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Preface

Mechanics as a fundamental science in Physics and in Engineering deals with
interactions of forces resulting in motion and deformation of material bodies.
Similar to other sciences Mechanics serves in the world of Physics and in that
of Engineering in a different way, in spite of many and increasing interde-
pendencies. Machines and mechanisms are for physicists tools for cognition
and research, for engineers they are the objectives of research, according to a
famous statement of the Frankfurt physicist and biologist Friedrich Dessauer.
Physicists apply machines to support their questions to Nature with the goal
of new insights into our physical world. Engineers apply physical knowledge
to support the realization process of their ideas and their intuition. Physics is
an analytical Science searching for answers to questions concerning the world
around us. Engineering is a synthetic Science, where the physical and math-
ematical fundamentals play the role of a kind of reinsurance with respect to
a really functioning and efficiently operating machine. Engineering is also an
iterative Science resulting in typical long-time evolutions of their products,
but also in terms of the relatively short-time developments of improving an
existing product or in developing a new one. Every physical or mathematical
Science has to face these properties by developing on their side new methods,
new practice-proved algorithms up to new fundamentals adaptable to new
technological developments. This is as a matter of fact also true for the field
of Mechanics.

In the 20th century a couple of significant ideas pushed forward the clas-
sical field of dynamics, both, with respect to physics and with respect to
engineering. In the first half of the 20th century we had, seen from the stand-
point of physics, three theories of dynamics, Newtonian dynamics, relativistic
dynamics and quantum dynamics [257]. We had four decisive impacts the last
hundred years, two with respect to the basis of dynamics and two with respect
to applications.

Starting with the at his time revolutionary idea of geometric dynamics by
Henri Poincaré [214] some new features of dynamics came up, which should
change dynamical arguing considerably, namely the aspects of bifurcations and
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chaos characterizing the broad field of “Nonlinear Dynamics” [261]. Viewing
it from a broader physical basis, Prigogine [218] stated that “we are led from a
world of being to a world of becoming”, which indeed fits perfectly well into the
concept of engineering. Research in this field comes out with a completely new
way of looking at dynamics in form of a topological evolution of mechanical
systems with time. Research is going on, there are still open questions related
to large systems, to optimization and control. Impact on practical problems
is coming up more and more.

The second basic contribution to dynamics consists in creating “non-
smooth mechanics”, first addressed to by Moreau in Montpellier [160] and
by Panagiotopoulos in Thessaloniki [176]. The new theories of non-smooth
mechanics added to the idea of bilateral constraints the new idea of unilateral
constraints as they appear for example in contacts. The fundamental non-
smooth principles are for my opinion comparable to the idea of the principle
of d’Alembert-Lagrange and on an equal scientific level. They open large new
fields, theoretically and practically. In the meantime progress in that field
especially with respect to the classical and non-smooth principles of mechan-
ics clearly indicate, that classical mechanics is embedded in the theories of
non-smooth mechanics, it is indeed a subset of it.

Two more application-oriented concepts came up in parallel with the
technical development of computers and of space technologies. During the
fifties and sixties of the last century the idea of finite element discretization
was pushed forward opening new applications especially for new aerospace
projects, moving more and more the necessary investigations from experimen-
tal fields to computer simulations. Today FEM-codes are commercially avail-
able and applicable in all fields of modern technologies. Nevertheless research
is going on. The second idea concerns multibody systems, a picture-book
model for the application of the constraint ideas well-known since Bernoulli
[18]. Therefore quite a number of impressive ideas were published in the 18th
and 19th century [43], but a final impact to develop formulations as available
today was given by space applications of the fifties and sixties [110]. Also in
this field research is going on.

We are living in a world of computers and computing techniques, and we
profit from it. Simulations with large and in the meantime very comfortable
computer codes allow to establish a virtual world, which, applied in an intel-
ligent way, might give detailed and very helpful insights into the concepts of
new products. The development times for new cars or machines have been re-
duced considerably with the help of computer application. On the other hand
we have to be careful. The engineering process requires perfect insight into the
physics of a system, thus also into the mechanics of a machine. Engineering
thought cannot be replaced by a computer, neither in design, material selec-
tion and cost analysis nor in the physical fundamentals like mechanics and
others. Every real progress in technology is always accompanied by consider-
able thought of large depth. Mechanics and mathematics are perfect training
areas for such thinking.
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In the following we shall consider fundamentals and applications of dynam-
ics, mainly with respect to large dynamical systems typical for modern indus-
try and its products. The bases are models. Models are pictures of thought or
constructs of ideas. Using models includes several aspects. Firstly, there are
the simple ones, which nevertheless represent the main features of a problem,
for example of a vibration problem, in such a good way, that they can be used
to give some analytical insight into that problem with regard to dynamics
but also with regard to parameter influences. Establishing such models is an
art for a very few number of experts. It requires a perfect knowledge of the
specific problem under consideration, and it affords intuition and intelligence
to reduce such a system to a few parameters. But we often can learn from
such models in a couple of days much more than by long-lasting computer
simulations.

Secondly, we may establish models by considering as many details as pos-
sible. Such models are large and costly regarding computing times. And even
in this case we have to investigate very carefully all physical effects for doing
the correct neglects without endangering realistic results. Done in a skillful
way such models are the basis for physical understanding and for improving
design concepts. These two types of models aim at generating some results,
which are as realistically as possible related to our real world problem.

Thirdly, if we leave that requirement, we may find models with similar
features as our real world case, but only in a more or less qualitative sense. This
might help sometimes, but usually it is too far away from practice. Anyway,
establishing models represents more an intuitive art than a science. This is
mostly underestimated, because only good models in a mechanical sense, at
this stage not in a mathematical sense, give access to good solution algorithms
and finally to good results. Models should be as simple as possible and so
complex as necessary, not more and not less.

As a rule we understand the word model as a theoretical construct. But
model and modeling applies in the same way to experimental set-ups. Lack of
thought very often identifies experiments with the dogmatic truth of practice,
which is only sometimes true. To design and to establish good experiments
really related to the practical system under consideration is a difficult task.
And it is also a difficult task to find the correct interpretations of measured
data. Let us take a measured spectrum of an airborne gas turbine system, and
let us find out, if there are hidden self-exited vibrations or not. And if we find
them, how does the mechanism of these self-excitations look like? We could
continue such examples of open questions. Therefore, comparing theory and
measurement requires very much care on both sides, on the side of theory and
that of experiments.

The development of computers during the last forty years has created a cer-
tain dualism within all Sciences, namely the “Science” itself usually addressed
to as being purely theoretical and far away from any computer application,
and the “Computational Sciences”, which have a clear focus in computer al-
gorithms and applications. In Mechanics we have the same situation, which
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half a century after the first computers is not only obsolete, but also a bit
out-dated and old-fashioned. Computers are used to solve complicated and
large mathematical problems from Finite Elements (FEM) over Multibody
Systems (MBS) to Computer Aided Design Systems (CAD), to name only a
few, or to establish virtual worlds on the basis of topological structures or
the like. In all cases we need a lot of fundamentals, and in all cases the col-
leagues involved in this kind of research are elaborating also some theoretical
basis. On the other hand the “pure scientists” apply computers, be it to test
their theoretical findings, be it to develop symbolic structures with the help
of computers. Therefore the time is overdue, that these dualisms disappear.

The concept of the book is mainly determined by the experiences of the
author. Sixteen years aerospace industry with its forerunner role in all tech-
nologies, but also in many fundamentals, twenty years academia in the area
of mechanics, especially in the areas of dynamics and control, fundamental
research on bilaterally and unilaterally constrained systems, on robotics and
walking machines and many applications with regard to practical industrial
problems have taught me, that for an engineer the combination of physical,
mathematical and of practical, empirical knowledge is an indispensable pre-
requisite for successful professional work. We say, that a good theory is very
practical, but we also have to state, that good practice might induce good new
theories never known before. Both is important for a good engineer. The book
tries to follow these ideas presenting in the first part the theoretical founda-
tion of dynamics and in the second part a collection of industrial examples.
Both theory and practice were topics of more than eighty dissertations being
carried through during my activities as Professor and head of an Institute at
the Technical University of München.

In spite of the fact that many research activities of the last two, three
decades include also control design and development, the book will not con-
sider this topic from the theoretical standpoint of view but more within the
applications. Doing research in dynamics, especially in dynamical systems,
implies also control in the one or other form, because control systems are also
dynamical systems with the additional possibility of own decision capabilities.
We shall focus on general dynamics, on multibody system dynamics including
rigid and elastic components and on the consequences of bilateral and unilat-
eral constraints. Unilateral contacts were and still are a matter of significant
research at my former Institute.

Finally I have to thank many people and many Institutions. First of all, I
have to thank my doctoral students of the last twenty years, who elaborated in
dozens of theses my and their ideas on dynamics providing me with an excel-
lent basis for this book. Many of them can be detected in the literature survey.
I have to thank Prof. Christoph Glocker of the ETH Zurich for many fruitful
discussions, mainly on non-smooth problems. And I am indebted especially to
Dr.-Ing. Martin Foerg, who did some excellent proof-reading and has been for
me during his time as doctoral student of my successor a continual contact
for many discussions about fundamental problems of dynamics. The same is
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true for Dr.-Ing. Thomas Geier, who worked on very challenging applications
like the pushbelt CVT. I could not have written this book in LaTex without
many good advices and ideas concerning LaTex-questions from another doc-
toral student of my successor, namely Dipl.-Ing. Sebastian Lohmeier, who for
his thesis is realizing the new walking machine LOLA, but who is also a real
expert in LaTex.

Last but not least I do thank the Technical University of Munich, its
Department of Mechanical Engineering and especially my successor, Prof.
Heinz Ulbrich, for the opportunity to continue my work at the TU-Munich
also after my retirement. A really big help for me were the co-workers of the
Springer publishing house in Heidelberg, Dr. Thomas Ditzinger and Dr. Dieter
Merkle from the organizational and contract side and Frank Holzwarth for all
questions concerning the Springer stylefile. Many thanks to all.

A book cannot be written without any errors. Therefore I would like to
motivate the readers of this monograph to give me a message of possible
errors, he or she has detected. This concerns also any kind of concept or style
aspects. I shall be very grateful for indications of that kind.

Garching, December 2007 Friedrich Pfeiffer
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1

Introduction

Der Verstand vermag nichts anzuschauen, und die
Sinne nichts zu denken. Nur daraus, daß sie sich
vereinigen, kann Erkenntnis entspringen. (Immanuel
Kant, Kritik der reinen Vernunft, Königsberg 1787)

“Mechanics is the science of motion; we define as its task: to describe com-
pletely and in the simplest possible manner such motions as occur in nature.”
With respect to Engineering we should complete this statement by “as oc-
cur in nature and in technology.” Neither Physics nor Engineering are places
for garlands, any description must be complete and as simple as possible, in
Engineering specifically constrained with respect to the state of knowledge of
the technical system under consideration. The above statement of Kirchhoff
[130] has not and will not loose its fundamental significance in all areas of
Physics and of Engineering. Specifically it describes completely all aspects
of Mechanics, motion as such, displacements and deformations and also the
limiting case of static systems with a kind of frozen motion, which follows the
famous definition of Thomson and Tait [257]: “Keeping in view the proprieties
of language, and following the example of the most logical writers, we employ
the word Dynamics in its true sense as a science which treats of the action of
force, whether it maintains relative rest, or produces acceleration of relative
motion. The two corresponding divisions of Dynamics are thus conveniently
entitled Statics and Kinetics”.

The foundation of Mechanics as a Physical Science goes back into the
also otherwise very creative and progressive 17th and 18th centuries and
is connected with the names of Galilei, Newton, Johann Bernoulli, Euler,
d’Alembert and Lagrange (see [43] and [259]). Frequently underestimated and
addressed to as old-fashioned the basis created by these great scientists does
not only shoulder a large part of classical and modern Physics and Technol-
ogy, but it is also still a fundamental starting point for many new research
topics up to recent times. The 19th and 20th centuries may be characterized
by new axioms and principles connected with names like Hamilton, Gauss and
Jacobi, where especially in the 20th century a consolidation took place (see
books like [93], [181], [180], [1] and [143]).

It is not so long ago that classical mechanics became “real mechanics”
[27] by application of the classical principles and foundations directly to large
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industry problems. This process of the last sixty years was supported by the
development of powerful computers, which allowed numerical solutions of com-
plex mathematical structures. But it was accompanied by another necessity,
namely a better and clearer formulation of all mechanical foundations as a
basis of new methods and algorithms of modern applied and computational
mechanics. In spite of very convincing successes in that area we must keep in
mind, that mechanics is a physical science and not a mathematical one [67]. To
give a citation of Synge [257] with respect to this aspect: “The relationship (of
mathematics and physics) seems to be based on certain concepts, the names of
which provide a common language for all physicists (for all engineers), exper-
imental and mathematical. These concepts appear as mathematical concepts
in the model and as physical concepts in the direct discussion of nature (tech-
nology).” (Italic words added by author). The way we analyze today complex
technical systems follows directly these ideas: we establish first a mechanical
model with the goal to achieve some insight into the problem. And only after
that we go into the mathematical structures.

By returning to the motion as such we are faced with three fields of in-
terest, which form dynamics: Firstly, the motion of material bodies have to
be described geometrically and the change of their position and orientation
kinematically. Such a process leads to sets of equations, which usually define
the functional performance of our motion system. But motion is caused by
forces. Therefore and secondly, we must consider our system not only kinemat-
ically but also under the influence of forces. According to Newton [169] forces
generate accelerations, and according to Euler [58] torques generate angular
accelerations, where the mass or the mass moment of inertia act as a propor-
tional factor. We are accustomed to interpret forces and torques as applied to
a point, to a surface or to a volume with the property of unambiguity. With
the recently coming up concepts of unilateral contacts in mechanics, mainly
due to Moreau ([160] and [161]) and to Panagiotopoulos ([176] and [177]),
forces and torques might also possess a set-valued character, which means,
they are not unambiguously defined, but only with respect to a certain set as
for example the set of sticking contact forces within a friction cone. This inter-
pretation of contacts has influenced efficiently new concepts of mathematics
and of unilateral dynamics, which started in France and is spread worldwide
the last years.

The third aspect of motion are constraints, which very often are treated
as an unpopular appendage to the momentum and moment of momentum
equations, but which in reality represent the most important interfaces glu-
ing together masses of bodies and forcing them to a required performance
of motion. If momentum and moment of momentum represent the motors of
motion, then constraints are the controllers, which tell the dynamical system
where to go. This is in perfect correspondence to the geometric and kine-
matic character of such constraints, which in fact realize the functioning of a
machine or any kind of technical or physical system. A complete set of con-
straints always represents the most abstract description of this functionality,
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beyond or better before entering kinetic considerations. Adding or deleting
constraints to a system is a question of intelligent design, which has a huge
amount of experience and examples at its disposal with an impressive out-
come of really good solutions. But nevertheless we are still far away from the
task to determine on a scientific and systematic basis the best combination
of constraints, which realize in an optimal way a given set of requirements.
Mechanical technologies without constraints would not exist.

We know bilateral and unilateral constraints, for example perfect joints
or guides in the first and closing or opening contacts in the second case. The
investigation of bilateral constraints from Bernoulli via d’Alembert [40] to
Lagrange [41] represents a pioneering work of the same level as the findings
by Newton [169] and Euler [58]. Without the concept of “lost forces”, or in
modern semantics, of “constraint forces” we would not possess a realistic dy-
namical foundation, we would not possess an applicable multibody theory, and
finally engineers would not be able to evaluate constraint forces for bearings,
guides and many other machine elements, which is really essential for all kind
of sizing. The projection of motion into the free directions represented by the
tangential constraint hyper-surfaces is one of the key essentials of classical
and modern dynamics(see [27] and [180]). It includes basic informations of
the directions of motion and of the direction of the affiliated constraint forces.
Some branches of modern mathematics and physics are based on these ideas.

Unilateral features of mechanics have been treated in a general way
throughout the last centuries by Fourier [66], Boltzmann [22] and Signorini
[244], to name a few, but it was not before the sixties of the last century that
Moreau [160] and Panagiotopoulos [176] developed a new and concise the-
ory on unilateral mechanics, which they called non-smooth mechanics. With
respect to contacts the unilateral behavior may be characterized by the prop-
erty, that for contact dynamics either relative kinematics in the form of rel-
ative distances or velocities is zero and the accompanying constraint forces
or constraint force combinations are not zero, or vice versa. This establishes
a complementarity, which gives access to some mathematical structures valu-
able for a solution. The consequence from the above contact behavior, which
represents by the way a very general property, results in a time-dependent
alternation of indicators and of constraints with respect to such a contact. A
contact is going to become active, as we say, if relative kinematics as an in-
dicator becomes zero. Being zero, relative kinematics represents a constraint
connected with a constraint force. A contact becomes again passive, if the
constraint forces become zero and relative kinematics builds up again. There-
fore the beginning of an active contact is indicated by magnitudes of relative
kinematics, which become a constraint, at the same time establishing the con-
straint force or a combination of them as indicator for the end of an active
contact. For dynamical systems with many contacts, which are typical for
technical applications, we would get a combinatorial problem of huge order,
which can only be treated by introducing the complementarity idea with its
various methods of solution (see [200]).
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The triad momentum, moment of momentum and constraints forms an
elementary basis for everything going on in dynamics. Even when applying
differential or minimal principles [27] we usually come back during the eval-
uation process to equations of motion, which include all relevant momentum
and moment of momentum components. Two basic concepts must be added
to the above defined triad, the cut principle first formulated by Euler and the
introduction of virtual magnitudes in mechanics, which goes back to Galilei
and Johann Bernoulli; it was put into an applicable form by Lagrange. The
cut principle, enabling us to “look virtually into the matter, where no eye or
experiment can penetrate ”[258] and thus establishing a base for continuum
mechanics, is one of the most important concepts and tools for all areas of me-
chanics including of course dynamics. An engineer cannot establish any model
of a real plant or machine, if he is not able to delimit the system by proper cuts
usually giving him the entrances and exits of the system with the appropriate
kinematics and kinetics. When developing a model, the first step will be to
choose intelligent cuts deciding on the future model’s complexity, capabilities
and results. The second concept of virtual kinematic magnitudes and of work
or power is indispensable when applying the principles of mechanics ([93] and
[180]). It is, similar to the cut principle, a concept of thought opening the
possibility to manipulate forces, torques, work or power in a virtual way, in
a thought way, necessary for example to derive the equations of motion for a
system under consideration. All commercially applied theories like FEM and
MBS are based on these concepts.
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Fundamentals

Die Theorie ist das Netz, das wir auswerfen, um ”die
Welt” einzufangen, — sie zu rationalisieren, zu erklären
und zu beherrschen. Wir arbeiten daran, die Maschen
dieses Netzes immer enger zu machen.

(Karl Popper, ”Logik der Forschung”, 1935)

Theories are nets cast to catch what we call ”the
world”: to rationalize, to explain and to master it. We
endeavour to make the mesh ever finer and finer.

(Karl Popper, ”The Logic of Scientific Discovery”,
1959)

2.1 Basic Concepts

2.1.1 Mass

We consider dynamics in the sense as discussed in the Introduction. That
means we shall not refer to relativistic aspects whatsoever. The only deviation
from the classical mass concept consists in the effects generated by rocket
systems with their time-dependent masses. Focusing our future considerations
mainly to technical artefacts we usually know all relevant mass distributions
and can thus define:

• Masses are always positive, also in the time-dependent case, m > 0.
• Masses are

– either constant with ṁ = 0,
– or not constant with ṁ �= 0, where (ṁ = dm

dt ).
• Masses can be added and divided into parts.

Another more physically oriented definition of a mass is given by Synge
[257]. He states, that a mass is “a quantity of matter in a body, a measure of
the reluctance of a body to change its velocity and a measure of the capacity
of a body to attract another gravitationally”.

Modeling masses depends on the problem under consideration. We might
have rigid or elastic masses and in dynamics also interactions with fluid
masses. Theoretically we always get as a matter of fact an interdependence
of the selected mass model and the results we can achieve with such a model.
On the other hand the experience of modeling for a huge amount of practical
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cases tells us how to choose mass models. Nevertheless it makes sense keeping
in mind these features. In the following we shall mainly consider systems with
constant masses.

It is interesting to follow the evolution of the mass concept during the
centuries [116]. It started as a matter of fact long before Newton, but Newton
was the first to give with his vis inertiae idea a scientific basis for mass. In the
following centuries the development of chemistry influenced the mass concept
stating that mass represents a “quantity of matter”, which requires a force
to be put into motion. Euler developed a new concept defining mass as the
fraction of force and acceleration, a conception, which was quickly accepted
especially by French representatives of Mathematical Physics. The axioma-
tization of mechanics in the last two centuries made it necessary to define
the mass anew within the framework of deductive and geometric forms. Com-
pletely new aspects entered the mass discussion with Einstein’s relativistic
mechanics.

2.1.2 Cut Principle and Forces

Before establishing a model we have to make clear what part of a system we
would like to consider. It depends on the results we want to achieve, and this
depends on the problem of the system under consideration. In technical arti-
facts a meaningful set of cuts for a machine or a car, for example, should define
the kinematic or kinetic inputs into the system in the form of time-series or
of spectra, and it should define the output of the system considering those
positions giving typical performance characteristics. For a car’s power trans-
mission system, for example, the input might be the oscillations at the motor’s
crankshaft exciting the transmission system to vibrate, and the output might
be the load torques at the tires coming from the environmental conditions like
road quality, acceleration and car weight. Between these two cuts we have the
complete power transmission, called in Figure 2.1 system, the performance of
which we want to know, for example the acoustical performance. To be able
to evaluate this performance we must define the limiting areas (points, lines,
volumes) in a meaningful manner. In our practical example it is the load on
one side (cut 2) and the input as generated by the combustion engine on the
entrance side (cut 1). This makes sense from the technical point of view, indi-
cating that positioning cuts results from experience and empirical knowledge
more than from scientific arguments.

In order to apply this cut principle we have to generalize it a bit. In me-
chanics we are interested in the interaction of bodies of any kind with forces or
torques. If we therefore separate two bodies by cutting them apart we must
at the same time arrange those forces along the cut, which in the original
configuration keep the two bodies together. Thus by cutting any system apart
we transform internal forces to external ones acting on the cut parts with the
same magnitude but opposite sign. This ingenious cut principle, first estab-
lished by Euler, was characterized by Szabo [258] in a very appropriate way:
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engine torque converter gear box output train

vehicle

system

cut2: input to the system
output to environment

cut1: input to the system
output from the engine

Fig. 2.1: The cut principle for a power transmission

“Euler teaches us with the imagination of an artist to look in thought into
the matter, where no eye and no experiment can penetrate. With this he has
laid a foundation stone for the only genuine mechanics, namely the continuum
mechanics.” The cut principle gives us a tool to establish for any part of a
system the equations of motion, if we choose the cuts correctly and add to
the applied forces and torques also the reaction forces and torques as freed
by these cuts. We need in addition a sign definition, which we may choose
arbitrarily, but then we must stay with it.

To illustrate the difference of internal and external forces depending on the
cut positions we use a simple example [63]. Considering in Figure 2.2 the cut
S1 around the three masses we see that all forces within that cut are internal
forces possessing no influence on the system S1. Selecting a cut S2 we come
out with two external forces F12 and F32 and with two internal forces F13 and
F31. Finally the cut S3 generates only external forces, namely F21 and F31.

The mechanical sciences are interested in the interaction of any kind of
masses with forces. Dynamics as a part of mechanics is especially interested
in those forces, which generate motion. Therefore it makes sense to define as a
generic concept that of active and passive forces. Active forces can be moved
in their direction of action, and from there they can produce work and power.
Passive forces cannot be moved with respect to their point of action. Active
forces generate motion, passive forces prevent motion, they are as a matter
of fact the consequence of some constraints. All other definitions of forces
are subsets of this concept. Internal or external forces, applied or constraint
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system cut S1

system cut S2

system cut S3

Fig. 2.2: Cut principle: internal and external forces [63]

forces, volume or surface forces, they all might be active or passive, depending
on the specific system under consideration.

To give a simple example [208] we consider a block on a plane surface
under the influence of an oblique external force. If the block does not move,
all forces, the external applied force, the weight force and the contact forces
are passive forces. If the external oblique force is big enough to move the
block, then the horizontal components of the external applied force and of
the contact force are active forces contributing to the motion of the block,
whereas the weight force and the vertical components of the external applied
force and of the contact force are passive forces adding certain loads to the
block and to the ground (see figure 2.3). This simple example demonstrates
already, that the property of a force becoming active or passive may depend
on the dynamics of the system, which is reasonable especially in the face
of unilaterally determined behavior. It sounds complicated, but we shall see
later, that this concept is the only workable one with respect to a dynamical
theory including all possible types of constraints, bilateral and unilateral ones.

2.1.3 Constraints and Generalized Coordinates

Constraints possess a kinematical character. They are the mechanical con-
trollers telling systems where to go and where not to go. In mechanical engi-
neering we do not have any machine or mechanism, which are unconstrained.
Constraints realize, at least kinematically, operational requirements and, ap-
plied correctly, guarantee the function of a mechanical system. Constraints
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Fig. 2.3: Active and passive forces

might be bilateral or unilateral, representing in the first case an ideal connec-
tion between two adjacent bodies or between one body of the system and its
environment constraining this connection to a limited number of degrees of
freedom, and representing in the second case a connection, which might be
open or closed, which might be sticking or sliding, depending on the dynamics
of the system under consideration. Mechanical engineering includes as many
bilateral as unilateral systems with a clear tendency to unilateral behavior
with increasing requirements on modeling details.

Constraints depend on the coordinates of position and orientation, and
they depend on velocities. Position- and orientation-dependent constraints
are called holonomic, velocity-dependent constraints non-holonomic. They are
rheonomic, if they depend on time, and scleronomic, if not. An important non-
holonomic property says that such a constraint cannot be integrated to come
out with a holonomic constraint. This leads to significant consequences.

The existence of constraints implies two difficulties. The first one concerns
the independence of coordinates, which are constrained. Therefore the original
coordinate set, for example in some three-dimensional workspace, does not
represent the possible number of degrees of freedom. Some of the equations
of motion depend on each other. The second difficulty is connected with the
forces due to constraints. These constraint forces are not given a priori, they
must be evaluated by the solution process. Moreover, the constraint forces do
not contribute to the motion of the system, they are internal forces holding
the system together, where we should keep in mind that passive forces and
motion means passive forces and relative motion. Passive forces may of course
move themselves withing the overall system. From the technical standpoint
of view we need them as forces in bearings, guides, joints or the like. They
determine system design.

Another consequence of constraints is given with the difference of their
holonomic and non-holonomic properties. Constraints may be used to generate
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a set of generalized coordinates representing the degrees of freedom of the
system. The elimination of the dependent variables is formally possible, but
not necessarily practically. In the case of non-holonomic constraints it is not
possible at all to eliminate coordinates of position and orientation, but it is
possible ti eliminate velocity coordinates. A well-known example is the rolling
disc, which at the same time is an example with the minimal possible number
of degrees of freedom for a non-holonomic system, namely three [93]. The
rolling condition for rolling without sliding cannot be integrated to come out
with a holonomic equality, because a change of the orientation includes also
a change in the position. These properties will have significant consequences
for the development of the differential principles. A more detailed discussion
of constraints can be found in [180], [93], [27] or [63].

Figure 2.4 depicts some typical constraints. The pendulum on the left rep-
resents a holonomic constraint depending only on the position of its mass. As
long as the mass connection remains under tension we have a bilateral con-
straint. The sledge example represents also a holonomic, bilateral constraint
as long as the sledge does not detach from the ground. In doing so we get a uni-
lateral constraint with contact- and detachment-phases. The wheel example
includes a non-holonomic constraint, because in the general case the function
f(ẋ, ẏ, β̇, α) = 0 cannot be integrated to give then a position-dependent con-
straint. This is possible only, if the wheel follows exactly a straight line by
rolling without sliding. Then we can roll back the wheel coming exactly to the
starting point, and only then the constraint can be integrated.

The examples in Figure 2.4 illustrate also the empirical experience, that the
constraint forces Fc are in all cases perpendicular to the directions of motion,
which later on will give a basis for the principle of d’Alembert-Lagrange.

x2 + y2 = l2

Fc

m

l Fc

mg

f(x,y)=0

x

y

z

α

β̇

f(ẋ, ẏ, β̇, α) = 0

Fig. 2.4: Typical constraint examples

Constraints confine the number of degrees of freedom of a system. In gen-
eral cases it is not possible to eliminate those degrees of freedom, which are
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constrained. But for special cases, usually of smaller dimensions, we might suc-
ceed in reducing the coordinates to the number of degrees of freedom really
existing in the system. We then call these coordinates “minimal coordinates”
q ∈ IRf , if f are the degrees of freedom. This is the limiting case for generalized
coordinates for all constraints being eliminited. We shall not distinguish that
in the following. Minimal coordinates include no more constraints in the form
of algebraic equations. We then come out with differential equations without
any additional constraints in the form of algebraic equations. It is sometimes
difficult to interprete the generalized coordinates physically, but in any case
they describe the possible motion of the system under consideration. For non-
holonomic problems we are usually able to eliminate the generalized velocities,
because the relevant constraints are linearly dependent on the velocities, at
least in all cases known so far. We shall come back to that.

2.1.4 Virtual Displacements and Velocities

The concept of virtual displacements and velocities is not only a very produc-
tive one in whole mechanics, it is for certain significant areas of mechanics an
indispensable tool, some authors say “axiom”, for the development of basic
theories, for example for analytical dynamics. Very probable Johann Bernoulli
was the first one to use the idea of virtual displacements in the year 1717 and
also the word “virtual” [258].

We shall understand as virtual displacements and velocities some thought
magnitudes δr or δṙ, which necessarily must be compatible with all constraints
acting for the time t under consideration. The displacements and velocities are
called virtual, firstly because they are thought magnitudes and not real ones,
and secondly to distinguish them from real changes dr and dṙ, which take
place during the time interval dt, where forces and constraints might change
considerably. Virtual displacements and velocities are considered for a fixed
time t, which always means that δt = 0. As a consequence we take so-to-say a
photo of the system at time t and investigate the system’s behavior resulting
from some virtual changes. The changes of the virtual velocities need not to be
necessarily infinitesimal small, they might take on any values, but the above
mentioned compatibility with the constraints is a must.

The concept of virtual displacements and velocities forms a basis for the
principles of virtual work and power, which play a dominant role in all areas
of mechanics.
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2.2 Kinematics

Kinematics is geometry of motion and its evolution with time. It is the most
important foundation of dynamics, as a matter of fact a foundation of any
mechanical field. Rigid or elastic bodies must be defined in some suitable
coordinate frame, the choice of which is more an art than a science strongly
deciding on the complexity, or simplicity, of the mathematical model following
from it. The basic movements of a rigid body are translation and rotation,
each one described by three coordinates. Considering mechanical systems with
many bodies requires the definition of many coordinate frames, body-fixed
ones and inertial ones; where again the choice of these coordinates heavily
influence the structure of the equations of motion and from there the necessary
solution efforts. For most of the applications we apply orthogonal coordinate
systems, but sometimes curvilinear coordinates represent the system under
consideration in a more elegant way. Contact problems of rigid or elastic
bodies are an example.

Dealing with systems, especially with multibody systems, includes vector
spaces composed for example by the generalized coordinates. If these gener-
alized coordinates represent the degrees of freedom of our system, then they
are linearly independent and form a basis of the IR-vector-space with the
dimension IRf . The properties of these spaces are indispensable aspects for
analyzing dynamical systems [155], [27], [180].

2.2.1 Coordinates

We define a coordinate system as a set of orthogonal unit vectors, for example
(ex, ey, ez), which form a basis for all vector representations to come. With
respect to this base we assign an origin zero (0) or sometimes also an origin
zero (O), which we assume to be fixed to some rigid or elastic body under
consideration. Only this definition of an origin allows the measurement of
distances or dynamic features with the help of such a coordinate system.
Depending on the state of motion of the body with the coordinate system
(0, ex, ey, ez) we call these coordinates inertial or non-inertial (body-fixed).

The coordinate system (0, ex, ey, ez) possesses the property “inertial”, if
the base vectors (ex, ey, ez) do not change with time, which means, that such
a coordinate system might only move with constant velocity with respect to
our not moving postulated space. This is a question of definition. For technical
dynamics it is usually sufficient to connect the earth or some building with
an inertial coordinate system, for problems of space dynamics the sun might
be a more suitable system.

If we connect a coordinate system with a rigid body to define a “body-
fixed” coordinate system we have the choice to select for the origin any point,
the center of mass or another point convenient for our evaluations, for example
the center of mass and one joint in the case of robots. From this we may have
several coordinate frames in one body. A basic property of a rigid body consists
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in the constant distance between two material points. Rigid bodies have six
degrees of freedom, three of translation and three of rotation. Therefore the
three positions (x,y,z) and the three orientations (α, β, γ), given for example as
Cardan-angles, define unambiguously position and orientation of a rigid body
with respect to any coordinate system, inertial or body-fixed (see Figure 2.5).

From this we might define for example the position and the orientation of
a body B1 with respect to the inertial system I or with respect to the body-
fixed system of B2 by the six magnitudes (x, y, z) and (α, β, γ), where (x, y,
z) are the coordinates of the mass center of the body B1, written in the bases
I or B2, and where the Cardan-angles (α, β, γ) give the orientation between
the coordinate system of B1 and those of I or B2, written correspondingly in
the I- or B2-bases (see Figure 2.5).

The crucial point in dealing with rotations consists in the fact, that the ro-
tational angles or the orientation angles cannot be evaluated straightforward,
but are usually given implicitly by the rotational velocities expressed by the
Euler kinematical equations or any other form. Therefore we always have to
regard some equations of the form (2.31) to (2.33), which usually are part of
the set of differential equations of motion. Only for small rotations, where the
rotation angles are allowed to be represented as a vector, the matrices of the
mentioned equations degenerate to an identity matrix.

Base B1

Base B2

Base I

I
ex

I
ey

I
ez

Body B1

Body B2

B1
ex

B1
ey

B1
ez

B2
exB2

ey

B2
ez

O

Fig. 2.5: Position and Orientation of Rigid Bodies

From this we introduce for many bodies with large rotations a vector z for
translations and a matrix-vector equation for the rotational velocities

z =(x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn),
ωi =Hi(qi)q̇i, (i = 1, ·n), (2.1)

where we have chosen a general representation including the rotational veloc-
ities ωi = (ω1, ω2, ω3)i and some vector qi, which may be replaced by Euler
or Cardan angles or any other set of orientation angles (see for example [146]
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and [180]). For many bodies with small rotations we collect all the body co-
ordinates in a vector z giving

z = (x1, y1, z1, α1, β1, γ1, x2, y2, z2, α2, β2, γ2, . . . , xn, yn, zn, αn, βn, γn), (2.2)

which contains n bodies with altogether 6n coordinate elements. Considering
only one body we have z = r = (x1, y1, z1, α1, β1, γ1). Instead of z we also
shall use the vector r.

As pointed out already in chapter 2.1.3 all real mechanical systems are
constrained, where these constraints might be holonomic or non-holonomic,
they might be scleronomic or rheonomic ([180]). In any case they constrain
the motion of our system being then described by less coordinates as indicated
in equation 2.2, which therefore contains some spare coordinates. Sometimes
it is possible to eliminate these spare coordinates and to establish a set of
coordinates, which corresponds exactly to the number of degrees of freedom,
in many cases though this is not possible. Let us first consider some set of
constraints, which might be of any type, but as an example we take into
account a number of m holonomic and rheonomic constraint equations in the
form

Φ(z, t) = 0, Φ ∈ IRm, m ≤ 6n. (2.3)

Such a set of m constraint equations reduce the free directions of motion to f =
6n - m, which we shall call in the following the number of degrees of freedom.
We assign to these f degrees of freedom the coordinates q ∈ IRf , which are
the “generalized coordinates”. This elimination will not be possible for all
applications under consideration leaving us with a certain rest of not fulfilled
constraints. We then come out with a set of differential-algebraic equations
containing fmin differential equations and mmin remaining constraints. We
then still shall use the name ”generalized coordinates” for the vector q.

At this point we also should mention the special form of coordinates, which
are convenient for the treatment of all kind of trajectory problems and of
contact phenomena. It concerns robotics and walking on the one hand and
many machine applications on the other one. To give an example: for unilateral
contact problems it makes sense to represent the surface coordinates of the
bodies in a parametric form (see Figure 2.6 and chapter 2.2.6):

r =

x(u, v)
y(u, v)
z(u, v)

 (2.4)

2.2.2 Coordinate Transformations

The basic elements of kinematics are translation and rotation. In addition, and
mostly confined to special cases, we have projections and reflections (see for
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u
v

n

I (Base I)

P (Base B)

u v

r = r(u, v)

Fig. 2.6: Coordinate systems

example [3] and [155]). We shall focus on the first two movements. Consider-
ing mechanical systems requires a precise and unique definition of coordinate
frames. In the following we shall use an inertial base I, and several body-fixed
bases B or Bi and R or Ri (Figure 2.7). A vector v is a component of the
vector space V, v ∈ V, and it can be represented in any of the mentioned coor-
dinate systems. From the standpoint of dynamics it is convenient to describe
mechanical systems in different frames, and therefore we need a transforma-

Base Ri

Base Bi

Base I

rIBi

rBiRi

rIRi Body Bi

Fig. 2.7: Frame Relations

tion from one frame to any other one. From Figure 2.7 we easily can describe
the vector chain in a coordinate-free form

rIRi = rIBi + rBiRi , (2.5)

where the indices (I, Ri, Bi) stand for the origins of the bases and for the bases
themselves. The property of the necessary coordinate transformation can be
nicely illustrated by the transformation triangle, which relates graphically the
representation in different coordinate systems (see Figure 2.8). We apply for
these representations the convention:
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V

R3

R3

KB

KI

AIB

Fig. 2.8: Transformation triangle

KI(v) = Iv ∈ IR3,

KB(v) = Bv ∈ IR3,

KR(v) = Rv ∈ IR3. (2.6)

These definitions indicate that the components of the vector v are written in
the coordinate frames I,B,R, respectively. Going from one frame to another
one we must evaluate the compositions [155]

KI = AIB ◦KB,

KB = ABI ◦KI , (2.7)

which according to Figure 2.8 can be performed by a linear transformation
with the transformation matrices AIB or ABI . The index “IB” has to be read
from right to left in the sense of transforming the vector v from the B-frame
to the I-frame, and for “BI” from the I-frame to the B-frame. From equation
2.7 we see immediately, that the matrix-product AIBABI = E comes out
with the unit-matrix, which means, that these matrices A are orthogonal:

AIBABI = E. (2.8)

A typical situation in multibody system modeling consists in the necessity to

B R I
ARB

AIR

AIB

Fig. 2.9: Three successive coordinate systems

choose very many coordinate systems, sometimes several ones for only one of
the body-elements. As a consequence we must consider also many successive
coordinate frames performing multiple compositions as done in equations 2.7
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for one frame only. Let us first consider three coordinate systems B,R,I, and
let us go from B to I on the one side and from B to R to I on the other side
(see 2.9). According to equation 2.7 we also get successive compositions in the
form

KI = AIB ◦KB = AIRARB ◦KB (2.9)

From equation 2.9 we get immediately that AIB = AIRARB, which we can
easily generalize by introducing a whole chain of intermediate coordinate sys-
tems, see Figure 2.10. We come out with the following chain of transforma-

B IRii-1RiRi+1

ARiRi+1 ARi−1Ri

AIB

ARi+1···B AI···Ri−1

Fig. 2.10: n successive coordinate systems

tions:

KI = AIB ◦KB = (AIR2 · · · · · ·ARi−1RiARiRi+1 · · · · · ·ARn−1B) ◦KB

AIB = AIR2 · · · · · ·ARi−1RiARiRi+1 · · · · · ·ARn−1B (2.10)

Numbering the chain of coordinate systems from “1” for “I” and “n” for “B”
we also can write the second equation of 2.10 in the form:

A1,n =
n−1∏
i=1

Ai,i+1 (2.11)

The basic movements of kinematics are translations and rotations. Transla-
tions can be described by vector-chains as given with equation 2.5. Rotations
concern a rotation of the complete coordinate frame around its origin. Various
angle-triples exist to describe such rotations ([146], [3]). Sometimes it makes
sense to apply a four-dimensional representation to avoid singularities, for
example in space dynamics. Such quaternions have first been introduced by
Hamilton [3]. We shall limit our considerations to Euler- and Cardan-angles,
which are used very often in multibody problems. They have their origin in
the early works of gyro-dynamics and celestial mechanics. In both cases we
must perform three elementary rotations to come from some base B, for ex-
ample a body-fixed frame, to a base R, which might be an intermediate or an
inertial frame.

We start with the Euler angles. In Figure 2.11 we rotate the coordinates
from the orientation I to the orientation B by three successive elementary
rotations ψ, ϕ, ϑ. In a first step we rotate the I-system around the inertially
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Ix
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Iz

Bx
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Bz
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ψ

ϕ

ϑ

ϑ

Fig. 2.11: Euler angles

fixed z-axis Iz with the angle ψ. This rotation reaches the nodal line and can
be represented by the linear elementary transformation

AI,ψ =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 , (2.12)

In a second step we tilt the system around the nodal line applying the angle
ϑ. This elementary rotation follows the linear transformation

Anodal,ϑ =

1 0 0
0 cosϑ − sinϑ
0 sinϑ cosϑ

 , (2.13)

Finally, in a third step we rotate around the Bz-axis and come out with the
final orientation with the index “B”, for example as a body-fixed orientation.
The corresponding transformation writes

AB,ϕ =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 (2.14)

The complete transformation then results from the successive products of the
three elementary rotations. We get
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AIB = AI,ψAnodal,ϑAB,ϕ =(
cosψ cosϕ− sinψ cosϑ sinϕ − cosψ sinϕ− sinψ cos ϑ cosϕ + sinψ sinϑ
sinψ cosϕ+ cosψ cosϑ sinϕ − sinψ sinϕ+ cosψ cos ϑ cosϕ − cosψ sinϑ

sinϑ sinϕ sinϑ cosϕ cosϑ

)
.

(2.15)

Cardan-angles use a simpler sequence of rotations to go from the coordinate
frame I to that of B (see Figure 2.12). We rotate firstly around the Ix-axis
with the angle α and come to an intermediate axis by the transformation:

AI,α =

1 0 0
0 cosα − sinα
0 sinα cosα

 , (2.16)

By a second rotation around the intermediate IBy-axis with the angle β we
come already to the final Bz-axis by the transformation:

Ainter,β =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 , (2.17)

A last rotation around the new Bz-axis brings us into the final position with
(Bx,By,Bz):

AB,γ =

 cos γ − sinγ 0
sin γ cos γ 0

0 0 1

 . (2.18)

With Cardan-angles we are able to reach any position of a body-fixed coor-
dinate frame. Their application is especially useful for problems of machine
dynamics. The complete transformation matrix is then the result of the above
successive rotations. We come out with:

AIB = AI,αAinter,βAB,γ =(
cos β cos γ − cos β sin γ sinβ

cosα sinγ + sinα sinβ cos γ cosα cos γ − sinα sinβ sinγ − sinα cos β
sinα sinγ − cosα sinβ cos γ sinα cos γ + cosα sinβ sinγ + cosα cos β

)
(2.19)

2.2.3 Velocities and Accelerations

With the knowledge of the coordinates and coordinate transformation we
have established a basis for deriving the expressions for velocities and for
accelerations in the various possible coordinate systems. Let us first go back
to Figure 2.7 and simplify this figure a bit for our purposes (see Figure 2.13).
We go from the I-system into the B-system, or vice versa, and we consider
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Fig. 2.12: Cardan angles

in both systems the coordinates of the point P. The translation follows from
that Figure by

rOP = rOQ + rQP . (2.20)

According to chapter 2.2.2 the rotation of coordinate system B with respect
to I can be described by the matrix ABI , if we go from I to B and by AIB ,
if we go from B to I. Applying this matrix we can express the coordinates in
one frame by those in the other frame, for example

Ir =AIB Br

Br =ABI Ir, (2.21)

which immediately confirms equation 2.8 and its properties

AIBABI = E

ABI = A−1
IB = AT

IB (2.22)

Before going to a derivation of the velocities we make a detour by considering
the velocity of a point trajectory. It represents for example the case of a robot
hand following a prescribed trajectory ([208]). The velocity of a point P along
that trajectory is defined as

v = lim
∆t→0

r(t + ∆t)− r(t)
∆t

=
d r
d t

(2.23)
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Fig. 2.13: Coordinate Relations

The velocity vector v has the direction of the tangent line to the point tra-
jectory of Figure 2.14. If we consider the above defined velocity in an inertial
frame as shown in Figure 2.14, we come out with

Ivabs =
d Ir
d t

= I ṙ, (2.24)

which means the following: The absolute velocity of a moving point P is
the derivation with respect to time of a vector r(t) = Ir(t) represented in a
coordinate frame I, which is assumed to be an inertial system. Note that this
vector or any other mechanical object can be represented in any coordinate
frame without changing its physical properties, for example the magnitude of
the vector is always the same. We only look at this vector from another point
of view leading to different coordinates, but the vector itself or the object
itself remains the same.

Ix Iy

Iz

O

P

point trajectory
v(t)

r(t)

r(t + ∆t)

Fig. 2.14: Point Trajectory
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Going for example from an inertial system to a body-fixed frame in Figure
(2.7) or to a point fixed frame in form of the moving trihedral in Figure 2.14
(see [51]) we must transform the corresponding vectors from one frame to the
other one applying the equation 2.21, which yields

Ivabs = I ṙ, (2.25)

Bvabs = ABI I ṙ. (2.26)

With these transformations we write the equation 2.20

IrOP = IrOQ + IrQP = IrOQ + AIB · BrQP . (2.27)

The main reason for doing that lies in two facts, firstly that principally all time
derivations in dynamics have to be performed in an inertial frame, which re-
quires the appropriate transformations, and secondly that in many multibody
applications it is much more convenient to define some points, some mass
elements for example, in body-fixed coordinates than in inertial ones. The
additional transformation matrices A usually can be calculated in a straight-
forward manner. Deriving 2.27 with respect to time we come out with

I ṙOP = I ṙOQ +
d
d t

(AIB · BrQP ),

I ṙOP = I ṙOQ + ȦIB · BrQP + AIB · B ṙQP . (2.28)

Equation 2.28 is one of the most important and basic relationships of kine-
matics. It allows the following interpretation: the left hand term of the second
line represents the absolute velocity of the point P defined in the inertial sys-
tem of Figure 2.13, the first right hand term is the absolute velocity of point
Q also defined in the I-system, the second right hand term is the velocity of
point P resulting from the rotation of the body-fixed B-system with respect
to the inertial I-system, and finally ṙQP in the third right hand term is the
relative velocity of P with respect to the B-system, for example resulting from
a deformation, and transformed to the I-system by AIB.

To proceed to the classical formulation we must investigate the properties
of these transformation matrices. First we recall the well known fact that the
matrices A are orthogonal (see [155] and [27]). The rows of the matrix AIB

for example, which describes a transformation from the B-system into the I-
system, are the unit vectors of the B-system represented in the I-system. We
start with equation 2.22 and differentiate it with respect to time resulting in
ȦIB ·ABI + AIB · ȦBI = 0 and from that we get

ȦIB ·ABI = −AIB · ȦBI = −(ȦIB ·ABI)T . (2.29)

Equation 2.29 includes the following facts. Obviously the matrix expression
ȦIB · ABI is skew-symmetric. Additionally, it must represent angular rota-
tional velocities, which results from the rows of the matrix A being unit-
vectors in the coordinate system under consideration. Any time derivative of
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unit-vectors can only come out with a rotation, because the magnitudes of
the vectors themselves do not change.

If we apply the results of equation 2.29 to the transformation matrices
AIB on the basis of the Euler- and Cardan-angles in the equations 2.15 and
2.19, then after some lengthy calculations and rearranging we come out with
the well-known Euler-equations for rotational kinematics

Iω =

0 cosψ sinψ sin θ
0 sinψ − cosψ sin θ
1 0 cos θ

ψ̇θ̇
φ̇

 , (2.30)

Bω =

sin θ sinφ cosφ 0
sin θ cosφ − sinφ 0

cos θ 0 1

ψ̇θ̇
φ̇

 , (2.31)

which is the set for the angular velocities using Euler-angles, and

Iω =

1 0 sinβ
0 cosα − sinα cosβ
0 sinα cosα cosβ

α̇β̇
γ̇

 , (2.32)

Bω =

 cosβ cos γ sinβ 0
− cosβ sinγ cos γ 0

sinβ 0 1

α̇β̇
γ̇

 , (2.33)

which is the set for the angular velocities using Cardan angles. For later con-
siderations we should keep in mind, that the equations (2.31) and (2.33) rep-
resent a linear relationship between the rotational velocities ω and the time
derivatives of the orientation angles ϕ̄⇒ (ψθφ)⇒ (αβγ) in the form

ω = H ˙̄ϕ =⇒ ˙̄ϕ = H∗ω (2.34)

With respect to the time derivatives of the transformation matrices we
conclude from the above relations, that the equations 2.29 can only possess
the meaning (see [27])

ȦIB ABI = Iω̃, ABI ȦIB = Bω̃, Iω̃ = AIB Bω̃ ABI (2.35)

with the skew-symmetric ω̃-matrix

ω̃ =

 0 −ωz +ωy
+ωz 0 −ωx
−ωy +ωx 0

 (2.36)

which includes the following helpful properties

ω × r = ω̃ r, ω̃T = −ω̃, ω̃ r = −r̃ ω (2.37)

With these relations in mind we come back to equation 2.28, which gives us
the absolute velocity of a point in the inertial frame I. Transforming these



24 2 Fundamentals

equations from I to B by applying the transformation ABI we come out with
the absolute velocity of the point P (figure2.13) in the body-fixed frame B.
We get

BvP,abs = ABI IvP,abs = ABI (I ṙOQ + ȦIB BrQP + AIB B ṙQP )

BvP,abs = BvQ,abs + Bω̃ Br + B ṙ (2.38)

where the abbreviations rQP = r, IvP,abs = I ṙOP and BvQ,abs = ABI I ṙOQ
have been used. Equation 2.38 is of equal importance as equation 2.28, the first
one being written in the I-system, the other one in the B-system. Therefore
the terms of the last line of equation 2.38 have the following meaning: the
left hand term represents the absolute velocity of the point P defined in the
body-fixed system of Figure 2.13, the first right hand term is the absolute
velocity of point Q also defined in the B-system, the second right hand term
is the velocity of point P resulting from the rotation of the body-fixed B-
system with respect to the inertial I-system but given in coordinates of the
B-system, and finally B ṙ of the third right hand term is the relative velocity
of P with respect to the B-system. Examples might be deformation or the
motion of a passenger in a flying airplane. The last line of equation 2.38 is the
form usually given in textbooks. It is often addressed to as Coriolis equation.

The accelerations follow in a straightforward manner from the above equa-
tions. The acceleration is defined in a similar way as the velocity by

a = lim
∆t→0

v(t + ∆t)− v(t)
∆t

=
dv
d t

(2.39)

Starting with

Iaabs =
d Ivabs

d t
= I r̈, BaP,abs = ABI · IaP,abs (2.40)

we get from the above equations the accelerations in the I-system.

IaP,abs = IaQ,abs + AIB · (B ˙̃ωBr + Bω̃Bω̃Br) + AIB · (2Bω̃B ṙ + B r̈). (2.41)

The first term on the right hand side is the absolute acceleration of point Q
(Figure 2.13), the second term the angular and the third term the centrifugal
acceleration. The first three terms are applied accelerations, the fourth term
the Coriolis- and the last term the relative acceleration due to some relative
motion within the moving system. Transforming the expression 2.41 into a
body-fixed coordinate system we come out with the well-known formula

BaP,abs = ABI IaQ,abs + B
˙̃ωBr + Bω̃Bω̃Br + 2Bω̃B ṙ + B r̈. (2.42)

The explanations with regard to the individual terms of this expression are
the same as above, all these terms are now written in a body-fixed frame.

Coming back again to the point trajectory of figure 2.14 we represent the
vector r(t) in cylinder coordinates and derive from equations 2.23 and 2.24
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the corresponding accelerations. We get with (x, y, z)T = (r cosϕ, r sinϕ, z)T

the following expressions

IvP = I ṙP =

 ṙ cosϕ− rϕ̇ sinϕ
ṙ sinϕ + rϕ̇ cosϕ

ż

 ,

IaP = I r̈P =

 r̈ cosϕ− 2ṙϕ̇ sinϕ− rϕ̈ sinϕ− rϕ̇2 cosϕ
r̈ sinϕ + 2ṙϕ̇ cosϕ + rϕ̈ cosϕ− rϕ̇2 sinϕ

z̈

 . (2.43)

For the evaluation of these formulas in a body-fixed frame we have to multiply
the last equation with the transformation matrix from I to B, which results
in

BaP = ABI · I ṙP =

 r̈ − rϕ̇2

2ṙϕ̇ + rϕ̈
z̈

 , with ABI =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 .

(2.44)

2.2.4 Transformation Chains and Recurrence Relations

The dynamics of mechanical systems requires as a rule the transformations
over a long chain of bodies. In most cases these chains possess a tree-like
structure, which is either given by the system structure itself, like in the case
of robots, or it can be generated by cutting loops and introducing additional
constraints or, if possible, by representing loops by analytical expressions. For
developing the kinematics of such systems we establish a recursive algorithm
on the basis of the above considerations [208]. In a first step we evaluate
the angular velocities of the multibody components. If ΩBi−1 and ΩBi are
coordinate-free representations of the angular velocities of the bodies (i-1)
and (i), respectively, then they are connected by the relation (see figure 2.15)

ΩBi = ΩBi−1 + ΩBi−1Bi , (2.45)

where the last term is the relative velocity between the bodies (i-1) and (i).
Following the composition of transformations of figure 2.9 we come from the
inertial coordinate system to that of the body Bi−1 and from there to the
body Bi using the matrix ABi−1Bi for the relative rotation between (i-1) and
(i). According to equation 2.9 we get:

AIBi = AIBi−1 ·ABi−1Bi and ABi−1Bi = Ti. (2.46)

The last equation defines the transformation concerning the rotation beteen
I and Bi, as a convenient abbreviation for the following. With the equations
2.7 and 2.35 we define

Bi
ω̃IBi = KBi ◦ΩBi and Bi

ω̃IBi = ABiI ȦIBi , (2.47)
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Bi−1

Bi

ΩBi−1
ΩBi−1

ΩBi

ΩBi−1Bi

rBi−1Bi

Fig. 2.15: Angular velocities of two successive bodies

which is the angular velocity between I and Bi defined in the Bi-coordinate
system. With the equations 2.46 and 2.47 we write

Bi
ω̃IBi = ABiBi−1 (ABi−1I ȦIBi−1) ABi−1Bi + (ABiBi−1 ȦBi−1Bi)

= ABiBi−1 (Bi−1
ω̃IBi−1) ABi−1Bi + Bi

ω̃Bi−1Bi

= TT
i (Bi−1

ω̃IBi−1) Ti + TT
i Ṫi (2.48)

The last equation is a recursive relation for going from the body (i-1) to body
(i), which can be also written in the more convenient form

Bi
ω
IBi

= ABiBi−1 (Bi−1
ωIBi−1) + Bi

ωBi−1Bi (2.49)

In a similar way we can derive such a recurrence relation for the vectors
between the bodies. We start with figure 2.16 and consider the coordinate-free
relation

rIBi = rIBi−1 + rBi−1Bi , (2.50)

which we might define in any coordinate frame according to the equations 2.7.
For a description in an I-system we get

IrIBi = IrIBi−1 + IrBi−1Bi

= IrIBi−1 + AIBi Bi
rBi−1Bi (2.51)

Differentiating this expression with respect to time and transforming the re-
sult into a body-fixed frame Bi yields after some manipulations the absolute
velocities in the form (I- and Bi-system)

I ṙIBi =I ṙIBi−1 + AIBi (Bi
ω̃IBi Bi

rBi−1Bi + Bi
ṙBi−1Bi),

Bi
ṙIBi =ABiBi−1 [(Bi−1

ṙIBi−1 + Bi−1
ṙBi−1Bi)+

+ (Bi−1
ω̃IBi−1 + Bi−1

ω̃Bi−1Bi) Bi−1
rBi−1Bi ], (2.52)
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Equation 2.52 is in combination with equation 2.48 also a recurrence relation,
which can be used to build up the vector equations for a chain of bodies.

x y

z

I

Bi−1

Bi

rIBi−1 rIBi

rBi−1Bi

Fig. 2.16: Vectors of two successive bodies

For the equations of motion we need the accelerations. Considering a chain
of bodies (Figure 2.16) we define for the body (i)

p(i) =i− 1 =⇒ predecessor body,
s(i) =i + 1 =⇒ successor body,

i =0 =⇒ inertial system (base body),
i =n =⇒ end body.

An alternative form of equation (2.51) is given by

Bi
rIBi =

i∑
j=1

ABiBj (Bj
rBj−1Bj ), (2.53)

where we compose the radius vector Bi
rIBi by the incremental vectors between

the bodies, for example from (j-1) to (j). These inremental vectors (Bj
rBj−1Bj )

are defined in the coordinate frame Bj and must consequently transformed to
the system Bi. In the same way we can determine the rotational velocity by
(see equation (2.49) and Figure (2.15))

Bi
ωIBi =

i∑
j=1

ABiBj (Bj
ωBj−1Bj ). (2.54)

The corresponding translational velocity can be derived by a standard process:
Transform equation (2.53) into the inertial system by the matrix AIBi , differ-
entiate quite formally the resulting equation with respect to time and finally
transform the result back to the body-fixed coordinates Bi. We get
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Bi
ṙIBi =

i∑
j=1

ABiBj [(Bj
ṙBj−1Bj ) + Bj

ω̃IBj · (Bj
rBj−1Bj )]. (2.55)

Before going to the accelerations we recall the indexing. An index on the left
side of a magnitude indicates the coordinate system, in which the compo-
nents of this magnitude are defined, for example the coordinates in Bi for the
radius vector ṙ in the equation above. The right side indices indicate posi-
tions or orientations (from - to) or (between), for example and again in the
above equation ṙIBi means the velocity between the inertial system I and the
body-fixed system Bi, or ωIBj means the angular velocity between the inertial
system I and the body-fixed frame Bj . On the other side we read the trans-
formations from the left side to the right one. For example ABiBj means a
transformation from the coordinates Bj into the coordinates Bi, which makes
sense, because the second right index of these transformation matrices must
match with the left index of those magnitudes to be transformed, see again
the above equation.

The acceleration will be achieved by the same time-derivation process as
discussed above. For the translational and rotational accelerations we come
out with

Bi
r̈IBi =

i∑
j=1

ABiBj [(Bj
r̈Bj−1Bj ) + Bj

˙̃ωIBj (Bj
rBj−1Bj )+

+ Bj
ω̃IBj Bj

ω̃IBj (Bj
rBj−1Bj )+

+ 2Bj
ω̃IBj · (Bj

ṙBj−1Bj )] (2.56)

Bi
ω̇IBi =

i∑
j=1

ABiBj [(Bj
ω̇Bj−1Bj ) + Bj

ω̃IBj (Bj
ωBj−1Bj )]. (2.57)

Formally we may replace the summation of these formulas by a vector-matrix
notation, which writes
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Bi
r̈IBi =Ai(∆r̈i + diag(∆r̃Ti )ω̇i) + aTi, Bi

ω̇IBi = Ai∆ω̇i + aRi, (2.58)

∆ri =(1r01
T , 2r12

T , 3r23
T , · · · iri−1,i

T )T = (. . . [Bj
rBj−1Bj ]

T , . . .)T ,

∆ωi =(1ω01
T , 2ω12

T , 3ω23
T , · · · iωi−1,i

T )T = (. . . [Bj
ωBj−1Bj ]

T , . . .)T ,

ωi =(1ω01
T , 2ω02

T , 3ω03
T , · · · iω0i

T )T = (. . . [Bj
ωIBj ]

T , . . .)T ,

aTi =(aTT1,a
T
T2,a

T
T3, . . .a

T
Ti)

T ,

aRi =(aTR1,a
T
R2,a

T
R3, . . .a

T
Ri)

T ,

aTj =ABiBj [Bj
ω̃IBj · Bj

ω̃IBj · (Bj
rBj−1Bj ) + 2Bj

ω̃IBj · (Bj
ṙBj−1Bj )],

aRj =ABiBj [Bj
ω̃IBj · (Bj

ωBj−1Bj )], (2.59)

Ai =


E 0 . . . . . . . . .

A21 E 0 . . . . . .
A31 A32 E 0 . . .

...
...

...
. . .

Ai,1 Ai,2 Ai,3 . . . E

 . (2.60)

We can combine the above relations into one equation of the form

z̈i =Āi∆z̈i + ai, (2.61)

zi =(zT1 , z
T
2 , z

T
3 , . . . z

T
i )T , ∆zi = (∆zT1 , ∆zT2 , ∆zT3 , . . .∆zTi )T ,

ai =(aT1 ,a
T
2 ,a

T
3 , . . .a

T
i )T ,

Āi =
(

Ai [Ai(∆r̃Ti )Ai]
0 Ai

)
, z̈j =

(
Bj

r̈IBj

Bj
ω̇IBj

)
j=1,2,...i

,

∆z̈j =
(
Bj
∆r̈Bj−1Bj

Bj
∆ω̇Bj−1Bj

)
j=1,2,...i

, aj =
(

aTj
aRj

)
j=1,2,...i

. (2.62)

The matrices Ai and Āi are both triangular matrices, which offers the possi-
bilty to solve the equations (2.58) or (2.61) in an iterative way starting with
the matrix row containing one element only and proceeding step by step until
the equation has been solved. This represents a second type of recursion. We
shall come back to it.

2.2.5 Kinematics of Systems

We go back to chapter 2.2.1 and recall the definitions of coordinates given
there. We consider system coordinates z ∈ IR6n or r ∈ IR6n, which in a con-
strained system do not correspond to the degrees of freedom but are more a
representation of the system design and configuration. If we are able to elim-
inate all m constraints (for example equation 2.3), we come out with a set of
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generalized coordinates q ∈ IRf with f = 6n - m. If we cannot fulfill all but only
a few of the given constraints we remain with a rest of these constraints rep-
resenting together with the differential equations a set of differential-algebraic
equations for the coordinates qmin ∈ IRfmin , which is the minimum achievable
set of generalized coordinates for the system under consideration.

Anyway, the system coordinates z are functions of the generalized coordi-
nates q, namely z = z(q, t), and therefore we have the time derivative

ż = (
∂z
∂q

) · q̇ +
∂z
∂t

, (
∂z
∂q

) ∈ IR6n,f . (2.63)

Depending on the above definitions we call the velocities q̇ the “generalized
velocities”. From the equation 2.63 we get a very useful and important rela-
tionship by differentiating it partially with respect to q̇

∂z
∂q

=
∂ż
∂q̇

, (2.64)

where the unknown Jacobian ∂ż
∂q̇ can be evaluated from the constraint equa-

tions. Going one step further to the acceleration z̈, we have to differentiate
again equation (2.63) with respect to time and receive

z̈ = (
∂z
∂q

) · q̈ +
∂

∂q
[(
∂z
∂q

)q̇]q̇ + 2(
∂2z
∂q∂t

)q̇ + (
∂2z
∂2t

), (2.65)

where in most cases of practical relevancy z = z(q) and not z = z(q, t). For z
not dependent on the time t the last two terms in equation (2.65) vanish.

Differentiating the constraint equation 2.3 with respect to time we get(see
[27])

Φ̇ = (
∂Φ
∂z

) · ż +
∂Φ
∂t

= 0, {= (
∂Φ
∂z

)[(
∂z
∂q

) · q̇ +
∂z
∂t

] +
∂Φ
∂t
}, (2.66)

which we again differentiate partially with respect to q̇ resulting in

(
∂Φ
∂z

) · ( ∂ż
∂q̇

) = 0 with (
∂Φ
∂z

) ∈ IRm,6n, (
∂ż
∂q̇

) ∈ IR6n,f . (2.67)

Equation 2.67 tells us, that the rows of the Jacobian (∂Φ∂z ) are orthogonal to
the columns of the Jacobian ( ∂ż∂q̇ ). The Jacobian (∂Φ∂z ) is regular, if we define
the constraints in an unambiguous way, which is always possible. In this case
we can solve equation 2.67 in a form, which represents a linear relationship of
the velocities ż and q̇ (see [27])

q̇ = (
∂q̇
∂ż

) · ż = {[( ∂ż
∂q̇

)T (
∂ż
∂q̇

)]−1(
∂ż
∂q̇

)T } · ż = (
∂ż
∂q̇

)+ · ż, (2.68)

where the term ( ∂ż∂q̇ )+ represents the pseudo-inverse. The equations (2.63),
(2.64) and (2.67) are essential concerning multibody theory. We remind of
the relation (2.34) and shall come back to them in a later stage.
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One of the key points in considering systems consists in the fact, that
according to equation 2.63 we always have a linear relationship of the two
velocities ż and q̇ of the form

ż = J(q, t) · q̇ + j(q, t) with J(q, t) =
∂z
∂q

=
∂ż
∂q̇
∈ IR6n,f . (2.69)

The term j(q, t) comes from external excitation sources. Depending on the
cuts in our system it is given by the input or output loads with respect to
these cuts (chapter 2.1.2).

The linear relationship of the two velocities ż and q̇ also holds for the
constraints independent of their type. According to equation 2.66 we have

WT (z, t) ż + w(z, t) = 0 with WT (z, t) =
∂Φ
∂z

=
∂Φ̇
∂ż

, w(z, t) =
∂Φ
∂t

.

(2.70)

It is necessary to discuss a bit more in detail the above statement concerning
the linear relation of velocities in the constraints. Taking into account first
holonomic constraints of the form Φ(z, t) = 0 ∈ IRm (eq. 2.3), which usually
represent a set of nonlinear algebraic functions of (z(t), t), we might differen-
tiate this set as performed in equation (2.70) and receive linear equations in
ż. They hold in an exact way for all holonomic constraints.

But if we have non-holonomic constraints, which are really non-holonomic
and not reducible to a position and orientation level, the corresponding con-
straint equations are usually given in the form

Φ[z(t), ż(t), t] = 0 ∈ IRm, (2.71)

which again are nonlinear equations in the arguments (z(t), ż(t), t). It means
at least formally that the linear structure of the equations (2.70) does not
apply to these non-holonomic constraints. But, on the other hand, practical
experience in all areas of technology indicates, that there are no non-holonomic
constraints being nonlinear in the velocities ż. Therefore the linear equations
(2.70) possess the quality of an axiom in a physical, in a mechanical sense,
at least approximately and as long as there will come no contradiction. The
matrix W(z, t) will be of course completely different for the two constraint
types, a Jacobian derived above for the holonomic case, and a Jacobian given
by the system configuration for the non-holonomic case.

2.2.6 Parameterized Coordinates

The upcoming fields of robotics and of contact dynamics are accompanied by
more frequent applications of curvilinear coordinate systems either for robot
trajectories or for contact surfaces ([208],[152]). Let us first discuss the idea
to project a mechanism with many degrees of freedom like a manipulator
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or a gear-mechanism onto one suitable degree of freedom connected with a
prescribed trajectory or the like. Considering figure 2.17 and borrowing from
the theory of spatial curves (see [51]) the most important relationships we
introduce the path coordinate s = s(t) as a parameter and write

r(t) = r[s(t)] with v(t) = ṙ(t) =
d r
d s
· d s
d t

= r′ · ṡ. (2.72)

The derivation ṙ of the radius vector r(t) with respect to time divided by the
path velocity ṡ represents the tangent unit vector t to the point trajectory:

t(t) =
ṙ
ṡ

= r′ =
d r
d s

. (2.73)

From the velocity vector of equation 2.72 we derive the acceleration vector by
a differentiation with respect to time and get

a(t) = r̈(t) =
d (r′ · ṡ)

d t
=

d (r′ · ṡ)
d s

· d s
d t

= r′′ · ṡ2 + r′ · s̈, (2.74)

the first part of this equation being the centripetal and the second part the
tangential acceleration. The vector r′′ corresponds to the derivation of equa-
tion 2.73 and represents thus the derivation of the tangent vector to a certain
point of the path, t′(t) = r′′. As t(t) is a unit vector, its derivative t′(t) is
perpendicular to it. It should be noted that this parameterization of spatial
curves must not be carried out by using the time t. Instead we may take
any general parameter u, which of course must be selected according to the
requirements coming from the dynamical system.

Ix Iy

Iz

O

P

point trajectory

r(t)

s(t)

n(t)

b(t) t(t)

Fig. 2.17: Moving trihedron

For certain applications it makes sense to supplement the path coordi-
nate s(t) and its corresponding unit vector t(t) by the normal and binormal
vectors resulting in an orthogonal trihedron connected with the spatial path
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curve (see figure 2.17). As pointed out above the principal normal vector n(t)
is perpendicular to the tangent vector t(t), these two vectors forming the os-
culating plane for the spatial curve at the point P, and the bi-normal vector
is perpendicular to this plane, which means b(t) = [t(t)]× [n(t)]. These prop-
erties can be used to evaluate the well-known Frenet-equations, which are a
basis for all applications connected with spatial trajectories. They write [51]

d t
d s

= +κ · n,
dn
d s

= −κ · t + τ · b,
db
d s

= −τ · b. (2.75)

The magnitudes κ and τ are the curvature and the torsion of the spatial
trajectory, respectively. It might be helpful to repeat the behavior of the
moving trihedron (see [132]). The tangent rotates about the instantaneous
binormal direction at the positive angular rate κ (curvature at point P). The
binormal rotates about the instantaneous tangent direction at the angular
rate τ (torsion at point P). The entire moving trihedron rotates about the
instantaneous direction of the Darboux vector Ω = τt + κb at the positive
angular rate ‖Ω‖ =

√
τ2 + κ2 (total curvature at point P).

For certain robot- or mechanism-problems the advantages are obvious. A
system with many degrees of freedom can be projected onto the coordinates
of a given path coming out with three degrees of freedom or if we do not
consider disturbances around such a path, only with one degree of freedom.
We shall discuss an example in one of the applications chapters.

Another and a more demanding type of parameterization is connected
with contact problems, where the contacts themselves take place between the
surfaces of bodies. Especially if two bodies are approaching it is convenient
to express the corresponding kinematics not in minimum but in surface coor-
dinates, which requires some differential geometric transformations for going
from the orthogonal world coordinates to the curvilinear surface coordinates
(see for example [51], [152], [200] and Figure 2.6). We start with Figure 2.6
and equation 2.4, where a radius vector r depends on the curvilinear sur-
face coordinates (u,v) by r(u, v) = [x(u, v), y(u, v), z(u, v)]T . In many cases
it is possible to choose the surface coordinates in such a way, that they are
mutually orthogonal, which brings some advantages for the evaluation. A par-
tial derivation with respect to these curved coordinates comes out with the
tangential vectors in the surface point under consideration.

e1 = u =
∂r
∂u

, e2 = v =
∂r
∂v

. (2.76)

The vectors u,v span the tangential plane in the point P. The normal unit
vector follows from the vector product of u and v in the form
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n =
u× v
‖u× v‖ . (2.77)

With these vectors,two tangential and one normal, we are able to evaluate the
elements of the first fundamental form of a surface, which writes:

E = uT · u, F = uT · v, G = vT · v. (2.78)

If the parameter coordinates u and v are perpendicular to each other, then
we get F = 0 for u⊥v. To determine the elements of the second fundamental
form of a surface we need the second derivatives of the vector r(u, v). They
characterize the curvature and torsion properties of the surface. We define

L = nT · ∂
2r

∂u2
, M = nT · ∂2r

∂u∂v
, N = nT · ∂

2r
∂v2

. (2.79)

Applying the equations 2.76 we get an equivalent formulation

L = nT · ∂u
∂u

, M = nT · ∂u
∂v

= nT · ∂v
∂u

, N = nT · ∂v
∂v

. (2.80)

Again, for parameter coordinates (u,v) being mutually orthogonal we have M
= 0 for u⊥v. Establishing a general theory of contacts requires additionally
some further second derivatives and the derivation of the normal vector as
defined in equation 2.77, which will be achieved by the formulas of Weingarten
and Gauss in the form (see [51],[132],[152])

∂n
∂uα

= −gσγ · bγα · eσ (Weingarten),

∂2r
∂uαuβ

=
∂eα
∂uβ

= Γ σαβ · eσ + bαβ · n (Gauss), (2.81)

with the following notations: The magnitudes α, β, γ and σ take on the values
1,2 and follow the summation convention of Einstein. From this uα means
u = u1 and v = u2. The vector eα = ∂r

∂uα is defined in equation 2.76. The
Christoffel three-index symbol Γ σαβ · eσ writes

Γ σαβ · eσ =
1
2
gσδ
(
∂gαδ
∂uβ

+
∂gβδ
∂uα

− ∂gαβ
∂uδ

)
. (2.82)

Its properties may be seen from [51] and [132]. The elements gσδ and gαβ are
the fundamental tensor components of a Riemann space. Within the context
of surfaces these measure tensors depend on the elements of the first and
second fundamental form of a surface (equations 2.78 and 2.80). We get

g11 = E, g12 = g21 = F, g22 = G,

g11 =
G

EG− F 2
, g12 = g21 =

−F
EG− F 2

, g22 =
E

EG− F 2
,

b11 = L, b12 = b21 = M, b22 = N. (2.83)
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The evaluation of the equations 2.81, 2.82 and 2.83 is straightforward but very
lengthy and tedious. It can be found in all details in [152]. As a final result
we get

∂u
∂u

= Γ 1
11u + Γ 2

11v + Ln,
∂u
∂v

= Γ 1
12u + Γ 2

12v + Mn,

∂v
∂u

= Γ 1
12u + Γ 2

12v + Mn,
∂v
∂v

= Γ 1
22u + Γ 2

22v + Nn,

∂n
∂u

=
FM −GL

EG− F 2
u +

FL− EM

EG− F 2
v,

∂n
∂v

=
FN −GM

EG− F 2
u +

FM − EN

EG− F 2
v. (2.84)

Obviously ∂u
∂v = ∂v

∂u . The Christoffel symbols can be evaluated in the form
[152]

Γ 1
11 =

1
2(EG− F 2)

·
(

+G
∂E

∂u
− 2F

∂F

∂u
+ F

∂E

∂v

)
,

Γ 2
11 =

1
2(EG− F 2)

·
(
−F ∂E

∂u
+ 2E

∂F

∂u
− E

∂E

∂v

)
,

Γ 1
12 =

1
2(EG− F 2)

·
(

+G
∂E

∂v
− F

∂G

∂u

)
,

Γ 2
12 =

1
2(EG− F 2)

·
(
−F ∂E

∂v
+ E

∂G

∂u

)
,

Γ 1
22 =

1
2(EG− F 2)

·
(
−G∂G

∂u
− 2G

∂F

∂v
− F

∂G

∂v

)
,

Γ 2
22 =

1
2(EG− F 2)

·
(

+F
∂G

∂u
− 2F

∂F

∂v
+ E

∂G

∂v

)
. (2.85)

The above equations represent a general set for the description of arbitrary
surfaces. They are also a necessary set for the evaluation of the relative kine-
matics of contacts between arbitrary bodies, where especially the moving tri-
hedron with its rectangular axes of the principal normal, the tangent vector
and the binormal is an indispensable requirement for analyzing contact dy-
namics. The rather costly evaluation for the general case can of course be
reduced considerably for special geometries like bodies with rotational sym-
metry or with at least partly plane surfaces. The combination of bodies with
various shapes like a cube on a sphere must be analyzed by considering all
possible cases of contact. This is for example a typical problem of assembly
processes (see [271], [152]).

As an example we consider bodies with rotational symmetry, which are
used quite often in various technologies. Figure 2.18 illustrates the principal
situation. The coordinate u is the circumferential coordinate with u ∈ (0, 2Π),
and v is the generatrix coordinate. The radius of the body at the position v
is f(v). With these definitions we get ((·)′ = d (·)

d v )
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r =

 f(v) · cosu
f(v) · sinu

g(v)

 , u =

−f(v) · sinu
f(v) · cosu

0

 , v =

 f ′(v) · cosu
f ′(v) · sinu

g′(v)

 .

(2.86)

The principal normal n and the elements E, F, G of the first order funda-

u

v

f(v)

Fig. 2.18: Typical body with rotational symmetry

mental form are then derived by

n =
1√

f ′2(v) + g′2(v)
·

 g′(v) · cosu
g′(v) · sinu

f ′(v)

 ,
E = f2(v),
F = 0,
G = f ′2(v) + g′2(v).

(2.87)

The coordinates u and v are perpendicular and therefore F=0 and M=0. The
elements of the second fundamental form write

L = − f(v) · g′(v)√
f ′2(v) + g′2(v)

, N =
f ′′(v) · g′(v)− f ′(v) · g′′(v)√

f ′2(v) + g′2(v)
. (2.88)

For the specific case of rotational symmetry the Christoffel elements Γ 1
11, Γ

1
12

and Γ 1
22 also become zero. A collection of different contact forms is given in

[152] and in [277].

2.2.7 Relative Contact Kinematics

2.2.7.1 Plane Case

In order to derive the kinematic contact equations of a whole system we
consider first the geometry of a single plane body. Figure 2.19 shows such a
body, which may have the rotational velocity Ω and the rotational acceleration
Ω̇. The body-fixed point P moves with a velocity vP and has the acceleration
aP . The smooth and planar contour Σ is supposed to be strictly convex and
can be described in a parametric form by the vector B ṙPΣ(s) in the body-
fixed frame B. The parameter s corresponds to the arc length of the body’s
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contour. With these definitions and the formulas of the preceding chapter we
can state the moving trihedral (t,n,b) in a body-fixed coordinate system B
([86],[200] and [212]).

Bt =Br′PΣ ; κ · Bn = Br′′PΣ ; (·)′ =
d
d s

;

Bn =Bb× Bt; Bb = Bt× Bn; Bt = Bn× Bb.

Bn′ =Bb× Bt′ = Bb× (κ · Bn) = −κ · Bt; Bt′ = κ · Bn. (2.89)

where κ denotes the curvature of our convex contour at point s, and the
normal vector n is pointing inward. The binormal Bb is constant for the
plane case and thus independent of s. Now we imagine a point Σ moving
along the contour with the velocity ṡ. As a consequence the normal and the
tangent vectors change their direction with respect to the body-fixed frame B.
We describe this effect by differentiating the tangential and the normal vector
with respect to time with d

d t = d
d s ·

d s
d t = d

d s · ṡ we come out with

Bṅ = Bn′ · ṡ = −κṡ · Bt, B ṫ = Bt′ · ṡ = +κṡ · Bn. (2.90)

rOP

rPΣ

frame I

frame B

P

O

C, Q

aP

vP

Ω̇

Ω
t

n

moving trihedral
s

contour Σ

aQvQ

Fig. 2.19: Planar Contour Geometry

On the other hand, the absolute changes of the vectors Bn and Bt with
respect to time follow from the Coriolis equations 2.38 with B ṙ = 0

B(ṅ) = Bṅ + BΩ̃ · Bn, B(ṫ) = B ṫ + BΩ̃ · Bt, (2.91)
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where we have to keep in mind that BωIB = BΩ for a body-fixed coordinate
system expressing the property of rotation of the body-fixed frame with re-
spect to the inertial frame. Combining the equations 2.90 and 2.91 we come
out with a coordinate-free representation of the overall changes of the contour
normal and tangential vectors

ṅ = Ω̃n− κṡ · t, ṫ = Ω̃t + κṡ · n, (2.92)

which we might evaluate in any basis. From this the main advantage of equa-
tion 2.92 consists in this coordinate-free form and in avoiding the determina-
tion of the frame-dependent time-derivatives Bṅ and B ṫ. In the same way we
proceed with the contour vector rPΣ . Following the equations 2.90 and 2.91
we write

B ṙPΣ = Br′PΣ · ṡ = ṡ · Bt, B(ṙPΣ) = B ṙPΣ + BΩ̃ · BrPΣ , (2.93)

and we eliminate B ṙPΣ resulting in the absolute changes of rPΣ with time

ṙPΣ = Ω̃ · rPΣ + ṡt. (2.94)

Due to Figure 2.19 we have vΣ = vP+ṙPΣ , and therefore the absolute velocity
of a moving contour point Σ is given by

vΣ = vP + Ω̃ · rPΣ + ṡt = vC + ṡt, with vC = vP + Ω̃ · rPΣ . (2.95)

The velocity vC results from rigid body kinematics and corresponds to the
velocity of a body-fixed point C at the contour, it is the applied velocity in a
classical sense.

o

rOP1 rOP2

rPΣ1

rPΣ2

rD

P1 P2

n1

t1

n2

t2

C1 C2
s1

s2

Body 1 Body 2

Fig. 2.20: Orientation of two Bodies

In a next step we must evaluate the absolute acceleration of the point C
of the body contour. Differentiating equation 2.95 with respect to time we get
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v̇C = v̇P + ˙̃Ω · rPΣ + Ω̃ · ṙPΣ . (2.96)

With the abbreviations v̇C = aC , v̇P = aP and with ṙPΣ from equation 2.93
we continue with the expressions

aC =aP + ˙̃Ω · rPΣ + Ω̃Ω̃ · rPΣ + Ω̃tṡ = aQ + Ω̃tṡ with

aQ =aP + ˙̃Ω · rPΣ + Ω̃Ω̃ · rPΣ (2.97)

The acceleration aQ results from rigid body kinematics and corresponds to the
acceleration of a body-fixed point Q, it is an applied acceleration in analogy
to equation 2.95. For later evaluations we need the relative velocities and
their time derivatives in normal and tangential directions. For that purpose
we consider the corresponding velocities in the form

vn = nTvC , vt = tTvC , (2.98)

with their time derivatives

v̇n = ṅTvC + nT v̇C , v̇t = ṫTvC + tT v̇C . (2.99)

With ṅ, ṫ from equation 2.92, v̇C = aC from equation 2.97 and noting the
relations nT Ω̃t = bTΩ and tT Ω̃t = 0 we derive

v̇n =nT (aQ − Ω̃vC)− κṡtTvC + ṡbTΩ, (2.100)

v̇t =tT (aQ − Ω̃vC) + κṡnTvC . (2.101)

With these fundamental equations for one body we are able to consider in
a next step two contacting bodies. We are still in a plane. Figure 2.20 gives
the nomenclature and the directions. The sense of the contour parameters s1

and s2 are chosen in such a way that the binormals of both moving trihedrals
are the same, b1 = b2. The origins of the two trihedrals are connected with
the relative distance vector rD. To determine this distance vector we orient
the trihedrals in such a manner, that they are mutually perpendicular, which
is always possible and gives the conditions:

nT1 (s1) · t2(s2) = 0, ⇔ nT2 (s2) · t1(s1) = 0. (2.102)

These conditions require that both, normals and tangents, are parallel (see
Figure 2.20). For an evaluation of these equations we need of course only one,
because the two are equivalent. The next requirement consists in putting the
relative distance rD unidirectional with the two normals and thus perpendic-
ular to the two tangent vectors. This gives

rTD(s1, s2) · t1(s1) = 0, ⇔ rTD(s1, s2) · t2(s2) = 0. (2.103)

From the four equations 2.102 and 2.103 we need only two, for example the
first ones. The solution (s1, s2) of these two conditions as nonlinear functions
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of (s1, s2) results in a configuration indicated in Figure 2.20: normal and tan-
gent vectors are antiparallel to each other, and the relative distance vector rD
is perpendicular to the two surfaces, which at the same time is the shortest
possible distance between the two bodies. The values (s1, s2) are the “con-
tact parameters” of our problem, and the accompanying points (C1, C2) the
“contact points”. The axes of the two trihedrals are given by

n1 = −n2, t1 = −t2, b12 = b1 = b2. (2.104)

From this we get easily the distance between the two bodies

gN (q, t) = rTDn2 = −rTDn1. (2.105)

Since the normal vector always points inwards, gN is positive for separation
and negative for overlapping. Thus, a change of sign from positive to negative
values indicates a transition from initially separated bodies to contact.

Relative kinematics plays a key role in detecting a change of contact situ-
ations, for example such transitions like detachment-contact or stick-slip and
vice versa. For impacts we have in addition a non-continuous change of the
relative velocities, and if we want to combine these inequality constraints with
the equations of motion we need also the relative accelerations. Therefore rel-
ative kinematics of contacts include the whole set of position and orientation,
of velocities and of accelerations. Some of these magnitudes we get by differ-
entiation. In that case we should not forget the original state of the relative
kinematic magnitudes for the special contact event under consideration, for
example, in normal direction of a contact the event contact is indicated by
the relative distance becoming then a constraint. In tangential direction the
relative tangential velocity indicates the stick or slip situation. We shall come
back to these properties later.

We consider Figure 2.20 and assume for a while that the equations 2.102
and 2.103 have not yet been fulfilled. The relative distance rD is then not
perpendicular to the two surfaces Σ1 and Σ2, but it represents some straight
connection between the future contact points C1 and C2. The absolute change
of rD with time writes

ṙD = vΣ2 − vΣ1, (2.106)

where the contour velocities vΣ come from the equations 2.95. For evaluating
the relative velocities we need in a further step the contour velocities ṡ. For
this purpose we differentiate the equations 2.102 and 2.103 resulting in

(rTD · t1)� =ṙTD · t1 + rTD · ṫ1,

(rTD · n1)� =ṙTD · n1 + rTD · ṅ1,

(nT1 · t2)� =ṅT1 · t2 + nT1 · ṫ2, (2.107)

where ṙD is given with the equation 2.106 and the time-derivatives of the unit
vectors n and t come from the equations 2.92. Together with equation 2.95
we finally get
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(rTD · t1)� =tT1 · (vC2 − vC1 −Ω1 × rD) + tT1 t2ṡ2 − tT1 t1ṡ1 + rTDn1κ1ṡ1,

(rTD · n1)� =nT1 · (vC2 − vC1 −Ω1 × rD) + nT1 t2ṡ2 − nT1 t1ṡ1 + rTDt1κ1ṡ1,

(nT1 · t2)� =− tT1 t2κ1ṡ1 + nT1 n2κ2ṡ2 + (t2 × n1)T · (Ω2 −Ω1). (2.108)

These expressions hold for the general case, where the trihedrals are not yet
oriented. They simplify by applying the conditions 2.102 and 2.103, and they
can then be taken to evaluate the contour velocities ṡ1 and ṡ2. After some
elementary calculations (see [200]) we come out with

ṡ1 =
κ2tT1 (vC2 − vC1)− κ2gNbT12Ω1 + bT12(Ω2 −Ω1)

κ1 + κ2 + gNκ1κ2
,

ṡ2 =
κ1tT1 (vC2 − vC1)− κ1gNbT12Ω2 − bT12(Ω2 −Ω1)

κ1 + κ2 + gNκ1κ2
, (2.109)

with the “binormal” b12 = −t2 × n1 to the vectors n1 and t2. The relative
distance gN is defined by equation 2.105.

With the above equations we can now evaluate the relative velocities and
the relative accelerations of two bodies coming into contact or sliding on each
other. Starting with the relative velocities we write (see Figure 2.20 and [200])

ġN = nT1 vC1 + nT2 vC2, ġT = tT1 vC1 + tT2 vC2, (2.110)

where vC1 and vC2 are the absolute velocities of the potential contact points
C1 and C2. These velocities might be expressed by the generalized, or minimal,
velocities q̇ using the Jacobians JC1 and JC2 (see [27], [200])

vC1 = JC1q̇ + j̃C1, vC2 = JC2q̇ + j̃C2. (2.111)

Combining the last two equations results in

ġN = wT
N q̇ + w̃N , ġT = wT

T q̇ + w̃T , (2.112)

with

wN =JTC1n1 + JTC2n2, wT = JTC1t1 + JTC2t2,

w̃N =j̃TC1n1 + j̃TC2n2, w̃T = j̃TC1t1 + j̃TC2t2, (2.113)

which will be used in the sequel as a representation of the relative velocities
between neighboring bodies within a whole system of bodies. It should be no-
ticed that a negative value of the relative normal velocity ġN corresponds to
an approaching process of the neighboring bodies and coincides at vanishing
distance gN = 0 with the relative velocity in normal contact direction shortly
before a contact, which will be in most cases an impact. In the case of a con-
tinual contact with gN = 0, ġN = 0 the relative tangential velocity indicates
sliding between the two bodies, which we need to determine the tangential
transition event from sliding with ġT �= 0 to sticking with ġT = 0.



42 2 Fundamentals

The relative accelerations are derived by differentiation of the velocity
equations 2.112. We get the same structure of the velocity equations

g̈N = wT
N q̈ + w̄N , g̈T = wT

T q̈ + w̄T , (2.114)

where the constraint vectors wN ,wT are known from the equations 2.113 and
the nonlinear functions w̄N , w̄T follow from

w̄N = nT1 (̄jQ1 − Ω̃1vC1)− κ1ṡ1tT1 vC1 + ṡ1bT12Ω1+

nT2 (̄jQ2 − Ω̃2vC2)− κ2ṡ2tT2 vC2 + ṡ2bT12Ω2,

w̄T = tT1 (̄jQ1 − Ω̃1vC1) + κ1ṡ1nT1 vC1+

tT2 (̄jQ2 − Ω̃2vC2) + κ2ṡ2nT2 vC2. (2.115)

All magnitudes of these equations are defined in the preceding equations. For
a more detailed description see the literature ([200], [212] and [86]).

2.2.7.2 Spatial Case

Spatial contacts require a more complex description. We assume as above
that the two approaching bodies are convex at least in the neighborhood of
those points, where contacts might occur (Figure 2.21). The two bodies with
their coordinate bases B1, B2 as part of a whole system of bodies move with
the velocities vi,Ωi (i=1,2) and have a certain position and orientation with
respect to an inertial frame and with respect to each other. They possess
a contour Σ in two dimensions, which are parameterized by the curvilinear
coordinates s and t. The two bodies may come into contact or they may be
already in contact, for example sliding on each other. We assume, that there
is only one contact point, but in many technical applications bodies might
have several contacts, for example in the fields of power transmission, gears
and chains. However, each of these multiple contacts follows the same theory
as given below. What we have to do, is some additional indexing.

What we are looking for, is a representation of the relative kinematics in
terms of the surface coordinates and their derivatives as a first step, and as a
second step we want to express these relative kinematic magnitudes in terms of
the body velocities finally arriving at the relative velocities and accelerations
depending on the corresponding generalized magnitudes. As a base for all
considerations to follow we use chapter 2.2.6. Let us start with a point of the
contours Σ1 and Σ2 with the coordinates si, ti (i=1,2) and the surface unit
vectors in these points ni, si, ti (i=1,2). The unit vectors si, ti (i=1,2) span
the tangent plane in the potential points of contact, on both sides. These unit
vectors are defined by

s =
∂rΣ
∂s

, t =
∂rΣ
∂t

. (2.116)
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Fig. 2.21: Contact Zones in the Spatial Case

From these basic vectors we are able to determine the fundamental magnitudes
of first order

E = sT s, F = sT t, G = tT t. (2.117)

The normal unit vector n is perpendicular to the surface tangent plane point-
ing outwardly, therefore

n =
s× t√

EG− F 2
. (2.118)

The fundamental magnitudes of second order follow from the equations 2.79

L = nT · ∂
2rΣ
∂s2

, M = nT · ∂
2rΣ
∂s∂t

, N = nT · ∂
2rΣ
∂t2

(2.119)

For a potential contact point we must achieve some requirements with respect
to the directions of the surface unit vectors and the distance vector rD. From
several possibilities we take the following four ones

nT1 s2 = 0, nT1 t2 = 0, rTDs2 = 0, rTDt2 = 0. (2.120)

This nonlinear problem has to be solved at every time step of the numerical
integration by appropriate algorithms, analytical solutions are very unlikely.
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Once the solution has been achieved we are able to evaluate the relative dis-
tance gN between the two bodies by

gN = nT1 rD = −nT2 rD (2.121)

The relative distance gN is one of the important contact magnitudes indicating
the state “no contact” or the state “contact”. It is positive for the first state
and negative for the second one in the case of penetration.

For a further definition of the unilateral constraints we need the relative
velocities and accelerations. Regarding the spatial case as indicated in Figure
2.21 we have one relative velocity in normal and two relative velocities in
tangential directions

ġN (q, q̇, t) =nT1 · (vΣ2 − vΣ1),

ġS(q, q̇, t) =sT1 · (vΣ2 − vΣ1),

ġT (q, q̇, t) =tT1 · (vΣ2 − vΣ1), (2.122)

with vΣ1 and vΣ2 defined in the following way: In the plane case we have con-
sidered the potential contact points C1 and C2 and expressed their velocities
vC1 and vC2 by the generalized or minimal velocities q̇ using some Jacobians
for these contact points (see equations (2.95) and (2.111)). The same equa-
tions can be used for the points Σ1 and Σ2. That means the velocities vΣ1

and vΣ2 in the spatial case correspond to the velocities vC1 and vC2 in the
plane case. The velocities vC1,vC2 in the plane and vΣ1,vΣ2 in the spatial
case are those of body-fixed contour points, which momentarily coincide with
the potential contact point.

Differentiating the equations 2.122 with respect to time we get the relative
accelerations by

g̈N (q, q̇, t) =nT1 · (v̇Σ2 − v̇Σ1) + ṅT1 · (vΣ2 − vΣ1),

g̈S(q, q̇, t) =sT1 · (v̇Σ2 − v̇Σ1) + ṡT1 · (vΣ2 − vΣ1),

g̈T (q, q̇, t) =tT1 · (v̇Σ2 − v̇Σ1) + ṫT1 · (vΣ2 − vΣ1), (2.123)

The velocities and accelerations of the contact points follow from the above
considerations and by differentiation with respect to time as

vΣ1 =JΣ1(q, t)q̇ + j̃Σ1(q, q̇, t), vΣ2 = JΣ2(q, t)q̇ + j̃Σ2(q, q̇, t),

v̇Σ1 =JΣ1(q, t)q̈ + j̄Σ1(q, q̇, t), v̇Σ2 = JΣ2(q, t)q̈ + j̄Σ2(q, q̇, t). (2.124)

The surface vectors ṅ1, ṡ1 and ṫ1 can be determined by the formulas of Wein-
garten and Gauss (equations 2.81), which results in:
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ṅ1 = Ω1 × n1+
∂n1

∂s1
ṡ1 +

∂n1

∂t1
ṫ1,

∂n1

∂s1
=

M1F1 − L1G1

E1G1 − F 2
1

s1︸ ︷︷ ︸
α1

+
L1F1 −M1E1

E1G1 − F 2
1

t1︸ ︷︷ ︸
β1

,

∂n1

∂t1
=

N1F1 −M1G1

E1G1 − F 2
1

s1︸ ︷︷ ︸
α′

1

+
M1F1 −N1E1

E1G1 − F 2
1

t1︸ ︷︷ ︸
β′
1

, (2.125)

ṡ1 = Ω1 × s1+
∂s1

∂s1
ṡ1 +

∂s1

∂t1
ṫ1,

∂s1

∂s1
= (Γ 1

11)1s1 + (Γ 2
11)1t1 + L1n1,

∂s1

∂t1
= (Γ 1

12)1s1 + (Γ 2
12)1t1 + M1n1, (2.126)

ṫ1 = Ω1 × t1+
∂t1

∂s1
ṡ1 +

∂t1

∂t1
ṫ1,

∂t1

∂s1
= (Γ 1

12)1s1 + (Γ 2
12)1t1 + M1n1,

∂t1

∂t1
= (Γ 1

22)1s1 + (Γ 2
22)1t1 + N1n1. (2.127)

The Christoffel symbols Γ σαβ with (αβ=1,2) are defined in equation 2.82 (see
also [51]). Inserting the above relations for the surface vectors (n1, s1, t1) and
(ṅ1, ṡ1, ṫ1) into the equations 2.123 we come out with
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g̈N =nT1 [(JΣ2 − JΣ1)q̈ + (̄jΣ2 − j̄Σ1)]+

(vΣ2 − vΣ1)T · [(Ω1 × n1) + ((α1s1 + β1t1)ṡ1 + (α′
1s1 + β′

1t1)ṫ1)],

g̈S =sT1 [(JΣ2 − JΣ1)q̈ + (̄jΣ2 − j̄Σ1)]+

(vΣ2 − vΣ1)T · [(Ω1 × s1) + ((Γ 1
11)1s1 + (Γ 2

11)1t1 + L1n1)ṡ1+

((Γ 1
12)1s1 + (Γ 2

12)1t1 + M1n1)ṫ1],

g̈T =tT1 [(JΣ2 − JΣ1)q̈ + (̄jΣ2 − j̄Σ1)]+

(vΣ2 − vΣ1)T · [(Ω1 × s1) + ((Γ 1
12)1s1 + (Γ 2

12)1t1 + M1n1)ṡ1+

((Γ 1
22)1s1 + (Γ 2

22)1t1 + N1n1)ṫ1]. (2.128)

The Jacobian matrices JΣ1 and JΣ2 are known from the elastic or rigid body
kinematics as discussed in connection with the equations 2.69 and 2.111. The
time derivatives (ṡ1, ṫ1, ṡ2, ṫ2) of the surface unit vectors can be evaluated
from the surface geometry and its curvilinear coordinates, in a similar way
as in the plane case with the equations (2.106) to (2.109). Differentiating the
equations (2.120) with respect to time

(nT1 s2)� =0, (nT1 t2)� = 0,

(rTDs2)� =0, (rTDt2)� = 0, (2.129)

which states, that the contact conditions remain the same while the bodies
are moving, and which result in a linear system for the unknown contour
derivatives (ṡ1, ṫ1, ṡ2, ṫ2)

AC · xC =bC with

AC =


sT2 (α1s1 + β1t1) sT2 (α′

1s1 + β′
1t1) L2 M2

tT2 (α1s1 + β1t1) tT2 (α′
1s1 + β′

1t1) M2 N2

−sT1 s2 −sT1 s2 sT2 s2 sT2 t2

−sT1 t2 −sT1 t2 sT2 t2 tT2 t2



bC =


(s2 × n2)T · (Ω2 −Ω1)
(t2 × n2)T · (Ω2 −Ω1)

sT2 (vΣ2 − vΣ1)
tT2 (vΣ2 − vΣ1)

 xC =


ṡ1

ṫ1
ṡ2

ṫ2

 (2.130)

These linear equations have to be solved at every time step of a numerical
simulation. For further developments of the dynamics equations we abbreviate
the equations (2.128) in the form

g̈N = wT
N q̈ + w̄N , g̈S = wT

S q̈ + w̄S , g̈T = wT
T q̈ + w̄T . (2.131)
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Combining these equations for a contact (i) of a multibody system results in
a form more convenient for the later evaluation of the equations of motion.
We get

g̈Ni =wT
Niq̈ + w̄Ni, g̈Ti = WT

Tiq̈ + w̄Ti,

g̈Ti =
(
g̈S
g̈T

)
, WT

Ti =
(

wT
S

wT
T

)
, w̄Ti =

(
w̄S
w̄T

)
. (2.132)

The vectors wk and the scalars w̄k with (k=N,S,T) follow by comparison
with the equations (2.128). The scalar terms usually excitations from external
sources.

2.2.8 Influence of Elasticity

Machines, mechanisms and structures are always elastic. How “much elastic”
depends on the eigenfrequencies of the overall system and of the components.
If one of these frequencies is low enough to produce a significant influence
on the dynamics within the frequency range we want to consider, then such
a component must be modeled elastically, otherwise rigidly. In most of this
practical cases we have linear elasticity, which means, that we have approxi-
mately a rigid body motion of the multibody system superimposed by small
elastic deformations usually in the form of elastic vibrations. Of course we
then get a mutual influence of system dynamics and elastic deformations. As
many practical systems belong to this class, we shall restrict ourselves to the
influence of small elastic deformations of some components in the system. A
very good description of linear and nonlinear influences of elasticity in multi-
body dynamics is given by Bremer [28] and Shabana [242].

We consider small deformations of the body (i) as part of a system of
rigid and elastic bodies. These deformations result in a displacement and in
a rotation of every mass-element dm of the body (i) (see Figure 2.22) with
the base Bi. The vector chain from the Base I to the Base Bei includes three
vectors, the vector rIBi from I to Bi, the vector rBiBri from Bi to Bri and the
vector rBriBei from the undeformed reference Bri to the deformed reference
Bei. The three bases with the accompanying coordinate systems may be seen
from Figure 2.22. Without touching the principal considerations we could
have chosen any other chain of vectors as indicated by the dashed lines in
Figure (2.22), where we have depicted specific points for additional coordinates
systems. According to the definitions with regard to the coordinates we write
the vector chain relation in the coordinates of the body (i):

Bi
rIBei =Bi

rIBi + Bi
rBiBri + ABiBei · (Bei

rBriBei), with

Bi
rBiBei =Bi

rBiBri + ABiBei · (Bei
rBriBei)

ABiBei =ABriBei . (2.133)

The last two terms of the first equation include all influences of elasticity,
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Base I

BaseBi

BaseBri

BaseBei

ri = rIBei

rIBi

rBiBri

ui = rBriBei

dmr

dme

Deformed State

Undeformed State

ϕ̃i

Fig. 2.22: Deformation of a Multibody Component i

the deformation vector ui = rBriBei directly, and the rotation matrix ABiBei

represents the rotation between the base Bei and the base Bi or Bri due to
elasticity. This “elastic rotation” is of the same magnitude for the base Bri
and for the base Bi. For a rigid body we get rBriBei = 0 and ABiBei = E.
Assuming small elastic deformations and rotations and using Cardan angles
we can evaluate the rotation matrix ABiBei from the formula (2.19) by a
Taylor expansion. We get (hot = higher order terms)

ABiBei ≈

 1 −γ +β
+γ 1 −α
−β +α 1

+ hot = E + ϕ̃ + hot , [ϕ = (α, β, γ)T ]. (2.134)

For calculating the absolute velocity in a body-fixed coordinate system we
transform the relation (2.133) into inertial coordinates, differentiate with re-
spect to time, and transform the resulting velocity back into body-fixed coor-
dinates. This yields

Bi
ṙIBei =Bi

ṙIBi + Bi
ṙBiBri + Bi

ω̃IBi · [Bi
rBiBri + ABiBei(Bei

u)]+
+ ABiBei [Bei

u̇ + Bei
ω̃BriBei(Bei

u)],

Bi
ṙIBei =Bi

ṙIBi + Bi
ṙBiBri + Bi

ω̃IBi · [Bi
rIBi + Bi

rBiBri ]+
+ ABiBei [Bei

u̇ + Bei
ω̃IBei(Bei

u)],

Bi
ω̃IBei =Bi

ω̃IBi + Bi
ω̃BriBei = Bi

ω̃IBi + ABiBei(Bei
ω̃BriBei)ABeiBi (2.135)

In addition to the rigid body motion we get in the same structural way the
influence of elasticity. It should be kept in mind, that for the evaluation of
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the Jacobians as part of the equations of motion we have to develop the kine-
matic expressions for position and orientation, for translational and rotational
velocities and accelerations up to terms of second order with respect to the
elastic coordinates. For large systems this is better done either by symbolic
or by numerical computer codes.

In a next step we must express the deformation vectors by an elastic model,
where we refer mainly to the books of Becker [14], Betten [19], Bremer [28]
and Wriggers [278]. We go from some reference configuration of a body B to a
deformed configuration ϕ(B), and we shall use the vectors X ∈ IR3 from the
origin to the reference state, x ∈ IR3 from the origin to the deformed state and
the displacement vector u ∈ IR3 from the reference to the deformed state (see
[278] and Figure 2.23). Any element dx can then be expressed by a reference
element dX in the form

dx = (
∂x
∂X

) · dX = F · dX with F =
∂x
∂X

= gradX(x) ∈ IR3,3. (2.136)

The deformation gradient F is one of the fundamental magnitudes of contin-
uum mechanics. It can be expressed as a gradient of the vector x with respect
to X. It is well known that the deformation gradient F can never be singular
and that it can be decomposed by the polar decomposition theorem into a
stretching and into a rotational part

F = RU = VR, (2.137)

where U is the right stretch or the right Cauchy Green tensor, and V is
the left stretch or the left Cauchy Green tensor. They are defined in the
reference or the current configuration, respectively. The rotation tensor R
is orthogonal with det(R) = +1, the tensors U and V are positive definite
and possess the same eigenvalues λi, (i = 1, 2, 3). This is important, because
the stretching effects are proportional to these eigenvalues, and they must be
independent from the sequences stretching/rotation or rotation/stretching.
Applying therefore dx = RU · dX to a mass element results in a stretching of
the element with a following rotation, whereas dx = VR · dX comes out with
a rotation in a first and a stretching in a second step ([14]).

The usual way to derive the strain tensor consists in considering the dif-
ference of the squared elements (dxT dx − dXT dX) = dXT (FTF − E)dX =
2dXTGdX, which represents a suitable deformation measure. The resulting
strain tensor G is then defined as

G =
1
2
(FTF−E) ∈ IR3,3, (2.138)

where E is the unit matrix. The tensor G is called the Cauchy-Lagrangian
strain tensor. It refers to the initial configuration B. From Figure 2.23 we have
the property x = X + u and with this the deformation gradient F = E + ∂u

∂X .
With these relations the equation (2.138) writes
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X

B

ϕ(B)

O

x(X, t)

u(X, t)

Fig. 2.23: Reference and Deformed States [278]

G =
1
2
{( ∂u
∂X

) + (
∂u
∂X

)T + (
∂u
∂X

)T · ( ∂u
∂X

)}. (2.139)

The Green-Lagrangian strain tensor is symmetric and thus a measure for the
strain alone, excluding rotations. The nonlinear terms in equation 2.139 are
called geometric or kinematic nonlinearities. They can be neglected for very
small strains resulting in the so-called kinematic or geometric linearization.
Within the frame-work of system dynamics the strain tensor will be needed
for defining the potential energy of elastic parts. Some problems do not allow a
linearization due to effects of geometrical stiffnesses, which is connected with
cases like buckling or tilting of bars or the well-known problem of rotating bars
stiffened by centrifugal forces. For these or related cases a linearization comes
out with wrong results. Kane and his school called it “premature linearization”
([122], [11], [10]). Anyway, some prudence will be necessary. We shall come
back to this matter in later chapters.

Two main ideas characterize the combination of multibody system con-
cepts with the continuum mechanics concepts. The first important point has
been considered with the evaluation of the strain tensor G, which usually is
defined by the symbol ε. The accompanying matrix is given by

ε = G =

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 . (2.140)

From the equations (2.139) and (2.140) as well as from the definitions X =
(ξ, η, ζ)T and u = (u, v, w)T we get the components of the strain tensor in the
following form
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εxx =
∂u

∂ξ
+

1
2
[(
∂u

∂ξ
)2 + (

∂v

∂ξ
)2 + (

∂w

∂ξ
)2],

εyy =
∂v

∂η
+

1
2
[(
∂u

∂η
)2 + (

∂v

∂η
)2 + (

∂w

∂η
)2],

εzz =
∂w

∂ζ
+

1
2
[(
∂u

∂ζ
)2 + (

∂v

∂ζ
)2 + (

∂w

∂ζ
)2],

εxy =εyx =
1
2
{∂u
∂η

+
∂v

∂ξ
+ [

∂u

∂ξ

∂u

∂η
+

∂v

∂ξ

∂v

∂η
+

∂w

∂ξ

∂w

∂η
]},

εyz =εzy =
1
2
{∂v
∂η

+
∂w

∂ξ
+ [

∂u

∂η

∂u

∂ζ
+

∂v

∂η

∂v

∂ζ
+

∂w

∂η

∂w

∂ζ
]},

εzx =εxz =
1
2
{∂w
∂η

+
∂u

∂ξ
+ [

∂u

∂ζ

∂u

∂ξ
+

∂v

∂ζ

∂v

∂ξ
+

∂w

∂ζ

∂w

∂ξ
]}, (2.141)

which can be easily adapted to the coordinates chosen for the case under
consideration. If we are able to really linearize these expressions, for example
for problems without large overall motion, then all the nonlinear terms of the
equations (2.141) become approximately zero.

The second important connection with the multibody concept concerns the
rotation of the mass elements as a consequence of the deformation. We have
seen by equation (2.137), that the deformation gradient F can be split into
a stretching and a rotation part, where the rotation tensor R is orthogonal
and its determinant det(R)=+1. The effect of this tensor consists in a rigid
body rotation. To evaluate this rotation for our multibody purposes we come
back to the deformation gradient F and consider its symmetric and its skew-
symmetric part by the decomposition (see equation 2.136)

F = (
∂x
∂X

) =
1
2

[
(
∂x
∂X

) + (
∂x
∂X

)T
]

+
1
2

[
(
∂x
∂X

)− (
∂x
∂X

)T
]

= Fsym + Fskew

Fsym =
1
2

[
(
∂x
∂X

) + (
∂x
∂X

)T
]
, Fskew =

1
2

[
(
∂x
∂X

)− (
∂x
∂X

)T
]
. (2.142)

Remembering that according to Figure (2.23) the deformation gradient can
also be expressed by F = E + ∂u

∂X , we can write

Fskew =
1
2

[
(
∂u
∂X

)− (
∂u
∂X

)T
]

=
1
2
(∇u−∇uT ). (2.143)

This skew-symmetric part of the deformation gradient represents the rotation
field (see [264]). The rotation vector itself can be written as

ϕ =
1
2
curl(u) with ϕ̃ = Fskew . (2.144)

Returning to our assumption of small deformations superimposed on large
rigid body motion we can compare the equations (2.143), (2.144) and (2.134)
and come out with the rotation vector
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ϕ =

α
β
γ

 =
1
2


∂w
∂η −

∂v
∂ζ

∂u
∂ζ −

∂w
∂ξ

∂v
∂ξ −

∂u
∂η

 (2.145)

With these relations we have established a correlation between the multibody
concept of equation (2.134) and the rotational effect of small elastic defor-
mations. With respect to large deformations we recommend the appropriate
literature. An explanation for the above formulas is a matter of many under-
graduate textbooks. Referring to Figure (2.24) we immediately realize, that
the sum of the two angles ∂u

∂η and ∂v
∂ξ represents the stretch of the element

and that the difference of the same two angles represents the rotation of the
element, here depicted for the plane ξ, η.

u, ξ

v, η

undeformed element deformed element

ρ

∂v
∂ξ

∂u
∂η

Π
2 − (∂v∂ξ + ∂u

∂η )

Fig. 2.24: Stretching and Rotating of an Elastic Element
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2.3 Momentum and Moment of Momentum

2.3.1 Definitions and Axioms

Mutual interactions of forces with masses are the basic concept of all mechan-
ical sciences. The result of these interactions may be very different depending
on the system considered, it may be motion, deformation or just, as a limiting
case, a system at rest, statically in an equilibrium state. The early days of me-
chanics as a science were therefore characterized by the search for some kind
of relationships for force, mass and a kinematic magnitude like acceleration or
velocity. The great achievements of Newton [169] must also be seen before the
background of his time, where all transportation took place in coaches and
carts with wooden wheels and primitive bearings, drawn by horses, giving
more the impression, that velocity is much more proportional to forces than
acceleration. Newton’s laws overcame these popular ideas.

An equally great achievement was the finding of Euler [58], that in addition
to Newton’s ideas of momentum the laws for the moment of momentum rep-
resent independent mechanical statements and cannot be “derived” from the
momentum equations, which is sometimes done in older textbooks of mechan-
ics. In the meantime we know, that the moment of momentum equations as
usually applied depend on Boltzmann’s axiom or the symmetry of Cauchy’s
stress tensor. For polar materials for example these moment of momentum
equations must be supplemented by some expressions including the tensor of
moment stresses.

We consider some rigid or elastic body under the influence of active and
passive forces (Figure 2.25), where the active forces contribute to the motion
and the passive forces not. We know, that the moment equation of Newton
and the moment of momentum equation of Euler are independent laws not
derivable from each other. We furtheron assume, that there will exist an in-
ertial coordinate system, where these equations become valid. Therefore and
following an idea of [63] we define these two equations in the form of two
axioms and write∫
B

(r̈dm− dFa) = 0,
∫
B

r× (r̈dm− dFa) = 0, (2.146)

where r is a vector in an inertial frame I to a mass element dm of the body
B, and (dFa) are active forces. With respect to Figure 2.25 we should note,
that the passive forces dFp indicated in that Figure are only passive without
internal deformations.

We have used the definitions “a” for active and “p” for passive. The idea of
active and passive forces being used in continuum mechanics for quite a time
is more adequate for our considerations than external and internal forces,
though in some cases it means the same. But for unilateral problems the
features “active” and “passive” change during the motion, and therefore the
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definitions “external” and “internal” do not help so much. As a reminder:
active forces can be shifted along their lines of action, passive forces cannot.
From this we state, that active forces produce work and power, passive forces
not.

dFa

+dFp

-dFp

P

O (Base I)

Q (Base B)

x

y

z r

dm

Body B

Fig. 2.25: Moment and Moment of Momentum

2.3.2 Momentum

According to the equations 2.146 (see also Figure 2.25) we define the momen-
tum by

p =
∫
B

ṙdm, (2.147)

which is a coordinate-free representation. The velocity ṙ is an absolute velocity,
and as always, derivations with respect to time have to be performed in an
inertial system. On the other hand it is of course possible to transform these
equations into any other coordinate system, for example into a body-fixed
frame. We come back to this point in chapter 2.3.4.

