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ABSTRACT

Manufacturing industry is at jts most exciting times with digital revolution. Man, machine, material
and tools have to Co-ordinate with €ach other seamlessly to maximize efficiency in a mass
production environment. Various theoretical models are in practice to Measure efficiency of
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‘equipment, gauging, services, maintenance, etc. While all the theoretical models are quite accurate Industry 4.0; cyber physical

in their approach to Measdring the activities, they laggi

» : ng behind in the process of data collection.
The data collection methods are manual and Not accurate, In this Paper, a model is arrived at to
collect live data of Production, rejection and idle time in a machine tool with the help of electronic
sensors, Effort is made to enhance Operator engagement by compelling the operator to feed data

systems; production data
monitoring system CNC
machine; overall equipment
efficiency

so that the data collection becomes closed loop. As all data are digital in nature, meaningful

information is sent to the management throtigh an Internet of Things platform. This paper focuses
on the digital data flow from the shop floor to Management through the Cyber Physical System,

enabling smart manufacturing in a mass Production environment. The proposed model has been

impl'erhe,nted and validated in 3 mass production set-up, engaged in manufacturing plug shell

components,

1. Introduction

Manufacturing activities are highly critical areas of
a manufacturing enterprise. In the entire valye chain,
effort is required to make manufacturing activities easy
and simple. Measurement results of any activity are the
major source of information to identify the lagging
areas. The activity that is not measured in quantifiable
form is not improvable. Measurement of an activity in
a quantifiable form brings focus. It makes the people
involved aware of their position and status in the activ-
ity’s value chain by bringing them accountability.

In the proposed method, a portion of the measure-
ment results is calculated locally in a Programmable
Logic Controller (PLC). The measured results are dis-
played near each machining system through a Human
Machine Interface (HMI) system. Suitable electronic sen-
Sors are provided at strategic locations of the machining
systems to track production data, rejection data, rejec-
tion reasons, idle time data, idle time reasons, perfor-
mance shortfall reasons, etc. This shows the live data of
the production, rejection and idle time to the operator,
This develops accountability in the operator and

improves involvement. Employee involvement s
a powerful tool for enhancing operational efficiency.

The data hence collected and partially treated in the
local PLC are sent to the Cyber Physical System (CPS),
where several such data from various machining sys-
tems are gathered and converted into meaningful and
useful data for the Management. The required hard-
ware and software have been developed which are
contemporary to the new era of Industry 4.0.

With the above efforts, the proposed monitoring
method collects live and active data from the shop
floor and allows the Management, having decision
support capabilities, to make accurate decisions. An
old and conventional data collection model enables
passive data and results in reactive decisions, whereas
in the new digital era, live data and active data enable
the decision maker to take proactive decisions.
Proactive decisions based on active data are bound
to result in efficient manufacturing operations.

The structure of the Paper is designed as follows:
Section 2 carries literature review, covering technol-
0gy components used for live monitoring of shop
floor data and the importance of digitalization to
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improve operator involvement and accountability.
Section 3 defines the problems faced by the industry,
and the motivation to carry out this work. Section 4
takes the reader through the Hardware and Software
architecture of production data monitoring system
and connectivity with the cloud server. The whole
cycle has been tested and validated through an
Indian Small and Medium Enterprise (SME) and the
results are annexed in Section 5. The scope of this
paper is limited to the production data collection and
its cloud connects. However, the researcher intends to
use the proposed model to other areas of manufac-
turing operations viz. gauging, maintenance, process
control, energy monitoring, etc, in the future.
A roadmap for future work is tabled in Section 6,
correlating the virtual print of the physical factory to
theoretical models. Section 7 concludes the paper
followed by references.

2. Literature review

This section covers the key enabling technologies
used in the proposed production monitoring systems.
Cyber Physical Systems and Cyber Physical
Production Systems, Internet of Things and Industrial
Internet of Things, various protocols and methods
followed for live machine monitoring in the industry
and significance of digitalization to improve the
operator engagement are reviewed.

2.1. Cyber Physical Systems (CPS) and Cyber
Physical Production Systems (CPPS)

Manufacturing industry is seeing a new era of
Industry 4.0. In the past, the manufacturing industry
passed through the first, the second and the third
revolutions, being mechanical production facilities,
electrically operated mass production machines,
automation using electronics and information
science, respectively (Monostori 2014). The 4th revo-
lution is all about reducing the gap between physical
systems like machines, factories, people, manufac-
turing activities and the virtual activities carried out
in computers, automation to form altogether a new
way of manufacturing with minimum human inter-
vention. The introduction of the Cyber Physical
System can be envisaged as the starting point of
the 4th industrial revolution (Stock and Seliger 2016).

Cyber Physical Systems monitor the physical sys-
tems and processes to draw a virtual copy of the
physical system. The virtual copy of the physical sys-
tem produced has enormous data whether it is
required or not. This is called Bigdata. This data con-
tains several useful and unuseful data which have to
be processed through algorithms and analytics to
articulate meaningful information that is of use.
Such articulated data can throw light on several visi-
ble and invisible issues of the physical systems. This is
how the cyber system creates a virtual print of the
physical systems, and through analytics and algo-
rithms effective decisions are made (Mourtzis, Milas,
and Vlachou 2018; Alcacer and Cruz-Machado 2019).

