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Introduction

Calculus is the mathematics of change. Any situation that involves quan-
tities that change over time can be understood with the tools of cal-

culus. Differential calculus deals with rates of change or slopes, and is
explored in Chapters 3 and 4 of this book.  Integral calculus handles total
changes or areas, and is addressed in Chapters 5 and 6. Although it is not
always immediately obvious, this mathematical notion of change is essen-
tial to many areas of knowledge, particularly disciplines like physics, chem-
istry, biology, and economics.

The prerequisites for learning calculus include much of high school alge-
bra and trigonometry, as well as some essentials of geometry. If the for-
mulas on the front side of the Pocket Guide (the cardstock page right inside
the front cover) and topics covered in Chapter 1 are familiar to you, then
you probably have sufficient background to begin learning calculus.  If
some of those are unfamiliar, or just rusty for you, then CliffsQuickReview
Geometry, CliffsQuickReview Algebra, or CliffsQuickReview Trigonometry
may be valuable starting points for you.

Why You Need This Book
Can you answer yes to any of these questions?

■ Do you need to review the fundamentals of calculus fast?

■ Do you need a course supplement to calculus?

■ Do you need a concise, comprehensive reference for calculus?

If so, then CliffsQuickReview Calculus is for you!

How to Use This Book
You can use this book in any way that fits your personal style for study and
review—you decide what works best with your needs. You can either read
the book from cover to cover or just look for the information you want
and put it back on the shelf for later. Here are just a few ways you can use
this book:

■ Read the book as a stand-alone textbook to learn all the major con-
cepts of calculus.



■ Use the Pocket Guide to find often-used formulas, from calculus and
other relevant formulas from algebra, geometry and trigonometry.

■ Refer to a single topic in this book for a concise and understandable
explanation of an important idea.

■ Get a glimpse of what you’ll gain from a chapter by reading through
the “Chapter Check-In” at the beginning of each chapter.

■ Use the Chapter Checkout at the end of each chapter to gauge your
grasp of the important information you need to know.

■ Test your knowledge more completely in the CQR Review and look
for additional sources of information in the CQR Resource Center.

■ Review the most important concepts of an area of calculus for an
exam.

■ Brush up on key points as preparation for more advanced mathe-
matics.

Being a valuable reference source also means it’s easy to find the informa-
tion you need.  Here are a few ways you can search for topics in this book:

■ Look for areas of interest in the book’s Table of Contents, or use the
index to find specific topics. 

■ Use the glossary to find key terms fast. This book defines new terms
and concepts where they first appear in the chapter. If a word is bold-
faced, you can find a more complete definition in the book’s glossary.

■ Flip through the book looking for subject areas at the top of each
page.

■ Or browse through the book until you find what you’re looking 
for—we organized this book to gradually build on key concepts.

Visit Our Web Site 
A great resource, www.cliffsnotes.com features review materials,
valuable Internet links, quizzes, and more to enhance your learning. The
site also features timely articles and tips, plus downloadable versions of
many CliffsNotes books. 

When you stop by our site, don’t hesitate to share your thoughts about this
book or any Hungry Minds product. Just click the Talk to Us button. We
welcome your feedback!
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Chapter 1

REVIEW TOPICS

Chapter  Check-In

❑ Reviewing functions

❑ Using equations of lines

❑ Reviewing trigonometric functions

Certain topics in algebra, geometry, analytical geometry, and trigonom-
etry are essential in preparing to study calculus. Some of them are

briefly reviewed in the following sections.

Interval Notation
The set of real numbers (R) is the one that you will be most generally con-
cerned with as you study calculus. This set is defined as the union of the
set of rational numbers with the set of irrational numbers. Interval nota-
tion provides a convenient abbreviated notation for expressing intervals of
real numbers without using inequality symbols or set-builder notation.

The following lists some common intervals of real numbers and their
equivalent expressions, using set-builder notation:

, : < <a b x R a x b!=^ h " ,

, :a b x R a x b! # #=6 @ " ,

[ , ,),) : <a b x R a x b! #= " ,

( , ] : <a b x R a x b! #= " ,

, : >a x R x a3 !+ =^ h " ,

[ , ) :a x R x a3 ! $+ = " ,

, : <b x R x b3 !- =^ h " ,



( , ] :b x R x b3 ! #- = " ,

, x R3 3 !- + =^ h " ,

Note that an infinite end point !3^ h is never expressed with a bracket in
interval notation because neither 3+ nor 3- represents a real number
value.

Absolute Value
The concept of absolute value has many applications in the study of cal-
culus. The absolute value of a number x, written x may be defined in a
variety of ways. On a real number line, the absolute value of a number is
the distance, disregarding direction, that the number is from zero. This
definition establishes the fact that the absolute value of a number must
always be nonnegative—that is, x 0$ .

A common algebraic definition of absolute value is often stated in three
parts, as follows:

, >

,

, <

x

x x

x

x x

0

0 0

0

= =

-

Z

[

\

]
]

]
]

Another definition that is sometimes applied to calculus problems is

x x 2
=

or the principal square root of x2. Each of these definitions also implies
that the absolute value of a number must be a nonnegative.

Functions
A function is defined as a set of ordered pairs (x,y), such that for each first
element x, there corresponds one and only one second element y. The set
of first elements is called the domain of the function, while the set of sec-
ond elements is called the range of the function. The domain variable is
referred to as the independent variable, and the range variable is referred
to as the dependent variable. The notation f (x) is often used in place of y
to indicate the value of the function f for a specific replacement for x and
is read “f of x” or “f at x.”
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Geometrically, the graph of a set or ordered pairs (x,y) represents a func-
tion if any vertical line intersects the graph in, at most, one point. If a 
vertical line were to intersect the graph at two or more points, the set would
have one x value corresponding to two or more y values, which clearly con-
tradicts the definition of a function. Many of the key concepts and theo-
rems of calculus are directly related to functions.

Example 1-1: The following are some examples of equations that are 
functions.

(a) ( )y f x x3 1= = +

(b) ( )y f x x 2
= =

(c) ( )y f x x 5= = -

(d) ( )y f x 3= =-

(e) ( )y f x
x
x

4
3

2= =
+
-

(f ) ( )y f x x2 93= = +

(g) ( )y f x x
6

= =

(h) tantany x=

(i) coscosy x2=

Example 1-2: The following are some equations that are not functions;
each has an example to illustrate why it is not a function.

(a) x y 2
= If x 4= , then y 2= or y 2=-

(b)x y 3= + If x = 2, then y = –5 or y =–1

(c) x 5=- If x 5=- , then y can be any real number.

(d) x y 2525
2 2
+ = If x 0= , then y 5= or y 5=- .

(e) y x 4!= + If x 5= , then y 3=+ or y 3=- .

(f ) x y 9
2 2
- = If x 5=- , then y 4= or y 4=- .

Linear Equations
A linear equation is any equation that can be expressed in the form
axax byby c+ = , where a and b are not both zero. Although a linear equation
may not be expressed in this form initially, it can be manipulated alge-
braically to this form. The slope of a line indicates whether the line slants
up or down to the right or is horizontal or vertical. The slope is usually
denoted by the letter m and is defined in a number of ways:

Chapter 1: Review Topics 5



m sunsun
riserise

=

horizontalhorizontal changechange

verticalvertical changechange
=

valuevalue changechange

valuevalue changechange

x
y

=

x
y

∆
∆

=

x x
y y

1 2

1 2
= -

-

x x
y y

2 1

2 1
= -

-

Note that for a vertical line, the x value would remain constant, and the
horizontal change would be zero; hence, a vertical line is said to have no
slope or its slope is said to be nonexistent or undefined. All nonvertical
lines have a numerical slope with a positive slope indicating a line slant-
ing up to the right, a negative slope indicating a line slanting down to the
right, and a slope of zero indicating a horizontal line.

Example 1-3: Find the slope of the line passing through (–5, 4) and 
(–1, –3).

m x x
y y

2 1

2 1
= -

-

( ) ( )
( ) ( )

1 5
3 4

=
- - -
- -

4
7

=-

The line, then, has a slope of –7/4.

Some forms of expressing linear equations are given special names that
identify how the equations are written. Note that even though these forms
appear to be different from one another, they can be algebraically manip-
ulated to show they are equivalent.

Any nonvertical lines are parallel if they have the same slopes, and con-
versely lines with equal slopes are parallel. If the slopes of two lines L1 and
L2 are m1 and m2, respectively, then L1 is parallel to L2 if and only if m1 = m2. 

Two nonvertical, nonhorizontal lines are perpendicular if the product of
their slopes is –1, and conversely, if the product of their slopes is –1, the
lines are perpendicular. If the slopes of two lines L1 and L2 are m1 and m2,
respectively, then L1 is perpendicular to L2 if and only if m1 ⋅ m2 = –1. 

You should note that any two vertical lines are parallel and a vertical line
and a horizontal line are always perpendicular.

6 CliffsQuickReview Calculus



The general or standard form of a linear equation is axax byby c+ = , where a
and b are not both zero. If b = 0, the equation takes the form x = constant
and represents a vertical line. If a = 0, the equation takes the form 
y = constant and represents a horizontal line.

Example 1-4: The following are some examples of linear equations
expressed in general form:

(a) x y2 5 1010+ =

(b) x y4 0- =

(c) x 3=-

(d) y 6=

The point-slope form of a linear equation is ( )y y m x x1 1- = - when the
line passes through the point (x1,y1) and has a slope m.

Example 1-5: Find an equation of the line through the point (3,4) with
slope –2/3.

( )y y m x x1 1- = -

( )y x4 3
2

3- =- -

y x4 3
2

2- =- +

y x3
2

6=- +

y x3 2 1818=- +

x y2 3 1818+ = (general form)

The slope-intercept form of a linear equation is y = mx + b when the line
has y-intercept (0,b) and slope m.

Example 1-6: Find an equation of the line that has a slope 4/3 and crosses
y-axis at –5.

y mxmx b= +

( )y x3
4

5= + -

y x3 4 1515= -

x y4 3 1515- = (general form)

Chapter 1: Review Topics 7



The intercept form of a linear equation is x/a + y/b = 1 when the line has
x-intercept (a,0) and y-intercept (0,b).

Example 1-7: Find an equation of the line that crosses the x-axis at –2 and
the y-axis at 3.

a
x

b
y

1+ =

x y
2 3 1- + =

x y3 2 6- + = (general form)

Trigonometric Functions
In trigonometry, angle measure is expressed in one of two units: degrees
or radians. The relationship between these measures may be expressed as
follows: 180180 = r% radians. 

To change degrees to radians, the equivalent relationship /1 180180= r% radi-
ans is used, and the given number of degrees is multiplied by /180180r to 
convert to radian measure. Similarly, the equation 1 radian /180180= r% is used
to change radians to degrees by multiplying the given radian measure by

/180180 r to obtain the degree measure.

The six basic trigonometric functions may be defined using a circle with
equation x y r2 2 2

+ = and the angle i in standard position with its vertex at
the center of the circle and its initial side along the positive portion of the
x-axis (see Figure 1-1).

The trigonometric functions sine, cosine, tangent, cotangent, secant, and
cosecant are defined as follows:
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Figure 1-1 Defining the trigonometric functions.

sinsin r
y

x y

y
2 2

= =
+

i

coscos r
x

x y
x

2 2
= =

+
i

tantan
coscos
sinsin

x
y

= =i
i
i

cotcot
sinsin
coscos

y
x

= =i
i
i

secsec
coscos x

r
x

x y1
2 2

= = =
+

i
i

csccsc
sinsin y

r
y

x y1
2 2

= = =
+

i
i

It is essential that you be familiar with the values of these functions at mul-
tiples of 30°, 45°, 60°, 90°, and 180° (or in radians, π/6, π/4, π/3, π/2,
and π (See Table 1-1.) You should also be familiar with the graphs of the
six trigonometric functions. Some of the more common trigonometric
identities that are used in the study of calculus are as follows: 

(x,y)

r
θ

y

x
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( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

sinsin coscos

tantan secsec

cotcot csccsc

sinsin sinsin

coscos coscos

tantan tantan

sinsin sinsin

coscos coscos

tantan tantan

sinsin sinsin coscos coscos sinsin

sinsin sinsin coscos coscos sinsin

coscos coscos coscos sinsin sinsin

coscos coscos coscos sinsin sinsin

tantan
tantan tantan

tantan tantan

tantan
tantan tantan

tantan tantan

sinsin sinsin coscos

coscos coscos sinsin

coscos

sinsin

sinsin
coscos

coscos
coscos

A B A B A B

A B A B A B

A B A B A B

A B A B A B

A B A B
A B

A B A B
A B

1

1

1

2

2

1

1

2 2

2

2 1

1 2

2
1

2
1

2
1

2
1

2 2

2 2

2 2

2 2

2

2

2

2

+ =

+ =

+ =

- =-

- =

- =-

+ =

+ =

+ =

+ = +

- = -

+ = -

- = +

+ =
-

+

- =
+

-

=

= -

= -

= -

=
-

=
+

i i

i i

i i

i i

i i

i i

i r i

i r i

i r i

i i i

i i i

i

i

i i

i i

The relationship between the angles and sides of a triangle may be
expressed using the Law of Sines or the Law of Cosines (see Figure 1-2).

10 CliffsQuickReview Calculus



Figure 1-2 Relations between sides and angles of a triangle.

:

:

sinsin sinsin sinsin

sinsin sinsin sinsin

coscos

coscos

coscos

sinsin

b

a
A

b
B

c
C

A
a

B
b

C
c

a b c bcbc A

a c acac B

c a b abab C

LawLaw ofof SinesSines

oror

LawLaw ofof CoCo eses

oror

oror

2

2

2

2
2

2

2
2 2

2 2
2

= =

= =

= + -

= + -

= + -

B

A

c a

b
C
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Table 1-1 Values of Sine, Cosine, and Tangent at 
Common Angles

Degree
Measure

of x

Radian
Measure

of x sin x cos x tan x

0

30

0 0 1 0

1
2

1
2

1
2

π
6 2

45 1

1

− −

3
3
3

π
4 2

2
2
2

135 −1
2
2

2
2

90 01 Undefined
π
2

60

270 0−1 Undefined
3π
2

180 π −1 00

π
3 2

3
3

1
2

− 1
2

−

120
2π
3

3π
4

315 −1
2
27π

4

150
2
3−

3
3−5π

6

360 2π 1 00

330
2
3

3
3−11π

6

210
2
3−

2
3−

2
3−

3
37π

6

225
2
2−

2
2−

2
2−

5π
4

2
3

3

−1
2

300
5π
3

3

− 1
2

− 1
2

240
4π
3

3
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Chapter  Checkout

Q&A
1. Which of the following equations is not a function?

a. 3x – 2y = 6
b. y = sin 3x
c. y = x2

d. x2 + y2 = 16

e. y x3= +

2. Find an equation in general form of the line with slope –2/5 and 
y-intercept (0,3).

3. Find an equation in general form of the line passing through the 
origin and perpendicular to the line 5x – 3y = 6.

4. Find an equation in general form of the line passing through the
points (3,–2) and (–1,0).

5. If θ is an angle between π/2 and π, and sin θ = 3/5, what is cos θ?

Answers: 1. d 2. 2x + 5y = 15 3. 3x + 5y = 0 4. x + 2y = –1 5. –4/5

Chapter 1: Review Topics 13



Chapter 2

LIMITS

Chapter  Check-In

❑ Understanding what limits are

❑ Computing limits

❑ Determining when a function is continuous

The concept of the limit of a function is essential to the study of 
calculus. It is used in defining some of the most important concepts in 

calculus—continuity, the derivative of a function, and the definite inte-
gral of a function.

Intuitive Definition
The limit of a function f (x) describes the behavior of the function close

to a particular x value. It does not necessarily give the value of the func-

tion at x. You write ( )limlim f x L
x c

=
"

, which means that as x “approaches” c, the

function f (x) “approaches” the real number L (see Figure 2-1).

Figure 2-1 The limit of f(x) as x approaches c.

L (c,L)

y=f(x)

c

y

x



In other words, as the independent variable x gets closer and closer to c,
the function value f (x) gets closer to L. Note that this does not imply that
f (c) = L; in fact, the function may not even exist at c (Figure 2-2) or may
equal some value different than L at c (Figure 2-3).

If the function does not approach a real number L as x approaches c, the

limit does not exist; therefore, you write ( )limlim f x
x c"

DNE (Does Not Exist).

Many different situations could occur in determining that the limit of a

function does not exist as x approaches some value.

Figure 2-2 f(c) does not exist, but ( )limlim f x
x c"

does.

Figure 2-3 f(c) and ( )limlim f x
x c"

are not equal.

(c,f(c))

y=f(x)

y

x

(c,f(c))
y=f(x)

y

x
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Evaluating Limits
Limits of functions are evaluated using many different techniques such as
recognizing a pattern, simple substitution, or using algebraic simplifica-
tions. Some of these techniques are illustrated in the following examples.

Example 2-1: Find the limit of the sequence: , , , , , ,2
1

3
2

4
3

5
4

6
5

7
6 . . .

Because the value of each fraction gets slightly larger for each term, while
the numerator is always one less than the denominator, the fraction 
values will get closer and closer to 1; hence, the limit of the sequence is 1.

Example 2-2: Evaluate ( )limlim x3 1
x 2

-
"

.

When x is replaced by 2, 3x approaches 6, and 3x – 1 approaches 5; hence,
( )limlim x3 1 5

x 2
- =

"

.

Example 2-3: Evaluate limlim x
x

3
9

x 3

2

+
-

" -
.

Substituting –3 for x yields 0/0, which is meaningless. Factoring first and
simplifying, you find that 

( )()( )

( )

limlim limlim

limlim

x
x

x
x x

x

3
9

3
3 3

3

6

x x

x

3

2

3

3

+
-

= +
+ -

= -

=-

" "

"

- -

-

The graph of (x2 – 9)/(x + 3) would be the same as the graph of the linear
function y = x – 3 with the single point (–3,–6) removed from the graph
(see Figure 2-4).
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Figure 2-4 The graph of y = (x2 – 9)/(x + 3).

Example 2-4: Evaluate limlim x
x

x

3
2 5

3

x 3 -
+ -

"

.

Substituting 3 for x yields 0/0, which is meaningless. Simplifying the com-
pound fraction, you find that 

( )
( )

( )()( )
( )

( )()( )

( )()( )
( )

( )

limlim limlim

limlim

limlim

limlim

limlim

x
x

x

x
x

x

x
x

x x
x x

x x
x

x x
x

x

3
2 5

3

3
2 5

3

5 2
5 2

5 2 3
5 3 2

5 2 3
2 6

5 2 3
2 3

5 2
2

2525
2

x x

x

x

x

x

3 3

3

3

3

3

$-
+ -

= -
+ -

+
+

=
+ -
- +

=
+ -

-

=
+ -

-

=
+

=

" "

"

"

"

"

Example 2-5: Evaluate limlim x
x

5x 0 +"

.

Substituting 0 for x yields 0/5 = 0; hence, /(/( )limlim x x 5 0
x 0

+ =
"

.

y

x

6

4

2

−2

−2

(−3,−6)

(0,−3)

(3,0)

−4 4 6−6

x2− 9
x + 3y=

−6
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Example 2-6: Evaluate limlim x
x 5

x 0

+
"

.

Substituting 0 for x yields 5/0, which is meaningless; hence, ( )/)/limlim x x5
x 0

+
"

DNE. (Remember, infinity is not a real number.)

One-sided Limits
For some functions, it is appropriate to look at their behavior from one
side only. If x approaches c from the right only, you write 

( )limlim f x
x c" +

or if x approaches c from the left only, you write

( )limlim f x
x c" -

It follows, then, that ( )limlim f x L
x c

=
"

if and only if ( ) ( )limlim limlimf x f x L
x c x c

= =
" "

+ -
.

Example 2-7: Evaluate limlim x
x 0" +

.

Because x is approaching 0 from the right, it is always positive; x is get-

ting closer and closer to zero, so limlim x 0
x 0

=
"

+
. Although substituting 0 for

x would yield the same answer, the next example illustrates why this tech-

nique is not always appropriate.

Example 2-8: Evaluate limlim x
x 0" -

.

Because x is approaching 0 from the left, it is always negative, and x does

not exist. In this situation, limlim x
x 0" -

DNE. Also, note that limlim x
x 0"

DNE

because limlim limlimx x0
x x0 0

!=
" "

+ -
.