The fundamental laws considering momentum are the famous three laws
of Newton, which possess the quality of axioms. We shall be not so ambitious
to give his statements in the original form (for this purpose see [169]). The
first axiom writes [175]

Axiom 1. A body at rest remains at rest and a body in motion moves in a
straight line with unchanging velocity, unless some external force acts on it.
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To illustrate this basic law, which we find already in the statements of
Galilei [259], we shall use the notation introduced by Euler for the momentum
and moment of momentum laws. Referring to Axiom 1 we have no external,
thus no active forces, which means

∫
B

dFa = 0 and therefore
∫
B

r̈dm = 0

resulting in

p =
∫
B

ṙdm = constant, (2.148)

which represents the law of conservation of momentum. Considering the mass
center of a body we get

pC = pC0 = ˙rCm with rCm =
∫
B

rdm (2.149)

Axiom 2. The rate of change of the momentum of a body is proportional to
the resultant external force that acts on the body.

For the mass element of Figure 2.25 we get from the first equation 2.146

r̈dm− dFa = 0 (2.150)

which represents also the momentum budget for a point mass. The time deriv-
ative of the momentum is mass times acceleration if we are dealing with a
constant mass, as in the above equation. For not constant masses the time
derivative of the mass must be considered in addition. In terms of our defini-
tions we may write

dp
d t

= F, with p =
∫
B

ṙdm, and F =
∫
B

dFa. (2.151)

Taking again the center of mass of the body we come out with

m(
dvC
d t

) = FC . (2.152)

The velocity vC is defined with respect to an inertial system. It is an absolute
velocity. The force vector FC is the vector sum of all forces which act on the
body. Generally this vector sum does not pass through the center of mass
resulting in an additional torque, which has to be regarded in the moment of
momentum equation.

Newton’s third law writes

Axiom 3. Action and reaction are equal and opposite.

At the times of Newton this finding was new. But it is very obvious from
experience. Wherever any force acts on a body or on the environment we get
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as a reaction the same force with opposite sign. My feet transfer my weight
to the ground, as a reaction the ground is loaded with my weight force in
the opposite direction. There is no mechanical interaction without this basic
property.

The forces acting on a body might be applied forces, elastic forces or single-
and set-valued forces. We shall consider all of them, but concentrate here on
forces due to elastic influences. Equation (2.146) then writes∫
B

r̈dm =
∫
∂B

pσdA +
∫
B

fadm, (2.153)

where the first integral on the right hand side is a surface force due to elasticity
and the second integral a volume force of some given type. The stress vector
pσ acts on the surface ∂B with the area vector dA. As is well known we can
express the stress vector by

pσ = σn, (2.154)

which indicates, that the stress vector pσ comes from the surface normal vector
n by a homogenuous and linear transformation with the Cauchy stress tensor
σ [14]. The Cauchy stress tensor itself is symmetric and describes the stress
situation for a homogenuous and isotropic body (Figure (2.26) and ([228],
[147])).

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 , with σij = σji, (i, j = x, y, z). (2.155)

Combining these equations and regarding in addition the Gauss theorem for
surface and volume integrals results in

x

y

z

σxx

σyy

σzz

σxy

σxz

σyx

σyz
σzx

σzy

Fig. 2.26: Stresses
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∫
B

r̈dm =
∫
B

div(σ)dV +
∫
B

fadm, with div(σ) =


∂σxx

∂x + ∂σxy

∂y + ∂σxz

∂z
∂σyx

∂x + ∂σyy

∂y + ∂σyz

∂z
∂σzx

∂x + ∂σzy

∂y + ∂σzz

∂z

 .

(2.156)

For our purposes and considering only linearly elastic bodies we introduce for
a consitutive law the simple material law of Hooke, which writes

σ = Eε (2.157)

with a constant module of elasticity matrix E (Young’s modulus). Therefore
equation (2.156) writes∫
B

r̈dm = E
∫
B

div(G)dV +
∫
B

fadm, (2.158)

with the definition of the strain tensor (ε = G) by the equations (2.140)
and (2.141), which we shall not evaluate here in combining them with the
above equation. For simple structures like bars or plates this can be performed
straightforwardly (see [28]).

2.3.3 Moment of Momentum

Euler has been the first one to understand the law of moment of momentum
as a basic independent law of mechanics. It cannot be “derived” from the
second axiom of Newton just by performing the cross-product. We refer to
the literature ([27], [180]). From the equations 2.146 we define the moment of
momentum by

IL =
∫
B

Ir× I ṙdm. (2.159)

The second axiom of the equations (2.146) may be written in the form

dL
d t

= M with M =
∫
B

r× dFa (2.160)

with all magnitudes represented in an inertial system and the time derivation
also performed in an inertial frame. For missing active torques M the equation
(2.160) is dL

dt = 0 and therefore L = constant. This conservation of moment
of momentum writes

dL
d t

= 0, L = L0 =
∫
B

r× ṙdm. (2.161)
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We may go two ways. We might assume the equations (2.146) as axioms,
which then allows the confirmation of the symmetry of the Cauchy stress
tensor from these axioms. Or we might go the way in assuming the symmetry
beforehand , that means Boltzmann’s axiom, which then comes out with the
moment of momentum equation as we know them. We shall pursue the first
possibility. Assuming an elastic body as discussed in the chapter (2.3.2) before
and evaluating for this body the moment of momentum budget we get the
equations (see [14])

d
d t

∫
B

(r× ṙ)ρdV =
∫
∂B

(r× pσ)dA +
∫
B

(r× fa)ρdV, (2.162)

where we have replaced the mass element dm by (ρdV) with the density ρ,
and where we have used the formula (2.153). The stress vector p acts on the
surface ∂B of a volume element. The applied force fa is some given volume
force. We assume, that the volume element B has a constant volume dV and
a constant surface dA on ∂B. The stress vector pσ was already defined with
equation (2.154), namly pσ = σn. The cross-product can be replaced by a
tensor product, (r× pσ) = (r̃ · (pσ)), allowing us to write

∫
∂B

(r× σn)dA =
∫
∂B

r̃σndA, n =

nx
ny
nz

 , r̃ =

 0 −z +y
+z 0 −x
−y +x 0

 .

(2.163)

The first two magnitudes in the above equations can be easily evaluated to
give

r̃σ =
1
2

 (−zσyx + yσzx) (−2zσyy + yσzy) (−zσyz + 2yσzz)
(+2zσxx − xσzx) (+zσxy − xσzy) (+zσxz − 2xσzz)
(−2yσxx + xσyx) (−yσxy + 2xσyy) (−yσxz + xσyz)

 . (2.164)

Performing some manipulations of the above relations [14] and applying the
Gauss theorem we furtheron can write∫
∂B

(r× σn)dA =
∫
∂B

r̃σndA =
∫
B

[div(r̃σ) + ∆g]dV (2.165)

where the term ∆g represents a remaining term arising from the evaluation of
equation (2.163). Going back to the moment of momentum budget of equation
(2.162) and inserting there the momentum balance ρ d ṙ

d t = ρf + divσ for the
elastic element we get∫
B

r̃(divσ + ρf)dV =
∫
B

r̃(divσ + ρf)dV +
∫
B

∆gdV. (2.166)
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We see [14], that all terms cancel out with one exception, namely the
volume integral including ∆g. The vector ∆g writes

∆g =

 +σzy − σyz
−σzx + σxz
+σyx − σxy.

 = 0. (2.167)

It vanishes for a symmetric Cauchy stress tensor σ. Only then we are allowed
to use the moment of momentum equation for rigid bodies in the classical
form. A vanishing ∆g confirms that internal forces counterbalance and do
not contribute to the motion. For very many materials this is true, but for
some classes of materials like polar materials this is not true, and then we
have to look for it.

2.3.4 Transformations

The above defined expressions for momentum and moment of momentum are
to be given in an inertial frame. Also all derivations with respect to time
have to be performed in such a coordinate system. But of course it is not
forbidden to transform the resulting equations into any other coordinate base,
which especially makes sense before carrying out some time derivations. In the
following we shall give some formulas transformed from the inertial system
into a body-fixed one or vice versa applying the relations developed in the
kinematics chapter 2.2.

The momentum equation is defined with (2.147). Considering an addi-
tional body-fixed coordinate system on body B and taking into regard the
equations (2.28) and (2.38) together with the Figure (2.13) we also can write
the momentum definition in the forms

Ip =
∫
B

(I ṙOP )dm =
∫
B

(I ṙOQ + ȦIB · BrQP + AIB · B ṙQP )dm,

Ip =
∫
B

(I ṙOP )dm =
∫
B

AIB · (BvQ,abs + Bω̃ · Br + B ṙ)dm. (2.168)

The relative velocity B ṙ is the point, where possible elastic effects might enter
the system, or where some particle motion exists. It vanishes for rigid bodies
and for bodies with no relatively moved masses.

In a similar way we express the moment of momentum in body-fixed coor-
dinates. Starting with the equations (2.159, 2.28, 2.38) and taking from Figure
(2.25) the relation rOP = rOQ + rQP we get

IL =
∫
B

(IrOQ + IrQP )× (I ṙOQ + I ṙQP )dm = AIB BL. (2.169)



60 2 Fundamentals

The determination of BL is straightforward, if we define BvP,abs = (BvQ,abs+
Bω̃ · Br + B ṙ) with the absolute velocities IvQ,abs = I ṙOQ, BvQ,abs = ABII ṙOQ

and the abbreviation BrQP = Br. We come out with

BL =
∫
B

(B r̃OQ + B r̃) · (BvQ,abs + Bω̃ · Br + B ṙ)dm,

=
∫
B

B r̃OQ · BvP,absdm− BṽQ,abs

∫
B

Brdm + (−
∫
B

B r̃B r̃dm)Bω

+
∫
B

B r̃B ṙdm,

BL =
∫
B

B r̃OQ · (BvP,absdm) + B r̃QS(mBvQ,abs) + BIBω + BLQ, (2.170)

where we have introduced the following abbreviations∫
B

Brdm = mBrQS , −
∫
B

B r̃B r̃dm = BI,
∫
B

B r̃B ṙdm = BLQ. (2.171)

The meaning is clear. The first term in the last equation (2.170) represents
the moment with respect to Q of the absolute momentum (BvP,absdm) in
point P, the second term the moment with respect to the center of mass S of
the momentum (mBvQ,abs) in point Q, the third term is the classical moment
of momentum expression for rigid bodies without relative velocities B ṙ and
with point Q fixed and finally the last term is a kind of relative moment of
momentum for a body with moving parts. If we choose the center of mass S as
a reference point instead of Q, we get BrQS = 0, and the second term becomes
zero. Though well known from every undergraduate textbook of mechanics we
shall repeat here the components of the inertia tensor BI.

I = −
∫
B

r̃r̃dm =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



Ixx = A =
∫
B

(y2 + z2)dm, Ixy = Iyx = −F =
∫
B

xydm,

Iyy = B =
∫
B

(z2 + x2)dm, Ixz = Izx = −E =
∫
B

zxdm,

Izz = C =
∫
B

(x2 + y2)dm, Iyz = Izy = −D =
∫
B

yzdm. (2.172)
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In classical textbooks we find the notation as above, but for the inertia tensor
also quite often Θ instead of I.

Some remarks to the above transformations, which are of course only spe-
cific examples for that, what has to be done in building a set of equations of
motion and a complete set for all constraints. We establish the kinematics of
a system in a first step, performing all relevant transformations with respect
to body-fixed and inertial coordinates, we then establish in a second step the
kinetic equations also including all necessary coordinate transformations, in a
further step we must consider the constraints to finally end with a complete
set of the system dynamics. The methods and the style of formulating things
turned out to be very helpful also with respect to very large problems. A pars
pro toto example might be the introduction of the tilde operation ã·b = a×b,
which simplifies all matrix-vector manipulations considerably.
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2.4 Energy

2.4.1 Introduction

If we move a mass element dm under the influence of an active force dFa
from a point 1 to a point 2 along some arbitrary path (Figure 2.27), then the
following work is done

dW =

r2∫
r1

dFTa dr = dm

r2∫
r1

r̈Tdr (2.173)

Applying some manipulations to the second term of the above equation we
get

dm

r2∫
r1

r̈Tdr = dm

r2∫
r1

d ṙT

d t
dr =

1
2
dm

r2∫
r1

d(ṙT ṙ) =
1
2
dm(ṙ2

2 − ṙ2
1) = dT2 − dT1.

(2.174)

From this the work done by shifting dm from point 1 to point 2 is given by

dW = dT2 − dT1 =

r2∫
r1

dFTa · dr (2.175)

dr

path of motion

dm

1
2

dFar1

r2

Fig. 2.27: Work and Energy

The work done by the active force is equal to the difference of the kinetic
energies. If we move in a force field, where along a closed trajectory s no work
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is produced, then we call the corresponding system a conservative system with
the property∮
s

dFTa · dr = 0. (2.176)

Systems of that kind do not dissipate energy, and they are not supplied with
energy. Applying Stokes theorem (see [283]) we can write∮
s

dFTa · dr =
∫
A

(curl(dFa))dA, (2.177)

from which we follow that

curl(dFa) = 0 ⇔ dFa = −grad(dV) (2.178)

The force field can be derived from a potential V. Therefore we get further on

r2∫
r1

dFTa · dr = −
r2∫

r1

grad(dV)dr = −
r2∫

r1

∂V

∂r
dr = −(dV2 − dV1). (2.179)

The work done is proportional to the negative difference of the potential
function dV between the points 1 and 2 and for a conservative force field as
defined by the equations (2.178). Together with equation (2.175) we get

dW = −(dV2−dV1) = (dT2−dT1) ⇔ dT1+dV1 = dT2+dV2 = dT+dV,

(2.180)

or by integration over a whole body

T+V=E0 = constant. (2.181)

In conservative systems there will be no energy losses, and the energy conser-
vation gives a first integral of motion sometimes useful for applications. In the
presence of friction the total energy decreases, and equation (2.176) does not
apply. But, on the other hand, a force field including also non-smooth force
laws might still be conservative as long as no frictional energy losses occur.

2.4.2 Kinetic Energy

Considering a rigid mass-element dm and applying the relevant expressions
for the absolute velocity written in a body-fixed frame (equation 2.38) we can
express the kinetic energy by
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T =
1
2

∫
m

vTvdm

=
1
2

∫
m

(BvQ + Bω̃ · Br)T · (BvQ + Bω̃ · Br)dm

=
1
2

∫
m

[(E r̃T )
(

vQ
ω

)
]T · [(E r̃T )

(
vQ
ω

)
]dm (2.182)

The structure of the last equation will be the same in each coordinate system,
because we can transform the velocity equation (2.38) into every other base.
Continuing in a body-fixed frame the second equation results in

T =
1
2

∫
m

(BvQ + Bω̃ · Br)T · (BvQ + Bω̃ · Br)dm

=
1
2

∫
m

(BvQTBvQ + 2BrTBω̃
T
BvQ + Bω

T (−r̃r̃)Bω)dm

=
1
2
m(BvQTBvQ) + mBrST Bω̃

T
BvQ +

1
2B
ωT BIBω, (2.183)

with the already mentioned relations

mBrS =
∫
m

Brdm, BI = −
∫
m

B r̃B r̃dm. (2.184)

The last equation of (2.183) contains the well-known terms for a pure transla-
tion, a pure rotation and a mixed term, which disappears for BrS = 0 in the
case of choosing the mass center S as a reference point. In a body-fixed frame
the magnitudes BrS and BI are constant, which underlines the necessity of
using such body-fixed coordinates, but in an inertial frame for example these
magnitudes depend on time, because we look at the system so-to-say from
outside, from an external point of view. For large multibody systems we must
travel through a large number of coordinate systems using the possibilities
of chapter (2.2.4), which finally results in structurally similar expressions but
multiply augmented by each additional coordinate system and reasonably to
be evaluated only by a computer.

To give an idea of the influence of elastic parts on the energy we go back to
chapter (2.2.8), consider again the equations (2.133) and Figure (2.22). The
absolute velocity of a deformed body point can only be achieved by trans-
forming these equations into an inertial frame and after differentiation by
transforming them back into a body-fixed frame, if necessary. The transfor-
mation matrix from Bi to I will be called AIBi . Then we get

IrIBei =AIBiBi
rIBei

=AIBi [Bi
rIBi + Bi

rBiBri + ABiBei · (Bei
rBriBei)]. (2.185)
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From the equations (2.134) and (2.145) together with Figure (2.22) we have
in addition (assuming small elastic deformations)

ABiBei ≈

 1 −γ +β
+γ 1 −α
−β +α 1


i

= Ei + ϕ̃i,

ϕi =

α
β
γ


i

=
1
2


∂w
∂η −

∂v
∂ζ

∂u
∂ζ −

∂w
∂ξ

∂v
∂ξ −

∂u
∂η


i

,

Bei
rBriBei =Bei

ui with Bei
ui = (u,v,w)Ti . (2.186)

The absolute velocity of the mass element dme of Figure (2.22) is then ob-
tained simply by formal differentiation of IrIBei . We get

I ṙIBei = ȦIBiBi
rIBei + AIBiBi

ṙIBei , (2.187)

which we can evaluate a bit further. With ABiIȦIBi = Bω̃IB and according
to the corresponding relations in the kinematics chapter we may write for the
absolute velocity in the Bi-frame

Bi
vabs = ABiII ṙIBei = Bi

ṙIBei + Bi
ω̃IBiBi

rIBei , (2.188)

where Bi
rIBei is given with equation (2.185) and the velocity Bi

ṙIBei follows
from

Bi
ṙIBei = Bi

ṙIBi + Bi
ṙBiBri + ABiBei(Bei

u̇i + Bei
ω̃BiBeiBei

ui) (2.189)

with ȦBiBei = ABiBei · Bei
ω̃BiBei representing the rotation of the mass ele-

ment due to the elastic deformation. Setting further

Bi
ui = ABiBeiBei

ui, ABiBei(Bei
ω̃BiBei)Bei

ui = Bi
ω̃BiBeiBi

ui (2.190)

we get finally

Bi
vabs = Bi

ṙIBi+Bi
ṙBiBri + Bi

ω̃IBi(Bi
rIBi + Bi

rBiBri)
+Bi

u̇i + (Bi
ω̃IBi + Bi

ω̃BiBei) · Bi
ui, (2.191)

which confirms the classical approach, that we must add to the velocity the
deformation velocity and to the angular velocity the angular velocity due to
elasticity [28]. The first line of equation (2.191) represents the translational
and rotational motion of the undeformed reference Bi of the body Bi. The
second line expresses the influence of the elastic deformations, where for ex-
ample the complete rotation is composed by the rotation between the inertial
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frame and that of the body Bi depicted by Bi
ω̃IBi plus the rotation between

the undeformed body element dmr and the deformed element dme (see Figure
2.22) given with Bi

ω̃BiBei , both terms written in the body-fixed frame Bi.
All necessary magnitudes are now known from the above relations. The

evaluation should of course be done by a computer. The overall kinetic energy
of a system writes

T =
∑
i

∫
mi

I ṙIBei

T
I ṙIBeidmei =

∑
i

∫
mi

BvabsTBvabsdmei, (2.192)

where there might be also rigid bodies with Bei
ui = (u,v,w)Ti = 0. It does not

change formula (2.192) principally.
Some aspects should be considered in establishing the energy for elastic

components: Firstly, one should keep in mind the property, that the transfor-
mation AIBi from the body Bi to the inertial frame I contains the influences
of the elasticities of all bodies between I and Bi. As the velocities are gen-
erated by multiplication with the transformation matrices it is sufficient to
retain only terms up to the second order in the elastic deformations. They are
necessary to come out with an exact linearization of the elastic terms in the
equations of motion. Secondly, applying a Ritz- or a Galerkin-approach for
small elastic deformations we always can separate the integrals of equation
(2.192) into a spatial- and a time-dependent part, where the spatial-dependent
part can be evaluated beforehand.

2.4.3 Potential Energy

Considering in a first step the deformation energy we confine ourselves to the
case of linear elastic deformations of isotropic materials including the sym-
metry of the stress tensor. One definition of this stress tensor is the following
(see Figure 2.26)

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 , with σij = σji, (i, j = x, y, z). (2.193)

The corresponding strain tensor is given with equation (2.140). Assuming
small deformations of the element of Figure (2.26), for example in x-direction
an εxxdx or in y-direction an angular deformation γxydx = 2εxydx, we get the
work done by these small deformations from the stress forces multiplied by
the corresponding strains, in our example dWεxx = (1

2σxxdydz)(εxxdx) and
dWγxy = (1

2σxydydz)(γxydx) with γxy/2 = εxy. For all the other directions
we come out with similar expressions.

Collecting all these terms and integrating over the total volume of the
elastic body we have the well-known relation (see for example [147] or [28])
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V =
1
2

∫
B

(σxxεxx+σyyεyy+σzzεzz+σxyγxy+σyzγyz+σzxγzx)dx dy dz. (2.194)

For most engineering problems of dynamics the constitutive relations of
Hooke’s generalized laws will be sufficient. Confining our considerations to
isotropic linearly elastic materials then they write for the strains and the
shear strains, respectively,

εxx =
1
E

[σxx − µ(σyy + σzz)],

εyy =
1
E

[σyy − µ(σzz + σxx)],

εzz =
1
E

[σzz − µ(σxx + σyy)], (2.195)

εxy =
σxy
2G

, εxz =
σxz
2G

, εyz =
σyz
2G

, (2.196)

or in a more general form (see [19] and [228])

εij =
1
E

[(1 + µ)σij − µδijσnn], (i, j = x, y, z), (2.197)

where we have to summarize over “nn”, and δij is the Kronecker-symbol.
The material constants have the following meaning: E=Young’s modulus,
µ=Poisson’s ratio and G=shear modulus. The shear modulus can be expressed
by G = E

2(1+µ) . Combining the equations (2.194) to (2.197) yields the potential
energy in the form

V =
∫
B

[
1

2E
(σ2
xx + σ2

yy + σ2
zz)−

µ

E
(σxxσyy + σyyσzz + σzzσxx)

+
1

2G
(σ2
xy + σ2

yz + σ2
zx)]dxdydz, (2.198)

or again in a more general form (see [19] and [228])

V =
∫
B

1
2E

[(1 + µ)σijσij − µσ2
nn]dxdydz (2.199)

In a second step we only want to mention the different features of other po-
tential energies. Any type of springs with linear, nonlinear or non-smooth
characteristics possess potential energy if deformed. Gravity and the attrac-
tion or the repulsion of masses are connected with potential energies. The
same is true for electrostatic and electrodynamic effects. If special problems
require these or other forms of potential energy, it is easy to find models in
the various literature.
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2.5 On Contacts and Impacts

2.5.1 Phenomena

Impulsive motion takes places for a variety of reasons including the classical
contact of two or more bodies, a sudden stop of some fluid flows or a velocity
jump due to “dynamic locking” [161]. The last phenomenon was and still is
a subject of many discussions and many contributions. A practical example
represents the chattering chalk on a blackboard. The contacts and the impacts
of two or more bodies will be of the main interest here, and therefore we shall
focus on some basic aspects of such collisions.

The interest for understanding impact phenomena was always very large,
because impacts possess the possibility to augment considerably the forces for
a lot of practical processes like hammering or forcing piles into the ground
(in German the “bear”). Therefore all great scientists and engineers worked
in the one or other way on impact phenomena. Aristoteles, Galilei, Newton,
Marcus Marci, Huygens, Euler, Poisson, Coulomb and many others paved the
way to a modern theory of impulsive motion (see [259]).

If two or more bodies collide impulsively and with arbitrary direction,
the contact zone will be deformed in normal and in tangential direction thus
storing elastic potential energy with respect to these two directions. The defor-
mation in tangential direction depends for a given state before the impact at
least to a large extent on the properties of the contacting surfaces, especially
on the roughnesses, which are for technical surfaces in the order of magnitude
of some micrometers (µ). Under the influence of the relative velocities, friction
and the stored energies we get different results.

Firstly and the energy losses being small the bodies might separate again
very quickly, where the directions of the separation depend on the velocity
before the impact, the frictional features and the impulse storage. We might
also get a reversal of the incoming motion depending mainly on the properties
in tangential direction [15]. The point of contact, averaged over the deformed
contact zone, will be usually different from that point, where the spring forces
due to the elastic deformation of the contact zone apply. This has influence
on the whole contact process, which becomes significant for pairings of soft
materials [15].

2.5.2 Impact Structure

Some typical properties of a single impact are indicated in Figure (2.28). Two
bodies will impact if their relative distance rD becomes zero. This event is then
a starting point for a process, which usually is assumed to have an extremely
short duration. Nevertheless, deformation of the two bodies occurs, being
composed of compression and expansion phases. The forces governing this
deformation depend on the initial dynamics and kinematics of the contacting
bodies. The impulsive process ends when the normal force of contact vanishes
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and changes sign, because a contact cannot realize tension forces. We do not
consider adhesion phenomena. The condition of zero relative distance cannot
be used as an indicator for the end of an impact, because it does not necessarily
indicate also a vanishing contact force. In the general case of impact with

Fig. 2.28: Details of an Impact

friction we must also consider a possible change from sliding to sticking during
the impulsive process, or vice versa, which includes frictional aspects as treated
later. In the simple case of only normal velocities we sometimes can idealize
impacts according to Newton’s impact laws, which relate the relative velocity
after an impact with that before an impact. Such an idealization can only
be performed if the force budget allows it. In the case of impacts by hard
loaded bodies we must analyze the deformation in detail. Gear hammering
taking place under heavy loads and gear rattling taking place under no load
are typical examples [200].

As in all other contact dynamical problems, impacts possess complemen-
tarity properties. For ideal classical inelastic impacts either the relative ve-
locity is zero and the accompanying normal constraint impulse is not zero,
or vice versa. The scalar product of relative velocity and normal impulse is
thus always zero. For the more complicated case of an impact with friction
we shall find such a complementarity in each phase of the impact. Friction in
one contact only is characterized by a contact condition of vanishing relative
distance and by two frictional conditions, either sliding or sticking (see Figure
2.29).

w

v

vrel vrel

F TS

F N F N

F T0r D

0 = 0

Fig. 2.29: Sliding and Static Friction
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A typical property of contacts, whatsoever, is the fact, that kinematic
magnitudes indicating the beginning of a contact event become a constraint
at that time instant, where a contact becomes “active”. For example: a non-
zero normal distance between two bodies going to come into contact indicates
a “passive” contact state with zero normal constraint force. In the moment
it is zero, then the relative distance represents a constraint accompanied by
a constraint force, and the contact is “active”. In tangential direction it is
similar: Non-zero tangential velocity (sliding) means a zero “friction reserve”
µ0|FN |−|FTC | = 0 (see Figure 2.30). This tangential relative velocity becomes
zero for stiction and represents then a constraint accompanied by a tangential
constraint force. The end of a contact event or better of an active contact state
will be always indicated by a constraint force or a combination of constraint
forces. The normal constraint force becomes zero indicating a separation, and
the friction reserve becomes zero indicating a change from sticking to sliding.
In more detail this means:

From the contact constraint rD = 0 we get a normal constraint force FN
which, according to Coulomb’s laws, is proportional to the friction forces, or
better vice versa, the friction forces are proportional to the normal force in the
contact. For sliding FTS = −µFN sgn(vrel), and for stiction FT0 = −µ0FN ,
where µ and µ0 are the coefficients of sliding and static friction, respectively.
Stiction is indicated by vrel = 0 in tangential direction and by a surplus
of the static friction force over the constraint force, µ0|FN | − |FTC | ≥ 0. If
this friction reserve becomes zero the stiction situation will end, and sliding
will start again with a nonzero relative acceleration arel in the tangential
direction. Again we find here complementary behavior: Either the relative
velocity (acceleration) is zero and the friction reserve (saturation) is not zero,
or vice versa. The product of relative acceleration and friction surplus is always
zero.

FN

µ0FN
FTC

µ0|FN | − |FTC |
friction reserve

Fig. 2.30: Friction Cone and friction reserve

We may take that in a more classical way. Having stiction we are situated
within the friction cone connected with the contact under consideration. The
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cone boundary represents the static friction as mentioned above, and the
friction reserve or the friction surplus is the distance from the tangential force
FTC to the friction cone given with µ0|FN |, see Figure (2.30). If this distance
is used up by the changing dynamics of the overall system, then we are on
the friction cone with the possibility of tangential sliding. But this sliding in
tangential direction can only start, if the vanishing friction reserve will be
accompanied by a non-zero acceleration in one of the tangential directions.

2.5.3 Basic Laws

All modern efforts to establish contact models on a micro-scale down to the
molecular surface structures were not very successful, up to now. Therefore we
still rely on a few laws developed by Newton, Poisson and Coulomb. Newton’s
impact law (1687) relates the relative velocity before an impact to the rela-
tive velocity after an impact by a coefficient of restitution ε, which must be
determined experimentally. A value ε = 1 represents a completely elastic and
ε = 0 a completely plastic impact. In the first case we have no energy losses
and in the second case a maximum loss. Newton’s law is a kinematic law and
refers to the normal contact direction only, whereas the law of Poisson (1835)
is a kinetic law relating the impulses after and before an impact. It can easily
be extended to general impacts with normal and tangential components of
velocities and impulses. The coefficients of restitution must also be measured.
For our purposes of multiple impacts in multibody systems with multiple con-
tacts Poisson’s law is more general and assures correct results for all cases of
technical relevancy, Newton’s law not. Poisson’s law allows an energy transfer
between the normal and tangential directions, and vice versa, Newton’s law
not. Thus, Poisson’s law gives a more realistic approach.

Coulomb’s idea of applying a very simple relationship for contacts cor-
responds exactly to that, what we are doing in engineering sciences in cases
where detailed and very sophisticated models are hopeless to realize. We go the
simple way. It is really fascinating that these simple laws of Coulomb, which
he wrote down about 1780, give such a good approximation also in compli-
cated cases of impulsive motion. He assumes the friction forces in a contact
to be proportional to the normal force and introduces friction coefficients for
static and for sliding friction, which have to be determined from experiments.
Coulomb’s law represents the basis for the friction cone and from there, in
modern non-smooth mechanics, the starting point for convex analysis.

In chapter (2.5.2) we have discussed some structural aspects by consid-
ering one contact only. For the forces we used the expressions FN and FT .
With respect to multibody systems we shall have in the chapters to come the
expressions λN and λT for all kinds of constraints forces. Therefore we shall
use these expressions already in the following considerations. To start with we
repeat the well-known and above mentioned laws by considering some con-
tact i, which is involved in impulsive motion. For dry friction we shall apply
Coulomb’s law in the following form:
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|λTi| < µ0i|λNi| ∧ ġTi = 0 sticking,
λTi = +µ0iλNi ∧ ġTi ≤ 0 negative sliding,
λTi = −µ0iλNi ∧ ġTi ≥ 0 positive sliding, (2.200)

where ġTi is the relative velocity in contact i, and λNi, λTi are the relevant
constraint forces in normal and tangential direction, respectively. Equation
2.200 can be interpreted as a double corner law as shown in Figure 2.31. We are

reserve

Fig. 2.31: The Friction Law of Coulomb

either within the friction cone with |ġTi| = 0 and (−µ0iλNi ≤ λTi ≤ +µ0iλNi),
or we are on the friction cone surface with |ġTi| �= 0 and |λTi| = µ0iλNi. The
friction coefficient µ0i is defined as (see Figure 2.32)

lim
ġT i→0

µi(ġTi) = µ0i (2.201)

In connection with this condition it should be noted, that most of the authors
working in the field of non-smooth mechanics apply Coulomb’s law with the
same friction coefficient µ for sliding and for sticking, which means indepen-
dent from ġTi. This is convenient and for many fundamental investigations also
sufficient. But with respect to practical contact problems we usually have to
consider Stribeck curves (Figure 2.32), which depend on the relative tangential
velocity ġTi. Therefore in applying non-smooth theories the above condition
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makes sense, because one important kernel of all non-smooth considerations
are the various contact transitions.

µi(ġTi)

µ0i

0
ġTi

Fig. 2.32: Typical friction characteristics, Stribeck curves

The constraint force λNi in normal direction results also from a contact
law, which might be characterized by a contact-separation-mechanism. If we
have a normal relative distance in contact i designated gNi, then the interde-
pendency with the corresponding constraint force λNi consists in the classical
complementarity: Either gNi = 0 and λNi ≥ 0 or gNi ≥ 0 and λNi = 0,
which is depicted in Figure 2.33. From this the product (gNi · λNi) is always
zero. Both contact laws (Figures 2.31, 2.33) include complementary features,

Fig. 2.33: Corner law for normal contacts (Signorini’s law)

because also Figure 2.31 can be decomposed in two so-called “unilateral prim-
itives” [87] in form of two simple corners. With the expressions of Figure 2.31
we may say in the case of frictional contacts, that either the relative veloc-
ities |ġTi| are zero and the expression λ0i = µ0iλNi − |λTi| is not zero, or
vice versa, the product (ġTiλ0i) is always zero. We shall call that expression
either “friction reserve” or “friction surplus”, where the first name describes
the relevant properties in a better way.

With respect to impact laws we have in classical mechanics two models,
Newton’s kinematical and Poisson’s kinetic relationships. Newton’s law con-
nects the relative normal velocity after an impact with that before the impact
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stating

(ġNi)+ = −εi(ġNi)− , (2.202)

where (+) means shortly after and (−) shortly before the impact. Losses are
approximated by the coefficient of restitution εi. Poisson considers impulses
Λ =
∫
λdt and relates them by

Λ+
i = −ε∗iΛ−

i . (2.203)

The physical idea behind Poisson’s law consists in a storage of impulses during
compression and a gain connected with losses during expansion of the impact
process. Therefore, Poisson’s law can be applied in normal and tangential
direction of the contact without generating physical inconsistency [15]. In any
case the loss coefficients εi, ε

∗
i have to be measured for each specific material

pairing.

2.5.4 Impact Models

According to the above discussion we have two possibilities to model im-
pulsive motion. Firstly, we may discretize the contact zone, for example by
finite elements or by analytical approximative relations [118], which results in
a smooth model usually with the problem of stiff differential equations due
to the large stiffnesses in the contacts. As a consequence such models come
out with very high frequencies either without physical meaning or very often
without the need to know them. Secondly, we may use the above discussed
complementarities to establish a non-smooth model not including the draw-
backs of discretized models, but for the prize of more mathematics and of
some numerical difficulties. For large systems, where we do not need the de-
tailed structures of the contacts, non-smooth models possess definitely more
advantages than drawbacks.

It should be pointed out, though, that we may also combine the two meth-
ods of modeling. For large systems with unilateral contacts it is often more
economical to evaluate a non-smooth model and to go that way. In the case
where I want to have in addition some detailed informations of some spe-
cific contacts with respect to certain criteria, for example maximum contact
forces, I always may establish some post-processing including a discretization
for the selected contacts thus yielding detailed results of pressure distributions,
deformation distributions and the like. The only requirement to be fulfilled
consists in adapting the discretization to the results obtained by the “large”
non-smooth simulation. For example the averaged impulses must compare
with those of the simulation. Altogether this is a simple and straightforward
procedure.

Discretized models work with forces and a finite duration of the impulsive
process itself. It is not too difficult to include also wave phenomena. Non-
smooth rigid-body-models work with an infinitesimal short duration of the
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impulsive process, and it is difficult to include wave processes. The choice of
the model with a best fit to the problem depends of course, as always, on
the problem itself. Non-smooth rigid-body-models turn out to be an excellent
approximation to a large variety of technical problems. They are governed by
the following assumptions:

• The duration of the impact is “very short.”
• The impact can be divided into two phases: the compression phase and

the expansion phase.
• The compression phase starts at time tA and ends at time tC . The end

of the compression equals the start of the expansion phase. Expansion is
finished at time tE , which is also the end of the impact.

• During the short impact duration all magnitudes of the multibody system
for position and orientation as well as all nonimpulsive forces and torques
remain constant.

• Wave effects are not taken into account.

In multiple-contact problems there might be one impact only in one of the
contacts or several impacts in several contacts simultaneously. The existing
theories cover both possibilities (see [200], [87], [135]).
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2.6 Damping

2.6.1 Phenomena

From the physical standpoint of view damping is an energy conversion process,
in most cases by some kind of friction. From the technological standpoint
of view damping is an energy consuming process, in many cases accompa-
nied by useful consequences in form of vibration reduction, for example. All
mechanisms of damping require relative motion. Following some systematizing
ideas of the German Society of Engineers (VDI - Verein Deutscher Ingenieure,
[266]) we have in mechanical systems internal damping like friction in gears or
slide ways, external damping by solid-fluid-interactions, material damping by
fluid flows or by microplastic deformations of solids and some special forms
of damping in connection with electro-dynamical influences, for example. In
specific cases of machines and mechanism it is usually not very difficult to
localize the damping possibilities, the problem concerns mainly the quantita-
tive evaluation of the damping mechanisms. In spite of very many intelligent
theories on damping represented by a huge literature in that area we are
mainly concerned with empirical data and thus with experience. It is not
by accident, that big companies establish large databases collecting all the
experiences available on damping, of course especially with respect to their
own products. Nevertheless we shall give some classical and modern results
concerning damping and its influence on dynamics of mechanical systems.

Friction is the basis of nearly all types of mechanical damping, friction
between solids, between fluids and solids and internal friction of fluids and
solids. We can also produce damping by the combination of mechanics and
electro-dynamics, like eddy-current brakes, but we shall confine our consider-
ation to mechanical friction effects. Friction between solids might be dry or
viscous friction, in the first case governed for example by Coulomb’s equations
(2.200) and in the second case by some laws usually derived from the boundary
layer equations of viscous fluids (see for example [12] and [13]). The viscosity
of fluids leads to a large variety of possible representations depending on the
environmental parameters like gap size, pressure differences or velocities. In
machine dynamics this belongs to the increasing field of fluid film rheology
[94]. It should be kept in mind, that fluid films in bearings, between gear
teeth or on guide ways have a thickness of some micrometers with usually
significantly increasing stiffness with decreasing thickness.

Interactions of solids and fluids generate friction in boundary layers of
variable thickness, where the flow might be laminar or turbulent depending
on the external conditions. Airplanes, helicopters, buildings and the famous
self-excited vibrations of bridges are typical examples. Velocity gradients lead
to friction within a fluid, which is of much importance in chemical engineering.
For our purposes we need the effects of friction in the form of a linear or non-
linear force law, which we can then implement into the equations of motion.
The implementation does of course not solve the data problem, because these
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force laws contain as a rule some empirical coefficients, which have to be
measured. In the following we shall indicate some possibilities of such force
laws.

2.6.2 Linear Damping

Linear damping is characterized by force laws, which give a linear relation
between force and relative velocity. Many engineering applications follow ap-
proximately this property. We may include such forces in both, linear or non-
linear equations of motion. In many cases the motion can also be linearized.
Therefore we shall consider in the following linear equations of motion includ-
ing linear damping, and we shall give some simple relations with regard to
these damping laws.

Linear system dynamics is a very well established area, which might be
taken from a large variety of text books, see for example [174], [157], [148] and
[187]. For a mechanical system with f degrees of freedom we get the well-known
MDGKN-equations of motion, which write:

Mÿ+(D+G)ẏ+(K+N)y = g(t) with y ∈ IRf ,M ∈ IRf,f , etc. (2.204)

The matrix M is the symmetric mass matrix, D the symmetric damping
matrix, G the skew- symmetric gyroscopic matrix, K the symmetric stiffness
matrix and N the skew-symmetric matrix of non-conservative forces, due to
rotational effects, for example. A Laplace transform of these equations comes
out with

y(s) = [Ms2 + (D + G)s + (K + N)]−1g(s), (2.205)

which gives immediately the response chart for the linear system (2.204) under
the excitation of g(t). The existence of a linear damping term (Ds) results in
a reduction of the amplitudes y(s). If we put G = 0, N = 0, g(t) = 0 and
multiply the remaining equation (Mÿ+Dẏ+Ky = 0) from the left side with
ẏT , we get a kind of power equation in the following form

ẏTMÿ + ẏTKy =
d(Ek + Ep)

dt
= −ẏTDẏ = −2R. (2.206)

The left hand side of this equation depicts the time derivatives of the ki-
netic and the potential energies, and the energy term on the right hand side
represents the dissipation power produced by the dissipative forces, and R is
the Rayleigh dissipation function [148]. For R > 0 and thus D > 0 we have
complete damping reducing the motion energy for any kind of motion. For a
positive semidefinite matrix with (D ≥ 0, det(D) = 0) we still have damp-
ing, which is called penetrating damping. In this case we should have a good
parameter adaptation to achieve damping for all types of motion.

Sometimes it makes sense to assume, that the damping matrix D is pro-
portional to the mass- and the stiffness-matrices, which has some advantages
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with respect to modal analysis but which on the other hand shifts the data
problem to the formula [148]

D = αM + βK, (2.207)

because the coefficients α and β are not known and must be estimated. Instead
of choosing the form of equation (2.207) with scalar coefficients we also could
choose a coefficient matrix, which of course will enlarge the data problem.

The classical results for an oscillator with one degree of freedom only allows
some simple interpretations of damping. The equation (2.204) writes for the
case f=1

ÿ + 2δẏ + ω2
0y = g(t), δ =

d

2m
, ω2

0 =
k

m
. (2.208)

For the undamped case (δ = 0) we get from the right hand side of the above

equation the sometimes called “undamped natural frequency” ω0 =
√

k
m

and for the damped case (δ �= 0) the “damped natural frequency” ωd =√
k
m −

d
2m

2
, which indicates the well known reduction of eigenfrequencies with

increasing damping. The complete solution possesses two parts, that of the
free vibrations, which usually disappear very quickly, and that of the forced
vibrations. Assuming a harmonic excitation with (g(t) = a cos (ωt)) we get as
a result for the forced part

xforced =R cosωt− ψ,

R =
a√

(ω2
0 − ω2)2 + 4δ2ω2

, tanψ =
2δω

ω2
0 − ω2

(2.209)

The amplitude R of the forced vibration and the phase angle ψ depend both
on the damping coefficient. Moreover, for vanishing damping we have no phase
shift ψ. The amplitude R increases with decreasing damping, and its maximum
is shifted to lower eigenfrequencies with increasing damping. These effects also
can be observed in response curves for systems with many degrees of freedom,
mainly due to the fact, that near resonances most large systems with many
degrees of freedom behave approximately like a one-degree-of-freedom system.
For practical applications it is useful to remember a few qualitative tendencies
following from the above equations: Eigenfrequencies decrease with increas-
ing masses and with decreasing stiffness. Resonance amplitudes decrease and
are shifted to lower frequencies with increasing damping. These are, for a
given configuration, the main parameters to influence vibrations and to avoid
resonances.

As already discussed, it is very often straightforward to find a model for
damping, but it is a difficult task to get the unknown coefficients included in
all force laws of damping. For linear damping this concerns the elements of
the matrix D of equation (2.204). Though we never can do without empirical
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data, at least with respect to the state of the simulation art at the time being,
we shall consider some simple laws for an estimation of damping force laws.

Elementary relations for damping are fluid flow boundary layers of various
configurations. The plane laminar flow of a Newtonian fluid between a moving
and a not moving wall is governed by a parabolic velocity and a linear shear
stress distribution. The shear stress at the moving wall and the volume flow
through the gap take on the values ([12], [13], see also Figure (2.34)) )

τw = η
uw
h

+
h

2l
(p2 − p1), V̇ = (

uwh

2
− p2 − p1

12ηl
h3)b, (2.210)

where τw and uw is the shear stress and the velocity of the moving wall,

moving wall, u = uw

not moving wall, u = 0

u = u(y)h

y

l

p1 p2

Fig. 2.34: Flow through a Gap

respectively, V̇ is the volume flow, h is the gap between the two walls, l the
length of the walls and the (pi, i = 1, 2) are the pressures at the two sides
of the gap. The viscosity η is the “dynamic” viscosity. It is assumed that
the plane flow has a width b. The first part of the first equation (2.210) is
proportional to the velocity, the second part is proportional to the pressure
difference (p2 − p1). For practical cases various combinations are possible.

We first consider an elementary slide way with the length 2l and the width
b, see Figure (2.35). The upper sliding structure does not move uw = 0, and
the slide way is supplied by an oil volume V̇ in the middle of its length 2l.
The gap is very small compared with b and l (h << l, h << b), so that
we can neglect boundary effects. From the second equation (2.210) we get
(p2 − p1 = 12ηlV̇

bh3 ). The pressure distribution in the gap is approximately
linear, therefore the averaged pressure difference is (p2 − p1)/2 acting on the
area (2bl). For the normal force Fn in the gap this yields

Fn =
12ηl2V̇

h3
= (

12ηAl2

h3
) · vrel, (2.211)

where A is the cross sectional area of the gap and vrel = V̇
A the relative ve-

locity in the gap. Equation (2.211) describes an interesting result for such oil
cushions. The force Fn is proportional to h−3 resulting in a sharply increasing
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2l

hp1p2 p2V̇V̇

2V̇

Fig. 2.35: Axial Bearing, Slide Way

pressure difference (p2−p1) without destroying the oil cushion. Thus oil lubri-
cation is maintained even for large loads. We find a similar situation for axial
bearings, which is an important component in many machines, for example
in power transmissions of ships. Equation (2.211) represents a linear relation
of force and velocity.

Another very important application are journal bearings, where the gap
between the shaft and the bearing cylinder is very small. Therefore a boundary
layer approach gives quite realistic results ([13], [247]). It is well known, that a
shaft running exactly symmetrical in a bearing does not develop any force in
any direction, because we have around the shaft the same pressure distribution
as supplied by some pump, for example (left picture of Figure (2.36)). Putting
on a load we get on the upper half of the shaft (ϕ ∈ [0, π]) an underpressure
with respect to the averaged pressure in the gap, and on the lower half of
the shaft (ϕ ∈ [π, 2π]) an overpressure. The integral over the whole bearing
results in a pressure force, exactly vertical upwards, which counterbalances
the external load by adapting the “control parameter” h(ϕ) in an appropriate
way, see right picture of Figure (2.36). The shaft itself is shifted exactly in a
perpendicular direction with respect to the force F.

From the simple Reynolds-Sommerfeld-theory we get the following friction
torque ([13], [247]):

M =

(
2(1 + 2ε2)√

1− ε2(1 + ε2

2 )

)
·
(
πr2

0bη

a

)
· uw. (2.212)

The eccentricity ε describes the offset of the shaft center with respect to the
bearing center. For ε = 0 we have the left hand side case of Figure (2.36), that
means no eccentricity, and for ε = 1 the other extremum, namely a contact of
the shaft at the the left side with ϕ = 0. The gap for the load case depends
on ϕ and writes: h(ϕ) = a(1 − ε cosϕ). The expression πr2

0 is the shaft cross
section, and b the bearing length. The gap without load has the value of a,
for which we assume a << r0. As above, η is the dynamic viscosity. It should
be noticed, that the damping torque for a disturbance ∆uw of the constant
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F

Fig. 2.36: Journal Bearing

shaft speed uw is given by the same expression as in equation (2.212), we only
must replace uw by ∆uw.

In practice we are faced with deviations from the above theory, and in the
meantime a large body of technical literature exists giving very sophisticated
models of journal bearing dynamics and of friction in journal bearings. But
nevertheless these simple formulas above give a first estimate of friction and
damping in bearings in the form of a linear relation between torque and ve-
locity. For many practical application it fits quite well. We shall come back to
these problems in the application part of the book.

2.6.3 Nonlinear Damping

Nonlinear damping behavior in machines and mechanisms is very diverse. Ma-
terial damping, friction in all components having relative motion with respect
to other components, damping in all connecting elements like screws or press
fits are a few examples. The mounts connecting the motor with the auto-
mobile body consist of visco-elastic springs with a progressive characteristic.
Surveys of nonlinear damping my be seen from the literature ([47], [266]). A
practically reasonable measure of damping is the “relative damping” defined
as the friction losses per cycle, which is proportional to the area enclosed by
the hysteresis cycle (Figure 2.37).

The mechanical losses due to such a hysteresis behavior is the integral for
one cycle

WD =
∮

σdε, or WD =
1
T

t+T∫
t

FTDvreldt, (2.213)

which represents in the first case the work of damping per volume [Nm/m3]
for arbitrary σ − ε − curves, in the second case the damping work in [Nm]
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Fig. 2.37: Damping Hysteresis: left-linear material behavior, right-nonlinear
material behavior

directly. The first equation is useful only for such cyclic processes with a
corresponding friction behavior. The second case is more general by applying
the law for the damping force FD, but we must find a suitable magnitude for
the reference time T, usually from simulations.

The equations of motion become nonlinear even in cases, where the dy-
namics without damping might be linear. Thus we start with the set

M(q, t)−h(q, q̇, t) = JD ·FD = hD(q, q̇, t),

(q ∈ IRf ,M ∈ IRf,f ,h ∈ IRf ,FD ∈ IRfD ,JD ∈ IRf,fD ). (2.214)

The vector q describes the generalized coordinates, f the degrees of freedom,
M the mass matrix, h all forces with the exception of the damping forces, and
the Jacobian JD projects the damping forces into the space of the generalized
coordinates. The right hand side of the above equation depends on (q, q̇, t).

Let us first consider a few examples concerning jointing structures, mainly
based on the Coulomb friction law in connection with the Stribeck curve (see
chapter 2.5). Coulomb’s law for sliding and static friction writes

Fsliding = −µFN sgn(vrel), Fstiction = µ0FN , (2.215)

where the first equation applies for sliding and the second for stiction. For
damping we are interested only in the first case with Fsliding = FS in the tan-
gential contact direction, where also vrel develops between the corresponding
surfaces. According to equation (2.201) the validity of Coulomb’s law is lim-
ited to the area around ˙gTi = 0, the further characteristic of the relationship
µi(ġTi) depends on the material pairing and must be measured. Modern ma-
terial pairings, as applied for example in automotive industry, show partly
exotic friction behavior often characterized by increasing and not by falling
Stribeck curves. They are indicated in Figure (2.38). From this it follows that
for the evaluation of system dynamics we must consider set-valued forces near
the origin of Figure (2.38) and apart from the origin some type of Stribeck
curve in the form of a smooth force law.
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Fig. 2.38: Typical Stribeck Curves

In machine dynamics damping by relative motion in screws, in press fits
and in similar contact structures is much larger than material damping, which
might be more important in civil engineering. Relative motion in such jointing
connections develops as a result of the system dynamics, which can generate
loads exceeding the design loads of the connection. It is known from practice,
for example, that axial loads on screws oscillating around the mean static
value with an amplitude of more than 60% of this mean value will generate
sliding within the screws, which must not happen from the standpoint of
design, but which results in a damping effect with respect to dynamics. Such
damping effects are governed by the nonlinear, non-smooth Coulomb’s laws.

Another frequently applied element of machine design are press fits (see
[26] and [265]). Such press fits are typically loaded by very large static forces
superimposed by vibrations in all directions, spatial bending, torsion and axial
vibrations. Most models subdivide the shaft in many elements connected with
the hull by a spring-dry-friction- element, which is sometimes called Jenkins
element. Figure (2.39) depicts an example from [26], which considers in detail
the vibrations of a drive train of a large Diesel-engine with about 4 MW
rated power and in this connection especially the influence of press fits on the
dynamics of the whole system. These press fits were used to connect several
large gear wheels to a shaft. The model of Figure (2.39) was included into the
complete system model, and the Jenkins-elements described by the friction
laws (2.215).

As a result we get hysteresis curves typical for such machine components.
The area circumscribed by these curves increase with increasing load, and
the slope of the line connecting the two extremum peaks decreases, both
well-known effects from experimental data. The theory was compared with
measurements from a laboratory test set-up, correspondence has been very
good for all parameter cases. The influence of such press fits on the system
dynamics of the complete drive train can be significant. In the case of the 4
MW Diesel engine the reduction of the overall stiffness of the whole train sys-
tem was nearly 25% with a corresponding modification of the system response
and the accompanying resonance frequencies [26].
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Fig. 2.39: Typical Model of a Press Fit [26]

Fig. 2.40: Hyteresis Curves for Figure (2.39), [26]

For some nonlinear systems we might be able to generate a linear ap-
proximation by representing the nonlinear hysteresis curves by linear ones.
With respect to Figure (2.37) we then must approach the closed hysteresis of
the right picture by the ellipse-shaped curve of the left side by watching the
condition, that the enclosed area must be the same for both cases, the real
nonlinear one and the approximate linear one. Many methods are available to
perform such an approximation ([148], [187], [47] or [60]).
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Constraint Systems

Es ist die nächste und in gewissem Sinne wichtigste
Aufgabe unserer bewussten Naturerkenntnis, dass sie
uns befähige, zukünftige Erfahrungen vorauszusehen,
um nach dieser Voraussicht unser gegenwärtiges
Handeln einrichten zu können.

(Heinrich Hertz, Die Prinzipien der Mechanik,
Einleitung, 1894)

The most direct, and in a sense the most important
task, which our conscious knowledge of nature should
enable us to solve is the anticipation of future events, so
that we may arrange our present affairs in accordance
with such anticipation.

(Heinrich Hertz, The Principles of Mechanics
Presented in a New Form, authorized English
translation by D.E. Jones and J.T. Walley; London,
New York, Macmillan, 1899)

3.1 Constraints and Contacts

3.1.1 Bilateral Constraints

The concept of constraints together with the accompanying constraint forces is
of similar importance as the laws of momentum and of moment of momentum
by Newton and Euler. Daniel Bernoulli was possibly the first to recognize
this significance by speaking of “lost forces” meaning the constraint forces.
A second step was done by d’Alembert requiring, that “all lost forces must
be in an equilibrium state”, and finally Lagrange put that in a modern form
stating, that “lost forces generate no work”.

According to classical mechanics (see for example [93] and [180]) we estab-
lish the following bilateral constraints as algebraic equations in a kinematic
sense:

Φ(z) = 0, holonomic and scleronomic
Φ(z, t) = 0, holonomic and rheonomic
Φ(z, ż) = 0, non-holonomic and scleronomic

Φ(z, ż, t) = 0, non-holonomic and rheonomic (3.1)
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For n bodies we have 6n system coordinates z, the number of all constraints
may be m = mh+mn where mh are the holonomic and mn the nonholonomic
constraints. The real degrees of freedom of the system are given with f=6n-
m represented by the generalized coordinates q. We have used Φ ∈ IRm for
the constraint functions, z ∈ IR6n for the system coordinates and ż for the
system velocities. The constraints form a set of independent equations, not
correlated with the equations of motion but restricting them. As indicated
already in the section 2.1.3, holonomic constraints are integrable, at least
theoretically, non-holonomic constraints are not integrable. This is the basic
condition for non-holonomic behavior. Scleronomic constraints are stationary,
rheonomic constraints are non stationary.

The constraint equations (3.1) define some constraint hypersurfaces in the
space of the system coordinates z(q, t), which themselves depend on the gen-
eralized coordinates q and the time t. The, mostly curvilinear, coordinates
on these surfaces are the coordinates q(t), which represent the possible direc-
tions of the free and allowed motion on these surfaces. Requiring z = z(q, t)
means nothing else, that the motion with the coordinates z must remain on
the constraint surfaces and can thus be expressed by the generalized coordi-
nates q(t). For the further considerations it is important to gain some idea of
the derivatives of these magnitudes.

The hypersurface Φ(z, t) = 0, for example, allows the following deriva-
tions:

dΦ =
∂Φ
∂z
· dz +

∂Φ
∂t
· dt, δΦ =

∂Φ
∂z
· δz, gradz(Φ) =

∂Φ
∂z

,

n =
gradz(Φ)
|gradz(Φ)| , z ∈ IR6n, Φ ∈ IRmh . (3.2)

The gradient gradz(Φ) of the constraint defines the vector n normal to the
constraint surface (see Figure 3.1). A real or virtual displacement on this
surface takes place only within the tangential plane at the point z under
consideration [283]. This plane is given with the second and third equation of
(3.2). If we succeed in finding a set of generalized coordinates, then Φ(z, t) =
Φ(z(q), t), which formally corresponds to a parametric representation of the
constraint. In many cases, frequently also with respect to large problems,
we are able to evaluate explicitly the mapping z = z(q, t), which then gives
us a parametric form of the constraint Φ. In changing z along the minimal
coordinates q within the constraint surface Φ we move at least for a very
small displacement along the tangent plane of Φ, where the tangent vector
is given by gradq(z) and of course the normal and tangential vectors to this
constraint must be orthogonal yielding

(
∂Φ
∂z

)(
∂z
∂q

) = 0, with gradz(Φ) =
∂Φ
∂z

, gradq(z) =
∂z
∂q

,

q ∈ IRf , gradz(Φ) ∈ IRmh,6n, gradq(z) ∈ IR6n,f . (3.3)
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For the derivation of the equations of motion in the sense of Newton-Euler-
Lagrange we must project the relevant momentum and moment of momentum
equations of each body into the direction of motion, which are not blocked
by the constraint equations. These directions are given with the above deriv-
atives. Thus we find all velocities and accelerations within the tangent spaces
given by the constraints and all constraint forces, or better passive forces
within the normal spaces perpendicular to the tangential constraint surfaces
[283]. For this purpose we consider the form of the equations (3.1), especially

qµ
qν

tqµ

tqν

possible tangential
direction t

normal direction n

I

constraint surface

Fig. 3.1: Constraint Surface

the difference between holonomic and non-holonomic properties. For practical
purposes it makes sense to distinguish in addition between integrable and non
integrable cases.

In the following we shall come back to chapter (2.2.5, Kinematics of
Systems) and the relations given there. We especially refer to the two
equations(2.69) and (2.70), which confirm the linear relationship of the sys-
tem velocities ż and of the generalized velocities q̇. We start with implicit
holonomic constraints of the form

Φ(z(q), t) = 0, z ∈ IR6n,q ∈ IRf ,Φ ∈ IRmh . (3.4)

According to equation (2.68) we are able to express the generalized veloci-
ties q̇ by a linear relationship with regard to the ż. The resolvable parts of
the holonomic constraints will be used to eliminate some of the system co-
ordinates and thus to reduce the number of equations of motion. The non
resolvable parts form together with the equations of motion a DAE-system of
equations, which must be solved numerically ([30], [53]). We may call the re-
sulting coordinates “generalized coordinates”, but as long as we are left with
some remaining constraints they are not minimal coordinates.

Implicit non-holonomic constraints are in reality not completely im-
plicit, because we always assume, that all non holonomic constraints are lin-
ear in the velocities. Up to now no case of non holonomic constraints became
known which violate this assumption. Therefore we write
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Φ(z, ż, t) = Φ0(z, t) + Φ1(z, t)ż = 0, Φ ∈ IRmn . (3.5)

In many cases we may find a new set of generalized coordinates q̄, which may
reduce the system to a certain extend. We get from the above equation

Φ[z(q̄), ż(q̄, ˙̄q), t] = Φ0[z(q̄), t] + Φ1[z(q̄), t](
∂z
∂q̄

) ˙̄q = 0. (3.6)

These equations can be resolved for the velocity ˙̄q provided the matrix Φ1( ∂z∂q̄)
possesses full rank indicating that all constraints are independent. Otherwise
we must determine the real rank of that matrix resulting in a reduced set of
constraints. Usually such a case occurs only for redundant constraints, which
has to be avoided by proper modeling.

For most multibody systems we must include rotational relations appear-
ing for example in the equations (2.31) and (2.33) with the general form

ż = H(q)q̇. (3.7)

The matrix H(q) is invertible for many cases of spatial rotations. But in any
case we have to make sure, that we have no singularities. Otherwise we better
apply other parameters for the finite rotations, for example quaternions ([56],
[283]). Within the framework of a large system the combination of the implicit
non-holonomic constraints with the momentum and moment of momentum
equations leads similar to the case of implicit holonomic constraints finally to
a set of DAE-equations, which have to be solved numerically.

Considering resolvable constraints of any kind makes the derivation of
the equations of motion much simpler. With respect to holonomic constraints
positions and orientations can be represented explicitly by the minimal coor-
dinates q in a form of equation (2.63). With respect to non-holonomic con-
straints we always have the linear relationship of equation (3.5). Anyway we
come out with the important formulas of the equations (2.69) and (2.70),
which we repeat here

ż = J(q, t) · q̇ + j(q, t) with J(q, t) =
∂z
∂q

=
∂ż
∂q̇
∈ IR6n,f ,

W(q, t) · q̇ + w(q, t) = 0 with W(q, t) =
∂Φ
∂z

=
∂Φ̇
∂ż

, w(q, t) =
∂Φ
∂t

.

(3.8)

The terms j(q, t) and w(q, t) represent given excitations coming from ex-
ternal or internal sources.
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3.1.2 Unilateral Constraints

3.1.2.1 Unilateral Contact Characteristics

Unilateral constraints of mechanical systems appear with contacts between
rigid or elastic bodies. Contacts may be closed, and the contact partners may
detach again. Within a closed contact we might have sliding or sticking, both
features connected with local friction. If two bodies come into contact, they
usually penetrate into each other leading to local deformations. If contacts are
accompanied by tangential forces and by tangential relative velocities within
the contact plane, we get in addition to normal also tangential deformations.
Depending on the dynamical (or statical) environment contacts may change
their state, from closure to detachment, from sliding to sticking, and vice
versa. We call a contact active, if it is closed or if we have stiction, otherwise
we call a contact passive. Constraints are connected with active contacts, not
with passive ones.

Active contacts always exhibit contact forces which in the general case
of normal and tangential deformations follow from the local material proper-
ties of the colliding bodies, from the external (with respect to the contact)
dynamics (statics) and from external forces. Considering contacts that way
leads to complicated problems of continuum mechanics which as a rule must
be solved by numerical algorithms like FEM (finite element method) or BEM
(boundary element method). For the treatment of dynamical problems this
approach is too costly and in many cases also not adequate. The rigid body
approach gives quicker results and applies better to large dynamical systems.
Under rigid body approach we understand a contact behavior characterized
at least in the local contact zone by no deformations and thus by rigid body
properties. The contact process is then governed by certain contact laws like
those by Newton and Poisson and appropriate extensions of them. It should
be mentioned that the rigidity is assumed only locally not globally for the
body under consideration, which might be deformed anyway.

A fundamental law with respect to rigid body models is the complemen-
tarity rule, sometimes called corner law or Signorinis’s law. It states that in
contact dynamics either relative kinematic quantities are zero and the accom-
panying constraint forces or constraint force combinations are not zero, or vice
versa. For a closed contact the relative normal distance and normal velocity
of the colliding bodies are zero and the constraint force in normal direction
is not zero, or vice versa. For sticking the tangential relative velocity is zero,
and the constraint force is located within the friction cone, which means that
the difference of the static friction force and constraint force is not zero, or
vice versa. The resulting inequalities are indispensable for an evaluation of
the transitions between the various contact states.

From these properties follows a well defined indicator behavior giving the
transition phases. For normal passive contacts the normal relative distance
of the colliding bodies indicates the contact state. If it becomes zero the
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contact will be active, the indicator “relative distance” becomes a constraint
accompanied by the constraint force in normal direction. The end of an active
contact is then indicated by the constraint force. If it changes sign, indicating
a change from pressure to tension, we get detachment, and the contact again
transits to a passive state.

In the case of friction we have in the passive state a non-vanishing tan-
gential relative velocity as an indicator. If it becomes zero there might be a
transition from sliding to sticking depending on the force balance within or on
the friction cone. The indicator “relative tangential velocity” then becomes
a constraint leading to tangential constraint forces. The contact remains ac-
tive as long as the maximum static friction force is larger than the constraint
force, which means that there is a force balance within the friction cone. If
this “friction reserve” or “friction surplus” becomes zero, the contact again
might go into a passive state with non-zero tangential relative velocity.

If we deal with multibody systems including unilateral constraints the
problem of multiple contacts and their interdependences arises. A straightfor-
ward solution of these processes would come out with a combinatorial problem
of huge dimension [200]. Therefore a formulation applying complementarity
rules and the resulting inequalities is a must. To not prosecuting the combina-
torial process we need extended contact laws which describe unambiguously
the transitions for the possible contact states and which generate only consis-
tent contact configurations.

But even this cannot be carried through in a straightforward manner. To
give an example, a relative tangential and vanishing velocity in a contact does
not lead necessarily to stiction. In systems with many contacts the nearly im-
pulsively appearing or vanishing constraint forces influence all contacts and
of course also the overall system. Therefore a contact going to be active or
passive might change its transitional direction due to the events in other con-
tacts, which are coupled with the one under consideration. As a consequence
we need contact laws, which describe these transitions in many contacts and
their mutual influence on each nother in an unambiguous way.

In a first step we define all contact sets, which can be found in a multibody
system:

IA = {1, 2, . . . , nA} with nA elements
IC(t) = {i ∈ IA : gNi = 0} with nC(t) elements
IN (t) = {i ∈ IC : ġNi = 0} with nN (t) elements
IT (t) = {i ∈ IN : |ġTi| = 0} with nT (t) elements

(3.9)

These sets describe the kinematic state of each contact point. The set IA
consists of the nA indices of all contact points. The elements of the set IC(t) are
the nC(t) indices of the unilateral constraints with vanishing normal distance
gNi = 0, but arbitrary relative velocity in the normal direction. In the index
set IN (t) are the nN (t) indices of the potentially active normal constraints
which fulfill the necessary conditions for continuous contact (vanishing normal
distance gNi = 0 and no relative velocity ġNi = 0 in the normal direction). The



3.1 Constraints and Contacts 91

index set IN (t) includes for example all contact states with slipping. The nT (t)
elements of the set IT (t) are the indices of the potentially active tangential
constraints. The corresponding normal constraints are closed and the relative
velocities ġTi in the tangential direction are zero. The numbers of elements of
the index sets IC , IN and IT are not constant but depend on time due to the
variable states of constraints generated by separation-detachment-processes
and by stick-slip phenomena.

3.1.2.2 Contact Laws and Constraints in Normal Direction

As a next step we must organize all transitions from contact to detachment
and from stick to slip and the corresponding reversed transitions. In normal
direction of a contact we find the following situation [200]:

• Passive contact i
gNi(g, t) ≥ 0 [(ġNi, g̈Ni) �= 0] ∧ λNi = 0 ⇒ indicator gNi,

• Transition to contact
gNi(g, t) = 0 ∧ λNi ≥ 0,

• Active contact i
gNi(g, t) = 0 [(ġNi, g̈Ni) = 0] ∧ λNi > 0 ⇒ indicator λNi

constraint gNi = 0,

• Transition to detachment
gNi(q, t) ≥ 0 [(ġNi, g̈Ni) �= 0] ∧ λNi = 0. (3.10)

The kinematical magnitudes gNi, ġNi, g̈Ni are given with the equations
(2.112), (2.114). We shall need the corresponding relations ġNi, g̈Ni when go-
ing to a velocity or an acceleration level (chapter 2.2.7.2). The constraint forces
λNi must be compressive forces, and the normal velocity has to meet the im-
penetrability condition ġNi ≥ 0. If the normal constraint force λNi changes
sign, we get separation. The properties defined above establish a complemen-
tarity behavior which might be expressed by nN (set IN ) complementarity
conditions (put on an acceleration level)

g̈N ≥ 0 ; λN ≥ 0 ; g̈TNλN = 0 . (3.11)

The variational inequality

−g̈TN(λ∗
N − λN ) ≤ 0 ; λN ∈ CN ; ∀λ∗

N ∈ CN , (3.12)

is equivalent to the complementary conditions (3.11). The convex set

CN = {λ∗
N : λ∗

N ≥ 0} (3.13)

contains all admissible contact forces λ∗
Ni in the normal direction [200], [279].

The complementarity problem defined in (3.11) might be interpreted as a
corner law which requires for each contact g̈Ni ≥ 0, λNi ≥ 0, g̈NiλNi = 0.
Figure (3.2) illustrates this property.
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λNi

g̈Ni

0

g̈Ni = 0 ∧ λNi ≥ 0

g̈Ni ≥ 0 ∧ λNi = 0

Fig. 3.2: Corner law for normal contacts (Signorini’s law)

3.1.2.3 Contact Laws and Constraints in Tangential Direction

With respect to the tangential direction of a contact we shall apply
Coulomb’s friction law. The complementary behavior is a characteristic fea-
ture of all contact phenomena independent of the specific physical law of
contact. Therefore other laws might be used as well. Furthermore we assume
that within the infinitesimal small time step for a transition from stick to
slip and vice versa the coefficients of static and sliding friction do not change,
which may be expressed by

lim
ġT i→0

µi(ġTi) = µ0i (3.14)

For ġTi �= 0 any friction law may be applied (see Figure 3.3 and also 2.38).
With this property Coulomb’s friction law distinguishes between the two cases

sticking: |λTi| < µ0iλNi ⇒ |ġTi| = 0 (Set IT )
sliding: |λTi| = µ0iλNi ⇒ |ġTi| > 0 (Set IN\IT ) (3.15)

µi(ġTi)

µ0i

ġTi0

Fig. 3.3: Typical friction characteristic (Stribeck curve)

Equation (3.15) formulates the mechanical property, that we are for a
frictional contact within the friction cone if the relative tangential velocity is
zero and the tangential constraint force |λTi| is smaller than the maximum
static friction force (µ0iλNi). Then we have sticking. We are on the friction
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cone if we slide with |ġTi| > 0. At a transition point the friction force is then
(µ0iλNi) (see equation 3.14). In addition we must regard the fact, that in the
tangential contact plane we might get one or two directions according to a
plane or a spatial contact. From this we summarize in the following way:

• Passive contact i (Sliding, Set IN\IT )
|ġTi| ≥ 0 [|g̈Ti| �= 0] ∧ |µ0iλNi| − |λTi| = 0 ⇒ indicator |ġTi|,

• Transition Slip to Stick
|ġTi| = 0 [|g̈Ti| = 0] ∧ |µ0iλNi| − |λTi| ≥ 0,

• Active contact i (Sticking, Set IT )
|ġTi| = 0 [|g̈Ti| = 0] ∧ |µ0iλNi| − |λTi| > 0, ⇒

⇒ indicator |µ0iλNi| − |λTi| ∧ constraint |ġTi| = 0,

• Transition Stick to Slip
|ġTi| ≥ 0 [|g̈Ti| �= 0] ∧ |µ0iλNi| − |λTi| = 0. (3.16)

We should keep in mind, that for the spatial case including two tangential
directions according to Figure 3.6 the resulting friction force with respect to
the two directions is the quadratic mean value, and then the condition for the
friction reserve writes

λTi0 = |µ0iλNi| −
√
λ2
Ti1 + λ2

Ti2 = 0 (3.17)

From a numerical standpoint of view we have to check the indicator for a
change of sign, which then requires a subsequent interpolation. For a transition
from stick to slip one must examine the possible development of a non-zero
relative tangential acceleration as a start for sliding. Newer time-stepping
algorithms, though, work without such interpolations [198]. We come back to
that.

Equation (3.15) put on an acceleration level can then be written in a more
detailed form

|λTi| < µ0iλNi ∧ g̈Ti = 0 (i ∈ IT sticking)

λTi = +µ0iλNi ∧ g̈Ti ≤ 0 (i ∈ IN\IT negative sliding)

λTi = −µ0iλNi ∧ g̈Ti ≥ 0 (i ∈ In\IT positive sliding)

(3.18)

This contact law may be represented by a double corner law as indicated
in Figure (3.4). To transform the law (3.18) for tangential constraints into a
complementarity condition we must decompose the double corner into single
ones. A decomposition into four elementary laws is given in [86], a decompo-
sition into two elements in [226] and [87], which we shall discuss shortly.

According to [87] each non-smooth characteristic can be composed by ”uni-
lateral primitives”, which are nothing else but simple rectangular hooks. De-
composing Figure (3.4) simply results in two such hooks as shown in Figure
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g̈Ti

λTi

λTi

(−µ0iλNi)

(+µ0iλNi)

λT0i = µ0iλNi − |λTi|
(friction reserve)

0

λTi = −µ0iλNi
g̈Ti ≥ 0

λTi = +µ0iλNi
g̈Ti ≤ 0

−µ0iλNi ≤ λTi ≤ +µ0iλNi
g̈Ti = 0

Fig. 3.4: Corner law for tangential constraints

(3.5). Introducing the force law for tangential contacts as a set T , the positive
hook as a set T + and the negative hook as a set T − we can represent the
set T as the intersection of the two sets T + and T −, which is immediately
clear from Figure (3.5) namely T ∈ T + ∩ T −. The two hooks as the two
intersecting sets of the tangential force law can again easily represented by
complementarity inequalities, which write

(λTi + µ0iλNi) ≥ 0, (+g̈Ti) ≥ 0, (λTi + µ0iλNi)g̈Ti = 0, Set T +

(µ0iλNi − λTi) ≥ 0, (−g̈Ti) ≥ 0, (µ0iλNi − λTi)g̈Ti = 0, Set T −

T ∈ T + ∩ T −. (3.19)

Decompositions of that type are always possible, at least for technically rele-
vant force laws, which allows us to reduce such problems to a complementarity
formulation as a basis for all further evaluations. For plane contacts we come
out with a linear complementarity problem, for spatial contacts with two tan-
gential directions we get a nonlinear complementarity problem, which we shall
not treat here (see [87], [279]). For plane contacts we get

y = Ax + b , y ≥ 0 , x ≥ 0 , yTx = 0 , y,x ∈ IRn∗ (3.20)

where n∗ = nN+2nT for a decomposition into two unilateral primitives as de-
picted in Figure (3.5). The quantity x includes the contact forces and one part
of the decomposed accelerations, the quantity y the relative accelerations and
in addition the friction reserve defined as the difference of static friction force
and tangential constraint force (µ0iλNi − |λTi|). Equation (3.20) describes a
linear complementarity problem thus being adequate for plane contacts.

Similar as in the normal case we can represent the contact law eq. (3.20)
by a variational inequality of the form

g̈TTi(λ
∗
Ti − λTi) ≥ 0 ; λTi ∈ CTi , ∀λ∗

Ti ∈ CTi . (3.21)

The convex set CTi contains all admissible contact forces λ∗
Ti in tangential

direction
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λTi

λTi

λTi

+g̈Ti
+g̈Ti

−g̈Ti

(−µ0iλNi)

(−µ0iλNi) (+µ0iλNi)

(+µ0iλNi)

Tangential Force Law,
Set T

Tangential Force Law,
positive unilateral primitive,

Set T +

Tangential Force Law,
negative unilateral primitive,

Set T −

Fig. 3.5: Decomposition of the Tangential Force Law into Unilateral Primitives

CTi = {λ∗
Ti| |λTi| ≤ µ0λNi ; ∀i ∈ IT } (3.22)

3.1.2.4 Convex Mathematical Forms

The theory of rigid body contacts is strongly related to the mathematical the-
ory of convex analysis, see for example ([161], [225], [163], [87], [135], [279]).
The above presentation using complementarities follows closely physical argu-
ments and can be interpreted quite easily. Using the mathematical formalism
of convex analysis still allows some physical interpretation, but in a much
more sophisticated and not in a direct way. Convex analysis has significantly
influenced the corresponding theories establishing a rigorous and, at the time
being a nearly complete, theoretical fundament in this area. Therefore it makes
sense to present the alternative forms to the complementarity problem.

Considering first normal contacts we get (see also Figure (3.6)) five equiv-
alent forms, which we shall explain in more detail together with the corre-
sponding forms of the tangential constraints. For the normal case we come
out with
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g̈N ≥0 ; λN ≥ 0 ; g̈TNλN = 0,
−g̈N ∈∂ΨCN (λN ),
λN ∈∂Ψ∗

CN
(−g̈N),

g̈TN (λ∗
N − λN ) ≥0, λN ≥ 0, ∀λ∗

N ≥ 0,

λTN (g̈∗
N − g̈N) ≥0, g̈N ≥ 0, ∀g̈∗

N ≥ 0. (3.23)

For the tangential case we start again with equation (3.22), which defines
all tangential relative velocities in a contact (i) being possible within or on
the friction cone (see for example Figure (3.6)). The admissible friction forces
λ∗
Ti are either within the cone for sticking, or they on the cone for sliding. The

comparable relation for the normal contact situation is given with equation
(3.13) saying that the normal contact force is positive for contact and zero for
detachment. The contact forces in normal and in tangential directions form
convex sets.

��
��
λTi1

��
��
λTi2

��
��
λNi

λTi

λNi

g̈Ti

(µ0iλNi)

ΨCTi(λNi)(λTi)

Normal Cone
NCT i(λNi)(λTi) =
∂ΨCT i(λNi)(λTi)

NCTi(λNi)(λTi = 0) = 0

Friction Cone

Indicator Function

convex set CTi(λNi) =
{λ∗

Ti : |λ∗
Ti| ≤ µ0iλNi, ∀i ∈ IT }

Fig. 3.6: Friction Cone, Normal Cone and Indicator Function for a Contact
(i) [279]

The normal cone to a convex set are all vectors which are normal to this
set, which makes sense only at the boundary of the set, where these vectors
are perpendicular to the boundary. If the boundary possesses a kink, then the
normal cone is limited by the two normal directions left and right of the kink
thus forming a wedge (Figure 3.7). The normal cone will be zero in the interior
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of the set. Applied to the contact problem we have the normal cone to the
convex normal set of equation (3.13) as any straight line perpendicular to the
abcsissa with λNi ≥ 0, and the normal cone to the convex tangential set of
equation (3.22) are all straight lines perpendicular to the circular projection
of the friction cone cross section at the height λ = λNi. Figure (3.6) gives
an impression of these properties, which up to now are nothing else than an
alternative formulation of the equations (3.10) and (3.16) in terms of set-
oriented mathematics. The normal cone is generally defined by

NC(x) =
{
y|yT (x∗ − x) ≤ 0, x ∈ C, ∀x∗ ∈ C

}
, (3.24)

where we might replace (x,y) by the magnitudes [(λN/λT ), (ġN/ġT )].
Figure (3.6) illustrates in addition to the friction cone, the convex tangen-

tial set and the normal cone also the indicator function ΨCTi(λNi)(λTi), which
is defined in [135] and which has nothing to do with the simple indicators as
used in the relations (3.10) and (3.16). We also know that the normal cone
is identical with the subdifferential of the indicator function. These relations
explain the equations (3.23), and they allow us to formulate the tangential
force law also in various ways [279]

λTT g̈T =−Ψ∗
CT

(−g̈T ), λT ∈ CT ,

−g̈T ∈∂ΨCT (λT ),
λT ∈∂Ψ∗

CT
(−g̈T ),

g̈TT (λ∗
T − λT ) ≥0, λT ∈ CT , ∀λ∗

T ∈ CT ,

λTT (g̈∗
T − g̈T ) ≥Ψ∗

CT
(−g̈T )−Ψ∗

CT
(−g̈∗

T ), ∀g̈∗
T . (3.25)

In the last 15 years the representations of the equations (3.23) and (3.25) have
been replaced by the ”proximal point” relation, which includes the above set-
and cone-definitions but which turns out to be extremely useful and efficient
for the numerical solution of non-smooth problems. We come back to the
normal cone defition and use it to consider the proximal point to a convex
set. Figure (3.7) illustrates the various definitions. The proximal point of a
convex set C to a point z is the closest point in C to z. A point outside the
convex set can be characterized by a distance function which is the shortest
distance from the point to the boundary. The following rules are helpful [135]:

proxC(z) =argmin
x∗∈C

‖ z− x∗ ‖, z ∈ IRn,

x =proxC(z)⇒
{

x = z for z ∈ C,

x ∈ boundary C for z /∈ C,

x =proxC(z)⇔
{

z− x ∈ ∂ΨC(x),
z− x ∈ NC(x),

distC(z) = ‖ z− proxC(z) ‖ . (3.26)
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x1 = proxC(z1)

z2
x3 = proxC(z3)

distC(z1)

z1

x2 = proxC(z2)
convex set C

boundary of C
x̄3

x̄1

x̄2

NC(x̄2)

x̄4 /∈ C ⇒ NC(x̄4) = ∅

Fig. 3.7: Normal Cone, Proximal Point and Distance Function [135]

Figure (3.7) suggests to us the following explanations. For all points within
the convex set C the prox-function defines an identity (x = z). For all points
not in the set C the prox-function puts the point from its external position to
the boundary of the set C, in fact following the way indicated in Figure (3.7),
where the distance to the boundary is perpendicular to it and given by the
distance-function distC(z). According to the definitions of the normal cone
NC(x) and the subdifferential ∂ΨC(x) we get a one-to-one correspondence
of the prox-function with these structures, which again is clear from Figures
(3.7) and (3.6). The distance function represents a measure for the closest
distance to the boundary of C.

The normal vectors y perpendicular to the points x ∈ C form the normal
cone. If we consider equation (3.26) and substitute z = x− ry we get [(−y ∈
NC(x))⇔ (−ry ∈ NC(x))]for r > 0. From this we can establish an important
relation for the orthogonal vectors x and y in the form

[x = proxC(x− ry), for r > 0] ⇔ [−y ∈ NC(x)]. (3.27)

Looking at x in the sense of constraint forces in normal or tangential
directions and at y in the sense of relative accelerations in these three contact
directions we are able to express the laws for the contact forces in terms
of prox-functions, which express the same properties as the more ”physical”
equations (3.10) and (3.16), but which replace the inequalities coming from
the complementarity conditions of the equations (3.11), (3.15).

This approach, called the Augmented Lagrangian Method, was first intro-
duced by Hestenes [99] and Powell [216] to solve linear programming problems
with equality constraints. Alart [2] applied the method to quasistatic mechan-
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ical systems, and Leine [136] used the Augmented Lagrangian approach to
simulate the dynamics of the Tippe-Top.

The proximal point to a convex set C as discussed above returns the closest
point in C to its argument. With this definition we can express the contact
law in normal direction by the equation

λN = proxCN
(λN − rg̈N ), (3.28)

where CN denotes the set of admissible normal contact forces

CN = {λN |λN ≥ 0}. (3.29)

In the same manner we can put Coulomb’s friction law (3.15) into the form

λT = proxCT (λN)(λT − rg̈T ) , (3.30)

with CT denoting the set of admissible tangential forces

CT (λN) = {λT | |λTi| ≤ µiλNi}. (3.31)

The arbitrary auxiliary parameter r > 0 represents the slope of the regu-
larizing function in (3.28) and (3.30).

Considering the classical definitions of (3.1) the above equations and in-
equalities indicate that with vanishing relative distance in normal direction we
get a holonomic constraint. In tangential direction the transition from stick-
ing to sliding is accompanied by a velocity constraint in terms of the relative
tangential velocity and thus a non-holonomic constraint in a classical sense.
The difference to classical bilateral constraints consists in the fact that the
duration of these constraints depend on the overall dynamics of the system.
They might appear and disappear during very short time intervals, but nev-
ertheless influencing all other contacts with their active or passive states and
their existing or not existing constraints. During these processes the structure
of the equations of motion change due to the variable number of degrees of
freedom depending on the contact configuration (see equations 3.9).
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3.2 Principles

3.2.1 Introduction

We have seen and we shall see that in more details in the next chapters, that
the triad momentum equation, moment of momentum equation and a set of
suitable constraints allows to establish the equations of motion. The principles
of mechanics offer another possibility to evaluate these equations, though in
most cases the methods connected with these principles are better suited for
small systems. For large systems the so-called Newton-Euler-equations repre-
sent a more adequate basis. We distinguish between differential principles and
minimal principles ([180], [27]). The principles of Hamilton and of Gauss may
be considered both ways. The idea of minimal principles is closely related to
the origin of Euler’s variational calculus, which allows in many cases the rep-
resentation of differential equations by a direct optimization problem. Instead
of solving the differential equations one may solve directly the optimization
problem, a method, which is often used in continuum mechanics and in all
fields of physics.

In the following we shall consider a selection of principles, which are also
used in applications of practical relevancy. Beyond such aspects of utilitar-
ianism principles offer a deep insight and understanding of the mechanical
fundamentals. We shall not consider these principles in connection with non-
smooth dynamical properties, because we prefer more the straightforward way
using the moment and moment of momentum equations together with the ap-
propriate constraints for a derivation of the equations of motion [200]. Readers
interested in that topic should have a look into the books [87] and [177].

3.2.2 Principle of d’Alembert and Lagrange

We apply Newton’s second law in the form of Lagrange to the mass element
of Figure (3.8), which might be constrained by some surface Φ(rc) = 0. We
get

r̈dm = dF = dFa + dFp, (3.32)

the forces dF being subdivided into active (applied) forces dFa and into pas-
sive (constraint) forces dFp. An integration of this equation over the whole
body B yields∫
B

r̈dm =
∫
B

dF =
∫
B

(dFa + dFp). (3.33)

The subdivision into applied and constraint forces follows an often used clas-
sical concept. In many cases, though, it might be more convenient to use the
concept of active and passive forces (see chapter 2.1.2). The magnitude dFa is
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an active force, and the magnitude dFp a passive one. For contact processes
we should keep in mind, however, that passive forces may become active ones
or vice versa, for example for transitions stick to slip or slip to stick in the
tangential direction of a contact. As already mentioned active forces gener-
ate work and power, passive forces not. For simplicity we shall consider the
force dFp as a passive constraint force, which means with respect to Figure
(3.8) the component perpendicular to the constraint surface. The tangential
component, if any, we would have to add to the applied force dFa.

x y

z

constraint surface Φ(rc) = 0

r

rc

dFa

dFp

δr

Body B

dm

Fig. 3.8: Virtual displacement of a mass element

As indicated in Figure(3.8) we assume that the mass element dm will be
shifted by a virtual displacement δr. Such a virtual displacement will produce
virtual work, and we get together with equation(3.32) for the mass element

(dF− r̈dm)T δr =0

(dFa − r̈dm)T δr =− (dFp)T δr = −δWp. (3.34)

We have assumed in Figure (3.8) a holonomic constraint Φ(rc) = 0, which
makes the derivations a bit more transparent. We could have chosen of course
a more complicated constraint (see for example [180]). Anyway, the constraint
does not allow any kind of motion, also not any kind of virtual displacement,
but only such displacements which are compatible with

δΦ = (
∂Φ
∂r

)δr = (gradΦ)δr = 0 with r ∈ IR6, Φ ∈ IRm. (3.35)

A possible geometric interpretation is obvious. The m constraints Φ(r) span
within the system space of r altogether m constraint surfaces, the surface
normals of which are proportional to (gradΦ). The vanishing scalar product
[(gradΦ)δr = 0] implies that

(gradΦ) ⊥ δr. (3.36)
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The normal vector on this constraint surface is n = (gradΦ)/|(gradΦ)|, which
together with the two relations (3.34) and (3.36) give the comparison

(gradΦ) ⊥ δr, ⇒ n ⊥ δr, ⇒ dFp ⊥ δr, (3.37)

from which we conclude, that the normal vector n and the passive force dFp
are perpendicular to the virtual displacement δr indicating the following: The
passive forces have the same direction as the normal vector to the constraint
surface, hence, the passive forces are always perpendicular to the constraint
surface, and the motion, virtual or real, can only take place within these sur-
faces. With respect to a certain point, motion takes place within the tangent
plane of this point given by equation (3.35) (see also Figure 3.1). This confirms
our earlier statement: motion takes place on the constraint surfaces, in the
tangent spaces, all passive constraint forces are assembled within the normal
spaces.

From these arguments we conclude that the mechanical magnitudes as
components of the tangent spaces must be always orthogonal to those of the
normal spaces, or more concrete, passive constraint forces are orthogonal to
displacements on the tangent plane in a point of the constraint surface. The
above arguments form the main basis for the principle of d’Alembert in the
setting of Lagrange ([187], [27], [93]):

passive (constraint) forces do no work:
∫
B

(dFp)T δr = 0. (3.38)

Constraint forces are alway passive forces, and they are “lost forces”, according
to a statement of Daniel Bernoulli, “lost forces” in a sense that they do not
contribute to the motion of a mechanical system. But these lost constraint
forces keep things together telling the motion where to go. The motion itself
will be realized only by the active forces. Therefore we get from the equations
(3.33) and (3.34)∫
B

(r̈dm− dFa)T δr = 0 (3.39)

For the static case (r̈ = 0) this equation includes the principle of virtual work
([258], [147])∫
B

(dF)T δr = δW = 0 (3.40)

Many textbooks of mechanics, especially dynamics, give a nice explanation of
the above equations, which possess the character of an axiom. This explana-
tion will be discussed in the following, because it allows a better understanding
of constrained dynamics. The terms of the equation



3.2 Principles 103∫
B

(r̈dm− dFa) =
∫
B

dFp (3.41)

can be split up into components perpendicular (⊥) to the constraint surface
Φ(r) and parallel (‖) to it, which yields∫
B

(r̈dm− dFa)⊥ +
∫
B

(r̈dm− dFa)‖ =
∫
B

(dFp)⊥ +
∫
B

(dFp)‖ (3.42)

We have seen that the motion can take place only on the constraint surface
Φ(rc) = 0, and therefore the components in the two directions must vanish,
each one separately. Thus we get∫
B

(r̈dm− dFa)‖ =
∫
B

(dFp)‖ = 0 and
∫
B

(r̈dm− dFa − dFp)⊥ = 0. (3.43)

This illustrates the fact, that firstly only applied and active forces on the
constraint surface contribute to the acceleration and thus to the motion, and
that secondly the normal components of all applied forces are passive and in
equilibrium with the inertia forces and the constraint forces coming from the
external dynamics.

3.2.3 Principle of Jourdain and Gauss

We consider again d’Alemberts’s principle (3.39) and derive it two times with
respect to time, which results in a first step in [180], [27]∫
B

d

dt
(r̈dm− dFa)T · δr +

∫
B

(r̈dm− dFa)T ·
d

dt
(δr) = 0, (3.44)

and in a second step we come out with∫
B

d2

dt2
(r̈dm− dFa)T · δr + 2

∫
B

d

dt
(r̈dm− dFa)T ·

d

dt
(δr)

+
∫
B

(r̈dm− dFa)T ·
d2

dt2
(δr) = 0. (3.45)

According to [180] and [27] we introduce the variations of Jourdain and of
Gauss consisting for the Jourdain variation in

δ′r = 0, δ′ṙ �= 0, δ′t = 0, ⇒ δ′Φ̇ =
∂Φ̇
∂ṙ

δ′ṙ = 0, (3.46)

and for the Gauss variation in
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δ′′r = 0, δ′′ṙ = 0, δ′′r̈ �= 0, δ′′t = 0, ⇒ δ′′Φ̈ =
∂Φ̈
∂r̈

δ′′r̈ = 0, (3.47)

which could be continued to higher order time derivations [27], [180]. Ap-
plying the Jourdain variation (3.46) to the relation (3.44) we come out with
Jourdain’s principle in the form [119] [50]

passive (constraint) forces generate no power:
∫
B

(r̈dm− dFa)T δ′ṙ = 0,

(3.48)

which allows an interpretation. We have seen, that the motion has to take
place within the local tangent planes of the constraint surfaces, and that the
constraint forces as passive forces are perpendicular to them. This property is
as a matter of fact not only true for displacements but for any kind of motion,
which means also for velocities and for accelerations. Therefore Jourdain’s
principle tells us also, that passive forces and velocities, again virtual or real,
are perpendicular to each other and hence cannot generate any power. Today
in most problems of multibody dynamics Jourdain’s principle is used, because
it is more general and flexible with respect to holonomic as well as to non-
holonomic constraints.

Combining in a further step the relations (3.47) and (3.45) we get Gauss
principle in the form [50]

motion follows trajectories of least constraints:
∫
B

(r̈dm− dFa)T δ′′r̈ = 0.

(3.49)

The same arguments as above apply of course also to the Gauss principle,
but the product of pasive forces and acceleration does not correspond to any
physical magnitude, which makes sense. Originally Gauss started with the
idea of least constraints resulting directly from the concept of his least square
method. The basic idea behind the principle anticipates a motion under the
influence of constraints, which will be as near as possible to the free motion
without constraints, which as a consequence requires a minimization of the
constraints in the sense of Gauss’ least square concept. Applying that to the
relation (3.41) we may demand, that∫
B

(dFp)T (dFp) =
∫
B

(r̈dm− dFa)T (r̈dm− dFa) ⇒ min!, (3.50)

which explains also the name of ”least constraints”. This is an optimization
problem, for which the accelerations must be evaluated in such a way that the
action of constraints becomes minimal. Applying the Gauss variation equation
(3.47) results in
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δ′′
∫
B

(r̈dm− dFa)T (r̈dm− dFa) = 0, (3.51)

we recognize that the relation (3.49) represents the variation of equation (3.51)
with respect to the acceleration r̈, the above defined Gauss-variation. Gauss
himself explained his principle in the following way [50]: ”The motion of a
system of particles connected together in any way, and the motions of which
are subject to arbitrary external restrictions, always takes place in the most
complete agreement with the free motion or under the weakest possible con-
straint.”

In manipulating the above equations we have tacitly assumed that the
expression (dδr− δdr) will be zero, which means (dδr = δdr). These relations
hold only for generalized coordinates q and for the system coordinates r or
z. They do not hold for quasi-coordinates related to non-integrable minimal
velocities (see for example [27], [180]). As we do not deal with the concept of
quasi-coordinates, we can stay with the above equalities.

3.2.4 Lagrange’s Equations

3.2.4.1 Lagrange’s Equations of First Kind

We have seen that constrained mechanical systems can be described by a
set of momentum and moment of momentum equations together with a set of
constraints. If we are able to find a complete set of generalized coordinates the
equations of motion can be reduced to a set with f coordinates q ∈ IRf , which
correspond to the number of degrees of freedom. If we find only some general-
ized coordinates we are left with a remaining set of kinematic constraints. We
then have to solve some set of differential algebraic equations (DAE). Anyway,
motion will take place within the tangent planes of the constraints.

But such a consideration does not provide us with the constraint forces or
torques, which we must evaluate from the normal spaces, which means from
some magnitudes perpendicular to the constraint surfaces. These forces and
torques are necessary for design purposes, because they determine the size
if bearings, guideways, connections and the like. We have two possibilities
to evaluate such constraint forces. The first one consists in a set of system
equations with all constraints, which are not used to reduce the equations of
motion, but which are used in connection with a DAE-processor to calculate
the constraint forces. Another more analytical method is given by the so-called
Lagrange’s equations of first kind, which we shall consider in the following. We
shall see, that they can be used only under certain conditions. We assume also
in the following that the equations are given in a suitable coordinate system.

Starting again with the equations (3.94) and considering a body “i” as a
component of a multibody system we get
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ṙi = (ṙQ + ω̃ · r)i = (ṙQ + r̃T · ω)i

δṙi = (E3 r̃T )i

(
δṙQ
δω

)
i

(3.52)

Applying Jourdain’s principle, equation (3.48), for a system of n bodies yields

n∑
i=1

∫
Bi

δ′ṙTi (r̈idmi − dFai − dFpi) = 0, (3.53)

which can be brought into the form

n∑
i=1

∫
Bi

(
δṙQ
δω

)T
i

(
E3

r̃

)
i

([r̈Q + ( ˙̃ωr + ω̃ω̃)r]idmi − dFai − dFpi) = 0, (3.54)

Using the abbreviations equations (2.171) we get analogous to (2.172)

n∑
i=1

(
δṙQ
δω

)T
i

(
mr̈Q + mr̃TS ω̇ + mω̃ω̃rS − Fa − Fp
mrS r̈Q + Iω̇ + ω̃Iω̇ −Ma −Mp

)
i

= 0 (3.55)

or in a more systematic representation

n∑
i=1

δ

(
ṙQ
ω

)T
i

{(
mE3 mr̃TS
mr̃S I

)
·
(

r̈Q
ω̇

)
+
(
mω̃ω̃rS
ω̃Iω̇

)
−
(

Fa
Ma

)
−
(

Fp
Mp

)}
i
= 0

n∑
i=1

δżTi {Miz̈i + hi − fai − fpi} = 0. (3.56)

The abbreviations used are obvious. The magnitudes of the second equation
are defined in a space IR6. We summarize them to

z := (zT1 , z
T
2 , . . . z

T
n )T ∈ IR6n, h := (hT1 ,h

T
2 , . . .h

T
n )T ∈ IR6n,

fa := (fTa1, f
T
a2, . . . f

T
an)

T ∈ IR6n, fp := (fTp1, f
T
p2, . . . f

T
pn)

T ∈ IR6n,

M := diag(Mi) ∈ IR6n,6n (3.57)

With these definitions the last equation of (3.56) reduces to

δżT (Mz̈ + h− fa − fp) = 0. (3.58)

The virtual velocities cannot be chosen freely but only in agreement with the
constraints of the equations (3.1), for example

Φ(z, ż, t) = Φ0(z, t) + Φ1(z, t)ż = 0 ∈ IRm, (3.59)
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where we have assumed a linear relationship with respect to the velocities
according to equation (3.5). Setting for the moment δz = 0 and δż �= 0 the
virtual variation of this constraint comes out with

δΦ = Φ1(z, t)δż = 0 (3.60)

with the Jacobian Φ1(z, t) ∈ IRm,6n.
For the derivation of the equations of motion of the multibody system we

apply Jourdain’s principle (eq. 3.48), which requires that

δżT fp = fTp δż = 0. (3.61)

The equations (3.60) and (3.61) indicate, that the constraint forces fp and the
rows of the constraint Jacobian Φ1 are both orthogonal to the virtual velocities
δż. Consequently we can represent the passive constraint forces (and torques)
fp by a linear relation

fp = ΦT
1 (z, t) · λ with λ ∈ IRm. (3.62)

Including this equation into (3.58) and considering the fact, that the con-
straint force representation according to (3.62) allows an arbitrary choice of
the virtual velocities δż, we get for the unknowns z̈ ∈ IR6n and λ ∈ IRm

altogether (6n+m) equations of the form

Mz̈ + h− fa −WT · λ = 0, Wz̈ + w = 0, (3.63)

where the matrix W = Φ1, and the vector w follows from a differentiation of
the original constraint equation (3.59). We might eliminate z̈ from (3.63) to
get

λ = (WM−1WT )−1 · [WM−1(h− fa) + w]

z̈ = −M−1(h− fa −WTλ) (3.64)

The constrained mass matrix (WM−1WT )−1 represents the effective mass
influence in the directions of the constraint forces λ. The procedure as used
above corresponds to a method introduced by Lagrange for the solution of
algebraic equations with side-conditions [155].

3.2.4.2 Lagrange’s Equations of Second Kind

We assume a given set of generalized coordinates q, and we start our consid-
erations with the principle of d’Alembert-Lagrange (eq. 3.38), which writes
for a multibody system with n bodies

n∑
i=1

∫
Bi

(r̈dm− dFa)Ti · δri = 0. (3.65)
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For further evaluations we need the kinetic energy of the system
n∑
i=1

1
2

∫
Bi

ṙTi ṙidmi =
n∑
i=1

Ti. (3.66)

For the following we consider one single rigid body Bi and generalize the re-
sults at the end. The acceleration term of equation (3.65) can be manipulated
as follows∫
Bi

r̈Ti dmiδri =
d

dt

∫
Bi

ṙTi dmiδri −
∫
Bi

ṙTi dmiδṙi

=
d

dt

∫
Bi

∂

∂ṙi
(
1
2
ṙTi ṙidmi)δri − δ

∫
Bi

(
1
2
ṙTi ṙidmi) (3.67)

Again we used here the relation d∂r − ∂dr = 0 [93]. We now introduce the
generalized coordinates q by expressing

δri = (
∂ri
∂q

) · δq = (
∂ṙi
∂q̇

) · δq with ri ∈ IR6, q ∈ IRf , (3.68)

which modifies equation (3.67) in the following way∫
Bi

r̈Ti dmiδri =
d

dt

∫
Bi

∂

∂ṙi
(
1
2
ṙTi ṙidmi)(

∂ṙi
∂q̇

)δq− δTi

=
d

dt

∫
Bi

∂

∂q̇
(
1
2
ṙTi ṙidmi)δq− δTi =

d

dt
(
∂Ti
∂q̇

)δq− δTi (3.69)

Setting δWi =
∫
Bi

(dFa)Ti · δri and including the last form of equation (3.69)
into equation (3.65) we come out with an important relation, which is some-
times called “central equation” (“Zentralgleichung” in German, see [27])

d

dt
(
∂T

∂q̇
δq)− δT − δW = 0. (3.70)

The above equation may be applied for a single body or a system of bodies.
In any case it will be very helpful for deriving quite a number of fundamental
equations of dynamics. From the above two equations to the second equations
of Lagrange is only a small step. We perform the differentiations and the
variations, and then we get from the relations (3.69), (3.70) and (3.65) the
following results∫
Bi

r̈Ti dmiδri =
[ d
dt

(
∂Ti
∂q̇

)− (
∂Ti
∂q

)
]
δq + (

∂Ti
∂q̇

)
[ d
dt

(δq) − (δq̇)
]

δWi =
∫
Bi

(dFa)Ti · δri =
∫
Bi

(dFa)Ti (
∂ri
∂q

) · δq = QT
i δq (3.71)
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The last term of the first row will be zero, [ ddt (δq) − (δq̇)] = 0, due to the
fact that for generalized coordinates (dδr − δdr = 0). Combining now the
equations (3.71) and (3.65) we get

n∑
i=1

[ d
dt

(
∂Ti
∂q̇

)− (
∂Ti
∂q

)−QT
i

]
δq = 0. (3.72)

Finally the second equations of Lagrange write for a single body and for a
system of bodies:

• single body

d

dt
(
∂T

∂q̇
)− (

∂T

∂q
)−QT = 0, Q =

∫
B

(
∂r
∂q

)T (dFa)

T =
∫
B

1
2
ṙT ṙdm (3.73)

• system of bodies

n∑
i=1

[ d
dt

(
∂Ti
∂q̇

)− (
∂Ti
∂q

)−QT
i

]
= 0, Qi =

∫
Bi

(
∂ri
∂q

)T (dFa)

Ti =
∫
Bi

1
2
ṙTi ṙidmi (3.74)

The generalized forces Qi might be conservative or non-conservative, in the
first case they can be derived from a potential V, which represents the poten-
tial energy. With

Qconservative = Qco = −
(∂V
∂q
)T = −[gradq(V )]T (3.75)

and the assumption, that in a real system we always have conservative and
non-conservative forces, we get the second equations of Lagrange in the form

• system of bodies

n∑
i=1

[ d
dt

(
∂Ti
∂q̇

)− (
∂Ti
∂q

)− (
∂Vi
∂q

)
]

=
n∑
i=1

QT
nc,i, Qnc,i =

∫
Bi

(
∂ri
∂q

)T (dFa),

Ti =
∫
Bi

1
2
ṙTi ṙidmi, (3.76)

where Qnc,i is a non-conservative force acting on the body i.
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3.2.5 Hamilton’s Equations

3.2.5.1 Hamilton’s Principle

Principle and equations of Hamilton play a larger role in Physics and Ana-
lytical Dynamics than in engineering mechanics. Nevertheless, the increasing
significance of Hamilton’s concepts are connected with the modern evolution
of Nonlinear Dynamics, the methods of which are partly important also in
engineering ([261], [159]). We shall consider in a first step the principle of
Hamilton by starting with the relations of the last chapter (3.65), (3.70) and
(3.76). We assume a conservative, holonomic and scleronomic system and de-
fine for the following

T =
n∑
i=1

Ti, V =
n∑
i=1

Vi, W =
n∑
i=1

Wi,

p =
n∑
i=1

pi, pTi =
∂Ti
∂q̇

, (3.77)

where pi is the generalized momentum of body i. The important equation
(3.70) then takes on the form

d

dt
(pT δq)− δT − δW = 0, (3.78)

which sometimes is addressed to as Lagrange’s Central equation. The work
done in a time interval (t1, t2) can easily be determined as

t2∫
t1

δ(T + W )dt = (pT δq)
∣∣∣t2
t1

(3.79)

If we assume vanishing virtual displacements δq(t1) = 0 and δq(t2) = 0, we
get from the above equation

t2∫
t1

δ(T + W )dt = 0. (3.80)

As we presuppose conservative systems, we can apply formula (3.75) and
replace the applied force by a gradient of the potential energy V or equivalently
the virtual work δW by −δV , which results in Hamilton’s principle

t2∫
t1

δ(T − V )dt =

t2∫
t1

δL∗dt = 0 with L∗ = T − V. (3.81)
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L∗ is called the Lagrangian function. The variations δL∗ must be possible
and compatible with the constraints. For holonomic constraints the Hamilton
principle can be reduced to a problem of variational calculus

δ

t2∫
t1

L∗dt = 0 or

t2∫
t1

L∗dt⇒ stationary (3.82)

3.2.5.2 Hamilton’s Canonical Equations

The basic idea of establishing Hamilton’s canonical equations consists in re-
placing the generalized velocity q̇ by the generalized momenta ṗ (see equation
(3.77)). We continue with the assumption of conservative, holonomic and scle-
ronomic systems; for a very detailed and deep discussion also with respect to
any constraints see [180]. Going from system space coordinates to generalized
coordinates with the help of z = z(q), we get the accompanying Jacobian by
the transformation ż = Jzq̇, and the kinetic energy writes

T =
1
2
żTMż =

1
2
q̇T (JTz MJz)q̇. (3.83)

From this the momenta for the system coordinates and the generalized coor-
dinates can be expressed by

∂T

∂ż
=

∂L∗

∂ż
= [Mż]T = pTz ∈ IR6n

∂T

∂q̇
=

∂L∗

∂q̇
= [(JTz MJz)q̇]T = pTq ∈ IRf (3.84)

Comparing the two equations results in pTq = JTz pz. Lagrange’s equations of
motion of second kind write with L∗ = T − V

d

dt
(
∂L∗

∂q̇
)− (

∂L∗

∂q
) = 0 (3.85)

and together with equation (3.84)

∂L∗

∂q
= ṗTq . (3.86)

The Lagrangian L∗ depends on the generalized coordinates q and on the
generalized velocities q̇, L∗ = L∗(q, q̇). From this the variation writes

δL∗ = (
∂L∗

∂q
)δq + (

∂L∗

∂q̇
)δq̇ = ṗTq δq + pTq δq̇. (3.87)

On the other side the variation of the momentum-velocity-product yields

δ(pTq q̇) = pTq δq̇ + q̇T δpq. (3.88)
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Introducing the Hamilton function

H(q,pq) = pTq δq̇− L∗, (3.89)

performing its virtual variation

δH = (
∂H

∂q
)δq + (

∂H

∂pq
)δpq (3.90)

and subtracting the equation (3.87) from (3.88) results in

δ(pTq q̇− L∗) = q̇T δpq − ṗTq δq. (3.91)

Comparing the last two equation comes out with

q̇T = +
∂H

∂pq
, ṗTq = −∂H

∂q
. (3.92)

These relations are called Hamilton’s canonical equations of motion. They
form a set of ordinary nonlinear differential equations of first order with the
dimension (2f) instead of (f) for the Newton-Euler-equations of motion, for
example. For certain mathematical solution methods this might be an advan-
tage.

The Hamiltonian H possesses a nice mechanical property. Combining the
equations (3.89) and (3.84) we get

H(q,pq) = pTq δq̇− L∗

= [(JTz MJz)q̇]T q̇− (T − V ) = q̇T (JTz MJz)q̇− (T − V )
H(q,pq) = T + V (3.93)

For conservative systems the Hamiltonian H represents the total energy as
the sum of kinetic and potential energies.
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3.3 Multibody Systems with Bilateral Constraints

3.3.1 General Comments

All moving systems on earth or in space consist of many material bodies
interconnected by some force laws of nearly any type, which means, forces
stick the bodies together by single- or multi-valued laws, they might act in
a point, along a line or by surface distributions, and forces underly of course
modifications with time and space. The rotational motion of planets is bal-
anced by gravitational and gyroscopic forces, the performance of a machine
follows from an optimal interaction of forces, torques and constraints, walking
of machines or biological systems is governed by a complicated combination
of forces, torques, constraints, interactions with the environment and by an
intelligent system of very adaptive control structures. But the material side
of all these structures are bodies, rigid and elastic bodies, linked by the best
possible way to achieve the required performances. Therefore and in consid-
ering such systems we have as a first step to decide, how we shall model these
forces, how we shall model these constraints and finally how we shall model
the masses.

The justifiability of such questions will be immediately clear by considering
the picture of a modern power transmission system as depicted in Figure
(3.9) consisting of a CVT-belt gear, several gear wheel stages and a power
converter forming together a system of considerable complexity. Even when
applying modern commercial software it makes very much sense to gain some

u

v

c

t

Fig. 3.9: Example of a modern multibody system (courtesy Daimler-Chrysler)

physical understanding before doing so. The mechanical model must include
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all considerations with respect to models of masses, force laws, constraints and
neglects. The art of neglects decides on costs and results, it is an art, not a
science, and requires a deep understanding of the system under consideration.
A good qualitative system comprehension is as important as a quantitative
one, otherwise the results from simulation models cannot be interpreted. We
always should keep in mind, that Technical Mechanics possesses no deductive
structures, whereas Mechanics from the physical standpoint of view may have
such properties [63].

We deal with systems of many bodies with bilateral and later on with
unilateral constraints. Also the complicated structure of Figure (3.9) can be
represented by a structure as indicated in Figure (3.10). We consider rigid or
elastic masses, where this decision depends on the operational frequency range
of the overall system and the eigenfrequencies of the components, linear elas-
ticity presupposed; and we consider bilateral constraints or single-valued force
laws for the interconnections. The concept of elastic multibody systems will
be restricted to linear elasticity, which includes the most frequent problems
in dynamics. As a consequence we might apply a Ritz-approach for model-
ing with the help of shape functions coming from anywhere, FEM-analysis,
exact solutions or measurements. They only have to fulfill the completeness
requirement for approximating some elastic displacement fields ([242], [187],
[27]). According to Figure (3.10) every multibody system possesses some iner-
tial reference given by its environment, and its structure may include treelike
parts and closed loop parts. As a matter of fact tree-like structures are easier
to analyze because in the case of loops we usually must cut these loops and
introduce a closing condition, which then modifies the equations of motion to
a set of DAE-equations.

The forces can follow any law though most practical problems include
springs and dampers of any kind, from linear to nonlinear forms, and some-
times given only by measured characteristics. The evaluation of these laws is
very often more cumbersome than the determination of the constraints. There-
fore it is also a matter of longer concern to think about the two alternatives:
Are detailed force laws really necessary or will it be sufficient to represent the
interconnections by constraints? As a résumé we emphasize again, that before
going into the evaluation of a mathematical form of the equations of motion
it is absolutely necessary to establish a mechanical model and to put enough
thoughts into the problem under consideration.

As a result of these efforts we want to have a set of equations, which
describe the system dynamics completely and unambiguously. This set will
include three parts: ordinary differential equations for rigid multibody com-
ponents and partial differential equations for elastic multibody components,
both of second order, all constraints in a clear and non redundant form and
all relations concerning rotational motion, for example in the form of the
equations (2.31) and (2.33). In the following we shall give some rules how to
establish these equations and how to manipulate them. In spite of these rules
the resulting complexity of the equations of motion depend largely on the
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inertial
environment

closed loop

body i

tree-like structures

constraints ⇒ Φ(z, ż, t) = 0
force laws ⇒ F = F(z, ż, t)

Fig. 3.10: MBS-structure with bilateral connections

skills of the investigator. There is a broad band of possibilities in choosing the
minimal coordinates and velocities, the form of the constraints, the rotational
coordinates like those from Euler, Kardan, Rodriguous or like quaternions and
the solution procedure, for example DAE or not.

Before the background of a worldwide large literature on numerical meth-
ods for the treatment of multibody systems we shall not consider this topic
here, but refer to two new publications presenting the most modern aspects
of numerics in the field, namely [52] and [6].

3.3.2 Equations of Motion of Rigid Bodies

We shall focus here on an evaluation of the equations of motion often addressed
to as a projective method resulting in a set of Newton-Euler equations of
motion [233]. The equations of motion will be bounded by constraints of any
form (see equations 3.1) and supplemented by rotational relations of the form
ż = H(q)q̇. Combining the principle of Jourdain (3.48) with the absolute
velocity of a single rigid body, equation (2.38) with B ṙ = 0, and with the
absolute acceleration of a single rigid body, equation (2.42) with the relative
dotted magnitudes B ṙ = 0 and B r̈ = 0, we get in a first step the velocities
and accelerations in the form (see also Figure 2.13)

B ṙP = B ṙQ + Bω̃ · Br,

B r̈P = B r̈Q + B
˙̃ωBr + Bω̃B ω̃Br. (3.94)

As already mentioned all variations (δr, δ′ṙ, δ′′r̈ etc.) must be compatible
with the existing constraints by moving within the tangent plane of the con-
straint surface. Therefore the derivations of the constraints must be included.
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For simplicity we assume the constraints in an explicit form rP = rP (q, t)
and ṙP = ṙP (q, q̇, t) (see chapter (2.2.5)). Then we get

ṙP = (
∂rP
∂q

) · q̇ +
∂rP
∂t

,
∂rP
∂q

=
∂ṙP
∂q̇

, (3.95)

which can be used to evaluate the variation of the velocity ṙ. We get for a
body-fixed frame (left index “B” partly omitted)

δṙP = (
∂ṙP
∂q̇

) · δq̇ = B [(
∂ṙQ
∂q̇

) + r̃T (
∂ω

∂q̇
)]δq̇ (3.96)

Combining these equations with Jourdain’s principle of equation (3.48) we
come out with∫
B

δ′q̇T B[(
∂ṙQ
∂q̇

) + r̃T (
∂ω

∂q̇
)]
T

B{[r̈Q + ˙̃ωr + ω̃ω̃r]dm− dFa} = 0 (3.97)

At this stage a word to the coordinates applied for the equations (3.97). We
have chosen a body fixed coordinate system. Instead we could have chosen as
well an inertial or any other coordinate system, because the scalar product
connected with the principle of virtual power, and of the other principles,
does not depend on the choice of the coordinates. This represents a strong
advantage of the Newton-Euler approach.