Electronic sensors sense the data and connect
these digital data through networks to the cloud
which will compute and analyze the data in cyber
systems to create a meaningful content having
a correlation with the data, which can be shared in
a personalized form to a community which will finally
create a value in this collaboration. Physical systems in
a virtual landscape with contents that are meaningful
to a community will make the ‘issues’ obvious and
visible. Once the issues become obvious and visible,
solutions find their way. In brief, CPS can be mathe-
matically represented as the function of Sense,
Connect, Content and Share.

Cyber Physical System
= f (Sense, Connect, Content, Share)

In general, there are a few key technology components
of CPS which form a strong basis for Industry 4.0 plat-
form. They are, Bigdata, Cloud computing, Internet of
Things, Simulation, Autonomous robots, Augmented
reality, Cyber Security, System Integration and Additive
manufacturing. One or more technology components
are augmented together to form an ecosystem which is
specific to manufacturing, to evolve the specific subset
of Cyber Physical System called Cyber Physical
Production System (Monostori 2014; Stock and Seliger
2016; Fatorachian and Kazemi 2018).

5¢ architecture for implementation of CPS (Lee,
Bagheri, and Kao 2015) is discussed on multiple occa-
sions. 5C architecture specifies general guidelines for
implementation of CPS for any given application. It
explains the salient features of an ideal Cyber Physical
System implementation. If these steps are taken care of
while designing any Cyber Physical System or Cyber
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Physical Production System, then there are less
chances of committing any mistake in the system
design. This is generic in nature and is adaptable to
any functional model so as to reach highest maturity
levels of Industry 4.0 model. 5¢ architecture explains
about Connect, Conversion, Cyber, Cognition and
Configuration layers, which systematically unfoid the
€co-system for CPS implementation (Rossit, Tohmé,
and Frutos 2019),

2.2. Internet of Things (loT) and Industrial Internet
of Things (lloT)

Internet of Things is an important and primary technol-
0gy component of Cyber Physical System (Mourtzis,
Milas, and Vlachou 2018). A Physical device embedded
with an electronic sensor which can connect, collect
and exchange data with the world of computer sys-
tems, facilitating improvement of efficiency and eco-
nomic development can be referred to as loT-enabled
devices. The expectation of the virtual world is that
every ‘thing’ is made capable to connect to ‘Internet’
so that the ‘Things’ can speak to each other or such
similar loT-enabled devices. This will reduce human
intervention in the functioning of the devices. This
will facilitate more predictive behaviors of the devices
and they speak for themselves, resulting in better effi-
ciencies of the operations. Ever since the industrial age
started, manufacturing industry has been busy with
innovations within the arena of manufacturing opera-
tions. However, during the third industrial revolution,
computers and the communication systems influenced
the manufacturing systems to a large extent to go
digital. This digital revolution encouraged researchers
and industries to empower various manufacturing
devices, inspection devices, measurement devices
and machine elements to get equipped with IoT
(Zhong et al. 2017). This Created a subset of loT called
lloT: Industrial Internet of Things.

2.3. Connectivity with the intra and internets

Interconnectivity is the key factor of the Cyber Physical
Production Systems. It is a challenge to make CNC
Machines lloT ready, as many of them are invariably
very old legacy machines, Communication is difficult
with most of the communication protocols available in
the present day. But these old legacy machines are
functioning machines and replacing them with the

New generation machines is not economically feasible.
Manufacturing industry needs significant research in
the integration of physical facilities using information
and communication technologies (ICT), to gain insights
into accurate and real-time information on the produc-
tion processes (José Alvares, Oliveira, and Ferreira 2018).

Most of the machines are equipped with RS 232 serial
port for data communication. Data can be sent out
through the CNC machine’s RS232 serial port whenever
there is a cycle start/end, spindle on/off, etc. Machine’s
RS232 serial port is connected to 3 server via serial-to-
LAN converters, over wired or Wi-Fi network. Data is sent
to the server, reports are visible on PCs on the local
network. However, it calls for IT infrastructure like LAN
and cables, Many old generation machines may not
have Macros enabled in the CNC System. Next-
generation machines have Ethernet connectivity along
with RS232. Ethernet port is connected to a server via
serial-LAN converters, over wired or Wi-Fi network on
shop floor. Data is sent to the server, reports are visible
on PCs on the local network. MTConnect is a data
exchange protocol that allows various devices of man-
ufacturing systems to share data seamlessly in
a common format enabling very good interoperability
(Vijayaraghavan et al. 2008). Sunny, Liu, and Shahriar
(2017), has developed an agent-adapter-based commu-
nication method for exchanging manufacturing services
over the internet in the cyber physical manufacturing
cloud based on MTConnect and HTTP. In Siemens con-
troller machines, data acquisition is realized based on
OPC specification (Wang et al. 2016). But this is specific
to Siemens controller machines. Recent studies show
that the status of signals at the machine’s relays is
monitored through a sensor that tracks digital signal
lines from the CNC machine’s PLC. These data can be
sent directly to cloud using TCP/IP protocols using
Mobile network. José Alvares, Oliveira, and Ferreira
(2018) have developed a framework in the form of an
internet-based client-server model, for monitoring and
teleoperation of CNC machine tools, which has attri-
butes compliant with Industry 4.0.

