one table with all the corresponding values in another table

▶ Making queries that correlate rows in one table with corresponding rows in another

table

▶ Determining which rows to update, delete, or insert by using a subquery

One of the best ways to protect your data’s integrity is to avoid modifica-

tion anomalies (see Chapter 5 for the gory details of those) by normal-

izing your database. Normalization involves breaking up a single table into

multiple tables, each of which has a single theme. You don’t want product

information in the same table with customer information, for example, even if

the customers have bought products.

If you normalize a database properly, the data is scattered across multiple

tables. Most queries that you want to make need to pull data from two or

more tables. One way to do this is to use a join operator or one of the other

relational operators (UNION, INTERSECT, or EXCEPT). The relational opera-

tors take information from multiple tables and combine it all into a single

table. Different operators combine the data in different ways.

 Another way to pull data from two or more tables is to use a nested query.

In SQL, a nested query is one in which an outer enclosing statement contains

within it a subquery. That subquery may serve as an enclosing statement for a

lower-level subquery that is nested within it. There are no theoretical limits to

the number of nesting levels a nested query may have, but you do face some

practical limits that depend on your SQL implementation.

Subqueries are invariably SELECT statements, but the outermost enclosing

statement may also be an INSERT, UPDATE, or DELETE statement.

248 Part III: Storing and Retrieving Data

 A subquery can operate on a table other than the table that its enclosing state-

ment operates on, so nested queries give you another way to extract informa-

tion from multiple tables.

For example, suppose that you want to query your corporate database to find

all department managers who are more than 50 years old. With the joins I dis-

cuss in Chapter 10, you can use a query like this:

SELECT D.Deptno, D.Name, E.Name, E.Age
 FROM DEPT D, EMPLOYEE E
 WHERE D.ManagerID = E.ID AND E.Age > 50 ;

D is the alias for the DEPT table, and E is the alias for the EMPLOYEE table.

The EMPLOYEE table has an ID column that is the primary key, and the

DEPT table has a ManagerID column that is the ID value of the employee

who is the department’s manager. A simple join (the list of tables in the FROM

clause) pairs the related tables, and a WHERE clause filters out all rows except

those that meet the criteria. Note that the SELECT statement’s parameter list

includes the Deptno and Name columns from the DEPT table and the Name

and Age columns from the EMPLOYEE table.

Next, suppose that you’re interested in the same set of rows but you want

only the columns from the DEPT table. In other words, you’re interested in

the departments whose managers are 50 or older, but you don’t care who

those managers are or exactly how old they are. You could then write the

query with a subquery rather than a join:

SELECT D.Deptno, D.Name
 FROM DEPT D
 WHERE EXISTS (SELECT * FROM EMPLOYEE E
 WHERE E.ID = D.ManagerID AND E.Age > 50) ;

This query has two new elements: the EXISTS keyword and the SELECT * in

the WHERE clause of the inner SELECT. The inner SELECT is a subquery (or

subselect), and the EXISTS keyword is one of several tools for use with a sub-

query that is described in this chapter.

What Subqueries Do
Subqueries are located within the WHERE clause of their enclosing statement.

Their function is to set the search conditions for the WHERE clause. Each kind

of subquery produces a different result. Some subqueries produce a list of

values that is then used as input by the enclosing statement. Other subqueries

produce a single value that the enclosing statement then evaluates with a com-

parison operator. A third kind of subquery returns a value of True or False.

249 Chapter 11: Delving Deep with Nested Queries

Nested queries that return sets of rows
To illustrate how a nested query returns a set of rows, imagine that you

work for a systems integrator of computer equipment. Your company, Zetec

Corporation, assembles systems from components that you buy, and then

sells them to companies and government agencies. You keep track of your

business with a relational database. The database consists of many tables,

but right now you’re concerned with only three of them: the PRODUCT

table, the COMP_USED table, and the COMPONENT table. The PRODUCT

table (shown in Table 11-1) contains a list of all your standard products. The

COMPONENT table (shown in Table 11-2) lists components that go into your

products, and the COMP_USED table (shown in Table 11-3) tracks which com-

ponents go into each product.

Table 11-1 PRODUCT Table
Column Type Constraints

Model CHAR (6) PRIMARY KEY

ProdName CHAR (35)

ProdDesc CHAR (31)

ListPrice NUMERIC (9,2)

Table 11-2 COMPONENT Table
Column Type Constraints

CompID CHAR (6) PRIMARY KEY

CompType CHAR (10)

CompDesc CHAR (31)

Table 11-3 COMP_USED Table
Column Type Constraints

Model CHAR (6) FOREIGN KEY
(for PRODUCT)

CompID CHAR (6) FOREIGN KEY
(for COMPONENT)

250 Part III: Storing and Retrieving Data

A component may be used in multiple products, and a product can contain

multiple components (a many-to-many relationship). This situation can cause

integrity problems. To circumvent the problems, create the linking table

COMP_USED to relate COMPONENT to PRODUCT. A component may appear

in many rows in the COMP_USED table, but each of those rows will reference

only one component (a one-to-many relationship). Similarly, a product may

appear in many rows in COMP_USED, but each row references only one prod-

uct (another one-to-many relationship). Adding the linking table transforms

a troublesome many-to-many relationship into two relatively simple one-to-

many relationships. This process of reducing the complexity of relationships

is one example of normalization.

Subqueries introduced by the keyword IN
One form of a nested query compares a single value with the set of values

returned by a SELECT statement. It uses the IN predicate with the following

syntax:

SELECT column_list
 FROM table
 WHERE expression IN (subquery) ;

The expression in the WHERE clause evaluates to a value. If that value is IN

the list returned by the subquery, then the WHERE clause returns a True

value. The specified columns from the table row being processed are added

to the result table. The subquery may reference the same table referenced by

the outer query, or it may reference a different table.

In the following example, I use Zetec’s database to demonstrate this type of

query. Assume that there’s a shortage of computer monitors in the computer

industry, so that when you run out of monitors, you can no longer deliver

products that include them. You want to know which products are affected.

Glancing gratefully at your own monitor, enter the following query:

SELECT Model
 FROM COMP_USED
 WHERE CompID IN
 (SELECT CompID
 FROM COMPONENT
 WHERE CompType = ‘Monitor’) ;

SQL processes the innermost query first, so it processes the COMPONENT

table, returning the value of CompID for every row where CompType is

‘Monitor’. The result is a list of the ID numbers of all monitors. The outer

query then compares the value of CompID in every row in the COMP_USED

table against the list. If the comparison is successful, the value of the Model

column for that row is added to the outer SELECT’s result table. The result

251 Chapter 11: Delving Deep with Nested Queries

is a list of all product models that include a monitor. The following example

shows what happens when you run the query:

Model

CX3000
CX3010
CX3020
MB3030
MX3020
MX3030

You now know which products will soon be out of stock. It’s time to go to the

sales force and tell them to slow down on promoting these products.

When you use this form of nested query, the subquery must specify a single

column, and that column’s data type must match the data type of the argu-

ment preceding the IN keyword.

 I’m sure you remember the KISS principle. Keeping things simple is important

when you’re dealing with software of any kind, but it is especially impor-

tant when dealing with database software. Statements that include nested

SELECTs can be difficult to get right. One way to get them working the way

they should is to run the inner SELECT all by itself first and then verify that

the result you get is the result you expect. When you’re sure the inner SELECT

is functioning properly, you can enclose it in the outer part of the statement

and have a better chance that the whole thing will work as advertised.

Subqueries introduced by the keyword NOT IN
Just as you can introduce a subquery with the IN keyword, you can do the

opposite and introduce it with the NOT IN keywords. In fact, now is a great

time for Zetec management to make such a query. By using the query in the

preceding section, Zetec management found out what products not to sell.

That is valuable information, but it doesn’t pay the rent. What Zetec manage-

ment really wants to know is what products to sell. Management wants to

emphasize the sale of products that don’t contain monitors. A nested query

featuring a subquery introduced by the NOT IN keywords provides the

requested information:

SELECT Model
 FROM COMP_USED
 WHERE CompID NOT IN
 (SELECT CompID
 FROM COMPONENT
 WHERE CompType = ‘Monitor’)) ;

252 Part III: Storing and Retrieving Data

This query produces the following result:

Model

PX3040
PB3050
PX3040
PB3050

 Worth noting is the fact that the result set contains duplicates. The duplica-

tion occurs because a product containing several components that are not

monitors has a row in the COMP_USED table for each component. The query

creates an entry in the result table for each of those rows.

In the example, the number of rows does not create a problem because the

result table is short. In the real world, however, such a result table may have

hundreds or thousands of rows. To avoid confusion, it’s best to eliminate

the duplicates. You can do so easily by adding the DISTINCT keyword to the

query. Only rows that are distinct (different) from all previously retrieved

rows are added to the result table:

SELECT DISTINCT Model
 FROM COMP_USED
 WHERE CompID NOT IN
 (SELECT CompID
 FROM COMPONENT
 WHERE CompType = ‘Monitor’)) ;

As expected, the result is as follows:

Model

PX3040
PB3050

Nested queries that return a single value
Introducing a subquery with one of the six comparison operators (=, <>,

<, <=, >, >=) is often useful. In such a case, the expression preceding the

operator evaluates to a single value, and the subquery following the operator

must also evaluate to a single value. An exception is the case of the quantified
comparison operator, which is a comparison operator followed by a quantifier

(ANY, SOME, or ALL).

To illustrate a case in which a subquery returns a single value, look at

another piece of Zetec Corporation’s database. It contains a CUSTOMER table

253 Chapter 11: Delving Deep with Nested Queries

that holds information about the companies that buy Zetec products. It also

contains a CONTACT table that holds personal data about individuals at each

of Zetec’s customer organizations. The tables are structured as shown in

Tables 11-4 and 11-5.

Table 11-4 CUSTOMER Table
Column Type Constraints

CustID INTEGER PRIMARY KEY

Company CHAR (40)

CustAddress CHAR (30)

CustCity CHAR (20)

CustState CHAR (2)

CustZip CHAR (10)

CustPhone CHAR (12)

ModLevel INTEGER

Table 11-5 CONTACT Table
Column Type Constraints

CustID INTEGER FOREIGN KEY

ContFName CHAR (10)

ContLName CHAR (16)

ContPhone CHAR (12)

ContInfo CHAR (50)

Say that you want to look at the contact information for Olympic Sales, but

you don’t remember that company’s CustID. Use a nested query like this

one to recover the information you want:

SELECT *
 FROM CONTACT
 WHERE CustID =
 (SELECT CustID
 FROM CUSTOMER
 WHERE Company = ‘Olympic Sales’) ;

254 Part III: Storing and Retrieving Data

The result looks something like this:

CustID ContFName ContLName ContPhone ContInfo
------ --------- --------- --------- --------
 118 Jerry Attwater 505-876-3456 Will play
 major role in
 coordinating
 the
 wireless
 Web.

You can now call Jerry at Olympic and tell him about this month’s special

sale on smartphones.

When you use a subquery in an “=” comparison, the subquery’s SELECT list

must specify a single column (CustID in the example). When the subquery

is executed, it must return a single row in order to have a single value for the

comparison.

In this example, I assume that the CUSTOMER table has only one row with

a Company value of ‘Olympic Sales’. The CREATE TABLE statement for

CUSTOMER specifies a UNIQUE constraint for Company, and this statement

guarantees that the subquery in the preceding example returns a single value

(or no value). Subqueries like the one in this example, however, are com-

monly used on columns that are not specified to be UNIQUE. In such cases,

you must rely on prior knowledge of the database contents for believing that

the column has no duplicates.

If more than one customer has a value of ‘Olympic Sales’ in the Company

column (perhaps in different states), the subquery raises an error.

If no customer with such a company name exists, the subquery is treated as if it

was null, and the comparison becomes unknown. In this case, the WHERE clause

returns no row (because it returns only rows with the condition True and filters

rows with the condition False or unknown). This would probably happen, for

example, if someone misspelled the Company as ‘Olumpic Sales’.

Although the equal operator (=) is the most common, you can use any of

the other five comparison operators in a similar structure. For every row

in the table specified in the enclosing statement’s FROM clause, the single

value returned by the subquery is compared to the expression in the enclos-

ing statement’s WHERE clause. If the comparison gives a True value, a row is

added to the result table.

You can guarantee that a subquery will return a single value if you include

an aggregate function in it. Aggregate functions always return a single value.

255 Chapter 11: Delving Deep with Nested Queries

(Aggregate functions are described in Chapter 3.) Of course, this way of

returning a single value is helpful only if you want the result of an aggregate

function.

Suppose you are a Zetec salesperson and you need to earn a big commission

check to pay for some unexpected bills. You decide to concentrate on selling

Zetec’s most expensive product. You can find out what that product is with a

nested query:

SELECT Model, ProdName, ListPrice
 FROM PRODUCT
 WHERE ListPrice =
 (SELECT MAX(ListPrice)
 FROM PRODUCT) ;

In the preceding nested query, both the subquery and the enclosing state-

ment operate on the same table. The subquery returns a single value: the

maximum list price in the PRODUCT table. The outer query retrieves all rows

from the PRODUCT table that have that list price.

The next example shows a comparison subquery that uses a comparison

operator other than =:

SELECT Model, ProdName, ListPrice
 FROM PRODUCT
 WHERE ListPrice <
 (SELECT AVG(ListPrice)
 FROM PRODUCT) ;

The subquery returns a single value: the average list price in the PRODUCT

table. The outer query retrieves all rows from the PRODUCT table that have a

lower list price than the average list price.

 In the original SQL standard, a comparison could have only one subquery, and

it had to be on the right side of the comparison. SQL:1999 allowed either or

both operands of the comparison to be subqueries, and later versions of SQL

retain that expansion of capability.

The ALL, SOME, and ANY quantifiers
Another way to make sure that a subquery returns a single value is to intro-

duce it with a quantified comparison operator. The universal quantifier ALL,

and the existential quantifiers SOME and ANY, when combined with a compari-

son operator, process the list returned by a subquery, reducing it to a single

value.

256 Part III: Storing and Retrieving Data

You’ll see how these quantifiers affect a comparison by looking at the base-

ball pitchers’ complete game database from Chapter 10, which is listed next.

The contents of the two tables are given by the following two queries:

SELECT * FROM NATIONAL

FirstName LastName CompleteGames
--------- -------- -------------
Sal Maglie 11
Don Newcombe 9
Sandy Koufax 13
Don Drysdale 12
Bob Turley 8

SELECT * FROM AMERICAN

FirstName LastName CompleteGames
--------- -------- -------------
Whitey Ford 12
Don Larson 10
Bob Turley 8
Allie Reynolds 14

The presumption is that the pitchers with the most complete games should

be in the American League because of the presence of designated hitters

in that league. One way to verify this presumption is to build a query that

returns all American League pitchers who have thrown more complete

games than all the National League pitchers. The query can be formulated

as follows:

SELECT *
 FROM AMERICAN
 WHERE CompleteGames > ALL
 (SELECT CompleteGames FROM NATIONAL) ;

This is the result:

FirstName LastName CompleteGames
---------- --------- --------------
Allie Reynolds 14

The subquery (SELECT CompleteGames FROM NATIONAL) returns the

values in the CompleteGames column for all National League pitchers. The

> ALL quantifier says to return only those values of CompleteGames in the

AMERICAN table that are greater than each of the values returned by the sub-

query. This condition translates into “greater than the highest value returned

257 Chapter 11: Delving Deep with Nested Queries

by the subquery.” In this case, the highest value returned by the subquery is

13 (Sandy Koufax). The only row in the AMERICAN table higher than that is

Allie Reynolds’s record, with 14 complete games.

What if your initial presumption was wrong? What if the major-league leader

in complete games was a National League pitcher, in spite of the fact that the

National League has no designated hitter? If that was the case, the query

SELECT *
 FROM AMERICAN
 WHERE CompleteGames > ALL
 (SELECT CompleteGames FROM NATIONAL) ;

would return a warning that no rows satisfy the query’s conditions — mean-

ing that no American League pitcher has thrown more complete games than

the pitcher who has thrown the most complete games in the National League.

Nested queries that are an existence test
A query returns data from all table rows that satisfy the query’s condi-

tions. Sometimes many rows are returned; sometimes only one comes back.

Sometimes none of the rows in the table satisfy the conditions, and no

rows are returned. You can use the EXISTS and NOT EXISTS predicates

to introduce a subquery. That structure tells you whether any rows in the

table located in the subquery’s FROM clause meet the conditions in its WHERE

clause.

 Subqueries introduced with EXISTS and NOT EXISTS are fundamentally

different from the other subqueries in this chapter so far. In all the previous

cases, SQL first executes the subquery and then applies that operation’s result

to the enclosing statement. EXISTS and NOT EXISTS subqueries, on the

other hand, are examples of correlated subqueries.

A correlated subquery first finds the table and row specified by the enclosing

statement and then executes the subquery on the row in the subquery’s table

that correlates with the current row of the enclosing statement’s table.

The subquery either returns one or more rows or it returns none. If it returns

at least one row, the EXISTS predicate succeeds (see the following section),

and the enclosing statement performs its action. In the same circumstances,

the NOT EXISTS predicate fails (see the section after that), and the enclos-

ing statement does not perform its action. After one row of the enclosing

statement’s table is processed, the same operation is performed on the next

row. This action is repeated until every row in the enclosing statement’s

table has been processed.

258 Part III: Storing and Retrieving Data

EXISTS
Suppose you are a salesperson for Zetec Corporation and you want to call

your primary contact people at all of Zetec’s customer organizations in

California. Try the following query:

SELECT *
 FROM CONTACT
 WHERE EXISTS
 (SELECT *
 FROM CUSTOMER
 WHERE CustState = ‘CA’
 AND CONTACT.CustID = CUSTOMER.CustID) ;

Notice the reference to CONTACT.CustID, which is referencing a column

from the outer query and comparing it with another column, CUSTOMER.
CustID, from the inner query. For each candidate row of the outer query,

you evaluate the inner query, using the CustID value from the current

CONTACT row of the outer query in the WHERE clause of the inner query.

Here’s what happens:

 1. The CustID column links the CONTACT table to the CUSTOMER table.

 2. SQL looks at the first record in the CONTACT table, finds the row in

the CUSTOMER table that has the same CustID, and checks that row’s

CustState field.

 3. If CUSTOMER.CustState = ‘CA’, the current CONTACT row is added to

the result table.

 4. The next CONTACT record is then processed in the same way, and so on,

until the entire CONTACT table has been processed.

 5. Because the query specifies SELECT * FROM CONTACT, all the contact

table’s fields are returned, including the contact’s name and phone

number.

NOT EXISTS
In the previous example, the Zetec salesperson wants to know the names

and numbers of the contact people of all the customers in California. Imagine

that a second salesperson is responsible for all of the United States except

California. She can retrieve her contact people by using NOT EXISTS in a

query similar to the preceding one:

SELECT *
 FROM CONTACT
 WHERE NOT EXISTS
 (SELECT *
 FROM CUSTOMER
 WHERE CustState = ‘CA’
 AND CONTACT.CustID = CUSTOMER.CustID) ;

259 Chapter 11: Delving Deep with Nested Queries

Every row in CONTACT for which the subquery does not return a row is

added to the result table.

Other correlated subqueries
As noted in a previous section of this chapter, subqueries introduced by IN

or by a comparison operator need not be correlated queries, but they can be.

Correlated subqueries introduced with IN
In the earlier section “Subqueries introduced by the keyword IN,” I discuss

how a noncorrelated subquery can be used with the IN predicate. To show

how a correlated subquery may use the IN predicate, ask the same question

that came up with the EXISTS predicate: What are the names and phone

numbers of the contacts at all of Zetec’s customers in California? You can

answer this question with a correlated IN subquery:

SELECT *
 FROM CONTACT
 WHERE ‘CA’ IN
 (SELECT CustState
 FROM CUSTOMER
 WHERE CONTACT.CustID = CUSTOMER.CustID) ;

The statement is evaluated for each record in the CONTACT table. If, for

that record, the CustID numbers in CONTACT and CUSTOMER match, then

the value of CUSTOMER.CustState is compared to ‘CA’. The result of the

subquery is a list that contains, at most, one element. If that one element is

‘CA’, the WHERE clause of the enclosing statement is satisfied, and a row is

added to the query’s result table.

Subqueries introduced with comparison operators
A correlated subquery can also be introduced by one of the six comparison

operators, as shown in the next example.

Zetec pays bonuses to its salespeople based on their total monthly sales

volume. The higher the volume is, the higher the bonus percentage is. The

bonus percentage list is kept in the BONUSRATE table:

MinAmount MaxAmount BonusPct
--------- --------- --------
 0.00 24999.99 0.
 25000.00 49999.99 0.001
 50000.00 99999.99 0.002
100000.00 249999.99 0.003
250000.00 499999.99 0.004
500000.00 749999.99 0.005
750000.00 999999.99 0.006

260 Part III: Storing and Retrieving Data

If a person’s monthly sales are between $100,000.00 and $249,999.99, the

bonus is 0.3 percent of sales.

Sales are recorded in a transaction master table named TRANSMASTER:

TRANSMASTER

Column Type Constraints
------ ---- -----------
TransID INTEGER PRIMARY KEY
CustID INTEGER FOREIGN KEY
EmpID INTEGER FOREIGN KEY
TransDate DATE
NetAmount NUMERIC
Freight NUMERIC
Tax NUMERIC
InvoiceTotal NUMERIC

Sales bonuses are based on the sum of the NetAmount field for all of a per-

son’s transactions in the month. You can find any person’s bonus rate with a

correlated subquery that uses comparison operators:

SELECT BonusPct
 FROM BONUSRATE
 WHERE MinAmount <=
 (SELECT SUM (NetAmount)
 FROM TRANSMASTER
 WHERE EmpID = 133)
 AND MaxAmount >=
 (SELECT SUM (NetAmount)
 FROM TRANSMASTER
 WHERE EmpID = 133) ;

This query is interesting in that it contains two subqueries, making use of

the logical connective AND. The subqueries use the SUM aggregate opera-

tor, which returns a single value: the total monthly sales of employee

number 133. That value is then compared against the MinAmount and the

MaxAmount columns in the BONUSRATE table, producing the bonus rate for

that employee.

If you had not known the EmpID but had known the EmplName, you could

arrive at the same answer with a more complex query:

SELECT BonusPct
 FROM BONUSRATE
 WHERE MinAmount <=
 (SELECT SUM (NetAmount)
 FROM TRANSMASTER

261 Chapter 11: Delving Deep with Nested Queries

 WHERE EmpID =
 (SELECT EmpID
 FROM EMPLOYEE
 WHERE EmplName = ‘Coffin’))
 AND MaxAmount >=
 (SELECT SUM (NetAmount)
 FROM TRANSMASTER
 WHERE EmpID =
 (SELECT EmpID
 FROM EMPLOYEE
 WHERE EmplName = ‘Coffin’));

This example uses subqueries nested within subqueries, which, in turn, are

nested within an enclosing query to arrive at the bonus rate for the employee

named Coffin. This structure works only if you know for sure that the com-

pany has one, and only one, employee whose last name is Coffin. If you know

that more than one employee has the same last name, you can add terms to

the WHERE clause of the innermost subquery until you’re sure that only one

row of the EMPLOYEE table is selected.

Subqueries in a HAVING clause
You can have a correlated subquery in a HAVING clause just as you can in a

WHERE clause. As I mention in Chapter 9, a HAVING clause is usually preceded

by a GROUP BY clause. The HAVING clause acts as a filter to restrict the

groups created by the GROUP BY clause. Groups that don’t satisfy the condi-

tion of the HAVING clause are not included in the result. When used this way,

the HAVING clause is evaluated for each group created by the GROUP BY

clause.

 In the absence of a GROUP BY clause, the HAVING clause is evaluated for

the set of rows passed by the WHERE clause — which is considered to be a

single group. If neither a WHERE clause nor a GROUP BY clause is present, the

HAVING clause is evaluated for the entire table:

SELECT TM1.EmpID
 FROM TRANSMASTER TM1
 GROUP BY TM1.Department
 HAVING MAX (TM1.NetAmount) >= ALL
 (SELECT 2 * AVG (TM2.NetAmount)
 FROM TRANSMASTER TM2
 WHERE TM1.EmpID <> TM2.EmpID) ;

This query uses two aliases for the same table, enabling you to retrieve the

EmpID number of all salespeople who had a sale of at least twice the average

sale of all the other salespeople. The query works as follows:

 1. The outer query groups TRANSMASTER rows by the employees’
department. This is done with the SELECT, FROM, and GROUP BY clauses.

262 Part III: Storing and Retrieving Data

 2. The HAVING clause filters these groups. For each group, it calculates the

MAX of the NetAmount column for the rows in that group.

 3. The inner query evaluates twice the average NetAmount from all rows

of TRANSMASTER whose EmpID is different from the EmpID of the cur-

rent group of the outer query.

 In the last line, you have to reference two different EmpID values — so

you use different aliases for TRANSMASTER in the FROM clauses of the

outer and inner queries.

 4. You use those aliases in the comparison of the query’s last line to indi-

cate that you’re referencing both the EmpID from the current row of the

inner subquery (TM2.EmpID) and the EmpID from the current group of

the outer subquery (TM1.EmpID).

UPDATE, DELETE, and INSERT
In addition to SELECT statements, UPDATE, DELETE, and INSERT statements

can also include WHERE clauses. Those WHERE clauses can contain subqueries

in the same way that SELECT statements’ WHERE clauses do.

For example, Zetec has just made a volume purchase deal with Olympic Sales

and wants to provide Olympic with a retroactive 10 percent credit for all its

purchases in the last month. You can give this credit with an UPDATE statement:

UPDATE TRANSMASTER
 SET NetAmount = NetAmount * 0.9
 WHERE SaleDate > (CurrentDate – 30) DAY AND CustID =
 (SELECT CustID
 FROM CUSTOMER
 WHERE Company = ‘Olympic Sales’) ;

You can also have a correlated subquery in an UPDATE statement. Suppose

the CUSTOMER table has a column LastMonthsMax, and Zetec wants to give

such a credit for purchases that exceed LastMonthsMax for the customer:

UPDATE TRANSMASTER TM
 SET NetAmount = NetAmount * 0.9
 WHERE NetAmount >
 (SELECT LastMonthsMax
 FROM CUSTOMER C
 WHERE C.CustID = TM.CustID) ;

Note that this subquery is correlated: The WHERE clause in the last line refer-

ences both the CustID of the CUSTOMER row from the subquery and the

CustID of the current TRANSMASTER row that is a candidate for updating.

263 Chapter 11: Delving Deep with Nested Queries

A subquery in an UPDATE statement can also reference the table that is being

updated. Suppose that Zetec wants to give a 10 percent credit to customers

whose purchases have exceeded $10,000:

UPDATE TRANSMASTER TM1
 SET NetAmount = NetAmount * 0.9
 WHERE 10000 < (SELECT SUM(NetAmount)
 FROM TRANSMASTER TM2
 WHERE TM1.CustID = TM2.CustID);

The inner subquery calculates the SUM of the NetAmount column for all

TRANSMASTER rows for the same customer. What does this mean? Suppose

the customer with CustID = 37 has four rows in TRANSMASTER with

values for NetAmount: 3000, 5000, 2000, and 1000. The SUM of NetAmount

for this CustID is 11000.

The order in which the UPDATE statement processes the rows is defined

by your implementation and is generally not predictable. The order may

differ depending on how the rows are arranged on the disk. Assume that the

implementation processes the rows for this CustID in this order: first the

TRANSMASTER with a NetAmount of 3000, then the one with NetAmount

= 5000, and so on. After the first three rows for CustID 37 have been

updated, their NetAmount values are 2700 (90 percent of $3,000), 4500 (90

percent of $5,000), and 1800 (90 percent of $2,000). Then, when you process

the last TRANSMASTER row for CustID 37 (whose NetAmount is 1000), the

SUM returned by the subquery would seem to be 10000 — that is, the SUM of

the new NetAmount values of the first three rows for CustID 37, and the

old NetAmount value of the last row for CustID 37. Thus it would seem that

the last row for CustID 37 isn’t updated, because the comparison with that

SUM is not True — after all, 10000 is not less than 10000. But that is not how

the UPDATE statement is defined when a subquery references the table that

is being updated.

 All evaluations of subqueries in an UPDATE statement reference the old values

of the table — the ones that are being updated. In the preceding UPDATE for

CustID 37, the subquery returns 11000 — the original SUM.

The subquery in a WHERE clause operates the same as a SELECT statement or

an UPDATE statement. The same is true for DELETE and INSERT. To delete all

of Olympic’s transactions, use this statement:

DELETE FROM TRANSMASTER
 WHERE CustID =
 (SELECT CustID
 FROM CUSTOMER
 WHERE Company = ‘Olympic Sales’) ;

264 Part III: Storing and Retrieving Data

As with UPDATE, DELETE subqueries can also be correlated and can also ref-

erence the table being deleted. The rules are similar to the rules for UPDATE

subqueries. Suppose you want to delete all rows from TRANSMASTER for

customers whose total NetAmount is larger than $10,000:

DELETE FROM TRANSMASTER TM1
 WHERE 10000 < (SELECT SUM(NetAmount)
 FROM TRANSMASTER TM2
 WHERE TM1.CustID = TM2.CustID) ;

This query deletes all rows from TRANSMASTER that have CustID 37, as

well as any other customers with purchases exceeding $10,000. All references

to TRANSMASTER in the subquery denote the contents of TRANSMASTER

before any deletes by the current statement. So even when you’re deleting

the last TRANSMASTER row for CustID 37, the subquery is evaluated on

the original TRANSMASTER table and returns 11000.

 When you update, delete, or insert database records, you risk making

a table’s data inconsistent with other tables in the database. Such an

inconsistency is called a modification anomaly, discussed in Chapter 5. If

you delete TRANSMASTER records and a TRANSDETAIL table depends

on TRANSMASTER, you must delete the corresponding records from

TRANSDETAIL, too. This operation is called a cascading delete, because the

deletion of a parent record must cascade to its associated child records.

Otherwise the undeleted child records become orphans. In this case, they

would be invoice detail lines that are in limbo because they are no longer con-

nected to an invoice record.

If your implementation of SQL doesn’t support cascading deletes, you must

do the deletions yourself. In this case, delete the appropriate records from

the child table before deleting the corresponding record from the parent.

That way, you don’t have orphan records in the child table, even for a

second.

Chapter 12

Recursive Queries
In This Chapter
▶ Understanding recursive processing

▶ Defining recursive queries

▶ Finding ways to use recursive queries

One of the major criticisms of SQL, up through and including SQL-92,

was its inability to implement recursive processing. Many important

problems that are difficult to solve by other means yield readily to recursive

solutions. Extensions included in SQL:1999 allow recursive queries — which

greatly expand the language’s power. If your SQL implementation includes

the recursion extensions, you can efficiently solve a large new class of

problems. However, because recursion is not a part of core SQL, many

implementations currently available do not include it.

What Is Recursion?
Recursion is a feature that’s been around for years in programming languages

such as Logo, LISP, and C++. In these languages, you can define a function (a

set of one or more commands) that performs a specific operation. The main

program invokes the function by issuing a command called a function call. If
the function calls itself as a part of its operation, you have the simplest form

of recursion.

A simple program that uses recursion in one of its functions provides an

illustration of the joys and pitfalls of recursion. The following program,

written in C++, draws a spiral on the computer screen. It assumes that the

drawing tool is initially pointing toward the top of the screen, and includes

three functions:

 ✓ The function line(n) draws a line n units long.

 ✓ The function left_turn(d) rotates the drawing tool d degrees

counterclockwise.

 ✓ You can define the function spiral(segment) as follows:

266 Part III: Storing and Retrieving Data

void spiral(int segment)
{
 line(segment)
 left_turn(90)
 spiral(segment + 1)
} ;

If you call spiral(1) from the main program, the following actions take

place:

spiral(1) draws a line one unit long toward the top of the screen.

spiral(1) turns left 90 degrees.

spiral(1) calls spiral(2).

spiral(2) draws a line two units long toward the left side of the screen.

spiral(2) turns left 90 degrees.

spiral(2) calls spiral(3).

And so on. . . .

Eventually the program generates the spiral shown in Figure 12-1.

Figure 12-1:
Result of

calling
spiral(1).

Houston, we have a problem
Well, okay, the situation here is not as serious as it was for Apollo 13 when

the main oxygen tank exploded while the spacecraft was en route to the

moon. Your problem is that the spiral-drawing program keeps calling itself

and drawing longer and longer lines. It will continue to do that until the

267 Chapter 12: Recursive Queries

computer executing it runs out of resources and (if you’re lucky) puts an

obnoxious error message on the screen. If you’re unlucky, the computer just

crashes.

Failure is not an option
The scenario described in the previous section shows one of the dangers of

using recursion. A program written to call itself invokes a new instance of

itself — which in turn calls yet another instance, ad infinitum. This is

generally not what you want. (Think of a certain cartoon mouse in a wizard’s

hat trying to stop all those marching broomsticks. . . .)

To address this problem, programmers include a termination condition within

the recursive function — a limit on how deep the recursion can go — so the

program performs the desired action and then terminates gracefully. You

can include a termination condition in your spiral-drawing program to save

computer resources and prevent dizziness in programmers:

void spiral2(int segment)
{
 if (segment <= 10)
 {
 line(segment)
 left_turn(90)
 spiral2(segment + 1)
 }
} ;

When you call spiral2(1), it executes and then (recursively) calls itself

until the value of segment exceeds 10. At the point where segment equals

11, the if (segment <=10) construct returns a False value, and the

code within the interior braces is skipped. Control returns to the previous

invocation of spiral2 and, from there, returns all the way up to the first

invocation, after which the program terminates. Figure 12-2 shows the

sequence of calls and returns that occur.

Every time a function calls itself, it takes you one level farther away from

the main program that was the starting point of the operation. For the main

program to continue, the deepest iteration must return control to the

iteration that called it. That iteration will have to do likewise, continuing all

the way back to the main program that made the first call to the recursive

function.

 Recursion is a powerful tool for repeatedly executing code when you don’t

know at the outset how many times the code should be repeated. It’s ideal

for searching through tree-shaped structures such as family trees, complex

electronic circuits, or multilevel distribution networks.

268 Part III: Storing and Retrieving Data

Figure 12-2:
Descending

through
recursive
calls, and

then climb-
ing back up

to terminate.

call spiral2(1)

call spiral2(2)

call spiral2(3)

call spiral2(4)

call spiral2(5)

call spiral2(6)

call spiral2(7)

call spiral2(8)

call spiral2(9)

call spiral2(10)

call spiral2(11)

What Is a Recursive Query?
A recursive query is a query that is functionally dependent upon itself. The

simplest form of such functional dependence works like this: Query Q1

invokes itself in the body of the query expression. A more complex case is

where query Q1 depends on query Q2, which in turn depends on query Q1.

There is still a functional dependency, and recursion is still involved, no

matter how many queries lie between the first and the second invocation of

the same query. If that sounds weird, don’t worry: Here’s how it works. . . .

Where Might You Use
a Recursive Query?

Recursive queries may help save you time and frustration in dealing with

various kinds of problems. Suppose, for example, that you have a pass that

gives you free air travel on any flight of the (fictional) Vannevar Airlines. Way

cool. The next question you ask is, “Where can I go for free?” The FLIGHT

table contains all the flights that Vannevar runs. Table 12-1 shows the flight

number and the source and destination of each flight.

269 Chapter 12: Recursive Queries

Table 12-1 Flights Offered by Vannevar Airlines
Flight No. Source Destination

3141 Portland Orange County

2173 Portland Charlotte

623 Portland Daytona Beach

5440 Orange County Montgomery

221 Charlotte Memphis

32 Memphis Champaign

981 Montgomery Memphis

Figure 12-3 illustrates the routes on a map of the United States.

Figure 12-3:
Route

map for
Vannevar

Airlines.

North
Pacific Ocean

North
Atlantic Ocean

Gulf of MexicoMEXICO

CANADACANADA

Washington DC

Memphis

Buffalo

New York City

Atlantic City

Boston

Columbus

Albany

Montpelier

Hartford

Augusta

NewarkDetroit

Concord

Chicago

Atlanta

Nashville

Charleston

Columbia

Tallahassee

Miami

Montgomery

Baton Rouge

Dallas

Little Rock

Houston

St. Louis
Topeka

Lincoln

Springfield

Lansing

Des Moines

Oklahoma City

Seattle

Salem

Boise

Sacramento

Phoenix

Los Angeles

Las Vegas

Salt Lake City
Cheyenne

Denver

Santa Fe

Helena

Richmond

Indianapolis

Providence

Jackson

Raleigh

Madison

St. Paul

Bismarck

Trenton

Dover
Annapolis

Greenville

Austin

San Francisco

Frankfort

Philadelphia
Harrisburg

Toronto

Vancouver

Regina

Winnipeg Quebec

Montreal

Kingston
Ottawa

Olympia

New Orleans

Jefferson City

Carson City

Mexicali

Monterrey

Chihuahua

Hermosillo

Memphis

Buffalo

New York City

Atlantic City

Boston

Columbus

Albany

Montpelier

Hartford

Augusta

NewarkDetroit

Concord

Chicago

Atlanta

Nashville

Charleston

Columbia

Tallahassee

Miami

Montgomery

Baton Rouge

Dallas

Little Rock

Houston

St. Louis
Topeka

Lincoln

Springfield

Lansing

Des Moines

Oklahoma City

Seattle

Salem

Boise

Sacramento

Phoenix

Los Angeles

Las Vegas

Salt Lake City
Cheyenne

Denver

Santa Fe

Helena

Richmond

Indianapolis

Providence

Jackson

Raleigh

Madison

St. Paul

Bismarck

Trenton

Dover
Annapolis

Greenville

Austin

San Francisco

Frankfort

Philadelphia
Harrisburg

Toronto

Vancouver

Regina

Winnipeg Quebec

Montreal

Kingston
Ottawa

Olympia

New Orleans

Jefferson City

Carson City

Mexicali

Monterrey

Chihuahua

Hermosillo

To get started on your vacation plan, create a database table for FLIGHT by

using SQL as follows:

CREATE TABLE FLIGHT (
 FlightNo INTEGER NOT NULL,
 Source CHAR (30),
 Destination CHAR (30));

270 Part III: Storing and Retrieving Data

After the table is created, you can populate it with the data shown in

Table 12-1.

Suppose you’re starting from Portland and you want to visit a friend in

Montgomery. Naturally you wonder, “What cities can I reach via Vannevar

if I start from Portland?” and “What cities can I reach via the same airline if

I start from Montgomery?” Some cities are reachable in one hop; others are

not. Some might require two or more hops. You can find all the cities that

you can get to via Vannevar, starting from any given city on its route map —

but if you do it one query at a time, you’re . . .

Querying the hard way
To find out what you want to know — provided you have the time and

patience — you can make a series of queries, first using Portland as the

starting city:

SELECT Destination FROM FLIGHT WHERE Source = ’Portland’;

The first query returns Orange County, Charlotte, and Daytona Beach.

Your second query uses the first of these results as a starting point:

SELECT Destination FROM FLIGHT WHERE Source = ’Orange
County’;

The second query returns Montgomery. Your third query returns to the

results of the first query and uses the second result as a starting point:

SELECT Destination FROM FLIGHT WHERE Source = ’Charlotte’;

The third query returns Memphis. Your fourth query goes back to the results

of the first query and uses the remaining result as a starting point:

SELECT Destination FROM FLIGHT WHERE Source = ’Daytona
Beach’;

Sorry, the fourth query returns a null result because Vannevar offers no

outgoing flights from Daytona Beach. But the second query returned

another city (Montgomery) as a possible starting point, so your fifth query

uses that result:

SELECT Destination FROM FLIGHT WHERE Source =
’Montgomery’;

271 Chapter 12: Recursive Queries

This query returns Memphis, but you already know it’s among the cities you

can get to (in this case, via Charlotte). But you go ahead and try this latest

result as a starting point for another query:

SELECT Destination FROM FLIGHT WHERE Source = ’Memphis’;

The query returns Champaign — which you can add to the list of reachable

cities (even if you have to get there in two hops). As long as you’re

considering multiple hops, you plug in Champaign as a starting point:

SELECT Destination FROM FLIGHT WHERE Source = ’Champaign’;

Oops. This query returns a null value; Vannevar offers no outgoing flights

from Champaign. (Seven queries so far. Are you fidgeting yet?)