Example 2-9: Evaluate 

( )

( )

( )

limlim

limlim

limlim

x
x

x
x

x
x

a

b

c

2
2

2
2

2
2

x

x

x

2

2

2

-
-

-
-

-
-

"

"

"

-

+
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(a) As x approaches 2 from the left, x – 2 is negative, and
( )x x2 2- =- - ; hence,

( )
limlim x

x
x
x

2
2

2
2

1
x 2 -

-
= -

- -
=-

"
-

(b) As x approaches 2 from the right, x – 2 is positive, and
x x2 2- = - ; hence;

( )
limlim x

x
x
x

2
2

2
2

1
x 2 -

-
= -

-
=

"
-

(c) Because ,limlim limlim limlimx
x

x
x

DNEDNE2
2

2
2

x x x2 2 2
!-

-
-
-

" " "- +

Infinite Limits
Some functions “take off ” in the positive or negative direction (increase
or decrease without bound) near certain values for the independent vari-
able. When this occurs, the function is said to have an infinite limit; hence,

you write ( ) ( )limlim limlimf x f xoror
x c x c

3 3=+ =-
" "

. Note also that the function has a

vertical asymptote at x = c if either of the above limits hold true.

In general, a fractional function will have an infinite limit if the limit of
the denominator is zero and the limit of the numerator is not zero. The
sign of the infinite limit is determined by the sign of the quotient of the
numerator and the denominator at values close to the number that the
independent variable is approaching.

Example 2-10: Evaluate limlim
x
1

x 0
2

"

.

As x approaches 0, the numerator is always positive and the denominator

approaches 0 and is always positive; hence, the function increases without

bound and /limlim x1
x 0

2 3=+
"

. The function has a vertical asymptote at x = 0

(see Figure 2-5).
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Figure 2-5 The graph of y = 1/x2.

Example 2-11: Evaluate .limlim x
x

2
3

x 2 -
+

"
-

As x approaches 2 from the left, the numerator approaches 5, and the
denominator approaches 0 through negative values; hence, the function
decreases without bound and ( )/()/( )limlim x x3 2

x 2

3+ - =-
"

-
. The function has

a vertical asymptote at x = 2.

Example 2-12: Evaluate limlim
x x
1 1

x 0
2 3-

"
+
d n.

Rewriting 1/x2 – 1/ x3 as an equivalent fractional expression (x – 1)/x3, the

numerator approaches –1, and the denominator approaches 0 through

positive values as x approaches 0 from the right; hence, the function

decreases without bound and / /limlim x x1 1
x 0

2 3 3- =-
"

` j . The function has a

vertical asymptote at x = 0. 

A word of caution: Do not evaluate the limits individually and subtract

because !3 are not real numbers. Using this example, 

( ) ( )limlim limlim limlim
x x x x
1 1 1 1

x x x0
2 2

0
2

0
3 3 3!- - = + - +

" " "
+ + +
d n

which is meaningless.

y

x

y= 1
x2
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Limits at Infinity
Limits at infinity are used to describe the behavior of functions as the inde-
pendent variable increases or decreases without bound. If a function
approaches a numerical value L in either of these situations, write

( ) ( )limlim limlimf x L f x Loror
x x

= =
" "3 3+ -

and f (x) is said to have a horizontal asymptote at y = L. A function may
have different horizontal asymptotes in each direction, have a horizontal
asymptote in one direction only, or have no horizontal asymptotes.

Evaluate 2-13: Evaluate limlim
x x

x
5 1

2 3
x

2

2

- -
+

" 3+
.

Factor the largest power of x in the numerator from each term and the
largest power of x in the denominator from each term.

You find that 

limlim limlim

limlim

limlim

x x
x

x x x

x
x

x x

x

x x
x

5 1
2 3

1
5 1

2
3

1 5 1

2 3

1 0 0
2 0

5 1
2 3

2

x x

x

x

2

2

2
2

2

2

2

2

2

2

- -
+

=

- -

+

=
- -

+

= - -
+

- -
+

=

" "

"

"

3 3

3

3

+ +

+

+

d

d

n

n

The function has a horizontal asymptote at y = 2.

Example 2-14: Evaluate limlim
x x x

x
5 3 2

2
x

4 3

3

- +

-
" 3+

.

Factor x3 from each term in the numerator and x4 from each term in the
denominator, which yields 
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limlim limlim

limlim

x x x
x

x x x

x
x

x
x x

x

5 3 2
2

5
3 2

1
2

1

5 3 2

1 2

0
5 0 0

1 0

0

x x

x

4 3

3

4

3

3
3

3

3

- +

-
=

- +

-

=
- +

-

=
- +

-

=

" "

"

3 3

3

- -

-

J

L

K
K
KK

d

d

c

^ c

^

N

P

O
O
OO

n

n

m

h m

h

The function has a horizontal asymptote at y = 0.

Example 2-15: Evaluate limlim x
x

2
9

x

2

+" 3+
.

Factor x2 from each term in the numerator and x from each term in the
denominator, which yields 

( )

( )

( )

limlim limlim

limlim

limlim

limlim

limlim

x
x

x x

x

x
x

x

x

x
x

2
9

1
2

9

1 2
9

1 0
9

9

2
9

x x

x

x

x

x

2 2

2

3

+ =
+

=
+

= +

=

+ =+

" "

"

"

"

"

3 3

3

3

3

3

+ +

+

+

+

+

J

L

K
KK

c

N

P

O
OO

m

; ;

; 6

E E

E @

Because this limit does not approach a real number value, the function has
no horizontal asymptote as x increases without bound.

Example 2-16: Evaluate limlim x x x3
x

3 2
- -

" 3-
` j.

Factor x3 from each term of the expression, which yields 
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( ) ( )

( )

( ) [ ]

( ) [ ]

( )

limlim limlim

limlim limlim

limlim

limlim

limlim

x x x x x x

x x x

x

x

x x x

3 1
1 3

1
1 3

1 0 0

1

3

x x

x x

x

x

x

3 2 3
2

3
2

3

3

3 2

$

$

$

3

- - = - -

= - -

= - -

=

- - =-

" "

" "

"

"

"

3 3

3 3

3

3

3

- -

- -

-

-

-

d

d

n

n

; E

As in the previous example, this function has no horizontal asymptote as
x decreases without bound.

Limits Involving Trigonometric Functions
The trigonometric functions sine and cosine have four important limit
properties: 

sinsin sinsin

coscos coscos

sinsin

coscos

limlim

limlim

limlim

limlim

x c

x c

x
x

x
x

1

1
0

x c

x c

x

x

0

0

=

=

=

-
=

"

"

"

"

You can use these properties to evaluate many limit problems involving
the six basic trigonometric functions.

Example 2-17: Evaluate 
sinsin

coscos
limlim x

x
3x 0 -"

.

Substituting 0 for x, you find that cos x approaches 1 and sin x – 3
approaches –3; hence, 

sinsin
coscos

limlim x
x

3 3
1

x 0 -
=-

"

Example 2-18: Evaluate cotcotlimlim x
x 0" +

.

Because cot x = cos x/sin x, you find / .coscos sinsinlimlim x x
x 0" +

The numerator

approaches 1 and the denominator approaches 0 through positive values

because we are approaching 0 in the first quadrant; hence, the function
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increases without bound and cotcotlimlim x
x 0

3=+
"

+
, and the function has a ver-

tical asymptote at x = 0.

Example 2-19: Evaluate sinsin
limlim x

x4
x 0"

.

Multiplying the numerator and the denominator by 4 produces 

sinsin sinsin

sinsin

sinsin

limlim limlim

limlim limlim

limlim

x
x

x
x

x
x

x
x

4
4

4 4

4
4

4

4 1

4
4

x x

x x

x

0 0

0 0

0

$

$

=

=

=

=

" "

" "

"

c m

Example 2-20: Evaluate secsec
limlim x

x 1
x 0

-
"

.

Because sec x = 1/cos x, you find that 

secsec coscos

coscos
coscos

coscos
coscos

coscos
coscos

secsec

limlim limlim

limlim

limlim

limlim limlim

limlim

x
x

x
x

x x
x

x x
x

x x
x

x
x

1
1 1

1

1 1

1 1

1 0

1
0

x x

x

x

x x

x

0 0

0

0

0 0

0

$

$

$

-
=

-

=
-

=
-

=
-

=

-
=

" "

"

"

" "

"

c cm m

; ;E E

Continuity
A function f (x) is said to be continuous at a point (c,f (c)) if each of the
following conditions is satisfied:

(1) f (c) exists (c is in the domain of f ),

(2) ( )limlim f x
x c"

exists, and

(3) ( ) ( )limlim f x f c
x c

=
"

.

Geometrically, this means that there is no gap, split, or missing point for

f (x) at c and that a pencil could be moved along the graph of f (x) through

(c,f (c)) without lifting it off the graph. A function is said to be continuous
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at (c,f (c)) from the right if ( ) ( )limlim f x f c
x c

=
"

+
and continuous at (c,f (c))

from the left if ( ) ( )limlim f x f c
x c

=
"

-
. Many of our familiar functions such as 

linear, quadratic and other polynomial functions, rational functions, and

the trigonometric functions are continuous at each point in their domain.

A special function that is often used to illustrate one-sided limits is the
greatest integer function. The greatest integer function, [x] , is defined to be
the largest integer less than or equal to x (see Figure 2-6).

Some values of [x] for specific x values are 

.

.

2 2

5 8 5

3 3
1

4

4646 0

=

=

- =-

=

6

6

;

6

@

@

E

@

Figure 2-6 The graph of the greatest integer function y = [x].

The greatest integer function is continuous at any integer n from the right
only because 

( )

( )

( )

limlim

limlim

f n n n

f x n

f x n

andand

butbut 1

x n

x n

= =

=

= -

"

"

+

-

6 @

hence, ( ) ( ) ( )limlim f x f n f xandand
x n

!
"

-
is not continuous at n from the left. Note

that the greatest integer function is continuous from the right and from

the left at any noninteger value of x.

y

x

2

−2

−2 2

y=[x]

−4 4
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Example 2-21: Discuss the continuity of ( )f x x xatat2 3 4= + =- .

When the definition of continuity is applied to f (x) at x = –4, you find
that 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

limlim limlim

limlim

f

f x x

f x f

1 4 5

2 2 3 5

3 4

x x

x

4 4

4

- =-

= + =-

= -

" "

"

- -

-

hence, f is continous at x = –4.

Example 2-22: Discuss the continuity of ( )f x x
x

2
4

2

= -
- at x=2.

When the definition of continuity is applied to f (x) at x = 2, you find that
f (2) does not exist; hence, f is not continuous (discontinuous) at x = 2.

Example 2-23: Discuss the continuity of ( )
,

,f x x
x x

x
2
4

2

4 2

2

!
= -

-

=
*

When the definition of continuity is applied to f (x) at x = 2, you find that 

( ) ( )f1 2 4=

( ) ( )

( )()( )

( )

( )

( ) ( ) ( )

limlim limlim

limlim

limlim

limlim

limlim

f x x
x

x
x x

x

f x

f x f

2 2
4

2
2 2

2

4

3 2

x x

x

x

x

x

2 2

2

2

2

2

2

= -
-

= -
- +

= +

=

=

" "

"

"

"

"

hence, f is continous at x = 2.

Example 2-24: Discuss the continuity of ( )f x x= at x = 0.

When the definition of continuity is applied to f (x) at x = 0, you find that 

( ) ( )

( ) ( ) ,

( ) ( ) ( )

limlim limlim limlim

limlim

limlim

f

f x x x

x

f x f

DNEDNEbecausebecause

butbut DNEDNE

1 0 0

2 0

3 0

x x x

x

x

0 0 0

0

0

=

= =

=

" " "

"

"

+

-

+

hence, f is continuous at x = 0 from the right only.
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Example 2-25: Discuss the continuity of ( )
, <

,
f x

x x

x x

5 2 3

2 3
2 $

=
- -

+ -
* at x = –3.

When the definition of continuity is applied to f (x) at x = –3, you find
that 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,

limlim limlim

limlim limlim

limlim limlim limlim

limlim

f
f x x

f x x

f x f x f x

f x f

hencehence becausebecause

1 3 3 2 1111

2 5 2 1111

2 1111

1111

3 3

x x

x x

x x x

x

2

3 3

3 3

2

3 3 3

3

- = - + =

= - =

= + =

= =

= -

" "

" "

" " "

"

- -

- -

- -

-

- -

+ +

- +

hence, f is continuous at x = –3.

Many theorems in calculus require that functions be continuous on inter-
vals of real numbers. A function f (x) is said to be continuous on an open
interval (a,b) if f is continuous at each point c ∈ (a,b). A function f (x) is
said to be continuous on a closed interval [a,b] if f is continuous at each
point c ∈ (a,b) and if f is continuous at a from the right and continuous
at b from the left.

Example 2-26:

(a) f (x) = 2x + 3 is continuous on (–∞,+∞) because f is continuous
at every point c ∈ (–∞,+∞).

(b) f (x) = (x – 3)/(x + 4) is continuous on (–∞,–4) and (–4,+∞)
because f is continuous at every point c ∈ (–∞,–4) and c ∈
(–4,+∞)

(c) f (x) = (x – 3)/(x + 4) is not continuous on (–∞,–4] or [–4,+∞)
because f is not continuous on –4 from the left or from the right.

(d) ( )f x x= is continuous on [0, +∞) because f is continuous at
every point c ∈ (0,+∞) and is continuous at 0 from the right.

(e) f (x) = cos x is continuous on (–∞,+∞) because f is continuous at
every point c ∈ (–∞,+∞).

(f ) f (x) = tan x is continuous on (0,π/2) because f is continuous at
every point c ∈ (0,π/2).

(g) f (x) = tan x is not continuous on [0,π/2] because f is not con-
tinuous at π/2 from the left.
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(h) f (x) = tan x is continuous on [0,π/2) because f is continuous at
every point c ∈ (0,π/2) and is continuous at 0 from the right.

(i) f (x) = 2x/(x2 + 5) is continuous on (–∞,+∞) because f is contin-
uous at every point c ∈ (–∞,+∞).

(j ) ( ) /(/( )f x x x2 2= - - is continuous on (–∞,2) and (2,+∞)
because f is continuous at every point c ∈ (–∞,2) and c ∈ (2,+∞).

(k) ( ) /(/( )f x x x2 2= - - is not continuous on (–∞,2] or [2,+∞)
because f is not continuous at 2 from the left or from the right.

Chapter  Checkout

Q&A
1. Evaluate the following

(a) limlim x
x

3

9

x 3

2

-

-

"
+

(b) limlim x
x

3

9

x 3

2

-

-

"
-

(c) limlim x
x

3

9

x 3

2

-

-

"

2. Evaluate limlim
x
x

4
2

x 2
2
-
+

"
+

3. Evaluate limlim
x

x
1x

3

2

-" 3+

4. Evaluate sinsin
limlim x

x
3

5
x 0"

5. Discuss the continuity of the function 

,

,f x x
x x

2
2
1 1

2

= +
- =-

x 1=-

Y^ h * at x = –1.

Answers: 1. (a) 6 (b) –6 (c) DNE  2. + ∞ 3. 0  4. 5/3  5. f is not 
continuous at x = –1.
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Chapter 3

THE DERIVATIVE

Chapter  Check-In

❑ Understanding derivatives

❑ Computing basic derivatives

❑ Finding derivatives of more complicated functions

One of the most important applications of limits is the concept of the
derivative of a function. In calculus, the derivative of a function is used

in a wide variety of problems, and understanding it is essential to apply-
ing it to such problems.

Definition
The derivative of a function y = f (x) at a point (x,f (x)) is defined as

( ) ( )
limlim x

f x x f x
∆
∆

x 0

+ -

"D

if this limit exists. The derivative is denoted by f '(x), read “f prime of x” 
or “f prime at x,” and f is said to be differentiable at x if this limit exists
(see Figure 3-1).

Figure 3-1 The derivative of a function as the limit of rise over run.

y

x

f(x + ∆x)

(x, f(x))

(x + ∆x, f(x + ∆x)) 

f(x + ∆x) − f(x)

x + ∆x

∆x

x

y= f(x)

f(x)



If a function is differentiable at x, then it must be continuous at x, but the
converse is not necessarily true. That is, a function may be continuous at
a point, but the derivative at that point may not exist. As an example, the
function f (x) = x1/3 is continuous over its entire domain or real numbers,
but its derivative does not exist at x = 0.

Another example is the function ( )f x x 2= + , which is also continuous
over its entire domain of real numbers but is not differentiable at x = –2. 

The relationship between continuity and differentiability can be summa-
rized as follows: Differentiability implies continuity, but continuity does
not imply differentiability.

Example 3-1: Find the derivative of f (x) = x2 – 5 at the point (2,–1).

2 2 4$= =

( )x x x∆2 2= + =

( ) ( ) ( )

( )

( ) ( )

limlim

x
f x x f x

x
x x x

x
x x x x x

x
x x x

x
x x x

x
f x x f x

x x

f x

f

∆
∆

∆
∆

∆
∆ ∆

∆
∆ ∆

∆
∆ ∆

∆
∆

∆

5 5

2 5 5

2

2

2

2

x∆

2 2

2 2 2

2

0

+ -
=

+ - - +

=
+ + - - +

=
+

=
+

+ -
= +

"

l

l

^

^

h

h

hence, the derivative of f (x) = x2 – 5 at the point (2,–1) is 4.

One interpretation of the derivative of a function at a point is the slope
of the tangent line at this point. The derivative may be thought of as the
limit of the slopes of the secant lines passing through a fixed point on a
curve and other points on the curve that get closer and closer to the fixed
point. If this limit exists, it is defined to be the slope of the tangent line at
the fixed point, (x,f (x)) on the graph of y = f (x).

Another interpretation of the derivative is the instantaneous velocity of
a function representing the position of a particle along a line at time t,
where y = s(t). The derivative may be thought of as a limit of the average
velocities between a fixed time and other times that get closer and closer
to the fixed time. If this limit exists, it is defined to be the instantaneous
velocity at time t for the function, y = s(t).
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A third interpretation of the derivative is the instantaneous rate of change
of a function at a point. The derivative may be thought of as the limit of
the average rates of change between a fixed point and other points on the
curve that get closer and closer to the fixed point. If this limit exists, it is
defined to be the instantaneous rate of change at the fixed point (x,f (x))
on the graph of y = f (x).

Example 3-2: Find the instantaneous velocity of ( )s t t 2
1

= + at the time 
t = 3.

( ) ( )

( )()( )
( )()( )

( )()( )
( ) ( )

( )()( )

( ) ( )
( )()( )

( )()( )

( )

( )
( )

limlim

t
s t t s t

t
t t t

t
t t t

t t t
t t t

t t t t
t t t

t t t t
t

t
s t t s t

t t t

s t t t t

t

s

∆
∆

∆
∆

∆
∆

∆
∆

∆ ∆
∆

∆ ∆
∆

∆
∆

∆

∆

2
1

2
1

2
1

2
1

2 2
2 2

2 2
2 2

2 2

2 2
1

2 2
1

2
1

3
3 2

1
5

1
2525

1

t∆ 0

2

2 2

$

+ -
= + +

- +

= + +
- +

+ + +
+ + +

=
+ + +

+ - + +

=
+ + +

-

+ -
=

+ + +
-

=
+ + +

-

=
+
-

=
+
-

=
-

=
-

"

l

l

^ h

hence, the instantaneous velocity of s(t) = 1/(t + 2) at time t = 3 is –1/25.
The negative velocity indicates that the particle is moving in the negative
direction.

A number of different notations are used to represent the derivative of a
function y = f (x) with f '(x) being most common. Some others are y', dy/dx,
df/dx, df (x)/dx, Dxf, and Dxf (x), and you should be able to use any of these
in selected problems.
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Differentation Rules
Many differentiation rules can be proven using the limit definition of the
derivative and are also useful in finding the derivatives of applicable func-
tions. To eliminate the need of using the formal definition for every appli-
cation of the derivative, some of the more useful formulas are listed here.

(1) If f (x) = c, where c is a constant, the f '(x) = 0.

(2) If f (x) = c ⋅ g(x), then f '(x) = c ⋅ g'(x).

(3) Sum Rule: If f (x) = g(x) + h(x), then f '(x) = g'(x) + h'(x).