The coordinates q are generalized coordinates and meet all constraints.
Consequently the δ′q̇ are independent and can be chosen arbitrarily. Intro-
ducing the abbreviations

Fa =
∫
B

dFa, Ma =
∫
B

r̃dFa,

mrS =
∫
B

rdm, I = −
∫
B

r̃r̃dm, (3.98)

we can write the relation (3.97), always with respect to a body-fixed coordinate
frame,

B(
∂ṙQ
∂q̇

)
T

·B [mr̈Q + m( ˙̃ω + ω̃ω̃)rS − Fa]

+ B(
∂ω

∂q̇
)
T

· B[mr̃TS r̈Q + Iω̇ + ω̃Iω −Ma] = 0. (3.99)

The index “S” indicates the center of mass, and “I” is the inertia tensor.
The (̃·)-tensor has already been defined. To be able to achieve the inertia
tensor I, we must consider the quadruple product of equation (3.97) [r̃ω̃ω̃r =
r× (ω × (ω × r))] and apply some formulas of vector algebra with the result
[r̃ω̃ω̃r = −ω̃r̃r̃ω].
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The equations (3.99) possess some remarkable properties. Firstly we may
state that the first term of these equations corresponds to the momentum
equation projected into the free directions of motion, due to the constraints
and with the help of the Jacobian (∂ṙQ

∂q̇ )T . The second term corresponds to
the moment of momentum equations also projected into the free directions
with the help of the Jacobian (∂ω∂q̇ )T . These projections force the corresponding
equations of momentum and moment of momentum into the tangential planes
of the constraint surfaces. For practical problems the above equations are very
convenient, because each of the resulting individual equations represents a
scalar product, which might be evaluated in different coordinate systems. In
many cases it makes sense to use for the momentum equations an inertial and
for the moment of momentum equations a body-fixed coordinate system.

Without constraints the Jacobians in equation (3.99) vanish and we get
directly the classical equations for a rigid body in the form

B[mr̈Q + m( ˙̃ω + ω̃ω̃)rS − Fa] = 0,

B[mr̃TS r̈Q + Iω̇ + ω̃Iω −Ma] = 0. (3.100)

The equations (3.98) and (3.99) can easily be extended to a system of rigid
bodies with altogether n bodies. All magnitudes get an index i and equation
(3.99) is summed up over all n bodies. This yields with the abbreviations

Fai =
∫
Bi

dFai, Mai =
∫
Bi

r̃idFai,

mirSi =
∫
Bi

ridmi, Ii = −
∫
Bi

r̃ir̃idmi, (3.101)

the equations of motion for a system of rigid bodies

n∑
i=1

{
Bi

(
∂ṙQi

∂q̇
)
T

·Bi
[mir̈Qi + mi( ˙̃ω + ω̃ω̃)irSi − Fai]

+ Bi
(
∂ωi
∂q̇

)
T

· Bi
[mir̃TSi

r̈Qi + Iiω̇i + ω̃iIiωi −Mai]
}
= 0.

(3.102)

The vector q̇ consists of generalized velocities. Introducing

Bi
ṗi =Bi

[mir̈Qi + mi( ˙̃ω + ω̃ω̃)irSi ],

Bi
L̇i =Bi

[mir̃TSi
r̈Qi + Iiω̇i + ω̃iIiωi],

Bi
JTi =Bi

(
∂ṙQi

∂q̇
), Bi

JRi = Bi
(
∂ωi
∂q̇

), (3.103)

we also can write
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n∑
i=1

[Bi
JTiT (Bi

ṗi − Bi
Fai) + Bi

JRiT (Bi
L̇i − Bi

Mai)] = 0, (3.104)

where it must be kept in mind that the ṗi and L̇i are abbreviations, not
integrable physical magnitudes.

Bremer [28] has introduced a useful method to deal with subsystems. In
this case the subsystem generalized velocities q̇k depend on the generalized
velocities q̇ and therefore we can write
r∑

k=1

Bki
(
∂q̇k
∂q̇

)
T

·
mk∑
i=1

[Bki
(
∂ṙQki

∂q̇k
)
T

(Bki
ṗki − Bki

Fa,ki)

+Bki
(
∂ωki
∂q̇k

)
T

(Bki
L̇ki − Bki

Ma,ki)] = 0. (3.105)

According to the above relation we have r subsystems, each with mk bodies
and each of the bodies with an integration domain Bi(k). The generalized
velocities q̇k can be chosen independently from each other.

For further evaluations we go back to the equations (3.102) with the abbre-
viations (3.103) and include into (3.102) the velocities and accelerations from
the relations (2.63) and (2.65) by setting ż = [(ṙQi)T (ωi)T ]T . This results in

Mq̈ + h− fa = 0 with

M =
n∑
i=1

{
JTTimiJTi + JTRimir̃TSi

JTi + JTTimir̃TSi
JRi + JTRiIiJRi

}
∈ IRf,f ,(

JTi
JRi

)
= (

∂żi
∂q̇

) =
∂

∂q̇

(
ṙQi
ωi

)
∈ IR6n,f ,

h =
n∑
i=1

{
JTTi(miω̃ω̃irSi) + JTRi(ω̃iIiωi)+

[(JTTimi + JTRimir̃TSi)(J
T
Timir̃TSi + JTRiIi)][

∂

∂q
(
(

JTi
JRi

)
q̇)q̇]
}
∈ IRf

fa =
n∑
i=1

[JTTiFai + JTRiMai] =
n∑
i=1

Qi ∈ IRf ,

z ∈ IR6n, q ∈ IRf . (3.106)

For rotations we have to regard in addition the Euler kinematical equtions in
some suitable coordinate form, but always representable by a linear relation-
ship

q̇ = H∗ż (3.107)

The reduced forces and torques are generalized forces Qi, and, if we want,
fa = Q. For the velocities and accelerations of the relations (2.63) and (2.65)
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the assumption of no dependence on time z = z(q) has been used. The
above equations are usually applied to multibody systems with resolvable con-
straints, which concerns quite a lot of such systems. For more general cases,
where we cannot include the constraints, we either could reduce the number
of the equations of motion as far as possible by the constraints and keep the
non-resolvable ones resulting in a DAE-system of equations, or we establish
the equations of motion by cutting free all bodies, by deriving the momentum
and moment of momentum equations, by coupling them with the help of the
reaction forces and torques and by keeping all constraints. The last possibility
is mostly the better one for reasons of numerical treatment and program code
structuring.

3.3.3 Order(n) Recursive Algorithms

One of the problems with respect to large multibody systems is connected with
the computing time necessary to simulate such systems. On the other hand
and for many cases of practical relevancy the topology of multibody systems
allows a division into trees and loops, which can be treated by recurrence
processes. They do not require the inversion of the mass matrix M ∈ IR6n,6n

of the complete system but come out with an inversion of the single mass
matrices Mi ∈ IR6,6 for each recurrence step. For tree-like structures it is
possible to develop recurrence relations as already discussed for the kinematics
in chapter 2.2.4. Closed loops might be cut into two trees adding some suitable
kinematic and kinetic closing conditions. Most of the literature on this topic
appeared already in the eighties or earlier, see for example [102], [103], [25],
[28], [242]. All recursive algorithms follow principally the same idea including
three steps [217], [222]:

In a first step we evaluate the absolute kinematic magnitudes starting from
the base link and ending with the end link of a tree and using the results from
the relative kinematic magnitudes from the time integration step before. This
process is sometimes called the first forward recursion, because we go upwards
from the base to the end body. We might apply for this step the formulas of
chapter 2.2.4.

In a second step we go from the end link to the base link by eliminating
body by body the constraint forces of the link connections. Knowing the
kinematics we can evaluate all applied forces and torques and are only left
with the unknown constraint forces and the accelerations. For the end link we
can eliminate the constraint force to the link before, in direction base body,
and we can replace the acceleration by the acceleration of the predecessor
body by a kinematic recursion. The result will be an equation of motion with
exactly the same structure as the end link thus defining a “new end link”. We
go backwards to the base body and call this process the backward recursion.
The constraint forces are eliminated completely by this evaluation, and we
come out with the absolute acceleration of the base link.
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In a third step we calculate the absolute accelerations of all bodies starting
again with the base link and finishing with the end link. This process is usually
called the second forward recursion.

Some authors differentiate between trees and chains. A tree is a topological
part of the multibody system under consideration,where every body of that
tree might also be the base link of another tree. In this case we must regard
the forces coming from this external tree via its last connection. If we have
chains things are more simple, because there are no side-trees or chains what-
soever, and the recursions are straightforward. Therefore it is very important
to choose a good division of the overall system leading to simple topological
substructures.

We again come back to chapter (2.2.4) and start the first forward-
recursion with the relations (2.52) and (2.49), which write in the coordinate
system Bi (see also Figure 3.11)

Bi
ṙIBi =ABiBi−1 [(Bi−1

ṙIBi−1 + Bi−1
ṙBi−1Bi)+

+ (Bi−1
ω̃IBi−1 + Bi−1

ω̃Bi−1Bi) · Bi−1
rBi−1Bi ],

Bi
ωIBi =ABiBi−1 · (Bi−1

ωIBi−1) + Bi
ωBi−1Bi . (3.108)

The relative translational and rotational velocities between the bodies Bi−1

and Bi are Bi
ṙBi−1Bi and Bi

ωBi−1Bi , respectively, written in the Bi-system.
These two velocities depend directly on the generalized velocities q̇i given by
the possible degrees of freedom of the connection between the two bodies Bi−1

and Bi. These degrees of freedom depend on the configuration of the inter-
connection: we may have a rotatory joint with rotational degrees of freedom,
very often only with one degree of freedom, or we may have a connection with
translational relative motion in the form of linear guideways or the like. In
addition some motor system might prescribe the relative motion of the bodies,
for example in manipulators. In this case forces in that specific joint are given
with the controlled motor torques.

Proceeding to the accelerations we must transform the equations (3.108)
into the inertial frame, then differentiate the transformed equations and af-
ter that transform them back into the body-fixed coordinate system. This
standard process for time derivations results in (see also the equations (2.57))

Bi
r̈IBi = ABiBi−1 · Bi−1

[r̈IBi−1 + (r̈Bi−1Bi + ˙̃ωIBirBi−1Bi+

+ 2ω̃IBi ṙBi−1Bi + ω̃IBi ω̃IBirBi−1Bi)]

Bi
ω̇IBi = ABiBi−1 · (Bi−1

ω̇IBi−1 + Bi−1
ωBi−1Bi · Bi−1

ωIBi−1)+

+ Bi
ω̇Bi−1Bi . (3.109)

The indices Bi−1 on the left side of the brackets indicate, that all magnitudes
within the brackets are written in the body-fixed coordinate system Bi−1.
The structures of these two equations are obvious, it composes the absolute
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Fig. 3.11: Relative Kinematics for Recursion

accelerations of the predecessor body with the relative accelerations between
the two bodies. According to Figure 3.11 and to the equations (2.48) to (2.52)
we can establish the following relations

Bi
rBi−1Bi =Bi

[rHi−1 + ∆rHi−1Hi + rHi ] = h0i + HTiqi,

h0i =rHi−1 + rHi , ∆rHi−1Hi = ∆r = HTiqi

Bi
ω̃IBi =ABiBi−1 · (Bi−1

ω̃IBi−1) ·ABi−1Bi + Bi
ω̃BiBi−1

Bi
ṙBi−1Bi =Bi

∆ṙHi−1Hi = HTiq̇i + ḢTiqi,

Bi
ωBi−1Bi =Bi

∆ω = HRiq̇i,

HTi ∈ IR3,6, HRi ∈ IR3,6 qi ∈ IR6, (3.110)

where the vector qi represents the joint degrees of freedom and contains ac-
cordingly three relative coordinates of translation, for example x,y,z in the
case of a local Cartesian frame, and three relative coordinates of rotation, for
example α, β, γ in the case of Cardan angles. The matrices HTi and HRi take
into account the properties of the vectors Bi

rBi−1Bi and Bi
ωBi−1Bi , which

in the first case must be composed of the vectors from the bodies’ reference
points to the hinge points and of the joint vector, and which in the second
case result from some finite rotation expressions like the equations (2.31) and
(2.33) in chapter (2.2.3).
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The H-matrices are known, and the (q, q̇) must be evaluated in the course
of the recursion. In many cases of practical relevancy we only have rotatory
joints with HT (i) = 0 and ḢT (i) = 0, then the equations for the joint trans-
lations vanish, and we have to consider only the rotational part as given with
the last equation of (3.110) for Bi

ωi. Sometimes it is also possible to choose
the body- and joint-fixed coordinates in such a way, that the matrix HT (i)

will be constant with only ḢT (i) = 0, which leads to some simplifications of
the above equations.

The above equations are recurrence relations for the absolute velocities
in a tree. They can be represented in any coordinate system by appropriate
transformations. Together with the equation (2.46)

AIBi = AIBi−1 ·ABi−1Bi (3.111)

we have with the relations (3.108), (3.109) and (3.110) a complete set of
recurrence equations for the evaluation of the absolute and relative kinematics
in a tree. We start with the base link and go up to the end link. For later
applications we combine these equations in the following form

żi =Qi(żi−1 + Hiq̇i) + vi(zi,qi, t),
z̈i =Qi(z̈i−1 + Hiq̈i) + ai(żi, q̇i, zi,qi, t),

∂zi
∂qi

=
∂żi
∂q̇i

=
∂z̈i
∂q̈i

= QiHi,

żi =
(
Bi

ṙIBi

Bi
ωIBi

)
, ∆̇zi =

(
Bi

ṙBi−1Bi

Bi
ωBi−1Bi

)
=
(

HTi 0
0 HRi

)
· q̇i,

Qi =ABiBi−1 ·
(

E Bi−1
r̃TBi−1Bi

0 E

)
, Hi =

(
HTi 0
0 HRi

)
. (3.112)

The matrix Qi is mainly a transformation from the Bi−1-system into the
Bi-system, because the magnitudes in the bracket of the above two first equa-
tions are given in the Bi−1-system. The functions v and a depend on kine-
matical magnitudes, which are at least one level lower than the velocity or the
acceleration, respectively. The additional velocity term depends only on po-
sition and orientation, and the additional acceleration term depends on some
velocities in addition to position and orientation.

With the data from the first forward recursion we are now able to go
from the end link to the base link eliminating the constraint forces. This is
the second step and called backward recursion. We go back to equation
(3.100) and write thr equation of motion for the end link Bi in the form
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Bi
[Mz̈ + h− fp] = 0

Bi
M =

(
M3 mr̃TS
mr̃TS I

)
, Bi

h =
(
mω̃ω̃rS
ω̃Iω

)
−
(

Fa
Ma

)
, Bi

fp =
(

Fp
Mp

)
.

(3.113)

The mass matrix M ∈ IR6,6 includes the single body masses and the inertia
tensor, the vector z is defined in equation (3.112), and the vector h includes all
applied forces and fp all passive forces and torques. Inserting equation (3.112)
into equation (3.113) and applying Jourdain’s principle we determine in a first
step the unknown generalized accelerations resulting in

Bi
JTBi

[Mz̈ + h− fp] = 0, Bi
JTBi

fp = 0, J =
∂żi
∂q̇i

,

q̈i = −Bi
(JTMJ)−1

Bi
JT Bi

(MQz̈i−1 + Ma + h). (3.114)

In a second step we apply the original equations of motion (3.113) together
with the solution for the generalized acceleration of the relation above to
evaluate the constraint force fp, which comes out with

Bi
fpi = Bi

{[E−MJ(JTMJ)−1JT ](MQz̈i−1 + Ma + h)} (3.115)

In a third step we consider now the equations of motion of the predecessor
body Bi−1, which write

Bi−1
[Mz̈ + h− fpi−2 −ABi−1Bi fpi −

∑
k

ABi−1Bk
fpk

] = 0, (3.116)

which we have extended by the constraint forces coming from possible
branches of the tree, namely fpk

, and by the constraint force fpi−2 going to the
successor of Bi−1. We shall not pursue the branching problem here, because
it can be evaluated applying the same process as for one branch. We combine
now the equations (3.115) and (3.116), which gives us again the equations of
motion in a form, which corresponds exactly to that of the predecessor body.
We get

Bi−1
[Mz̈+h− fpi−2 ] = 0,

Bi−1
Mi−1 :=Bi−1

{Mi−1 −ABi−1Bi · Bi
[E−MJ(JTMJ)−1JT ]Bi

(MQ)}

Bi−1
hi−1 :=Bi−1

{hi−1 −ABi−1Bi · Bi
[E−MJ(JTMJ)−1JT ]Bi

(Ma + h)}
(3.117)

With the above relations we have a recurrence scheme for multibody chains
and trees, see also [28] and [217].
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The third recursion is the last one, namely the second forward recur-
sion, which concerns kinematics again. With the backward recursion we know
all accelerations and constraint forces (equations (3.114) and (3.115)) and can
thus start again with the base body to evaluate the kinematics of the tree by
applying the relations (3.108) to (3.111). If we have branchings we must start
with the end body of each branch going back to the tree body where several
branches might meet and then go further back to the base body (for example
[27], [28], [237]). For the treatment of closed loops see also the references [28],
[237], [222] and [103].

As a second possibility we could find also a solution without inverting
the whole system matrix by applying equation (2.61) taking advantage of
the triangular matrix of this relation. Equation (3.102) together with the
abbreviations (3.103) writes

n∑
i=1

(Bi
JTiT ,Bi

JRiT )Bi

{( mi mir̃TIBi

mir̃TIBi
Ii

)
·
(
Bi

r̈IBi

Bi
ω̇IBi

)
+

+
(
miω̃IBi ω̃IBirIBi

ω̃IBiIiωIBi

)
−
(

Fai
Mai

)}
= 0. (3.118)

Combining these equations with the recursion kinematics of the equations
(2.58) to (2.62) we can generate a set of equations also with triangular matri-
ces, which can then be solved in an iterative way.

3.3.4 Equations of Motion of Flexible Bodies

Flexibility in multibody dynamics appears in very different forms. We might
have bodies with very large deformations depending on the material and the
design; aerospace and comparable light-weight equipment or plants in a storm
are examples. And we may have bodies with very small deformations like
those in heavy machines or precision tools. Anyway, as long as the eigen-
dynamics of such elastic components lies within the frequency domain of the
machine’s operational range, we have to consider the influence of these elastic
deformations.

In the following we shall restrict ourselves to small elastic deformations.
They cover most of the practical applications. For this case we assume, that
small elastic movements add to the rigid body motion of a multibody system.
Thus elasto-dynamics takes place within the moving system. We shall derive
the appropriate equations of motion and give some solution procedures apply-
ing for example methods by Ritz and Galerkin with the classical separation
of variables. This is one possible and classical way, which in the course of the
last decades has been supplemented by algorithms applying finite elements
(FEM). They allow the treatment also of large elastic deformations, they of-
fer more flexibility and above all, they solve one of the standard problems,
namely how to choose the boundary conditions for elastic bodies within the
multibody structure, in an unambiguous way (see for example [242], [237],
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[28]). The last mentioned aspect decides on the form of the shape functions
necessary for example for a RITZ-approach.

We go back to chapter (2.2.8), to Figure (2.22) and to the equations (2.133)
to (2.135) on page 47 and define for the body (i)

Bi
rei =Bi

(ri + ϕ̃iui), Bei
rei = Bi

(E + ϕ̃i)Bi
rei,

rei =rIBei , ri = rIBri , ui = rBriBei

ϕ̃i =Fi,skew =
1
2
((
∂u
∂X

)− (
∂u
∂X

)T )i =
1
2
(∇u−∇uT )i (3.119)

where the first equation is written in the Bi- and the second equation in the
Bei-coordinate system. The last equation corresponds to the relation (2.143).
The deformation vector ui is usually given in the coordinate system of the
deformed element. Proceeding to the absolute velocities of a deformed element
we get for the two coordinate systems as used above

Bi
(ṙei) =Bi

vei = Bi
[vi + u̇i + ω̃i(ri + ui)],

Bi
ωei =Bi

[ωi + ˜̇ϕi],

Bei
(ṙei) =Bei

vei = Bei
[E + ϕ̃i]T · Bi

vei,

Bei
ωei =Bei

[E + ϕ̃i]T · Bi
ωei.

Bi
vi =ABiI · I(ṙIBri), Bi

vei = ABiI · I(ṙIBri + ṙBriBei)

Bi
ωi =Bi

ωIBi = ABiIȦIBi (3.120)

Before deriving the equations of motion for a linearly elastic multibody sys-
tem we need to define the generalized coordinates, assuming for the sake of
simplicity that these coordinates meet all constraints. But we have to define
in addition the elastic coordinates, which follow from the Ritz-approach in
the form

Bi
ui =

 ui(xi, t)
vi(xi, t)
wi(xi, t)

 =

 ūi(xi)Tqeui(t)
v̄i(xi)Tqevi(t)
w̄i(xi)Tqewi(t)

 = ūi(xi)Tqei(t). (3.121)

The vector xi is any suitable set of coordinates describing the linear deforma-
tions of body (i). The functions ūi(xi) must be a complete set of orthonormal
functions, which form an orthonormal basis. They have to fulfill certain con-
ditions, for example Parseval’s completeness relation (see [132], [283], [187]).
For practical purposes cubic splines have proved themselves quite well, and
for special cases like bars and plates Fourier expansions represent a good set
of such functions [28]. We shall come back to these problems.

Collecting all rigid coordinates in a vector qr and all elastic coordinates
in a vector qe we come out with
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q =(qr
T ,qe

T )T , vi = vi(qr,qe, q̇r, q̇e), ωi = ωi(qr,qe, q̇r, q̇e),

qr ∈ IRfr , qe ∈ IRfe , q ∈ IRfr+fe , f = fr + fe. (3.122)

For deriving the equations of motion we first go back to the basic equation of
kinematics (2.38), which gives also a rule for the time derivation of any vector
with respect to a body-fixed frame. From this velocity and acceleration of
a deformed element with respect to the element-coordinates comes out with
(see also equation (3.120))

Bei
vei =vei = Bei

(E + ϕ̃i)TBi
[vi + u̇i + ω̃i(ri + ui)],

Bei
ωei =ωei = Bei

(E + ϕ̃i)T Bi
[ωi + ϕ̇i],

aei,abs =v̇ei + ω̃ei · vei,
d

dt
(ωei) = ω̇ei + ω̃i · ωei. (3.123)

We start in a second step with Jourdain’s principle, equation(3.48) and ap-
ply for the absolute velocity the form (eq. 3.52) supplemented by the elastic
deformation vector (eqs. 3.120)

n∑
i=1

∫
Bei

δ(ṙei)T (aeidm− dFai) = 0, δṙei = (E3 r̃T )ei

(
δvei
δωei

)
(3.124)

Jourdain’s principle has to be applied in our case to the deformed element,
but having assumed only small deformations we shall be able to neglect higher
order terms in the considerations to follow. Using the relations (3.120) for the
absolute element velocities and regarding the fact, that only the deformation
velocities depend on the generalized velocities q̇e we can evaluate the virtual
velocity of the deformed element and the accompanying Jacobians to yield

δṙei =
(
δvei
δωei

)
=

(
∂vei

∂q̇r

∂vei

∂q̇e
∂ωei

∂q̇r

∂ωei

∂q̇e

)
· δ
(
δqr
δqe

)

∂vei
∂q̇r

=(E + ϕ̃i)T · [
∂vi
∂q̇r

+ (r̃i + ũi)T
∂ωi
∂q̇r

]

∂vei
∂q̇e

=(E + ϕ̃i)T · [
∂vi
∂q̇e

+
∂u̇i
∂q̇e

+ (r̃i + ũi)T
∂ωi
∂q̇e

]

∂ωei
∂q̇r

=(E + ϕ̃i)T · [
∂ωi
∂q̇r

]

∂ωei
∂q̇e

=(E + ϕ̃i)T · [
∂ωi
∂q̇e

+
∂ϕ̇i
∂q̇e

] (3.125)

At this point we should recall the requirement, that in evaluating the above
derivatives the original terms of vei and ωei have to be developed up to second
order terms of the elastic deformations. Performing the derivations we come
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back to first order expressions for the above Jacobians, which is absolutely
necessary due to forces of zeroth order in the momentum and moment of
momentum equations (see the following equations of motion and also the
equations (2.133) to (2.135) on the pages 47).

Applying the above result to equation (3.124) and taking the acceleration
from equation (3.123) gives for the equations of motion

n∑
i=1

∫
Bei

[(
∂vei
∂q̇r

)T + (
∂ωei
∂q̇r

)T · r̃ei] · [(v̇ei + ω̃ei · vei)dm− dFai] = 0,

n∑
i=1

∫
Bei

[(
∂vei
∂q̇e

)T + (
∂ωei
∂q̇e

)T · r̃ei] · [(v̇ei + ω̃ei · vei)dm− dFai] = 0, (3.126)

where the two equations result from the assumption, that the generalized
velocity coordinates q̇r, q̇e are indepently different from zero, which allows to
split Jourdain’s equations. As a matter of fact it makes not much sense to
evaluate these equations in all details on an analytical level. We shall go on
one step further, the rest must be done by computer evaluation.

Combining the equations (3.125) and (3.126) and regarding additionally
the definitions of the relations (2.171) and (2.172) we may write the equations
(3.126) in the following form (see [29], [196])

n∑
i=1

∫
Bei

{
[
∂vi
∂q̇r

+ (r̃i + ũi)T ·
∂ωi
∂q̇r

]T · (E + ϕ̃i) · [(v̇ei + ω̃ei · vei)dm− dFai]+

+ [
∂ωi
∂q̇r

]T · (E + ϕ̃i) · [(dIi·ωei + ω̃eidIiωei)+

+ r̃Tei(v̇i + 2ω̃eiṙi + r̈i)dm− dMai]
}

= 0,

n∑
i=1

∫
Bei

{
[
∂vi
∂q̇e

+
∂ui
∂q̇e

+ (r̃i + ũi)T ·
∂ωi
∂q̇e

]T · (E + ϕ̃i)·

· [(v̇ei + ω̃ei · vei)dm− dFai]+

+ [
∂ωi
∂q̇r

+
∂ϕ̇i
∂q̇e

]T · (E + ϕ̃i) · [(dIi·ωei + ω̃eidIiωei)+

+ r̃Tei(v̇i + 2ω̃eiṙi + r̈i)dm− dMai]
}

= 0. (3.127)

The term in the last row of these two equations vanishes if we relate our
coordinates to the center of mass, because

∫
Bei

reidm = mrSi = 0 for the mass
center. Furtheron, for small deformations we may assume that the definitions
for the mass center and the moments of inertia give the same results for the
undeformed and the deformed body.
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The equations have to be completed by the elastic forces from chapter
(2.3.2) given by the equation (2.156). Therefore we supplement in the above
relations the forces

∫
Bei

dFai by the elastic forces
∫
B div(σ)dV writing∫

Bei

dFai =⇒
∫
Bei

dFai +
∫
Bei

div(σ)dV,

∫
Bei

dMai =⇒
∫
Bei

dMai +
∫
Bei

r̃div(σ)dV, (3.128)

which can be evaluated by using the relations from the chapters (2.3.2) and
(2.2.8), equations (2.153), (2.155) and equations (2.140), (2.141).

The equations of motion (3.127) for a linearly elastic multibody system
have been derived in a straightforward way without including any structural
considerations. Similar to rigid multibody systems one can establish a re-
cursional topology according to chapter (3.3.3), which in the view of a vast
literature on this topic we shall not do here (see for example [27], [28], [242],
[237] and others). The problem of the boundary conditions for the shape func-
tions of a Ritz-approach can be solved heuristically for simple cases, but with
the danger of bad convergence. A better approach are finite elements or for
special body configuration cubic splines, which are local shape functions well
adaptable also to complicated cases.

From the authors experience the following considerations are usually suc-
cessful: The above equations of motion have been derived for a moving system,
and the deformation vectors ui are also given for the moving undeformed body
(i). According to Figure (2.22) we define the deformation vector from a basis
within the undeformed but moving body (i). Therefore it makes at least some
physical sense to define the boundary conditions within or at the borders of
this body, often with respect to the connection to the neighbouring bodies,
then to evaluate the shape functions from an Eigenwert-analysis using these
boundary conditions. It works in most cases as we shall see in the application
part of the book.

3.3.5 Connections by Force Laws

Many interconnections of multibody systems may be modelled conveniently
using force laws, which act between two bodies. Springs, dampers, fluids and
visco-elastic materials are typical examples. The accompanying force laws
might be linear or nonlinear depending also on the size of displacements and
rotations along the lines of action. In the following we shall assume small
displacements and rotations, which makes sense for many machine and au-
tomotive applications, but which do not necessarily lead to linear force laws.
The visco-elastic elements for connecting the combustion engine with the au-
tomobile body are an example.
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For the evaluation of such force laws we first must define the line (lines) of
action by some unit vector ψL = (ψTLT , ψ

T
LR)T ∈ IR6, where the index L stands

for the force law and the indices T,R for translation and rotation, respectively.
The unit vector is usually given by the configuration of the two bodies and
their specific connection. The mesh of teeth represents an example from gears.
Secondly we must evaluate the relative displacements and rotations between
the two bodies, the positions and orientations of which we know from the
integration process of the equations of motion for the multibody system. We
also know the velocities and accelerations. Finally in a third step we project
the magnitudes of relative kinematics into the force law directions with the
help of the above unit vector. Knowing then the relative magnitudes in the
line of action we are able to determine the forces and torques from the force
law and introduce them as applied forces to the two interconnected bodies
with the same absolute value but with opposite signs.

Considering only small displacements and rotations along the lines of ac-
tion we can describe the above procedure by some simple formulas. Figure
(3.12) indicates the most important features. We consider two bodies within
a multibody system, and we go from a reference configuration to a displaced
and rotated one. The points of connection are C0i and C0p, which go to Ci

ϕp

rp

rcp
c0p

cp
R0p

Rp

C0p

Cp

body Bp -
reference, index 0

body Bp -
displaced and rotated

ϕi

rci

ri
ci

c0i

R0i

Ri

C0i
Ci

body Bi -
reference, index 0 body Bi -

displaced and rotated

∆r0ip

∆rip ∆ϕip
L0ip

Lip
force law
fa(∆rip, ∆ϕip)

Fig. 3.12: Multibody Interconnection by Force Laws

and Cp by the vectors rci and rcp. The vectors c from the reference points R
to the force application points C remain unchanged, they are only rotated by
c = (E + ϕ̃)c0, small magnitudes provided. For the small displacements and
rotations between Ci and Cp we get

∆rcip = rci − rcp, ∆ϕip = ϕi − ϕp. (3.129)



130 3 Constraint Systems

From Figure (3.12) and the corresponding quadrangles we express the vectors
rci and rcp by rci = (−c0i + ri + ci) and rcp = (−c0p + rp + cp). With the
transformation matrices ALi and ALp from the i- and p-systems into the force
law system ”L” we receive

∆rip = ALi(ri + ϕ̃ic0i)−ALp(rp + ϕ̃pc0p), (3.130)

which can be combined to give (for the indices i and p the same)

∆zip =CLizi −CLpzp,

∆zip =
(
∆rip
∆ϕip

)
, zi =

(
ri
ϕi

)
, CLi =

(
ALi −ALic̃0i

0 ALi

)
. (3.131)

We have already introduced the unit vector ψL = (ψTLT , ψ
T
LR)T ∈ IR6, which

allows us to project the relative displacements ∆zip into the direction of the
force law. Therefore they can be expressed by

γL = ψTL ·∆zip, γ̇L = ψTL ·∆żip. (3.132)

Knowing the relative displacements γL and displacement velocities γ̇L we can
apply directly the given force law in the form

ζL = ζL(γL, γ̇L, t), (3.133)

where the time t plays no significant role in most of the practically relevant
force laws. Using the above equations we write the forces acting on the bodies
i and p

fai = +CT
LiψLζL, fap = −CT

LpψLζL, (3.134)
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3.4 Multibody Systems with Unilateral Constraints

3.4.1 The General Problem

The most important properties of constraints have been discussed in chap-
ter (3.1) and with respect to unilateral constraints in chapter(3.1.2.1). The
basic problem in considering contacts and their unilateral behaviour consists
in their kinematical variability, so-to-say in their kinematical richness, which
as a consequence leads also on the kinetic side to a very ”rich dynamics”
characterized by non-smoothness. The fundamental aspect is complementar-
ity, and the fundamental kinetic aspect are set-valued forces in combination
with measure equations of motion instead of ordinary differential equations
[161]. The concept of set-valued forces as a complement to single-valued forces
in classical mechanics has been introduced by Glocker [87].

These ideas are perfectly adapted to the fact that contact forces evolve as
a rule according to the kinematics and dynamics of the contact itself, they are
not known beforehand. A typical example are Coulomb’s laws, where for a
sticking contact the contact force vector lies within the friction cone allowing
sliding only, if we reach by the dynamics of the system the boundary of this
friction cone. Within the cone an arbitraty set of contact forces may develop
limited only by the boundary, that is the static friction limit, and by the
possible external dynamical forces (see also Figure (3.4) in chapter (3.1.2.1)).
Before entering the evaluation of the corresponding equations of motion we
shall consider some simple and typical cases, the impact between two bodies,
the properties of sliding and static friction and the multiple contact problem.

All classical textbooks on mechanics and most current research concentrate
on mechanical systems with a few degrees of freedom and with one impulsive
or frictional contact. Books and papers on chaotical properties very often use
as mechanical examples impact or stick-slip systems. In the following we shall
discuss some ideas [148],[166],[158],[138].

�2�2
�1�1

v2

v1 rD

vN vN

vT vT

Approach Compression Expansion

Fig. 3.13: Details of an Impact

Two bodies will collide if their relative distance becomes zero. This event
is then a starting point for a process, which usually is assumed to have an
extremely short duration. Nevertheless, deformation of the two bodies occurs,
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being composed of compression and expansion phases (Figure3.13). The forces
governing this deformation depend on the initial dynamics and kinematics of
the contacting bodies. The impulsive process ends when the normal force of
contact vanishes and changes sign. The condition of zero relative distance
cannot be used as an indicator for the end of an impact, because the bodies
might separate in a deformed state. In the general case of impact with friction
we must also consider a possible change from sliding to sticking, or vice versa,
which includes frictional aspects as treated later.

In the simple case of only normal velocities we sometimes can idealize
impacts according to Newton’s impact laws, which relate the relative velocity
after an impact with that before an impact. Such an idealization can only
be performed if the force budget allows it. In the case of impacts by hard
loaded bodies we must analyze the deformation in detail. Gear hammering
taking place under heavy loads and gear rattling taking place under no load
are typical examples [200].

As in all other contact dynamical problems, impacts possess complemen-
tarity properties. For ideal classical inelastic impacts either the relative ve-
locity is zero and the accompanying normal constraint impulse is not zero,
or vice versa. The scalar product of relative velocity and normal impulse is
thus always zero. For the more complicated case of an impact with friction
we shall find such a complementarity in each phase of the impact. A collision
with friction in one contact only is characterized by a contact condition of
vanishing relative distance and by two frictional conditions, either sliding or
sticking (Figure (3.14)).

�

v

vrel � 0 vrel � 0

FTS

FN FN

FT0rD

Fig. 3.14: Sliding and Static Friction

From the contact constraint rD = 0 we get a normal constraint force
FN which, according to Coulomb’s laws, generates friction forces. For sliding
FTS = −µFNsgn(vrel), and for stiction FT0 = µ0FN , where µ and µ0 are the
coefficients of sliding and static friction, respectively. Stiction is indicated by
vrel = 0 and by a reserve of the static friction force over the constraint force,
which means µ0|FN | − |FTC | ≥ 0. If this friction reserve becomes zero, the
stiction situation will end, and sliding will start again with a nonzero relative
acceleration arel. Again we find here a complementary behavior: Either the
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relative velocity (acceleration) is zero and the friction reserve is not zero, or
vice versa. The product of relative acceleration and friction reserve is always
zero.

Things become more complicated if we consider multiple contacts for a
multibody system with n bodies and f degrees of freedom. In addition we
have nG unilateral contacts where impacts and friction may occur. Each con-
tact event is indicated by some indicator, for example, the beginning by a
relative distance or a relative velocity and the end by a relevant constraint
force condition. The constraint equation itself is always a kinematical relation-
ship. If a constraint is active, it generates a constraint force; if it is passive,
no constraint force appears.

In multibody systems with multiple contacts these contacts may be de-
coupled by springs or any other force law, or they may not. In the last case
a change of the contact situation in only one contact results in a modified
contact situation in all other contacts. If we characterize these situations by
the combination of all active and passive constraint equations in all existing
contacts, we get a huge combinatorial problem by any change in the unilateral
and coupled contacts. Let us consider this problem in more detail [200].

v+

v- (Body k)

a cos( t)�

Fig. 3.15: A Combinatorial Problem

Figure (3.15) shows ten masses which may stick or slide on each other.
The little mass tower is excited by a periodically vibrating table. Gravity
forces and friction forces act on each mass, and each mass can move to the
left with v−, to the right with v+, or not move at all. Each type of motion is
connected with some passive or active constraint situation. Combining all ten
masses, each of which has three possibilities of motion, results in 310 = 59, 049
possible combinations of constraints. But only one is the correct constraint
configuration. To find this one configuration is a crucial task by combinatorial
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search or an elegant way of applying the complementarity idea. We shall focus
on this way.

Changes of the contact situation, and thus the constraint configuration,
depend on the evolution of the state and, therefore, on the motion itself. They
generate a discontinuously varying structure of the equations of motion. Such
systems are often called systems with time-variant structure or with time-
variant topology. It is also a typical property of all mechanical systems with
impacts and friction in unilateral contacts.

3.4.2 Multibody Systems with Multiple Contacts

3.4.2.1 Generalities

In chapter (2.2.6) we have considered the relative geometry and the relative
kinematics of unilateral contacts, and in chapter (3.1.2) we discussed the sig-
nificance of unilateral constraints for multibody systems with such contacts.
The application of differential geometry is not necessary for all cases, but
for many applications it will be a very convenient tool. The complementarity
properties of unilateral contacts is inevitable, but can be expressed in various
mathematical forms as indicated in chapter (3.1.2). To derive the equations
of motion for multibody systems with unilateral contacts we start with the
equations (3.106), which we have developed for a rigid multibody system, but
which can be evaluated in the same form also for flexible multibody systems.
The set of generalized coordinates (q ∈ IRf ) looses for the unilateral case its
character of being ”generalized coordinates”, because the number of degrees
of freedom is not constant but varies with time.

In the following we shall discuss methods of taking into account additional
constraints, especially friction-affected contact constraints [200],[279]. For this
purpose, we have to include the arising contact forces into the equations of
motion, and we have to regard the constrained directions by the kinematical
contact equations of chapter (2.2.6). At sliding contacts the directions of the
contact forces and the constrained displacements are not collinear, which is an
important property of friction leading to additional difficulties by using gen-
eralized coordinates. Moreover, overconstrained systems, which can be easily
handled in the frictionless case, provide uniqueness problems when connected
by Coulomb’s law. Before discussing these phenomena we first consider the
equations of the superimposed constraints.

3.4.2.2 Contact Forces

Two bodies in the state of separation (gni > 0) are depicted in Figure (3.16).
A completely inelastic impact or a smooth touchdown bring both bodies into
contact with each other. This leads generally to three additional constraints
and, hence, to the occurrence of contact forces in the normal and tangential
directions, which are shown in Figure (3.17). As a consequence the coordinates
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ni

ti1

ti2

ġti
gni = 0gni > 0

body (j)
body (j)

body (j+1)body (j+1)
passive

separation state
active

contact state

tangential contact plane

sticking: |ġti| = 0
sliding: |ġti| > 0

Fig. 3.16: Three-Dimensional Unilateral Constraints in a Multibody Contact
(i)

q are no longer generalized coordinates but only a set of descriptor variables
due to the new constraints. This situation can be handled by two different
approaches:

Firstly, we could choose a new set of generalized coordinates (q̄ ∈ IRf−k),
which is smaller then (q ∈ IRf ), in order to further reduce the system similarly
to the method used in Section (3.3.2). The constraint forces of the contact
would then not be needed. This is, however, unacceptable for several reasons:
Systems with more than one possible contact point would force us to choose for
any imaginable contact configuration a certain set of generalized coordinates
with varying dimensions. A set of n possible contact points in the frictionless
case, for example, would produce

∑n
k=1

n!
k!(n−k)! = 2n−1 different sets of gen-

eralized coordinates (q̄ ∈ IRf−k). This situation is additionally complicated if
the constraints are not independent, or Coulomb friction is considered, where
the active tangential friction force depends on the passive normal force in the
case of sliding and becomes passive in the case of sticking.

Therefore we suggest a more direct method where the contact forces are
included in equations of motion using a Lagrange multiplier approach. After
premultiplying the contact forces in Figure (3.17) by the corresponding Jaco-
bians, we get for each of the bodies one additional term which has to be added
to the equations of motion (3.106). Before doing so we recall that a dynamical
system with additional unilateral constraints possesses a time-varying number
of degrees of freedom.

Figure (3.16) depicts a three-dimensional frictional constraint situation
with a passive separation state and an active contact state. The constraint
forces interact with the bodies only during the active state, in the passive
separation state they are zero. To avoid the above mentioned problems with
possible generalized coordinates we use a constant set of coordinates (q ∈ IRf )
and regard all active unilateral constraints by additional constraint equations
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as discussed in chapter (3.1.2), thus leading to a set of differential algebraic
equations (DAE’s) with additional inequalities resulting from the transition
laws with respect to the unilateral contacts.

ni ti1

ti2

+Fni
+Fti1

+Fti2

-Fni
-Fti1

-Fti2

body (j) body (j+1)

Fni = λnini
Fti1 = λti1ti1
Fti2 = λti2ti2

Fig. 3.17: Forces in a Multibody Contact (i)

We arrange the constraint vectors for normal and the constraint matrices
for tangential constraints from the equations (2.132) in the following form

WN =[· · ·wNi · · · ] ∈ IRf,nN , i ∈ IN ,

WT =[· · ·WTi · · · ] ∈ IRf,2nT , i ∈ IT . (3.135)

The constraint matrices are projection matrices, called Jacobians, which
project magnitudes of the constraint space into the space of the generalized
coordinates. Vice versa, to go from the space of the generalized coordinates
into the constraint space, we need the transpose of the constraint matrices.

According to Figure (3.17) we have for an active contact the following
forces in normal and tangential direction

Fni = λnini, Fti1 = λti1ti1, Fti2 = λti2ti2. (3.136)

These forces act in Figure (3.17) on the body (j) in a positive sense, according
to the chosen coordinate frame, and this means with +Fni, +Fti1 and with
+Fti2, and they act on body (j+1) in a negative sense, according to the usual
cutting principle, and this means with −Fni, −Fti1 and with −Fti2. The
vectors ni, ti1 and ti2 are unit vectors, and therefore the absolute values of
the constraint forces are given by the three magnitudes λni, λti1 and λti2, one
in normal and two in tangential directions. For all active contacts we may
collect these λ-values in the following vectors

λN (t) =


...

λni(t)
...

 ∈ IRnN , i ∈ IN , λT (t) =


...

λti(t)
...

 ∈ IR2nT , i ∈ IT ,

λti(t) =[λti1(t), λti2(t)]T ∈ IR2. (3.137)
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3.4.2.3 Equations of Motion

With the constraint vectors and matrices wNi and WTi we are able to project
the passive constraint forces into the space of the generalized coordinates,
where we include them into the equations of motion eqs. (3.106). It yields

Mq̈ + h−
∑
i∈IN

(wNiλNi + WTiλTi) = 0. (3.138)

We may have sliding or sticking frictional contacts. For sliding contacts the
sliding friction forces are active forces contributing to the motion, and for
sticking contacts the forces are passive forces not contributing to the motion.
In the first case the frictional forces are positioned on the friction cone, in the
second case they are within the friction cone. The sliding friction forces may
follow Coulomb’s law, if appropriate. It writes

λTi = −µi(ġi)
ġi
|ġi|

λNi, ∀i ∈ IN \ IT , (3.139)

which defines the (nN −nT ) sliding friction forces. The coefficients µi usually
depend on the relative velocity ġi given by a so-called Stribeck curve (see for
example Figure (3.3) on page 92). The negative sign expresses the fact, that
the sliding friction force is opposite to the relative sliding velocity.

The friction laws like those of Coulomb or the impact laws of Newton
and Poisson are physical relationships for the accompanying forces and are
often called constitutive laws. They are purely empirical and must be deter-
mined from measurements. Inspite of the fact that especially Coulomb’s laws
give excellent results for an astonishlingly large variety of frictional problems,
they are not a dogma. Modern research in contact mechanics developed some
extensions, which cover new aspects of friction ([72], [87], [136]), but in any
case they must be experimentally verified too. Nevertheless and from the au-
thors experience with all kinds of practical problems, the meaningfulness of
Coulomb’ laws is very convincing.

Transforming the sliding friction forces into the configuration space (space
of q) we have to premultiply λTi with WTi coming out with

WTiλTi =− µi(ġi)WTi
ġi
|ġi|

λNi = WRiλNi, ∀i ∈ IN \ IT ,

WRi =− µi(ġi)WTi
ġi
|ġi|
∈ IRf,1 and WR ∈ IRf,nN ∀i ∈ IRnN .

(3.140)

Combining the equations (3.138) to (3.140) yields

M(q, t)q̈(t) + h(q, q̇t)− [(WN + WR) WT ]
(
λN (t)
λT (t)

)
= 0, (3.141)
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with the following dimensions

q ∈IRf , M ∈ IRf,f , h ∈ IRf , λN ∈ IRnN , λT ∈ IR2nT ,

WN ∈IRf,nN , WR ∈ IRf,nN , WT ∈ IRf,2nT . (3.142)

In equation (3.141) the constraint forces are added with the help of the La-
grange multiplier λ, where λN includes all constraint forces in normal and λT
all constraint forces in tangential direction. As indicated above we have for
spatial, two-dimensional contacts IR2nT constraint forces for active contacts
with stiction and for plane, one-dimensional contacts IRnT constraint forces
for the active contacts with stiction. The constraint matrix of sliding friction
WR has the same dimension as the constraint matrix of the active normal
contacts WN , which follows immediately from equation (3.140). The number
of the active contacts in the one or two (plane, spatial) tangential directions
cannot be larger than those in the normal direction, nT ≤ nN , because a
contact must be closed before it becomes active in the tangential direction.
Therefore the sliding friction matrix WR possesses (nN − nT ) columns[
−µi(ġi)WTi

ġi
|ġi|
]

∀i ∈ IN \ IT ,

and the remaining nT columns contain only zeros (for IN , IT see the relations
(3.9) on page 90)

The equations of motion (3.141) are of course not complete. We need ad-
ditionally kinematical side conditions as considered in the chapter on relative
contact kinematics (chapter 2.2.7), especially the equations (2.132) on page
47, which represent a relationship for the relative accelerations of the contacts.
They concern the potentially active contacts and write

g̈N = WT
N q̈ + w̄N ∈ IRnN , g̈T = WT

T q̈ + w̄T ∈ IR2nT . (3.143)

Note that these equations are given on an acceleration level, while originally
the conditions for normal contacts are formulated on a position level consid-
ering relative distances, and the conditions for tangential contacts are given
on a velocity level considering relative tangential velocities. This is important
for numerical concepts, because any side conditions on an acceleration level
generate drift.

Following the above consideration and those of chapter (2.2.7) we collect
the dimensions

g̈N =[· · · g̈Ni · · · ]T ∈ IRnN , i ∈ IN ,

g̈T =[· · · g̈TTi · · · ]T ∈ IR2nT , i ∈ IT ,

w̄N =[· · · w̄Ni · · · ]T ∈ IRnN , i ∈ IN ,

w̄T =[· · · w̄T
Ti · · · ]T ∈ IR2nT , i ∈ IT . (3.144)

The relations (3.141) and (3.143) result in a set
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M(q, t)q̈(t) + h(q, q̇t)− [(WN + WR) WT ]
(
λN (t)
λT (t)

)
= 0 ∈ IRf ,

g̈N = WT
N q̈ + w̄N ∈ IRnN , g̈T = WT

T q̈ + w̄T ∈ IR2nT , (3.145)

which altogether comes out with (f+nN+2nT ) relations for the unknown gen-
eralized accelerations q̈ ∈ IRf , for the constraint forces (λN ∈ IRnN , λT ∈
IR2nT ) in normal and tangential directions and the accompanying relative
accelerations in the contacts (g̈N ∈ IRnN , g̈T ∈ IR2nT ).

Thus we have at the moment (f+nN+2nT ) equations for [f+2(nN+2nT )]
unknowns. The rest of (nN + 2nT ) equations will be provided by the contact
laws, which we have discussed in chapter (3.1.2) and formulated in a very
compact form on page 95. Adding to the equations (3.145) the contact laws
equations (3.28) to (3.31) on page 99 we come out with a complete set of
equations of motion for a multibody system with unilateral multiple plane or
spatial, dependent or independent contacts in the form

M(q,t)q̈(t) + h(q, q̇t)− [(WN + WR) WT ]
(
λN (t)
λT (t)

)
= 0 ∈ IRf ,

g̈N =WT
N q̈ + w̄N ∈ IRnN ,

g̈T =WT
T q̈ + w̄T ∈ IR2nT ,

λN =proxCN
(λN − rg̈N ), CN = {λN |λNi ≥ 0, ∀i ∈ IN},

λT =proxCT (λN)(λT − rg̈T ), CT (λN) = {λT | |λTi| ≤ µiλNi, ∀i ∈ IT },
λN ∈IRnN , λT ∈ IR2nT . (3.146)

In addition we have to consider finite rotations by the kinematical equations

q̇ = H∗ · ż (3.147)

in an appropriate way and choosing the appropriate coordinates.

3.4.3 Friction Cone Linearization

For the construction of a linear complementarity problem we need the plane
case, which corresponds to a vertical cut of the friction cone, or more physi-
cally, to a plane contact case with only one tangential contact direction. We
may achieve that also for the spatial contact by approximating the corre-
sponding friction cone by a pyramid. Among the first scientists to consider
such an approximation of the friction cone by a polygonal pyramid were Pang
and Trinkle in the United States [178], [263]. If the friction cone in the case
of spatial contacts possesses a circular cross-section - the friction coefficients
the same in all directions - the pyramid should be symmetric with each tri-
angular side element the same. If the friction cone possesses for example an
elliptic cross-section - the friction coefficients changing with the direction -
the pyramid can be also asymmetric with variable triangular side elements.
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Inspite of the fact, that we use today other approaches for the numerical so-
lution of non-smooth dynamics problems, we nevertheless shall consider the
friction cone approximation as a highly effective method to ”linearize” contact
problems. We shall consider only the case of independent contacts and refer
for dependent contacts to the literature [279].

In the section (3.1) with the Figures (3.4) and (3.6) we have seen, that the
friction reserve is defined by (see equation (3.17))

λT0i(λNi, λTi) =µ0iλNi − |λTi|

=µ0iλNi −
√
λ2
Ti1 + λ2

Ti2 ≥ 0, ∀i ∈ IT . (3.148)

The meaning is clear. The above formula represents the difference of the sta-
tic friction force µ0iλNi defining the friction cone boundary and the current
dynamic friction force |λTi| as generated by the dynamics of the systems
and the relevant stiction constraint. This difference corresponds to the dis-
tance from the friction cone boundary thus giving the force reserve before
the cone is reached again with the possibility of sliding. Clearly, the friction
reserve will be always non-negative. For plane contacts we get only one tan-
gential constraint force λTi = λTi1, for spatial contacts two constraint forces
λTi = (λTi1, λTi2)T . Consequently we have for plane contacts a Linear Com-
plementarity Problem (LCP) and for spatial contacts a nonlinear one (NLCP),
as we shall see immediately.

To avoid the nonlinear complementarity we approximate the friction cone
by a l-sided pyramid, where for each side we can derive again a linear comple-
mentarity relationship. Figure (3.18) depicts the method for a contact (i). The
linearized friction cone is a convex set, boundless in direction of the normal
constraint force λNi. Such a set is called a generalized polytope according to
convex analysis. The friction reserve for each of the side elements (j) can be
written as

λT0ij(λNi, λTi) = µ0ijλNi − λTi1 cosαj − λTi2 sinαj ≥ 0,
∀j ∈ (1, 2, · · · l), (3.149)

which can be summarized in one single vector equation

λT0i =

λT0i1

...
λT0il

 =

µ0i1

...
µ0il

λNi −

 cosα1 sinα1

...
...

cosαl sinαl

λTi

=ḠT
NiλNi − ḠT

TiλTi ∈ IRl ∀i ∈ IT . (3.150)

The definitions of ḠNi and ḠTi are obvious (see also Figures 3.19 and 3.20).
The l angles for the polytopes are simply

αj = (j − 1)
2π
l
, ∀j ∈ {1, 2, · · · l}, (3.151)
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λTi1

λTi2

λNi

λT0ij = 0

µ0iλNi

Fig. 3.18: Approximation of the Friction Cone by a Polygonal Pyramid

which is illustrated by Figure (3.19). From the two Figures 3.19 and 3.20 we
can give an approximate definition, approximate with respect to the friction
cone but not to the polytopes, of the permissible tangential friction forces
with

CTij(λNi) = {λ∗
Ti ∈ IR2| − λT0ij(λNi, λ∗

Ti) ≤ 0} ∀j ∈ {1, 2, · · · l}, (3.152)

which is a convex set forming a half-space at the boundary (j) of the polytope
pyramid. The intersection (CTi(λNi) = CTi1 ∩ CTi2 ∩ · · · ∩ CTil) includes all
permissible tangential constraint forces for the friction pyramid. It writes

CTi(λNi) = {λ∗
Ti ∈ IR2| − λT0i(λNi, λ∗

Ti) ≤ 0} ∀i ∈ IT . (3.153)

We go now back to the equations (3.23) and (3.25) on the pages 96 and 97
using the equivalence of the subdifferential definition with the complementar-
ity inequality (see [86], [279] and [135]) and watching that the subdifferential
for the set (3.153) containing a linear relationship for the friction reserve λT0i

with respect to the tangential force λTi degenerates to a classical gradient.
For the overall system we come to the following complementarity inequalities:

λT0 ≥ 0, ¨̄gT ≥ 0, λTT0
¨̄gT = 0. (3.154)

These are altogether (l ·nT ) complementarity inequalities for all friction poly-
topes and thus for all active tangential constraints (i ∈ IT ). For simplicity we
have assumed here l the same for all friction cones and also isotropic friction
behaviour in all contacts, which is of course not necessary. The vectors ¨̄gT
are the accelerations within the polytopes to the boundary of the polytopes.
According to the above considerations we get the following definitions:
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λTi1

λTi2

α1 = 0

α2 = π
4 · · · etc.

αj

λT0ij ≥ 0λNi =constant

friction cone

friction polytope

Fig. 3.19: Cut of the friction cone/pyramid at λNi = constant
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λTi1
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λTi2

λTi1

λTi2

λTi1 cosαj

λTi2 sinαj

λT0ij>0

|λTi| = µ0iλNi

αj

αj

λTi

λT0ij = 0
λNi =constant

Fig. 3.20: Linearization of the Friction reserve [279]

¨̄g =[· · · ¨̄gTTi · · · ]T ∈ IRlnT , i ∈ IT ,

λT0 =[· · ·λTT0i · · · ]T ∈ IRlnT , i ∈ IT . (3.155)

The friction reserves λT0 can be put together according to the equation (3.148)
in the form

λT0 = ḠT
NλN − ḠT

TλT ∈ IRlnT ∀i ∈ IT . (3.156)

with the following matrices and vectors
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λN =[· · ·λNi · · · ]T ∈ IRnN , i ∈ IN ,

λT =[· · ·λTTi · · · ]T ∈ IR2nT , i ∈ IT ,

ḠN ={ḠNαβ} ∈ IRnN ,lnT , α = (1, 2, · · ·nN), β = (1, 2, · · ·nT ),

{ḠNαβ} =

{
ḠNi ∈ IR1,l for i ∈ IN ∩ IT

0 ∈ IR1,l for i ∈ IN \ IT
ḠT =diag[· · · ḠTi · · · ] ∈ IR2nT ,lnT , i ∈ IT . (3.157)

We have defined above the relative tangential accelerations ¨̄g as the acceler-
ations within the friction polytopes and with the direction to the polytope
boundary (see Figure 3.20). These accelerations are given by

g̈ = −ḠT ¨̄g ∈ IR2nT , with g̈ = [· · · g̈Ti · · · ]T ∈ IR2nT , i ∈ IT (3.158)

The friction laws as given with the relations (3.154) to (3.25) provide us with
a sufficient number of equations for the case with independent contact con-
straints, they cannot be applied for the cases with dependent constraints.
As a next step we shall carry together all relations for evaluating the com-
plete equations of motion for the independent constraint case. Replacing in
the equations (3.146) the prox-formulation by the complementarity equations
(3.23) (first equation) on page 96 and (3.154) we finally get a complete set of
equations of motion including complementarity inequalities.

M(q,t)q̈(t) + h(q, q̇t)− [(WN + WR) WT ]
(
λN (t)
λT (t)

)
= 0 ∈ IRf ,

g̈N =WT
N q̈ + w̄N ∈ IRnN ,

g̈T =WT
T q̈ + w̄T ∈ IR2nT ,

g̈N ≥0, λN ≥ 0, g̈TNλN = 0,

λT0 ≥0, ¨̄gT ≥ 0, λTT0
¨̄gT = 0. (3.159)

With the equations (3.159), (3.158) and (3.156) we have a complete set for all
(f + 2nN + 2(l + 2)nT ) unknowns, which are the following: The generalized
accelerations q̈ ∈ IRf , the constraint forces λN ∈ IRnN and λT ∈ IR2nT ,
the relative contact accelerations g̈N ∈ IRnN and g̈T ∈ IR2nT , the friction
reserves λT0 ∈ IRlnT and finally the relative tangential acceleration ¨̄g ∈ IRlnT .
The magnitude pairs (λN and g̈N ), (λT0 and ¨̄g) are complementary pairs
and must be evaluated for constructing the complementarity inequalities. For
reducing the above mentioned equations to the complementary pairs only we
have to eliminate the magnitudes q̈, λT and g̈T from these equations.

Taking in a first step the generalized accelerations q̈ from the first equation
(3.159) and inserting them into the second and the third equations we get
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g̈N
g̈T

)
=
(

WT
N

WT
T

)
·M−1[(WN + WR) WT ]

(
λN
λT

)
−
(

WT
N

WT
T

)
·M−1h +

(
w̄N

w̄T

)
,(

g̈N
g̈T

)
=[W + W∗

R]
(
λN
λT

)
+ w̄ (3.160)

with the abbreviations

W =
(

WT
N

WT
T

)
·M−1[WN WT ], ∈ IRnN+2nT ,nN+2nT

W∗
R =

(
WT

N

WT
T

)
·M−1[WR 0], ∈ IRnN+2nT ,nN+2nT

w̄ =−
(

WT
N

WT
T

)
·M−1h +

(
w̄N

w̄T

)
∈ IRnN +2nT (3.161)

The equation (3.160) can be solved for the constraint forces, which yields(
λN
λT

)
= [W + W∗

R]−1

{(
g̈N
g̈T

)
− w̄
}

(3.162)

Such a solution will be only possible, if the matrix [W + W∗
R] is regular and

thus its determinant not zero, det[W + W∗
R] �= 0. For independent contacts

this property is always guaranteed, because as a consequence the rows and
columns of the constraint matrix are also independent. It has full rank. De-
pendent constraints do not possess such features.

In a second step we combine the two relations (3.162) and (3.156) to
achieve a set of equations for the complementary pair (λN/λT0) in the form(
λN
λT0

)
=
(

E 0
ḠT
N −ḠT

T

)(
λN
λT

)
= (I + Ḡ)

(
λN
λT

)
(
λN
λT0

)
=(I + Ḡ)[W + W∗

R]−1

{(
g̈N
g̈T

)
− w̄
}

E =diag{1, 1, 1, · · · , 1, 1} ∈ IRnN ,nN

I =
(

E 0
0 0

)
∈ IRnN+lnT ,nN+2nT

Ḡ =
(

0 0
ḠT
N −ḠT

T

)
∈ IRnN +lnT ,nN+2nT

Ḡ0 =
(

0 0
0 −ḠT

T

)
∈ IRnN+lnT ,nN+2nT (3.163)

where we need Ḡ0 for the next eleimination step. Finally we can replace
the relative acceleration by the equation (3.158) and come to the standard
complementarity condition in the form
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λN
λT0

)
=(I + Ḡ)[W + W∗

R]−1

{
(I + Ḡ0)T

(
g̈N
¨̄g

)
− w̄
}

(
λN
λT0

)
≥0,

(
g̈N
¨̄g

)
≥ 0,

(
λN
λT0

)T ( g̈N
¨̄g

)
= 0. (3.164)

This represents a linear standard complementarity problem for independent
contacts and thus for regular constraint matrices.

3.4.4 Numerical Aspects

Refering to the discussion in the chapters (3.1) and (3.4) with respect to the
evolution of the mathematical description of unilateral systems we state, that
this evolution was very much oriented towards the computational needs for
certain applications. The theories concerning unilateral multibody systems as
well as those for bilateral ones are strongly related to the relevant solution pro-
cedures thus confirming the experience that saving computing time requires
a ”algorithm-friendly” theory.

Theory goes from linear and nonlinear complementarity problems with
their corresponding inequalities and indicator interpolations via the aug-
mented Lagrangian method to the prox-description including the augmented
Lagrangian idea. All these theories and their accompanying numerical processes
may be characterized by a decreasing effort in computing, in spite of the fact
that computing times are still very large with respect to system problems.
However, the introduction of the prox-description by Alart and Curnier [2]
has been a real revolution with respect to computing, though it took some
time before the scientific community recognized the really significant advan-
tages connected with this idea.

In the following we shall follow the evolution as indicated above and start
with event-driven solutions connected with the complementarity inequalities.

3.4.4.1 Event-Driven Algorithms

Event-driven schemes detect changes of the constraints (events), for example
stick-slip transitions, and resolve the exact transition times by an interpola-
tion, for example using the regula falsi. Between the events the motion of the
system is smooth and can be computed by a standard ODE/DAE-integrator
with root-finding. If an event occurs, the integration stops, and the computa-
tion of the contact forces is performed by solving a LCP or a NLCP. While
this approach is very accurate, the event-detection can be time consuming,
especially in case of frequent transitions. Therefore the approach is only recom-
mended for systems with few contacts. Another drawback consists in the fact
that the constraints are only fulfilled at the acceleration level, which results in
numerical drift effects. Woesle [279] gives a detailed overview of event-driven
integration schemes in combination with different contact formulations like
LCPs, NLCPs and the Augmented Lagrangian method.
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3.4.4.2 Time-stepping schemes

Time-stepping schemes in connection with unilateral dynamics have been first
proposed by Moreau [161] as a direct consequence of his measure differen-
tial equations. In a dissertation Stiegelmeyr applied these ideas to multibody
systems and gives solutions for the dynamics of roller coasters and chimney
dampers. Parts of the following representation are based on his numerical
methods [252], [253]. Time stepping is based on a time-discretization of the
system dynamics including the contact conditions in normal and tangential
direction. The whole set of discretized equations and constraints is used to
compute the next state of the motion. In contrast to event-driven schemes
these methods need no event-detection. Moreover, time stepping allows to
satisfy the unilateral constraints at the position and velocity level without
any correction step [198].

We start with equation (3.159) on page 143 and use for a discretization
the simple explicit Euler formula. The discretized acceleration then writes

q̈ =
ul+1 − ul

∆t
(3.165)

with the velocities ul = q̇(t), ul+1 = q̇(t + ∆t) and the time step ∆t. The
indices (l) and (l+1) stand for (t) and (t+∆t), respectively. The discretization
on a position/orientation and velocity level is performed by an implicit Euler
formula yielding

ql+1 = ql + ul+1∆t (3.166)

with the same abbreviations as above. The combination of an explicit and
implicit Euler scheme is consistent with respect to the discretization of the
complementarity problems [253], which would be not the case for two explicit
formulas. As we want to give only an impression of a numerical scheme in-
cluding the complementary inequalities, we restrict our considerations to the
plane case, which results in linear complementarity problems. An extension
to the spatial case is straightforward [253], [279].

The equations (3.165) and (3.166) represent Taylor expansions up to the
first order only and are of course numerical approximations to the real solu-
tion, they underly discretization errors during the numerical evaluation, which
must be controlled by standard methods. Time stepping possesses the advan-
tage that we are able to consider the constraints in their original form on a
position/orientation-level in normal and on a velocity-level in tangential direc-
tions, whereas the formulation in a classical way (equations 3.159) works on
an acceleration-level requiring drift corrections. Therefore we start with the
kinematical relations of chapter 2.2.7.1 on page 36 regarding especially the
equations (2.112) on page 41 for the normal and equations (2.114) on page 42
for the tangential directions. They write

ġN = wT
N q̇ + w̃N , g̈T = wT

T q̈ + ŵT
T q̇ + ŵT . (3.167)
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The second equation has been modified by the term ŵT
T q̇, which is included in

the original magnitude w̄T of equation (2.114) and can be evaluated by using
the relations (2.115) with (2.107), (2.108) and (2.109). Including all this into
the relations (3.159) results in:

ul+1 = ul −M−1{h− [(WN + WR) WT ]
(
λN
λT

)
}∆t

ql+1 = ql + ul+1∆t

gl+1
N = glN + WT

N (ql+1 − ql) + ŵN∆t + RN

ġl+1
T = ġlT + WT

T (ul+1 − ul) + ŴT
T (ql+1 − ql) + ŵT∆t + RT

gl+1
N ≥0, λN ≥ 0, gl+1

N λN = 0,{
ġ(+)
T ≥ 0, λ

(+)
T0 ≥ 0, (ġ(+)

T )Tλ(+)
T0 = 0,

ġ(−)
T ≥ 0, λ

(−)
T0 ≥ 0, (ġ(−)

T )Tλ(−)
T0 = 0.

}
l+1

(3.168)

The first equation corresponds to the discretized equations of motion, where
the implicit form for the generalized coordinates is given by the second equa-
tion. The third relation is the normal relative distance in a contact, and the
fourth equation represents the tangential relative velocity, both relations put
on a system level by the W-matrices. The remaining three equations are
complementarities in normal and tangential directions, to be evaluated at the
time (l+1). This makes sense, because we start at time (l) with a physically
consistent contact configuration and passing a contact event we want to have
at the end of this event again a physically consistent contact configuration,
which is assured by the last three complementarities in the equations (3.168).
The tangential complementarities are split up into two unilateral primitives
according to chapter 3.1.2.3 with the Figure 3.5 on page 95.

As next steps we introduce the abbreviations

ΛN,T = λN,T∆t, Λ(±)
T0 = λ

(±)
T0 ∆t, H = h∆t, (3.169)

where the magnitudes Λ are shocks, ”standard inelastic shocks” according
to Moreau [161], and we establish a LCP (Linear Complementarity Problem)
formulation by eleminating all unknowns not possessing a complementary
partner. Looking at the equations (3.168) we see, that ql+1, ul+1 and ΛT

do not have such partners. Without going into the details of the elimination
process by combining the relevant equations of the set (3.168) we come out
with the results



148 3 Constraint Systems

gl+1
N = glN + [(GNN −GNTµ) GNT ]

(
ΛN

Λ(+)
T0

)
}+ GNH + rN

ġl+1
T = ġlT + [GTN GTT ]

(
ΛN

ΛT

)
+ GTH + rT

ΛT = Λ(+)
T0 − µΛN (3.170)

GN =WT
NM−1, GT = (WT + ŴT∆t)TM−1,

rN =(WT
Nul + ŵN )∆t + RN , rT = (ŴT

Tul + ŵT )∆t + RT . (3.171)

Summarizing these results we get finally the following LCP (Linear Comple-
mentarity Problem): gl+1

N

(ġ(+)
T )l+1∆t

Λ(−)
T0 ∆t

 =

 (GNN −GNTµ) GNT 0
(GTN −GTTµ) GTT E

2µ −E 0


 ΛN∆t

Λ(+)
T0 ∆t

(ġ(−)
T )l+1∆t

+

+

 glN + GNH∆t + rN
(ġlT + GTH + rT )∆t

0

 ,

 gl+1
N

(ġ(+)
T )l+1∆t

Λ(−)
T0 ∆t

 ≥0,

 ΛN∆t

Λ(+)
T0 ∆t

(ġ(−)
T )l+1∆t

 ≥ 0,

 gl+1
N

(ġ(+)
T )l+1∆t

Λ(−)
T0 ∆t


T  ΛN∆t

Λ(+)
T0 ∆t

(ġ(−)
T )l+1∆t

 = 0. (3.172)

The third line in (3.172) represents the definition of the friction reserve. More
precisely it is the sum of the two parts of the friction reserve multiplied by ∆t2.
Expression (3.172) is a LCP in standard form and can be solved directly by
a pivoting algorithm like Lemke’s method or iteratively, with a Block-Gauss-
Seidel relaxation scheme. Stiegelmeyr [253] considers in addition the numerical
dissipation behaviour of first order time stepping, as above, and second order
time stepping. It turns out that the ”numerical energy of damping END”
is of second order small in the first order case, which means END ∼ (∆t)2,
but in the second order discretization of time stepping the ”numerical energy”
might lead as well to numerical damping as to numerical excitation. Therefore
a second order approach does not apply reasonably well to impulsive problems.

3.4.4.3 Augmented Lagrangian formulation

The ”Augmented Lagrangian” formulation represents a completely different
approach to obtain a solution of non-smooth problems. Originally presented
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by Hestenes [99] and Powell [216] within the framework of nonlinear optimi-
sation and then also considered by Rockafeller [225] it was applied by Alart
and Curnier [2] to quasistatic mechanical problems. Leine [135] gives a nice
description of the theory behind it and applies it to the Tippe-Top prob-
lem [136]. The name ”Augmented Lagrangian” originates from the necessary
extensions of smooth potentials by additional non-smooth terms.

To describe the numerical procedure in principle we start with the equa-
tions of motion given already in the form including prox-functions (equations
(3.146) on page 139, see also [279] and [198]). In doing so we have to take care
for not using the constraints in their original form, that means the normal
constraints on a position/orientation level and the tangential constraints on
a velocity level. Foerg [64] has shown that such a discretization includes a
singular time step problem ΛN ∼ 1

∆t known from DAE systems of index 3
[5], which can be only avoided by formulating the discretized constraints in
terms of velocities, both in normal and tangential directions. Taking care with
respect to that problem we discretize (3.146) in the following form:

M∆u+h∆t− [(WN + WR) WT ]
(

ΛN

ΛT

)
= 0,

∆q =ql+1 − ql = (ul + ∆u)∆t

ġN = WT
N (ul + ∆u) + w̄N∆t

ġT = WT
T (ul + ∆u) + w̄T∆t

}
l+1

ΛN − proxCN
(ΛN − rġN ) = 0

ΛT − proxCT (ΛN )(ΛT − rġT ) = 0

}
l+1

(3.173)

As before the constraints and the relative velocities are evaluated at the time
(l+1). The abbreviations for the Λ’s and the u’s follow from the equations
(3.166) and (3.169).

The numerical solution of these equations have to start with a choice of
the factors (r) in such a way that the iteration process is stable and rapidly
converging. Iteration procedures evaluating such a factor for better conver-
gence are well known. They choose in most cases the ”relaxation-factor” by
an optimization problem looking for the minimum spectral radius of the iter-
ation matrix [283]. Applied to our problem we have to reduce the numerical
set of equations (3.173) to a fixed-point form which represents a nonlinear
point mapping set of equations [65].

To indicate the procedure and to achieve a better overview we modify the
equations (3.173) a bit by putting WN ⇒ (WN + WR) and by assigning
u ⇒ ul+1 ⇒ (ul + ∆u). Inserting the equations of motion (first equation of
(3.173)) into the contact velocity equations (second and third equations of
(3.173)) and these into the constraints (the last two equations of (3.173)) we
finally receive
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ΛN =proxCN
[(I− rGNN )ΛN − rGNTΛT − rwN ]

ΛT =proxCT
[(I− rGTT )ΛT − rGTNΛN − rwT ] (3.174)

with the mass action matrix [Gij = WT
i M−1Wj , (i,j) = (N,T)] and the

abbreviations [wi = WT
i M−1(u + h∆t), (i) = (N,T)]. The above equation

can be interpreted as a fixed point equation of the form

Λ =
(

ΛN

ΛT

)
=
(

proxCN
[(I− rGNN )ΛN − rGNTΛT − rwN ]

proxCT
[(I− rGTT )ΛT − rGTNΛN − rwT ]

)
= F(Λ)

(3.175)

allowing according to [283] and [65] the following fixed point iteration

Λl+1 = F(Λl). (3.176)

This iteration converges locally, if the spectral radius of ∂F
∂Λ remains limited

and smaller one, which can be realized by a corresponding optimization with
respect to the factor (r)( for details see [65] and [64]).

The numerical procedure has been applied to many large technical systems
with excellent results. The amazing fact consists in a very rapid convergence
for nearly all problems, which can be substantiated by the structure of these
equations and especially by the structure of the mass action matrix G with
its projected masses into the not constrained directions (see also [64]).

3.4.5 The Continual Benchmark: Woodpecker Toy

The woodpecker toy has been from the very beginning the main motivation
to look into non-smooth theories available at that time and to try to transfer
these findings into multibody theory. The first investigation was published in
1984 [182] including a woodpecker analysis, where the impacts with friction
were approximated by a semi-empirical method mainly based on measure-
ments. The next step was then done by Glocker [86], who introduced a con-
cise theoretical model of impacts with friction allowing a description without
empirical approximations. He improved his results in [89]. The last step, at
least at the time being, is a contribution of Zander [281], who analyzed the
woodpecker going down an elastic bar based on a theory of elastic continua
with non-smooth contacts.

A woodpecker toy hammering down a pole is a typical system combining
impacts, friction and jamming. It consists of a sleeve, a spring and the wood-
pecker. The hole of the sleeve is slightly larger than the diameter of the pole,
thus allowing a kind of pitching motion interrupted by impacts with friction.
The motion of the woodpecker can be described by a limit cycle behavior as
illustrated in Figure 3.21. The gravitation represents an energy source, the
energy of which is transmitted to the woodpecker mass by the y-motion. The
woodpecker itself oscillates and possesses a switching function by the beak for
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Fig. 3.21: Self-Sustained Vibration Mechanism of a Woodpecker Toy [200]

quick ϕS reversal and by the jammed sleeve, which transmits energy to the
spring by jamming impacts.

A typical sequence of events is portrayed in Figure 3.21. We start with
jamming in a downward position, moving back again due to the deformation
of the spring, and including a transition from one to three degrees of freedom
between phases 1 and 2. Step 3 is jamming in an upward position (1 DOF)
followed by a beak impact which supports a quick reversal of the ϕ-motion.
Steps 5 to 7 are then equivalent to steps 3 to 1.

Fig. 3.22: Sequence of Events for a Woodpecker Toy [200]
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The system possesses three degrees of freedom q = (y, ϕM , ϕS)T , where
ϕS and ϕM are the absolute angles of rotation of the woodpecker and the
sleeve, respectively, and y describes the vertical displacement of the sleeve
(Figure 3.23): Horizontal deviations are negligible. The diameter of the hole
in the sleeve is slightly larger than the diameter of the pole. Due to the re-
sulting clearance, the lower or upper edge of the sleeve may come into contact

Fig. 3.23: Woodpecker Model

with the pole. This is modeled by constraints 2 and 3. Further contact may
occur when the beak of the woodpecker hits the pole, which is expressed by
constraint 1. The special geometrical design of the toy enables us to assume
only small deviations of the displacements. Thus a linearized evaluation of
the system’s kinematics is sufficient and leads to the dynamical terms and
constraint magnitudes listed below. For the dynamics of the woodpecker we
apply the theory section 3.5 on page 158 for impacts with friction, but we
assume that no tangential impulses are stored during the impulsive processes.
The mass matrix M , the force vector h and the constraint vectors w follow
from Figure 3.23 in a straightforward manner. They are

M =

 (mS + mM ) mSlM mSlG
mSlM (JM + mSl

2
M ) mSlM lG

mSlG mSlM lG (JS + mSl
2
G)
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h =

 −(mS + mM )g
−cϕ(ϕM − ϕS)−mSglM
−cϕ(ϕS − ϕM )−mSglG

 ; q =

 y
ϕM
ϕS


wN1 =

 0
0
−hS

 ; wN2 =

 0
hM
0

 ; wN3 =

 0
−hM

0


wT1 =

 1
lM

lG − lS

 ; wT2 =

 1
rM
0

 ; wT3 =

 1
rM
0

 .

(3.177)

For a simulation we consider theoretically and experimentally a wood-
pecker toy with the following data set:

Dynamics: mM = 0.0003; JM = 5.0 · 10−9; mS = 0.0045; JS = 7.0 ·
10−7; cϕ = 0.0056; g = 9.81.
Geometry: r0 = 0.0025; rM = 0.0031; hM = 0.0058; lM = 0.010; lG =
0.015; hS = 0.02; lS = 0.0201.
Contact: εN1 = 0.5; εN2 = εN3 = 0.0; µ1 = µ2 = µ3 = 0.3; εT1 = εT2 =
εT3 = ν1 = ν2 = ν3 = 0.0.

Using these parameters, the contact angles of the sleeve and the wood-
pecker result in |ϕM | = 0.1 rad and ϕS = 0.12 rad, respectively. Before
discussing the dynamical behavior obtained by a numerical simulation, some
results from an analytical investigation of the system may be presented.

Firstly, we assume that constraint 2 is sticking. The coordinates ϕM and y
are then given by certain constant values (ϕM = −0.1 rad), and the system has
only one degree of freedom (ϕS) with an equilibrium position at ϕS0 = –0.218
rad. Sticking at that position is only possible if µ2 ≥ 0.285. Such values of µ2

correspond at the same time to a jamming effect of the system in the sense,
that no vertical force, acting on the woodpecker’s center of mass, could lead
to a transition to sliding, however large it would be. Undamped oscillations
around this equilibrium with a frequency of 9.10 Hz influence the contact
forces and lead the system to change into another state if the amplitudes are
large enough.

The second analytically investigated system state is the unconstrained
motion with three degrees of freedom. Besides the fourfold zero eigenvalue
which describes the rotational and translational free-body motion, a complex
pair of eigenvalues with a frequency of f = 72.91 Hz exists. The corresponding
part of the eigenvector related to the coordinates q = (y, ϕM , ϕS)T is given
by u = (−0.086, 10.7,−1.0)T and shows the ratio of the amplitudes.

The limit cycle of the system, computed by a numerical simulation, is
depicted in Figure 3.24. We start our discussion at point (6) where the lower
edge of the sleeve hits the pole. This completely inelastic frictional impact
leads to continual contact of the sleeve with the pole. After a short episode
of sliding (6)–(7) we observe a transition of the sleeve to sticking (7). The
angle of the woodpecker is now large enough to ensure continual sticking of
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the sleeve by the self-locking mechanism. In that state the system has only
one degree of freedom, and the 9.10-Hz oscillation can be observed where the
woodpecker swings down and up until it reaches point (1).

(1) (2)
(3)

(4)

(5) (4)(6)

(7)

(1,2,6,7)

(3)

(5)

(4)

(6)

Fig. 3.24: Phase Space Portraits [89]

At (1) the tangential constraint becomes passive and the sleeve slides up
to point (2) where contact is lost. Note that the spring is not free of stresses
in this situation; thus during the free-flight phase (2)–(3) the high-frequency
oscillation (f = 72.91 Hz) of the unbound system occurs in the phase space
plots. In this state the sleeve moves downward (y decreases), and the first part
of the falling height ∆y at one cycle is achieved.

At (3) the upper edge of the sleeve hits the pole with a frictional, com-
pletely inelastic impact. Contact, however, is not maintained due to the loaded

Phase Plot Point State Transitions

(1) Constraint 2 Sticking → Sliding

(2) Constraint 2 Sliding → Separation

(3) Constraint 3 Separation → Separation First upper sleeve impact

(4) Constraint 1 Separation → Separation Beak impact

(5) Constraint 3 Separation → Separation Second upper sleeve impact

(6) Constraint 2 Separation → Sliding Lower sleeve impact

(7) Constraint 2 Sliding → Sticking

Fig. 3.25: Table of the Possible Transitions



3.4 Multibody Systems with Unilateral Constraints 155

Change in Potential Energy ∆V = 2.716 · 10−4 100.00%

First upper sleeve impact ∆T(3) = −0.223 · 10−4 8.21%

Second upper sleeve impact ∆T(5) = −0.046 · 10−4 1.69%

Beak impact ∆T(4) = −1.370 · 10−4 50.44%

Lower sleeve impact ∆T(3) = −1.032 · 10−4 38.00%

Phases of sliding ∆T(G) = −0.045 · 10−4 1.66%

Fig. 3.26: Amounts of Dissipated Energy

spring. Point (4) corresponds to a partly elastic impact of the beak against the
pole. After that collision the velocity ϕ̇S is negative and the woodpecker starts
to swing downward. At (5) the upper edge of the sleeve hits the pole a second
time with immediate separation. Then the system is unbound and moving
downward (5)–(6), where the second part of the falling height is achieved and
the 72.91-Hz frequency can be observed once more.

Table 3.25 summarizes all of the state transitions during one cycle, and
Table 3.26 compares the amounts of dissipated energy. The main dissipation
results from the beak impact and lower sleeve impact, which contribute 88% of
the dissipation. The remaining 12% are shared by the upper sleeve impacts and
phases of sliding which are nearly negligible. The frequency of the computed
limit cycle in Figure 3.24 amounts to f = 8.98 Hz and is slightly different from
the measured value of f = 9.2 Hz. The total falling height during one cycle
can be seen in the left diagram of Figure 3.24. The computed and measured
values are ∆y = 5.7 mm and ∆y = 5.3 mm, respectively.

3.4.6 Some Empirical Conclusions

The application of all multibody theories, bilateral and unilateral, may be
characterized by a permanent fight against large computing times. In spite
of the overwhelming evolution of computer systems the requirements with
regard to large system dynamics were and still are always a bit ahead of the
computing possibilities. On the other hand computer performance is only one
aspect, the generation of better and with respect to numerical procedures
faster theories and algorithms is another aspect. Therefore the contents of
this book reflect also a bit these trends.

We have considered for the unilateral case complementarity representa-
tions and the ideas of the Augmented Lagrangian solutions in connection with
the prox-functions. We did not discuss the application of the so-called comple-
mentarity functions as introduced for example by Mangasarian [151], which
replace the complementarity problem by a set of nonlinear functions. Such
functions have been an alternative way of considering unilaterality, because
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they avoid the inequalities. We shall try to find an assessment with respect
to some of the existing methods, the more popular ones like complementar-
ity and prox-approach, and the not so popular complementarity functions. A
comparison is carried out for example in [279].

As it is always difficult to establish for one problem various numerical
solutions we shall estimate the numerical expenditures by considering the di-
mensions of a problem. Let us define a hypothetical example with the following
data:

f = 6 degrees of freedom
nN = 3 active normal constraints
nT = 3 active tangential constraints
l = 8 faces of the polygonal pyramid

 (3.178)

Our hypothetical problem has 6 degrees of freedom (DOF), 3 normal and 3
tangential active constraints, and the friction cones will be approximated by
a pyramid with 8 lateral faces.

According to chapter 3.4.3 we get for the above spatial case with a friction
cone linearization of an 8-sided pyramid a dimension of the linear complemen-
tarity problem of 2(nN + 2lnT ) = 102. It increases linearly with the number
of lateral faces for the polygonal pyramid, for a 12-faced pyramid we would
have a dimension of 150. On the other side the computing time to solve a
linear complementarity problem by a pivot-algorithm increases with the third
power of the dimension, in our example this means for going from 8 faces to 12
faces of the pyramid an increase by a factor of 3.18 or 318%. These properties
should be seen before the background that the approximation of the friction
cone will be improved only by more lateral pyramid faces. We conclude that
the complementarity solution with the Lemke algorithm is not well suited for
large systems and applicable only for special and smaller problems.

Considering the approach with complementarity functions ([151], [279])
we receive for the example (3.178) altogether f + 2nN + 5nT = 27 nonlin-
ear algebraic equations, which are solved either by a Newton-Raphson- or by
a homotopy-method. The recently introduced approach using prox-functions
(equations 3.146 on page 139) comprises f + nN + 2nT = 15 nonlinear equa-
tions. Computing time for a numerical solution of nonlinear equations is ap-
proximately proportional to the square of the number of equations, which
represents of course an additional advantage with respect to complementarity
solutions.

In summary we state, that for the example (3.178) we get a linear comple-
mentarity problem regarding an eight-faced pyramid approach with a LCP-
dimension 102 including a third-power dependency of this dimension regarding
computing time, for the complementarity functional approach (Mangasarian
[151]) we receive 27 and for the prox-approach 15 nonlinear algebraic equations
with only a second-power dependency on these numbers of equations with re-
spect to computing time. This second-power dependency on the problem size
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can additionally and significantly reduced by skilful use of the equations’ struc-
ture, especially in the case of the prox-function approach ([65],[64]), where the
computing time is proportional to (f + nN + 2nT )p with 2 ≥ p ≥ 1.

All this results in very large advantages for the Augmented-Lagrangian-
prox formulation, not alone with respect to computing time, but also with
respect to numerical stability and convergence in connection with an ease of
application to large practical problems.
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3.5 Impact Systems

3.5.1 General Features

Impacts are contact processes of very short duration time, which generate in
a small zone of the contact some typical deformations. Assuming the general
case of two arbitrarily approaching bodies with normal and tangential relative
velocities with respect to the future impact area we get at the instant of the
impact also normal and tangential impact forces, which deform the two bodies
in normal and tangential directions. These deformations are accompanied by
a partial conversion of the incoming kinetic energy into potential energy of
the deformations, which act similarly as a kind of spring on the bodies when
moving apart again. The process is accompanied by energy losses, which in
special cases might be large enough, that the bodies do not separate again.

Modelling such processes requires the knowledge of the local stiffnesses
near the point of contact, an inclusion of the corresponding forces into the
equations of motion usually leading to stiff differential equations and finally
a numerical integration with very small time steps. Such models are very
often used for problems, where we need to know the details of the impact
deformations [118], [255]. For mechanical systems with many contacts the
method results in very large computing times due to the elastic resolution of
the individual impacts.

An alternative approach consists in rigid body models. We go from
the above force/acceleration level of the equations of motion to an im-
pulse/velocity level by integrating the equations of motion during the very
small assumed duration time. Or better, we use the concept of measure dif-
ferential equations instead the classical equations of motion as suggested
by Moreau [161]. Working on an impulse-velocity-level instead on a force-
acceleration-level might be a problem for some practical applications. But
from the engineering standpoint of view it is always possible to develop for
the worst cases results from some local models to estimate the impact dura-
tion time and then to evaluate the forces. In many cases, for example for noise
or wear problems, forces are not directly needed, but more the influence of
contact processes on the multibody system as a whole.

For ”rigid body contacts” the following assumptions will be made [276]:

• The duration of the impact is so short, that the mathematical description
may assume a zero impact time.

• As a consequence we neglect wave processes, which would take place in a
finite time interval.

• Following these assumptions the mass distribution of the body does not
change during the impact, the bodies remain rigid or elastic as a whole.

• All positions and orientations of the impacting bodies remain constant.
The translational and rotational velocities of the bodies are finite and
may change jerkyly during the impact.
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• Accordingly the position of the impact point and that of the normal and
tangential vectors remain constant.

• All forces and torques, which are not impulsive forces and torques, remain
also constant during the impact.

• All during the impact evolving impulses act during the impact in a con-
stant direction. Their lines of action do not change and correspond to the
normal and tangential vectors in the impact point.

• The impact can be divided into two phases: the compression phase and
the expansion phase.

• The compression phase starts at time tA and ends at time tC . The end
of the compression equals the start of the expansion phase. Expansion is
finished at time tE , which is also the end of the impact.

3.5.2 Classical Approach

3.5.2.1 Newton’s Impacts

Newton’s impact law is a kinematical law, which connects the relative veloc-
ities in normal direction before an impact with those after an impact (see
chapter 2.5 on page 68). In multiple-contact problems there might be one
impact only in one of the contacts or several impacts in several contacts si-
multaneously. The theory presented will cover both possibilities. The locations
of impacts are given by the nA contact points of IA (see equation (3.9) on
page 90, chapter 3.1.2). For each of them we can write the distance gNi(q, t)
in the normal direction. If one or more of these indicators becomes zero at
one time instant tA and the corresponding relative velocities ġNi are less than
zero, an impact occurs. The impact contacts are then closed and the unilateral
constraints are active. The set of constraints which participate in the impact
is then given by

I∗C = {i ∈ IA | gNi = 0 ; ġNi ≤ 0} with n∗
C elements.

From equation (3.138) we get the equations of motion for a constrained system
without friction:

Mq̈ + h−
∑
i∈I∗S

(wNλN )i = 0 ∈ IRf , (3.179)

where the terms (wNλN )i result from a projection of the normal contact forces
into the space of the generalized coordinates. As a second equation we use the
relative velocity in the normal direction (eq. 3.143):

ġNi = wT
Niq̇ + w̃Ni ; i ∈ I∗C . (3.180)

Equations (3.179) and (3.180) can be stated in matrix notation:

Mq̈ + h−WNλN = 0 ; ġN = WT
N q̇ + w̃N , (3.181)
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where we will assume independent constraints, rank WN = n∗
C ≤ f . Further-

more M = M(q, t), h = h(q̇,q, t) and WN = WN(q, t), w̃N = w̃N (q, t).
Next, we integrate over the time interval of the impact to achieve a repre-

sentation of the equations of motion on the impulse level. Let tA and tE denote
the time instances at the beginning and end of the impact, respectively, and
let

q̇A = q̇(tA) ; q̇E = q̇(tE)

be the generalized velocities at these instances. The relative velocities in the
normal direction are then given by

ġNA = ġN (tA) ; ġNE = ġN (tE) ,

and the integration of the dynamics equation (3.181) over the impact yields

lim
tE→tA

tE∫
tA

(Mq̈ + h−WNλN ) dt = 0 . (3.182)

During this integration, only terms that can rise to infinity have to be taken
into account. The vector h consists of finite nonimpulsive terms and therefore
vanishes. Under the assumption of constant displacements we get

M (q̇E − q̇A)−WNΛN = 0 with ΛN = lim
tE→tA

tE∫
tA

λN dt (3.183)

with ΛN being the impulses transferred by the contacts during the impact.
Finally, we state the relative velocities in eqs. (3.181) at the instances tA and
tE to be

ġNA = WT
N q̇A + w̃N ; ġNE = WT

N q̇E + w̃N , (3.184)

and express (3.184) for convenience as a sum and a difference:

ġNE + ġNA = WT
N (q̇E + q̇A) + 2w̃N

ġNE − ġNA = WT
N (q̇E − q̇A) .

(3.185)

After the elimination of the f -vector (q̇E−q̇A) with the help of eq. (3.183),
the second equation of (3.185) consists of n∗

C relations for the 2n∗
C unknowns

(ġNE ,ΛN ):

ġNE − ġNA = GNΛN ; GN = WT
NM−1WN , (3.186)

thus n∗
S conditions are missing to determine the transferred impulses ΛN and

the relative velocities ġNE at the end of the impact. These missing conditions
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are the impact laws of the problem. Here we will use Newton’s law, which
connects the relative velocities before and after the impact by the relation

ġNE = −εN ġNA (3.187)

where εN is a diagonal matrix, εN = diag{εNi}, which contains the n∗
C co-

efficients of restitution 0 ≤ εNi ≤ 1. The value εNi = 0 means a completely
inelastic shock where both collision partners remain in contact, and εNi = 1
describes fully reversible behavior. Inserting (3.187) into (3.186) yields

−
(
E + εN

)
ġNA = GNΛN (3.188)

which determines the transferred impulses ΛN :

ΛN = −G−1
N

(
E + εN

)
ġNA . (3.189)

If only one contact participates in the impact, then the matrix G−1
N reduces

to the scalar G−1
N = 1/(wT

NM−1wN ). Under these circumstances eq. (3.189)
determines the impulses of an equivalent system where the condensed mass
G−1
N bounces against a rigid wall.
The term GN = WT

NM−1WN corresponds to that reduced mass of our
multibody system which is effective in the impact direction. We shall call
it ”mass action matrix”, because in all multibody systems with unilateral
characteristics this mass action matrix represents exactly those mass effects
as allowed by the constraints of the system. It has first been introduced by
[182] in connection with frictionless impacts of multibody systems, for example
for problems of gear-rattling and the like ([183], [184] and [206]). A further
application is the contact of robots with the environment [271], [137].

After resubstituting the impulses (3.189) into eq. (3.183) we get the gen-
eralized velocities q̇E at the end of the impact:

q̇E = q̇A −M−1WNG−1
N

(
E + εN

)
ġNA , (3.190)

where ġNA is given with eq. (3.184). Note that the impulses ΛN must act
with a compressive magnitude (ΛN ≥ 0) in the physical sense.

The use of Newton’s impact law ensures that no penetration of the bodies
after the impact can occur. This is easy to see, since by the construction of
I∗C only contacts with ġNAi ≤ 0 are considered. With eq. (3.187) and the
property of the coefficients of restitution, 0 ≤ εNi ≤ 1, it is obvious that the
bodies separate after the impact, ġNEi ≥ 0. Contacts, however, which have
been removed from I∗C due to the reasons described above, are excluded from
the evaluation of Newton’s law and therefore are not expected to have final
relative velocities which avoid penetration. Thus, impulses of contacts in I∗C
and relative velocities of contacts which have been removed from I∗C must
be checked with respect to physical correctness. All these difficulties can be
handled by a unilateral formulation of the impact laws including Poisson’s
impact hypothesis.
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3.5.2.2 Poisson’s Impacts

Poisson’s friction law is a kinetic law, which connects the impulses after an
impact with those before the impact. In contrast to Newton’s law the friction
law of Poisson allows an energy transfer between the normal and tangential
directions representing thus a more realistic situation of an impact. For the
formulation of the impacts the same assumptions are made as before, but
we now allow friction at the contact points and take into account all active
unilateral constraints, which means constraints that are elements of IC in the
set equation (3.9) on page 90, chapter 3.1.2.

IC = {i ∈ IA | gNi = 0} with nC elements. (3.191)

It is noteworthy that eq. (3.191) contains all the sliding and sticking continuous-
contact constraints (ġNi = 0) as well as the impact contacts (ġNi < 0). This
enables us to examine whether a contact separates under the influence of an
impact at another location in the multibody system. We start with the deriva-
tion of the impact equations using the first three equations of (3.146) on page
139. They write in a more condensed form

M(q, t)q̈(t) + h(q, q̇t)− [(WN + WR) WT ]
(
λN (t)
λT (t)

)
= 0 ∈ IRf ,(

g̈N
g̈T

)
=
(

WT
N

WT
T

)
q̈ +
(

w̄N

w̄T

)
∈ IRnN+2nT (3.192)

We assume as noted above that an impact takes place in an infinitesi-
mal short time and without any change of position, orientation and all non-
impulsive forces. Nevertheless and virtually we zoom the impact time, estab-
lish the equations for a compression and for an expansion phase and then
apply these equations again for an infinitesimal short time interval. The eval-
uation has to be performed on a velocity level which we realize by formal
integration of the equations of motion, the constraints and the contact laws.
Denoting the beginning of an impact, the end of compression and the end of
expansion by the indices A,C,E, respectively, we get for ∆t = tE − tA

M(q̇C − q̇A)−(WN WT )
(

ΛNC

ΛTC

)
= 0,

M(q̇E − q̇C)−(WN WT )
(

ΛNE

ΛTE

)
= 0,

with Λi = lim
tE→tA

tE∫
tA

λNi dt i = {NC, TC,NE, TE}. (3.193)

Here ΛNC ,ΛTC are the impulses in the normal and tangential direction which
are transferred during compression, and ΛNE,ΛTE those of expansion. In
addition the abbreviations q̇A = q̇(tA), q̇C = q̇(tC) q̇E = q̇(tE) have been
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introduced. With these notations we write the relative velocities in the various
phases of the impact in the form(

ġNA
ġTA

)
=
(

WT
N

WT
T

)
q̇A +

(
w̃NA

w̃TA

)
(

ġNE
ġTE

)
=
(

WT
N

WT
T

)
q̇E +

(
w̃NE

w̃TE

)
(

ġNC
ġTC

)
=
(

WT
N

WT
T

)
q̇C +

(
w̃NC

w̃TC

)
(3.194)

Considering in a first step the compression phase and combining the equations
(3.193) and (3.194) we come out with(

ġNC
ġTC

)
=
(

WT
N

WT
T

)
M−1

(
WN

WT

)T
G

·
(

ΛNC

ΛTC

)
+
(

ġNA
ġTA

)

G =
(

WT
N

WT
T

)
M−1

(
WN

WT

)T
=
(

GNN GNT

GTN GTT

)
with

Gij =WT
i M−1Wj , and Gij = GT

ji, i, j = {N,T }. (3.195)

where G is the mass action matrix as defined above. It consists of four blocks
GNN . . .GTT with the above defined properties.

We start with the compression phase and the normal impact direc-
tion [15]. At the end of compression the relative normal velocity is either zero
or non-negative, ġNi ≥ 0. The contact process for impacts follows the same
complementarity ideas as for contacts on a force/acceleration level. In normal
direction either the relative velocity is zero (ġNi = 0) and the normal impulse
is not zero (ΛNi �= 0), or vice versa. Hence we may write (see also equation
3.159)

ġN ≥ 0, ΛN ≥ 0, ġTNΛN = 0, (3.196)

which has to be evaluated by components. This means, that we start with the
left characteristic of Figure (3.27), which is of course well known from chapter
3.1.2.2 on page 91.

The next step must consider the compression phase and the tangen-
tial impact direction . The tangential compression phase is characterized
mainly by friction. At the end of compression we may have three states:

• Sliding in a positive tangential direction (ġNC > 0): The tangential impulse
acts during this phase in opposite direction with ΛTC = −µΛNC .
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ΛNC

ġNC

ΛTC

ġTC

−µΛNC
+µΛNC

Fig. 3.27: Contact Laws for Impacts

• Sticking at the end of compression (ġNC = 0): The tangential impulse is
small enough to generate sticking during the whole compression phase.
It is located within the friction cone with the possible values (−µΛNC <
ΛTC < +µΛNC) defining a set-valued impact law.

• Sliding in a negative tangential direction (ġNC < 0): The tangential im-
pulse acts during this phase in opposite direction with ΛTC = +µΛNC .

Analogously to the force-acceleration-level of the equations (3.18) on page
93 we can summarize this impact behaviour in tangential direction to give

|ΛTi| < µ0iΛNi ∧ ġTi = 0 (i ∈ IT sticking)

ΛTi = +µ0iΛNi ∧ ġTi ≤ 0 (i ∈ IN\IT negative sliding)

ΛTi = −µ0iΛNi ∧ ġTi ≥ 0 (i ∈ IN\IT positive sliding)

(3.197)

These definitions correspond to the right chart of Figure (3.27). At this point
some remarks on the validity of Coulomb’s law for impacts are necessary.
From the standpoint of mechanics there exists no hard argument why the
classical friction laws should not apply to impact processes, see [86], [200],
[15]. Moreover, the theories based on that law have been verified very carefully
be systematic experiments, which confirms the approach nearly perfectly [15].
And finally all simulations of large industrial projects result in a very good
correspondence of theory and measurement. Therefore as long as no better
law appears, these are the best possible friction laws.

The set-valued impulse law on the velocity-impulse-level possesses the
same properties as the set-valued force law on the acceleration-force-level of
chapter (3.4.2) on page 134. For active contacts it represents an impulse law
with kinematical constraints, for passive contacts an indicator for contact
events to come. The equations (3.195) allow to calculate the relative veloci-
ties ġNC and ġTC at the end of the compression phase, depending from the
velocities at the beginning of the impact ġNA and ġTA under the influence of
the contact impulses ΛNC and ΛTC . To calculate these impulses two impact
laws in normal and tangential direction are necessary. As already indicated
magnitudes of relative kinematics and constraint forces (here impulses) are
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complementary quantities. In normal direction these are ġNC and ΛNC . In
tangential direction we have the relative tangential velocity vector ġTC and
the friction reserve (ΛTC − (diagµi)ΛNC). Decomposing the tangential be-
havior we obtain [15]:

ΛTCV,i = ΛTC,i + µiΛTN,i

ġTC,i = ġ+
TC,i − ġ

−
TC,i

Λ
(+)
TCV,i = ΛTCV,i

Λ
(−)
TCV,i = −ΛTCV,i + 2µiΛNC,i

(3.198)

Together with equation (3.195) this results in a Linear Complementary
Problem (LCP) in standard form y = Ax+b with x ≥ 0,y ≥ 0 and xTy = 0: ġNC
ġ+
TC

Λ
(−)
TCV


y

=

GNN −GNTµ GNT 0
GTN −GTTµ GTT E

2µ −E 0


A

 ΛNC

Λ
(+)
TCV

ġ−TC


x

+

 ġNAġTA
0


b

(3.199)

µ is a diagonal matrix, containing the friction coefficients of the contacts. The
problem can be solved numerically. The velocities ġNC , ġTC and the impul-
sions ΛNC ,ΛTC are either part of the result or can be obtained by trans-
formation (3.198) and by ΛTC = Λ

(+)
TCV − µΛNC . The generalized velocities

at the end of the compression phase can be evaluated with the help of equa-
tion (3.193) and refering to Figure (3.28), which depicts the decomposition
structure. We get

q̇C = q̇A + M−1(WNΛNC + WTΛTC) (3.200)

Knowing the state at the end of the compression phase we are able to
evaluate the expansion phase, in a first step the expansion phase in the
normal impact direction . Generally, impulse has been stored during com-
pression, or in terms of energy, kinetic energy has been partly converted into
potential energy by the deformation of the impacting bodies of the local con-
tact zones. These stored impulses are released during expansion, or again in
terms of energy, the potential deformation energy will be partly converted
again into kinetic energy during expansion more or less by spring effects of
the deformed local zone. We assume that this proces is governed, similar as
in compression, by Poisson’s law relating the impulses after with those before
the impact, and we assume furtheron, that Poisson’s law can be applied in
normal and in tangential directions.

Concentrating first on the normal direction Poisson’s law has the form

ΛNE = εNΛNC , (3.201)
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ΛTCV

ġTC

ġ+
TC

ġ−TC

Λ+
TCV

Λ−
TCV

ΛTCD = 2µΛNC

�+

�-

Fig. 3.28: Decomposition of the Tangential Impact Law

which relates the normal impulse at the end of the impact with the impulse
at the end of compression. The impact coefficient εN must be measured. Its
value is between zero and one, 0 ≤ εN ≤ 1. For practical problems we always
have εN < 1, which means loss of energy during the impact. Poisson’s impact
law possesses one drawback due to its formulation on a kinetic level. It cannot
exclude a penetration of the bodies, which is given on a kinematic level. But
we can require instead, that the normal impulse during expansion must always
be equal or larger than the impulse, which we can get back from the stored
impulse during compression. Releasing impulses is accompanied with losses,
therefore the minimum we might get back is εNΛNC , but the normal impulse
during expansion might be larger (ΛNE ≥ εNΛNC). As a consequence we
have to deal with a shifted characteristic during expansion as shown in Figure
(3.29).

ΛNE

ġNE

εNΛNC

Fig. 3.29: Shifted Normal Characteristic for Impact Expansion

Figure (3.29) indicates that for a detachment at the end of compression we
have an impulse according to equation (3.201), otherwise it can become ar-
bitrarily large to avoid penetration. To evaluate a complementarity condition
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we therefore transform the individual impulses, for example for body (i)

ΛNPi = ΛNEi − εNiΛNCi (3.202)

For the transformed impulses we then get the complementarity condition in
normal direction

ġNE ≥ 0, ΛNP ≥ 0, ġTNEΛNP = 0, (3.203)

which must be evaluated by components.
The expansion phase for the tangential impact direction is gov-

erned by friction and the corresponding restoring mechanism. Consequently
we must find some realistic models for the friction acting in the tangential
direction of the contact and for the release mechanism of the impulses stored
during compression. In a way, we have two actions in series: the contact part-
ners touch each other in a contact point, where Coulomb’s law applies; and
in addition we have the stored contact energy within the elastically deformed
contact zone, which is partly released during expansion and acting in se-
ries with the Coulomb friction as a second force element [15]. These physi-
cal/mechanical properties must be modeled as realistically as possible coming
out with a basis for further model developments.

Restoring the tangential impulse affords some additional considerations.
According to Poisson’s law we get back the stored tangential impulse ΛTCi
of the (i)th contact with a certain loss, that is (εTiΛTCi), where Poisson’s
losses are defined in the range (0 ≤ εTi ≤ 1). The tangential friction coeffi-
cient εTi must be measured. But this contains not all losses during expansion.
The restoration of the tangential impulse possesses another quality compared
with the restoration of the normal impulse, because it cannot take place in-
dependently from the normal impulse, which as a matter of fact represents
the driving constraint impulse for the generation of tangential friction forces.
Therefore we shall assume, that the restoration of the tangential impulse is
additionally accompanied by losses in ”normal direction” expressed by εNi.
The complete restoration then follows the law

ΛTEi = εNiεTiΛTCi. (3.204)

The above formulation avoids also that the reversible impulse will not be
larger than the maximum impulse, which can be transmitted by friction and
is illustrated by the following inequalities

εNiεTi|ΛTCi| ≤ εNi|ΛTCi| ≤ εNiµΛNC ≤ µΛNE . (3.205)

Figure (3.30) depicts the most important features for the case (ΛTC > 0),
other combinations are considered in [86] and [200]. The left limit of the char-
acteristic is given by equation (3.204) and the restored impulse εNiεTiΛTCi.
At this point we might get sticking or positive sliding with +ġTE. The right
limit ΛTER = µΛNE is again sticking or sliding with a negative velocity
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−ġTE. Between ΛTEL and ΛTER we are within the friction cone with sticking
if ġTE0 = 0 or with sliding if ġTE0 �= 0. This effect requires some explanation.

ΛTE

ġTE

εNεTΛTC ΛTED

ΛTEL

ΛTER = µΛNE

Case ΛTC > 0

ġTE0

Fig. 3.30: Shifted Tangential Characteristic for Impact Expansion

As already pointed out above we have a serial combination of friction im-
pulse and of the impulsive effects of the local deformation. The corresponding
impulses do not apply at the same points with the consequence, that we may
have stiction at the contact point but small sliding at the point of the spring
force application. For materials like steel this will be no problem, but for soft
materials like rubber there exists a difference between these two points which
can be measured [15]. In such cases it makes sense to introduce a correc-
tion with ġTE0. For this purpose we assume at the end of compression a zero
tangential velocity ġTC = 0 and evaluate the equations (3.194) and (3.195)
together with the above transformations with the result

ġTE0 =GTNεNΛNC + GTT εNεTΛTC ,

εN =diag{· · · εNi · · · }, εT = diag{· · · εTi · · · }. (3.206)

It should be noted that independent of the combination of sliding or sticking
in the compression and expansion phases tangential impulse will be stored
during compression and restored during expansion, also for sliding.

For the compression phase we have developed a complementarity repre-
sentation with the equations (3.199). We shall do the same for the expansion
phase. We know the relative velocities and the impulses (ġNC , ġTC ,ΛNC ,ΛTC)
at the end of compression. We know also the necessary parameters like
(εN , εT , µ,G). We are now loooking for the magnitudes (ġNE , ġTE ,ΛNE ,ΛTE)
at the end of expansion and thus at the end of the impact. For this purpose
we follow a presentation given in [15], see also [86], [200].
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For the normal direction we have shifted the characteristics into the origin
of the coordinates to be able to generate a Linear Complementarity Problem
(LCP). Considering Figure (3.30) we get

ΛTEV i = ΛTEi − ΛTELi, ġTEV i = ġTEi − ġTE0i (3.207)

with ΛTELi = εNiεTiΛTCi. These transformation shifts the left corner of
the characteristic in Figure (3.30) into the origin. Collecting now all these
transformations of the equations (3.202), (3.207) and combining them with
the momentum equations (3.194), (3.195) results in two equations for the
normal and the tangential directions

ġNE =GNN (ΛNP + εNΛNC) + GNT (ΛTEV + ΛTEL) + ġNC
ġTEV =GTN (ΛNP + εNΛNC) + GTT (ΛTEV + ΛTEL) + ġTC − ġTE0

(3.208)

Replacing ġTE0 in the last equation by (3.206) yields for the tangential direc-
tion

ġTEV = GTNΛNP + GTT (ΛTEV + ΛTEL − εNεTΛTC) + ġTC (3.209)

To construct a linear complementarity problem we have to decompose the
tangential double hook into two unilateral primitives by the additional defin-
itions

ġTEV i =ġ+
TEV i − ġ−TEV i

Λ+
TEV i =ΛTEV i, Λ−

TEV i = −ΛTEV i + ΛTEDi. (3.210)

The complementary pairs of the shifted and decomposed system are (ġNE ,ΛNP ),
(ġ+
TEV ,Λ

+
TEV ) and (ġ−

TEV ,Λ
−
TEV ). For the abbreviations ΛTEL and ΛTED

(Figure 3.30) we write

ΛTEL =S+εNεTΛTC − S−µ(ΛNP + εNΛNC)
ΛTED =µ(ΛNP + εNΛNC)− εNεT |ΛTC |

S+ =diag[
1
2
(1 + sign(ΛTCi))]

S− =diag[
1
2
(1− sign(ΛTCi))] (3.211)

The matrices S+ and S− regard the different cases of the direction of the
tangential momentum during the compression phase. They are modified unit
matrices, which possess as diagonal elements either ”0” or ”1”. Combining
now the equations (3.208) to (3.211) we finally come out with the following
complementarity inequalities
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ġ+
TEV

Λ−
TEV

 = A

 ΛNP

Λ+
TEV

ġ−
TEV

+ b

A =

GNN −GNTS−µ GNT 0
GTN −GTTS−µ GTT E

µ −E 0


b =

GNNεNΛNC + GNTS+εNεTΛTC −GNTS−µεNΛNC + ġNC
GTT (S− −E)εNεTΛTC −GTTS−µεNΛNC + ġTC

µεNΛNC − εNεT |ΛTC |


(3.212)

For recalculating the original magnitudes after the solution of the above com-
plementarity problem we apply the formulas in the other way around.

ġTE =ġ+
TEV − ġ−

TEV + ġTE0

ΛNE =ΛNP + εNΛNC

ΛNP =ΛNE − εNΛNC

ΛTE =Λ+
TEV + ΛTEL = Λ+

TEV + S+εNεTΛTC − S−µΛNE

q̇E =q̇A + M−1[WN (ΛNC + ΛNE) + WT (ΛTC + ΛTE)] (3.213)

The last relation gives the generalized velocities at the end of an impact in
dependence of those at the beginning. With the two sets of equations (3.199)
and (3.213) we have the complete set for the evaluation of impacts in a multi-
body system with plane not dependent contacts. It is at the same time an
illustrative example of the complexity of such problems solving them on the
basis of complementarities.

3.5.3 Moreau’s Measure Differential Equation

One of the great merits of Moreau [161] in establishing a theory of non-
smooth mechanics consists in categorizing the physical features with respect to
existing modern mathematics and in creating necessary extensions especially
concerning convex analysis. The mathematical fundaments of measure and
integral theory correspond for example to the properties of friction cones and
of impacts ([283] [132]). Any impact between two bodies is accompanied by
a finite jump of the velocities, and, as a rule, system dynamics shortly before
and shortly after an impact is going to be smooth. The velocities u− shortly
before an impact represents a left-limit and the velocity u+ shortly after an
impact represents a right-limit. These limits always exist and their difference
∆u = u+ − u− is always finite and of bounded variation.