Vannevar doesn’t offer a flight out of Daytona Beach, either, so if you go

there, you’re stuck — which might not be a hardship if it’s Spring Break week.

(Of course, if you use up a week running individual queries to find out where

to go next, you might get a worse headache than you’d get from a week of

partying.) Or you might get stuck in Champaign — in which case, you could

enroll in the University of Illinois and take a few database courses.

Granted, this method will (eventually) answer the question, “What cities are

reachable from Portland?” But running one query after another, making

each one dependent on the results of a previous query, is complicated, time-

consuming, and fidgety.

Saving time with a recursive query
A simpler way to get the info you need is to craft a single recursive query that

does the entire job in one operation. Here’s the syntax for such a query:

WITH RECURSIVE
 REACHABLEFROM (Source, Destination)
 AS (SELECT Source, Destination
 FROM FLIGHT
 UNION
 SELECT in.Source, out.Destination
 FROM REACHABLEFROM in, FLIGHT out
 WHERE in.Destination = out.Source
)
 SELECT * FROM REACHABLEFROM
 WHERE Source = ’Portland’;

272 Part III: Storing and Retrieving Data

The first time through the recursion, FLIGHT has seven rows and

REACHABLEFROM has none. The UNION takes the seven rows from FLIGHT

and copies them into REACHABLEFROM. At this point, REACHABLEFROM has

the data shown in Table 12-2.

 As I mention earlier, recursion is not a part of core SQL, and thus some

implementations may not include it. In fact, major implementations, such as

Oracle 11g and SQL Server 2005, do not include it.

Table 12-2 REACHABLEFROM After One Pass through Recursion
Source Destination

Portland Orange County

Portland Charlotte

Portland Daytona Beach

Orange County Montgomery

Charlotte Memphis

Memphis Champaign

Montgomery Memphis

The second time through the recursion, things start to get interesting.

The WHERE clause (WHERE in.Destination = out.Source) means

that you’re looking only at rows where the Destination field of the

REACHABLEFROM table equals the Source field of the FLIGHT table.

For those rows, you’re taking two fields — the Source field from

REACHABLEFROM and the Destination field from FLIGHT — and adding

them to REACHABLEFROM as a new row. Table 12-3 shows the result of this

iteration of the recursion.

Table 12-3 REACHABLEFROM After Two Passes
 through the Recursion
Source Destination

Portland Orange County

Portland Charlotte

Portland Daytona Beach

Orange County Montgomery

Charlotte Memphis

273 Chapter 12: Recursive Queries

Source Destination

Memphis Champaign

Montgomery Memphis

Portland Montgomery

Portland Memphis

Orange County Memphis

Charlotte Champaign

The results are looking more useful. REACHABLEFROM now contains all the

Destination cities that are reachable from any Source city in two hops

or less. Next, the recursion processes three-hop trips, and so on, until all

possible destination cities have been reached.

After the recursion is complete, the third and final SELECT statement (which

is outside the recursion) extracts from REACHABLEFROM only those cities

you can reach from Portland by flying Vannevar. In this example, all six other

cities are reachable from Portland — in few enough hops that you won’t feel

like you’re traveling by pogo stick.

 If you scrutinize the code in the recursive query, it doesn’t look any simpler

than the seven individual queries it replaces. It does, however, have two

advantages:

 ✓ When you set it in motion, it completes the entire operation without any

further intervention.

 ✓ It can do the job fast.

Imagine a real-world airline with many more cities on its route map. The

more possible destinations that are available, the greater the advantage of

using the recursive method.

What makes this query recursive? The fact that you’re defining REACHABLEFROM

in terms of itself. The recursive part of the definition is the second SELECT

statement, the one just after the UNION. REACHABLEFROM is a temporary table

that fills with data progressively as the recursion proceeds. Processing con-

tinues until all possible destinations have been added to REACHABLEFROM.

Any duplicates are eliminated, because the UNION operator doesn’t add

duplicates to the result table. After the recursion has finished running,

REACHABLEFROM contains all the cities that are reachable from any starting

city. The third and final SELECT statement returns only those destination

cities that you can reach from Portland. Bon voyage.

274 Part III: Storing and Retrieving Data

Where Else Might You Use
a Recursive Query?

Any problem that you can lay out as a treelike structure can potentially be

solved by using a recursive query. The classic industrial application is

materials processing (the process of turning raw materials into finished

goods). Suppose your company is building a new gasoline-electric hybrid car.

Such a machine is built of subassemblies — engine, batteries, and so on —

which are constructed from smaller subassemblies (crankshaft, electrodes,

and so on) — which are made of even smaller parts.

Keeping track of all the various parts can be difficult in a relational database

that does not use recursion. Recursion enables you to start with the complete

machine and ferret your way along any path to get to the smallest part. Want

to find out the specs for the fastening screw that holds the clamp to the

negative electrode of the auxiliary battery? The WITH RECURSIVE structure

gives SQL the capability to address such a brass-tacks-level problem.

 Recursion is also a natural for what-if processing. In the Vannevar Airlines

example, what if management discontinues service from Portland to

Charlotte? How does that affect the cities that are reachable from Portland? A

recursive query quickly gives you the answer.

Part IV
Controlling
Operations

In this part . . .

After creating a database and filling it with data, you

want to protect your new database from harm or

misuse. This part discusses in detail SQL’s tools for main-

taining the safety and integrity of your data. SQL’s Data

Control Language (DCL) enables you to protect your data

from misuse by selectively granting or denying access to the

data. You can protect your database from other threats —

such as interference from simultaneous access by multiple

users — by using SQL’s transaction-processing facilities. You

can use constraints to help prevent users from entering bad

data in the first place. Of course, even SQL can’t defend you

against bad application design — that’s strictly a live-and-

learn proposition. But if you take full advantage of the

tools that SQL provides, SQL can protect your data from

most problems.

Chapter 13

Providing Database Security
In This Chapter
▶ Controlling access to database tables

▶ Deciding who has access to what

▶ Granting access privileges

▶ Taking access privileges away

▶ Defeating attempts at unauthorized access

▶ Passing on the power to grant privileges

A system administrator must have special knowledge of how a database

works. That’s why, in preceding chapters, I discuss the parts of SQL

that create databases and manipulate data — and (in Chapter 3) introduce

SQL’s facilities for protecting databases from harm or misuse. In this chapter,

I go into more depth on the subject of misuse — and preventing it by the

savvy use of SQL features.

The person in charge of a database can determine who has access to the

database — and can set users’ access levels, granting or revoking access

to aspects of the system. The system administrator can even grant — or

revoke — the right to grant and revoke access privileges. If you use them

correctly, the security tools that SQL provides are powerful protectors of

important data. Used incorrectly, these same tools can tie up the efforts

of legitimate users in a big knot of red tape when they’re just trying to do

their jobs.

Because databases often contain sensitive information that you shouldn’t

make available to everyone, SQL provides different levels of access — from

complete to none, with several levels in between. By controlling which

operations each authorized user can perform, the database administrator

can make available all the data that the users need to do their jobs — but

restrict access to parts of the database that not everyone should see or

change.

278 Part IV: Controlling Operations

The SQL Data Control Language
The SQL statements that you use to create databases form a group known as

the Data Definition Language (DDL). After you create a database, you can use

another set of SQL statements — known collectively as the Data Manipulation
Language (DML) — to add, change, and remove data from the database. SQL

includes additional statements that don’t fall into either of these categories.

Programmers sometimes refer to these statements collectively as the Data
Control Language (DCL). DCL statements primarily protect the database from

unauthorized access, from harmful interaction among multiple database

users, and from power failures and equipment malfunctions. In this chapter, I

discuss protection from unauthorized access.

User Access Levels
SQL provides controlled access to nine database-management functions:

 ✓ Creating, seeing, modifying, and deleting: These functions correspond

to the INSERT, SELECT, UPDATE, and DELETE operations that I discuss

in Chapter 6.

 ✓ Referencing: Using the REFERENCES keyword (which I discuss in

Chapters 3 and 5) involves applying referential integrity constraints to a

table that depends on another table in the database.

 ✓ Using: The USAGE keyword pertains to domains, character sets,

collations, and translations. (I define domains, character sets, collations,

and translations in Chapter 5.)

 ✓ Defining new data types: You deal with user-defined type names with

the UNDER keyword.

 ✓ Responding to an event: The use of the TRIGGER keyword causes

an SQL statement or statement block to be executed whenever a

predetermined event occurs.

 ✓ Executing: Using the EXECUTE keyword causes a routine to be executed.

The database administrator
In most installations with more than a few users, the supreme database

authority is the database administrator (DBA). The DBA has all rights and

privileges to all aspects of the database. Being a DBA can give you a feeling

of power — and responsibility. With all that power at your disposal, you can

279 Chapter 13: Providing Database Security

easily mess up your database and destroy thousands of hours of work. DBAs

must think clearly and carefully about the consequences of every action they

perform.

The DBA not only has all rights to the database, but also controls the rights

that other users have. Thus highly trusted individuals can access more

functions — and, perhaps, more tables — than can the majority of users.

The best way to become a DBA is to install the database management system.

The installation manual gives you an account, or login, and a password. That

login identifies you as a specially privileged user. Sometimes, the system

calls this privileged user the DBA, sometimes the system administrator, and

sometimes the super user (sorry, no cape and boots provided). As your

first official act after logging in, you should change your password from the

default to a secret one of your own.

 If you don’t change the password, then anyone who reads the manual can also
log in with full DBA privileges. After you change the password, only people

who know the new password can log in as DBA. I suggest that you share the

new DBA password with only a small number of highly trusted people. After

all, a falling meteor could strike you tomorrow; you could win the lottery;

or you may become unavailable to the company in some other way. Your

colleagues must be able to carry on in your absence. Anyone who knows the

DBA login and password becomes the DBA after using that information to

access the system.

 If you have DBA privileges, log in as DBA only if you need to perform a specific

task that requires DBA privileges. After you finish, log out. For routine work,

log in by using your own personal login ID and password. This approach may

prevent you from making mistakes that have serious consequences for other

users’ tables (as well as for your own).

Database object owners
Another class of privileged user, along with the DBA, is the database object
owner. Tables and views, for example, are database objects. Any user who

creates such an object can specify its owner. A table owner enjoys every

possible privilege associated with that table, including the privilege to

grant access to the table to other people. Because you can base views on

underlying tables, someone other than a table’s owner can create a view

based on that owner’s table. However, the view owner only receives privileges

that he or she has for the underlying table. Bottom line: A user can’t

circumvent the protection on another user’s table simply by creating a

view based on that table.

280 Part IV: Controlling Operations

The public
In network terms, “the public” consists of all users who are not specially

privileged users (that is, either DBAs or object owners) and to whom a

privileged user hasn’t specifically granted access rights. If a privileged user

grants certain access rights to PUBLIC, then everyone who can access the

system gains those rights.

In most installations, a hierarchy of user privilege exists, in which the DBA

stands at the highest level and the public at the lowest. Figure 13-1 illustrates

the privilege hierarchy.

Figure 13-1:
The access-

privilege
hierarchy.

Database administrator

Table owner Table owner

Grantee Grantee Grantee Grantee

The Public

Grantee with
grant option

Grantee with
grant option

Granting Privileges to Users
The DBA, by virtue of his or her position, has all privileges on all objects in

the database. After all, the owner of an object has all privileges with respect

to that object — and the database itself is an object. No one else has any

privileges with respect to any object — unless someone who already has

those privileges (and the authority to pass them on) specifically grants the

privileges. You grant privileges to someone by using the GRANT statement,

which has the following syntax:

GRANT privilege-list
 ON object
 TO user-list
 [WITH HIERARCHY OPTION]
 [WITH GRANT OPTION]
 [GRANTED BY grantor] ;

281 Chapter 13: Providing Database Security

In this statement, privilege-list is defined as follows:

privilege [, privilege] ...

or

ALL PRIVILEGES

Here privilege is defined as follows:

SELECT
| DELETE
| INSERT [(column-name [, column-name]...)]
| UPDATE [(column-name [, column-name]...)]
| REFERENCES [(column-name [, column-name]...)]
| USAGE
| UNDER
| TRIGGER
| EXECUTE

In the original statement, object is defined as follows:

[TABLE] <table name>
| DOMAIN <domain name>
| COLLATION <collation name>
| CHARACTER SET <character set name>
| TRANSLATION <transliteration name>
| TYPE <schema-resolved user-defined type name>
| SEQUENCE <sequence generator name>
| <specific routine designator>

And user-list in the statement is defined as follows:

 login-ID [, login-ID]...
| PUBLIC

The grantor is either the CURRENT_USER or the CURRENT_ROLE.

 The preceding syntax considers a view to be a table. The SELECT, DELETE,

INSERT, UPDATE, TRIGGER, and REFERENCES privileges apply to tables and

views only. The USAGE privilege applies to domains, character sets, collations,

and translations. The UNDER privilege applies only to types, and the EXECUTE

privilege applies only to routines. The following sections give examples of the

various ways you can use the GRANT statement — and the results of those uses.

Roles
A user name is one type of authorization identifier, but it’s not the only one. It

identifies a person (or a program) authorized to perform one or more

282 Part IV: Controlling Operations

functions on a database. In a large organization with many users, granting

privileges to every individual employee can be tedious and time-consuming.

SQL addresses this problem by introducing the notion of roles.

A role, identified by a role name, is a set of zero or more privileges that can

be granted to multiple people who all require the same level of access to the

database. For example, everyone who performs the role SecurityGuard has

the same privileges. These privileges are different from those granted to the

people who have the role SalesClerk.

 As always, not every feature mentioned in the latest version of the SQL

specification is available in every implementation. Check your DBMS

documentation before you try to use roles.

You can create roles by using syntax similar to the following:

CREATE ROLE SalesClerk ;

After you’ve created a role, you can assign people to the role with the GRANT

statement, similar to the following:

GRANT SalesClerk to Becky ;

You can grant privileges to a role in exactly the same way that you grant

privileges to users, with one exception: It won’t argue or complain.

Inserting data
To grant a role the privilege of adding data to a table, follow this example:

GRANT INSERT
 ON CUSTOMER
 TO SalesClerk ;

This privilege enables any clerk in the sales department to add new customer

records to the CUSTOMER table.

Looking at data
To enable people to view the data in a table, use the following example:

GRANT SELECT
 ON PRODUCT
 TO PUBLIC ;

283 Chapter 13: Providing Database Security

This privilege enables anyone with access to the system (PUBLIC) to view

the contents of the PRODUCT table.

 This statement can be dangerous. Columns in the PRODUCT table may contain

information that not everyone should see, such as CostOfGoods. To provide

access to most information while withholding access to sensitive information,

define a view on the table that doesn’t include the sensitive columns. Then

grant SELECT privileges on the view rather than the underlying table. The

following example shows the syntax for this procedure:

CREATE VIEW MERCHANDISE AS
 SELECT Model, ProdName, ProdDesc, ListPrice
 FROM PRODUCT ;
GRANT SELECT
 ON MERCHANDISE
 TO PUBLIC ;

Using the MERCHANDISE view, the public doesn’t get to see the PRODUCT

table’s CostOfGoods column or any other column. The public sees only the

four columns listed in the CREATE VIEW statement.

Modifying table data
In any active organization, table data changes over time. You need to grant to

some people the right and power to make changes — and also prevent every-

one else from doing so. To grant change privileges such as updating, follow

this example:

GRANT UPDATE (BonusPct)
 ON BONUSRATE
 TO SalesMgr ;

The sales manager can adjust the bonus rate that salespeople receive for

sales (the BonusPct column), based on changes in market conditions.

However, the sales manager can’t modify the values in the MinAmount and

MaxAmount columns that define the ranges for each step in the bonus

schedule. To enable updates to all columns, you must specify either all

column names or no column names, as shown in the following example:

GRANT UPDATE
 ON BONUSRATE
 TO VPSales ;

284 Part IV: Controlling Operations

Deleting obsolete rows from a table
Customers go out of business, or stop buying products for some other

reason. Employees quit, retire, are laid off, or die. Products become obsolete.

Life goes on, and things that you tracked in the past may no longer be of

interest. Someone needs to remove obsolete records from your tables. You

want to carefully control who can remove which records. Regulating such

privileges is another job for the GRANT statement, as shown in the following

example:

GRANT DELETE
 ON EMPLOYEE
 TO PersonnelMgr ;

The personnel manager can remove records from the EMPLOYEE table. So

can the DBA and the EMPLOYEE table owner (who’s probably also the DBA).

No one else can remove personnel records (unless another GRANT statement

gives that person the power to do so).

Referencing related tables
If one table includes a second table’s primary key as a foreign key, information

in the second table becomes available to users of the first table. This situation

potentially creates a dangerous back door through which unauthorized users

can extract confidential information. In such a case, a user doesn’t need

access rights to a table to discover something about its contents. If the user

has access rights to a table that references the target table, those rights often

enable the user to access the target table as well.

Suppose, for example, that the table LAYOFF_LIST contains the names of the

employees who will be laid off next month. Only authorized management has

SELECT access to the table. An unauthorized employee, however, deduces

that the table’s primary key is EmpID. The employee then creates a new table

SNOOP, which has EmpID as a foreign key, enabling him to sneak a peek

at LAYOFF_LIST. (I describe how to create a foreign key with a REFERENCES

clause in Chapter 5. It’s high on the list of techniques every system administrator

should know how to use — and how to spot.) Here’s the code that creates

the sneaky table:

CREATE TABLE SNOOP
 (EmpID INTEGER REFERENCES LAYOFF_LIST) ;

Now all that the employee needs to do is try to INSERT rows corresponding

to all employee ID numbers into SNOOP. The table accepts the inserts for

only the employees on the layoff list. All rejected inserts are for employees

not on the list.

285 Chapter 13: Providing Database Security

 All is not lost. You aren’t at risk of exposing all private data you want to keep

to yourself. Recent versions of SQL prevent this security breach by requiring

privileged users to grant explicitly any reference rights to other users, as

shown in the following example:

GRANT REFERENCES (EmpID)
 ON LAYOFF_LIST
 TO PERSONNEL_CLERK ;

You might want to check that your DBMS has this updated feature.

Using domains, character sets,
collations, and translations
Domains, character sets, collations, and translations also have an effect on

security issues. You must keep a close watch on all of these — on created

domains, in particular — to avoid having them be used to undermine your

security measures.

You can define a domain that encompasses a set of columns. In doing so,

you want all these columns to have the same type and to share the same

constraints. The columns you create in your CREATE DOMAIN statement

inherit the type and constraints of the domain. You can override these

characteristics for specific columns, if you want, but domains provide a

convenient way to apply numerous characteristics to multiple columns with

a single declaration.

Domains come in handy if you have multiple tables that contain columns

with similar characteristics. Your business database, for example, may

consist of several tables, each of which contains a Price column that should

have a type of DECIMAL(10,2) and values that aren’t negative and are no

greater than 10,000. Before you create tables that hold these columns, create

a domain that specifies the columns’ characteristics, like this:

CREATE DOMAIN PriceTypeDomain DECIMAL (10,2)
 CHECK (Price >= 0 AND Price <= 10000) ;

Perhaps you identify your products in multiple tables by ProductCode,

which is always of type CHAR (5), with a first character of X, C, or H and a

last character of either 9 or 0. You can create a domain for these columns,

too, as in the following example:

CREATE DOMAIN ProductCodeDomain CHAR (5)
 CHECK (SUBSTR (VALUE, 1,1) IN (’X’, ’C’, ’H’)
 AND SUBSTR (VALUE, 5, 1) IN (9, 0)) ;

286 Part IV: Controlling Operations

With the domains in place, you can now proceed to create tables, as follows:

CREATE TABLE PRODUCT
 (ProductCode ProductCodeDomain,
 ProductName CHAR (30),
 Price PriceTypeDomain) ;

 As I have mentioned previously for other ISO/IEC standard SQL features, no

DBMS product supports them all. CREATE DOMAIN is one that is not universally

supported. Sybase’s iAnywhere DBMS supports it, as does PostgreSQL, but

Oracle 11g and SQL Server 2005 do not.

In the table definition, instead of giving the data type for ProductCode and

Price, specify the appropriate domain. This action gives those columns the

correct type and also applies the constraints you specify in your CREATE
DOMAIN statements.

When you use domains, you open up your database to certain security

implications. What if someone else wants to use the domains you create —

can this cause problems? Yes. What if someone creates a table with a column

that has a domain of PriceTypeDomain? That person can assign progres-

sively larger values to that column until it rejects a value. By doing so, the

user can determine the upper bound on PriceType that you specify in

the CHECK clause of your CREATE DOMAIN statement. If you consider that

upper bound to be private information, you don’t want others to access

the PriceType domain. To protect tables in such situations, SQL allows

only those to whom the domain owner explicitly grants permission to use

domains. Thus, only the domain owner (as well as the DBA) can grant such

permission. After you deem that it’s safe to do so, you can grant users

permission by using a statement such as the one shown in the following

example:

GRANT USAGE ON DOMAIN PriceType TO SalesMgr ;

 Different security problems may arise if you DROP domains. Tables that contain

columns that you define in terms of a domain cause problems if you try to

DROP the domain. You may need to DROP all such tables first. Or you may find

yourself unable to DROP the domain. How a domain DROP is handled may vary

from one implementation to another. iAnywhere may do it one way, whereas

PostgreSQL may do it another way. At any rate, you may want to restrict

who can DROP domains. The same applies to character sets, collations, and

translations.

287 Chapter 13: Providing Database Security

Causing SQL statements to be executed
Sometimes the execution of one SQL statement triggers the execution of

another SQL statement, or even a block of statements. SQL supports triggers.

A trigger specifies a trigger event, a trigger action time, and one or more

triggered actions:

 ✓ The trigger event causes the trigger to execute, or fire.

 ✓ The trigger action time determines when the triggered action occurs,

either just before or just after the trigger event.

 ✓ The triggered action is the execution of one or more SQL statements.

 If more than one SQL statement is triggered, the statements must all be

contained within a BEGIN ATOMIC...END structure. The trigger event

can be an INSERT, UPDATE, or DELETE statement.

For example, you can use a trigger to execute a statement that checks the

validity of a new value before an UPDATE is allowed. If the new value is found

to be invalid, the update can be aborted.

A user or role must have the TRIGGER privilege in order to create a trigger.

Here’s an example:

CREATE TRIGGER CustomerDelete BEFORE DELETE
 ON CUSTOMER FOR EACH ROW
 WHEN State = NY
 INSERT INTO CUSTLOG VALUES (‘deleted a NY customer’) ;

Whenever a New York customer is deleted from the CUSTOMER table, an

entry in the log table CUSTLOG records the deletion.

Granting Privileges across Levels
In Chapter 2 I described structured types as one kind of user-defined type

(UDT). Much of the architecture of structured types is derived from the ideas

of object-oriented programming. One of the ideas that comes out of that is

the idea of a hierarchy, in which a type can have subtypes that derive some

of their attributes from the type they come from (their supertype). In addition

to those inherited attributes, they can also have attributes that are exclusively

their own. There can be multiple levels of such a hierarchy, with the type

at the bottom being called a leaf type.

288 Part IV: Controlling Operations

A typed table is a table in which each row stored in the table is an instance of

the associated structured type. A typed table has one column for each attribute

of its associated structured type. The name and data type of the column are

the same as the name and data type of the attribute.

As an example, suppose you are a creator of paintings that you sell through

galleries. In addition to original works of art, you also sell signed, numbered,

limited editions, unsigned unnumbered open editions, and posters. You can

create a structured type for your artwork as follows:

CREATE TYPE artwork (
 artist CHARACTER VARYING (30),
 title CHARACTER VARYING (50),
 description CHARACTER VARYING (256),
 medium CHARACTER VARYING (20),
 creationDate DATE)
 NOT FINAL

 Here’s another case of a feature that is not present on all DBMS products.

PostgreSQL has the CREATE TYPE statement, but Oracle 11g and SQL Server

2005 don’t.

As an artist trying to keep track of your inventory, you want to distinguish

between originals and reproductions. You might further want to distinguish

between different kinds of reproductions. Figure 13-2 shows one possible

use of a hierarchy to facilitate the needed distinctions. The artwork type can

have subtypes, which in turn can have subtypes of their own.

Figure 13-2:
Artwork

table
hierarchy.

Artwork

Original Reproduction

Signed Limited Edition Unsigned Open Edition Poster

289 Chapter 13: Providing Database Security

There is a one-to-one correspondence between the types in the type

hierarchy and the tables in the typed table hierarchy. Standard tables, as

discussed in Chapters 4 and 5, cannot be placed into a hierarchy similar to

the one discussed here for typed tables.

Instead of a primary key, a typed table has a self-referencing column that

guarantees uniqueness, not only for the maximal supertable of a hierarchy,

but also for all its subtables. The self-referencing column is specified by a

REF IS clause in the maximal supertable’s CREATE statement. When the

reference is system generated, uniqueness across the board is guaranteed.

Here’s the code that creates the types and typed tables referred to in

Figure 13-2:

CREATE TYPE artwork (
 artist CHARACTER VARYING (30),
 title CHARACTER VARYING (50),
 description CHARACTER VARYING (256),
 medium CHARACTER VARYING (20),
 creationDate DATE)
 NOT FINAL

Granting the Power to Grant Privileges
The DBA can grant any privileges to anyone. An object owner can grant any

privileges on that object to anyone. But users who receive privileges this way

can’t in turn grant those privileges to someone else. This restriction helps

the DBA or table owner to retain control. Only users that the DBA or object

owner empowers to do so can perform the operation in question.

From a security standpoint, putting limits on the capability to delegate

access privileges makes a lot of sense. Many occasions arise, however, in

which users need the power to delegate their authority. Work can’t come to a

screeching halt every time someone is ill, on vacation, or out to lunch.

 You can trust some users with the power to delegate their access rights to

reliable designated alternates. To pass such a right of delegation to a user, the

GRANT uses the WITH GRANT OPTION clause. The following statement shows

one example of how you can use this clause:

GRANT UPDATE (BonusPct)
 ON BONUSRATE
 TO SalesMgr
 WITH GRANT OPTION ;

290 Part IV: Controlling Operations

Now the sales manager can delegate the UPDATE privilege by issuing the

following statement:

GRANT UPDATE (BonusPct)
 ON BONUSRATE
 TO AsstSalesMgr ;

After the execution of this statement, anyone with the role of assistant sales

manager can make changes to the BonusPct column in the BONUSRATE

table.

 Of course, you make a tradeoff between security and convenience when

you delegate access rights to a designated alternate. The owner of the

BONUSRATE table relinquishes considerable control in granting the UPDATE

privilege to the sales manager by using the WITH GRANT OPTION. The table

owner hopes that the sales manager takes this responsibility seriously and is

careful about passing on the privilege.

Taking Privileges Away
If you have a way to give access privileges to people, you should also have

a way of taking those privileges away. People’s job functions change, and

with these changes their data access needs change. Say an employee leaves

the organization to join a competitor. You should probably revoke all access

privileges previously to that person — immediately.

SQL allows you to remove access privileges by using the REVOKE statement.

This statement acts like the GRANT statement does, except that it has the

reverse effect. The syntax for this statement is as follows:

REVOKE [GRANT OPTION FOR] privilege-list
 ON object
 FROM user-list [RESTRICT|CASCADE] ;

You can use this structure to revoke specified privileges while leaving others

intact. The principal difference between the REVOKE statement and the

GRANT statement is the presence of the optional RESTRICT or CASCADE

keyword in the REVOKE statement.

For example, suppose you used WITH GRANT OPTION when you granted

certain privileges to a user. Eventually, when you want to revoke those

privileges, you can use CASCADE in the REVOKE statement. When you revoke

a user’s privileges in this way, you also yank privileges from anyone to whom

that person had granted privileges.

291 Chapter 13: Providing Database Security

On the other hand, the REVOKE statement with the RESTRICT option works

only if the grantee hasn’t delegated the specified privileges. In that case, the

REVOKE statement revokes the grantee’s privileges just fine. But if the grantee

passed on the specified privileges, the REVOKE statement with the RESTRICT

option doesn’t revoke anything — and instead returns an error code. This is

a clear warning to you that you need to find out who was granted privileges

by the person whose privileges you are trying to revoke. You may or may not

want to revoke that person’s privileges.

You can use a REVOKE statement with the optional GRANT OPTION FOR

clause to revoke only the grant option for specified privileges while enabling

the grantee to retain those privileges for himself. If the GRANT OPTION FOR

clause and the CASCADE keyword are both present, you revoke all privileges

that the grantee granted, along with the grantee’s right to bestow such

privileges — as if you’d never granted the grant option in the first place. If the

GRANT OPTION FOR clause and the RESTRICT clause are both present, one

of two things happens:

 ✓ If the grantee didn’t grant to anyone else any of the privileges you’re

revoking, then the REVOKE statement executes and removes the

grantee’s ability to grant privileges.

 ✓ If the grantee has already granted at least one of the privileges you’re

revoking, the REVOKE statement doesn’t execute and returns an error

code instead.

 The fact that you can grant privileges by using WITH GRANT OPTION,

combined with the fact that you can also selectively revoke privileges, makes

system security much more complex than it appears at first glance. Multiple

grantors, for example, can conceivably grant a privilege to any single user.

If one of those grantors then revokes the privilege, the user still retains that

privilege because of the still-existing grant from another grantor. If a privilege

passes from one user to another by way of the WITH GRANT OPTION, this

situation creates a chain of dependency, in which one user’s privileges depend

on those of another user. If you’re a DBA or object owner, always be aware

that after you grant a privilege by using the WITH GRANT OPTION clause,

that privilege may show up in unexpected places. Revoking the privilege

from unwanted users while letting legitimate users retain the same privilege

may prove challenging. In general, the GRANT OPTION and CASCADE clauses

encompass numerous subtleties. If you use these clauses, check both the SQL

standard and your product documentation — carefully — to ensure that you

understand how the clauses work.

292 Part IV: Controlling Operations

Using GRANT and REVOKE Together
to Save Time and Effort

Enabling multiple privileges for multiple users on selected table columns may

require a lot of typing. Consider this example: The vice president of sales

wants everyone in the sales department to see everything in the CUSTOMER

table, but only sales managers should update, delete, or insert rows. Nobody

should update the CustID field. The sales managers’ names are Tyson, Keith,

and David. You can grant appropriate privileges to these managers with

GRANT statements, as follows:

GRANT SELECT, INSERT, DELETE
 ON CUSTOMER
 TO Tyson, Keith, David ;
GRANT UPDATE
 ON CUSTOMER (Company, CustAddress, CustCity,
 CustState, CustZip, CustPhone, ModLevel)
 TO Tyson, Keith, David ;
GRANT SELECT
 ON CUSTOMER
 TO Jenny, Valerie, Melody, Neil, Rob, Sam, Brandon,
 Walker, Cliff, MichelleT, Allyson, Andrew,
 Scott, MichelleB, Jaime, Linleigh, Matthew, Amanda;

That should do the trick. Everyone has SELECT rights on the CUSTOMER

table. The sales managers have full INSERT and DELETE rights on the table,

and they can update any column but the CustID column.

 Here’s an easier way to get the same result:

GRANT SELECT
 ON CUSTOMER
 TO SalesReps ;
GRANT INSERT, DELETE, UPDATE
 ON CUSTOMER
 TO Managers ;
REVOKE UPDATE
 ON CUSTOMER (CustID)
 FROM Managers ;

Assuming you’ve assigned roles appropriately, it still takes three statements

in this example for the same protection as was given by the three statements

in the preceding example. No one may change data in the CustID column;

only Tyson, Keith, and David have INSERT, DELETE, and UPDATE privileges.

These latter three statements are significantly shorter than those in the

preceding example because you don’t name all the users in the sales depart-

ment, all the managers, or all the columns in the table.

Chapter 14

Protecting Data
In This Chapter
▶ Avoiding database damage

▶ Understanding the problems caused by concurrent operations

▶ Dealing with concurrency problems through SQL mechanisms

▶ Tailoring protection to your needs with SET TRANSACTION

▶ Protecting your data without paralyzing operations

Everyone has heard of Murphy’s Law — usually stated, “If anything can go

wrong, it will.” People joke about this pseudo-law because most of the

time things go fine. At times, you may feel lucky because you’re untouched

by what purports to be one of the basic laws of the universe. When unexpected

problems arise, you probably just recognize what has happened and deal

with it.

In a complex structure, the potential for unanticipated problems shoots way

up (a mathematician might say it “increases approximately as the square of

the complexity”). Thus large software projects are almost always delivered

late and are often loaded with bugs. A nontrivial, multiuser DBMS application

is a large, complex structure. In the course of operation, many things can

go wrong. Methods have been developed for minimizing the impact of these

problems, but the problems can never be eliminated completely. This is good

news for professional people who do database maintenance and repair —

because automating them out of a job will probably never be possible. This

chapter discusses the major things that can go wrong with a database — and

the tools that SQL provides for you to deal with the problems that arise.

Threats to Data Integrity
Cyberspace (including your network) is a nice place to visit, but for the data

living there, it’s no picnic. Data can be damaged or corrupted in a variety of

ways. Chapter 5 discusses problems resulting from bad input data, operator

error, and deliberate destruction. Poorly formulated SQL statements and

improperly designed applications can also damage your data — and figuring

294 Part IV: Controlling Operations

out how doesn’t take much imagination. Two relatively obvious threats —

platform instability and equipment failure — can also trash your data. Both

hazards are detailed in the following sections, as well as problems that can

be caused by concurrent access.

Platform instability
Platform instability is a category of problem that shouldn’t even exist, but

alas, it does. It is most prevalent when you’re running one or more new and

relatively untried components in your system. Problems can lurk in a new

DBMS release, a new operating system version, or new hardware. Conditions

or situations that have never appeared before can show up while you’re

running a critical job. Your system locks up, and your data is damaged.

Beyond directing a few choice words at your computer and the people who

built it, you can’t do much except hope your latest backup was a good one.

 Never put important production work on a system that has any unproven

components. Resist the temptation to put your bread-and-butter work on an

untried beta release of the newest, most function-laden version of your DBMS

or operating system. If you must gain some hands-on experience with a new

software product, do so on a machine that’s completely isolated from your

production network.

Equipment failure
Even well-proven, highly reliable equipment fails sometimes, sending your

data to the great beyond. Everything physical wears out eventually — even

modern, solid-state computers. If such a failure happens while your database

is open and active, you can lose data — and sometimes (even worse) not

realize it. Such a failure will happen sooner or later. If Murphy’s Law is in

operation that day, the failure will happen at the worst possible time.

 One way to protect data against equipment failure is redundancy. Keep extra

copies of everything. For maximum safety (provided your organization can

swing it financially), have duplicate hardware configured exactly like your

production system. Have database and application backups that can be

loaded and run on your backup hardware when needed. If cost constraints

keep you from duplicating everything (which effectively doubles your costs),

at least be sure to back up your database and applications frequently enough

that an unexpected failure doesn’t require you to reenter a large amount of

data. Many DBMS products include replication capabilities. That is all well and

good, but won’t help unless you configure your system to actually use them.

295 Chapter 14: Protecting Data

Another way to avoid the worst consequences of equipment failure is to use

transaction processing — a topic that takes center stage later in this chapter.

A transaction is an indivisible unit of work, so when you use transaction

processing, either an entire transaction is executed or none of it is. This all-

or-nothing approach may seem drastic, but the worst problems arise when a

series of database operations is only partially processed. Thus you’re much

less likely to lose or corrupt your data, even if the machine on which the

database resides is crashing.

Concurrent access
Assume that you’re running proven hardware and software, your data is

good, your application is bug-free, and your equipment is inherently reliable.

Data utopia, right? Not quite. Problems can still arise when multiple people

try to use the same database table at the same time (concurrent access) and

their computers argue about who gets to go first (contention). Multiple-user

database systems must be able to handle the ruckus efficiently.

Transaction interaction trouble
Contention troubles can lurk even in applications that seem straightforward.

Consider this example. You’re writing an order-processing application

that involves four tables: ORDER_MASTER, CUSTOMER, LINE_ITEM, and

INVENTORY. The following conditions apply:

 ✓ The ORDER_MASTER table has OrderNumber as a primary key and

CustomerNumber as a foreign key that references the CUSTOMER table.

 ✓ The LINE_ITEM table has LineNumber as a primary key, ItemNumber

as a foreign key that references the INVENTORY table, and Quantity as

one of its columns.

 ✓ The INVENTORY table has ItemNumber as a primary key; it also has a

field named QuantityOnHand.

 ✓ All three tables have other columns, but they don’t enter into this

example.

Your company policy is to ship each order completely or not at all. No partial

shipments or back orders are allowed. (Relax. It’s a hypothetical situation.)

You write the ORDER_PROCESSING application to process each incoming

order in the ORDER_MASTER table as follows: It first determines whether

your company can ship all the line items. If so, it writes the order and then

decrements the QuantityOnHand column of the INVENTORY table as

required. (This action deletes the affected entries from the ORDER_MASTER

and LINE_ITEM tables.) So far, so good. You set up the application to process

orders in one of two ways when users access the database concurrently:

296 Part IV: Controlling Operations

 ✓ Method 1 processes the INVENTORY row that corresponds to each

row in the LINE_ITEM table. If QuantityOnHand is large enough, the

application decrements that field. If QuantityOnHand is not large

enough, it rolls back the transaction to restore all inventory reductions

made to other LINE_ITEMs in this order.

 ✓ Method 2 checks every INVENTORY row that corresponds to a row in

the order’s LINE_ITEMs. If they are all big enough, then it processes

those items by decrementing them.

Usually, Method 1 is more efficient when you succeed in processing the

order; Method 2 is more efficient when you fail. Thus, if most orders can be

filled most of the time, you’re better off using Method 1. If most orders can’t

be filled most of the time, you’re better off with Method 2. Suppose this

hypothetical application is up and running on a multiuser system that

doesn’t have adequate concurrency control. Yep. Trouble is brewing, all

right. Consider this scenario:

 1. A customer contacts an order processor at your company (User 1) to

order ten bolt cutters and five wide adjustable wrenches.

 2. User 1 uses Method 1 to process the order. The first item in the order

is ten pieces of Item 1 (bolt cutters).

 As it happens, your company has ten bolt cutters in stock, and User 1’s

order takes them all.

 The order-processing function chugs along, decrementing the quantity

of bolt cutters to zero. Then things get (as the Chinese proverb says)

interesting. Another customer contacts your company to process an

order and talks to User 2.

 3. User 2 attempts to process the customer’s small order for one bolt-

cutter — and finds that there are no bolt cutters in stock.

 User 2’s order is rolled back because it can’t be filled.

 4. Meanwhile, User 1 tries to complete his customer’s order and checks

the system for five pieces of Item 37 (wide adjustable wrenches).

 Unfortunately, your company only has four wide adjustable wrenches in

stock. User 1’s complete order (including the bolt cutters) is rolled back

because it can’t be completely filled.

 The INVENTORY table is now back to the state it was in before either

user started operating. Neither order has been filled, even though User

2’s order could have been.

In a slightly different scenario, method 2 fares little better, although for a

different reason. User 1 checks all the items ordered and decides that all the

items ordered are available. Then User 2 comes in and processes an order for

one of those items before User 1 performs the decrement operation; User 1’s

transaction fails.

297 Chapter 14: Protecting Data

Serialization eliminates harmful interactions
No conflict occurs if transactions are executed serially rather than

concurrently. (Taking turns — what a concept.) In the first example, if User

1’s unsuccessful transaction was completed before User 2’s transaction

started, the ROLLBACK function would have made the single bolt cutter

ordered by User 2 available. (The ROLLBACK function rolls back, or undoes

the entire transaction.) If the transactions had run serially in the second

example, User 2 would have had no opportunity to change the quantity

of any item until User 1’s transaction was complete. User 1’s transaction

completes, either successfully or unsuccessfully — and User 2 then sees

how many bolt cutters are left in stock.