2.4. Shop floor monitoring system

There is a hunt for live and active data in the new era
of manufacturing. Passive data have no prominence
in the digital life. Shop floor data collection and usage
has happened mostly in the machine maintenance
area. Probably it is an easy winner for data sensing,
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connecting, collecting and sharing (Lee et al. 2013).
Predictive maintenance systems are showing trends
of next-generation production systems. The machine
elements are made loT enabled and are able to sense
the fatigue factors and the ageing of the elements by
appropriately calibrating the power consumption and
precisely estimating expected remaining life span of
the elements. The systems are able to self-aware, self-
compare and self-configure to maintain themselves
and trigger the alarms well before their expected life
comes to an end. Thus, preventive maintenance sche-
dules can be affected and the breakdowns can be
eliminated (Lee, Kao, and Yang 2014; Lee, Bagheri,
and Kao 2015; Bagheri et al. 2015).

These predictive maintenance capabilities are leading
to a new phase of the service industry. Generally, the
service industry suffers from lack of data on the causes
of failure. They will get to know that the machine has
failed, without any clue on the reasons for failure. The
advent of CPS has equipped the service industry with
new technological capabilities through loT-enabled
devices, so as to know precisely the cause of failure
(Herterich, Uebernickel, and Brenner 2015; Jay Lee et
al, 2015). This will change the perspective of the service
industry by making Predictive Maintenance more feasi-
ble. Spindle current consumption and Axes current con-
sumption monitoring are calibrated to get a feel of the
health of the machining process (Mourtzis, Milas, and
Vlachou 2018). Several researches have happened in the
area of Design of industrial elements and the manufac-
ture of them using CAD/CAM/CAE/PLM software. They
are in their smart stage. The need for Industry 4.0 era is
that the design solutions and manufacturing solutions
have to be smarter than their smart days. Smarter means
connectivity with larger area in the value chain through
enabled loT (Ivezic and Srinivasan 2016). Once almost all
the activities get connected to each other in a factory,
it's time to connect multiple factories, multiple vendors
for efficient co-ordination (Weyer et al. 2015).

The literature review evidences the progress in pre-
dictive maintenance, servicing of machines, machining
parameter monitoring, engineering services, smart fac-
tory environment, etc. An important area of manufac-
turing operation is production data monitoring. Some
efforts are made to monitor real-time production data
monitoring in (Staniszewski, Legutko, and Raos 2014;
Prasetyo, Sugiarto, and Rosyidi 2018). Caggiano (2018)
proposed a three-layered approach for cloud-based
manufacturing process monitoring. Physical resources

like machines and accessories equipped with multiple
sensors are treated as the first layer. Local servers with
database servers are treated as the second layer
wherein the data are processed partially or fully. Both
first and second layers are within the factory premises.
With the cloud server as the third layer, the whole
model gets eligibility to connect multiple machines
from multiple geographical locations and matches
very closely the Industry 4.0 framework.

2.5. Significance of operator engagement

Employee involvement is a powerful tool for enhancing
operational efficiency. Mohanty and Choudhury (2018)
carried out an extensive review which reveals that both
productivity and employee engagement drivers are clo-
sely linked and have impact on each other. Markos and
Sridevi (2010), in his employee engagement strategies,
envisage that two-way communication between the
management and the employee builds self-efficiency
and commitment towards the work. Further, Osborne
and Hammoud (2017) strongly recommend that the
leadership team should be creative enough to find
innovative ways to improve communication between
the management and employees.

Hannola et al. (2018) presented a conceptual frame-
work opening that empowering production workers
with digitally facilitated knowledge presents that the
skills, flexibility and efficiency of the shop floor workers
are decisive factors in ensuring accurate product speci-
fications, meeting deadlines and keeping the machines
running, in order to meet global market competition
and increasing diversity of customer demands. To sub-
stantiate the above, Orellana and Torres (2019), proves
through a case study that the digital transition of
a factory with legacy machines to a smart factory
reduces considerable human errors and records
improvement in the key performance indicators like
quality, energy consumption and maintenance.

3. Problem description and motivation

The Literature review reveals that in the current pro-
duction environments, increasing of knowledge build-
ing, decision-making skills and social interaction
among team members on the shop floor is a major
topic which is not yet supported by digital technolo-
gies. To stimulate interaction across workers, teams
and production machines, new modes using digital
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technologies wil| be required. The transformationa|
ability of digital technologies to knowledge—intensive
production environments js €Xpected to be one of the

ing is mostly manual in nature (Singh, Mahanty, and
Tiwari 2018), Digitalization has penetrated deep into
the general public, but the Same to penetrate into the

research.

The current method of data collection in manufac-
turing machine shops is Manual, inaccurate and open
loop in nature, Typically, the data collection happens
in the following manner:

3.1. The whole process is manuaql

to calculate the utilization, performance and quality
parameters and calculate the OEE the end of the shift.