(4) Difference Rule: If f (x) = g(x) – h(x), then f '(x) = g'(x) – h'(x).

(5) Product Rule: If f (x) = g(x) ⋅ h(x), then
f '(x)=g'(x) ⋅ h(x)+h'(x) ⋅ g(x).

(6) Quotient Rule: If 

( )
( )

( )
( ) ,

( )
[ ( )])]

( ) ( ) ( ) ( )

f x h x
g x

h x

f x
h x

g x h x h x g x

andand thenthen0

2

$ $

!=

=
-

l
l l

(7) Power Rule: If ( ) , ( ) .f x x f x nxnxthenthen
n n 1

= =
-l

Example 3-3: Find ( ) ( ) .f x f x x xifif 6 5 9
3 2

= + +l

( )f x x x

x x

6 3 5 2 0

1818 1010

2 1

2

$ $= + +

= +

l

Example 3-4: ( )()( ).).y y x x xFindFind ifif 3 4 2 3 5
2

= + - +l

( )()( ) ( )()( )y x x x x

x x x x

x x

3 2 3 5 4 3 3 4

6 9 1515 1212 7 1212

1818 2 3

2

2 2

2

= - + + - +

= - + + + -

= - +

l
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Example 3-5: .dxdx
dydy

y x
x

FindFind ifif 2 3
3 5

= -
+

( )

( ) ( )

( )

( )

dxdx
dydy

x
x x

x
x x

x

2 3

3 2 3 2 3 5

2 3
6 9 6 1010

2 3
1919

2

2

2

=
-

- - +

=
-

- - -

=
-

-

Example 3-6: ( ) ( ) .f x f x x x
x

FindFind ifif
15

3= - +l

Because ( )f x x x x/5 1 2 3
= - +

-

( )f x x x x

x
x x

5 2
1

3

5
2

1 3

/4 1 2 4

4

4

= - -

= - -

- -l

Example 3-7: ( ) ( ) .f f x x xFindFind ifif3 8 3
2

= - +l

( )

( ) ( )()( )

f x x

f

2 8

3 2 3 8

2

= -

= -

=-

l

l

Example 3-8: ( , ).).,y x yIfIf findfind atat2
4

2 1= +
l

( )

( ) ( )

( )

( , ),),
( )

y
x

x

x

yAtAt

2

0 2 1 4

2
4

2 1
2 2

4

1616
4

4
1

2

2

2

=
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+ -

=
+
-

=
+
-

=
-

=-

l

l
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Example 3-9: Find the slope of the tangent line to the curve y = 12 – 3x2

at the point (–1,9).

Because the slope of the tangent line to a curve is the derivative, you find
that y' = –6x; hence, at (–1,9), y' = 6, and the tangent line has slope 6 at
the point (–1,9).

Trigonometric Function Differentiation
The six trigonometric functions also have differentiation formulas that can
be used in application problems of the derivative. The rules are summa-
rized as follows: 

( ) ( ) , ( ) .csccsc csccsc cotcotf x x f x x xIfIf thenthen6 = =-

( ) ( ) , ( ) .tantan secsecf x x f x xIfIf thenthen3 = =

( ) ( ) , ( ) .coscos sinsinf x x f x xIfIf thenthen2 = =-

( ) ( ) , ( ) .

( ) ( ) , ( ) .

( ) ( ) , ( ) .

sinsin coscos

cotcot csccsc

secsec secsec tantan

f x x f x x

f x x f x x

f x x f x x x

IfIf thenthen

IfIf thenthen

IfIf thenthen

1

4

5

2

2

= =

= =-

= =

l

l

l

l

l

l

Note that rules (3) to (6) can be proven using the quotient rule along with
the given function expressed in terms of the sine and cosine functions, as
illustrated in the following example.

Example 3-10: Use the definition of the tangent function and the quo-
tient rule to prove if f (x) = tan x, than f '(x) = sec2x.

( )

( )
( )

tantan

coscos
sinsin

coscos

coscos coscos sinsin sinsin

coscos
coscos sinsin

coscos

secsec

f x x

x
x

f x
x

x x x x

x
x x

x

x

1

2

2

2 2

2

2

$

=

=

=
- -

=
+

=

=

l
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Example 3-11: Find y' if y = x3 cot x.

( )cotcot csccsc

cotcot csccsc

y x x x x

x x x x

3

3

2 3 2

2 3 2

= + -

= -

l

Example 3-12: ( ) .sinsin coscosf f x x xFindFind ifif
4

5= +
rl c m

( ) coscos sinsin

coscos sinsin

f x x x

f

5

4
5

4 4

2
5 2

2
2

2
4 2

2 2

= -

= -

= -

=

=

r r r

l

l c m

Example 3-13: Find the slope of the tangent line to the curve y = sin x at
the point (π/2,1)

Because the slope of the tangent line to a curve is the derivative, you find
that y' = cos x; hence, at (π/2,1), y' = cos π/2 = 0, and the tangent line has
a slope 0 at the point (π/2,1). Note that the geometric interpretation of
this result is that the tangent line is horizontal at this point on the graph
of y = sin x.

Chain Rule
The chain rule provides us a technique for finding the derivative of com-
posite functions, with the number of functions that make up the compo-
sition determining how many differentiation steps are necessary. For
example, if a composite function f (x) is defined as 

( ) ( )()( ) [ ( )])]

( ) [ ( )])] ( )

f x g h x g h x

f x g h x h xthenthen

%

$

= =

=l l l

Note that because two functions, g and h, make up the composite func-
tion f, you have to consider the derivatives g' and h' in differentiating f (x).

If a composite function r(x) is defined as

( ) ( )()( ) { [ ( )]})]}

( ) { [ ( )]})]} [ ( )])] ( )

r x m n p x m n p x

r x m n p x n p x p xthenthen

% %

$ $

= =

=l l l l
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Here, three functions—m, n, and p—make up the composition function
r; hence, you have to consider the derivatives m', n', and p' in differenti-
ating r(x). A technique that is sometimes suggested for differentiating com-
posite functions is to work from the “outside to the inside” functions to
establish a sequence for each of the derivatives that must be taken.

Example 3-14: Find f '(x) if f (x) = (3x2 + 5x – 2)8.

( ) ( ) ( )

( )()( )

f x x x x

x x x

8 3 5 2 6 5

8 6 5 3 5 2

2 7

2 7

$= + - +

= + + -

l

Example 3-15: Find f '(x) if f (x) = tan (sec x).

( ) ( )

( )

secsec secsec secsec tantan

secsec tantan secsec secsec

f x x x x

x x x

2

2

$=

=

l

Example 3-16: ( ).).sinsindxdx
dydy

y xFindFind ifif 3 1
3

= -

( ) ( ) ( )

( ) ( )

sinsin coscos

coscos sinsin

dxdx
dydy

x x

x x

3 3 1 3 1 3

9 3 1 3 1

2

2

$ $= - -

= - -

Example 3-17: ( ) ( ) .f f x x xFindFind ifif2 5 3 1
2

= + -l

( ) ( )

( ) ( ) ( )

( )
( )

f x x x

f x x x x

x x
x

f

BecauseBecause 5 3 1

2
1

5 3 1 1010 3

2 5 3 1

1010 3

2
2 5 2 3 2 1

1010 2 3

2 2525

2323

1010
2323

/

/

2 1 2

2 1 2

2

2
$

$

= + -

= + - +

=
+ -

+

=
+ -

+

=

=

-l

l

36 CliffsQuickReview Calculus



Example 3-18: Find the slope of the tangent line to a curve y = (x2 – 3)5

at the point (–1, –32).

Because the slope of the tangent line to a curve is the derivative, you find
that

( ) ( )

( )

( )[()[( ) ]

( )()( )

, ( , )

y x x

x x

yhencehence atat

5 3 2

1010 3

1010 1 1 3

1010 2

160160

1 3232

2 4

2 4

2 4

4

= -

= -

= - - -

= - -

=-

- -

l

l

which represents the slope of the tangent line at the point (–1,–32).

Implicit Differentiation
In mathematics, some equations in x and y do not explicitly define y as a
function x and cannot be easily manipulated to solve for y in terms of x,
even though such a function may exist. When this occurs, it is implied
that there exists a function y = f (x) such that the given equation is satis-
fied. The technique of implicit differentiation allows you to find the
derivative of y with respect to x without having to solve the given equation
for y. The chain rule must be used whenever the function y is being dif-
ferentiated because of our assumption that y may be expressed as a func-
tion of x.

Example 3-19: .y xyxy 1010- =dxdx
dydy

xFindFind ifif
2 3

Differentiating implicitly with respect to x, you find that 

( )

xyxy x y dxdx
dydy

y x dxdx
dydy

x y dxdx
dydy

x dxdx
dydy

y xyxy

x y x dxdx
dydy

y xyxy

dxdx
dydy

x y x
y xyxy

dxdx
dydy

x x y
xyxy y

oror

2 3 1 1 0

3 2

3 2

3

2

3

2

3 2 2

2 2 3

2 2 3

2 2

3

2 2

3

$ $ $ $+ - - =

- = -

- = -

=
-

-

=
-

-
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Example 3-20: Find y' if y = sin x + cos y.

Differentiating implicitly with respect to x, you find that 

( )

coscos sinsin

sinsin coscos

sinsin coscos

sinsin
coscos

y x y y

y y y x

y y x

y y
x

1

1

1

1

$ $

$ $

= -

+ =

+ =

=
+

l l

l l

l

l

Example 3-21: Find y' at (–1,1) if x2 + 3xy +y2 = –1.

Differentiating implicitly with respect to x, you find that 

( )

( ) ( )
( )()( ) ( )

( , ),),

x y x y y y

x y y y x y

y x y x y

y x y
x y

yAtAt thethe pointpoint

2 3 3 2 0

3 2 2 3

3 2 2 3

3 2
2 3

3 1 2 1
2 1 3 1

1
1

1

1 1

$ $

$ $

+ + + =

+ =- -

+ =- -

= +
- -

=
- +

- - -

= -
-

=

-

l l

l l

l

l

l

Example 3-22: Find the slope of the tangent line to the curve x2 + y2 = 25
at the point (3,–4).

Because the slope of the tangent line to a curve is the derivative, differen-
tiate implicitly with respect to x, which yields 

x y y

y y x

y y
x

y
x

2 2 0

2 2

2
2

$

$

+ =

=-

=
-

=
-

l

l

l

hence, at (3,–4), y' = –3/–4 = 3/4, and the tangent line has slope 3/4 at the
point (3,–4). 
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Higher Order Derivatives
Because the derivative of a function y = f (x) is itself a function y' = f '(x),
you can take the derivative of f '(x), which is generally referred to as the sec-
ond derivative of f(x) and written f"(x) or f 2(x). This differentiation process
can be continued to find the third, fourth, and successive derivatives of f (x),
which are called higher order derivatives of f (x). Because the “prime” nota-
tion for derivatives would eventually become somewhat messy, it is prefer-
able to use the numerical notation f (n)(x) = y(n) to denote the nth derivative
of f (x). Chapter 4 provides some applications of the second derivative in
curve sketching and in distance, velocity, and acceleration problems.

Example 3-23: Find the first, second, and third derivatives of 
f (x) = 5x4 – 3x3 + 7x2 – 9x + 2. 

( )

( ) ( )

( ) ( )

f x x x x

f x f x x x

f x f x x

2020 9 1414 9

6060 1818 1414

120120 1818

( )

( )

3 2

2 2

3

= - + -

= = - +

= = -

l

m

n

Example 3-24: Find the first, second, and third derivatives of y = sin2x.

( )

( )

sinsin coscos

coscos coscos sinsin sinsin

coscos sinsin

coscos sinsin sinsin coscos

sinsin coscos sinsin coscos

sinsin coscos

y x x

y x x x x

x x

y x x x x

x x x x

x x

2

2 2

2 2

2 2 2 2

4 4

8

2 2
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=

= + -

= -

= - -

=- -

=-

l

m

n

Example 3-25: ( ) ( ) .f f x xFindFind ifif4
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Differentiation of Inverse Trigonometric
Functions
Each of the six basic trigonometric functions have corresponding inverse
functions when appropriate restrictions are placed on the domain of the
original functions. All the inverse trigonometric functions have derivatives,
which are summarized as follows:
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Example 3-26: Find f '(x) if f (x) = cos-1(5x).
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Example 3-27: .arctanarctany y xFindFind ifif
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Differentiation of Exponential and
Logarithmic Functions
Exponential functions and their corresponding inverse functions, called
logarithmic functions, have the following differentiation formulas:
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Note that the exponential function f (x) = ex has the special property that
its derivative is the function itself, f '(x) = ex = f (x).

Example 3-28: ( ) ( ) .f x f x eFindFind ifif
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Example 3-29: .y yFindFind ifif 5
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Example 3-30: Find f '(x) if f (x) = 1n(sin x).
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Example 3-31: ( ).).loglogdxdx
dydy
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Chapter  Checkout

Q&A
1. Find f '(x) if f (x) = 5x3 – 7 + x2 sin x + ex/x.

2. Find dy/dx if y x x2 1
4

= - +

3. Find y' if y = ln(cos x) – e5 – x.

4. Find f "(1/2) if f (x) = arcsin x.

5. Find the slope of the tangent line to the curve x2 + xy + y2 = 4 at the
point (–2,2).

Answers: 1. 15x2 + 2x sin x + x2 cos x + (ex x – ex)/x2 2. dy/dx = (2x3 – 1)/

(x4 – 2x + 1)1/2 3. e5-x – tan x 4. 3
2 3 5. 1
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Chapter 4

APPLICATIONS OF THE
DERIVATIVE

Chapter  Check-In

❑ Using the derivative to understand the graph of a function

❑ Locating maximum and minimum values of a function

❑ Finding velocity and acceleration

❑ Relating rates of change

❑ Approximating quantities by using derivatives

The derivative of a function has many applications to problems in cal-
culus. It may be used in curve sketching; solving maximum and min-

imum problems; solving distance; velocity, and acceleration problems;
solving related rate problems; and approximating function values.

Tangent and Normal Lines
As previously noted, the derivative of a function at a point, is the slope of
the tangent line at this point. The normal line is defined as the line that
is perpendicular to the tangent line at the point of tangency. Because the
slopes of perpendicular lines (neither of which is vertical) are negative recip-
rocals of one another, the slope of the normal line to the graph of f (x) 
is –1/f '(x).



Example 4-1: Find the equation of the tangent line to the graph of
( )f x x 3

2
= + at the point (–1,2).
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At the point (–1,2), f '(–1) = –1/2 and the equation of the line is 

( )

( )

y y m x x

y x

y x

x y

2 2
1

1

2 4 1

2 3

1 1- = -

- =- +

- =- -

+ =

Example 4-2: Find the equation of the normal line to the graph of
( )f x x 3

2
= + at the point (–1, 2).

From Example 4-1, you find that f '(–1) = –1/2 and the slope of the nor-
mal line is –1/f'(–1) = 2; hence, the equation of the normal line at the point
(–1,2) is 
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( )

y y m x x

y x

y x

x y

2 2 1
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2 4

1 1- = -

- = +

- = +

- =-

Critical Points
Points on the graph of a function where the derivative is zero or the deriva-
tive does not exist are important to consider in many application prob-
lems of the derivative. The point (x, f (x)) is called a critical point of f (x)
if x is in the domain of the function and either f '(x) = 0 or f '(x) does not
exist. The geometric interpretation of what is taking place at a critical point
is that the tangent line is either horizontal, vertical, or does not exist at
that point on the curve.
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Example 4-3: Find all critical points of f (x) = x4 – 8x2.

Because f (x) is a polynomial function, its domain is all real numbers.
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hence, the critical points of f (x) are (–2,–16), (0,0), and (2,–16).

Example 4-4: Find all critical points of f (x) = sin x + cos x on [0,2π].

The domain of f (x) is restricted to the closed interval [0,2π].

( )

( )

,

coscos sinsin

coscos sinsin

coscos sinsin

sinsin coscos

sinsin coscos

f x x x

f x x x

x x

x

f

f

0 0

4 4
5

4 4 4 2
2

2
2

2

4
5

4
5

4
5

2
2

2
2

2

&

= -

= - =

=

=

= + = + =

= + =
-

+
-

=-

r r

r r r

r r r

l

l

c

c

m

m

hence, the critical points of ( ) ( / , ) ( / , ).).f x areare andand4 2 5 4 2-r r

Extreme Value Theorem
An important application of critical points is in determining possible max-
imum and minimum values of a function on certain intervals. The
Extreme Value Theorem guarantees both a maximum and minimum
value for a function under certain conditions. It states the following:

If a function f (x) is continuous on a closed interval [a,b], then f (x) has
both a maximum and minimum value on [a,b].
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The procedure for applying the Extreme Value Theorem is to first establish
that the function is continuous on the closed interval. The next step is to
determine all critical points in the given interval and evaluate the function
at these critical points and at the endpoints of the interval. The largest func-
tion value from the previous step is the maximum value, and the smallest
function value is the minimum value of the function on the given interval.

Example 4-5: Find the maximum and minimum values of 
f (x) = sin x + cos x on [0,2π]. 

The function is continuous on [0,2π], and from Example 4-4, the critcal

points are / , 24ra k and / ,5 4 2-ra k. The function values at the end

points of the interval are f (0)=1 and f (2π)=1; hence, the maximum func-

tion value of ( )f x isis 2 at x=π/4, and the minimum function value of

( )f x isis 2- at x = 5π/4.

Note that for this example the maximum and minimum both occur at
critical points of the function.

Example 4-6: Find the maximum and minimum values of 
f (x) = x4 – 3x3 – 1 on [–2,2].

The function is continuous on [–2,2], and its derivative is 
f '(x) = 4x3 – 9x2. 
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&= - =
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l

Because x = 9/4 is not in the interval [–2,2], the only critical point occurs
at x = 0 which is (0,–1). The function values at the endpoints of the inter-
val are f (2) = –9 and f (–2) = 39; hence, the maximum function value 39
at x = –2, and the minimum function value is –9 at x = 2. Note the impor-
tance of the closed interval in determining which values to consider for
critical points.

Mean Value Theorem
The Mean Value Theorem establishes a relationship between the slope of
a tangent line to a curve and the secant line through points on a curve at
the endpoints of an interval. The theorem is stated as follows.
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If a function f (x) is continuous on a closed interval [a,b] and differentiable
on an open interval (a,b), then at least one number c ∈ (a,b) exists such that 

( )
( ) ( )

f c b a
f b f a

=
-

-
l

Figure 4-1 The Mean Value Theorem.

Geometrically, this means that the slope of the tangent line will be equal
to the slope of the secant line through (a,f (a)) and (b,f (b)) for at least one
point on the curve between the two endpoints. Note that for the special
case where f (a) = f (b), the theorem guarantees at least one critical point,
where f '(c) = 0 on the open interval (a,b).

Example 4-7: Verify the conclusion of the Mean Value Theorem for 
f (x) = x2 – 3x – 2 on [–2,3].

The function is continuous on [–2,3] and differentiable on (–2,3). The
slope of the secant line through the endpoint values is
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The slope of the tangent line is 
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Because 1/2 ∈ [–2,3], the c value referred to in the conclusion of the Mean
Value Theorem is c = 1/2

y

x
a c b

(c,f(c))

(b,f(b))
y=f(x)

(a,f(a))
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Increasing/Decreasing Functions
The derivative of a function may be used to determine whether the func-
tion is increasing or decreasing on any intervals in its domain. If f '(x) > 0
at each point in an interval I, then the function is said to be increasing 
on I. If f '(x) < 0 at each point in an interval I, then the function is said to
be decreasing on I. Because the derivative is zero or does not exist only at
critical points of the function, it must be positive or negative at all other
points where the function exists.

In determining intervals where a function is increasing or decreasing, you
first find domain values where all critical points will occur; then, test all
intervals in the domain of the function to the left and to the right of these
values to determine if the derivative is positive or negative. If f '(x) > 0, then
f is increasing on the interval, and if f '(x) < 0, then f is decreasing on the
interval. This and other information may be used to show a reasonably
accurate sketch of the graph of the function.

Example 4-8: For f (x) = x4 – 8x2 determine all intervals where f is increas-
ing or decreasing.