If transactions are executed serially (one after the other), they have no

chance of interacting destructively. Execution of concurrent transactions is

serializable if the result is the same as it would be if the transactions were

executed serially.

 Serializing concurrent transactions isn’t a cure-all. You have to make a tradeoff

between performance and protection from harmful interactions. The more you

isolate transactions from each other, the more time it takes to perform each

function. (In cyberspace, as in real life, waiting in line takes time.) Be aware of

the tradeoffs so you can configure your system for adequate protection — but

not more protection than you need. Controlling concurrent access too tightly

can kill overall system performance.

Reducing Vulnerability
to Data Corruption

You can take precautions at several levels to reduce the chances of losing

data through some mishap or unanticipated interaction. You can set up your

DBMS to take some of these precautions for you. When you configure your

DBMS appropriately, it acts like a guardian angel to protect you from harm,

operating behind the scenes; you don’t even know that the DBMS is helping

you out. Your database administrator (DBA) can take other precautions at

his or her discretion that you may not be aware of. As the developer, you can

take precautions as you write your code.

 To avoid a lot of grief, get into the habit of adhering to a few simple principles

automatically so they’re always included in your code or in your interactions

with your database:

 ✓ Use SQL transactions.

 ✓ Tailor the level of isolation to balance performance and protection.

298 Part IV: Controlling Operations

 ✓ Know when and how to set transactions, lock database objects, and

perform backups.

Details coming right up.

Using SQL transactions
The transaction is one of SQL’s main tools for maintaining database integrity.

An SQL transaction encapsulates all the SQL statements that can have an

effect on the database. An SQL transaction is completed with either a COMMIT

or ROLLBACK statement:

 ✓ If the transaction finishes with a COMMIT, the effects of all the statements

in the transaction are applied to the database in one rapid-fire sequence.

 ✓ If the transaction finishes with a ROLLBACK, the effects of all the statements

are rolled back (that is, undone), and the database returns to the state it

was in before the transaction began.

 In this discussion, the term application means either an execution of a

program (whether in Java, C++, or some other programming language) or a

series of actions performed at a terminal during a single logon.

An application can include a series of SQL transactions. The first SQL

transaction begins when the application begins; the last SQL transaction

ends when the application ends. Each COMMIT or ROLLBACK that the

application performs ends one SQL transaction and begins the next. For

example, an application with three SQL transactions has the following form:

Start of the application
 Various SQL statements (SQL transaction-1)
COMMIT or ROLLBACK
 Various SQL statements (SQL transaction-2)
COMMIT or ROLLBACK
 Various SQL statements (SQL transaction-3)
COMMIT or ROLLBACK
End of the application

 I use the phrase SQL transaction because the application may be using other

capabilities (such as for network access) that do other sorts of transactions.

In the following discussion, I use transaction to mean SQL transaction

specifically.

299 Chapter 14: Protecting Data

A normal SQL transaction has an access mode that is either READ-WRITE or

READ-ONLY; it has an isolation level that is SERIALIZABLE, REPEATABLE
READ, READ COMMITTED, or READ UNCOMMITTED. (You can find transaction

characteristics in the “Isolation levels” section, later in this chapter.) The

default characteristics are READ-WRITE and SERIALIZABLE. If you want any

other characteristics, you have to specify them with a SET TRANSACTION

statement such as the following:

SET TRANSACTION READ ONLY ;

or

SET TRANSACTION READ ONLY REPEATABLE READ ;

or

SET TRANSACTION READ COMMITTED ;

You can have multiple SET TRANSACTION statements in an application,

but you can specify only one in each transaction — and it must be the

first SQL statement executed in the transaction. If you want to use a SET
TRANSACTION statement, execute it either at the beginning of the application

or after a COMMIT or ROLLBACK.

 You must perform a SET TRANSACTION at the beginning of every transaction

for which you want nondefault properties, because each new transaction after

a COMMIT or ROLLBACK is given the default properties automatically.

 A SET TRANSACTION statement can also specify a DIAGNOSTICS SIZE,

which determines the number of error conditions for which the implementation

should be prepared to save information. (Such a numerical limit is necessary

because an implementation can detect more than one error during a statement.)

The SQL default for this limit is implementation-defined, and that default is

almost always adequate.

The default transaction
The default SQL transaction has characteristics that are satisfactory for most

users most of the time. If necessary, you can specify different transaction

characteristics with a SET TRANSACTION statement, as described in the

previous section. (SET TRANSACTION gets its own spotlight treatment later

in the chapter.)

300 Part IV: Controlling Operations

The default transaction makes a couple of other implicit assumptions:

 ✓ The database will change over time.

 ✓ It’s always better to be safe than sorry.

It sets the mode to READ-WRITE, which, as you may expect, enables you to

issue statements that change the database. It also sets the isolation level to

SERIALIZABLE, which is the highest level of isolation possible (thus the

safest). The default diagnostics size is implementation-dependent. Look at

your SQL documentation to see what that size is for your system.

Isolation levels
Ideally, the system handles your transactions independently from every

other transaction, even if those transactions happen concurrently with

yours. This concept is referred to as isolation. In the real world of networked

multiuser systems with real-time access requirements, however, complete

isolation is not always feasible. Isolation may exact too large a performance

penalty. A tradeoff question arises: “How much isolation do you really want,

and how much are you willing to pay for it in terms of performance?”

Getting mucked up by a dirty read
The weakest level of isolation is called READ UNCOMMITTED, which allows

the sometimes-problematic dirty read. A dirty read is a situation in which a

change made by one user can be read by a second user before the first user

completes her transaction with a COMMIT statement.

The problem arises when the first user aborts and rolls back the transaction.

The second user’s subsequent operations are now based on an incorrect

value. The classic example of this foul-up can appear in an inventory

application. In “Transaction interaction trouble,” earlier in this chapter,

I outline one possible scenario of this type, but here’s another example: One

user decrements inventory; a second user reads the new (lower) value. The

first user rolls back her transaction (restoring the inventory to its initial

value), but the second user, thinking inventory is low, orders more stock and

possibly creates a severe overstock. And that’s if you’re lucky.

 Don’t use the READ UNCOMMITTED isolation level unless you don’t care about

accurate results.

301 Chapter 14: Protecting Data

You can use READ UNCOMMITTED if you want to generate approximate

statistical data, such as these examples:

 ✓ Maximum delay in filling orders

 ✓ Average age of salespeople who don’t make quota

 ✓ Average age of new employees

In many such cases, approximate information is sufficient; the extra cost

of the concurrency control required to give an exact result — mainly a

performance slowdown — may not be worthwhile.

Getting bamboozled by a nonrepeatable read
The next highest level of isolation is READ COMMITTED: A change made by

another transaction isn’t visible to your transaction until the other user has

finalized the other transaction with the COMMIT statement. This level gives

you a better result than you can get from READ UNCOMMITTED, but it’s still

subject to a nonrepeatable read — a serious problem that happens like a

comedy of errors.

Consider the classic inventory example:

 1. User 1 queries the database to see how many items of a particular

product are in stock. The number is ten.

 2. At almost the same time, User 2 starts, and then finalizes, a transaction

with the COMMIT statement that records an order for ten units of that

same product, decrementing the inventory to zero.

 3. Now User 1, having seen that ten are available, tries to order five of

them. Five are no longer left, however, because User 2 has raided the

pantry.

User 1’s initial read of the quantity available is not repeatable. Because the

quantity has changed out from under User 1, any assumptions made on the

basis of the initial read are not valid.

Risking the phantom read
An isolation level of REPEATABLE READ guarantees that the nonrepeatable-

read problem doesn’t happen. This isolation level, however, is still haunted

by the phantom read — a problem that arises when the data a user is reading

changes in response to another transaction (and does not show the change

on-screen) while the user is reading it.

302 Part IV: Controlling Operations

Suppose, for example, that User 1 issues a command whose search condition

(the WHERE clause or HAVING clause) selects a set of rows — and, immediately

afterward, User 2 performs and commits an operation that changes the data

in some of those rows. Those data items met User 1’s search condition at the

start of this snafu, but now they no longer do. Maybe some other rows that

first did not meet the original search condition now do meet it. User 1, whose

transaction is still active, has no inkling of these changes; the application

behaves as if nothing has happened. The hapless User 1 issues another SQL

statement with the same search conditions as the original one, expecting

to retrieve the same rows. Instead, the second operation is performed on

rows other than those used in the first operation. Reliable results go out the

window, spirited away by the phantom read.

Getting a reliable (if slower) read
An isolation level of SERIALIZABLE is not subject to any of the problems

that beset the other three levels. At this level, concurrent transactions can be

run without interfering with each other, and results are the same as they’d

be if the transactions had been run serially — one after the other — rather

than in parallel. If you’re running at this isolation level, hardware or software

problems can still cause your transaction to fail, but at least you don’t

have to worry about the validity of your results if you know your system is

functioning properly.

Of course, superior reliability may come at the price of slower performance,

so we’re back in Tradeoff City. Table 14-1 sums up the tradeoff terms,

showing the four isolation levels and the problems they solve.

Table 14-1 Isolation Levels and Problems Solved
Isolation Level Problems Solved

READ UNCOMMITTED None

READ COMMITTED Dirty read

REPEATABLE READ Dirty read

Nonrepeatable read

SERIALIZABLE Dirty read

Nonrepeatable read

Phantom read

303 Chapter 14: Protecting Data

The implicit transaction-starting
statement
Some SQL implementations require that you signal the beginning of a

transaction with an explicit statement, such as BEGIN or BEGIN TRAN.

Standard SQL does not. If you don’t have an active transaction and you issue

a statement that calls for one, standard SQL starts a default transaction for

you. CREATE TABLE, SELECT, and UPDATE are examples of statements that

require the context of a transaction. Issue one of these statements, and

standard SQL starts a transaction for you.

SET TRANSACTION
On occasion, you may want to use transaction characteristics that are

different from those set by default. You can specify different characteristics

with a SET TRANSACTION statement before you issue your first statement

that actually requires a transaction. The SET TRANSACTION statement

enables you to specify mode, isolation level, and diagnostics size.

To change all three, for example, you may issue the following statement:

SET TRANSACTION
 READ ONLY,
 ISOLATION LEVEL READ UNCOMMITTED,
 DIAGNOSTICS SIZE 4 ;

With these settings, you can’t issue any statements that change the database

(READ ONLY), and you have set the lowest and most hazardous isolation

level (READ UNCOMMITTED). The diagnostics area has a size of 4. You are

making minimal demands on system resources.

In contrast, you may issue this statement:

SET TRANSACTION
 READ WRITE,
 ISOLATION LEVEL SERIALIZABLE,
 DIAGNOSTICS SIZE 8 ;

304 Part IV: Controlling Operations

These settings enable you to change the database; they also give you the

highest level of isolation — and a larger diagnostics area. The tradeoff is that

they also make larger demands on system resources. Depending on your

implementation, these settings may turn out to be the same as those used by

the default transaction. Naturally, you can issue SET TRANSACTION statements

with other choices for isolation level and diagnostics size.

 Set your transaction isolation level as high as you need to, but no higher.

Always setting your isolation level to SERIALIZABLE just to be on the safe

side may seem reasonable, but it isn’t so for all systems. Depending on your

implementation (and on what you’re doing), you may not need to do so — and

performance can suffer significantly if you do. If you don’t intend to change

the database in your transaction, for example, set the mode to READ ONLY.

Bottom line: Don’t tie up any system resources that you don’t need.

COMMIT
Although SQL doesn’t require an explicit transaction-starting keyword, it has

two that terminate a transaction: COMMIT and ROLLBACK. Use COMMIT when

you’ve come to the end of the transaction and you want to make permanent

the changes (if any) that you made to the database. You may include the

optional keyword WORK (COMMIT WORK) if you want. If the database

encounters an error or the system crashes while a COMMIT is in progress,

you may have to roll the transaction back and try it again.

ROLLBACK
When you come to the end of a transaction, you may decide that you don’t

want to make permanent the changes that have occurred during the

transaction. In such a case, you should restore the database to the state it

was in before the transaction began. To do this, issue a ROLLBACK statement.

ROLLBACK is a fail-safe mechanism.

 Even if the system crashes while a ROLLBACK is in progress, you can restart

the ROLLBACK after you restore the system; the rollback will continue its

work, restoring the database to its pre-transaction state.

305 Chapter 14: Protecting Data

Locking database objects
The isolation level — set either by default or by a SET TRANSACTION

statement — tells the DBMS how zealous to be in protecting your work from

interaction with the work of other users. The main protection from harmful

transactions that the DBMS gives to you is its application of locks to the

database objects you’re using. Here are a few examples:

 ✓ The table row you’re accessing is locked, preventing others from

accessing that record while you’re using it.

 ✓ An entire table is locked, if you’re performing an operation that could

affect the whole table.

 ✓ Reading, but not writing, is allowed. Sometimes writing is allowed but

not reading.

Each implementation handles locking in its own way. Some implementations

are more bulletproof than others, but most up-to-date systems protect you

from the worst problems that can arise in a concurrent-access situation.

Backing up your data
Backing up data is a protective action that your DBA should perform on a

regular basis. All system elements should be backed up at intervals that

depend on how frequently they’re updated. If your database is updated daily,

it should be backed up daily. Your applications, forms, and reports may

change, too, though less frequently. Whenever you make changes to them,

your DBA should back up the new versions.

 Keep several generations of backups. Sometimes, database damage doesn’t

become evident until some time has passed. To return to the last good

version, you may have to go back several backup versions.

You can perform a backup in one of several different ways:

 ✓ Use SQL to create backup tables and copy data into them.

 ✓ Use an implementation-defined mechanism that backs up the whole

database or portions of it. Using such a mechanism is generally more

convenient and efficient than using SQL.

306 Part IV: Controlling Operations

 ✓ Your installation may have a mechanism in place for backing up

everything, including databases, programs, documents, spreadsheets,

utilities, and computer games. If so, you may not have to do anything

beyond assuring yourself that the backups are performed frequently

enough to protect you.

Savepoints and subtransactions
Ideally, transactions should be atomic — as indivisible as the ancient Greeks

thought atoms were. However, atoms are not really indivisible — and, starting

with SQL:1999, database transactions are not really atomic. A transaction is

divisible into multiple subtransactions. Each subtransaction is terminated by a

SAVEPOINT statement. The SAVEPOINT statement is used in conjunction with

the ROLLBACK statement. Before the introduction of savepoints (the point in

the program where the SAVEPOINT statement takes effect), the ROLLBACK

statement could be used only to cancel an entire transaction. Now it can be

used to roll back a transaction to a savepoint within the transaction. What

good is this, you might ask?

Granted, the primary use of the ROLLBACK statement is to prevent data

corruption if a transaction is interrupted by an error condition. And no,

rolling back to a savepoint does not make sense if an error occurred while a

transaction was in progress; you’d want to roll back the entire transaction to

bring the database back to the state it was in before the transaction started.

But you might have other reasons for rolling back part of a transaction.

Suppose you’re performing a complex series of operations on your data.

Partway through the process, you receive results that lead you to conclude

that you’re going down an unproductive path. If you were thinking ahead

enough to put a SAVEPOINT statement just before you started on that path,

you can roll back to the savepoint and try another option. Provided the rest

of your code was in good shape before you set the savepoint, this approach

works better than aborting the current transaction and starting a new one

just to try a new path.

To insert a savepoint into your SQL code, use the following syntax:

SAVEPOINT savepoint_name ;

You can cause execution to roll back to that savepoint with code such as the

following:

ROLLBACK TO SAVEPOINT savepoint_name ;

Some SQL implementations may not include the SAVEPOINT statement. If

your implementation is one of those, you won’t be able to use it.

307 Chapter 14: Protecting Data

Constraints Within Transactions
Ensuring the validity of the data in your database means doing more than

just making sure the data is of the right type. Perhaps some columns, for

example, should never hold a null value — and maybe others should hold

only values that fall within a certain range. Such restrictions are constraints,
as discussed in Chapter 5.

Constraints are relevant to transactions because they can conceivably

prevent you from doing what you want. For example, suppose that you want

to add data to a table that contains a column with a NOT NULL constraint.

One common method of adding a record is to append a blank row to your

table and then insert values into it later. The NOT NULL constraint on one

column, however, causes the append operation to fail. SQL doesn’t allow you

Having an ACID database
You may hear database designers say they
want their databases to have ACID. Well, no,
they’re not planning to zonk their creations with
a 1960s psychedelic or dissolve the data they
contain into a bubbly mess. ACID is simply an
acronym for Atomicity, Consistency, Isolation,
and Durability. These four characteristics
are necessary to protect a database from
corruption:

 ✓ Atomicity: Database transactions should
be atomic, in the classic sense of the
word: The entire transaction is treated as
an indivisible unit. Either it is executed in
its entirety (committed), or the database is
restored (rolled back) to the state it would
have been in if the transaction had not been
executed.

 ✓ Consistency: Oddly enough, the meaning
of consistency is not consistent; it varies
from one application to another. When you
transfer funds from one account to another
in a banking application, for example, you
want the total amount of money from both

accounts at the end of the transaction to be
the same as it was at the beginning of the
transaction. In a different application, your
criterion for consistency might be different.

 ✓ Isolation: Ideally, database transactions
should be totally isolated from other trans-
actions that execute at the same time. If
the transactions are serializable, then total
isolation is achieved. If the system has to
process transactions at top speed, some-
times lower levels of isolation can enhance
performance.

 ✓ Durability: After a transaction has commit-
ted or rolled back, you should be able to
count on the database being in the proper
state: well stocked with uncorrupted, reli-
able, up-to-date data. Even if your system
suffers a hard crash after a commit — but
before the transaction is stored to disk —
a durable DBMS can guarantee that upon
recovery from the crash, the database can
be restored to its proper state.

308 Part IV: Controlling Operations

to add a row that has a null value in a column with a NOT NULL constraint,

even though you plan to add data to that column before your transaction

ends. To address this problem, SQL enables you to designate constraints as

either DEFERRABLE or NOT DEFERRABLE.

Constraints that are NOT DEFERRABLE are applied immediately. You can set

DEFERRABLE constraints to be either initially DEFERRED or IMMEDIATE. If a

DEFERRABLE constraint is set to IMMEDIATE, it acts like a NOT DEFERRABLE

constraint — it is applied immediately. If a DEFERRABLE constraint is set to

DEFERRED, it is not enforced. (No, your code doesn’t have an attitude problem;

it’s simply following orders.)

To append blank records or perform other operations that may violate

DEFERRABLE constraints, you can use a statement similar to the following:

SET CONSTRAINTS ALL DEFERRED ;

This statement puts all DEFERRABLE constraints in the DEFERRED condition. It

does not affect the NOT DEFERRABLE constraints. After you have performed

all operations that could violate your constraints — and the table reaches a

state that doesn’t violate them — you can reapply them. The statement that

reapplies your constraints looks like this:

SET CONSTRAINTS ALL IMMEDIATE ;

If you made a mistake and any of your constraints are still being violated, you

find out as soon as this statement takes effect.

If you do not explicitly set your DEFERRED constraints to IMMEDIATE, SQL

does it for you when you attempt to COMMIT your transaction. If a violation is

still present at that time, the transaction does not COMMIT; instead, SQL gives

you an error message.

SQL’s handling of constraints protects you from entering invalid data (or an

invalid absence of data — which is just as important) while giving you the

flexibility to violate constraints temporarily while a transaction is still active.

Consider a payroll example to see why being able to defer the application of

constraints is important.

Assume that an EMPLOYEE table has columns EmpNo, EmpName, DeptNo,

and Salary. EMPLOYEE.DeptNo is a foreign key that references the DEPT

table. Assume also that the DEPT table has columns DeptNo and DeptName.

DeptNo is the primary key.

In addition, you want to have a table like DEPT that also contains a Payroll

column which (in turn) holds the sum of the Salary values for employees in

each department.

309 Chapter 14: Protecting Data

Assuming you are using a DBMS that supports this SQL standard functionality,

you can create the equivalent of this table with the following view:

CREATE VIEW DEPT2 AS
 SELECT D.*, SUM(E.Salary) AS Payroll
 FROM DEPT D, EMPLOYEE E
 WHERE D.DeptNo = E.DeptNo
 GROUP BY D.DeptNo ;

You can also define this same view as follows:

CREATE VIEW DEPT3 AS
 SELECT D.*,
 (SELECT SUM(E.Salary)
 FROM EMPLOYEE E
 WHERE D.DeptNo = E.DeptNo) AS Payroll
 FROM DEPT D ;

But suppose that, for efficiency, you don’t want to calculate the SUM every

time you reference DEPT3.Payroll. Instead, you want to store an actual

Payroll column in the DEPT table. You will then update that column every

time you change a Salary.

To make sure that the Salary column is accurate, you can include a

CONSTRAINT in the table definition:

CREATE TABLE DEPT
 (DeptNo CHAR(5),
 DeptName CHAR(20),
 Payroll DECIMAL(15,2),
 CHECK (Payroll = (SELECT SUM(Salary)
 FROM EMPLOYEE E
 WHERE E.DeptNo= DEPT.DeptNo)));

Now, suppose you want to increase the Salary of employee 123 by 100. You

can do it with the following update:

UPDATE EMPLOYEE
 SET Salary = Salary + 100
 WHERE EmpNo = ‘123’ ;

With this approach, you must remember to do the following as well:

UPDATE DEPT D
 SET Payroll = Payroll + 100
 WHERE D.DeptNo = (SELECT E.DeptNo
 FROM EMPLOYEE E
 WHERE E.EmpNo = ‘123’) ;

(You use the subquery to reference the DeptNo of employee 123.)

310 Part IV: Controlling Operations

But there’s a problem: Constraints are checked after each statement. In

principle, all constraints are checked. In practice, implementations check

only the constraints that reference the values modified by the statement.

After the first preceding UPDATE statement, the implementation checks

all constraints that reference any values that the statement modifies. This

includes the constraint defined in the DEPT table, because that constraint

references the Salary column of the EMPLOYEE table and the UPDATE

statement is modifying that column. After the first UPDATE statement, that

constraint is violated. You assume that before you execute the UPDATE

statement the database is correct, and each Payroll value in the DEPT

table equals the sum of the Salary values in the corresponding columns of

the EMPLOYEE table. When the first UPDATE statement increases a Salary

value, this equality is no longer true. The second UPDATE statement corrects

this — and again leaves the database values in a state for which the

constraint is True. Between the two updates, the constraint is False.

The SET CONSTRAINTS DEFERRED statement lets you temporarily disable

or suspend all constraints, or only specified constraints. The constraints

are deferred until either you execute a SET CONSTRAINTS IMMEDIATE

statement or you execute a COMMIT or ROLLBACK statement. So you

surround the previous two UPDATE statements with SET CONSTRAINTS

statements. The code looks like this:

SET CONSTRAINTS DEFERRED ;
UPDATE EMPLOYEE
 SET Salary = Salary + 100
 WHERE EmpNo = ‘123’ ;
UPDATE DEPT D
 SET Payroll = Payroll + 100
 WHERE D.DeptNo = (SELECT E.DeptNo
 FROM EMPLOYEE E
 WHERE E.EmpNo = ‘123’) ;
SET CONSTRAINTS IMMEDIATE ;

This procedure defers all constraints. If you insert new rows into DEPT, the

primary keys won’t be checked; you’ve removed protection that you may

want to keep. Instead, you should specify the constraints that you want to

defer. To do this, name the constraints when you create them:

CREATE TABLE DEPT
 (DeptNo CHAR(5),
 DeptName CHAR(20),
 Payroll DECIMAL(15,2),
 CONSTRAINT PayEqSumsal
 CHECK (Payroll = SELECT SUM(Salary)
 FROM EMPLOYEE E
 WHERE E.DeptNo = DEPT.DeptNo)) ;

311 Chapter 14: Protecting Data

With constraint names in place, you can then reference your constraints

individually:

SET CONSTRAINTS PayEqSumsal DEFERRED;
UPDATE EMPLOYEE
 SET Salary = Salary + 100
 WHERE EmpNo = ‘123’ ;
UPDATE DEPT D
 SET Payroll = Payroll + 100
 WHERE D.DeptNo = (SELECT E.DeptNo
 FROM EMPLOYEE E
 WHERE E.EmpNo = ‘123’) ;
SET CONSTRAINTS PayEqSumsal IMMEDIATE;

Without a constraint name in the CREATE statement, SQL generates one

implicitly. That implicit name is in the schema information (catalog) tables.

But specifying the names explicitly is more straightforward.

Now suppose that you mistakenly specified an increment value of 1000 in

the second UPDATE statement. This value is allowed in the UPDATE statement

because the constraint has been deferred. But when you execute SET
CONSTRAINTS . . . IMMEDIATE, the specified constraints are checked.

If they fail, SET CONSTRAINTS raises an exception. If, instead of a SET
CONSTRAINTS . . . IMMEDIATE statement, you execute COMMIT and the

constraints are found to be False, COMMIT instead performs a ROLLBACK.

 Bottom line: You can defer the constraints only within a transaction. When the

transaction is terminated by a ROLLBACK or a COMMIT, the constraints

are both enabled and checked. The SQL capability of deferring constraints

 is meant to be used within a transaction. If used properly, the terminated

transaction doesn’t create any data that violates a constraint available to

other transactions.

312 Part IV: Controlling Operations

Chapter 15

Using SQL within Applications
In This Chapter
▶ Using SQL within an application

▶ Combining SQL with procedural languages

▶ Avoiding interlanguage incompatibilities

▶ Embedding SQL in your procedural code

▶ Calling SQL modules from your procedural code

▶ Invoking SQL from a RAD tool

Previous chapters address SQL statements mostly in isolation. For

example, questions are asked about data, and SQL queries are developed

that retrieve answers to the questions. This mode of operation, interactive
SQL, is fine for discovering what SQL can do — but it’s not how SQL is

typically used.

Even though SQL syntax can be described as similar to that of English, it isn’t

an easy language to master. The overwhelming majority of computer users

are not fluent in SQL — and you can reasonably assume that they never will

be, even if this book is wildly successful. When a database question comes up,

Joe User probably won’t sit down at his terminal and enter an SQL SELECT

statement to find the answer. Systems analysts and application developers

are the people who are likely to be comfortable with SQL, and they typically

don’t make a career out of entering ad hoc queries into databases. Instead,

they develop applications to make those queries.

 If you plan to perform the same operation repeatedly, you shouldn’t have to

rebuild it every time from the console. Write an application to do the job and

then run it as often as you like. SQL can be a part of an application, but when it

is, it works a little differently than it does in an interactive mode.

314 Part IV: Controlling Operations

SQL in an Application
In Chapter 2, SQL is presented to you as an incomplete programming

language. To use SQL in an application, you have to combine it with a

procedural language such as Visual Basic, C, C++, C#, Java, COBOL, or

Python. Because of the way it’s structured, SQL has some strengths and

weaknesses. Procedural languages are structured differently from SQL,

and consequently have different strengths and weaknesses.

Happily, the strengths of SQL tend to make up for the weaknesses of procedural

languages, and the strengths of the procedural languages are in those areas

where SQL is weak. By combining the two, you can build powerful applications

with a broad range of capabilities. Recently, object-oriented rapid application
development (RAD) tools, such as Microsoft’s Visual Studio and the open-source

Eclipse environment, have appeared, which incorporate SQL code into

applications developed by manipulating on-screen objects instead of writing

procedural code.

Keeping an eye out for the asterisk
In the interactive SQL discussions in previous chapters, the asterisk (*)

serves as a shorthand substitute for “all columns in the table.” If the table

has numerous columns, the asterisk can save a lot of typing. However, using

the asterisk this way is problematic when you use SQL in an application

program. After your application is written, you or someone else may add new

columns to a table or delete old ones. Doing so changes the meaning of “all

columns.” When your application specifies “all columns” with an asterisk, it

may retrieve columns other than those it thinks it’s getting.

Such a change to a table doesn’t affect existing programs until they have to

be recompiled to fix a bug or make some change, perhaps months after the

change was made. Then the effect of the * wildcard expands to include all the

now-current columns. This change may cause the application to fail in a way

unrelated to the bug fix (or other change made), creating your own personal

debugging nightmare.

 To be safe, specify all column names explicitly in an application instead

of using the asterisk wildcard. (For more about wildcard characters, see

Chapter 6.)

315 Chapter 15: Using SQL within Applications

SQL strengths and weaknesses
SQL is strong in data retrieval. If important information is buried somewhere

in a single-table or multitable database, SQL gives you the tools you need to

retrieve it. You don’t need to know the order of the table’s rows or columns

because SQL doesn’t deal with rows or columns individually. The SQL

transaction-processing facilities ensure that your database operations are

unaffected by any other users who may be simultaneously accessing the

same tables that you are.

A major weakness of SQL is its rudimentary user interface. It has no

provision for formatting screens or reports. It accepts command lines from

the keyboard and sends retrieved values to the terminal, one row at a time.

Sometimes a strength in one context is a weakness in another. One strength

of SQL is that it can operate on an entire table at once. Whether the table

has one row, a hundred rows, or a hundred thousand rows, a single SELECT

statement can extract the data you want. SQL can’t easily operate on one

row at a time, however — and sometimes you do want to deal with each row

individually. In such cases, you can use SQL’s cursor facility (described in

Chapter 18) or you can use a procedural host language.

Procedural languages’ strengths
and weaknesses
In contrast to SQL, procedural languages are designed for one-row-at-a-time

operations, which give the application developer precise control over

the way a table is processed. This detailed control is a great strength of

procedural languages. But a corresponding weakness is that the application

developer must have detailed knowledge about how the data is stored in the

database tables. The order of the database’s columns and rows is significant

and must be taken into account.

 Because of the step-by-step nature of procedural languages, they have the

flexibility to produce user-friendly screens for data entry and viewing. You

 can also produce sophisticated printed reports, with any desired layout.

316 Part IV: Controlling Operations

Problems in combining SQL
with a procedural language
It makes sense to try to combine SQL and procedural languages in such a

way that you can benefit from their mutual strengths and not be penalized by

their combined weaknesses. As valuable as such a combination may be, you

must overcome some challenges before you can achieve this perfect marriage

in a practical way.

Contrasting operating modes
A big problem in combining SQL with a procedural language is that SQL

operates on tables a set at a time, whereas procedural languages work on

them a row at a time. Sometimes this issue isn’t a big deal. You can separate

set operations from row operations, doing each with the appropriate tool.

But if you want to search a table for records meeting certain conditions and

perform different operations on the records depending on whether they meet

the conditions, you may have a problem. Such a process requires both the

retrieval power of SQL and the branching capability of a procedural language.

Embedded SQL gives you this combination of capabilities. You can simply

embed SQL statements at strategic locations within a program that you have

written in a conventional procedural language (see “Embedded SQL,” later in

this chapter, for more information).

Data type incompatibilities
Another hurdle to the smooth integration of SQL with any procedural language

is that SQL’s data types differ from the data types of all the major procedural

languages. This circumstance shouldn’t be surprising, because the data types

defined for any procedural language are different from the types for the other

procedural languages.

 You can look high and low, but you won’t find any standardization of data

types across languages. In SQL releases before SQL-92, data-type incompatibility

was a major concern. In SQL-92 (and also in subsequent releases of the SQL

standard), the CAST statement addresses the problem. Chapter 8 explains

how you can use CAST to convert a data item from the procedural language’s

data type to one recognized by SQL, as long as the data item itself is compatible

with the new data type.

317 Chapter 15: Using SQL within Applications

Hooking SQL into Procedural Languages
Although you face some potential hurdles when you integrate SQL with

procedural languages, mark my words — the integration can be done

successfully. In fact, in many instances, you must integrate SQL with

procedural languages if you intend to produce the desired result in the

allotted time — or at all. Luckily, you can use any of several methods for

combining SQL with procedural languages. Three of the methods —

embedded SQL, module language, and RAD tools — are outlined in the next

few sections.

Embedded SQL
The most common method of mixing SQL with procedural languages is called

embedded SQL. Wondering how embedded SQL works? Take one look at the

name and you have the basics down: Drop SQL statements into the middle of

a procedural program, wherever you need them.

Of course, as you may expect, an SQL statement that suddenly appears in

the middle of a C program can present a challenge for a compiler that isn’t

expecting it. For that reason, programs containing embedded SQL are usually

passed through a preprocessor before being compiled or interpreted. The

EXEC SQL directive warns the preprocessor of the imminent appearance of

SQL code.

As an example of embedded SQL, look at a program written in Oracle’s

Pro*C version of the C language. The program, which accesses a company’s

EMPLOYEE table, prompts the user for an employee name and then displays

that employee’s salary and commission. It then prompts the user for new

salary and commission data — and updates the employee table with it:

EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR uid[20];
 VARCHAR pwd[20];
 VARCHAR ename[10];
 FLOAT salary, comm;
 SHORT salary_ind, comm_ind;
EXEC SQL END DECLARE SECTION;
main()

318 Part IV: Controlling Operations

{
 int sret; /* scanf return code */
 /* Log in */
 strcpy(uid.arr,”FRED”); /* copy the user name */
 uid.len=strlen(uid.arr);
 strcpy(pwd.arr,”TOWER”); /* copy the password */
 pwd.len=strlen(pwd.arr);
 EXEC SQL WHENEVER SQLERROR STOP;
 EXEC SQL WHENEVER NOT FOUND STOP;
 EXEC SQL CONNECT :uid;
 printf(“Connected to user: percents \n”,uid.arr);
 printf(“Enter employee name to update: “);
 scanf(“percents”,ename.arr);
 ename.len=strlen(ename.arr);
 EXEC SQL SELECT SALARY,COMM INTO :salary,:comm
 FROM EMPLOY
 WHERE ENAME=:ename;
 printf(“Employee: percents salary: percent6.2f comm:
 percent6.2f \n”,
 ename.arr, salary, comm);
 printf(“Enter new salary: “);
 sret=scanf(“percentf”,&salary);
 salary_ind = 0;
 if (sret == EOF !! sret == 0) /* set indicator */
 salary_ind =-1; /* Set indicator for NULL */
 printf(“Enter new commission: “);
 sret=scanf(“percentf”,&comm);
 comm_ind = 0; /* set indicator */
 if (sret == EOF !! sret == 0)
 comm_ind=-1; /* Set indicator for NULL */
 EXEC SQL UPDATE EMPLOY
 SET SALARY=:salary:salary_ind
 SET COMM=:comm:comm_ind
 WHERE ENAME=:ename;
 printf(“Employee percents updated. \n”,ename.arr);
 EXEC SQL COMMIT WORK;
 exit(0);
}

You don’t have to be an expert in C to understand the essence of what this

program is doing (and how it intends to do it). Here’s a rundown of the order

in which the statements execute:

 1. SQL declares host variables.

 2. C code controls the user login procedure.

 3. SQL sets up error handling and connects to the database.

319 Chapter 15: Using SQL within Applications

 4. C code solicits an employee name from the user and places it in a

variable.

 5. An SQL SELECT statement retrieves the data for the named employee’s

salary and commission — and stores the data in the host variables

:salary and :comm.

 6. C then takes over again and displays the employee’s name, salary, and

commission and then solicits new values for salary and commission. It

also checks to see whether an entry has been made, and if one has not,

it sets an indicator.

 7. SQL updates the database with the new values.

 8. C then displays an Operation complete message.

 9. SQL commits the transaction, and C finally exits the program.

 You can mix the commands of two languages like this because of the

preprocessor. The preprocessor separates the SQL statements from the

host language commands, placing the SQL statements in a separate external

routine. Each SQL statement is replaced with a host-language CALL of the

corresponding external routine. The language compiler can now do its job.

 The way the SQL part is passed to the database depends on the implementation.

You, as the application developer, don’t have to worry about any of this. The

preprocessor takes care of it. You should be concerned about a few things,

however, that do not appear in interactive SQL — things such as host variables

and incompatible data types.

Declaring host variables
 Some information must be passed between the host language program and

the SQL segments. You pass this data with host variables. In order for SQL to

recognize the host variables, you must declare them before you use them.

Declarations are included in a declaration segment that precedes the program

segment. The declaration segment is announced by the following directive:

EXEC SQL BEGIN DECLARE SECTION ;

The end of the declaration segment is signaled by:

EXEC SQL END DECLARE SECTION ;

Every SQL statement must be preceded by an EXEC SQL directive. The end

of an SQL segment may or may not be signaled by a terminator directive. In

COBOL, the terminator directive is “END-EXEC”, and in C, it’s a semicolon.

320 Part IV: Controlling Operations

Converting data types
Depending on the compatibility of the data types supported by the host

language and those supported by SQL, you may have to use CAST to convert

certain types. You can use host variables that have been declared in the

DECLARE SECTION. Remember to prefix host variable names with a colon

(:) when you use them in SQL statements, as in the following example:

INSERT INTO FOODS
 (FOODNAME, CALORIES, PROTEIN, FAT, CARBOHYDRATE)
 VALUES
 (:foodname, :calories, :protein, :fat, :carbo) ;

Module language
Module language provides another method for using SQL with a procedural

programming language. With module language, you explicitly put all the SQL

statements into a separate SQL module.

 An SQL module is simply a list of SQL statements. Each SQL statement is

included in an SQL procedure and is preceded by a specification of the

procedure’s name and the number and types of parameters.

Each SQL procedure contains only one SQL statement. In the host

program, you explicitly call an SQL procedure at whatever point in the

host program you want to execute the SQL statement in that procedure. You

call the SQL procedure as if it were a subprogram in the host language.

Thus you can use an SQL module and the associated host program to

explicitly hand-code the result of the SQL preprocessor for embedded syntax.

 Embedded SQL is much more common than module language. Most

vendors offer some form of module language, but few emphasize it in their

documentation. Module language does have several advantages:

 ✓ SQL programmers don’t have to be experts in the procedural language.

Because the SQL is completely separated from the procedural language,

you can hire the best SQL programmers available to write your SQL

modules, whether they have any experience with your procedural

language or not. In fact, you can even defer deciding which procedural

language to use until after your SQL modules are written and debugged.

 ✓ You can hire the best programmers who work in your procedural

language, even if they know nothing about SQL. It stands to reason

that if your SQL experts don’t have to be procedural language experts,

certainly the procedural language experts don’t have to worry themselves

over learning SQL.

321 Chapter 15: Using SQL within Applications

 ✓ No SQL is mixed in with the procedural code, so your procedural

language debugger works. This can save you considerable development

time.

 Once again, what can be looked at as an advantage from one perspective may

be a disadvantage from another. Because the SQL modules are separated

from the procedural code, following the flow of the logic isn’t as easy as it is in

embedded SQL when you’re trying to understand how the program works.

Module declarations
The syntax for the declarations in a module is as follows:

MODULE [module-name]
 [NAMES ARE character-set-name]
 LANGUAGE {ADA|C|COBOL|FORTRAN|MUMPS|PASCAL|PLI|SQL}
 [SCHEMA schema-name]
 [AUTHORIZATION authorization-id]
 [temporary-table-declarations...]
 [cursor-declarations...]
 [dynamic-cursor-declarations...]
 procedures...

The square brackets indicate that the module name is optional. Naming it

anyway is a good idea if you want to keep things from getting too confusing.

 The optional NAMES ARE clause specifies a character set. If you don’t include

a NAMES ARE clause, the default set of SQL characters for your implementation

is used. The LANGUAGE clause tells the module which language it will be

called from. The compiler must know what the calling language is, because it

will make the SQL statements appear to the calling program as if they are

subprograms in that program’s language.

Although the SCHEMA clause and the AUTHORIZATION clause are both

optional, you must specify at least one of them. Or you can specify both. The

SCHEMA clause specifies the default schema, and the AUTHORIZATION clause

specifies the authorization identifier. The authorization identifier establishes

the privileges you have. If you don’t specify an authorization ID, the DBMS

uses the authorization ID associated with your session to determine the

privileges that your module is allowed. If you don’t have the privileges

needed to perform the operation your procedure calls for, your procedure

isn’t executed.