3.2. The data collected coujd be inaccurate

The operator is éxpected to enter the production
numbers, rejection numbers and idle time data at
the end of each hour. But practically, it may not be
possible due to varioys reasons like the operator’s
hands are oily, blank format is not available and pen
not available. He tends to write these data at the end
of the shift or at his convenience. This can lead to
érroneous data entry. Though the reasons look small
or insignificant, the amount of error it generates at
the end of the day is quite significant. The compila-
tion of these data is also time consuming and can
lead to errors.

3.3. Data Processing js open-loop in nature

Spreadsheets, The compilation happens remotely by
a supervisor and jt May not reach back to the operator
or it may reach him on the next day. This makes the
whole system open loop, creating a significant mis-
match between the machine and the Operator. The
Operator, who is an important stakeholder in the
whole production process, is not ‘aware’ of his own
performance, Not knowing one’s own performance wil|
lead to lower—than-expected involvement, Jess knowi-
edge transfer, finally resulting in reduced productivity.

3.4. Isolated from digital revolution

The data is in the handwritten form, Manual interven-
tion is required to compile the data of various
machines and consolidate them on a spread sheet,

tion is essential in the present day so that the actions
are in tune with the present-day speed. The Current
method does not support such a spirit.

These are the issues which need the support of
digitalization to make the process free of manual
intervention, accurate, closed loop and cloud enabled
so that the data collected are reliable, and meaningful
objectives and actions can be derjved out of the same.

4. Shop floor to cloud connect production data
monitoring system

This section explains the theoretical model of OEE,
development of hardware architecture and algorithm
used for shop floor to cloud connect production data
monitoring system.

4.1. The theoretical model of OEE (Overall
Equipment Efficiency)

Every industry will have some or other method of
theoretical models and key performance indicators for
evaluation of performance. In case of a manufacturing
industry, this theoretical mode| s called Overall
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Equipment Efficiency (OEE). In a production shop, there
could be several issues such as human behaviors,
machine performance, accuracy and precision, produc-
tivity, quality defects, loss of productive time, measure-
ment errors, energy consumption, probability of failures,
preventive maintenance cycles, operator fatigue, mate-
rial non-availability and so on. Significant amount of
activities are captured in the theoretical model of OEE
(Nakajima 1988).

In the proposed work, OEE is calculated by using
production and rejection data from shop floor CNC
machines. With the Production part count, Rejection
part count and Machine idle data, the OEE is calculated
as follows:

OEE = Availability x Performance x Quality

Availability gives unplanned machine downtime
losses. It is equal to the ratio of actual machine run-
ning time to total available time. Planned downtime
such as lunch breaks and tea breaks do not affect the
OEE evaluation.

Availability (%) =
((Total available time — Machine idle time) /
(Total available time)) x 100

Performance gives the speed loss. It is equal to the
ratio of the number of components produced over
the measurement period (shift, day, etc.) to the theo-
retical maximum number of components that could

SHOP FLOOR

CNC System

Data Monitoring
System (HMI)
Opsrator Details

__ Production Data
Rejection Data

Machine Availability

Part Count

o

Data
Acquisition
System (DAQ)

Rejection Bin

- Rejection Count

Machining System 1

be produced if the machine runs at its maximum
possible speed.

Performance (%)
= ((Total part count / Target part count) x 100

Quality is the ratio of good parts to total parts
produced.

Quality (%) =
((Total part count — rejection count)/
Total part count)x 100

The complete Data Acquisition System (DAQ) and
analysis to calculate OEE are described in the flow
chart shown in Figure 2.

4.2. Hardware architecture

The proposed CNC machine’s production data monitor-
ing system is described in the architecture diagram as
shown in Figure 1. The CNC machine tool is the produc-
tion system. The production system can be with any
CNC system which is a globally available brand like
Fanuc, Siemens, Fagor, Mitsubishi, etc. Though the
recent generation machines are equipped with commu-
nication ports for communicating with the CNC System,
the proposed work uses independent electronic sensors
used in production output locations. By this strategy, the
intervention with the CNC System is eliminated. This
simplifies the system integration which requires expert
interventions. The end of the CNC program cycle will be

MANAGEMENT

Mlachiuiag Sy

Figure 1. Hardware architecture of shop floor to cloud connect production data monitoring system.
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Initialize Part Counter = 0
Rejection Counter = ¢
Idle Time Counter = g

Select Part Name, Part

Number; Operator ID

Report Rejection
reason

Set Shift Target Count

Restart Idle Timor

Increment Part
Counter

Is shift end?