Following Moreau [161] Glocker [87] introduces a decomposion of the ve-
locity u into three parts, an absolute continuous part duL = u̇dt with the
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Lebesgue measure dt, a discontinuous part duA = (u+ − u−)dη in the form
of a step function with the atomic measure dη =

∑
i dδi and a singular part

duC , which we shall not consider here. Collecting these ideas we get

du =duL + duA with du = q̈dt (3.214)
duL =u̇dt,

duA =(u+ − u−)dη,

dη =
∑
i

dδi with
∫
Ikl

dδi =

{
1 for i ∈ Ikl

0 for i /∈ Ikl
(3.215)

where Ikl portrays the time interval of an impact, for example Ikl ∈ [t−, t+].
In a similar way we may split up the forces in a continuous and thus Lebesgue-
measurable part λdt and in an atomic part Λdη

dΛ = λdt + Λdη. (3.216)

The part λdt contains all contact reactions due to non-impulsive contacts and
the part Λdη all impulsive contact reactions. Correspondingly and considering
the equations of motion (3.146) we may decompose these equations of motion
into two classical parts:

Mdu + hdt−WdΛ = 0 ⇐⇒
{

Mu̇ + h−Wλ = 0 (t �= ti)
M(u+ − u−)−WΛ = 0 (t = ti)

(3.217)

The time ti ∈ Ikl represents one of the instants (i), where an impact takes
place. The vector h includes all non-impulsive and applied forces, whatsoever,
and for multibody systems without closed loops we also include in the gen-
eralized coordinates (q, q̇) all bilateral constraints. If we have closed loops, it
makes sense to include into the prox-functions also the bilateral constraints,
which simplifies the solution procedure (see [65] and [64]).

Applying these decompositions to the set of equations of motion, equations
(3.146) on page 139, we get the following set of measure differential equations
representing a more general and convenient form of the equations of motion
including impacts

Mdu+hdt− [(WN + WR) WT ]
(

dΛN (t)
dΛT (t)

)
= 0,

dġN =WT
Ndu + w̄Ndt,

dġT =WT
T du + w̄Tdt,

λN =proxCN
(λN − rgN ), ΛN = proxCN

(ΛN − rgN),
λT =proxCT

(λT − rġT ), ΛT = proxCT
(ΛT − rġT ). (3.218)
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The prox-functions as the laws for forces and shocks have been split up directly
for the Lebesgue-part and the atomic part and additionally been put on the
original kinematical level, which means position and orientation for the normal
and velocities for the tangential contact directions [64]. The corresponding
convex sets are given as above by the relations

CN ={λN |λNi ≥ 0, ∀i ∈ IN},
CT ={λT | |λTi| ≤ µiλNi, ∀i ∈ IT }. (3.219)

The equations (3.218) can be discretized directly, which gives this type of
presentation a very practical property, though it might look at a first glance
rather complicated. We refer to section 3.4.4 on page 145.

3.5.4 Energy Considerations

All contact processes are accompanied by losses due to the energy conversion
mechanisms taking place within the contact zone. The loss of energy is the
difference of the total system energy after an impact and before an impact.
In terms of the generalized velocities q̇ we write (see also [88])

∆T =TE − TA ≤ 0

∆T =
1
2
q̇TEMq̇E −

1
2
q̇TAMq̇A =

1
2
(q̇E + q̇A)TM(q̇E − q̇A). (3.220)

These are expressions considering scleronomic systems without an excitation
by external kinematical sources and consequently do not take into account the
w-terms of the equations (3.194), for example. Using the equations (3.193) to
(3.195) we can express the generalized velocities by the relative velocities ġ
in the contacts or by the contact impulses Λ. We get

2∆T = + 2
(

ġNE
ġTE

)T
G−1

[(
ġNE
ġTE

)
−
(

ġNA
ġTA

)]
−

−
[(

ġNE
ġTE

)
−
(

ġNA
ġTA

)]T
G−1

[(
ġNE
ġTE

)
−
(

ġNA
ġTA

)]

2∆T = + 2
(

ġNE
ġTE

)T [(
ΛNC

ΛTC

)
+
(

ΛNE

ΛTE

)]
−

−
[(

ΛNC

ΛTC

)
+
(

ΛNE

ΛTE

)]T
G
[(

ΛNC

ΛTC

)
+
(

ΛNE

ΛTE

)]
(3.221)

The second term of these two energy equations is a quadratic form and for
itself always positive or zero. The matrix G is at least positive semi-definite,
which is also true for its inverse G−1. The energy loss has to be negative,
which will be decided by the first term of the above relations. If this term is
negative or at least zero, the condition ∆T ≤ 0 will hold. Therefore we shall
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concentrate on these first terms which writes in more detail (see equation
(3.195) for the matrix G and the abbreviations G−1 = Ḡ, ∆T = ∆T1 +∆T2

for the two energy terms in eq. (3.221))

∆T1 = +
(

ġNE
ġTE

)T
Ḡ
[(

ġNE
ġTE

)
−
(

ġNA
ġTA

)]
=

= {ġTNE[ḠNN (ġNE − ġNA) + ḠNT (ġTE − ġTA)]+

+ ġTTE [ḠTN (ġNE − ġNA) + ḠTT (ġTE − ġTA)]}

∆T1 = +
(

ġNE
ġTE

)T [(
ΛNC

ΛTC

)
+
(

ΛNE

ΛTE

)]
=

= {ġTNE(ΛNC + ΛNE) + ġTTE(ΛTC + ΛTE)} (3.222)

To estimate the sign of these terms we need to look at the contact laws, for
example the complementarities of the relations (3.196) and (3.197). For this
consideration the second form of the energy losses is more convenient than the
first form, we only have to find out the signs of the expression {ġTNE(ΛNC +
ΛNE)+ġTTE(ΛTC+ΛTE)}. For this purpose we investigate the possible impact
cases, namely compression and expansion either with sticking or sliding, which
makes altogether four cases under the assumption, that we have always contact
and no detachment during the impact.

At this point we must discuss a bit our model concept. We consider the
beginning of an impact with index A, a compression phase with index C
and an expansion phase with index E, all indices expressing the end of the
corresponding phase. Therefore we get from our model and the evaluations of
the preceding chapters the C-magnitudes at the end of compression and the E-
magnitudes at the end of expansion, the last ones being the magnitudes after
the impact. This is all clear, theoretically and experimentally often verified,
and gives correct results. For the consideration of an impact we do not need
the internal details of compression and expansion. But we need them for an
energy consideration.

We need to know, for example, how and where a transition sticking/sliding
or vice versa occurs within the structure of the impact. As we do not have
some means to determine that, we say, transitions occur always at the end of
the phases compression and expansion in an infinitesimal short instant of time
not influencing the impact dynamics but only going from one branch of the
corner laws of the Figures (3.27), (3.29) and (3.30) to another branch, which
means, transitions take place in the corners of the contact laws. This model
concept has significant influence on the energy evaluation.

So it can be shown, that the first term ġTNE(ΛNC + ΛNE) of the energy
equation (3.222), last line, is not zero due to positive normal impulses (ΛNC+
ΛNE) and due to a non-zero end velocity ġNE after the impact, which is
physically reasonable for a separation of the two contacting bodies. But on the
other hand sliding during expansion requires a zero normal relative velocity
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ġNE = 0 in the contact, which makes the above mentioned term to zero. The
solution can only consist in a model concept, where the change from contact
to detachment takes place at the very last end of the expansion phase. The
(ΛNE)-value slips into the corner of Figure (3.29) allowing the system to build
up the necessary separation velocity.

As a result of the last condition of continual contact during the impact we
get for compression and expansion ΛN > 0 and ġN = 0, which is also part of
the complementarity eq. (3.196), and therefore simply

2∆T1 = 2ġTTE(ΛTC + ΛTE), (3.223)

the sign of which we have to investigate. Before doing so we consider the sliding
cases. All sticking cases are governed by set-valued impulse laws, all sliding
cases by a single-valued impulse law, the one by Coulomb. Accordingly, the
sliding impulse is proportional to the normal constraint impulse and opposite
to (ġTk). Therefore

ΛTk = −diag(µ)sign(ġTk)ΛNk, (k = C,E) (3.224)

For sliding (ġTk) �= 0, always, and therefore we get for the second expression
of the energy term ∆T1 in equation (3.223) together with equation (3.224)
the following result

ġTTEΛTE = −diag(µ)|ġTE |ΛNE ≤ 0 (3.225)

due to the fact of continual contact and thus ΛNE > 0. With these results in
mind we come to the four impact cases:

• sticking during compression, sticking during expansion

The tangential impulses have to be within the appropriate friction cones.
The tangential velocities are zero, therefore we need not to consider the
magnitudes of the impulses. For the definitions see also the Figures 3.27
and 3.30.

−diag(µ0)ΛNC ≤ ΛTC ≤ +diag(µ0)ΛNC , ΛTEL ≤ ΛTE ≤ ΛTER

=⇒ ġTTE(ΛTC + ΛTE) = 0

• sliding during compression, sliding during expansion

Sliding means single-valued impulse laws according to equation (3.224).
Some difficulties will appear for the cases with reversed sliding, that means,
with a tangential relative velocity the sign of which is different during
compression and during expansion. Therefore we have to consider the two
cases without and with tangential reversibility. For the first case we do
not have a change of sign of the relative tangential velocity, which gives
sign(ġTC) = sign(ġTE). This comes out with the relations:

ġTTEΛTC = −ġTTE [diag(µ)sign(ġTE)ΛNC ] = −diag(µ)|ġTE |ΛNC ≤ 0,
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=⇒ ġTTE(ΛTC + ΛTE) < 0

The case with tangential reversibility is more complicated, because it in-
cludes a change of sign of the tangential relative velocity and thus at least
an extremely short stiction phase, which we put exactly at the point (end of
compression)/(beginning of expansion). The sliding velocity during com-
pression decreases until it arrives at one of the corners of Figure 3.27, then
we get an extremely short shift from this corner to the other one, which
allows the contact to build up a tangential velocity with an opposite sign,
then valid for the expansion phase. Only by such a short stiction phase a
reversal of tangential velocity is possible. On the other hand such a tran-
sition from stick to slip, as short as it might be, follows the same process
as for the next case sticking/sliding. Therefore it is dissipative:

=⇒ ġTTE(ΛTC + ΛTE) < 0

• sticking during compression, sliding during expansion

The transition from sticking in compression and sliding in expansion fol-
lows the mechanism (Figure 3.27): If ΛTC ≷ 0, then sliding is only possible
for being at the very end of compression on the friction cone boundary with
ΛTC = ±diag(µ)ΛNC and ġTC−at ≶ 0 (at = after transition stick-slip).
This results always in a negative sign of the expression (ġTTEΛTC). For the
rest we assume a continuation of the signs after going from stick to slip
[sign(ġTE) = sign(ġTC−at)]. Then we arrive at:

=⇒ ġTTE(ΛTC + ΛTE) < 0

• sliding during compression, sticking during expansion

This case is again simpler, because we get sticking at the end with a zero
relative tangential velocity. Therefore we need not to consider the impulses.

=⇒ ġTTE(ΛTC + ΛTE) = 0

• summarized result for all cases

=⇒ ġTTE(ΛTC + ΛTE) ≤ 0 =⇒ ∆T1 ≤ 0 =⇒ ∆T ≤ 0

One may object that the above considerations assume in the case of multiple
impacts the same impact structure for all simultaneously appearing impacts,
which is usually not true. But even any combination of the above four cases for
simultaneous impacts gives a loss of energy. Practical experience indicates in
addition that the simultaneous appearance of impacts is extremely scarce, it
is an event, which nearly does not happen. A very comprehensive elaboration
of impact structures are presented in [72].

As a final result we may state that the above evaluation confirms the phys-
ical argument, that any impact processes are accompanied by energy losses.
This confirms also the well-known statement of Carnot, that ”in the absence
of impressed impulses, the sudden introduction of stationary and persistent
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constraints that change some velocity reduces the kinetic energy. Hence, by
the collision of inelastic bodies, some kinetic energy is always lost”[180].

3.5.5 Verification of Impacts with Friction

With respect to large technical applications impacts with friction play such an
important role, that a really applicable theory came amazingly late. The first
ideas regarding large dynamical systems with frictional impacts are contained
in the famous contribution of Moreau in the year 1988 [161], but then more or
less applied to static or quasi-static (smaller) problems. During the nineties
these ideas were included into multibody theory by ([86], [15], [200]) and
applied to large industrial problems, which without exception confirmed the
relevant theories. In addition a thourough and systematic experimental proof
of the theory has been performed by Beitelschmidt [15].

In the following we shall focus on these experiments. In designing a test set-
up for measuring impacts with friction a first principal decision had to be made
with respect to the experiments and to the geometrical type of impact, plane
or spatial. Colliding bodies moving in a plane include linear complementarity
problems, spatial contacts generate nonlinear complementarities. Therefore
motion in a plane was considered where one body is a disc and the other one
the ground. On this basis some further requirements had to be defined:

• maximum translational velocity 10 m/s
• maximum rotational velocity 40 rps
• throw direction 0o − 90o

• release time < 12 ms
• encoder main axis 1600 points
• encoder momentum axis 400 points
• throwing disc diameter 50 mm

. thickness 20 mm

. weight 300 g
• continuous variable velocity control
• translation and rotation decoupled
• disturbance-free support and release of disc
• mass balance, statically and dynamically
• electric drives (pulse width modulation with 250 steps)
• automatic control for the throwing process, the release of stroboscope and

camera

As a result, the machine of Figure (3.31) was designed and realized, which
meets all requirements. A release unit containing the disc is mounted at the
end of a rotating arm with mass balance. The unit itself drives the disc giving
it a prescribed rotational speed. The arm drive and momentum drive are
decoupled allowing to control the two speeds independently. The rotation of
the arm can be used to generate a translation, the rotation of the release
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collector ring

release unit

disc

momentum drive

mass balance

release unit

arm

main drive

Fig. 3.31: Principle of the Throwing Machine

unit realizes a rotation of the disc. Both mechanisms require an extremely
precise time management of the release process. The flight of the body is
photographed under stroboscopic exposure in a dark room before and after
hitting his target. From the evaluation of the photographs one can calculate
the velocities and the position of the body immediately before and after the
impact.

Figure (3.32) depicts the structure of the test set-up. A computer performs
all control calculations, processes sensor data, evaluates control torques, re-
leases stroboscope and camera and records all measured data. Within this
overall structure we find for each drive an individual control concept, which
has thoroughly been optimized with regard to the above requirements [15].
Also, a typical sequence of events for the test procedure can be seen from Fig-
ure (3.33). All computer codes have been realized in C++, which was feasible
due to the fact that the PC-Mode activities are not critical with respect to
time.

The evaluation of the measurements as recorded by the camera and the
processor was straightforward. Figure (3.34) illustrates the method and de-
picts additionally two photographs of experiments. Especially the rubber disc
experiment shows nicely a reversal of the trajectory due to the disc’s rotation.
The experimental process provided thus a very precise and well reproducible
basis for determining the properties of impacts with friction.

In the following we shall give only a few examples out of more than 600
experiments performed with axisymmetric and with eccentric discs. In all cases
the comparisons with theory come out with a good to excellent correspondence
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Fig. 3.32: Structure of the Complete Test Set-Up
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Fig. 3.33: Sequence of Events of the Throwing Machine Control

[15]. In the subsequent diagrams we shall use dimensionless velocities and
impulses defined by

γ =
ġTA
−ġNA

, γNC =
ġNC
−ġNA

, γTC =
ġTC
−ġNA

,

γNE =
ġNE
−ġNA

, γTE =
ġTE
−ġNA

, γTE0 =
ġTE0

−ġNA
, (3.226)

where the indices N,T refer to normal and tangential directions. The indices
A,C,E are the beginning and the end of the compression phase, and the end
of the expansion phase, respectively. The kinematical magnitude ġ is a relative
velocity in the contact zone. Experiments usually generate a negative normal
velocity (−ġNA) at the beginning.
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Fig. 3.34: Disc Trajectory During an Experiment, a) method of evaluation, b)
photograph steel, c) photograph rubber

Figure (3.34) also indicates the evaluation process for all experimental re-
sults. For every small part of the trajectory we perform three stroboscope
flashes thus achieving a certain redundancy for the measurements. The tra-
jectory is approximately a parabola, and the velocity possesses a positive
component in x- and a negative component in y-direction. The stroboscopic
measurements in connetion with the marked sectors of the discs allow a safe
evaluation of the translational and rotational velocities of the discs. To find
the time and the point of impact, the measurements before and after such an
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impact are represented by a statistical interpolation scheme, which allows to
determine the impact together with the dispersion of the results.

Figure (3.34) gives two examples. The material pairing steel on steel be-
haves conventional and in such a way, which one could expect. The picture
(b) shows the steel disc approaching the ground with a translational and ro-
tational velocity and leaving the ground with a mirrored but more or less a
similar trajectory.

The part (c) of Figure (3.34) represents a spectacular case. The rubber
disc appears from the left side with a horizontal velocity of 5 m/s and a
vertical velocity of 4 m/s in negative y-direction. The rotational velocity in
a counterclockwise direction amounts to 40 rps (2400 rpm). This results in a
tangential relative velocity of 12.5 m/s at the point of impact. The impact
process is depicted by the Figure part (c). After the first contact the velocities
reverse by the impact jump, and the disc flies backwards with a clockwise
rotation. At the second impact the velocities change again, and the disc flies
forward with the original direction of rotation.

As a result we may state, that firstly for the rubber case the impact coeffi-
cient of restitution in normal direction depends much more on the velocities at
collision than for stiff materials, that secondly we get a typical characteristic
behavior in the sense of tangential reversibility, and that thirdly for soft mate-
rials like rubber we may have friction coefficients larger than one (µ > 1). The
theory describes this behavior very well, where especially for soft materials
a correction is advantageous (see equation (3.206) on page 168). The Figure
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Fig. 3.35: Dimensionless Tangential Relative Velocity, after vs. before the im-
pact, PVC-body

(3.35) shows results of experiments with a PVC test body. The experiments
are marked by crosses, the dotted line shows the theoretical result. For small
tangential relative velocities before the impact, sticking occurs, and the rolling
constraint between disc and ground is fulfilled after the impact. If the rela-
tive velocity is big enough, the body slides throughout the impact and has a
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redcuced tangential relative velocity at the end of the impact. No tangential
reversion occurs. In the area around zero tangential speed we get sticking.

A similar diagram for a rubber-body is shown in Figure (3.36). For most
of the impacts the tangential relative velocity has changed during the impact:
the bodies collide with a negative relative velocity and separate with a positive
velocity. The inclination of the line through the origin is−εNεT . If εN is known
from another simple experiment one can evaluate the coefficient of tangential
reversibility from this plot. For this series of experiments the parameters εN =
0.75 and εT = 0.9 were identified. If the tangential relative velocity increases
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Fig. 3.36: Dimensionless Tangential Relative Velocity, after vs. before the im-
pact, rubber-body

further, sliding occurs in the contact point during the impact. Then it is not
possible to restore the elastic potential energy during the phase of expansion.
For very high velocities the rubber body slides during the whole impact and
the effect of tangential reversibility is not further visible.

In Figure (3.36) two lines are plotted for comparing theory with experi-
ment. What is called ”Theory old” corresponds to the original theory of im-
pacts with friction as presented in Glocker’s dissertation [86]. What is called
”Theory new” includes the extension as given by Beitelschmidt [15], which
applies mainly for very soft material pairings. If we consider the contact point
of two bodies, where Coulomb’s friction applies, and that point of the contact
zone, where the spring force resulting from the storage of impulse applies,
we come out with two force laws in series. This gives a modification of the
complementarities with respect to the friction cone, and thus a modification
of the final results (equation (3.206) on page 168).

Impacts with friction play an essential role in machines, mechanisms and
also in biology. Therefore we need good models being verified by sound ex-
periments. Such experiments have been performed by an especially designed
throwing machine. The experimental results compare excellently with calcu-
lated values from existing theories. A slight improvement of the theory could
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be deduced from the experimental findings. It concerns the frictional com-
plementarities during expansion, which have been slightly modified and are
mainly applicable for soft material pairings.

An additional verification of the theory is steadily been performed by
applying it to a large variety of industrial problems, where measurements were
carried through within an industrial environment. Some typical examples are
given by [200], [188], [199], [210], [91], [80], [23] or [195].
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3.6 Modeling System Dynamics

Models comprise two important elements, the mechanical model and the
mathematical model following from it. Heinrich Hertz [98] postulated, that
a physical model, he called it a picture or a fictitous picture, should be logi-
cally permissible, correct and simple. The first point concerns the requirement,
that a mechanical picture representing for example a large machine must be
consistent, and it must be a clear picture of the real world. These pictures
must be correct in an unambiguous sense, not least because of their property
of being the starting point for the mathematical models. Finally mechanical
models should be simple, which relates to the efforts needed to solve such
problems. My own experience tells me, that models should be as complicated
as necessary to achieve a good relation to reality, but as simple as possible to
keep expenditure small.

Fig. 3.37: An Example of Reality and Model

Figure 3.37 illustrates a typical case. On the left side we see an artist’s
impression of a roller coaster system, called the ”wild mouse”, which is in
operation on many German fairs. The loads on the wheel packages and the
strength of the wheels caused some problems. Therefore we had to model the
contacts of the wheels with the track to evaluate the contact forces. Each car
possesses four wheel packages with six wheels each. Driving along the track,
a rather exciting track as partly indicated in the Figure, puts on the wheels
a quickly varying set of load cycles, which led to wheel damages. The model
should focus on the wheel loads but also consider the overall dynamics of the
car going along the track. Therefore we modeled all four wheel packages with
all details, especially with all contact details according to the right side of
Figure 3.37. The model went along the track finally providing us with the
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necessary information to suggest a better wheel design [253]. The example
illustrates that model complexity can be reduced sometimes by focussing on
the most problematic components, in this case the wheels, and modeling the
other system parts around that in a more or less rough and simplified way.

All methods presented in this book generate mathematically a set of or-
dinary second order differential equations together with certain sets of linear
or non-linear, smooth or non-smooth side conditions. The equations of mo-
tion are linear in the accelerations, but non-linear with respect to positions
/orientations and velocities. A model of that kind is the mathematical coun-
terpart of that, what we have put into the mechanical model, not less and not
more. Mathematics cannot give more information than what the mechanical
model comprises. Therefore, constructing a mechanical model of a real world
machine or mechanism requires special care, instinctive feeling and experi-
ence and definitely a complete understanding of the technical and physical
features behind the problem. At this point of all problem solving actions we
can produce for the future a lot of additional expenditure, but we also can
try to reduce the problem to its hard kernel with the chance to achieve a fast
solution.

The minimal possible size of the mathematical model is determined by
the set of generalized, or sometimes called minimal, coordinates. Additional
reductions might then be realized by linearizations, possible only for special
cases, or by bringing in partial solutions, for example by regarding possible
energy or momentum integrals. For large systems it often makes sense to
linearize around some given operating point to achieve the eigenbehavior or
the local stability. Any way we go, it will be absolutely necessary to find
out as many as possible generalized coordinates, which is not always easy to
perform, and to reduce the original set of equations of motion. We shall not
always succeed in finding the complete minimal coordinate set, which leaves us
with some equations in the original form together with additional constraints.
Depending on the specific problem under consideration it might be even useful
to maintain all constraints, for example in some modern gear problems. But
normally this should be neither our goal nor the general rule.

Another point of considerable significance is sometimes forgotten in times
of computational sciences. Deriving and establishing the set of equations of
motion usually gives by the process itself some important insights into the
problem we have to solve, so-to-say without computational efforts and by
mere thinking. So this meaningful step should not be left out, because besides
mechanical and mathematical insight and understanding we get an idea of
the best solution procedures, which are the next step. This remains true also
before the background of better possibilities of presenting simulation results
by moving pictures, by combinations of CAD with FEM, MBS or the like,
which as a matter of fact makes the assessment of difficult R&D-problems
much easier, but does not solve them really. Such aids are very useful, but do
not replace thought.
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It is of course a well-known matter of experience that computing time can
be reduced by two measures, firstly by a more computer-friendly formulation
of the equations of motion and secondly by better numerical algorithms. The
evolution from complementarity inequalities to prox-functions for non-smooth
constraints and the evolution from second order differential equations to mea-
sure differential equations are very good examples for the first aspect, and
the evolution from contact event interpolation with piecewise Runge-Kutta
integration to time stepping is a good example for the second aspect. From
this we may conclude that the choice of the methods, theoretical as well as
numerical, possesses a decisive influence on the solution expenditures of the
problem and needs to be handled carefully.

Whatever methodology we choose, for considering mechanical system dy-
namics we have to start with kinematics. We need to select coordinate frames,
to investigate them with respect to their best placement, inertial fixed, body-
fixed, interconnection-fixed, and we have to formulate the kinematical mag-
nitudes, orientations and positions, velocities and accelerations, in terms of
these coordinate systems, requiring at this stage already an iteration with
respect to coordinate selection and the resulting kinematical relations. Again,
they should be as simple as possible but as complicated as necessary. Next
we have to explore possible sets of generalized coordinates. Also these sets
reflect the coordinate selection and can be modified by a modified choice of
coordinates. Only the basis of a very carefully built up kinematics opens the
chance to establish the equations of motion and the appropriate constraint
equations in a consistent way.

Large systems are interconnected. Seen from the standpoint of kinetics
they can be dealt with by several approaches. To derive the equations of
motion we may apply the momentum and moment of momentum equations
together with the cutting principle or together with constraints, we may apply
the relations of Lagrange I or II together with the system’s energies, or we
may use some of the basic principles directly. Again, our choice depends on
our goals. It will be significantly different for aiming at basic research or at
the solution of practical problems. We shall focus a bit on the second task.

A putative straightforward approach would be the usage of the momen-
tum and moment of momentum equations together with the cutting principle.
We cut all our system’s bodies apart thus laying bare all unknown cut forces
and torques, which then appear with opposite signs for neighbouring bodies,
and solve this set for the unknown accelerations and forces. For large systems,
though, it will be very hard to eliminate the unknown cut forces and torques
and to construct some reasonable systematic evaluation. But for small sys-
tems this approach might be easy to apply and possesses the advantage of
straightforwardness.

Applying the Lagrange I or II equations requires the evaluation of ener-
gies. In many cases this is simpler than describing a lot of constraints and
forming the corresponding Jacobians, but on the other side we have to de-
rive the energies with respect to the generalized coordinates for establishing
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the equations of motion. The kinetic energy for example needs the absolute
velocities dependent on the generalized velocities and coordinates, which we
have to know presupposing the elimination of all constraints for arriving at
the generalized and minimal kinematical magnitudes. The argument against
Lagrange I or II for large systems is connected with the derivation of energies,
which is more costly than the evaluation of the Jacobians. Nevertheless for
small systems Lagrange I or II might be a very fast and simple approach. It
should be noted however, that in the last years some theory based on differ-
ential geometry and using energies has been elaborated, which partly see the
above arguments in relative terms [149] [150].

Apart from many indications concerning a systematic formulation of multi-
body system dynamics by famous scientists in the past a first concrete step
into that direction has been done about half a century ago with the upcoming
space research and technologies. After decades of very vivacious discussions
and quarrelling between many scientists we have in the meantime a consoli-
dated approach based on Jourdain’s principle. It requires the set of momen-
tum and moment of momentum equations together with the appropriate set
of constraints, and it allows a very clear and efficient form of the equations of
motion, a form, which is also computer-friendly. Again, the basic hypothesis,
that constraint forces are ”lost forces” (Daniel Bernoulli), that they do not
produce work (d’Alembert), and that they do not generate power (Jourdain),
turns out to be one of the most important ideas of all mechanical sciences.
In the meantime this Newton-Euler approach, as it is called today, forms the
basis of nearly all commercial codes in the field.
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Dynamics of Hydraulic Systems

Die Methode der Wissenschaft ist die Methode
der kühnen Vermutungen und der erfinderischen und
ernsthaften Versuche, sie zu widerlegen.

(Karl Popper, ”Objektive Erkenntnis”, 1984)

The method of science is the method of bold conjectures
and ingenious and severe attempts to refute them.

(Karl Popper, ”Objective Knowledge”, 1972)

4.1 Introduction

Hydraulic systems represent a steadily growing area of mechanical engineer-
ing with large applications in the automotive industry, in aerospace industry,
in building and agricultural machinery and in machine tools, to name the
most important fields. Large pressures, large forces generated by very compact
equipment and for many cases acceptable control frequencies characterize hy-
draulics, which fundamentally comes from fluid mechanics. As a consequence
we have various simulation tools on the market, which simulate hydraulics,
though usually accompanied by large computing times due to a detailed con-
sideration of all components, especially with respect to fluid compressibility.
Compressibility generates stiff differential equations and steep characteristics.
The basic idea of our treatment replaces steep characteristics by complemen-
tarities, where non-smooth set-valued force laws take the place of smooth, but
steep single-valued forces [23].

In hydraulic networks we find such a complementarity behavior in con-
nection with check valves, with servo valves and with cavitation in fluid-air-
mixtures. A check valve for example might be open, then we have approxi-
mately no pressure drop, but a certain amount of flow rate. Or a check valve
might be closed, then we have a pressure drop, but no flow rate. A small
amount of air in the fluid will be compressed by a large pressure to a ne-
glectable small air volume, but for a very small pressure the air will expand
in a nearly explosive way, a behavior, which can be approximated by a com-
plementarity. The replacement of steep characteristics by complementarities
in connection with the neglection of fluid compressibility for small volumes
reduces computing time by 3-4 orders of magnitudes, which has been proven
several times by simulation of very large hydraulic systems. We shall give
examples ([195], [192]).
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With respect to compressibility we need to be cautious, nevertheless.
Fluid nets can be approximately represented by two-terminal elements or
by quadrupoles depending on the compressibility influence. The characteris-
tic compressibility measure in form of the fluid capacitance is proportional
to the fluid volume and inversely proportional to the fluid pressure of the
fluid line under consideration, or the other way around, proportional to the
fluid line volume and inversely proportional to the fluid density multiplied by
the square of the fluid velocity of sound. The fluid volumes of hydraulic nets
are usually very small leading also to very small capacitances, several orders
of magnitude smaller than fluid resistance or fluid inductance. Therefore it
makes not much sense to model such capacitances as representatives of com-
pressibility, only to be on the safe side. We must check it and consider only
really large fluid volumes with respect to compressibility (see also [174]).

Borchsenius presents a nice example for illustrating the influence of com-
pressibility [23]. According to Figure 4.1 we have a simple system with an oil
storage, a fluid line and a hydraulic cylinder. We want to investigate the in-
fluence of compressibility. The fluid storage has 15 bar, compressibility in the
fluid line will be neglected, in the cylinder not, and the position of the piston
is given with the coordinate x, its pressure is p. The volume of the cylinder
couples the fluid line with the piston thus exhibiting features of a hydraulic
joint. The piston is loaded by two forces, the pressure force on the left and
the spring force on the right side. The simulation starts at x=0, the left end
of the cylinder.

Fig. 4.1: A Simple Example for the Compressibility Effects

We model the system with and without compressibility. Due to the pres-
sure in the storage we get a flow Q into the cylinder, which has the volume V.
The piston with the cross-secton AP moves with velocity vP . Compressibility
is taken into account by the module E. For the pressure change ṗ we get

ṗ =
E

V
(Q−AP vP ) =

1
ε
(Q−AP vP ) with ε =

V

E
(4.1)

The compressibility module of oil is about E = 104bar = 109Pa. Therefore
the value of ε = V

E becomes very small, at least for most of the fluid volumes
in a hydraulic system, finally leading to very high frequencies. On the other
hand we get for the incompressible case no pressure change with time and a



4.1 Introduction 189

simple quasistatic equation

Q−AP vP = 0, (4.2)

which corresponds to Kirchhoff’s nodal equation as known from electrical nets.
The simulation results reflect the above arguments (Figure 4.2). Compress-

ibility does not influence the piston position, and it produces only some small
oscillations around the mean value of the pressure. These high frequency os-
cillations are usually far away from the frequency range interesting for the
system’s operation. From this point of view they can be neglected for most
practical cases. But it should be examined by some simple estimates as those
of the two equations (4.1) and (4.2).
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Fig. 4.2: Results for the Example of Figure 4.1, dotted line-compressible, solid
line-incompressible

In summarizing we find a potential for reducing computing time with re-
spect to hydraulic systems by establishing another type of theoretical models
and by introducing other approximate neglections compared to classical the-
ories.

The first aspect is compressibility, which does not possess influence for
small volumes generating there extremely large frequency oscillations, which
in most cases can be neglected. Criteria are the volume size of a component
in comparison with adjoining volumes, for example fluid lines in comparison
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with cylinder volumes, and the generation of high frequency oscillations far
away from the operating frequencies of the system.

The second aspect concerns smooth non-linearities appearing in compo-
nents like valves, orifice plates, leading or guiding edges and the like. Very
often it is possible to replace such nonlinear characteristics by a linear ap-
proach with respect to the operating point. Smooth nonlinearities are also
connected with a change of pressure and temperature of the fluid itself. Den-
sity, viscosity and compressibility depend on that, especially in domains of
small pressure.

The third aspect concerns non-smooth, or better approximate non-smooth
features of hydraulic systems. Examples are cylinders with a stop for the pis-
ton, valves and guiding edges, friction in cylinders leading to stick-slip phe-
nomena and cavitation. They all can be approximated by complementarities,
which we shall do in the following sections.

4.2 Modeling Hydraulic Components

In order to set up a mathematical model we assume, that the hydraulic system
can be considered as a network of basic components. These components are
connected by nodes. In conventional simulation programmes these nodes are
very often assumed to be elastic. In the case of relatively large volumes this
assumption is reasonable whereas for very small volumes incompressible junc-
tions, with unilateral or bilateral behavior, are a better approach. Complex
components like control valves can be composed of elementary components
like lines, check valves and so forth. In the following a selection of elementary
components is considered. It is shown how the equations of motion are derived
and how they are put together to form a network.

4.2.1 Junctions

Junctions are hydraulic volumes filled with oil. The volumes may be considered
as constant volumes or variable volumes as show in Figure 4.3. Junctions with
variable volume are commonly used for hydraulic cylinders.
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Fig. 4.3: Hydraulic junctions with constant and variable volume
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4.2.1.1 Compressible Junctions

Assuming compressible fluid in such a volume leads to a nonlinear differential
equation for the pressure p. Introducing the pressure-dependent bulk modulus

E(p) = −V dp

dV
(4.3)

yields a differential equation for the pressure in a constant volume

ṗ =
E

V

∑
Qi (4.4)

and

ṗ =
E

V
(Q1 −AK ẋ) (4.5)

in a variable volume, respectively. A common assumption with respect to the
fluid properties considers a mixture of linear elastic fluid with a low fraction
of air. Figure 4.4 shows the calculated specific volume of a mixture of oil and
1 % air (at a reference value of 1 bar). For high pressure values the air is
compressed to a neglectable small volume whereas the air expands abruptly
for low pressure values, see Figure 4.4 with the pressure p versus the spe-
cific volume v. This figure illustrates also that the curve for the pressure in
dependency of the specific volume can be very well approximated by a uni-
lateral characteristic. If we would choose a smooth model we would get stiff
differential equations 4.4, 4.5 for very small volumes V → 0.
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Fig. 4.4: Fluid expansion for low pressures

4.2.1.2 Incompressible Junctions

To avoid stiff differential equations for small volumes it is obviously possible
to substitute the differential equations by algebraic equations. Assuming a
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constant specific volume of the incompressible fluid yields for a constant and
a variable volume V, respectively, the following algebraic equations:∑

Qi = 0, (constant V),
∑

Qi −AK ẋK = 0, (variable V). (4.6)

These equations consider neither the elasticity nor the unilaterality of the
fluid properties. A fluid model covering both elasticity and unilaterality is
described in section 4.2.1.1. In the case of neglectable small volumes the fluid
properties can be approximated by a unilateral characteristic. As illustrated in
Figure 4.4 a unilateral law can be established by introducing a state variable

V̄ = −
t∫

0

∑
Qdτ (4.7)

which represents the total void volume in a fluid volume. Obviously this void
volume is restricted to be positive, V̄ ≥ 0. As long as the pressure value is
higher than a certain minimum value pmin, the void volume is zero. A void
formation starts when the pressure p approaches the minimum value pmin.
This idealized fluid behavior can be described by a complementarity.

V̄ ≥ 0, p̄ ≥ 0, V̄ p̄ = 0. (4.8)

The pressure reserve p̄ is defined by p̄ = p − pmin. The complementarity can
be put by differentiation on a velocity level.

˙̄V =
∑

Qi ≥ 0 , (4.9)

The equality sign represents the Kirchhoff equation stating that the sum of
all flow rates into a volume is equal to the sum of all flow rates out of the
volume. If the outflow is higher than the inflow the void volume increases,
˙̄V > 0. Substituting the flow rates Q into a fluid volume by the vector of the
velocities within the connecting lines and their corresponding areas,

v =


v1

v2

...
vi

 , W =


A1

A2

...
Ai

 (4.10)

results in a unilateral form of the junction equation

−W Tv ≥ 0 . (4.11)

It is evident that fluid volumes with non-constant volume can be put also
into this form by extending the velocity and area vectors by the velocity and
the area of the piston, respectively. As long as the pressure is higher than
the minimum value, p̄ > 0, the unilateral equation 4.11 can be substituted
by a bilateral equation W Tv = 0. In this case it is necessary to verify the
validity of the assumption p̄ > 0 because the bilateral constraint alone does
not prevent negative values of p̄.
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4.2.2 Valves

In the following we shall give some examples of modelling elementary valves
and more complex valves as a network of basic components. Physically, any
valve is a kind of controllable constraint, wether the working element be a
flapper, ball, needle or the like.

4.2.2.1 Orifices

Orifices with variable areas are used to control the flow in hydraulic systems
by changing the orifice area. As illustrated in Figure 4.5 the pressure drop
in an orifice shows a nonlinear behavior. The classical model to calculate the
pressure drop ∆p in dependency of the area AV and the flow rate Q is the
Bernoulli equation.

∆p =
ρ

2

(
1

αAV

)2

Q |Q| (4.12)

The factor α is an empirical magnitude with regard to geometry- and
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Fig. 4.5: Pressure drop in an orifice

Reynoldsnumber-depending pressure losses. It must be determined experi-
mentally.

As long as the valve is open the pressure drop can be calculated as a
function of the flow rate and the valve area, eq. 4.12. As shown in Figure
4.5 the characteristic becomes infinitely steep when the valve closes. In most
commercial simulation programmes this leads to numerical ill-posedness and
stiff differential equations for very small areas. In order to avoid such numer-
ical problems the characteristic for the pressure drop of closed valves can be
replaced by a simple constraint equation:

Q = Av = 0, or Av̇ = 0. (4.13)
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This constraint has to be added to the system equations when the valve
closes. In the case of valve opening it has to be removed again. It leads to a
time-varying set of constraint equations. In order to solve the system equations
one has to distinguish between active constraints (closed valves) and passive
constraints (opened valves). The last ones can be removed. The constraint
equations avoid stiff differential equations. On the other hand they require to
define active and passive sets.

4.2.2.2 Check Valves

Check valves are directional valves that allow flow in one direction only. It
makes no sense trying to describe all existing types, so only the basic principle
and the mathematical formulation is presented. Figure 4.6 shows the principle

���!"���� #$�
��%

Fig. 4.6: Check valve

of a check valve with a ball as working element. Assuming lossless flow in one
direction and no flow in the other direction results in two possible states:

• Valve open: pressure drop ∆p = 0 for all flow rates Q ≥ 0
• Valve closed: flow rate Q = 0 for all pressure drops ∆p ≥ 0

The two states define also a complementarity in the form

Q ≥ 0, ∆p ≥ 0, Q∆p = 0. (4.14)

Prestressed check valves with springs show a modified unilateral behavior, see
Figure 4.7. The pressure drop curve of a prestressed check valve can be split
into an ideal unilateral part ∆p1 and a smooth curve ∆p2 considering the
spring tension and pressure losses, see Figure 4.8

4.2.2.3 Combined Components

Many hydraulic standard components are combinations of basic elements.
Since the combination of unilateral and smooth characteristics yields either
non-smooth or smooth behavior it is worth to consider such components with
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Fig. 4.7: Check valve characteristics
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Fig. 4.8: Superposition of unilateral and smooth curves

a smooth characteristic separately. As an example we consider a typical com-
bination of a throttle and a check valve. Figure 4.9 shows the symbol and
the characteristics of both components. Since the flow rate of the combined
component is the sum of the flows in the check valve and the throttle, the sum
of the flow rates is a smooth curve. In such cases it is convenient to model the
combined component as a smooth component (in the mechanical sense as a
smooth force law).

∆p
∆p

∆p∆p

Q

Q

Q1 Q2

Throttle Check valve Combined
component

Fig. 4.9: Combination of smooth and non-smooth components
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4.2.2.4 Servovalves

As an example for a servovalve we consider a one-stage 4-way-valve. It is a
good example for the complexity of the networks representing such compo-
nents like valves, pressure control valves, flow control valves and related valve
systems. Multistage valves can be modelled in a similar way as a network
consisting of servovalves and pistons, which themselves are working elements
of a higher stage valve. Figure 4.10 shows the working principle of a 4-way
valve. Moving the control piston to the right connects the pressure inlet P
with the output B and simultaneously the return T with the output A. If one
connects the outputs A and B with a hydraulic cylinder, high forces can be
produced with small forces acting on the control piston. The valve works like
a hydraulic amplifier.

A BPT

Fig. 4.10: 4-way valve

A

B

P T

AV 1 AV 2

AV 3AV 4

AV 1,V 3 AV 2,V 4

QA

QBQP QT

v1

v2

v3

v4p1

p2

p3

p4

xδ

AV i

1

Fig. 4.11: Network model of a 4-way valve

Figure 4.11 shows a network model of the 4-way valve. The areas of the
orifices AV 1 . . . AV 4 are controlled by the position x of the piston. The orifice
areas are assumed to be known functions of the position x. The parameter δ
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covers a potential deadband. To derive the equations of motion the lines in the
network are assumed to be flow channels with cross sectional areas A1 . . . A4.
The fluid is incompressible since the volumes are usually very small, and the
bulk modulus of the oil is very high. The oil masses in the lines are m1 . . .m4.
Denoting the junction pressures with pi and the pressure drops in the orifices
with ∆pi, we get the equations of momentum as

m1v̇1 −A1p1 + A1p2 + A1∆p1 = 0
m2v̇2 −A2p2 + A2p3 + A2∆p2 = 0
m3v̇3 −A3p3 + A3p4 + A3∆p3 = 0
m4v̇4 + A4p1 −A4p4 + A4∆p4 = 0

(4.15)

which can be expressed as

Mv̇ +Wp+W V∆p = W a∆pa, (4.16)

where v is the vector of flow velocities, p the vector of junction pressures,
∆p the vector of pressure drops in the closed orifices and ∆pa the vector of
pressure drops in the open orifices. The mass matrix M = diag(mi) is the
diagonal matrix of the oil masses. The matrix

W =


−A1 A1 0 0

0 −A2 A2 0
0 0 −A3 A3

A4 0 0 −A4

 (4.17)

is used to calculate the forces acting on the oil masses in the channels resulting
from the junction pressures p. The junction equations are given by

QP

QA

QT

QB

+


−A1 0 0 A4

A1 −A2 0 0
0 A2 −A3 0
0 0 A3 −A4



v1

v2

v3

v4

 = 0 (4.18)

which can be written in the form

Qin +W Tv = 0 . (4.19)

In order to determine the pressure drops ∆pi one has to distinguish be-
tween open and closed orifices to avoid stiff equations, see section 4.2.2.1. In
case of open orifices the pressure drop can be calculated directly subject to the
given flow rates and the orifice area, whereas closed orifices are characterized
by a constraint equation.

∆pai = f (vi, AV i(x)) open orifices i
Ajvj = 0 closed orifices j (4.20)

The constraint equations for the closed orifices are collected to give

W T
V v = 0, (4.21)

where the number of columns of W V is the number of closed orifices. Note
that this matrix has to be updated every time an orifice opens or closes.
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4.2.3 Hydraulic lines

Hydraulic lines or hoses are used to connect components. For long lines the
dynamics of the compressible fluid has to be taken into account. In order
to get a precise system model, it is necessary to investigate pressure wave
phenomena as well as the pipe friction. The pipe friction is rather complicated
since the velocity profile is not known a priory. In the case of laminar flow it is
possible to derive analytical formulas for a uniform fluid transmission line in
the Laplace domain. The so-called 4-pole-transfer-functions relate the pressure
and the flow at the input and at the output of the line in dependency of
Bessel functions. Many attempts have been made to approximate the transfer
functions with rational polynomial functions which can be re-transformed into
the time domain. Unfortunately the form of the equations of these models is
not compatible with the equations in the framework of this paper, because
the coupling with constraint equations might lead to numerical instability due
to violation of the principle of virtual work.

In the following a time domain modal approximation is presented. This
model can be extended to cover frequency dependent friction as well. The
starting point are the linearized partial differential equations for one-dimensional
flow. The coordinates are shown in Figure 4.12. Partial derivatives of a arbi-
trary coordinate q are denoted by ∂q

∂t = q̇ and ∂q
∂x = q′, respectively.

x
u(x

, t)

αpA

pE

Fig. 4.12: Coordinates for one-dimensional flow

The mass balance

ṗ +
E

A
Q′ = 0 (4.22)

with the flow rate Q = Au and the introduced state variable

x̃ =
1
A

t∫
0

Qdτ ; ˙̃x =
Q

A
; ¨̃x =

Q̇

A
(4.23)

can be solved analytically with respect to the pressure p:
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p(x, t) = −E

A

t∫
0

Q′dτ + p0(x) = −E
t∫

0

˙̃x′dτ + p0(x) = −Ex̃′ + p0(x). (4.24)

The term p0(x) represents the initial pressure distribution in the line. The
equation of momentum

ρu̇ + p′ + fR + fg = 0 (4.25)

with a friction force fR and a gravity force fg can be transformed with eq.
4.23 to

ρ¨̃x− Ex̃′′ + p′0 + fR + fg = 0 . (4.26)

Multiplying eq. 4.26 with an arbitrary test functions w(x) and integrating
over the length L of the line yields the weak formulation

ρ
∫ L
0

¨̃xw(x)dx − E
∫ L
0 x̃′′w(x)dx +

∫ L
0 p′0(x)w(x)dx+

+
∫ L
0 fRw(x)dx +

∫ L
0 fgw(x)dx = 0 ∀ w(x)

(4.27)

where the term wx̄′′ can be integrated by parts to fit the boundary conditions.∫ L
0
wx̄′′dx = w x̄′|L0 −

∫ L
0
w′x̄′dx =

= wL
1
E (p0(L)− pE)− w0

1
E (p0(0)− pA)−

∫ L
0
w′x̄′dx

(4.28)

pA, pE are boundary pressures and w0, wL are the values of the test function
w(x) at the boundaries (x = 0, x = L). For the sake of simplicity the initial
pressure distribution is assumed to be uniform, p0(x) = p0 = const. In order to
approximate the partial differential equations by a set of ordinary differential
equations we introduce spatial shape functions w(x) and a separation of the
variables x and t,

x̄ ≈ q(t)Tw(x) (4.29)

According to Galerkin’s method the shape functions w(x) are the same func-
tions used in the weak formulation, eq. 4.27. The discretized equations of
motion are then

ρ
∫ L
0 ww

Tdxq̈ + E
∫ L
0 w

′w′T dxq +
∫ L
0 fRwdx +

∫ L
0 fgwdx =

= w0pA − wLpE − (w0 − wL) p0
(4.30)

which can be transformed with wA = Aw0, wE = AwL to yield

Mq̈ +Kq +Wp = −A
L∫

0

fRwdx −A

L∫
0

fgwdx− (wA −wE) p0 (4.31)

with the abbreviations
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M = ρA
∫ L
0
wwTx (mass matrix)

K = EA
∫ L
0
w′w′T (stiffness matrix)

W = (−wA wE) .
(4.32)

The structure of the relation (4.31) corresponds to the equations of motion
of a mechanical system. Suitable functions w(x) are harmonic functions and
B-spline functions, as numerical experiments confirmed.

4.2.3.1 Frequency dependant friction

In case of laminar flow the cross-sectional velocity profile of oscillatory flow
can be calculated analytically as functions of Bessel functions. It turns out
that the gradient of the velocity becomes higher with increasing frequencies ω.
Figure 4.13 shows calculated profiles for dimensionless frequencies ω

νR where
R is the radius and ν the kinematic viscosity.

ω
ν
R = 1 ω

ν
R = 10 ω

ν
R = 100

un(r)

Fig. 4.13: Normalized velocity profiles for oscillatory flow

For low frequencies the profile is the well-known parabolic Hagen-Poiseuille
profile for stationary flow. Since the friction force depends on the gradient at
the pipe wall the friction force becomes higher with increasing frequency.
Therefore the increasing friction has to be taken into account by a correction
of the steady-state friction factor. It can be shown that the pipe friction for a
parabolic velocity profile can be covered by a damping matrix D0

Mq̈ +D0q̇ +Kq = h (4.33)

with

D0 = 8µπ

L∫
0

wwTdx. (4.34)

Since the parabolic velocity profile is valid only for low frequencies this damp-
ing matrix has to be corrected. In the Laplace domain a friction correction
factor can be derived as
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N =

U
r |R
Ū

− 4
R

= −R

8
γ

(
J−1(γR)− J1(γR)

J2(γR)

)
(4.35)

where

γ =
√
−ρs
µ

. (4.36)

With the dimensionless frequency kH =
√

ω
νR the following approximation of

the real part of eq. 4.35 can be given (see [23]):

N(kH) =
{

1 + 0.0024756 · kH3.0253322 kH ≤ 5
(N(5)− 0.175 · 5) + 0.175 · kH kH > 5

(4.37)

In order to correct the damping matrix the eigenvalues λi and the eigenfre-
quencies

ωi =
√
λi (4.38)

of the matrix M−1K are calculated. The eigenvectors are collected in the
orthogonal modal matrix

Φ = (Φ1,Φ2, . . . ,Φn) . (4.39)

With a diagonal correction matrix N̄ = diag(N(ωi)) a corrected modal damp-
ing matrix is introduced in the form

Dm = ΦTD0Φ · N̄ (4.40)

which can be re-transformed to yield

D =
(
ΦT
)−1

DmΦ
−1 (4.41)

With this matrix the friction term in equation (4.33) can be substituted:

A

L∫
0

fRwdx = Dq̇ (4.42)

4.3 Hydraulic Networks

The above collection of hydraulic components represents a selection of some
important elements only. This selection may always be extended. For our pur-
poses it is sufficient to present a principal method for establishing hydraulic
nets. Hydraulic components are described by the state variables velocity, pis-
ton position, pressure and the like. We collect these variables in two state
vectors.
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• All state variables which are given by ordinary differential equations with-
out any constraints are collected in a vector x ∈ IRnx

• The vector v ∈ IRnv contains velocities which are described by momentum
equations with unilateral and bilateral constraints.

Summarizing the equations of all components results in the following set
of equations.

Momentum equations for v

Mv̇ −Wp−W V pV − W̄
∗
p̄ = f(t,v,x) ∈ IRnv (4.43)

Ordinary differential equations for x

ẋ = g(t,x,v) ∈ IRnx (4.44)

Bilateral junction equations

W Tv +w(t) = 0 ∈ IRnI (4.45)

Constraints for closed valves/orifices

W V
Tv = 0 ∈ IRnV a (4.46)

Unilateral constraints

Q̄ ≥ 0, p̄ ≥ 0, Q̄p̄ = 0, with Q̄ = W̄
T
v ∈ IRn̄a (4.47)

4.3.1 Solutions

In a first step we combine the active bilateral constraint equations 4.45, 4.46
to give

W T
Gv +wG = 0 . (4.48)

The number of independent constraints is the rank of the matrix WG,

r = rank(WG) (4.49)

The constraint equations can be fulfilled by introducing minimal coordinates

vm ∈ IRnmin where nmin = nv − r (4.50)

in the form

v = v (vm, t) = Jvm + b(t) . (4.51)

The Jacobian J and the vector b can be calculated numerically by a singular
value decomposition of the matrix WG with the benefit that also dependent
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constraints can be handled. Since the column vectors of the Jacobian are or-
thogonal to the column vectors ofWG we can write the momentum equations
as

JTM
(
Jv̇m + ḃ

)
− JT W̄ ∗

p̄ = JTf (t,x,v) (4.52)

The square matrix JTMJ ∈ IRnmin,nmin is the invertible mass action matrix.
As a next step we derive a linear complementary problem (LCP) for the

unilateral constraint equations. For this purpose we put all active unilateral
constraints on a velocity level and transform eq. 4.47 with eq. 4.51 to

˙̄Q ≥ 0, p̄ ≥ 0, ˙̄QT p̄ = 0, with ˙̄Q = W̄
T
v̇ = W̄

T
Jv̇m + W̄ T

ḃ (4.53)

Together with eq. 4.52 we obtain

˙̄Q = W̄ T
J(JTMJ)−1JT W̄

∗︸ ︷︷ ︸
ALCP

p̄+ (4.54)

+ W̄ T
W TJ(JTMJ)−1JT

(
f −Mḃ

)
+ W̄ T

ḃ︸ ︷︷ ︸
bLCP

(4.55)

This is a standard LCP in the form

˙̄Q = ALCP p̄+ bLCP and ˙̄Q ≥ 0, p̄ ≥ 0, ˙̄QT p̄ = 0, (4.56)

which can be solved using a standard Lemke algorithm. Experience shows that
the Lemke algorithms works reliable in many cases, also for large systems, but
the computing times are long. In the meantime better algorithms are available,
which are based on the ideas of time-stepping and of the Augmented Lagrange
method (see chapter 3.4.4 on page 145). Numerical experiences in other areas
indicate, that on this new basis computing time can be shortened significantly.

With this solution of the complementarity problem the time derivative of
v can be calculated. The evolution of x and v with respect to time is obtained
by a numerical integration scheme, for example a Runge-Kutta-scheme.

4.3.2 Hydraulic Impacts

Some examples for possible impacts in hydraulic systems are:

• Valve closure
• Impacts of mechanical components, for example piston/housing contact
• Condensation of vapor (waterhammer), cavitation

In connection with the use of constraint equations instead of stiff elastic-
ities we must consider multiple impact situations. Due to the algebraic rela-
tionship between some components sudden velocity changes in one component
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may cause also velocity jumps in other components. In order to calculate the
velocities after an impact it is necessary to solve the impact equations for
the complete system. The starting point are the momentum equations 4.52.
We assume as usual an infinitesimal short impact time ∆t → 0 without any
position changes. The integration of the momentum equation 4.52 over the
duration of the impact yields:

t+∆t∫
t

(
JTMJv̇m

)
dt =

t+∆t∫
t

(
JT W̄

∗
p̄+ JTf − JTMḃ

)
dt (4.57)

Denoting the beginning of the impact with − and the end with +, we can
rewrite eq. 4.57 as

JTMJ
(
v+
m − v−m

)
= JT W̄

∗
p̄∆t + JTf∆t− JTMḃ∆t . (4.58)

Introducing unilateral pressure impulses

P̄ =

t+∆t∫
t

p̄ dt = p̄∆t (4.59)

and letting ∆t→ 0 we come out with

JTMJ
(
v+
m − v−m

)
= JT W̄

∗
P̄ . (4.60)

The unilateral constraint equations can be set up for the end of the impact in
the form of a linear complementarity problem

Q̄
+ = W̄ T

J(JTMJ)−1JT W̄
∗︸ ︷︷ ︸

ALCP

P̄ + W̄ T (
Jv−m + b

)︸ ︷︷ ︸
bLCP

Q̄
+ ≥0, P̄ ≥ 0, (Q̄+)T P̄ = 0,

Q̄
+ =W̄ T

v+ = W̄
T
Jvm

+ + W̄ T
b , (4.61)

With the solution vector P̄ of this LCP we can calculate v+
m from eq. 4.60.

Finally we get the velocity vector at the end of the impact as v+ = Jv+
m + b.

4.4 Practical Examples

4.4.1 Hydraulic Safety Brake System

As one example from industry we consider the hydraulic safety brake system
of a fun ride, the free fall tower [23], [192]. It is manufactured by the company
Maurer Söhne GmbH, Munich, Germany. Figure 4.14 shows the tower. Under
normal operation conditions the cabin with the passengers is lifted by a cable
winch to a height of about 60 m. Subsequently the cabin is released and falls
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Fig. 4.14: Free fall tower

down nearly undamped. Before
reaching the ground the normal
brake system stops the cabin softly
via the cable winch. For safety rea-
sons a redundant brake system is
necessary. In the case of a failure of
the normal operating brake or a ca-
ble rupture the safety brake system
has to catch the cabin even under
disadvantageous conditions.

The safety brake system is a hy-
draulic system which moves brake-
blocks via hydraulic cylinders. For
this purpose steel blades are fixed at
the cabin. The steel blades fall into
a guide rail, where the brake-blocks
are fixed. The safety brake system
consists of up to 7 identical mod-
ules with 4 hydraulic cylinders each.
The modules are arranged upon each
other. Figure 4.15 shows the model
of the system. The simulations were
carried out with the computer pro-
gramme HYSIM. As the Figure in-
dicates, the programme HYSIM al-
lows multi-hierarchical modelling of
systems. It means that some com-
ponents can be put together to
form a group, which itself can be
used and duplicated like any elemen-
tary component. Under normal op-
erating conditions the brake-blocks
are moved outwards the guide rail
quickly so that the system is deceler-
ated softly by the winch. Only under
bad conditions the safety brakes stay
closed and the cabin will be stopped
by the friction forces. Due to the
very short opening time of the brake

the hydraulic cylinders move quickly and reach the stop position with high
velocities. The resulting impact forces caused in some cases damage of the
cylinders. In order to reduce the impact forces simulations were carried out.
The aim was to find new values of adjustable parameters such that the im-
pact velocities are reduced and the opening time does not exceed a certain
maximum value.
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Fig. 4.15: HYSIM-model of the hydraulic system

Figure 4.16 shows some simulation results. The impact velocity and thus
the resulting force is significantly high for the Cylinder 1. The reason for
this behavior lies in the different length of the supply line and the different
movement direction (up/down) of the cylinders, i.e. hydraulic and mechanical
asymmetries. The impact velocities can be reduced significantly by increasing
restriction parameters at some valves, as fig. 4.16 shows. This simple measure
has been adopted to the real system and no problems occurred since then.

A comparison of measurement and simulation is given in Figure 4.17. As
the cylinders start moving the pressure increases due to the increasing spring
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Fig. 4.16: Cylinder movement

force of the cylinders. At t ≈ 0, 37s the last cylinders reaches the stop position.
The impact causes a pressure jump.

The model for the drop tower consists of nearly 1000 hydraulic degrees of
freedom, computing time was in the range of less than one hour. A comparison
of the computing time with that of convential and commercial codes results
in a factor of about 6000 to 10000. This large difference for the new model
has been also confirmed by many other problems from industry.

4.4.2 Power Transmission Hydraulics

With growing requirements with respect to fuel economy of automobiles the
significance of automatic transmissions will also increase. As a classical solu-
tion of such transmissions we have the automated gears, today with up to eight
stages, and more recently the applications of CVTs, Continuous Variable
Transmissions, which compete with the classical configurations. Modeling
such components always means modeling the complete system, because the ne-
glection of components might result in an only partly realistic output, though
we may model the complete drive for example in a more rough way so-to-say
around the automatic transmission. Figure 4.18 gives an impression of a five-
stage transmission, and Figure 4.19 depicts the principal configuration of the
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Fig. 4.17: Measured and Calculated Pressure in Supply Line of Cylinders

complete powertrain with the accompanying and necessary gear and motor
management systems on an electronic basis.

Fig. 4.18: Five-Stage Automatic Transmission 5HP24 (Zahnradfabrik
Friedrichshafen ZF [284])

Automatic transmissions, as many other components in cars, are controlled
by complicated hydraulic systems, which supply the switching elements with
the necessary oil pressure [91]. Such hydraulic control units include hydraulic
lines, pressure reducers, control valves, pilot valves, gate valves and dampers,
all arranged within a die cast metal box with an extremely complicated topol-
ogy, see Figure 4.20. Additionally we have some valve types, which convert
electric signals into hydraulic control signals. These electro-hydraulical con-
verters are used as pressure control valves and controlled by pulse-width-
modulated electric signals. Magnetically operated valves close and open fluid
lines by two switching positions, closed and open, and thus by a simple elec-
trical control.
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Fig. 4.20: Hydraulic Con-
trol Unit A6S 440Z/5HP24
(ZF) [91]

For the illustration of the working principles
of a hydraulic control unit we consider switch-
ing from the first to the second gear stage. The
power flows are depicted in Figure 4.21. Going
from the first to the second stage we close hy-
draulically the multiple disc clutch (E) and open
automatically the one-way clutch (FL). The
clutch (A) remains closed during this process.
For this purpose we have left in Figure 4.22 only
those elements of the hydraulic system, which
are needed for this specific switching process un-
der consideration.

Figure 4.22 comprises three units, a power
supply unit, a general control unit and a clutch
control unit. The power supply unit includes a
pump, for bringing the oil from the oil sump to
the hydraulic system, and four pressure reduc-
ers. The pressure valve (HDV) controls the oil
pressure on a level necessary for the system’s
operation. It is additionally supported by the
valve (MOD-V), which will be controlled on its
own side and in a load-dependent way by the

electro-hydraulic element (EDS1). Finally the pressure reducers (DRV1) and
(DRV2) take care for the correct pressures for the adjoining elements.



210 4 Dynamics of Hydraulic Systems

BWK D

A

E
F

CPT
L

BWK D

A

E
F

FL

FL

CPT
L

1. stage

2. stage

hydraulic torque converter

fixed multiple clutch

one-way
clutch

rotary multiple clutch

Fig. 4.21: Force Flow in the First and Second Stage

The second unit is the general control unit. It comprises the electro-
hydraulic converters (EDS1) and (EDS5), the two magnetically operated
valves (MV1) and (MV2) and the switching valve (SV1). The components
(EDS1), (EDS5) and (MV2) are controlled directly by the electronic trans-
mission control system (EGS), they then activate the valves (KVE) and (HVE)
for the clutch (E), Figure 4.22.

These two valves (KVE) and (HVE) are the elements of the third unit,
which includes also the damper (D5). The clutch valve (KVE) represents a
variable pressure reducer tuning the clutch (E) pressure, dependent on the
pressure coming from (EDS5). The holding valve (HVE), also controlled by
(EDS5), puts the clutch pressure after the switching process to the system’s
pressure (holding pressure). The damper (D5) takes care of non-smooth pres-
sure effects and damps them out.

The complete mechanical and hydraulic system together with the power
transmission electronic control system is presented and modeled in all details
in [91]. The models apply the theory as presented above, which due to its
small computing time allows comprehensive parameter investigations. Figure
4.23 depicts some typical results for switching the first to the second gear.
The measurements have been performed by the company ZF, Zahnradfabrik
Friedrichshafen, Germany. The first graph of Figure 4.23 shows the pressure
signals coming from (EDS1) and (EDS5), the second graph the piston posi-
tions of the valves (KVE) and (HVE), the third and the fourth graphs com-
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Fig. 4.22: Hydraulic Scheme for a First/Second Gear Switch

parisons of theory and measurements of the clutch (E) pressure and its piston
position.

Starting with the first graph we recognize that at the beginning of switch-
ing the system pressure will be enlarged to the modulation pressure by the
EDS1-valve (about 2.8 sec, 8 to 13.5 bar). This pressure does not apply to the
clutch at that time, because the line is still closed by (KVE). The EDS5 pres-
sure is enlarged to a so-called quick-acting pressure, which acts on one side of
the clutch valve piston thus opening a guiding edge and allowing oil to flow
into the valve cylinder. Due to its spring force the piston of the clutch valve
does not move before a sufficiently large pressure difference has developed to
overcome the spring force and the static friction effects. After that the clutch
valve cylinder is filled until the multiple clutch system is closed, the rest is
mainly controlled by the two valves (EDS5) and (EDS1).

The last two graphs of Figure 4.23 give also comparisons between the-
ory and measurements. The theory comprises for that case a multibody sys-
tem approach for the complete power transmission system combined with the
transmission hydraulics as shown above and furtheron combined with the elec-
tronic control of the transmission. The curves for clutch pressure and piston
position compare very well, as approved also by many other examples [91],
see also the sections under ”power transmission” starting on page 213.
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Fig. 4.23: Simulation and Measurements for Switching First/Second Gear with
Clutch (E)
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Power Transmission

Die Theorie ist ein Werkzeug, das wir durch
Anwendungen erproben und über dessen
Zweckmäßigkeit wir im Zusammenhang mit
seiner Anwendung entscheiden.

(Karl Popper, Logik der Forschung, 1935)

A theory is a tool which we test by applying it, and
which we judge as to its fitness by the results of its
application.

(Karl Popper, The Logic of Scientific Discovery, 1959)

In the following we shall consider some practical systems originating from a
large variety of industrial applications. It is a selection of problems from in-
dustry, which requires more or less all the elements presented in this book.
All these problems are in the one or other form a matter of ongoing applied
research, which due to their practical aspects take place in both, academia
and industry. Problems coming from that environment are an indispensable
measure for theories and their solutions, at least from the engineering stand-
point of view. Our examples will come from mechanical engineering industry
and with a certain focus from automotive industry.

At the time being we see a competition with respect to several solutions
appearing in the field of power transmission. The classical automatic transmis-
sions with four and up to eight stages compete with the CVTs (Continuous
Variable Transmission) in various forms, like rocker pin chains, push belt sys-
tems and toroidal gears. Practitioners estimate, that we shall get a share of
about 16% for CVTs, the rest mainly for automatic gears either in standard
form or as Dual Clutch Transmissions (DCT). In spite of their larger complex-
ity, including more than 1000 structural parts, automatic gear systems possess
a better efficieny and a large flexibility with respect to possible stage combina-
tions, especially for the dual clutch configurations. In all probability the auto-
matic gear boxes will retain their dominating position [269]. In the following
we shall consider a standard automatic gear box, its Ravigneaux-component
and two types of CVTs, the rocker pin and the push belt configurations.
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5.1 Automatic Transmissions

5.1.1 Introduction

As already indicated, establishing a model of an important machine compo-
nent means establishing a model of the complete machine. We can limit to a
certain extent these models by considering the component we want to have
in all details and by modeling the surrounding machine with a few degrees
of freedom, which nevertheless have to cover all influential frequencies. Mod-
eling the automatic transmission [91] of Figure 4.18 on page 208 therefore
comprises the complete drive train as shown in Figure 4.19 on page 209, the
representation of which is self-explaining. The hydraulic unit has already been
considered in chapter 4.4.2.

BWK D

A

E
F

FL

CPT
L

hydraulic torque converter

fixed multiple clutch

one-way
clutch

rotary multiple clutch

Fig. 5.1: Five-Speed Automatic Transmission, Example 1. Stage,[91]

Clutch A B C D E F
1st Gear x - - - - -
2nd Gear x - - - x -
3rd Gear x - - x - -
4th Gear x x - - - -
5th Gear - x - x - -
R-Gear - - x - - x

Table 5.1: Gear-Clutch
Table

Gear shift operations are carried out by engag-
ing and disengaging different shift elements, which
are normally wet clutches and one-way clutches.
The gear box, schematically shown in Figure 5.1,
consists of three planetary sets, which are con-
nected to each other and to the gear housing by
shafts, clutches and one-way clutches. Each ratio
change is performed by engaging one clutch while
disengaging another as shown in Table 5.1. We dis-
tinguish between two different kinds of gear shift
operations. In the gear box presented above, the
one-way clutch which locks in the first gear, un-
locks automatically during the engagement of the
clutch (E). This kind of gear shift operation is

called one-way clutch gear shifting. The case that the ratio change is per-
formed only by engaging and disengaging wet clutches, is termed overlapping
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gear shifting. In both cases engagement and disengagement of shift elements
are performed simultaneously. Hence, the driving torque in the drive train is
not interrupted while changing the gear ratio.

Some explanations with respect to Figure 5.1 have already been given in
connection with the hydraulic unit of the automatic transmission (Figure 4.21
on page 210). Table 5.1 presents a scheme of the clutches, which have to be
closed for establishing the various stages (character ”x” for closed). Together
with Figure 5.1 the possible combinations are obvious.

To model the complete drive train we work on the following assumptions,
which have been derived from the real system as shown in Figure 4.18 on
page 208. A drive train with automatic transmission generally consists of five
main components: engine, torque converter, gear box, output train and vehi-
cle. Each component of the drive train can be considered as a rigid multibody
system. The partitioning into single bodies is often given by their technical
function. In case of an elastic shaft, a discretization of the body is performed
using the stiffness and mass distribution as criteria. Thereby, only torsional
degrees of freedom are considered. The rigid bodies are connected to the in-
ertial environment and to each other by ideal rigid joints, clutches and force
elements.

The engine for example is modelled as a rotating rigid body. The drive
train excitation caused by the engine is described by its torque, which can
be interpolated from a measured two-dimensional characteristic map as a
function of the throttle opening and the angular velocity of the engine. The
hydrodynamic torque converter consists of a pump connected to the input
shaft, a turbine connected to the output shaft, and an impeller born in the
housing by a one-way clutch. Investigations of the vibrational behavior of
the converter can be performed using a detailed model with four degrees of
freedom based on a model given in literature, which is still one of the really
realistic models of limited size [97].

The gear box consists of three planetary sets, which are connected to
each other and to the gear housing by shafts, clutches or one-way clutches.
Assuming that the gear wheels are rigid, the kinematics of the planetary gear
can be described using the conditions of pure rolling. The output train consists
of the cardan shaft, the differential gear, the output shafts and the wheels.
The differential gear is used to divert the rotating motion from the drive shaft
longitudinal axis to the output shaft longitudinal axis. The vehicle model takes
into account the vehicle mass, the rolling friction, the driving resistance, the
tire elasticity and damping.

In the following we shall derive in a first step the component models and
then in a second step the system model. The section closes with some typical
results and with comparisons with measurements.
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5.1.2 Drive Train Components

With respect to the engine model we rely on performance maps and ap-
proximate motor dynamics by two degrees of freedom. Figure 5.1.2 depicts
the basic model. With the help of a measured performance map, for example
Figure 5.3, we determine a drive torque MKF depending on the accelerator
position αDK of the driver and on the engine speed φ̇M . This torque MKF

may be reduced during switching by the motor engagement angle β by using
the digital engine electronics (DME), which works in connection with the gear
control electronics (EGS). The measure of reduction depends on the engine
speed and the torque MKF itself.

Due to delays in connection with changes of the throttle valve position,
of the motor control and of the motor speed the engine generates the engine
torque MM also in a delayed manner, an effect, which can be approximated by
a first order delay element with delay time TM , see Figure 5.1.2. This effect

DMEDME DMEEGS

M KF M M

JM

M V

+

+-

- M M S
M M

tTM

MKF

ϕ̇M

ϕ̇M

αDK

αDK

β
βMKF

engine losses

MV (MKF , ϕ̇M )

Fig. 5.2: Model of the Combustion Engine [91]

is important especially with respect to starting and shifting processes. The
engine losses comprise friction in bearings and the drive losses of all auxiliary
equipment. They are expressed by the loss torque MV and of course indirectly
included in the performance characteristics of Figure 5.3. As a final result we
have the torque (MM −MV ) which represents one part of the engine shaft
load, the other part being the torque of cut MMS to the adjacent components.

The moment of inertia of the engine shaft includes the inertia of the shaft
itself, but also in a summarized way the projected inertias of the crankshaft,
the pistons and the piston rods and of all relevant auxiliary equipment. With
this in mind we get for the equations of motion of the combustion engine the
simplified set
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[
JM 0
0 TM

]
︸ ︷︷ ︸
MM

(
ϕ̈M
ṀM

)
︸ ︷︷ ︸
q̈M

=
(

MM −MV

(1− β)MKF −MM

)
︸ ︷︷ ︸

hM

+
(
−MMS

0

)
︸ ︷︷ ︸
hMS

. (5.1)

Hydrodynamic converters are basic components of automatic gear
boxes. They have three elements, a pump, a turbine and an impeller. Their
specific design allows a balancing of even large speed differences, for example
in the case of car starting. The impeller is then fixed to the housing by a
one-way clutch, which opens for small speed differences. Since nearly three
decades hydrodynamic converters include also a special clutch bridging the
converter and operating in a closed, open and in a slip state. With an appro-
priate control such a torque converter lock-up augment comfort and reduce
fuel consumption.

We may go now two ways for modeling the torque converter, either ap-
plying a known theory based on a stream tube approach [97], which is quite
frequently used in industry, or applying performance maps based on measure-
ments. We shall go both ways.

The first model according to [97] considers a stream tube for all three
wheels and averages the partial differential equations for the fluid motion over
the relevant cross-sections. The result of such a one-dimensional stream tube
theory consists in a model with four degrees of freedom, which are indicated
in Figure 5.4. The dynamics approximated by the pump speed φ̇P , the turbine
speed φ̇T , the impeller speed φ̇L and the oil volume flow V̇ can be described
by the following set of equations
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Fig. 5.4: Torque Converter and Model, P=pump wheel, T=turbine wheel,
L=impeller, FL=one-way clutch (free wheel), TL=torque converter lock-up,
[91]
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hW

+
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0


︸ ︷︷ ︸
hWS

(5.2)

with the abbreviation

hV = −a44V̇ ϕ̇P − a45V̇ ϕ̇T − a46V̇
2 − a47ϕ̇

2
P − a48ϕ̇

2
T

−a48ϕ̇P ϕ̇T − a51V̇ ϕ̇L − a52ϕ̇P ϕ̇L − a53ϕ̇T ϕ̇L − a54ϕ̇
2
L .

The torques MPS , MTS and MLS arise from the cuts to the automatic gear
box. All constant values of the aij follow from the converter theory [97], they
depend on geometry, material data, impact-, diffusion- and power losses within
the converter. Their analytical expressions are given in [91]. The torque MPV

is also a loss due to the oil pump of the hydraulic control unit and depending
on the pump speed.

The second model uses measured performance charts. This results in a
simplified model with two degrees of freedom, the pump speed φ̇P and the
turbine speed φ̇T . The equations of motion write
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JP 0
0 JT

]
︸ ︷︷ ︸
MW

(
ϕ̈P
ϕ̈T

)
︸ ︷︷ ︸
q̈W

=
(
−MP −MPV

MT

)
︸ ︷︷ ︸

hW

+
(

MPS

−MTS

)
︸ ︷︷ ︸
hWS

. (5.3)

The torques MP and MT depend on the characteristics of MPC(ν) and µ(ν).
The value of (ν) is the ratio of the turbine and the pump speed (ν) = φ̇T

φ̇P
,

and φ̇PC is the turbine speed as generated by an electromotor. All data can
be seen from Figure 5.5.
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Fig. 5.5: Simplified Converter Model [91]

Automatic transmissions include several planetary gears systems, which
offer a large variety of stage combinations. Furtheron, their rotational symme-
try, their large power density and their compact, coaxial type of construction
represent additional advantages. In the following we shall consider simple mod-
els of classical planetary gears and of Ravigneaux gears, two types which are
frequently used in automatic gear boxes. In the next chapter we shall discuss
Ravigneaux gears in more detail.
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A planetary set consists of the sun-wheel S), the internal gear or annulus
(H) and the planet gears (PL), see Figure 5.6. Sun wheel and internal gear are
usually connected with a central shaft. The planet carrier represents a third
central shaft with an appropriate arrangement of the planet gears. One of the
shafts is used as a support element, the other two shafts as input and output

internal gear

sun wheel

planet gear

planet carrier

Fig. 5.6: Classical Planetary Gear [91]

shafts. The three teeth numbers zH , zS and zP for the internal, the sun and
the planet gears, respectively, determine the possible gear ratios. From this we
can evaluate one unknown gear speed from two given ones, which we choose
to be the sun wheel and the internal gear wheel speeds ϕS and ϕH . We then
can express all other speeds by these two ones yielding

ϕ̇S
ϕ̇ST
ϕ̇H
ϕ̇PL


︸ ︷︷ ︸
q̇PSmax

=


1 0
a1 a2

0 1
a3 a4


︸ ︷︷ ︸
JPS

(
ϕ̇S
ϕ̇H

)
︸ ︷︷ ︸
q̇PS

(5.4)

with a1 = zS
zH + zS

, a2 = zH
zH + zS

, a3 = −zS
zH − zS

, a4 = zH
zH − zS

.

The equations of motion for this simplified model result from a projection of
the momentum and moment of momentum equations into the space of the
minimal coordinates with the help of the Jacobian. We come out with[
JS + a2

1J̄ST + a2
3nJPL a1a2J̄ST + a3a4nJPL

a1a2J̄ST + a3a4nJPL JH + a2
2J̄ST + a2

4nJPL

]
︸ ︷︷ ︸

MPS

(
ϕ̈S
ϕ̈H

)
︸ ︷︷ ︸
q̈PS

=

=
(
MSS − a1MSTS

MHS − a2MSTS

)
︸ ︷︷ ︸

hPSS

(5.5)
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with J̄ST = JST + n mPL r2
ST . The magnitudes Ji,Mk are the moment of

inertia terms and the torques for the elements of the automatic gear box,
mPL is the mass of a planet wheel and rST the radius of the planet carrier.

For establishing the equations of motion of an overall automatic gear it
makes sense to derive for the individual components mechanical and math-
ematical models which are ”as simple as possible but as comprehensive as
necessary” to achieve a good representation of the reality. Therefore we shall
use in a first step for the Ravigneaux gear set an approach with two degrees of
freedom resulting from the assumption of kinematically coupled gear wheels,
but in a further step a more detailed description (see chapter 5.2). Figure

annulus

planet gear 1

planet carrier

planet gear 2

sun wheel 2sun wheel 1

Fig. 5.7: Structure of a Ravigneaux Planetary Gear Set [91]

5.7 gives an impression of the simplified kinematical Ravigneaux model. The
principle of such gears is so-to-say a 1.5-planetary gear set. The planet gear
wheels on the left side of Figure 5.7 have been designed so wide that they
mesh as well with the annulus as with the second planet wheels. Instead of
meshing with a second annulus the second planet gears mesh with the first
planet gears. The combination of two sun wheels, one annulus and two sets of
planet gears results in a large variety of transmission ratio possibilities, espe-
cially with the additional constructive advantage of a compact, rotationally
centered and large torque transmitting unit.

Choosing the minimal velocities qRS = (ϕ̇S1, ϕ̇ST )T we get for all remain-
ing speeds

ϕ̇S1

ϕ̇H
ϕ̇S2

ϕ̇ST
ϕ̇PL1

ϕ̇PL2


︸ ︷︷ ︸
q̇maxRS

=


1 0
−b1 1 + b1
−b2 1 + b2
0 1
−b3 1 + b3
b4 1− b4


︸ ︷︷ ︸

JRS

(
ϕ̇S1

ϕ̇ST

)
︸ ︷︷ ︸
q̇RS

(5.6)
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with b1 = zS1
zH , b2 = zS1

zS2
, b3 = zS1

zP1
and b4 = zS1

zP2
.

Analoguously to the simple planetary gear set we may reduce these equa-
tions to[
J11 J12

J21 J22

]
︸ ︷︷ ︸
MRS

(
ϕ̈S1

ϕ̈ST

)
︸ ︷︷ ︸
q̈RS

=
(

MS1S − b1MHS + b2MS2S

(1 + b1)MHS − (1 + b2)MS2S −MSTS

)
︸ ︷︷ ︸

hRSS

(5.7)

with the abbreviations

J11 =JS1 + b21JH + b22JS2 + b23n1JPL1 + b24n2JPL2

J12 =J21 = −(b1 + b21)JH − (b22 + b2)JS2 − (b23 + b3)n1JPL1 − (b24 − b4)n2JPL2

J22 =(1 + b1)2JH + (1 + b2)2JS2 + J̄ST + (1 + b3)2n1JPL1 + (1 − b4)2n2JPL2

J̄ST =JST + n1 mPL1 r
2
ST1 + n2 mPL2 r

2
ST2

Ji are the mass moments of inertia, n1 and n2 the number of the two planet
gear wheels, mPL1 and mPL2 their masses and rST1 , rST2 the radii of the
planet carriers.

The component output train includes the output shaft, the tires and the
car mass. We shall consider three resistances, the inclination resistance, the
resistance to rolling and the air drag resistance. They write

FSt =mcarg sinα (5.8)
FRoll =µR(ẋcar) sign(ẋcar)(mcarg cosα− FcV − FcH) (5.9)

FL =
1
2
cwAwρLẋ

2
car sign(ẋcar) (5.10)

with the front- and rear wheel lift forces FcV und FcH

FcV =
1
2
cVAwρLẋ

2
car , FcH =

1
2
cHAwρLẋ

2
car . (5.11)

The magnitudes cV und cH are the lift coefficients of front and rear wheel,
ρL is the atmospheric density, α the road inclination, µR the roll resistance
coefficient, cw the air drag coefficient, Aw the front area of the car and ẋcar
the speed of the car. The tire will be modeled by a linear force element with
spring and damper (spring stiffness cR, damping coefficient dR). The tire
torque writes correspondingly

MR = (ϕR −
xcar
rR

)cR + (ϕ̇R −
ẋcar
rR

)dR . (5.12)

Braking is governed by the maximal possible brake torque MBmax and a brake
pedal coefficient kB, which represents a suitable measure for the brake pedal
actuation and has to be measured. The brake torque then writes
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Fig. 5.8: Model of the Output Train including the Car Mass [91]

MB = kB MBmax sign(ẋcar) . (5.13)

Combining these equations results in the equations of motion for the output
train model according to Figure 5.8

[
JR 0
0 mcar

]
︸ ︷︷ ︸

MAb

(
ϕ̈R
ẍcar

)
︸ ︷︷ ︸
q̈Ab

=

(
−MR −MB

ηAb
MR
rR − FRoll − FSt − FL

)
︸ ︷︷ ︸

hAb

+
(
MAbS

0

)
︸ ︷︷ ︸
hAbS

.

(5.14)

The efficiency ηAb takes into account all losses of the output train.

Shafts are very fundamental elements of all machinery. They are some-
thing like a blood circulation system distributing and passing on torques
within a mechanical system. According to the various design possibilities
shafts possess also various influence on the dynamics of the overall system,
especially with respect to the eigenbehaviour expressed by eigenfrequencies
and eigenfunctions. The longitudinal dynamics of a car is mainly concerned
by shifting gears on the one and influenced by the rotational behaviour of the
shafts on the other side. Therefore we shall focus on that rotational behaviour,
where we have to distinguish rigid and elastic shafts.

Rigid shafts are the simplest possible elements of a machine including an
input, an out put torque and a rotational inertia (Figure 5.9). Therefore the
equation of motion is simply

J︸︷︷︸
MSW

ϕ̈︸︷︷︸
q̈SW

= ManS −MabS︸ ︷︷ ︸
hSWS

. (5.15)

Elastic shafts represent the simplest possible case of an elastic multibody
element, as far as rotational linear elasticity is concerned. Assuming only linear
elastic deformations gives us two modeling alternatives, namely applying some
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M anS
M abS

J

ϕ̇

Fig. 5.9: Rigid Shaft Model

Ritz approach according to chapter 3.3.4 on page 124 or just discretizing the
shaft into a limited number of shaft elements. Anyway, the number of shape
functions of a Ritz approach as well as the number of the shaft elements
depend on the frequency range of the system under consideration. In our
case we discretize into n elements interconnected by springs and dampers, see
Figure 5.10.

c d, c d, c d, c d,
M anS

M abS

J J J J

ϕ1 ϕ2 ϕn−1 ϕn

Fig. 5.10: Elastic Shaft Model

The equations of motion for such a chain of torsional elements with (n)
equal bodies and (n-1) equal springs and dampers can be written in the form


J̄ 0 · · · 0
0 J̄ · · · 0
...

...
. . .

...
0 0 · · · J̄


︸ ︷︷ ︸

MEW


ϕ̈1

ϕ̈2

...
ϕ̈n−1

ϕ̈n


︸ ︷︷ ︸
q̈EW

=

=


(ϕ2 − ϕ1) c̄ + (ϕ̇2 − ϕ̇1) d̄

(ϕ3 − 2ϕ2 + ϕ1) c̄ + (ϕ̇3 − 2ϕ̇2 + ϕ̇1) d̄
...

(ϕn+1 − 2ϕn + ϕn−1) c̄ + (ϕ̇n+1 − 2ϕ̇n + ϕ̇n−1) d̄
(ϕn−1 − ϕn) c̄ + (ϕ̇n−1 − ϕ̇n) d̄


︸ ︷︷ ︸

hEW

+


ManS

0
...
0

−MabS


︸ ︷︷ ︸
hEWS

.

(5.16)
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One-way clutches allow a relative rotational motion in one direction
only, whereas the other direction is blocked. They are passive components,
which connect shafts with shafts or shafts with the housing. Within an au-
tomatic power transmission one-way clutches allow shifting without an inter-
ruption of the traction forces and without an influence on the shifting quality
itself, and that with a really simple technology. Figure 5.11 depicts a model of

M anS

M FL

M abS

ϕ̇an ϕ̇ab

Fig. 5.11: Model of a One-Way Clutch [91]

such a one-way clutch, which includes some inertias of the input and output
parts and in addition unilateral constraints. The state of the clutch is given
by its relative rotational speed

ġFL = ϕ̇an − ϕ̇ab, (5.17)

with non-negative values in the free direction. The one-way clutch possesses
two states, which exclude each other. If we have the same speed on both sides,
input and output, the clutch is blocked and transmits a positive constraint
torque MFL > 0 from input to output. For this case ġFL = 0. If we have a pos-
itive relative speed ġFL > 0, then the one-way clutch moves without load and
therefore MFL = 0. This exclusion can be formulated as a complementarity
in the form

ġFL ≥ 0 ; MFL ≥ 0 ; MFL ġFL = 0 . (5.18)

Together with this inequality constraint we have the equations of motion(
Jan 0
0 Jab

)
︸ ︷︷ ︸

MFL

(
ϕ̈an
ϕ̈ab

)
︸ ︷︷ ︸
q̈FL

=
(

ManS

−MabS

)
︸ ︷︷ ︸
hFLS

+
(

1
−1

)
︸ ︷︷ ︸
w̄FL

MFL , (5.19)

where the constraint vector w̄FL follows from a differentiation of equation
(5.17)

w̄FL =
(
∂ġFL
∂q̇FL

)T
. (5.20)

The quantities Jan and Jab are the mass moments of inertia of the input and
output sides of the one-way clutch, respectively.
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Every automatic transmission possesses a variety of multiple clutches.
We shall consider such clutches in detail in another chapter (see [91]). For the
system analysis performed here it will be sufficient to descibe multiple clutches
by a simple three DOF model, including oil effects. Multiple clutches are
controled hydraulically, they transmit torques between gear components. We
shall approximate this behaviour by the model of Figure 5.12, which includes
inertias Jan and Jab on both sides and a friction constraint. The relative

M anS M K M abS

ϕ̇an ϕ̇ab

Fig. 5.12: Simple Model of a Multiple Clutch

rotational speed

ġK = ϕ̇an − ϕ̇ab, (5.21)

is zero for no-slip (ġK = 0) and not zero for sliding (ġK �= 0). For the no-
slip stuation the clutch torque can be evaluated from the oil pressure and a
suitable friction law, for example by Stribeck graphs. We get

MK = −µG(ġK)(pAK − FTF )rmnR sign(ġK). (5.22)

The quantity AK is the effective piston area, FTF the restoring force of the
cup spring, rm the averaged radius of the friction plane, nr the number of the
friction planes and µG(ġK) the friction coefficient of sliding. The constraint
torque for no-slip follows from a set-valued force law, which in addition has its
limitation by the oil pressure in the cylinder defining some maximum possible
torque:

−µH(pAK − FTF )rmnR ≤MK ≤ µH(pAK − FTF )rmnR (5.23)

µH is the no-slip coefficient.
According to chapter 4.2 and equation (4.4) on page 191 we can approxi-

mate the relation of oil pressure and oil flow by

ṗ =
E

VK
Q , (5.24)

where VK is the oil volume, E the oil compressibility depending on the pressure
and the air percentage solved in the oil. Altogether the simplified clutch model
is described by the following equations of motion
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0 Jab 0
0 0 1


︸ ︷︷ ︸

MK

 ϕ̈an
ϕ̈ab
ṗ


︸ ︷︷ ︸
q̈K

=

 ManS

−MabS

0


︸ ︷︷ ︸

hKS

+

 0
0

E
VK

Q


︸ ︷︷ ︸
hK

+

 1
−1
0


︸ ︷︷ ︸
w̄K

MK (5.25)

with the unilateral friction law

ġK = 0 =⇒ |MK | ≤ µH(pAK − FF )rmnR,
ġK < 0 =⇒ MK = µG(ġK)(pAK − FF )rmnR, (5.26)
ġK > 0 =⇒ MK = −µG(ġK)(pAK − FF )rmnR,

which is as a matter of fact a set-valued torque law. The constraint vector
w̄K is defined by

w̄K =
(
∂ġK
∂q̇K

)T
. (5.27)

5.1.3 Drive Train System

The system equations of motion and the appropriate equality and inequal-
ity constraints follow from a suitable combination of the equations of motion
of all components [91]. We consider a drive train with n components, which
are interconnected by m constraints. Each component has been modeled by a
set of equations

M iq̈i = hi + hiS +W iλi, (5.28)

see the relations evaluated above. Then the overall equations of motion write
quite formally

M1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · ·M i · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · ·Mn


︸ ︷︷ ︸

Mm



q̈1
...
q̈i
...
q̈n


︸ ︷︷ ︸
qm

=



h1

...
hi
...
hn


︸ ︷︷ ︸
hm

+



hS1

...
hSi

...
hSn


︸ ︷︷ ︸
hSm

+

+



W 1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · ·W i · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · ·W n


︸ ︷︷ ︸

Wm



λ1

...
λi
...
λn


︸ ︷︷ ︸
λ

. (5.29)
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We have two possibilities to interconnect the components, either by cut forces
or directly by kinematic constraints. We choose the second possibility. In the
case of drive trains these connecting constraints are not only, as always, of
kinematic nature, but also linear in the generalized coordinates describing
the system. As a rule we are not able to find a complete set of generalized
coordinates describing a large system. We usually can define a set q of inde-
pendent coordinates and a second set qd of dependent coordinates. Furtheron
we define qm = q + qd.

With the assumption, or better the experience, of a linear relationship of
the constraints Φ(qm) with respect to the coordinates qm we can simply write

Φ(qm) =
∂Φ(qm)
∂qm

qm = Kqm = 0 and K1 q +K2 qd = 0 , (5.30)

which enables us to express qd as a function of q, namely qd = −K−1
2 K1q.

On the other hand we may express the coordinate vector qm by the relation

qm = P

(
q
qd

)
= P

(
E

−K−1
2 K1

)
︸ ︷︷ ︸

J

q , (5.31)

which gives an expression for the overall Jacobian. The matrix P represents
a permutation matrix arranging the coordinates q and qd in the right way.
After that we project the equations of motion (5.29) into the space of the
minimal coordinates q, which yields

JTMmJ︸ ︷︷ ︸
M

q̈ = JThm︸ ︷︷ ︸
h

+JTWmλ . (5.32)

These equations include the constraints and exclude the constraint forces at
the various cut points [91].

The equations of motion (5.32) have to be supplemented by the constraints.
With respect to equality constraints this is no problem, with respect to in-
equality constraints we need to take into consideration the rules as discussed
in the chapters 3.1.2 on page 89, 3.4 on page 131, 3.5 on page 158 and 3.4.4
on page 145. With regard to a more detailed investigation of the hydraulic
control system we also must consider the equations of chapter 4 on page 187.
The combination of all constraints is usually straightforward, but needs spe-
cial attention concerning the choice of the numerical algorithms involved. Haj
Fraj [91] still worked with Lemke’s algorithm, and had success with it. Today
we would apply the Augmented Lagrange method in combination with the
prox-approach [64].

It should be noted that the above presentation gives only an impression
how to model a drive train system. Haj Fraj [91] goes one step further and
establishes a program code control system, which allows to investigate any
combination of mechanics, hydraulics and electronics of a drive train with an
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automatic transmission, as well in an extremely detailed form as in an ex-
tremely simplified way. In the following we shall give some verification results
using a medium sized model.

5.1.4 Measurements and Verification

We consider the system of Figure 5.13, which describes the components nec-
essary to achieve some realistic results for the longitudinal dynamics of an
automobile. We shall evaluate a shifting process from standstill to the third
gear stage under full load. The overall system includes four modules: driver,
control, hydraulics and drive train mechanics. All components have been ex-
plained in the preceding chapters, also the hydraulics in chapter 4 on page
187.

clutch Eclutch E

clutch Dclutch D

planet set 2planet set 2
planet set 3planet set 3planet set 1planet set 1

one-way clutchone-way clutch

converter modelconverter model

engine modelengine model

cardan
wave

cardan
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output
shaft

output
shaft

iHAGiHAG

differential
gear

differential
gear

car inertiacar inertia

wheelwheel
rimrim

drive traindrive train

clutch Aclutch A

EGS-signalsEGS-signals

motor controlmotor control

EDS 1EDS 1 EDS 2EDS 2

EDS 5EDS 5

simplified hydraulicssimplified hydraulicsdriverdriver

brake pedalbrake pedal

acceleratoraccelerator

brakebrake

tt1tt1

tt2tt2

Fig. 5.13: Medium Sized Model of the Longitudinal Dynamics [91]

These components are a bit simplified to a degree sufficient for modeling
the shifting process. The clutch A connects the turbine shaft with the gear
input shaft. The one-way clutch is blocked for the first gear stage and opens
for the second one, while the clutch E will be closed. Shifting from the second
to the third stage requires closing the clutch D and opening the clutch E.
Therefore we have for this example two types of shifting, one with the one-
way clutch to clutch E and one with two multiple clutches E ⇒ D.
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The driver model is also rather simple including the braking and accel-
eration behaviour. The control module (EGS-signals) comprises all types of
information processing with respect to the automatic transmission. The hy-
draulic model is reduced to two delay time elements connected to the oil lines,
which has turned out to be sufficient for the shifting problem on hand. A more
sophisticated approach is presented in chapter 4.4.2 on page 207. A simplified
clutch model is used, and all existing compliances are taken into consideration.
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Fig. 5.14: Comparison Simulation/Measurement for shifting Standstill⇒Third
Gear [91]

Figure 5.14 depicts some simulation results and also a comparison with
measurements, performed in industry. The agreement is excellent and confirms
this way of modeling. The first three diagrams show the rotational speeds of
the engine, the converter turbine and the gear output, the fourth diagram
presents the output torque, which is proportional to the longitudinal car dy-
namics. At the beginning we have a steep ascent of the torque due to the
large speed difference of engine and converter turbine, which decreases with
increasing car speed. After that we recognize the two shifting events accompa-
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nied by a speed ascent and some torque oscillations around the shifting event.
They need to be small, otherwise they would influence comfort considerably.

5.1.5 Optimal Shift Control

Shift control can only be performed during a short phase, which allows relative
speed between the participating clutches. The control possibilities end with
the synchronous point. But as a consequence of the shifting process we get
acceleration changes, defined by the time derivative of the acceleration called
jerk, and these changes have to be kept small for comfort reasons. We achieve
that by control, but with the problem that beyond the synchronous point it
is not possible to control jerk.

The problem can be reduced considerably by the idea, to implement ex-
actly at the end of the controllable phase, namely at the synchronous point,
a kind of a moment of momentum kick, which influences the dynamics after
the synchronous point in such a way, that jerk is suppressed as far as pos-
sible [91]. In the following we shall present an approach based on Bellman’s
dynamic programming theory [16], [92], [190].

Designing such a model-based control requires a simplified model of the
drive train including all components necessary to describe the shifting process,
but neglecting all parts and components not contributing very much to this
process. We choose the model of Figure 5.15, which consists of five main
components: engine, torque converter, gear box, output train and vehicle.
Each component of the drive train can be considered as a rigid multibody
subsystem. The rigid bodies are connected to each other by ideal rigid joints,
clutches and force elements.
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+
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Fig. 5.15: Power train model

With the component-models described above the simplified power train
can be described by the five states ϕ̇M , ϕ̇T , ϕ̇A, ϕ̇R, and ϕA − ϕR. For the
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comfort evalutation the jerk will be necessary. Therefore, we add the acceler-
ation as an additional component to the state vector which can later be used
to calculate the jerk. The state vector is defined as

xT = (x1, x2, x3, x4, x5, x6) = (ϕ̇M , ϕ̇T , ϕ̇A, ϕ̇R, (ϕA − ϕR), a) (5.33)

with the vehicle acceleration

a =
rR
iRD

ϕ̈R. (5.34)

The equations of motion of the mechanical model (Figure 5.15) can be for-
mulated as
ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

 =



1
JM

((1− β)MM −MP )
1
JE

(
MT + 1

i1E
M1 + 1

i2E
M2

)
1
JA

(−MW − i1AM1 − i2AM2)
x6

iRD

rR

x3 − x4

f6


(5.35)

with

f6 =
rR

JW iRD

[
cw(x3 − x4) + dw

(
ẋ3 − x6

iRD
rR

)
− ρcwA

r2
R

i2RD
x4x6

]
(5.36)

Introducing the control vector consisting of the reduction factor for the engine
torque and the clutch pressure

u =
(
β
p

)
(5.37)

and eliminating ẋ3 in the sixth equation by the third equation in eq. (5.35)
we obtain the compact form

ẋ = f (x,u) . (5.38)

While the torques MM ,MP ,MT ,MW and ML can be calculated at each in-
stant of time during the simulation, the evaluation of the torques M1 and M2

depends on the operating state of the shift elements

• one-way clutch
∆ϕ̈1 = 0⇒M1 ≥ 0
∆ϕ̈1 > 0⇒M1 = 0

• wet clutch
∆ϕ̇2 �= 0⇒M2 = −sign(∆ϕ̇2)µCApzrmp
∆ϕ̇2 = 0⇒ |M2| ≤ µC0Apzrmp
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The comparison between simulations performed with the presented model
and measurements carried out during a gear shift process from the first to the
second gear shows again a very good agreement (Fig. 5.16). In the simulation,
the control strategy used in the car, was implemented and used as reference in
the following sections. Therefore, the mechanical model of the power train can
be used to develop a model-based optimal control for the gear shift process in
an automatic transmission.

Fig. 5.16: Comparison of simulation (bottom) and measurements (top)

To solve the dynamic programming problem of the gear shift process an-
alytically, the equation of motion (5.35) must be available in a discrete linear
form. This can be achieved in two steps: the nonlinear system equations have
to be first linearized and then discretized.

The gear shift operation results in a nonsmooth dynamical behaviour
which is described by a set of equations with time-varying structure. Be-
cause of large changes of some state variables like the engine and turbine
speed during the process, the linearization must be performed with respect
to a reference trajectory (x0(t),u0(t)) rather than with respect to a constant
reference operating point (x0,u0). Therefore we consider for a given load case
αTH a reference control u0(t) which yields the state trajectory x0(t) accord-
ing to the equations of motion (5.35). This reference control is the same one
used to verify the model.

The linear equations of motion with respect to the reference state
vector x0(t) and reference control u0(t) can then be obtained using the series
expansion

ẋ(t) = A[x0(t),u0(t)]x(t) + +B[x0(t),u0(t)]u(t) + e(t) (5.39)

where
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A[x0(t),u0(t)] =
(
∂f

∂x

)
0

, B[x0(t),u0(t)] =
(
∂f

∂u

)
0

,

e(t) =ẋo(t)− {A[x0(t),u0(t)]x0(t) +B[x0(t),u0(t)]u0(t)} (5.40)

We may derive the time-varying discrete state equations by consid-
ering the gear shift process as a sequence of equal time increments T . We get
with the linear equations of motion (5.39) the discrete form

xk+1 = Akxk +Bkuk + ek (5.41)

with the definitions

Ak =
(
E +A(kT )T +

1
2
A2(kT )T 2 + . . . +

1
m!

Am(kT )Tm
)

Bk =
(
TE +

1
2
A(kT )T 2 + . . . +

1
(m + 1)!

Am(kT )Tm+1

)
B(kT )

ek =x0k+1 − (Akx0k +Bku0k) (5.42)

For the formulation of the performance function we need the jerk ȧ of the
vehicle during the gear shift process, which can be included by adding a new
component to the discrete state space vector (5.33)

(x7)k+1 = (x6)k = ak (5.43)

The jerk can be calculated as output variable

yk = ȧk =
(x7)k − (x6)k

T
(5.44)

With the extended state space xk ∈ IR7 the discrete description of the system
writes

xk+1 =Akxk +Bkuk + ek, yk = cTxk ,

cT =
[
0 0 0 0 0

1
T
− 1

T

]
(5.45)

The dimension of the matrices Ak,Bk and ek must be extended according to
equation (5.43).

We shall consider the gear upshifting from the first to the second gear.
In order to develop an optimal control strategy we split up the gear shift
process into three phases as shown in Figure 5.17. These phases can be found
in every gear upshifting and downshifting process.

• The first phase starts with the shifting signal which indicates the beginning
of the gear change into the next gear. After a delay due to the dead time
of the electric and hydraulic actuators of the system the pressure of the
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upcoming clutch is raised continuously. During this phase the off-going
clutch, in this case the one-way clutch, remains blocked. Although the
gear shift process has already begun, the transmission ratio corresponds
to the previous gear, in this case the first gear.

• The second phase begins when the torque of the one-way clutch becomes
zero. The one-way clutch releases and the gear box has no fixed transmis-
sion ratio because there is no determined kinematic relationship between
the gear box input and output speed. The beginning of this phase is ac-
companied by a turnaround in the turbine speed.

• The third phase starts when the upcoming clutch sticks. This point is
called the synchronous point and is reached when the relative speed of
the wet clutch becomes zero, and the actual clutch torque is less then the
maximal transmittable torque.

Fig. 5.17: Control strategy of the gear shifting

A reasonable optimal control can only be applied when the gear box has two
degrees of freedom, one for the input shaft and one for the output shaft, which
are kinematically independent. This state is only given for the second phase,
when the relative speeds of both shift elements are unequal zero and the gear
box has no fixed transmission ratio. The first phase must be used as a pre-
control phase to put the gear box in a controllable state. This can be achieved
by applying a feedforward control
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u(t) =
(

0
p(t)

)
(5.46)

The pressure of the upcoming clutch is raised smoothly after a time delay.
Since a part of the driving input torque can now be transmitted by the wet
clutch, the torque of the one-way clutch decreases. When its torque disappears,
the one-way clutch releases. Now an optimal control law in the form

u(x(t), t) =
(
β(x(t), t)
p(x(t), t)

)
(5.47)

can be applied to the power train in order to achieve the gear shift in a given
shift time. The control law is optimal in terms of minimizing some performance
criteria, which will be specified in the following. It should be noted that once
the target gear is engaged, the wet clutch can not be controlled anymore
because the clutch torque can not be influenced by the clutch pressure in
the sticking phase. Furthermore the load reduction must be finished at the
synchronous point. This avoids the undesirable excitation of the power train
by the change of the engine torque after the new gear is engaged.

The dynamic torque of the clutch, just before the synchronous point, is
generally greater than the static torque just after it. An abrupt drop in the
clutch torque at the synchronous point leads to an excitation of the output
train and causes an undesired vehicle jerk during the third phase. Since no
control intervention can be applied after the synchronization of the clutch, the
control law during the second phase must be designed such that the jerk after
the gear change is suppressed. This requires a predictive control approach.
We determine the control law driving the power train system (5.45) from the
initial state x0 = x(t0) to the end state xK = x(te) with the constraint

g(x(te)) =∆ϕ̇2 = ϕ̇Ai2A −
ϕ̇T
i2E

= wTxK = 0 ,

wT =(0 − 1
i2E

i2A 0 0 0 0) (5.48)

by minimizing the performance measure

J = λθ(xK) +
K−1∑
k=0

Φ(xk,uk, k) . (5.49)

The acceleration change is the most critical issue which affects the passengers
comfort during the gear shift process. Therefore we define a cost function

Φ(xk,uk, k) = ȧ2
k(xk) + uTkRkuk = xTk c c

Txk + uTkRkuk. (5.50)

This cost function keeps the jerk close to zero without excessive expenditure
of the control effort.
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Although the first term in the performance measure (5.49) depends only on
the end state, it can describe a behaviour which extends over a time interval
after the synchronous point. We choose a criterion which evaluates the jerk
after the end of the gear shift over a certain period of time. For this purpose
we need a prediction function which estimates the jerk at each discrete step
considered after the synchronous point as a function of the end state xK . This
can be accomplished by making use of the discrete linear form of the equation
of motion of the system. We come out with

xK+1+i(xK−1,uK−1) =

(
i∏

l=−1

AK+l

)
xK−1 +

(
i∏
l=0

AK+l

)
BK−1uK−1+

+
i∑

j=0

 i∏
l=i−j

AK+l

eK−1+i−j + eK+i . (5.51)

Assuming that the interval considered for the evaluation of the jerk in the
third phase has N equal increments, T , the cost function can be written as

θ(xK) = θ(xK−1,uK−1) =
K+N∑
i=K

xTi c c
Txi . (5.52)

Note that the performance measure θ permits a prediction of the jerk over
the next N + 1 discrete time increments, which results from applying a given
control uK−1 to a given state xK−1 at the discrete (K − 1)-th stage.

The optimization of a gear shift operation can be formulated as a
classical problem of optimal control with the following structure. Minimize
the performance function eq. (5.49) by additionally considering the process
dynamics eq. (5.45), the initial state x0 = x(t0), the final state xK = x(te)
and the constraint at (t = te) eq. (5.48). Moreover, the optimization process
must watch the constraint state and control spaces

x(k) ∈ X(k) = {x(k)| (|xi(k)| ≤ xi,max)}
x(u) ∈ U(k) = {u(k)| (|ui(k)| ≤ ui,max)} (5.53)

Applying Bellman’s principle of optimality and the dynamic programming
algorithm, we have to optimize at the k-th stage [16]

Jk = λϑ(xK) +
K−1∑
κ=k

Φ (xκ,uκ, κ) . (5.54)

where Φ is defined by eq.(5.50) and ϑ by eq.(5.52). The magnitude λ represents
an externally selectable weighting measure. Regarding the stage oriented deci-
sion process according to Bellman we come out with his well-known recursion
equation for the k-th stage:
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J∗
K(xk, k) =min

{
Φ(xk,uk, k) + J∗

k+1(xk+1, k + 1)
}
,

uk ∈ U
xk ∈ X (5.55)

where xk+1 can be replaced by eq.(5.45). In the case of gear shift operations
the minimization is performed analytically applying [91]

∂J∗
k

∂uk
= 0 ,

∂2J∗
k

∂u2
k

> 0 . (5.56)

The first equations result in the optimal (u∗
k), and the second equation can

be proved analytically [91].
Altogether we could achieve the following results. Figure (5.18a) and

(5.18b) show the acceleration and jerk for the load case (100 % throttle open-
ing) resulting from considering only the function Φ in performance measure
(5.49) by setting λ to zero. As expected the jerk is kept close to zero during
the second phase. The acceleration change becomes consequently very smooth.
Since the cost function θ is not considered the jerk after the synchronization
remains unimproved. This changes as soon as the function θ is considered
in the performance measure (5.49) by using an adequate weighting factor λ
(Figure (5.18c) and (5.18d)). The applied control drives the system to the
synchronous point in the given shift time by minimizing the jerk during the
second and third phase. During the first phase the applied pre-control is the
same as the reference. Therefore the acceleration remain unchanged.

The proposed approach can be applied for any load case of the car. Figure
5.19 shows further results for the 80 % and 40 % throttle openings. In both
cases the jerk and acceleration smoothness are apparently improved by keeping
the desired shift time. Moreover the control approach is found to be robust
with respect to varying the desired shift time. In Figure 5.20 some results
are presented for the full load case where the desired shift time was reduces
by 20 % with respect to the reference. The plot of the relative speed of the
wet clutch (Figure (5.20c)) shows that the synchronization is achieved at the
desired time. The acceleration and jerk are still smooth (Figure (5.20a) and
(5.20b)). Furthermore the frictional losses in the wet clutch (Fig. (5.20d)) are
reduced, which improves the life expectancy of the friction discs.

The above example of an optimal control approach for gear shift operations
in vehicle automatic transmissions illustrates the following procedure and the
following results. Firstly, a mechanical model is developed for the whole power
train and verified by measurements. After the discretization of the equations
of motion and making use of the dynamic programming method the gear shift
operation is considered as a multistage process with constraints. Furthermore
a suitable performance measure for evaluating the gear shift comfort during
the process is formulated. The analytical solution of the dynamic program-
ming problem leads to an explicit discrete optimal control law for the gear
shift process. The application of the derived optimal control to the verified
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Fig. 5.18: Results for 100 % throttle opening: a) and b) without the end cost
function θ (λ = 0), c) and d) with the end cost function θ (λ �= 0) [91].
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Fig. 5.19: Results for 80 % throttle opening: a) and b), and 40 % throttle
opening: c) and d) [91]
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Fig. 5.20: Results for 100 % throttle opening with a reduction of the shift time
of 20 % with respect to the reference [91]

nonlinear model in computer simulations shows major improvements in terms
of the passengers comfort for throttle openings. Moreover the shift time and
the frictional losses during the process are reduced.
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5.2 Ravigneaux Gear System

Ravigneaux gears are planetary gears used preferably in automatic power
transmission systems. They represent an integration of two planetary gears,
where the two planet carriers are combined, and one ring gear is omitted.
They possess a complicated mesh structure and are a source of parameter-
excited vibrations in the interior of an automatic transmission. For modeling
the dynamics of such a gear in a correct way, the dynamics of the complete
transmission and in addition at least the approximate dynamics of the com-
plete driveline system must be considered. This might be performed by many
commercial computer codes on the market. But for complex standard prob-
lems it is sometimes more useful to develop special system adapted programs
which are designed for the analysis of particular tasks. This has been done
in the case of the Ravigneaux gears and will be presented here as another
practical example of the application of multibody system theory [215], [194].

Fig. 5.21: Model of a Drive Train with Automatic Transmission

Figure 5.21 shows the mechanical model of a driveline of a passenger car.
It consists of the main components motor, gearbox, cardan shaft and differ-
ential gear. Since in this case the effects of the parameter excitation caused
by the meshing of the gear wheels of the Ravigneaux planetary gear are stud-
ied, a more detailed model of the gearbox is necessary. For that reason most
of the parts of the Ravigneaux gear are represented as individual bodies in
the mechanical model of that component. The connection between the single
bodies can be provided either by force elements or by unilateral and bilateral
constraints. Due to the structure of the total system and in order to ensure
the adaptability and a variable depth of modeling, multibody system theory
is applied. This technique allows the derivation of a structured and closed de-
scription of the systems consisting of rigid and elastic bodies [28], [87], [200].
Within the following sections the mechanical model and the mathematical
description of the main parts, components and connections are presented in
more detail.
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5.2.1 Toothing

Gear trains are the most common mechanical elements in drive technology for
the transformation of rotational speed and torque. Depending on the require-
ments of the simulation model a gear train can be described using different
mechanical substitute models. Basically there can be differentiated between
the three versions:

• Rigid transmission

• Force element with clearance

• Engagement with impacts

The last one will be used for gear trains with backlashes, which can generate
rattling or hammering phenomena [200]. The examination of the effects of

Fig. 5.22: Mechanical Model of a Toothing

parameter excitations induced by the meshing gear wheels requires a meticu-
lous consideration of the elasticity of the toothing. Furthermore some swaying
of the rotational speed of the shafts may cause a change in the direction of
force transmission. For that reason the force element with clearance has to be
chosen for the toothing inside the planetary gear. Figure 5.22 schematically
illustrates the design of this widely used force element [126], [217]. Parallel to
the stiffness, which is effective only for contacting teeth, a damper generates
a force along the direction n of the line of action. If the load is changing, and
the back flanks of the tooth profiles are coming into contact, the force changes
its direction to n′. The forces acting on the points T1 and T2 can be computed
by

F T1 = −nλN , F T2 = nλN , λN = λN (gN , ġN) = λNc + λNd (5.57)
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where λN is the scalar force depending on the relative distance gN between the
tooth profiles and the approaching velocity ġN . The fraction λNc results from
the stiffness c of the engaging teeth and is a function of g and the clearance
s.

The relative distance in normal direction follows from classical kinematical
theory of toothing [170]

gN = w̄T
N (q, t)q, ġN = wT

N (q, t)q̇, (5.58)

where w̄N and wN are different constraint vectors. The relations pictured in

gg

λC

λC

s

s

γ

γ

force direction n

force direction n′

tooth flank backlash

Fig. 5.23: Tooth Flank Backlash

Figure 5.23 may conveniently expressed by applying the well-known Heaviside
function yielding

λNc = H(−[gN +
s

2
]) c(x)[gN +

s

2
]

H(−[gN +
s

2
]) =
{

0 , gN > − s
2

1 , gN ≤ − s
2

. (5.59)

that makes sure that there is no force acting within the clearance s. As ap-
parent the stiffness c of the force element is a function of the dimensionless
rotational distance

x =
rbϕ

pt
, (5.60)

which is equivalent to the angle of twist ϕ of the gear train. The magnitude
pt denotes the base pitch of the gear with the base radius rb. The periodical
variation of the total and the single stiffnesses of a gear train is shown in
Figure 5.24 and illustrates the main source of the parameter excitation. The
main influences on the run of the curve are the geometry of a single tooth,
the material properties and the contact ratio factor.
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Fig. 5.24: Stiffness of a Gear Train

The velocity dependent fraction λNd of the force element is computed
according to the damping model of [217] via

λNd = d(gN )ġN . (5.61)

It takes into account that due to the clearance between the tooth profiles and
the resulting variation of the thickness of the oil film the damping properties
change subject to the distance gN between the contacting surfaces. As pictured
in figure 5.25, detail 3 or 6, the damping coefficient d attains the constant
value d0 for two gear wheels in contact. Within the limits of the clearance
s the damping coefficient d is approximated by an exponential curve which
leads to a steady transition into the contact area.