 If your procedure requires temporary tables, declare them with the temporary-

table declaration clause. Declare cursors and dynamic cursors before you

declare any procedures that use them. Declaring a cursor after a procedure

starts executing is permissible as long as that procedure doesn’t use the

cursor. Declaring cursors to be used by later procedures may make sense.

(You can find more in-depth information on cursors in Chapter 18.)

322 Part IV: Controlling Operations

Module procedures
Following all the declarations I discuss in the previous section, the functional

parts of the module are the procedures. An SQL module language procedure

has a name, parameter declarations, and executable SQL statements. The

procedural language program calls the procedure by its name and passes

values to it through the declared parameters. Procedure syntax looks like

this:

PROCEDURE procedure-name
 (parameter-declaration [, parameter-declaration]...
 SQL statement ;
 [SQL statements] ;

The parameter declaration should take the following form:

parameter-name data-type

or

SQLSTATE

The parameters you declare may be input parameters, output parameters,

or both. SQLSTATE is a status parameter through which errors are reported.

(You can delve deeper into parameters by heading to Chapter 20.)

Object-oriented RAD tools
By using state-of-the-art RAD tools, you can develop sophisticated applications

without knowing how to write a single line of code in C++, C#, Python, Java,

or any procedural language, for that matter. Instead, you choose objects from

a library and place them in appropriate spots on the screen.

 Objects of different standard types have characteristic properties, and

selected events are appropriate for each object type. You can also associate a

method with an object. The method is a procedure written in (well, yeah)

a procedural language. Building useful applications without writing any

methods is possible, however.

 Although you can build complex applications without using a procedural

language, sooner or later you’ll probably need SQL. SQL has a richness of

expression that is difficult, if not impossible, to duplicate with object-oriented

programming. As a result, full-featured RAD tools offer you a mechanism for

injecting SQL statements into your object-oriented applications. Microsoft’s

Visual Studio is an example of an object-oriented development environment

323 Chapter 15: Using SQL within Applications

that offers SQL capability. Microsoft Access is another application development

environment that enables you to use SQL in conjunction with its procedural

language VBA.Chapter 4 shows you how to create database tables with

Access. That operation represents only a small fraction of Access’s capabilities.

Access is a tool and its primary purpose is to develop applications that

process the data in database tables. Using Access, you can place objects on

forms and then customize the objects by giving them properties, events, and

methods. You can manipulate the forms and objects with VBA code, which

can contain embedded SQL.

 Although RAD tools such as Access can deliver high-quality applications in

less time, they usually don’t work across all platforms. Access, for instance,

runs only with the Microsoft Windows operating system. You may get lucky

and discover that the RAD tool you choose works on a few platforms, but if

building platform-independent functionality is important to you — or if you

think you may want to migrate your application to a different platform

eventually — beware.

RAD tools such as Access represent the beginning of the eventual merger

of relational and object-oriented database design. The structural strengths of

relational design and SQL will both survive. They will be augmented by the

rapid — and comparatively bug-free — development that comes from object-

oriented programming.

Using SQL with Microsoft Access
The primary audience for Microsoft Access is people who want to develop

relatively simple applications without programming. If that describes

you, you might want to put Access For Dummies (Wiley) on your shelf as a

reference book. The procedural language VBA (Visual Basic for Applications)

and SQL are both built into Access, but are not emphasized in either advertising

or documentation. If you want to use VBA and SQL to develop more

sophisticated applications, try my book, Access 2003 Power Programming
with VBA, also published by Wiley. Be aware though, that the SQL in Access

is not a full implementation — and you almost need the detective skills of

Sherlock Holmes to even find it.

 I mention the three components of SQL — Data Definition Language, Data

Manipulation Language, and Data Control Language — in Chapter 3. The

subset of SQL contained in Access primarily implements the Data Manipulation

Language. You can do table creation operations with Access SQL, but they are

a lot easier to do with the RAD tool I describe in Chapter 4. The same goes for

implementing security features, which I cover in Chapter 13.

324 Part IV: Controlling Operations

To get a look at some Access SQL, you need to sneak up on it from behind.

Consider an example taken from the database of the fictitious Oregon Lunar

Society, a nonprofit research organization. The Society has several research

teams, one of which is the Moon Base Research Team (MBRT). A question

has arisen as to which scholarly papers have been written by members of

the team. A query was formulated using Access’s Query By Example (QBE)

facility to retrieve the desired data. The query, shown in Figure 15-1, pulls

data from the RESEARCHTEAMS, AUTHORS, and PAPERS tables — with the

help of the AUTH-RES and AUTH-PAP intersection tables that were added to

break up many-to-many relationships.

Figure 15-1:
The Design

View of
MBRT

Papers
query.

You can click the View icon drop-down menu in the upper-left corner of

the window to reveal the other available views of the database. One of the

choices is SQL View (see Figure 15-2).

When you click SQL View, the SQL editing window appears, showing the SQL

statement that Access has generated, based on the choices made using QBE.

 This SQL statement, shown in Figure 15-3, is what actually gets sent to the

database engine. The database engine, which interfaces directly with the

database itself, understands only SQL. Any information entered into the QBE

environment must be translated into SQL before it is sent on to the database

engine for processing.

325 Chapter 15: Using SQL within Applications

Figure 15-2:
One of your
View menu

options is
SQL View.

Figure 15-3:
An SQL

statement
that

retrieves the
names of all

the papers
written by

members of
the MBRT.

326 Part IV: Controlling Operations

 You may notice that the syntax of the SQL statement shown in Figure 15-3

differs somewhat from the syntax of ANSI/ISO-standard SQL. Take the old

adage, “When in Rome, do as the Romans do,” to heart here. When working

with Access, use the Access dialect of SQL. That advice also goes for any other

environment that you may be working in. All implementations of SQL differ

from the standard in one respect or another.

If you want to write a new query in Access SQL — one that has not already

been created using QBE, that is — you can simply erase some existing query

from the SQL editing window and type in a new SQL SELECT statement. Click

the Exclamation Point icon in the toolbar at the top of the screen to run your

new query. The result appears on-screen in Datasheet View.

Part V
Taking SQL to the

Real World

23_557419-pp05.indd 32723_557419-pp05.indd 327 1/5/10 7:12 PM1/5/10 7:12 PM

In this part . . .

If you’ve been reading this book from the beginning,

enthralled by the unfolding saga of SQL, then you’ve

looked at SQL in isolation — you may even have begun to

dream that you can solve all your data-handling problems

by using SQL alone. Alas, reality intrudes. Doesn’t it always?

There are many things you simply can’t do with SQL, at least

not with SQL by itself. By combining SQL with a traditional

procedural language such as COBOL, Java, FORTRAN, Visual

Basic, or C++, you can achieve results that you can’t get with

SQL alone.

This part shows you how to combine SQL with procedural

languages. Then you find out how to operate on external

SQL databases that may be located out on the Internet or

somewhere on your organizational intranet. Suddenly,

reality starts to look pretty good.

Chapter 16

Accessing Data with
ODBC and JDBC

In This Chapter
▶ Finding out about ODBC

▶ Taking a look at the parts of ODBC

▶ Using ODBC in a client/server environment

▶ Using ODBC on the Internet

▶ Using ODBC on an intranet

▶ Using JDBC

In the last several years, computers have become increasingly

interconnected, both within and between organizations. With this

connection comes the need for sharing database information across networks.

The major obstacle to the free sharing of information across networks is

the incompatibility of the operating software and applications running on

different machines. SQL’s creation, and its ongoing evolution, has been a

major step toward overcoming hardware and software incompatibility.

Unfortunately, “standard” SQL is not all that standard. Even DBMS vendors

who claim to comply with the international SQL standard have included

proprietary extensions in their SQL implementations — which make them

incompatible with the proprietary extensions in other vendors’ implementations.

The vendors are loath to give up their extensions because their customers

have designed them into their applications and have become dependent on

them. User organizations, particularly large ones, need another way to make

cross-DBMS communication possible — a tool that doesn’t require vendors

to dumb down their implementations to the lowest common denominator.

This other way is ODBC (Open DataBase Connectivity).

330 Part V: Taking SQL to the Real World

ODBC
ODBC is a standard interface between a database and an application that

accesses the data in the database. Having a standard enables any application

front end to access any database back end by using SQL. The only requirement

is that the front end and the back end both adhere to the ODBC standard.

ODBC 4.0 is the current version of the standard.

An application accesses a database by using a driver (in this case, the ODBC

driver), which is specifically designed to interface with that particular database.

The driver’s front end, the side that goes to the application, rigidly adheres

to the ODBC standard. It looks the same to the application, regardless of

what database engine is on the back end. The driver’s back end is customized

to the specific database engine that it’s addressing. With this architecture,

applications don’t have to be customized to — or even be aware of — which

back-end database engine actually controls the data they’re using. The driver

masks the differences between back ends.

The ODBC interface
The ODBC interface is essentially a set of definitions — each of which is

accepted as standard. The definitions cover everything needed to establish

communication between an application and a database. The ODBC interface

defines the following:

 ✓ A function-call library

 ✓ Standard SQL syntax

 ✓ Standard SQL data types

 ✓ A standard protocol for connecting to a database engine

 ✓ Standard error codes

The ODBC function calls make the connection to a back-end database engine

possible; they execute SQL statements and pass results back to the application.

 To perform an operation on a database, include the appropriate SQL

statement as an argument of an ODBC function call. As long as you use the

ODBC-specified standard SQL syntax, the operation works — regardless of

what database engine is on the back end.

331 Chapter 16: Accessing Data with ODBC and JDBC

Components of ODBC
The ODBC interface consists of four functional components, referred to as

ODBC layers. Each component plays a role in making ODBC flexible enough

to provide transparent communication from any compatible front end to any

compatible back end. The four layers of the ODBC interface are between the

user and the data that the user wants, as follows:

 ✓ Application: The application is the part of the ODBC interface that’s

closest to the user. Of course, even systems that don’t use ODBC include

an application. Nonetheless, including the application as a part of the

ODBC interface makes sense. The application has to know that it’s

communicating with its data source through ODBC. It must connect

smoothly with the ODBC driver manager, in strict accordance with the

ODBC standard.

 ✓ Driver manager: The driver manager is a dynamic link library (DLL),
which is generally supplied by Microsoft. It loads appropriate drivers

for the system’s (possibly multiple) data sources and directs function

calls coming in from the application to the appropriate data sources

via their drivers. The driver manager also handles some ODBC function

calls directly and detects and handles some types of errors. Although

Microsoft originated the ODBC standard, it is now universally accepted,

even by open-source hardliners.

 ✓ Driver DLL: Because data sources can be different from each other (in

some cases, very different), you need a way to translate standard ODBC

function calls into the native language of each data source. Translation

is the job of the driver DLL. Each driver DLL accepts function calls

through the standard ODBC interface and then translates them into

code that is understandable to its associated data source. When the data

source responds with a result set, the driver reformats it in the reverse

direction into a standard ODBC result set. The driver is the crucial

element that enables any ODBC-compatible application to manipulate

the structure and the contents of an ODBC-compatible data source.

 ✓ Data source: The data source may be one of many different things.

It may be a relational DBMS and an associated database residing on

the same computer as the application. It may be such a database on a

remote computer. It may be an indexed sequential access method (ISAM)

file with no DBMS, either on the local or a remote computer. It may or

may not include a network. The myriad different forms that the data

source can take require that a custom driver be available for each one.

332 Part V: Taking SQL to the Real World

ODBC in a Client/Server Environment
In a client/server system, the interface between the client part and the server

part is called the application programming interface (API). An ODBC driver,

for instance, includes an API. APIs can be either proprietary or standard.

A proprietary API is one in which the client part of the interface has been

specifically designed to work with one particular back end on the server.

The actual code that forms this interface is a driver — and in a proprietary

system, it’s called a native driver. A native driver is optimized for use with

a specific front-end client and its associated back-end data source. Because

native drivers are optimized for both the specific front-end application and

the specific DBMS back end that they’re working with, the drivers tend to

pass commands and information back and forth quickly, with a minimum of

delay.

 If your client/server system always accesses the same type of data source,

and you’re sure you’ll never need to access data on another type of data

source, then you may want to use the native driver supplied with your DBMS.

However, if you may need to access data that’s stored in a different form

sometime in the future, then using an ODBC API now could save you a great

deal of rework later.

ODBC drivers are also optimized to work with specific back-end data sources,

but they all have the same front-end interface to the driver manager. Any

driver that hasn’t been optimized for a particular front end, therefore, is

probably not as fast as a native driver that’s specifically designed for that

front end. A major complaint about the first generation of ODBC drivers was

their poor performance when compared to native drivers. Recent benchmarks,

however, have shown that ODBC 4.0 drivers are quite competitive in

performance to native drivers. The technology is mature enough that it’s

no longer necessary to sacrifice performance to gain the advantages of

standardization.

ODBC and the Internet
Database operations over the Internet differ in several important ways from

database operations on a client/server system. The most visible difference

from the user’s point of view is the client portion of the system, which

includes the user interface. In a client/server system, the user interface is

the part of an application that communicates with the data source on the

server — using ODBC-compatible SQL statements. Over the World Wide Web,

the client portion of the system is a Web browser, which communicates with

the data source on the server using the HTTP standard protocol.

333 Chapter 16: Accessing Data with ODBC and JDBC

Anyone with a Web browser can access data that is made available on the

Web, and putting a database on the Web (called database publishing) has

many advantages, especially if you want to make data available to people

outside your LAN. Unfortunately, you usually don’t have very strict control

over who those people are, so the act of putting data on the Web is more

akin to publishing the data to the world than it is to sharing the data with a

few co-workers. (Of course, just because your Web browser can access data

on the Web doesn’t mean your browser can read and translate it. See “Client

extensions” for solutions to this problem.) Figure 16-1 compares client/server

systems with Web-based systems.

Figure 16-1:
A client/

server
system

versus a
Web-based

database
system.

Web
Browser

Data
Source

Database
Server

Web
Server

World Wide
Web

Database
Client

Data
Source

Database
Server

Local Area
Network

Server extensions
In the Web-based system, communication between the browser on the client

machine and the Web server on the server machine takes place using HTTP.

A system component called a server extension translates the commands

coming over the network into ODBC-compatible SQL. Then the database

server acts on the SQL, which in turn deals directly with the data source. In

the reverse direction, the data source sends the result set that is generated

by a query through the database server to the server extension, which then

334 Part V: Taking SQL to the Real World

translates it into a form that the Web server can handle. The results are then

sent over the Web to the Web browser on the client machine, where they’re

displayed to the user. Figure 16-2 shows the anatomy of this type of system.

Figure 16-2:
A Web-

based
database

system with
a server

extension.

Web
Browser

Data
Source

Database
Server

Server
Extension
Program

Web
Server

World Wide
Web

Client extensions
Web browsers were designed — and are now optimized — to provide easy-

to-understand and easy-to-use interfaces to Web sites of all kinds. The most

popular browsers, Mozilla Firefox, Microsoft Internet Explorer, and Apple

Safari, were not designed or optimized to be database front ends. In order for

meaningful interaction with a database to occur over the Internet, the client

side of the system needs functionality that the browser does not provide. To

fill this need, several types of client extensions have been developed. These

extensions include helper applications, ActiveX controls, Java applets, and

scripts. The extensions communicate with the server via HTTP, using HTML,

which is the language of the Web. Any HTML code that deals with database

access is translated into ODBC-compatible SQL by the server extension

before being forwarded to the data source.

335 Chapter 16: Accessing Data with ODBC and JDBC

Helper applications
The first client extensions were called helper applications. A helper application

is a stand-alone program that runs on the user’s PC. It is not integrated with

a Web page, and it does not display in a browser window. An example of a

helper application is a graphics viewer program that can display graphics file

formats that the browser doesn’t support.

To use a helper application, the user must first download it from its source

site and install it on his or her PC. From then on, when the user downloads a

file in that format, the browser automatically prompts the viewer to display

the file. One downside to this scheme is that the entire data file must be

downloaded into a temporary file before the helper application starts. Thus,

for large files, you may have to wait quite a while before you see any part of

your downloaded file.

ActiveX controls
Microsoft’s ActiveX controls work with Microsoft’s Internet Explorer, which

is the most popular browser in the world, although recently Firefox has been

making inroads to its dominance.

Scripts
Scripts are the most flexible tools for creating client extensions. Using a

scripting language, such as the ubiquitous JavaScript or Microsoft’s VBScript,

gives you maximum control over what happens at the client end. You can put

validation checks on data-entry fields, thus enabling the rejection or correction

of invalid entries without ever going out onto the Web. This can save you

time as well as reduce traffic on the Web, thus benefiting other users as well.

As with Java applets, scripts are embedded in an HTML page and execute as

the user interacts with that page.

ODBC and an Intranet
An intranet is a local- or wide-area network that operates like a simpler

version of the Internet. Because an intranet is contained within a single

organization, you don’t need complex security measures such as firewalls. All

the tools that are designed for application development on the World Wide

Web operate equally well as development tools for intranet applications.

ODBC works on an intranet in the same way that it does on the Internet.

If you have multiple data sources, clients using Web browsers (and the

appropriate client and server extensions) can communicate with them with

SQL that passes through HTML and ODBC stages. At the driver, the ODBC-

compliant SQL is translated into the database’s native command language

and executed.

336 Part V: Taking SQL to the Real World

JDBC
JDBC (Java DataBase Connectivity) is similar to ODBC, but it differs in a

few important respects. One such difference is hinted at by its name. JDBC

is a database interface that always looks the same to the client program —

regardless of what data source is sitting on the server (back end). The

difference is that JDBC expects the client application to be written in the Java

language, rather than another language such as C++ or Visual Basic. Another

difference is that Java and JDBC were both specifically designed to run on the

World Wide Web or on an intranet.

Java is a C++-like language that was developed by Sun Microsystems

specifically for the development of Web-client programs. When a connection

is established between a server and a client over the Web, the appropriate

Java applet is downloaded to the client — where the applet commences to

run. The applet, which is embedded in an HTML page, provides the database-

specific functionality that the client needs to provide flexible access to server

data. Figure 16-3 is a schematic representation of a Web database application

with a Java applet running on the client machine.

Figure 16-3:
A Web

database
application,

using a Java
applet.

Web
Browser

Java
Applet

Java
Classes

Data
Source

Database
Server

Server
Extension
Program

Web
Server

World Wide
Web

337 Chapter 16: Accessing Data with ODBC and JDBC

A major advantage to using Java applets is that they’re always up to date.

Because the applets are downloaded from the server every time they’re used

(as opposed to being retained on the client), the client is always guaranteed

to have the latest version whenever it runs a Java applet.

 If you’re responsible for maintaining your organization’s server, you never

have to worry about losing compatibility with some of your clients when you

upgrade the server software. Just make sure that your downloadable Java

applet is compatible with the new server configuration — because, as long as

their Web browsers have been configured to enable Java applets, all your

clients automatically become compatible too. Java is a full-featured programming

language, and it is entirely possible to write robust applications with Java that

can access databases in some kind of client/server system. When used this

way, a Java application that accesses a database via JDBC is similar to a C++

application that accesses a database via ODBC. But a Java application acts

quite different from a C++ application when it comes to the Internet (or an

intranet).

When the system that you’re interested in is on the Net, the operating

conditions are different from the conditions in a client/server system. The

client side of an application that operates over the Internet is a browser, with

minimal computational capabilities. These capabilities must be augmented

in order for significant database processing to be done; Java applets provide

these capabilities.

An applet is a small application that resides on a server. When a client

connects to that server over the Web, the applet is downloaded and starts

running in the client computer. Java applets are specially designed so they

can run in a sandbox — a well-defined (and isolated) area in the client

computer’s memory set aside for running applets. The applet is not allowed

to affect anything outside the sandbox. This architecture is designed to

protect the client machine from potentially hostile applets that may try to

extract sensitive information or cause malicious damage.

 You face a certain amount of danger when you download anything from a

server that you don’t know to be trustworthy. If you download a Java applet,

that danger is greatly reduced, but not completely eliminated. Be wary about

letting executable code enter your machine from a questionable server.

Like ODBC, JDBC passes SQL statements from the front-end application

(applet) running on the client to the data source on the back end. It also

serves to pass result sets or error messages from the data source back to the

application. The value of using JDBC is that the applet writer can write to the

standard JDBC interface, without needing to know or care what database is

located at the back end. JDBC performs whatever conversion is necessary for

accurate two-way communication to take place. Although designed to work

over the Web, JDBC also works in client/server environments where an

application written in Java communicates with a database back end through

the JDBC interface.

338 Part V: Taking SQL to the Real World

Chapter 17

Operating on XML Data with SQL
In This Chapter
▶ Using SQL with XML

▶ Exploring the relationship between XML, databases, and the Internet

The most significant new feature in SQL is its support of XML. XML

(eXtensible Markup Language) files are rapidly becoming a universally

accepted standard for exchanging data between dissimilar platforms. With

XML, it doesn’t matter if the person you’re sharing data with has a different

application environment, a different operating system, or even different

hardware. XML can form a data bridge between the two of you.

How XML Relates to SQL
XML, like HTML, is a markup language, which means that it’s not a full-

function language such as C++ or Java. It’s not even a data sublanguage such

as SQL. However, unlike those languages, it is cognizant of the content of

the data it transports. Where HTML deals only with formatting the text and

graphics in a document, XML gives structure to the document’s content. XML

itself does not deal with formatting. To do that, you have to augment XML

with a style sheet. As it does with HTML, a style sheet applies formatting to an

XML document.

The structure of an XML document is provided by its XML schema, which

is an example of metadata (data that describes data). An XML schema

describes where elements may occur in a document and in what order. It

may also describe the data type of an element and constrain the values that a

type may include.

SQL and XML provide two different ways of structuring data so that you can

save it and retrieve selected information from it:

340 Part V: Taking SQL to the Real World

 ✓ SQL is an excellent tool for dealing with numeric and text data that can

be categorized by data type and have a well-defined size. SQL was

created as a standard way to maintain and operate on data kept in

relational databases.

 ✓ XML is better at dealing with free-form data that cannot be easily

categorized. The driving motivations for the creation of XML were to

provide a universal standard for transferring data between dissimilar

computers and for displaying it on the World Wide Web.

The strengths and goals of SQL and XML are complementary. Each reigns

supreme in its own domain and forms alliances with the other to give users

the information they want, when they want it, and where they want it.

The XML Data Type
The XML type was introduced with SQL:2003. This means that conforming

implementations can store and operate on XML-formatted data directly,

without first converting it to XML from one of the other SQL data types.

The XML data type, including its subtypes, although intrinsic to any

implementation that supports it, acts like a user-defined type (UDT).

The subtypes are:

 ✓ XML(DOCUMENT(UNTYPED))

 ✓ XML(DOCUMENT(ANY))

 ✓ XML(DOCUMENT(XMLSCHEMA))

 ✓ XML(CONTENT(UNTYPED))

 ✓ XML(CONTENT(ANY))

 ✓ XML(CONTENT(XMLSCHEMA))

 ✓ XML(SEQUENCE)

The XML type brings SQL and XML into close contact because it enables

applications to perform SQL operations on XML content, and XML operations

on SQL content. You can include a column of the XML type with columns of

any of the other predefined types covered in Chapter 2 in a join operation in

the WHERE clause of a query. In true relational database fashion, your DBMS

will determine the optimal way to execute the query and then will do it.

341 Chapter 17: Operating on XML Data with SQL

When to use the XML type
Whether or not you should store data in XML format depends on what you

plan to do with that data. Here are some instances where it makes sense to

store data in XML format:

 ✓ When you want to store an entire block of data and retrieve the whole

block later.

 ✓ When you want to be able to query the whole XML document. Some

implementations have expanded the scope of the EXTRACT operator to

enable extracting desired content from an XML document.

 ✓ When you need strong typing of data inside SQL statements. Using the

XML type guarantees that data values are valid XML values and not just

arbitrary text strings.

 ✓ To ensure compatibility with future, as yet unspecified, storage systems

that might not support existing types such as CHARACTER LARGE
OBJECT, or CLOB. (See Chapter 2 for more information on CLOB.)

 ✓ To take advantage of future optimizations that will support only the XML

type.

Here’s an example of how you might use the XML type:

CREATE TABLE CLIENT (
 ClientName CHAR (30) NOT NULL,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30),
 Comments XML(SEQUENCE)) ;

This SQL statement will store an XML document in the Comments column

of the CLIENT table. The resulting document might look something like the

following:

<Comments>
 <Comment>
 <CommentNo>1</CommentNo>

342 Part V: Taking SQL to the Real World

 <MessageText>Is VetLab equipped to analyze
penguin blood?</MessageText>

 <ResponseRequested>Yes</ResponseRequested>
 </Comment>
 <Comment>
 <CommentNo>2</CommentNo>
 <MessageText>Thanks for the fast turnaround on

the leopard seal sputum sample.</MessageText>
 <ResponseRequested>No</ResponseRequested>
 </Comment>
</Comments>

When not to use the XML type
Just because the SQL standard allows you to use the XML type doesn’t mean

that you always should. In fact, on many occasions, it doesn’t make sense

to use the XML type. Most data in relational databases today is better off in

its current format than it is in XML format. Here are a couple of examples of

when not to use the XML type:

 ✓ When the data breaks down naturally into a relational structure with

tables, rows, and columns

 ✓ When you will need to update pieces of the document, rather than deal

with the document as a whole

Mapping SQL to XML and XML to SQL
To exchange data between SQL databases and XML documents, the various

elements of an SQL database must be translatable into equivalent elements

of an XML document, and vice versa. I describe which elements need to be

translated in the following sections.

Mapping character sets
In SQL, the character sets supported depend on which implementation

you’re using. This means that IBM’s DB2 may support character sets that are

not supported by Microsoft’s SQL Server. SQL Server may support character

sets not supported by Oracle. Although the most common character sets

are almost universally supported, if you use a less common character set,

migrating your database and application from one RDBMS platform to

another may be difficult.

343 Chapter 17: Operating on XML Data with SQL

XML has no compatibility issue with character sets — it supports only one,

Unicode. This is a good thing from the point of view of exchanging data

between any given SQL implementation and XML. All the RDBMS vendors

have to define a mapping between strings of each of their character sets

and Unicode, as well as a reverse mapping from Unicode to each of their

character sets. Luckily, XML doesn’t also support multiple character sets. If it

did, vendors would have a many-to-many problem that would require several

more mappings and reverse mappings to resolve.

Mapping identifiers
XML is much stricter than SQL in the characters it allows in identifiers.

Characters that are legal in SQL but illegal in XML must be mapped to

something legal before they can become part of an XML document. SQL

supports delimited identifiers. This means that all sorts of odd characters

such as %, $, and & are legal, as long as they’re enclosed within double

quotes. Such characters are not legal in XML. Furthermore, XML Names that

begin with the characters XML in any combination of cases are reserved and

thus cannot be used with impunity. If you have any SQL identifiers that begin

with those letters, you have to change them.

An agreed-upon mapping bridges the identifier gap between SQL and XML. In

moving from SQL to XML, all SQL identifiers are converted to Unicode. From

there, any SQL identifiers that are also legal XML Names are left unchanged.

SQL identifier characters that are not legal XML Names are replaced with a

hexadecimal code that either takes the form “_xNNNN_” or “_xNNNNNNNN_”,

where N represents an uppercase hexadecimal digit. For example, the

underscore will be represented by “_x005F_”. The colon will be represented

by “_x003A_”. These representations are the codes for the Unicode

characters for the underscore and colon. The case where an SQL identifier starts

with the characters x, m, and l is handled by prefixing all such instances with

a code in the form “_xFFFF_”.

Conversion from XML to SQL is much easier. All you need to do is scan

the characters of an XML Name for a sequence of “_xNNNN_” or “_
xNNNNNNNN_”. Whenever you find such a sequence, replace it with the

character that the Unicode corresponds to. If an XML Name begins with the

characters “_xFFFF_”, ignore them.

 By following these simple rules, you can map an SQL identifier to an XML

Name and then back to an SQL identifier again. However, this happy situation

does not hold for a mapping from XML Name to SQL identifier and back to

XML Name.

344 Part V: Taking SQL to the Real World

Mapping data types
The SQL standard specifies that an SQL data type must be mapped to the

closest possible XML Schema data type. The designation closest possible

means that all values allowed by the SQL type will be allowed by the XML

Schema type, and the fewest possible values not allowed by the SQL type will

be allowed by the XML Schema type. XML facets, such as maxInclusive

and minInclusive, can restrict the values allowed by the XML Schema

type to the values allowed by the corresponding SQL type. For example,

if the SQL data type restricts values of the INTEGER type to the range

–2157483648<value<2157483647, in XML the maxInclusive value

can be set to 2157483647, and the minInclusive value can be set to

–2157483648. Here’s an example of such a mapping:

<xsd:simpleType>
 <xsd:restriction base=”xsd:integer>
 <xsd:maxInclusive value=”2157483647”/>
 <xsd:minInclusive value=”-2157483648”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”INTEGER”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

 The annotation section retains information from the SQL type definition that is

not used by XML, but you may find it valuable later if the document is mapped

back to SQL.

Mapping tables
You can map a table to an XML document. Similarly, you can map all the

tables in a schema or all the tables in a catalog. Privileges are maintained

by the mapping. A person who has the SELECT privilege on only some table

columns will be able to map only those columns to the XML document. The

mapping actually produces two documents, one that contains the data in the

table and the other that contains the XML Schema that describes the first

document. Here’s an example of the mapping of an SQL table to an XML data-

containing document:

<CUSTOMER>
 <row>
 <FirstName>Abe</FirstName>
 <LastName>Abelson</LastName>
 <City>Springfield</City>
 <AreaCode>714</AreaCode>

345 Chapter 17: Operating on XML Data with SQL

 <Telephone>555-1111</Telephone>
 </row>
 <row>
 <FirstName>Bill</FirstName>
 <LastName>Bailey</LastName>
 <City>Decatur</City>
 <AreaCode>714</AreaCode>
 <Telephone>555-2222</Telephone>
 </row>
.
.
.
</CUSTOMER>

The root element of the document has been given the name of the table.

Each table row is contained within a <row> element, and each row element

contains a sequence of column elements, each named after the corresponding

column in the source table. Each column element contains a data value.

Handling null values
Because SQL data might include null values, you must decide how to

represent them in an XML document. You can represent a null value

either as nil or absent. If you choose the nil option, then the attribute

xsi:nil=“true” marks the column elements that represent null values.

It might be used in the following way:

<row>
 <FirstName>Bill</FirstName>
 <LastName>Bailey</LastName>
 <City xsi:nil=”true” />
 <AreaCode>714</AreaCode>
 <Telephone>555-2222</Telephone>
</row>

If you choose the absent option, you could implement it as follows:

<row>
 <FirstName>Bill</FirstName>
 <LastName>Bailey</LastName>
 <AreaCode>714</AreaCode>
 <Telephone>555-2222</Telephone>
</row>

In this case, the row containing the null value is absent. There is no reference

to it.

346 Part V: Taking SQL to the Real World

Generating the XML Schema
When mapping from SQL to XML, the first document generated is the one

that contains the data. The second contains the schema information. As an

example, consider the schema for the CUSTOMER document shown in the

“Mapping tables” section, earlier in this chapter:

<xsd:schema>
 <xsd:simpleType name=”CHAR_15”>
 <xsd:restriction base=”xsd:string”>
 <xsd:length value = “15”/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name=”CHAR_25”>
 <xsd:restriction base=”xsd:string”>
 <xsd:length value = “25”/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name=”CHAR_3”>
 <xsd:restriction base=”xsd:string”>
 <xsd:length value = “3”/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name=”CHAR_8”>
 <xsd:restriction base=”xsd:string”>
 <xsd:length value = “8”/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:sequence>
 <xsd:element name=”FirstName” type=”CHAR_15”/>
 <xsd:element name=”LastName” type=”CHAR_25”/>
 <xsd:element
 name=”City” type=”CHAR_25 nillable=”true”/>
 <xsd:element
 name=”AreaCode” type=”CHAR_3” nillable=”true”/>
 <xsd:element
 name=”Telephone” type=”CHAR_8” nillable=”true”/>
 </xsd:sequence>

</xsd:schema>

This schema is appropriate if the nil approach to handling nulls is used. The

absent approach requires a slightly different element definition. For example:

 <xsd:element
 name=”City” type=”CHAR_25 minOccurs=”0”/>

347 Chapter 17: Operating on XML Data with SQL

SQL Functions That Operate
on XML Data

The SQL standard defines a number of operators, functions, and pseudo-

functions that, when applied to an SQL database, produce an XML result,

or when applied to XML data produce a result in standard SQL form. The

functions include XMLELEMENT, XMLFOREST, XMLCONCAT, and XMLAGG. In

the following sections, I give brief descriptions of these functions, as well as

several others that are frequently used when publishing to the Web. Some

of the functions rely heavily on XQuery, a standard query language designed

specifically for querying XML data. XQuery is a huge topic in itself and is

beyond the scope of this book. To find out more about XQuery, a good

source of information is Jim Melton and Stephen Buxton’s Querying XML,
published by Morgan Kaufmann.

XMLDOCUMENT
The XMLDOCUMENT operator takes an XML value as input and returns

another XML value as output. The new XML value is a document node that is

constructed according to the rules of the computed document constructor in

XQuery.

XMLELEMENT
The XMLELEMENT operator translates a relational value into an XML element.

You can use the operator in a SELECT statement to pull data in XML format

from an SQL database and publish it on the Web. Here’s an example:

SELECT c.LastName
 XMLELEMENT (NAME “City”, c.City) AS “Result”
FROM CUSTOMER c
WHERE LastName=”Abelson” ;

Here is the result returned:

LastName Result

Abelson <City>Springfield</City>

348 Part V: Taking SQL to the Real World

XMLFOREST
The XMLFOREST operator produces a list, or forest, of XML elements from

a list of relational values. Each of the operator’s values produces a new

element. Here’s an example of this operator:

SELECT c.LastName
 XMLFOREST (c.City,
 c.AreaCode,
 c.Telephone) AS “Result”
FROM CUSTOMER c
WHERE LastName=”Abelson” OR LastName=”Bailey” ;

This snippet produces the following output:

LastName Result

Abelson <City>Springfield</City>

<AreaCode>714</AreaCode>

<Telephone>555-1111</Telephone>

Bailey <City>Decatur</City>

<AreaCode>714</AreaCode>

<Telephone>555-2222</Telephone>

XMLCONCAT
XMLCONCAT provides an alternate way to produce a forest of elements by

concatenating its XML arguments. For example, the following code:

SELECT c.LastName,
 XMLCONCAT(
 XMLELEMENT (NAME “first”, c.FirstName,
 XMLELEMENT (NAME “last”, c.LastName)
) AS “Result”
FROM CUSTOMER c ;

349 Chapter 17: Operating on XML Data with SQL

produces these results:

LastName Result

Abelson <first>Abe</first>

<last>Abelson</last>

Bailey <first>Bill</first>

<last>Bailey</last>

XMLAGG
XMLAGG, the aggregate function, takes XML documents or fragments of XML

documents as input and produces a single XML document as output in GROUP
BY queries. The aggregation contains a forest of elements. Here’s an example

to illustrate the concept:

SELECT XMLELEMENT
 (NAME “City”,
 XMLATTRIBUTES (c.City AS “name”) ,
 XMLAGG (XMLELEMENT (NAME “last” c.LastName)
)
) AS “CityList”
FROM CUSTOMER c
GROUP BY City ;

When run against the CUSTOMER table, this query produces the following

results:

CityList

<City name=”Decatur”>
 <last>Bailey</last>
</City>
<City name=”Philo”>
 <last>Stetson</last>
 <last>Stetson</last>
 <last>Wood</last>
</City
<City name=”Springfield”>
 <last>Abelson</last>
</City>

350 Part V: Taking SQL to the Real World

XMLCOMMENT
The XMLCOMMENT function enables an application to create an XML comment.

Its syntax is:

XMLCOMMENT (‘comment content’
 [RETURNING
 { CONTENT | SEQUENCE }])

For example:

XMLCOMMENT (‘Back up database at 2 am every night.’)

would create an XML comment that looks like:

<!--Back up database at 2 am every night. -->

XMLPARSE
The XMLPARSE function produces an XML value by performing a nonvalidating

parse of a string. You might use it like this:

XMLPARSE (DOCUMENT ‘ GREAT JOB! ’
 PRESERVE WHITESPACE)

The preceding code would produce an XML value that is either XML(UNTYPED
DOCUMENT) or XML(ANY DOCUMENT). Which of the two subtypes is chosen

depends on the implementation you’re using.

XMLPI
The XMLPI function allows applications to create XML processing instructions.

The syntax for this function is:

XMLPI NAME target
 [, string-expression]
 [RETURNING
 { CONTENT | SEQUENCE }])

The target placeholder represents the identifier of the target of the

processing instruction. The string-expression placeholder represents

the content of the PI. This function creates an XML comment of the form:

<? target string-expression ?>

351 Chapter 17: Operating on XML Data with SQL

XMLQUERY
The XMLQUERY function evaluates an XQuery expression and returns the

result to the SQL application. The syntax of XMLQUERY is:

XMLQUERY (XQuery-expression
 [PASSING { By REF | BY VALUE }
 argument-list]
 RETURNING { CONTENT | SEQUENCE }
 { BY REF | BY VALUE })

Here’s an example of the use of XMLQUERY:

SELECT max_average,
 XMLQUERY (
 ‘for $batting_average in
 /player/batting_average
 where /player/lastname = $var1
 return $batting_average’
 PASSING BY VALUE
 ‘Mantle’ AS var1,
 RETURNING SEQUENCE BY VALUE)
FROM offensive_stats

XMLCAST
The XMLCAST function is similar to an ordinary SQL CAST function, but has

some additional restrictions. The XMLCAST function enables an application

to cast a value from an XML type to either another XML type or an SQL type.

Similarly, you can use it to cast a value from an SQL type to an XML type.

Here are a couple of restrictions:

 ✓ At least one of the types involved, either the source type or the

destination type, must be an XML type.

 ✓ Neither of the types involved may be an SQL collection type, row type,

structured type, or reference type.

 ✓ Only values of one of the XML types or the SQL null type may be cast to

XML(UNTYPED DOCUMENT) or to XML(ANY DOCUMENT).

Here’s an example:

XMLCAST (CLIENT.ClientName AS XML(UNTYPED CONTENT))

 The XMLCAST function is transformed into an ordinary SQL CAST. The only

reason for using a separate keyword is to enforce the restrictions listed here.

352 Part V: Taking SQL to the Real World

Predicates
Predicates return a value of True or False. Some new predicates have been

added that specifically relate to XML.

DOCUMENT
The purpose of the DOCUMENT predicate is to determine whether an XML

value is an XML document. It tests to see whether an XML value is an

instance of either XML(ANY DOCUMENT) or XML(UNTYPED DOCUMENT). The

syntax is:

XML-value IS [NOT]
 [ANY | UNTYPED] DOCUMENT

If the expression evaluates to True, the predicate returns TRUE; otherwise,

it returns FALSE. If the XML value is null, the predicate returns an UNKNOWN

value. If you don’t specify either ANY or UNTYPED, the default assumption is

ANY.

CONTENT
You use the CONTENT predicate to determine whether an XML value is an

instance of XML(ANY CONTENT) or XML(UNTYPED CONTENT). Here’s the

syntax:

XML-value IS [NOT]
 [ANY | UNTYPED] CONTENT

If you don’t specify either ANY or UNTYPED, ANY is the default.

XMLEXISTS
As the name implies, you can use the XMLEXISTS predicate to determine

whether a value exists. Here’s the syntax:

XMLEXISTS (XQuery-expression
 [argument-list])

353 Chapter 17: Operating on XML Data with SQL

The XQuery expression is evaluated using the values provided in the argument

list. If the value queried by the XQuery expression is the SQL NULL value,

the predicate’s result is unknown. If the evaluation returns an empty XQuery

sequence, the predicate’s result is FALSE; otherwise, it is TRUE. You can

use this predicate to determine whether an XML document contains some

particular content before you use a portion of that content in an expression.