As noted in Example 4-3, the domain of f (x) is all real numbers, and its
critical points occur at x = –2, 0, and 2. Testing all intervals to the left and
right of these values for f '(x) = 4x3 – 16x, you find that

( , )onon0 2 3+

( , )onon0 2 0-

( , )onon0 0 2

( , )onon0 23- -( )<)<

( )>)>

( )<)<

( )>)>

f x

f x

f x

f x

l

l

l

l

hence, f is increasing on (–2,0) and (2,+ ∞) and decreasing on (–∞,–2)
and (0,2).

Example 4-9: For f (x) = sin x + cos x on [0,2π], determine all intervals
where f is increasing or decreasing.

As noted in Example 4-4, the domain of f (x) is restricted to the closed
interval [0,2π], and its critical points occur at π/4 and 5π/4. Testing all
intervals to the left and right of these values for f '(x) = cos x – sin x, you
find that 
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hence, f is increasing on [0, π/4) and (5π/4,2π] and decreasing on
(π/4,5π/4).

First Derivative Test for Local Extrema
If the derivative of a function changes sign around a critical point, the func-
tion is said to have a local (relative) extremum at that point. If the deriva-
tive changes from positive (increasing function) to negative (decreasing
function), the function has a local (relative) maximum at the critical point.
If, however, the derivative changes from negative (decreasing function) to
positive (increasing function), the function has a local (relative) minimum
at the critical point. When this technique is used to determine local max-
imum or minimum function values, it is called the First Derivative Test
for Local Extrema. Note that there is no guarantee that the derivative will
change signs, and therefore, it is essential to test each interval around a
critical point.

Example 4-10: If f (x) = x4 – 8x2, determine all local extrema for the 
function.

As noted in Example 4-8, f (x) has critical points at x = –2, 0, 2. Because
f '(x) changes from negative to positive around –2 and 2, f has a local min-
imum at (–2,–16) and (2,–16). Also, f '(x) changes from positive to nega-
tive around 0, and hence, f has a local maximum at (0,0).

Example 4-11: If f (x) = sin x + cos x on [0,2π], determine all local extrema
for the function.

As noted in Example 4-9, f (x) has critical points at x = π/4 and 5π/4.
Because f '(x) changes from positive to negative around π/4, f has a local
maximum at ( / , )4 2r . Also f '(x) changes from negative to positive around
5π/4, and hence, f has a local minimum at ( / , )5 4 2-r .
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Second Derivative Test for Local Extrema
The second derivative may be used to determine local extrema of a func-
tion under certain conditions. If a function has a critical point for which
f '(x) = 0 and the second derivative is positive at this point, then f has a
local minimum here. If, however, the function has a critical point for which
f '(x) = 0 and the second derivative is negative at this point, then f has local
maximum here. This technique is called Second Derivative Test for Local
Extrema.

Three possible situations could occur that would rule out the use of the
Second Derivative Test for Local Extrema: 

( )x doesdoesnotnot existexist

( ) ( ) ( )

( ) ( )

( )( )

f x f x

f x f

f x

andand

andand
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1 0 0
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3

= =

=

l m

l m

l

Under any of these conditions, the First Derivative Test would have to be
used to determine any local extrema. Another drawback to the Second
Derivative Test is that for some functions, the second derivative is difficult
or tedious to find. As with the previous situations, revert back to the First
Derivative Test to determine any local extrema.

Example 4-12: Find any local extrema of f (x) = x4 – 8x2 using the Second
Derivative Test.

As noted in Example 4-3, f'(x) = 0 at x = –2, 0, and 2. Because f"(x) = 12x2

– 16, you find that f"(–2) = 32 > 0, and f has a local minimum at (–2,–16);
f"(0) = –16 < 0, and f has local maximum at (0,0); and f"(2) = 32 > 0, and f
has a local minimum (2,–16). These results agree with the local extrema deter-
mined in Example 4-10 using the First Derivative Test on f (x) = x4 – 8x2.

Example 4-13: Find any local extrema of f (x) = sin x + cos x on [0,2π]
using the Second Derivative Test.

As noted in Example 4–4, f '(x) = 0 at x = π/4 and 5π/4. Because f"(x) = 

– sin x – cos x, you find that f" (π/4) = 2- and f has a local maximum at

)( / , 24r . Also, f" (5π/4)= 2, and f has a local minimum at ( / , )5 4 2-r .

These results agree with the local extrema determined in Example 4-11

using the First Derivative Test on f (x) = – sin x – cos x on [0,2π].
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Concavity and Points of Inflection
The second derivative of a function may also be used to determine the gen-
eral shape of its graph on selected intervals. A function is said to be con-
cave upward on an interval if f"(x) > 0 at each point in the interval and
concave downward on an interval if f"(x) < 0 at each point in the inter-
val. If a function changes from concave upward to concave downward or
vice versa around a point, it is called a point of inflection of the function.

In determining intervals where a function is concave upward or concave
downward, you first find domain values where f"(x) = 0 or f"(x) does not
exist. Then test all intervals around these values in the second derivative
of the function. If f"(x) changes sign, then (x,f (x)) is a point of inflection
of the function. As with the First Derivative Test for Local Extrema, there
is no guarantee that the second derivative will change signs, and therefore,
it is essential to test each interval around the values for which f"(x) = 0 or
does not exist.

Geometrically, a function is concave upward on an interval if its graph
behaves like a portion of a parabola that opens upward. Likewise, a func-
tion that is concave downward on an interval looks like a portion of a
parabola that opens downward. If the graph of a function is linear on some
interval in its domain, its second derivative will be zero, and it is said to
have no concavity on that interval.

Example 4-14: Determine the concavity of f (x) = x3 – 6x2 – 12x + 2 and
identify any points of inflection of f (x).

Because f (x) is a polynomial function, its domain is all real numbers.
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Testing the intervals to the left and right of x = 2 for f"(x) = 6x – 12, you
find that 
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hence, f is concave downward on (– ∞,2) and concave upward on (2,+ ∞),
and function has a point of inflection at (2,–38)
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Example 4-15: Determine the concavity of f (x) = sin x + cos x on [0,2π]
and identify any points of inflection of f (x).

The domain of f (x) is restricted to the closed interval [0,2π].
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Testing all intervals to the left and right of these values for 
f"(x) = –sin x – cos x, you find that 
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hence, f is concave downward on [0,3π/4) and (7π/4,2π] and concave
upward on (3π/4,7π/4) and has points of inflection at (3π/4,0) and
(7π/4,0).

Maximum/Minimum Problems
Many application problems in calculus involve functions for which you
want to find maximum or minimum values. The restrictions stated or
implied for such functions will determine the domain from which you
must work. The function, together with its domain, will suggest which
technique is appropriate to use in determining a maximum or minimum
value—the Extreme Value Theorem, the First Derivative Test, or the
Second Derivative Test.

Example 4-16: A rectangular box with a square base and no top is to have
a volume of 108 cubic inches. Find the dimensions for the box that require
the least amount of material.

The function that is to be minimized is the surface area (S) while the vol-
ume (V ) remains fixed at 108 cubic inches (Figure 4-2). 
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Figure 4-2 The open-topped box for Example 4-16.

Letting x = length of the square base and h = height of the box, you find
that
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with the domain of f (x) = (0,+∞) because x represents a length. 
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hence, a critical point occurs when x = 6. Using the Second Derivative
Test: 

( )

( ) >

f x
x

f

2
864864

6 6 0

3= +

=

m

m

and f has a local minimum at x = 6; hence, the dimensions of the box that
require the least amount of material are a length and width of 6 inches and
a height of 3 inches.

h x

x
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Example 4-17: A right circular cylinder is inscribed in a right circular cone
so that the center lines of the cylinder and the cone coincide. The cone
has 8 cm and radius 6 cm. Find the maximum volume possible for the
inscribed cylinder.

The function that is to be maximized is the volume (V ) of a cylinder
inscribed in a cone with height 8 cm and radius 6 cm (Figure 4-3).

Letting r = radius of the cylinder and h = height of the cylinder and apply-
ing similar triangles, you find that 

h r

h r

h r

8 6
6

6 4848 8

8 3
4

=
-

= -

= -

Figure 4-3 A cross section of the cone and cylinder for Example 4-17.

Because V = πr2h and h = 8 – (4/3)r, you find that 

( ) ( )

( )

V f r r r

f r r r

8 3
4

8 3
4

2

2 3

= = -

= -

r

r r

with the domain of f (r) = [0,6] because r represents the radius of the cylin-
der, which cannot be greater that the radius of the cone.

( )

( )

( )

,

f r r r

f r r r
r r

r

1616 4

0 1616 4 0

4 4 0

0 4

2

2
&

= -

= - =

- =

=

r r

r r

r

l

l

r

h

6-r

8cm8cm

8cm6cm
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Because f (r) is continuous on [0,6], use the Extreme Value Theorem and
evaluate the function at its critical points and its endpoints; hence, 

( )

( )

( )

f

f

f

0 0

4 3
128128

6 0

=

=

=

r

hence, the maximum volume is 128π/3 cm3, which will occur when the
radius of the cylinder is 4 cm and its height is 8/3 cm.

Distance, Velocity, and Acceleration
As previously mentioned, the derivative of a function representing the posi-
tion of a particle along a line at time t is the instantaneous velocity at that
time. The derivative of the velocity, which is the second derivative of the
position function, represents the instantaneous acceleration of the particle
at time t.

If y = s(t) represents the position function, then v = s'(t) represents the
instantaneous velocity, and a = v'(t) = s"(t) represents the instantaneous
acceleration of the particle at time t.

A positive velocity indicates that the position is increasing as time increases,
while a negative velocity indicates that the position is decreasing with
respect to time. If the distance remains constant, then the velocity will be
zero on such an interval of time. Likewise, a positive acceleration implies
that the velocity is increasing with respect to time, and a negative acceler-
ation implies that the velocity is decreasing with respect to time. If the
velocity remains constant on an interval of time, then the acceleration will
be zero on the interval. 

Example 4-18: The position of a particle on a line is given by 
s(t) = t3 – 3t2 – 6t + 5, where t is measured in seconds and s is measured in
feet. Find

(a) The velocity of the particle at the end of 2 seconds.

(b) The acceleration of the particle at the end of 2 seconds.

Part (a): The velocity of the particle is 
( )

( ) ( ) ( )

( ) /

secsec

secsec

v s t t t

s

s

AtAt ondsonds

ftft

t

3 6 6

2 3 2 6 2 6

2 6

2

2

2

= = - -

= = - -

=-

l

l

l
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Part (b): The acceleration of the particle is 

( ) ( )

( ) ( ) ( )

( ) ( ) /

secsec

secsec

a v t s t t

t v s

v s

AtAt ondsonds

ftft

6 6

2 2 2 6 2 6

2 2 6
2

= = = -

= = = -

= =

l m

l m

l m

Example 4-19: The formula s(t) = –4.9t2 + 49t + 15 gives the height in
meters of an object after it is thrown vertically upward from a point 15
meters above the ground at a velocity of 49 m/sec. How high above the
ground will the object reach?

The velocity of the object will be zero at its highest point above the ground.
That is, v = s'(t) = 0, where 

( ) .

( ) .

.

secsec

v s t t

s t t

t

t ondsonds

9 8 4949

0 9 8 4949 0

9 8 4949

5

&

= =- +

= - + =

- =-

=

l

l

The height above the ground at 5 seconds is

( ) . ( ) ( )

( ) .

s
s metersmeters

5 4 9 5 4949 5 1515

5 137137 5

2
=- + +

=

hence, the object will reach its highest point at 137.5 m above the ground.

Related Rates of Change
Some problems in calculus require finding the rate of change or two or
more variables that are related to a common variable, namely time. To solve
these types of problems, the appropriate rate of change is determined by
implicit differentiation with respect to time. Note that a given rate of
change is positive if the dependent variable increases with respect to time
and negative if the dependent variable decreases with respect to time. The
sign of the rate of change of the solution variable with respect to time will
also indicate whether the variable is increasing or decreasing with respect
to time.

Example 4-20: Air is being pumped into a spherical balloon such that its
radius increases at a rate of .75 in/min. Find the rate of change of its vol-
ume when the radius is 5 inches.
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The volume (V ) of a sphere with radius r is 

V r3
4 3

= r

Differentiating with respect to t, you find that 

dtdt
dVdV r dtdt

drdr

dtdt
dVdV r dtdt

drdr
3
4

3

4

2

2

$ $

$

=

=

r

r

The rate of change of the radius dr/dt = .75 in/min because the radius is
increasing with respect to time.

At r = 5 inches, you find that 

( ) (.(. )/

/

minmin

minmin

dtdt
dVdV

dtdt
dVdV

inchesinches inin

cucu inin

4 5 7575

7575

2
$=

=

r

r

hence, the volume is increasing at a rate of 75π cu in/min when the radius
has a length of 5 inches.

Example 4-21: A car is traveling north toward an intersection at a rate of
60 mph while a truck is traveling east away from the intersection at a rate
of 50 mph. Find the rate of change of the distance between the car and
truck when the car is 3 miles south of the intersection and the truck is 4
miles east of the intersection.

Let x = distance traveled by the truck

y = distance traveled by the car

z = distance between the car and truck

The distances are related by the Pythagorean Theorem: x2 + y2 = z2

(Figure 4-4).
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Figure 4-4 A diagram of the situation for Example 4-21.

The rate of change of the truck is dx/dt = 50 mph because it is traveling
away from the intersection, while the rate of change of the car is dy/dt =
–60 mph because it is traveling toward the intersection. Differentiating
with respect to time, you find that 

( )()( ) ( )()( ) ( )

( )

x dtdt
dydy

y dtdt
dydy

z dtdt
dzdz

x dtdt
dxdx y dtdt

dydy
z dtdt

dzdz

dtdt
dzdz

dtdt
dzdz

dtdt
dzdz

mimi mphmph mimi mphmph mimi

mimi phph mimi

mphmph

2 2 2

4 5050 3 6060 5

2020 5

4

2

+ =

+ =

+ - =

=

=

hence, the distance between the car and the truck is increasing at a rate of
4 mph at the time in question.

Differentials
The derivative of a function can often be used to approximate certain func-
tion values with a surprising degree of accuracy. To do this, the concept of
the differential of the independent variable and the dependent variable
must be introduced.

The definition of the derivative of a function y = f (x) as you recall is 

( )
( ) ( )

limlimf x x
f x x f x

∆
∆

x∆ 0
=

+ -

"

l

y

x

z
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which represents the slope of the tangent line to the curve at some point
(x,f (x)). If ∆x is very small (∆x ≠ 0), then the slope of the tangent is approx-
imately the same as the slope of the secant line through (x,f (x)). That is,

( ) ( ) ( ) /

( ) ( ) ( )

f x f x x f x x

f x x f x x f xoror equivalentlyequivalently

∆ ∆

∆ ∆$

.

.

+ -

+ -

l

l

8 B

The differential of the independent variable x is written dx and is the same
as the change in x, ∆x. That is, 

,

( ) ( ) ( ),

dxdx x x

f x dxdx f x x f xhencehence

∆ ∆

∆

0

$

!

.

=

+ -l

The differential of the dependent variable y, written dy, is defined to be 

( ) ( ) ( )

( ) ( )

( )

dydy f x dxdx f x x f x

y f x x f x

dydy f x dxdx y

BecauseBecause

youyou findfindthatthat

∆
∆ ∆

∆

$ .

.

= + -

= + -

=

l

l

The conclusion to be drawn from the preceding discussion is that the dif-
ferential of y(dy) is approximately equal to the exact change in y(∆y), pro-
vided that the change in x (∆x = dx) is relatively small. The smaller the
change in x, the closer dy will be to ∆y, enabling you to approximate func-
tion values close to f (x) (Figure 4-5).

Figure 4-5 Approximating a function with differentials.

y

x

(x, f(x))

(x + ∆x, f(x + ∆x)) 

x + ∆x

∆x = dx

∆y
dy

x

y= f(x)
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Example 4-22: Find dy for y = x3 + 5x – 1.

( )

( )

( )

( )

y f x x x

f x x

dydy f x dxdx

dydy x dxdx

BecauseBecause 5 1

3 5

3 5

3

2

2

$

$

= = + -

= +

=

= +

l

l

Example 4-23: Use differentials to approximate the change in the area of
a square if the length of its side increases from 6 cm to 6.23 cm.

Let x = length of the side of the square. The area may be expressed as a
function of x, where y = f (x) = x2. The differential dy is 

( )dydy f x dxdx

dydy x dxdx2

$

$

=

=

l

Because x is increasing from 6 to 6.23, you find that ∆x = dx = .23 cm;
hence, 

( )(.)(. )

.

dydy

dydy

cmcm cmcm

cmcm

2 6 2323

2 7676
2

=

=

The area of the square will increase by approximately 2.76 cm2 as its side
length increases from 6 to 6.23. Note that the exact increase in area (∆y)
is 2.8129 cm2.

Example 4-24: Use differentials to approximate the value of .2626 55553 to the
nearest thousandth.

Because the function you are applying is ( )f x x3= , choose a convenient
value of x that is a perfect cube and is relatively close to 26.55, namely 
x = 27. The differential dy is 

( )dydy f x dxdx

dydy x dxdx

dydy
x

dxdx

3
1

3
1

/

/

2 3

2 3

=

=

=

-

l

Because x is decreasing from 27 to 26.55, you find that ∆x = dx = –.45;
hence,
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( )
( . )dydy

dydy

3 2727
1

4545

2727
1

100100
4545

6060
1

/2 3 $

$

= -

= -

=-

which implies that .2626 55553 will be approximately 1/60 less that 2727 33 = ;
hence, 

.

.

.

. . toto thethe nearestnearest thousandththousandth

2626 5555 3
6060
1

3 01670167

2 98339833

2626 5555 2 983983

3

3

.

.

.

.

-

-

Note that the calculator value of .2626 55553 is 2.983239874, which rounds to
the same answer to the nearest thousandth!

Chapter  Checkout

Q&A
1. Find equations for the tangent and normal lines to y

x
x

1
2=
+

at the
point (2,2⁄5).

2. For the function y = x3 – 5x2 + 5 on [0,6], find

(a) The maximum and minimum values of the function.

(b) All intervals where the function is increasing or decreasing.

(c) The concavity and any inflection points of the function.

3. A right circular cylinder is to be made with a volume of 100π cubic
inches. Find the dimensions for the cylinder that require the least
amount of material.

4. The formula s(t) = –4.9t2 + 20t + 2 gives the height in meters of an
object after it is thrown vertically upward from a point 2 meters above
the ground at a velocity of 20 m/sec. How high above the ground
will the object reach?

5. Air is being pumped into a spherical balloon such that its volume
increases at a rate of 2 in3/sec. Find the rate of change of its radius
when the radius is 6 inches.
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Answers: 1. tangent line 3x + 25y = 16, normal line 25x – 3y = 244⁄5 2. (a)
maximum 41, minimum –365/27 (b) increasing on (10/3, 6], decreasing
on (0,10/3) (c) concave down on [0,5/3), concave up on (5/3, 6], inflec-
tion point at (5⁄3, -115⁄27)  3. r 50503= , h 2 50503:= 4. approximately 22.4 meters  
5. 1/(72π) in/sec
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Chapter 5

INTEGRATION

Chapter  Check-In

❑ Understanding and computing basic indefinite integrals

❑ Using more advanced techniques of integration

❑ Understanding and computing definite integrals

A long with differentiation, a second important operation of calculus is
antidifferentiation, or integration. These operation may be thought of

as inverse of one another, and the rules for finding derivatives discussed in
previous chapters will be useful in establishing corresponding rules for find-
ing antiderivatives. The relationship between antiderivatives and definite
integrals is discussed later in the chapter with the statement of the
Fundamental Theorem of Calculus.

Antiderivatives/Indefinite Integrals
A function F(x) is called an antiderivative of a function of f (x) if F'(x) =
f (x) for all x in the domain of f. Note that the function F is not unique
and that an infinite number of antiderivatives could exist for a given func-
tion. For example, F(x) = x3, G(x) = x3 + 5, and H(x) = x3–2 are all
antiderivatives of f (x) = 3x2 because F'(x) = G'(x) = H'(x) = f (x) for all x in
the domain of f. It is clear that these functions F, G, and H differ only by
some constant value and that the derivative of that constant value is always
zero. In other words, if F(x) and G(x) are antiderivatives of f (x) on some
interval, then F'(x)= G'(x) and F(x) = G(x) + C for some constant C in the
interval. Geometrically, this means that the graphs of F(x) and G(x) are
identical except for their vertical position.