Fig. 5.25: Curve of the Damping Coefficient

5.2.2 Ravigneaux Planetary Gear

Ravigneaux type planetary gears are often used in passenger cars since they
offer a multitude of gear-stage combinations and are at the same time very
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compact requiring only small space. Figure 5.26 illustrates the basic design of
such a planetary gear, the main components and their function for the first
gear respectively:

• Small and large sun gear S1 and S2

• Ring gear R

• Planet carrier PC

• Inner (short) planets P1 and outer (long) planets P2

• Input shaft A

• Free coupling shaft F

A Ravigneaux planetary gear is designed using two conventional planetary
gears whereby the two planet carriers are combined, and one ring gear is
omitted. In the first gear, which is treated in this paper, the shaft A drives the
sun wheel S1 which is meshing the short planets P1. The planets P1 are in gear
with the long planets P2 and both are pivoted in the planet carrier PC that is
inertially fixed by a rotational force element which approximately substitutes
the effect of a multiple disk clutch. The ring gear is engaged with the planets
P2 and transmits the load by the coupling described later. Other transmissions
can be selected by changing the input shaft and the fixation of shafts and the
planet carrier respectively. The connection between the components above-
mentioned is performed by the force elements pictured on the right side of
figure 5.26. The toothing is modeled according to the equations given in the
section ”Toothing”, where the geometrically caused phase shifts between the

Fig. 5.26: Components of a Ravigneaux Planetary Gear

curves of the tooth stiffnesses of the single gear trains have to be taken into
account. The vector of the generalized coordinates may contains either 4 or 6
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degrees of freedom depending on the pitch motion under consideration. Due
to the stiffness of the shafts and the small clearance in the bearings the 4
degrees of freedom qT = (x, y, z, α) were selected in this case.

5.2.3 Ring Gear

Fig. 5.27: Deformation of the Neutral Axis

The way of modeling the ring gear R is influenced by the connection be-
tween the ring gear and the output shaft O (see figure 5.29), due to various
design configurations which lead to different dynamical behavior of the ring
gear. If ring gear and output flange are welded together the ring gear can
be regarded as stiff having 4 or 6 degrees of freedom. Otherwise if the ring
gear like in this case is coupled to the output flange by the carrying toothing
pictured in figure 5.29, the small thickness of the ring gear and the clearance
between R and O require an elastic model that allows the correct reproduc-
tion of the movements within the tooth-work. Lachenmayr presents in [134]
an elastic model of a ring gear which provides a function for the planar de-
formation of the neutral axis in radial and circumferential direction starting
from the rigid body position like illustrated in figure 5.27. Complying with
the model of the Rayleigh beam the neutral axis is not stretched and the
circumferential deformations ∆ψ cancel out:

2π∫
0

∆ψdϕ =

2π∫
0

[ψn(0)− ψn(ϕ)]dϕ = 0 (5.62)
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Therefore the scalar radial deformation is uniquely described by the coordinate
v. Using a modified Ritz approximation with an additional quadratic term, v
can be separated into the vector v of the shape functions depending on space
only and the vector qel of the time depending elastic degrees of freedom, see
also section 3.3.4 on page 124:

v(ϕ, t) = vTqel +
1
R
qTelV qel , V =

[
1−i2

4 0

0 1−i2
4

]
D

(5.63)

The extension of the Ritz approximation is necessary since the chosen iπ-

Fig. 5.28: Shape Functions of the Ring Gear

periodic harmonic shape functions with i ≥ 2 illustrated in figure 5.28

v = (cos(2ϕ), · · · , cos(nϕ), sin(2ϕ), · · · , sin(nϕ))T = [cos(iϕ) sin(iϕ)]T

(5.64)

do not fulfil the closing condition ψ(0) = ψ(2π). In practice a small number
of shape functions is sufficient because the oscillations with high frequencies
are not of interest for the dynamic behaviour of the total system. Based on
the deformation coordinates the kinematic correlations and the equations of
motions of the elastic ring gear are derived.

5.2.4 Ring Gear Coupling

The alternative to the welding of ring gear and output is the connection by the
toothing shown in Figure 5.29 [73] which transmits the torque by the elastic
contact of the teeth. The clearance between the teeth in radial and circum-
ferential direction enables an additional relative movement between ring gear
and output shaft. Figure 5.29 makes clear, that the induced friction forces
possess a remarkable influence on the deformation of the ring gear, contingent
on the number of teeth and the size of the clearance. Therefore the couplings
between ring gear and output shaft are modelled in detail for every single
tooth as force elements with clearance and radial friction forces according to
figure 5.30. Again the relative normal and tangential distances and velocities
within the contacts of Figure 5.30 can be evaluated by elementary considera-
tions from the kinematics of gear meshing [215],[170]. We get
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Fig. 5.29: Coupling of Ring Gear and Output Drive

Fig. 5.30: Force Directions of the Contact

gN =w̄T
N (q, t)q, ġN = wT

N (q, t)q̇ + ŵN

gT =w̄T
T (q, t)q, ġT = wT

T (q, t)q̇ + ŵT (5.65)

Accordingly the resulting forces acting on output flange and ring gear can also
be calculated from normal and tangential fractions in the form

FA,O = −nλN − tλT , FA,R = nλN + tλT . (5.66)

where λN is divided into the fraction λNc caused by the contact stiffness

Fig. 5.31: Phase Shift

and the fraction λNd caused by the damping properties, equivalent to the
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toothings. The force λT in radial direction is computed employing the viscous
friction coefficient µv and the relative velocity ġT :

λT (ġT ) = µvġT . (5.67)

5.2.5 Phase Shift of Meshings

Phase shift is the offset ∆x of the varying tooth stiffness along the transverse
path of contact of a gear train as pictured in figure 5.31. It is of high impor-
tance for the parameter excitation in multistage or planetary gears. The curve
of the tooth stiffness is always specified for a special point, in this case for the
(A) marked position of the first contact point on the line of action as shown
in Figure 5.32. Depending on the number of teeth and the geometrical config-

Fig. 5.32: Geometrical Derivation of the Phase Shift

uration, which means the tilt of a gear train respective to the antecedent one,
the contact point of two engaging tooth profiles will normally not be placed in
point A for the starting position. The quotient of the phase shift s12 of Figure
5.32 and the base pitch pt leads to the phase shift ∆x used for the calculation
of the current tooth stiffness. The following equations show the derivation of
the phase shift for a single gear train and can be transferred to single stage
and Ravigneaux planetary gears.

The location of the pitch point C of a mesh can be determined by the
pitch circle diameter dw which is depending on axle base and the number of
teeth of both gear wheels:
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rC = r1 +
dw1

2
e12 (5.68)

Several geometrical characteristics of the toothing define the length gf of the
line from the pitch point C to the point of action A

rA = rC − gf n . (5.69)

The initial rotation angle ϕ01 in figure 5.32 provides the position of the first
tooth of the driving gear 1 versus the y-axis and follows from the prior meshing
and the resulting status of the gear wheel. In combination with the position
ϕA of point A, the following equation calculates the angle ϕU1 of the root
point of the first tooth within the transverse path of action from A to E

ϕU1 =
2π
z1

floor(z1
∆ϕ

2π
+ 1) + ϕ01,

∆ϕ =
{
ϕA − ϕ01 , ϕA ≥ ϕ01

2π + ϕA − ϕ01 , ϕA < ϕ01
. (5.70)

The function floor(•) rounds the argument down toward the next smaller
integer. The difference ξK1 = ϕU1 − ϕT1 supplies the radius of curvature of
the involute in the contact point K of two tooth profiles by the equation

ρK1 = ξK1
db1
2

. (5.71)

Eventually the length of the distance A−K is

s12 = gf + ρK1 −
√

d2
w1 − d2

b1

4
(5.72)

and the dimensionless phase shift ∆x of the tooth stiffness function ac-
cording to Figure 5.24 can be computed using the transverse pitch pt by
∆x = 1−s12/pt . Knowing the contact point K it is possible to determine the
bending radius and the root point of the opposite tooth flank. Consequently
the position of the gear wheel is defined and the resulting initial rotation ϕ02

can be used for the calculation of the phase shift of the successive gear trains.
The same correlations as presented for this external gear pair are also valid
for internal gear pairs. Thus the phase shifts of a complete planetary gear can
be computed starting from a gear train including the sun gear.

5.2.6 Equations of Motion

Starting with the principles of linear and angular momentum or with Jour-
dain’s principle of virtual power, the equations of motion for rigid and elastic
bodies are derived, see chapters 3.3 on page 113 and 3.4 on page 131. Com-
bining the equations of the single components the differential equations of
motion of the whole multibody system can be set up.
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The equations of motion of a rigid body represent a base for the de-
scription of a multibody system. Figure 5.33 shows a rigid body with mass
m, inertial tensor IS regarding the center of gravity S and external force
FA ∈ IR3 and torque MA ∈ IR3 acting in point A separated from S by
the vector rSA. The translational velocity of the center of gravity is called
vS ∈ IR3 and the associated acceleration aS = v̇S . The rotational speed is
ω ∈ IR3. Introducing the vectors of the generalized coordinates q, velocities q̇
and accelerations q̈ the principles of linear and angular momentum yield the
classical multibody equations of motion

(
JS
JR

)T (
mE 0
0 IS

)(
JS
JR

)
q̈+

+
(
JS
JR

)T [( 0
ω̃ISω

)(
mE 0
0 IS

)(
ιS
ιR

)]
−
(
JA
JR

)(
FA

MA

)
= 0.

(5.73)

The dimension of these equations is f, according to the number f of degrees of

Fig. 5.33: Rigid and Elastic Bodies

freedom, q ∈ IRf . The Jacobians are defined by JS = ∂vS

∂q̇ and JR = ∂ω
∂q̇ . The

magnitudes ιS and ιR are generated by the partial time derivation ιS = J̇Sq̇
and ιR = J̇Rq̇.

Elastic bodies can be integrated into the structure of multibody systems
[28]. Figure 5.33 shows an elastic body in undeformed and deformed state
as well as several coordinate systems associated with the body: the inertial
system I, a reference frame B coinciding with the undeformed body and a
body fixed system K for the deformed body. The external force FA ∈ IR3 and
the torque MA ∈ IR3 are acting in point A. Jourdain’s principle of virtual
power leads to the equations of motion of an elastic body in the form

∫
mi

(
∂Bv

∂q̇

)
(Ba− BfA)dm = 0 (5.74)
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where a is the absolute acceleration of the mass element dm and fA ∈ IR6

the vector of the external forces and moments on the mass element. Choosing
a notation in the system B makes the subsequent search for shape functions
much easier. Making use of the position vector from “I” to “C”

BrIC = BrIB + Bx0 + Brel (5.75)

the velocity BvC and the acceleration BaC of the mass element dm can be cal-
culated by two time derivation. The vector of the elastic deformation rel(x0, t)
possesses dependencies on both time and space and can be separated using
a Ritz approach in order to get ordinary differential equations instead of the
partial ones of equation (5.74)

rel(x0, t) = W (x0)qel(t) , W ∈ IR3,nel , nel ∈ IN . (5.76)

Thus the dependency on space is represented by nel shape functions which are
collocated within the matrix W and weighted by the time dependent elastic
coordinates in the vector qel. Combining the Ritz approach with equation
(5.74) results in the equations of motion
n∑
i=1

∫
mi

[
JTT + JTR[x̃0 + ˜(Wqel,i)] + JTEW

T
]
·

· [a+ ω̃ω̃(x0 +Wqel,i) + ˙̃ω(x0 +Wqel,i)+

+ 2ω̃W ˙qel,i +W ¨qel,i − fA]dm = 0. (5.77)

The rigid body Jacobians are JT and JR. The elastic Jacobians JE come out
by a similar derivation with respect to the elastic coordinates

q̇el = JE q̇ , q̈el = JE q̈ with JE =
∂q̇el
∂q̇

. (5.78)

After the calculation of the integral matrices in equation (5.77) and their
linearization with respect to the small elastic coordinates, the well known
formulation of discrete mechanical systems

M(q, t)q̈ − hg(q, q̇, t)− hf (q, q̇, t) = 0 (5.79)

is obtained, where M , hg and hf denote mass matrix, vector of gyroscopic
and external forces of the elastic body, respectively.

We write the external forces FA or torques MA in the form

fA =
(
FA
MA

)
= wλ ∈ IR6 (5.80)

where w is the generalized force direction represented by the Jacobian matrix
at the point of the application and λ a scalar value of the force. Three different
cases for the expression wλ have to be considered:
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• The scalar force value λ depends on the relative displacement g and the
relative velocity ġ of the force element: λ = λ(g, ġ)
The force calculation of the toothing in chapter 5.22 is performed that
way.

• The expression may also represent a bilateral constraint. On displacement
level it can be described by: g = 0 , λ any.

• Substructures are connected by a unilateral constraint. Contact phenom-
ena of rigid bodies are typical examples for this type of linking. A unilateral
contact in normal direction can be described by a complementary problem:
gN ≥ 0 , λN ≥ 0 , gNλN = 0.

5.2.7 Implementation

The application of the methods of rigid and elastic multibody systems for
the mathematical description of the total system matches the object oriented
method of product development. According to Figure 5.34 the analogies be-
tween a multibody system and a correlating class diagram of an object model
can be identified at first sight. Furthermore the technique of object oriented
modelling facilitates the developing process by the utilisation of synergies,
the encapsulation of components and the heredity of equivalent properties of
different elements. Mechanical modelling, mathematical description and the
implementation of the software have to be treated in common.

Fig. 5.34: Multibody System – Analogy of Structure and Object Model

The implementation of the derived mathematical models into the simu-
lation program DynAs was achieved using the “Unified Modeling Language
(UML)” [227]. The structure of the system is split into two independent units:
the kernel which contains the implementation of the basic equations and con-
trols the solution of the equations of motion, and the model library which
treats the specific equations and can be easily upgraded for the integration of
new or refined models [215].
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5.2.8 Simulation Results

Based on the modelling presented above a data set for simulations of the
driveline pictured in figure 5.21 containing the Ravigneaux planetary gear
was built up.

Fig. 5.35: Comparison of the Planar Eigenforms

The verification of the mechanical model of the elastic ring gear
was achieved by comparing the planar eigenmodes of the linearized equations
of motion of the uncoupled ring with the results of a Finite Element analy-
sis. Figure 5.35 illustrates the well-fitting match of the important first two
eigenforms and eigenfrequencies using the modified harmonic shape functions
presented with equation (5.64) and Figure 5.28.

The detailed modelling of the Ravigneaux planetary gear permits the ex-
amination of the parameter excited oscillations caused by the varying total
tooth stiffnesses of the gear pairs. The curve of the tooth stiffness according to
Figure 5.24 can be represented by the Fourier series (which is a very popular
method in industry in spite of the fact, that details of the non-smooth curves
of Figure 5.24 are more or less lost)

fA =
(
FA
MA

)
= wλ ∈ IR6, cV = c0+

n∑
i=1

ci sin(i(x−∆x)+ϕi) . (5.81)

Furthermore the number of teeth zR of the ring gear and the number of
planets nPl of one gear stage have a remarkable influence on the effect of the
parameter excitation. If the result of the quotient zR/nPl specifying the phase
shift of the gear pairs is an integer, all meshings between planets and ring gear
are phased (figure 5.36, case 1). This leads to the time depending total torque
acting on the ring gear pictured in the lower left part of figure 5.36 whereas
the resulting planar force on the centre of gravity S is constantly zero. If, on
the other hand, the term modulo(zR/nPl) is unequal to zero the phase shifted
inequalities e.g. in the dominating 1st order (figure 5.36, case 2a) effect a
constant total torque but a varying force moving S out of the central position
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Fig. 5.36: Effects of the Phasing Ring Gear–Planets

Fig. 5.37: Effect of the Bearing Clearance, modulo
(
zR

nPl

)
�= 0

as depicted down right in figure 5.36. Case 2b shows an exception to the
correlations mentioned above. If the order i of interest is a whole-numbered
multiple of the number of planets nPl the runs of the single tooth stiffnesses
are phasing again and the effects are equivalent to case 1.

These considerations are confirmed by the simulation results. Figure 5.37
pictures in the left diagram the rotational accelerations for a run-up of a
Ravigneaux gear with 2x3 planets and nR = 85. As expected, accelerations
can be recognised in the 3rd order of the meshing frequency since i = 3 is
the first multiple of nPl = 3. Accelerations of higher orders (e.g. 6, 9) could
not occur since the Fourier series of equation (5.81) was limited to order
i = 5. In contrast, the right graph of figure 5.37 presents simulation results
if the clearances of all bearings within the planetary gear are considered.
Several amplitudes of orders i �= 3 can be identified which were also detected
in measurements of a test gear. Due to the clearances the rotational axis of
planet carrier, ring gear and output shaft may be relocated under the influence
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of gravity which causes differing tooth forces and the acceleration amplitudes
of orders i �= k · nPl.

Fig. 5.38: Comparison Surface Acceleration – Bearing Force

The effects of the parameter excitation can also be observed outside the
gearbox housing since the movements of the single components are transmit-
ted by the bearings. Figure 5.38 shows a comparison between the accelerations
measured on the surface of the gearbox housing and the bearing force of the
output shaft calculated using DynAs. The amplitudes are pictured for the
first and the second meshing frequency. The basic tendencies can be repro-
duced by the simulation program, especially for the dominating first meshing
frequency.
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5.3 Tractor Drive Train System

5.3.1 Introduction

Power tansmissions of tractors represent the most complicated drive train
units of nearly all transportation systems. They must meet a large variety of
very hard requirements, and in the last one, two decades the demands for more
versatility, flexibility and comfort for the driver increase continuously. Tractors
are supposed to do all kind of agricultural work, but also to fulfill many
requirements of forestry, and additionally tractors should be able to move
along normal roads with reasonable speed and safety. Figure 5.39 pictures a
typical modern tractor concept with a very sophisticated drive train system.

Fig. 5.39: Typical Modern Tractor Concept (courtesy AGCO/Fendt)

This altogether leads to very complex drive trains, for which modern CVT-
concepts offer significant advantages. They may operate with some given speed
independently from the engine speed thus running the motor at the point of
best fuel efficiency. It offers advantages for all implements by generating an
optimal power distribution between driving and working.

The German company Agco/Fendt as one of the leading enterprises of
modern tractor technologies developed for that purpose a very efficient power
transmission including for low speeds a hydrostatic drive and for larger speeds
a gear system with the possibility of mixing the power transmission according
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to external requirements. The hydrostat system possesses the great advantage
to develop very large torques especially at low speeds and at standstill.

Figure 5.3.1 ilustrates the kernel of the power transmission, and Figure
5.41 presents a sketch of the overall system. Following this sketch we recognize
that the torque of the Diesel engine is transmitted via a torsional vibration
damper (1) to the planet carrier (5) of the planetary gear set (2). The planet
gear distributes the power to the sunwheel (4) and the ring gear (3). This
ring gear drives via a cylindrical gear pair the hydraulic pump (6), which
itself powers the two hydraulic motors (7), where the oil flow from pump
to motor depends on the pump displacement angle α. The hydraulic motors
(7) generate a torque according to the oil flow and the motor displacement
angle β. Furtheron, the sun wheel transmits its own torque via a gear pair
to a collecting shaft (8), which adds the torques coming directly from the
Diesel engine via the sun wheel on the one and coming indirectly from the
chain ring gear-hydraulic pump-hydraulic motors on the other side. Thus the
collecting shaft (8) combines the mechanical and the hydraulic parts of the

hydraulic pump

hydraulic motor
collecting shaft

travel range selector

planetary set

enclosed AWD clutch

flexible drive block bearing support

enclosed brake

Fig. 5.40: ML Power Transmission of the VARIO series (courtesy
AGCO/Fendt)

torque. This splitting of mechanical and hydraulic power in an optimal way is
the basic principle of the stepless VARIO system. As an additional option we
may also connect the planet carrier (5) with the rear power take off (PTO)
system, which drives all possible rear implements for performing processing of
agriculture and forestry. The travel range selector (9) allows switching between
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slow and fast operation. The outgoing torque will be transmitted to the rear
axle by a pinion and to the front axle by a gear pair.

The system allows an adaptation of the tractor speed only by an appro-
priate combination of the displacement angles α and β without changing the
engine’s speed, which means, that the engine’s speed may be kept constant
at an optimal fuel efficiency point in spite of varying tractor speeds, of course
within a limited speed range. This stepless VARIO-concept represents a type
of CVT-system (Continuous Variable Transmission), which results in signif-
icant improvements with respect to handling and working performance.

hydraulics

hydraulic pump
planetary set

rear power take off

rear axle

front axle

hydraulic motor

travel range selector

Fig. 5.41: Sketch of VARIO-ML System (courtesy AGCO/Fendt)

5.3.2 Modeling

For the investigation of dynamic loads of certain critical components and
additionally for the assessment of the vibrational behaviour an appropriate
model has to be established, which includes as most important elements the
mechanical parts, the Cardan shafts and the hydrostat components, and also
the hydraulics. Many mechanical parts like shafts, elastic connection and the
like can be assumed to behave linearly, but the Cardan shafts, the hydraulic
pumps and motors as well as the hydraulics itself will generate non-linearities.
Therefore we shall focus on those components. We start with a consideration of
the complete system representing afterwards the equations of the components,
as far as necessary [24].
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Figure 5.3.2 depicts the model of the complete power transmission of
the tractor under consideration. Partly and as far as possible we model the
mesh of two gear wheels by two rigid bodies with a fixed transmission ratio
resulting in a reduction to one degree of freedom (DOF). The crankshaft
of the Diesel engine is described by a rigid body (2) with one DOF, which is
loaded by the torque from the combustion pressure. They must be determined
from measurements of the combustion process and correctly projected to the
crankshaft model. The front PTO (power take off, 20, 21) is connected to
the engine by a vibration damper. Also the planetary set (7) and all auxiliary
equipment (5) are driven more or less directly by the engine. The model follows
the diagrammatic sketch of Figure 5.41 with some extensions. They concern
mainly the two power take off systems, front PTO and rear PTO, and also
the front and rear axles with the tires. We shall come back to all components.

1 vibration damper
2 engine model
3 mass damper
4 elastic shaft
5 auxiliary equipment
6 planetary gear set
7 planetary gear set
8 hydraulic pump
9 hydraulic pump
10 hydraulic motor
11 collecting shaft
12 distributor shaft
13 rear drive
14 front drive
15 front drive
16 front drive
17 tractor mass
18 rear PTO
19 rear PTO
20 front PTO
21 front PTO

Fig. 5.42: Mechanical Model of the VARIO Power Transmission

Figure 5.3.2 pictures a very classical mechanic-hydraulic system, where
the physical relations are obvious. Therefore it represents a good example
how to establish a mechanical (or physical) model, which is equivalent to
the real world problem. As already mentioned, engineering mechanics nor
engineering physics are not deductive sciences thus requiring as a rule bundles
of assumptions and neglections without destroying the principal information
base of a system. From this we shall try also in this case to come to simple
equations.
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Dealing with components we start with rigid and elastic shafts. For the
problem of loads and vibrations we assume for the rigid shaft a single rotating
mass with one degree od freedom, and for an elastic shaft simply two rotating
masses connected by a spring with two degrees of freedom. We get

• for the rigid shaft

Jϕ̈ =
∑
i

Mi with Mi = Mi(t, ϕk, ϕ̇k). (5.82)

J is the mass moment of inertia, ϕ the absolute rotational angle and Mi an
external torque depending on time, the angles and the angular velocities
of some neighboring bodies or the environment.

• for the elastic shaft(
J1 J12

J12 J2

)(
ϕ̈1

ϕ̈2

)
+
(

dT −dT
−dT dT

)(
ϕ̇1

ϕ̇2

)
+

+
(

cT −cT
−cT cT

)(
ϕ1

ϕ2

)
=
(∑

kM1,k∑
kM2,k

)
. (5.83)

The quantities in this equation follow from

cT =
(

1
c1

+
1
c2

)−1

, with ci =
GJp
li

, l2 = l − l1,(
J1 J12

J12 J2

)
=

1
3
ρJpl

(
1 1

2
1
2 1

)
,

dT =2D
√
cTJ, (5.84)

where c and d are spring and damper coefficients, respectively, J are mass
moments of inertia, D is the Lehr attenuation constant (practically D ≈
0.02-0.05 for our case), G the modulus of shear and ρ the material density.
The torqes M1,k,M2,k come again from couplings to the neighboring bodies
or environment.

All interconnections with elasticity must be examined with respect to the
magnitude of these elasticities. In our case the stiffness of all tooth meshings
is so large, that the coressponding frequencies exceed the frequency range of
interest by far. Therefore we are able to model such gear meshes as a purely
kinematical connection. Figure 5.43 illustrates such a connection. The two
parts are under the load of the contraint force F12 and the torques M1,k,M2,k.
If we have a kinematical connection with a ratio (i1,2 = ϕ1

ϕ2
= r2

r1
), for example,

we are able to define a Jacobian by

q̇ =
(
ϕ̇1

ϕ̇2

)
=
(

1
1
i1,2

)
ϕ̇1 = Q ϕ̇1 (5.85)
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Fig. 5.43: Kinematic Connection, for example Gear Mesh

The equations of motion of the configuration of Figure 5.43 write

J1ϕ̈1 = M1,k + F12r1
J2ϕ̈2 = M2,k − F12r2

}
=̂Mq̈ = h, (5.86)

which can be transformed with the help of the Jacobian (eq. (5.85) and with
the reduced mass moment of inertia J = J1 + J2

i21,2
to yield

QTMQ q̈ = QTh =⇒ Jϕ̈1 = M1,k +
M2,k

i1,2
, (5.87)

The constraint force F12 eliminates by the multiplication with the Jacobian
Q.

The tractor power transmission system includes several Cardan shafts,
especially for all PTO systems. Cardan shafts are sources of parameter excited
vibrations with their sub- and super-harmonic resonances, which can become
dangerous. Therefore good models are obligatory. An excellent survey is given
in [240]. We choose a model with four bodies interconnected by springs and
dampers (see Figure 5.44). The four equations of motion write

J1ϕ̈1 = +MG12,1 + M1

J2ϕ̈2 = −MG12,2 + c(ϕ3 − ϕ2)
J3ϕ̈3 = +MG34,3 + c(ϕ2 − ϕ3)
J4ϕ̈4 = −MG34,4 + M4

 =̂Mq̈ = h

with MG12,2 = MG12,1
sin2 ϕ1+cos2 ϕ1 cos2 α12

cosα12

and MG34,3 = MG34,4
sin2 ϕ4+cos2 ϕ4 cos2 α34

cosα34

(5.88)

To not loose a good overview we have left out the damping terms. The com-
plete force element of the shaft between ”1” and ”2” comprises a linear damper



5.3 Tractor Drive Train System 263

d and linear spring c. Between the shaft parts (1 - 2) and (3 - 4) we have a
kinematical relation of the well-known form ([240], [49])

ϕi+1 = ϕi+1(ϕi) = arctan(
tanϕi
cosα

), (5.89)

where α is the Cardan angle (α = ϕ12 = ϕ34). The above relation reduces
the four degrees of freedom to two, for example q = (ϕ1, ϕ2, ϕ3, ϕ4) =⇒
(ϕ1, ϕ4) = qred. The corresponding Jacobian follows from equation (5.89):

Fig. 5.44: Model of a Cardan Shaft

QT =
(

1 cosα12
sin2 ϕ1+cos2 ϕ1 cos2 α12

0 0
0 0 cosα34

sin2 ϕ4+cos2 ϕ4 cos2 α34
1

)

q̇ =


ϕ̇1

ϕ̇2

ϕ̇3

ϕ̇4

 = Qq̇red = Q

(
ϕ̇1

ϕ̇4

)
(5.90)

With these relations we receive the final equations of motion of the Cardan
shaft

Mredq̈red + bred = hred

Mred =
(
J1 + J2( cosα12

sin2 ϕ1+cos2 ϕ1 cos2 α12
)2 0

0 J3( cosα34
sin2 ϕ4+cos2 ϕ4 cos2 α34

)2 + J4

)

bred =

(
J2

cos2 α12 sin 2ϕ1(cos
2 α12−1)

(sin2 ϕ1+cos2 ϕ1 cos2 α12)3 ϕ̇1
2

J3
cos2 α34 sin 2ϕ4(cos

2 α34−1)
(sin2 ϕ4+cos2 ϕ4 cos2 α34)3

ϕ̇4
2

)

hred =

(
cosα12

sin2 ϕ1+cos2 ϕ1 cos2 α12
c (arctan( tanϕ4

cosα34
)− arctan( tanϕ1

cosα12
)) + M1

cosα34
sin2 ϕ4+cos2 ϕ4 cos2 α34

c (arctan( tanϕ1
cosα12

)− arctan( tanϕ4
cosα34

)) + M4

)
(5.91)

The dependency on the rotational angles enters these equations by the Jaco-
bian Q (equation (5.90). All quantities of the equations of motion change with
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the rotational angles and speeds. Furtheron they depend strongly on the kink
angles α12 and α34. For these angles being zero, the dependency disappears,
and with increasing angles their influence increases nonlinearly.

The homokinematical configuration [49] gives a balancing effect for α12 =
α34. The parameter influences disappear for equal rotational angles ϕ2 = ϕ3,
which is only possible for a completely rigid shaft (c ⇒ ∞). But Cardan
shafts are usually very elastic leading to oscillations between the two shaft
masses and thus to parameter excitation. The largest influence comes from the
nonuniformity of the stiffness terms in hred of equation (5.91). Nevertheless
we can expect small angular displacements, which allows us to develop a
linearized shaft stiffness. From equation (5.91, last term) and a linearization
with respect to the difference of the angles ϕ1 and ϕ4 and finally with the
assumption α12 = α34 = α we come out with:

clin =
(

cosα
sin2 ϕ1 + cos2 ϕ1 cos2 α

)2

c, Mc = clin(ϕ4 − ϕ1). (5.92)

Figure 5.3.2 confirms the model and allows to use for the simulation of the
PTO Cardan shafts the linearized approach. The graph on the right side
depicts the dependency of the Cardan shaft stiffness on the angular orientation
ϕ and on the kink angle α. For an angle α = 10◦ the difference of minmal
and maximum stiffness is 6%, for α = 20◦ about 10% and for α = 30◦ already
30%. The parameter excitation influences as a matter of fact the whole power
transmission system of the tractor.

measurement

linearized calculation

Fig. 5.45: Linearized Stiffness of the Cardan Shaft

The heart of the VARIO power drive is the hydrostatic system with its
hydraulic pumps and motors operating on the basis of a piston type machine.
They are heavily loaded, especially for processes like ploughing and mulching.
Therefore it makes sense to know these loads already during the design phase
to find the correct lay-out. Figure 5.46 shows a drawing of the pump/motor
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configuration as used in the VARIO system. The piston drum is rotationally
displaced with respect to the shaft axis by an angle α, the magnitude of which
determines the oil fluid flow. The translational motion of the nine pistons
within the corresponding cylinder liners increase with increasing pivot angle.

tripod joint
drive flange

piston drum

axial bearing

pivot angle

piston

Fig. 5.46: Pump/Motor Configuration of the Hydrostat

Drive flange, pistons and piston drum can be modeled as rigid bodies. The
tripod joint is an elastic part, it transmits the rotational motion of the drive
flange to the piston drum. It is coupled to the drive flange and to the piston
drum by a kind of three ”feet”, which allow relative motion in axial and
radial but not in circumferential tangential direction. These three feet consist
of three pins perpendicular to the tripod axis and three rings with a spherical
outer surface moving in corresponding bushings in the flange or the drum,
which allow axial and radial motion, but which can transmit the full torsional
torques. Therefore the tripod joint is a really critical part, which has to be
designed properly.

Figure 5.47 depicts a tripod model with the relative kinematics of the
tripod axis, the position and orientation of which we need to know. As a first
step we state, that the contact points of the six tripod feet in the drum and
in the flange can be described twice, using the body coordinates of the flange
and the drum on the one and using the body coordinates of the tripod itself
on the other side. Putting rdrum,flange = rtripod results altogether in (6x3 =
18) algebraic equations, because everyone of the six r possesses of course three
components.

These 18 equations correspond to the unknown displacements ξij and ζij
of the contact points to the tripod axis and to the front sides of drum and
flange, respectively (i=1 for drum, i=2 for driving flange, j=1,2,3 for the three
contact points of the three feet on each side of the tripod). They correspond
furtheron to the three unknown positions (x, y, z) of the tripod joint, where
the axial displacement x can be neglected, it corresponds to its tilt angles γ
and β, its rotational orientation ϕT and finally to the rotational orientation
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center line foot bore tripod joint
contact point

drive flange

piston drum

Fig. 5.47: Pump/Motor Model

φK of the drum. These are 18 unknowns covered by 18 algebraic equations of
the form

y sinαT + lT (i− 1)− ξijγ cos[ϕT +
2π
3

(j − 1)] + ξijβ sin[ϕT +
2π
3

(j − 1)] =

= l1(i− 1) cosαT + ζij cos(αi−1 − αT )− rB sin(αi−1 − αT ) cos[ϕi+

+
2π
3

(j − 1)]

y cosαT + lT (i− 1)− ξijγ cos[ϕT +
2π
3

(j − 1)] =

= −l1(i− 1) sinαT + ζij sin(αi−1 − αT )− rB cos(αi−1 − αT ) cos[ϕi+

+
2π
3

(j − 1)]

z − βlT (i− 1)− ξijγ sin[ϕT +
2π
3

(j − 1)] = rB cos[ϕi +
2π
3

(j − 1)] (5.93)

Again we have i=1 for drum, i=2 for driving flange, j=1,2,3 for the three
contact points of the three feet on each side of the tripod.

The unknown quantities ξij and ζij are contained in the equations (5.93) in
a linear form. Therefore we are able to reduce the set to one with six degrees
of freedom only, namely to the six quantities y, z, β, γ, ϕT and ϕK = ϕ1.
The evaluation is performed numerically. The considerations and relations
are equally valid for the hydromotors and the hydropump, where in both
cases the kinematics of the tripod joint is of special interest.

The tripod kinematics depends mainly on the displacement angle α of
the piston drum and on the rotational orientation ϕT of the driving flange.
The three tripod feet bring in a periodicity of 120◦ for all tripod results. The
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translational quantities (y, z) and the tilt angles (β, γ) are 90◦ dephased. The
Figures 5.48 and 5.49 illustrate the kinematical properties. The influence of
these characteristics on the dynamics of the tripod itself is not very large,
which corresponds to experience. Therefore a detailed analysis will be only
necessary for special evaluations required for the tripod joint.

Fig. 5.48: Translational Displacements of a Tripod Foot

Fig. 5.49: Rotational Displacements of a Tripod Foot

The hydrostat piston kinematics produces oil flow and oil pressure.
The pistons perform a stroke motion within the drum cylinders, while rotating
around the tripod joint. This motion depends on the displacement angle α,
which at the same time represents a control quantity for flow and pressure.
According to Figure 5.50 we get the following vector chain

rTF = h+ rK + lK , (5.94)

which can be decomposed to the three equations for the unknowns (h, β, γ)

γ = arcsin
(
rTF
lK

(sinϕTF cosϕK − cosϕTF sinϕK cosα)
)

β = arcsin
(
rK − rTF (sinϕTF sinϕK + cosϕTF cosϕK cosα)

lK cos γ

)
h =rTF cosϕTF sinα + lK cosβ cos γ (5.95)
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The results of these equations are illustrated in Figure 5.3.2. To get an idea of

foot point

Fig. 5.50: Piston Kinematics

γ[◦] β[◦] h[mm]

Fig. 5.51: Results of Piston Kinematics

the forces resulting from the above kinematical consideration we investigate a
simplified case with no rotational speed difference, ϕT −ϕK = 0, and a piston
pressure according to Figure 5.52. The pistons possess at one end spherical
bearings, which allow a force tranfer only in the direction of the piston axis
to the driving flange. This direction for one piston is defined by

DeK,k =

− cosβ cos γ
− sinβ cos γ

sin γ


k

=⇒ DFK,k =Fp,k

− cosβ cos γ
− sinβ cos γ

sin γ


k

,

(k =1, 2, · · · 9) (5.96)

The reference coordinates are piston drum fixed. The forces can be decom-
posed into three components and then summarized for all nine pistons, re-
garding their individual position and orientation. Before showing the results
we transform the forces from the piston drum ”D” to the driving flange ”F”
by the transformation (Figure 5.52)
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FFK,k =Fp,k

 − cosα cosβ cos γ
− sinα cosβ cos γ cosϕ
+ sinα cosβ cos γ sinϕ


k

, (k = 1, 2, · · ·9) (5.97)

A numerical evaluation indicates, that axial forces of the pistons are large on

Fig. 5.52: Load Example

both, drum and flange; whereas tangential and radial forces are only large on
the driving flange, see Figures 5.3.2 and 5.3.2. To establish the equations of

sum of axial forces sum of tangential forces

y-component of radial sum
piston system

z-component of radial sum
piston system

Fig. 5.53: Summarized Piston Forces on the Drum

motion of the complete system we have to combine the above models and
to supplement them by the appropriate models for the oil hydraulics and the
axial drum bearing. Such models follow the methods as discussed in chapter
4 on 187 and in section 2.6 on page 76. It will not be presented here. In
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sum of axial forces sum of tangential forces

y-component of radial sum
inertial system

z-component of radial sum
inertial system

Fig. 5.54: Summarized Piston Forces on the Driving Flange

spite of the fact that the system is complicated we can avoid both, bilateral
and unilateral constraints, expressing instead all interconnections by linear or
nonlinear force laws. In a first step this comes out with

Mq̈− h(q, q̇, t) = 0, (5.98)

which can be approximated by linear and nonlinear parts yielding

Mq̈ + Dq̇ + Kq = h(q, q̇, t), q̇hydraulic = hhydraulic. (5.99)

Nonlinear terms come mainly from the hydrostat system and from the hy-
draulics. Many elastic parts are linear. The above separation makes sense,
because for stationary operation the nonlinear terms do not have much influ-
ence, and the linear part of the equations of motion can be used simply for
evaluating the eigen-behaviour, which gives important informations of what
components oscillate with respect to other ones and where potential reso-
nances could be expected. This presupposes a linearization around the oper-
ation point under consideration. The eigenvalues and the eigenforms result
from Mq̈ + Kq = 0. We shall give examples.

5.3.3 Numerical and Experimental Results

Experiments were performed by the company AGCO/Fendt at all PTO sys-
tems. Figure 5.3.3 depicts a comparison of simulation and measurements for
the rear PTO [24]. These measurements were performed with a very stiff Car-
dan shaft and Cardan angles of α ≤ 14◦. The process considered is mulching.
The stiff Cardan shaft leads to large shaft eigenfrequencies of about 40 Hz,
which corresponds to an engine speed of about 2400 rpm. This value exceeds
the operational speed range and is therefore not dangerous. Simulations and
experiments agree very well.
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Fig. 5.55: Torque Amplitudes at the Rear PTO, Comparison Simula-
tion/Measurements (•,�), (courtesy AGCO/Fendt)

The equations of motion (5.99) were linearized around a stationary op-
eration point, which gives for our case a reasonable approximation of the
real dynamic behaviour including nonlinearities. With Mq̈ + Kq = 0 we are
able to evaluate eigenforms and eigenfrequencies, which has been done for 20
eigenfrequencies up to ≈ 2000 Hz. We shall consider only a few of them.

The matrix K contains all linearized stiffnesses of the system, which
are of particular interest for the hydrostat, because its stiffness depends on
the inclination angles α and β (Figure 5.50) and thus on the speed ratio
is = ncollectingshaft/nengine = 1/i. As a consequence all eigenforms and eigen-
frequencies resulting from an analysis of Mq̈ + Kq = 0 depend also on the
ratio is. Figure 5.3.3 depicts the depencies of some typical eigenfrequencies on
the speed ratio. With the exception of hydropump and hydromotor themselves
the influence on all other components is very small.

For system design one need to know the topological vibration behaviour,
that means what components vibrate with respect to other ones. We shall
focus our consideration on front and rear PTO loads. They possess signifi-
cant influence on the second, the third, the 17th and the 18th eigenforms and
-frequencies. While these loads influence both, the second and the third eigen-
modes, they have an effect on the 17th and 18th eigenmode only locally, front
load on front PTO system and rear load on rear PTO system. Therefore we
show only one case for the second eigenmode (19.7 Hz without load, ≤10 Hz
with load) in Figure 5.57, the numbering of which follows Figure 5.3.2 on page
260. The masses of Figure 5.3.2 are represented by small rhombi, and the dif-
ference between solid and dotted lines indicate the vibration amplitudes. The
loads reduce of course the eigenfrequencies, and the complete transmission
system vibrates down to the collecting shaft (11) (Figure 5.3.2).

With respect to the higher eigenmodes with about 1600 Hz without load
we have similar tendencies, drastic reduction of frequencies to values of 30-
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Fig. 5.56: Influence of the Speed Ratio on some Eigenfrequencies
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Fig. 5.57: Second Eigenform (both PTO moment of inertia J ≥ 2kgm2)

50 Hz and local vibrations at front and rear PTO’s. Figure 5.58 illustrates
the situation of the eigenforms. Loads at the front or rear PTO’s excite only
vibrations of the front or rear regime, which do not influence each other.

At this point a general remark for practical applications: The Figures 5.57
and 5.58 represent eigenvectors of a linearized system, which describe parts
of the approximated eigenbehaviour of the tractor drive. These curves are
characterized by the fact, that the eigenforms are not those of a continuum
but of a discrete system with discrete masses. It is sometimes very conve-
nient to use such eigenvectors, also in the case of a discrete mass system, as
shape functions for a Ritz-approach, because we get then a very simple first-
step approach to very complicated system structures. Usually eigenbehaviour
analysis is performed only for continuum systems.
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driveengine

Fig. 5.58: PTO Eigenforms at 30-50 Hz (both PTO moment of inertia J ≥
2kgm2), left figure for front load, right figure for rear load

As a last result we present some Campbell diagrams illustrating the ex-
citation structure in certain areas of the system. We consider again the case
of a rear load at a Cardan-angle of 22◦ and 25◦. The engine is a four-stroke
configuration. Figure 5.3.3 illustrates the torque at the rear PTO shaft. We
recognize the second order influence of the rear PTO and the second and
fourth engine order. Higher engine orders do not posses an influence. Due to
the relatively small stiffness of the Cardan shaft for the case considered the
second PTO shaft order is dominant. The corresponding load on the tripod is
shown by Figure 5.3.3. Also here and to a larger extent the second PTO sys-
tem order dominates the vibrations. From these results we conclude that the
internal excitation by the PTO systems at the front and rear side of a tractor
lead to significant vibrations. This is confirmed also by additional simulations
and by practical experience.
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Fig. 5.59: Campbell Diagram of the Rear PTO Torque (with rear implement
and a PTO shaft with 22◦ and 25◦)
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Fig. 5.60: Campbell Diagram of the Tripod Joint Torque of the Hydraulic
Motor (with rear implement and a PTO shaft with 22◦ and 25◦)
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5.4 CVT Gear Systems - Generalities

5.4.1 Introduction

Power transmission in automotive systems is classically carried out by gear
trains, which transmit power by form-closure. In recent times an increasing
number of continuous variable transmissions (CVT) are applied. They trans-
mit power by friction, and at the time being they compete more and more
with automated gears or with hand-shifted gears. Experts state, that there
might be a share of CVT-solutions of 15% to 20% with respect to the power
transmission market considered in the longer term. The advantage of gear
trains with gear wheels consists in a better component efficiency due to power
transmission by form closure, the disadvantage in an only stepwise approxima-
tion of the drag-velocity hyperbola. This disadvantage is significantly reduced
step by step by introducing automatic gear boxes with up to eight gear stages.
The advantage of a CVT configuration consists in a perfect adaptation to the
drag-velocity hyperbola, the disadvantage in a lower efficiency due to power
transmission by friction and in a somehow limited torque transmission. An
additional advantage of the CVT’s is the possibility of very smoothly chang-
ing the transmission ratio without any danger of generating jerk. Figure 3.9
on page 113 depicts an example from industry.

The following pictures give an impression of the systems and the com-
ponents. They are of general importance though the configurations shown
correspond to the LUK/PIV chain system. The operation of a chain- or belt-
driven CVT is for the various configurations always the same. Figure 5.61
depicts the main features. The chain or the belt moves between two pulleys
with conically shaped sheaves. One side of these pulleys possesses a movable
sheave controlled by a hydraulic system. The other side id fixed. Reducing or
increasing the distance between the pulley sheaves forces the chain or belt to

pulley B

pulley A

M1, ω

M2

FP,1

FP,2

Fig. 5.61: CVT-Drive, Example LUK/PIV System

move radially upwards or downwards thus changing the transmission ratio of
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the CVT. We have a driving pulley A (Figure 5.61) with an incoming torqe
M1, with a pressure force FP,1 and a resulting rotational speed ω, and we have
a driven pulley B with the outgoing torque M2 and a pressure force FP,2. The
control of these hydraulic pressure forces represents one of the crucial points
for CVT operation.

Some important components of CVT drives are pictured in Figure 5.62.
On the left one pulley is depicted with its axially fixed sheave with a me-
chanical torque sensor on the same side, with the movable sheave and the
hydraulic chamber, and as indicated with a rocker pin or a push belt element
between the sheaves. As can been seen the structural differences between the

Fig. 5.62: CVT Chain Drive Components

LUK/PIV chain with its rocker pins and the VDT push belt (VDT = van
Doorne Transmission) with its very small elements are significant, and from
that the differences in modeling these two configurations are also very large.
In the case of the LUK/PIV rocker pin chain we have to consider contacts
between the rocker pins and the pulley sheaves, between the two rocker pin
parts and between the rocker pins and the plates. The VDT push belt situ-
ation is much more complicated. Contacts are between the elements and the
pulley sheaves, the elements and the elements, between the elements and the
rings and within the steel ring package. As most simulations of such systems
refer to vibrations, noise and wear, very many of the components need to
be modeled as elastic bodies, though linear elastic bodies, but nevertheless
imbedded in a very complicated model structure.

At the time being we have three types of chains or belts, see Figure 5.63.
The LUK/PIV rocker pin chain, originating from the system Reimers, pos-
sesses the plate-rocker-pin structure somehow related to the classical roller
chain. The Borg Warner chain, mainly used in the US, includes similar
structural elements but with add-on pins generating also additional inter-
nal torques. The VDT push belt comprises very many small elements hold
together by two steel ring packages and designed in such a way, that one of
the strands is able to act as a kind of a strut supporting the transmission of
forces. In the following we shall give some typical data for the LUK chain and
the VDT belt, because we shall focus on these two configurations.
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LUK/PIV VDT/Bosch BWD

Fig. 5.63: Types of Chains and Belts

LUK VDT
chain belt

number of elements 63 382
element length, thickness 9.85 mm 1.80 mm
element width 36 mm 29.6 mm
polygonial frequency 550 Hz 3000 Hz
elements/sec at 1000 rpm, i=1 550 3000
lowest eigenfrequency 90 Hz 120 Hz
rigid DOF 300-400 1000-2000
elastic DOF 200-300 300-400
number of contacts 100 1500-2000

The number of the degrees of freedom (DOF) and of the possible contacts
indicate already the larger complexity of the push belt configuration. The
elasticity of the rings in connection with the unilateral contacts of the elements
on the ring require a one-dimensional continuum theory including unilateral
contact events. From the table we conclude in addition that the frequency
range to be considered has to be extended to the kilo-Hertz range, which
influences the size of potential Ritz approaches.

The literature in the area of CVT-chains and belts is very numerous start-
ing already at the early days of the mechanical sciences. Euler was the first to
establish the well-known theory for a rope wrapped around a cylinder, where
the rope force follows an exponential law along the angle of wrap. Eytelwein
[59] applied Euler’s theory to V-belts and flat belts, which has been an im-
portant contribution in those days with machines driven by a lot of very large
and dangerous belts. Grashof [90] investigated 1883 flat belts defining those
arc areas, where the belt tension and thus the belt force are constant. He
called that an equilibrium arc, which lost its significance at least for V-belts
with the finding of Dittrich [46] that any elasticity at right angles to a V-belt
generates radial displacements within the pulley. With the assumption of a
logarithmic spiral he could achieve good comparisons with measurements.

In the years to come many efforts have been undertaken to improve the
existing approaches. Lutz and his group ([144], [145]) introduced the ”or-
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thogonal point” with radial sliding only, but neglected longitudinal elasticity.
Hartmann [96] developed a theory with longitudinal and with crosswise elas-
ticities, but his method did not really bring an improvement with respect to
existing theories. A satisfying method was then established by Gerbert and
his school in Sweden ([83], [84]), who took care in a very efficient way of the
numerical problems involved.

Japan is the country with the most frequent applications of CVT-gears.
Therefore activities in the field are widepread. We cite Ide and his colleagues,
who established very valuable approaches for CVT’s based mainly on experi-
ments ([114], [113], [112]). In Germany a nice and astonishingly simple theory
has been published by Sattler [230], which nevertheless gives a good represen-
tation of many important features of CVT-belts and -chains. We used it in
a modified form as a starting algorithm for estimating the state of our very
detailed models and the correspondingly complex numerics. Sattler used, by
the way, quite a lot of ideas of Gerbert’s theory on CVT’s.

Design and functionality aspects have been considered within the larger
area of automotive power transmission by Tenberge [260] and Höhn ([101],
[100]), both scientists connected more to the practical problems of mechanical
engineering. Tenberge developed new concepts of power transmission includ-
ing CVT’s, and Höhn is certainly one of the fathers of the hybrid power
transmissions including rocker pin CVT’s. Applications of CVT systems can
be found in cars of AUDI, Daimler and of course in many Japanese automotive
systems.

At the author’s former Institute we started with plane models of rocker pin
chains ([250], [249]) including all details like elastic deformations of the pulleys,
the pins and the plates. A second dissertation ([239], [238]) extended the plane
theory to the spatial case including small deviations from the plane pulley-
chain-configuration, thus taking into account manufacturing tolerances as well
as the geometric-kinematical effects for transient states. All components are
modelled with all spatial degress of freedom and again most parts in a linear
elastic form. We shall present these results. Parallel to the rocker pin chains
the problem of the push belts have been considered, in a first step by certain
approximations, see ([32], [31], [77]), and quite recently in a more concise way
using set-valued laws and contacts with the one-dimensional continua of the
rings ([80], [81]). Research is going on for the three-dimensional push-belt
case. All theories and algorithms have been compared with experiments from
industry, with convincing results.

5.4.2 The Polygonial Frequency

One important feature distinguishing classical flat belts and V-belts from
rocker pin chains and push belts consists in the polygon effect generated by the
pins or the push belt elements when entering or leaving the pulley [250]. This
process is a source of internal parameter excitation, which usually does not
become dangerous in the form of resonances and the like, but which represents
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one of the major sources of noise and wear. Neighboring pins or elements
possess a certain distance to each other depending on the specific design of
the chain or belt. Therefore the chain or belt does not enter or leave the pulley
continuously but in a discrete manner as characterized by Figure 5.64.

We give an approximate description assuming a transmission ratio of one
and stiction in the contacts. The arc of wrap is a polygon line, where the
points of contact are given by the pins or the elements, approximately with
equal distances lG and with a constant rotational speed ωR. All points of

vwheel

vtrans = vimpact

vlong = vchain ϕ

ωR

ϕG

lG

∆y

x

y

r

Fig. 5.64: Polygon Effect

contact are assumed to be on a circle with radius r. The element length lG
corresponds to an angle ϕG by

ϕG = 2 arcsin
(
lG
2r

)
. (5.100)

For real chains and belts the value of ϕG results from practical experience
including aspects like noise, wear and the possibilities of manufacturing. In
addition the polygon length lG is not constant for all elements, but slightly
different to reduce noise. Nevertheless, for a first estimate but not for the
theories to follow, the simplified formulas are useful. We get for the polygon
frequency

fPolygon =
ωR

2πϕG
, (5.101)

which is comparable with the mesh of tooth frequency for gears.
All components of the CVT are excited by this frequency and by inte-

gral multiples or integral parts of this frequency. It concerns also the free
strands. To derive again a first estimate, we assume a transmission ratio i=1
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implying the free strand to be parallel to the x-axis. The first contact of the
pin (element) with the pulley takes place at ϕ = −ϕG/2 defining the initial
point of the polygon course within the pulley. The last contact takes place at
ϕ = +ϕG/2 defining the final point of the polygon course within the pulley.

According to Figure 5.64 we get for the transverse and for the longitudinal
velocities of the pin or element contact point the expressions

vtrans = rωR sinϕ, vlong = rωR cosϕ. (5.102)

Performing the average of these velocities over the partial arc (rϕG) associated
with the pin or element distance we get

v̄trans = (
ωRr

ϕG
)

+ϕG/2∫
−ϕG/2

sinϕdϕ = 0,

v̄long = (
ωRr

ϕG
)

+ϕG/2∫
−ϕG/2

cosϕdϕ = (ωRr)
sinϕG/2
ϕG/2

. (5.103)

The fluctuations of the incoming velocity in longitudinal and transverse
directions (Figure 5.64) can then be calculated by the differences of the real
and the averaged velocities. They generate the following velocity components

∆vtrans = vtrans − v̄trans = rωR sinϕ,

∆vlong = vlong − v̄long = rωR

(
cosϕ− sin(ϕG/2)

ϕG/2

)
. (5.104)

As a rough estimate we may say, that ϕG is usually very small, which results
in sin(ϕG/2)

ϕG/2
≈ 1. The angle ϕ is also very small, so that sinϕ ∼ ϕ and

cosϕ − 1 ∼ (ϕ)2 indicating, that the tranverse fluctuations grow with ϕ and
the longitudinal fluctuations with the square of ϕ. These angles are again
roughly proportional to the pitch.

The longitudinal velocity remains continuous during an impulsive entrance
of a new pin or element, but not the transverse velocity. It undergoes a velocity
jump leading to the impact at the entrance or the exit of the pulley. Assuming
that the entering (or leaving) pin possesses the same velocity as the initial
(end) point of the polygon course, we can write the components of the velocity
changes as

∆vimpact,t,r = 2rωR sin
ϕG
2

cos
ϕG
2

cosϑ,

∆vimpact,t,a = 2rωR sin2 ϕG
2

,

∆vimpact,n = 2rωR sin
ϕG
2

cos
ϕG
2

sinϑ. (5.105)
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The indices n, t, r, a stand for normal, tangential, radial and azimuthal direc-
tions, respectively, see Figure 5.65. The impact velocity ∆vimpact comprises
normal and tangential components with respect to the pulley surface, of which
the tangential radial part includes also an axial component due to the cone
angle of the pulley. Both, the azimuthal and the radial velocity components,
generate a frictional impact, where the azimuthal component ∆vimpact,t,a ac-
celerates the chain link, and the radial component ∆vimpact,t,r decelerates it.

∆vimpact,t,a

∆vimpact,t,r
∆vimpact,n

ix

iy

iz

Fig. 5.65: Simplified Impact Velocities

Additionally we have a velocity component ∆vimpact,n perpendicular to the
pulley surface, which represents a normal impact. These impacts are especially
in connection with large rotational speeds a major source of the noise, they
have in addition a large influence on the wear of the chain or the belt. For dis-
advantageous transmission and speed configurations the chain or belt might
even detach and come into contact again by a second and smaller impact [250].

The polygon effect is always accompanied by a large rotational impact,
because the rotational link velocities in the two free strands are approximately
zero, and a link within the polygon course of the pulley rotates with ωR. The
rotational velocity jump is therefore

∆ωimpact = ωR, (5.106)

which takes place with the polygon frequency fPolygon, equation (5.101), and
thus in a time interval of ∆t = 1/fPolygon. According to the data given above
this results for a chain approximately in ∆t ≈ 2 · 10−3s and for the push
belt in ∆t ≈ 3 · 10−4s and from that for a speed of 1000 rpm and a ratio
of i=1 in a rotational impact acceleration of ω̇ ≈ 55.000s−2 in the first and
ω̇ ≈ 300.000s−2 in the second case. Multiplied by a pulley radius of 50 mm
we would get 275 g in the first and 1500 g in the second case on each element.
This results in additional noise and wear.
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5.5 CVT - Rocker Pin Chains - Plane Model

In a first step we shall consider a CVT system with a rocker pin chain accord-
ing to the system Reimers (PIV Antriebe, Werner Reimers, Bad Homburg,
Germany), which is in the meantime taken over and produced by the company
LUK (Bühl bei Baden-Baden, Germany). The components of such a system
are pictured in the Figures 5.61, 5.62 and 5.63, they comprise the two pulley
sets with conical sheaves and the rocker pin chain, see [250] and [249]. The
chain consists of inner plates, clasp plates and rocker pins. All plates transmit
the tractive power, while the clasp plates orientate in addition the rocker pins
perpendicular to the direction of the chain motion. The rocker pins transmit
the frictional and normal loads between the pulley sheaves on the one and the
chain on the other side, utilizing the contacts between the pin faces and the
conical sheave surfaces. They connect within the chain structure the plates
thus acting as a kind of shaft with a rotational degree of freedom for the
bending chain.

The rocker pins and thus the chain are clamped between the sheaves of
the two pulley sets. Each pulley set consists of one axially fixed sheave and
one axially movable sheave. The axially movable sheaves are control elements,
which adjust the transmission ratio and change it by producing a transient
state using oil pressure.

5.5.1 Mechanical Models

Models require in a first step the definition of the model boundaries. The
boundaries of the system are the two pulley sets, for which the boundary
conditions are a constant speed of the driving pulley and a constant torque
acting on the driven pulley. Additionally, the oil pressure force of the output
pulley is prescribed, whereas the force acting on the axially movable sheave
of the driving pulley is specified by the transmission ratio.

Due to its very large loads, the pulley set needs to be modeled elastically.
As the elastic deformations are very small, nevertheless influencing heavily
the contact processes, we shall consider a RITZ-approach following the the-
ory discussed in chapter 3.3.4 on pages 124. The shape functions we evaluate
from a FEM-calculation for the pulleys. It turnes out however, that the dy-
namic influence of the deformations themselves are very small. This allows us
to replace the Ritz-approach by Maxwell’s method of influence numbers rep-
resenting practically the sheave elasticity by an areal spring, the areal stiffness
distribution of which is calculated by a static FEM-analysis.

We start with the rigid pulley set (Figure 5.66). The whole set is supported
by two elastic bearings with the same stiffness and damping in the two bearing
directions. The corresponding forces write

Fbearing,x = c(xR − xR,0) + dẋR,

Fbearing,y = c(yR − yR,0) + dẏR. (5.107)
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Fig. 5.66: Rigid Body Model of the Pulley [249]

The pulley set and the shaft possess the same rotational speed, if we assume
nearly no backlash in circumferential direction between the shaft and the
movable sheave. But the backlash between movable sheave and pulley shaft
must be considered, because it allows a translational motion and some tilt
(Figure 5.67). The corresponding force law is a linear spring with backlash.

Foil

Ix

Iz

Iy

Bx

By Bz

M

Fig. 5.67: Movable Sheave with Backlash [249]

The oil pressure poil itself has two parts, the pressure p0 coming from the oil
supply and the pressure generated by centrifugal forces. We get

poil = p0 +
1
2
ρω2

R

(
r2 − r2

0

)
(5.108)

with the appropriate values from the design charts. The force due to the oil
pressure follows from an integration over the surface A and gives

Foil =

ra∫
r0

2π∫
0

prdϕdr = Ap0 + kcentriω
2
R, (5.109)
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which means, that the oil pressure force is proportional to the pressure in
the oil chamber and to the square of the rotational speed of the shaft-pulley-
system.

It makes sense to include into these considerations of the rigid pulley model
the areal spring model of the sheaves. Originally it followed from a rather
extensive Ritz-approach-analysis, which indicated the possibilities for simpli-
fication [250]. The main deformation of the pulley sheaves is a tilt motion,
which superimposes the tilt originating from the backlash. Furtheron and by
regarding the deformation structure, we find a linear increase of the sheave
deformation with the contact radii and in circumferential direction a cosine-
form. This is plausible for physical reasons, because the heaviest load on the
sheave surface comes along the arc of wrap of the chain. Here we get the
maximum deformations. Therefore the following assumptions are reasonable.

The deformations of the sheave are proportional to the contact radius in
radial direction and to a cos-function in circumferential direction. They are
linearly dependent on the oil pressure, and they can be expressed by a tilt
angle ∆ϑ (Figure 5.68). The maximum depends on the position of the contact
forces, and we assume a symmetric stiffness distribution with respect to the
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Fig. 5.68: Approximation of Sheave Deformation [249]

two sheaves of the pulley. We then can establish the following formulas

∆ϑ =∆ϑmax(Foil) cos (ϕ− ϕ0(Ttilt)) , ∆ϑmax(Foil) = cE(r, ϕ)oilFoil

ϕ0 =
π

2
+ arccos

Ttilt,x√
T 2
tilt,x + T 2

tilt,y

,

Ttilt,x
Ttilt,y
Trot

 =
∑
i

r̃SCiFCi

ϑ(ϕ, Foil, Ttilt) = ϑ0 + ∆ϑ(ϕ, Foil, Ttilt) (5.110)

The maximum tilt ∆ϑmax depends linearly on the oil pressure force Foil,
which is plausible. The vectors rSCi and FCi are radial positions and forces
at the contact points of the pins within the arc of wrap, respectively. The rest
is clear from Figure 5.68.
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Proceeding with the elastic pulleys via Ritz-approach modelling we have
to establish suitable nets of the meshes and to evaluate the eigenforms, which
we shall use as shape functions. For each pulley set we consider two elastic
bodies, the fixed sheave together with the pulley shaft and the movable sheave
alone, which has to be coupled with the shaft within the framework of elastic
multibody dynamics. Figure 5.69 gives an impression of the undeformed and
deformed configuration of the pulley-shaft-system.

Fig. 5.69: FEM Model of the Pulley with Shaft [249]

The Ritz-shape-functions for both bodies are the eigenvectors of the FEM-
based modal analysis. From this we have no continuous functions describing
the bodies’ deformations, but only nodal informations. The masses of the
bodies are concentrated in the nodes and, hence, integrals over the body’s
volume have to be transformed to summations over the nodes. The nodal
structure makes also a certain interpolation scheme for the contact points
mandatory, because we cannot expect the contact points to be positioned at
the nodes. In a first run eleven eigenmodes were used to achieve some feeling of
the eigenbehaviour. The methods applied are those of chapter 3.3.4 on pages
124.

With respect to the operational frequencies one or two eigenmodes would
have been sufficient, but finally the above presented approximation comes
out with results not much different from those for a Ritz-approximation with
eleven shape functions. The main reason for this kind of investigation comes
from the intention to get some insight into the elastic behaviour and to explore
the possibilities for simplification.

For the evaluation of the dynamic behaviour of the rocker pin chain
itself we need a model of the chain elements, which includes all the mass effects
and also the elastic deformations necessary to calculate stresses and strains.
As already mentioned, the chain and its links are responsible for the internal
parameter excitations of the system, and considering in addition the slight
geometric differences of the chain elements for the purpose of noise reduction,
we need to model every individual chain element which is one reason of large
computing times. Therefore the chain link models have to be simple, compact,
but nevertheless realistic.
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To start with the model we consider Figure 5.70. Every chain link repre-
sents a rigid body, consisting of several plates and a pair of rocker pins. It has
three degrees of freedom qTL = (xL, yL, αL), which is the maximum number
of degrees of freedom in a plane. Therefore, the chain links are kinematically

Fig. 5.70: Rocker Pin Chain

decoupled. The chain links are connected by force elements, acting between
the point D of one chain link and the point B of its successor (lower part of
Figure 5.71). These force elements take into account the elasticity and damp-
ing of the link and the joint. When a link comes into contact with a pulley,
the frictional and normal contact forces act on the bolts of the chain link and,
therefore, on the link at the point B. Hence, all contact forces acting on one
pair of rocker pins are assigned to one link. In Figure 5.71 a left positioned
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Fig. 5.71: Model of a Rocker Pin Chain Link [249]

index refers to the coordinate systems, for example ”I” for an inertial and
”L” for a link-fixed coordiante system. A right index are the coordinates, or
angles, or length, themselves. The magnitudes (mL, IL) are the link mass and
mass moment of inertia, respectively.
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CVT’s transmit power by friction in the contact of the rocker pins with
the pulley surfaces. Therefore these contacts need to be considered very care-
fully. Phenomenologically rocker pins between the pulley sheaves build up in
normal direction certain normal forces, which are generated by the elastic
deformations of the pins and the sheaves on the one and by the contact con-
straints on the other side. In reality we have a unilateral contact in an elastic
multibody environment. Principally such contacts might detach again but it
is very unprobable, that under the tensile forces of the chain such an event
occurs.

After the normal contact direction will be closed, we get relative velocities
between pins and sheave surfaces in two directions, in radial and in circumfer-
ential directions. The radial relative velocities are closely related to the sheave
deformations. In the sense of chapter 3.4 we have a nonlinear complementarity
problem, which has to be treated by a friction cone linearization, for example.
In the meantime the prox-algorithm makes such an approach unnecessary. For
the tangential situation we might choose a model on the basis of unilateral
multibody systems on the basis of chapter 3.4 on the pages 131, or we might
choose a regularized force law approximating Coulomb’s law. In the first case
we are able to describe stick-slip effects, in the second case not. For the pla-
nar case Srnik [250] developed both models, unilateral and regularized ones
and compared the two with much success. The contact situation as a whole
is pictured by Figure 5.72.

Px

P y

P z

Sx

Sy

Sz

FT,r

FT,c

FN rP ϕP

P

ϑ

Fig. 5.72: Contact Rocker Pin - Sheave [249]

Neglecting its eigendynamics the pair of rocker pins can be modeled as one
single massless spring acting only perpendicular to the model plane, which is
identical with the pulley-chain plane. Figure 5.73 shows the model and the
forces acting in the contact plane. The oblique contact planes are symmetrical
with respect to the two pulley sheaves. The pin danamics can be neglected
thus allowing a quasi-static investigation. The normal contact force FN acts
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perpendicular to the contact plane, and the frictional forces FT,r and FT,c are
parallel to this plane.
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P z
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FT,r FT,c
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Fig. 5.73: Rocker Pin Model [249]

The pins change their length due to elastic effects, which have two parts.
The pin as an elastic strut will be shortened by the pressure force FP on the
one, and it will be compressed in its contact together with the sheave surface
by the same force on the other side (Figure 5.73). From this we get

∆lP = ∆lstrut + 2∆lHertz , with ∆lstrut =
fP

cstrut
,

∆lHertz =
f

2
3
P

cHertz
. (5.111)

The coefficients cstrut and cHertz may be taken from some standard text books,
for example [147] and [118]. To solve the above equation for the force FP is a
bit cumbersome. Therefore we use a least square approximation in the from
[250]

FP = c1∆lP + c2∆l
3
2
P + c3∆l2P . (5.112)

5.5.2 Mathematical Models

With respect to mathematical modeling we refer to the chapters 3.3 on the
pages 113 and 3.4 on the pages 131, where the fundamental equations and the
necessary algorithms are discussed in some detail. We apply these relations to
our case of a planar CVT-system with rocker pin chains ([250], [249]), though
presented here in a reduced form. Details are in the cited literature.

For the derivation of the chain drive’s equations of motion the equations
of momentum and the equations of moment of momentum of each single body
have to be considered. They are transformed into the corresponding space of
the minimal coordinates by the Jacobian matrices. We always come out with a
form corresponding to the equations (3.106) on page 118 for the bilateral and
to the equations (3.159) on page 143 for the unilateral case. In the following
we shall discuss the elements of these equations.
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The model of the chain drive includes the chain links as rigid bodies.
Their sets of minimal coordinates qTBi

= (xBi , yBi , αBi), index (Bi) for body
(Bi), define the planar motion of the links. The simplified relations (3.106)
for this case and only for body (Bi) with index (i) write:

JTi

(
mE mr̃BS
mr̃BS IB

)
i

Jiq̈ + JTi

(
mω̃ω̃r̃BS
ω̃IBω

)
i

= JTi

(
F

M + r̃BFF

)
i

, (5.113)

where we use the following definition for the single link and the overall system:

Ji =

(
∂v
∂q̇
∂ω
∂q̇

)
i

, vi =

 ẋ
ẏ
0


i

, ωi =

 0
0
ϕ̇


i

, (5.114)

We define the above equations for example in a body-fixed coordinate frame
and transform it to inertial coordinates or vice versa. The most convenient
way consists in writing these equations with respect to the reference point
(Bi), which is the hinge point of a chain link. The point (Si) marks the center
of mass. Hence, the vector rBSi points from (Bi) to (Si). IBi is the matrix of
the mass moments of inertia, mBi is the mass, ωi the rotational speed of the
body, and Fi and Mi are all active forces and torques acting on the body,
including the contact forces between the link and the pulley set and the joint
forces between the links. The last one is modeled as a linear spring-damper
law with the coefficient of elasticity c and the damping coefficient d (see Figure
5.71):

F = c
(
rBi+1 − rDi

)
+ d

rBi+1 − rDi

|rBi+1 − rDi |
(
vBi+1 − vDi

)
(5.115)

The point Di belongs to the link i under consideration and the point Bi+1

to it’s successor i + 1. Building all individual equations for each link and
combining them in an appropriate way we get finally for the rigid body Bi:

Miq̈ = hi(q, q̇, t) (5.116)

These equations of motion for each body are decoupled kinematically as long
as no stiction forces occur. Therefore, the mass matrix of the entire system
has a block-diagonal structure enabling a symbolic inversion.

For elastic bodies like the pulley-shaft system of Figure 5.69 we go back
to the equations of motion formulated in chapter 3.3.4 on page 124 mainly
represented by the relations (3.120), (3.121) and (3.127) on the pages starting
with page 125. The shape functions ūi are determined from a modal FEM-
analysis. Performing the evaluations given by the relations (3.127) on page
127 comes out with the same formal set of equations as given with (5.116),
but with an extended meaning (see [250]).

According to equation (3.120) the elastic deformations enter the equations
of motion(3.127) using the Ritz approach of the equations (3.121). We have
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to take care that for the derivations of the Jacobians second order terms are
regarded in the original kinematical relations. For linear elastic multibody
systems the equations of motion in the form (5.116) include only linear elastic
term of first order. The mass matrix consists only of 0-th order terms, while the
minimal accelerations q̈i as well as the right hand side vector hi comprise also
1-th order terms. The corresponding integrals depend only on space and not
on time and can be evaluated once only at the beginning of every simulation.

One of the problems connected with the consideration of an elastic pulley
set consists in the then necessary interpolation of the contact points. Figure
5.74 illustrates the situation. The discretization of the pulley sets in order to
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Fig. 5.74: Contact Point Interpolation [249]

evaluate the eigenvectors leads also to a truncated description of the surface
of the cone sheaves. These surfaces are the contact zones with the pins of the
chain link. Hence, an exact description is inevitable to generate the correct
contact forces. For this purpose we apply the following procedure.

We know approximately the position and orientation of the chain within
the pulley set, which allows us to select a data set of potential nodes situated
near some possible contact point. We store these data together with the elastic
node deformations. As we know also the position of the pin centerline we can
determine the four nodes P1 to P4, which span a bilinearly defined plane
including the point of intersection (Figure 5.74). The nodes P1 to P4 belong
to the sheave surface. In a first step we then calculate the exact point of
intersection of the pin center line and the bilinearly assumed area spanned by
the four nodes P1 to P4. This is point L. It is not positioned on the sheave
surface, but has a distance h to it. To evaluate this distance h we assume in
a second step, that the value of h in the deformed is not so much different
from its value in the undeformed state, which allows an analytical calculation
of h on the basis of no deformation. With the intersection point L and the
approximate distance h we know also the contact point K for the deformed
state, for which we evaluate all kinematical and kinetic magnitudes. For the
details see [250].
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For the derivation of the contact forces it is necessary to quantify the
pin’s spring force. It depends on the pin’s length lP and stiffness cP as well as
on the local distance s of the two sheave surfaces of a pulley set (Figure 5.75
left). We get

FP =
{
cP (lP − s) = cP∆lP ∀ s ≤ lP
0 ∀ s > lP

(5.117)

Neclecting the dynamics of the pins along their center line we can evaluate
the normal forces approximately from the static equilibrium of forces perpen-
dicular to the model plane. Taking into account equation (5.117) it depends
on the minimal coordinates of the corresponding chain link and the contact
force FRr in radial direction:

FN = FRr tanϑ +
FP

cosϑ
= FRr tanϑ +

cP (lP − s )
cosϑ

(5.118)

Coulomb’s friction law is used in order to determine the remaining frictional
forces as function of the normal force and the relative velocity ġ:

sliding: ġ �=0 ⇒ FR = −µ0 FN
ġ
|ġ| ,

stiction: ġ =0 ⇒ FR =
√
F 2
Rr

+ F 2
Rt
≤ µ0 FN . (5.119)

In the case of sliding, a single-valued dependency for the frictional forces exists,
and all contact forces can be calculated. By inserting equation (5.119) into
equation (5.118) all contact forces are a function of the minimal coordinates
of the bodies under consideration.

P

P

Fig. 5.75: Characteristics of the Pin’s Force (left) and of the Friction forces
(right)

If the relative velocity ġ vanishes, a transition from sliding to stiction is
going to take place. In this case, the friction law (5.119) gives only an upper
limit for the magnitude of the stiction force. After it is reached, a transition
from stiction to sliding is possible. By eliminating the normal force with the
help of equation (5.118), one obtains an elliptical cone in dependency of the
pin’s force FP , representing the convex set of the valid stiction area (Figure
5.76):
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(FRr − FRr ,M )2

R2
r

+
F 2
Rt

R2
t

≤ 1 (5.120)

with

Rr =
µ0 FP

cosϑ(1− µ2
0 tan2 ϑ)

, radial semi axis,

Rt =
µ0 FP

cosϑ
√

1− µ2
0 tan2 ϑ

, azimuthal semi axis,

FRr ,M =
µ2

0 sinϑFP
cos2 ϑ(1− µ2

0 tan2 ϑ)
, radial displacement of the center. (5.121)

In the case of a sticking contact, the vector of the frictional force points to an
inner point of the stiction cone, whereas in the sliding case its tip is positioned
on the surface.

The semi axis as well as the radial displacement of the center (equations
(5.121)) indicate, that the cone angle enlarges the maximal frictional forces
in radial and circumferential directions. The radial displacement of the center

P

Fig. 5.76: Convex Set for the Pin/Sheave Contact

results from the coupling of radial and normal forces in equation (5.118) and
leads to higher frictional forces in radial direction for a movement towards the
axis of the sheaves than away from this axis.

The stiction force is a constraint force. It can be calculated by taking into
account the appropriate kinematic condition of vanishing relative velocity
ġ = 0 at the contact points. For the implementation into the equations of
motion it is necessary to formulate this condition on an acceleration level
(g̈ = 0). In this case one can distinguish between sticking and transition to
sliding. For a transition to sliding the relative acceleration and the frictional
force point in opposite directions:

stiction: FR ≤ µ0 FN ∧ g̈ = 0,
transition to sliding: FR = µ0 FN ∧ g̈ = −ρFR, ρ > 0 (5.122)
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A stiction force is a constraint to the system. Therefore, each independent
sticking contact reduces the number of degrees of freedom by two and the
equations of motion have to be modified. With the methods discussed in
chapter 3.4 on the pages 131 the system dynamics can be described by a set
of nonlinear differential-algebraic equations for the unknowns q̈ and λi:

Mq̈ = h +
∑

Wiλi

g̈i = 0 ∧ λ0i ≥ 0, g̈i ≥ 0 ∧ λ0i = 0, g̈iλ0i = 0,
λ0i = µ0FNi − |λi| ≥ 0 (5.123)

This is a complementarity problem being solved at that time by Lemke’s algo-
rithm. λi are the frictional forces of the i-th sticking contact. It is transformed
by the constraint matrix of the contact point Wi into the corresponding space
of the minimal coordinates. Chains and belts transmit power by sliding fric-
tion in the contact pins/pulley or elements/pulley. Sticking contacts do not
occur very frequently. Therefore the possible maximal number of such sticking
events are of minor interest.

For the calculation of the stiction forces λi of the i-th potentially active
tangential constraint, additional nonlinear complementary conditions have to
be taken into account. They correspond to the contact law on an acceleration
level. We call λ0i the frictional saturation or the friction reserve. For the
determination of the normal forces no additional constraints have to be taken
into account, because they are known by equation (5.118).

Due to the transitions from stiction to sliding, and vice versa, and the
corresponding changes of the number of degrees of freedom, the equations of
motion (5.123) possess a time-variant structure. The transition from sliding
to stiction in a contact between a chain link and a pulley can produce a
discontinuity of the contact forces leading to a jump in the accelerations of
this two bodies. If the pulley is modeled as one rigid body the acceleration
jump can lead to changes in the contact configuration of the other contacts
of this pulley. However, because of the pulley’s large moment of inertia, these
couplings are week and may be neglected. Nevertheless, the corresponding
transition points have to be determined, which leads in combination with the
large number of contacts to large simulation times.

We have two possibilities for reducing the contact simulation efforts. The
first one uses a continuous chain model, something like a belt-shaped struc-
ture, for example [230]. For such a model the contacts are reduced to one for
each pulley. This neglects the polygonal effect and the corresponding excita-
tion mechanisms, which are a major subject of the current studies. So this
possibility will not be considered further. The second possibility for reduc-
ing the system’s order is the application of a continuous approximation of
Coulomb’s friction law by a regularized characteristic (right part of Figure
5.75), the equations of which write
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FR = −µFN
ġ
|ġ| , with µ = µ0(1− e

− ġ
ġh ), ġ = |ġ|. (5.124)

The factor ġh defines the gradient of the curve for ġ = 0 and is a measure for
the deviation of the approximation from the exact solution. By this friction
law the frictional forces are uniquely determined in dependency of the normal
force for any relative velocity. It is a single-valued force law, not a set-valued
one. This property implies, that stick-slip phenomena will not take place,
which is very near to the practical operation of CVT-systems. They transmit
power by sliding friction. A further outcome of this regularization consists in
a set of equations of motion without complementarities, which can be solved
in a conventional way.

It might be of interest to present a comparison between the two meth-
ods, the one with and the one without complementarities. The differences are
presented in Figure 5.77. It depicts the radius of a chain link as well as the
tensile force in this chain link while it is in the arc of wrap of the driving
pulley. Generally both contact models provide results, which are next to each

Fig. 5.77: Radius (left) and Tensile Force (right) of a Chain Link in the Arc of
Wrap of the Driving Pulley [249]; Coulombs Friction Law (Set-Valued): —– ,
regularized friction characteristic (Single-Valued): - - - -

other. However, for the continuous model, the phases of stiction, which are
recognized in the discontinuous model by exact constant values, are only ap-
proximately constant. On the other side the calculation time decreases by
at least one order of magnitude. Thereby, larger values of the coefficient ġh
in equation (5.124) lead to larger simulation times and to a more exact ap-
proximation of the unsteady case. This is a point, where the regularization
requires some trade-off feeling. As the correspondence of both models is proven
the faster simulations are used for further investigations.

5.5.3 Some Results

The following results are computed for a uniform motion with constant driving
speed ωdriving, an output torque Tdriven = 150Nm, a geared level i = 1
and a pressure force of Fpressure,driving = 20kN on the driving side, which
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corresponds to a pressure force Fpressure,driven = 27.4kN on the driven side
(Figure 5.78). The chain drive consist of two pulleys and 63 chain links. To

ϕI
ϕI

Fig. 5.78: Configuration of the Simulated System

analyse the influence of the pulley’s deformation two kinds of simulations
have been performed. One with the real elastic pulley sets and one, which
neglects any elastic deformations of the pulley sets. The elastic deformations of
the fixed pulley sheave must be considerably smaller than that for the movable
sheaves, because in that case we get a superposition of the movable sheave
tilt and the elastic deformations. The displacements of a surface point depend
on its position on the sheave surface and on time. For stationary operation
however and neglecting for this consideration the polygonal effects we get
more or less constant functional properties of the load by the contact and
pressure forces, seen from an inertial position. As a consequence the functional
characteristics of the pulley deformations are also always the same for an
inertial standpoint of view, they can be interpreted as a kind of attachment
modes with respect to a possible Ritz-approach.

The position of a (static) deformation point can be described by a circum-
ferential (azimuthal) angle ϕ and by a radial position r. The radius is varied
from the innermost radius r = 22.5mm to the maximum radius r = 72.9mm,
while the chain runs on a radius of r ≈ 52.5mm. Figure 5.79 shows the defor-
mations of the four sheaves as a function of the azimuthal angle ϕI (Figure
5.78) on several radius groups. The plots show, that the sheaves are bent
outward in the contact zones, represented by a positive sign for the axially
movable sheave and by a negative sign for the axially fixed sheave. In the
zones with no chain contact the sheaves are bent inward, while the transition
occurs for all radius groups of one sheave at the same azimuthal position. The
amplitudes of the axially movable sheaves are larger than those of the axially
fixed sheaves, because of an additional tilting of the axially movable sheaves,
which again is due to the clearance between shaft and sheave. The maximum
of the deformation is located adjacent to the exit area of the chain, for both
pulley sets. This causes high normal contact forces right after the maximum
deformation and, hence, right before the exit phase. In addition the chain link,
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sheave

Fig. 5.79: Deformation of the Axially Movable Sheaves (top) and the Axially
Fixed Sheave (bottom) of the Driving Pulley (left) and of the Driven Pulley
(right) in Dependency of the Azimuthal Angle ϕI on Different Radii

which is on a minimum radius at the maximum deformation point, can not
move outward fast enough to avoid jamming between the sheaves.

The pulley’s deformation decisively influences the path of motion with-
ing the angle of wrap and the efficiency of the complete chain drive. The cor-
responding effects can be seen in an especially illustrative way by considering
the radius of a chain link on its path around the pulley, one time for rigid and
one time for elastic sheaves (Figure 5.80). The graphs for the rigid sheaves

ϕI [◦]ϕI [◦]

Fig. 5.80: Radius of a Chain Link in the Driving Pulley (left) and in the Driven
Pulley (right); rigid sheaves: ——, flexible sheaves: - - - - -

show minimal radial movements. In the contact phase of a chain link with
the driving pulley, the tensile force in the link declines from the value of the
pulling strand to the one of the free strand. The contact forces in the corre-
sponding pin have correlated values. After the entry phase, which is marked
by a decline of the radius, the radius increases again. The exit phase finishes
the circulation of the link by an abrupt increase of the radius. A chain link
contacting the driven pulley shows the same behavior in the entry and exit
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phase. Nevertheless, the plots differ, because the tensile force increases from
the value of the free strand to that of the pulling strand and according to this,
the radius decreases.

The lengths of the radial paths of a chain link in contact with flexible
sheaves are about 15 times larger than the radial paths of a chain link in
contact with rigid sheaves. The larger radial motion, preferably going ahead
with energy dissipation, leads to a deterioration of the calculated efficiency
by about 2%. The radial paths are determined mainly by the deformation
function, which has its maximum at a wrap angle of 200◦ for the driving
pulley and of 30◦ for the driven pulley. In this region the chain link has its
minimal radius and the radial movement changes its sign.

As long as the chain link is part of a strand no contact forces act on its
rocker pins. When the link comes into contact with one of the pulleys the pins
are pressed between the two sheaves and, hence, the normal force increases.
Its amplitude depends on the geometry of the sheaves and the transmitted
power. Figure 5.81 illustrates an example. The frictional force is a function

Fig. 5.81: Forces acting on a Chain Link during one Circulation

of the normal force and the relative velocity between the pulley and the pins.
It is split into one radial and one azimuthal component. The radial contact
force coincides with a radial movement of the chain link, which results in a
dissipation of energy. In contrast to this the azimuthal contact force causes the
changes of the tensile force in the corresponding chain link, leading to different
tensile force levels in the two strands which agree with the transmitted torque.

Measurements have been performed at the Technical University of Mu-
nich at the Lehrstuhl für Landmaschinen [231]. In order to compare these
measurements with simulation results, it is necessary to determine the dis-
tribution of the tensile force on the plates of the chain links. Therefore, an
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elastostatic model of the chain, including all its components, was established,
see Figure 5.71 on page 286. For this purpose the pairs of rocker pins are
modeled as bending beams and the plates as linear springs. Neglecting sec-
ond order effects, only the azimuthal frictional forces and the stretched chain
length are adopted from the dynamic simulation as boundary conditions. With
this model we obtain the right graph of Figure 5.82 for the tensile force in the
clasp plate.

Fig. 5.82: Tensile Force in a Clasp Plate: Comparison of Measurements
(left)[231] and Simulation (right)[250]

The results differ a bit from the results of the model, due to the deforma-
tion of the link components. The plate forces are usually significantly different.
Especially the force peaks of the elastostatic model do not exist in the model.
The reason for this is, that in the model the tensile force is an integral value
of all plates, summing up the deformat effects of the link’s components. The
force peaks result from pin bending, which depends on the azimuthal fric-
tional forces. These forces are subject to large changes in this area (Figure
5.81). Therefore, the plates have to compensate the bending differences be-
tween successive bolts, leading to high tensional forces in the outer plates.

The force peaks appear also in the measurement, even though they are
more distinctive. During the contact phases measurement and simulation cor-
respond to each other. This indicates that the assumptions for the sheave’s
deformations are correct, which is one of main influences on the tensile forces
in the contact zones. The measured vibrations of the free span are due to the
measurement system. Hence, they do not appear in the simulation. The two
upward peaks of the measurement at the beginning and the end of the free
span are missing in the simulation. Nevertheless the principal course in the
free span, including the downward peak in the beginning, as well as the force
difference between the two spans, coincides. Further comparisons confirm the
mechanical and mathematical models ([250], [239].

The pulley clamping forces and the efficiency offer additional possibil-
ities for a comparison of simulations and measurements. These magnitudes
are easy to measure, and from the standpoint of the theory they cover a wide
operational range. The ratio of the contact pressures ζp = pdriving/pdriven is
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a measure for the pressure system efficiency [232]. Hence, various measure-
ments exist, describing the global chain drive’s behaviour. Figure 5.83 shows
the measured and calculated contact pressures for a typical data set.

Fig. 5.83: Ratio of Contact Pressures for a Chain Drive on a Geared Level
i = 1 and a Driving Speed ωdriving = 2000 rpm; Measurements from [231]

The calculated curve for elastic pulley sets shows a good correspondence
with the measured curve, qualitatively and quantitatively. The maximum rel-
ative error is less than 10%. In contrast to this, the calculations with the rigid
pulley sets have no accordance with the measurements, their maximum value
is much to high and the following decline occurs to early, indicating sliding of
the chain at low torques. Obviously a model of a CVT-chain drive with rigid
pulley sets cannot describe the dynamic system behavior, whereas a model
with elastic pulley sets is able to reflect the reality.

An important quantity for the evaluation of transmission system compo-
nents is the coefficient of efficiency. Therefore, it should be possible to meet
predictions for this indicator by simulation. Figure 5.84 shows measured and
calculated values. A simulation, which neglects losses of the bearings, gaskets
and the hydraulic unit, shows the efficiency of the chain drive itself. In this
case the efficiency is relatively high. It is above 95% in a wide operating range.
It decreases only for small torques, when the losses of the frictional forces have
a decisive influence, and for high torques, when the slippage increases. Tak-
ing into account the losses of bearings and gaskets, but neglecting again the
influence of the hydraulic unit, we reach coefficients of efficiency η ≈ 95% in
the main operating range. The correspondence between this calculation and
the measurement is very good and the relative error is less than 5%.

Considering the global as well as the detailed accordances of measure-
ments and simulations, we can again infer that the comparisons confirm the
mechanical model.



300 5 Power Transmission

Fig. 5.84: Coefficient of Efficiency for a Chain Drive on Geared Level i = 1
and a Driving Speed ω = 2000 rpm; Measurements from [231]



5.6 CVT - Rocker Pin Chains - Spatial Model 301

5.6 CVT - Rocker Pin Chains - Spatial Model

5.6.1 Introduction

Mainly due to geometric incompatibilities all CVT-chains do not perfectly
move in a plane but show also out-of-plane effects, which for some cases of pre-
design considerations cannot be neglected. In addition the elastic behaviour
of all components play a crucial role concerning three-dimensional motion.
With respect to modeling this increases the number of degrees of freedom
considerably leading to growing simulation times. On the other hand design
or design improvements of chains, especially with respect to wear and noise,
are only possible applying a 3D-theory.

The most important effects for misalignment are of geometrical nature.
The sheaves must be controled, and this is achieved by moving axially the
movable sheaves. To avoid already misalignments by the arrangement of these
movable sheaves, they are arranged in an asymmetric way, for the two pulleys
the axially movable parts on opposite sides. This assures that the chain moves
during a transient change of the transmission ratio for both pulleys in the same
direction, where the axial position is given by the not movable sheaves. But
due to different chain radii within the two pulleys we get a misalignment
∆z = z2− z1, which becomes zero only for a transmission ratio i=1 [173]. For
a ratio i=1 we have in both pulleys the same radius of wrap and thus also
the same inclination angles of the sheave surfaces. But for large transmission
ratios the situation changes dramatically, as can be seen from the Figure 5.85.

Fig. 5.85: Pulley Misalignment [239]

It is possible to influence that kind of misalignment by the curvature of
the pulley sheaves. But this is very much limited, because on the other hand
too large curvatures would lead to edge-carrying effects of the pins, which
have to be avoided [239]. In order to limit the contact pressure between pins
and sheaves the disc curvature radius R must have a lower bound. These
arguments indicate, that chain misalignment represents definitely a typical
system’s pecularity being not only a result of erroneous manufacturing.



302 5 Power Transmission

In the following we shall continue the discussions of the preceding chapters
concerning a plane model of a rocker pin chain. We extend the coresponding
theory to the spatial case , where ”spatial” means only small deviations from
the planar configuration. On the other hand we shall recognize, that even very
small deviations result in large changes of the chain forces as a consequence of
an extreme sensitivity of all contact processes to slight changes of the contact
conditions. The chapter is mainly based on the research findings of Sedlmayr
[239].

5.6.2 Mechanical Models

The contact forces between the chain and the pulleys cause a considerable
deformation of the pulley’s sheaves. The eigenfrequency of the sheaves is
much higher than the operating frequencies. Therefore and according to [230]
and [249] the mass forces of the elastic deformations can be neglected in this

Fig. 5.86: Lateral Buckling and Pulley Deformation [239]

case. Using the degrees of freedom (∆ϑF/M , γ0,F/M ) the lateral buckling of the
movable sheaves may be approximated by a sine function ∆ϑF/M sin(γc,F/M−
γ0,F/M ) (see chapter 5.5.1). The magnitude ∆ϑ is the angle of inclination of
the sheaves including rigid and elastic parts. The gliding angle γ describes the
difference of the pin’s motion along the disc and the exact circular direction.
The indices F and M denote the fixed and the movable sheave, respectively,
and γc,F/M the contact location. The amplitude ∆ϑF/M consists of a backlash
sskew and an elastic deformation between the movable sheave and the shaft,
Figure 5.86.

With a FEM-analysis the sheave deformation can be calculated with the
Reciprocal Theorem of Elasticity (Betti/Maxwell). Together with Hooke’s law
applied at the pin this results in a Linear Complementary Problem (LCP) in
a standard form [200]. The meaning is clear: If the pins get into contact, we
have constraint forces, otherwise not (Figure 5.86). Both pulley sets have one
rotational (ϕ), two translational in-plane (x, y) and one axial out-of-plane
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(zM ) degrees of freedom. All degrees of freedom can be collocated in qP =
(x, y, zM , ϕ,∆ϑF , γ0,F , ∆ϑM , γ0,M )T .

The relative distances and the complementary behavior, as indicated in
Figure 5.86, can then be formulated as follows:

gi = grig,i + gel,i = g+
i − g−i , g−i = c−1

rp Frp,i, gel,i =
∑
j

wijFrp,j

g+
i =
∑
j

wijFrp,j + c−1
rp Frp,i + grig,i

g+ = WFrp + grig, with Frp ≥ 0, g+ ≥ 0, FTrpg
+ = 0 (5.125)

Each link represents an elastic body with three translational rigid body
degrees of freedom and in addition the elastic degrees of freedom. The angles
βL and γL, shown in Figure 5.87, kinematically depend on the translational
position of the successor link. In order to describe the orientation and elastic

Fig. 5.87: Chain Link Model

deformation of a pin some more degrees of freedom qel = (qTel,x qTel,y)
T have

to be introduced. We distinguish between the radial (y) and azimuthal (x)
directions. Thus the set of generalized coordinates can be written as qL =
(xL yL zL qTel)

T . The links are kinematically interconnected by pairs of
rocker pins. The elasticity and the translational damping of the joint is taken
into account by the link force element whereas the rotational damping and the
axial friction between the pair of pins is considered by the joint force element.
The link force element takes into account every plate as a spring. The effect of
moving contact points relative to the plate spring reference points between a
rocker pin and an adjoining plate are modeled as a contact torque. This effect
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has turned out to be very important for an optimization of the link elements,
therefore we shall consider it in more detail (see [168], [167]).

The rocker pins are composed of two elements of the same kind, which roll
on each other without sliding. In order to be able to describe the kinematics
of a rolling rocker pin joint we need in a first step a specification of the
inner contour of a rocker pin, because the two pins of a joint are rolling one
on the other along their inner contour. It consists of two symmetrical halves,
each is an involute to a circle, and is defined by the two parameters r0 and
r (Fig. cvts-contour). The following equations hold true for the upper half

P

N

M

Ψ

Ψr

S

X

X0

l(Ψ)
r0

Fig. 5.88: Inner Contour of a Rocker Pin: Two symmetric halves, each an
involute to a circle. The pictured circle is only used for the construction of
the upper half. The lower half is the reflection of the upper half with respect
to the symmetry line SX0.

(0 ≤ Ψ ≤ Ψmax):

r0 :=SX0,

l(Ψ) =PX = r0 + rΨ,

PN =NS = r tan
Ψ

2
. (5.126)

The lower half is the reflection of the upper half with respect to the symmetry
line SX0.

As illustrated in Fig. 5.89 the rocker pins are fixed to the links with their
outer contours. It should be noticed, that the symmetry axis of the rocker pin
is not parallel to the link plate axis, but it is rotated by the constant angle δ.
This fact has been neglected in former models [239], but should be considered
when studying the joint kinematics more in detail. Figure 5.89 shows an angled
rocker pin joint. The most important kinematical effect consists in an offset
∆ai between the intersection point X0 of the symmetry axis with the contour
of the pin and the intersection point Bi of the two link axes. For common
rotational joints (r0 = r = 0) this offset vanishes. The connection between
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A = X

X0
Bi 2φi

N

Ψi

δ

δ−δ
link i− 1

link i
∆ai

link plate axis
pin symmetry axis

Fig. 5.89: Kinematics of an Angled Rocker Pin Joint

the joint angle 2φi and the offset ∆ai is calculated by using Eqs. 5.126 and
applying some trigonometrical operations:

ψi = φi − δ, Ψi = |ψi|

AN = l(Ψi)− r tan
Ψi
2
, NX0 = r0 + r tan

Ψi
2

∆ai = X0Bi =
1

cosφi
[r0 (1− cosΨi) + r (Ψi − sinΨi)] (5.127)

Rolling without sliding or detachment occurs in the contact between each
rocker pin pair. So the coordinates of the intersection points Bi of neigh-
bouring links can be chosen as generalized coordinates, as they describe the
complete configuration of the chain (n = 63):

q = (qT1 ,q
T
2 , . . . ,q

T
n )T ∈ IR2n, with qi = (yi, zi)T . (5.128)

For developing the chain equations of motion we consider Figure 5.90. We
collect the proportionate masses mji of the chain (link plates and pins) in
the point Pji. The point Kji denotes the position of the potential contact
points Kji on the rocker pins to the pulleys. The position vectors of Pji
and Kji can be stated by referring to the angles αi of the link axes (Figure
5.90). Furtheron we introduce the offset ∆ai resulting from the rocker pin
joint kinematics (Eq. 5.127, Fig. 5.89) and the constant ∆bi := PjiKji, which
describes the position of the body fixed contact point on the pin. The vectors
to the above points then write
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A

P1,i−1

P2,i−1
Bi−1 P1,i+1

P2,i+1

Bi+1

P1,iP2,i
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K1,i

K2,i

Iey

Iez

Fig. 5.90: Model of the Rocker Pin Chain

rP1i = qi + ∆ai

(
cosαi−1

sinαi−1

)
rP2i = qi −∆ai

(
cosαi
sinαi

)
(5.129)

rK1i = rP1i + ∆bi

(
cos(αi−1 + δ)
sin(αi−1 + δ)

)
rK2i = rP2i −∆bi

(
cos(αi − δ)
sin(αi − δ)

)
(5.130)

The equations (5.129) refer to the mass points and the equations (5.130)
to the contact points. Each of the two rocker pin components possesses its
own contact point, which turns out to be quite realistic. The link plates are
regarded as massless spring damper elements (stiffness ci, damping ratio di)
and connect the points P2,i and P1,i+1. The resulting link forces FLi write

FLi =
[
ci (li − li,0) + dil̇i

]( cosαi
sinαi

)
, (5.131)

where li denotes the length of link i, and l̇i is its time derivative. Together
with the gravitational parts (gravitational acceleration g) the following forces
act on pin ji at Pji:

FP1i = −FLi−1 + m1i

(
0
g

)
, FP2i = +FLi + m2i

(
0
g

)
, (5.132)
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Additional frictional forces FKji due to the contact between the discs
and the rocker pin have to be taken into account. On part of the chain they
depend on the position and the velocity of the potential contact point Kji

(details can be found in [249]). In each joint there arise damping moments
Mφi , proportional to the angular velocity in the joint

Mφi = −dφi(α̇i − α̇i−1) (5.133)

The chain pulley contacts are rocker pin pulley contacts, either mod-
eled with one contact point [239] or with two contact points [167]. As was
pointed out already, we may get edge carrying situations for extreme trans-
mission ratios. This is also confirmed experimentally by the dissertation [105].
The three-dimensional dynamics of the chain generates additional shear and
torsional deformations superimposed to the bending of the rocker pins, which
appears anyway. Therefore the elasto-hydrodynamic oil film is squeezed out of
the contact zone and something like mixed friction will be built up. Altogether
it turned out that Coulomb’s friction law represents a good approximation.
In order to take into account Hertzian deformation a nonlinear spring law
in the chain pulley contact will be introduced, already presented for plane
CVT-dynamics with equation (5.112) on page 288.

5.6.3 Mathematical Models

Applying the principle of virtual power (Jourdain) the equations of motion
for a rigid body as well as for an elastic body can be derived in a form, which
has already been discussed in chapter 3.4 in connection with the equations
(3.159) on page 143. They write

M(q, t)q̈(t) + h(q, q̇t)− [(WN + WR) WT ]
(
λN (t)
λT (t)

)
= 0 (5.134)

The mechanical quantities appearing in these equations have been already ex-
plained on page 143 and the following. The special derivation of the equations
of motion for the rocker pin chain considers therefore mainly the pecularities
for this case.

For rigid bodies we start with the equations of momentum and the equa-
tions of moment of momentum, which yields

JT
(

mE mr̃BS
mr̃BS IB

)
Jq̈+JT

(
mΩ̃Ω̃r̃BS
Ω̃IBΩ

)
= JT

(
F

T + r̃BFF

)

JT =(JTT JTR) =
[
(
∂vB
∂q̇

)T (
∂Ω
∂q̇

)T
]

(5.135)

These equations of motion refer to a point B of the rigid body. The point S
marks the center of mass. The vector rBS points from B to S. IB denotes
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the matrix of moments of inertia, m the mass, Ω the rotational speed, vB
the velocity, F the active forces and T the active torques. The Jacobian J
transforms the equations of motion from the space of rigid body motion to
the hyper-spaces orientated tangential to the constraint surface called con-
figuration space. The rigid body degrees of freedom of the pulleys are given
with the equations (5.135). The rigid body motion is superposed by elastic
deformations.

Starting from an inertial reference the vector to a mass point of a de-
formed body is composed by rigid parts (rIL + x0) and by the elastic defor-
mation parts rel. The vector rIL denotes the distance from the inertially fixed
point I to the origin of the reference system of coordinates L, x0 denotes the
vector from this origin to a mass element dm in the undeformed configuration
and rel the elastic displacement vector (see for example Figure 2.22 on page
48). Assuming small displacements one can introduce a Ritz approach for the
elastic deformation in a time and space separated formulation.

ri =(rIL + x0 + rel)i,

(rIL)i = (xL yL zL)Ti , AIRi =
(

cos γL − sin γL
sin γL cos γL

)
i

,

(rel)i =
{[

AIR

(
wT
x (x0)qel,x(t) wT

y (x0)qel,y(t)
)T ]T

0
}T
i

. (5.136)

The equations of motion for an elastic body may be derived from Jourdain’s
principle with a the absolute acceleration and f the applied forces:∫

(
∂v
∂q̇

)T (adm − df) = 0 (5.137)

For the evaluations of these equations we have to go back to the relations
(3.127) on page 127 in connection with the elasto-kinematical considerations
of chapter (2.2.8) on page 47. These evaluations are very lengthy and tedious,
and they have to be performed for every component of the spatial CVT system
as presented before (see [239]). Fortunately, the results can be partly simplified
and to a certain extend also decoupled by the fact, that the out-of-plane
motion is very small compared to the nominal motion. Nevertheless it should
be noted, that this refers to kinematics not to forces. Very small geometric
changes produce very large changes in the forces, especially contact forces.

The determination of the contact forces between pulley and rocker
pins we need some definitions according to Figure 5.91. We shall use (L)
for the movable, F) for the fixed pulley side and (B) for the pin. Furtheron
the indices (I, C, K) stand for inertial, contact point and middle point of the
rocker pins. The angles between the corresponding coordinates are also given
in Figure 5.91. We additionally consider in the following only one contact
point per rocker pin end surface [239] and not two contact points as presented
in [167].
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Fig. 5.91: Contact Pin/Sheave for the Movable Side

With these definitions the contact forces between the sheaves and the front
faces of the rocker pins are determined by the geometrical gap function g(q)
being defined in the axial direction of the undeformed rocker pin. A system
of coordinates C is introduced on the cone surface in the middle of the rocker
pin end, defined by the triple of circumferential, radial and normal direction
(t, r, n) and their forces (Ft, Fr, Fn). From this we get (see also [250])

FB,i = −cB(g−i ) g−i ≈ cB1 |g−i |pB1 + cB2 |g−i |pB2 , (5.138)

which is a nonlinear empirical force law for the pins. In dependency of the sign
sz = sign(IzC) of the inertial position of the contact we define the quasistatic
equilibrium in the form

KFL/F,i =

 ∗
∗

szFB


L/F,i

= AKiCL/F,i
Fn,L/F,i

µ
ġT,a

ġT

µ
ġT,r

ġT

sz1


L/F,i

(5.139)

From these equations we are able to derive the normal forces and the friction
forces acting on the pulley sheaves. We come out with [239]

FN,i =

(
FB,i

cosϑc + sinϑc µ
gT,r

ġT
+ sz ψc µ

ġT,a

ġT

)
L/F,i

,

FR,a,i = FN,i µi
ġT,a,i
ġT,i

, FR,r,i = FN,i µi
gT,r,i
ġT,i

, (5.140)

where (a) and (r) define the azimuthal and radial directions, repectively. The
various magnitudes necessary to evaluate these relations are the transforma-
tion matrix AKiCL/F,i

, the gap velocities ġT and the angles ψc,i, ϑc,i of the
contact points under consideration (see Figure 5.137). We get
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AKiCL/F,i
=

 1 −szψc sinϑc −ψc cosϑc
0 cosϑc −sz sinϑc
ψc sz sinϑc cosϑc


L/F,i

, sz = sign(Izc) ,

(
ġT,a

ġT,r cosϑ

)
=
(

sin(ϕc) − cos(ϕc)
cos(ϕc) sin(ϕc)

) [(
ẋG
ẏG

)
−
(
ẋ
ẏ

)
F

]
+

+
lB
2

(
szψ̇
−szα̇

)
+
(
rLωL

0

)
,

ψc,i = ψG,i + sz

(
∂[ϑ(r, ϕc)(r − rKipp)]

∂[ϕc r]

)
i

+ ∆ψW (ϕc),

ϑc,i = [ϑ(r, ϕc)]i + sz αi + ∆ϑW (ϕc) , (5.141)

The angles ∆ψW and ∆ϑW describe the pulley shaft obliqueness due to some
given tolerances. With respect to the friction we may introduce as a nearly
perfect approximation a smooth law, because for all types of chains and belts
stick events are extremely seldom and can thus be neglected. Therefore, the
relation

µi(ġi) = µ0

[
1− exp

(
−| ġi

vc
|
)]

(5.142)

will be sufficient for modeling friction between pins and sheaves. For further
evaluations we need the contact forces in an inertial system, which we get
from

IF c,L/F,i =

 sin(ϕc) cos(ϕc) 0
− cos(ϕc) sin(ϕc) 0

0 0 1


i

 1 0 ψG
0 1 −αG
−ψG αG 1


i

A−1
KiCL/F,i

FR,a
FR,r
szFN


i

.

(5.143)

The normal and tangential contact forces are represented in the C-coordinate
frame, the Cz-axis of which is perpendicular to the contact surface. The pin
force possesses the direction of the Kz-axis, see Figure 5.91.

Considering the motion of the contact points, we introduce contact
torques in an exponential approximation as a function ”con” of the nor-
mal force Fc, the distance le of the edge of a contact body to the reference
point, the radius rc of the contact surface, the rotational contact stiffness cc
and the relative rotational displacement ϕc.

con(Fc, le, cc, ϕc) =Fclesign
[
1− exp

(
−|ϕc|cc

Fcle

)]
,

cc =
{
cc,max ∀ Fc : cc,max < Fcrc
Fcrc ∀ Fc : cc,max ≥ Fcrc

(5.144)
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Fig. 5.92: Contact Torque by Relative Angle Displacement

By increasing the contact forces Fc over the limit cc,max/rc the contact area
reaches the cross section area, see Figure 5.92. Then the stiffness is indepen-
dent from the contact radius rc and becomes the constant value of cc,max.
Thus the projected torques T F/M,i and T pl,i between a rocker pin pair i and
a sheave (F/M) and between the plates (pl) and the pin i are

T F/M,i = −2

w′
xAICF/M

· con(Fn/2, lh/2, ch, ϑc)
w

′
yAICF/M

· con(Fn/2, lw/2, cw, ϑc)
0


i

,

ϑc ≈ ϑ0 + (∆ϑ sin(γc − γ0))F/M ∓ αL,

ψc ≈ ± (∆ϑ cos(γc − γ0))F/M ± ψL,

T pl,i =

+1∫
−1

w
′
x(ξ)(con(fi,

bpl
2
,
cpl
lrp

, βL,i − ψi)−

− con(fi−1,
bpl
2
,
cpl
lrp

, βL,i−1 − ψi))dξ, (5.145)

respectively, where (lh, lw) denote the height and width of a single pin and
(ch, cw) the contact stiffness in their rotational direction. In equation (5.145)
the elastic pin deformations are neglected. To take into account the friction
forces between the pair of rocker pins i we calculate the torque

T rp,i = −µlw
+1∫

−1

w
′
x(ξ)fi(ξ)sign(w

′T
x q̇el,x,i)dξ with fi(ξ) =

cL
lrp

(ael,i(ξ)− ai)

(5.146)
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as the line load of the pin. The parameter ai is the kinematically unstressed
and ael,i is the kinematically stressed length of a link. The forces and torques
are visualized in Figure 5.93. In order to take into account the position of the
contact line between a pin pair, we have to add an in-plane bending torque
Tγ . Regarding the clasp plate stiffness cclasp, we have to project the shear

Fig. 5.93: Contact Reactions Acting on the Rocker Pin Pair

torque Tclasp into the configuration space of a link containing a clasp plate.
Figure 5.94 shows the joint kinematics and their parameters. Distinguishing

Fig. 5.94: Joint Kinematics

between the reference point and the contact point the link length and contact
torque are determined. The rocker pin radius rrp can change according to the
following equation with regard to the angle ∆γ.

Tγ = cL(ael − a)∆y = FChain∆y, Tclasp,β = −Tclasp,ψ = cclasp(ψL − βL),

rrp = rrp,0 +
∂rrp
∂∆γ

∆γ (5.147)

5.6.4 Some Results

In close cooperation with a few colleagues and supported significantly by the
German Research Foundation (DFG) a large variety of practical cases have
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been considered, evaluated and verified by measurements. All these efforts
confirm the theory and, what seems to me the most important issue, they
confirm the ideas of the models behind the theory. We shall give a few ex-
amples, see also [239], [167], [250], [249], [238], [199], [207]. In a first step it

Fig. 5.95: Model Comparison

makes sense to compare the quite popular models representing the chains by
a quasistatic belt models and the dynamic models as presented above. Due
to the lateral buckling of the sheaves and the elastic deformation of sheaves
and pins we get in addition to belt creep and azimuthal belt slip a radial
movement between the chain and the sheaves. Introducing the sliding angle γ
we can define the direction of the relative velocity between pins and sheaves.
The sliding angle determines the equilibrium between the two pulley clamping
forces and also the chain forces.

Thus a comparison of the sliding angle is suitable for the verification of
chain models. Figure 5.95 depicts the sliding angle of the discrete dynamic
model and the continuous steady state model of Sattler [230]. In the dynamic
model the contact arcs are longer than by the model of Sattler where they
are 180 Grad. In the continuous model the polygonal excitation is missing.
Only for low rotational speeds the comparison is good. For high speeds the
continuous model does not describe all effects.

The results of the dynamic model presented in the following are computed
for an uniform motion with constant driving speed n1 and an external output
torque T2. The Figures (5.96) show the tensile force of an outer plate of a chain
with clasp plates for two different pulley misalignments (T = 150Nm,n =
600rpm, i = 1). The comparison of simulation and measurement [231] confirms
the mechanical model. Due to the bending forces the misalignment induces a
large gradient of the tensile forces in the spans. Entering a pulley the shape
of a pin changes abruptly because of the sudden growing contact forces. Thus
especially at the beginnings and the ends of the pulling spans great force peaks
appear.
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Fig. 5.96: Comparisons of Simulation and Measurements for the Tensile Forces
of an Outer Plate with Clasp Plate: Figure top with ∆z = +1.5mm, Figure
bottom with ∆z = −0.5mm, [231], [239]

In the following we consider some parameter studies with the goal to show
the possibility of influencing the chain performance significantly by even small
changes of chain component geometry. For this purpose we concentrate only
on the forces of the outer plates, which are the most stressed plates on the
one side, but represent also a good measure of the chain performance on the
other side. With longer rocker pins and more plates the tensile forces of a
plate can be reduced because of a load splitting on more plates. But with the
same cross section of the pins due to the pin bending the load splitting on the
plates becomes worse. Thus the gain connected with more plates is not large
(Figure 5.97).

By changing the design of a plate without altering the tensile strength
we influence the stiffness cL(±20%) and the mass mL(±10%) of a link. The
resistance to the pin bending with low stiffness cL is dominated by the bend-
ing stiffness of the pin. As a result the static components of the tensile
forces of both outer plates become smaller with softer plates, see Figure 5.98.
Additionally the dynamic and centrifugal force components get smaller be-
cause of the lower link mass mL. The previous calculation in the figures above
are executed with no specification of the assemblage of the plates and thus
with a continuously approximation.

In Figure 5.99 we have three chains with different assemblages of the plates.
But in each chain the link configuration is repeated after the third following
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Fig. 5.97: Variation of the Number of Plates of Each Link
(ired = 1, iCV T = 2.3, n1 = 4000rpm)

Fig. 5.98: Variation of the Chain Link Stiffness cL
(ired = 1, iCV T = 2.3, n1 = 4000rpm)

link. In Figure 5.99 the brightest, middle and darkest link is link number 1,
2 and 3, respectively. In both cases examined with a symmetric link config-
uration pattern the load on all outer plates are nearly equal, whereas the
maximum tensile force of the right outer plate of link 2 is larger in the case
of the asymmetric traditional arrangement than the highest plate forces of
the links with symmetric configuration patterns. There are even more design
parameters than discussed above. For example for a greater axle-base the ten-
sile forces of the chain are smaller [270]. By enlarging the curvature of the pin
ends and lowering the contact stiffness between pins and plates the outer plate
tensile forces can be reduced [238]. The polygonal excitation causes some reso-
nance of the chain drive. Altering the kinematics of the excitation we influence
the resonance. On the right hand side of Figure 5.100 we see the excitation
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Fig. 5.99: Variation of the Assemblage of the Plates
(ired = 1, iCV T = 2.3, n1 = 4000rpm)

Kinematic Model

Fig. 5.100: Influence of the Rocker Pin Kinematics

at the entrance and the exit areas of the sheaves assuming the contact arc as
an ideal circle. On the left hand side the dynamic response of the excitation
with all details of the model is illustrated. The oscillation of the transmission
induces rotational vibration in the drive train whereas the vibrating bearing
forces impair the gear acoustic.