VALID
The VALID predicate is used to evaluate an XML value to see if it is valid in

the context of a registered XML Schema. The syntax of the VALID predicate

is more complex than is the case for most predicates:

xml-value IS [NOT] VALID
[XML valid identity constraint option]
[XML valid according-to clause]

This predicate checks to see whether the XML value is one of the five XML

subtypes: XML(SEQUENCE), XML(ANY CONTENT), XML(UNTYPED CONTENT),

XML(ANY DOCUMENT), or XML(UNTYPED DOCUMENT). Additionally, it might

optionally check to see whether the validity of the XML value depends on

identity constraints, and whether it is valid with respect to a particular XML

Schema (the validity target).

There are four possibilities for the identity-constraint-option

component of the syntax:

 ✓ WITHOUT IDENTITY CONSTRAINTS: If the identity-constraint-
option syntax component isn’t specified, WITHOUT IDENTITY
CONSTRAINTS is assumed. If DOCUMENT is specified, then it acts like a

combination of the DOCUMENT predicate and the VALID predicate WITH
IDENTITY CONSTRAINTS GLOBAL.

 ✓ WITH IDENTITY CONSTRAINTS GLOBAL: This component of the

syntax means the value is checked not only against the XML Schema,

but also against the XML rules for ID/IDREF relationships.

 ID and IDREF are XML attribute types that identify elements of a document.

 ✓ WITH IDENTITY CONSTRAINTS LOCAL: This component of the syntax

means the value is checked against the XML Schema, but not against the

XML rules for ID/IDREF or the XML Schema rules for identity constraints.

 ✓ DOCUMENT: This component of the syntax means the XML value

expression is a document and is valid WITH IDENTITY CONSTRAINTS
GLOBAL syntax with an XML valid according to clause. The XML
valid according to clause identifies the schema that the value will

be validated against.

354 Part V: Taking SQL to the Real World

Transforming XML Data into SQL Tables
Until recently, when thinking about the relationship between SQL and XML,

the emphasis has been on converting SQL table data into XML to make it

accessible on the Internet. The most recent addition to the SQL standard

addresses the complementary problem of converting XML data into SQL

tables so that it can be easily queried using standard SQL statements.

The XMLTABLE pseudo-function performs this operation. The syntax for

XMLTABLE is:

XMLTABLE ([namespace-declaration,]
XQuery-expression
[PASSING argument-list]
COLUMNS XMLtbl-column-definitions

where the argument-list is:

value-expression AS identifier

and XMLtbl-column-definitions is a comma-separated list of column

definitions, which may contain:

column-name FOR ORDINALITY

and/or:

column-name data-type
[BY REF | BY VALUE]
[default-clause]
[PATH XQuery-expression]

Here’s an example of how you might use XMLTABLE to extract data from an

XML document into an SQL pseudo-table. A pseudo-table isn’t persistent,

but in every other respect, it behaves like a regular SQL table. If you want to

make it persistent, you can create a table with a CREATE TABLE statement

and then insert the XML data into the newly created table.

SELECT clientphone.*
FROM
 clients_xml ,
 XMLTABLE(
 ‘for $m in
 $col/client
 return
 $m’
 PASSING clients_xml.client AS “col”
 COLUMNS
 “ClientName” CHARACTER (30) PATH ‘ClientName’ ,
 “Phone” CHARACTER (13) PATH ‘phone’
) AS clientphone

355 Chapter 17: Operating on XML Data with SQL

When you run this statement, you see the following result:

ClientName Phone
------------------------------ -------------
Abe Abelson (714)555-1111
Bill Bailey (714)555-2222
Chuck Wood (714)555-3333

(3 rows in clientphone)

Mapping Non-Predefined
Data Types to XML

In the SQL standard, the non-predefined data types include domain, distinct

UDT, row, array, and multiset. You can map each of these to XML-formatted

data, using appropriate XML code. The next few sections show examples of

how to map these types.

Domain
To map an SQL domain to XML, you must first have a domain. For this exam-

ple, create one by using a CREATE DOMAIN statement:

CREATE DOMAIN WestCoast AS CHAR (2)
 CHECK (State IN (‘CA’, ‘OR’, ‘WA’, ‘AK’)) ;

Now, create a table that uses that domain:

CREATE TABLE WestRegion (
 ClientName Character (20) NOT NULL,
 State WestCoast NOT NULL
) ;

Here’s the XML Schema to map the domain into XML:

<xsd:simpleType>
 Name=’DOMAIN.Sales.WestCoast’>

 <xsd:annotation>
 <xsd:appinfo>
 <sqlxml:sqltype kind=’DOMAIN’
 schemaName=’Sales’
 typeName=’WestCoast’
 mappedType=’CHAR_2’
 final=’true’/>
 <xsd:appinfo>

356 Part V: Taking SQL to the Real World

 </xsd:annotation>

 <xsd:restriction base=’CHAR_2’/>

</xsd:simpleType>

When this mapping is applied, it results in an XML document that contains

something like the following:

<WestRegion>
 <row>
 .
 .
 .
 <State>AK</State>
 .
 .
 .
 </row>
 .
 .
 .
</WestRegion>

Distinct UDT
With a distinct UDT, you can do much the same as what you can do with a

domain, but with stronger typing. Here’s how:

CREATE TYPE WestCoast AS Character (2) FINAL ;

The XML Schema to map this type to XML is as follows:

<xsd:simpleType>
 Name=’UDT.Sales.WestCoast’>

 <xsd:annotation>
 <xsd:appinfo>
 <sqlxml:sqltype kind=’DISTINCT’
 schemaName=’Sales’
 typeName=’WestCoast’
 mappedType=’CHAR_2’
 final=’true’/>
 <xsd:appinfo>
 </xsd:annotation>

 <xsd:restriction base=’CHAR_2’/>

</xsd:simpleType>

357 Chapter 17: Operating on XML Data with SQL

This creates an element that is the same as the one created for the preceding

domain.

Row
The ROW type enables you to cram multiple items, or even a whole row’s

worth of information, into a single field of a table row. You can create a ROW

type as part of the table definition, in the following manner:

CREATE TABLE CONTACTINFO (
 Name CHARACTER (30)
 Phone ROW (Home CHAR (13), Work CHAR (13))
) ;

You can now map this type to XML with the following schema:

<xsd:complexType Name=’ROW.1’>

 <xsd:annotation>
 <xsd:appinfo>
 <sqlxml:sqltype kind=’ROW’>
 <sqlxml:field name=’Home’
 mappedType=’CHAR_13’/>
 <sqlxml:field name=’Work’
 mappedType=’CHAR_13’/>
 </sqlxml:sqltype>
 <xsd:appinfo>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element Name=’Home’ nillable=’true’
 Type=’CHAR_13’/>
 <xsd:element Name=’Work’ nillable=’true’
 Type=’CHAR_13’/>
 </xsd:sequence>

</xsd:complexType>

This mapping could generate the following XML for a column:

<Phone>
 <Home>(888)555-1111</Home>
 <Work>(888)555-1212</Work>
</Phone>

358 Part V: Taking SQL to the Real World

Array
You can put more than one element in a single field by using an Array rather

than the ROW type. For example, in the CONTACTINFO table, declare Phone

as an array and then generate the XML Schema that will map the array to

XML.

CREATE TABLE CONTACTINFO (
 Name CHARACTER (30),
 Phone CHARACTER (13) ARRAY [4]
) ;

You can now map this type to XML with the following schema:

<xsd:complexType Name=’ARRAY_4.CHAR_13’>

 <xsd:annotation>
 <xsd:appinfo>
 <sqlxml:sqltype kind=’ARRAY’
 maxElements=’4’
 mappedElementType=’CHAR_13’/>
 </xsd:appinfo>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element Name=’element’
 minOccurs=’0’ maxOccurs=’4’
 nillable=’true’ type=’CHAR_13’/>
 </xsd:sequence>

</xsd:complexType>

This schema would generate something like this:

<Phone>
 <element>(888)555-1111</element>
 <element>xsi:nil=’true’/>
 <element>(888)555-3434</element>
</Phone>

 The element in the array containing xsi:nil=‘true’ reflects the fact that

the second phone number in the source table contains a null value.

Multiset
The phone numbers in the preceding example could just as well be stored

in a multiset as in an array. To map a multiset, use something akin to the

following:

359 Chapter 17: Operating on XML Data with SQL

CREATE TABLE CONTACTINFO (
 Name CHARACTER (30),
 Phone CHARACTER (13) MULTISET
) ;

You can now map this type to XML with the following schema:

<xsd:complexType Name=’MULTISET.CHAR_13’>

 <xsd:annotation>
 <xsd:appinfo>
 <sqlxml:sqltype kind=’MULTISET’
 mappedElementType=’CHAR_13’/>
 </xsd:appinfo>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element Name=’element’
 minOccurs=’0’ maxOccurs=’unbounded’
 nillable=’true’ type=’CHAR_13’/>
 </xsd:sequence>

</xsd:complexType>

This schema would generate something like this:

<Phone>
 <element>(888)555-1111</element>
 <element>xsi:nil=’true’/>
 <element>(888)555-3434</element>
</Phone>

The Marriage of SQL and XML
SQL provides the worldwide standard method for storing data in a highly

structured fashion. The structure enables users to maintain data stores of a

wide range of sizes and to efficiently extract from those data stores the

information they want. XML has risen from a de facto standard to an official

standard vehicle for transporting data between incompatible systems,

particularly over the Internet. By bringing these two powerful methods

together, the value of both is greatly increased. SQL can now handle data

that doesn’t fit nicely into the strict relational paradigm that was originally

defined by Dr. Codd. XML can now efficiently take data from SQL databases

or send data to them. The result is more readily available information that is

easier to share. After all, at its core, sharing is what marriage is all about.

360 Part V: Taking SQL to the Real World

Part VI
Advanced Topics

In this part . . .
You can approach SQL on many levels. In earlier parts

of this book, I cover the major topics that you’re

likely to encounter in most applications. This part deals

with subjects that are significantly more complex. SQL

deals with data a set at a time. Cursors come into play only

if you want to violate that principle and grapple with the

data a row at a time. Error handling is important to every

application, whether simple or sophisticated, but you can

approach it either simplistically or on a much deeper level.

(Hint: The more depth you give to your error handling, the

better off your users are if problems arise.) In this part, I

give you a view of the depths as well as of the shallows.

The Persistent Stored Modules update that was added in

SQL:1999 gives SQL added capability to perform procedural

operations without making programmers revert to a host

language.

Objects are here to stay. The SQL:2003 international stan-

dard continued the object-oriented enhancements added

in SQL:1999; SQL:2008 went even further. True, folks who

are schooled in traditional procedural programming have

to make a major mental shift to handle object-oriented

programming. After you make that mental shift, however,

you can make your code perform in ways that weren’t

possible when you were playing by the old rules.

Chapter 18

Stepping through a Dataset
with Cursors

In This Chapter
▶ Specifying cursor scope with the DECLARE statement

▶ Opening a cursor

▶ Fetching data one row at a time

▶ Closing a cursor

A major incompatibility between SQL and the most popular application

development languages is that SQL operates on the data of an entire set

of table rows at a time, whereas the procedural languages operate on only a

single row at a time. A cursor enables SQL to retrieve (or update, or delete)

a single row at a time so that you can use SQL in combination with an

application written in any of the popular languages.

A cursor is like a pointer that locates a specific table row. When a cursor is

active, you can SELECT, UPDATE, or DELETE the row at which the cursor

is pointing.

Cursors are valuable if you want to retrieve selected rows from a table, check

their contents, and perform different operations based on those contents.

SQL can’t perform this sequence of operations by itself. SQL can retrieve the

rows, but procedural languages are better at making decisions based on field

contents. Cursors enable SQL to retrieve rows from a table one at a time and

then feed the result to procedural code for processing. By placing the SQL

code in a loop, you can process the entire table row by row.

In a pseudocode representation of embedded SQL, the most common flow of

execution looks like this:

364 Part VI: Advanced Topics

EXEC SQL DECLARE CURSOR statement
EXEC SQL OPEN statement
Test for end of table
Procedural code
Start loop
 Procedural code
 EXEC SQL FETCH
 Procedural code
 Test for end of table
End loop
EXEC SQL CLOSE statement
Procedural code

The SQL statements in this listing are DECLARE, OPEN, FETCH, and CLOSE.

Each of these statements is discussed in detail in this chapter.

 If you can perform the operation that you want with normal SQL (set-at-a-time)

statements, then do so. Declare a cursor, retrieve table rows one at a time,

and use your system’s host language only when you can’t do what you want to

do with SQL alone.

Declaring a Cursor
To use a cursor, you first must declare its existence to the DBMS. You do

this with a DECLARE CURSOR statement. The DECLARE CURSOR statement

doesn’t actually cause anything to happen; it just announces the cursor’s

name to the DBMS and specifies what query the cursor will operate on. A

DECLARE CURSOR statement has the following syntax:

DECLARE cursor-name [<cursor sensitivity>]
 [<cursor scrollability>]
CURSOR [<cursor holdability>] [<cursor returnability>]
FOR query expression
 [ORDER BY order-by expression]
 [FOR updatability expression] ;

Note: The cursor name uniquely identifies a cursor, so it must be unlike that

of any other cursor name in the current module or compilation unit.

 To make your application more readable, give the cursor a meaningful name.

Relate it to the data that the query expression requests or to the operation

that your procedural code performs on the data.

Here are some characteristics that you must establish when you declare a

cursor:

365 Chapter 18: Stepping through a Dataset with Cursors

 ✓ Cursor sensitivity: Choose SENSITIVE, INSENSITIVE, or ASENSITIVE

(default).

 ✓ Cursor scrollability: Choose either SCROLL or NO SCROLL (default).

 ✓ Cursor holdability: Choose either WITH HOLD or WITHOUT HOLD

(default).

 ✓ Cursor returnability: Choose either WITH RETURN or WITHOUT RETURN

(default).

Query expression
 You can use any legal SELECT statement as a query expression. The rows that

the SELECT statement retrieves are the ones that the cursor steps through

one at a time. These rows are the scope of the cursor.

The query is not actually performed when the DECLARE CURSOR statement is

read. You can’t retrieve data until you execute the OPEN statement. The row-

by-row examination of the data starts after you enter the loop that encloses

the FETCH statement.

ORDER BY clause
You may want to process your retrieved data in a particular order, depending on

what your procedural code will do with the data. You can sort the retrieved

rows before processing them by using the optional ORDER BY clause. The

clause has the following syntax:

ORDER BY sort-specification [, sort-specification]...

You can have multiple sort specifications. Each has the following syntax:

(column-name) [COLLATE BY collation-name] [ASC|DESC]

You sort by column name, and to do so, the column must be in the select list

of the query expression. Columns that are in the table but not in the query

select list do not work as sort specifications. For example, suppose you want

to perform an operation that is not supported by SQL on selected rows of the

CUSTOMER table. You can use a DECLARE CURSOR statement like this:

DECLARE cust1 CURSOR FOR
 SELECT CustID, FirstName, LastName, City, State, Phone
 FROM CUSTOMER
 ORDER BY State, LastName, FirstName ;

366 Part VI: Advanced Topics

In this example, the SELECT statement retrieves rows sorted first by state,

then by last name, and then by first name. The statement retrieves all

customers in Alaska (AK) before it retrieves the first customer from Alabama

(AL). The statement then sorts customer records from Alaska by the

customer’s last name (Aaron before Abbott). When the last name is the same,

sorting then goes by first name (George Aaron before Henry Aaron).

Have you ever made 40 copies of a 20-page document on a photocopier

without a collator? What a drag! You must make 20 stacks on tables and

desks, and then walk by the stacks 40 times, placing a sheet on each stack.

This process of putting things in the desired order is called collation. A

similar process plays a role in SQL.

A collation is a set of rules that determines how strings in a character set

compare. A character set has a default collation sequence that defines the

order in which elements are sorted. But, you can apply a collation sequence

other than the default to a column. To do so, use the optional COLLATE BY

clause. Your implementation probably supports several common collations.

Pick one and then make the collation ascending or descending by appending

an ASC or DESC keyword to the clause.

In a DECLARE CURSOR statement, you can specify a calculated column that

doesn’t exist in the underlying table. In this case, the calculated column

doesn’t have a name that you can use in the ORDER BY clause. You can give

it a name in the DECLARE CURSOR query expression, which enables you to

identify the column later. Consider the following example:

DECLARE revenue CURSOR FOR
 SELECT Model, Units, Price,
 Units * Price AS ExtPrice
 FROM TRANSDETAIL
 ORDER BY Model, ExtPrice DESC ;

In this example, no COLLATE BY clause is in the ORDER BY clause, so the

default collation sequence is used. Notice that the fourth column in the select

list is the result of a calculation of the data in the second and third columns.

The fourth column is an extended price named ExtPrice. In my example,

the ORDER BY clause is sorted first by model name and then by ExtPrice.

The sort on ExtPrice is descending, as specified by the DESC keyword;

transactions with the highest dollar value are processed first.

The default sort order in an ORDER BY clause is ascending. If a sort

specification list includes a DESC sort and the next sort should also be in

descending order, you must explicitly specify DESC for the next sort. For

example:

ORDER BY A, B DESC, C, D, E, F

367 Chapter 18: Stepping through a Dataset with Cursors

is equivalent to

ORDER BY A ASC, B DESC, C ASC, D ASC, E ASC, F ASC

Updatability clause
Sometimes, you may want to update or delete table rows that you access

with a cursor. Other times, you may want to guarantee that such updates

or deletions can’t be made. SQL gives you control over this issue with the

updatability clause of the DECLARE CURSOR statement. If you want to

prevent updates and deletions within the scope of the cursor, use the clause:

FOR READ ONLY

For updates of specified columns only — leaving all others protected — use

the following:

FOR UPDATE OF column-name [, column-name]...

 Any columns listed must appear in the DECLARE CURSOR’s query expression.

If you don’t include an updatability clause, the default assumption is that all

columns listed in the query expression are updatable. In that case, an UPDATE

statement can update all the columns in the row to which the cursor is

pointing, and a DELETE statement can delete that row.

Sensitivity
The query expression in the DECLARE CURSOR statement determines the

rows that fall within a cursor’s scope. Consider this possible problem: What

if a statement in your program, located between the OPEN and the CLOSE

statements, changes the contents of some of those rows so that they no

longer satisfy the query? Does the cursor continue to process all the rows

that originally qualified, or does it recognize the new situation and ignore

rows that no longer qualify?

A normal SQL statement, such as UPDATE, INSERT, or DELETE, operates on

a set of rows in a database table (or perhaps the entire table). While such a

statement is active, SQL’s transaction mechanism protects it from interference

by other statements acting concurrently on the same data. If you use a

cursor, however, your window of vulnerability to harmful interaction is wide

open. When you open a cursor, data is at risk of being the victim of simul-

taneous, conflicting operations until you close the cursor again. If you open

one cursor, start processing through a table, and then open a second cursor

while the first is still active, the actions you take with the second cursor can

affect what the statement controlled by the first cursor sees.

368 Part VI: Advanced Topics

 Changing the data in columns that are part of a DECLARE CURSOR query

expression after some — but not all — of the query’s rows have been processed

results in a big mess. Your results are likely to be inconsistent and misleading.

To avoid this problem, make sure that the cursor doesn’t change as a result

of any of the statements within its scope. Add the INSENSITIVE keyword

to your DECLARE CURSOR statement. As long as your cursor is open, it is

insensitive to (unaffected by) table changes that affect qualified rows in the

cursor’s scope. A cursor can’t be both insensitive and updatable. An insensitive

cursor must be read-only.

For example, suppose that you write these queries:

DECLARE C1 CURSOR FOR SELECT * FROM EMPLOYEE
 ORDER BY Salary ;
DECLARE C2 CURSOR FOR SELECT * FROM EMPLOYEE
 FOR UPDATE OF Salary ;

Now, suppose you open both cursors and fetch a few rows with C1 and then

update a salary with C2 to increase its value. This change can cause a row

that you have fetched with C1 to appear again on a later fetch of C1.

 The peculiar interactions that are possible with multiple open cursors, or

open cursors and set operations, are the sort of concurrency problems that

transaction isolation avoids. If you operate this way, you’re asking for trouble.

So remember: Don’t operate with multiple open cursors. For more information

about transaction isolation, check out Chapter 14.

The default condition of cursor sensitivity is ASENSITIVE. Although you

might think you know what this means, nothing is ever as simple as you’d like

it to be. Each implementation has its own definition. For one implementation

ASENSITIVE could be equivalent to SENSITIVE, and for another it could

be equivalent to INSENSITIVE. Check your system documentation for its

meaning in your own case.

Scrollability
Scrollability gives you the capability to move the cursor around within a

result set. With the SCROLL keyword in the DECLARE CURSOR statement, you

can access rows in any order you want. The syntax of the FETCH statement

controls the cursor’s movement. I describe the FETCH statement later in this

chapter.

369 Chapter 18: Stepping through a Dataset with Cursors

Opening a Cursor
Although the DECLARE CURSOR statement specifies which rows to include

in the cursor, it doesn’t actually cause anything to happen because DECLARE

is just a declaration and not an executable statement. The OPEN statement

brings the cursor into existence. It has the following form:

OPEN cursor-name ;

To open the cursor that I use in the discussion of the ORDER BY clause (ear-

lier in this chapter), use the following:

DECLARE revenue CURSOR FOR
 SELECT Model, Units, Price,
 Units * Price AS ExtPrice
 FROM TRANSDETAIL
 ORDER BY Model, ExtPrice DESC ;
OPEN revenue ;

 You can’t fetch rows from a cursor until you open the cursor. When you

open a cursor, the values of variables referenced in the DECLARE CURSOR

statement become fixed, as do all current date-time functions. Consider the

following example of SQL embedded in a host language program:

EXEC SQL DECLARE C1 CURSOR FOR SELECT * FROM ORDERS
 WHERE ORDERS.Customer = :NAME
 AND DueDate < CURRENT_DATE ;
NAME := ‘Acme Co’; //A host language statement
EXEC SQL OPEN C1;
NAME := ‘Omega Inc.’; //Another host statement
...
EXEC SQL UPDATE ORDERS SET DueDate = CURRENT_DATE ;

The OPEN statement fixes the value of all variables referenced in the declare

cursor and also fixes a value for all current date-time functions. As a result,

the second assignment to the name variable (NAME := ‘Omega Inc.’)

has no effect on the rows that the cursor fetches. (That value of NAME is used

the next time you open C1.) And even if the OPEN statement is executed a

minute before midnight and the UPDATE statement is executed a minute after

midnight, the value of CURRENT_DATE in the UPDATE statement is the value

of that function at the time the OPEN statement executed — even if DECLARE
CURSOR doesn’t reference the date-time function.

370 Part VI: Advanced Topics

Fetching Data from a Single Row
Processing cursors is a three-step process: The DECLARE CURSOR statement

specifies the cursor’s name and scope, the OPEN statement collects the table

rows selected by the DECLARE CURSOR query expression, and the FETCH

statement actually retrieves the data. The cursor may point to one of the

rows in the cursor’s scope, or to the location immediately before the first

row in the scope, or to the location immediately after the last row in the

scope, or to the empty space between two rows. You can specify where the

cursor points with the orientation clause in the FETCH statement.

Syntax
The syntax for the FETCH statement is

FETCH [[orientation] FROM] cursor-name
 INTO target-specification [, target-specification]... ;

The fix is in (for date-times)
As I describe in the section “Opening a Cursor,”
the OPEN statement fixes the value of all vari-
ables referenced in the declare cursor. It also
fixes a value for date-time functions. A similar
fixing of date-time values exists in set opera-
tions. Consider this example:

UPDATE ORDERS SET RecheckDate = CURRENT_
DATE WHERE....;

Now suppose that you have a bunch of orders.
You begin executing this statement at a minute
before midnight. At midnight, the statement is
still running, and it doesn’t finish executing until
five minutes after midnight. It doesn’t matter. If
a statement has any reference to CURRENT_
DATE (or TIME or TIMESTAMP), the value is
set to the date and time the statement begins,
so all the ORDERS rows in the statement get the
same RecheckDate. Similarly, if a statement

references TIMESTAMP, the whole statement
uses only one timestamp value, no matter how
long the statement runs.

Here’s an interesting example of an implication
of this rule:

UPDATE EMPLOYEE SET KEY=CURRENT_TIMESTAMP;

You may expect that statement to set a unique
value in the key column of each employee,
since time is measured down to a small fraction
of a second. You’d be disappointed; it sets the
same value in every row. You’ll have to come
up with another way to generate a unique key.

So when the OPEN statement fixes date-time
values for all statements referencing the cursor,
it treats all these statements like an extended
statement.

371 Chapter 18: Stepping through a Dataset with Cursors

Seven orientation options are available:

 ✓ NEXT

 ✓ PRIOR

 ✓ FIRST

 ✓ LAST

 ✓ ABSOLUTE

 ✓ RELATIVE

 ✓ <simple value specification>

The default option is NEXT, which, incidentally, was the only orientation

available in versions of SQL prior to SQL-92. The NEXT orientation moves the

cursor from wherever it is to the next row in the set specified by the query

expression. That means that if the cursor is located before the first record,

it moves to the first record. If it points to record n, it moves to record n+1. If

the cursor points to the last record in the set, it moves beyond that record,

and notification of a no data condition is returned in the SQLSTATE system

variable. (Chapter 20 details SQLSTATE and the rest of SQL’s error-handling

facilities.)

The target specifications are either host variables or parameters, respectively,

depending on whether embedded SQL or a module language is using the

cursor. The number and types of the target specifications must match the

number and types of the columns specified by the query expression in the

DECLARE CURSOR. So in the case of embedded SQL, when you fetch a list of

five values from a row of a table, five host variables must be there to receive

those values, and they must be the right types.

Orientation of a scrollable cursor
Because the SQL cursor is scrollable, you have other choices besides NEXT.

If you specify PRIOR, the pointer moves to the row immediately preceding its

current location. If you specify FIRST, it points to the first record in the set,

and if you specify LAST, it points to the last record.

When you use the ABSOLUTE and RELATIVE orientation, you must specify an

integer value as well. For example, FETCH ABSOLUTE 7 moves the cursor to

the seventh row from the beginning of the set. FETCH RELATIVE 7 moves

the cursor seven rows beyond its current position. FETCH RELATIVE 0

doesn’t move the cursor.

372 Part VI: Advanced Topics

FETCH RELATIVE 1 has the same effect as FETCH NEXT. FETCH RELATIVE
–1 has the same effect as FETCH PRIOR. FETCH ABSOLUTE 1 gives you the

first record in the set, FETCH ABSOLUTE 2 gives you the second record in

the set, and so on. Similarly, FETCH ABSOLUTE –1 gives you the last record

in the set, FETCH ABSOLUTE –2 gives you the next-to-last record, and so on.

Specifying FETCH ABSOLUTE 0 returns the no data exception condition code,

as will FETCH ABSOLUTE 17 if only 16 rows are in the set. FETCH <simple
value specification> gives you the record specified by the simple value

specification.

Positioned DELETE and
UPDATE statements
You can perform delete and update operations on the row to which a cursor

is currently pointing. The syntax of the DELETE statement looks like this:

DELETE FROM table-name WHERE CURRENT OF cursor-name ;

If the cursor doesn’t point to a row, the statement returns an error condition,

and no deletion occurs.

The syntax of the UPDATE statement is as follows:

UPDATE table-name
 SET column-name = value [,column-name = value]...
 WHERE CURRENT OF cursor-name ;

The value you place into each specified column must be a value expression or

the keyword DEFAULT. If an attempted positioned update operation returns

an error, the update isn’t performed.

Closing a Cursor
 After you finish with a cursor, make a habit of closing it immediately. Leaving

a cursor open as your application goes on to other issues may cause harm.

Also, open cursors use system resources.

If you close a cursor that was insensitive to changes made while it was open,

when you reopen it, the reopened cursor reflects any such changes.

You can close the cursor that I opened earlier in the TRANSDETAIL table with

a simple statement such as the following:

CLOSE revenue ;

Chapter 19

Adding Procedural Capabilities
with Persistent Stored Modules

In This Chapter
▶ Tooling up compound statements with atomicity, cursors, variables, and conditions

▶ Regulating the flow of control statements

▶ Doing loops that do loops that do loops

▶ Retrieving and using stored procedures and stored functions

▶ Assigning privileges, creating stored modules, and putting stored modules to good use

Some of the leading practitioners of database technology have been

working on the standards process for years. Even after a standard has

been issued and accepted by the worldwide database community, progress

toward the next standard doesn’t slow down. A seven-year gap separated

the issuance of SQL-92 and the release of the first component of SQL:1999.

During the intervening years, ANSI and ISO issued an addendum to SQL-92,

called SQL-92/PSM (Persistent Stored Modules). This addendum formed the

basis for a part of SQL:1999 with the same name. SQL/PSM defines a number

of statements that give SQL flow of control structures comparable to the flow

of control structures available in full-featured programming languages. It

enables you to use SQL to perform tasks that programmers previously were

forced to use other tools for. Can you imagine what your life would have

been like in the caveman times of 1992, when you’d have to repeatedly swap

between SQL and its procedural host language just to do your work?

Compound Statements
Throughout this book, SQL is represented as a nonprocedural language

that deals with data a set at a time rather than a record at a time. With the

addition of the facilities covered in this chapter, however, this statement is

not as true as it used to be. Although SQL still deals with data a set at a time,

it is becoming more procedural.

374 Part VI: Advanced Topics

Archaic SQL (defined by SQL-92) doesn’t follow the procedural model —

where one instruction follows another in a sequence to produce a desired

result — so early SQL statements were stand-alone entities, perhaps

embedded in a C++ or Visual Basic program. With these early versions of

SQL, posing a query or performing other operations by executing a series

of SQL statements was discouraged because these complicated activities

resulted in a performance penalty in the form of network traffic. SQL:1999

and all following versions allow compound statements, made up of individual

SQL statements that execute as a unit, easing network congestion.

All the statements included in a compound statement are enclosed between a

BEGIN keyword at the beginning of the statement and an END keyword at the

end of the statement. For example, to insert data into multiple related tables,

you use syntax similar to the following:

void main {
 EXEC SQL
 BEGIN
 INSERT INTO students (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 INSERT INTO roster (ClassID, Class, StudentID)
 VALUES (:cid, :cname, :sid) ;
 INSERT INTO receivable (StudentID, Class, Fee)
 VALUES (:sid, :cname, :cfee)
 END ;
/* Check SQLSTATE for errors */
}

This little fragment from a C program includes an embedded compound SQL

statement. The comment about SQLSTATE deals with error handling. If the

compound statement doesn’t execute successfully, an error code is placed in

the status parameter SQLSTATE. Of course, placing a comment after the END

keyword doesn’t correct the error. The comment is placed there simply to

remind you that in a real program, error-handling code belongs in that spot.

(I discuss error handling in detail in Chapter 20.)

Atomicity
Compound statements introduce a possibility for error that you don’t face

when you construct simple SQL statements. A simple SQL statement either

completes successfully or doesn’t, and if it doesn’t complete successfully, the

database is unchanged. This is not necessarily the case when a compound

statement creates an error.

Consider the example in the preceding section. What if the INSERT to the

STUDENTS table and the INSERT to the ROSTER table both took place, but

375 Chapter 19: Adding Procedural Capabilities with Persistent Stored Modules

because of interference from another user, the INSERT to the RECEIVABLE

table failed? A student would be registered for a class but would not be

billed. This kind of error can be hard on a university’s finances.

The concept that is missing in this scenario is atomicity. An atomic statement

is indivisible — it either executes completely or not at all. Simple SQL

statements are atomic by nature, but compound SQL statements are not.

However, you can make a compound SQL statement atomic by specifying it

as such. In the following example, the compound SQL statement is safe by

introducing atomicity:

void main {
 EXEC SQL
 BEGIN ATOMIC
 INSERT INTO students (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 INSERT INTO roster (ClassID, Class, StudentID)
 VALUES (:cid, :cname, :sid) ;
 INSERT INTO receivable (StudentID, Class, Fee)
 VALUES (:sid, :cname, :cfee)
 END ;
/* Check SQLSTATE for errors */
}

By adding the keyword ATOMIC after the keyword BEGIN, you ensure that

either the entire statement executes, or — if an error occurs — the entire

statement rolls back, leaving the database in the state it was in before the

statement began executing. Atomicity is discussed in detail in Chapter 14 in

the course of the discussion of transactions.

You can find out whether a statement executed successfully. Read the

section, “Conditions,” later in this chapter, for more information.

Variables
Full computer languages such as C or BASIC have always offered variables,
but SQL didn’t offer them until the introduction of SQL/PSM. A variable is

a symbol that takes on a value of any given data type. Within a compound

statement, you can declare a variable, assign it a value, and use it in a

compound statement.

After you exit a compound statement, all the variables declared within it

are destroyed. Thus, variables in SQL are local to the compound statement

within which they are declared.

376 Part VI: Advanced Topics

Here is an example:

BEGIN
 DECLARE prezpay NUMERIC ;
 SELECT salary
 INTO prezpay
 FROM EMPLOYEE
 WHERE jobtitle = ‘president’ ;
END;

Cursors
You can declare a cursor within a compound statement. You use cursors to

process a table’s data one row at a time (see Chapter 18 for details). Within

a compound statement, you can declare a cursor, use it, and then forget it

because the cursor is destroyed when you exit the compound statement.

Here’s an example of this usage:

BEGIN
 DECLARE ipocandidate CHARACTER(30) ;
 DECLARE cursor1 CURSOR FOR
 SELECT company
 FROM biotech ;
 OPEN CURSOR1 ;
 FETCH cursor1 INTO ipocandidate ;
 CLOSE cursor1 ;
END;

Conditions
When people say that a person has a condition, they usually mean that

something is wrong with that person — he or she is sick or injured. People

usually don’t bother to mention that a person is in good condition; rather, we

talk about people who are in serious condition or, even worse, in critical

condition. This idea is similar to the way programmers talk about the

condition of an SQL statement. The execution of an SQL statement leads to a

successful result, a questionable result, or an outright erroneous result. Each

of these possible results corresponds to a condition.

Every time an SQL statement executes, the database server places a value

into the status parameter SQLSTATE. SQLSTATE is a five-character field. The

value that is placed into SQLSTATE indicates whether the preceding SQL

statement executed successfully. If it did not execute successfully, the value

of SQLSTATE provides some information about the error.

377 Chapter 19: Adding Procedural Capabilities with Persistent Stored Modules

The first two of the five characters of SQLSTATE (the class value) give

you the major news as to whether the preceding SQL statement executed

successfully, returned a result that may or may not have been successful, or

produced an error. Table 19-1 shows the four possible results.

Table 19-1 SQLSTATE Class Values
Class Description Details

00 Successful
completion

The statement executed successfully.

01 Warning Something unusual happened during the execution of
the statement, but the DBMS can’t tell whether there
was an error. Check the preceding SQL statement
carefully to ensure that it is operating correctly.

02 Not Found No data was returned as a result of the execution of
the statement. This may or may not be good news,
depending on what you were trying to do with the
statement. You may be hoping for an empty result
table.

Other Exception The two characters of the class code, plus the three
characters of the subclass code, comprise the five
characters of SQLSTATE. They also give you an
inkling about the nature of the error.

Handling conditions
You can have your program look at SQLSTATE after the execution of every

SQL statement. What do you do with the knowledge that you gain?

 ✓ If you find a class code of 00, you probably don’t want to do anything.

You want execution to proceed as you originally planned.

 ✓ If you find a class code of 01 or 02, you may want to take special

action. If you expected the “Warning” or “Not Found” indication, then

you probably want to let execution proceed. If you didn’t expect either

of these class codes, then you probably want to have execution branch

to a procedure that is specifically designed to handle the unexpected,

but not totally unanticipated, warning or not found result.

378 Part VI: Advanced Topics

 ✓ If you receive any other class code, something is wrong. You should

branch to an exception-handling procedure. Which procedure you

choose to branch to depends on the contents of the three subclass

characters, as well as the two class characters of SQLSTATE. If multiple

different exceptions are possible, there should be an exception-handling

procedure for each one because different exceptions often require

different responses. You may be able to correct some errors or find

work-arounds. Other errors may be fatal; no one will die, but you may

end up having to terminate the application.

Handler declarations
You can put a condition handler within a compound statement. To create a

condition handler, you must first declare the condition that it will handle.

The condition declared can be some sort of exception, or it can just be

something that is true. Table 19-2 lists the possible conditions and includes a

brief description of what causes each type of condition.

Table 19-2 Conditions That May Be Specified
 in a Condition Handler
Condition Description

SQLSTATE VALUE
‘xxyyy’

Specific SQLSTATE value

SQLEXCEPTION SQLSTATE class other than 00, 01, or 02

SQLWARNING SQLSTATE class 01

NOT FOUND SQLSTATE class 02

The following is an example of a condition declaration:

BEGIN
 DECLARE constraint_violation CONDITION
 FOR SQLSTATE VALUE ‘23000’ ;
END ;

This example is not realistic, because typically the SQL statement that may

cause the condition to occur — as well as the handler that would be invoked

if the condition did occur — would also be enclosed within the BEGIN…END

structure.

379 Chapter 19: Adding Procedural Capabilities with Persistent Stored Modules

Handler actions and handler effects
If a condition occurs that invokes a handler, the action specified by the

handler executes. This action is an SQL statement, which can be a compound

statement. If the handler action completes successfully, then the handler

effect executes. The following is a list of the three possible handler effects:

 ✓ CONTINUE: Continue execution immediately after the statement that

caused the handler to be invoked.

 ✓ EXIT: Continue execution after the compound statement that contains

the handler.

 ✓ UNDO: Undo the work of the previous statements in the compound

statement, and continue execution after the statement that contains the

handler.

If the handler can correct whatever problem invoked the handler, then the

CONTINUE effect may be appropriate. The EXIT effect may be appropriate if

the handler didn’t fix the problem, but the changes made to the compound

statement do not need to be undone. The UNDO effect is appropriate if you

want to return the database to the state it was in before the compound

statement started execution. Consider the following example:

BEGIN ATOMIC
 DECLARE constraint_violation CONDITION
 FOR SQLSTATE VALUE ‘23000’ ;
 DECLARE UNDO HANDLER
 FOR constraint_violation
 RESIGNAL ;
 INSERT INTO students (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 INSERT INTO roster (ClassID, Class, StudentID)
 VALUES (:cid, :cname, :sid) ;
END ;

If either of the INSERT statements causes a constraint violation, such as

trying to add a record with a primary key that duplicates a primary key

already in the table, SQLSTATE assumes a value of ‘23000’, thus setting the

constraint_violation condition to a true value. This action causes the

handler to UNDO any changes that have been made to any tables by either

INSERT command. The RESIGNAL statement transfers control back to the

procedure that called the currently executing procedure.

If both INSERT statements execute successfully, execution continues with

the statement following the END keyword.

The ATOMIC keyword is mandatory whenever a handler’s effect is UNDO. This

is not the case for handlers whose effect is either CONTINUE or EXIT.

380 Part VI: Advanced Topics

Conditions that aren’t handled
In the example in the preceding section, consider this possibility: What if an

exception occurred that returned an SQLSTATE value other than ‘23000’?

Something is definitely wrong, but the exception handler that you coded

can’t handle it. What happens now?

Because the current procedure doesn’t know what to do, a RESIGNAL occurs.

This bumps the problem up to the next higher level of control. If the problem

isn’t handled there, it continues to be elevated to higher levels until either it

is handled or it causes an error condition in the main application.

 The idea that I want to emphasize here is that if you write an SQL statement

that may cause exceptions, then you should write exception handlers for all

such possible exceptions. If you don’t, you will have more difficulty isolating

the source of a problem when it inevitably occurs.