Idle Time Counter =
Idle Time Counter +
Idle Time

Enter Machine
downtime reason

Yes

¥
Increment Rejection
Counter

Actual Machine Time =
Total Available Time - ldle

—

Time Counter

Availability = Actyal
Machine Time / Total
Available Time

Performance = Part
Counter / Target Count

Good Parts = Part Counter
- Rejection Counter

Quality = Good Parts / Part
Counter

LO’EE = Availability x Performance x Quality ’

Figure 2. Workflow of data acquisition and OEE calcuylation,

sensed by the sensor and it will send the signal to the
data acquisition system by incrementing the production
quantity. Similarly, electronic sensors are used in the
entry of the one-way red rejection bin which monitors
the entry of the rejected component into the bin. Any
entry of the component to the red bin will be sensed by

the sensor and the rejection count will be incremented
by one. The algorithms are built into the DAQ to sense
no activity and the same is recorded as idle time. This
arrangement enables real-time data collection of pro-
duction, rejection and idle time in a CNC Production
Machine. The hardware contains sensors fitted into the
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CNC machine and the rejection bin. It also includes the
PLC and an loT-enabled HMI. Computational capabilities
of PLC and the loT capabilities of the HMI are used
effectively to sense, analyze, display and connect to
cloud, using the above explained architecture. The sev-
eral data from various CNC machines are consolidated
and converted into meaningful and useful forms by
using intelligent data management systems in cyber-
space and information is fed back to management.

4.2.1. Data Acquisition System (DAQ)
The DAQ in the proposed hardware architecture con-
sists of electronic proximity sensors and PLC. This
electronic proximity sensor contains a transistor out-
put and is polarity sensitive. A source type (PNP)
proximity sensor can only interface with sink type
PLC input channel and vice-versa. The non-invasive
inductive type proximity sensors are used to detect
the presence of nearby metallic objects without any
contact. So, the current sourcing (PNP) inductive
proximity sensors are selected and placed in appro-
priate positions to detect the production parts and
rejection parts (Kuphaldt 2008; Lamb 2013).

Programmable Logic Controller (PLC) is an industrial
digital computer used for many different types of pro-
cess control applications. They are fast and designed for
the rugged industrial environment. The PLC consists of
CPU, Memory, Input/Output, Power supply unit and
communication interfaces. Programs are written on the
computer and downloaded into the PLC using its com-
munication interface. These loaded programs are stored
in the non-volatile memory of the PLC. In the proposed
work, ABB's AC500-eCo PM554-ETH CPU is used for data
computations. The ABB automation builder develop-
ment tool and CodeSys automation software is used
for software development. The software is developed
using the Ladder Diagram programming Language. This
application software so developed is downloaded into
the PC using MODBUS TCP/IP network protocol.

Figure 2 explains the developed algorithm, through
a flow chart, the various steps involved, from the data
collection to analysis to calculate the OEE, by taking into
account the factors of idle time, performance and
quality.

The PLC receives signal from the sensor whenever
a part is produced from the CNC machine. This signal is
given to the part counter to get the total part count
produced per shift. Similarly, the part rejected, due to
various reasons, is put into a rejection bin to avoid

mixing of the good parts with the bad ones. Each time
when the part is rejected, the operator is made to enter
the rejection reason in the HMI and also the sensor will
give a signal to the PLC and the rejection count per shift
is calculated in the rejection counter. The data analysis
algorithm is developed in the PLC to give live informa-
tion about the total part produced, total parts rejected,
percentage of target count achieved, by taking the data
collected from the sensor and the target count input
from the HMI by the supervisor.

The machine downtime called idle time calculation
algorithm is developed by using the retentive timers
of PLC. By tracking the part production time, the
unplanned machine downtime is calculated and
each time when the machine is down more than the
predefined time, the operator is made to enter the
reason for downtime through HMI and also the timer
will calculate the accumulated time.

4.2.2. Data monitoring system (HMI)
In the proposed work, the data monitoring system is
built using Human Machine Interface (HMI). An HMI is
a user interface or dashboard that connects an opera-
tor to a machine for an industrial system. In industrial
applications, HMI is used to display the data visually,
to monitor machine input and output, to track pro-
duction time, trends and tags, etc. HMI can replace
hundreds of push buttons, selectors, lights and so on.
EXOR eSmart07M loT-enabled HMI is used in the
proposed work for data monitoring and connecting
to cloud. This has a 7-inch TFT display and an ARM
Cortex-A8 CPU. The communication between PLC and
HMl is carried out by using TCP/IP protocol (Exor 2019).
In the proposed work the supervisors are given
control to enter the Component name, Part number,
Operator ID and Target count per shift. Target part
count is fed to the DAQ from the HMI. The outputs of
DAQ such as total part count, rejection count, percen-
tage target achievement, OEE and trends are displayed
on the HMI and can be monitored in real time. At any
given point of time, the production rate with reference
to the target output can be checked by the operator or
the supervisor or the management on the HMI screen.

4.2.3. Connectivity with the cloud server

In the proposed work, EXOR eSmart07M loT-enabled
HMI is used to establish a connection between the
shop floor and the cloud server. The HMI cloud enabler
application is used to configure HMI and to connect the
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PLC :192.162.2.09
HMI: 192.168.2.10
DSL: 192.168.2.x

PLC / End Point

HMI / Gateway

DSL/3G Router

Ethernet Switch

Figure 3. Shop floor to cloud connect framework,

Corvina cloud. Corvina cloud s a software platform
design for connecting users and machines through
a global network like the internet. Corvina cloud s
a VPN-based solution that allows to remotely manage
divers remote devices connected to a centralized ser-
ver through gateways (Corvina Cloud 2019). Corvina
cloud app is used to monitor the real-time data on
a laptop, a mobile or a tab. The shop floor to cloud
connection is established as shown in Figure 3.