The notation used to represent all antiderivatives of a function f (x) is the
indefinite integral symbol written (8), where f x dxdx F x C= +# ^ ^h h . The
function of f (x) is called the integrand, and C is reffered to as the constant
of integration. The expression F(x) + C is called the indefinite integral of



F with respect to the independent variable x. Using the previous example
of F(x) = x3 and f (x) = 3x2, you find that x dxdx x C3

2 3
= +# . 

The indefinite integral of a function is sometimes called the general
antiderivative  of the function as well.

Example 5-1: Find the indefinite integral of f (x) = cos x.

( ) ( ) ,

.

sinsin coscos

coscos sinsin

F x x F x x

x dxdx x C

BecauseBecause thethe derivativederivative ofof isis writewrite= =

= +#

l

Example 5-2: Find the general antiderivative of f (x) = –8.

( ) ( ) ,

.

F x x F x

dxdx x C

BecauseBecause thethe derivativederivative ofof isis writewrite8 8

8 8

=- =-

- =- +#

l

Integration Techniques
Many integration formulas can be derived directly from their corre-
sponding derivative formulas, while other integration problems require
more work. Some that require more work are substitution and change of
variables, integration by parts, trigonometric integrals, and trigonometric
substitutions.

Basic formulas
Most of the following basic formulas directly follow the differentiation
rules that were discussed in preceding chapters.

1. ( ) ( )kfkf x dxdx k f x dxdx= ##

2. ( ) ( ) ( ) ( )f x g x dxdx f x dxdx g x dxdx! !=# ##8 B

3. kdxkdx kxkx C= +#

4. ,x dxdx n
x C n1 1

n
n 1

!= + + -
+

#

5. sinsin coscosx dxdx x C=- +#

6. coscos sinsinx dxdx x C= +#

7. secsec tantanx dxdx x C2
= +#
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8. csccsc cotcotx dxdx x C2
=- +#

9. secsec tantan secsecx x dxdx x C= +#

10. csccsc cotcot csccscx x dxdx x C=- +#

11. e dxdx e Cx x
= +#

12. , > ,
lnln

a dxdx a
a C a a0 1

x
x

!= +#

13. lnlnx
dxdx x C= +#

14. tantan coscoslnlnx dxdx x C=- +#

15. cotcot sinsinlnlnx dxdx x C= +#

16. secsec secsec tantanlnlnx dxdx x x C= + +#

17. csccsc csccsc cotcotlnlnx dxdx x x C=- + +#

18. arcsinarcsin
a x

dxdx
a
x C

2 2
-

= +#

19. arctanarctan
a x

dxdx
a a

x C1
2 2
+

= +#

20. secsec
x x a

dxdx
a a

x Carcarc
1

2 2
-

= +#

Example 5-3: Evaluate x dxdx4# .

Using formula (4) from the preceding list, you find that x dxdx x C
5

4
5

= +# .

Example 5-4: Evaluate 
x

dxdx1# .

Because / x x1
/1 2

=
- , using formula (4) from the preceding list yields

x
dxdx x dxdx

x C

x C

1

2
1

2

/

/

/

1 2

1 2

1 2

=

= +

= +

-##
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Example 5-5: Evaluate ( )x x dxdx6 5 3
2
+ -#

Applying formulas (1), (2), (3), and (4), you find that

( )x x dxdx x x x C

x x x C

6 5 3 3
6

2
5

3

2 2
5

3

2
3 2

3 2

+ - = + - +

= + - +

#

Example 5-6: Evaluate x
dxdx

4+# .

Using formula (13), you find that lnlnx
dxdx x C

4
4

+
= + +# .

Example 5-7: Evaluate 
x

dxdx
2525

2
+

# .

Using formula (19) with a = 5, you find that

arctanarctan
x

dxdx x C
2525 5

1
52

+
= +#

Substitution and change of variables
One of the integration techniques that is useful in evaluating indefinite
integrals that do not seem to fit the basic formulas is substitution and
change of variables. This technique is often compared to the chain rule
for differentiation because they both apply to composite functions. In this
method, the inside function of the composition is usually replaced by a
single variable (often u). Note that the derivative or a constant multiple of
the derivative of the inside function must be a factor of the integrand.

The purpose in using the substitution technique is to rewrite the integra-
tion problem in terms of the new variable so that one or more of the basic
integration formulas can then be applied. Although this approach may
seem like more work initially, it will eventually make the indefinite inte-
gral much easier to evaluate. 

Note that for the final answer to make sense, it must be written in terms
of the original variable of integration.

Example 5-8: Evaluate ( )x x dxdx1
2 3 5

+# .

Because the inside function of the composition is x3 + 1, substitute with 

u x

dudu x dxdx

dudu x dxdx

1

3

3
1

3

2

2

= +

=

=
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hence, ( )

( )

x x dxdx u dudu

u C

u C

x C

1 3
1

3
1

6

1818
1

1818
1

1

2 3 5 5

6

6

3 6

$

+ =

= +

= +

= + +

# #

Example 5-9: Evaluate ( )sinsin x dxdx5# .

Because the inside function of the composition is 5x, substitute with 

hence, ( )

( )

sinsin sinsin

coscos

coscos

u x

dudu dxdx

dudu dxdx

x dxdx ududu

u C

x C

5

5

5
1

5
5
1

5
1

5
1

5

=

=

=

=

=- +

=- +

##

Example 5-10: Evaluate 
x

x dxdx
9

3
2

-
# .

Because the inside function of the composition is 9 – x2, substitute with 

hence,

u x
dudu x dxdx

dudu x dxdx

x
x dxdx

u
dudu

u dudu

u C

u C

x C

9

2

2
1

9

3
2
3 1

2
3

2
3

2
1

3

3 9

/

/

/

2

2

1 2

1 2

1 2

2

$

= -

=-

- =

-
=-

=-

=- +

=- +

=- - +

-

##

#
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Integration by parts
Another integration technique to consider in evaluating indefinite inte-
grals that do not fit the basic formulas is integration by parts. You may
consider this method when the integrand is a single transcendental func-
tion or a product of an algebraic function and a transcendental function.
The basic formula for integration by parts is

udvdv uvuv v dudu= - ##

where u and v are differential functions of the variable of integration. 

A general rule of thumb to follow is to first choose dv as the most com-
plicated part of the integrand that can be easily integrated to find v. The
u function will be the remaining part of the integrand that will be differ-
entiated to find du. The goal of this technique is to find an integral, 

v dudu# , which is easier to evaluate than the original integral.

Example 5-11: Evaluate secsecx x dxdx2# .

hence,

secsec

tantan

secsec tantan tantan

tantan coscos

tantan coscos

u x dvdv x dxdx
dudu dxdx v x

x x dxdx x x x dxdx

x x x C

x x x C

LetLet andand

n

n

1

1

2

2

= =

= =

= -

= - - +

= + +

##

` j

Example 5-12: Evaluate x x dxdxn1
4# .

hence,

lnln

lnln lnln

lnln

lnln

u x dvdv x dxdx

dudu x dxdx v x

x x dxdx x x x
x dxdx

x x x dxdx

x x x C

LetLet andand

1
5

5 5
1

5 5
1

5
1

2525
1

4

5

4
5 5

5
4

5 5

$

= =

= =

= -

= -

= - +

# #

#
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Example 5-13: Evaluate arctanarctanx dxdx# .

hence,

( )

arctanarctan

arctanarctan arctanarctan

arctanarctan lnln

u x dvdv dxdx

dudu
x

dxdx v x

x dxdx x x
x

x dxdx

x x C

LetLet andand

x

1
1

1

2
1

1

2

2

2

= =

=
+

=

= -
+

= - + +

##

Trigonometric integrals
Integrals involving powers of the trigonometric functions must often be
manipulated to get them into a form in which the basic integration for-
mulas can be applied. It is extremely important for you to be familiar with
the basic trigonometric identities that were reviewed in Chapter 1 because
you often used these to rewrite the integrand in a more workable form. As
in integration by parts, the goal is to find an integral that is easier to eval-
uate than the original integral.

Example 5-14: Evaluate coscos sinsinx dxdx3 4#

( )

( )

coscos sinsin coscos sinsin coscos

sinsin sinsin coscos

sinsin sinsin coscos

sinsin coscos sinsin coscos

sinsin sinsin

x dxdx x x x dxdx

x x x dxdx

x x x dxdx

x x dxdx x x dxdx

x x C

1

5
1

7
1

3 4 2 4

2 4

4 6

4 6

5 7

=

= -

= -

= -

= - +

##

#

#

##

Chapter 5: Integration 69



Example 5-15: Evaluate secsec x dxdx6#

( )

( )

( )

secsec secsec secsec

secsec secsec

tantan secsec

tantan tantan secsec

tantan secsec tantan secsec secsec

tantan tantan tantan

x dxdx x x dxdx

x x dxdx

x x dxdx

x x x dxdx

x x dxdx x x dxdx x dxdx

x x x C

1

2 1

2

5
1

3
2

6 4 2

2 2 2

2 2 2

4 2 2

4 2 2 2 2

5 3

=

=

= +

= + +

= + +

= + + +

##

#

#

#

###

Example 5-16: Evaluate sinsin x dxdx4# .

( )

( )

sinsin sinsin

coscos

coscos coscos

coscos
coscos

coscos
coscos

coscos coscos

sinsin sinsin

sinsin sinsin

x dxdx x dxdx

x dxdx

x x dxdx

x x dxdx

x x dxdx

x x dxdx

x x x C

x x x C

2
1 2

4
1

1 2 2 2

4
1

1 2 2 2
1 4

4
1

2
3

2 2 2
4

8
1

3 4 2 4

8
1

3 2 2
4
1

4

8
3

4
1

2 3232
1

4

4 2 2

2

2

=

=
-

= - +

= - +
+

= - +

= - +

= - + +

= - + +

##

#

#

#

#

#

c

c

c

^

c

m

m

m

h

m
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Trigonometric substitutions

If an integrand contains a radical expression of the form
, ,a x a x x aoror

2 2 2 2 2 2
- + - , a specific trigonometric substitution may

be helpful in evaluating the indefinite integral. Some general rules to fol-
low are

1. If the integrand contains a x2 2
-

let x = a sin θ
dx = a cos θd θ

and coscosa x a θ2 2
- =

2. If the integrand contains a x2 2
+

let x = a tan θ
dx = a sec2 θd θ

and secseca x a θ2 2
+ =

3. If the integrand contains x a2 2
-

let x = a sec θ
dx = a sec θ tanθd θ

and tantanx a a θ2 2
- =

Right triangles may be used in each of the three preceding cases to deter-
mine the expression for any of the six trigonometric functions that appear
in the evaluation of the indefinite integral.

Example 5-17: Evaluate 
x x

dxdx
4

2 2
-

# .

Because the radical has the form a x2 2
-

( )

sinsin sinsin

coscos

coscos

x a

dxdx d

x

letlet

andand FigureFigure

2

2

4 2 5 1
2

= =

=

- = -

i i

i i

i

Figure 5-1 Diagram for Example 5-17.

x
2

θ

4 − x2
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hence, 
( )()( )sinsin coscos

coscos

sinsin

csccsc

cotcot

x x
dxdx d

d

d

C

x
x

C

x
x

C

4 4 2
2

4
1

4
1

4
1

4
1 4

4
4

2 2 2

2

2

2

2

$

-
=

=

=

=- +

=-
-

+

=-
-

+

i i
i i

i
i

i i

i

##

#

#

Example 5-18: Evaluate  
x

dxdx
2525

2
+

# .

( )

tantan tantan

secsec

secsec

a x

x a

dxdx d

x

BecauseBecause thethe radicalradical hashas thethe formform

letlet

andand FigureFigure

5

5

2525 5 5 2

2 2

2

2

+

= =

=

+ = -

i i

i i

i

Figure 5-2 Diagram for Example 5-18.

hence,
secsec

secsec

secsec

secsec tantanlnln

lnln

x
dxdx d

d

C

x x C

2525 5
5

5
2525

5

2

2

2

+
=

=

= + +

=
+

+ +

i
i i

i i

i i

# #

#

x

5

θ

25 + x2
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Distance, Velocity, and Acceleration
The indefinite integral is commonly applied in problems involving dis-
tance, velocity, and acceleration, each of which is a function of time. In
the discussion of the applications of the derivative, note that the deriva-
tive of a distance function represents instantaneous velocity and that the
derivative of the velocity function represents instantaneous acceleration at
a particular time. In considering the relationship between the derivative
and the indefinite integral as inverse operations, note that the indefinite
integral of the acceleration function represents the velocity function and
that the indefinite integral of the velocity represents the distance function.

In case of a free-falling object, the acceleration due to gravity is –32 ft/sec2.
The significance of the negative is that the rate of change of the velocity
with respect to time (acceleration), is negative because the velocity is
decreasing as the time increases. Using the fact that the velocity is the indef-
inite integral of the acceleration, you find that

( ) ( )

( ) ( ) ( )

a t s t

v t s t s t dtdt

dtdt

t C

3232

3232

3232 1

= =-

= =

= -

=- +

#

#

m

l m

Now, at t = 0, the initial velocity (v0) is

( ) ( )()( )v v C

v C

0 3232 00 1

0 1

= = - +

=

hence, because the constant of integration for the velocity in this situation
is equal to the initial velocity, write v(t) = –32t + v0.

Because the distance is the indefinite integral of the velocity, you find that 

( ) ( )

( )

s t v t dtdt

t v dtdt

t v t C

t v t C

3232

3232 2

1616

0

2

0 2

2
0 2

$

=

= - +

=- + +

=- + +

#

#

Now, at t = 0, the initial distance (s0) is 

( ) ( ) ( )s s v C
s C

0 1616 0 00
2

0 2

0 2

= =- + +

=
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hence, because the constant of integration for the distance in this situa-
tion is equal to the initial distance, write s(t) = –16t2 + v0 (t) + s0.

Example 5-19: A ball is thrown downward from a height of 512 feet with
a velocity of 64 feet per second. How long will it take for the ball to reach
the ground?

From the given conditions, you find that

hence,

( )

( )

( )

/

/

secsec

secsec

a t
v

s

v t t

s t t t

ftft

ftft

ftft

3232

6464

512512

3232 6464

1616 6464 512512

0

0

2

2
=-

=-

=

=- -

=- - +

The distance is zero when the ball reaches the ground or 

( )

( )()( )

,

t t

t t
t t

t t

1616 6464 512512 0

1616 4 3232 0

1616 8 4 0

8 4

2

2

- - + =

- + - =

- + - =

=- =

hence, the ball will reach the ground 4 seconds after it is thrown.

Example 5-20: In the previous example, what will the velocity of the ball
be when it hits the ground?

Because v(t) = –32(t) – 64 and it takes 4 seconds for the ball to reach the
ground, you find that

( ) ( )

/ secsec

v

ftft

4 3232 4 6464

192192

=- -

=-

hence, the ball will hit the ground with a velocity of –192 ft/sec. The sig-
nificance of the negative velocity is that the rate of change of the distance
with respect to time (velocity) is negative because the distance is decreas-
ing as the time increases.

Example 5-21: A missile is accelerating at a rate of 4t m/sec2 from a posi-
tion at rest in a silo 35 m below ground level. How high above the ground
will it be after 6 seconds?

From the given conditions, you find that a(t) = 4t m/sec2, v0 = 0 m/sec
because it begins at rest, and s0 = –35 m because the missile is below ground
level; hence,
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and

( )

( )

v t t dtdt t

s t t dtdt t

4 2

2 3
2

3535

2

2 3

= =

= = -

#

#

After 6 seconds, you find that ( ) ( )s m m6 3
2

6 3535 109109
3

= - =

hence, the missile will be 109 m above the ground after 6 seconds.

Definite Integrals
The definite integral of a function is closely related to the antiderivative
and indefinite integral of a function. The primary difference is that the
indefinite integral, if it exists, is a real number value, while the latter two
represent an infinite number of functions that differ only by a constant.
The relationship between these concepts is will be discussed in the section
on the Fundamental Theorem of Calculus, and you will see that the def-
inite integral will have applications to many problems in calculus.

Definition of definite integrals
The development of the definition of the definite integral begins with a
function f (x), which is continuous on a closed interval [a,b]. The given
interval is partitioned into “n” subintervals that, although not necessary,
can be taken to be of equal lengths (∆x). An arbitrary domain value, xi, is
chosen in each subinterval, and its subsequent function value, f (xi), is deter-
mined. The product of each function value times the corresponding subin-
terval length is determined, and these “n” products are added to determine
their sum. This sum is referred to as a Riemann sum and may be positive,
negative, or zero, depending upon the behavior of the function on the
closed interval. For example, if f (x) > 0 on [a,b], then the Riemann sum
will be a positive real number. If f (x) < 0 on [a,b], then the Riemann sum
will be a negative real number. The Riemann sum of the function f (x) on
[a,b] is expressed as 

( ) ( ) ( ) ( )

( )

S f x x f x x f x x f x x

S f x xoror

∆ ∆ ∆ ∆

∆

n n

n i

i

n

1 2 3

1

$ $ $= + + + +

=
=

!

A Riemann sum may, therefore, be thought of as a “sum of n products.”

Example 5-22: Evaluate the Riemann sum for f (x) = x2 on [1,3] using the
four subintervals of equal length, where xi is the right endpoint in the ith
subinterval (see Figure 5-3).
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Because the subintervals are to be of equal lengths, you find that 

x n
b a∆

4
3 1

2
1

=
-

=
-

=

The Riemann sum for four subintervals is 

( )

( ) ( ) ( ) ( )

[ ( ) ( ) ( ) ( )])]

( ) ( )

S f x x

f x x f x x f x x f x x

f x f x f x f x x

f f f f

S

∆

∆ ∆ ∆ ∆
∆

2
3

2 2
5

3 2
1

4
9

4
4
2525

9 2
1

4
8686

2
1

4
4343

i

i

4

1

4

1 2 3 4

1 2 3 4

4

$

$

$

=

= + + +

= + + +

= + + +

= + + +

=

=

=

!

c cm m=

;

;

G

E

E

Figure 5-3 A Riemann sum with four subintervals.

y

x

y= x2

2

1 23/2
5/2 4

4

6

8

3
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If the number of subintervals is increased repeatedly, the effect would be
that the length of each subinterval would get smaller and smaller. This may
be restated as follows: If the number of subintervals increases without
bound (n → +∞), then the length of each subinterval approaches zero
(∆x →0). This limit of a Riemann sum, if it exists, is used to define the
definite integral of a function on [a,b]. If f (x) is defined on the closed inter-
val [a,b] then the definite integral of f (x) from a to b is defined as 

( )

( )

( )

limlim

limlim

limlim

f x dxdx S

f x x

f x x

n
n

a

b

n
i

i

n

x
i

i

n

1

0
1

=

=

=

D

D

"

"

"

3

3

+

+
=

=
D

#

!

!

if this limit exits.

The function f (x) is called the integrand, and the variable x is the variable
of integration. The numbers a and b are called the limits of integration
with a referred to as the lower limit of integration while b is referred to as
the upper limit of integration. 

Note that the symbol ∫, used with the indefinite integral, is the same sym-
bol used previously for the indefinite integral of a function. The reason for
this will be made more apparent in the following discussion of the
Fundamental Theorem of Calculus. Also, keep in mind that the definite
integral is a unique real number and does not represent an infinite num-
ber of functions that result from the indefinite integral of a function.

The question of the existence of the limit of a Riemann sum is important
to consider because it determines whether the definite integral exists for a
function on a closed interval. As with differentiation, a significant rela-
tionship exists between continuity and integration and is summarized as
follows: If a function f (x) is continuous on a closed interval [a,b], then the
definite integral of f (x) on [a,b] exists and f is said to be integrable on [a,b].
In other words, continuity guarantees that the definite integral exists, but
the converse is not necessarily true. 