Assignment
With SQL/PSM, SQL gains a function that even the lowliest procedural

languages have had since their inception: the ability to assign a value to a

variable. Essentially, an assignment statement takes the following form:

SET target = source ;

In this usage, target is a variable name, and source is an expression.

Several examples include the following:

SET vfname = ‘Brandon’ ;

SET varea = 3.1416 * :radius * :radius ;

SET vhiggsmass = NULL ;

Flow of Control Statements
Since its original formulation in the SQL-86 standard, one of the main

drawbacks that has prevented people from using SQL in a procedural manner

has been its lack of flow of control statements. Until SQL/PSM was included

in the SQL standard, you couldn’t branch out of a strict sequential order of

execution without reverting to a host language like C or BASIC. SQL/PSM

introduces the traditional flow of control structures that other languages

provide, thus allowing SQL programs to perform needed functions without

switching back and forth between languages.

381 Chapter 19: Adding Procedural Capabilities with Persistent Stored Modules

IF…THEN…ELSE…END IF
The most basic flow of control statement is the IF…THEN…ELSE…END IF

statement. This statement, roughly translated from computerese, means IF

a condition is true, then execute the statements following the THEN keyword.

Otherwise, execute the statements following the ELSE keyword. For example:

IF
 vfname = ‘Brandon’
THEN
 UPDATE students
 SET Fname = ‘Brandon’
 WHERE StudentID = 314159 ;
ELSE
 DELETE FROM students
 WHERE StudentID = 314159 ;
END IF

In this example, if the variable vfname contains the value ‘Brandon’, then

the record for student 314159 is updated with ‘Brandon’ in the Fname field.

If the variable vfname contains any value other than ‘Brandon’, then the

record for student 314159 is deleted from the STUDENTS table.

The IF…THEN…ELSE…END IF statement is great if you want to choose one

of two actions based on the value of a condition. Often, however, you want

to make a selection from more than two choices. At such times, you should

probably use a CASE statement.

CASE…END CASE
CASE statements come in two forms: the simple CASE statement and the

searched CASE statement. Both kinds allow you to take different execution

paths based on the values of conditions.

Simple CASE statement
A simple CASE statement evaluates a single condition. Based on the value of

that condition, execution may take one of several branches. For example:

CASE vmajor
 WHEN ‘Computer Science’
 THEN INSERT INTO geeks (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 WHEN ‘Sports Medicine’
 THEN INSERT INTO jocks (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 WHEN ‘Philosophy’

382 Part VI: Advanced Topics

 THEN INSERT INTO skeptics (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 ELSE INSERT INTO undeclared (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
END CASE

The ELSE clause handles everything that doesn’t fall into the explicitly

named categories in the THEN clauses.

You don’t need to use the ELSE clause — it’s optional. However, if you don’t

include it, and the CASE statement’s condition is not handled by any of the

THEN clauses, SQL returns an exception.

Searched CASE statement
A searched CASE statement is similar to a simple CASE statement, but it

evaluates multiple conditions rather than just one. For example:

CASE
 WHEN vmajor
 IN (‘Computer Science’, ‘Electrical Engineering’)
 THEN INSERT INTO geeks (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 WHEN vclub
 IN (‘Amateur Radio’, ‘Rocket’, ‘Computer’)
 THEN INSERT INTO geeks (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 WHEN vmajor
 IN (‘Sports Medicine’, ‘Physical Education’)
 THEN INSERT into jocks (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 ELSE
 INSERT INTO skeptics (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
END CASE

You avoid an exception by putting all students who are not geeks or jocks

into the SKEPTICS table. Because not all nongeeks and nonjocks are skeptics,

this may not be strictly accurate in all cases. If it isn’t, you can always add a

few more WHEN clauses.

LOOP…ENDLOOP
The LOOP statement allows you to execute a sequence of SQL statements

multiple times. After the last SQL statement enclosed within the LOOP…
ENDLOOP statement executes, control loops back to the first such statement

and makes another pass through the enclosed statements. The syntax is as

follows:

383 Chapter 19: Adding Procedural Capabilities with Persistent Stored Modules

SET vcount = 0 ;
LOOP
 SET vcount = vcount + 1 ;
 INSERT INTO asteroid (AsteroidID)
 VALUES (vcount) ;
END LOOP

This code fragment preloads your ASTEROID table with unique identifiers.

You can fill in other details about the asteroids as you find them, based on

what you see through your telescope when you discover them.

Notice the one little problem with the code fragment in the preceding

example: It is an infinite loop. No provision is made for leaving the loop, so

it will continue inserting rows into the ASTEROID table until the DBMS fills

all available storage with ASTEROID table records. If you’re lucky, the DBMS

will raise an exception at that time. If you’re unlucky, the system will merely

crash.

For the LOOP statement to be useful, you need a way to exit loops before you

raise an exception. That way is the LEAVE statement.

LEAVE
The LEAVE statement works just like you might expect it to work. When

execution encounters a LEAVE statement embedded within a labeled

statement, it proceeds to the next statement beyond the labeled statement.

For example:

AsteroidPreload:
SET vcount = 0 ;
LOOP
 SET vcount = vcount + 1 ;
 IF vcount > 10000
 THEN
 LEAVE AsteroidPreload ;
 END IF ;
 INSERT INTO asteroid (AsteroidID)
 VALUES (vcount) ;
END LOOP AsteroidPreload

The preceding code inserts 10,000 sequentially numbered records into the

ASTEROID table and then passes out of the loop.

384 Part VI: Advanced Topics

WHILE…DO…END WHILE
The WHILE statement provides another method of executing a series of SQL

statements multiple times. While a designated condition is true, the WHILE

loop continues to execute. When the condition becomes false, looping stops.

For example:

AsteroidPreload2:
SET vcount = 0 ;
WHILE
 vcount < 10000 DO
 SET vcount = vcount + 1 ;
 INSERT INTO asteroid (AsteroidID)
 VALUES (vcount) ;
END WHILE AsteroidPreload2

This code does exactly the same thing that AsteroidPreload did in the

preceding section. This is just another example of the often-cited fact that

with SQL, you usually have multiple ways to accomplish any given task.

Use whichever method you feel most comfortable with, assuming your

implementation allows both.

REPEAT…UNTIL…END REPEAT
The REPEAT loop is very much like the WHILE loop, except that the condition

is checked after the embedded statements execute rather than before. For

example:

AsteroidPreload3:
SET vcount = 0 ;
REPEAT
 SET vcount = vcount + 1 ;
 INSERT INTO asteroid (AsteroidID)
 VALUES (vcount) ;
 UNTIL X = 10000
END REPEAT AsteroidPreload3

Although you can perform the same operation three different ways (with

LOOP, WHILE, and REPEAT), you will encounter some instances when one of

these structures is clearly better than the other two. Have all three methods

in your bag of tricks so that when a situation like this arises you can decide

which one is the best tool available for the situation.

385 Chapter 19: Adding Procedural Capabilities with Persistent Stored Modules

FOR…DO…END FOR
The SQL FOR loop declares and opens a cursor, fetches the rows of the

cursor, executes the body of the FOR statement once for each row, and then

closes the cursor. This loop makes processing possible entirely within SQL,

instead of switching out to a host language. If your implementation supports

SQL FOR loops, you can use them as a simple alternative to the cursor

processing described in Chapter 18. Here’s an example:

FOR vcount AS Curs1 CURSOR FOR
 SELECT AsteroidID FROM asteroid
DO
 UPDATE asteroid SET Description = ‘stony iron’
 WHERE CURRENT OF Curs1 ;
END FOR

In this example, you update every row in the ASTEROID table by putting

‘stony iron’ into the Description field. This is a fast way to identify

the compositions of asteroids, but the table may suffer some in the accuracy

department. Perhaps you’d be better off checking the spectral signatures of

the asteroids and then entering their types individually.

ITERATE
The ITERATE statement provides a way to change the flow of execution

within an iterated SQL statement. The iterated SQL statements are LOOP,

WHILE, REPEAT, and FOR. If the iteration condition of the iterated SQL

statement is true or not specified, then the next iteration of the loop

commences immediately after the ITERATE statement executes. If the

iteration condition of the iterated SQL statement is false or unknown,

then iteration ceases after the ITERATE statement executes. For example:

AsteroidPreload4:
SET vcount = 0 ;
WHILE
 vcount < 10000 DO
 SET vcount = vcount + 1 ;
 INSERT INTO asteroid (AsteroidID)
 VALUES (vcount) ;
 ITERATE AsteroidPreload4 ;
 SET vpreload = ‘DONE’ ;
END WHILE AsteroidPreload4

386 Part VI: Advanced Topics

Execution loops back to the top of the WHILE statement immediately after

the ITERATE statement each time through the loop until vcount equals

9999. On that iteration, vcount increments to 10000, the INSERT performs,

the ITERATE statement ceases iteration, vpreload is set to ‘DONE’, and

execution proceeds to the next statement after the loop.

Stored Procedures
Stored procedures reside in the database on the server, rather than execute

on the client — where all procedures were located before SQL/PSM. After you

define a stored procedure, you can invoke it with a CALL statement. Keeping

the procedure located on the server rather than on the client reduces

network traffic, thus speeding performance. The only traffic that needs to

pass from the client to the server is the CALL statement. You can create this

procedure in the following manner:

EXEC SQL
 CREATE PROCEDURE MatchScore
 (IN result CHAR (3),
 OUT winner CHAR (5))
 BEGIN ATOMIC
 CASE result
 WHEN ‘1-0’ THEN
 SET winner = ‘white’ ;
 WHEN ‘0-1’ THEN
 SET winner = ‘black’ ;
 ELSE
 SET winner = ‘draw’ ;
 END CASE
 END ;

After you have created a stored procedure like the one in this example, you

can invoke it with a CALL statement similar to the following statement:

CALL MatchScore (‘Kasparov’, ‘Karpov’, ‘1-0’, winner) ;

The first three arguments are input parameters that are fed to the

MatchScore procedure. The fourth argument is the output parameter that

the MatchScore procedure uses to return its result to the calling routine. In

this case, it returns ‘white’.

387 Chapter 19: Adding Procedural Capabilities with Persistent Stored Modules

Stored Functions
A stored function is similar in many ways to a stored procedure. Collectively,

the two are referred to as stored routines. They are different in several ways,

including the way in which they are invoked. A stored procedure is invoked

with a CALL statement, and a stored function is invoked with a function call,
which can replace an argument of an SQL statement. The following is an

example of a function definition, followed by an example of a call to that

function:

CREATE FUNCTION PurchaseHistory (CustID)
 RETURNS CHAR VARYING (200)

 BEGIN
 DECLARE purch CHAR VARYING (200)
 DEFAULT ‘’ ;
 FOR x AS SELECT *
 FROM transactions t
 WHERE t.customerID = CustID
 DO
 IF a <> ‘’
 THEN SET purch = purch || ‘, ’ ;
 END IF ;
 SET purch = purch || t.description ;
 END FOR
 RETURN purch ;
 END ;

This function definition creates a comma-delimited list of purchases made

by a customer that has a specified customer number, taken from the

TRANSACTIONS table. The following UPDATE statement contains a function

call to PurchaseHistory that inserts the latest purchase history for cus-

tomer number 314259 into her record in the CUSTOMER table:

SET customerID = 314259 ;
UPDATE customer
 SET history = PurchaseHistory (customerID)
 WHERE customerID = 314259 ;

Privileges
I discuss the various privileges that you can grant to users in Chapter 13. The

database owner can grant the following privileges to other users:

388 Part VI: Advanced Topics

 ✓ The right to DELETE rows from a table

 ✓ The right to INSERT rows into a table

 ✓ The right to UPDATE rows in a table

 ✓ The right to create a table that REFERENCES another table

 ✓ The right of USAGE on a domain

SQL/PSM adds one more privilege that can be granted to a user — the

EXECUTE privilege. Here are two examples:

GRANT EXECUTE on MatchScore to TournamentDirector ;

GRANT EXECUTE on PurchaseHistory to SalesManager ;

These statements allow the tournament director of the chess tournament to

execute the MatchScore procedure, and the sales manager of the company

to execute the PurchaseHistory function. People lacking the EXECUTE

privilege for a routine aren’t able to use it.

Stored Modules
A stored module can contain multiple routines (procedures and/or functions)

that can be invoked by SQL. Anyone who has the EXECUTE privilege for a

module has access to all the routines in the module. Privileges on routines

within a module can’t be granted individually. The following is an example of

a stored module:

CREATE MODULE mod1
 PROCEDURE MatchScore
 (IN result CHAR (3),
 OUT winner CHAR (5))
 BEGIN ATOMIC
 CASE result
 WHEN ‘1-0’ THEN
 SET winner = ‘white’ ;
 WHEN ‘0-1’ THEN
 SET winner = ‘black’ ;
 ELSE
 SET winner = ‘draw’ ;
 END CASE
 END ;
 FUNCTION PurchaseHistory (CustID)
 RETURNS CHAR VARYING (200)
 BEGIN

389 Chapter 19: Adding Procedural Capabilities with Persistent Stored Modules

 DECLARE purch CHAR VARYING (200)
 DEFAULT ‘’ ;
 FOR x AS SELECT *
 FROM transactions t
 WHERE t.customerID = CustID
 DO
 IF a <> ‘’
 THEN SET purch = purch || ‘, ’ ;
 END IF ;
 SET purch = purch || t.description ;
 END FOR
 RETURN purch ;
 END ;
END MODULE ;

The two routines in this module (a procedure and a function) don’t have

much in common, but they don’t need to. You can gather related routines

into a single module, or you can stick all the routines you are likely to use

into a single module, regardless of whether they have anything in common.

390 Part VI: Advanced Topics

Chapter 20

Handling Errors
In This Chapter
▶ Flagging error conditions

▶ Branching to error-handling code

▶ Determining the exact nature of an error

▶ Finding out which DBMS generated an error condition

Wouldn’t it be great if every application you wrote worked perfectly

every time? Yeah, and it would also be really cool to win $314.9

million playing Powerball. Unfortunately, both possibilities are equally

unlikely to happen. Error conditions of one sort or another are inevitable, so

it’s helpful to know what causes them. SQL’s mechanism for returning error

information to you is the status parameter (or host variable) SQLSTATE. Based

on the contents of SQLSTATE, you can take different actions to remedy the

error condition.

For example, the WHENEVER directive enables you to take a predetermined

action whenever a specified condition (if SQLSTATE has a non-zero value, for

example) is met. You can also find detailed status information about the SQL

statement that you just executed in the diagnostics area. In this chapter, I

explain these helpful error-handling facilities and how to use them.

SQLSTATE
SQLSTATE specifies a large number of anomalous conditions. SQLSTATE is

a five-character string in which only the uppercase letters A through Z and

the numerals 0 through 9 are valid characters. The five-character string is

divided into two groups: a two-character class code and a three-character

subclass code. Figure 20-1 illustrates the SQLSTATE layout.

392 Part VI: Advanced Topics

The SQL standard defines any class code that starts with the letters A

through H or the numerals 0 through 4; therefore, these class codes mean

the same thing in any implementation. Class codes that start with the letters

I through Z or the numerals 5 through 9 are left open for implementors (the

people who build database management systems) to define because the SQL

specification can’t anticipate every condition that may come up in every

implementation. However, implementors should use these nonstandard class

codes as little as possible to avoid migration problems from one DBMS to

another. Ideally, implementors should use the standard codes most of the

time and the nonstandard codes only under the most unusual circumstances.

Figure 20-1:
SQLSTATE

status
parameter

layout.

Class code Subclass code

I introduce SQLSTATE in Chapter 19, but here’s a recap. A class code of 00

indicates successful completion. Class code 01 means that the statement

executed successfully but produced a warning. Class code 02 indicates a no

data condition. Any SQLSTATE class code other than 00, 01, or 02 indicates

that the statement did not execute successfully.

Because SQLSTATE updates after every SQL operation, you can check it

after every statement executes. If SQLSTATE contains 00000 (successful

completion), you can proceed with the next operation. If it contains anything

else, you may want to branch out of the main line of your code to handle the

situation. The specific class code and subclass code that an SQLSTATE

contains determine which of several possible actions you should take.

To use SQLSTATE in a module language program (which I describe in Chapter

15), include a reference to it in your procedure definitions, as the following

example shows:

PROCEDURE NUTRIENT
 (SQLSTATE, :foodname CHAR (20), :calories SMALLINT,
 :protein DECIMAL (5,1), :fat DECIMAL (5,1),
 :carbo DECIMAL (5,1))
INSERT INTO FOODS
 (FoodName, Calories, Protein, Fat, Carbohydrate)
 VALUES
 (:foodname, :calories, :protein, :fat, :carbo) ;

393 Chapter 20: Handling Errors

At the appropriate spot in your procedural language program, you can make

values available for the parameters (perhaps by soliciting them from the

user) and then call up the procedure. The syntax of this operation varies

from one language to another, but it looks something like this:

foodname = “Okra, boiled” ;
calories = 29 ;
protein = 2.0 ;
fat = 0.3 ;
carbo = 6.0 ;
NUTRIENT(state, foodname, calories, protein, fat, carbo) ;

The state of SQLSTATE is returned in the variable state. Your program can

examine this variable and then take the appropriate action based on the

variable’s contents.

WHENEVER Clause
What’s the point of knowing that an SQL operation didn’t execute successfully

if you can’t do anything about it? If an error occurs, you don’t want your

application to continue executing as if everything is fine. You need to be able

to acknowledge the error and do something to correct it. If you can’t correct

the error, at the very least you want to inform the user of the problem and

bring the application to a graceful termination. The WHENEVER directive is

the SQL mechanism for dealing with execution exceptions.

The WHENEVER directive is actually a declaration and is therefore located in

your application’s SQL declaration section, before the executable SQL code.

The syntax is as follows:

WHENEVER condition action ;

 The condition may be either SQLERROR or NOT FOUND. The action may be

either CONTINUE or GOTO address. SQLERROR is True if SQLSTATE has

a class code other than 00, 01, or 02. NOT FOUND is True if SQLSTATE is

02000.

If the action is CONTINUE, nothing special happens, and the execution

continues normally. If the action is GOTO address (or GO TO address),

execution branches to the designated address in the program. At the branch

address, you can put a conditional statement that examines SQLSTATE and

takes different actions based on what it finds. Here are some examples of this

scenario:

394 Part VI: Advanced Topics

WHENEVER SQLERROR GO TO error_trap ;

or

WHENEVER NOT FOUND CONTINUE ;

The GO TO option is simply a macro: The implementation (that is, the

embedded language precompiler) inserts the following test after every EXEC
SQL statement:

IF SQLSTATE <> ‘00000’
 AND SQLSTATE <> ‘00001’
 AND SQLSTATE <> ‘00002’
THEN GOTO error_trap ;

The CONTINUE option is essentially a NO-OP that says “ignore this.”

Diagnostics Areas
Although SQLSTATE can give you some information about why a particular

statement failed, the information is pretty brief. So SQL provides for the

capture and retention of additional status information in diagnostics areas.

Multiple diagnostics areas are maintained in the form of a last-in-first-out
(LIFO) stack. That is, information on the most recent error can be found at

the top of the stack, with info on older errors farther down in the list. The

additional status information in a diagnostics area can be particularly helpful

in cases in which the execution of a single SQL statement generates multiple

warnings followed by an error. SQLSTATE reports the occurrence of only

one error, but the diagnostics area has the capacity to report on multiple

(hopefully all) errors.

The diagnostics area is a DBMS-managed data structure that has two

components:

 ✓ Header: The header contains general information about the last SQL

statement that was executed.

 ✓ Detail area: The detail area contains information about each code

(error, warning, or success) that the statement generated.

395 Chapter 20: Handling Errors

Diagnostics header area
In the SET TRANSACTION statement (described in Chapter 14), you can

specify DIAGNOSTICS SIZE. The SIZE that you specify is the number

of detail areas allocated for status information. If you don’t include a

DIAGNOSTICS SIZE clause in your SET TRANSACTION statement, your

DBMS assigns its default number of detail areas, whatever that happens to be.

The header area contains several items, as listed in Table 20-1.

Table 20-1 Diagnostics Header Area
Fields Data Type

NUMBER Exact numeric with no fractional part

ROW_COUNT Exact numeric with no fractional part

COMMAND_FUNCTION VARCHAR (implementation defined
max length)

COMMAND_FUNCTION_CODE Exact numeric with no fractional part

DYNAMIC_FUNCTION VARCHAR (implementation defined
max length)

DYNAMIC_FUNCTION_CODE Exact numeric with no fractional part

MORE Exact numeric with no fractional part

TRANSACTIONS_COMMITTED Exact numeric with no fractional part

TRANSACTIONS_ROLLED_BACK Exact numeric with no fractional part

TRANSACTION_ACTIVE Exact numeric with no fractional part

The following list describes these items in more detail:

 ✓ The NUMBER field is the number of detail areas that have been filled with

diagnostic information about the current exception.

 ✓ The ROW_COUNT field holds the number of rows affected if the previous

SQL statement was an INSERT, UPDATE, or DELETE.

 ✓ The COMMAND_FUNCTION field describes the SQL statement that was

just executed.

 ✓ The COMMAND_FUNCTION_CODE field gives the code number for the

SQL statement that was just executed. Every command function has an

associated numeric code.

396 Part VI: Advanced Topics

 ✓ The DYNAMIC_FUNCTION field contains the dynamic SQL statement.

 ✓ The DYNAMIC_FUNCTION_CODE field contains a numeric code

corresponding to the dynamic SQL statement.

 ✓ The MORE field may be either a ‘Y’ or an ‘N’. ‘Y’ indicates that there

are more status records than the detail area can hold. ‘N’ indicates

that all the status records generated are present in the detail area.

Depending on your implementation, you may be able to expand the

number of records you can handle by using the SET TRANSACTION

statement.

 ✓ The TRANSACTIONS_COMMITTED field holds the number of transactions

that have been committed.

 ✓ The TRANSACTIONS_ROLLED_BACK field holds the number of transactions

that have been rolled back.

 ✓ The TRANSACTION_ACTIVE field holds a ‘1’ if a transaction is currently

active and a ‘0’ otherwise. A transaction is deemed to be active if a

cursor is open or if the DBMS is waiting for a deferred parameter.

Diagnostics detail area
The detail areas contain data on each individual error, warning, or success

condition. Each detail area contains 28 items, as Table 20-2 shows.

Table 20-2 Diagnostics Detail Area
Fields Data Type

CONDITION_NUMBER Exact numeric with no fractional part

RETURNED_SQLSTATE CHAR (6)

MESSAGE_TEXT VARCHAR (implementation defined max length)

MESSAGE_LENGTH Exact numeric with no fractional part

MESSAGE_OCTET_
LENGTH

Exact numeric with no fractional part

CLASS_ORIGIN VARCHAR (implementation defined max length)

SUBCLASS_ORIGIN VARCHAR (implementation defined max length)

CONNECTION_NAME VARCHAR (implementation defined max length)

SERVER_NAME VARCHAR (implementation defined max length)

397 Chapter 20: Handling Errors

Fields Data Type

CONSTRAINT_CATALOG VARCHAR (implementation defined max length)

CONSTRAINT_SCHEMA VARCHAR (implementation defined max length)

CONSTRAINT_NAME VARCHAR (implementation defined max length)

CATALOG_NAME VARCHAR (implementation defined max length)

SCHEMA_NAME VARCHAR (implementation defined max length)

TABLE_NAME VARCHAR (implementation defined max length)

COLUMN_NAME VARCHAR (implementation defined max length)

CURSOR_NAME VARCHAR (implementation defined max length)

CONDITION_
IDENTIFIER

VARCHAR (implementation defined max length)

PARAMETER_NAME VARCHAR (implementation defined max length)

PARAMETER_ORDINAL_
POSITION

Exact numeric with no fractional part

PARAMETER_MODE Exact numeric with no fractional part

ROUTINE_CATALOG VARCHAR (implementation defined max length)

ROUTINE_SCHEMA VARCHAR (implementation defined max length)

ROUTINE_NAME VARCHAR (implementation defined max length)

SPECIFIC_NAME VARCHAR (implementation defined max length)

TRIGGER_CATALOG VARCHAR (implementation defined max length)

TRIGGER_SCHEMA VARCHAR (implementation defined max length)

TRIGGER_NAME VARCHAR (implementation defined max length)

CONDITION_NUMBER holds the sequence number of the detail area. If a

statement generates five status items that fill up five detail areas, the

CONDITION_NUMBER for the fifth detail area is 5. To retrieve a specific detail

area for examination, use a GET DIAGNOSTICS statement (described later

in this chapter in the “Interpreting the information returned by SQLSTATE”

section) with the desired CONDITION_NUMBER. RETURNED_SQLSTATE holds

the SQLSTATE value that caused this detail area to be filled.

CLASS_ORIGIN tells you the source of the class code value returned in

SQLSTATE. If the SQL standard defines the value, the CLASS_ORIGIN is ‘ISO
9075’. If your DBMS implementation defines the value, CLASS_ORIGIN holds

a string identifying the source of your DBMS. SUBCLASS_ORIGIN tells you

the source of the subclass code value returned in SQLSTATE.

398 Part VI: Advanced Topics

 CLASS_ORIGIN is important. If you get an SQLSTATE of ‘22012’, for example,

the values indicate that it is in the range of standard SQLSTATEs, so you know

that it means the same thing in all SQL implementations. However, if the

SQLSTATE is ‘22500’, the first two characters are in the standard range

and indicate a data exception, but the last three characters are in the

implementation-defined range. And if SQLSTATE is ‘90001’, it’s completely in

the implementation-defined range. SQLSTATE values in the implementation-

defined range can mean different things in different implementations, even

though the code itself may be the same.

So how do you find out the detailed meaning of ‘22500’ or the meaning

of ‘90001’? You must look in the implementor’s documentation. Which

implementor? If you’re using CONNECT, you may be connecting to various

products. To determine which one produced the error condition, look at

CLASS_ORIGIN and SUBCLASS_ORIGIN: They have values that identify each

implementation. You can test the CLASS_ORIGIN and SUBCLASS_ORIGIN to

see whether they identify implementors for which you have the SQLSTATE

listings. The actual values placed in CLASS_ORIGIN and SUBCLASS_ORIGIN

are implementor-defined, but they also are expected to be self-explanatory

company names.

If the error reported is a constraint violation, the CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA, and CONSTRAINT_NAME identify the constraint being

violated.

Constraint violation example
The constraint violation information is probably the most important

information that GET DIAGNOSTICS provides. Consider the following

EMPLOYEE table:

CREATE TABLE EMPLOYEE
 (ID CHAR(5) CONSTRAINT EmpPK PRIMARY KEY,
 Salary DEC(8,2) CONSTRAINT EmpSal CHECK Salary > 0,
 Dept CHAR(5) CONSTRAINT EmpDept,
 REFERENCES DEPARTMENT) ;

And this DEPARTMENT table:

CREATE TABLE DEPARTMENT
 (DeptNo CHAR(5),
 Budget DEC(12,2) CONSTRAINT DeptBudget
 CHECK(Budget >= SELECT SUM(Salary)
 FROM EMPLOYEE
 WHERE EMPLOYEE.Dept=DEPARTMENT.
 DeptNo),
 ...) ;

399 Chapter 20: Handling Errors

Now consider an INSERT as follows:

INSERT INTO EMPLOYEE VALUES(:ID_VAR, :SAL_VAR, :DEPT_VAR) ;

Suppose that you get an SQLSTATE of ‘23000’. You look it up in your SQL

documentation and discover that this means that the statement is committing

an “integrity constraint violation.” Now what? That SQLSTATE value means

that one of the following situations is true:

 ✓ The value in ID_VAR is a duplicate of an existing ID value: You have

violated the PRIMARY KEY constraint.

 ✓ The value in SAL_VAR is negative: You have violated the CHECK

constraint on Salary.

 ✓ The value in DEPT_VAR isn’t a valid key value for any existing row of

DEPARTMENT: You have violated the REFERENCES constraint on Dept.

 ✓ The value in SAL_VAR is large enough that the sum of the employees’

salaries in this department exceeds the BUDGET: You have violated

the CHECK constraint in the BUDGET column of DEPARTMENT. (Recall

that if you change the database, all constraints that may be affected are

checked, not just those defined in the immediate table.)

Under normal circumstances, you would need to do a great deal of testing

to figure out what is wrong with that INSERT. But you can find out what you

need to know by using GET DIAGNOSTICS as follows:

DECLARE ConstNameVar CHAR(18) ;
GET DIAGNOSTICS EXCEPTION 1
 ConstNameVar = CONSTRAINT_NAME ;

Assuming that SQLSTATE is ‘23000’, this GET DIAGNOSTICS sets

ConstNameVar to ‘EmpPK’, ‘EmpSal’, ‘EmpDept’, or ‘DeptBudget’.

Notice that, in practice, you also want to obtain the CONSTRAINT_SCHEMA

and CONSTRAINT_CATALOG to uniquely identify the constraint given by

CONSTRAINT_NAME.

Adding constraints to an existing table
This use of GET DIAGNOSTICS — determining which of several constraints

has been violated — is particularly important in the case where ALTER
TABLE is used to add constraints that didn’t exist when you wrote the

program:

ALTER TABLE EMPLOYEE
 ADD CONSTRAINT SalLimit CHECK(Salary < 200000) ;

400 Part VI: Advanced Topics

Now if you insert data into EMPLOYEE or update the Salary column of

EMPLOYEE, you get an SQLSTATE of ‘23000’ if Salary exceeds $200,000.

You can program your INSERT statement so that, if you get an SQLSTATE of

‘23000’ and you don’t recognize the particular constraint name that GET
DIAGNOSTICS returns, you can display a helpful message, such as Invalid
INSERT: Violated constraint SalLimit.

Interpreting the information
returned by SQLSTATE
CONNECTION_NAME and ENVIRONMENT_NAME identify the connection and

environment to which you are connected at the time the SQL statement is

executed.

If the report deals with a table operation, CATALOG_NAME, SCHEMA_NAME,

and TABLE_NAME identify the table. COLUMN_NAME identifies the column

within the table that caused the report to be made. If the situation involves a

cursor, CURSOR_NAME gives its name.

Sometimes a DBMS produces a string of natural language text to explain a

condition. The MESSAGE_TEXT item is for this kind of information. The

contents of this item depend on the implementation; the SQL standard

doesn’t explicitly define them. If you do have something in MESSAGE_TEXT,

its length in characters is recorded in MESSAGE_LENGTH, and its length in

octets is recorded in MESSAGE_OCTET_LENGTH. If the message is in normal

ASCII characters, MESSAGE_LENGTH equals MESSAGE_OCTET_LENGTH. If,

on the other hand, the message is in kanji or some other language whose

characters require more than an octet to express, MESSAGE_LENGTH differs

from MESSAGE_OCTET_LENGTH.

To retrieve diagnostic information from a diagnostics area header, use the

following:

GET DIAGNOSTICS status1 = item1 [, status2 = item2]... ;

statusn is a host variable or parameter; itemn can be any of the keywords

NUMBER, MORE, COMMAND_FUNCTION, DYNAMIC_FUNCTION, or ROW_COUNT.

To retrieve diagnostic information from a diagnostics detail area, use the

following syntax:

GET DIAGNOSTICS EXCEPTION condition-number
 status1 = item1 [, status2 = item2]... ;

Again statusn is a host variable or parameter, and itemn is any of the 26

keywords for the detail items listed in Table 20-2. The condition number is

(surprise!) the detail area’s CONDITION_NUMBER item.

401 Chapter 20: Handling Errors

Handling Exceptions
When SQLSTATE indicates an exception condition by holding a value other

than 00000, 00001, or 00002, you may want to handle the situation in one of

the following ways:

 ✓ Return control to the parent procedure that called the subprocedure

that raised the exception.

 ✓ Use a WHENEVER clause (as described earlier in this chapter) to branch

to an exception-handling routine or perform some other action.

 ✓ Handle the exception on the spot with a compound SQL statement (as

described in Chapter 19). A compound SQL statement consists of one or

more simple SQL statements, sandwiched between BEGIN and END

keywords.

The following is an example of a compound-statement exception handler:

BEGIN
 DECLARE ValueOutOfRange EXCEPTION FOR SQLSTATE ‘73003’ ;
 INSERT INTO FOODS
 (Calories)
 VALUES
 (:cal) ;
 SIGNAL ValueOutOfRange ;
 MESSAGE ‘Process a new calorie value.’
 EXCEPTION
 WHEN ValueOutOfRange THEN
 MESSAGE ‘Handling the calorie range error’ ;
 WHEN OTHERS THEN
 RESIGNAL ;
END

With one or more DECLARE statements, you can give names to specific

SQLSTATE values that you suspect may arise. The INSERT statement is the

one that might cause an exception to occur. If the value of :cal exceeds the

maximum value for a SMALLINT data item, SQLSTATE is set to “73003”.

The SIGNAL statement signals an exception condition. It clears the top

diagnostics area. It sets the RETURNED_SQLSTATE field of the diagnostics

area to the SQLSTATE for the named exception. If no exception has occurred,

the series of statements represented by the MESSAGE ‘Process a new
calorie value’ statement is executed. However, if an exception has

occurred, that series of statements is skipped, and the EXCEPTION statement

is executed.

If the exception was a ValueOutOfRange exception, then a series of

statements represented by the MESSAGE ‘Handling the calorie range
error’ statement is executed. The RESIGNAL statement is executed if the

exception isn’t a ValueOutOfRange exception.

402 Part VI: Advanced Topics

 RESIGNAL merely passes control of execution to the calling parent procedure.

That procedure may have additional error-handling code to deal with

exceptions other than the expected value-out-of-range error.

Chapter 21

Triggers
In This Chapter
▶ Creating triggers

▶ Considerations in firing a trigger

▶ Executing a trigger

▶ Firing multiple triggers

In the course of executing a database application, occasions may arise

where if some specific action occurs, you want that action to cause

another action, or perhaps a succession of actions, to occur. In a sense, that

first action triggers the execution of the following actions. SQL provides the

TRIGGER mechanism to provide this capability.

Triggers, of course, are best known as those parts of a firearm that cause it to

fire. More generally, a trigger is an action or event that causes another event

to occur. In SQL, the word trigger is used in this more general sense. A trigger-

ing SQL statement causes another SQL statement (the triggered statement) to

be executed.

Examining Some Applications of Triggers
The firing of a trigger is useful in a number of different situations. One exam-

ple is to perform a logging function. Certain actions that are critical to the

integrity of a database — such as inserting, editing, or deleting a table row —

could trigger the making of an entry in a log that documents that action. Log

entries can record not only what action was taken, but also when it was taken

and by whom.

Triggers can also be used to keep a database consistent. In an order entry

application, an order for a specific product can trigger a statement that

changes the status of that product in the inventory table from available to

404 Part VI: Advanced Topics

reserved. Similarly, the deletion of a row in the orders table can trigger a

statement that changes the status of the subject product from reserved to

available.

Triggers offer even greater flexibility than is illustrated in the preceding

examples. The triggered item doesn’t have to be an SQL statement. It can

be a host language procedure that performs some operation in the outside

world, such as shutting down a production line or causing a robot to fetch a

cold beer from the fridge.

Creating a Trigger
You create a trigger, logically enough, with a CREATE TRIGGER statement.

After the trigger is created, it lies in wait — waiting for the triggering event to

occur. When the triggering event occurs, bang! The trigger fires.

The syntax for the CREATE TRIGGER statement is fairly involved, but you

can break it down into understandable pieces. First take a look at the overall

picture:

CREATE TRIGGER trigger_name
 trigger_action_time trigger_event
 ON table_name
 [REFERENCING old_or_new_value_alias_list]
 triggered_action

The trigger name is the unique identifier for this trigger. The trigger action

time is the time you want the triggered action to occur: either BEFORE or

AFTER the triggering event. The fact that a triggered action can occur before

the event that is supposedly causing it to happen may seem a little bizarre,

but in some cases, this ability can be very useful (and can be accomplished

without invoking time travel). Because the database engine knows that it is

about to execute a triggering event before it actually executes it, it has the

ability to sandwich in the triggered event ahead of the execution of the trig-

gering event, if a trigger action time of BEFORE has been specified.

Three possible trigger events can cause a trigger to fire: the execution of

an INSERT statement, a DELETE statement, or an UPDATE statement. These

three statements have the power to change the contents of a database table.

Thus, any insertion of one or more rows into the subject table, any deletion

of one or more rows from the subject table, or any update of one or more col-

umns in one or more rows in the subject table can cause a trigger to fire. ON
table_name, of course, refers to the table for which an INSERT, DELETE, or

UPDATE has been specified.

405 Chapter 21: Triggers

Statement and row triggers
The triggered_action in the preceding example has the following syntax:

[FOR EACH { ROW | STATEMENT }]
 WHEN <left paren> <search condition> <right paren>
 <triggered SQL statement>

You can specify how the trigger will act:

 ✓ Row trigger: The trigger will fire once upon encountering the INSERT,

DELETE, or UPDATE statement that constitutes the triggering event.

 ✓ Statement trigger: The trigger will fire multiple times, once for every

row in the subject table that is affected by the triggering event.

As indicated by the square brackets, the FOR EACH clause is optional.

Despite this, the trigger must act one way or the other. If no FOR EACH

clause is specified, the default behavior is FOR EACH STATEMENT.

When a trigger fires
The search condition in the WHEN clause enables you to specify the circum-

stances under which a trigger will fire. Specify a predicate, and if the predi-

cate is true, the trigger will fire; if it’s false, it won’t. This capability greatly

increases the usefulness of triggers. You can specify that a trigger fires only

after a certain threshold value has been exceeded, or when any other condi-

tion can be determined to be either True or False.

The triggered SQL statement
The triggered SQL statement can be a single SQL statement or a sequence of

SQL statements executed one after another. In the case of a single SQL state-

ment, the triggered SQL statement is merely an ordinary SQL statement. For

a sequence of SQL statements, however, you must guarantee atomicity to

ensure that the operation is not aborted midstream, leaving the database in

an unwanted state. You can do this with a BEGIN-END block that includes

the ATOMIC keyword:

BEGIN ATOMIC
 { SQL statement 1 }
 { SQL statement 2 }
 ...
 { SQL statement n }
END

406 Part VI: Advanced Topics

An example trigger definition
Suppose the corporate human resources manager wants to be informed

whenever one of the regional managers hires a new employee. The following

trigger can handle this situation nicely:

CREATE TRIGGER newhire
 BEFORE INSERT ON employee
 FOR EACH STATEMENT
 BEGIN ATOMIC
 CALL sendmail (‘HRDirector’)
 INSERT INTO logtable
 VALUES (‘NEWHIRE’, CURRENT_USER, CURRENT_

TIMESTAMP) ;
 END;

Whenever a new row is inserted into the NEWHIRE table, an e-mail is fired off

to the HR manager with the details, and the logon name of the person making

the insertion and the time of the insertion are recorded in a log table, provid-

ing an audit trail.

Firing a Succession of Triggers
You can probably see a complication in the way triggers operate. Suppose

you create a trigger that causes an SQL statement to be executed on a table

upon the execution of some preceding SQL statement. What if that triggered

statement itself causes a second trigger to fire? That second trigger causes a

third SQL statement to be executed on a second table, which may itself cause

yet another trigger to fire, affecting yet another table. How is it possible to

keep everything straight? SQL handles this machine-gun-style trigger firing

with something called trigger execution contexts.

A succession of INSERT, DELETE, and UPDATE operations can be performed

by nesting the contexts in which they occur. When a trigger fires, an execu-

tion context is created. Only one execution context can be active at a time.

Within that context, an SQL statement may be executed that fires a second

trigger. At that point, the existing execution context is suspended in an

operation analogous to pushing a value onto a stack. A new execution con-

text, corresponding to the second trigger, is created, and its operation is per-

formed. There is no arbitrary limit to the depth of nesting possible. When an

operation is complete, its execution context is destroyed, and the next higher

execution context is “popped off the stack” and reactivated. This process

continues until all actions are complete and all execution contexts have been

destroyed.