With low torques the ratio of the axial clamping forces is near one, because
there is nearly no difference between the driving and driven pulley. At ade-
quate torques the ratio is high due to different direction of the lateral buckling
of the sheaves. Near the slipping border the radial friction forces vanish and
therefore the ratio decreases. At high torques before the slippage of the chain
the losses of the gear including the bearing and excluding the hydraulics are
low in comparison with the gear power. The pulley thrust ratio in Figure 5.101
is changing with the pulley misalignment because of axial components of the
chain tensile forces, whereas the efficiency shows no influence. At transient
operating state the global behavior of the gear, the forces, thrust ratio and
the efficiency change. In Figure 5.102 the effects are illustrated for a transient
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Fig. 5.101: Global Parameters Influenced by Pulley Misalignment

transmission ratio i of the CVT. It is obvious that the pulley forces have to
differ to induce a large gradient of the transmission ratio. At a positive gradi-
ent the great losses due to the clamping effect at the chain exit of the driving
pulley becomes significantly smaller. As a result the CVT-efficiency increases.
Due to this clamping effect the slip at the driving pulley is smaller than at
the driven pulley.

Fig. 5.102: Global Parameters Influenced by a Transient Transmission Ratio
(iCV T = 1, n1 = 2000rpm)
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5.7 CVT - Push Belt Configuration

5.7.1 Introduction

General properties of CVT chains and belts have been discussed in chapter
5.4 on the pages 275 and following. We shall refer here to push belts, which
have been invented by van Doorne in the Netherlands long time ago, but then
pushed forward in the seventies, and which are now developed and manufac-
tured at VDT-Bosch, Tilburg, The Netherlands. Nearly 70 different car types
are equipped with such van-Doorne-belts, which requires a production of more
than three million push belts per year, with reference to the year 2007. The
torques transmitted by push belts reach in the meantime values of more than
500 Nm.

Fig. 5.103: CVT Power Transmission by Push Belts (courtesy Mercedes Benz
and VDT-Bosch)

Figure 5.103 depicts the main features of a CVT power transmission with
push belts, which are applied also in the A-class of Mercedes. The specialty
of the push belt in comparison to the rocker pin chain consists in its special
structure. As all other CVT’s the belt moves between two pulleys, an input and
an output pulley with the corresponding torques and rotational speeds. But
the internal belt structure is completely different from chains. Some hundred
small elements with a typical thickness of 1-2 mm and a typical width of 30
mm are arranged along the ring packages. These elements come into contact
with the two sheaves of each pulley, altogether they are kept together by the
two ring packages each with 9-12 sheet metal rings. Going from the driving to
the driven wheel and watching the free strand behaviour we recognize, that
on the one side the elements are pressed together forming a kind of a pressure
bar, and that on the other side the elements are more or less loose on the
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rings, but the rings act as a tensile bar. During these processes within and
outside the pulleys the elements are exposed to maximal 17 forces, which in
the plane case reduce to 10 forces due to the symmetry.

To give an impression of the size of such systems we recall some typical
data. The element length is about 1.8 mm, its width around 30 mm. The belt
has typically 350-420 elements and thus 1050-1260 DOF in the plane and 2100-
2520 DOF in the spatial modeling case. In addition the belt possesses 9-11
steel rings and about 3600 unilateral contacts, where the element-ring-contacts
include the problem of a continuum with distributed unilateral contacts. At a
speed of 1000 rpm with a transmission ratio of 1.0 about 3000 elements enter
and leave the pulleys in every second thus generating a polygonal frequency of
3 kHz. The lowest “eigenfrequency” is around 120 Hz for the overall system.

In the following we shall consider only the plane case, the spatial case is
still a matter of ongoing research. For establishing a realistic model we need
multibody system theory including rigid and elastic components together with
bilateral and unilateral constraints. The contacts of push belts are numerous
and more complicated than chain contacts, see Figure 5.104. We have a uni-

M

ω

Q

Fig. 5.104: Contact Configuration of Push Belt Elements

lateral spatial contact between the element and the pulley, a plane unilateral
contact between the element and the ring and five contacts between the ele-
ments themselves. The last ones are covered by an empirical nonlinear force
law. All other contacts are unilateral contacts described by complementarities,
then converted and solved by prox-functions [82], [81].



320 5 Power Transmission

5.7.2 Models

The push belt CVT consists of a force transmitting push belt and two pulleys
(primary and secondary pulley). The pulleys are pairs of sheaves, where one
sheave is fixed onto the shaft and the second sheave can be shifted hydrauli-
cally in axial direction. Figure 5.104 shows the functionality of the CVT for
two extreme transmission ratios, where ω denotes the angular velocity, M the
torque and Q the hydraulic force. Power is induced into the CVT from the
combustion engine over a torque converter. Within the CVT, power is trans-
mitted from the primary to the secondary pulley in the following way: at the
primary pulley, power is conveyed by friction in the contact pulley - push belt.
Next a transformation by tension and push forces within the push belt itself
takes place. At the secondary pulley, power is transfered from the push belt
onto the sheaves, finally leaving the CVT. By applying hydraulic pressures
Q1 and Q2 onto the loose sheaves of each pulley, clamping forces acting onto
the elements can be varied. As an outcome, the belt is running on variable
radii within each pulley changing the ratio of transmission continuously.

In order to allow for the calculation of the dynamics of the push belt
CVT, a two-dimensional model of the system is established according to the
procedure described in sections to come, see [80], [81], [282], [191]. The build-
up of the simulation model is performed in two steps: First the system is split
up into three subsystems: pulleys, elements and ring package. In a first step
these subsystems will be modeled without considering the type of interactions.
In a second step the interactions between these subsystems will be taken
into account in form of constraints. Finally, the overall model of the CVT
will be established. The equations are shown only for the dynamics between
impacts (t �= ti), the corresponding impact equations can be derived analog
to section 3.5 on page 158.

The elastic pulley model follows more or less the same ideas as those
used for the rocker pin chain. Pulley deformations and the contacts with the
belt elements are similar. The pulley sheaves are modeled by rigid cones. For
both cones we approximate the deformation by quasistatic force laws given
by the Maxwell numbers. External excitations coming from the CVT environ-
ment and acting on the pulleys are taken into account. At the primary pulley
a kinematic excitation is given by an angular velocity ωprim (see Fig. 5.104).
Accordingly, this pulley has no degree of freedom. At the secondary pulley
a kinetic excitation is applied in form of an external torque Msec. Accord-
ingly, this pulley has one degree of freedom qp = (αsec)

T , which is an angle
of rotation. The pulley equations of motion write

Mpu̇p = hp +W p λ (5.148)

with the positive definite, constant and diagonal mass matrixMp. The vector
hp is only depending on the time t: hp = hp(t). Thus the matrices ∂ hp

∂ qp
and

∂ hp

∂ up
used for the numerical integration are zero matrices [81].
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The elements are modeled by rigid bodies, describing each element m by
three degrees of freedom qm = (ym, zm, αm)T . The model of one single element
is depicted in Fig. 5.105, where the center S of gravity is determined by the
translational positions y and z. The modeling of the whole CVT is performed
in the plane containing the axes AA of all elements. The M elements are

x

z
α

S

A

A

Fig. 5.105: Model of an Element

described by the generalized coordinates qe =
(
qT1 , . . . , q

T
M

)T , resulting in
the equations of motion

Meu̇e = he +W e λ (5.149)

with the positive definite, constant and diagonal mass matrixM e. The vector
he is constant and summarizes forces due to gravity. Thus the matrices ∂ he

∂ qe

and ∂ he

∂ ue
are zero matrices.

For the plane model the two ring packages of the push belt are con-
sidered as one virtual ring package having double width. The 9 to 12 layers
of each ring package are homogenized using E A, E I and Aρ as parameters
representing the longitudinal stiffness, the bending stiffness and the mass per
length, respectively. The magnitudes E and ρ give the modulus of elasticity
and the density, A and I denote the cross sectional area and the moment of
inertia of the ring, which is treated as a one-dimensional continuum. Curl-
ing up for an unstressed configuration of the beam model is described by the
curl-radius of the relaxed structure. This property is implemented within the
elastic components of the equations of motion.

Due to changes in the transmission ratio, no reference path of the push
belt can be given. Therefore, the model of the ring package must be able to
describe free motion, including large translations and deflections. The model
aims for a good approximation of the global dynamics, local errors in the
description of local stresses are accepted if the model stiffness can be reduced
significantly.

Many common approaches for flexible multi-body systems describe defor-
mations in one global moving frame of reference (MFR). The degrees of free-
dom are chosen usually close to the described physics like rigid body movement
and bending or longitudinal deformation. This leads to equations of motion
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in a compact and mainly decoupled form. Generally, the coordinate set used
for this attempt cannot be used for coupling different elastic bodies to one
discretized structure.

On the other hand, finite element (FE) approaches offer coordinate sets
designed for coupling adjacent elements. These different advantages of both,
MFR and FE, can be maintained, if two coordinate sets are used. The follow-
ing formalism is described in detail in [282], see also [81].

I

II

center
s = 0

rS = (yS , zS)T

ϕS

βl

βr

bI,y

bI,z bII,y

bII,z

s = −l0/2
a1

a2

(a) internal degrees of freedom

l0
4

l0
4

node 1

r1 = (y1, z1)T

ϕ1

a1

node 2
r2 = (y2, z2)T

ϕ2
a2

(b) global degrees of freedom

Fig. 5.106: Coordinate sets of one finite element [282].

The internal coordinate set qi = (yS , zS, ϕS , ε̃, al, βl, ar, βr)T ∈ IR8 (see
Figure 5.106a) is used to evaluate the equations of motion for one single finite
element. This set is inspired by MFR-ideas: yS , zS , ϕS describe the rigid body
movements of the finite element, ε̃ gives an approximation for the longitudinal
strain and al, βl, ar, βr describe the bending deflections.

The global coordinate set qg = (y1, z1, ϕ1, a1, a2, y2, z2, ϕ2)T is used as
second coordinate set (see Figure 5.106b) for coupling different finite elements
to a discretized description of one structure. This FE-inspired set is used for
time integration of the entire dynamical system.

The correlation between both coordinate sets is shortly explained below.
A constraint on position level is developed and derived to gain dependencies
on velocity and acceleration level. These equations are used to transform the
equations of motion of one single finite element into a form in terms of the
global coordinates.

The coordinate sets qi and qg of one single finite element are subjected to
an explicit equality constraint:

qi = Q(qg) ∈ IR8 (5.150)

The derivatives of this equation with respect to the time t for the transfor-
mation of the equations of motion are given by:
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dqi
dt

= ui =
∂Q
∂qg

ug = Jigug with Jig = Jig(qg) =
∂qi
∂qg

=
∂ui
∂ug

,

u̇i =
dJig
dt

ug + Jigu̇g = J̇igug + Jigu̇g

J̇ig =J̇ig(qg,ug) =
dJig
dt

. (5.151)

The above relations describe the linear dependencies between the global and
internal velocities dqg

dt and dqi

dt given by the Jacobian-matrix Jig . The devel-
opment of the equations of motion for a single finite element follows common
approaches for flexible multi-body systems and is described in detail in [282].
These equations are given in terms of the internal coordinates qi and are
extended by the decomposition r = Wi(qi)λ of the constraint forces:

Mi(qi)u̇i − hi(qi,ui, t)−Wi(qi)λ = 0 (5.152)

Using the last three relations we can derive the equations of motion in terms
of the global coordinates qg:

JTigMi(qi)Jig︸ ︷︷ ︸
Mg

·u̇g = JTig
[
hi(qi,ui, t)−Mi(qi)J̇igug

]
︸ ︷︷ ︸

hg

+JTigWi(qi)︸ ︷︷ ︸
Wg

λ (5.153)

Maintaining this formalism derived for single finite elements, the global coor-
dinates can be extended to the state of the entire structure. The degrees of
freedom qg of each single finite element are part of all degrees of freedom qr of
the ring package, whereas every node is node of two adjacent finite elements.
The equations of motion for the entire structure are calculated as the sum of
all equations of motion of the k finite elements transformed in the space of all
degrees of freedom qr:

k∑
j=1

[
J̃TigMi(qi)J̃ig

]
j︸ ︷︷ ︸

Mr

·u̇r =
k∑
j=1

{
J̃Tig
[
hi(qi,ui, t)−Mi(qi)

˙̃Jigug
]}

j︸ ︷︷ ︸
hr

+

+
k∑
j=1

[
J̃TigWi(qi)

]
j︸ ︷︷ ︸

Wr

λ (5.154)

Here, the extended Jacobian-matrix J̃Tig = Jir = ∂qi

∂qr
mainly holds zero

entries separate from entries Jig connected to global degrees of freedom (qg)j
which are part of the j-th finite element. This transformation is performed
during runtime for every finite element in every timestep. The resulting mass-
matrix Mr as well as the derivatives ∂hr

∂qr
and ∂hr

∂ur
of the generalized forces hr

have a cyclic-blockdiagonal structure. Using this formalism, different bodies
can be coupled without introducing equality constraints.
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The equations given so far hold for classical beams which have a start- and
an endpoint for the description as a continuum. A closed ring structure can be
seen in the same manner, but the start- and the endpoint need to coincide in an
arbitrarily defined origin of the ring structure. For the discretized structure
with k finite elements the start node (1) and the end node (k + 1) need
to coincide. Since a complete relative revolution between these two nodes
takes place, the angular difference between their tangent directions is 2π .
The constraints can be written explicitly as

(yk+1, zk+1, ϕk+1)
T = (y1, z1, ϕ1 + 2π)T (5.155)

and are implemented within the transformation 5.151 for the k-th finite ele-
ment. Finally, the equations of motion 5.154 of the ring package can be written
as

Mru̇r = hr + Wrλ ∈ IR5k, (5.156)

where k is the number of finite elements used for the discretization of the ring
package. The constraints Wrλ between the elements and the ring package are
explained in the sections dealing with the contacts.

Starting with the contacts between the elements and the ring pack-
age we have to consider, that the constraints on elastic structures can be
formulated using the schemes derived for rigid body constraints in classical
multi-body systems [282]. Figure 5.107 displays the contact points on the
interacting bodies: the contact point is fixed on the element but sliding on
the ring package, whereas the position is defined by the material coordinate
sc. It should be mentioned that uni- as well as bilateral constraints can be
treated following the same geometrical ideas. The constraint is specified by
the corresponding proximal function [65],[135]. In case of the push belt, the
contact between the ring package and the elements is assumed to be free of
gaps in normal direction of the ring package, so that it can be modeled by

t n y

z

s

r(qi, sc)

a(qe)
gN

contact point of ring package

ring package

element

Fig. 5.107: Contact between ring structure
and element.

Fig. 5.108: Contact be-
tween two elements.
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a bilateral constraint. In tangential direction Coulomb friction is considered,
which allows unilaterally defined stick-slip processes. Altogether we get the
following equations

λB,er = proxCB
(λB,er − rgB,er),

λT,er = proxCT (λB,er)(λT,er − rġT,er). (5.157)

where the indices ”B”, ”T” and ”er” stand for bilateral, tangential and ele-
ment/ring package, respectively.

The contacts between the elements and the pulley sheaves are uni-
lateral in normal and in tangential directions. In spite of the fact that within
the belt wrap no detachment of an element in normal direction takes place,
this kind of events is very important for the belt/pulley zones, where the belt
enters or leaves the pulley. We may have contact/detachment in normal and
stick-slip by Coulomb friction in tangential directions. Therefore the contact
laws write in these cases

λU,pe = proxCU
(λU,pe − rgU,pe),

λT,pe = proxCT (λU,pe)(λT,pe − rġT,pe). (5.158)

Contacts between the elements are illustrated in Figure 5.108. Only
contacts in normal direction are considered, because tangential relative motion
is circumvented by the guidance of the elements by the ring package and
the nipple-hole connection between adjacent elements. The contact between
adjacent elements is modeled by a rigid body contact

λU,ee = proxCU
(λU,ee − rgU,ee) (5.159)

with the gap distances gU,ee between the considered contact points of the
interacting elements. For further details see [80] and [81].

Before presenting the overall equations of the CVT push belt system as
a whole it makes sense to consider the evolution of the system dynamics for the
unilateral cases. The dynamics of the rocker pin chains has been represented by
complementarities and solved by applying the Lemke-algorithm [163], which
requires the interpolation of the beginning and end of the contact events,
but is then nearly exact with respect to these events. The newer approach
following the ideas of [2] and applying the prox-concept is faster and safer,
at least in most large applications, but not so ”exact” with respect to the
contact events. Nevertheless, the results do not differ for the two methods,
but computing time is much smaller for the Augmented Lagrange with the
prox-method. From the point of view of chains and belts we experienced,
that without the newer approach a simulation of push belts with reasonable
computing times would not be feasible.

To show the difference we shall first repeat here the dynamics of the rocker
pin chain . The equations of motion write principally
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M(q,t)q̈(t) + h(q, q̇t)− [(WN +WR) W T ]
(
λN (t)
λT (t)

)
= 0 ∈ IRf ,

g̈N =W T
N q̈ + w̄N ∈ IRnN ,

g̈T =W T
T q̈ + w̄T ∈ IR2nT ,

g̈N ≥0, λN ≥ 0, g̈TNλN = 0,

λT0 ≥0, ¨̄gT ≥ 0, λTT0
¨̄gT = 0. (5.160)

The abbreviations are clear, q ∈ IRf are the generalized coordinates, M ∈
IRf,f the symmetric and positive definite mass matrix, W the constraint ma-
trices, λ the constraint forces, g̈ the relative accelerations in the contacts, w̄
some external (excitation) terms and λT0 the friction reserves with respect to
the boundary of the friction cones. The above equations for the dynamics of
a rocker pin chain are solved numerically by evaluating the beginning and the
end of each contact event, interpolating these points and solving the comple-
mentarity problems by Lemke’s algorithm, rearranging the constraint matrices
and treating the smooth equations between contact events by a Runge-Kutta
4/5 -scheme.

The modeling of the push belt CVT by single components and their
interconnections leads to the equations of motion for the plane overall system,
consisting of the differential equationsMp 0 0

0 Me 0
0 0 Mr

 u̇pu̇e
u̇r

 =

hphe
hr

+WB,er λB,er +W T,er λT,er

+WU,pe λU,pe +W T,pe λT,pe

+WU,ee λU,ee (5.161)

and the constraints:

λB,er = proxCB
(λB,er − rgB,er) ; λT,er = proxCT (λN,er)(λT,er − rġT,er)

λU,pe = proxCU
(λU,pe − rgU,pe) ; λT,pe = proxCT (λN,pe)(λT,pe − rġT,pe)

λU,ee = proxCU
(λU,ee − rgU,ee) (5.162)

The indices (p, e, r) stand for pulley, element and ring, respectively. The in-
dices (U, B, T) indicate unilateral, bilateral and tangential, respectively. The
M are the mass matrices, W the constraint matrices, u = q̇ are velocities,
and λ are constraint forces. The magnitudes g, ġ indicate relative displace-
ments and velocities in the contacts, r is an auxiliary variable which has been
optimized by [65] with the goal to reduce computing time.

The equations (5.161) are solved numerically by a time stepping scheme
including some prox-algorithms [81]. The modular configuration of the model
comprising subsystems and constraints enables a refinement or even a substi-
tution of models for single components and interactions in an easy manner. By
this, both bodies and contacts can be modeled rigidly or flexibly in a hybrid
way. The resulting differential equations have stiff character.
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5.7.3 Some Results

Rocker pin chains are manufactured by various companies with a certain focus
at LUK, Germany. Push belt systems are mainly manufactured by VDT-Bosch
in the Netherlands, which also operate production facilities in Japan. Mea-
surements are up to now rare. Very good experiments have been performed
by Honda in Japan (see [74], [75] and [123]), which are available by the cited
papers, and equally good measurements have been performed by VDT-Bosch,
which in the meantime are also available, see for example [234]. Therefore we
shall give some general results of simulations and a comparison of theory with
the Honda measurements.

Geier [80] evaluated many cases by simulation and performed a compre-
hensive study of comparisons with measurements. We shall give only two
examples. The first one depicts some simulations for the contacts between the
elements themselves and between pulley and element. Figure 5.109 illustrates
the contact forces. Zone 1 corresponds to the free trum, zone 2 to the primary
pulley, zone 3 to the pushing trum and zone 4 to the secondary pulley.

The force λN,ee reflects the normal force in the element/element contact.
This force is zero in the free trum and remains zero within the beginning of
the primary pulley due to the fact, that the elements remain separated when
entering the primary pulley. But then the contact force is built up and leaves
the primary pulley with a value, which is maintained during the complete
push trum phase making this trum to a kind of pressure bar. Entering the
secondary pulley (zone 4) results in a maximum of the force λN,ee firstly due
to the influence of the pressure transmitted to the belt by the deformed pulley
and secondly due to a prestressing effect by the ring package. This is all very
plausible frome physical arguments and also confirmed by the simulations.

1 2 3 4

increasing torque ratio r

λN,ee

λN,ep

Fig. 5.109: Simulation Results for two Contact Forces λN,ee, λN,ep and four
Torque Ratios r (N=normal, ee=contact element/element, ep=contact ele-
ment/pulley, 1 ≡ free trum, 2 ≡ primary pulley, 3 ≡ pushing trum, 4 ≡
secondary pulley)
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The contact force λN,ep between pulley and element is of course zero for
the two trums in the zones 1 and 3 and non-zero within the pulleys in the
zones 2 and 4. The results illustrate the typical characteristics known also
from rocker pin chains. In entering and leaving a pulley we always get a sharp
rise of the contact forces between pulley and the elements, which are then
a bit reduced within the pulley wrap arc. These forces do not depend very
much on the torque ratio r, whereas the element/element contact force λN,ee
increases considerably with the torque ratio.

The second example taken from [80] concerns a comparison between simu-
lations and the Honda measurements published in [74] and [123]. Figure 5.110
gives a comparison, which confirm the models. It depicts the contact forces at
the element shoulder for the plane case. For all torque ratios r the agreement
is very good, which has to be seen before the background of a large transmis-
sion ratio of i=2. The belt is therefore operating on one side with a large and
on the other side with a small radius. More comparisons may be seen from
[80].

Fig. 5.110: Verification of the Element/Ring Contact Forces λer,N and λer,T
for four Torque Ratios r (N=normal, T=tangential, er=contact element/ring,
sim=simulation, meas=measurement)
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Timing Equipment

Wir schreiben ”P” für Problem, ”VL” für vorläufige
Lösung, ”FE” für Fehlerelimination; dann können wir
den Grundablauf der Ereignisse bei der Evolution
folgendermaßen beschreiben: P → VL → FE → P. (Karl
Popper, Objektive Erkenntnis, 1984)

Using ’P’ for problem, ’TS’ for tentative solution, ’EE’
for error elimination, we can describe the fundamental
evolutionary sequence of events as follows: P → TS →
EE → P.

(Karl Popper, Objective Knowledge, 1972)

6.1 Timing Gear of a Large Diesel Engine

Machines and mechanisms are characterized by rigid or elastic bodies inter-
connected in such a way that certain functions of the machines can be real-
ized. Couplings in machines are never ideal but may have backlashes or some
properties which lead to stick-slip phenomena. Under certain circumstances
backlashes generate a dynamical load problem if the corresponding couplings
are exposed to loads with a time-variant character. A typical example can
be found in gear systems of diesel engines, which usually must be designed
with large backlashes due to the operating temperature range of such engines,
and which are highly loaded with the oscillating torques of the injection pump
shafts and of the camshafts. Therefore, the power transmission from the crank-
shaft to the camshaft and the injection pump shaft takes place discontinuously
by an impulsive hammering process in all transmission elements [217], [71].
We shall start this chapter with such an example, which was also presented
in [200].

Figure 6.1 indicates how the process works. A typical gear unit contains
several meshes with backlashes, in the case shown two meshes with back-
lashes between crankshaft and injection pump shaft and three meshes with
backlashes between crankshaft and camshafts. Due to periodical excitations
mainly from the injection pumps and subordinately from the crankshaft and
the camshaft, the tooth flanks separate, generating a free-flight period within
the backlash which is interrupted by impacts with subsequent penetration.
The driven flank (working flank) usually receives more impacts than the non-
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Fig. 6.1: Typical Diesel Engine Driveline System and Forces in a Mesh Meshes
of Gears

working flank (Figure 6.1). Additionally, in all other backlashes of the gear
unit similar processes take place, where the state and the impacts in one mesh
with backlash influence considerably the state in all other meshes. This behav-
ior must be accounted for by the mathematical model. As a definition we use
the word “hammering” for separation processes within backlashes where high
loads cause large impact forces with deformation. Motion within backlashes
without loads is called “rattling.” This represents a noise problem without
load problems. It will be not considered here (see [200]).

As a rule, such vibrations may be periodic, quasiperiodic or chaotic with
a tendency to chaos for large systems. Considering the driveline gear unit as
a multibody system with f degrees of freedom and np backlashes in the gear
meshes, we model the backlash properties by a nonlinear force characteristic
with small forces within the backlash and a linear force law in the case of
contact of the flanks. The event of a contact is determined by an evaluation of
the relative distance in each backlash, which serves as an indicator function.
The indicator function for leaving the contact, i.e., flank separation, is given
with the normal force in the point of contact, which changes sign in the case of
flank separation. These unsteady points (switching points) must be evaluated
very carefully to achieve reproducible results. The time series of impact forces
will be reduced to load distributions in a last step. They might serve as a
basis for lifetime estimates.

The first activities on impulsive processes at the author’s former Institute
started in 1982 and led to a series of contributions on rattling and hammering
processes in gearboxes and drivelines. The fundamental starting point was a
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general theoretical approach to mechanical systems with unsteady transitions
in 1984 [182], which was very quickly extended to rattling applications. The
dissertations [124] and [133] deepened the rattling theory and compared one-
stage rattling with laboratory tests. From the very beginning all theoretical
research focused on general mechanical systems with an arbitrary number of
degrees of freedom and with an arbitrary number of backlashes. Application
fields are drivelines of large diesel engines, which, due to a large temperature
operating range, are usually designed with large backlashes [217].

6.1.1 Modeling

6.1.1.1 Body Models

Rigid bodies are characterized by six degrees of freedom: three translational
and three rotational ones. We combine these magnitudes in an IR6-vector
(Figure 6.2 and [217])

p =
(
Φ
rH

)
∈ IR6 (6.1)

with

Φ = (ϕx, ϕy, ϕz)
T , rH = (∆xH , ∆yH , ∆zH)T ∈ IR3 . (6.2)

Accordingly, the velocities are

v =
(

Φ̇
v̇H

)
=
(
ω
vH

)
∈ IR6 . (6.3)

Elastic bodies in gear or driveline units usually are shafts with torsional

Fig. 6.2: Rigid Body Model [217]

and/or flexural elasticity. In the following we consider only torsion by applying
a Ritz approach (see section 3.3.4 on page 124) to the torsional deflection ϕ
(Figure 6.3):
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ϕ(z, t) = w(z)Tqel(t) with w, qel ∈ IRnel (6.4)

where the subscript el stands for “elastic.”

Fig. 6.3: Shaft with Torsional Elasticity

6.1.1.2 Coupling Components

An ideal joint couples two bodies. It can be described kinematically. According
to the notation used in multibody theory the free directions fi of motion
of a joint i are given by a matrix Φi ∈ IR6,fi . The spatial possible motion
of the joint can be described by (ΦiqJi

) with relative displacements qJi
in

the nonconstrained directions of the joint i. A complementary matrix Φci ∈
IR6,6−fi exists for the constrained directions of the joint. Always ΦTi Φ

c
i = 0,

and the constraint forces are written as

fJi
= Φciλi , λi ∈ IR6−fi . (6.5)

The Lagrange multipliers λ follows from d‘Alembert‘s principle and a La-
grangian treatment of the equations of motion.

Elastic couplings in drivelines are characterized by some force law in a
given direction between two bodies (Figure 6.4). The relative displacement
and displacement velocity may be expressed by

γk = ψTk
(
−Ckipi +Ckjpj

)
, γ̇k = ψTk (−Ckivi +Ckjvj) (6.6)

Cki =
(
E 0
c̃Tki E

)
∈ IR6,6 .

The vector cki follows from Figure 6.4, and c̃ki is the relevant skew-
symmetric tensor (ãb ≡ a× b). The vector ψk ∈ IR6 represents a unit vector
in the direction of relative displacement. In that direction we have a scalar
force magnitude ζk according to the given force law. It can be expressed in
the body coordinate frames Hi, Hj (Figure 6.4) by the generalized forces (see
section 3.3.5 on page 128)

f i = CT
kiψkζk , f j = −CT

kjψkζk . (6.7)
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Fig. 6.4: Elastic Coupling

As a simple example a linear force law would be written as

ζk = cγk + dγ̇k (6.8)

Of course, any nonlinear relationship might be applied as well, such as the
force law with backlash according to Figure 6.5. Gear meshes with backlash
are modeled with the characteristic of Figure 6.5. In this case care has to
be taken with respect to the two possibilities of flank contact on both sides
of each tooth. Oil reduces the impact forces of the hammering process. Some

Fig. 6.5: Backlash Force Law

application tests have been performed with the nonlinear oil model of Holland
[108]. On this basis a simplified model has been derived to approximate the oil
influence (Figure 6.6). The model assumes an exponential damping behavior
within the backlash s.

Bearings are very important coupling elements in drivelines. Roller bear-
ings are approximated by the force laws in the (x, y)-directions:

ζkx = cxγx + dxγ̇x

ζky = cyγy + dy γ̇y . (6.9)

For journal bearings with a stationary load we apply the well-known law(
ζkx
ζky

)
=
(
c11 c12
c21 c22

)(
γkx
γky

)
+
(
d11 d12

d21 d22

)(
γ̇kx
γ̇ky

)
. (6.10)

For journal bearings with nonstationary loads the Waterstraat solution [272]
of the Reynolds equations is applied.
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Fig. 6.6: Oil Model

6.1.1.3 Excitation System

Various excitation sources must be considered in simulating diesel engine driv-
eline vibrations. First of all the crankshaft excites the system with some har-
monics related to the motor speed and depending on the motor design. As a
realistic approximation to driveline systems we may assume that the crank-
shaft motion itself is not influenced by driveline dynamics. Secondly, the valve
mechanisms generate a parametric excitation which may be expressed approx-
imately by a time-variant moment of inertia of the camshaft. As a matter of
fact, in most applications this influence is fairly small, only a few percent. A

Fig. 6.7: Torques at the Camshaft

dominant influence comes from the third effect, namely the torques generated
by the injection pumps. These torques directly counterbalance the driving
torque of the crankshaft, thus inducing the hammering process within the
gear meshes. A typical example is given by Figure 6.7, which represents the
situation in a 12-cylinder diesel engine where valves and injection pumps are
controlled by one shaft for each of the two cylinder banks.
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6.1.2 Mathematical Models

6.1.2.1 Component Models

The theory of rigid and elastic multibody systems is applied rigorously. It
starts with d’Alembert’s principle, which states that passive forces produce
no work or, according to Jourdain, generate no power, see chapter 3.3. This
statement can be used to eliminate passive forces (constraint forces) and to
generate a set of differential equations for the coupled machine system under
consideration.

We start with the equations of motion for a single rigid body. Combining
the momentum and moment of momentum equations and considering the fact
that the mass center S has a distance d from the body-fixed coordinate frame
in H (Figure 6.2) we obtain

Iv̇ = −fK + fB + fE = fS(p,v, t) (6.11)

where

I =
(
IH md̃

−md̃ mE3

)
∈ IR6,6

d = (0, 0, d)T ∈ IR3

IH = diag (A, A, C) ∈ IR3,3

−fK =
[
(ω̃IHΩe3)

T
, 0
]T
∈ IR6

fB =
[(
−IHΩ̇e3

)T
,0
]T
∈ IR6

fE =
[(∑

MHk

)T
,
(∑

F k

)T ]T
∈ IR6 . (6.12)

The magnitudes A,C are moments of inertia; fK , fB and fE are gyroscopic,
acceleration and applied forces, respectively, and Ω, Ω̇ are prescribed values
of angular velocity and acceleration, respectively. The unit vector e3 is body-
fixed in H (Figure 6.2).

By adding components with torsional elasticity we can influence the rigid
body motion only with respect to the third equation of (6.11). Therefore
torsional degrees of freedom can be included in a simple way. The equation of
motion for a shaft with torsional flexibility is

 Ip(z)
∂2ϕ

∂t2
− ∂

∂z

[
GIp(z)

∂ϕ

∂z

]
−Mkδ(z − zk) = 0 . (6.13)
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( density, Ip area moment of inertia, G shear modulus, Mk torque at location
zk). The total angle ϕ has three parts:

ϕ(z, t) =
∫

Ω(t)dt + ϕz(t) + ϕ(z, t) , (6.14)

where Ω(t) is the angular velocity program, ϕz(t) is the z-component of Φ
(eq. 6.2) and ϕ(z, t) is the torsional deflection (Figure 6.3). Approximating
ϕ(z, t) by eq. (6.4) and applying a Galerkin approach to eq. (6.13) result in
the set

h(Ω̇ + ϕ̈z) +Melq̈el +Kelqel =
∑

Mkw(zk) , (6.15)

where

M el =
∫ l
0
 Ip(z)w(z)w(z)Tdz ∈ IRnel,nel mass matrix

Kel =
∫ l
0
GIp(z)w′(z)w′(z)Tdz ∈ IRnel,nel stiffness matrix

h =
∫ l
0  Ip(z)w(z)dz ∈ IRnel coupling vector.

(6.16)

In agreement with physical arguments eqs. (6.15) are coupled with the rigid
body motion only by the term h

(
Ω̇ + ϕ̈z

)
. To include torsional coupling in

the third equation of (6.11), we only have to complete the angular momentum
of the rigid part C (Ω + ϕ̇z) by an elastic part

∫ l
0
 Ip(z) [∂ϕ(z, t)/∂t]dz and

evaluate its time derivative. This results in an additional coupling term hT q̈el.
Equations (6.11) with elastic expansion and eqs. (6.15) can then be combined
into

Iv̇ +HT q̈el = fS , Hv̇ +M elq̈el = fSel
(6.17)

where all terms not containing accelerations are collected in fS and fSel
. For

formal convenience we define H = (0, 0,h, 0, 0, 0).
Proceeding now from a single-body to a multibody system, we consider

the constraint (passive) forces fJi
(eq. 6.5). In a form corresponding to eqs.

(6.17) we get

Iiv̇i +HT
i q̈eli = fSi

+ fJi
−
∑
k∈S(i)

CT
k fJk

(6.18)

Hiv̇i +M eli q̈eli = fSeli
−
∑
k∈S(i)

DT
k fJk

. (6.19)

These equations have to be supplemented by a kinematical relation in the
form

v̇i = Civ̇p(i) +Diq̈elp(i)
+ Φiq̈i . (6.20)
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The first term on the right-hand side represents an acceleration resulting
from the absolute acceleration of the predecessor body (index p(i)), the sec-
ond term represents an acceleration resulting from a torsional deformation
of the predecessor body (if any) with a matrix Di containing the torsional
shape functions, and the third term is an acceleration resulting from the rel-
ative motion of body i and the predecessor body. S(i) is the set of all bodies
following body i.

6.1.2.2 Order(n) Considerations

For computational reasons eqs. (6.19) and (6.20) must be solved recursively
by an order-n algorithm (computing time ∼ degrees of freedom, see chapter
3.3.3 on page 119). This algorithm will be repeated here. It works as follows:
Organize the multibody system under consideration as a treelike structure
with a base body connected to the inertial environment and a series of final
bodies possessing no successor body. This will be possible for any case, be-
cause for closed kinematical loops these may be cut with an additional closing
condition as constraint. Start with the last type of bodies and consider their
equations of motion (from eqs. 6.20):

Iiv̇i +HT
i q̈eli = fSi

+ fJi
, Hiv̇i +Meli q̈eli = fSeli

. (6.21)

Eliminate from these equations the elastic coordinates to get

Îiv̇i = f̂Si
+ fJi

(6.22)

with

Îi = Ii −HT
i M

−1
eli
H i, f̂Si

= fSi
−HT

i M
−1
eli
fSeli

. (6.23)

Combine eq. (6.22) with eqs. (6.20) and (6.5) and apply d’Alembert’s
principle to eliminate the constraint forces (premultiplication with ΦT

i ). We
get the generalized relative accelerations

q̈i =M−1
i ΦT

i

(
fSi
− ÎiCiv̇p(i) − ÎiDiq̈elp(i)

)
(6.24)

with M i = ΦT
i ÎiΦi, which can be used together with eqs. (6.22), (6.20) to

obtain the elastic deformation accelerations

q̈eli = −M−1
eli
Hi

(
Civ̇p(i) +Diq̈elp(i)

+ Φiq̈i

)
+M−1

eli
fSeli

. (6.25)

The accelerations q̈i and q̈eli still depend on those of the predecessor body.
Passing to that body requires determination of the joint forces, which are
evaluated from eqs. (6.20, 6.22, 6.24):

fJi
=N iCiv̇p(i) −LifSi

+N iḊiq̈elp(i)
(6.26)
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with

Li = E − ÎiΦiM
−1
i ΦTi , N i = LiÎi . (6.27)

With the joint force of eq. (6.26) we enter the equations of motion of the pre-
decessor body and establish a set which corresponds formally to the equations
of a final body:

(Ip(i)+C
T
i N iCi)v̇p(i) + (HT

p(i) +CT
i N iDi)q̈elp(i)

=

=fJp(i)
+ (fSp(i)

+CT
i LifSi

)−
∑

k∈S(p(i))−{i}
CT
k fJk

(6.28)

(Hp(i)+D
T
i N iCi)v̇p(i) + (Meli +DT

i N iDi)q̈elp(i)
=

=(fSelp(i)
+DT

i LifSi
)−

∑
k∈S(p(i))−{i}

DT
k fJk

(6.29)

with the magnitudes

Ip(i) := Ip(i) +CT
i N iCi

Hp(i) := Hp(i) +DT
i N iCi

fSp(i)
:= fSp(i)

+CT
i LifSi

(6.30)

Melp(i) := M elp(i) +DT
i N iDi

fSelp(i)
:= fSelp(i)

+DT
i LifSi

.

These equations are analoguous to eqs. (6.21). With this procedure we re-
cursively can proceed to the last base body for which eqs. (6.24) are evaluated
in an elementary way. Knowing the accelerations of this base body, we again
can go forward step by step to the final bodies and determine all accelera-
tions of each body. If necessary we may add recursions for the evaluation of
constraint forces.

Equations (6.19) describe a multibody system with n bodies and a max-
imum number of (f = 6n) rigid degrees of freedom and, according to the
Ritz Ansatz (eq. 6.4) a certain number of elastic degrees of freedom (num-
ber of shape functions per body times number of elastic bodies). In practical
applications, however, the number of degrees of freedom might be reduced
drastically. For example, driveline units with straight-tooth bevels may be
sufficiently modeled by rotational degrees of freedom only.

6.1.2.3 Backlash Management

To include backlashes we have to implement an algorithm which controls the
contact events (Fig. 6.8), by considering contact kinematics and contact forces.
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A contact at a tooth flank occurs if the relative distance in contact k becomes
zero (eq. 6.7):

γk
(
pi, pj , ψk

)
= 0 . (6.31)

The subsequent deflection of both teeth follows the force laws of the Figs.
6.5 and 6.6, but the end of the contact is not reached, when we again get
γk = 0. The correct condition consists of the requirement that the normal
force (ζkeki, i = 1, 2) (Fig. 6.8) vanish.

Fig. 6.8: Mesh of Gears with Backlash and Relevant Force Laws

As we have a unilateral contact problem, separation takes place when the
normal force changes sign, which is not the case if γk = 0. Due to the dynamics
of the contacting bodies and to the damping influence of the contact oil model
(Fig. 6.6), the normal force changes sign before γk = 0, which means the tooth
separation takes place when the teeth are still deflected. For separation we
therefore must interpolate the force condition (Fig. 6.8)

ζkn = −ekiζk = −eki (ckγk + ζkD (γk, γ̇k)) = 0 (i = 1, 2) , (6.32)

where ζkn is the normal force vector and ζkD the damping force law due to
oil and structural damping.

Considering several backlashes we need an additional algorithm to deter-
mine the shortest time step to the next contact or separation event. This
means formally that we have to evaluate in all existing backlashes the follow-
ing equations:
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∆tFC = min
k ∈ np

{∆tk| γk(pi,pj , ψk) = 0 ∧ ζkn(γk, γ̇k, en) < 0
}
,

∆tCF = min
k ∈ np

{∆tk| ζkn(γk, γ̇k, en) ≥ 0} , (6.33)

where FC means transition from free flight to contact and CF transition
from contact to free flight. Equations (6.33) express the situation that during
the recursive solution process as presented above at each integration step one
must prove the possibility of a contact event or a separation in any of the
np backlashes. If this proof turns out to be true, the conditions of eqs. (6.33)
together with the state of the complete system must be interpolated. The
numerical integration process is then started anew at such a switching point.
Note that each of the backlash zones of the multibody system might be in a
free flight or in a contact state where the transitions are controlled by eqs.
(6.33). Note further that the time steps ∆tFC or ∆tCF are the macrosteps
between two events usually taking place in different backlashes; the microsteps
for numerical integration are of course considerably smaller.

6.1.2.4 Numerical Models

The main problem in dealing with unsteady dynamical systems consists of the
numerical management of unsteadiness. In the dissertation [217] three possi-
bilities were considered and tested. Firstly, numerical integration routines of
first order, such as the Euler method, include no problems with unsteadi-
ness but show stability and convergence difficulties. Secondly, the numerical
method of Shampine-Gordon has been realized with good results for certain
cases. But the determination of switching points for an unsteady event may
break down abruptly, thus generating numerical instability. Thirdly, a direct
search and interpolation of switching points has been implemented which in-
cludes the fewest problems and works quite reliably. Details of this method
may be found in [71], [217].

It might be of interest to indicate some computing time aspects (see Table).
From this the best method turned out to be a direct search of switching
points together with a Runge-Kutta integration method of order 2/3. Even
before the background of more modern algorithms for unilateral systems, this
result is still of interest and possesses some value for special cases. During
the nineties and partly up into our times the interpolation of the beginning
and the end of contact events was the rule, and for these procedures it still
makes sense to apply between the contact events, for the smooth parts, Runge-
Kutta 2/3. This statement also holds for models, which instead of unilateral
theories apply nonlinear force laws with kinks. In contrast to these event-
driven solutions we use today for equations of motion with complementarities
the prox-algorithms in connection with time stepping on the basis of a one-
step time dicretization. Time dicretized solutions are much more robust with
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Method Relative Computing Time

• Direct search of switching points
– Runge-Kutta 2./3. order 1.0
– Runge-Kutta 5./6. order 1.9
– Gear method 1.4

• Not direct search
– Adams-Pece integration 1.4

Table: Some Comparisons of Computing Time

better stability properties than event-driven solutions, which certainly will
play a future role only for special applications.

6.1.3 Evaluation of the Simulations

The problem in evaluating the vibrations of unsteady systems consists of a
realistic examination of the unsteady events, especially in the further evalu-
ation of the gear forces, which, as a consequence of the hammering process,
appear as impulsive forces. In any case we may apply an FFT procedure, and
from this we get approximate information about frequencies and amplitudes
which represents in steady problems a very powerful tool. In unsteadiness
it is different because we do not know with sufficient reliability what force
amplitudes will influence lifetime and strength of the gears. If we consider a
typical hammering process in the gear mesh (Fig. 6.9) we may conclude that
a statistical consideration would be the most appropriate one. By doing so,
some principal ideas of Buxbaum [34] will be applied. A hammering impact
can be characterized by the magnitude of the tooth forces’ amplitude and by
the time behavior (Fig. 6.10). Analyzing the forces in the gear meshes, we
see that the time behavior follows a Gamma distribution quite well (see Fig.
6.11). Of more interest in practical problems is the load distribution. Again

Fig. 6.9: Typical Force Sequence of a Hammering Process
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it turns out that the loads in the gear meshes can be well approximated by
classical rules valid for different stochastic processes:

H(x) = H0 exp [−axn] , (6.34)

where a and n might be determined from the simulation results by using a
least square fit. The magnitude H0 is the number of events of passing the
nominal load. For hammering processes the nominal load is zero. Figure 6.12
gives an excellent comparison of formula (6.34) with simulated results.

Fig. 6.10: Hammering Force Structure

Fig. 6.11: Gamma Distribution for the Duration Tm and the Period τm of a
Hammering Process

6.1.4 Results

As an application of the theory presented, a four-stroke diesel engine with 12
cylinders and a power of about 3000 kW has been considered. The nonsym-
metrical gear system driving the combined camshaft/injection pump shaft is
shown in Fig. 6.13 on the left-hand side. On the right-hand side we see the cor-
responding mechanical model. All gears are spur gears; they will be modeled
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Fig. 6.12: Load Distribution for a Typical Hammering Process

as rigid bodies according to the section on body models. The camshaft will
be described as an elastic body considering torsional elasticity only (see the
coupling components section). As an additional option we regard a camshaft
damper. The simulations focus on side A of the gear system due to the more
complicated dynamical properties. Side A possesses one more stage than side
B.

Fig. 6.13: Gear System and Equivalent Mechanical Model for a 4-Stroke 12-
Cylinder Diesel Engine

Different models have been established starting from a model with only
5 degrees of freedom and ending with a model with 13 degrees of freedom.
In all cases the torsional elasticity of the camshaft was described by two
elastic degrees of freedom only, which turned out to be sufficient. As usual
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the determination of all stiffnesses proved to be rather difficult. Uncertainties
mainly come from unknown flexural influences of the motor housing and from
the more or less unknown stiffness reductions in one flanged joint and in a
press fit. Therefore, stiffnesses had to be adapted to measurements. After this
the models compared well with vibration measurements which were performed
by a German diesel-engine manufacturer. A comparison is given in Fig. 6.14.

Fig. 6.14: Angular Vibrations of the Camshaft, Measurements and Simulation

After the verification of the theory a series of parameter simulations were
performed. Although the results obtained relate to the special diesel engine
under consideration, they might nevertheless indicate some general parameter
tendencies in such drivelines.

First we consider the loads in the gear meshes and compare these loads
with statical and quasi-statical cases, which we define in the following way:

• The static load is that one which would be generated by a transmission of
the averaged camshaft torque. This mean value would be TCS = 430 Nm
(Fig. 6.7).

• The quasi-static extremum load is that one which would be generated by a
static transmission of the maximum torque values for the camshaft (peak
values in Fig. 6.7). This maximum torque is Tmax = 2520 Nm.

• The dynamical maximum load is evaluated from the load distribution (see
the section on evaluation of the simulations) under the assumption that
these loads will be realized with a probability of 99%.

The results for the three gear meshes of Fig. 6.13 are given in the Table. A
systematic investigation of parameter tendencies allows the conclusions [217]:
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Gear Loads [kN]

Gear Static Quasi-static Dynamical Loads
Mesh Mean Maximum

(Fig. 11.13) Load Load Backlash = 0 Nom. Backlash

1/2 1.96 11.4 34.5 42.4

2/3 1.96 11.4 31.3 34.8

4/5 3.17 18.5 37.4 38.8

Table: Gear Loads in Gear Meshes

• Excitation Sources
– Crankshaft excitation is small.
– Camshaft excitation dominates, especially due to the injection pump

loads.
• Gear System

– Mass parameters show no much influence on the hammering process.
– Increasing backlashes produce slightly increasing force amplitudes, but

significantly increasing camshaft angular vibrations.
– Increasing gear stiffness and damping gives decreasing force ampli-

tudes.
• Camshaft

– Increasing stiffness leads to largely decreasing force amplitudes.
– Damping is of minor influence.

• Bearings
– Slightly decreasing force amplitudes with increasing damping (all bear-

ings).
– No large difference exists between journal and roller bearings with re-

spect to vibrations and force amplitudes.
• Camshaft Vibration Damper

– Damper considerably reduces force amplitudes in the gear meshes.
– Damper suppresses the hammering between two flanks and supports

force transmission at the working flank.
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6.2 Timing Gear of a 5-Cylinder Diesel Engine

6.2.1 Introduction

Modern Diesel engines of automotive industry possess direct injection, which
needs less fuel and produces less emissions with respect to pollutant and noise.
Additionally such motors exhibit a better torque performance in comparison
to naturally aspirated engines. For achieving such advantages the designers
have to deal with improved carburation systems requiring higher and higher
pressures, which finally results in higher loads for all components participating
primarily in the engine’s operation, the crankshafts, the camshafts and the
timing control system. We shall focus here on the last component.

For injection pressures larger than 1000 bar the timing chains and belts
come to an end of their load carrying abilities, because very large pressures
generate large torques at the camshaft thus influencing directly the loads of
the timing components. Therefore timing gear wheel systems become an alter-
native to chains and belts, they enlarge the pressure potentials considerably,
but on the other hand they are more complicated and more expensive than
belts or chains. During the design and development of some new Diesel engines
with five and ten cylinders Volkswagen decided in the nineties to apply for
timing control wheel sets, though with the additional reqirement to keep the
axial dimensions of such a timing gear set as small as possible. The ignition
system consists of a pump-nozzle-system for each cylinder, which is operated
by the cams and which are able to generate very large injection pressures.
In the following we shall present the two configurations of the VW-5-cylinder
engine R5 and the VW-10-cylinder engine V10 with timing gear sets and
pump-nozzle-systems for injection.

Timing gears have to control the camshaft or the camshafts, and via the
cams they must assure the correct ignition points for each of the cylinders
as accurately as possible, For this purpose designers apply today additional
automatic valve adjustment systems, which we shall not discuss here. Con-
troling ignition is the main task of timing systems, but they also drive and
control various ancillary systems like a generator, an oil pump, a power steer-
ing pump, a water pump and an airconditioning compressor. With increasing
requirements with respect to comfort these ancillary systems grow in number
and performance, and as a matter of fact they influence the dynamics of the
timing system considerably.

6.2.2 Structure and Model of the 5-Cylinder Timing Gear

The general structure of the timing gear set of the Volkswagen R5 Diesel
engine is illustrated by Figure 6.16. The whole set is located at the engine
rear between engine and clutch. It includes 12 helical gears forming one direct
branch to the camshaft and altogether three smaller branches to ancillary
components.
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The camshaft is driven by the main branch with wheel 1 of the crank-
shaft, with the three indermediate wheels 2, 3a3b, 4 and with the wheel 5 of
the camshaft. The transmission ratio camshaft/crankshaft = 1/2 is realized
by the double wheel 3a3b. The valves and the pump-nozzle-elements for the
five cylinders are operated by the cams on the camshaft. Figure 6.15 gives an
impression of the real world timing gear, and Figure 6.16 depicts the corre-
sponding details, the camshaft, the rocker arms,the pn-elements (pn=pump-
nozzle) and the valves. The oil pump is driven by wheel 10, which is the only

Fig. 6.15: Timing Gear of the VW R5 TDI (courtesy VW)

wheel of the side branch 1. The power steering pump and the airconditioning
compressor are driven by wheel 23 and the generator by wheel 22, which to-
gether form the side branch 2. Finally the side branch 3 consists only of wheel
30 for the water pump. The crankshaft and all ancillary equipment are not
shown in Figure 6.16.

The helical gears with an helix angle of 15° are pivoted on case-fixed pins,
with the exception of wheel 31. Wheel 31 is shrinked on the water pump
shaft, and this shaft is pivoted on a roller bearing in the water pump housing.
Therefore all wheels, with the exception of wheel 31, are taper bore mounted,
which has to be examined for possible vibration enlargement of the overall
system. We place the inertial coordinate system in the origin of the crankshaft
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Fig. 6.16: Structure of the Timing Gear R5 (courtesy VW)

wheel, wheel 1, with the z-axis in direction of the crankshaft axis (see the
Figures 6.16 and 6.17).

Figure 6.17 depicts only the main features of the mechanical model, which
comprises 56 bodies with altogether 97 degrees of freedom being intercon-
nected by 137 force law elements. With respect to the model details we refer
to the methods presented in chapter (6.1) on page 329, which we also shall
apply in the following without presenting the formal details. We shall give
only a description.

The gear wheels are modeled with three degrees of freedom, a rotational
one for the wheel rotation around the z-axis and two translational ones for
translational motion in the bearings. Tilting is neglected, because the back-
lashes of the bearings are too small for producing tilt and thus for influencing
the motion. The elasticity of the wheels is also not considered, because the
lowest elastic eigenfrequency of any wheel is far beyond the operation frequen-
cies. The following table 6.1 illustrates the geometry and the mass geometry
of the wheel elements, which are already optimized with respect to these pa-
rameters.

The gear wheels of the timing gear set are involute gears with a trans-
verse pressure angle of 20° and a helix angle of 15°. The module for all wheels
is 2.85 mm. The maximum value of the gear backlash is 0.20 mm for a temper-
ature of 130°. The jerky ignition pressure course as well as the irregularities
of the crankshaft excite the system to produce vibrations, which are char-
acterized by impulsive contacts between the meshing gears at the front and
at the rear flanks thus generating a hammering effect. Hammering consists
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Fig. 6.17: Mechanical Model of the R5 Timing Gear Train

in contact and detachment under load and results in very large load peaks.

Table 6.1: Geometry and Mass Geometry of the R5 Gear Wheels (mass mi =
mass moment of inertia)

wheel teeth teeth mass mass mi
number number width [mm] [kg] [10−4 kg·m2]

1 37 20,0 1,49 22,78
2 33 19,8 0,58 9,54

3a3b 37/17 20,0/24,0 0,90 15,48
4 35 23,8 0,70 12,45
5 34 20,0 1,02 13,77
10 41 8,0 0,44 9,66
20 34 10,0 0,40 5,60
21 30 10,0 0,32 3,44
22 17 10,0 0,12 0,49
23 32 10,0 0,33 4,39
30 28 8,0 0,19 1,92

Consequently, this load is also influenced by the backlash itself, it increases
with increasing backlashes due to larger kinetic energy in large plays. There-
fore we must choose a force law based on two-sided force elements with play,
see Figure 6.18 and see also Figure 6.8. The gear construction of this figure
is well-known (see for example [170]), and according to that the tooth forces
act in the directions of the lines of contact, which are the connecting tangen-
tial lines to the two base circles. Assuming a linear spring damper force law
we may write for the contact forces Fmesh = (c · g + d · ġ)e1,2, where (g, ġ)
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are the deformation and deformation velocity in the contact. The spring and
damper coefficients must be evaluated by a FEM-model or by the standard
model of Ziegler [285], which due to its excellent approximations is still in use
in industry.

rW1

rW2

rG1

rG2

C

e2

C
e1e2

rG1

rG2

c

d

s

Fig. 6.18: R5 - Gear Mesh with Backlash and Model

For gear meshes these forces depend on the contact ratio, which is a mea-
sure of the, not necessarily integral, number of meshing gear teeth. This has to
be calculated by a superposition of the spring-damper-coefficients according
to the contact ratio. Figure 6.19 depicts a typical example with its maxima
around 0-0.75 and its minima around 0.75-1.0, in the first case meshing tak-
ing place with three, in the second case with two wheels. Damping is mainly
caused by friction in the contacts and not by material damping, which is very
small for gear wheels. In practice damping is estimated by the formula

d(ε) = 2 · dLehr

√
c(ε) · I1 · I2

I1 · r2
2 + I2 · r2

1

, (6.35)

where c is the tooth stiffness, I1,2 the mass moments of inertia and r1,2 the
base circle radii. According to our experience with systems of that kind the
damping measure dLehr has values around 0.15-0.25 [217]. For the oil model
we apply the same model as in section 6.1, see Figure 6.6 on page 334.

Most of the bearings are journal bearings. We could take the bearing
coefficients from tables, which are well known but usually evaluated for sta-
tionary loads, for example gravity loads for large power plant shafts. This does
not fir to our case of a timing gear wheel set. Therefore a detailed bearing
model has to be evaluated, if necessary, at each integration time step. Such a
detailed model has been established by [229] and is applied for problems like
the present one.

It works as follows: We describe the fluid motion within the oil layer by
the Reynolds equations, a specialized form of the Navier Stokes equations,
which we solve in an approximate way by first establishing some functional
relations of the oil gap and by an approximation of the oil pressure in the gap
by Tschebyscheff polynomials. The oil forces on the shaft are then determined
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Fig. 6.19: Stiffness and Damping depending on the Contact Ratio

by an integration of the oil pressure distribution around the shaft. Finally a
stable shaft position is calculated and from a linearization around this position
we get the stiffness and damping coefficients for the journal bearing. The
finite bearing lenths are taken into account. The detailed method is necessary,
because the stiffness- and damping-behaviour of the oil is extremely nonlinear
and must be considered for all dynamic situations not only for stationary
ones. Nevertheless it should be noted that the calculation process discussed
above still includes some neglections and approximations, but the results are
realistic. Table 6.2 illustrates the bearing geometries. It should be noted that

Table 6.2: Bearings of the Wheels
wheel bearing bearing bearing
number type diameter[mm] width[mm]
1 journal bearing - -
2 journal bearing 36,0 20,0
3a3b journal bearing 36,0 46,0
4 journal bearing 20,0 24,0
5 journal bearing - -
10 journal bearing 36,0 10,0
20 journal bearing 30,0 10,0
21 journal bearing 30,0 10,0
22 journal bearing 30,0 10,0
23 journal bearing 30,0 10,0
30 roller bearing — —

wheel 5 does not have an own bearing, it is fixed to the camshaft. The camshaft
itself is carried on the cylinder head structure by six bearings. The motion of
the crankshaft wheel (wheel 1) is prescribed kinematically. Wheel 1 itself is
part of the crankshaft and has no own bearing.

The camshaft is modeled by a sequence of single masses connected by
rotatory springs, as indicated in Figure 6.17. Each of the mass elements posses
one rotational degree of freedom.

The fuel is injected into the motor cylinders by a especially developed fuel
injection pump system generating very large pressures. Each cylinder has
its own pump system driven by the camshaft, which transmits its motion by
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the injection cams and the roller rocker arms to the piston of the injection
pumps. The piston moves downwards and compresses the fuel, which flows via
a system of channels, the annular gap around the needle of the nozzle and the
nozzle itself to the cylinder (see Figure 6.20). The mechanical model includes
the injection cam, the roller rocker arm and the piston of the pump loaded by
a spring. Beginning and duration of the injection process are prescribed by a
control unit in dependence of load and speed. The injection takes place within

roller
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camshaft with
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piston spring

pump piston

high pressure
volume

cylinder head

nozzle
crank shaft angle after top dead center (TDC) [◦]
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Fig. 6.20: Pump - Nozzle Configuration (courtesy VW)

a few degrees of the crankshaft angle. The maximum of the injection pressure
increases up to a speed of 4250 rpm, which represents the value of the limiter
speed. The ignition point sequence is (1-2-4-5-3). Figure 6.20 depicts also the
measured injection pressure versus the crankshaft angle.

Every cylinder has an intake and an exhaust valve, which are driven by
valve trains. The corresponding mechanical model includes the cam, the
solid valve lifter, the valve head and the valve shaft according to Figure 6.17.

6.2.3 Model of the Ancillary Components

Going back to the first Figure 6.16 we noticed one main drive train with the
wheels (1, 2, 3a3b, 30, 3, 4, 5) and two side branches, one with the wheel (10)
only and one with the wheels (20, 21, 22, 23). Wheel (10) drives the oil pump,
wheel (22) the generator and wheel (23) the power steering pump and the air
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conditioning compressor. We shall give some indications on modeling and on
simulations with respect to loads and noise.

Figure 6.21 illustrates the scheme of these side branches and the corre-
sponding mechanical model. It differs slightly with respect to Figure 6.16,
where the two split wheels are missing and replaced by just one wheel. The
introduction of the two-wheeled gear rig was an experiment to reduce noise.
One parameter influencing noise considerably is backlash, and one possible
measure to overcome backlash is such a set of two split wheels. Therefore we
find between (w20) and (w22, w23) the two gear wheels (w21a, w21b), Figure
6.21. Following the Figure 6.21 we have to model three ancillary branches of
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Fig. 6.21: R5 - Gear System for the Ancillary Equipment

the timing gear wheel set. The simplest one is the oil pump drive includ-
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ing only wheel (10). Therefore the corresponding model starts with the given
motion of wheel (1) of the crankshaft, going via the mesh 10 to the wheel
10 and additionally regarding the bearing properties b10. Oil pump torques
depending on loads and speed and oil pump damping are given.

The gear sets to the generator, to the climate compressor and to the power
steering pump require more complicated models. The generator drive starts
again at wheel (w1) and proceeds via wheel (20), the split wheels (21a, 21b) to
the gear (w22), which drives the generator. All force elements and all degrees
of freedom along this path are indicated in Figure 6.21. But additionally we
need to model the generator itself with its clutch, disc, freewheel and the
direct generator components, which must be given from the manufacturer.
The connecting force elements are usually highly nonlinear, which requires
corresponding measurements.

From the crankshaft wheel (w1) we go to the climate branch following
(w20, w21a, w21b, w23) and from there to climate compressor and the power
steering pump. Again, the climate compressor includes a clutch, a freewheel,
a disc and itself.

Modeling all these ancillary components requires a large amount of data
and parameters, to a large extent depending on loads, speeds and tempera-
ture. They must be measured or are part of the component’s delivery. It would
exceed the scope of such a book to include all these data. But to present an
example we consider some typical data of the climate compressor and the gen-
erator. Table 6.3 gives the torques for the generator and the climate compres-
sor, typical for the car size under consideration. Clutches characteristically
depend on speed, load and temperature, but exhibit also strong nonlinear
damping by hysteresis. Additionally the clutch stiffness is also nonlinear, very
near to a second order curve, but nonlinearity usually does not become very
efficient, because the operating range is approximately well near the linear
behaviour around the origin, with some exceptions of course. It should be

Table 6.3: Torques of the Generator and the Climate Compressor
crankshaft generator climate compressor
speed [rpm] torque [Nm] torque [Nm]

0750 10.0 22.55
1000 11.5 19.74
1500 9.3 15.92
2000 7.6 14.39
2500 6.5 14.39
3000 5.8 14.39
3500 5.2 14.39
4000 4.7 14.39
4250 4.5 14.39

noted, however, that clutch stiffness depends on the frequency applied to the
clutch during its operation. This well-known effect has to be measured for
different motor speeds and for different engine orders. With respect to the
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last mentioned parameter the 2.5 order is of the most important relevancy
with respect to a 5-cylinder engine. Table 6.4 includes the engine speed for
stationary simulations and the resulting frequencies with an excitation of the
dominant 2.5 engine order. The stiffnesses are the values corresponding to
these frequencies. They are evaluated according to the empirical formula (see
for example [36]).

c = c
′
Ref log10(f) + cRef = 621.4 log10(f) + 780[Nm/rad] (6.36)

Very extensive measurements of such Gates-clutches have been performed at

Table 6.4: Influence of Frequency on Clutch Stiffnes at 20◦C
engine 2.5. order clutch

speed [rpm] frequency [Hz] stiffness cRef [Nm/rad]
750 31 1709
1000 42 1787
1500 63 1896
2000 83 1974
2500 104 2034
3000 125 2083
3500 146 2125
4000 167 2161
4250 177 2177

the Technical University of Aachen [8]. These results have been used for our
case.

6.2.4 Simulation Results

6.2.4.1 Complete Timing Gear Train

During the development of the models and before performing extensive pa-
rameter simulations a couple of comparisons model/experiments were
carried through applying the following data: temperature of the transmission
housing 90◦, averaged backlash at this temperature 0.15 [mm], engine speeds
of 1000, 2000, 3000, 4000 rpm. Selecting two examples from a large amount
of such measurements we show the torques of the camshaft for the driving
and braking cases. Figure 6.22 confirms the models with about an accuracy of
10%, which is excellent before the background of a rather complicated system
dynamics with clearly recognizable hammering effects. In addition we have to
consider the elasticity of the bearings, which influence the results in a clear
way. So the irregularities of the rotational camshaft speed becomes twice as
large for elastic bearings in comparison to rigid bearings. Therefore the final
design of the timing gear train as shown in Figure 6.16 includes in addition
a plate arranged before the housing wall with the goal to support the gear
wheels not only one-sided at the housing but two-sided in the housing and
the plate.
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After these verifications the model is used to perform many parameter
variations for design improvement. In a first run the torques at the camshaft
and the forces of the gear meshes and the bearings turned out to be very large.
For example, the maximum torques of the camshaft were about 240 Nm for
the driving and -130 Nm for the braking case., the maximum forces in the
meshes of the gears about 10 kN and the maximum bearing forces about 16
kN. The reasons are clear: the injection pressure is extremely large (Figure
6.20) leading to a separation of the tooth flancs. Depending on the backlash
size large impacts occur on both sides of the flancs generating large forces in
the tooth mesh. This effect could be detected also in the example of chapter
6.1, where we got an overload of more than a factor of 10.

6.2.4.2 Ancillary Components

One of the most important problems of the dynamics of the ancillary compo-
nents consists in the dynamic and in the parameter behaviour of the clutches
with some rubber elements, which depend very much on temperature influ-
ences. All simulations are started with a reference configuration according
to Figure 6.21 and to the appropriate data set, which refers to a speed of
1000 rpm and can be adapted to any other speed. We investigate stationary
dynamics for speeds of 750 rpm to 4250 rpm in relatively small steps, and
we consider as reference stiffness especially for the clutches a the values at a
temperature of 20◦C.

By practical experience from the VW test bed it was known, that the case
without climate compressor load and with nearly no generator load was the
worst case with some damage of the Gates- clutch. It turned out furtheron,
that the spanning of the gears (w21a,b) has no influence on this situation,
which is determined mainly by the dynamics of the whole ancillary branch
system and not so much by the backlashes. Even with only one gear wheel
(21) according to Figure 6.16 we got similar results. Figure 6.23 illustrates
a typical simulation result in form of a time series of the gear meshes. Not
all gears of Figure 6.21 are shown. The results illustrate the characteristic
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hammering of such timing gears under load, for our case with a the 2.5 th
engine order (f=50 Hz, 2.5f= 125 Hz, T=0.008 s).
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Fig. 6.23: R5 - Simulations of the Ancillary Branch (v=vertical, h=horizontal,
abbreviations of the gear meshes (mi) according to Figure 6.21), 3000 rpm,
without loads on generator and climate compressor

For evaluating the parameter influences with respect to the clutch load a
large amount of simulations have been performed, which came out with the
following results.
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Table 6.5: Results of the Parameter Variations
parameter variation changes with effect with respect

respect to reference to clutch torque

clutch stiffness, significant significant
with compressor,

temperature 90◦C to −30◦C
climate compressor without significant

compressor worst case
stiffness clutch very significant significant

without compressor 4250 rpm
generator load 0 to 12 Nm, significant

constant 4250 rpm
total load of the reduced and applied very significant
ancillary branch to generator 4250 rpm

climate compressor without significant
generator load without 3000 rpm

worst case
split wheel 21b without no effect
spanning torque 0 to 30 Nm no effect

climate compressor without significant
generator load 0 to 12 Nm
stiffness clutch -50% bis +600%

climate compressor without significant for
generator load no load the whole high
stiffness clutch +600% speed range

moment of inertia -50% to +100% significant
of the generator disc
moments of inertia +30% bis +80% moderate

of gear wheels
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6.3 Timing Gear of a 10-Cylinder Diesel Engine

6.3.1 Introduction

The VW 10-cylinder Diesel engine is based on the 5-cylinder concept, an
engine, which has proved very worthwile in the course of the years, but it
is not the sum of two 5-cylinder engine. It is an individual configuration.
Nevertheless many of the aspects, which we have discussed in chapter 6.2
apply also here making modeling a bit easier. So we are able to take over most
of the modeling details for the gears and the gear meshes, for the bearings
and for the injection pump system. The crankshaft produces a kinematical
excitation, and the camshafts behave similar to the 5-cylinder case.

Again, mechanical and mathematical modeling follows the paths presented
in chapter 6.1, where detailed mathematical models have been established.
Mainly due to the backlashes within the meshes of the gears, but also due to
some components like clutches or ancillary equipment, the system dynamics
is highly nonlinear and as a rule cannot be linearized around some operating
point. We tried to do that for the 5-cylinder engine timing train, but without
success.

6.3.2 Structure and Model of the 10-Cylinder Timing Gear

The structure of the VW V10 Diesel engine is illustrated by Figure 6.24.
The timing gear with gear wheels only is located at the backside of the engine,
between engine housing and the drive train clutch. The VR-angle between the
two 5-cylinder motor blocks is 90◦. The left camshaft drives the valves and
the injection pump pistons of the cylinders (1 to 5) and the right camshaft
those of the cylinders (6 to 10). The crankshaft, here the wheel (w1), drives
the two camshafts, on the left side via the gears (2, 3, 4a/4b, 5, 6) and on the
right side by the gears (10, 11a/11b, 12, 13).

The necessary transmission ratio for the camshafts is realized by the double
gear wheels (4a/4b) on the left and (11a/11b) on the right side. All gear wheels
are helical gears with a helix angle of 15◦. With the exception of gear (w31),
which is shrinked on the water pump shaft, all gears are supported by journal
bearings. Ancillary components are driven in the following way: water pump
by gear (w31), oil pump, power steering pump and climate compressor by the
wheels (w20) and (w22), the generator with freewheel and elastic clutch by
wheel (w40).

The origin of the inertial coordinate system is the axis of gear wheel (w1),
Figure 6.24. with the z-axis along the crankshaft axis and with the x- and
y-axes in the plane of the timing gear system.

The mechanical model includes 62 rigid bodies with altogether 137
degrees of freedom, which are interconnected by 207 force elements. Figure
6.25 depicts the main features. The wheels are modeled as rigid bodies with
four degrees of freedom, one for rotation and three for translation, which allows
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Fig. 6.24: Structure of the V10 Timing Gear Train (wi = gear wheel number i,
mi = gear mesh number i, (Ix, Iy, Iz) = inertial coordinates), (courtesy VW)

to take into account the influence of elastic bearings. As in the 5-cylinder case
we neglect tilting motion of the gear wheels, because the bearing tolerances
make such tilting nearly impossible. Table 6.6 depicts the masses and the mass
moments of inertia of the wheels. The gears possess a helix angle of 15◦ and
a pressure angle of 20◦. The module is 2.85 with the exception of the gears
(w30, w31), where it is 2.00. The maximum backlash of 0.20 mm appears at a
temperature of 130◦. Due to the large injection pressures and from there due
to the large loads hammering will be generated comparable to the R5-engine.

Gear meshes, bearings, camshafts, injection pumps and valve trains data
are taken in an appropriate way from the R5-timing gear (chapter 6.2). In
addition and between the camshaft gear wheels and the camshaft itself mo-
mentum absorbers are included, which are more or less rather stiff torsional
springs. They drive the camshaft, and they reduce the camshaft vibrations
after each injection impulse.

The crankshaft output excites the system by speed irregularities, which
must be measured. Figure 6.26 illustrates some typical measurements. The
graph indicates the usual behaviour, namely that for small speeds irregulari-
ties become large, an effect requiring certain damping measures for this speed
range.
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The ancillary equipment has similar torque requirements as in the 5-
cylinder case, for example the oil pump about 2 Nm, the generator from
5 to 15 Nm, the power steering pump about 22 Nm, the climate compressor
about 15 Nm and the water pump 2 Nm.
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Fig. 6.26: Typical Rotational Speed Irregularities (V10)
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Table 6.6: Geometry and Mass Geometry of the V10 Gear Wheels (mass mi
= mass moment of inertia)

gear number facewidth mass mass mi
number of teeth [mm] [kg] [10−4 kg ·m2]

1 37 20,0 1,49 22,3
2 24 20,0 0,48 4,0

3/30 40/26 20,0/10,0 0,75 16,0
4a4b 37/17 20,0 0,9 15,5

5 35 24,0 0,66 11,1
6 34 20,0 0,60 11,3
10 32 37,0 1,12 16,7

11a11b 37/17 20,0 0,9 15,5
12 35 24,0 0,66 11,1
13 34 20,0 0,60 11,3
20 37 10,0 0,47 9,1
21 31 10,0 0,39 4,5
22 30 10,0 0,33 4,6
31 17 10,0 0,2 0,2
40 14 10,0 0,3 0,4

6.3.3 Simulation Results

The simulations are performed applying a computer code based on the math-
ematical models of chapter 6.1 on page 329. The results presented correspond
to an early stage of the iterative process for improving and stabilizing the
design. Nevertheless they include some important indications with respect to
the maximum forces and torques as a basis for a first sizing up of the design
ideas.

The maximum torques of the two camshafts are about 260 Nm, approx-
imately the same value for both shafts. The maximum tooth forces in the
gear meshes depend also on the loads of the ancillary equipment. According
to table 6.7 the loads on the left side are a bit larger than those of the right
side, which is due to some ancillary components and in addition to one more
wheel in that branch (see also Figure 6.24). The maximum loads on the bear-
ings are also illustrated by table 6.7, where in addition the angle with respect
to the positive x-axis is given designating the direction of the corresponding
maximum force. The gears of the two main timing gear branches are heav-
ily loaded by the large injection pressures and as the consequence by large
torques. As in the case R5 this leads also here to hammering situations, which
are always accompanied by very large forces on the gear teeth. The journal
bearings thus move always between two extreme positions, which are both
equally and heavily loaded. Table 6.7 gives also the two corresponding angles
for these two force directions.

Comparing the above mentioned magnitudes with those of the 5-cylinder
engine we recognize the same order. Therefore many general aspects concern-
ing the loads of the R5 can appropriately tranfered to the V10-design.

It might be of interest with respect to similar cases to investigate the
effect of speed irregularities of the engine on the loads of teeth and bearings.
The simulation was performed for a speed run-up from 2200 rpm to 4600 rpm
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Table 6.7: Maximum Forces in the Gear Meshes and on the Bearings (mi=gear
mesh number i, bi=bearing number i)

geer teeth tooth force gear trains bearing bearing force angle of
number [kN] [kN] bearing force

m1 15,5 to water pump and generator b1 15,6 0,3 / 2,1
m2 14,3 left bank b2 27,4 0,3 / 3,3
m3 17,0 left bank b3 15,9 1,1 / 4,3
m4 18,9 left bank b4 17,2 1,1 / 3,1
m5 14,0 left bank b5 22,9 0,5 / 4,0

b6 13,6 0,5 / 4,4
m10 14,2 right bank b10 22,4 2,3 / 5,5
m11 13,8 right bank b11 22,4 2,8 / 6,0
m12 17,7 right bank b12 26,4 2,5 / 5,6
m13 13,5 right bank b13 13,1 2,3 / 5,0
m20 7,5 to ancillary components b20 4,8 5,2
m21 6,6 oil pump, power steering b21 6,4 0,8
m22 6,1 pump and climate compressor b22 5,9 5,0
m30 4,8 to generator b30 4,7 3,1 / 0,5

b31 4,6 roller bearing
m40 4,5 generator b40 4,4 2,8

using Figure 6.26. Table 6.8 depicts some results, which in some cases indicate
large deviations with respect to the two cases ”with” and ”without” rotational
irregularities; and this behaviour inspite of the fact, that the excitation due
to the very large camshaft torques are still included. Therefore care has to be
taken in modelling the inputs at the system cuts.
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Table 6.8: Maximum Forces and Torques in a Comparison
maximum value maximum value difference

with without
rotational rotational

irregularities irregularities

camshaft left side 271,9 Nm 221,2 Nm 23%
camshaft right side -254,7 Nm -252,2 Nm 1 %

toothing 1 15,5 kN 11,4 kN 36%
toothing 2 14,3 kN 8,7 kN 64%
toothing 3 17,0 kN 8,9 kN 91%
toothing 4 18,9 kN 15,0 kN 26%
toothing 5 14,0 kN 11,9 kN 18%
toothing 10 14,2 kN 10,6 kN 34%
toothing 11 13,8 kN 8,3 kN 66%
toothing 12 17,7 kN 12,2 kN 45%
toothing 13 13,5 kN 10,8 kN 23%
toothing 20 7,5 kN 5,3 kN 43%
toothing 21 6,6 kN 4,5 kN 47%
toothing 22 6,1 kN 4,2 kN 45%
toothing 30 4,8 kN 3,2 kN 50%
toothing 40 4,5 kN 3,3 kN 36%

bearing 1 15,6 kN 12,4 kN 26%
bearing 2 27,4 kN 18,4 kN 49%
bearing 3 15,9 kN 9,6 kN 66%
bearing 4 17,2 kN 13,8 kN 25%
bearing 5 22,9 kN 21,0 kN 9%
bearing 6 13,6 kN 11,4 kN 19%
bearing 10 22,4 kN 16,9 kN 33%
bearing 11 22,4 kN 15,4 kN 45%
bearing 12 26,4 kN 20,6 kN 28%
bearing 13 13,1 kN 10,6 kN 24%
bearing 20 4,8 kN 3,7 kN 30%
bearing 21 6,4 kN 4,5 kN 42%
bearing 22 5,9 kN 4,1 kN 44%
bearing 30 4,7 kN 3,1 kN 52%
bearing 31 4,6 kN 3,0 kN 53%
bearing 40 4,4 kN 3,2 kN 38%
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6.4 Bush and Roller Chains

6.4.1 Introduction

The classical solution for controling the camshaft consists in timing belts,
which in the course of the years have been steadily improved to meet also re-
quirements in connection with high performance combustion engines. Never-
theless and especially in Europe the chains are more and more gaining ground
due to valve trains of greater sophistication and due to injection pumps with
very high pressure loads, to name two important influences. Modern Diesel
engines with their extremely large output torques put also very large loads on
the timing system. Belts come in these cases to the limit of their performance.
Therefore chains, inspite of their larger mass and thus of their larger inertial
forces, get a chance.

Fig. 6.27: Timing Chain Drive of the BMW M62 V8 (1996)

The Figures 6.27 and 6.28 give an impression of two German timing chain
systems for high performance cars. Obviously the design and the arrangement
of the chains have to follow very restricted space considerations. Widely dis-
tributed chains are the bush and roller chains, which we shall consider in this
chapter, and with respect to the inverted tooth chains we refer to [111]. The
first configurations are applied more in Europe, the second ones in the US.
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Fig. 6.28: Timing Chain Drive of the Porsche 911 Carrera

Figure 6.29 depicts a roller chain and a bush chain together with their
models we shall use. In the case of the bush chains the teeth of the sprocket
contact directly the pins fixed in the tab plates, whereas in the case of roller
chains we have an additional rolling element reducing the friction in the tooth-
roller-contact by rolling without sliding, at least approximately. The external
elements comprising two tab plates and two pins do not have contact with the
sprocket teeth. Typical chain pitches are 7 mm, 8 mm and 9.525 mm. Double
roller chains are applied for larger loads. They possess an additional tab plate
in the middle of the double configuration.

The link model follows the dissertation [69] of Fritz, who was the first one
to present a detailed simulation model of roller chain systems. In the following
we shall give some more details (see also [70], [111] and [201]).

Fig. 6.29: Bush and Roller Chain Elements (left), Corresponding Model (lower
element of the left side and right)

6.4.2 Mechanical and Mathematical Modeling

6.4.2.1 Sources of Excitation

Chains are loaded by internal and external excitations [69]. The structure
comprising plates and pins generates polygonal effects with their frictional
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impact behaviour in the inlet and outlet of the sprocket wheels. In contrast
to belts the chains form a polygonal structure contacting the teeth of the
sprocket wheels in one point only (see Figure 6.30). To get an estimate for
the velocities and the polygonal frequency we assume that the joint centers

xlxl

ylyl

2Π
z

2Π
z

R vl

vt
v

2r sin Π
z

Ω

α

Fig. 6.30: Polygon Effect for Roller Chains

are positioned on the generated pitch circle. If then the sprocket wheel with z
teeth and a pitch circle radius R rotates with the constant velocity Ω we get
the following velocity variations with respect to the free strand

transverse ∆vt = RΩ sin(Ωα),

longitudinal ∆vl = RΩ[cos(Ωα)− (
sin Π

z
Π
z

)], (−Π

z
≤ α <

Π

z
). (6.37)

where the second term in the longitudinal equation represents the averaged
velocity in longitudinal direction (see section 5.4 on the pages 275 ff., especially
equation 5.103). The angle α is always within the pitch angle of the sprocket
wheel. Longitudinal oscillations take place along the chain and transverse
oscillations perpendicular to it. Considering here a plane model we do not take
into account out of plane vibrations. The above velocity oscillations decrease
with increasing number of teeth, linearly in transverse and quadratically in
longitudinal directions. The polygonal frequency itself is simply the sprocket
velocity multiplied with the number of teeth:

Ωpolygon = zΩ (6.38)

We always get an impact with friction when a chain element enters or
leaves the sprocket wheel. The directions of motion of chain and sprocket are
different leading to a vector difference of the velocities, which can only be
demounted by a shock between the chain and the sprocket tooth (see Figure
6.31). This vector difference between the element velocity vG and the sprocket
velocity vR of the contact point writes

∆v = 2RΩ sin(
Π

z
) cos(

Π

z
), (6.39)
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which is mainly a vector in transverse direction of the chain. The position of
the inlet shock is very important, because it changes significantly the direction
n and with n the direction of the relative velocity ∆v.

Fig. 6.31: Running-In of a Chain Element into a Sprocket Tooth

The shocks in the running-in area are a main source of noise and wear.
Furtheron we know from observations, that especially for large rotational ve-
locities the element already in contact with a sprocket tooth detaches again
leading to additional shocks and noise. The running-in shock is always accom-
panied by an extremely short time distance, within which the chain element
has to be accelerated from zero rotational velocity to the sprocket rotational
velocity. This effect produces considerable inertial loads.

We get in the running-out zone similar effects, where the element inertia
together with some clamping process at the end of the sprocket arc under
contact generates a typical running-out arc accompanied by additional longi-
tudinal forces in the order of magnitude of the operational tensile forces.

The internal excitations discussed so far are mainly parameter excited os-
cillations, which excite the overall system. The external excitations depend
on the system boundaries and thus on the system cuts. As a rule we have
both, kinematical and kinetic excitations. The output of the crankshaft usu-
ally is given by kinematical magnitudes, which are easily to measure. On the
other hand, the system’s output for example at the driven sprocket wheel is
loaded by external sources and thus will be given by measured (or sometimes
assumed) load data. In our case of timing chains these chains are loaded by
the camshaft or the camshafts, which might lead to a cyclic change of heavily
loaded strands and strands with no loads. The same might be true for kine-
matical excitations with superimposed velocity fluctuations. We shall come
back to that.

The system’s cuts should be chosen in such a way, that firstly all internal
and external excitations come into effect, and that secondly all components
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within the operational frequency range are taken into consideration, at least
approximately. So it makes sense to include a model of the elastic camshafts as
a main load of the timing chains. Reasonable cuts are therefore the measured
gas pressure in the cylinders of the engine and the kinematical output of the
crankshaft. In addition we have inertial connections by the chain tensioners
and the guides.

6.4.2.2 Model Properties

Roller chains

A roller chain consists of two different kinds of chain links:

• Chain links with two pins.
• Chain links with two bushings.

These two kinds of links differ in their mass, their moment of inertia and their
pitch, if wear of the chain is considered. The elasticity of a link is modeled
as a force element in the chain joint. Therefore the link can be treated as a
rigid body. The dynamics of a chain roller does not influence the vibration of
the chain drive in any substantial manner. Hence the roller is not considered
as a separate body. The motion of a chain link is given by the translational

a

Fig. 6.32: Kinematics of a Link

vector rL and the rotational vector ϕL. For the planar motion it is sufficient to
consider the displacements in x- and y-direction and the rotation about the z-
axis. The following transformation gives a relation between these configuration
coordinates qL and the system coordinates zL (Figure 6.32):

rL =

xLyL
0

 , ϕL =

 0
0
ϕL

 , zL =
(
rL
ϕL

)
, qL =

xL
yL
ϕL

 ,
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zL = QL qL =


1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

qL . (6.40)

The coordinate system of a link is fixed in the reference point HL. A second
reference point NL of a link is displaced by the pitch vector a.

Chain Joints

Due to the low chain tension and the time varying excitations of the camshafts,
we regard both the backlash and the oilwhip in a chain joint. Using the theory
for journal bearings, the forces acting on the pin and bushing consist of two
parts. In this case we only have to consider the forces due to the oil displace-
ments, produced by the translational motion of the pin towards the bushing.
In combination with the material damping of the chain, which can be regarded
as constant, we get the damping characteristic shown in Figure 6.33 ([217]).
The elasticity of a chain link is concentrated in the joint and behaves like a
radial spring with the constant spring coefficient cL. Hence, if pin and bushing
are in contact, additional spring forces act on the links.

Fig. 6.33: Force Element and Damping of a Chain Joint

Sprockets

A sprocket, shown in Figure 6.34, is modeled as a rigid body. With the selec-
tion matrix QS for the sprocket – like QL in equation (6.40) – we can regard
optional degrees of freedom

zS = QS qS , zS =
(
rS
ϕS

)
. (6.41)

For a detailed description of the contact configuration between a link and a
sprocket, we have to consider the exact tooth contour. Figure 6.34 illustrates
the toothing of a sprocket due to DIN 8196 with the contact areas tooth
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Fig. 6.34: Sprocket Toothing

profile and seating curve. These contact contours are defined by circles. Using
a toothing fixed coordinate system the centers of these circles can easily be
determined.

Regarding a chain drive in a combustion engine, we have to consider var-
ious external excitations from the crankshaft (ϕExt) and from the camshafts
(MExt).

One Sided and Double Sided Guides

One sided and double sided guides are applied to reduce the vibrations of
the chain strands. Furthermore a tension guide is seated at the slack side, to
give the chain drive a definite initial stress. The exact contour of a guide is
important. A general formulation of a planar contour is possible by piecewise
defined parameter functions, depending on a contour parameter s

rK(s) =
(
x(s)
y(s)

)
. (6.42)

At the connection points of two functions, it is necessary that the val-
ues of the function and those of the first derivation are smooth. The second
derivation however can show unsteady behavior, which makes sense of course
only, if this effect is not of mathematical nature, but a real consequence of the
guide composition by different curve elements. A jump in the curvature of a
contour induces a jump in the contact force, which might cause a detachment
from the contour. It is a premise to the contact model to make this effects
apparent. The direction of the contour parameter s is given by the contour
coordinate system (t,n) with the condition that the normal vector n directs
to the inner part of the guide.

The behavior of the tension device, acting on the tension guide, leads at
this point with many simplifications to a description of a force element with
a matched damping characteristic. This force element is composed of a spring
with the very low spring coefficient cTD and the damping coefficient dTD
(Figure 6.35). Depending on the relative velocity in the normal direction nTD
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Fig. 6.35: Tension Guide

we assume for negative values a high damping coefficient, for positive values
a low damping coefficient. We shall discuss these tension devices in a separate
chapter.

Contact between a Link and a Sprocket

To describe the contact between a link and a sprocket we have to distinguish
the two types of links. For a roller chain the contact is realized by the rollers
rotating around the pin of the roller chain (Figure 6.29), for a bush chain the
bush comes directly into contact with the sprocket. Keeping in mind that a
link is modeled as a rigid body, we have no elasticity between the two contact
points of a bushing link. To the next link with contact there are two spring
elements of the two joints. In reality however the elasticity of the chain plate
acts between each contact. To consider these effects, we suppose that each
link has one contact to the sprocket.

Because of the fact, that we do not deal with chain rollers, we define a
contour circle with the diameter of a chain roller seated in the reference point
HL of a link (Figure 6.36).

Contact between a Link and a Guide

Modeling the contact between a link and a guide the link plate is the contact
partner (Figure 6.37). Some varieties of the contact configuration may appear,
for example contact in the front or rear side of the link, or along the link plate,
which must be considered separately, see [69]. Corresponding to the contact
model above, a contour circle with the diameter of the plate width is used.

The high rotation speed of combustion engines induces high relative veloc-
ities at the contact points between the links and the guides. Therefore stick-
slip processes do not appear. Regarding the contact of a link to a sprocket,
there is an additional oilwhip between the roller and the bushing. Neglecting
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Fig. 6.36: Contact Kinematics for Link and Sprocket

the dynamics of the roller, stick-slip processes are not taken into account.
Observations show the fact, that due to the impact of one link, other links

Fig. 6.37: Contact Kinematics for Link and Guide

loose their contact. This effect only can occur, if the contours of the contact
partners are modeled without flexibility. Consequently the model has to fulfill
the following two requests:
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• All contacts are characterized by unilateral constraints, so that a link
always can detach from the contour.

• An algorithm, describing the complementarity conditions of the contacts, is
used to make the mutual dependence of the contact configuration apparent.

6.4.2.3 Mathematical Models

The elements of the motion equations of each individual body are worked out
in such a way, that depending on the system’s coordinates z, the equations of
motion can be written in the following form:

M∗z̈ = h∗ +
∑

J∗TF ∈ IR6. (6.43)

Using the type of transformation of equation (6.40) we get the equations of
motion in configuration space with f degrees of freedom.

Mq̈ = h+
∑

JT F + Wλ ∈ IRf (6.44)

The matrix M is the symmetric and positive definite mass matrix, the vector
h includes all forces formulated already and directly in the q-space, the sum
includes all forces and torques given in the six-dimensional Euclidean space
making a transformation with JT necessary, and the last term indicates con-
tact forces.

Chain Elements of the Free Strands

We start with the chain elements of the free strands, that means with ele-
ments without contacts to the sprocket toothing. Figure 6.32 and the equa-
tions (6.40) give a first description. From these equations we immediately
derive the velocities related to the reference point H of the link:

vG =

ẋGẏG
0

 , ωG =

 0
0
ϕ̇G

 , (6.45)

with the accompanying Jacobians (see eq.(6.40))

JT =
∂vG
∂q̇G

=

1 0 0
0 1 0
0 0 0

 , JR =
∂ωG
∂q̇G

=

0 0 0
0 0 0
0 0 1

 . (6.46)

As we need the pitch vector a in inertial coordinates we have to evaluate the
transformation from the link G to an inertial frame I by

AIG =

cosϕG − sinϕG 0
sinϕG cosϕG 0

0 0 1

 . (6.47)
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The momentum of a link and its time derivative can easily be determined
using the center of mass velocity

p =m(vG +
1
2
aIGω̃Ga) = m(JT −

1
2
aIGãJR)q̇G

ṗ =m(JT −
1
2
aIGãJR)q̈G +

1
2
aIGω̃Gω̃Ga (6.48)

Due to the symmetry of the link the inertia tensor of the link is diagonal. For
a change of the reference point we have (Figure 6.32)

IH = IS −
1
4
mãã (6.49)

Analogously to the momentum we get for the moment of momentum and its
time derivative

L =LS +
1
2
ãp = ISωG +

1
2
mãvG −

1
4
mããωG

L =IHωG +
1
2
mãvG =

(
IHJR +

1
2
mãJT

)
q̇G,

L̇ =
(
IHJR +

1
2
mãJT

)
q̈G +

1
2
mω̃Gã vG︸ ︷︷ ︸

=0

(6.50)

Due to the plane model the representations of the moment of momentum are
the same for link and inertial coordinates. The share of the link dynamics
with respect to the overall dynamics can now already be summarized. We get
for the mass matrix

MG = m
(
JTTJT −

1
2
JTT ãJR +

1
2
JTRãJT

)
+ JTRIHJR, (6.51)

and the centrifugal forces follow from

hG = −1
2
mJTT ω̃Gω̃Ga. (6.52)

Furtheron we have gravitational forces G = mg and joint forces acting on the
link. Including the gravitational force into the equations of motion referenced
to the mass center requires a transformation

hG = . . . + JTTSG with JTS =
∂vS
∂q̇G

= JT −
1
2
ãJR. (6.53)

The joints are approximately modeled like a journal bearing (Figure 6.38). For
applying the force law given by Figure 6.33 we need the relative displacements
and displacement velocities for a link i and a link j. From joint kinematics we
get in a first step
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Fig. 6.38: Joint Kinematics between two Links

ε = rG,j − rG,i − ai, ε̇ = vG,j − vG,i + ãiωG,i (6.54)

The joint displacement and displacement velocity follows then in the form

γ =nTε, γ̇ = nT ε̇

n =
ε

|ε| for |ε| �= 0, n =
ε̇

|ε̇| for |ε| = 0, |ε̇| �= 0. (6.55)

According to the force law of Figure 6.33 the following formulas are applied

λN =d(γ)γ̇, within backlash,
λN =c(γ − γ0) + dγ̇ with contact,
N =nλN . (6.56)

where γ0 is the maximum backlash. The radial joint force acts on the link
i with positive sign and in link j with negative sign. The force parts in the
equations of motion are therefore augmented by the terms

hG,i = . . . + JTTNiN with JTNi = JT − ãiJR
hG,j = . . .− JTTHjN with JTHj = JT . (6.57)

The very small backlashes between pins and bushings allow some simplifica-
tions. We assume approximately, that the radial forces cancel out and that
only a frictional torque acts in the joints. This torque MR is evaluated using
a smooth and measured friction characteristic. It must also be added to the
equations of motion in the form

hG,i = . . . + JTRezMR hG,j = . . .− JTRezMR, (6.58)

which has to be evaluated a bit further with respect to the overall structure
of the equations of motion [69].
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Elastic Camshafts

One key component of timing gear systems is the elastic camshaft carrying
the sprocket wheel and a couple of additional masses (Figure 6.39). We get
correspondingly a number of additive terms in the equations of motion. The
elastic displacements are always very small, so that we can linearize with

Fig. 6.39: Elastic Camshaft and Sprocket Carrier

respect to elastic motion. This linearized form writes in principle [69]

Mq̈R+
(
Del +DLag + 2ΩG

)
q̇R

+
(
Kel +KLag + ΩNLag + Ω̇KΩ̇ + Ω2KΩ2

)
qR + g = h, (6.59)

with the vector and matrix elements to be evaluted in the following:

M : mass matrix,
G : gyroscopic matrix from rotational excitation,
Kel : stiffness matrix of elastic deformation,
Del : damping matrix of elastic deformation,
KLag : stiffness matrix of the bearings,
NLag : matrix of the non-conservative bearing forces
DLag : damping matrix of the bearings,
KΩ̇ : matrix due to rotational acceleration,
KΩ2 : matrix of centrifugal forces (rot. excitation),
F : force vector from rotational excitation,
h : force vector of excitations and external forces.

Elastic Camshafts - Shaft Element

As a first component of the camshaft we consider the elastic shaft itself char-
acterized by its kinematics and dynamics. In all cases we refer to the theory
presented in the chapters 3.3 on the pages 113 ff. and 3.4 on the pages 131
ff. An elastic shaft can be cut into small discs as indicated in Figure 6.39.
The motion of such a disc element includes the reference rotation as given by
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the engine, the rigid body motion and the elastic deformations, assumed to
be small in our case. The kinematics of the reference system is given by the
transformation matrix ARI from the inertial to the reference system and by
the rotational velocity and acceleration, which yields

ARI =

 cosΦ sinΦ 0
− sinΦ cosΦ 0

0 0 1

 ,

RωR =IωR =

 0
0
Ω

 , Rω̇R = I ω̇R =

 0
0
Ω̇

 . (6.60)

We choose the following sequence of rotations for the disc element (see chapter
3.3.4 on page 124, [69], [28]):

rotation around the z-axis with ϕ(z, t) = ϕ

rotation around the x-axis with −∂v(z,t)∂z = −v′
rotation around the y-axis with ∂u(z,t)

∂z = u′

All angles are small magnitudes allowing linearization. Therefore the trans-
formation from the reference system R to the body system K comes out with

AKR = E − ϕ̃R = E −

̃−v′u′

ϕ

 =

 1 ϕ −u′

−ϕ 1 −v′
u′ v′ 1

 (6.61)

From these preliminaries we can evaluate the absolute angular velocity and
acceleration formulated in the body-fixed frame by

KωK =

−v̇′ −Ωu′

+u̇′ −Ωv′

ϕ̇ + Ω


K ω̇K =

−v̈′ü′

ϕ̈

+ Ω

−u̇′

−v̇′
0

+ Ω̇

−u′

−v′
1

 (6.62)

The equations of momentum will be evaluated in the reference system R and
therefore we need the position of the center of mass in that coordinates. The
radius vector from O to H follows from the vector chain (Figure 6.39)

RrOH = ARI

uR0

vR0

0

+

0
0
z

+

uv
0

 , (6.63)

from which we get the absolute velocity and acceleration by the expression
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RvH =

u̇v̇
0

+ Ω

−vu
0

 ,

Rv̇H =

üv̈
0

+ 2Ω

−v̇u̇
0

+ Ω2

−u−v
0

+ Ω̇

−v−u
0

 . (6.64)

The elastic deformations are approximated by a RITZ approach, which writes

uel(z, t) = uT (z) qu(t) = uT qu : bending in u-direction
vel(z, t) = vT (z) qv(t) = vT qv : bending in v-direction
ϕel(z, t) = ϕT (z) qϕ(t) = ϕT qϕ : torsion

(6.65)

This ansatz makes a separation of position- and time dependent magnitudes
possible. The velocities and accelerations of the equations (6.64) and (6.62)
then write

vH =JT q̇R + ĵT , v̇H = JT q̈R + jT ,

ωK =JRq̇R + ĵR, ω̇K = JRq̈R + jR. (6.66)

The Jacobians contain only position dependent magnitudes thus being func-
tions of the longitudinal coordinate z:

JT =

uT 0 0
0 vT 0
0 0 0

 , JR =

 0 −v′T 0
u′T 0 0
0 0 ϕT

 . (6.67)

The additional vectors depend on the velocities and accelerations due to the
reference rotation of the shaft. They write

ĵT =Ω

−vu
0

 , jT = 2Ω

−v̇u̇
0

+ Ω2

−u−v
0

+ Ω̇

−vu
0

 ,

ĵR =Ω

−u′

−v′
1

 , jR = Ω

−u̇′

−v̇′
0

+ Ω̇

−u′

−v′
1

 . (6.68)

This has been all kinematics. Going to kinetics we consider again an in-
finitesimal disc with thickness (dz), the cross section A(z) and the constant
density ρ. The momentum and moment of momentum derivatives for such a
small element is given by

ṗ =ρA(z)v̇Hdz = ρA(z)
(
JT q̈R + jT

)
dz,

L̇ =ρ
(
Îω̇K + ω̃K ÎωK

)
dz = ρ

(
ÎJRq̈R + ÎjR + ω̃K ÎωK

)
dz, (6.69)
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where the diagonal inertia tensor is simply Î = diag(Ix, Iy , Ip) with Ix =
Iy = Ip/2. The mass matrix and the force vector due to the reference rotation
follow from

M =ρ

l∫
0

(
AJTTJT + JTRÎJR

)
dz,

F =ρ

l∫
0

(
AJTT jT + JTRÎjR + JTR ω̃K ÎωK

)
dz (6.70)

We assume that the cross sections of the shaft remain plane (Euler-Bernoulli
beam) and determine the deformation potential energy of that beam. The
displacement of the mass center with respect to the reference is given by

r̄ =

uv
0

− r̃PϕR =⇒

 ū
v̄
w̄

 =

 u− yϕ
v + xϕ
−yv′ − xu′

 (6.71)

The potential energy of an elastic system may be writtrn in the form 1
2e
THe

with the linearized strain tensor e given by

e =



∂ū
∂x
∂v̄
∂y
∂w̄
∂z

∂ū
∂y + ∂v̄

∂x
∂v̄
∂z + ∂w̄

∂y
∂ū
∂z + ∂w̄

∂x


=


0
0

−yv′′ − xu′′

0
xϕ′

−yϕ′

 (6.72)

See for example the equations (2.141) on page 51 and [28], [69]. Using the
magnitudes of the disc element we come to the potential energy in the form

∆V ∗ =
[
E∗
(
y2v′′2 + x2u′′2 + 2xyu′′v′′

)
+G
(
x2 + y2

)
ϕ′2
]
dxdydz

with E∗ =
E(1 − ν)

(1 + ν)(1 − 2ν)
(6.73)

All deformation magnitudes depend only on z, and we can integrate the po-
tential energy over the cross sectional area A. As a result we get the potential
energy for an infinitesimal disc element with the thickness (dz):

∆V =
1
2

(
u′′v′′ϕ′

)E∗Ix 0 0
0 E∗Iy 0
0 0 GIp

u′′

v′′

ϕ′

 dz, (6.74)

and from there directly the unknown stiffness matrix from the equation (6.59)
in the form
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Kel =

l∫
0

E∗Ixu′′u′′T 0 0
0 E∗Iyv′′v′′T 0
0 0 GIpϕ

′ϕ′T

 dz (6.75)

Elastic Camshafts - Additional Rigid Masses

The sprocket carriers are usually camshafts with cams, which we consider to
be additional rigid masses. It makes sense to model these additional masses
individually, because it simplifies the structure of the elastic camshaft parts.
They add certain terms to the mass matrix M and the force vector F of the
equations 6.70 due to the fact, that all additional rigid masses are subject to
the effects of the reference motion. For a rigid disc at the longitudinal position
z0 with mass m and a diagonal inertia tensor I we get these shares in the form

M = . . . + mJTT0JT0 + JTR0IJR0

Fg = . . . + mJTT0jT0 + JTR0IjR0 + JTR0ω̃K0IωK0 (6.76)

Linearization of the Elastic Parts

At this point it make sense to linearize the elastic part of the equations of
motion due to the camshaft elasticity and according to the concept, that
the elastic vibrations are small deformations superimposed to the reference
motion. For this purpose we have to regard the expressions (6.68) in the equa-
tions (6.66), to put that into the relations (6.69) and evaluate it together with
the equations (6.70). After some calculations we come out with the following
integrals, only dependent on spatial coordinates [69]
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M =ρ

l∫
0

AuuT + Ixu
′u′T 0 0

0 AvvT + Iyv
′v′T 0

0 0 Ipϕϕ
T

 dz,

G =ρ

l∫
0

 0 −AuvT 0
AvuT 0 0

0 0 0

 dz,

KΩ̇ =ρ

l∫
0

 0 −AuvT − Ixu
′v′T 0

AvuT + Iyv
′u′T 0 0

0 0 0

+

 0 0 0
Ipv

′u′T 0 0
0 0 0

 dz,
KΩ2 =ρ

l∫
0

−AuuT + Ixu
′u′T 0 0

0 −AvvT + Iyv
′v′T 0

0 0 0

 dz,

F =ρ

l∫
0

Ω̇

 0
0

Ipϕ

 dz. (6.77)

For an additional rigid mass we have to add similar terms including the
inertia tensor I = diag(A,B,C) and the following simple integrals∫

ρAdz → m,

∫
ρIxdz → A,

∫
ρIydz → B,

∫
ρIpdz → C. (6.78)

External Forces

External forces acting on the sprocket shaft are gravitational forces, forces
entering from the cams and the valve mechanism and finally forces generated
by the tensioners for the guides. In some cases gravitational forces might be
neglected. Otherwise it is

If = ρAgdz (6.79)

with the gravitational vector g being inertially fixed (see Figure 6.39). The
additional force contribution to the equations of motion results from a trans-
formation into the reference system, from there into the configuration space
and finally from an integration along the shaft. If we have in addition a rigid
mass, we get a second term representing the gravitational effect of this rigid
mass. Altogether this yields

hR = . . . + ρ

l∫
0

AJTTdzARIg + . . . + mJTT0ARIg (6.80)

At the sprocket shaft boundary we have the forces and torques coming from
the individual valve trains; they depend for stationary operation on the cam
position. We get
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Fexcitation = F (Φ +ϕT0 qϕ) Mexcitation = M(Φ +ϕT0 qϕ) (6.81)

The forces are conveniently defined in an inertial and the torques in a body-
fixed coordinate system. Performing the corresponding transformations and
evaluating these parts in configuration space results in

hR = . . . + JTT0ARIeiFexcitation + . . . + JTR0AKIe3Mexcitation (6.82)

For the evaluation of the tensioner’s forces we need to know its relative
displacements, which can be determined in a similar way as in the case of the
joint bearings. The direction of the active force is nT . We get

γ = nTTAIRJT0qR, γ̇ = nTTAIR(JT0q̇R + ΩJ∗
T0qR). (6.83)

The contribution to the equations of motion results from that in the form

hR = . . . + JTT0ARInT ζ, (6.84)

where ζ must be calculated from the detailed tensioner analysis [69], [111].

In a preceding chapter we have already discussed the model properties of
the sprocket. We shall consider here in a bit more detail the kinematics of the
toothing contour following Figure 6.40 (see also Figure 6.34). Starting with
the reference point H of the shaft at the sprocket position we calculate the
position of a contour point K by considering the eccentricity ρ, if any, the
vector rV Z to the origin of the toothing system and the vector rK(s) to the
contour point. This writes in disc-fixed coordinates

rHK = �+ rV Z + rK(s) (6.85)

The absolute position and the kinematics follow from these equations in the
form (O = center of inertial coordinate system)

IrOK =AIR[rOH +ARKrHK ],

vK =AIR[JTK q̇R + ĵTK ], v̇KG = AIR[JTK q̈R + jTK ],

with JTK =JT −ARK r̃HKJR

ĵTK =ĵT −ARK r̃HK ĵR

jTK =jT −ARK r̃HKjR +ARK ω̃K0ω̃K0rHK (6.86)

These equations hold for every point of the sprocket shaft, they appear in the
same form for the chain guides. Linearizing we get

IrOK = r0
OH +AIRJ

0
TKqR (6.87)

After some calculations we come to a direct form of the contour point position
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H

K

Φ(t) + φ

body axis

inertial axis

ρ

rK(s)

rV Z rHK

Fig. 6.40: Contour Geometry

IrOK =rR0 +

0
0
z

+AIR

uv
0

+AIR(E − ϕ̃R)rHK

= rR0 + ze3 +AIRrHK︸ ︷︷ ︸
r0

OH

+AIR (JT −Er̃HKJR︸ ︷︷ ︸
J0

TK

qR (6.88)

6.4.2.4 Contact Processes

The chain timing systems include a large variety of contact processes, which
we have to describe. For calculating the contact forces and for determining a
valid contact configuration we shall proceed with the steps discussed in chap-
ter 3.4 on 131 ff., namely checking the contacts to be active or passive, where
at the beginning of a contact event we always have kinematical and at the end
kinetic indicators. The example we present here was still treated by Lemke’s
algorithm.

Contact of a Link with a Guide

For the contact of a link with a guide we start with the description of the
guide contour by equation (6.42) in the form rK(s) = (xK(s) yK(s))T , from
which we can derive a contact coordinate system (t,n, b) from the following
relationships, using κ as the curvature of the contour (see Figure 6.41 and
section 2.2.6 on the pages 31 ff.):

t =
∂rK
∂s

, n =
1
κ

∂2rK
∂s2

, b = t× n,

t =t(qG, s), n = n(qG, s), b = const. (6.89)
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In a guide fixed system the vectors t and n depend only on the parameter s.
Applying the formulas of Frenet

∂t

∂s
= κn,

∂n

∂s
= −κt, (6.90)

and the notation

Ω̃Gn = −tbTΩG, Ω̃Gt = nbTΩG (6.91)

we obtain the time derivatives of t and n:

ṫ =Ω̃Gt+
∂t

∂s
ṡ = nbTΩG + κṡn,

ṅ =Ω̃Gn+
∂n

∂s
ṡ = −tbTΩG − κṡt. (6.92)

Fig. 6.41: Contact between a Link and a Guide

In the following we look at the vector rD from the reference point HL to
the body fixed contact point K:

rD =rG + rK − rL,
ṙD =ṙG + Ω̃G rK − ṙL,

r̈D =r̈G + Ω̃G Ω̃GrK + ˙̃ΩGrK − r̈L. (6.93)
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In a further step we have to compute the contour parameter s in such a
manner, that the vector rD is perpendicular to the tangential vector t, which
means

gt = tTrD = 0. (6.94)

In general this equation is nonlinear in s. The calculation of the normal accel-
eration needs the time derivative of s. Keeping in mind that rD also depends
on s, we arrive at

dgt
dt

=tT (ṙD +
∂rD
∂s

ṡ) + rTD ṫ

=tT ṙD + rTDnb
TΩG + ṡ(tT t+ κrTDn)

=tT ṙD + nTrDbTΩG + ṡ(1 + κnTrD) = 0,

ṡ =− t
T ṙD + nT rDbTΩG

1 + κnT rD
. (6.95)

During the integration we use the value ṡ to find the time-dependent contact
positions. Therefore the nonlinear equation (6.94) must be solved only once,
when we deal with the contact for the first time.

To determine the direction of the frictional forces we have to regard the
tangential relative velocities of the contact points for all active contacts (K =
K ′). The contact vector of the link results from the vector rL to the reference
point HL and the radius of the contour circle.

rL,K′ = rL + Rlinkplaten (6.96)

With that relation we get the velocity of the body fixed contact points K ′ and
K and finally the relative velocity, projected into the tangential direction.

vL,K′ =ṙL + RlinkplateΩ̃Ln, vG,K = ṙG + Ω̃GrK ,

vrel =tT (vG,K − vL,K′). (6.97)

A positive relative velocity induces frictional forces in the negative tan-
gential direction t.

To calculate the normal distance between the link and the guide, we use
the relation

gn = nTrD (6.98)

For determining the indicator with respect to contact/detachment we have to
subtract the radius of the link contour. The derivative with respect to time
leads to the normal velocity of the contour points. Applying equation (6.93)
and the condition (6.94) we get
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ġn =nT (ṙD +
∂rD
∂s

ṡ) + rTD ṅ,

=nT ṙD − rTDtbTΩG + ṡ(nT t− κrTDt),

=nT ṙD, (6.99)

and from there by an additional time derivation the normal acceleration

g̈n =nT (r̈D +
∂ṙD
∂s

ṡ) + ṙTDṅ

=nT r̈D + nT (Ω̃G
∂rK
∂s

)ṡ− ṙTDtbTΩG − κṡṙTDt

=nT r̈D − tT ṙDbTΩG + ṡ(bTΩG − κtT ṙD). (6.100)

According to Figure 6.41 the contact forces N and T , acting on the guide
and with negative sign on the link, can be written as

N = nλ, T = − vrel
|vrel|

µtλ (6.101)

With the known directions n and t we use the vector w = JTn to describe
the influence of these forces on the motion of the guide and the link.

J∗
G =
(
E3×3,−r̃K

)
, J∗

L =
(
E3×3,−Rrollerplateñ

)
wGλ = QT

GJ
∗T
G

(
n− vrel

|vrel|
µt
)
λ,

wLλ =−QT
LJ

∗T
L

(
n− vrel

|vrel|
µt
)
λ. (6.102)

Contact between a Sprocket and a Link

Regarding the contact between a sprocket and a link we achieve very simpli-
fied relations for the normal velocity and acceleration. Due to the fact that
the toothing contour is composed of circles, it is sufficient to consider the
center of these contour circles. For this purpose we use the vector d from the
reference point HL to the contour center MK (Figure 6.42). Applying the
radius RK of the contour in the contact areas, according to Figure 6.34 with
RK,toothprofile = RTP and RK,seatingcurve = −RSC , the distance vector rD
results in

rD =d− nRK ,
ṙD =ḋ+ RKtb

TΩS ,

r̈D =d̈+ RKn(bTΩS)2 + RKtb
T Ω̇S (6.103)
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Fig. 6.42: Contact between Link and Sprocket

After some transformations the equations (6.98), (6.99) and (6.100) can be
written as

gn = nTd−RK , ġn = nT ḋ, g̈n = nT d̈+

(
tT ḋ
)2

nTd
. (6.104)

Contact Configuration

For establishing the complementarities we have to evaluate forces and accel-
erations, which characterize the relevant contact configuration. In order to
combine the kinematic constraint (6.100) with the equations of motion we
have to write the normal acceleration in the following form:

g̈n = wT
Gq̈G +wT

L q̈L + w̄. (6.105)

Transforming the acceleration of the vector rD (6.93) with the items:
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J∗
G,n =

∂r̈D
∂z̈G

=
(
E3×3,−r̃K

)
, J∗

L,n =
∂r̈D
∂z̈L

=
(
−E3×3,O3×3

)
, (6.106)

we can write

r̈D = J∗
G,nQGq̈G + J∗

L,nQLq̈L + j̄, with j̄ = Ω̃GΩ̃GrK . (6.107)

Comparing this relation with equation (6.100), we finally get the vectors
wG,n,wL,n and the value w̄ in the form

wT
G,n =nTJ∗

G,nQG,

wT
L,n =nTJ∗

L,nQL,

w̄ =nT j̄ − tT ṙD bTΩG + ṡ(bTΩG − κtT ṙD). (6.108)

With the normal acceleration of the two bodies in the notation of equation
(6.105) we are able to compute the unknown contact forces. Therefore we have
to regard the complete equations of motion of a guide and a link.

MGq̈G = hG +WGλ, MLq̈L = hL +wLλ. (6.109)

The vector h contains all forces computed by using the state q, q̇ of the
system. These forces are gravitational forces, joint forces, forces from the
tension device, and so on. All additional forces, depending on the generalized
accelerations q̈, are collected in the term WGλ or the term wLλ, if there is
only one additional constraint. The matrix WG is composed of the vectors
wG of equation (6.102), regarding each contact. The vector λ consists of all
unknown contact forces λ to this guide.