Unfortunately, the fact that the definite integral of a function exists on a
closed interval does not imply that the value of the definite integral is easy
to find.
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Properties of definite integrals
Certain properties are useful in solving problems requiring the application
of the definite integral. Some of the more common properties are 

1. ( )f x dxdx 0
a

a

=#

2. ( ) ( )f x dxdx f x dxdx
a

b

b

a

=-# #

3. ( ),),c dxdx c b a cwherewhere isis a constantconstant
a

b

= -#

4. ( ) ( )cfcf x dxdx c f x dxdx
a

b

a

b

= ##

5. [ ( ) ( )])] ( ) ( ): f x g x dxdx f x dxdx g x dxdxSumSum RuleRule
a

b

a

b

a

b

+ = + ###

6. [ ( ) ( )] ( ) ( ): f x g x dxdx f x dxdx g x dxdxDifferenceDifference RuleRule
a

b

a

b

a

b

- = -# ##

7. ( ) [ , ],], ( )f x a b f x dxdxIfIf onon thenthen0 0
a

b

$ $#

8. ( ) ( )[ , ],],f x f x dxdxIfIf onon thenthena b0 0
a

b

# ##

9. ( ) ( ) [ , ],], ( ) ( )f x g x a b f x dxdx g x dxdxIfIf onon thenthen
a

b

a

b

$ $ ##

10. If a, b, and c are any three points on a closed interval, then

( ) ( ) ( )f x dxdx f x dxdx f x dxdx
c

b

a

c

a

b

= + ###

11. The Mean Value Theorem for Definite Integrals: If f (x) is continu-
ous on the closed interval [a,b], then at least one number c exists in
the open interval (a, b) such that

( ) ( )()( )f x dxdx f c b a
a

b

= -#

The value of f (c) is called the average or mean value of the function
f (x) on the interval [a, b] and

( ) ( )f x b a f x dxdx1

a

b

=
- #

Example 5-23: Evaluate 

( )

dxdx

dxdx

3

3 3 6 2

1212

2

6

2

6

= -

=

#

#
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Example 5-24: Given that ,x dxdx x dxdxevaluateevaluate9 4
2 2

0

3

0

3

= -##

( )

x dxdx x dxdx4 4

4 9

3636

2 2

0

3

0

3

$

- =-

= -

=-

##

Example 5-25: Given that ,x dxdx x dxdxevaluateevaluate3
3838

4

9

9

4

=# #

x dxdx x dxdx

3
3838

9

4

4

9

=-

=-

# #

Example 5-26: ( ) .x x x dxdxEvaluateEvaluate 5 3 1111
3 2

3

3

+ - +#

( )x x x dxdx5 3 1111 0
3 2

3

3

+ - + =#

Example 5-27: Given that ( ) ( ) ,f x dxdx g x dxdxandand6 1010
1

3

1

3

= =##
evaluate ( ) ( )])][ f x g x dxdx

1

3

+#

[ ( ) ( )] ( ) ( )f x g x dxdx f x dxdx g x dxdx

6 1010

1616

1

3

1

3

1

3

+ = +

= +

=

# ##

Example 5-28: Given that ( ) ( ) ,f x dxdx g x dxdxandand2 9
3

7

3

7

=- =# #
evaluate [ ( ) ( )])] .f x g x dxdx

3

7

-#

[ ( ) ( )])] ( ) ( )f x g x dxdx f x dxdx g x dxdx

2 9

1111

3

7

3

7

3

7

- = -

=- -

=-

###

Example 5-29: Given that ( ) ( ) ,f x dxdx f xandand1212 7
2

9

6

9

= =# #
evaluate ( ) .f x dxdx

2

6

#
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( ) ( ) ( )

( ) ( ) ( )

f x dxdx f x dxdx f x dxdx

f x dxdx f x dxdx f x dxdx

1212 7

5

6

9

2

6

2

9

6

9

2

9

2

6

= +

= -

= -

=

###

###

Example 5-30: Given that ( )x dxdx2 5757
2

3

6

- =# find all c values that satisfy

the Mean Value Theorem for the given function on the closed interval.

( ) ( )()( )

( , ),),

( ) ( )

( ) ( )

( ) , ( )

,

,

f x dxdx f c b a

c a b

f c b a f x dxdx

f c b a x dxdx

f x x f c c

c

c

c

ByBy thethe MeanMeanValueValueTheoremTheorem

forfor somesome inin

andand

hencehence

BecauseBecause

andand

1

1
2

3
1

5757

1919

2 2

2 1919

2121

2121

a

b

a

b

2

3

6

2 2

2

2

$

!

= -

=
-

=
-

-

=

=

= - = -

- =

=

=

#

#

#

Because .2121 4 5858. is in the interval (3,6), the conclusion of the Mean
Value Theorem is satisfied for this value of c.

The Fundamental Theorem of Calculus
The Fundamental Theorem of Calculus establishes the relationship
between indefinite and definite integrals and introduces a technique for
evaluating definite integrals without using Riemann sums, which is very
important because evaluating the limit of Riemann sum can be extremely
time-consuming and difficult. The statement of the theorem is: If f (x) is
continuous on the interval [a,b], and F(x) is any antiderivative of f (x) on 

[a,b], then ( ) ( ) ( ) ( ) .f x dxdx F b F a F x
a

b

a

b

= - =# A
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In other words, the value of the definite integral of a function on [a,b] is
the difference of any antiderivative of the function evaluated at the upper
limit of integration minus the same antiderivative evaluated at the lower
limit of integration. Because the constants of integration are the same for
both parts of this difference, they are ignored in the evaluation of the def-
inite integral because they subtract and yield zero. Keeping this in mind,
choose the constant of integration to be zero for all definite integral eval-
uations after Example 5-31.

Example 5-31: Evaluate .x dxdx2

2

5

#
Because the general antiderivative of x2 is (1/3)x3 + C, you find that 

( ) ( )

x dxdx x C

C C

3
1

3
1

5 3
1

2

3
125125

3
8

3939

2 3

2

5

2

5

3 3

= +

= + - +

= -

=

# ;

; ;

E

E E

Example 5-32: Evaluate .sinsinx dxdx
/3

2

r

r

#
Because an antiderivative of sin x is – cos x, you find that

( )

sinsin coscosx dxdx x

1 2
1

2
1

/
/

3

2

3

2

= -

= - - -

=-

r

r

r

r

#

c m

@

Example 5-33: Evaluate .x dxdx
1

4

#

, ,

( ) ( )

x x x x

x dxdx x

BecauseBecause anan antiderivativeantiderivative ofof isis andand youyou

findfindthatthat

3
2

3
2

4 3
2

1

3
1616

3
2

3
1414

3
2/ / /

/ /

/ /

1 2 1 2 3 2

1 2 3 2

1

4

1

4

3 2 3 2

=

=

= -

= -

=

# B
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Example 5-34: Evaluate ( )x x dxdx4 1
2

1

3

- +#
Because an antiderivative of x2 – 4x + 1 is (1/3)x3 – 2x2 + x, you find that

( )

( ) ( ) ( ) ( )

( )

x x dxdx x x x4 1 3
1

2

3
1

3 2 3 3 3
1

1 2 1 1

6 3
2

3
1616

2 3 2

1

3

1

3

3 2 3 2

- + = - +

= - + - - +

= - - -

=-

#

c m

;

; ;

E

E E

Definite integral evaluation
The numerous techniques that can be used to evaluate indefinite integrals
can also be used to evaluate definite integrals. The methods of substitu-
tion and change of variables, integration by parts, trigonometric integrals,
and trigonometric substitution are illustrated in the following examples.

Example 5-35: Evaluate 
( )x

x dxdx
2

2 3
1

2

+
#

Using the substitution method with 

u x
dudu x dxdx

dudu x dxdx

2

2

2
1

2
= +

=

=

the limits of integration can be converted from x values to their corre-
sponding u values. When x = 1, u = 3 and when x = 2, u = 6, you find that 

( )

( ) ( )

x
x dxdx

u
dudu

u dudu

u

2 2
1

2
1

2
1

2
1

4
1

6 3

4
1

3636
1

9
1

4848
1

2 3 3
3

6

1

2

3

3

6

2

3

6

2 2

+
=

=

= -

=- -

=- -

=

-

-

- -

##

#

c m

;

8

E

B
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Note that when the substitution method is used to evaluate definite inte-
grals, it is not necessary to go back to the original variable if the limits of
integration are converted to the new variable values.

Example 5-36: Evaluate .sinsin coscosx x dxdx1
/3 2

+
r

r

#

Using the substitution method with u = sin x + 1, du = cos x dx, you find
that u = 1 when x = π and u = 0 when x = 3π/2; hence,

sinsin coscosx x dxdx u dudu

u

1

3
2

3
2

0 1

3
2

/
/

/

/ /

1 2

1

03 2

3 2
1

0

3 2 3 2

+ =

=

= -

=-

r

r

##

8

@

B

Note that you never had to return to the trigonometric functions in the
original integral to evaluate the definite integral.

Example 5-37: Evaluate .sinsinx x dxdx
/

/

3

2

r

r

#

Using integration by parts with 

u = x and dv = sin x dx
du = dx   v = –cos x

you find that 

( )

,

sinsin coscos coscos

coscos sinsin

sinsin coscos sinsin

coscos sinsin coscos sinsin

x x dxdx x x x dxdx

x x x C

x x dxdx x x xhencehence

2 2 2 3 3 3

0 1
6 2

3

1
6 2

3

6
6 3 3

/

/

/

/

3

2

3

2

=- - -

=- + +

= - +

= - + - - +

= + - - +

= + -

=
- +

r r r r r r

r

r

r

r

r

r

r

##

#

J

L

K
K

c c c c

N

P

O
O

m m m m

6

= =

@

G G
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Example 5-38: Evaluate .lnlnx x dxdx
e

2

1
#

Using integration by parts with 

hence,

( ) ( ) ( ) ( )

( ) ( )

( )

lnln

lnln lnln

lnln

lnln

lnln

lnln lnln

lnln lnln

u x dvdv x dxdx

dudu x dxdx v x

x x dxdx x x x x dxdx

x x x dxdx

x x x C

x x x C

x x dxdx x x x

e e e

e e

e

e

andand

youyou findfind thatthat

1
3
1

3
1

3
1 1

3
1

3
1

3
1

3
1

3
1

3
1

9
1

3
1

9
1

3
1

9
1

3
1

1 1 9
1

1

3
1

9
1

0 9
1

9
2

9
1

9
1

2 1

ee

2

3

2 3 3

3 2

3 3

3 3

2 3 3

1

3 3 3 3

3 3

3

3

1

$

= =

= =

= -

= -
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Example 5-39: Evaluate cotcot x dxdx
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hence, cotcot cotcot cotcotx dxdx x x x
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Example 5-40: Evaluate .coscos x dxdx4
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Example 5-41: Evaluate .
x

dxdx
9

2
3

3

+-
#

Because the integrand contains the form a2 + x2,

let x = a tan θ = 3 tan θ
dx = 3 sec2 θ dθ

and x2 + 9 = 9sec2 θ (Figure 5-4)

Figure 5-4 Diagram for Example 5-41.
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Chapter 5: Integration 85



( )

,
secsec

secsec

arctanarctan

arctanarctan

arctanarctan arctanarctan

x
dxdx d

d

C

x C

x
dxdx x

HenceHence

andand

9 9
3

3
1

3
1

3
1

3
1

9 3
1

3
1

3
1

1 1

3
1

4 4

3
1

2

6

2 2

2

2

3

3

3

3

+
=

=

= +

= +

+
=

= - -

= - -

=

=

i
i i

i

i

r r

r

r

--

##

#

#

c

c

m

m

;

7

=

E

A

G

Example 5-42: Evaluate x
x

dxdx
2525

2

3

4 -# .

Because the radical has the form ,a x2 2
-

let sinsin sinsinx a 5= =i i

coscosdxdx d5= i i

and coscosx2525 5
2

- = i (Figure 5-5).

Figure 5-5 Diagram for Example 5-42.
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Chapter  Checkout

Q&A

1. Evaluate sinsinx x e x dxdx1 x
+ - +# c m .

2. Evaluate 
x

x dxdx
1

3

2

+
# .

3. Evaluate xexe dxdxx# .

4. Evaluate sinsin coscosx x dxdx3

0

2r

# .

5. Evaluate 
x

x
dxdx

4
2

2

1

2 -# .

Answers: 1. lnln x 2/3 x3/2 – ex – cos x + C 2. /lnln x C1 3
3
+ + 3. x ex – ex

+ C 4. 1/4  5. 3 3- r
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Chapter 6

APPLICATIONS OF THE
DEFINITE INTEGRAL

Chapter  Check-In

❑ Calculating areas with definite integrals

❑ Finding volumes with definite integrals

❑ Computing arc lengths with definite integrals

The definite integral of a function has applications to many problems in
calculus. Those considered in this chapter are areas bounded by curves,

volumes by slicing, volumes of solids of revolution, and the lengths of arcs
of a curve.

Area
The area of a region bounded by a graph of a function, the x-axis, and two
vertical boundaries can be determined directly by evaluating a definite inte-
gral. If f (x) > 0 on [a,b], then the area (A) of the region lying below the
graph of f (x), above the x-axis, and between the lines x = a and x = b is 

A f x dxdx
a

b

= # ^ h



Figure 6-1 Finding the area under a non-negative function.

If f (x) ≤ 0 on [a,b], then the area (A) of the region lying above the graph
of f (x), below the x-axis, and between the lines x = a and x = b is 

( )

( )

A f x dxdx

A f x dxdxoror

a

b

a

b

=

=-

#

#

Figure 6-2 Finding the area above a negative function.

If f (x) > 0 on [a,c] and f (x) ≤ 0 on [c,b], then the area (A) of the region
bounded by the graph of f (x), the x-axis, and the lines x = a and x = b
would be determined by the following definite integrals:

( )

( ) ( )

A f x dxdx

A f x dxdx f x dxdx
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b

c

b

a

c

=

= -

#

##

y= f(x)

a b

y

x

y= f(x)

a b

y

x
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Figure 6-3 The area bounded by a function whose sign changes.

Note that in this situation it would be necessary to determine all points
where the graph f (x) crosses the x-axis and the sign of f (x) on each corre-
sponding interval.

For some problems that ask for the area of regions bounded by the graphs
of two or more functions, it is necessary to determined the position of each
graph relative to the graphs of the other functions of the region. The points
of intersection of the graphs might need to be found in order to identify
the limits of integration. As an example, if f (x) > g (x) on [a,b], then the
area (A) of the region between the graphs of f (x) and g (x) and the lines
x = a and x = b is

( ) ( )A f x g x dxdx
a

b

= -# 8 B

Figure 6-4 The area between two functions.

y= f(x)

y= g(x)

a b

y

x

y= f(x)

a bc

y

x
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Note that an analogous discussion could be given for areas determined by
graphs of functions of y, the y-axis, and the lines y = a and y = b.

Example 6-1: Find the area of the region bounded by y = x2, the x-axis, 
x = –2, and x = 3.

Because f (x) > 0 on [–2,3], the area (A) is 

A x dxdx

A oror
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3 2
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Example 6-2: Find the area of the region bounded by y = x3 + x2 – 6x and
the x-axis.

Setting y = 0 to determine where the graph intersects the x-axis, you find
that
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Because f (x) > 0 on [–3,0] and f (x) ≤ 0 on [0,2] (see Figure 6-5), the area
(A) of the region is
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Figure 6-5 Diagram for Example 6-2.

Example 6-3: Find the area bounded by y = x2 and y = 8 – x2.

Because y = x2 and y = 8 – x2, you find that 
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x x

x x

2 2 2 0

2 2

2 2

2

2

+ - =

=- =

x2 8 0- =

( )x2 4 0- =

x x8= -

hence, the curves intersect at (–2,4) and (2,4). Because 8 – x2 > x2 on [–2,2]
(see Figure 6-6), the area (A) of the region is 
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Figure 6-6 Diagram for Example 6-3.

Volumes of Solids with Known Cross
Sections
You can use the definite integral to find the volume of a solid with specific
cross sections on an interval, provided you know a formula for the region
determined by each cross section. If the cross sections generated are per-
pendicular to the x-axis, then their areas will be functions of x, denoted by
A(x). The volume (V ) of the solid on the interval [a,b] is

( )V A x dxdx
a

b

= #

If the cross sections are perpendicular to the y-axis, then their areas will be
functions of y, denoted by A(y). In this case, the volume (V ) of the solid
on [a,b] is 

( )V A y dydy
a

b

= #

Example 6-4: Find the volume of the solid whose base is the region inside
the circle x2 + y2 = 9 if cross sections taken perpendicular to the y-axis are
squares.

Because the cross sections are squares perpendicular to the y-axis, the area
of each cross section should be expressed as a function of y. The length of
the side of the square is determined by two points on the circle x2 + y2 = 9
(Figure 6-7).

y

x

4

2

−2−4 42

y= x2
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(2,4)(−2,4)

6

8
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Figure 6-7 Diagram for Example 6-4.

The area (A) of an arbitrary square cross section is A = s2, where 
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= - ; hence, 
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Example 6-5: Find the volume of the solid whose base is the region
bounded by the lines x + 4y = 4, x = 0, and y = 0, if the cross sections taken
perpendicular to the x-axis are semicircles.

y

x
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3−3

−3
x2 + y2 = 9
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Because the cross sections are semicircles perpendicular to the x-axis, the
area of each cross section should be expressed as a function of x. The diam-
eter of the semicircle is determined by a point on the line x + 4y = 4 and
a point on the x-axis (Figure 6-8).

Figure 6-8 Diagram for Example 6-5.

The area (A) of an arbitrary semicircle cross section is 
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( )

( )

V x dxdx

x x dxdx

x x x

V

128128
1

4

128128
1

1616 8

128128
1

1616 4 3
1

128128
1

3
6464

6

2

0

4

2

0

4

2 3

0

4

= -

- +

= - +

=

r

r

r

=

=

r

r

#

#

;

;

E

E

y

x

2

−2 2

x + 4y = 4

4

Chapter 6: Applications of the Definite Integral 95



Volumes of Solids of Revolution
You can also use the definite integral to find the volume of a solid that is
obtained by revolving a plane region about a horizontal or vertical line that
does not pass through the plane. This type of solid will be made up of one
of three types of elements—disks, washers, or cylindrical shells—each of
which requires a different approach in setting up the definite integral to
determine its volume.

Disk method
If the axis of revolution is the boundary of the plane region and the cross
sections are taken perpendicular to the axis of revolution, then you use the
disk method to find the volume of the solid. Because the cross section of
a disk is a circle with area πr2, the volume of each disk is its area times its
thickness. If a disk is perpendicular to the x-axis, then its radius should be
expressed as a function of x. If a disk is perpendicular to the y-axis, then
its radius should be expressed as a function of y.

The volume (V ) of a solid generated by revolving the region bounded by
y = f (x) and the x-axis on the interval [a,b] about the x-axis is 

( )V f x dxdx
a

b 2
= r# 8 B

If the region bounded by x = f (y) and the y-axis on [a,b] is revolved about
the y-axis, then its volume (V ) is

( )V f y dydy
a

b 2
= r# 8 B

Note that f (x) and f (y) represent the radii of the disks or the distance
between a point on the curve to the axis of revolution.

Example 6-6: Find the volume of the solid generated by revolving the
region bounded by y = x2 and the x-axis on [2,3] about the x-axis.

Because the x-axis is a boundary of the region, you can use the disk method
(see Figure 6-9).
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Figure 6-9 Diagram for Example 6-6.

The volume (V ) of the solid is

( )V x dxdx
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Washer method
If the axis of revolution is not a boundary of the plane region and the cross
sections are taken perpendicular to the axis of revolution, you use the
washer method to find the volume of the solid. Think of the washer as a
“disk with a hole in it” or as a “disk with a disk removed from its center.”
If R is the radius of the outer disk and r is the radius of the inner disk, then
the area of the washer is πR2 – πr2, and its volume would be its area times
its thickness. As noted in the discussion of the disk method, if a washer is
perpendicular to the x-axis, then the inner and outer radii should be
expressed as functions of x. If a washer is perpendicular to the y-axis, then
the radii should be expressed as functions of y.

The volume (V ) of a solid generated by revolving the region bounded by 
y = f (x) and y = g (x) on the interval [a,b] where f (x) > g (x), about the 
x-axis is

y

x

4

2

−2−4 42

y= x2

6

8

f(x)
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( ) ( )V f x g x dxdx
a

b 2 2
= -r# 8 8B B% /

If the region bounded by x = f (y) and x = g (y) on [a,b], where f (y) > g (y)
is revolved about the y-axis, then its volume (V ) is

( ) ( )V f y g y dydy
a

b 2 2
= -r# 8 8B B% /

Note again that f (x) and g (x) and f (y) and g (y) represent the outer and
inner radii of the washers or the distance between a point on each curve
to the axis of revolution.