407 Chapter 21: Triggers

Referencing Old Values and New Values
The one part of the CREATE TRIGGER syntax that I have not talked about yet

is the optional REFERENCING old_or_new_value_alias_list phrase. It

enables you to create an alias or correlation name that references values in

the trigger’s subject table. After you create a correlation name for new values

or an alias for new table contents, you can then reference the values that will

exist after an INSERT or UPDATE operation. In a similar way, after you create

a correlation name for old values or an alias for old table contents, you can

then reference the values that existed in the subject table before an UPDATE

or DELETE operation.

The old_or_new_values_alias_list in the CREATE TRIGGER syntax

can be one or more of the following phrases:

OLD [ROW] [AS] <old values correlation name>

or

NEW [ROW] [AS] <new values correlation name>

or

OLD TABLE [AS] <old values table alias>

or

NEW TABLE [AS] <new values table alias>

The table aliases are identifiers for transition tables, which are not persistent,

but which exist only to facilitate the referencing operation. As you would

expect, NEW ROW and NEW TABLE cannot be specified for a DELETE trigger,

and OLD ROW as well as OLD TABLE cannot be specified for an INSERT trig-

ger. After you delete a row or table, there is no new value. Similarly, OLD ROW

and OLD TABLE cannot be specified for an INSERT trigger. There are no old

values to reference.

In a row-level trigger, you can use an old value correlation name to refer-

ence the values in the row being modified or deleted by the triggering SQL

statement as that row existed before the statement modified or deleted it.

Similarly, an old value table alias is what you use to access the values in the

entire table as they existed before the triggering SQL statement’s action took

effect.

408 Part VI: Advanced Topics

You may not specify either OLD TABLE or NEW TABLE with a BEFORE trigger.

The transition tables created by the OLD TABLE or NEW TABLE keyword are

too likely to be affected by the actions caused by the triggered SQL state-

ment. To eliminate this potential problem, using OLD TABLE and NEW TABLE

with a BEFORE trigger is prohibited.

Firing Multiple Triggers
on a Single Table

One final topic that I want to cover in the chapter is the case in which mul-

tiple triggers are created, all causing an SQL statement to be executed that

operates on the same table. All of those triggers are primed and ready to fire.

When the triggering event occurs, which one goes first? This conundrum

is solved by an executive decision. Whichever trigger was created first is

the first to fire. The trigger created second fires next, and so on down the

line. Thus the potential ambiguity is avoided, and execution proceeds in an

orderly fashion.

Part VII
The Part of Tens

In this part . . .

If you’ve read all the previous parts of this book,

congratulations! You may now consider yourself an

SQL weenie, ballpark size (spicy mustard optional). To

raise your status that final degree from weenie to wizard,

you must master two sets of ten rules. But don’t make the

mistake of just reading the section headings. Taking some of

those headings at face value could have dire consequences.

All the tips in this part are short and to the point, so reading

them all (in their entirety, if you please) shouldn’t be too

much trouble. Put them into practice, and you can be a true

SQL wizard.

Chapter 22

Ten Common Mistakes
In This Chapter
▶ Assuming that your clients know what they need

▶ Not worrying about project scope

▶ Considering only technical factors

▶ Never asking for user feedback

▶ Only using your favorite development environment or system architecture

▶ Designing database tables in isolation

▶ Skipping design reviews, beta testing, and documentation

If you’re reading this book, you must be interested in building relational

database systems. Let’s face it — nobody studies SQL for the fun of it.

You use SQL to build database applications, but before you can build one,

you need a database. Unfortunately, many projects go awry before the first

line of the application is coded. If you don’t get the database definition right,

your application is doomed — no matter how well you write it. Here are ten

common database-creation mistakes that you should be on the lookout for.

Assuming That Your Clients
Know What They Need

Generally, clients call you in to design a database system when they have

a problem getting the data they need because their current methods aren’t

working. Clients often believe that they have identified the problem and its

solution. They figure that all they need to do is tell you what to do.

Giving clients exactly what they ask for is usually a sure-fire prescription for

disaster. Most users (and their managers) don’t possess the knowledge or

skills necessary to accurately identify the problem, so they have little chance

of determining the best solution.

412 Part VII: The Part of Tens

Your job is to tactfully convince your client that you are an expert in systems

analysis and design, and that you must do a proper analysis to uncover the

real cause of the problem. Usually the real cause of the problem is hidden

behind the more obvious symptoms.

Ignoring Project Scope
Your client tells you what he or she expects from the new application at

the beginning of the development project. Unfortunately, the client almost

always forgets to tell you something — usually several things. Throughout

the job, these new requirements crop up and are tacked onto the project. If

you’re being paid on a project basis rather than an hourly basis, this growth

in scope can change what was once a profitable project into a loser. Make

sure that everything you’re obligated to deliver is specified in writing before

you start the project.

Considering Only Technical Factors
Application developers often consider potential projects in terms of their

technical feasibility, and they base their time and effort estimates on that

determination. However, issues of cost maximums, resource availability,

schedule requirements, and organization politics can have a major effect on

the project. These issues may turn a project that is technically feasible into a

nightmare. Make sure that you understand all relevant nontechnical factors

before you start any development project. You may decide that it makes no

sense to proceed; you’re better off reaching that conclusion at the beginning

of the project than after you have expended considerable effort.

Not Asking for Client Feedback
Your first inclination might be to listen to the managers who hire you. After

all, the users themselves don’t have any clout and they sure as heck don’t

pay your fee. On the other hand, there may be good reason to ignore the

managers, too. They usually don’t have a clue about what the users really

need. Wait a minute! Don’t ignore everyone or assume that you know more

than a manager or user about what a database should do and how it should

work. Data-entry clerks don’t typically have much organizational clout, and

many managers have only a dim understanding of some aspects of the work

that data-entry clerks do. But isolating yourself from either group is almost

certain to result in a system that solves a problem that nobody has. You can

learn a lot from managers and from users by asking the right questions.

413 Chapter 22: Ten Common Mistakes

Always Using Your Favorite
Development Environment

You’ve probably spent months or even years becoming proficient in the use

of a particular DBMS or application development environment. But your

favorite environment — no matter what it is — has strengths and weak-

nesses. Occasionally, you come across a development task that makes heavy

demands in an area where your preferred development environment is weak.

So rather than kludge together something that isn’t really the best solution,

bite the bullet. You have two options: Either climb the learning curve of a

more appropriate tool and then use it, or candidly tell your clients that their

job would best be done with a tool that you’re not an expert at using. Then

suggest that the client hire someone who can be productive with that tool

right away. Professional conduct of this sort garners your clients’ respect.

(Unfortunately, if you work for a company instead of for yourself, that con-

duct may also get you laid off or fired. It’s best to go with option one — dive

on into a new development environment.)

Using Your Favorite System
Architecture Exclusively

Nobody can be an expert at everything. Database management systems that

work in a teleprocessing environment are different than systems that work in

client/server, resource sharing, Web-based, or distributed database environ-

ments. The one or two systems that you are expert in may not be the best for

the job at hand. Choose the best architecture anyway, even if it means pass-

ing on the job. Not getting the job is better than getting it and producing a

system that doesn’t serve the client’s needs.

Designing Database Tables in Isolation
If you incorrectly identify data objects and their relationships to each other,

your database tables are likely to introduce errors into the data and destroy

the validity of any results. To design a sound database, you must consider

the overall organization of the data objects and carefully determine how they

relate to each other. Usually, no single right design exists. You must deter-

mine what is appropriate, considering your client’s present and projected

needs.

414 Part VII: The Part of Tens

Neglecting Design Reviews
Nobody’s perfect. Even the best designer and developer can miss important

points that are evident to someone looking at the situation from a different

perspective. Presenting your work before a formal design review can actu-

ally make you more disciplined in your work — probably helping you avoid

numerous problems that you may otherwise have experienced. Have a com-

petent professional review your proposed design before you start develop-

ment. You should have a database designer check it over, but you may want

to show it to the client, as well.

Skipping Beta Testing
Any database application complex enough to be truly useful is also com-

plex enough to contain bugs. Even if you test it in every way you can think

of, the application is sure to contain failure modes that you don’t uncover.

Beta testing means giving the application to people who don’t know how it

was designed. They’re likely to have problems that you never encountered

because you know too much about the application. If they’re familiar with

the data, but not the database, they’re also more likely to use the application

as they would on a daily basis, so they can pinpoint queries that take a long

time to generate results. You can then fix the bugs or performance shortfalls

that others find before the product goes officially into use.

Not Documenting Your Process
If you think your application is so perfect that it never needs to be looked

at, even once more, think again. The only thing you can be absolutely sure

of in this world is change. Count on it. Six months from now, you won’t

remember why you designed things the way you did, unless you carefully

document what you did and why you did it that way. If you transfer to a

different department or win the lottery and retire, your replacement has

almost no chance of modifying your work to meet new requirements if you

didn’t document your design. Without documentation, your replacement

may need to scrap the whole thing and start from scratch.

 Don’t just document your work adequately — over-document your work.

Put in more detail than you think is reasonable. If you come back to this

project after six or eight months away from it, you’ll be glad you docum-

ented it in detail.

Chapter 23

Ten Retrieval Tips
In This Chapter
▶ Verifying the structure of your database

▶ Using test databases

▶ Scrutinizing any queries containing joins

▶ Examining queries containing subselects

▶ Using GROUP BY with the SET functions

▶ Being aware of restrictions on the GROUP BY clause

▶ Using parentheses in expressions

▶ Protecting your database by controlling privileges

▶ Backing up your database regularly

▶ Anticipating and handling errors

A database can be a virtual treasure trove of information, but like the

treasure of the Caribbean pirates of long ago, the stuff that you really

want is probably buried and hidden from view. The SQL SELECT statement

is your tool for digging up this hidden information. Even if you have a clear

idea of what you want to retrieve, translating that idea into SQL can be a

challenge. If your formulation is just a little off, you may end up with the

wrong results — but results that are so close to what you expected that they

mislead you. To reduce your chances of being misled, use the following ten

principles.

Verify the Database Structure
If you retrieve data from a database and your results don’t seem reasonable,

check the database design. Many poorly designed databases are in use, and

if you’re working with one, fix the design before you try any other remedy.

Remember — good design is a prerequisite of data integrity.

416 Part VII: The Part of Tens

Try Queries on a Test Database
Create a test database that has the same structure as your production data-

base, but with only a few representative rows in the tables. Choose the data

so that you know in advance what the results of your queries should be. Run

each test query on the test data and see whether the results match your

expectations. If they don’t, you may need to reformulate your queries. If a

query is properly formulated but you end up with bad results all the same,

you may need to restructure your database.

Build several sets of test data and be sure to include odd cases, such as

empty tables and extreme values at the very limit of allowable ranges. Try to

think of unlikely scenarios and check for proper behavior when they occur.

In the course of checking for unlikely cases, you may gain insight into prob-

lems that are more likely to happen.

Double-Check Queries That Include Joins
Joins are notoriously counterintuitive. If your query contains one, make sure

that it’s doing what you expect before you add WHERE clauses or other com-

plicating factors.

Triple-Check Queries with Subselects
Queries with subselects take data from one table and, based on what is

retrieved, take some data from another table. Therefore, by definition, such

queries can really be hard to get right. Make sure the data that the inner

SELECT retrieves is the data that the outer SELECT needs to produce the

desired result. If you have two or more levels of subselects, you need to be

even more careful.

Summarize Data with GROUP BY
Say that you have a table (NATIONAL) that contains the name (Player),

team (Team), and number of home runs hit (Homers) by every baseball

player in the National League. You can retrieve the team homer total for all

teams with a query like this:

417 Chapter 23: Ten Retrieval Tips

SELECT Team, SUM (Homers)
 FROM NATIONAL
 GROUP BY Team ;

This query lists each team, followed by the total number of home runs hit by

all that team’s players.

Watch GROUP BY Clause Restrictions
Suppose that you want a list of National League power hitters. Consider the

following query:

SELECT Player, Team, Homers
 FROM NATIONAL
 WHERE Homers >= 20
 GROUP BY Team ;

In most implementations, this query returns an error. Generally, only col-

umns used for grouping or columns used in a set function may appear in the

select list. However, if you want to view this data, the following formulation

works:

SELECT Player, Team, Homers
 FROM NATIONAL
 WHERE Homers >= 20
 GROUP BY Team, Player, Homers ;

Because all the columns you want to display appear in the GROUP BY clause,

the query succeeds and delivers the desired results. This formulation sorts

the resulting list first by Team, then by Player, and finally by Homers.

Use Parentheses with AND, OR, and NOT
Sometimes when you mix AND and OR, SQL doesn’t process the expression in

the order that you expect. Use parentheses in complex expressions to make

sure that you get the desired results. Typing a few extra keystrokes is a small

price to pay for better results.

 Parentheses also help to ensure that the NOT keyword is applied to the term

or expression that you want it to apply to.

418 Part VII: The Part of Tens

Control Retrieval Privileges
Many people don’t use the security features available in their DBMS. They

don’t want to bother with them because they think misuse and misappropria-

tion of data are things that only happen to other people. Don’t wait to get

burned. Establish and maintain security for all databases that have any value.

Back Up Your Databases Regularly
Understatement alert: Data is hard to retrieve after a power surge, fire, earth-

quake, or other disaster destroys your hard drive. (Remember, sometimes

computers just die for no good reason.) Make frequent backups and put the

backup media in a safe place.

 What constitutes a safe place depends on how critical your data is. It might

be a fireproof safe in the same room as your computer. It might be in another

building. It might be in a concrete bunker under a mountain that has been

hardened to withstand a nuclear attack. Decide what level of safety is appro-

priate for your data.

Handle Error Conditions Gracefully
Whether you’re making ad hoc queries from the console or embedding que-

ries in an application, occasionally SQL returns an error message rather than

the desired results. At the console, you can decide what to do next, based on

the message returned. In an application, the situation is different. The appli-

cation user probably doesn’t know what action is appropriate. Put extensive

error handling into your applications to cover every conceivable error that

may occur. Creating error-handling code takes a great deal of effort, but it’s

better than having the user stare quizzically at a frozen screen.

Appendix

SQL:2008 Reserved Words
ABS

ALL

ALLOCATE

ALTER

AND

ANY

ARE

ARRAY

AS

ASENSITIVE

ASYMMETRIC

AT

ATOMIC

AUTHORIZATION

AVG

BEGIN

BETWEEN

BIGINT

BINARY

BLOB

BOOLEAN

BOTH

BY

CALL

CALLED

CARDINALITY

CASCADED

CASE

CAST

CEIL

CEILING

CHAR

CHAR_LENGTH

CHARACTER

CHARACTER_LENGTH

CHECK

CLOB

CLOSE

COALESCE

COLLATE

COLLECT

COLUMN

COMMIT

CONDITION

CONNECT

CONSTRAINT

CONVERT

CORR

CORRESPONDING

COUNT

COVAR_POP

COVAR_SAMP

CREATE

CROSS

CUBE

CUME_DIST

CURRENT

CURRENT_CATALOG

CURRENT_DATE

CURRENT_DEFAULT_
TRANSFORM_GROUP

CURRENT_PATH

CURRENT_ROLE

CURRENT_SCHEMA

420 SQL For Dummies, 7th Edition

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_TRANSFORM_
GROUP_FOR_TYPE

CURRENT_USER

CURSOR

CYCLE

DATE

DAY

DEALLOCATE

DEC

DECIMAL

DECLARE

DEFAULT

DELETE

DENSE_RANK

DEREF

DESCRIBE

DETERMINISTIC

DISCONNECT

DISTINCT

DOUBLE

DROP

DYNAMIC

EACH

ELEMENT

ELSE

END

END-EXEC

ESCAPE

EVERY

EXCEPT

EXEC

EXECUTE

EXISTS

EXP

EXTERNAL

EXTRACT

FALSE

FETCH

FILTER

FLOAT

FLOOR

FOR

FOREIGN

FREE

FROM

FULL

FUNCTION

FUSION

GET

GLOBAL

GRANT

GROUP

GROUPING

HAVING

HOLD

HOUR

IDENTITY

IN

INDICATOR

INNER

INOUT

INSENSITIVE

INSERT

INT

INTEGER

INTERSECT

INTERSECTION

INTERVAL

INTO

IS

JOIN

LANGUAGE

LARGE

LATERAL

LEADING

LEFT

LIKE

421 Appendix: SQL:2008 Reserved Words

LIKE_REGEX

LN

LOCAL

LOCALTIME

LOCALTIMESTAMP

LOWER

MATCH

MAX

MEMBER

MERGE

METHOD

MIN

MINUTE

MOD

MODIFIES

MODULE

MONTH

MULTISET

NATIONAL

NATURAL

NCHAR

NCLOB

NEW

NIL

NO

NONE

NORMALIZE

NOT

NULL

NULLIF

NUMERIC

OCCURRENCES_REGEX

OCTET_LENGTH

OF

OLD

ON

ONLY

OPEN

OR

ORDER

OUT

OUTER

OVER

OVERLAPS

OVERLAY

PARAMETER

PARTITION

PERCENT_RANK

PERCENTILE_CONT

PERCENTILE_DISC

POSITION

POSITION_REGEX

POWER

PRECISION

PREPARE

PRIMARY

PROCEDURE

RANGE

RANK

READS

REAL

RECURSIVE

REF

REFERENCES

REFERENCING

REGR_AVGX

REGR_AVGY

REGR_COUNT

REGR_INTERCEPT

REGR_R2

REGR_SLOPE

REGR_SXX

REGR_SXY

REGR_SYY

RELEASE

RESULT

RETURN

RETURNS

422 SQL For Dummies, 7th Edition

REVOKE

RIGHT

ROLLBACK

ROLLUP

ROW

ROW_NUMBER

ROWS

SAVEPOINT

SCOPE

SCROLL

SEARCH

SECOND

SELECT

SENSITIVE

SESSION_USER

SET

SIMILAR

SMALLINT

SOME

SPECIFIC

SPECIFICTYPE

SQL

SQLEXCEPTION

SQLSTATE

SQLWARNING

SQRT

START

STATIC

STDDEV_POP

STDDEV_SAMP

SUBMULTISET

SUBSTRING

SUBSTRING_REGEX

SUM

SYMMETRIC

SYSTEM

SYSTEM_USER

TABLE

TABLESAMPLE

THEN

TIME

TIMESTAMP

TIMEZONE_HOUR

TIMEZONE_MINUTE

TO

TRAILING

TRANSLATE

TRANSLATE_REGEX

TRANSLATION

TREAT

TRIGGER

TRIM

TRUE

UESCAPE

UNION

UNIQUE

UNKNOWN

UNNEST

UPDATE

UPPER

USER

USING

VALUE

VALUES

VAR_POP

VAR_SAMP

VARBINARY

VARCHAR

VARYING

WHEN

WHENEVER

WHERE

WIDTH_BUCKET

WINDOW

WITH

WITHIN

WITHOUT

YEAR

Index
• Symbols and
Numerics •
* (asterisk) for all columns in table,

140, 314

1NF (fi rst normal form), 132–133

2NF (second normal form), 133–134

3NF (third normal form), 55, 134–135

4NF (fourth normal form), 135

5NF (fi fth normal form), 135

• A •
abnormal form, 136

ABS numeric value function, 180

ABSOLUTE option, FETCH statement,

371–372

Access 2003 Power Programming with VBA

(Taylor and Andersen), 323

Access For Dummies (Ulrich-Fuller and

Cook), 323

access to database, controlling. See

privileges, user; security

ACID database, 307

ActiveX controls, 335

adding data user privilege, 282

adding new data, 146–150. See also INSERT

statement

ad-hoc query, defi ned, 24–25

aggregate (set) functions, 71–72, 167–170,

219–220

alias (correlation name), defi ned, 232

ALL predicate, WHERE clause, 207–210

ALL qualifi er, nested queries, 255–257

ALTER command, 55

ALTER statement, 65

ALTER TABLE statement, 104

altering table data, multitable database,

125

altering table structure, 92–94, 104, 125

AND logical connective, 70–71, 217, 417

Anderson, Virginia (author), Access 2003
Power Programming with VBA, 323

ANSI (American National Standards

Institute) (Web site), 26

ANY predicate, WHERE clause, 207–210

ANY qualifi er, nested queries, 255–257

API (application programming interface),

332

applet, defi ned, 337

application layer, ODBC, 331

application programming interface

(API), 332

applications, working SQL with

about, 313–314

application defi ned, 298

asterisk for all columns in table, 314

CAST as access tool for tables in

applications, 192–193

compound SQL statement

about, 373–374

assignment, 380

atomicity, 374–375

conditions, 376–380

cursors, 376

exception handling with, 401

fl ow of control statement, 380–386

privileges, 387–388

stored functions, 387

stored modules, 388–389

stored procedures, 386

variables, 375–376

embedded SQL method, 317–320

historical overview, 83

JDBC function in, 336–337

Microsoft Access, 97–105, 323–326

Microsoft Visual Studio, 322–323

module language method,

320–322, 392–393

ODBC function in, 329–335

424 SQL For Dummies, 7th Edition

applications (continued)

problems with, 316

RAD tool

about, 84

altering table structure, 92–94

creating a table, 85–92

data to track, deciding on, 84–85

deleting a table, 96–97

index, creating, 94–96

object-oriented RAD tools, 322–323

SQL compared to application, 23–25,

83, 315

XML data

about, 339–340

array mapping, 358

conclusion, 359

distinct UDT mapping, 356–357

domain mapping, 355–356

functions compatible with, 347–351

mapping from/to SQL, 342–346, 355–359

multiset mapping, 358–359

predicates compatible with, 352–353

ROW mapping, 357

table conversion to SQL, 354–355

XQuery language, 38–39

approximate numerics, 31–32

ARRAY data type, 41–42

array mapping, XML data and SQL, 358

ASENSITIVE keyword, DECLARE CURSOR

statement, 368

assertion, 48, 129

assignment, compound SQL statement, 380

asterisk (*) for all columns in table,

140, 314

ATOMIC keyword, compound SQL

statement, 375

atomic (scalar) property of value,

158, 307, 374–375

attribute (column). See also constraints

adding data to, 148

adding or deleting, 125

asterisk (*) as wildcard value, 140, 314

column-name join, 235–236

creating view from modifi ed, 144–145

defi ned, 9

defi ning for multitable database, 109–110

domains

mapping XML data and SQL, 355–356

multitable database, 113, 121–122

overview, 19

user privileges, 278, 285–286

identifying for multitable database,

108–109

keys, 114–116, 133–134. See also

primary key

reference for, 162–163

relational function in table, 15

in table design, 88–92

transferring data, 149–150

UDT, 43

AUTHORIZATION clause, MODULE

statement, 321

authorization identifi er, defi ned, 321

AVG function, 72, 169

• B •
backing up data, 305–306, 418

bad input data, data integrity problem, 126

base table, 141

basic join, 229–231

BEGIN keyword, compound SQL statement,

374

beta testing of database design, 414

BETWEEN predicate, WHERE clause, 202–203

BIGINT data type, 29

BINARY data type, 34–35

BINARY LARGE OBJECT data type, 35

binary string, 34–35

BINARY VARYING data type, 35

BLOB data type, 35

blocks of rows, adding to table, 148–150

BOOLEAN data type, 35, 68–69

Boyce-Codd normal form (BCNF), 132, 135

Buxton, Stephen (author), Querying XML,
347

425425 Index

• C •
CALL statement, 386

CARDINALITY numeric value function,

179–180

Cartesian product, defi ned, 199

CASCADE keyword, REVOKE statement,

290–291

cascading deletions, 123, 264

CASE conditional expression, 183–191

CASE...END CASE statement, 381–382

CAST data-type expression, 191–193, 316

catalog, creating, 63–64

catalog-qualifi ed name, 63

CEIL or CEILING numeric value

function, 181

chain of dependency in user privileges, 291

CHARACTER data type, 33

CHARACTER LARGE OBJECT data type, 33

character set, 113, 278, 285–286, 342–343

character string, 32–34, 67–68, 178–179

CHARACTER VARYING or VARCHAR data

type, 33

CHARACTER_LENGTH numeric value

function, 178

client extensions in Web-based databases,

334

client role in Internet/intranet database

environment, 50–51

client-driven database design, pitfalls of,

411–412

client/server database environment,

48–50, 332

CLOB data type, 33

cluster, 54, 63

COALESCE conditional expression,

190–191, 244–246

Codd, E. F. (IBM database pioneer),

13, 40, 132

collation (collating sequence),

65, 113, 278, 285–286

collection data types, 41–42, 69, 179–180,

358–359

column (attribute). See also constraints

adding data to, 148

adding or deleting, 125

asterisk (*) as wildcard value, 140, 314

column-name join, 235–236

creating view from modifi ed, 144–145

defi ned, 9

defi ning for multitable database, 109–110

domains

mapping XML data and SQL, 355–356

multitable database, 113, 121–122

overview, 19

user privileges, 278, 285–286

identifying for multitable database,

108–109

keys, 114–116, 133–134. See also

primary key

reference for, 162–163

relational function in table, 15

in table design, 88–92

transferring data, 149–150

UDT, 43

column reference, 162–163

column-name join, 235–236

comma-delimited values, 146

COMMIT statement, 73, 298–299, 304

comparison operators, 70, 207–210,

252–257, 259–261

comparison predicate, WHERE clause, 201

complex query, 25

composite key, 115, 133–134

compound SQL statement

about, 373–374

assignment, 380

atomicity, 374–375

conditions, 376–380

cursors, 376

exception handling with, 401

fl ow of control statement, 380–386

privileges, 387–388

stored functions, 387

stored modules, 388–389

stored procedures, 386

variables, 375–376

concatenation operator, 67–68, 164

conceptual view (schema)

creating, 62–63

overview, 19

owner of, 74

XML, 339, 344, 346

concurrent access threat to data, 295–296

426 SQL For Dummies, 7th Edition

condition handler, 378–379

condition join, 234–235

conditional expressions. See also queries

CASE statement, 183–191

CASE...END CASE statement, 381–382

COALESCE, 190–191, 244–246

fl ow of control statements, 380–386

FOR...DO...END FOR statement, 385

IF...THEN...ELSE...ENDIF

statement, 381

ITERATE statement, 385–386

LEAVE statement, 383

LOOP...ENDLOOP statement, 382–383

NULLIF, 189–190

overview, 166

REPEAT...UNTIL...END REPEAT

statement, 384

WHILE...DO...END WHILE statement,

384

conditions in compound SQL statement,

376–380

consistency of database property, 307

console, launching ad-hoc query from,

24–25

constant values, 158–160

constraints

assertion, 48, 129

column (attribute), 19–20

data integrity, maintaining, 77–78,

104, 127–129

identity-constraint-option in

VALID predicate, 353

NOT NULL, 59

overview, 47–48

in transactions, 307–311

violations of, 398–400

constructor function, structured UDT, 44

containment hierarchy, 54, 63–64. See also

schema; table

CONTENT predicate (XML), 352

contention threat to data, 295

CONTINUE action, WHENEVER clause, 393

CONVERT string value function, 176

converting data or variables using CAST,

191–193

Cook, Ken (author), Access For Dummies,
323

core SQL:2008 statement, 26–27

correlation name (alias), defi ned, 232

COUNT function, 71, 168–169

CREATE DOMAIN statement, 285–286

CREATE INDEX statement, 103

CREATE MODULE statement, 388–389

CREATE statement, 55–57, 64–65

CREATE TABLE statement, 100–103

CREATE TRIGGER statement, 404–408

CREATE TYPE statement, 288

CROSS JOIN operator, 233

CURRENT_DATE datetime value function,

182

CURRENT_TIME datetime value function,

182

CURRENT_TIMESTAMP datetime value

function, 182

CURRENT_USER variable, 162

cursor

about, 363–364

closing, 372

compound SQL statement, 376

declarations, 364–368

defi ned, 363

fetching data from single row, 370–372
opening, 369–370

• D •
data

access control. See privileges, user

backing up, 305–306, 418

criteria for storage and retrieval, 8

defi ned, 9

dirty read, defi ned, 300

manipulating

about, 139

adding new data, 146–150. See also

INSERT statement

Data Manipulation Language (DML),

53, 66–73

deleting obsolete data, 155–156. See also

DELETE statement

retrieving data, 140–141. See also

queries

transferring data, 149–150, 154–155

427427 Index

updating existing data, 151–153. See also

UPDATE statement

views, 141–145

protecting. See integrity, data

sorting with indexes, 117–118

types. See data types

values. See values

Data Control Language (DCL). See also

privileges, user

about, 53, 73, 278

delegating security, 78–79

referential integrity constraints, 77–78

transactions, 73–74

user access levels, 278–280

Data Defi nition Language (DDL)

about, 53, 54–55

catalog, 63–64

indexes, 103, 105

schemas, 62–63

statement types, 64–66

tables, 55–57, 100–103, 104

views, 57–62

data dictionary, defi ned, 9

Data Manipulation Language (DML)

about, 53, 66

logical connectives, 70–71

predicates, 69–70

set functions, 71–72

subqueries, 72–73

value expressions, 66–69

data redundancy, data integrity problem,

126–127

data source layer, ODBC, 331

data types

about, 28

binary string, 34–35

Boolean, 35, 68–69

character string, 32–34, 67–68, 178–179

collection, 41–42, 69, 179–180, 358–359

datetime, 35–37, 68, 165–166, 370

defi ning new, permission for, 278

interval, 37, 68

mapping to/from XML, 344

numerics, 29–32, 67

REF, 42

ROW, 40, 69, 357

SQL compared to procedural languages,

316

summary, 45–46

user-defi ned, 42–45, 69

XML, 37–39, 340–342

database

access control. See privileges, user;

security

client/server environment, 48–50, 332

cluster, 54, 63

creating

about, 53, 54–55

catalog, 63–64

schemas, 62–63

statement types, 64–66

tables, 55–57, 85–92, 100–103, 104

views, 57–62

design pitfalls to avoid, 411–414

desirable properties of, 307

Internet/intranet environment,

50–51, 332–337

models, 12–13

multitable. See multitable database

objects. See schema; table; views

relational. See relational database

structure as value of, 11

verifying structure prior to retrieval, 415

Web-based environment, 50–51, 332–337

database administrator (DBA), 278–279

Database Development For Dummies

(Taylor), 55

database management system (DBMS)

avoiding becoming a slave to favorite, 413

defi ned, 10

exceeding capacity of, 127

form-based entry variations, 146–147

interaction with SQL on client/server

system, 48–50

Microsoft Access tool, 97–105, 323–326

object-relational, 20–21

platform instability problem, 294

programming function of, 24

proprietary tools for manipulation, 141

RAD tool

about, 84

altering table structure, 92–94

428 SQL For Dummies, 7th Edition

database management system, RAD tool

(continued)

creating a table, 85–92

data to track, deciding on, 84–85

deleting a table, 96–97

index, creating, 94–96

object-oriented RAD tools, 322–323

relational database advantages for, 13–14

SQL function in, 1

database object owner, 279

data-manipulation code, fl at fi le, 12

Datasheet view, Microsoft Access, 85–87

DATE data type, 36

datetime data types, 35–37, 68, 165–166,

370

datetime value functions, 182

day-time interval, 37, 68, 166

DBA (database administrator), 278–279

DCL (Data Control Language). See also

privileges, user

about, 53, 73, 278

delegating security, 78–79

referential integrity constraints, 77–78

transactions, 73–74

user access levels, 278–280

DDL (Data Defi nition Language)

about, 53, 54–55

catalog, 63–64

indexes, 103, 105

schemas, 62–63

statement types, 64–66

tables, 55–57, 100–103, 104

views, 57–62

DECIMAL data type, 30

declarations

cursor, 364–368

host variables in embedded SQL, 319–320

module, 321

temporary-table clause, 321

DECLARE CURSOR statement, 364–368

default SQL transaction, 299–300

DEFERRABLE designation for constraint,

308

DEFERRED setting for constraint, 308, 310

defi ning new data types, permission

for, 278

defi ning objects, multitable database,

108–113. See also DDL (Data

Defi nition Language)

delegating user privilege, 289–290

DELETE statement

about, 75

with cursor, 372

function of, 155–156

with nested queries, 263–264

trigger, relationship to, 404, 406

user access, 278

deleting obsolete rows user privilege, 284

deletion anomaly, 130

departmental database, defi ned, 9

Design view, Microsoft Access, 87–92

detail area, diagnostics, 396–398

diagnostics areas, error handling, 394–400

DIAGNOSTICS SIZE keyword, SET
TRANSACTION statement, 299

dirty read for data, defi ned, 300

DISTINCT predicate, WHERE clause, 211

distinct types, UDT, 43, 356–357

DK/NF (domain-key normal form),

132, 135–136

DLL (dynamic link library), defi ned, 331

DML (Data Manipulation Language)

about, 53, 66

logical connectives, 70–71

predicates, 69–70

set functions, 71–72

subqueries, 72–73

value expressions, 66–69

DOCUMENT predicate (XML), 352

documenting database development, 414

domain-key normal form (DK/NF),

132, 135–136

domains

mapping XML data and SQL, 355–356

multitable database, 113, 121–122

overview, 19

user privileges, 278, 285–286

DOUBLE PRECISION data type, 31

driver DLL layer, ODBC, 331

driver manager layer, ODBC, 331

DROP DOMAIN statement, 286

DROP INDEX statement, 105

429429 Index

DROP statement, 55, 65–66

DROP TABLE statement, 104

durability of database property, 307

dynamic link library (DLL), defi ned, 331

• E •
editing (manipulating) data

about, 139

adding new data, 146–150. See also

INSERT statement

deleting obsolete data, 155–156. See also

DELETE statement

DML, 53, 66–73

retrieving data, 140–141. See also queries

transferring data, 149–150, 154–155

updating existing data, 151–153. See also

UPDATE statement

views, 141–145

ELSE keyword in conditional expression,

183

embedded SQL, 162, 316, 317–320

END keyword, compound SQL statement,

374

ENDIF keyword in conditional expression,

184

enterprise database, 9, 13

entity integrity, multitable database,

120–121

equi-join, 231–233, 234

equipment failure threat to data, 294–295

equiwidth partitioning, 181

error handling

about, 391

CASE expression as tool for, 186

diagnostics areas, 394–400

exception conditions, 401–402

preparing for, 418

SQLSTATE host variable, 391–393

WHENEVER clause, 393–394

exact numerics, 29–30

EXCEPT operator, 228–229

exception avoidance, defi ned, 186

exception conditions, error handling,

401–402

EXCEPTION statement, 401–402

EXEC SQL directive, 317, 319

EXECUTE keyword, permission to use,

278, 388

existence test, nested queries, 257–259

EXISTS predicate, WHERE clause, 210–211,

257–258

EXP (exponent) numeric value function,

180

extended SQL:2008 statement, 26–27

extensions to SQL standard, 105, 329

EXTRACT numeric value function, 178, 341

• F •
Fagin, Ronald (normalization researcher),

132

FETCH statement, cursor, 370–372

fi eld, defi ned, 158

fi eld properties (Access), 88–92

fi fth normal form (5NF), 135

fi rst normal form (1NF), 132–133

FIRST option, FETCH statement, 371

fl at fi les, 11–12

FLOAT data type, 32

FLOOR numeric value function, 181

fl ow of control statements, 380–386

FOR READ ONLY clause, DECLARE
CURSOR statement, 367

FOR...DO...END FOR statement, 385

foreign data fi le, copying data from,

148–149

foreign key, 115–116, 122, 214

form-based data entry, 146–147

fourth normal form (4NF), 135

FROM clause, 198, 199

FULL keyword, MATCH predicate, 215–216

FULL OUTER JOIN operator, 239

function call, 265, 330, 387

functional dependence, 133–134, 268

functions

datetime value, 182

defi ned, 157

recursive, 265–268

set, 71–72, 167–170, 219–220

430 SQL For Dummies, 7th Edition

functions (continued)

stored, 387

string value, 170–176

structured UDT, 44

value, 170–182

XML compatibility, 347–351

• G •
GET DIAGNOSTICS statement,

397, 399–400

GO TO address action, WHENEVER

clause, 393

GRANT statement

about, 75–76, 280–281

across levels, privileges, 287–289

character set access, 285–286

collation access, 285–286

delegating privileges, 78–79, 289–290

deleting obsolete rows, 284

domain access, 285–286

inserting data, 282

looking at data, 282–283

modifying table data, 283

referencing related tables, 284–285

with REVOKE, 292

translation access, 285–286

trigger permission, 287

Greenwich Mean Time/GMT (universal

mean time), defi ned, 36

GROUP BY clause, 198, 218–221, 416–417

• H •
hardware failure threat to data, 294–295

HAVING clause, 198, 220–221, 261–262

header area, diagnostics, 395–396

helper application, 335

hierarchical database model, 12, 287

holdability, declaring cursor, 365

host variables (parameters), 161, 319–320,

391–393

• I •
IBM and history of SQL, 25

IDE (integrated development

environment), 83

identifi ers, mapping to/from XML, 343

identity-constraint-option in

VALID predicate, 353

IF keyword in conditional expression, 183

IF...THEN...ELSE...ENDIF statement,

381

IMMEDIATE setting for constraints, 308

impedance mismatch, defi ned, 42

implementation, defi ned, 26

implicit transaction-starting statement, 303

IN predicate

nested queries introduced with,

250–251, 259

WHERE clause, 203

indexed sequential access method (ISAM),

331

indexes, 94–96, 103, 105, 116–119

information schema, 63

INNER JOIN operator, 236, 242

INSENSITIVE keyword, DECLARE CURSOR

statement, 368

INSERT statement

about, 75

basics of adding new data, 147–150

with nested queries, 263–264

row value expression, 194

trigger, relationship to, 404, 406

user access, 278

inserting data user privilege, 282

insertion anomaly, 131

INTEGER data type, 29

integrated database, defi ned, 9

integrated development environment

(IDE), 83

integrity, data

about, 119–120

altering table data, 125

constraints, 77–78, 104, 127–129

DCL tool, 53, 73–79, 278–280

defi ned, 120

431431 Index

domain integrity, 121–122

entity integrity, 120–121

form-based data entry issues, 146–147

good design as prerequisite for, 415

potential problem areas, 125–127

protecting

about, 293

constraints within transactions, 307–311

SQL transactions, using. See transaction

processing

threats overview, 293–297

referential integrity, 77–78, 104, 122–125,

212–216

interactive SQL mode of operation, 313

International Standards Organization

(ISO), 7, 21

Internet/intranet database environment,

50–51, 332–337

INTERSECT DISTINCT operator, 227

INTERSECT operator, 226–228

interval data type, 37, 68, 166

ISAM (indexed sequential access method),

331

ISO (International Standards Organization),

7, 21

isolation levels, SQL transactions,

300–302, 304

isolation of database property, 307

ITERATE statement, 385–386

• J •
JDBC (Java Database Connectivity),

336–337

join (JOIN) operators

about, 229

basic join, 229–231

checking for valid queries, 416

ON clause with, 246

column-name join, 235–236

condition join, 234–235

CROSS JOIN, 233

equi-join, 231–233, 234

INNER JOIN, 236

natural join, 234

OUTER JOIN, 236–240

UNION JOIN, 240–246

WHERE clause with, 246

• K •
key

composite, 115, 133–134

creating, 114–116

defi ned, 114

DK/NF (domain-key normal form),

132, 135–136

foreign, 115–116, 122, 214

normalization role, 133–134

primary

avoiding update anomalies, 125

database planning, 55

entity integrity, 120–121

importance of indexing, 95

in multitable database, 114–115

parent-child table relationships, 122

referential integrity rules, 214

• L •
LANGUAGE clause, MODULE statement, 321

LAST option, FETCH statement, 371

last-in-fi rst-out (LIFO) stack, 394

leaf type, structured UDT, 287

LEAVE statement, 383

LEFT OUTER JOIN operator, 237–239

legacy systems, advantages of relational

database for, 13

LIFO (last-in-fi rst-out) stack, 394

LIKE predicate, WHERE clause, 204–206

literal values, 158–160

LN (logarithm) numeric value function, 180

locking database objects, 305

logical compared to physical schema,

62–63

logical connectives, 70–71, 216–218, 417

432 SQL For Dummies, 7th Edition

login for DBA, 279

looking at data user privilege, 282–283

LOOP...ENDLOOP statement, 382–383

LOWER string value function, 175

• M •
malice, data integrity problem, 126

manipulating data

about, 139

adding new data, 146–150. See also

INSERT statement

Data Manipulation Language (DML),

53, 66–73

deleting obsolete data, 155–156. See also

DELETE statement

retrieving data, 140–141. See also queries

transferring data, 149–150, 154–155

updating existing data, 151–153. See also

UPDATE statement

views, 141–145

mapping XML from/to SQL, 342–346,

355–359

MATCH predicate, WHERE clause, 212–216

MAX function, 71, 169–170

mechanical failure, data integrity problem,

126

Melton, Jim (author), Querying XML, 347

MERGE statement, 154

metadata, 9, 19, 63

method in procedural language, defi ned,

322

Microsoft Access, 97–105, 323–326. See also

RAD (rapid application development)