5. Case study results

The developed production data monitoring system
was implemented in an Indian SME (Small and
Medium Enterprise) which is engaged in mass produc-
tion of plug shell components. Plug Shells are the steel
housing of spark plugs inside which the electrode is
housed and is bound by a ceramic insulator. As spark
plugs are used in automotive OEMs and also in the
spare market, the requirement js large in number. The
Indian SME which is engaged in manufacturing of
these parts produces 10,000 components per day
using four CNC Machines. The CNC Machines are
equipped with Siemens 802D CNC System. The Cycle
time per component is 29 seconds. The operator js
engaged most of the time in Component inspection
and filling up the inspection reports. It was observed
that the operator missed capturing the correct data

about production, idle time and the rejection. It was
an invitation to apply the live Production data monitor-
ing system in the subject’s production set-up. The
above live data monitoring system was applied in the
machining set-up, which systematically solved the
issues faced by the conventional data collection
method explained in Section 3,

The proposed work focused on how to collect data
automatically without the intervention of the opera-
tor and the supervisor. The work contributed to the
processing of the data on real-time basis. It also made
the operator ‘Aware’ of his own performance at any
point of time during the shift through a digitally com-
piled summary. The work addressed how to transfer
these real-time data to the management in
a compiled manner using the lloT platform, The CNC
machine with cloud-based live production data mon-
itoring system implementation s shown in Figure 4.

Eventually, the proposed method became auto-
matic, accurate and closed loop in nature through
the support of the digitalization. The results observed
after the implementation are explained in the follow-
ing sections:

5.1. The whole process became automatic

The manufacturing shop removed all the manual for-
mats and the data collection became completely
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Figure 5. Manual and auto-generated production report.

automatic by use of sensors. Minimum manual inter-
vention was required by the supervisor to set the shift
target, operator name, component name, etc. The
operator would only enter the rejection reason and
the idle time reason. The OEE, which considers avail-
ability, quality and performance parameters, is auto-
matically calculated. The manual and auto-generated
production reports are shown in Figure 5.

This type of automatic data collection without the
intervention of the operator resulted in the saving of
operation time. Prior to the implementation of this
proposed method, management had allotted the last
30 min of the shift for OEE calculations, writing rejec-
tion report, production report, idle time report, etc. As
the data capturing became automatic, the time saved
was found to be 30 min per shift. This is taken as the
average time saved over a sampling period of 25
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working days on 4 machines. Based on this, the net
improvement in the production clocked is 4.17% per
machine. The detailed calculations are shown in
Table 1.

5.2. The data collected are accurate

Data collected are very accurate due to the following
reasons:;

e The shift production count is not dependent on
the part count feature of the CNC system. It is
incremented at the end of each cycle after ensur-
ing that the component is produced, by captur-
ing the signal from the electronic sensor.

* The rejection is accounted for accurately, as the
part is dropped into a sensor-enabled one-way
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Table 1. Increase in production due to implementation of auto-
matic report generation,

Description Values
Time saved per shift by elimination of writing of the 30 min
physical report
Number of shifts per day 2
Time saved per day 60 min
Number of working days in a month 25
Time saved per month 1500 min
Cycle time per component/part 0.48 min
Total number of extra parts produced per month 3103 Parts

OEE applied 85%

Actual increase in production per months 2638 Parts
Current production rate per day 2979 Parts
Total number of Parts produced per month 74,483 Parts
Total number of parts produced after QEE 63,310 Parts
Percentage increase in production due to automatic 4.17%

report generation,

rejection bin. Poka-yoke are built into the system
to ensure that the system does not start unless
the rejection reason is entered in the HMI
through an €asy way of reason selection method.
e If no machining activity is felt by the sensor
beyond a certain specified time, then the system
locks and it treats such time as idle time. The
system does not allow proceeding further unless
the idle time reason is selected through the HML

The production, rejection and idle time data captured
along with rejection and idle time data entry screen
are shown in Figure 6.

Accuracy of data capture improved considerably as
the different types of idle time are authentically cap-
tured on the above screen. Probable causes of jdle time
and probable causes of rejection are already built into
the system, enabling a broad framework to the opera-
tors. This helped the data flow in a structured manner,
which improved operator involvement through the
data entry into the HM|, It was not possible for the

Figure 6. Production, rejection and idle time data.

operator to fill up the data unless he knew the type
of defect enlisted in the HMI screen. The expected time
saving, after a study of about 6 months of implementa-
tion, is found to be an average of 20 min per shift,
subject to standard Operating conditions. The calcula-
tion of increase in production due to the accuracy in
the idle time computation is indicated in Table 2.