Example 6-7: Find the volume of the solid generated by revolving the
region bounded by y = x2 + 2 and y = x + 4 about the x-axis.

Because y = x2 + 2 and y = x + 4, you find that 

( )()( )

,

x x

x x

1 2 0

1 2

2

2

+ - =

=- =

x x

x x

2 4

2 0

+ = +

- - =

The graphs will intersect at (–1,3) and (2,6) with x + 4 > x2 + 2 on [–1,2]
(Figure 6-10).

Figure 6-10 Diagram for Example 6-7.
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Because the x-axis is not a boundary of the region, you can use the washer
method, and the volume (V ) of the solid is 

V x x dxdx

x x x x

x x x dxdx

x x x x
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Cylindrical shell method
If the cross sections of the solid are taken parallel to the axis of revolution,
then the cylindrical shell method will be used to find the volume of the
solid. If the cylindrical shell has radius r and height h, then its volume
would be 2πrh times its thickness. Think of the first part of this product,
(2πrh), as the area of the rectangle formed by cutting the shell perpendic-
ular to its radius and laying it out flat. If the axis of revolution is vertical,
then the radius and height should be expressed in terms of x. If, however,
the axis of revolution is horizontal, then the radius and height should be
expressed in terms of y.

The volume (V ) of a solid generated by revolving the region bounded by 
y = f (x) and the x-axis on the interval [a,b], where f (x) > 0, about the 
y-axis is 

( )V x f x dxdx2
a

b

= r#

If the region bounded by x = f (y) and the y-axis on the interval [a,b], where
f (y) > 0, is revolved about the x-axis, then its volume (V ) is 

( )V y f y dydy2
a

b

= r#

Note that the x and y in the integrands represent the radii of the cylindrical
shells or the distance between the cylindrical shell and the axis of revolution.
The f (x) and f (y) factors represent the heights of the cylindrical shells.
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Example 6-8: Find the volume of the solid generated by revolving the
region bounded by y = x2 and the x-axis [1,3] about the y-axis.

In using the cylindrical shell method, the integral should be expressed in
terms of x because the axis of revolution is vertical. The radius of the shell
is x, and the height of the shell is f (x) = x2 (Figure 6-11).

Figure 6-11 Diagram for Example 6-8.

The volume (V ) of the solid is 
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Arc Length
The length of an arc along a portion of a curve is another application of the
definite integral. The function and its derivative must both be continuous
on the closed interval being considered for such an arc length to be guar-
anteed. If y = f (x) and y'= f '(x) are continuous on the closed interval [a,b],
then the arc length (L) of f (x) on [a,b] is 

( )L f x dxdx1
a

b 2
= +# l8 B

Similarly, if x = f (y) and x' = f '(y) are continuous on the closed interval
[a,b], then the arc length (L) of f (y) on [a,b] is 

( )L f y dydy1
a

b 2
= +# l8 B

Example 6-9: Find the arc length of the graph of ( )f x x3
1 /3 2

= on the inter-
val [0,5].
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Example 6-10: Find the arc length of the graph of f (x) = ln (sin x) on the
interval [π/4, π/2].
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Chapter  Checkout

Q&A
1. Find the area of the region bounded by y = x3 – 25x and the x-axis.

2. Find the area of the region bounded by y = x2 and y = x.

3. Find the volume of the solid whose base is the region bounded by the
lines x + 5y = 5, x = 0, and y = 0, if cross sections taken perpendicu-
lar to the x-axis are squares.
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4. Find the volume of the solid generated by revolving the region
bounded by y = x2 and y = x about the x-axis.

5. Find the arc length of the graph of f (x) = ln(sec x) on the interval 
[0, π/6].

Answers: 1. 625/2  2. 1/6  3. 5/3  4. 2π/15  5. (ln 3)/2
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CQR REVIEW

Use this CQR Review to practice what you’ve learned in this book. After
you work through the review questions, you’re well on your way to achiev-
ing your goal of understanding calculus.

Chapter 1
1. Which of the following can not be used to find the slope of a line?

a. m = rise / run
b. m = (y1 – x1) / (y2 – x2)
c. m = (y1 – y2) / (x1 – x2)
d. m = (y2 – y1) / (x2 – x1)

2. Which of the following are functions?

a. f(x) = 5x + 3
b. y = cos 5x
c. x = 2
d. f(x) = 6/(x2  + 4)
e. x2 + y2 = 144

3. Any nonvertical lines are parallel if they have _____.

4. Two nonvertical, nonhorizontal lines are perpendicular if the prod-
uct of their slopes is _____.

5. Find an equation of the line that has slope 6/5 and crosses the y-axis
at 3.

6. Complete the trigonometric identity for the following:

a. cos(x – y)
b. 1/cot x
c. cos (–x)
d. cos x/sin x
e. csc2x – 1
f. sin2x + cos2x



Chapter 2
7. Evaluate limlim x

x
1
1

x 1

3

-
-

"

.

8. Evaluate limlim
x x

x
3 1

1
x

3 2

3

+ -
-

" 3+
.

Chapter 3
9. In addition to the notation f ' (x), which the following can be used to

represent the derivative of y = f (x)?

a. Dfx

b. df (x)/dx
c. y'
d. dx/dy

10. Complete the following statements about trigonometric function dif-
ferentiation.

a. If f (x) = sin x, then f '(x) = 
b. If f (x) = cos x, then f '(x) =
c. If f (x) = tan x, then f '(x) =
d. If f (x) = cot x, then f '(x) =
e. If f (x) = sec x, then f '(x) =
f. If f (x) = csc x, then f '(x) =

11. Find y' if sinsiny x π3= + .

12. Find f ' (x) if f x x 1
2

= +^ h .

Chapter 4
13. The _____ is the line that is perpendicular to the tangent line at the

point of tangency.

14. The point (x, f (x)) is called a critical point of f (x) if x is in the ______
of the function, and either f '(x) = ______ or ______. 

15. If the derivative of a function is greater than zero at each point on an
interval I, then the function is said to be _____ on I. If the deriva-
tive of a function is less than zero at each point on an interval I, then
the function is said to be ______ on I.
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16. You can not use the Second Derivative Test for Local Extrema in
which of the following situations?

a. f '(x) = 0 and f"(x) = 0
b. f '(x) = 0 and f"(x) does not exist
c. f '(x) = –(f"(x))
d. f '(x) does not exist

17. Find the equation of the tangent line to the graph of f (x) = x2e–x at
the point (1,1/e).

18. Find the maximum and minimum values of f (x) = x3 – 3x2 – 9x + 4
on the interval [–2,6].

19. Find the equation of the tangent line to the graph of f (x) = sin(x2) at
the point (0,0).

20. Find the maximum value of y
x

x
1

2=
+

on the interval [0,5].

21. Water is dripping into a cylindrical can with a radius of 3 inches. If
the volume is increasing at a rate of 2 cubic inches per minute, how
fast is the depth changing?

22. Two cars are traveling toward an intersection, one heading north at
a rate of 65 mph and the second heading west at a rate of 45 mph.
Find the rate of change of the distance between the two cars when
both are 1 mile from the intersection.

23. If you know that a function is increasing on the interval (0,3) and
decreasing on the interval (3,6), does this imply that the function has
a local maximum when x = 3?  What sorts of situations are possible?  

24. What’s wrong with the problem “A rectangular box is to have a vol-
ume of 8 square units. Find the maximum surface area such a box
could have.” 

Chapter 5
25. What is the acceleration of a free-falling object due to gravity?

26. According to the Fundamental Theorem of Calculus: The value of
the definite integral of a function on [a,b] is the ______ of any
______ evaluated at the upper limit of integration minus the same
antiderivative evaluated at the lower limit of integration.

27. Evaluate coscos sinsinx x dxdx6 3# .
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28. Evaluate xexe dxdxx

0

1

# .

29. Evaluate 
x

x dxdx
4

2
-

# .

30. Evaluate lnlnx x dxdx
1

2

# .

31. A rock is thrown upward from a 200 foot cliff with an initial veloc-
ity of 30 feet per second. How long will it take for the ball to hit the
ground?

32. What’s wrong with the computation 
x

dxdx x1
12

1
1

1

1

1

=- =
-

-
-

#
1
1

1
1

2- - - - = -c cm m ?  

33. If a highway patrol officer is sitting off to the side of a road moni-
toring the speed of approaching traffic, does it matter how far off the
roadway the officer sits?  (Hint: Think about it as a related rates prob-
lem with one of the rates of change being zero.)

34. Fast cars are often rated for how quickly they can accelerate from 0
to 60 miles per hour (which is equivalent to 88 feet per second).  If
a car takes s seconds to accelerate from 0 to 60 (and supposing con-
stant acceleration), over what distance will it travel in the process?

Chapter 6
35. Find the area of the region bounded by y = x and y = x3.

36. Find the area of the region bounded between y = x2 and y x= .

37. Find the volume of the solid generated by revolving the region
bounded by y = sin x and the x-axis on [0, π] about the y-axis.

38. Find the arc length of the line y = 2x on the interval [0,3].

39. Find the volume of the solid generated by revolving the region
bounded by y = 1/x and the x-axis on [1, 20] about the x-axis.

40. The area bounded by the function f (x) and the x-axis between x = a
and x = b is given by f x dxdx

a

b

# ^ h . Is this the same as f x dxdx
a

b

# ^ h ?
(See Chapter 6.)
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41. One of the early practical problems to which calculus was applied
was determining the volume of a barrel that was filled with liquid
when it was impractical to just pour the liquid out for measuring.
Select an object with round cross sections and see how accurately you
can find its volume by treating it as the solid of revolution generated
by some curve.

42. Find the dimensions of a cylinder with a volume of 100 cubic units
which minimize surface area. If cost of materials were the only con-
sideration, presumably this would be the shape all canned goods
would be sold in, but of course a trip to the grocery store makes it
clear that few cans are this shape. Why would this be so, and what
other factors influence the shapes of different cylindrical containers?
Compare your ideas to the dimensions of actual cans to see how well
they agree.

Answers: 1. b  2. a, b, and d  3. the same slope  4. –1  5. 6x – 5y = –15  
6. (a) cos x cos y – sin x sin y (b) tan x (c) cos x (d) cot x (e) cot2x (f ) 1  
7. 3  8. –1/3  9. b and c  10. (a) cos x (b) –sin x (c) sec2 x (d) –csc2 x (e)
sec x tan x (f ) –csc x cot x 11. sinsinx π3

1 +^ h 12. 
x

x
1

2
+

13. normal line  

14. domain, 0, does not exist  15. increasing, decreasing  l6. a, b, and d
17. e x y1

0- = 18. minimum –23, maximum 58  19. y = 0 20. 1/2

21. π9
2 inches per minute  22. –110/ 2 23. Provide your own answer  

24. Provide your own answer 25. –32 ft/sec2 26. difference, antideriva-
tive of the function 27. coscos coscosx x C9

1 9
7
1 7

- + 28. 1  29. x4
2

- -

30. 2 ln 2 – 3/4  31. approximately 4.6 seconds  32. Provide your own
answer  33. Yes, the greater the distance off the road the lower an
approaching car’s speed is relative to the officer.  34. 44s feet  35. 1/2
36. 1/3  37. 2π2 38. 3 5 39. 2020

1919r 40. Provide your own answer
41. Provide your own answer 42. Provide your own answer 
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CQR RESOURCE CENTER

CQR Resource Center offers the best resources available in print and online
to help you study and review the core concepts of calculus. You can find
additional resources, plus study tips and tools to help test your knowledge,
at www.cliffsnotes.com.

Books
This CliffsQuickReview book is just what it’s called, a quick review of 
calculus. If you need to brush up more of the pre-requisites, or if you want
a fuller discussion or other practical advice, check out these other 
publications:

CliffsQuickReview Basic Math and Pre-Algebra, by Jerry Bobrow, gives
you a review of topics including the basics of working with fractions,
decimals, powers, exponents, roots, and an introduction to algebraic
expressions and solving equations.  Hungry Minds, Inc., 2001.

CliffsQuickReview Algebra I, by Jerry Bobrow, gives you a review of
topics including sets, equations, polynomials, factoring, inequalities,
graphing, and functions. Hungry Minds, Inc., 2001.

CliffsQuickReview Geometry, by Edward Kohn and David Herzog, gives
you a review of topics including perimeter, area, volume, the
Pythagorean theorem, 30°-60°-90° and 45°-45°-90° triangles, and
the basics of coordinate geometry including plotting points, distances,
midpoints, slopes and equations of lines. Hungry Minds, Inc., 2001.

CliffsQuickReview Algebra II, by Edward Kohn, gives you a review of
topics including solving systems of equations, polynomials, factoring,
complex numbers, conic sections, exponential and logarithmic
functions, sequences and series, and other material pre-requisite for
calculus. Hungry Minds, Inc., 2001.

CliffsQuickReview Trigonometry, by David A. Kay, gives you a review
of triangles, trigonometric functions and identities, vectors, polar
coordinates, complex numbers, and inverse functions. Hungry
Minds, Inc., 2001.



CliffsQuickReview Linear Algebra, by Steven A. Leduc, is an in-depth
look at algebraic equations and inequalities. Hungry Minds, Inc.,
1986.

CliffsAP Calculus AB and BC Preparation Guide, by Kerry King, gives
you tips and suggestions for getting the most credit you can on the
Advanced Placement Calculus AB and BC tests. The book reviews
crucial calculus topics, introduces test-taking strategies, and includes
sample questions and tests. Hungry Minds, Inc., 2001.

Cliffs Math Review for Standardized Tests, by Jerry Bobrow, helps you
to review, refresh, and prepare for standardized math tests. Each topic-
specific review section includes a diagnostic test, rules and key con-
cepts, practice problems, a review test, glossary, and a section devoted
to key strategies, practice, and analysis for the most common types
of standardized questions. Hungry Minds, Inc., 1985.

How to Ace Calculus: The Streetwise Guide, by Joel Hass, Abigail
Thompson, and Colin Conrad Adams, gives a lot of practical tips not
just on the subject matter itself, but also on picking teachers and
preparing for tests. W H Freeman & Co., 1998.

Calculus and Analytic Geometry, by George Brinton Thomas and Ross
L. Finney, is the most understandable standard calculus textbook
available. If you want a complete treatment of calculus that’s meant
more for students to learn from, rather than catering primarily to the
arcane tastes of math professors, this is the best place to go. Addison-
Wesley Publishing Co., 1996.

3000 Solved Problems in Calculus, by Elliot Mendelson, can give you
all the extra practice problems you want. McGraw-Hill, 1992.

A Tour of the Calculus, by David Berlinski, gives a complete exploration
of what many of the theorems of calculus really mean and a look at
how the discipline of calculus is one of the human intellect’s most
impressive accomplishments. Vintage Books, 1997.

The Story of Mathematics, by Richard Mankiewicz and Ian Stewart,
gives a very accessible account of the development of mathematics,
including calculus, from the earliest archeological evidence on.
Princeton University Press, 2001.
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Hungry Minds also has three Web sites that you can visit to read about all
the books we publish:

■ www.cliffsnotes.com

■ www.dummies.com

■ www.hungryminds.com

Internet
Visit the following Web sites for more information about calculus:

Ask Dr. Math—forum.swarthmore.edu/dr.math—is an award-
winning site that offers a free question-and-answer service, as well as
archives of past questions and answers.

Karl’s Calculus Tutor—www.netsrq.com/~hahn/calc.html—is a
complete calculus help site with entertaining and understandable
explanations of most topics, free help with math problems, good
links, and recommended books.

S.O.S. Mathematics—www.sosmath.com—is a nice site with a broad
range of helpful pages covering algebra through calculus and beyond,
including some animated graphics to demonstrate specific calculus
ideas and some sample exams (with solutions).

calculus@internet—www.calculus.net—is an organized clearinghouse
of links to a ton of other pages about math topics.

Visual Calculus—http://archives.math.utk.edu/visual.calculus/—
is an award-winning Web site from the University of Tennessee that
offers a wide variety of step-by-step illustrated tutorials on calculus top-
ics including pre-calculus, limits, continuity, derivatives, integration,
and sequences and series.

The MathServ Calculus Toolkit—http://mss.math.vanderbilt.

edu/%7epscrooke/toolkit.shtml—is not the most graphically
exciting Web site out there, but it does offer easy-to-use online 
programs that do the heavy lifting for you—everything from graphing
functions and equations to computing limits.
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The BHS Calculus Project—http://www.bhs-ms.org/calculus.htm—
serves as an archive of student projects that show calculus’s connec-
tion to the real world. Student research and reporting shows how 
calculus impacts everyday topics such as fractals, ice cones, bicycles,
tape decks, and AIDS.

AP Calculus Problem of the Week—http://www.seresc.k12.

nh.us/www/alvirne.html—offers a different calculus based prob-
lem every week. Visitors can also submit their own calculus challenges
for future inclusion on the Web site. 

Mathematica Animations—http://www.calculus.org/Contributions/

animations.html—features short QuickTime movies that illustrate
key calculus concepts such as the definition of a derivative, the sec-
ond derivative function, the volume of cones, and Reimann sums.

Math for Morons Like Us: Pre-Calculus & Calculus—http://

library.thinkquest.org/20991/calc/index.html—outlines
major calculus topics as well as issues in other branches of mathe-
matics. A fairly active pre-calculus and calculus message board enables
visitors to ask and answer thought-provoking questions. 

Help With Calculus For Idiots (Like Me)—ccwf.cc.utexas.edu/

~egumtow/calculus—is another page with explanations of several
calculus topics that gives practical advice about what you’ll really need
to know to get through a calculus class.

The Integrator—integrals.wolfram.com—actually computes inte-
grals for you in the blink of an eye.

A History of the Calculus—www-history.mcs.st-and.ac.uk/

history/HistTopics/The_rise_of_calculus.html—gives a
good yet very brief survey of the origins of many of the major parts
of modern calculus.

Next time you’re on the Internet, don’t forget to drop by www.
cliffsnotes.com. We created an online Resource Center that you can
use today, tomorrow, and beyond.
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antiderivative A function F (x) is
called an antiderivative of a function
f (x) if F'(x) = f (x) for all x in the
domain of f. In words, this means
that an antiderivative of f is a func-
tion which has f for its derivative.

chain rule The chain rule tells
how to find the derivative of com-
posite functions. In symbols, the
chain rule says f g xdxdx

d =^`b hjl

f g x g x$l l^` ^hj h. In words, the 

chain rule says the derivative of a
composite function is the derivative
of the outside function, done to the
inside function, times the derivative
of the inside function.

change of variables A term some-
times used for the technique of inte-
gration by substitution.

concave downward A function is
concave downward on an interval if
f "(x) is negative for every point on
that interval.

concave upward A function is con-
cave upward on an interval if f "(x) is
positive for every point on that
interval.

continuous A function f (x) is con-
tinuous at a point x = c when f (c)
exists, limlim f xx c" ^ h exists, and
limlim f xx c" ^ h = f (c). In words, this
means the curve could be drawn
without lifting the pencil. To say that
a function is continuous on some
interval means that it is continuous
at each point in that interval.

critical point A critical point of a
function is a point (x, f (x)) with x in
the domain of the function and
either f '(x) = 0 or f '(x) undefined.
Critical points are among the candi-
dates to be maximum or minimum
values of a function.

cylindrical shell method A proce-
dure for finding the volume of a
solid of revolution by treating it as a
collection of nested thin rings.

definite integral The definite integral
of f (x) between x = a and x = b, 

denoted f x dxdx
a

b

# ^ h , gives the signed 

area between f (x) and the x-axis
from x = a to x = b, with area above
the x-axis counting positive and area
below the x-axis counting negative.

derivative The derivative of a func-
tion f (x) is a function that gives
the slope of f (x) at each value of x.
The derivative is most often
denoted f ' (x) or dxdx

d . The mathemati-
cal definition of the derivative is

limlim
x

f x x f x

x 0

+ -

D
D

"D

^ ^h h
, or in 

words the limit of the slopes of the
secant lines through the point (x,
f (x)) and a second point on the
graph of f (x) as that second point
approaches the first. The derivative
can be interpreted as the slope of a
line tangent to the function, the
instantaneous velocity of the func-
tion, or the instantaneous rate of
change of the function.