tool

Microsoft Visual Studio, 322–323

MIN function, 72, 170

MOD (modulus) numeric value function, 180

modifi cation anomalies, 130

modifi ed attribute, creating view from,

144–145

modifying table data user privilege, 283

module language method, 320–322,

392–393

MODULE statement, 321–322

modules, stored, 388–389

MULTISET data type, 42

multiset mapping, XML data and SQL,

358–359

multitable database

about, 107

character set, 113

collation, 113

data integrity, maintaining

about, 119–120

altering table data, 125

constraints, 127–129

domain integrity, 121–122

entity integrity, 120–121

potential problem areas, 125–127

referential integrity, 122–125

design

defi ning objects, 108–113

identifying tables and columns, 108–109

overview, 107–108

domains, 113

indexes, working with, 116–119

keys, creating, 114–116

normalization, 130–136

view, 58–62

mutator function, structured UDT, 44

• N •
NAMES ARE clause, MODULE statement, 321

NATIONAL CHARACTER data type, 34

NATIONAL CHARACTER LARGE OBJECT

data type, 34

NATIONAL CHARACTER VARYING data

type, 34

native driver, defi ned, 332

natural join, 234

nested queries (subqueries)

about, 247–248

ALL qualifi er, 255–257

ANY qualifi er, 255–257

comparison operators with, 259–261

defi ned, 72–73, 247

DELETE statement with, 262–264

DML, 72–73

existence test, 257–259

433433 Index

EXISTS predicate, WHERE clause, 210–211

HAVING clause with, 261–262

INSERT statement with, 263–264

NOT IN predicate with, 251–252

IN predicate, introduced with,

250–251, 259

rows, returning sets of, 249–252

SELECT statement in, 247–248

single value, returning, 252–255

SOME qualifi er, 255–257

UNIQUE predicate, WHERE clause, 211

UPDATE statement with, 262–263

WHERE clause in, 210–211, 248

network database model, 12

NEXT option, FETCH statement, 371

nonprocedural language, SQL as, 23–25

nonrepeatable read problem, defi ned, 301

normal forms, 40, 130–136

normalization, 56, 130–136, 247

NOT DEFERRABLE designation for

constraint, 308

NOT EXISTS predicate, WHERE clause,

258–259

NOT IN predicate

nested queries with, 251–252

WHERE clause, 203

NOT LIKE predicate, WHERE clause,

204–206

NOT logical connective, 71, 218, 417

NOT NULL constraint, 59

NULL predicate, WHERE clause, 206–207

null value, 47, 345

NULLIF conditional expression, 189–190

NUMERIC data type, 29–30

numeric data types, 29–32, 67, 165

numeric literal, defi ned, 67

numeric value functions, 176–181

• O •
object compared to relational model, 20

object-oriented programming (OOP), 42

object-oriented RAD tools, 322–323

object-relational model, 20–21

objects, database. See schema; table; views

observer function, structured UDT, 44

OCCURRENCES_REGEX numeric value

function, 177–178

OCTET_LENGTH numeric value function,

179

ODBC (Open Database Connectivity),

329–335

ODBC layers, 331

ON clause with joins, 246

one-to-many relationship among tables,

60, 112–113

online application processing (OLAP), 181

OOP (object-oriented programming), 42

Open Database Connectivity (ODBC),

329–335

OPEN statement, cursor, 369

operand, defi ned, 172

operator error, data integrity problem, 126

operators

about, 223

comparison, 70, 201–210, 252–257,

259–261

concatenation, 67–68, 164

EXCEPT, 228–229

INTERSECT, 226–228

joins (JOIN)

about, 229

basic join, 229–231

checking for valid queries, 416

ON clause with, 246

column-name join, 235–236

condition join, 234–235

CROSS JOIN, 233

equi-join, 231–233, 234

INNER JOIN, 236

natural join, 234

OUTER JOIN, 236–240

UNION JOIN, 240–246

WHERE clause with, 246

numeric value expression, 67

UNION, 150, 223–226

XML, 347–351

OR logical connective, 71, 217–218, 417

Oracle Corporation, 13, 25

ORDER BY clause, 198, 199, 221–222,

365–367

434 SQL For Dummies, 7th Edition

OUTER JOIN operators, 236–240

OVERLAPS predicate, WHERE clause, 212

OVERLAY string value function, 174

owner of schema, 74

• P •
parameters (host variables),

161, 319–320, 391–393

parent-child table relationship,

122, 124, 212–214

PARTIAL keyword, MATCH predicate,

215–216

password, default DBA, 279

permissions. See privileges, user

personal database, defi ned, 9

phantom read problem, defi ned, 301–302

physical compared to logical schema,

62–63

platform instability threat to data, 294

pointer, 42

portability considerations, 105

POSITION numeric value function, 176–177

POSITION_REGEX numeric value

function, 178

POWER numeric value function, 180

precision of a number, defi ned, 29

predicates. See also WHERE clause

defi ned, 33

DML, 69–70

nested query, 210–211, 250–252, 259

XML-compatible, 352–353

preprocessing of programs for SQL,

317, 319

primary key

avoiding update anomalies, 125

database planning, 55

entity integrity, 120–121

importance of indexing, 95

in multitable database, 114–115

parent-child table relationship, 122

referential integrity rules, 214

PRIOR option, FETCH statement, 371

private attributes of UDT, 43

privileges, user

across levels, 287–289

adding data, 282

character sets, 285–286

collations, 285–286

compound SQL statement, 387–388

delegating, 78–79, 289–290

deleting obsolete rows, 284

domains, 278, 285–286

granting, 280–281, 292

hierarchy of, 280

importance of using controls, 418

looking at data role, 282–283

modifying table data role, 283

overview, 74–77

referencing related tables, 284–285

revoking, 75–76, 290–291, 292

roles, 281–282

translations, 285–286

trigger events, 287

procedural language. See applications,

working SQL with

PROCEDURE statement, 322

proprietary API, 332

protected attributes of UDT, 43

protecting data. See integrity, data

public, the, 280

public attributes of UDT, 43

publishing, database, 333

• Q •
quantifi ed comparison operators,

207–210, 252, 255–257

queries. See also operators

about, 197

ad-hoc, 24–25

checking for validity, 416

complex type, 25

cursor operations, 365

defi ned, 24

modifying clauses

FROM, 198, 199

about, 197–199

GROUP BY, 198, 218–221

435435 Index

HAVING, 198, 220–221

logical connectives, 216–218

ORDER BY, 198, 199, 221–222

WHERE. See WHERE clause

nested (subqueries)

about, 247–248

ALL qualifi er, 255–257

ANY qualifi er, 255–257

comparison operators with, 259–261

defi ned, 72–73, 247

DELETE statement with, 263–264

DML, 72–73

existence test, 257–259

EXISTS predicate, WHERE clause,

210–211

HAVING clause with, 261–262

INSERT statement with, 263–264

NOT IN predicate with, 251–252

IN predicate, introduced with,

250–251, 259

rows, returning sets of, 249–252

SELECT statement in, 247–248

single value, returning, 252–255

SOME qualifi er, 255–257

UNIQUE predicate, WHERE clause, 211

UPDATE statement with, 262–263

WHERE clause in, 210–211, 248

recursive, 265–274

Querying XML (Melton and Buxton), 347

• R •
RAD (rapid application development) tool

about, 84

altering table structure, 92–94

creating a table, 85–92

data to track, deciding on, 84–85

deleting a table, 96–97

index, creating, 94–96

object-oriented RAD tools, 322–323

READ COMMITTED transaction isolation

level, 301

READ UNCOMMITED transaction isolation

level, 300–301

read-write permissions, controlling, 305

REAL data type, 31–32

record (tuple), 9, 15

recursive queries

about, 265–268

defi ned, 268

purposes, 268–274

syntax, 271–272

redundancy strategy to avoid data loss/

corruption, 294

REF data type, 42, 69

REFERENCES privilege, 78, 278

REFERENCING old_or_new_value_
alias_list phrase, 407–408

referencing related tables, user privileges,

284–285

referential integrity, 77–78, 104, 122–125,

212–216

relation (table), defi ned, 14. See also table

relational database. See also database

about, 7–8

advantages, 13–14

components, 14–16

constraints, 19–20

defi ned, 9, 13

design considerations, 21

domains, 19

fl at fi les, compared to, 11–12

object-relational model, 20–21

schemas, 19

size and complexity range, 9

SQL function, 1

views, 16–18

RELATIVE option, FETCH statement,

371–372

REPEATABLE READ transaction isolation

level, 301–302

REPEAT...UNTIL...END REPEAT

statement, 384

reserve words, 28, 419–422

RESIGNAL action, 380

RESTRICT keyword, REVOKE statement,

290–291

retrieving data, 8, 140–141. See also queries

returnability, declaring cursor, 365

REVOKE statement, 75–76, 290–291, 292

436 SQL For Dummies, 7th Edition

RIGHT OUTER JOIN operator, 239

roles, defi ned, 282

ROLLBACK statement, 73, 298–299, 304, 306

row compared to set operations methods,

316

ROW data type, 40, 69, 357

row value expression, 193–195

row values, defi ned, 158

rows, returning sets of, nested queries,

249–252

• S •
SAN (storage area network), 10

sandbox, defi ned, 337

SAVEPOINT statement, 306

scalable DBMS, 10

scalar (atomic) property of value,

158, 307, 374–375

scale of a number, defi ned, 30

schema

creating, 62–63

overview, 19

owner of, 74

XML, 339, 344, 346

SCHEMA clause, MODULE statement, 321

scope of database project, establishing

accurate, 412

scripts and client extensions, 335

SCROLL keyword, DECLARE CURSOR

statement, 368

scrollability, declaring cursor, 365

search conditions, CASE expression with,

184–186

searched CASE statement, 382

searching the database. See queries

second normal form (2NF), 133–134

security

about, 277

DCL, 53, 73–79, 278–280

privileges, user

across levels, 287–289

adding data, 282

character sets, 285–286

collations, 285–286

compound SQL statement, 387–388

delegating, 78–79, 289–290

deleting obsolete rows, 284

domains, 278, 285–286

granting, 280–281, 292

hierarchy of, 280

importance of using controls, 418

looking at data role, 282–283

modifying table data role, 283

overview, 74–77

referencing related tables, 284–285

revoking, 75–76, 290–291, 292

roles, 281–282

translations, 285–286

trigger events, 287

working with views to enhance, 145

SELECT statement, 140–141, 247–248, 278

selected columns, adding data to, 148

selection condition, creating view from,

143–144

self-consistency of columns, 15

self-describing aspect of database,

defi ned, 9

sensitivity, declaring cursor, 365, 367–368

serial access to data, advantage of, 297

SERIALIZABLE transaction isolation level,

302

server extensions in Web-based databases,

333–334

server role in database environment, 48–51

session, client, defi ned, 162

SESSION_USER variable, 162

set compared to row operations methods,

316

set (aggregate) functions, 71–72, 167–170,

219–220

SET TRANSACTION statement,

299, 303–304

SIMILAR predicate, WHERE clause, 206

simple CASE statement, 381–382

SIMPLE keyword, MATCH predicate,

215–216

single value, returning, nested queries,

252–255

single-table view, 57–58

437437 Index

SMALLINT data type, 29

SOME predicate, WHERE clause, 207–210

SOME qualifi er, nested queries, 255–257

sorting data with indexes, 117–118

source type, UDT, 43

special variables, 162

specialized character set, establishing, 113

SQL. See also applications, working SQL

with; specifi c topics
about, 1–4

in client-server system, 48–50

common mistakes in using, 411–414

constraints, 47–48

core SQL:2008 statement, 26–27

as data sublanguage, 183

default transaction, 299–300

defi ned, 23–25

embedded SQL, 162, 316, 317–320

extended SQL:2008 statement, 26–27

history, 7, 25–26

on Internet/intranet, 50–51, 332–337

limitations of, 183

Microsoft Access, using with, 97–99

name origin, 25

null value, 47

portability considerations, 105

procedural languages, compared to,

83, 315–316

reserve words, 28, 419–422

statement overview, 26–27

Web-based use of, 50–51, 332–337

SQL module, 320–322

SQL/DS relational database (RDBMS), 25

SQL/PSM, 375–380

SQLSTATE class values, 376–380

SQLSTATE host variable, 391–393

SQRT (square root) numeric value

function, 181

standard API, 332

standards, SQL, 25–27, 373

statement overview, 26–27, 64–66. See also

individual statements
storage area network (SAN), 10

stored procedures, compound SQL

statement, 386

stored routines, defi ned, 387

string value expression, 67–68, 164

string value functions, 170–176

structured types, UDT, 44–45, 287

sublanguage, SQL as data, 24

subqueries (nested queries)

about, 247–248

ALL qualifi er, 255–257

ANY qualifi er, 255–257

comparison operators with, 259–261

defi ned, 72–73, 247

DELETE statement with, 263–264

DML, 72–73

existence test, 257–259

EXISTS predicate, WHERE clause, 210–211

HAVING clause with, 261–262

INSERT statement with, 263–264

NOT IN predicate with, 251–252

IN predicate, introduced with,

250–251, 259

rows, returning sets of, 249–252

SELECT statement in, 247–248

single value, returning, 252–255

SOME qualifi er, 255–257

UNIQUE predicate, WHERE clause, 211

UPDATE statement with, 262–263

WHERE clause in, 210–211, 248

subselect, 153, 248, 416

SUBSTRING SIMILAR string value

function, 172

SUBSTRING string value function, 171–172

SUBSTRING_REGEX string value function,

173

subtransaction, 306

subtypes, structured UDT, 44, 287

SUM function, 72, 170

Sun Microsystems, 336

super user, 278–279

supertypes, structured UDT, 44, 287

system administrator, 278–279

system tables, 63

SYSTEM_USER variable, 162

438 SQL For Dummies, 7th Edition

• T •
table. See also multitable database; virtual

table (relational database)

access control, 283, 284–285

altering structure, 92–94, 104, 125

attribute (column). See attribute

(column)

base type, 141

blocks of rows, adding, 148–150

CAST as access tool, 192–193

conversion from XML to SQL, 354–355

creating, 55–57, 85–92, 100–103, 104

deleting, 96–97, 104

mapping to/from XML, 344–345

one-to-many relationship, 60, 112–113

parent-child relationship, 122, 124,

212–214

system, 63

temporary-table declaration, 321

translation, 65

union-compatibility, 223

views, 57–58, 142–143

table constraint, 128–129

Taylor, Allen G. (author)

Access 2003 Power Programming with VBA,
323

Database Development For Dummies, 55

temporary-table declaration clause, 321

termination condition, 267

test database querying, 416

THEN keyword in conditional expressions,

183

third normal form (3NF), 55, 134–135

TIME WITH TIME ZONE data type, 36–37

TIME WITHOUT TIME ZONE data type, 36

TIMESTAMP WITH TIME ZONE data

type, 37

TIMESTAMP WITHOUT TIME ZONE data

type, 36

transaction processing

about, 297–298

ACID database, 307

backing up data, 305–306

COMMIT statement, 304

concurrent access threat to data, 295–296

constraints on, 307–311

DCL, 73–74

default transaction, 299–300

defi ned, 295

implicit transaction-starting statement,

303

isolation levels, 300–302, 304

locking database objects, 305

ROLLBACK statement, 304

savepoints and subtransactions, 306

serial access to data, advantage of, 297

SET TRANSACTION statement,

299, 303–304

transferring data, 149–150, 154–155

transitive dependency, 134–135

TRANSLATE string value function, 176

TRANSLATE_REGEX string value function,

173–174

translation of data, 149, 278, 285–286

translation table, 65

trigger execution context, 406

TRIGGER statement, 278, 287, 403–408

TRIM string value function, 175

troubleshooting (error handling)

about, 391

CASE expression as tool for, 186

diagnostics areas, 394–400

exception conditions, 401–402

preparing for, 418

SQLSTATE host variable, 391–393

WHENEVER clause, 393–394

tuple (record), 9, 15

two-dimensional array, relation as, 14–15

type hierarchy, 287–289

• U •
UDT (user-defi ned data type), 42–45, 69

Ulrich-Fuller, Laurie (author), Access For
Dummies, 323

UNDER keyword, permission for using, 278

UNION ALL operator, 225

UNION CORRESPONDING operator, 226

UNION DISTINCT operator, 225

UNION JOIN operator, 240–246

439439 Index

UNION operator, 150, 223–226

union-compatibility of tables, 223

unique (primary) key

avoiding update anomalies, 125

database planning, 55

entity integrity, 120–121

importance of indexing, 95

in multitable database, 114–115

parent-child table relationship, 122

referential integrity rules, 214

UNIQUE predicate, WHERE clause,

211, 214–216

universal time (Greenwich Mean Time/

GMT), defi ned, 36

update anomalies, 122–125

UPDATE statement

about, 75

basics of updating data, 151–153

CASE expression in, 185–186

with cursor, 367, 372

with nested queries, 262–263

trigger, relationship to, 404, 406

user access, 278

updating table structure, consequences

of, 92–93

UPPER string value function, 174–175

USAGE keyword, permission for, 278

user name, defi ned, 281–282

user privileges. See privileges, user

user-defi ned data type (UDT), 42–45, 69

• V •
VALID predicate (XML), 353

value expressions

about, 163–164, 183

Boolean, 68–69

CAST data type, 191–193, 316

collection, 69

conditional, 166, 183–191

datetime, 68, 165–166

DML, 66–69

interval, 68, 166

numeric, 67, 165

reference, 69

row, 69, 193–195

string, 67–68, 164

user-defi ned, 69

values. See also functions

about, 157

asterisk (*) as wildcard, 140, 314

atomic property of, 158, 307, 374–375

CASE expression with, 186–188

comma-delimited, 146

constants, 158–160

null value, 47, 345

row, defi ned, 158

SQLSTATE class, 376–380

types of, 157–163

VARBINARY data type, 35

variables

basics of using, 160–162

compound SQL statement, 375–376

constants, compared to, 158

host, 161, 319–320, 391–393

VIEW command, 57–62

views, 16–18, 57–62, 141–145

virtual table (relational database). See also

database

about, 7–8

advantages, 13–14

components, 14–16

constraints, 19–20

defi ned, 9, 13

design considerations, 21

domains, 19

fl at fi les, compared to, 11–12

object-relational model, 20–21

schemas, 19

size and complexity range, 9

SQL function, 1

views, 16–18

• W •
Web-based database environment,

50–51, 332–337

WHENEVER clause, error handling, 393–394

WHERE clause

about, 200–201

ALL predicate, 207–210

ANY predicate, 207–210

440 SQL For Dummies, 7th Edition

WHERE clause (continued)

comparison predicate, 201

DISTINCT predicate, 211

EXISTS predicate, 210–211, 257–258

function, 198

with joins, 246. See also join (JOIN)

operators

LIKE predicate, 204–206

MATCH predicate, 212–216

in nested queries, 210–211, 248

NOT EXISTS predicate, 258–259

NOT IN predicate, 203

NOT LIKE predicate, 204–206

NULL predicate, 206–207

ON versus WHERE, 246

OVERLAPS predicate, 212

BETWEEN predicate, 202–203

IN predicate, 203

retrieving data with SELECT, 140

SIMILAR predicate, 206

SOME predicate, 207–210

UNIQUE predicate, 211, 214–216

with UPDATE, 151, 153

WHILE...DO...END WHILE statement,

384

WIDTH_BUCKET numeric value function,

181

wildcard character (*), 140, 314

WITH GRANT OPTION clause, GRANT

statement, 78–79, 289–290, 291

WORK keyword, COMMIT statement, 304

workgroup database, defi ned, 9

• X •
XML(CONTENT(ANY)) data type, 38

XML(CONTENT(UNTYPED)) data type,

38–39

XML(CONTENT(XMLSCHEMA)) data type,

39

XML(DOCUMENT(ANY)) data type, 39

XML(DOCUMENT(UNTYPED)) data type, 39

XML(SEQUENCE) data type, 38

XML (eXtensible Markup Language) data

about, 339–340

array mapping, 358

conclusion, 359

distinct UDT mapping, 356–357

domain mapping, 355–356

functions compatible with, 347–351

mapping from/to SQL, 342–346, 355–359

multiset mapping, 358–359

predicates compatible with, 352–353

ROW mapping, 357

table conversion to SQL, 354–355

XML data type, 37–39, 340–342

XMLAGG operator, 349

XMLCAST operator, 351

XMLCOMMENT operator, 350

XMLCONCAT operator, 348–349

XMLDOCUMENT operator, 347

XMLELEMENT operator, 347

XMLEXISTS predicate (XML), 352–353

XMLFOREST operator, 348

XMLP1 operator, 350

XMLPARSE operator, 350

XMLQUERY operator, 351

XMLTABLE pseudo-function (XML), 354–355

XQuery, 38–39, 347

• Y •
year-month interval, 37, 68, 166

Bonus Content

Glossary
ActiveX control: A reusable software component that can be added to an

application, reducing development time in the process. ActiveX is a Microsoft

technology; ActiveX components can be used only by developers who work

on Windows development systems.

aggregate function: A function that produces a single result based on the

contents of an entire set of table rows. Also called a set function.

alias: A short substitute or nickname for a table name.

applet: A small application, written in the Java language, stored on a Web

server that is downloaded to and executed on a Web client that connects to

the server.

application program interface (API): A standard means of communicating

between an application and a database or other system resource.

assertion: A constraint that is specified by a CREATE ASSERTION statement

(rather than by a clause of a CREATE TABLE statement). Assertions com-

monly apply to more than one table.

atomic: Incapable of being subdivided.

attribute: A component of a structured type or relation.

back end: That part of a DBMS that interacts directly with the database.

catalog: A named collection of schemas.

client: An individual user workstation that represents the front end of a DBMS —

the part that displays information on a screen and responds to user input.

client/server system: A multiuser system in which a central processor (the

server) is connected to multiple intelligent user workstations (the clients).

cluster: A named collection of catalogs.

CODASYL DBTG database model: The network database model. Note: This

use of the term network refers to the structuring of the data (network as

opposed to hierarchy), rather than to network communications.

557419-bc01.indd BC1557419-bc01.indd BC1 12/28/09 10:32 AM12/28/09 10:32 AM

BC2 SQL For Dummies, 7th Edition

collating sequence: The ordering of characters in a character set. All col-

lating sequences for character sets that have the Latin characters (a, b, c)

define the obvious ordering (a, b, c, . . .). They differ, however, in the ordering

of special characters (+, –, <, ?, and so on) and in the relative ordering of the

digits and the letters.

collection type: A data type that allows a field of a table row to contain

multiple objects.

column: A table component that holds a single attribute of the table.

composite key: A key made up of two or more table columns.

conceptual view: The schema of a database.

concurrent access: Two or more users operating on the same rows in a

database table at the same time.

constraint: A restriction you specify on the data in a database.

constraint, deferred: A constraint that is not applied until you change its

status to immediate or until you COMMIT the encapsulating transaction.

cursor: An SQL feature that specifies a set of rows, an ordering of those rows,

and a current row within that ordering.

Data Control Language (DCL): That part of SQL that protects the database

from harm.

Data Definition Language (DDL): That part of SQL used to define, modify,

and eradicate database structures.

Data Manipulation Language (DML): That part of SQL that operates on

database data.

data redundancy: Having the same data stored in more than one place in

a database.

data source: A source of data used by a database application. It may be a

database or a flat data file.

data sublanguage: A subset of a complete computer language that deals

specifically with data handling. SQL is a data sublanguage.

data type: A set of representable values.

database: A self-describing collection of integrated records.

557419-bc01.indd BC2557419-bc01.indd BC2 12/28/09 10:32 AM12/28/09 10:32 AM

BC3 Glossary

database, enterprise: A database containing information used by an entire

enterprise.

database, personal: A database designed for use by one person on a single

computer.

database, workgroup: A database designed to be used by a department or

workgroup within an organization.

database administrator (DBA): The person ultimately responsible for the

functionality, integrity, and safety of a database.

database engine: That part of a DBMS that directly interacts with the

database (serving as part of the back end).

database publishing: The act of making the database contents available on

the Internet or over an intranet.

database server: The server component of a client/server system.

DB2: A relational database management system marketed by IBM

Corporation.

DBMS: A database management system.

deletion anomaly: An inconsistency in a multitable database that occurs

when a row is deleted from one of its tables.

descriptor: An area in memory used to pass information between an applica-

tion’s procedural code and its dynamic SQL code.

diagnostics area: A data structure, managed by the DBMS, that contains

detailed information about the last SQL statement executed and any errors

that occurred during its execution.

distributed data processing: A system in which multiple servers handle data

processing.

domain: The set of all values that a database item can assume.

domain integrity: A property of a database table column where all data items

in that column fall within the domain of the column.

driver: That part of a database management system that interfaces directly

with a database. Drivers are part of the back end.

driver manager: A component of an ODBC-compliant database interface. On

Windows machines, the driver manager is a dynamic link library (DLL) that

coordinates the linking of data sources with appropriate drivers.

557419-bc01.indd BC3557419-bc01.indd BC3 12/28/09 10:32 AM12/28/09 10:32 AM

BC4 SQL For Dummies, 7th Edition

entity integrity: A property of a database table that is entirely consistent

with the real-world object that it models.

file server: The server component of a resource-sharing system. It does not

contain any database management software.

firewall: A piece of software (or a combination of hardware and software)

that isolates an intranet from the Internet, allowing only trusted traffic to

travel between them.

flat file: A collection of data records having minimal structure.

foreign key: A column or combination of columns in a database table that

references the primary key of another table in the database.

forest: A collection of elements in an XML document.

front end: That part of a DBMS (such as the client in a client/server system)

that interacts directly with the user.

functional dependency: A relationship between or among attributes of a

relation.

hierarchical database model: A tree-structured model of data.

host variable: A variable passed between an application written in a

procedural host language and embedded SQL.

HTML (HyperText Markup Language): A standard formatting language for

Web documents.

implementation: A particular relational DBMS running on a specific hardware

platform.

index: A table of pointers used to locate rows rapidly in a data table.

information schema: The system tables, which hold the database’s metadata.

insertion anomaly: An inconsistency introduced into a multitable database

when a new row is inserted into one of its tables.

Internet: The worldwide network of computers.

intranet: A communication network used within a single organization.

IPX/SPX: A local area network protocol.

Java: A platform-independent, compiled language used in many open-source

applications.

557419-bc01.indd BC4557419-bc01.indd BC4 12/28/09 10:32 AM12/28/09 10:32 AM

BC5 Glossary

JavaScript: A script language that gives some measure of programmability to

HTML-based Web pages.

JDBC (Java DataBase Connectivity): A standard interface between a Java

applet or application and a database. The JDBC standard is modeled after the

ODBC standard.

join: A relational operator that combines data from multiple tables into a

single result table.

logical connectives: Used to connect or change the truth value of predicates

to produce more complex predicates.

mapping: The translation of data in one format to another format.

metadata: Data about the structure of the data in a database.

modification anomaly: A problem introduced into a database when a modifi-

cation (insertion, deletion, or update) is made to one of the database tables.

module language: A form of SQL in which SQL statements are placed in mod-

ules, which are called by an application program written in a host language.

mutator function: A function associated with a user-defined type (UDT),

having two parameters whose definition is implied by the definition of some

attribute of the type. The first parameter (the result) is of the same type as

the UDT. The second parameter has the same type as the defining attribute.

MySQL: The most popular open-source relational database management

system in the world.

nested query: A statement that contains one or more subqueries.

NetBEUI: A local area network protocol.

network database model: A way of organizing a database to get minimum

redundancy of data items by allowing any data item (node) to be directly

connected to any other.

normalization: A technique that reduces or eliminates the possibility that a

database is subject to modification anomalies.

object: Any uniquely identifiable thing.

ODBC (Open DataBase Connectivity): A standard interface between a data-

base and an application that is trying to access the data in that database. ODBC

is defined by an international (ISO) and a national (ANSI) standard.

557419-bc01.indd BC5557419-bc01.indd BC5 12/28/09 10:32 AM12/28/09 10:32 AM

BC6 SQL For Dummies, 7th Edition

Oracle: A relational database management system marketed by Oracle

Corporation.

parameter: A variable within an application written in SQL module language.

PostgreSQL: A powerful open-source relational database management

system.

precision: The maximum number of digits allowed in a numeric data item.

predicate: A statement that may be either logically true or logically false.

primary key: A column or combination of columns in a database table that

uniquely identifies each row in the table.

procedural language: A computer language that solves a problem by executing

a procedure in the form of a sequence of steps.

query: A question you ask about the data in a database.

rapid application development (RAD) tool: A proprietary, graphically

oriented alternative to SQL. A number of such tools are on the market.

record: A representation of some physical or conceptual object.

reference type: A data type whose values are all potential references to sites

of one specified data type.

referential integrity: A state in which all the tables in a database are consistent

with each other.

relation: A two-dimensional array of rows and columns, containing single-

valued entries and no duplicate rows.

reserved words: Words that have a special significance in SQL and cannot be

used as variable names or in any other way that differs from their intended use.

row: A sequence of (field name, value) pairs.

row value expression: A list of value expressions enclosed in parentheses

and separated by commas.

scale: The number of digits in the fractional part of a numeric data item.

schema: The structure of an entire database. The information that describes

the schema is the database’s metadata.

557419-bc01.indd BC6557419-bc01.indd BC6 12/28/09 10:32 AM12/28/09 10:32 AM

BC7 Glossary

schema owner: The person who was designated as the owner when the

schema was created.

SEQUEL: A data sublanguage created by IBM that was a precursor of SQL.

set function: A function that produces a single result based on the contents

of an entire set of table rows. Also called an aggregate function.

SQL: An industry standard data sublanguage, specifically designed to create,

manipulate, and control relational databases.

SQL, dynamic: A means of building compiled applications that does not

require all data items to be identifiable at compile time.

SQL, embedded: An application structure in which SQL statements are

embedded within programs written in a host language.

SQL, interactive: A real-time conversation with a database.

SQL/DS: A relational database management system marketed by IBM

Corporation.

SQL Server: A relational database management system developed and

marketed by Microsoft Corporation.

structured type: A user-defined type that is expressed as a list of attribute

definitions and methods rather than being based on a single predefined

source type.

subquery: A query within a query.

subtype: A data type is a subtype of a second data type if every value of the

first type is also a value of the second type.

supertype: A data type is a supertype of a second data type if every value of

the second type is also a value of the first type.

table: A relation.

TCP/IP (Transmission Control Protocol/Internet Protocol): The network

protocol used by the Internet and intranets.

teleprocessing system: A powerful central processor connected to multiple

dumb terminals.

transaction: A sequence of SQL statements whose effect is not accessible to

other transactions until all the statements are executed.

557419-bc01.indd BC7557419-bc01.indd BC7 12/28/09 10:32 AM12/28/09 10:32 AM

BC8 SQL For Dummies, 7th Edition

transitive dependency: One attribute of a relation depends on a second attri-

bute, which in turn depends on a third attribute.

translation table: Tool for converting character strings from one character

set to another.

trigger: A small piece of code that tells a DBMS what other actions to perform

after certain SQL statements have been executed.

update anomaly: A problem introduced into a database when a table row is

updated.

user-defined type (UDT): A type whose characteristics are defined by a type

descriptor specified by the user.

value expression: An expression that combines two or more values.

value expression, conditional: A value expression that assigns different

values to arguments, based on whether a condition is logically true.

value expression, datetime: A value expression that deals with DATE, TIME,

TIMESTAMP, or INTERVAL data.

value expression, numeric: A value expression that combines numeric

values using the addition, subtraction, multiplication, or division operator.

value expression, string: A value expression that combines character strings

with the concatenation operator.

value function: A function that performs an operation on a single character

string, number, or date/time.

view: A database component that behaves exactly like a table but has no

independent existence of its own.

virtual table: A view.

World Wide Web: An aspect of the Internet that has a graphical user interface.

The Web is accessed by applications called Web browsers, and information

is provided to the Web by installations called Web servers.

XML: A widely accepted markup language used as a means of exchanging

data between dissimilar systems.

557419-bc01.indd BC8557419-bc01.indd BC8 12/28/09 10:32 AM12/28/09 10:32 AM

Allen G. Taylor
Author of all previous editions of
SQL For Dummies

SQL

Learn to:
• Create relational databases with powerful

data retrieval capacity

• Use SQL with XML and Access® 2010

• Structure a database management
system and implement database design

• Work with all the core SQL features

7th Edition
Making Everything Easier!™

 Open the book and find:

• Essential database design
considerations

• How a database management
system differs from a database

• What SQL is and isn’t

• Different types of data

• Ten common database blunders

• How to use values, value
expressions, and relational
operators

• Tips on using XML data with SQL

• Common threats to your data

Allen G. Taylor is a nationally known lecturer and educator in the field

of database development. A 30-year veteran of the computer industry,

he has written more than 20 books. Through the magic of the Internet,

Allen teaches computer architecture both at Portland State University

and in Shanghai.

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-55741-9

Programming Languages/SQL

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Demystify database management
systems with this fun and
friendly guide to SQL
The secret is SQL, and once you get the hang of that, you
can build relational databases and get valuable information
into and out of them with ease. Here’s how to structure a
database management system with SQL, implement the
design, protect your data, access and work with it, maintain
your database, and much more, using the newest version
of SQL.

• Down to data basics — learn what a relational database is and
what goes into designing a good one

• SQL secrets revealed — get an overview of SQL fundamentals
and actually build a database

• Data in, data out — find out how to add, retrieve, display, delete,
or change data in your database

• What’s your query? — discover how to find what you need using
different queries

• Guarding your stuff — protect your data from theft, accidental
or malicious corruption, and loss due to equipment failure

• Getting SQL to play nice — use Open DataBase Connectivity
(ODBC) to solve the problems of combining SQL with other
languages

• XML is your friend — communicate with other applications using
XML with SQL

• Eliminating errors — understand what SQL is trying to tell you
when something goes wrong

SQ
L

Taylor

7th Edition

spine=.912”

	SQL For Dummies®, 7th Edition
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Who Should Read This Book?
	How This Book Is Organized
	Icons Used in This Book
	Getting Started

	Part I: Basic Concepts
	Chapter 1: Relational Database Fundamentals
	Keeping Track of Things
	What Is a Database?
	Database Size and Complexity
	What Is a Database Management System?
	Flat Files
	Database Models
	Database Design Considerations

	Chapter 2: SQL Fundamentals
	What SQL Is and Isn’t
	A (Very) Little History
	SQL Statements
	Reserved Words
	Data Types
	Null Values
	Constraints
	Using SQL in a Client/Server System
	Using SQL on the Internet or an Intranet

	Chapter 3: The Components of SQL
	Data Definition Language
	Data Manipulation Language
	Data Control Language

	Part II: Using SQL to Build Databases
	Chapter 4: Building and Maintaining a Simple Database Structure
	Using a RAD Tool to Build a Simple Database
	Building POWER with SQL’s DDL
	Portability Considerations

	Chapter 5: Building a Multitable Relational Database
	Designing a Database
	Working with Indexes
	Maintaining Data Integrity
	Normalizing the Database

	Part III: Storing and Retrieving Data
	Chapter 6: Manipulating Database Data
	Retrieving Data
	Creating Views
	Updating Views
	Adding New Data
	Updating Existing Data
	Transferring Data
	Deleting Obsolete Data

	Chapter 7: Specifying Values
	Values
	Value Expressions
	Functions

	Chapter 8: Using Advanced SQL Value Expressions
	CASE Conditional Expressions
	CAST Data-Type Conversions
	Row Value Expressions

	Chapter 9: Zeroing In on the Data You Want
	Modifying Clauses
	FROM Clauses
	WHERE Clauses
	Logical Connectives
	GROUP BY Clauses
	HAVING Clauses
	ORDER BY Clauses

	Chapter 10: Using Relational Operators
	UNION
	INTERSECT
	EXCEPT
	Various Joins
	ON versus WHERE

	Chapter 11: Delving Deep with Nested Queries
	What Subqueries Do

	Chapter 12: Recursive Queries
	What Is Recursion?
	What Is a Recursive Query?
	Where Might You Use a Recursive Query?
	Where Else Might You Use a Recursive Query?

	Part IV: Controlling Operations
	Chapter 13: Providing Database Security
	The SQL Data Control Language
	User Access Levels
	Granting Privileges to Users
	Granting Privileges across Levels
	Granting the Power to Grant Privileges
	Taking Privileges Away
	Using GRANT and REVOKE Together to Save Time and Effort

	Chapter 14: Protecting Data
	Threats to Data Integrity
	Reducing Vulnerability to Data Corruption
	Constraints Within Transactions

	Chapter 15: Using SQL within Applications
	SQL in an Application
	Hooking SQL into Procedural Languages

	Part V: Taking SQL to the Real World
	Chapter 16: Accessing Data with ODBC and JDBC
	ODBC
	ODBC in a Client/Server Environment
	ODBC and the Internet
	ODBC and an Intranet
	JDBC

	Chapter 17: Operating on XML Data with SQL
	How XML Relates to SQL
	The XML Data Type
	Mapping SQL to XML and XML to SQL
	SQL Functions That Operate on XML Data
	Predicates
	Transforming XML Data into SQL Tables
	Mapping Non-Predefined Data Types to XML
	The Marriage of SQL and XML

	Part VI: Advanced Topics
	Chapter 18: Stepping through a Dataset with Cursors
	Declaring a Cursor
	Opening a Cursor
	Fetching Data from a Single Row
	Closing a Cursor

	Chapter 19: Adding Procedural Capabilities with Persistent Stored Modules
	Compound Statements
	Flow of Control Statements
	Stored Procedures
	Stored Functions
	Privileges
	Stored Modules

	Chapter 20: Handling Errors
	SQLSTATE
	WHENEVER Clause
	Diagnostics Areas
	Handling Exceptions

	Chapter 21: Triggers
	Examining Some Applications of Triggers
	Creating a Trigger
	Firing a Succession of Triggers
	Referencing Old Values and New Values
	Firing Multiple Triggers on a Single Table

	Part VII: The Part of Tens
	Chapter 22: Ten Common Mistakes
	Assuming That Your Clients Know What They Need
	Ignoring Project Scope
	Considering Only Technical Factors
	Not Asking for Client Feedback
	Always Using Your Favorite Development Environment
	Using Your Favorite System Architecture Exclusively
	Designing Database Tables in Isolation
	Neglecting Design Reviews
	Skipping Beta Testing
	Not Documenting Your Process

	Chapter 23: Ten Retrieval Tips
	Verify the Database Structure
	Try Queries on a Test Database
	Double-Check Queries That Include Joins
	Triple-Check Queries with Subselects
	Summarize Data with GROUP BY
	Watch GROUP BY Clause Restrictions
	Use Parentheses with AND, OR, and NOT
	Control Retrieval Privileges
	Back Up Your Databases Regularly
	Handle Error Conditions Gracefully

	Appendix: SQL: 2008 Reserved Words
	Index
	Glossary