5.3. Data processing is closed loop in nature

The data hence collected are processed instantaneously
through a local server. The operator was made aware of
his own performance against the set target, which was
made visible to him through a digital display. Other
relevant information, like Operator photo, production
target per shift, production/rejection count at any
point of time, was shown in a graphical display form.
These processed data of the operator's own perfor-
mance will create 3 ‘Self-Aware’ in the production
worker and will have 3 positive impact in the form of
improved OEE. In the given case, the operator engaged
in the work with more enthusiasm which increased his
accountability and involvement. The operator Self-
Aware screen is shown in Figure 7.

As a part of validation of the results, 3 operators from
the team were assessed by their supervisors on 10
different working parameters related to technical
aspects, motivational factors and €ngagement issues.
These 10 parameters were rated on a scale of 1-5, one
being the least skill and 5 being the highest leve| of skill
and 0 being not applicable. The results were further
validated by demonstration of the specified tasks and
the method study by a cross-functional team. It was
collectively felt by the operators and the supervisors,
after this exercise, that the operators are more confident
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Table 2. Increase in production due to accuracy in the idle time
computation.

Description Values
Time saved per shift by system integration of idle time 20 min
tracking

Number of shifts per day 2
Time saved per day 40 min
Number of working days in a month 25
Time saved per month 1000 min
Cycle time per component/part 0.48 min
Total number of extra parts produced per month 2069 Parts

OEE applied 85%

Actual increase in production per months 1759 Parts
Current production rate per day 2979 Parts
Total number of parts produced per month 74,483
Parts
Total number of parts produced after OEE 63,310
Parts
Percentage increase in production due to accuracy inthe idle ~ 2.78%

time computation

Figure 7. Self-aware screen.

and more oriented towards their targets on the quality
and quantity front. The survey report is tabulated in
Table 3.

The survey has indicated that there are positive
improvements in SI. No.1, 2, 3, 4, 6, 8, 9, 10. New
learnings happened in SI. No.5 and certain routine
works, like SI. No.7, are eliminated from the day-to-

day work and transferred to the new system.
Improvement in major working areas and elimination
of manual routine work has resulted in positive
improvement in the results.

5.4. Datq is cloud enabled

As the information flow of the operator and the
machining systems’ performance is transmitted to
the management through cloud, it makes the com-
plete process closed loop. Directions for the produc-
tion system can be given remotely. Due to cloud-
enabled solutions, the results can be compiled for
any number of machining systems. The compiled
data can be seen on Laptops, mobile phones, smart
Televisions, etc. at any geographical location as
shown in Figures 8 and 9. It forms a perfect eco-
system for implementation for Industry 4.0.

The stoppages are escalated to the authorities con-
cerned, irrespective of the geographical locations,
through multiple modes of communication. The sta-
tus will show ‘Red Alert’ in case of any stoppage. The
stoppage reasons, if known to the operator, can feed
the same in the idle time report card. If not, they get
autonomously escalated to the next level. This is pos-
sible as the whole system is cloud enabled. The esca-
lation of the machine status through cloud connect is
shown in Figure 10.

For instance, in Figure 10, it is evident that out of 4
machines, only 3 are working and one machine has
stopped working. This signals escalations to the
teams concerned to take immediate actions. Twenty-
eight hours of production time was recorded to have
been saved, over a study period of a month’s dura-
tion, due to the quick attending to of break downs or
stoppages, by the supervisor. Management interven-
tions also became more prominent as the issues

Table 3. Results of the assessment of operators before and after implementation.

Operator-1 Operator-2 Operator-3
Sl. No. Parameters Before After Before After Before After
1 Ability to check critical parameters 3 4 2 4 3 4
2 Availability of time for deburring 2 5 3 5 2 5
3 Ability to identify variants in the component 4 5 3 5 4 5
4 Ability to identify the types of defects 3 5 4 5 3 5
5 Ability to operate HMI Screen 0 5 0 4 0 4
6 Ability to give tool offsets 2 4 3 3 2 4
7 Ability to carry out OEE computation 3 0 4 0 3 0
8 Attitude towards achieving production targets 3 5 3 4 3 5
9 Competitive spirit between operators 2 5 2 5 2 5
10 Confidence level of the operator 2 5 3 4 2 5
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Figure 9. User interface for real-time cloud connect of production data,

started showing up on the screen, as and when they
passed beyond the stipulated time frames set by the
organization. An increase in production to the tune of
5.15% was recorded due to the prompt and timely
attention to the issues, as indicated in Table 4.

The quantified savings from various sections of
improvements are shown in Figure 11.

A summary of the features of the proposed work
is drawn in Table 5 which tabulates the character-
istics of the previous works with the proposed new
methodology.

The validation of the above characteristics was car-
ried out in the case study and it is observed that
Competitive spirit between the Operators increased.
The digital environment created excitement in the
workplace. The management and the operators shared
the common data, which enhanced transparency.
These factors improved the accountability of the opera-
tor. An incremental growth of about 12% in production
quantity and OEE was recorded. The results over the
period of implementation are shown in Figure 12 with
the milestones achieved by the implementation.
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Figure 10. The escalation of the machine status through cloud connect.

Table 4. Increase in production due to the prompt attending to
of the issues.