Glossary
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differentiable A function is said to
be differentiable at a point when the
function’s derivative exists at that
point. A function will fail to be differ-
entiable at places where the function is
not continuous or where the function
has corners.

disk method A procedure for finding
the volume of a solid of revolution by
treating it as a collection of thin slices
with circular cross sections.

Extreme Value Theorem A theorem
stating that a function which is con-
tinuous on a closed interval [a, b]
must have a maximum and a mini-
mum value on [a, b].

First Derivative Test for Local
Extrema A method used to determine
whether a critical point of a function
is a local maximum or local mini-
mum. If a continuous function
changes from increasing (first deriva-
tive positive) to decreasing (first
derivative negative) at a point, then
that point is a local maximum. If a
function changes from decreasing
(first derivative negative) to increasing
(first derivative positive) at a point,
then that point is a local minimum.

general antiderivative If F(x) is an
antiderivative of a function f (x), then
F(x) + C is called the general
antiderivative of f (x).

general form The general form
(sometimes also called standard form)
for the equation of a line is ax + by =
c, where a and b are not both zero.

higher order derivatives The second
derivative, third derivative, and so
forth for some function.

implicit differentiation A procedure
for finding the derivative of a func-
tion which has not been given explic-
itly in the form “f (x) =”.

indefinite integral The indefinite
integral of f (x) is another term for the 
general antiderivative of f (x). The
indefinite integral of f (x) is repre-

sented in symbols as f x dxdx# ^ h .

instantaneous rate of change One
way of interpreting the derivative of a
function is to understand it as the
instantaneous rate of change of that
function, the limit of the average rates
of change between a fixed point and
other points on the curve that get
closer and closer to the fixed point.

instantaneous velocity One way of
interpreting the derivative of a func-
tion s(t) is to understand it as the
velocity at a given moment t of an
object whose position is given by the
function s(t).

integration by parts One of the
most common techniques of integra-
tion, used to reduce complicated
integrals into one of the basic integra-
tion forms.

intercept form The intercept form for
the equation of a line is x/a + y/b = 1,
where the line has its x-intercept (the
place where the line crosses the x-axis)
at the point (a,0) and its y-intercept
(the place where the line crosses the 
y-axis) at the point (0,b).

limit A function f (x) has the value L
for its limit as x approaches c if as the
value of x gets closer and closer to c,
the value of f (x) gets closer and closer
to L.
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Mean Value Theorem If a function
f (x) is continuous on a closed interval
[a,b] and differentiable on the open
interval (a,b), then there exists some
c in the interval [a,b] for which

f c
b a

f b f a
=

-

-
l^

^ ^
h

h h
.

normal line The normal line to a
curve at a point is the line perpendic-
ular to the tangent line at that point.

point of inflection A point is called
a point of inflection of a function if
the function changes from concave
upward to concave downward, or vice
versa, at that point.

point-slope form The point-slope
form for the equation of a line is y –
y1 = m(x – x1), where m stands for the
slope of the line and (x1,y1) is a point
on the line.

Riemann sum A Riemann sum is a
sum of several terms, each of the
form f (xi)∆x, each representing the
area below a function f (x) on some
interval if f (x) is positive or the nega-
tive of that area if f (x) is negative.
The definite integral is mathemati-
cally defined to be the limit of such a
Riemann sum as the number of terms
approaches infinity.

Second Derivative Test for Local
Extrema A method used to deter-
mine whether a critical point of a
function is a local maximum or local
minimum. If f '(x) = 0 and the sec-
ond derivative is positive at this
point, then the point is a local mini-
mum. If f '(x) = 0 and the second
derivative is negative at this point,
then the point is a local maximum.

slope of the tangent line One way of
interpreting the derivative of a func-
tion is to understand it as the slope of
a line tangent to the function.

slope-intercept form The slope-
intercept form for the equation of a
line is y = mx + b, where m stands
for the slope of the line and the line
has its y-intercept (the place where
the line crosses the y-axis) at the
point (0,b).

standard form The standard form
(sometimes also called general form)
for the equation of a line is ax + by = c,
where a and b are not both zero.

substitution Integration by substitu-
tion is one of the most common
techniques of integration, used to
reduce complicated integrals into one
of the basic integration forms.

tangent line The tangent line to a
function is a straight line that just
touches the function at a particular
point and has the same slope as the
function at that point.

trigonometric substitution A tech-
nique of integration where a substitu-
tion involving a trigonometric
function is used to integrate a func-
tion involving a radical.

washer method A procedure for
finding the volume of a solid of revo-
lution by treating it as a collection of
thin slices with cross sections shaped
like washers.



Appendix

USING GRAPHING
CALCULATORS IN CALCULUS

One important area that hasn’t been addressed in the rest of this book
is the use of modern technology. While it’s possible to learn and

understand calculus without the use of tools beyond paper and pencil,
there are many ways that modern technology makes tasks easier or more
accurate, and there are also ways that it can give insights that aren’t as clear
otherwise. 

Of course, this appendix can’t be exhaustive, but it will return to several
of the examples from earlier in the book and show how you could apply
graphing calculators to them.

Because the variety of different calculators available is tremendous, every-
thing here will be done in general terms that should apply to any graph-
ing calculator. For specific details about how to handle your own calculator,
you should look at its manual, but this appendix can give you ideas about
how that applies to calculus. 

To keep things general and easy, this appendix usually just gives the cal-
culator’s decimal answers to four places, and anything you need to type
into your calculator appears in bold, sticking as close as possible to the
way things will appear on your calculator keyboard and screen.

Limits
Graphing calculators are ideal tools for evaluating limits. The more sophis-
ticated models have this as a built-in function (consult your manual’s index
under “limits”), but on any calculator you can at least estimate most lim-
its by looking closely at a graph of the function.

Example 2-3 Revisited: Evaluate limlim x
x

3
9

x 3

2

+
-

" -
.

Graphing the function y=(x^2–9)/(x+3) on a calculator, you can visually
estimate that for values of x near –3, the values of y on the graph are
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around –6. Most calculators won’t even show the hole in the graph at this
point without special effort on your part, since they plot individual points
using decimal values that probably don’t include exactly –3.

If you have trouble judging the y value visually, you can also use the zoom
or trace functions on most graphing calculators to get a more accurate esti-
mate. For instance, tracing this graph to an x value near –3, you find that
when x = –3.0159, you have y = –6.0159, and from that it’s not hard to
guess that the limit is around –6.

Example 2-11 Revisited: Evaluate limlim x
x

2
3

x 2 -
+

"
-

.

Most graphing calculators do a poor job of rendering graphs near vertical
asymptotes, but if you know what you’re looking for, you can easily get
the information you need. In this case, when you graph y=(x+3)/(x–2),
the screen should show the curve plunging downward as x approaches 2
from the left and veering upward as x approaches 2 from the right, possi-
bly with a misleading vertical line where the calculator naively tries to con-
nect the two parts. That downward spike as you near –2 from the left is
your sign that the limit is –∞.

Example 2-14 Revisited: Evaluate limlim
x x x

x
5 3 2

2
x

4 3

3

- +

-
" 3+

.

Graphing the function y=(x^3–2)/(5x^4–3x^3+2x), you look out to the
right-hand end of the screen to see what the height of the graph is for the
larger values of x. Don’t be fooled into thinking there’s nothing there, it’s
just that the y value of the graph is so close to zero that it appears to over-
lap with the x-axis. If you trace the graph, you can find that when x = 10,
you have y = 0.0212, so the limit seems to be 0.

Derivatives
The more sophisticated calculators available today can evaluate derivatives
symbolically, giving the same exact values or functions that you can find
by hand. Many calculators also have built-in features to numerically com-
pute the value of the derivative of a function at a point. You can consult
your calculator’s manual for this. You can use any graphing calculator to
get at least an approximate value for the derivative of a function at a point,
and understanding how this works helps you understand what a deriva-
tive really is.

Example 3-17 Revisited: Find f '(2) if f x x x5 3 1
2

= + -^ h .
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Graph the function y=√(5x^2+3x–1) and use the trace feature to find the
coordinates of a point just to the left of x = 2 (like x = 1.9048, y = 4.7807)
and a point just to the right of x = 2 (like x = 2.0635, y = 5.1459). 

Now use the traditional slope formula to find the slope of the line con-
necting these two points:

. .

. .

.

.

.

m x x
y y

m

m

m

1 90489048 2 06350635
4 78077807 5 14591459

0 15871587
0 36523652

2 30123012

1 2

1 2
= -

-

=
-
-

=
-
-

=

So from this, you can guess that the derivative is about 2.3, which is the
same value found by hand in Chapter 3. You could also have been a little
bit less careful, and quicker, by just keeping things to two decimal places
and still gotten about the right answer.

The reason this works is because the derivative is just the limit that the
slopes of the secant lines approach as the change in x goes to zero. By pick-
ing two x values with the change between them small, you found the slope
of a secant line that’s pretty close to the actual tangent line.

Another way to use a graphing calculator is to check answers you get by
hand. The previous example could be seen that way, because when you
worked it out by hand you got 23/10 and by calculator you got about 2.3.
The more work done by hand the more likely most people are to slip. So,
especially in a longer problem (like in the following example), verifying
your work can be worthwhile.

Example 4-1 Revisited: Find the equation of the tangent line to the graph
of x x 3

2
= +f ^ h at the point (–1,2).

When this problem was worked in Chapter 4, you found that x + 2y = 3
is the equation of the tangent line. Rearranging this to slope-intercept form,
you can graph both y1=√(x^2+3) and y2=–.5x+1.5 together, and the two
graphs should appear to overlap near the point (–1,2). In fact, if you zoom
in towards the point (–1,2), the closer you look, the more the two graphs
should appear identical. The whole idea of a tangent line, after all, is that
it should touch the function and have the same slope, so near the point of
tangency it should be almost impossible to tell the two apart. If your graph
hadn’t turned out like this—if the tangent line hadn’t touched the func-
tion at the right point, or if they didn’t appear to have matching slopes
there—you’d know something had gone wrong in your computations and
could go back to check them over.
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Example 4-6, Revisited: Find the maximum and minimum values of
f (x) = x4 – 3x3 – 1 on [–2,2].

Many graphing calculators have built-in features for finding maximum or
minimum values of functions, but even without such a feature, graphing
calculators make most extreme value problems easy. If you graph
y=x^4–3x^3–1 and make sure the viewing window includes x values from
–2 to 2, you can see that the graph is highest at x = –2 (it also gets high on
the right, but that’s beyond your domain of [–2,2]). The lowest point seems
to be near x = 2, but it’s not immediately clear if it happens right at x = 2
itself. If you use the calculator’s trace feature, you find out that the graph
continues to decrease beyond x = 2, so the minimum value for your inter-
val appears to happen at x = 2. You can now plug x = –2 and x = 2 back
into the function to find that the maximum value is 39 and the minimum
value is –9.

Example 4-9 Revisited: For f (x) = sin x + cos x on [0, 2π], determine all
intervals where f is increasing or decreasing.

Graph y=sin x + cos x and make sure your viewing window includes x
values from 0 to 2π. To make it easy on yourself, have the x-axis tick marks
every π/2 units. (Most calculators have a feature that adjusts the viewing
window to settings suitable for trig functions—also make sure your cal-
culator is in radian mode rather than degrees.) It should be easy to see that
the function increases for a short interval until the x value reaches π/4,
then decreases until 5π/4, and then increases the rest of the way to 2π, just
as you found in Chapter 4—but this time with much less work!

Integrals
Some of the more sophisticated graphing calculators available today can
evaluate both definite and indefinite integrals symbolically, quickly doing
any of the problems you could work out by hand. However, most graph-
ing calculators don’t have this capability and therefore aren’t much help
with indefinite integrals. Most do have a built-in feature which numeri-
cally computes definite integrals, so check your manual for details.

One final case where graphing calculators and work done by hand can
complement each other is finding areas bounded by curves, as in the fol-
lowing example.



Example 6-2 Revisited: Find the area of the region bounded by 
y = x3 + x2 –6x and the x-axis.

The actual integration involved in this problem is straightforward, but
determining the limits of integration in the first place can be a nuisance.
Graphing y=x^3+x^2–6x makes it clear that you need to integrate from
x = –3 to x = 0, and then use the negative of the integral from x = 0 to x = 2
where the graph of the function lies below the x-axis.
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definite integral (continued)
definition of, 75–77, 113
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119–120
Fundamental Theorem of Calculus, 80–82
Mean Value Theorem, 78, 80
notation for, 77
properties of, 78–80
review questions on, 87, 102–103, 107
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96–100
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dependent variable, 4
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chain rule for, 35–37, 113
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51–52, 113
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decreasing functions, 48–49
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Mean Value Theorem, 46–47, 115
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51–52, 115
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review questions on, 42, 61–62, 105, 106
Second Derivative Test for Local Extrema,

50, 115
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tangent line, calculating slope with, 30, 37,

38, 46–47, 115
trigonometric function differentiation,

34–35, 40–41
velocity, calculating with, 30, 55–56, 114

difference rule
for definite integrals, 78
for derivatives, 32

differentiable function, 29–30, 114. See also
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differential calculus, 1. See also derivative
differentials, 58–61
differentiation rules. See also derivative

chain rule, 35–37, 113
common rules, 32–34
exponential function rules, 41–42
implicit differentiation, 37–38, 114
inverse trigonometric function rules, 40–41
logarithmic function rules, 41–42
trigonometric function rules, 34–35

disk method, 96–97, 114
distance, calculating

with derivatives, 55–56
with indefinite integrals, 73–75

DNE (Does Not Exist), 15, 18
domain of a function, 4

E
equation. See function; linear equation; lines
exponential function, differentiation of, 41–42
extrema, derivative tests for, 49, 50
Extreme Value Theorem, 45–46, 52, 114

F
First Derivative Test for Local Extrema, 49,

52, 114
function. See also derivative; limit; trigonometric

function
approximating with differentials, 58–61
concavity of, 51–52
continuous, 24–28, 30
critical point of, 44–45
decreasing, 48–49
definition of, 4–5
differentiable, 29–30, 114
exponential, 41–42
graph of, 5
greatest integer, 25
increasing, 48–49
logarithmic, 41–42
minimum and maximum values of, 45–46,

52–55
notation for, 4
point of inflection of, 51–52, 115
review questions on, 13, 61–62, 104

Fundamental Theorem of Calculus
definition of, 80–82
review questions on, 106

G
general antiderivative, 64, 114. See also indefinite

integral
general form of linear equation, 7, 114
geometry

prerequisite for calculus, 1
references for, 109, 110

graphing calculators, 116–120
greatest integer function, 25
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H
higher order derivatives

definition of, 39, 114
review questions on, 42

horizontal asymptote, 21
How to Ace Calculus: The Streetwise Guide (Hass,

Thompson, Adams), 110

I
implicit differentiation, 37–38, 114
increasing function, 48–49
indefinite integral. See also integration techniques

acceleration, calculating with, 73–75
definition of, 63–64, 114
distance, calculating with, 73–75
evaluating, 64–72
evaluating with graphing calculator,

119–120
Fundamental Theorem of Calculus, 80–82
notation for, 63
review questions on, 87, 106, 107
velocity, calculating with, 73–75

independent variable, 4
infinite limits, 19–20
infinite values in interval notation, 4
infinity, limits at, 21–23
inflection, point of, 51–52, 115
instantaneous acceleration, 55–56, 73–75
instantaneous rate of change, 31, 56–58, 114
instantaneous velocity, 30, 55–56, 73–75, 114
integral calculus, 1. See also definite integral;

indefinite integral
integration by parts, 68–69, 83–84, 114
integration techniques. See also definite integral;

indefinite integral
basic formulas for, 64–66
integration by parts, 68–69, 83–84, 114
substitution and change of variables, 66–67,

82–83, 115
for trigonometric integrals, 69–72, 84–86
trigonometric substitution, 71–72,

86–87, 115
intercept form, 8, 114
interval notation, 3–4
irrational numbers, 3

L
Law of Cosines, 10–11
Law of Sines, 10–11
limit

algebraic substitution for, 16
continuity and, 24–28
definition of, 14–15, 114
DNE (Does Not Exist), 15, 18
evaluating, 16–18
evaluating with graphing calculator,

116–117
form of, 14

infinite, 19–20
at infinity, 21–23
intuitive definition of, 14–15
one-sided, 18–19
patterns in, 16
review questions on, 28, 105
simple substitution for, 16
trigonometric functions in, 23–24

limits of integration, 77
linear algebra, references for, 110
linear equation

continuity of, 25
forms of, 5, 7–8
general form of, 7, 114
intercept form of, 8, 114
point-slope form of, 7, 115
review questions on, 13, 104
slope-intercept form of, 7, 115
standard form of, 7, 115

lines. See also linear equation
normal, definition of, 115
normal, equation for, 43–44
secant, slope of, 46–47
slope of, 5–6
tangent, definition of, 115
tangent, equation for, 43–44
tangent, slope of, 30, 37, 38, 46–47, 115

local extrema, derivative tests for, 49, 50
logarithmic function, differentiation of, 41–42

M
maximum value of function

evaluating with derivatives, 52–55
evaluating with Extreme Value Theorem,

45–46
review questions on, 61–62, 106

Mean Value Theorem
for definite integrals, 78, 80
for derivatives, 46–47, 115

minimum value of function
evaluating with derivatives, 52–55
evaluating with Extreme Value Theorem,

45–46
review questions on, 61–62, 106

N
normal line

definition of, 115
equation for, 43–44
review questions on, 61–62

O
one-sided limits

continuity of, 25
evaluating, 18–19

open interval, functions continuous on, 27
ordered pairs, 4–5
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P
parallel lines, 6
perpendicular lines, 6
point of inflection, 51–52, 115
point-slope form, 7, 115
polynomial function, continuity of, 25
power rule for derivatives, 32
product rule for derivatives, 32

Q
quadratic function, continuity of, 25
quotient rule for derivatives, 32

R
radians, 8
range of a function, 4
rate of change

calculating with derivatives, 31, 56–58, 114
review questions on, 61–62, 106

rational function, continuity of, 25
rational numbers, 3
real numbers, 3–4
revolution, volume of solids of, 96–100
Riemann sum, 75–77, 80, 115

S
secant

differentiation rules, 34
function for, 9
substitution in integration, 71

secant line, 46–47
second derivative. See higher order derivatives
Second Derivative Test for Local Extrema

definition of, 50, 115
and maximum/minimum problems, 52
review questions on, 106

simple substitution, 16
sine

differentiation rules, 34
function for, 9
Law of Sines, 10–11
limit properties of, 23
substitution in integration, 71
values at common angles, 12

slope
of any line, 5–6
review questions on, 13, 104
of tangent line, 30, 37, 38, 43–44,

46–47, 115
slope-intercept form, 7, 115
solids, volume of

calculating for solids of revolution, 96–100
calculating with cross sections, 93–95

standard form of linear equation, 7, 115
Story of Mathematics, The (Mankiewicz,

Stewart), 110

substitution
evaluating definite integrals with, 82–83
evaluating indefinite integrals with, 66–67

sum rule
for definite integrals, 78
for derivatives, 32

T
tangent line

definition of, 115
equation for, 43–44
review questions on, 42, 61–62, 105, 106
slope of, 30, 37, 38, 46–47, 115

tangent (trigonometric function)
differentiation rules, 34
function for, 9
substitution in integration, 71
values at common angles, 12

third derivative. See higher order derivatives
3000 Solved Problems in Calculus

(Mendelson), 110
Tour of the Calculus, A (Berlinski), 110
triangles, 11
trigonometric function

common identities of, 10
continuity of, 25
definition of, 8–9
differentiation rules for, 34–35, 40–41
forms of, 9–10
graph of, 9
integration involving, 69–72, 84–87
inverse, 40
in limits, 23–24
review questions on, 13, 42, 104, 105
values at common angles, 12

trigonometric integrals, 69–72, 84–86
trigonometric substitution, 71–72, 86–87, 115
trigonometry

prerequisite for calculus, 1
references for, 109

V
variable of integration, 77
velocity, calculating

with derivatives, 30, 55–56, 114
with indefinite integrals, 73–75
review questions on, 61–62

vertical asymptote, 19
volume, calculating

review questions on, 102–103, 107, 108
for solids of revolution, 96–100
for solids with cross sections, 93–95

W
washer method, 97–99, 115
Web sites, 2, 111–112
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