Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 **UNIX System Programming**

Max. Marks: 100

		hrs. Max. Mar								
No	te: z	Answer any FIVE full questions, selecting at least TWO questions from ea	ch part.							
٠		PART – A								
1.	a.	What are the major difference between ANSI 'C' and K and R 'C'? Explain example. What do you understand by the term feature test macros? List all the five features to								
**	b.	along with their meanings.	06 Marks)							
	С.	What are the API common characteristics? List any five values of the global variations	able errno (06 Marks)							
. 2	a.	What are the different types of files available in UNIX or POSIX system? Explain example.	n with an (08 Marks)							
•	b.; c.	What is the necessary of indoes in UNIX system V?	(05 Marks) (07 Marks)							
3	a.	1) Open II) Ascek III) chowit IV) decess.	(08 Marks)							
	b. c.	Explain how fentl API is used in file and record locking. Explain C++ fstream class can be used to define objects that represent file system.	(06 Marks) (06 Marks)							
4	a. b. c.	Explain the memory layout of C program with a neat diagram. With an example program, explain the use of setjmp and longjmp functions. Describe the UNIX Kernal support for a process. Show the related data structure.	(06 Marks) (08 Marks) (06 Marks)							
		PART - B								
5	a.	What is the difference between fork and vfork function? Explain with an exam program each.	(08 Marks)							
	b. c.	What is race condition? Write a program in C/C++ to illustrate a race condition. How UNIX operating system keeps process accounting?	(06 Marks) (06 Marks)							
6	a.	What is signals? Discuss any five POSIX defined signals. Explain how to sett handler.	(10 Marks)							
	b.	What is daemon? Briefly explain the coding rules.	(10 Marks)							
7	a. b.	communication using FIFO's.	(10 Marks)							

- Write short notes on the following:
 - Shared memory a.
 - Stream pipes
 - Client-server connection function
 - Network login.

(20 Marks)

				J				450		
USN										10CS63

Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 Compiler Design

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. List the phases of a Compiler. Describe the a analysis part and synthesis part of the compiler. (05 Marks)
 - b. Write a note on Compiler Construction tools. (05 Marks)
 - c. Draw the transition diagram for relation operators in C:<,>,<=,>=,==,!=.

(05 Marks)

d. Explain the concept of Input buffering scheme.

- (05 Marks)
- 2 a. Enlist the error recovery strategies in parser and briefly explain any three recovery strategies in parser. (06 Marks)
 - b. Construct FIRST and FOLLOW set for the following grammar:
 - $D \rightarrow T \text{ id}; D \mid \in$
 - $T \rightarrow BC \mid Struct id \{D\}$
 - $B \rightarrow int \mid float \mid char$
 - $C \rightarrow [num] C \mid \in$.

(06 Marks)

c. Write down the algorithm for construction of predictive parsing table and also construction the parsing table for the given grammar.

$$E \to T E' E' \to + T E' \in T \to id(E)$$

(08 Marks)

a. Construct LR(0) automaton using CLOSURE and GOTO functions for the grammar given below. Check whether the grammar is in SLR. Justify your answer.

$$S \rightarrow L = R \mid R$$

$$S \rightarrow R \mid id$$

$$R \rightarrow L$$
.

(08 Marks)

- b. Figure out different types of conflicts occur during shift reduce parsing. Discuss the situations in which these conflicts occur. (04 Marks)
- c. Write down the algorithms for constructing SLR parsing table and LR parsing for the given input. (08 Marks)
- 4 a. What are the limitations of SLR parser? How do you overcome these limitations? Write down the method to calculate look ahead token for canonical items. . (06 Marks)
 - b. Construct the canonical LR(1) items and the GOTO graph as well as canonical LR(1) parsing table for the following grammar $S \rightarrow (S) S \mid \in$. (10 Marks)
 - c. Build LALR automaton or parsing table for the grammar given in Q4(b). (04 Marks)

PART - B

5 a. Explain the concept of Syntax directed definition and translation. Define synthesized and inherited attributes. Mention the types of attributes used in bottom up and top down parsers.