To compute these forces, we have to consider all links, which have an active
contact to this guide. To simplify the notation, we collect all nK equations
of motion of these links into one equation, using the sequence of λ in the
equations (6.109). We then come out with

MLq̈L =hL +WLλ

with q̈TL =(q̈TL,1, . . . , q̈
T
L,nK

),

ML =diag(ML,1, . . . ,ML,nK ),

hTG =(hTL,1, . . . ,h
T
L,nK

),

WG =(wL,1, . . . ,wL,nK ). (6.110)

In the same manner with the same sequence, we collect the secondary condi-
tions on the acceleration level.

g̈n =W T
G,nq̈G +W T

L,nq̈L + w̄ (6.111)

From there it is easy to formulate a relation containing the complementarities
of all our unilateral constraints. From the equations of motion we get by
rearranging a bit these equations



390 6 Timing Equipment

q̈G = M−1
G hG +M−1

G WGλ, q̈L =M−1
L hL +M−1

L WLλ, (6.112)

which we can put into the relation (6.111) to achieve the form

g̈n =Aλ+ b

with A =W T
G,nM

−1
G WG +W T

L,nM
−1
L WL,

b =W T
G,nM

−1
G hG +W T

L,nM
−1
L hL + w̄. (6.113)

The links are either in contact with the guides, then gn,i = 0 and also g̈n,i = 0,
but λn,i �= 0, or vice versa. This establishes a complementarity

g̈n ≥ 0, λ ≥ 0, g̈Tn · λ = 0, (6.114)

which must be evaluated by components. Solving the system of equations
(6.113) with these inequality conditions by applying the algorithm of Lemke,
we determine in a first step the contact forces thus being able to calculate
the generalized accelerations, and in a second step a valid contact configura-
tion. The numerical procedure behind it is not always stable, mainly due to
the application of the accelerations instead of the positions. For the example
under consideration we applied some projection algorithm for numerical sta-
bilization [69].

Impacts

When a chain link enters the sprocket or when a link comes into contact
with a guide an impact is generated. The system configuration requires only
impacts in normal direction, which makes an analysis quite simple. Stick-slip
processes do not occur, for all contacts we have only sliding or in the case
of the pin/sprocket or bushing/sprocket contact we get after some sliding a
kind of form closure. According to chapter 3.5 on page 158 and the impact
relations (3.212) on page 170 we need to take into consideration only the
normal components of these equations. Applied to the combination guide/link
we get

MG(q̇+
G − q̇

−
G) = WGΛ, ML(q̇+

L − q̇
−
L ) = wL. (6.115)

The vectors q̇−G and q̇+
G denote the generalized velocities shortly before and

after the impact. On the right side values on the impulse level appear. The
relative normal velocity for the contact is given with the equations (6.99) and
(6.104), and the normal velocity between link and guide can be written in the
same form as equation (6.111), only on a velocity level. It is

ġ+
n = wT

G,nq̇
+
G +wT

L,nq̇
+
L + w̃ (6.116)

In a further step we can derive similar complementarity conditions as above
on the velocity level and obtain thus finally the equations containing all active
contacts.
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ġ+
n =AimpactΛ+ bimpact,

ġ+
n,i ≥0, Λi ≥ 0, ġ+

n,iΛi = 0. (6.117)

The solution of the above equations results in the necessary impact magni-
tudes, but also in an information of the passive or active contact state.

Exchanging (G=guide and L=link) by the couple (S=sprocket and P=pin
or B=bushing) we can apply the above equations for these combinations.

6.4.3 Results

Fig. 6.43: Configuration of the Chain Drive [69]

Figure 6.43 illustrates the chain drive for the numerical simulation.

• The chain consists of 120 links with altogether 360 degrees of freedom.
• The crankshaft is excited by a time dependent rotation speed, resulting

from measurements. Hence this sprocket has no degrees of freedom.
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• On the camshafts act angle dependent torques, so we have to apply at
least one rotational degree of freedom.

• One guide is inertially fixed. The contact contour of this body consists of
three arcs.

• The tension guide with the additional tension device act by rotation. This
contour is composed of three parameter functions, an arc of an ellipse, a
straight line and a polynomial function.

To verify our chain model Figure 6.44 depicts the motion of the tension
guide in a comparison of simulation and experiment. The experiments have
been performed by [127]. For low rotation speeds at 1980 rpm we achieve good
agreement in the amplitudes and frequencies of the guide motion. The main
amplitude of the second order with a frequency about 80 Hz results from the
torque excitation coming from the camshaft. The polygonal frequency is in
that case a bit larger than 600 Hz. At higher rotation speeds with 3000 rpm

Fig. 6.44: Comparisons between Measurements and Simulations [69]

the simulation still agrees well with measurements. All important frequencies
are also evaluated by the simulation. It should be noted however, that the
influence of the tensioner model decides to a very high degree the quality
of the results. Simulations of timing chain systems without a sophisticated
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model of the tensioners are always very problematic. We come back to these
problems in a separate chapter.

In Figure 6.45 one cycle of a link around the chain drive with the contact
forces, the impact values and the chain stress is presented. The time repre-
sentation of the contact force shows the peaks due to the impacts. In spite of
the tangential inlet of a link on a guide, though accompanied by impact-like
processes, we reach forces with very high values. Considering the nonlinear
behavior and the unsteady structure of the chain model, the forces and the
impacts of an incoming link also differ considerably when regarding various
cycles.

All beginning contacts are accompanied by large oscillations (sometimes
a few mm) due to the impact behaviour of a link entering a sprocket or
a link entering a guide, which is always accompanied by the necessity that
the incoming link has to carry a significant part of the strand force. These
oscillations are then damped by friction, they rise again when the link leaves
the sprocket carrying a large amount of the following free strand.

Fig. 6.45: One Cycle of a Link [69]
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The graph of the impact values in Figure 6.45 also illustrates the changing
contact configuration. Particularly at the beginning and at the end of the guide
we see many impacts. The contact configuration between the link and the
sprocket changes very often. The small chain stress combined with the small
mass and high stiffness of a link leads to joint forces with high frequencies. In
the frequency spectrum of this graph the polygonial excitation appears as the
dominant amplitude. The vibrations of the chain and especially the vibrations
of the joint forces transport directly noise.

Looking at the contact forces of a link in more detail according to Fig-
ure 6.46 we recognize several zero points of the graphs indicating a complete
release of the contact load and thus nearly a detachment of the contact part-
ner chain/sprocket. It might happen for larger rotational speeds. The time
delay between these points corresponds to the polygonial frequency. The dif-
ferent shape of the two curves results from different torque excitations of the
sprockets as given by the camshafts.

Fig. 6.46: Contact Forces on the Camshaft [69]

The discusion of some results indicate already, that the numerical simula-
tions of timing chains are able to provide substantial informations of

• the dynamic behavior of the camshafts, which is very important for com-
bustion engines,

• the coupled transversal and longitudinal oscillations of the chain at arbi-
trary points,

• the contact forces, including frictional forces, between the links and the
sprockets or guides,

• the relative velocities of the contact points,
• the impacts as the main excitation source of the chain vibrations and the

influence on the contacts of neighbouring links
• and finally the summarized impacts as an approximate overall measure for

wear and noise.

These factors decide amongst others a good design of a timing system, which
has been shown in many examples from industry, for example those of the Fig-
ures 6.27 and 6.28, where significant design improvements could be achieved.
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6.5 Hydraulic Tensioner Dynamics

6.5.1 Introduction

As indicated already in the preceeding chapter, all timing chains of modern
combustion engines are tensioned by certain hydraulic tensioners, which are
applied at the chain guides. By providing these guides with some rotational
joint the tensioner can act on the guide, and via the guide it can tighten
the chain. Figure 6.47 illustrates a typical application, and it depicts also
the curvature of the guides. These curvatures are useful for a space-adapted
design, but moreover for a good contact of all chain links along the guide and
thus for a good efficacy of the tensioners with regard to the chain vibrations.
The larger influence on wear can be counterbalanced by suitable materials of
the guides.

tensioner secondary drive

tensioner primary drive

Fig. 6.47: Tensioners of the Timing Chain of the Porsche 996 Engine

The action principle of a hydraulic tensioner comes from the combina-
tion of a spring-loaded piston in combination with an oil-hydraulic system.
The tensioner force can be controlled hydraulically, and a system of leakage
arrangements produces damping. Figure 6.48 depicts a simple tensioner with
leakage and thus damping generated by the gap between piston and housing.
It shows the principle, which is typical for a large variety of tensioners. As
basic elements we always have a housing, a piston, a check valve, piston spring
and a leakage, in this case avery simple one.

The piston spring is good for a static force on the guide necessary for some
chain tension without engine operation. Going into operation the check valve
will be open until a balance of pressure and spring forces is reached. The
tensioner is under load from some small engine orders, but sometimes also by
resonances, which leads to a closure of the check valve and a generation of a
large pressure in the high pressure chamber. This causes highly nonlinear oil
flow through the leakage gap producing damping, but at the same time also
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a reduction of the oil pressure in the high pressure chamber. Again, the check
valve can open, and the whole cycle starts anew. Oil must be modelled as a
mixture of fluid and gas (air), because the central supply pump cannot avoid
a small amount of air being included in the oil.

housing

reservoir

high pressure chamber piston spring

piston

oil supply check valve leakage gap

Fig. 6.48: Components of a Simple Tensioner

A large variety of tensioner types have been developed in the last years,
mainly with the goal to achieve special performance characteristics. We give
a few examples of tensioner’s design elements:

• leakage gaps, the lenght of which depend on the piston position, for con-
trolling some progressive performance,

• excess-pressure valves for limitation of the pressure in the high pressure
chamber, mostly for timing systems with very large loads,

• more channels or gaps for increasing the leakage flow, partly with a reflux
into the supply system,

• additional pressure chambers for generating variable damping effects,
• abandonment of the check valve to reduce the number of components and

compensation by a very ”soft” tensioner design.

With respect to tensioner theory we follow the dissertation of Hösl [111] and
with respect to tensioner experiments we shall present some results from En-
gelhardt [55]. All fundaments we need from hydraulics are presented already
in chapter 4 on page 187 ff., which is mainly based on the work of Borchsenius
[23]. In the following we shall consider all tensioner components necessary to
compose a tensioner of nearly any type.

6.5.2 Piston/Cylinder Component

We consider a piston element, which can be connected to any other hydraulic
or mechanical force element being represented as an autonomous node. For the
case of two piston elements we have to define the relative kinematics in such
a way, that the translational degrees of freedom point in the same direction.
The equation of motion for one piston comes out rather simple, but we have
to pay attention not to forget some forces. According to Figure 6.49 we get
the following relation

mK ẍ = Fp1 +Fp2−Fp3−Fp4 +Fc−Fd+FA1−FA2 +FR1 +FR2−Fg, (6.118)
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where Fp are pressure forces from node connections, Fd are damping forces, FA
forces coming from mechanical stops, FR friction forces and Fg gravitational
forces, which might become important for inclined tensioners. We come back
to the corresponding models lateron.

Fig. 6.49: Piston Forces

6.5.3 Tube Models

The tubes in connection with hydraulic tensioners are exposed to relatively
small pressures in the order of magnitude of maximum 5-6 bars, which allows
rather simple tube models (see also section 4 on the pages 187 ff. and [23],
[111], [55]). This model takes into consideration oil inertia, friction and pres-
sure losses. Figure 6.50 depicts the simple model of a tube for one-dimensional
and, as we assume, incompressible tube flow. Applying the derivation of the

Fig. 6.50: Simple Tube Model

equations (4.22) to (4.26) on page 198 we get for our simplified case

mlv̇ = A(pA − pE)− fg + fr, (6.119)

where ml = ρAl is the fluid mass in a tube of length l, v the averaged fluid
velocity, fg = mg sin (α) the gravitational force and fr the pressure losses.
They might be produced by various effects. For straight tubes we have to
consider the friction at the tube wall,

∆p = −λ ρl

2D
|v| v. (6.120)
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The loss coefficient λ depends on the Reynolds number and can be determined
from standard tables [115]. Alternatively, for the calculation of the λ-values
we apply the well known formulas for laminar and turbulent stationary flows
(see [14], [13], [35])

λ =
64
Re

for Re < 2300 (laminar)

λ =8
((

8
Re

)12 + 1

(A+B)
3
2

) 1
12

for Re > 2300 (turbulent)

with A =
(

2, 457 ln
1

( 7
Re )0,9

+0,27 ks
d

)16

, B =
(

37530
Re

)16 (6.121)

The magnitude ks is the averaged height of the wall roughness, and d is the
tube diameter.

In addition to these losses we get pressure reduction by tube bends or by
changes of the sectional areas of piping. These losses are usually described by
a similar formula as equation (6.120), namely by

∆p = −ζl
ρ

2
|v| v. (6.122)

Again, the empirical ζl-values are given by tables [35]. The above formulas
can be used to model very different configurations including also labyrinth
forms of piping [55].

6.5.4 Leakage Models

Leakage gaps of all tensioners are those design elements, which generate damp-
ing. Therefore the fantasy for devoloping leakage configurations is extremely
large. From all these variants we consider here four basic elements, plane and
circular gaps, gaps with variable length and gaps due to eccentricity and due
to tilting effects. They represent the most frequently applied elements for
hydraulic tensioners.

6.5.4.1 Plane Leakage Gaps

For all tensioners the radius difference of cylinder and piston is so small in
comparison with the radii themselves, that the gap resulting from this radius
difference very often can be approximated by a plane gap. In addition we
have laminar flow, which simplifies the evaluation. Figure 6.51 illustrates the
situation. Due to the above remarks we use for the Reynolds number the one
for laminar flow in a ring gap, which according to [61] writes

Re = v
2h
ν
, (6.123)
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Fig. 6.51: Flow Properties in a Plane Gap

with the gap-averaged velocity v and the kinematical viscosity ν. For gaps
of this type we may assume a Reynolds number Re < 1100 [61], furtheron
incompressibility due to the very small gap volume and a constant pressure
perpendicular to the flow direction with (dp/dy = dp/dz = 0). According to
Figure 6.51 and Newton’s law for the shear stress τ = −η dudy we get for the
fluid equations

dp

dx
+

dτ

dy
= 0 ⇒ dp

dx
− η

d2u

dy2
≈ ∆p

l
− η

d2u

dy2
= 0, (6.124)

which gives us the velocity profile u(y) dependent on the linearly decreasing
gap pressure p(x). Integrating twice and including the boundary conditions
u(0) = ẋi and u(h) = ẋa results in the well known parabolic profile

u(y) = ẋi +
ẋa − ẋi

h
y +

∆p

2ηl
(
y2 − hy

)
, (6.125)

and from there in the volume flow evaluated by averaging over the cross
sectional area A = 2πrmh

Q = Av = A(
ẋa + ẋi

2
− h2∆p

12ηl
) = Qẋ + Q∆p with Q∆p = α∆p∆p (6.126)

The magnitude Qẋ denotes the volume flow due to the wall motion and Q∆p

the part due the pressure difference. The value of α∆p depends on the gap
geometry alone. The momentum equation 6.119 of the preceding section writes
with fr = A∆pr

mGv̇ = A (pA − pE)− fg + A∆pr (6.127)

and can be combined with equation 6.126 to give

∆pr =
Av −Qẋ

α∆p
. (6.128)

Regarding the small gap mass mG we can neglect in most cases the inertia
terms and then evaluate the volume flow directly from equation 6.126, which
reduces computing time seen before the background, that tensioner dynamics
and the gaps involved are located at a low level structure of a large system
dynamics.
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6.5.4.2 Ring-Shaped Leakage Gaps

For plane gaps we made the assumption of being able to neglect the real curva-
ture of tensioner gaps and replace it approximately by a plane configuration.
Though for many problems this assumption is quite realistic, it may fail in
cases with small cylinder radii. Therefore we have to consider the geometry
and the resulting equations in another though related way. Figure 6.52 depicts

Fig. 6.52: Flow Properties in an Annular Gap

the situation for an annular gap. A statical force balance applied to an infin-
itesimal volume element comes out after some manipulations with a relation
similar to equation (6.124) of the plane case. It is

dp

dx
+

d(rτ)
rdr

= 0 ⇒ dp

dx
− η

r

d

dr

(
r
du

dr

)
≈ ∆p

l
− η

r

d

dr

(
r
du

dr

)
= 0. (6.129)

Applying the same steps as before, integration, boundary conditions, averag-
ing, we get the following set of equations

u(r) = ẋa + (ẋi − ẋa)
ln r

ra

ln ri

ra

+
∆p

4ηl

[
r2 − r2

a +
(
r2
a − r2

i

) ln r
ra

ln ri

ra

]
,

Q = π

[
ẋar

2
a − ẋir

2
i + (ẋa − ẋi)

r2
a − r2

i

2 ln ri

ra

]
−

− π∆p

8ηl

[(
r2
i − r2

a

)2
+
(
r2
a − r2

i

)(
2r2
i +

r2
a − r2

i

ln ri

ra

)]
= Qẋ + Q∆p with Q∆p = α∆p∆p. (6.130)

The flow velocity u(r) follows again a parabolic profile, and the volume Q
includes as before two parts, the volume flow Qẋ by drag effects of the moving
wall and the volume flow Q∆p due to the pressure difference.

6.5.4.3 Gaps of Variable Length

For the realization of progressive tensioner characteristics we may design gaps
of variable length or gaps with a variable cross section over the length. The
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second solution is expensive, therefore the first one is quite often applied. Fig-
ure 6.53 illustrates one possible solution, which is realized by an assignment
of different radii to different lengths, a simple but effective solution. With
respect to the body-fixed coordinates the gap limits are given by xmin and
xmax. The two coordinate systems themselves possess at the beginning a rel-

Fig. 6.53: Gap with Variable Length

ative distance x0, during motion they shift by xrel(t). From this the length at
time t is given by the relation

l(t) = min[(xmax,i+xrel,i), (x0+xmax,a+xrel,a)]−
−max[(xmin,i+xrel,i), (x0+xmin,a+xrel,a)], (6.131)

which for example allows the determination of the fluid mass within the gap,
though in most cases it is a good approximation to neglect the gap masses in
tensioners. The remaining calculations have to consider the equations (6.126)
and (6.127) or (6.130), depending on the model we have chosen, plane or
annular.

6.5.4.4 Gaps by Eccentricity

Gaps generated by eccentricity are gaps, which we do not want to have, but
which we nevertheless must consider, at least if experiments indicate an in-
fluence of such phenomena. As tensioners are usually cheap components with
sometimes spacious manufacturing tolerances, and as additionally the piston
of a tensioner is only supported by the cylinder, we get linear and angular dis-
placements influencing the tensioner characteristic. The asymmetric position
and orientation of the piston in the cylinder is mainly caused by the motion
of the guide, where the piston is fixed by a rotary joint thus following this
motion [111].This induces eccentricities (see the examples of Figure 6.54).

In gaps of tensioners the volume flow by pressure difference dominates the
motion. Experience shows that for these cases the influence of gap eccentricity
can be approximated by simply modifying the geometrical coefficient α∆p
according to [61] in the following form

α∆p = −A h2

12ηl
(
1 + 1, 5ε3

)
with ε =

e

h
. (6.132)
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ε is the relative eccentricity with 0 ≤ ε ≤ 1. As the influence of the gap height
h is with h3 very large, we get for a displaced piston with contact on one side
an increase of the volume flow in the gap by a factor of 2.5.

tensioner

guide
ri

ra

h

e

Fig. 6.54: Gaps due to Eccentricity

6.5.5 Check Valves

Many tensioners apply check valves to avoid a reflow of the oil into the supply
system. Check valves typically have a spherical closure configuration in ad-
dition with a spring, which is sometimes omitted depending on the tensioner
position. Figure 6.55 illustrates a typical design.

Tensioner dynamics must be described very carefully, because it influences
the chain dynamics in a dominant way. From this we have to take into con-
sideration all motion elements, solid and fluid, the motion of the sphere, the
fluid motion through the annular areas produced by the sphere motion and
all fluid deviations. From many experiments with large and small check valve
models we take the following route: We model the most important loss repre-
sented by the annulus flow between the sphere and the housing in detail and
regard additional losses by a contraction coefficient αV related to the orifice
behaviour of the valve. This theoretical-empirical combination reduces data
processing but at the same time makes experiments necessary to measure the
coefficients αV .

Fig. 6.55: Check Valve Principle and Chracteristic

Going back to Figure 6.55 we write the momentum equation in the form
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mV v̇ = A (pA − pE) + ApV , (6.133)

with the fluid mass mV of the valve volume under consideration. The nonlinear
pressure loss pV depends on the flow velocity v and on the annular area given
by the sphere position. We apply for that the orifice equation

pV = −ρ

2
A2

α2
VA

2
V

|v| v = −ζV
ρ

2
|v| v, (6.134)

where A is the input cross section, and the area AV (xK) can be calculated
from Figure 6.55

AV (xK) = 2πxKrK
sin(γ)
cos(γ)

+ πx2
K

sin(γ)
cos2(γ)

(6.135)

With decreasing flow areas AV the characteristics become steeper and reach
in the limiting case the form of a bilateral constraint. On the other hand, these
characteristics can be approximated quite realistically by a complementarity.
See for both possibilities the chapters 4.2.2.1 and 4.2.2.2 on the pages 193 and
following.

Practical observations of tensioners indicate a pressure rise at the begin-
ning of the piston’s motion with a closing check valve. The sphere moves in an
oil environment with more or less large viscosity values retarding the closing
process. For considering this effect we have to leave the statical force balance,
and we have to introduce an individual degree of freedom for the sphere,
which moves under the influence of a pressure force on the base area AV B
of the sphere, of a pre-tensioned spring force FV F0 with spring stiffness cV F
and finally under the influence of damping forces for the closure and opening
motion (dzu with (ẋK < 0) for closure and dauf with (ẋK ≥ 0) for opening).
Without inertia forces we get

ẋK =
1

dauf,zu
(−cV FxK − FV F0 . + AV B (pA − pE)) (6.136)

With inertia forces we get

mK ẍK = −dauf,zuẋK − cV FxK − FV F0 + AV B (pA − pE) . (6.137)

If the sphere is going to hit a stop, we treat it as a plastic impact. The
corresponding point is detected by indicator point search. If the sphere is
located already at a stop, we allow only velocities or accelerations leading to
a separation. This avoids contact modeling for the price of some additional
decisions.

6.5.6 Tensioner System

A tensioner represents a combined mechanical-hydraulic system including me-
chanical and hydraulic components and their individual dynamics, which have
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to be integrated to come out with the complete tensioner system dynamics.
It should be kept in mind, that on a higher level the tensioner dynamics
as a whole has also to be included into the dynamics of the chain system
with its components chain, sprockets, guides and tensioners, which was pre-
sented in the preceding chapters. The methods applied to combine hydraulic
and mechanical components to systems are discussed in the original work of
Borchsenius [23], then taken and extended by Hösl [111] and Engelhardt [55]
and finally included in chapter 4 on page 187 and the following. We refer to
these contributions.

The composition of components follow the rule, that all state variables,
that means all position/orientation states and all velocity states, are collected
in the two vectors x and v. The equations of the vector x with nx variables
are described by a set of ordinary nonlinear differential equations of first order

ẋ = f (t,x,v) , (6.138)

which do not require any constraints. These relations comprise positions of
pistons or spheres, the velocities of elastically coupled components like piping
elements and pressures or expansion volumes of compressible nodes.

Velocity coordinates including unilateral or bilateral constraints are col-
lected in the vector v. The corresponding momentum equations write

Mv̇ =WPλP +WBλB +WV λV +WTλT +WAλA + h(t,v,x). (6.139)

The force vector h(t,v,x) includes all given forces, bearing forces and the like
as well as forces originating from contacts with sliding friction only. The λ-
vectors denote pressures and forces due to active set-valued force laws, which
are projected into the corresponding coordinate space by the matrices W.
These magnitudes comprise the following force elements and constraints:

• nP incompressible hydraulic nodes with the unilateral constraints of cav-
itation,

• nB incompressible hydraulic nodes represented by bilateral constraints,
• nV potential bilateral constraints of closed valves, nV a if active,
• nT frictional contacts with stick/slip,
• nA mechanical stops and components with unilateral properties.

Before combining all this to make a system we shall provide some for-
malisms to deal with the constraints. Let us first consider bilateral constraints.
They appear for the nB incompressible hydraulic nodes and the nV a closed
valves, for example the check valves, and they can formally be written

W T
B v +wB(t) = 0, WB ∈ IRnB ,nv , v ∈ IRnv , (6.140)

where the volume flows contained in the rows of the first term must be sup-
plemented by corresponding magnitudes in the second term, if we have in a
node also volume flow sources. The number nV a = nV a(t) of closed valves
depends of course on time, the appropriate constraints are
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W T
V v = 0, WV ∈ IRnV a,nv . (6.141)

The matrix WV contains, according to the constraints, the pressure-exposed
valve areas. Combining the above two relations yields

W T
Gv +wG(t) = 0, with WG = (WB WV ) ; wG(t) =

(
w(t)
0

)
. (6.142)

The number of the independent constraint equations corresponds to the rank
r of the matrix WG ∈ IR(nB+nV a),nv . Accordingly the number of independent
and minimum velocity degrees of freedom reduces to nmin = nv − r. In a
further step we express the velocuty v by the minimum velocities vm

v = v(vm, t) = Jvm + b(t). (6.143)

The matrix J can be evaluated by singular value decomposition, see for ex-
ample [23] and [283]. Combining the relations (6.139) and (6.143) and taking
into account JTWB = 0 and JTWVa = 0, which eliminates the bilateral
constraints, we finally get the form

JTM
(
Jv̇m + ḃ

)
= JTWPλP + JTWTλT + JTWAλA + JTh(t,v,x).

(6.144)

After we have eliminated the bilateral constraints we come to the unilat-
eral constraints. For this purpose we start with a reduced set of equations of
motion, which include only parts concerning unilateral constraints. They can
be written in the two forms

Mv̇ =WPλP +WTλT +WAλA + h(t,v,x),

v̇ =M−1(WPλP +WTλT +WAλA + h) (6.145)

In addition to these equations of motion we have some conditions for the
relative acceleration

g̈P = −WP v̇ from unilateral hydraulic nodes
g̈T = WT v̇ from potential sticking contacts
g̈A = WAv̇ from unilateral force laws

(6.146)

With respect to unilateral constraints we refer to the chapters 3.1.2 on
page 89 and 3.4 on page 131. Especially the tangential constraints make a
decomposition necessary, which splits the double corner law into four unilat-
eral primitives [87] or according to Figure 3.5 on page 95 into two unilateral
primitives [226].

The friction reserve defines within the friction cone the distance of the
friction forces to the cone surface, which represents the limiting static friction
force. For our case we have the relation for the friction reserve
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λT0,i =
(
λT01,i

λT02,i

)
=
(
F0,i

F0,i

)
−
(

1
−1

)
λT,i ≥ 0, with F0,i = FR0,i + Ap,i|∆pi|,

(6.147)

which is the admissible regime for sticking. We also split the relative tangential
acceleration by κi = (κi1 κi2)T . Together with the friction reserve we then
come out with the complementarity

−g̈T,i = κi1 − κi2 with λT0,i ≥ 0 ; κi ≥ 0 ; κTi λT0,i = 0, (6.148)

confirming that either the friction reserve is not zero for sticking, and then the
relative tangential acceleration is zero, or vice versa. The friction λT,i, needed
in the equations of motion, follows from the first row of eq. (6.147)

λT,i = F0,i − λT01,i, (6.149)

and together with the second row we get

λT02,i = 2F0,i − λT01,i. (6.150)

For all tangentially active contacts we then have the corresponding relations
in the form

λT =G0 − λT01, λT02 = 2G0 − λT01, κ1 = −g̈T + κ2.

λT =

λT,1...
λT,nT

 , G0 =

F0,1
...

F0,nT

 , λT01 =

λT01,1
...

λT01,nT

 ,

λT02 =

λT02,1
...

λT02,nT

 , g̈T =

g̈T,1...
g̈T,nT

 , κi =

κi,1...
κi,nT

 . (6.151)

Combining now the equations (6.145), (6.146) and (6.151) we generate a form
more suitable for a formulation of the final complementarity conditions [111]

κ1 =− g̈T + κ2 = −W T
T v̇ + κ2

=−W T
TM

−1WPλP +W T
TM

−1WTλT01 −W T
TM

−1WAλA−
−W T

TM
−1G0 −W T

TM
−1h+ κ2 (6.152)

The unilateral hydraulic nodes and the mechanical devices following uni-
lateral laws have the same structural equations comparable to the comple-
mentarities in normal direction of a contact. We get by applying the same
procedure as above the following sets:

g̈P ≥0 ; λP ≥ 0 ; g̈TPλP = 0; with

g̈P =−W T
P v̇

=−W T
P M

−1WPλP +W T
P M

−1WTλT01−
−W T

P M
−1WAλA −W T

P M
−1WTG0 −W T

P M
−1h (6.153)
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for incompressible nodes with cavitation, for example, and we get furtheron

g̈A ≥0 ; λA ≥ 0 ; g̈TAλA = 0; with

g̈A =W T
A v̇

= +W T
AM

−1WPλP −W T
AM

−1WTλT01+

+W T
AM

−1WAλA +W T
AM

−1WTG0 +W T
AM

−1h (6.154)

for mechanical stops or unilateral models of hydraulic components like check
valves.

Combining the non-smooth laws (6.148), (6.153), (6.154) with (6.151) and
(6.152) we finally arrive at the system equations represented by an overall
complementarity condition

g̈ =Aλ+ b g̈ ≥ 0 ; λ ≥ 0 ; g̈Tλ = 0; with the details

g̈P

κ1

λT02

g̈A︸ ︷︷ ︸
g̈

=

−W T
P M

−1WP W T
P M

−1WT 0 −W T
P M

−1WA

−W T
T M

−1WP W T
T M

−1WT E −W T
T M

−1WA

2GT
P −E 0 0

W T
A M

−1WP −W T
A M

−1WT 0 W T
A M

−1WA︸ ︷︷ ︸
A

λP

λT01

κ2

λA

+

︸ ︷︷ ︸
λ

+

−W T
P M

−1WTG0 −W T
P M

−1h
−W T

T M
−1G0 −W T

T M
−1h

2G0

W T
A M

−1WTG0 +W T
A M

−1h︸ ︷︷ ︸
b

g̈P

κ1

λT02

g̈A

≥0 ;

λP

λT01

κ2

λA

≥ 0 ;

g̈P

κ1

λT02

g̈A

T
λP

λT01

κ2

λA

= 0 (6.155)

These equations may be solved either by applying Lemke’s algorithm or more
conveniently by using the Augmented Lagrange Method including the prox-
functional approach.

6.5.7 Experiments and Verification

Some systematic tests have been performed by Engelhardt [55]. The basic
idea is simple, see Figure 6.56. The tensioner is excited by a cam disc with
a sinusoidal boundary, and to avoid detachment of the roller a spring presses
the piston rod against the cam. Details of this test set-up can be found in
[55]. The comparison of measurements and simulations was very succesful for
all cases considered. We give a few examples.
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piston rod

housing

spring

roller
cam disc (excessive sinus)

motor speed

Fig. 6.56: Basic Idea of the Tensioner Test Set-Up [55]

For one series of tests the piston forces of the tensioner were determined
for excitation frequencies from 20 Hz to 100 Hz and room temperature and for
70° C. The excitation was 0.2 mm. Figure 6.57 illustrates exemplaryly these
results. All other comparisons look equally well [55]. For another test series

measurements simulation

measurements simulation

time[s]

time[s]

fo
rc

e
[N

]
fo

rc
e

[N
]

100 Hz / 20° C100 Hz / 20° C

100 Hz / 70° C100 Hz / 70° C

Fig. 6.57: Comparison of Measurements and Simulation for an Industrial Ten-
sioner

also the pressures at the check valve were measured. For a frequency of 100 Hz
and room temperature we recognize that the check valve pressure decreases
only at two points for a very short time under the supply pressure thus opening
the sphere. This dynamics is represented correctly by the theoretical model
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(Figure 6.58). Again, various additional comparisons confirm the tensioner
model as a further basis of an overall roller chain dynamics analysis.

measurements measurements

simulation

simulation

simulation

simulation

time[s] time[s]

fo
rc

e
[N

]

fo
rc

e
[N

]

p
re

ss
u
re

[b
a

r]

p
re

ss
u
re

[b
a

r]

x(
sp

h
e

re
)
[-

]
x(

sp
h
e

re
)
[-

]

x(
sp

h
e

re
)
[-

]
x(

sp
h
e

re
)
[-

]

Fig. 6.58: Check Valve Behaviour
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Robotics

Wissenschaft, Philosophie, rationales Denken müssen
alle beim Alltagsverstand anfangen. (Karl Popper,
Objektive Erkenntnis, 1984)

Science, philosophy, rational thought, must all start
from common sense.

(Karl Popper, Objective Knowledge, 1972)

7.1 Introduction

In the last three decades robotics and walking made dramatic progresses, and
especially robots are in the meantime applied not only in industry and surgery,
but also in many service areas under water, on earth and in space, with in-
creasing significance. Robots and walking machines are typical products not
being realizable before the computer age with all its electronic, sensory and
drive train possibilities, necessary to realize such machines. Figure 7.1 gives a
characteristic example of robotics, namely robots from the KUKA-company,
in action and not in action. KUKA is one of the great producers of indus-
try robots. Figure 7.2 depicts a famous Japanese walking machine with an
advanced performance.

(courtesy KUKA)

Fig. 7.1: KUKA-Robot for Industrial Applications
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Robots and walking machines are excellent examples for modeling multi-
body systems with unilateral and bilateral constraints. As a matter of fact a
huge body of literature exists in that field, which we cannot regard in all de-
tails. A yearly overview is established during the IEEE Conferences on Robot-
ics and Automation (ICRA) and on Intelligent Robots and Systems (IROS),
where most of the leading persons and Institutions of the world can be met.
Some classical books on Robotics are for example [7], [37], [3], [275] and [208].
It should be noted, that most of the fundaments with respect to dynamics and
control of robots have been developed during the 80ties and the 90ties. Some
contributions with respect to technical walking are [221], [262], [162], and with

Fig. 7.2: HRP2 Walk-
ing Machine from
AIST, Japan

respect to biological walking we have for example
[164] and [274], where especially the collection of
walking human beings represented by a large foto-
series is a very famous one from the 19th century
[164]. The CISM course 467 [213] covers biological
and technological aspects.

From the standpoint of mechanics robots and
walking machines are multibody systems, in many
cases with a tree-like configuration, but sometimes
also with pantograph mechanisms or other more
complicated joint structures, which make modeling a
bit more complex. Links are rigid or elastic, the con-
sideration of elasticities depends, as always, on the
operational frequency range in comparison with the
individual link eigenfrequencies. Joint drives, exist-
ing in many different realizations, usually have to be
modeled with individual degrees of freedom and for
many cases also elastically. Contacts with the envi-
ronment generate unilateral constraints, which need
to be regarded. Also here various theories are possi-
ble, from unilateral rigid to discretized elastic con-
tacts. We shall give examples. As robots and walking
machines are not able to operate without control,
the questions of control design and stability have
to be answered. Stability problems are a dominant
issue for walking, especially for biped walking, and
inspite of some intelligent solutions far away from

being satifactorily solved. In the framework of this book we shall consider in
the following some typical path planning problems of robots, some assembly
processes with challenging contact problems of robot and environment, and
for walking we shall focus on the dynamics and control of a biped machine.
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7.2 Trajectory Planning

Trajectory planning for robots and walking machines belongs to the elemen-
tary issues, because the problem of going with the end effector or with a foot
from one location to another one is a very basic necessity. Manipulation and
walking will not be possible without a change of positions and orientations
within a given environment, be it that of a manufacturing process or be it a
walking environment of a machine. A lot of efforts have been put into obstacle
ovoidance [128] by appropriate path planning for classical robots. For walk-
ing online processes including vision systems and haptic interferences become
more and more important, and the (partly) artificial intelligence connected
with these new developments will certainly spill over also into robotics. We
shall give here some elementary introduction into the problem and present
practical examples.

In the eighties some remarkable methods came up, which all applied some
ideas from classical nonlinear dynamics to the path planning problem of ro-
bots. Within the framework of dynamics these approaches are still a very val-
ueable example for the solution of a complicated nonlinear dynamics problem,
that they are included here. The basic idea consists in the assumption, that
the manipulator end effector follows perfectly and in an ideal way a prescribed
trajectory, the path coordinate of which is used as the only degree of freedom
whatever the robot configuration might be. To realize that we must project
all kinematics and all kinetics onto this one degree of freedom resulting in a
structure of the equations of motion, which then allows an analytic-topological
solution for the time-optimum problem. These ideas were persued nearly at
the same time in the US and in Europe, see [21], [48], [109], [243], [204], [186].

7.2.1 A Few Fundaments

7.2.1.1 Kinematics

We consider any robot configuration and establish in a first step the kine-
matics of such a robot. Figure 7.3 gives an example [219], [152]. We refer to
chapter 2.2 on page 12, and there especially to the sections 2.2.2 to 2.2.5. It
should be noted that for the description of robots also Denavit-Hartenberg
coordinates are frequently applied. We did not discuss them in chapter 2.2,
but there is a lot of literature dealing with this type of coordinates [42], [3],
[208]. We describe the position and orientation of a robot link with respect to
its predecessor link (see for example Figures 2.15 on page 26 and 2.16 on page
27). In a similar way we describe also the motor position and orientation with
respect to some predecessor motor. For the relevant coordinates we introduce
the notation

q̄ =
(

q̄M
q̄L

)
∈ IRnf , with nf = nM + nL, (7.1)
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Fig. 7.3: Robot Example and Drive Models

where L stands for link and M for motor. The number of robot degrees of
freedom is nf composed by the link degrees of freedom nL and the motor
degrees of freedom nM . Expressing the position and orientation of a link i by
the center of mass vector ri regarding in addition the rotation matrix from
the inertial system to link i, we come out with (see Figure 7.4)

ri = ri−1+ri−1,i, ri−1,i = rSE,i−1+rES,i, Ai,0 = Ai,i−1Ai−1,0, (7.2)

where the vector rSE,i−1 connects the mass center Si−1 with the joint between
the bodies Bi−1 and Bi, and the vector rES,i connects the joint with the mass
center Si of link i. From the above relations we get the velocities and the
accelerations

ωi =ωi−1 + ωi−1,i,

ṙi =ṙi−1 + ω̃i−1rSE,i−1 + ω̃irES,i + ṙES,i,

ω̇i =ω̇i−1 + ω̃i−1ωi−1,i + ω̇i−1,i,

r̈i =r̈i−1 + ˙̃ωi−1rSE,i−1 + ω̃i−1ω̃i−1rSE,i−1+

+ ˙̃ωirES,i + ω̃iω̃irES,i + 2ω̃iṙES,i + r̈ES,i. (7.3)

For tree-like structures we are able to evaluate the kinematics of a link by
that of the predecessor link. For the end-effector with index G of a robot we
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get from that

rG =
nL∑
i=1

[ i∏
k=1

Ak,k−1

]
(rES,i + rSE,i), AG0 =

nL∏
i=1

Ai,i−1,

ṙG =
nL∑
i=1

[
ω̃i(rES,i + rSE,i) + ṙES,i

]
, ωG =

nL∏
i=1

ωi,i−1. (7.4)

These equations describe the so-called forward kinematics representing the
end-effector in terms of link and joint coordinates. Going the other way round,
namely searching for a given end effector position and orientation the joint
and link coordinates, is called the kinematical inverse problem, which for
quite a lot of robot configurations can be solved analytically [3], [37]. A very
substantial presentation of inverse dynamics is given in [3].
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ixiz
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ri

rSE,(i-1)
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(i-1)x
(i-1)y

(i-1)z

E

S(i-1)
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Fig. 7.4: Robot Relative Kinematics

The description of a manipulator in Cartesian space depends of course
on the generalized coordinates. A transformation in both directions is nec-
essary due to the fact, that a robot works within a real world environment
being described in Cartesian coordinates, but possesses his own dynamics
more conveniently described in joint space coordinates. Therefore we need
the transformations

ṙ =
∂ṙ
∂ ˙̄q

˙̄q = JT ˙̄q, ω =
∂ω

∂ ˙̄q
˙̄q = JR ˙̄q, (7.5)

where JT ∈ IR3,nf and JR ∈ IR3,nf are the Jacobians of translation and rota-
tion, respectively. They project the motion into the not constrained directions,
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and they will be determined in body-fixed coordinates. They can be calcu-
lated recursively, see chapter 2.2.4 on page 25. These considerations yield the
following recursions

• with respect to relative translational displacements:

JT,i =Ai,i−1JT,i−1 − [(Ai,i−1)(i−1)r̃SE,i−1 + (i)r̃SE,i]JR,i +
∂(i)r̃SE,i

∂ ˙̄q
,

JR,i =Ai,i−1JR,i−1, (7.6)

• with respect to relative rotational displacements:

JT,i =Ai,i−1(JT,i−1 − (i−1)r̃SE,i−1JR,i−1) +
∂

∂ ˙̄q
((i)ω̃i(i)r̃SE,i),

JR,i =Ai,i−1JR,i−1 +
∂(i)ωi−1,i

∂ ˙̄q
. (7.7)

The Jacobians for the end effector are of special importance, because all ma-
nipulating processes like assembly processes or contact sequences may conve-
niently be written in end effector coordinates. From the equations above we
get

JTG =
∂(G)ṙG
∂ ˙̄q

= −
nL∑
i=1

[ nL∏
k=1

Ak,k−1

]
((i)r̃ES,i + (i)r̃SE,i)

∂(i)ωi

∂ ˙̄q
∈ IR3×nf ,

JRG =
∂(G)ωG

∂ ˙̄q
= +

nL∑
i=1

[ nL∏
k=1

Ak,k−1

]∂(i)ωi−1,i

∂ ˙̄q
∈ IR3×nf . (7.8)

The Jacobians JTG and JTG project the motion in Cartesian space into the
space of the generalized coordinates, equation (7.1), which is not the joint
space. To go from the generalized coordinate space into the joint space, we
need additionally the transformations

JL =
[(∂(G)ṙG

∂ ˙̄qL

)T
,
(∂(G)ωG

∂ ˙̄qL

)T ]T ∈ IR6×nL . (7.9)

For robots with six joint degrees of freedom the matrix JL is invertible, in
all cases with nL �= 6 we have to solve a classical optimization problem [208],
which in the case nL < 6 adapts the final effector position and orientation
to the given position and orientation as perfect as possible, and which in the
case nL > 6 searches the final position and orientation with an additional op-
timization criterion. In both cases this can be achieved by classical numerical
algorithms.

7.2.1.2 Dynamics

We have many possibilities to derive the equations of motion, for example
by applying the principles of dynamics or by using Lagrange’s equations. As
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Lagrange’s equations are very popular in robotics, we shall focus on the pro-
jection method using the principle of d’Alembert/Lagrange (equation (3.38)
on page 102). Applying that to our robot case and also looking at the equa-
tions (3.99) on page 116 and the relations (3.106) on page 118 we derive for
our serial robot the following sets:

p∑
i=1

{(
Bi

(∂ṙi

∂ ˙̄q
)

Bi
(∂ωi

∂ ˙̄q
)

)T (
Bi

(mir̈i + miω̃iṙi − fai)
Bi

(ISiω̇i + ω̃iISiωi − τai)

)}
= 0. (7.10)

The Jacobians are defined by equation (7.5), and p is the number of links
(bodies), mi the mass of the i-th body, ISi the inertia tensor with respect to
the center of mass, and fai, τai are active forces and torques. All evaluations
take place in body-fixed coordinates Bi, which gives a constant inertia tensor.
Following the steps given with the derivation of the equations (3.55) from the
equations (3.38) we arrive at the equations of motion expressed by generalized
coordinates

M(q̄)¨̄q + f(q̄, ˙̄q) = τ̄ + Bτ + λ̄ (7.11)

with the following magnitudes: M(q̄) ∈ IRnf ,nf the symmetric mass matrix,
f(q̄, ˙̄q) the vector of all gyroscopic and gravitational forces, τ̄ the forces com-
ing from the motor and gear models, Bτ the control forces and torques with
the control input matrix B, λ the contact forces with the environment.

To provide the equations of motion (7.11) with the forces and torques on
the right hand side we consider in the following the motor and gear forces,
the control forces and the contact forces (and/or torques). For motors and
gears we shall regard rigid and elastic models. In the first case the drive has
no additional degree of freedom, but is connected to the link by a simple
transmission ratio acting as an additional condition between drive and link.
In the second case elesticity requires an additional degree of freedom (see
Figure 7.3) connected to the link by a spring/damper force element. The
corresponding torque writes

τL,j = cj

(
q̄M,j

iG,j
− q̄L,j

)
+ dj

( ˙̄qM,j

iG,j
− ˙̄qL,j

)
, (7.12)

Where q̄M,j is the additional degree of freedom of the j-th joint drive, iG,j is
the gear transmission ratio, q̄L,j is the j-th link degree of freedom, and cj, dj
are the spring and damper coefficients. The torque acting on the motor shaft
is the drive torque τj reduced by the spring/damper torque τL,j

iG,j
and a friction

torque τR,j . We get

τM,j = τj −
τL,j
iG,j
− τR,j (7.13)

If we consider a rigid motor/gear model, the motion of the motor shaft is then
connected to the link degree of freedom by the transmission ratio. Therefore
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the torques at the motor and the shaft moment of inertia are also transmitted
to the link by the transmission ratio. We get

IML,j = i2G,jIM,j , τL,j = iG,j(τj−τR,j), (j = nM +1, · · · , nL). (7.14)

Inspite of the fact, that these formulas are well known, a remark may be al-
lowed with respect to the nonlinear dynamic behaviour of robots. The trans-
mission ratios of the joints are sometimes so large, that the moments of inertia
of the motor shafts and not those of the links dominate the dynamics leading
to a more or less linear system behaviour, which allows a simple linear and
decentralized control.

The friction in the joints depends on the type of the drive and has to
be evaluated for each robot configuration individually. We can only dicuss a
typical example, which has been treated theoretically and experimentally in
[107]. Figure 7.5 depicts such a typical friction characteristic, which can be

0

-0.025

0.025

τR0

τR1 = ∆τR

∆ ˙̄qM

τ R
[N

m
]

−50Π +50Π0

˙̄qM [rad/s]

Fig. 7.5: Measured Friction Characteristic of a Robot [107]

easily approximated by the relation

τR,j = −τR0,jsgn( ˙̄qM,j)− τR1,j ˙̄qM,j, (7.15)

where τR0,j is the amount of the constant dry fiction and τR1,j the slope of
the friction characteristic for the motor shaft. The knowledge of the friction
behaviour is also necessary for a compensation by control.

From the equations (7.12) to (7.15) we can then evaluate the torque vector
τ̄ and the control input matrix B. In a first step we get

τ̄ =
[
(−τL,1

iG,1
− τR,1), · · · , (−

τL,nM

iG,nM

− τR,nM ),
...

τL,1, · · · , τL,nM ,−τR,nM+1 , · · · ,−τR,nL

]T
(7.16)

For an elastic drive model the drive torque τj influences directly the drive
coordinate q̄M,j , whereas for a rigid drive model the torque works on the link
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coordinates by a transmission matrix IG. It consists of the matrix IG,M ∈
IRnM ,nM containing the gear ratios and of the matrix IG,S ∈ IRnL−nM ,nL−nM

containing the rigid joint influence. Together it writes

IG =
(

IG,M 0
0 IG,S

)
∈ IRnL,nL (7.17)

From this we get the control input matrix B in the form

B =

EnM 0
0 0
0 IG,S

 ∈ IRnf ,nL (7.18)

Many commercial robot control systems apply single joint control subsystems,
which work in most cases very well due to the above presented arguments.
These controllers usually are simple PD-controllers of the form

τ = −Kp(BT q̄− IGq̄S)−Kd(BT ˙̄q− IG ˙̄qS), (7.19)

the diagonal matrices Kp and Kd contain as PD-parts the control stiffness and
damping parameters as an input, and the q̄S and ˙̄qS are the link coordinates
and velocities as nominal or desired magnitudes. Usually the matrices Kp and
Kd can be chosen externally, but nothing else. We come back to that with
respect to assembly processes.

Before the decision of how to model contacts at the end effector we have
to take into consideration given forces and torques at the gripper, which in
most cases of practical relevancy are prescribed by the manipulation process,
whatsoever. At this point we must merge the robot and the process dynamics.
Anyway, some given forces and torques at the gripper fG ∈ IR6 has to be
transformed into the space of the generalized coordinates resulting in the λ̄-
value of equation (7.11). It is

λ̄ =
[
(
∂ṙG
∂ ˙̄q

)T (
∂ωG
∂ ˙̄q

)T
]
fG =

[
JTTGJTRG

]
fG. (7.20)

With these relations all equations are available for describing robot dynamics.
We shall use the above forms for the dynamics of assembly processes [219] and
in a slightly modified form for path planning considerations [117], [223].

7.2.1.3 Solution Variants

We start again with the equations of motion (7.10) and write them in a bit
more compact form

QT

[(
M∗ 0
0 I

)
·
(

r̈
ω̇

)
+
(

M∗ω̃ṙ
ω̃Iω

)
−
(

fa
τa

)]
= 0, (7.21)



420 7 Robotics

where the abbreviations are obvious by comparing the equations (7.21) and
(7.10). We have generally several possibilities to use these equations with re-
spect to certain tasks of robot performance. Firstly, we can solve the equations
of motion directly, which means, given the forces and the torques fa, τa, solve
the equations for getting the motion of the robot. Secondly, we might consider
the problem inverse to the first one, namely given the motion, that is the mo-
tion kinematics, determine the forces and torques necessary to generate this
given motion. And thirdly, but not finally, we want to solve the problem of
optimizing a trajectory from one point to another one with regard to certain
criteria like time, energy or joint torques under side conditions like the robot
configuration, its joint motors, its torque capabilities, collision avoidance and
others. We shall consider the last problem in a special section with special
assumptions.

The first task for given torques of the joint reduces to an integration of
the relation (7.21), which due to the properties of the magnitudes involved is
a simple initial value problem, always solvable unambiguously. We remember
that (see equation 7.5)

˙̄q =
(

ṙ
ω

)
∈ IRnf ,

M =QT

(
M∗ 0
0 I

)
Q ∈ IRnf ,nf ∧ (q̄TMq̄ > 0), (7.22)

which confirms the above statement. Many standard algorithms exist to solve
this problem [283].

The inverse problem for given kinematics of the robot but unknown forces
or torques in the joints is a much more complicated problem, at least for
general cases. But it is a very important case, because all manufacturing
processes require a certain trajectory behaviour for the realization of a process,
and this behaviour has to be performed by the robot, which means solving an
inverse kinematical and dynamical problem. In these cases we have a certain
amount of unknown forces and torques fu, τu and a certain amount of known
forces and torques fk, τk, so that(

fa
τa

)
=
(

fu
τu

)
+
(

fk
τk

)
, (7.23)

and equation (7.21) can be split up accordingly

QT

(
fu
τu

)
= QT

[(
M∗ 0
0 I

)
·
(

r̈
ω̇

)
+
(

M∗ω̃ṙ
ω̃Iω

)
−
(

fk
τk

)]
. (7.24)

In many cases and especially for robots with a serial structure each joint corre-
sponds to a degree of freedom, and threrefore the number of joints corresponds
exactly to the number of unknown forces and torques. Then the solution of
equation (7.24) is straightforward and for given robot motion no problem.
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But if these two numbers do not agree, for underactuated robots for exam-
ple or for the case that equation (7.23) does not apply, which is possible, then
the inverse problem should be solved by adding an optimization to the whole
equation structure. Having less unkown forces and torques than equations,
we may require that the solution is as near as possible to the desired motion
resulting in a classical optimization with equality and inequality side condi-
tions, or having more unknown forces and torques as covered by the equations
of motion opens the opportunity to apply additional criteria which might be
of interest for the robot motion under consideration. Also this gives a classi-
cal optimization, in that case with several possible solutions. We shall not go
deeper into these very interesting problems (see for example [3], [208]), but
concentrate on a specific solution of the path planning problem [117], [223].

7.2.2 Parametric Path Planning

7.2.2.1 Models

With respect to a parametric representation of the equations of motion we
refer to chapter 2.2.6 on the pages 31, and for robots we refer to [3] and [208].
With respect to the equations of motion we may start with the relations (7.21),
or as an alternative we may use Lagrange’s equations (3.76) on page 109. We
shall go the last way utilizing the kinetic energy

T =
1
2

˙̄qT
[
QT

(
M∗ 0
0 I

)
·Q
]

˙̄q =
1
2

˙̄qTM ˙̄q, (7.25)

and come out with another form of the equations of motion, typical also for
robots (see [93], [117], [223], [208], [205], [186]):∑
i

Mij q̈j +
∑
i

∑
k

[
j k
i

]
q̇iq̇k + Ci = Ti, (i, j, k = 1, 2, · · · , f), (7.26)

with the Christoffel symbols [283][
j k
i

]
=

1
2

(
∂Mik

∂qj
+

∂Mij

∂qk
− ∂Mjk

∂qi

)
, (7.27)

which represent a tensor-like structure without having the transformation
properties of a tensor. The masses Mij are the components of the symmetric
mass matrix M ∈ IRf,f , the qj are components of the vector q ∈ IRf , the
terms Ci include all external forces or torques and the Ti all joint forces or
torques.

The equations of motion (7.26) include the generalized acceleration in
linear form and the generalized velocities in a quadratic form. Considering
the classical methods of nonlinear, smooth dynamics (see for example [148],
[27], [125], [187]) we may express these kinematical magnitudes by a parameter
s in the following way:
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q̇j = q′j ṡ, q̈j = q′j s̈ + q′′j ṡ
2, with q̇j =

dqj
dt

, q′j =
dqj
ds

, ṡ =
ds

dt
. (7.28)

This form of parameterization can easily be interpreted as the path coordi-
nate of a prescribed trajectory, which, together with the, certainly idealized,
assumption, that the end effector of the robot should track the given path in
an ideal and perfect manner, results in a system with one degree of freedom
only, namly this path coordinate, independent of the number of joints and the
structure of the robot [117], [186]. Figure 7.6 illustrates the situation. A given

Fig. 7.6: Prescribed Trajectory for a Robot

path starts at s = 0 and runs with the path coordinate s to the end point
s = sF . The joint coordinates qj of the robot have to be adapted to the path
in a way, so that the end effector coordinate system is exactly located on the
trajectory. Applying now the formulas (7.28) to the equations of motion we
come out with

Ti =Ai(s)(ṡ2)′ + Bi(s)(ṡ2) + Ci(s), (i = 1, 2, · · · , f)

Ai(s) =
1
2

∑
j

Mijq
′
j , Bi(s) =

∑
j

Mijq
′′
j +
∑
j

∑
k

[
j k
i

]
qjqk,

Ci(s) =
∂V

∂qi
, (7.29)
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where we have introduced a gravitational potential V, which might of course
be extended to additional potential forces. Equation (7.29) represents a lin-
ear first-order differential equation, linear with respect to (ṡ2), but highly
nonlinear considering the coefficients Ai, Bi, Ci, which depend on the path
coordinate s. It should be noted, that beyond the assumption of an ideally
tracked path no further neglections have been made. Also, the structure of the
equation (7.29) would be preserved if we add any addional forces or torques
depending only on s.

A formal integration of equation 7.29 yields

ṡ2(s) =

ṡ2(s0) +

s∫
s0

exp

 v∫
s0

(
Bi
Ai

)du

 · (Ti − Ci
Ai

)dv

 exp

 s∫
s0

(
Bi
Ai

)du

 .

(7.30)

For achieving optimal solutions for the path planning problem we have more
elegant ways than using the relation (7.30), though it might be helpful for
special cases. We represent the given path by a vector r originating from an
inertial system and ending in some path point (Figure 7.6). Such a trajectory
point depends on the joint coordinates qT = (q1, q2, · · · , qf ) or r = r(q), so
that the derivatives with respect to s result in

q′ =


(
∂r
∂q

)T [(
∂r
∂q

)(
∂r
∂q

)T]−1
 · r′

q′′ =


(
∂r
∂q

)T [(
∂r
∂q

)(
∂r
∂q

)T]−1
 ·
[
r′′ −

(
∂r
∂q

)
q′
]
. (7.31)

The above equations anticipate the fact that in the following we consider
motion along the trajectory only and do not take into account the attitude
behaviour of the hand, for example. The latter case would demand inclusion
of directional terms into equation(7.31). Considering trajectory motion alone,
the first equation of (7.31) already includes an adjustment in a least-squares
sense for the case of more joints than necessary for a three-dimensional path,
resulting always in several solutions which might be selected according to some
criteria.

7.2.2.2 Time-Minimum Trajectories

The general optimization problem for a manipulator following a prescribed
path is the following: evaluate ṡ(t) with s(0) = 0, s(tF ) = sF , ṡ(0) = 0, ṡ(tF ) =
0 in such a way that the performance criterion

G =

tF∫
0

g[s, ṡ2, (ṡ2)′]dt ⇒ extr.! (7.32)
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has an extremum. At the end of the path the time t achieves its final value
tF . If we minimize only the time, we have g=1 and the criterion

G =

tF∫
0

dt =

sF∫
0

ds

|ṡ| ⇒ min! (7.33)

The solution of this problem is of course constrained. The most important
constraints are the following:

• The joint torques or forces are limited, which means

Ti,min ≤ [Ai(s)(ṡ2)′ + Bi(s)(ṡ2) + Ci(s)] ≤ Ti,max. (7.34)

For many applications we shall assume Ti,min = −Ti,max.

• The joint angular or translational velocities may be limited due to some
maximum speeds of the drive train components,

q̇i,min ≤ [q′iṡ] ≤ q̇i,max. (7.35)

Again, we shall assume q̇i,min = −q̇i,max.

• The path velocity itself might become constrained by some manufacturing
process

−vmax ≤ |r′|ṡ ≤ +vmax, (7.36)

with the vector r from Figure 7.6.

The relations (7.35) and (7.36) define together a maximum velocity ṡG along
the path which must not be exceeded:

0 ≤ (ṡ2) ≤ (ṡ2)G, with (ṡ2)G = min
[
(
q̇i,max
q′i

)2, (
vmax
|r′| )2

]
. (7.37)

The solution of the time-optimal problem given with the relations (7.33) to
(7.37) may be constructed in the following manner: We look at the equations
(7.34) for the limiting cases (Ti,min, Ti,max) stating, that minimum time can
only be achieved by applying in a maximum number of joints the limiting
torques or forces. In operating at the power limits we get the two equations

(ṡ2)′max =
−Bi(s)(ṡ2)− Ci(s) + Ti,max

Ai(s)
,

(ṡ2)′min =
−Bi(s)(ṡ2)− Ci(s)− Ti,min

Ai(s)
, (i = 1, 2, · · · , f), (7.38)

which define two straight lines in the [(ṡ2)′, (ṡ2)]-plane. The altogether (2f)
straight lines form a polygon confined at the left side by the axis (ṡ2) = 0
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and at the right side by the (Ti,min, Ti,max)-straight-lines or by the constraint
(ṡ2)G given by equation (7.37). It should be noted that Ai(s) might become
zero generating then a vertical line in the [(ṡ2)′, (ṡ2)]-plane.

Without violating the constraints, which may by extended without much
problems, motion can take place only within or on the polygons as shown
in Figure 7.7, where the situation for one path point s is illustrated. These

Fig. 7.7: Polygons of Allowed Motion: s = const., a)ṡ2
max ≤

ṡ2
G, b)ṡ2

max = ṡ2
G

graphs contain the following informations:
Firstly, we immediately obtain the maximum possible velocity ṡ2

max for this
path point. This maximum velocity may either result from an intersection of
the torque-straight-lines as in the left side of Figure 7.7, or it might be a
constraint velocity ṡ2

G in the form of (also) a vertical line, as shown by the
right part of Figure 7.7.

Secondly, for every path velocity ṡ2 smaller than the maximum velocity
ṡ2
maxwe can choose two values of the derivative (ṡ2)′ from the boundaries of

the polygon, which gives us the maximum and minimum possible acceleration,
possibly also deceleration, at the path point s under consideration. By means
of these extremum values ((ṡ2)′min, (ṡ

2)′max) we are able to construct, in the
phase plane (ṡ, s), the curves of extreme acceleration or deceleration. We call
these curves extremals.
Figure 7.8 illustrates the properties of these extremals for a simple example

with constraints for the joint torques only but not with constraints for the ve-
locities. Combining all polygons for all path points s we obtain a constrained
phase space bounded by ruled surfaces due to the straight line characteristics
of the polygons. These polygons appear as plain cuts perpendicular to the
s-axis. The phase plane ṡ(s) on the other hand is a vertical plane projection
of the constraint phase space on a plane parallel to the (ṡ2 − s)-plane with



426 7 Robotics

Fig. 7.8: Example Two-Link Robot on a Circular Path, (top) Constrained
Phase Space, (middle) Phase Plane with Extremal Field and Boundary of
Maximum Velocity
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stretched or compressed coordinates due to ṡ =
√
ṡ2. At every path point the

minimum time solution requires maximum possible acceleration or decelera-
tion. From this we should move with our solution along the boundary of the
constrained phase space.

If we move along the constraint space boundary, we must have sometimes
the possibility to go from one side of the ”hill” to the other one; for example,
tracing our solution on the side with (ṡ2)′max we have to look for points,
where a transition to the side with (ṡ2)′min will be possible. This maneuver
is only possible at saddle points, for example the point b○ in Figure 7.8. A
saddle exhibits interesting properties. It is generated by equation (7.38) at the
points with Aj(sS) = 0, where we consequently get a vetical line bounding
the polygon and defining the value of ṡ2 = ṡ2

max (point b○ of Figure 7.8).
The projection of a saddle onto the (ṡ2 − s)-plane and from there onto the
(ṡ− s)-plane produces a ”critical point”, the properties of which follow from
the saddle properties. As the minimum-time solution has to pass the saddle,
it also has to pass the assigned critical point as well. This necessary and basic
requirement agrees with the intuitive idea, that the minimum-time solution
must be as near as possible to the boundary curve of the (ṡ− s)-plane.

A special form of the saddle may appear for Aj(s) = 0 in combination
with the result that additionally (ṡ2)′max − (ṡ2)′min = 0. For this case the
vertical boundary line of Figure 7.8b at the point ṡ2 = ṡ2

max degenerates to a
point, which then marks the change from a○ to c○ in Figure 7.8. We do not
have a jump of the derivative of ṡ2

max at that point but a smooth change from
negative to positive slopes. In the constraint phase space picture, the saddle
degenerates to a deepening of the ridge, something like a kind of a notch.
Another special point might appear during the constraint space construction,
where all slopes of the velocity curves and the extremal curves coincide. But
this type of points does not belong to the time-optimal solution.

The geometrical interpretation of the parameterized equations of motion
(7.26) gives us some further insights into the dynamics structure of such sys-
tems. The (ṡ2)′max extremals at the positive (ṡ2)′ side of the ”hill” approach
their appropriate ridge from the left and disappear. We shall call a ridge with
this property a trajectory-sink. Ridges of this type possess usually a descend-
ing character. On the other hand, the (ṡ2)′min extremals at the negative (ṡ2)′

side of the ”hill” originate from those parts of the ridge with a more or less as-
cending character. We call these arcs trajectory-sources. More generally, each
part of the boundary curve with a sink character may be a sink for (ṡ2)′max ex-
tremals as well as for (ṡ2)′min extremals. The same is true for the source parts
of the ṡmax curve: They may be the origin of both types of extremals. This
classification can easily be verified by considering the derivative (ṡ2)′B,max of
the boundary curve itself and the derivatives (ṡ2)′E of the extremals directly
at this boundary curve. The ṡmax(s)-curve possesses sink character if its own
derivative (ṡ2)′B,max is smaller than the minimum slopes (ṡ2)′E,min of the ex-
tremals disappearing in it. It is a source if its own derivative (ṡ2)′B,max is
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Fig. 7.9: Properties of the Boundary Curve: − − − − − Trajectory Source
(eqn.()), −·−·−·− Trajectory Sink (eqn.()), ——— Allowed for Trajectories
(eqn.())

larger than the maximum slopes (ṡ2)′E,max of the extremals originating from
it. From this we find the following properties of the boundary curve ṡ = ṡmax:

• trajectory sink parts with the property

(ṡ2)′max < [(ṡ2)′E,min](ṡ2=ṡ2max), (7.39)

• trajectory source parts with the property

(ṡ2)′max > [(ṡ2)′E,max](ṡ2=ṡ2max), (7.40)

• arcs being allowed for trajectories due to special constraints (equations
(7.37) and Figure 7.8b ); here we have

[(ṡ2)′E,min](ṡ2=ṡ2max) < (ṡ2)′B,max < [(ṡ2)′E,max](ṡ2=ṡ2max) (7.41)

Each boundary curve can be partitioned into these three regimes. Figure 7.9
depicts an example of a three-link robot tracking a straight line.

With these preparations we are able to construct the minimum-time solu-
tion applying the procedure below (for illustration see also Figure 7.10):

• Start at s = 0 and ṡ = 0, evaluate an extremal with maximum acceleration,
follow it to the end of the trajectory or to the point where it disappears
at a trajectory sink (Figure 7.10a).

• Start at s = sF and ṡ = 0 and track an extremal with maximum decelera-
tion until it meets the acceleration extremal starting from s = 0 or until it
intersects its originating point at the ṡmax-curve. If both extremals inter-
sect, the minimum-time solution is obtained; otherwise continue (Figure
7.10a).
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• If the acceleration and deceleration extremals both meet the boundary
curve ṡ = ṡmax, there must be at least one critical point (saddle point)
between these two boundary intersections, because one of them is neces-
sarily a sink, the other one a source, see the arguments above. Search for
the critical point starting from the first intersection at a trajectory sink.

• From the first critical point s = sc(1) trace backward an extremal with
minimum slope until it intersects with the acceleration extremal. This
intersection must exist, because there is no further critical point between
s = 0 and the first one at s = sc(1); or more generally, between s = sc(j)
and s = sc(j−1).

• Trace forward an extremal with maximum slope until it meets the decel-
eration extremal starting at s = sF or until it vanishes at a boundary
point with sink character.In the first case the calculation is finished, in the
second case at least one more critical point must exist, requiring a new
start at the third step.

Figure 7.10(b) gives an example of the last two steps, Figure 7.10(c)
shows the minimum-time solution, and 7.10(d) depicts the corresponding joint
torques.

7.2.2.3 Dynamic Programming Approach

The geometrical procedure discussed so far can only be applied to time-
minimum trajectories, but not to other criteria like energy, joint torqes or
the like. If we consider for example time and torques, we would need a per-
formance criterion

g = w1 + w2

∑
i

ci[Ai(s)(ṡ2)′ + Bi(s)(ṡ2) + Ci(s)]2, (7.42)

which would be one possible form. The solution of such problems requires a
completely different approach, which may be taken from classical optimization
theory, for example [179], [16]. We shall shortly discuss the application of
Bellman’s dynamic programming theory [17], which is based on the well known
principle of optimality. The practical problem with respect to the application
of this method consists, still even nowadays, in large computing time and
large computer storage, at least for problems of higher dimensions. Due to
our projection of the robot motion onto the path coordinate resulting in one
degree of freedom only, the equations of motion allow to establish a dynamic
programming approach with dimension one only, which does not involve the
computer problems as mentioned above. As the Bellman method presupposes
a formulation of the optimization problem as a stage process, we first partition
the trajectory into (n+1) discrete points, where the optimal solution will be
evaluated:

ṡ2
i = ṡ2(si), (ṡ2

i )
′ =

ṡ2
i − ṡ2

i−1

d
, si = id =

i

n
sF d =

sF
n

(7.43)
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(a)

(b)

(c)

(d)

Fig. 7.10: Construction of the Time-Optimal Solution for the Case of Figure
7.9
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The performance criterion equation (7.32) can easily be subdivided into stages
by forming the sum

G = Gn =
n∑
j=1

tj∫
tj−1

g[s, ṡ2, (ṡ2)′]dt, (7.44)

which gives us with dt = ds/|ṡ| the performance criterion at stage i

Gi =Gi+1 + ∆Gi

Gi+1 =
n∑

j=i+1

sj∫
sj−1

g[s, ṡ2, (ṡ2)′]
ds

|ṡ| , ∆Gi =

si+1∫
si

g[s, ṡ2, (ṡ2)′]
ds

|ṡ| . (7.45)

Figure 7.11 illustrates such a stage process [17]. The famous Bellman principle
of optimality says [16]: ”An optimal policy has the property, that whatever the
initial state and initial decision are, the remaining decisions must constitute

Fig. 7.11: Dynamic Programming Stage Process [17]

an optimal policy with regard to the state resulting from the first decision.”
Applying this principle to our problem allows us to construct an optimal
solution in the following way (Figure 7.11).

We start at the end of the path at s = sF = sn and proceed backwards
to s = s0 = 0 step by step. As a first step we discretize the velocity at
every path point si into (m+1) values ṡ2

j(si) with j ∈ (1,m + 1) and 0 ≤
ṡ2
j(si) ≤ ṡ2

max(si). This method guarantees that the motion remains in the
constrained regime defined by the polygons of Figure 7.7. According to the
velocity discretization, we define Gj → Gj(si) = Gj [si, ṡ2

j , (ṡ
2
j)

′]. We start at
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s = sn−1 and establish a first optimal table, which contains the magnitudes
sn−1, ṡ2

j(sn−1), (ṡ2
j)

′(sn−1), Gj(sn−1) taking into account that Gj(sn) = 0
and ṡ2

j (sn) = 0. Additional care has to be taken, that the derivatives do not
violate the boundary conditions (7.41) of the polygons, see also the Figures
7.7 and 7.11.

Suppose we know already the optimal table at point s = sj+1 (Figure
7.11). Within the allowed regimes we then establish the table at the point sj
for all possible ṡ2

i , (ṡ
2
i )

′. For each point ṡ2
j(si) with 0 < ṡ2

j (si) < ṡ2
max(si) we

retain only one value (ṡ2
opt)

′, which gives us an extremum value for Gj(si)
according to equation (7.45). Additionally we have to store the value of
the forward velocity point ṡ2

k(si+1), which produces the optimal (ṡ2
opt)′ and

thus the Gj(si). We complete the table by performing the above process for
all allowed ṡ2

j(si). The final table then contains the following magnitudes:
si, ṡ2

j(si), (ṡ2
j)

′(si), Gj(si), kj(si+1). The last magnitude defines the opti-
mal connection between ṡ2

j(si) and ṡ2
k(si+1). The index j ∈ (1, J) corresponds

to the number of dicrete points in the regime 0 < ṡ2
j(si) < ṡ2

max(si).
Having reached the second point s = s1 we come to s = s0 by adding to

the performance criterion G0 the last ∆G in such a way, that at the final point
of this process or the first point of the trajectory the condition ṡ2(s0) = 0 is
assured. It should be noted, that the described process can be evaluated the
same manner if we prescibe at the first and/or the final point some velocity
ṡ2 �= 0. The last table at s = s0 contains the values of the complete perfor-
mance criterion summed up over all stages. We choose the extremum value
of G and follow then the way back from s = s0 to s = sF = sn through all
optimal tables with the help of the optimal index list kj(si+1). The result is
the optimal trajectory.

The Bellman method represents a very powerful tool insofar as it offers
the possibility to include any boundary conditions and any constraints in a
very easy way. A further important advantage of the concept consists in the
fact that the differential equations of motion enters into the process only by
using the boundaries of the polygons (Figure 7.7), thus assuring that torque
and velocity constraints are at no point violated. After the evaluation of the
optimal tables the equations of motion are used to calculate forces and torques.

7.2.2.4 Results

The above methods have been applied to many examples of practical rele-
vancy. The results confirm the theory and the uniqueness of the solutions,
even for complicated trajectory configurations. For some cases laboratory ex-
periments have been performed to verify the simulations. We give two exam-
ples.

Figure 7.12 shows a double-parabola trajectory performed by a robot with
revolute joints. The parabola lies in a plane parallel to the y-z-plane, the
manipulator possesses one vertical and two horizontal axes. The extremal
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Fig. 7.12: Simulation of a Double Parabola Trajectory for Three-Link Robot,
(from top to bottom: Trajectory, Extremal Field, Time-Minimum Solution,
Joint Torques)
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field is rather complicated with two critical points indicating two saddles of the
phase space configuration. A third special point can be seen at s ≈ 0.45, which
is a point where the derivatives of the ṡmax-curve and the extremals coincide.
In most cases such points are not part of a time-optimal solution, in our special
case they are. The example considered includes only torque constraints but
no velocity constraints. The solution tries to utilize the maximum available
torques as frequently as possible. Jumps indicate a change of the ”hill”-sides
(see arguments above).

Figure 7.13 shows an example, where the Bellman solution is compared
with laboratory experiments. A robot with three revolute joints tracks a cir-
cular path. Two cases are considered, namely criteria with time only and with
time and torques in addition. For an optimization applying a time and torque
criterion the torque jumps disappear, and the curves become considerably
smoother, which we could have expected of course. The high frequency oscil-
lations come from the measurement system. Simulations and measurements
coincide quite nicely [117].

7.2.3 Forces at the Gripper

So far we have considered free trajectories without any contact of the ma-
nipulator with the environment. For many applications we have to consider
trajectories with contact to the environment and then usually with forces and
torques at the end effector. Adding such forces and torques to the equations
of motion (7.29) of chapter 7.2.2 means, that we have to include in the force
term Ci(s) the forces and the torques at the gripper. It means furtheron and
with respect to the mountain-like phase space, Figure 7.8 for example, that
the ruled surfaces of these phase space mountains are shifted but without
changing their slopes. As a result we obtain a somewhat displaced configu-
ration, but still with the same principal properties as before. Therefore the
time-optimal solution can be evaluated by the same procedures as used for
the path planning problem without contact and without forces.

The idea behind this path problem is the following. Assuming again an
ideal motion along the given trajectory with one degree of freedom, the ma-
nipulator should perform the given path in minimum time and at the same
time generate the prescribed forces at the end effector. In reality, however,
a robot with rigid links and joints cannot realize forces at the gripper, and,
in addition, modelling uncertainties would influence the force performance to
a much larger extent than the path tracking alone. So, what we are doing
in this chapter represents a first step to control trajectories and forces with
the help of an elastic robot. Assuming small elastic deformations of the links,
possibly also of the joints, motivates an approach, which takes the motion of
a rigid manipulator as a reference and superimposes small elastic deviations,
wherever they may occur. From this it makes sense to consider in this first
step the time-optimal solution along a given path with given forces at the
gripper for a rigid robot.
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Fig. 7.13: Circular Arc by a Three-link Robot, Comparison Theory (− − − −
−) and Measurements (———)
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A manipulater with rigid links tracking a prescibed path with prescribed
forces at the gripper is a one-degree-of-freedom system described by the path
coordinate s and the modified equations of motion (see eqs. (7.29)):

Ti(s) =Ai(s)(ṡ2)′ + Bi(s)(ṡ2) + Ci(s), (i = 1, 2, · · · , f)

Ai(s) =
1
2
Miq′, Bi(s) = Miq′′ + q′T

[
∂MT

i

∂q
− 1

2
∂M
∂qi

]
,

Ci(s) =
∂V

∂qi
− JTTi(FG0 + FC0), FC0 = (nTFG0)

(
− vrel
|vrel|

)
. (7.46)

The magnitudes are: s path coordinate, ṡ path velocity, M ∈ IRf,f mass
matrix, Mi the i-th row of M, q = qr ∈ IRf generalized coordinates of the
”rigid” manipulator, ∂V∂qi

mainly gravitaional forces, FG0 forces at the gripper,
JTi Jacobian from workspace into configuration (joint) space, FC0 friction
force along the path, n surface normal, vrel relative tangential velocity along
the path (|vrel| = ṡ), Ti(s) torque in joint (i).
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Fig. 7.14: Time-Optimal Topology with Forces at the Gripper for a Circular
Path [185]

The relations (7.46) represent a basis for time-optimization according to
the preceding sections, but now for given trajectories with prescribed forces at
the gripper. Such forces posses a considerable influence on the time-optimal
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results. Figure 7.14 gives an example for a circular path parallel to the y-z-
plane, being tracked by a manipulator with five revolute joints. The numerical
results come from [117] and [223]. The zero force solution (F=0) includes
three critical points (saddle points). The maximum velocity as well the time-
optimal curves are symmetrical with respect to the s=0.5 point. Applying a
negative force, which means pushing down the gripper, results in a very slow
starting movement of the manipulator due to the negative retarding force.
Only one critical point remains, and the deceleration is performed as slowly
as the acceleration. On the other hand, lifting the gripper with a positive
force (+F) produces a large acceleration and a large deceleration because the
positive force helps in generating a steep slope at the beginning and the end
of the trajectory by partly compensating the gravity force. In addition such
a positive force diminishes considerably the velocity at the symmetry point
s=0.5.

7.2.4 Influence of Elasticity

7.2.4.1 Elastic Manipulator with Tree-Like Structure

Following the theory presented in the chapter 3.3 on the pages 113 and the
following ones we model an elastic manipulator as a multibody system in-
cluding rigid and elastic components. Furtheron we assume that all elastic
deformations are small. Therefore motion can be characterized by a nonlinear
gross movement by the rigid robot with elastic joints superimposed by small
elastic deformations due to the elasticity of the links. The complete motion of
the elastic manipulator, namely gross motion and elastic motion, might be de-
scribed for each body using three coordinate systems, an inertial one like (I) in
Figure 7.15, a conveniently chosen body-fixed frame (R) and an element-fixed
coordinate system (E), to give an example. Note that (R) is already rotated
and shifted by the joint angles and by all elastic deformation of the predeces-
sor bodies with (j < i). A mass element of the link i is elastically shifted by a
vector rei(x, t) and rotated by a vector ϕei(x, t). It has already been pointed
out, that the choice of the various and neccessary coordinate systems is to a
certain extent arbitrary, but nevertheless it should follow some practical rules
of econmy and convenience with respect to all evaluations following from that
choice.

We shall proceed here a bit different from the presentation at the beginning
(section 7.2.1), where we built up a relative kinematics by considering a body
i and its predecessor (i-1). Nevertheless the results are of course comparable.
An arbitrary point of an elastic link (Figure 7.15), defined originally in the
element-fixed coordinates (E) by Er can be written in the body-fixed system
(R) by the relation

Rrtotal = R(r0 + x + re) + ARE · Er (7.47)
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Fig. 7.15: Elastic Link - Coordinates and Deformation Details [196]

with the transformation matrix ARE from (E) to (R). Considering only small
elastic deformations the transformation ARE can be approximated by (see
section 2.2.8 on page 47)

ARE ≈(E + ϕ̃e) + O(2) ∈ IR3,3,

ARE ≈

 1 −δ β
δ 1 −α
−β α 1

 ≈
 1 −v′ −w′

v′ 1 −α
w′ α 1

+ O(2) (7.48)

with the following magnitudes: E the identity matrix and (·)′ derivation with
respect to x, for example v′ = dv

dx . Considering in a first step manipulators with
tree-like structure and altogether j joints (Figure 7.16), the position vector rp
from the inertial frame to the contact point can be written in the form (see
equations (7.4))

rp =
j∑
i=1

{
i∏

k=1

[E + ϕ̃e]k−1 ·AEk−1Rk

}
Lk−1

· (xi + rei)Li , (7.49)
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Fig. 7.16: Elastic Manipulator in Contact with a Surface

where Li refers to the total lenght ofthe link i and AEk−1Rk
is the transfor-

mation from Rk to Ek−1, which for revolute joints is the usual elementary
rotation matrix. With the help of the vectors defined in Figure 7.15 the ab-
solute translational and rotational velocities of a mass element come out with

vEi =v0i + ṙei + ω̃0i(xi + rei),
ωEi =ω0i + ϕ̇ei,

}
Ri - frame (7.50)

vi =(E + ϕ̃ei)T · vEi,
ωi =(E + ϕ̃ei)T · ωEi.

}
Ei - frame (7.51)

All the magnitudes of these equations depend on the rigid, qr ∈ IRfr , and
elastic generalized coordinates, qe ∈ IRfe , where fr and fe denote the number
of rigid and elastic degrees of freedom. The elastic coordinates enter the equa-
tions of motion via a Ritz-approach (equation (3.121) on page 125), which for
rEi can be written

rEi(xi, t) =

 ui(xi, t)
vi(xi, t)
wi(xi, t)

 =

 ūi(xi)Tqe,ui(t)
v̄i(xi)Tqe,vi(t)
w̄i(xi)Tqe,wi(t)

 , (7.52)
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Where ūi, v̄i, w̄i denote the vector of the shape functions for link i. Applying
this approach, collecting all elastic coordinates in a vector qe, taking into
account the dependencies vi(qr,qe, q̇r, q̇e) and ωi(qr,qe, q̇r, q̇e), applying the
momentum equation to the mass element of Figure 7.15, arranging the forces
with respect to active and passive properties, applying Jourdain’s principle
and regarding the equations (7.50) to (7.52) we arrive at the equations of
motion of a linearly elastic robot (see also the relations (3.127) on page 127):

• rigid body coordinates:

n∑
i=1

∫
Bi

{[(
∂v0i

∂q̇r

)
+ (x̃i + r̃ei)T

(
∂ω0i

∂q̇r

)]T
· [(v̇Ei + ω̃0ivEi)dmi − dFai]+

+
(
∂ω0i

∂q̇r

)T
(E + ϕ̃ei)[dIiω̇i + ω̃idIiωi − dTai]

}
= 0 (7.53)

• deformation coordinates:

n∑
i=1

∫
Bi

{[(
∂v0i

∂q̇e

)
+ (x̃i + r̃ei)T

(
∂ω0i

∂q̇e

)
+
(
∂ṙei
∂q̇e

)]T
·

· [(v̇Ei + ω̃0ivEi)dmi − dFai]+

+
[(

∂ω0i

∂q̇e

)
+
(
∂ϕ̇ei
∂q̇e

)]T
(E + ϕ̃ei)[dIiω̇i + ω̃idIiωi − dTai]

}
= 0

(7.54)

• dimensions and abbreviations:

qr ∈IRfr , qe ∈ IRfe , (v0i, ω0i,xi, rei, ϕei,Fai,Tai) ∈ IR3,(
∂v0i

∂q̇r

)
∈IR3,fr ,

(
∂ṙei
∂q̇e

)
∈ IR3,fe , etc.

dmi =
[∫ ∫

ρdydz

]
i

dxi ∈ IR,

dIi =
[∫ ∫

ρr̃r̃T dydz
]
i

dxi ∈ IR3,3. (7.55)

The evaluation of these equations is performed numerically, where in a first
step it is advisable to collect all integrals containing only terms with spatial
coordinates in a certain set of integral matrices being calculated before the
main numerical procedure (see for example [242], [29], [223], [248]). In the
Ritz-approach of the equation (7.52) cubic splines are used. With respect to
the elastic terms we refer to section 2.2.8 on page 47 and on section 3.3.4 on
page 124.
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The equations (7.53) and (7.54) represent a set of f = fr+ fe relations for
the f unknowns qr,qe. They can always be reduced to the form

M(q, t)q̈ + g(q̇,q, t) = BT(t) + JTTFG + JTRTG,

q = (qTr ,q
T
e )T ∈ IRf , M ∈ IRf,f , g ∈ IRf , B ∈ IRf,j , (FG,TG) ∈ IR3,

JT =
(
∂vG
∂q̇

)
∈ IR3,f , JR =

(
∂ωG
∂q̇

)
∈ IR3,f , (7.56)

where j is the number of the manipulator joints, M its mass matrix, g a
vector with all gyroscopical and gravitational forces, B the actuator matrix, T
includes the actuators forces and torques, FG and TG are forces and torques at
the gripper and the matrices JT ,JR the Jacobians of translation and rotation
at the gripper.

qMI

ϕ qME

Kgear

Fig. 7.17: Elastic Joint Model

From this we conclude,
that without elasticities in
the joints we get fr = j and
with joint elasticities fr = 2j
considering only one degree
of freedom for each joint. It
might be more, of course.
In the last case the addi-
tional joint equations of mo-
tion write

IM · q̈MI = T0−
Kgear

igear

(
qMI

igear
− qME

)
.

(7.57)

Figure 7.17 illustrates the
corresponding model, see also
Figure 7.3. The magnitudes
Kgear and igear denote the
joint stiffness and the gear
transmission ratio, respec-
tively, qMI and qME are the
internal and external joint

coordinates, IM is the motor moment of inertia and T0 the actuating mo-
tor torque.

7.2.4.2 Closed Loop Conditions

A manipulator coming into contact with its environment forms a closed kine-
matical loop with special properties (see Figure 7.16). Considering for exam-
ple manufacturing processes usually requires also the inclusion of some given
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forces or torques at the end-effector. Let us first consider the holonomic con-
straint accompanying such a configuration in the form Φ(q, t) = 0 ∈ IRm. For
later convenience we differentiate this constraint twice with respect to time
and come out with

Φ̈ =
(
∂Φ
∂q

)
q̈ +

d

dt

(
∂Φ
∂q

)
q̇ +

d

dt

(
∂Φ
∂t

)
= 0. (7.58)

Substituting
(
∂Φ
∂q

)
= (w1,w2, · · · · · ·wm)T we arrive at the general constraint

equation on the velocity level

wT
k (q)q̈ + ζk(q, q̇) = 0, wk ∈ IRf , (k ∈ (1, 2, · · · · · ·m)), (7.59)

which applies for m active contacts and the corresponding constraints. This
can be included into the equations of motion by (chapter 3.4 on the pages
131)

Mq̈−Wλ =− g + BT + JTTFG + JTRTG = H,

wT
k q̈ + ζk =0,

W =(w1,w2, · · ·wm) ∈ IRf,m, λ ∈ IRm, ζ ∈ IRm. (7.60)

The unknowns q̈ and λ are determined from the above equations [200]

q̈ = M−1(H + Wλ), λ = (WTM−1W)−1(ζ −WTM−1H) (7.61)

with the effective mass (WTM−1W)−1 acting at the contacts. For our special
case of a manipulator in contact with its environment we have only one contact
and one vector constraint for the closed kinematical loop (i.e. m=1), which
can be represented by (equations (7.4) and (7.49))

Φ(q) = rp −
j∑
i=1

{
i∏

k=1

[E + ϕ̃e]k−1 ·AEk−1Rk

}
Lk−1

· (xi + rei)Li = 0 ∈ IR3.

(7.62)

The constraint allows a motion only in the tangential plane of the constraining
surface and constrains the motion in the direction perpendicular to that. This
corresponds to the classical robot statement, that for a manipulator with
contact to the environment we have to apply force control in normal and
path control in tangential direction of the constraining surface. Projecting
the above constraint into normal direction results in

Φn = nTΦ(q) = 0 ∈ IR. (7.63)

The normal vector n∗ in the space of generalized coordinates is the given by

n∗ =
(
∂Φn
∂q

)T
=
[(

∂Φn
∂rp

)(
∂rp
∂q

)]T
= JTTp

n. (7.64)

We shall use it to transform also the elastically generated deviations y from
the ”rigid” reference into the configuration space, for example (n∗)Ty = 0.
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7.2.4.3 Linearization around a Reference Trajectory

Tracking a given path by a manipulator is mainly a control problem, where
many concepts may apply. Out of the various possibilities with respect to
nonlinear control ([174], [246], [68]), the nonlinear decoupling schemes became
and still are very popular for robot control. The basic idea is simple. In the case
of prescribed trajectories with prescribed forces at the gripper we establish a
feedforward control concept, which forces, as good as possible, the end effector
along the given path with the given forces. All deviations from that reference
are usually small and can be controlled by an additional linear controller. From
the dynamical standpoint of view we then have to evaluate in a first step the
prescibed path and forces from the process under consideration, for example
a manufacturing process, and in a second step to linearize the equations of
motion around that reference.

Linearizing the equations of motion (7.53) and (7.54) requires to develop by
a Taylor expansion all terms of these equations up to first order, which means
with respect to the Jacobians that the velocities v0i and ω0i, for example, need
to be developed up to second order terms. We obtain two sets of equations, one
for the reference motion without elasticities and one for the elastic deviations:

• reference path:

qR ≡ qME,R ∈ IRj (7.65)

• reference motion:

MR(qR)q̈R + gR(q̇R,qR) = BRT0 + JTTRFG0 + JTRRTG0 (7.66)

• linearization:

q = q0 + y, T = T0 + ∆T, FG = FG0 + fG, TG = TG0 + tG, (7.67)

• deviation dynamics:

M0(q0)ÿ + P0(q̇0,q0)ẏ + Q0(q̈0, q̇0,q0)y = h0(q̈0, q̇0,q0) + B0∆T (7.68)

• dimensions and abbreviations:

JTref =
(

∂q
∂qR

)T
= [ diag

k=1,···j
{igear, k}, Ej , 0] ∈ IRj,f ,

MR =JTrefMJref ∈ IRj,j, gR = JTrefg(q̇R,qR) ∈ IRj ,

BR =JTrefB0 ∈ IRj,j ,

JTTR =JTrefJ
T
T0 =

(
∂vG
∂q̇R

)T
, JTRR = JTrefJ

T
R0 =

(
∂ωG
∂q̇R

)T
∈ IRj,3,

y =
(
yTMI ,y

T
ME ,ye

)T ∈ IRf , q0 = JrefqR ∈ IRf , (7.69)

where (f = 2j + fe). Ej ∈ IRj,j is a identity matrix. The above equations
apply for the reference motion of a manipulator following a given trajectory
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with given forces and for the disturbances around this reference motion. Note
that the reference motion is realized in the joint coordinate space qR ∈ IRj ,
whereas the linearized deviation motion moves in an augmented space with
q0 ∈ IRf and y ∈ IRf .

If the origin of the gripper coordinate system and the contact point do not
coincide but have a distance rGP , then we get FG0 = FP0,TG0 = ˜rGPFP0.
The right hand side of the equation (7.66) changes accordingly to yield

MR(qR)q̈R + gR(q̇R,qR) = BRT0 +
[
∂(vG + ˜rGPωG)

∂q̇R

]T
FP0 (7.70)

The contact force FP0 is assigned to the closing loop condition of equation
(7.63) in the following way. Within a first order expansion

Φn(q) ≈ Φn(q0) +
(
∂Φn
∂q

)
0

y = 0. (7.71)

The first term of this equation is zero, Φn(q0) = 0, because for the reference
motion the idealized constraint is perfectly fulfilled. Some deviations due to
elasticity must meet the requirement of the second term, which means, that

equation (7.68) has to be supplemented by a term
(
∂Φn

∂q

)T
0
λ1. With regard to

equation (7.60) the term
(
∂Φ
∂q

)T
= W ∈ IRf,m reduces to (m=1)

(
∂Φn

∂y

)T
=

w1 ≡ n∗ ∈ IRf , whereas λ ∈ IRm is left with one component λ1 only. For this
special case we get the deviation dynamics including the contact effects in the
form (see eq. (7.68))

M0ÿ+P0ẏ + Q0y = h0 + B0∆T + JTP∆FP , with ∆FP = nλ1,

λ1 =m1

{
wT

1 M−1
0 [P0ẏ + Q0y − h0 −B0∆T]− ẅT

1 y − 2ẇT
1 ẏ
}

w1 =JTPn = n∗ ∈ IRf , m1 =
(
wT

1 M−1
0 w1

)−1 ∈ IR. (7.72)

Note that firstly w1(q) = JTTp
(q)n and that secondly the surface normal n

changes along the path. Due to these two properties a time derivative exists.

7.2.4.4 Control of Elastic Manipulators

To go into the problem of controlling the elasticity of manipulators in all
details would be much beyond the scope of this book. But we shall give
some principal ideas and considerations and refer for details to [223], [224],
[209], [196]. An elastic manipulator tracking a path with prescribed forces and
torques requires the solution of a complicated problem, namely to control the
gripper position and orientation with the help of the drives alone acting on
the elastic links, which on their side must put the gripper into the wanted
position. This means that control is executed only indirectly not directly. In
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addition we have spill-over effects due to the elasticities. By measuring the
drive kinematics alone the robot is not observable, additional measurements
of the elastic deformations are mandatory. Some detailed investigations came
out with the theoretical and practical experience, that measuring the cur-
vatures of the elastic links gives an excellent basis for reducing the elastic
vibrations [131], [223]. This can be performed by strain gauges.

Combined path and force control of an elastic manipulator implies in our
case a closed kinematical loop in the presence of elastic links and joints. The
control concept follows a classical concept with feedforward and feedback con-
trol (see Figure 7.18), where new aspects enter into the method how control
activities are distributed in both loops. The feedforward control loop includes

r0,FG0 T0 T

∆T

r,FG

+

−

−

q
q̇
κ

q0
q̇0
κ0

feedforward
control

manipulator

feedback
control

Fig. 7.18: Basic Control Concept

• an optimal trajectory planning procedure for a manipulator with rigid
links tracking a prescribed trajectory with given forces at the end effector,
for example the methods introduced in the above sections 7.2.2,

• a correction procedure with respect to the stationary elastic deviations as
generated along this reference trajectory,

• a calculation scheme for the reference joint kinematics and kinetics as well
as for the reference elastic deviations and the curvatures.

The underlying idea consists in putting as much control efforts as possible
into the feedforward loop being evaluated off-line and in leaving only minor
activities in the feedback loop being evaluated on-line. Two design steps realize
this idea. Firstly, the stationary elastic deviations cover already most of the
overall path deviations, because the elastic vibrations are small and usually
quite nicely damped. Secondly, including the prescribed forces at the gripper
into the gross reference motion means, that tracking the correct path generates
automatically the correct force. Therefore, putting back the gripper to its
reference path yields also the correct given force.

From these arguments we conclude, that it is sufficient to control within
the feedback loop only
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• the elastic vibrations taking into account controllability in the presence
of elasticity and maximum damping on the basis of a realistic closed loop
model of the elastic manipulator.

We start with the feedforward loop by establishing the reference using
the relations (7.65) and (7.66). This provides us with the reference trajectory
including the forces at the gripper. In a second step we consider the elastic
deformations, which contain two parts: one part coming from the nominal
forces along the given path and another part emerging from the vibration
capability of the manipulator system. Therefore we subdivide the complete
elastic deformations in y = ys + yv, where ys represents the stationary first
part and yv the vibratory second part. The first part we call quasi-static
corrections and evaluate it from equation (7.68)

Q0ys = h0 + B0∆Ts, (7.73)

where the inertia effects due to the elastic vibrations have been neglected,
which makes sense because they are usually very small. The evaluation of
equation (7.73) goes straightforward and gives the nominal elastic deviations
for a robot along a given path with given forces.

fRi

fRi
mRi

mRi

R S
link i

link i

cut

equation(7.74)

Fig. 7.19: Cutting the Link i of a Manipulator

It should be noted, that for the curvature control to follow we also need the
nominal curvature values, which are calculated by cutting the corresponding
link i at the location of the strain gauges and applying the multibody formulas
for the evaluation of the cut forces and torques for the nominal magnitudes
of the rigid robot (see [223] and Figure 7.19). The internal forces and torques
at the cut point R are then determined by applying the projection equations
(7.53) for a rigid robot and without any elastic components to that part of
the manipulator, which have been cut
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∂vRi
∂q̇r

)T {
mi

[
(v̇Ri + ˜̇ωRirRSi) + ω̃Ri(vRi + ω̃RirRSi)

]
− fRi

}
+

+
(
∂ωRi
∂q̇r

)T {(
ISi + mir̃RSir̃TRSi

)
ω̇Ri+

+ ω̃Ri
(
ISi + mir̃RSir̃TRSi

)
ωRi + mir̃RSi(v̇Ri + ˜̇ωRirRSi)−mRi

}
= 0,

(7.74)

for all links starting with the link i up to the end effector. The magnitudes
are: vRi the absolute velocity of point R of link i, ωRi the absolute angular
velocity, rRSi the distance vector from the cutting point R to the center of
mass S, ISi the inertia tensor with respect to point Si, mi the mass of link i
and fRi,mRi the internal forces and torques at the point R.

The above procedure has a couple of advantages. Firstly, we can do that
evaluation for the completely rigid robot without generating large errors, sec-
ondly with the knowledge of the internal cut forces and torques fRi,mRi we
immediately can calculate from linear elasticity theory the elastic curvatures
and the warp coefficient, which are both important for controlling elasticity
providing us with the nominal values of the elastic deformations, for example

κ0i = K−1
i ·mRi (7.75)

with the stiffness matrix Ki of link i [223].
With the knowledge of all nominal magnitudes we evaluate in a further

step the vibrations by the relation (7.68) and by using y = ys + yv and
h0 = JTT fG + JTRtG. We get

M0ÿv + P0ẏv + Q0yv = hv + B0∆Tv (7.76)

Forces are controlled in a plane perpendicular to the plane of contact, and
the trajectory is controlled in the contact plane. In both cases we use the
curvatures as a control input. They can easily be measured and serve as a
basis for the evaluation of path and force deviations due to elasticity. Figure
illustrates such a hybrid path and force control system, which has been applied
for the control of a very elastic manipulator ([223], [209]). From this Figure
we can derive the following control law

∆Tv = −KP (q− q0)−KD(q̇− q̇0)−KK(κ− κ0), (7.77)

where q is measured by angular encoders, q̇ is determined by differentiation
of the q-measurements, and κ is measured by strain gauges. An attempt to
evaluate the derivative κ̇ by differentiating the κ-measurements failed, because
the κ-measurements were too noisy. The dependence of the curvatures κ on
the generalized elastic coordinates (qe = ye) are approximated by the linear
relationship

κ = Cqe. (7.78)
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Fig. 7.20: Hybrid Control of an Elastic Robot

The matrix C ∈ IRfe,fe contains the second derivatives of the shape functions
(equation (7.52)) in the case of bending and the first derivatives in the case of
torsion, and this at the location of the strain gauges. So altogether the scheme
of Figure 7.20 includes the following control activities.

• PINK:
– trajectory planning according to chapters 7.2.2, 7.2.3 and 7.2.4.3 with

the equations (7.29), (7.46), (7.65) to (7.69) together with the appro-
priate methods and algorithms,

– inverse kinematics, standard recursive procedures,
– transformations, Jacobians,

• COCU:
– evaluation of the elastic manipulator via elastic multibody theory,

chapters 7.2.4.1 and 7.2.4.3 with the equations (7.53) to (7.55) and
(7.65) to (7.69),

– stationary elastic corrections, equations (7.73),
– reference curvatures and warp coefficients, see equation (7.74),

• REFA:
– combination of the reference magnitudes with the reference elastic val-

ues, as in equation (7.67) for the complete deviations,
• ROBOT:

– hardware with two very elastic links and three revolute joints,
– measurements by angular encoders and strain gauges, two types of

bending and torsion,
– power supply, interface and control electronics, A/D- and D/A-channels,

sampling rate ≈ 1000Hz,
• PDJ, PDU:
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– joint and elasticity control, equation (7.77),
– on-line controller with a controller design following criteria of control-

lability and stability,
• DIKI:

– direct kinematics from joint space to work space, transformations, Ja-
cobians.

7.2.4.5 Some Results

To get some confidence in the theory various experiments with a laboratory
robot were carried through ([223], [196]). They all confirm modelling and the
control concept. Elastic manipulators might be used for polishing tasks, for
detecting forms by scanning the shape with the help of sensitive contact forces
or for measuring contact forces directly with a robot. From these examples
we consider the polishing problem, where the manipulator had to perform a
typical polishing motion.
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Fig. 7.21: Comparison of Simulation and Measurements

Figure 7.21 illustrates a typical example [196]. A three DOF robot with
elastic links performs a polishing motion with a prescribed path and with a
prescribed normal force (upper left of Figure 7.21). The upper right graph
shows a comparison of the precalculated nominal curvature for bending of the
lower link with coressponding measurements by strain gauges. The agreement
is nearly perfect. The lower part of Figure 7.21 depicts the contact forces in
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normal and tangential directions, where the normal force is prescibed. Again
the agreement is very good, where ths slight differences for the tangential
force come from some errors in the sliding friction force at the gripper, which
is not perfectly adapted via the corresponding friction coefficient.
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7.3 Dynamics and Control of Assembly Processes with
Robots

7.3.1 Introduction

Dealing with assembly processes means combining the dynamics and control
of one or more manipulators with the dynamics and control of the assembly
process under consideration. Typical for such processes is the contact of the
robot with its environment through the parts to be assembled. The arising
contact forces influence the motion of the robot, and, as a matter of fact they
also influence the assemply procedure itself. In the following we shall consider
dynamical models of a manipulator together with models for some mounting
processes. Different methods are applied depending on the mechanical prop-
erties of the parts. With compliant mating parts, the forces and torques are
only dependent on the relative position and the velocity of the robot’s grip-
per with respect to the environment. If the mating parts are very stiff, the
dynamics of the robot is characterized by closed loops, which requires special
mathematical treatment.

Small tolerances between the mating parts are often characteristic for such
mounting tasks. During the automatic assembly with a robot, the parts will
contact each other due to uncertainties in the manipulators position and orien-
tation and due to tolerances of the parts’ geometry. Undesirable high strains
on the workpieces or even the unfeasibility of the task, for example due to
jamming, may result from that. A well known example for parts mating is
the peg-in-hole problem. Many assembly processes can be reduced to this
example, so we shall study this pecific problem in some detail.

There are three different approaches to handle the above mentioned prob-
lems. One possible solution is the development of special passive compliant
mechanisms, based on the Remote Center of Compliance (RCC) measure.
Applying this measure gives more safety and tolerances for typical mat-
ing processes. Mechanisms of that kind were first developed for the two-
dimensional peg-in-hole problem. An extension to three dimensions may be
found in [254], [256].

A second solution is the additional use of sensor information. Nearly all
concepts follow the same principle: First an initial contact state has to be
identified. Then the peg has to be moved towards the hole. This phase can
be called peg-on-hole. Afterwards the peg is aligned and inserted into the
hole. Thereby, especially in the case of two point contacts, jamming has to
be avoided. For this phase an optimized controller is presented in [271]. If the
operation fails due to sensing, model or control errors, the method of error
detection and recovery is applied in order to complete the given task [251].

A third approach is a theoretical investigation. The assembly task is de-
scribed by geometrical and mechanical models, where uncertainties from the
robot’s position, the robot’s trajectory and the parts’ geometry can also be
taken into account. If the problem is solved by geometrical considerations and
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simple assumptions for the contact forces one talks of fine motion planning
[141]. The dynamics of the complete parts mating process including a com-
plete dynamic model of the manipulator is presented in [241]. Every contact
point is considered closing a kinematical loop between the manipulator and its
environment. For an efficient numerical implementation, the contact laws and
the transitions between the different contact states (contact, no contact, stick-
ing or sliding) are formulated as a Linear Complementarity Problem (LCP).
The same method is applied to the three–dimensional peg-in-hole problem in
[152].

Different questions arise when regarding flexible workpieces. Through the
compliance of the parts, effects like jamming and wedging are not likely to
occur. In this case the forces and moments arising during the mating process
are more interesting in order to evaluate the stresses and strains on the mating
parts. We shall come back to this problem in connection with snap joints and
pistons with elastic rings mated to a cylinder.

In modelling the dynamics and control of manipulators and of the assem-
bly process together, so-to-say as one integrated model with the appropriate
theory, we automatically arrive at questions like parameter and control opti-
mization for achieving a best solution not only with respect to robot dynamics
and control, but also with respect to process dynamics and control, where we
must consider the interaction between robot and environment as an essential
part of the problem. In order to deal, for example, with impacts, oscilla-
tions and constrained motion, a model-based optimization approach will be
necessary, which relies on a detailled dynamic model of the manipulator incor-
porating finite gear stiffnesses and damping. These models are used to define
an optimization problem, which is then solved using numerical programming
methods.

The intention of such an optimizing consideration consists in providing
a tool for the planning stage of an assembly task with respect to increased
productivity and reliability. This will be illustrated by a typical assembly task,
namely inserting a rigid peg into a hole. Application of the proposed approach
to such a rigid peg-in-hole insertion under practical constraints reduces the
measure for impact sensitivity by 17 %, that for mating tolerances by 78 %
and the damping of end-effector oscillations and motor torques by up to 79 %.
These improvements are shown to be reproducible experimentally. The result
is a planning tool, which allows any industrial robot to be optimized for the
specific needs of any manipulation task.

In the following we shall investigate mating of compliant and of rigid parts
using a PUMA 560 robot. The findings presented are mainly based on the
publications [271], [241], [152], [219], [154], [220].
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7.3.2 Mating with a Manipulator

7.3.2.1 Manipulator Model

We start with the specific model for the PUMA 560 robot. It possesses six
axes and is modeled as a tree-like multibody system with rigid bodies and
ideal links. As generalized coordinates we take the relative angles between the
bodies:

γA = (γA1, γA2, γA3, γA4, γA5, γA6)
T ∈ IR6, (7.79)

as shown in Fig.1a. Since the natural frequency of oscillations due to the
stiffness in the first three joints are in the range of interest, an elastic joint
model is introduced. A link–joint unit consists of two bodies, the drive and

xG yG

zG

Fig. 7.22: The Industrial Robot PUMA 560 and its Joint Model

the arm segment (Figure 7.22). They are coupled by a gear model which is
composed of the physical elements stiffness c and damping d (see equation
(7.12) on page 417). Thus three additional degrees of freedom are introduced
between motor shafts and arm segments:

γM = (γM1, γM2, γM3)
T
. ∈ IR3. (7.80)

In the remaining links no joint model is necessary, because their stiffnesses
are high compared to the acting forces, and the elasticity of these joints have
no effect on the system dynamics under consideration. Thus we come to alto-
gether nine degrees of freedom γ:

γ = (γM ,γA)T ∈ IR9. (7.81)
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Specializing the multibody equations (7.10) and (7.11) on page 417 for our
manipulator and regarding the above simplifications yields

M(γ)γ̈ + h(γ, γ̇) = Bu ∈ IR9, (7.82)

with the inertia matrix M ∈ IR9,9, with the centrifugal, Coriolois and gravi-
tational forces summarized in the vector h ∈ IR9 and with the control input
Bu.

Because most mating tasks are limited to a small area of workpiece in-
teraction the robot motion will be slow and centrifugal and Coriolis forces
in equation (7.82) may be neglected compared to gravitational and inertia
forces. Hence, the robot dynamics can be linearized around the working point
γ0, where γ̇0 ≡ 0. The vector

q = γ − γ0 = (qM1, qM2, qM3, q1, q2, q3, q4, q5, q6)T ∈ IR9, (7.83)

denotes the deviation from this working point. From that we obtain the fol-
lowing equations of motion:

Mq̈ + P q̇ +Qq = h+Bu ∈ IR9, (7.84)

with the inertia matrix M , the damping matrix P and the stiffness matrix
Q. The vector h contains the remaining gravitational forces, and Bu regards
the influence of the controller. For a PD position control we have the typical
form of the vector u [174]:

u = −KP

(
BTq − qD

)
−KD

(
BT q̇ − q̇D

)
∈ IR6. (7.85)

The matricesKP and KD contain the positional and velocity feedback gains.
Through changing the desired positions and velocities qD and q̇D the motion
of the manipulator along a trajectory is realized. By integration the equations
of motion (7.82) or (7.84) we obtain for every time step the position and
orientation of the gripper (G–frame) with respect to the inertial fixed system
(I–frame), as well as its translational and rotational velocity

rIG, AIG,︸ ︷︷ ︸
position and orientation

vG, ΩG,︸ ︷︷ ︸
translational and angular velocity

(7.86)

which form the interface for the assembly process models.

7.3.2.2 Mating Models

Characteristic for assembly tasks performed by a manipulator is the contact
with the environment through the mating parts. Additional loads act on the
gripper and thus influence the motion of the manipulator. For numerical sim-
ulation, the dynamic model of the robot and the assembly process models
have to be coupled.
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Depending on the parts properties, there are two basic approaches to de-
scribe these loads, assuming a force law in the contact or assuming a stiff
contact. We consider as an example a peg touching a flat surface in one point.
If we deal with compliant workpieces, typically made of rubber or plastics,
the coupling between robot and environment is given by a smooth force law,
and all these laws for contact forces and torques are regularized:

f = f(q, q̇), m =m(q, q̇). (7.87)

These contact loads must be regarded on the right-hand side of the equations
of motion to yield

Mq̈ + P q̇ +Qq = Bu+
(
JTT |JTR

)(
f
m

)
(7.88)

If we model the process by assuming stiff mating parts, like steel, aluminium
or the like, we come out with a complementarity problem due to the unilateral
properties of the contact manipulation, which means (see chapter 3.4 on page
131)

Mq̈ + P q̇ +Qq = Bu+Wλ
g(q) ≥ 0, ġ(q, q̇) ≥ 0, g̈(q, q̇, q̈) ≥ 0, (7.89)

where the vector λ contains the constraint forces. The matrix W is the con-
straint matrix which projects the constraint forces into the degrees of freedom
of the robot. The geometrical constraints g are needed on acceleration level
in order to combine them with the equations of motion, also describing accel-
erations. The contact kinematical fundaments for evaluating the magnitudes
g, ġ, g̈ are already presented in the chapters 2.2.6 and 2.2.7 on the pages
starting with page 31 (see also [154]).

7.3.2.3 Compliant Mating Parts

In this section we will consider two examples. The first one is an O–ring
mounted on a piston to be inserted into a corresponding cylinder hole. The
second one is a snap fastener, which plays an important role in automated
assembly. The task is to find the correct relationship between the displacement
and orientation rIG and AIG of the gripper with respect to the environment
and the forces and moments f and m acting due to the deformation of the
parts. For this purpose we have to introduce an additional local frame L,
necessary to describe the deformation of the workpiece.

O-Ring

Figure 7.23 depicts an elastic ring mounted in a groove of a piston. It is
inserted into a hole with a rounded chamfer at the beginning and possibly
also at the end. This is a typical application of O–rings in hydraulic cylinders



456 7 Robotics

I

G

A

L

B

BrBL

ArAL

GrGA

IrIG

IrIB

Fig. 7.23: O–Ring in a Groove on a Piston

or pneumatic valves. In the hole there might be notches serving as entrance
or outlet.

An analytical solution for the stresses and strains in the elastic ring with
approaches from continuum mechanics is not possible because the displace-
ments and also frequently the material laws are nonlinear. Therefore we use
a simplified approach, assuming the outer contour of the ring to be circular
and rigid, so that there is a line contact between ring and hole. The only
compliance taken into account is the radial stiffness of the O–ring, which is
not discrete, but continuously distributed over the circumference. Its charac-
teristic is supposed to be nonlinear quadratic. The line load representing the
elastic deformation of the ring is pi. A further assumption is that the ring does
not tilt in the hole, because errors with respect to the orientation of industrial
robots are generally small. According to the special geometry of the elastic
ring in the groove, we use two contact line loads: one between the ring and
the hole pa and one between the ring and the groove po. Frictional loads pa,R
and po,R act perpendicular to this normal loads and opposite the direction of
the relative motion along the contact line.

All further considerations are made in the L–frame, which is placed at
the center of the ring. It has a radial eccentricity e and a rotation ϕBL with
respect to the B–frame. Its orientation is chosen such that its z axis is parallel
to the B–frame: zL ‖ zB (because tilting is not regarded), and the xL axis
coincides with the shortest stretch between piston and hole. The eccentricity
e, the angle ϕBL and the transformation matrix ABL are defined as:
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e =
√
Br2

BL,x +B r2
BL,y, ϕBL = arctan BrBL,y

BrBL,x
,

ABL =

 cosϕBL sinϕBL 0
− sinϕBL cosϕBL 0

0 0 1

 . (7.90)

Through this special choice all further considerations can be made in two
modeling planes, the xL–yL–plane shown in Figure 7.24 on the left side and
the xL–zL–plane shown on the right. In the left part of the figure the line load

Fig. 7.24: The two Modeling Planes for the Description of the Mounting Task
with the O–Ring

pa between ring and hole is drawn. The non uniform distribution of the load
can be recognized.

The detection of the contact area is performed in the xL–zL–plane, where
we then have to calculate the contact point between two circles, if the ring
is entering or leaving the hole and touching one of the chamfers, or between
a circle and a straight line, if the ring is inside the hole. For clarity we have
drawn the line loads acting between the bodies in the right modeling plane in
Figure 7.24.