Description Values
Time saved in a month 28 h
Cycle Time per component 0.48 min
Total number of extra parts produced per month 3476 Parts

OEE applied 85%

Actual increase in production per month 2954 Parts

Current production rate per day 2700 Parts

Total number of parts produced per month 67,500 Parts

Total Number of parts produced after OEE 57,375 Parts

Percentage increase in production due to the prompt 5.15%
attending to of the issues

6. Scope of the present work and scope for
future expansion

The scope of the present work is limited to live pro-
duction data monitoring and management decisions
supported by the information provided by the analy-
tics. The developed model can be used in other areas
of manufacturing like Quality, Maintenance, Machine

Performance, Inspection, Instrument performance,
Energy consumption, etc. All functional areas of the
physical factory can be brought under the umbrella of
the proposed model. Table 6 annexes the functions
and their attributes for future work.

Future work can lay stress on creating similar struc-
tures in other functional areas. Closed loop inspection
systems (Prathima, Sudha, and Suresh 2015) and
Predictive maintenance systems are the major focus
areas for researchers in the future. When all the above
functions are integrated, the manufacturing industry can
reach very good maturity levels of Industry 4.0 scenario.

7. Conclusions

This paper is a contribution towards collecting live data
from the shop floor with lloT enabling the production
devices. Once the devices became lloT enabled, they

Break-up of Savings

Prompt
Escalations and |
Attending, 5.15% |

Figure 11. Break-up of the savings as quantified.

| Accurate
Reports 4 17%»

Computation,
2,7§%
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Table 5. Comparison of previous works with the proposed methodology.

Data collection Data  Closed Cloud
Publications Functional area method accuracy  loop  enabled Operator engagement
Staniszewski, Legutko, and Production monitoring in a small machine Through sensor Medium No No Requires dependable
Raos (2014) shop with primitive monitoring system staff
Lee, Kao, and Yang (2014) Provides implementation guidelines of an Through sensor High Yes Yes Feature can be built into
ideal CPS the system
Jay Lee et al,, 2015 Predictive maintenance by self-maintenance Through sensor High Yes Yes Feature can be built into
feature the system
Bagheri et al. (2015) Provides implementation guidelines of an Through sensor High Yes Yes Feature can be built into
ideal CPS through Self-Aware machine the system
Herterich, Uebernickel, and Implementation of CPS in Service Industry  Through sensor High Yes Yes Not attempted
Brenner (2015)
Mourtzis, Milas, and Viachou CPS-based machine process condition Through sensor High Yes Yes Not addressed
(2018) monitoring between machines
Ivezic and Srinivasan (2016) Engineering services from smart to smarter  Analytics High Yes Yes Not applicable
Weyer et al. (2015) Supply chain management Analytics High Yes Yes Not applicable
Prasetyo, Sugiarto, and Production monitoring system using RFID Through sensor High Yes No Attempted
Rosyidi (2018)
Caggiano (2018) Tool wear pattern monitoring Through sensor High Yes Yes Not attempted
Existing method at SME Production monitoring in SME Manual Low No No No
Proposed method Live production monitoring in SME Through sensor High Yes Yes Yes

Cw
o

NP B e En e s e
S s
S el B

Figure 12. Case study results before and after implementation of the proposed method.

Table 6. The list of manufacturing functions and attributes.

Sl Functional

No. area Activity Performance parameter Areas covered

1 Production Live Production Data Overall Equipment Efficiency (OEE) Idle Time detection, Performance Indication,
Monitoring Rejection data in closed loop

2 Quality Live monitoring of Processing  Process Capability & Process Capability Index Stability of process, Repeatability of the machining
Stability (Cp/CpK) parameters.

3 Machines Live Monitoring of Machine Machine Capability and Machine Capability Machine’s capability to Repeat, Machine accuracy
Performance Index (Cm/CmK)

4 Inspection Live Monitoring of Gauge Gauge Capability/Gauge Capability Index Gauge Repeatability and Reproducibility
Performance (Cg/CgK)

5 Maintenance Live Monitoring of Mean Time Between Failure and Mean Time to Maintainability of the Equipment and its history
Maintenance of Machines Repair (MTBF/MTTR)

6 Power Consumption Live Capture of Power conservations Kilo Watt Hour (KWH)

Energy Consumption of the

equipment

gained capability to form a virtual print of the whole
production system. Once the data were available in
digital form, it was convertible to information by the
computational capabilities of the embedded systems.
Using computational capabilities, data could be
molded to the theoretical model of OEE which is in
practice in the industry. Analytics and computational

capabilities of cyber level could compare and conclude
the results and the performances of various such pro-
duction systems, to the management level. The opera-
tor's own performance was shown to him while it was
shared with his superiors. The developed model can be
used in the multi-functions of various manufacturing
operations, to make the manufacturing operations
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efficient and economically profitable by converting
data collection, analysis and deployment of actions,
from manual to automatic, from error prone to error
free, from open loop to closed loop and finally from
digital disability to digitally enabled scenario. This work
created a ‘self-aware’ feature through the HMI screen,
which created accountability in the operator who is an
important stake holder in the production process. The
case study results recorded an incremental improve-
ment in productivity after implementation. This work is
a significant contribution towards implementation of
Industry 4.0 concepts in developing countries and SME
sectors.
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