(08 Marks)

- b. Write down the Syntax directed definition for simple calculator. Construct annotated parse tree and the Syntax tree for the input string 5 * 6 + 2 * 7. (06 Marks)
- c. Give semantic rules for declaration of data types and Syntax directed translation for the same using the given grammar.

 $T \rightarrow B C$ $B \rightarrow int \mid float <math>C \rightarrow [num] C \mid \in$.

(06 Marks)

- 6 a. Demonstrate the concept of three address code, quadruples. Translate the arithmetic expression f = a (b + c) * d into i) Quadruples ii) Triples iii) Indirect triples. (08 Marks)
 - b. Describe the Syntax directed translation for switch statement.

(08 Marks)

- c. Justify the role of control statements in programming language. Write down the Syntax directed definition for flow of control statements. (04 Marks)
- 7 a. Describe the structure of activation record with neat diagram.

(05 Marks)

- b. List out the functions and properties of memory manager, a subsystem of heap management.
 (05 Marks)
- c. Mention the steps involved in calling a function and returning from a function with the diagram.

 (05 Marks)
- d. Using the below given code for finding nth Fibonacci number, build activation tree for finding 5th Fibonacci number.

int fib (int n)

{if (n < 2) return 1; else return (fib (n-1) + fib (n-2));}

(05 Marks)

8 a. For the following program

For I = 1 to 10 do

For J = 1 to 10 do

A[I, J] = 0

For I = 1 to 10 do

A = [I, I] = 1.

(10 Marks)

b. Explain the concept of dead code elimination and finding local common sub expressions with examples. (10 Marks)

(06 Marks)

USN

Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 Computers Graphics and Visualization

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART - A

- 1 a. What is Computer Graphics? List and explain the applications of the same. (06 Marks)
 - b. Discuss the physical Imaging Systems and show the process of Image formation with pinhole camera. (06 Marks)
 - c. With a neat sketch, discuss the major steps in Graphics Pipeline Architecture. (08 Marks)
- 2 a. List and explain the major groups of OpenGL API functions along with an example for each.
 (07 Marks)
 - b. Discuss the subtractive and Additive color models. (05 Marks)
 - c. What is Sierpinski Gasket? Write an OpenGL program for 3D gasket. (08 Marks)
- 3 a. Discuss the logical classification of input devices with their interaction types. (06 Marks)
- b. What are input modes? Explain the event driven input for keyboard and window events.
 - c. With a neat sketch, explain the display processor architecture along with the display lists creation and execution. (08 Marks)
- 4 a. What are scalar, points and vectors? Explain the procedure for converting a world object frame into camera or eye frame. (10 Marks)
 - b. What do you mean by affine Transformation? Discuss the basic 2D transformations such as Rotation, Scaling and Translation along with their matrix representations. (10 Marks)

PART - B

- 5 a. Why do we require homogeneous coordinate system? Derive the composite transformation matrix for rotation about a fixed point (x_f, y_f) by an angle θ . (06 Marks)
 - b. Explain the 3D rotations with their representations in matrix form. Show how rotation about an arbitrary axis is done. (06 Marks)
 - c. How OpenGL does support transformations. Write an OpenGL program to rotate a cube about x and y axes. Use mouse buttons to select the axis of rotation. (08 Marks)
- 6 a. With a neat diagram, explain the different types of views that are employed in computer graphics systems. (10 Marks)
 - b. Derive the equations for perspective and parallel projections. Represent the same in matrix form. (10 Marks)
- 7 a. What are light sources? Explain the phong lighting model. (08 Marks)
 - b. Explain any two methods for shading polygons. (06 Marks)
 - c. How is sphere approximated? Explain.
- 8 a. Explain the Cohen-Sutherland line clipping algorithm with a neat pseudo code. (10 Marks)
 - b. Digitize the line from (5, 8) to (10, 10) using the DDA algorithm. (05 Marks)
 - c. Write a note on Z-buffer algorithm for hidden surface removal. (05 Marks)