If ∆a is the deformation of the O–ring at the xL–axis, then the deformation
around the circumference a(ϕL) is:

a(ϕL) = ∆a− e + e cosϕL. (7.91)

The line load representing the radial elasticity of the ring has the form:
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pi(ϕL) = c1a(ϕL) + c2a
2(ϕL), (7.92)

where the coefficients c1 and c2 are the spring constants. They can be de-
termined by a FEM calculation, where the cross section of the elastic ring
is radially deformed. From the resulting force–displacement–diagram the two
coefficients are found by curve fitting. Inserting Eq.(7.91) in Eq.(7.92) yields:

pi(ϕL) =k0 + k1 cosϕL + k2 cos2 ϕL,

k0 =c1

(
∆a− e

2

)
+ c2

(
∆a− e

2

)2
,

k1 =c1
e

2
+ c2e

(
∆a− e

2

)
, k2 = c2

(e
2

)2
. (7.93)

With this line load pi and the other loads pa, pa,R, po, po,R the force equilib-
rium at an infinitesimal ring segment is formulated. Solving the equilibrium
for the outer load pa yields:

pa(ϕL) =
k0 + k1 cosϕL + k2 cos2 ϕL

1− µ2
, (7.94)

if the ring is in the hole. µ is the coefficient of friction between rubber and
steel. For the contact with the chamfers the equations are slightly different,
because the changing direction of the loads has to be taken into account. This
load is split into the three cartesian directions of the L–frame:

px(ϕL) = −pa(ϕL) cosϕL, py(ϕL) = −pa(ϕL) sinϕL, pz(ϕL) = µpa(ϕL).
(7.95)

The resulting forces and moments acting on the origin of the L–frame are
found through integration of px, py and pz over the circumference of the ring:

Lf =


−2

π∫
0

pa(ϕL) cosϕLr0dϕL

−2
π∫
0

pa(ϕL) sinϕLr0dϕL

2µ
π∫
0

pa(ϕL)r0dϕL

 , Lm =


0

2µ
π∫
0

pa(ϕL)r2
0 cosϕLdϕL

2µ
π∫
0

pa(ϕL)r2
0dϕL


(7.96)

where r0 is the radius of the bolt inside the groove. These two loads are
then transformed into the gripper system (G–frame), in order to combine the
assembly process with the robot model:(
Gf

Gm

)
= AGL

(
Lf

Lm+L rGL ×L f

)
. (7.97)

To verify our model we present a comparison between measurement and calcu-
lation. In the experiment a piston with a rubber ring 20×3.15 (ø 20mm of the
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ring, ø 3.15mm of the crossection) was inserted into a hole with diameter of
26mm. For the specific material the spring constants are c1 = 16.0[N/mm2]
and c2 = 43.0[N/mm3]. This special experiment was conducted on a force
measurement machine, which is very stiff, in order to avoid any disturbances
from the manipulator. Thus we can assume ideal conditions. The force–

Fig. 7.25: Force–Distance Graph for O–Ring Insertion

distance graphs are shown in Figure 7.25. The left diagram contains the
measurement, the right the calculations. The correspondence between both
curves is very good. The maximum of the mating force arises, when the ring
is entering the hole. Inside the cylinder the load is constant.

Snap Fastener

Snap fasteners are widespread fixtures in automated assembly. They consist of
three different characteristic parts: the snap hook, the elastic support for the
hook and the counterpart or chamfer (see Figure 7.26). The support consists
of a beam like in the figure, a plate or an even more complicated structure.
We make the assumption that the snap hook and the chamfer are rigid and
only the compliant support is flexible.

We have to introduce a local L–frame, fixed to the snap hook, to describe
the elasticity in the system. The deformations should be linear elastic, so that
the vector ArAL = (wx, wy, wz)T contains the displacement and the vector
AϕAL = (ϕx, ϕy, ϕz)T represents the orientation between the A– and L–
system, expressed in the A–frame (indicated by the left lower index). With this
description the compliance in the support can be reduced to a stiffness matrix
K between the A– and the L–frame. This is symbolized by the spring in Figure
7.26. Generally, the stiffness matrix K has the dimension K ∈ IR6,6. The
relationship between the linear deformations and the linear elastic reaction
forces has then the following form:(
Af

Am

)
= K

(
ArAL
AϕAL

)
∈ IR6, (7.98)

where Af is the vector of the forces and Am is the vector of the torques
acting at the origin of the L frame when the deformations ArAL and AϕAL
are imposed.
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Fig. 7.26: Structure of Snap Fastener
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Fig. 7.27: Three Different Types of Contacts Between the Snap Hook and the
Chamfer

The description of the geometry is easy for the snap fasteners under con-
sideration. The counterpart is a simple cuboid and the hook a polygonal part
with six corners. Thus there are three basic possibilities of contact points be-
tween the snap hook and the counterpart as indicated in Figure 7.27: corner–
surface (type 1), edge–edge (type 2), and surface–corner (type 3). A contact
between the flexible part and the counterpart is not regarded. The location
of a contact point is always indicated by two parameters u and v, which will
be needed later in the equations of the force equilibrium.

When the snap hook and the counterpart get in contact the parts will
slide on each other and the hook will be displaced and twisted. In order to
determine this movement and the accompanying forces we have to calculate
the equilibrium position between these two parts. There is a force equilibrium
between the elastic forces Af and Am on the one side and the contact forces
LfN and LfR on the other side. The normal contact force LfN acts on the
touching point. Its direction depends on the type of the contact. For type 1
and 3 (corner–surface) LfN is normal to the plane, for type 2 (edge–edge)
LfN is parallel to the cross product of the two lines. The friction force LfR
acts perpendicular to LfN and opposite to the direction of motion. For the
formulation of the equilibrium, the forces have to be transformed into the
same coordinate system, here the L frame:
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ALA 0

0 ALA

)(
Af

Am

)
=
(

LfN +L fR
LrLP × (LfN +L fR)

)
, (7.99)

where LrLP is the vector from the origin of the L frame to the actual contact
point P. ALA is the transformation matrix between the A– and the L frame:

ALA =

 1 ϕz −ϕy
−ϕz 1 ϕx
ϕy −ϕx 1

 . (7.100)

Inserting eq.(7.99) into eq.(7.98) results in a system of six nonlinear equations:(
ALA 0

0 ALA

)
K

(
ArAL
AϕAL

)
=
(

LfN +L fR
LrLP × (LfN +L fR)

)
. (7.101)

These equations are rather complicated due to the multiplication with the
transformation matrix. Therefore, for the evaluation the symbolic manipula-
tion program MAPLE V has been applied. From the contact condition we
obtain three additional equations, so that we have altogether a set of nine
nonlinear algebraic equations. The unknowns are the six parameters for the
position and the orientation of the hook (wx, wy, wz , ϕx, ϕy , ϕz), two parame-
ters for the contact between the parts (u, v) and the magnitude of the normal
contact force |LfN |. Determining the mating forces has been described for one
single contact. The problem can be solved for up to three contact points. For
every additional contact we obtain three more equations from geometry and
three additional unknowns (ui, vi, |LfN |i). The system of nonlinear equations
has then the dimension IR6+3n, where n is the number of contacts n = 1, 2 or
3. The transformation into the gripper system is rather simple:(
Gf

Gm

)
= AGL

(
LfN +L fR

LrGP × (LfN +L fR)

)
. (7.102)

The determination of the stiffness matrix K is still missing. It represents
the compliances of the parts. The elastic support might consist of a beam
(Figures 7.26 and 7.28) or a plate (Figure 7.30). We apply beam and plate
theory, respectively. In a first step we regard the snap fastener from Figure
7.28. According to the picture the displacement in the xA (wx) and yA (wy)
direction and the twist around the xA (ϕx) and zA (ϕz) axes are constrained.
The stiffness in these directions would be very high compared to the other
elements of K, therefore generating approximately zeros in the first, second,
fourth and sixth rows and columns. From beam theory (BERNOULLI–beam)
the deflection curve is derived from the following differential equation:

EIy(x)w′′′
z (x) = −Fz , Iy(x) =

1

12
(a +

x

l
(b− a))3c. (7.103)

The parameters a, b, c and l can be seen from Figure 7.28, and E is the
modulus of elasticity. Integrating equation (7.103) three times and using the
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Fig. 7.28: Snap Fastener with a Beam as Elastic Support

boundary conditions wz(0) = 0, w′
z(0) = 0 and EIy(l)w′′

z (l) = −My, yields
a relationship between the displacement wz and the twisting angle ϕy (ϕy =
−w′

z(l)) of the beam and the force Fz and the moment My. With a = 5mm,
b = 2.7mm, c = 20mm, l = 40mm and E = 2700N/mm2 we obtain the
following stiffness relationship

Fx
Fy
Fz
Mx

My

Mz

 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 45.5 0 638.8 0
0 0 0 0 0 0
0 0 638.8 0 14285.4 0
0 0 0 0 0 0




wx
wy
wz
ϕx
ϕy
ϕz

 . (7.104)

Our model is verified by a comparison of measurements and calculations. Mea-
surements were made using again the single axis force measurement machine.
Figure 7.29 shows the force vs. distance for the insertion of the upper half
of the snap fastener from Figure 7.28. Fx is the force in the direction of in-
sertion, and Fz acts perpendicularly. When mating the complete fitting with
both parts, Fx becomes twice as large, and Fz disappears because of symme-
try.

Fig. 7.29: Snap Fastener Insertion with Beam - Force vs. Distance
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Our second example is a snap fastener with a plate as elastic support from
Figure 7.30. Here the displacement in the xA (wx) and yA (wy) direction and
the twist around the zA (ϕz) axes are constrained. ThereforeK contains zeros
in the first, second and sixth rows and columns. We assume a KIRCHHOFF

plate. The bending is approximated by a Ritz–series wz(x, y) = qTw(x, y),
with the coordinates q and the shape functions w. As shape functions we use
piecewise defined cubic splines which satisfy the boundary conditions. The
coordinates q of the shape functions are found by minimizing the potential

Π = Wi−Wa. We therefore have to solve the variational problem
(
∂Π
∂q

)T
= 0

with Wi, the elastic energy in the plate:

xA

yA

zA

a

b

h

A
L

Fig. 7.30: Snap Fastener with a Plate as Elastic Support

Wi =
1
2
D qT

a∫
0

b∫
0

W T

 1 ν 0
ν 1 0
0 0 2(1− ν)

W dy dx q,

D =
Eh3

12(1− ν2)
, W = [w,xx|w,yy|w,xy]

T
. (7.105)

In these equations a, b and h describe the geometry of the plate according to
Figure 7.30, E is the modulus of elasticity and ν is Poisson’s ratio. Wa is the
work done by the loads Fz, Mx and My. Let xL and yL be the coordinates of
the origin of the L–frame, then

Wa = [Fz |Mx|My]

+wT (xL, yL)
+wT

,y(xL, yL)
−wT

,x(xL, yL)

q. (7.106)

After differentiating the potential with respect to q, we get a system of linear
equations. Let q̂ be the solution of the equations. The dimension of the system
depends on the number of shape functions we use. We then calculate the
deformation of the point xL, yL using
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ϕx
ϕy

 =

+wT (xL, yL)
+wT

,y(xL, yL)
−wT

,x(xL, yL)

 q̂. (7.107)

For a = 32mm, b = 66mm, h = 3mm, E = 2700N/mm2, ν = 0.3 and
xL = 27mm, yL = 48mm, K becomes

Fx
Fy
Fz
Mx

My

Mz

 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 168.5 −455.8 2105.1 0
0 0 −455.8 26794.7 −1443.3 0
0 0 2105.1 −1443.3 37700.4 0
0 0 0 0 0 0




u
v
w
α
β
γ

 . (7.108)

In Figure 7.31 the results from the experiments and the calculations are shown,
for the insertion of the snap fastener from Figure 7.30.

Altogether we recognize a good correspondence between theory and exper-
iment for both cases. The force vs. distance graphs show an unsteady shape
because of the nonsmooth contour of the snap hooks. It is also observed that
the jumps in the mating force are sharper in the calculation than in the mea-
surement. This results from local deformations of the snap hook especially
when the contact forces become very high, for example at about 25mm in
Figure 7.31.

Fig. 7.31: Snap Fastener Insertion with Plate - Force vs. Distance

7.3.2.4 Rigid Mating Parts

Some Fundaments

For this topic we refer to the contributions of [152] and [154]. The basic theory
of relative contact kinematics is presented by the section 2.2.7 on page 36 and
the following pages. For our specific case under consideration we shall repeat
some of the most important formulas.

We regard rigid workpieces, where the deformation during assembly is
very small. Then, every contact point represents a constraint with respect to
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the robot dynamics. A constraint in normal direction is the relative distance
between two points going to get into contact. This relative distance gN and
its time derivative ġN write

gN = nT1 rD, =⇒ ġN = ṅT1 rD + nT1 ṙD. (7.109)

Considering section 2.2.7 on page 36 and especially the equations (2.127) on
page 45 with the appropriate definitions we come out with

ġN = ((ΩG × n1) + (αu+ βv)u̇1 + (α′u+ β′v)v̇1)
T
rD+

nT1 ( ṙIG︸︷︷︸
vG

+ΩG × (rGA + rΣ1)︸ ︷︷ ︸
rGC1

+u1u̇1 + v1v̇1 − u2u̇2 − v2v̇2). (7.110)

This equation can also be written in the form (see equation(2.122) on page
44)

ġN = nT1 vC1, where: vC1 = vG +ΩG × rGC1. (7.111)

The normal constraint is active, if the distance is zero, gN = 0. vC1 is the
velocity of the potential contact point on the upper body, which is connected
to the gripper (see Figure 2.21 on Page 43). In the two tangential directions
a constraint is active, if sticking occurs, which means that the relative sliding
velocities ġU and ġV at a contact point vanish ġU = 0, ġV = 0. ġU and ġV are
defined as the projection of vC1 on the two tangents u1 and v1

ġU = uT1 vC1, ġV = vT1 vC1. (7.112)

In order to combine these constraint equations with the equations of motion
of the manipulator we put them on an acceleration level. Differentiating the
equations (7.109) and (7.111) once with respect to time yields

g̈N = nT1 v̇C1 + ṅT1 vC1,

g̈U = uT1 v̇C1 + u̇T1 vC1,

g̈V = vT1 v̇C1 + v̇T1 vC1.

(7.113)

The time derivatives of the surface normal ṅ1 and the surface tangents u̇1,
v̇1 are defined as

ṅ1 = ΩG × n1 + ∂n1
∂u1

u̇1 + ∂n1
∂v1

v̇1,

u̇1 = ΩG × u1 + ∂u1
∂u1

u̇1 + ∂u1
∂v1

v̇1,

v̇1 = ΩG × v1 + ∂v1
∂u1

u̇1 + ∂v1
∂v1

v̇1,

(7.114)

where the partial derivatives ∂n1
∂u1

, ∂n1
∂v1

, ∂u1
∂u1

, ∂u1
∂v1

, ∂v1
∂u1

, ∂v1
∂v1

are known from
the equations (2.84) on page 35. The velocity vC1 and thus its time derivative
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v̇C1 can be expressed by the generalized coordinates of the manipulator q, q̇,
because the body with point C1 is connected to the robot’s gripper

vC1 = vG +ΩG × rGC1 = JT q̇ − r̃GC1JRq̇ = JC1q̇, (7.115)

with JC1 being the translational Jacobian with respect to the contact point
C1. The matrix r̃GC1 substitutes the crossproduct r̃GC1ΩG = rGC1 ×ΩG.
Differentiating this equation yields

v̇C1 = v̇G + Ω̇G × rGC1 +ΩG × vC1 +ΩG × (u1u̇1 + v1v̇1)

= (JT − r̃GC1JR)︸ ︷︷ ︸
JC1

q̈+

+
(
J̇T − r̃GC1J̇R

)
q̇︸ ︷︷ ︸

jC1

+ΩG × vC1 +ΩG × (u1u̇1 + v1v̇1) . (7.116)

With the help of the equations (7.114) and (7.83) we can rewrite equation
(7.113) in the following form

g̈N =nT1 (JC1q̈ + jC1 +ΩG × vC1 +ΩG × (u1u̇1 + v1v̇1))+

+ vTC1(ΩG × n1) + vTC1[(α1u1 + β1v1)u̇1 + (α′
1u1 + β′

1v1)v̇1]

g̈U =uT1 [JC1q̈ + jC1 +ΩG × vC1 +ΩG × (u1u̇1 + v1v̇1)]+

+ vTC1(ΩG × u1) + vTC1[(Γ
1

11,1u1 + Γ 2
11,1v1 + L1n1) u̇1+

+ (Γ 1
12,1u1 + Γ 2

12,1v1 + M1n1) v̇1]

g̈V =vT1 (JC1q̈ + jC1 +ΩG × vC1 +ΩG × (u1u̇1 + v1v̇1))+

+ vTC1(ΩG × v1) + vTC1[(Γ
1

12,1u1 + Γ 2
12,1v1 + M1n1) u̇1+

+ (Γ 1
22,1u1 + Γ 2

22,1v1 + N1n1) v̇1]. (7.117)

A simplification is possible if we substitute the scalar products vTC1n1, vTC1u1

and vTC1v1 through the constraints on velocity level ġN , ġU and ġV from the
equations (7.109) and (7.111). We also know that ġN disappears, when the
normal constraint is active. The relative sliding velocities ġU and ġV van-
ish, if the tangential constraints are active (stiction). Regarding all this, the
constraint equations have the final form:
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g̈N = nT1 JC1︸ ︷︷ ︸
wT

N

q̈+

+nT1 jC1 + nT1 (ΩG × (u1u̇1 + v1v̇1)) + ġU (α1u̇1 + α′
1v̇1) + ġV (β1u̇1 + β′

1v̇1)︸ ︷︷ ︸
wN

,

g̈U = uT1 JC1︸ ︷︷ ︸
wT

U

q̈ + uT1 jC1 + uT1 (ΩG × v1) v̇1︸ ︷︷ ︸
wU

,

g̈V = vT1 JC1︸ ︷︷ ︸
wT

V

q̈ + vT1 jC1 + vT1 (ΩG × u1) u̇1︸ ︷︷ ︸
wV

.

(7.118)

The terms linearly dependent on the generalized accelerations q̈ are sum-
marized in the constraint vectors wN in normal and wU , wV in tangential
direction. The remaining parts are abbreviated with the scalar values w̃N ,
w̃U , w̃V .

The only unknowns in equation(7.118) are the time derivatives of the pa-
rameters u̇1, v̇1, u̇2, v̇2. They describe the motion of the contact point on the
two surfaces during the simulation. To evaluate these derivatives we require,
that the equations specifing the contact point always have to be fulfilled. Their
time derivatives have to disappear:

d

dt

(
nT1 u2

)
= 0,

d

dt

(
nT1 v2

)
= 0,

d

dt

(
rTDu2

)
= 0,

d

dt

(
rTDv2

)
= 0.

(7.119)

Figuring out equation (7.119) we obtain a system of equations, which are
linear in the derivatives of the contour parameters:
uT2 (α1u1 + β1v1) uT2 (α′

1u1 + β′
1v1) L2 M2

vT2 (α1u1 + β1v1) vT2 (α′
1u1 + β′

1v1) M2 N2

−uT1 u2 −uT1 u2 E2 F2

−uT1 v2 −uT1 v2 F2 G2



u̇1

v̇1

u̇2

v̇2

 =

=


−ΩT

1 (u2 × n1)
−ΩT

1 (v2 × n1)
uT2 vC1

vT2 vC1

 . (7.120)

This linear problem has to be solved at every time step of the numerical
integration.

Between mating parts more than one sliding or sticking contact point may
exist, so that a variable number of constraints is active during the simulation.
Let nn be the number of contact points and nT the number of sticking contact
points. Then the constraint equations in vector form are:

∼

∼

∼
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g̈N =W T
N q̈ + w̃N , WN = (wN,1, . . . ,wN,nN ) ∈ IRf,nN ,

w̃N = (w̃N,1, . . . , w̃N,nN )T ∈ IRnN ,

g̈U =W T
U q̈ + w̃U , WU = (wU,1, . . . ,wU,nT ) ∈ IRf,nT ,

w̃U = (w̃U,1, . . . , w̃U,nT )T ∈ IRnT ,

g̈V =W T
V q̈ + w̃V , W V = (wV,1, . . . ,wV,nT ) ∈ IRf,nT ,

w̃V = (w̃V,1, . . . , w̃V,nT )T ∈ IRnT . (7.121)

They are combined with the equations of motion and thus form a system of
differential algebraic equations:

Mq̈ =ĥ+ (WN +W F )λN +WUλU +W V λV ,

with: ĥ = h+Bu− P q̇ −Qq, (7.122) g̈Ng̈N
g̈N


︸ ︷︷ ︸

g̈

=

W T
N

W T
U

W T
V


︸ ︷︷ ︸

W T

q̈ +

w̃N

w̃U

w̃V

 .

︸ ︷︷ ︸
w

, (7.123)

The components of the vectors λN = (λN,1, . . . , λN,nN )T , λU = (λU,1, . . . , λU,nT )T

and λV = (λV,1, . . . , λV,nT )T correspond to the unknown constraint forces
normal and tangential to the respective tangent plane. The termW FλN con-
siders frictional forces in all contact points where sliding occurs. The sliding
direction is given by the relative tangential velocity of the contact point under
consideration, vC1, the magnitude by the normal contact force λN , applying
Coulomb’s friction law. The vector vC1 can be split into two tangential direc-
tions, which are assumed to be perpendicular

vC1 =
uT1 vC1

uT1 u1
u1 +

vT1 vC1

vT1 v1
v1 =⇒

vC1 =
ġU
E1
u1 +

ġV
G1
v1, |vC | =

√
ġ2
U

E1
+

ġ2
V

G1
. (7.124)

The vector of the friction force fR at a sliding contact point is then defined
as

fR =− vC1

|vC1|
µλN = u1

−µġUλN
E1

√
ġ2U
E1

+ ġ2V
G1

+ v1
−µġV λN

G1

√
ġ2U
E1

+ ġ2V
G1

=

=
(
u1

ġU
E1

+ v1
ġV
G1

)
−µλN√
ġ2U
E1

+ ġ2V
G1

. (7.125)

The projection of fR into the space of the generalized coordinates is realized
by multiplication with the Jacobian with respect to the contact point JC1

˜
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wF =JTC1

(
u1

ġU
E1

+ v1
ġV
G1

)
−µλN√
ġ2U
E1

+ ġ2V
G1

=

=
(
wU

ġU
E1

+wV
ġV
G1

)
−µλN√
ġ2U
E1

+ ġ2V
G1

. (7.126)

The matrix W F is then composed by the sliding friction constraint vectors
wF , as defined above. At the contact points with stiction the elements wF

are zero. We have

W F = (wR,1, . . . ,wR,nN ) ∈ IRf,nN . (7.127)

The system of differential algebraic equations (7.122) and (7.123) can easily
be evaluated, if all active constraints are known and do not change, g̈ = 0. We
solve equation (7.122) for the accelerations q̈ and insert these accelerations
into the algebraic equation (7.123), which yields

W TM−1 ((WN +W F )|WU |W V )︸ ︷︷ ︸
A

λNλU
λV

+W TM−1ĥ+ w̃︸ ︷︷ ︸
b

= 0. (7.128)

This system of linear equations has to be solved at every time step of numerical
integration, to evaluate the constraint forces. They are then inserted into the
constrained equations of motion (7.123) to simulate the robot in contact with
the environment.

Special treatment is necessary, if the constraints are changing during the
insertion. For this purpose we have defined special indicators, that notify a
transition in the state of a the contact points. The resulting sliding velocity

in the tangential plane at the contact point is ġT = |vC1| =
√

ġ2U
E + ġ2V

G . A
summary of all indicators and possible transitions is shown in the following
table (see also the equations (3.154) and (3.150) on page 141)

constraint change indicator typ of indicator
getting active no contact → contact gN = 0 kinematic

sliding → sticking ġT = 0
getting passive contact → no contact λN = 0 ∧ g̈N > 0 kinetic

sticking → sliding λT0 = 0 ∧ g̈T > 0

Round Peg in Hole

The experimental setup with the PUMA, the environment and the sensors
is shown in Fig.16. The force–torque sensor between the last joint of the
manipulator and the gripper is used to measure the mating forces. Six laser
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sensors are utilized to observe the position and orientation of the gripper. In
this specific setup the peg was cylindrical with a diameter of ø 39.9mm and
a round chamfer with radius r1 = 4mm, shown in Fig.17. The hole had a
diameter of ø 40mm and also a round chamfer with radius r2 = 6mm. Thus
the clearance between the peg and the hole is only 0.1mm. Mathematically
the peg and the hole are cylinders, each chamfer is modeled as a torus. The
parameterization of the peg is for example:

cylinder: rΣ1 =

R1 cosu1

R1 sinu1

v1

 ,

torus: rΣ1 =

(R1 + r1(cos v1 − 1)) cosu1

(R1 + r1(cos v1 − 1)) sinu1

sin v1

 , (7.129)

where R1 = 19.95mm and r1 = 4.0mm. The description of the hole is the
same, we only have to replace the index ()1 by the index ()2, where R2 =
20.0mm and r2 = 6.0mm. Between the to mating partners three potential
contact points exist:

number peg hole
1 torus 1 ←→ torus 2
2 cylinder 1←→ torus 2
3 torus 1 ←→ cylinder 2

The position of the robot for the insertion task was γ0 = (−8.4◦,−152.8◦,17.9◦,
0.0◦,−44.9◦,−8.4◦)T . The initial displacement of the robot with respect to the
axis of the hole was 2.1mm in the xG–direction and 1.3mm in the yG–direction
(see G–frame in Figure 7.32 for detailed explanation). The mating trajectory
was 80mm along the zG–axis.

In Figure 7.33 we see the first results from the insertion. The peg and the
hole are displayed from two sides. On the two parts we recognize the trace
of the contact points. On the left side we see the point of the first contact
between the two chamfers, due to the initial displacement. The workpieces are
then sliding along the chamfers, until there is a transition of the contact point
to the cylinder of the peg. In this situation, the peg touches the chamfer along
a straight line, as long as only one point is in contact. After about 5cm of
insertion, a second contact point arises at the other side, displayed in Figure
7.33 on the right. Through this additional constraint the peg is moving in
such a way, that both contact points are moving to the middle of the peg with
respect to the displayed viewpoint.

In the next Figure (Fig. 7.34) we have plotted the constraint forces of
the three possible contact point combinations, which prevent the parts from
penetrating each other, and the mating force in the direction of insertion.
In the left diagram we recognize, that the force between the two chamfers is
comparatively small. As the two chamfers lose contact, the force is transferred
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Fig. 7.32: Mating Experiments

Fig. 7.33: Contact Point Traces for Round Peg-in-Hole Configuration

by the next constraint between cylinder1 and torus2. When the second contact
point arises, at about 1.3s, the load starts rising. As the peg moves deeper into
the hole two opposing forces are acting at different sides of the peg, achieving
values of more than 100N .

Here we can show both, measurement and calculation. Even though, the
contact forces reach very high values, the mating forces stay on a lower level.
At the beginning we see clearly the peak, when the two chamfers get in contact.
As only one constraint is active, the load is small afterwards. The highest
values appear again in the two point contact situation. But they do not rise
to such a high level as the contact forces themselves, because the latter act in
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Fig. 7.34: Constraint Forces in the Contacts and Insertion Force

different directions. This part of the insertion is mainly governed by friction
between the parts.

Rectangular Peg in Hole

Finally we consider a rectangular peg with a chamfer inserted into a rectan-
gular hole, where the geometry is shown in Fig.20 on the left. If we introduce
four modeling planes, we can investigate this spatial example in a planar man-
ner. In every side of the peg one such plane is introduced, which is displayed
in Figure 7.35 on the right. Two sides are situated within the xy–plane, and
two in the xz–plane. There are two different types of contact points: point–
plane and edge–edge. Let the letters a, b, c, d in Figure 7.35 denote points and
the numbers 1′, 2′, 3′, 4′, 5′ denote planes. Then there are four possible contact
points of the type point–plane: a− 2′, b− 1′, c− 5′, d− 4′. For the other type
edge–edge the numbers 1, 2, 3, 4, 5 denote edges on the peg and the letters
a′, b′ denote edges of the hole. There exist six potential contacts of this type:
1− a′, 2− a′, 3− a′, 3− b′, 4− b′, 5− b′. Thus we have altogether 40 potential
constraints between the peg and the hole with the sketched geometry in the
spatial case.

Measurements were again conducted with the PUMA 560 manipulator
inserting the rectangular peg with the chamfer into the rectangular hole. The
starting position of the manipulator was γ0 = (4.6◦, −157.2◦, 27.5◦, 0.0◦,
−50.3◦, 4.6◦)T . The equations of motion of the robot were linearized around
this working point. The mating parts can be seen in Figure 7.35, where the
peg had the measures a = 45.2mm, b = 45.4mm with a chamfer 45◦ × 4mm
and the hole had the dimensions a′ = 46.0mm, b′ = 45.8mm. The robot’s
path during the mating task was 80mm in positive xA direction. We show
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Fig. 7.35: Rectangular Peg in Hole Configuration

here the results of four experiments compared to numerical simulations. The
initial lateral displacement between the peg and the hole was set to ±4mm
in the two cartesian directions yA and zA.

Let us first regard the experiments, where the displacement was ∆yA =
±4mm. In Figure 7.36 the gripper forces during insertion Fx and Fy are
shown. The upper plots are measurements, the lower plots are the calculated
results for the same starting configuration. In both cases there is a peak of Fx
versus the manipulator motion, when the chamfer of the peg comes in contact
with the upper edge of the hole (see Figure 7.35 on the right, contact points
of type 4 − b′ in case of positive or 2− a′ in case of negative displacement).
After having passed the edge, it is sliding downwards, having contact with
one side of the hole (see Figure 7.35, contact points of type 5 − b′ in case of
positive or 1− a′ in case of negative displacement). The force Fy due to this
contact acts towards the center of the hole.

More interesting are the experiments, where the displacement was varied
in the zA direction: a) ∆zA = +4mm, b) ∆zA = −4mm. Here the behavior of
the manipulator is different for both cases, see Figure 7.37 (top: measurement,
bottom: calculation). If there is a displacement ∆zA = +4mm, there is again
a force peak in Fx at the first contact (contact points of type 4 − b′), when
the chamfer slides at the upper edge of the hole. The peg is then sliding into
the hole, having contact with the upper edge (5 − b′), similar to the first
two experiments. A completely different behavior can be observed, when the
lateral displacement is ∆zA = −4mm. Here only the beginning of the insertion
is similar to the above cases (2 − a′ and 1 − a′). But as the peg goes deeper
into the hole, there are additional contact points (of type d − 4′) inside the
hole, after about 2.7s. The contact forces and thus the mating forces Fx and
Fz become very large, due to jamming. The insertion finally succeeds, because
the drive torques are increased by the controller.
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Fig. 7.36: Mating Forces for a Displacement in yA-Direction (top measure-
ments, bottom simulations)

The reason for the unsymmetric behavior of the robot in cases a) and b)
can be found in the robots starting configuration. If a force in negative xA
direction is applied, the manipulator is not only displaced in the same direction
(−xA), but also in negative zA direction because of couplings in the stiffness
matrix. This means for the example with initial displacement ∆zA = +4mm
(Figure 7.37), that the gripper is moved towards the center of the hole, when
the peg is in contact with the hole. Therefore the contact forces are reduced.
The opposite happens, if the lateral displacement is ∆zA = −4mm. As mating
forces act on the gripper, the gripper moves away from the hole, whereas the
mating forces additionally increase.

All measurements confirm very well the models and the theory.
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Fig. 7.37: Mating Forces for a Displacement in zA-Direction (top measure-
ments, bottom simulations)
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7.3.3 Combined Robot and Process Optimization

7.3.3.1 Introduction

Machines perform processes, and also robots perform processes. Consequently
the consideration of one of these two parts alone is not enough, one must deal
with both. We are interested in dynamics and control of assembly processes
in manufacturing executed by robots. For achieving a realistic presentation
of the real world we have to model the assembly process in combination with
the robot’s dynamics in its entirety, meaning a consideration of dynamics and
control for the manipulator and the assembly process together [219], [220],
[271]. Mating parts by a manipulator will be always accompanied by local im-
pacts, by oscillations and by tolerance problems, which influence the assembly
process or, in the worst case, make mating impossible. A suitable parameter
optimization of robot, process and control can avoid this and assure more
productivity and reliability. In the following we shall consider such an opti-
mization.

7.3.3.2 System Models

A typical feature in robotic manipulation tasks is a frequent change of contact
configurations between the corresponding workpieces. The resulting forces and
moments acting on the end-effector influence the motion of the manipulator
during the task. When modeling such processes, we can distinguish between
the dynamic model of the robot and that of the process dynamics, but we
have to consider it in a realistic combination.

Industrial robots suitable for complex assembly tasks have to provide
at least six degrees of freedom and, to ensure flexible operation, a large
workspace. We will therefore focus on manipulators with 6 rigid links and
6 revolute joints, which are very popular in industry. Such a robot can be
modelled as a tree-structured multibody system (Figure 7.38).

The joints of the first three axes are considered elastic in order to take the
finite gear stiffnesses and damping into account, which play an important role
in precision assembly. For this purpose a linear force law consisting of a spring-
damper combination cj , dj , combined with the gear ratio iG,j, j = 1, . . . , 3, is
assumed. The gears of the hand axes are considered stiff and the motion of
one arm and its corresponding motor is kinematically coupled. Nevertheless
we should keep in mind, that in reality the gears of the hand axes are elastic
as well. However, the masses of the wrist bodies are comparatively small and
thus the associated natural frequencies are out of the range of interest for our
purposes. Backlash does not play an important role in modern robots [107],
therefore we shall neglect such effects.

The robot possesses therefore 9 degrees of freedom, 6 arm angles and 3
free motor angles. The vector q of generalized coordinates writes accordingly
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Fig. 7.38: Model of the Manipulator

q =
(
qM
qA

)
∈ IR9,

qM =
[
γM,1 γM,2 γM,3

]T ∈ IR3, qA =
[
γA,1 . . . γA,6

]T ∈ IR6, (7.130)

where γM,j, γA,j denote the angle of the j-th motor and arm, respectively,
relative to the previous body, see Figure 7.38. Translational and rotational
velocities ṙj and ωj of the center of gravitiy of each link can thus be calculated
recursively starting at the robot’s base (see also equation (7.3)),

ωj =ω(j−1) +∆ω(j−1),j , ∆ω(j−1),j = γ̇A,j

ṙj =ṙ(j−1) +
(
ω(j−1) × rCJ,(j−1)

)
+ (ωj × rJC,j) , (7.131)

where rCJ,(j−1) and rJC,j denote the distance vectors between center of grav-
ity (C) and joint position (J), as depicted in Figure 7.38. Particularly, trans-
lational and angular velocity of the gripper end point are

ωG =
6∑
j=1

ωj ,

ṙG =
6∑
j=1

[(ωj−1 × rGJ,j−1) + (ωj × rJG,j)] + (ω6 × rGJ,6) . (7.132)

The gripper Jacobians, which relate the Cartesian motion of the gripper to
the generalized coordinates, write

JTG =
∂ (A60ṙG)

∂q̇
∈ IR3×9,

JRG =
∂ (A60ωG)

∂q̇
∈ IR3×9. (7.133)
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In this operation, ˙rG and ωG are transformed by A60 into a gripper-fixed
coordinate frame, so that JTG and JRG are related to the gripper system G
(Figure 7.38), which is convenient in manipulation tasks.

In the three basic axes the arm angles and the motor angles are connected
by a linear force law representing the finite gear stiffnesses:

τA,j = cj

(
γM,j

iG,j
− γA,j

)
+ dj

(
γ̇M,j

iG,j
− γ̇A,j

)
, (j = 1, 2, 3) (7.134)

cj and dj are stiffness and damping factors of the j-th gear and iG,j is the
gear ratio. The equations of motion of the robot with forces acting on the
gripper can be written as

g := M(q)q̈ + f (q, q̇)−BτC −W (q)λ = 0, (7.135)

withM ∈ IR9×9 being the inertia matrix,B ∈ IR9×6 andW =
[
JTTG J

T
RG

]
∈

IR9×6 are the input matrices for the 6 motor torques (τC ∈ IR6) and gripper
forces (λ ∈ IR6), respectively. λ contains all contact forces and torques acting
on the gripper, reduced to the gripper reference point. f(q, q̇) is a vector
containing the gravitational and centrifugal forces as well as the moments in
the gear elements, described in equation (7.134). Let us assume the robot to be
controlled by six PD joint controllers, one for each joint, which are represented
by

τC = −Kp (qM − qMd)−Kd

(
q̇M − q̇Md

)
, (7.136)

where

Kp = diag [Kp,1, . . . ,Kp,6] ∈ IR6×6 ,

Kd = diag [Kd,1, . . . ,Kd,6] ∈ IR6×6 ,

qMd = [γM1d, . . . , γM6d]
T ∈ IR6 ,

qM = BTq ∈ IR6,

with Kp,j,Kd,j being the stiffness and damping control coefficients of the j-th
axis referring to motor angles as inputs and motor torques as outputs. γMjd

is the motor angle of the j-th motor desired for a given position.
Taking into account that the length of a trajectory for mating two parts

together is small compared to the robot’s characteristic measures, equation
(7.135) can be linearized around a working point q = q0 + q, q̇0 = q̈0 = 0,
with q0 being

q0 = [iG,1γA,1,0 iG,3γA,3,0 | γA,1,0 . . . γA,6,0]
T
, (7.137)

which gives the position of the robot within its workspace
[
γA,1,0 . . . γA,6,0

]T
and the respective motor drive positions

[
iG,1γA,1,0 . . . iG,3γA,3,0

]T of the
three base axes. The linearized equations of motion are then derived from
equation (7.135)
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M(q0)q̈+P̃ (q0,Kd)q̇ + Q̃(q0,Kp)q =
= h(q0) +BKpqMd +BKdq̇Md +W (q0)λ(q, q̇),

P̃ (q0,Kd) =P (q0) +BKdB
T , P (q0) =

∂g

∂q̇

∣∣∣∣
q=q0;q̇=0;q̈=0

,

Q̃(q0,Kp) =Q(q0) +BKpB
T , Q(q0) =

∂g

∂q

∣∣∣∣
q=q0;q̇=0;q̈=0

, (7.138)

with the damping matrix P (q0) ∈ IR9×9 and the stiffness matrix Q(q0) ∈
IR9×9. The magnitude h(q0) = f |q=q0;q̇=0 contains only the gravitational
forces needed to balance the system statically.

According to equation (7.138) the robot dynamics is linear and time-
invariant as long as the robot moves within a small domain around the lin-
earization point. This is the case for most manipulation tasks, since in most
cases they can be divided into a phase of free motion (large motion, nonlinear)
and a manipulation phase with small (linearizable) movements.

Table 7.1: Optimization concept
domain robot response behavior
criteria • impact sensitivity

• maximal robot force
• mating tolerance
• vibrational behavior

constraints robot design:
• joint angle limitations
• joint torque limitations

robot control:
• controller stability
• singularities

practical demands in cell:
• workspace restrictions

The goal is now to find q0, Kp and Kd such that the system described by
the equations (7.138) behaves optimally with respect to the criteria relevant
for a specific process,where q0, Kp and Kd can be optimized already with
only a rough knowledge of the process to be carried out. As can be seen
from table 7.1, optimization of robotic manipulation processes, particularly
assembly, is essentially a trade-off between different, sometimes contradictory,
aims. Optimizing for reduced sensitivity against gripper impacts, for example,
may deteriorate the behavior with respect to the maximal applicable gripper
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force and vice versa. Thus, a set of criteria is established, with which a vector
optimization problem can be stated. The specific needs of different processes
are taken into account by the correct choice of criteria and weighting factors.
For this purpose, the functional-efficient set of solutions is calculated, from
which an optimal trade-off between the criteria can be chosen.

It should be noted, that the above approach can be extended to robots with
any kinematics. The tree structure of many industrial robots is not necessarily
needed for successful application. To apply the method the following quantities
describing the robot’s kinematics and kinetics must be known:

• forward kinematics rG(q), A60(q),
• gripper Jacobians of translation and rotation JTG(q), JRG(q),
• equations of motion (7.135): M(q), f ((q, (q̇)), B(q).

7.3.3.3 Criteria and Constraints

The effects, which influence the robot’s behaviour during an assembly task
have been worked out by a quasistatic and dynamic analysis of the robot dy-
namics in conjunction with a detailed modeling of different mating processes,
see [153], [211], [241]. Scalar optimization criteria are derived from them, the
minimization of which yields an improvement of the system’s performance
with regard to the respective effect.

Optimization Criterion - Impact Sensitivity

When the mating parts are getting in contact with each other, impacts are
unavoidable. However, their intensity is proportional to the effective mass
mred =

[
wTM−1w

]−1
, reduced to the end effector, where w is the projection

of the impact direction into the generalized coordinates and depends on the
robot’s position as well as on the Cartesian impact direction (see also the
relations (3.160) and (3.161) on the pages 144). Figure 7.39 shows an ellipsoid

Fig. 7.39: Impact Sensitivity in the Cartesian Directions [271]



7.3 Dynamics and Control of Assembly Processes with Robots 481

at the robot’s gripper, from which the reduced end-point inertia for each
Cartesian direction can be seen. In order to reduce the impact sensitivity,
the volume of that ellipsoid must be minimized. Thus, we define the reduced
endpoint inertia matrix Mred as

Mred =

([
JTG
JRG

]
M−1

[
JTG
JRG

]T)−1

∈ IR6×6 . (7.139)

Depending on the specific needs of the mating process, a 6× 6 diagonal posi-
tive semidefinite matrix gM of weighting factors is introduced for the trade-off
between the cartesian directions. In gM the directions, in which impacts will
occur during manipulation, can be emphasized. Thus, geometrically, the el-
lipsoid will be squeezed or rotated during an optimization from directions,
in which the mating process considered is sensitive against impacts into di-
rections, in which impacts are not likely to occur. Therefore, as a first opti-
mization criterion for the minimization of impact intensities in the sensitive
directions

G1 =
∥∥gTMM redgM

∥∥ (7.140)

is stated, with ‖A‖ =
√

trace
(
ATA

)
being the Frobenius-norm of A. The

matrix gM contains the proper physical units, so that G1 is dimensionless.

Optimization Criterion - Maximum Applicable Mating Force

The maximum applicable mating force is λmax in the direction of insertion.
The upper bound for the applicable mating force λ is defined by the maximum
torque of each motor multiplied by the resulting lever arms. λmax can thus
be evaluated from

λmax = min
i


max


max
(
hi − τi,max
JTTG n

; 0
)

max
(
hi − τi,min
JTTG n

; 0
)



, (i = 1, . . . , nM ),

(7.141)

where nM is the number of driven axes and n is a unit vector denoting the
cartesian insertion direction. hi(q0) is the torque necessary at joint i to balance
the gravitational forces, it is equal to the i-th component of h(q0). For a
maximization of λmax, its inverse is taken as the second criterion

G2 =
1

λmax
. (7.142)
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Optimization Criterion - Mating Tolerance

The deviation ∆xG from the desired path for a given static force depends
on the endpoint stiffness, reduced to the Cartesian gripper coordinates, see
Figure 7.40. A quasistatical force equilibrium at the gripper yields

Fig. 7.40: Force Equilibrium for Mating Tolerance

∆xG = Q−1
redλ+∆xP , Qred =

([
JTG
JRG

]
Q̃

−1
[
JTG
JRG

]T)−1

. (7.143)

∆xP is the deviation resulting from the clearance between the two parts and
from the stiffness of the parts themselves. Therefore it depends only on the
mating process itself and needs not to be considered here. For a maximiza-
tion of ∆xG the reduced stiffnesses Qred in the lateral directions must be
minimized. Together with a weighting factor gQ, which contains the cartesian
directions, in which the tolerances are critical, this forms the criterion for the
maximization of the mating tolerance. It is the third criterion

G3 =
∥∥gTQQredgQ

∥∥ . (7.144)

G3 is also made dimensionless by proper physical units in gQ. It should be
noted, that for translational deviations, mainly the directions perpendicular
to the insertion direction should be emphasized by gQ, and all rotational
directions can possibly be contained, whereas the cartesian stiffness in the
insertion direction does not contribute to the mating tolerance and should be
high for a reduced path deviation.

Optimization Criterion - Disturbance and Tracking Properties

When being excited by disturbances (e.g. by impacts), the gripper performs
oscillations, the amplitude and damping of which depend strongly on the ro-
bot’s position and on the joint controller. On the other hand, a desired force or
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motion must be transmitted to the end effector as directly as possible. All this
has to be performed with as little expenditure of energy as possible. To meet
these requirements, the equations of motion (7.138) are evaluated by time
simulations for certain test inputs and three integral criteria are formulated:

• Damping of force induced gripper oscillations

G4 =

∞∫
0

xT (t)gSx(t) dt , (7.145)

where x(t) =
[
JTG
JRG

]
q(t) and λ(t) = [0 , 0 , δ(t) , 0 , 0 , 0]T represents a

unit impulse input to the equations (7.138) in the direction of insertion.
gS in equation (7.145) gives the trade-off between end-effector oscillations
in the different cartesian directions.

• Transmission of a desired force to the end-effector:

G5 =

∞∫
0

(λ− λd)T gF (λ− λd) dt , (7.146)

where τC,d(t) = −I−1
G W (q0)

Tλd(t) contains the motor torques needed
to exert the desired end effector forces. W is the projection from working
space into configuration space and IG denotes the matrix of gear ratios.
As a test signal λd(t) = [0, 0, σ(t), 0, 0, 0]T is used, where σ(t) is the unit
step function.

• Joint torques: A perfect damping of gripper oscillations and perfect track-
ing properties would require infinite joint torques. Thus, as soon as control
coefficients are being optimized, the necessary torques must be considered.
The performance criterion to be minimized is

G6 =

∞∫
0

τTCgττC dt (7.147)

with the same disturbance as in equation (7.145) and τC being the joint
torques from equation (7.136).

The above list of optimization criteria is of course not a complete list
of possible objectives for robotic optimization. However, for a large class of
manipulation tasks, a combination can be found suitable for the specific prop-
erties of the process. For example the assembly of snap fasteners is character-
ized by comparatively high mating forces and jumpy force trajectories, which
might excite gripper oscillations. The latter must be damped by the robot
controller. On the other hand impacts occur when the parts are getting in
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contact to each other. For these reasons the criteria for impact sensitivity G1,
for mating force G2 and a mixed criterion for gripper oscillations and motor
torques G4 + G6 would make sense in this case. Mating tolerance, i. e. grip-
per compliance, is not requested because the compliance of the snap itself is
sufficient to compensate for possible position errors.

For any process the cartesian weighting factors gM , gQ, gS , gF and gτ can
be chosen from physical evidence: e. g. the impact intensities during insertion
of a rigid peg into a hole will be worst in the cartesian zG-direction. Thus, a
large weight must be imposed on it in gM . The cost functions are normalized
using the values Gi,0 referring to a reference configuration, see Figure 7.41.

Fig. 7.41: Cost Functions for Different Processes

Constraints

In order to obtain sensible results, which can be utilized in practice, certain
constraints have to be imposed on the optimization problem. We shall also
see from the sensitivity analysis that the highly nonlinear programming prob-
lem defined by the equations (7.140) to (7.147) shows good convergence only
if it is ”properly” constrained, i. e. that the parameters are restricted to a
domain, where a minimum of the criteria can be reliably found. We consider
the following constraints:
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• The linearized equations of motion (7.138),

• Joint angle limitations:

qmin ≤ q0 ≤ qmax , (7.148)

• Joint torque limitations:

τC,min ≤ τC ≤ τC,max . (7.149)

Joint angle and joint torque limitations for our example are chosen ac-
cording to those of the PUMA 562 robot. Joint speed limitations due to
motor current limitations need not to be considered in the optimization of
robot position and controller coefficients. But it is an issue in trajectory
planning tasks as described in [219].

• Stability of the controller used: As soon as control coefficients are being op-
timized, stability of the resulting system must be assured by suitable con-
straints. Since the robot dynamics is linearized around a working point and
therefore has linear time-invariant characteristics (see equation (7.138), the
eigenvalues of the dynamic system matrix derived from equation (7.138)
are calculated and their real parts are restricted to be negative.

Re
{

eig
[

0 I
−M−1Q̃ −M−1P̃

]}
< 0 . (7.150)

• The proximity to singularities must be avoided. In such positions the robot
would not be able to move in the desired manner and the obtained results
would be without any practical relevance. Furthermore, some of the opti-
mization criteria tend to infinity at singular positions. Thus, punching out
finite regions around them would improve the condition of the optimiza-
tion problem. As a measure the condition number κ of the end effector’s
Jacobian is used, which is defined by κ(A) = ‖A‖‖A−1‖ and tends to
infinity as the Jacobian becomes singular.

κ

([
JTG(q0)
JRG(q0)

])
< ε . (7.151)

In the example ε is chosen ε = 20.

• Position and orientation of the gripper are restricted by external con-
straints, such as obstacles within the working space, or the requirement
that the parts should be assembled on a workbench with a given height.
Position and orientation are calculated using the robot’s forward kinemat-
ics, so that geometrical constraints can be stated in Cartesian space. For
simplicity in our example, we restrict the robot’s position to a cube, the
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edges of which are parallel to the base coordinate frame B of the robot,
see Figure 7.42:

Brmin ≤B rG(q0) ≤B rmax . (7.152)

Orientation restrictions are expressed using the rotational gripper trans-
form AGB. In the example, we choose the orientation to be restricted such
that the zG direction should have a negative component in the xB- and the
zB-directions, which means that the mating direction points downwards
away from the robot’s base.

Fig. 7.42: Work Space Restrictions

Example: Rectangular Peg-in-Hole Insertion

We illustrate the method with the position controlled insertion of a rigid
rectangular peg into a hole using a PUMA 562 manipulator, starting from the
reference configuration q0,ref ,Kp,ref ,Kd,ref defined in equation (7.153). This
configuration is characterized by short effective lever arms that disturbances
can work on, and small control coefficients, which increase gripper compliance
for improved mating tolerance:

q0,ref = 2 −152 −4 0 −19 179 [◦]

Kp,ref = 1.604 1.304 2.608 0.395 0.556 0.390
Nm

rad

Kd,ref = 0.055 0.013 0.019 0.00263 0.00280 0.00195
Nms

rad
(7.153)

(

(

(

(

)

)

)
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Rigid peg-in-hole insertion is mainly characterized by rigid body contacts, the
occurrence of which can not be predicted because of the limited positioning
accuracy of the gripper. Thus, peg and hole will show lateral and angular
offsets between each other. This causes impacts between the peg and the
chamfer, which result in gripper oscillations. On the other hand, compliance
in the lateral directions is required in order to compensate for positioning
errors. Therefore, for a rectangular peg-in-hole process, the criteria for impact
sensitivity, mating tolerance and damping of gripper oscillations are the most
relevant ones. For our case study we choose the vector of objective functions

G =


(
G1
G1,0

)(
G3
G3,0

)(
G4+G6

G4,0+G6,0

)
 ∈ IRnG (7.154)

normalized to the objective function values Gi,0, i = 1, 3, 4, 6 of the reference
configuration q0,ref , Kp,ref and Kd,ref .

Let us for an appropriate choice of Cartesian weighting factors assume
the lateral clearance in x-direction between the two parts to be smaller than
the robot’s positioning accuracy. In y-direction the clearance is assumed to
be large enough to avoid contact with the chamfers. Thus, impacts will occur
mainly in the x- and z-directions, and optimizing for impact intensities means
to find a position, where the effective end-effector masses in x and z are mini-
mized. The mating tolerance for this process is determined by x-translational
and ϕy-rotational Cartesian stiffnesses. Also the vibration behavior is most
critical in x- and z-direction and the weights for the motor torques are chosen
according to the maximum motor torques of the PUMA 562 robot. Thus, the
cartesian weights for our example problem write

gM = diag 1 1√
kg

0 1 1√
kg

0 0 0 ,

gQ = diag 1 m
N

0 0 0 1 rad
Nm

0 ,

gS = diag 1 1
m2 0.1 1

m2 1 1
m2 0 0.1 1

rad2 0.1 1
rad2 ,

gτ = diag 0.2 0.2 0.2 6.2 6.2 6.2 1
Nm2 .

(7.155)

7.3.3.4 Sensitivity Analysis

Objectives

Before optimization, a sensitivity analysis of the objective functions with re-
spect to q0, Kp and Kd is performed, and an impression of the shape of the
objectives is given. Such an analysis has to be very specific about the robot
used and the cartesian weighting factors, because the characteristics of the
objectives depend strongly on the manipulator kinematics and the task to be
carried out. We regard a PUMA 562 robot performing the position controlled
peg-in-hole task described before.
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The optimization problem possesses 18 degrees of freedom, 6 joint angles
and 12 coefficients Kp,i, Kd,i. Furthermore, the objectives are nonlinear and
nonconvex functions of the parameters. Thus, a sensitivity analysis can only
give limited insight into the shapes of the objectives, because only projections
into some parameter directions can be plotted. However, some characteristic
properties of the functions can be worked out. For this purpose the functions
are discussed starting from the reference configuration from equation (7.153)
by variation of one or two parameters each.

As can be seen from Figure 7.43 the position of the manipulator has a
strong influence on the cost functions and therefore on the dynamic behav-
ior. Thus, performing a process in an unfavorable position may deteriorate
performance significantly or even be prohibitive for a successful completion.
The kinematics of the PUMA 562 is such that a variation of the base axis

Fig. 7.43: Graphs Top: Cost Functions over Shoulder Angle γ2 and Wrist
Angle γ4, Graphs Bottom: Cost Functions over Elbow Angle γ3 and Gripper
Angle γ6, (γi = qA,i), [219]

has no influence on the dynamic behavior, because there is no change in the
configuration connected with it. Nevertheless, γ1 must be considered during
optimization, because it influences the working space constraints (7.151). It
can be seen from Figure 7.43 that in the reference position (γ4 = 0), where
the mating direction is in a common plane with axis 1, variation of γ2 has
no influence on any of the cost functions. Kinematically, γ2 affects only the
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effective lever arm between gripper and axis 1. Thus, if its length is already
zero, no further influence is possible. If, on the other hand, γ4 is twisted by
turning the tool axis out of the vertical plane, variation of γ2 has significant
influence on either of the objectives.

In contrast to this, the influence of the elbow angle γ3 and that of the tip
angle γ6 on the cost functions are largely decoupled. Significant in Figure 7.43
is the periodic nature of the objectives with respect to γ6. The reason is that
γ6 gives the relative position of the directions emphasized in the Cartesian
weighting factors relative to the robot arm. Figure 7.43 shows also that the
influence of γ6 on G1 and G3 is stronger for smaller values of γ3, hence for
the mating position being close to the robot’s base. The contrary applies for
G4 + G6. From this we can conclude that volume and shape of the impact
ellipsoid described by the definitions (7.140) and of the stiffness norm (7.144)
are mainly determined by γ2 to γ5, whereas they are rotated into directions
favoured by the Cartesian weights through variation of γ6. The value of γ5

was shown to have significant influence only on G3 and G4 + G6, apart from
a singularity at γ5 = 0, which causes a pole in the functions G1 and G3.

In general, Figure 7.43 shows the objective for gripper oscillations and mo-
tor torques G4 +G6 to be highly competitive with impact sensitivity G1 and
mating tolerance G3. On the other hand G1 and G3 show a similar behavior
over the entire workspace, which means that they can well be optimized simul-
taneously. The reason for this is that oscillation amplitudes can be minimized
by choosing high end-effector stiffness and damping, whereas the mating tol-
erance requires a low gripper stiffness. This trade-off is well known in robotics
research from the development of compliance elements.

As shown in Figure 7.44, the objective for mating tolerance is a monoton-
ically increasing function in all proportional gains Kp,i, which have a direct
influence on the end-effector stiffness. However, the controller stiffnesses act
on the gripper via the forward kinematics, which is strongly dependent on the
robot position. As a consequence, the position determines largely how strong
the control gains influence performance. Figure 7.44 shows that in the refer-
ence position G3 is mainly influenced by Kp,2, Kp,3 and Kp,5, hence the joint
controllers of the axes, which allow motion in the desired compliant Cartesian
direction. With the 6th axis twisted by 90o, compliance in the desired direc-
tion is mainly governed by Kp,4, Kp,5 and Kp,6. It is this dependency between
controller gains and robot position, which makes it sensible to optimize q0,
Kp and Kd simultaneously.

From the above considerations we can conclude that the considered objec-
tives are in accordance with physical evidence. Hence they reflect the physical
behavior of the system in the sense that they become a minimum at the loca-
tions, where performance is best. On the other hand, they are highly nonlinear
functions of the optimization parameters. This forms a nonlinear, nonconvex
optimization problem. Moreover, some of the cost functions tend to infinity
at singularities showing very high curvatures. Thus, for an efficient optimiza-
tion, analytical derivatives of the objective functions, for which a calculation
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controller gain [Nm/rad]controller gain [Nm/rad]

Fig. 7.44: Cost Function G3 over Proportional Controller Gains Kp (left: ref-
erence position; right: 6th axis twisted by 90◦)

is possible at a reasonable cost may significantly improve convergence. This is
done for G1, G2 and G3 and for the singularity (7.151) and working space con-
straints (7.152) using analytical calculation software. The objective functions
possess local minima, in which the optimization routine may converge, so that
an optimization of the position makes sense only, if the problem is constrained
to a certain region within the working space. However, in most cases practical
considerations in a real environment yield working space restrictions anyway.

Analytic Cost Function Derivatives

In order to improve numerical convergence of an optimization procedure, an-
alytic function derivatives of these functions are calculated, for which this
can be done at a reasonable computational expense, namely G1, G2 and G3

from the equations (7.140), (7.142) and (7.144). In constraint space analytic
gradients are supplied for singularity (7.151) and working space constraints in
position, (7.152), and orientation, AGB. All other derivatives are calculated
by finite differences during optimization.

Let dM
dq0i

, dP
dq0i

, dQ
dq0i

and dh
dq0i

be the elementwise derivatives of the system
matrices in the relation (7.138) with respect to the i-th component of q0.
dP
dKdi

and dQ
dKpi

are analogously the elementwise derivatives with respect to

the control coefficients. dJG

dq0i
and dJ−1

G

dq0i
denote the elementwise derivatives of

JG = (∂A60ṙG

∂q̇A

∂A60ωG

∂q̇A
) ∈ IR6×6 and J−1

G . All of these expressions can be
calculated from the relation (7.138) using analytic calculation software. We
achieve the following results.

• Impact Sensitivity:

With Mred being established in section 7.3.3.3 and under the assumption
that JG is regular, equation (7.139) can be rewritten as
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Mred =
(
J−1
G (q0)

)T
MA(q0)JG(q0) , (7.156)

where MA ∈ IRnA×nA is the mass-matrix related to the arm coordinates qA,
which can be calculated using equation (7.130)

MA(q0) =
(

∂q̇

∂q̇A

)T
M(q0)

(
∂q̇

∂q̇A

)
, where

(
∂q̇

∂q̇A

)
=
(

0
EnA

)
,

dMA(q0)
dq0i

=
(

∂q̇

∂q̇A

)T
dM (q0)
dq0i

(
∂q̇

∂q̇A

)
. (7.157)

Regularity of JG can be assumed for any 6 DOF robot, which is in a nonsin-
gular position. Thus, the derivative of M red with respect to the joint angles
q0 is

dM red
dq0i

=

((
dJ−1

G
dq0i

)T
MA +

(
J−1
G

)T dMA
dq0i

)
JG+

+
(
J−1
G

)T
MA

dJG
dq0i

.

(7.158)

From equation (7.140) the derivative of G1 with respect to q0 is then

dG1

dq0i
=

trace

(
gM

(
dMred

dq0i

)T
gMgMMredgM

)
‖gTMM redgM‖

. (7.159)

Note that, obviously, the reduced end point mass does not depend on the
control coefficients.

• Maximal Mating Force:

The derivative of G2 with respect to q0 can be calculated from equation
(7.141).

dλmax
dq0i

=

(
dh

dq0i

)
j((

dJTG
dq0i

)T
n

)
j

, (7.160)

where j is the number of the axis, which gives the minimum in the sense that
it fulfills equation (7.141). Equation (7.160) yields together with equation
(7.142)

dG2

dq0i
=
(
dλmax
dq0i

)−1

. (7.161)
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From equation (7.141) follows that dG2
dq0i

has discontinuities at the points where
the ’active’ joint as a joint, which gives the minimal possible force in equation
(7.141), changes. This can cause convergence problems.

• Mating Tolerance:

The derivative of G3 can be calculated analogously to that of G1, see the
equations (7.143) and (7.144). Thus, the derivative with respect to q0i is

dQred

dq0i
=

((
dJ−1

G

dq0i

)T
QA +

(
J−1
G

)T dQA

dq0i

)
JG +

(
J−1
G

)T
QA

dJG
dq0i

, (7.162)

with QA ∈ IRnA×nA and dQA
dq0i

∈ IRnA×nA being

QA(q0,Kp) =
(

∂q̇

∂q̇A

)T
Q(q0,Kp)

(
∂q̇

∂q̇A

)
,

dQA(q0,Kp)
dq0i

=
(

∂q̇

∂q̇A

)T
dQ(q0,Kp)

dq0i

(
∂q̇

∂q̇A

)
. (7.163)

The derivative with respect to Kpi is

dQred

dKpi
=
(
J−1
G

)T dQA

dKpi
J−1
G ,

dQA(q0,Kp)
dKpi

=
(

∂q̇

∂q̇A

)T
dQ(q0,Kp)

dKpi

(
∂q̇

∂q̇A

)
. (7.164)

With respect to the derivatives of G3 it follows from the relations (7.162) and
(7.164)

dG3

dq0i
=

trace

(
gTQ

(
dQred

dq0i

)T
gQg

T
QQredgQ

)
‖gTQQredgQ‖

;

dG3

dKpi
=

trace

(
gTQ

(
dQred

dKpi

)T
gQg

T
QQredg

T
Q

)
‖gTQQredgQ‖

. (7.165)

• Singularity Constraint:
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With equation (7.151) and the definition of the condition number of a matrix,
the gradients of ‖JG‖ and ‖J−1

G ‖ are

d‖JG‖
dq0i

=

trace

((
dJG
dq0i

)T
JG

)
‖JG‖

,
d‖J−1

G ‖
dq0i

=

trace

((
dJ−1

G

dq0i

)T
J−1
G

)
‖J−1

G ‖
.

(7.166)

The derivative of the product of the two norms is then

dκ

dq0i
=

d‖JG‖
dq0i

‖J−1
G ‖+ ‖JG‖

d‖J−1
G ‖

dq0i
. (7.167)

• Workspace Restrictions:

The workspace restrictions are evaluated from the robot’s gripper trans-
form rG(q0), AGB(q0). Therefore, the gradients of the respective constraints
can be directly calculated from differentiating the forward kinematics with
respect to q0.

7.3.3.5 Vector Optimization Problem

The above mentioned criteria and constraints form a nonlinear vector problem
for the position/controller optimization. Thereby the manipulation task to be
carried out is charactarized by a specific combination of cost functions and
weighting factors, which can be chosen by physical evidence, as shown before.
Thus, the complete vector problem for our example writes

min
q0,Kp,Kd

{G : f1 = 0;f2 ≤ 0} (7.168)

with f1(q0,Kp,Kd) coming from equation (7.138) and f2(q0,Kp,Kd) being

f2 =



qmin − q0

q0 − qmax
τC,min − τC
τC − τC,max

Re
{

eig
[

0 I
−M−1Q̃ −M−1P̃

]}
κ

([
JTG(q0)
JRG(q0)

])
− ε

Brmin − Br(q0)
Br(q0)− Brmax

AGB;1,3

AGB;3,3



(7.169)
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It is known from the theory of vector optimization that the equations (7.168)
can not be uniquely solved, if any of the components of G are competing [39].
Rather, the solution of the equation (7.168) is a subspace of the parameter
space of dimension IRnG−1 and denotes the Pareto-optimal set of all possible
solutions of f1 = 0, f2 ≤ 0. Pareto-optimality is reached if none of the
objective functions can be improved without deteriorating at least one of
the other criteria. Using the method of objective weighting [57], a substitute
problem is stated with a scalar preference function P to be minimized. For
this, a vector of weighting factors w = [w1w3w46] ∈ IRnG is introduced such
that

0 ≤ wi ≤ 1 ;
∑

i=1,3,46

wi = 1 ;

P (G(q0,Kp,Kd),w) = wG(q0,Kp,Kd) .
(7.170)

The Pareto-optimal set of solutions is then obtained by solving the scalar
substitute problem

min
q0,Kp,Kd

{P : f1 = 0;f2 ≤ 0} (7.171)

for each vector w, which fulfills equation (7.170). Equation (7.171) is solved
for a systematic variation of w using a Sequential Quadratic Programming
(SQP) algorithm with the Hessian matrix of the Lagrangian function being
updated at each iteration by a quasi-Newton approximation.

7.3.3.6 Results

Numerics and Convergence

The treated optimization problem possesses 18 parameters (q0 ∈ IR6, Kp ∈
IR6, Kd ∈ IR6) and – for the position controlled peg-in-hole insertion – 3
objectives (G1, G3, G4 +G6). The problem itself is nonlinear and nonconvex,
as we have seen in the discussion above. Therefore, if the robot’s workspace
is not restricted during optimization, suboptimal solutions are likely to occur.
However, practical demands in the work-cell require workspace restrictions
anyway, as explained.

To ensure a good condition of the optimization problem both optimization
parameters and objectives are normalized by appropriate scaling factors so
that their different orders of magnitude are balanced. If the problem is well
posed in that sense and if analytic function derivatives are used, the SQP-
algorithm converges versus the solution within approximately 30 function and
gradient evaluations, see Figure 7.45. This number is approximately the same
for all criterion combinations.

The problem of producing suboptimal solutions by numerical optimization
can in the vector problem be adressed by regarding the cost function values at
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Fig. 7.45: Convergence Rate of Optimization

the Pareto-optimal set of solutions: All cost functions must be monotonically
increasing when their weight in the preference function (7.170) is reduced. If
not, this is a strong indication that the solver jumped from one local minimum
to another one. This problem can be overcome by deriving appropriate starting
guesses from the previously found solutions.

Optimization Results

In the following considerations, the reference configuration from the given
data, equation (7.153) being considered suitable for the regarded process, is
used as starting point for the optimization. It is then compared to an ’opti-
mal trade-off’ configuration, which is chosen from the set of Pareto-optimal
solutions. As shown in Figure 7.46, the single cost-functions Gi can be con-
siderably diminished with respect to the reference configuration if they are
emphasized in the preference function P .

impact sensitivity mating tolerance disturbance behavior

Fig. 7.46: Pareto-Optimal Set of Solutions (• point of optimal trade-off)
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The criterion for impact intensities can be reduced by at most 17 %, that
for mating tolerances by 78 % and the damping of end-effector oscillations
and motor torques by up to 79 % with respect to the reference point. How-
ever, it is evident that such large improvements cause deteriorations in other
criteria. For example, optimizing for damping of oscillations only deteriorates
the impact sensitivity by 72 % and optimization for mating tolerance only
increases the oscillation criterion by 136 %. But there are also regions within
the Pareto-optimal area, where all criteria are improved with respect to the
reference configuration. Figure 7.46 shows that over a wide range of possible
weighting factors the criteria for impact sensitivity and for mating tolerance
are not contradictory to each other: A simultaneous improvement of both cost
functions can be observed for a large number of possible weights. Only if G1

is strongly weighted in P , G3 becomes worse. On the other hand, G46 is found
to impose completely different demands on the position and on the controller.
G1 and G3 have their largest value at the point, where G46 is minimized.

From these considerations it is clear that an ’optimal trade-off’ must be
found, which gives a satisfactory improvement in each of the criteria. The
process of finding this optimal trade-off can hardly be formalized in a mathe-
matical sense, because the trade-off between the cost-function weights is gen-
erally governed by criteria, which require human expertise. Thus, the Pareto-
optimal region in Figure 7.46 has to be judged in order to find an optimal
solution. However, finding the best configuration out of this set of possible
solutions is not trivial. Each configuration has thus to be judged by an ap-
propriate analysis, which figures out the physical properties, from which the
optimization criteria are derived.

To judge the improvement in impact sensitivity the impact sensitiv-
ity ellipsoid, introduced in section 7.3.3.3 is investigated, which indicates the
effective mass at the gripper during impacts in different cartesian directions.

Mating tolerance is analyzed by calculating the tolerance area for lateral
and angular path deviations using the methods presented in [271]. The toler-
ance area indicates the maximal translatory and angular deviation, for which
a given static mating force (λmax = 10N) is not exceeded, see the tolerance
equation (7.143).

The disturbance behavior of a linear time-invariant system can be com-
prehended by frequency response functions, which relate the oscillation am-
plitude of the gripper to the gripper forces, as shown in Figure 7.49. Natural
frequencys and resonance peaks give physical evidence about the vibrational
behavior.

These analysis tools provide an engineering feeling for the physical quality
of the solutions, so that the final trade-off can be found. Finally, using the
methods described in [153] and [189] a detailed simulation of the process
including all effects as unilateral contacts, impacts, sliding friction and stiction
as well as all interactions with the robot dynamics can be performed. Physical
evidence can thus be given on different abstraction levels to help the engineer
finding the best solution.
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In our peg-in-hole example w =
[
0.6 0 0.4

]
is chosen, which yields the

following configuration:

q0,opt =
[
3.3 −165.9 1.1 92.3 −39.0 72.5

]◦
Kp,opt =

[
1.226 1.219 1.000 0.132 0.139 0.133

] Nm

rad

Kd,opt =
[
0.0715 0.0331 0.0145 0.0016 0.0024 0.0074

] Nms

rad

Gopt =
[
1.24 0.36 0.33

]T (7.172)

It can be seen fromGopt from the data (7.172) that significant improvements

reference configuration optimal trade-off

x[k
g] x[k

g]
y[kg]

y[kg]

Fig. 7.47: Impact Sensitivity Ellipsoid for ’optimal trade-off’ Compared to
Reference Configuration

in G3 and G46 can be expected, which must be paid for by a slight deteri-
oration in G1. This can be fully comprehended in the Figures 7.47 to 7.49.
The volume of the impact ellipsoid has slightly increased and the main axis
is rotated with respect to the y-axis by a small angle. The tolerance area for
a given maximal mating force of λmax = 10N , calculated from a quasistatic
force equilibrium is significantly enlarged, Figure 7.48. For the judgement of
the disturbance behavior, the amplitude frequency response function for zG
gripper displacement related to zG gripper force is depicted in Figure 7.49.
The resonance peak at the first natural frequency vanishes completely, which
indicates gripper oscillations to be well damped. However, the starting am-
plitude is increased. This is due to the trade-off with the mating tolerance
criterion, which reduces the cartesian end-effector stiffness.

Experimental Verification

The optimized configuration is verified experimentally using the test-setup
depicted in Figure 7.50. A rigid rectangular peg is assembled into a rigid
hole with a clearance of 0.3 mm in xG-direction and an xG offset of 2 mm
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Fig. 7.48: Tolerance Area for λmax = 10N for ’optimal trade-off’ Compared
to Reference Configuration

Fig. 7.49: Transfer Function f = Gxz

Gλz
for ’optimal trade-off’ Compared to

Reference Configuration

using a PUMA 562 manipulator. The desired mating path is a straight line
in zG-direction with a length of 60 mm and an assembly time of 0.4 s. Forces
are measured using a Schunk FTS 330/30 force-torque sensor installed at the
robot’s end-effector. The gripper position is reconstructed by measuring the
joint encoder angles using the robot’s forward kinematics.

For the judgement of impacts, the time histories of the zG gripper force is
considered, Figure 7.51. Significantly, a force peak occurs at the time where
the two parts are getting in contact for the first time, the height of which gives
a measure for the impact intensity. Since the relative velocity, with which the
parts meet, is almost equal in both cases (about 150 mm/s), the peak height
gives a direct measure of the effective mass acting on the impacting bodies.
Figure 7.51 shows that in the regarded direction similar impact intensities
can be expected and thus, the ’optimal trade-off’ yields no improvement with
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Fig. 7.50: Experimental Test Set-Up for Verification

respect to the impact behavior, which expresses itself also in Gopt and in
Figure 7.47.

In contrast to this, according to the values in Gopt and the tolerance area
of Figure 7.48, the optimal trade-off must show significant advantages with
regard to the mating tolerance. This is verified with time histories of the
xG lateral gripper force during insertion, Figure 7.52. Although the lateral
offset is approximately equal in both cases, the reduced lateral end-effector
stiffness of the optimized system allows compliant motion and thus reduces
the strains on the manipulator and on the mating parts significantly. Most of
the improvement in this criterion is due to the change in control coefficients,
since the end-effector stiffness is essentially determined by Kp and Kd. The
manipulator position q0 defines the gripper’s Jacobian and thus the lever arms
the compliant controllers can work on.

In Figure 7.53 the zG path deviation due to external forces is depicted
for both the reference and the optimized configurations. In fact, two different
sources exist, which excite the manipulator dynamics, external contact forces
and the desired movement. In order to separate those two effects in the ex-
periment, the trajectory is measured twice for each configuration. First, the
desired trajectory is performed without any external forces, particularly with
no contacts. The resulting path deviation is then subtracted from the path
deviation measured during manipulation, Figure 7.53. This ensures that only
the path deviation resulting from contact events show up in Figure 7.53. It
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can be seen that the first amplitude peak resulting from the initial impact is
reduced by a factor of 3. Furthermore, the transient behavior is much better
damped in the optimized configuration and shows no oscillations. Thus, also
the vibrational performance is significantly improved by the optimization.

Fig. 7.51: Gripper Force in Mating Direction during Insertion

Fig. 7.52: Lateral Gripper Force during Insertion
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Fig. 7.53: zG Path Deviation in Mating Direction due to Mating Forces during
Insertion
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Walking

Das Spiel Wissenschaft hat grundsätzlich kein Ende;
wer eines Tages beschließt, die wissenschaftlichen Sätze
nicht weiter zu überprüfen, sondern sie etwa als
endgültig verifiziert zu betrachten, der tritt aus dem
Spiel aus. (Karl Popper, Logik der Forschung, 1935)

The game of science is, in principle, without end. He
who decides one day that scientific statements do not
call for any further tests, and that they can be regarded
as finally verified, retires from the game.

(Karl Popper, The Logic of Scientific Discovery, 1959)

8.1 Motivation, Technology, Biology

8.1.1 Motivation

Walking is a fascinating invention of nature1. It is versatile, flexible and per-
fectly adapted to a natural environment. Walking in its various realizations
enables the biological systems to have access to all the natural structures of
the earth. Walking performance means actuating the typical walking com-
ponents like legs, muscles, sensors, signal processing lines, nerves and brains.
This generates motion of the complete biological system. Walking realizes mo-
tion, and motion with motion planning is the basis for intelligence, as modern
biologists state. If intelligence is defined as the ability to deal with unknown
and new situations, such as the possibility to find solutions for new problems,
biological movement, both mental and physical, can be considered as a mani-
festation of intelligence. Therefore, motion and intelligence might be regarded
as the prerequisites for animals and men to conquer the earth. All this makes
walking research so extremely interesting for biologists and engineers.

Walking has been detected by engineers some 20-30 years ago, although
before that time numerous trials had been made to realize some mechanisms
with walking capabilities. Nowadays the computer age and a large variety of
sophisticated technologies give walking machine realizations a high probability
of success. Up to now the technical world of artefacts has come out with a large
variety of machines and transportation systems mainly based on the invention

1 Section 8.1 is based on the text of [203], see also [202]
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of the wheel, a true human artefact and as a matter of fact a really basic one.
But be it cars, trains, ships or airplanes, they all need highly organized areas,
at least for starting and landing, they need roads, tracks, harbours, airports,
which might be seen as a price for high speed and comfort. Access to non-
organized areas of the earth is still difficult, even today. Walking machines
will help to change this situation.

Most walking machines take some biological systems as templates, with
two, four or with six legs. This makes sense, because natural evolution has
created a large variety of excellent solutions, of course under the given evo-
lutionary constraints, historically and environmentally. For several reasons it
makes no sense to copy biology one by one. Evolution had to find its solu-
tions within the framework of its possibilities: no wheels, muscles instead of
rotating motors, nerves with synapses instead of wires and various types of
sensors on a biological analogue basis. However, the number of sensors applied
is sometimes extremely large.

But on the other hand technology has to offer also some positive construc-
tive solutions: computer and computer science, a sophisticated design method-
ology, excellent motor-gear combinations with a high power to weight ratio, a
highly developed sensor technology and very advanced light-weight solutions.
What should be done is to combine the design principles of biological evolution
with the best of technological possibilities. This results in two requirements.
Firstly, biological research should be able to depict as many design principles
invented by biological evolution as possible. Secondly, technology should make
feasible the application of the most advanced software and hardware available
with respect to cognition, mechanics and control with its sensors and actors.
Realizing walking machines is a challenge and a technology-pushing issue by
itself.

From the technological standpoint of view we have a large variety of aspects
to develop walking robots. A decade ago arguments started with applications
in hazardous environment, in areas where human beings have no access to.
In the meantime walking robot technology made enormous progress including
very perfect mechanical systems, sensor and control concepts and astonishing
advanced technologies, which at least are rather near to that what might
be one day artificial intelligence (see Fujita, Sony, [76]). This development
establishes a confidence level allowing us to say, that we are able to realize
a walking biped robot being able to interact with humans without boring
them. Biped machines, because the infrastructure of our societies is designed
for humans. Everything around us possesses human measures. Therefore in
designing humanoids with human measures spares additional investments for
special walking topologies. It is a strong motivation to persue this concept
(see Hirukawa, [106]).
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8.1.2 Technologies

In recent times the first one, possibly worldwide the first one, to start with
scientifically oriented research on walking robots, especially on bipeds, was
Professor Ichiro Kato (1925-1994) in Japan, who built in 1967 his artificial
biped walker WL-1 (see Lim, [139]). Since then many activities all over the
world pushed forward walking machine technology, though from the very be-
ginning there was a clear focus in Japan due to really significant support of the
Japanese Government and the Japanese industry. This fact is underlined by
Honda and Sony, where Honda started already in the year 1986 with its first
walking robot E0 (see Hirose and Ogawa, [104]). The E0 was followed by a
whole series of 11 bipeds, the last one being the third version of the worldwide
acknowledged ASIMO, the astonishing capabilities of which are well known.
Honda, as a car manufacturer, persues three goals with respect to its walking
bipeds, namely to create new mobility, to co-exist and cooperate with humans
and to make general purpose robots.

Sony started its walking machine activities in the second half of the nineties
with a clear focus on entertainment robotics and as a consequence on pet-type
robot configurations like AIBO or QRIO, by the way with significant com-
mercial success. Pet-type robots need autonomy, which is achieved by modern
control and cognition mechanisms. For example AIBO includes a behavior-
based architecture with an action-selection mechanism, a stochastic state-
machine realizing context-sensitive responses and to a certain extent some
kind of instinct-emotion-generator. It also includes learning abilities by re-
inforcement learning into the architecture. Sony (see Fujita, [76]) calls that
Intelligence Dynamics with the goal of realizing an ever-developing Open-
Ended-System.

The industrial activities were and are accompanied by a broad variety of
University research. We give a few characteristic examples. Kato’s Institute at
Waseda University has developed a series of bipeds, the last one is WABIAN-
RIV. The WABIAN-family has been very successful, its last member can walk
forward, backward and sideways, it can dance and it can carry heavy goods
(see Lim and Takanishi, [139]). The National Institute of Advanced Industrial
Science and Technology (AIST) in Tsukuba, Japan, is involved in significant
improvements of the HRP-robot, originally developed by Honda for mainte-
nance tasks of industrial plants and for guard tasks of homes and offices. AIST
developed new control concepts enabling HRP-2 to drive industrial vehicles,
to perform more sophisticated maintenance tasks, to take care of patients in
bed and to cooperate with human workers. HRP-2P may fall down, then it
can get up from the floor autonomously (see Hirukawa, [106]).

One of the very advanced University robots is the H7, developed by the
group of Professor Inoue at the University of Tokyo (Nishiwaki et al., [172]).
The H7 was developed over several years as an experimental platform for
walking, autonomy and human interaction research. With respect to the body
mechanism for biped walk, lie down and stand up, support body by hand, pick
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itself up a couple of features become important like the arrangement and the
number of degrees of freedom, the rotation range and the maximum torqes of
the joints, the self-containedness, the ease of maintenance and smooth surfaces
for attaching tactile sensors. Sensor availability of the H7-robot includes as
a standard all joint sensors, force sensors, some foot sensors, but also tactile
sensors for contacting the world and a 3D-vision system for seeing the world.
This is accompanied by real time computational and software systems in order
to process from low-level software such as servo-loop and sensor-processing to
high-level software such as motion planning and behaviour control. Therefore
high computational performance and most sophisticated software design are
required.

The much more modest activities in Europe and especially in Germany
may be characterized by the walking machines, which have been developed
at the Technical University in Munich and in Karlsruhe. The group at the
Institute B of Mechanics (see Pfeiffer, [193]), Technical University of Munich,
started in 1989 to design and to realize a six-legged walking machine MAX,
which followed very closely the, at that time new, neurobiological findings
by Professor Cruse in Bielefeld and Professor Bässler in Kaiserslautern with
respect to the control of walking stick insects. Although this machine is al-
ready 12 years old, its control concept is still very modern and in the area of
neurobiology a matter of ongoing research. Without any central surveillance
the control of MAX is completely autonomous, also in uneven terrain.

The six-legged machine MAX was followed by the eight-legged machine
MORITZ, which was able to walk in tubes of any position and orientation,
and the control of which possesses on a lower level that of MAX supplemented
by a high-level structure being able to manage the contact forces at the foot-
contacts at the inner tube wall. After these research results a large priority
project of the German Research Foundation (DFG) enabled the Institute to
develop a biped machine with a certain degree of autonomy, which could be
achieved by the combination of the two-legged machine JOHNNIE with a 3-
D-vision system developed by the group of Professsor Günther Schmidt at the
Technical University of Munich. JOHNNIE is a light-weight design with 17
joints, a height of 1.80 m and a weight of about 40 kg.

The same idea of a close cooperation of biologists and engineers has been
pursued at the University of Karlsruhe (see Dillmann et al., [45]) by Professor
Dillmann and his group in developing the four-legged machine BISAM, the
morphology and behavior based control of which follows as near as possible
biological findings, especially those of Fischer in Jena (see Fischer, [62]). Con-
sidering also some ideas from researchers in the US and in Japan the behaviour
based architecture forms a behaviour coordination network by connecting the
inputs and the outputs of the behaviours. These connections transport control
and sensor informations as well as loop-back informations. BISAM is driven
by pneumatical joints, which on the one side show a good performance quite
similar to that of biological muscles, but which on the other side generate con-
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trol problems due to their compressibility and temperature sensitivity. BISAM
is walking, but improvements are still necessary.

A very successful four-legged robot was developed during the last years by
Kimura and his co-workers (see Kimura, [129]). The walking performance of
his TEKKEN-series is really impressive, due to some good ideas concerning
mechanical design, but mainly due to a very advanced design of the control
system, which is based on biological findings. Kimura applies a limit-cycle
based control for legged locomotion. It includes the adjustment of joint torques
within a single step cycle, the adjustment of initial conditions of the legs
at the transition from swing to stance and an adjustment of the stance or
swing phases. His “coupled-dynamics-based motion generation” can interact
with the environment emergingly and adaptively. The gait pattern generator
deviates from that described by Cruse for the stick insect (see MAX), but it
is equally adaptive and autonomous.

An important contribution concerning the actuators is given by Arikawa
(see Arikawa, Hirose, [4]). Actuators represent the heart of walking machines,
their power-to-weight ratio is the key for being able to establish many degrees
of freedom (Inoue) and to provide the machine with sufficiently large torques
for the walking process. This problem can be neutralized at least partly by the
introduction of two ideas, the concepts of Gravitationally Decoupled Actua-
tion (GDA) and of Coupled Drives. The GDA decouples the driving system
against the gravitational field to suppress the generation of negative power
and to improve the energy efficiency. Negative power is defined as a result
of braking. The Coupled Drive couples the driving system with the goal to
distribute the load as equally as possible among all actuators, thus maximiz-
ing the utilization of the installed actuator power. Some hardware examples
confirm these two ideas.

A very nice review of the historical developments of that field are given in
[245].

8.1.3 Biology

Every technological development and progress starts with examples, which in
most cases are available by corresponding technical products, cars, cameras
or machines. The technology of walking is a very young one without exam-
ples coming from the technical world itself. Therefore it makes sense to look
for templates in Biology, where the evolution of millions of years has gen-
erated astonishing solutions. Nevertheless by looking for such solutions one
must keep in mind, that Nature works with completely different materials
and concepts, which only in some cases might be transfered to technology.
The basic ideas applied in biological systems are indeed very attractive, as
far as they are known, but a one-by-one transposition makes sense only for
a very few cases. In the following we shall give some examples from various
fields of Biology, where walking performance has been investigated, including
also a very “biological” design of a walking machine.



508 8 Walking

Fischer and Witte [62] reinforce some of these ideas stating that the evolu-
tion of legs comes late in phylogeny and that “biologically inspired” technolo-
gies might be a better and more moderate approach than bionics or biomimet-
ics. They continue that on the one side technological structures are always
designed anew, but that on the other side biological structures are always the
result of a past, permanent and ongoing process, which means “derived from
ancestors”. This antithesis is as a matter of fact only partly correct, because
not only biology but also technology are carrying their special evolutionary
burden, in classical technologies more than in walking technology. This results
in the logical consequence that an adaptation of evolutionary ideas makes only
sense, if the past and the recent functional requirements are identical, which
under the logically necessary prerequisite of a constant environment will even
be more an exception than the rule. Therefore applying biological concepts
to technology requires a thorough investigation of goals and environments.
Two-legged machines are a good solution, because it fits perfectly into the
environments generated by man through thousands of years (Hirukawa [106],
Hirose [104]).

The basic matter of concern of the contribution on intelligence by me-
chanics (Blickhan et al., [20]) consists in facilitating control by self-stability,
which depends on the global system properties as well as on all major building
blocks of the body. Technological design should realize as much self-stability
as possible. The existing actuator systems are certainly a problem with re-
spect to such a transposition, but the idea is convincing inspite of the fact
that only simple and small mechanical configurations have been considered
up to now. During biological walking potential energy is stored in the mus-
cles, which is released during certain phases of the walking process. Together
with the mass and stiffness properties of the legs of humans or animals the
cyclic behaviour of potential and kinetic energies generate a very simple but
at the same time a very robust self-stability. Experimental models composed
from masses, springs and dampers are able to demonstrate quite well “natural
walking”, but under the guidance of a rotating lever arm.

The control mechanisms of human walking are not very well understood,
they are a matter of ongoing intensive and worldwide research. Humans belong
to the mammals, and mammals possess much more complex control behaviour
than insects, which are easier to investigate and where as a consequence quite
a lot about walking and walking control is known. Cruse [38], Büschges [79]
and their research groups are working since years on the problems of walking
and walking control of stick insects. The control concept of these insects is
widely decentralized including more or less three layers, the lowest layers for
stabilization purposes, the middle layer in a similar form as a finite state
machine for controling the cycles and regarding all unexpected obstacles and
the upper layer for organizing the gaits by influencing neighboring legs shifting
their phase in the right direction, inhibiting some actions or set actions going.

An important property of these insect legs is the possibility to parametrize
the segments of the legs. All segments move according to the coxa-femur



8.2 Walking Dynamics 509

control following some given (and environmentally adapted) laws. Cruse has
developed a computer code on the basis of neural nets which gives a good
mapping of the insect’s behaviour. Büschges investigates the influence of the
stepping velocity on the insect’s walking control. Speed is simply generated by
increasing the cycles applied to the joint connecting the first segments (coxa,
femur) to the body. This is a bit in contradiction to the idea that biology
applies different control structures for different speeds. Obviously accelerating
the cycles might be the simpler solution. The control structure of the stick
insect has been realized in the six-legged machine MAX [193] nearly in the
sense of biomimetics.

Another example of a biomimetic robot has been developed by Ayers and
Witting with their eight-legged machine NU/DARPA/ONR [9], the concept
of which is based on the American Lobster. The robot is designed to achieve
the performance advantages of the animal model by adopting the biomechan-
ical features and neurobiological control principles. Three types of controllers
are considered. The first is a state machine based on the connectivity and
dynamics of the lobster CPG (central pattern generator). It controls my-
omorphic actuators realized with shape memory alloys, and it responds to
environmental perturbation through sensors that employ a labeled-line code.
The controller supports a library of action patterns and exteroceptive reflexes
to mediate tactile navigation, obstacle negotiation and adaptation to surge.
The second type of control is based on synaptic networks of electronic neu-
rons and has been adapted to control the shape memory alloy actuated leg. A
rudimentary brain is being developed as a third higher order controller using
layered reflexes based on discrete time map-based neurons.

Fig. 8.1: Walking - Biology [164] and Technology [137]

8.2 Walking Dynamics

8.2.1 Preliminary Comments

As can be evaluated from biology, walking is extremely difficult (Figure 8.1).
Seen from the technological point of view, it includes mechanics, sensor and
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actor technologies, computer soft- and hardware, vision systems and image
processing, decision algorithms and advanced control structures. The list is
not complete, but it indicates the highly interdisciplinary character of all
walking machine developments. They require interdisciplinary cooperation of
many technological fields. Within the framework of this book we shall focus
on the dynamics (and control) of walking machines, and we shall select as a
benchmark problem the dynamics of a biped machine, which represents the
most sophicticated case of walking dynamics.

Criteria like stability, energy, loads to the joint drives or a more or less
equal distribution of loads on all drives may be chosen for controling walking
processes. We shall come to this later. Biological investigations indicate, that
at least in the case of disturbences stability possesses highest priority and not
energy (see [142] and [197]). This makes sense for any walking system, because
without stability as a primary requirement any energy minimization will be
in vain.

We have several possibilities for assuring stability. The oldest criterion
is the famous zero-moment-point criterion (ZMP) of Vucobrativic, see [268],
[267], [120]. It reduces all forces and torques acting between ground and feet to
that one point, where forces alone are transmitted and no torques. This point
has to be positioned within the supporting polygon of the walking machine.
If it leaves that polygon, the machine will tilt, see [268], [137]. The static
ZMP-criterion is very popular and, as long as the walking speed is small, an
effective criterion. In recent years more dynamics arises, which makes extended
stability criteria necessary. As the complete set of equations of motion of a
walking machine is highly nonlinear, we may choose various possibilities to
investigate stability, for example Ljapunov stability or a search for the fixed
points of the dynamical evolution. First steps in those directions can be found
in the literature [44].

In the following we shall give a summary of mechanical and mathematical
modeling as well as for optimization and control of the walking biped JOHN-
NIE, which has been developed at the authors former Institute, see [137], [85],
[213], [197], [202].

8.2.2 Modeling

The biped JOHNNIE has been designed and realized by an iterative process of
simulation and construction, which allows a rather fast and safe layout of such
a machine. We shall come to this point later. The first step of the design phase
is the choice of the joint structure. It has to be ensured that the kinematics
allows to realize the planned motion. Figure 8.2 shows the chosen structure
of JOHNNIE. Each leg is equipped with six driven joints. With these degrees
of freedom, the six degrees of freedom of the upper body can be controlled
arbitrarily within the workspace of the joints. Furthermore, the upper body
can rotate about its vertical axis and each shoulder is equipped with a pitch
and roll joint. The upper body joint is redundant with the two hip yaw joints



8.2 Walking Dynamics 511

but allows for a pelvis rotation to increase the step length. With the shoulder
joints, the overall moment of momentum about the body vertical axis can be
compensated.

JOHNNIE is equipped with 17 joints. Each leg is driven with 6 joints,
three in the hip, one in the knee and two (pitch and roll) in the ankle. The
upper body has one degree of freedom (DOF) about the vertical axis of the
pelvis. To compensate for the overall moment of momentum, each shoulder
incorporates 2 DOF. The 6 DOF of each leg allow for an arbitrary control of
the upper bodie’s posture within the workrange of the leg. Such, the major
characteristics of human gait can be realized. The robot’s geometry corre-
sponds to that of a male human of a body height of 1.8 m. The total weight
is about 40 kg. The biped is autonomous to a far extent, solely power supply
and currently a part of the computational power is supplied by cables.

Fig. 8.2: JOHNNIE - Joint Model and Real Machine

8.2.2.1 Joint Structure

We start with the joint structure of the biped, which represents the basis
of all further models. According to the table 8.1 and Figure 8.3 we define
generalized coordinates q for all joints, where special care has to be taken for
the ankle joint (see [137]). The set of the generalized coordinates writes

q = (qTO qB q
T
B0 q

T
B1 q

T
A0 q

T
A1)

T (8.1)

with the following magnitudes: the vector qO = (ψ ϑ ϕ xO yO zO)T ∈ IR6

includes the degrees of rotation and translation of the trunk, qB is the degree
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Table 8.1: Generalized Coordinates of the Joint structure
ψ rotation trunk around z-axis, inertial system

ϑ rotation trunk around x-axis after first rotation

ϕ rotation trunk around z-axis after second rotation

xO translation trunk x

yO translation trunk y

zO translation trunk z

qB rotation pelvis

qB00/qB10 rotation pelvis around vertical axis, right/left

qB01/qB11 adduction/abduction pelvis, right/left

qB02/qB12 flexion pelvis, right/left

qB03/qB13 flexion knee, right/left

qB04/qB14 adduction/abduction ankle joint, right/left

qB05/qB15 flexion ankle joint, right/left

qA00/qA10 flexion arm, right/left

qA10/qA11 adduction/abduction arm, right/left

of freedom of the pelvis, qB0 ∈ IR6 and qB1 ∈ IR6 are those of the right and
the left leg. qA0 ∈ IR2 and qA1 ∈ IR2 represent the arms. The rest is explained
in Table 8.1.
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Fig. 8.3: Joint Structure and Coordinates
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We express the coordinates r = r(q) and the velocities ω = ω(q, q̇) in
workspace by the generalized coordinates q and get thus the derivations

∂ṙ(q, q̇)
∂q̇

=: JT ⇒ ṙ = JT q̇

∂ω(q, q̇)
∂q̇

=: JR ⇒ ω = JRq̇ (8.2)

r̈ =
∂ṙ
∂q

∂q
∂t

+
∂ṙ
∂q̇

∂q̇
∂t

= ĴT q̇ + JT q̈ with
∂ṙ(q, q̇)

∂q
=: ĴT

ω̇ =
∂ω

∂q
∂q
∂t

+
∂ω

∂q̇
∂q̇
∂t

= ĴRq̇ + JRq̈ with
∂ω(q, q̇)

∂q
=: ĴR (8.3)

The Jacobians ĴT , ĴR are more conveniently to evaluate than the time deriva-
tions of the Jacobians, which we would have to calculate if we derive directly
the first two equations with respect to time.

We define the beginning of our kinematical chain by the trunk coordinates

qO = (ψ ϑ ϕ xO yO zO)T . (8.4)

From this we get the transformation matrix from the inertial system into the
trunk coordinates by the expression

The translational and rotational velocities of the trunk given in trunk coordi-
nates then write:

OvO =O AOI IvO, OωO =O Aϑϕ(ψ̇ ϑ̇ ϕ̇)T

JO,R = (OAϑϕ|03×(n−3)), JO,T = (03×3|OAOI |03×(n−6))

ĴO,R =
∂OωO
∂q

, ĴO,T =
∂OvO
∂q

(8.6)

with the transformation matrix

OAϑϕ =

(
sinϑ sinϕ cosϕ 0

sin ϑ cosϕ − sinϕ 0

cosϑ 0 1

)
(8.7)

According to section 2.2.4 on page 25 we evaluate the walking machine kine-
matics recursively.

The ankle joint needs special modeling due to the fact that actuation is
realized by a ball screw spindle, see Figure 8.4. Due to this mechanism we
get a kinematical closed loop not consistent with the tree-like structure of
the machine kinematics. Therefore we choose for the generalized coordinates

OAOI =

(
cosψ cosϕ− sinψ cosϑ sinϕ sinψ cosϕ + cosψ cosϑ cosϕ sinϑ sinϕ

− cosψ sinϕ− sinψ cosϑ cosϕ − sinψ sinϕ + cosψ cosϑ cosϕ sinϑ cosϕ

sinψ sinϑ − cosψ sinϑ cosϑ

)
(8.5)
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Fig. 8.4: Ankle Joint Actuation

the two angles of the universal joint, from which we are able to calculate
the position of the ball screw spindles. Figure 8.5 depicts the principle of the
ankle joint kinematics. The feet are symmetrical, therefore we can apply the
same form of calculations for both feet. Hence, the generalized feet coordinates
qB04, qB05 and qB14, qB15 can be replaced by q4, q5. The ball screw spindles
are connected to the reference points P0, P1, they are parallel to the y-axis of
the lower leg. The rotation of the spindles shift therefore the points S relative
to the points P (Figure 8.5) by the amount

UrP0S0 = (0 s0 0)T , UrP1S1 = (0 s1 0)T . (8.8)

From this we define the degrees of freedom of the spindles by s = (s0, s1)T .
Two rigid rods connect the spindle end points S0, S1 with the points A0, A1

at the foot. From this the degrees of freedom of the ankle joint qK = (q4, q5)T

are given unambiguously by the coordinates s of the spindles. For the
corresponding vector chain we come out with (Figure 8.5)

UrS0A0 =UrUK +AUK KrKF +AUKAKF FrFA0 − UrUP0 − UrP0S0,

UrS1A1 =UrUK +AUK KrKF +AUKAKF FrFA1 − UrUP1 − UrP1S1,
(8.9)

with the transformation matrices

AUK =

 0 0 1
cos q4 − sin q4 0
sin q4 cos q4 0

 , AKF =

 sin q5 cos q5 0
0 0 1

cos q5 − sin q5 0

 . (8.10)

With the given lenghts of the connecting rods lV 0, lV 1 we can establish two
constraining equations Φ for the evaluation of the ankle joint angles in the
form

φ =
(
Ur

T
V 0 UrV 0 − l2V 0

Ur
T
V 1 UrV 1 − l2V 0

)
= 0. (8.11)
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Fig. 8.5: Ankle Joint Kinematics

Given the spindle positions UrP0S0,U rP1S1, we have now to evaluate the gen-
eralized angles qK = (q4 q5)T of the ankle joint. The coresponding equations
can only be solved iteratively, for example by the Newton-algorithm:

qK,i+1 = qK,i −
(
∂φi
∂qK

)−1

φi (8.12)

In addition to that we need for the simulation the derivations of the generalized
ankle coordinates with respect to the spindle coordinates. This writes

∂qK
∂s

=
(

∂φ

∂qK

)−1(
∂φ

∂s

)
. (8.13)

The time derivatives follow from that to

q̇K =
∂qK
∂s

ṡ

q̈K =
(

∂φ

∂qK

)−1(
∂φ

∂s
s̈ + (

∂φ

∂s
)̇ṡ + (

∂φ

∂qK
)̇q̇K

)
(8.14)

The above formulas are necessary for the determination of the transmission
ratios. According to Figure 8.4 the spindles are driven by an electrical motor,
which are coupled to the spindles by a timing belt stage. The rotation of the
spindles in combination with the ball nuts transform rotation into translation.
The timing belt stage has a transmission ration of iZ = 15

11 , which gives
together with the thread pitch of 5 mm a transmission ratio of

iSP = iZ iS =
15
11

1
5 mm

(8.15)
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for the special case of JOHNNIE. For the transmission from the motors to the
ankle joints we have to consider the relation

q̇K =
∂qK
∂s

∂s

∂qM
q̇M =

∂qK
∂s

( 1
iSP

0
0 1

iSP

)
q̇M = JSP q̇M (8.16)

with the Jacobian JSP of the spindle drive. Table 8.2 indicates some typical
values of the above relations for the case of JOHNNIE (see also [137]).

Table 8.2: Ankle Joint Transmission Ratios
q4[degree] q5[degree] ∂q̇M0

∂q̇4

∂q̇M0
∂q̇5

∂q̇M1
∂q̇4

∂q̇M1
∂q̇5

reference 0.0 0.0 62.0 -91.7 -56.2 -91.7

q4 = q4,min -22.6 -1.7 67.6 -86.7 -46.6 -88.4

q4 = q4,max 22.8 -0.2 51.7 -86.9 -60.5 -84.9

q5 = q5,min 0.0 -50.8 59.2 -73.2 -56.9 -73.2

q5 = q5,max 0.0 21.7 62.7 -82.0 -55.4 -82.0

8.2.2.2 Motors and Gears

The drive systems decide more or less completely the walking machine config-
uration. Inspite of very significant progresses with respect to electrical motors
and also with respect to gears, the requirements of large joint torques in
combination with rather small joint velocities reduce the search for effective
drives to a few technical solutions, for example the combination of DC-motors
with or without brushes together with harmonic drive gears or sometimes also
together with planetary gear sets. These solutions for power and power trans-
mission can be found all over the world. With respect to our biped machine
JOHNNIE we applied the same solution, which we shall discuss in the follow-
ing. The Table 8.2.2.2 illustrates some typical data for the hip joint.

The motors are pulse-width controled with a frequency of 20 kHz. This
means that during one control cycle the motor voltage is approximately con-
stant and proportional to the pulse width. The voltage UM itself has the
three components UI , UR, UG denoting the voltage induced in the coils, the
voltage resulting from Ohm’s resistance in the windings and finally the mu-
tual induced voltage in the windings proportional to the motor shaft speed,
respectively. From that we have

UM = UI + UR + UG, UI = Lİ, UR = RI, UG = kMω, (8.17)

with L the inductance of the motor windings. The torque TM of the motor is
proportional to the current I applied to the armature windings
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Table 8.3: Technical Data of the Hip Joint
Yaw Roll Pitch

Motor Maxon RE40 Maxon RE40 2 x Maxon RE40

Gear HFUC25-160-UL HFUC26-160-UL HFUC26-80

modified

Transmission ratio 160 160 80

Max. static joint torque 178Nm 178Nm 220Nm

Average static joint torque 22,3Nm 22,3Nm 22,3Nm

Max. joint velocity 4,7rad/s 4,7rad/s 9,4rad/s

TM = kMI, (8.18)

with kM depending on the motor configuration. Combining the above equa-
tions results in a well known differential equation for the motor current

Lİ = UM −RI − kMω. (8.19)

As the winding inductances are very small we can neglect this kind of dynamics
and approximate the motor torque by

TM =
kM
R

(UM − kMω). (8.20)

The resistance R depends strongly on the temperature, which implies some
problems not being solved alone by the simple relations above (see [137]).

The mostly prefered gears in walking machine applications are Harmonic
Drive gears, which are well known [95]. A very concise model of these gears
has been developed by Roßmann [226] on the basis of unilateral multibody
systems. Inspite of many advantages of Harmonic Drive gears one drawback
consists in the large friction losses, which have to be modeled. Roßmann sub-
divides these friction losses into three parts [137]

TR = TR,0 + TR,T + Tω, (8.21)

where TR,0 represents a constant friction share generated between wave gener-
ator and flexspline and often called ”no-load backdriving torque”. It includes
also deformation effects of the flexspline and the friction between internal
and external gear meshing. The second part TR,T depends on the transmitted
torque and is approximately proportional to the load torque TR,T ≈ µTN .
The two parts TR,0 + TR,T correspond together to the effect of Coulomb’s
friction law. The third part Tω of the friction is joint damping. It improves
joint control, and it can be approximated, due to experimental experiences,
by the following law:
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Tω = dω + bω3. (8.22)

The first term dω usually dominates the behaviour. All data necessary for
the evaluation of the above equations can be taken from the Harmonic Drive
catalogue [95]. Table 8.4 gives some typical data for the Harmonic Drives used
in JOHNNIE.

Table 8.4: Typical Data of Harmonic Drives
type i T0[Nm] η500 η2000 η3500 d[Nms] b[Nms3] µ

HFUC 25 160 0.055 0.775 0.650 0.600 7.547 10−4 −1.620 10−9 0.0651

HFUC 25 80 0.075 0.838 0.744 0.681 7.943 10−4 −6.897 10−10 0.0461

For modeling Harmonic Drive gears the friction has to be described by
a set-valued force law, because we have two speed directions and a speed
reversal after passing some null-speed point. The model in [226] distinguishes
in a first step the speed directions and introduces a degree q1 of freedom for
the driving and a DOF q2 for the driven direction:

J1q̈1 = Tan −
1
i
λG − (

1
i
sign(q̇1)µG1λG +

1
i2
d1q̇1 +

1
i4
b1q̇1

3),

J2q̈2 = −Tab + λG − (sign(q̇2)µG2λG + d2q̇2 + b2q̇2
3). (8.23)

The magnitude λG is the transmitted torque, the moments of inertia of the
input and output sides are denoted by J1, J2, and the friction data of the
equations 8.21 and 8.22 are split up for the two directions

b = b1 + b2, d = d1 + d2, µ = µG1 + µG2. (8.24)

In a further step we consider the Harmonic Drive gear as a unilateral system
and apply the reduced mechanical model of Figure 8.6. The pinion with the
degree of freedom q1 is driven by the torque Tan and meshes with the gear
wheel with a degree of freedom q2 and with an output torque Tab. The config-
uration is here represented by one tooth pairing only though the contact ratio
of the Harmonic Drives is very large. We have normal forces Fn and friction
forces Fr, the last ones arising by the relative motion in the tooth contact.

Applying this model to Harmonic Drives requires some approximations:

• Due to the large contact ratios we do not consider every individual tooth
pairing, but we consider an average of them.

• All teeth not positioned in the pitch point experience a relative tangential
motion and produce tangential friction forces.

• For these frictional forces we apply Coulomb’s friction law.
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pinion
gear wheel

Fig. 8.6: Friction in a Harmonic Drive Stage [137]

• Considering Harmonic Drives as unilateral systems comes from the idea,
that either the working flanks have contact and the non-working flanks
not, or vice versa, backlashes neglected. This results in a complementarity
for the two flank types.

All normal forces Fni averaged over all teeth contacts are denoted by λN and
are composed of two parts, namely λG resulting from the transmitted torque
and λG0 resulting from pretensioning the gear. Equivalently, the magnitude
λT denotes the averaged tangential friction forces. We then may write the
gear equetions of motion (see also the relations 8.23)

J1q̈1 = Tan − r1λG − s1λT

J2q̈2 = −Tab + r2λG − s2λT (8.25)

The friction forces are set-valued forces. For sliding and stiction we get ac-
cordingly ([137], [226])

λT = sign(q̇1)µG(|λG|+ λG,0) for q̇2 =
1
i
q̇1 �= 0,

|λT | ≤ µG(|λG|+ λG,0) for q̇2 =
1
i
q̇1 = 0. (8.26)

The equations of motion will take into consideration this situation by applying
the structures of section 3.4 on page 131.

8.2.2.3 Feet Contacts

Walking stability depends mainly on the contacts between feet and ground.
For JOHNNIE a foot consists of three separate bodies (see Figure 8.7). The
two lower foot plates are connected by a rotational joint about the foot longi-
tudinal axis ensuring that the ground contact situation is not overconstrained.
The ground contact elements are rounded such that a smooth rolling motion
of the foot can be realized during touch down and lift off. The upper foot
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Fig. 8.7: Foot Design [85]

plate is connected to the lower plates by a damping element which absorbes
shocks and bridges the time gap between impact and the controller response.

With respect to the foot contacts we have two possibilities, namely model-
ing the ground forces in a unilateral way, which means rigid body contacts and
set-valued forces, or modeling the ground forces by smooth contact laws in the
form of spring-damper characteristics. We shall consider both possibilities.

Unilateral model

For this case we take the general contact kinematics from section 2.2.6 on page
31, applied to the specific case of the JOHNNIE-feet [137]. The geometry of
the foot plates is depicted in Figure 8.8. The foot possesses four cylindrical
contact elements in the four corners of the foot plate, which is subdivided into
two parts connected by a joint to assure static definiteness. The vector from
the inertial coordinate system I to the potential contact point K1 is composed
by the three vectors

rO

rK2

rOM

rMK1

Fig. 8.8: Foot Model and Kinematics [137]
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rOK1 = rO + rOM + rMK1, (8.27)

which can be expressed in any coordinate frame. The direction of rMK1,
though, has to be oriented in such a way as to fulfill the contact conditions
2.102 and 2.103 on page 39. This results in

rMK1 =
r∗MK1

|r∗MK1|
R with r∗MK1 = (nb × nk)× nk (8.28)

The radius R is explained by Figure 8.8, and the potential contact point results
from a projection of the point K1 onto the ground plane with the direction nb.
For simulation purposes the ground plane is oriented parallel to the x-y-plane
of the inertial coordinate system resulting in a simple form of the contact
equations. The normal distance between the points K1 and K2 writes

gN = |rD| = nTb (rK1 − rK2). (8.29)

Together with the vector rOK1 from equation (8.27) we then get for the time
derivatives

ṙK1 = ṙO + ω̃1rO,K1 = JO,1q̇ + (J̃R,1rO,K1)q̇ =WK1q̇ (8.30)
ṙK2 = 0 (8.31)

The above equations are based on the assumption, that the contact veloc-
ities depend only on the generalized coordinates, and that they include no
additional applied velocity terms, which is reasonable. The velocity of the
ground-fixed contact point is of course zero. Using the equations (2.110) to
(2.113) from the pages 41 we get for the relative contact velocities

ġN = nTb (ṙK1 − ṙK2) = nTb (JO,1q̇ + (J̃R,1rO,K1)q̇) =WN q̇,

ġT = nTT (ṙK1 − ṙK2) = nTT (JO,1q̇ + (J̃R,1rO,K1)q̇) =W T q̇, (8.32)

and from there also the relative contact accelerations in the form [137]

g̈N =nTb ((JO,1 + J̃R,1rO,K1)q̈ + (J̇O,1 + ˙̃JR,1rO,K1 + J̃R,1ṙO,K1)q̇)

=WN q̈ + ẆN q̇,

g̈T =nTT ((JO,1 + J̃R,1rO,K1)q̈ + (J̇O,1 + ˙̃JR,1rO,K1 + J̃R,1ṙO,K1)q̇)

=W T q̈ + ẆT q̇, (8.33)

which are sufficient to build up the system equations of motion including the
contacts at the feet of the walking machine, where we have established here the
models for rigid body contacts. The unilateral contact laws can also be taken
from the kinematics chapter in a suitable form for our specific application

g̈N ≥0, λN ≥ 0, g̈NλN = 0,

|ġT | =0 ⇒ |λT | ≤ µλN ,

|ġT | �=0 ⇒ ġT = −κλT ; κ ≥ 0; |λT | = µλN . (8.34)
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Smooth Force Laws

Another possibility to model contacts of the feet consists in assuming a single-
valued and smooth force law between feet and ground. In many cases of walk-
ing machines this corresponds quite well to the real situation, because the feet
very often are equipped with some soft rubber material. Figure8.9 illustrates
such a contact with springs and dampers in normal and tangential directions.
The determination of the necessary spring and damper values may sometimes
be cumbersome, they can be measured or evaluated using FEM, for example.
Considering the relative kinematics (gN , ġN ) in normal contact direction we

Fig. 8.9: Contact with Smooth Force Laws

get for the normal force

FN = −CKgN −DK ġN . (8.35)

In tangential direction we need the point PK where the tangential force ap-
plies. We choose for that point the body-fixed position at the beginning of the
contact. According to Figure8.9 we come out with the tangential force

F T = CT (rPK − rPE) +DT (ṙPK − ṙPE) (8.36)

If the force amount |F T | reaches the friction reserve µ0FN , then we have
sliding with a tangential friction force following Coulomb’s law, namely F T =
µFN . The point PK slides also and with a velocity

ṙPK =D−1
T (F ∗

T −CT (rPK − rPE) + ṙPE), (8.37)

where the sliding friction force will be always directed along the spring-damper
force element

F ∗
T = µFN

rPE − rPK
|rPE − rPK |

. (8.38)
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Both states, sliding and sticking, must continuously be controled to discover
possible changes from sliding to sticking or vice vera. Such changes can be
detected by considering the forces and relative velocities according to the
equations (8.34), where every beginning of a contact event is indicated by
kinematical and every end by kinetic magnitudes (sections 2.2.6 and 3.4).

The model with spring-damper elements can easily be applied also to such
cases like surface to surface contacts or line to surface contacts, including also
the case, that surfaces may roll on each other with or without sliding. Some
corresponding relations are given in [137].

8.2.3 Equations of Motion

8.2.3.1 System Equations

For a general derivation of the equations of motion for multibody systems
with bilateral and unilateral constraints we refer to the chapters 3.3 and 3.4
on the pages 113 and 131, respectively. Regarding all bodies of the walking
machine we have the following equations of motion (see [137] and [280])

M(q, t)q̈− h(q, q̇, t) = Qg +Qng, q ∈ IRf , (8.39)

with the mass matrix M(q, t) and the gyroscopical force vector h(q, q̇, t) in
the following form

M =
∑
i

{(
JTo
JR

)T (
mE mr̃Ts
mr̃s Io

)(
JTo
JR

)}
i

h =
∑
i

{(
JTo
JR

)T (
mE mr̃Ts
mr̃s mIo

)(
JToq
JRq

)
q̇

}
i

+

+
∑
i

{(
JTo
JR

)T [(
mE mr̃Ts
mr̃s Io

)(
ωṙ
0

)
+
(
mω̃ω̃rs
ω̃Ioω

)]}
i

(8.40)

with the following abbreviations

JR =
∂KωK
∂q̇

, JT0 =
∂Kv0

∂q̇
,

JRq =
∂KωK
∂q

, JT0q =
∂Kv0

∂q
, (8.41)

and with the following magnitudes for the body i: m maas, Io inertia tensor,
JTo,JR Jacobians of translation and rotation, ω angular velocity vector, rs
radius vector to the center of mass. The forces Qg are gravity forces, and Qng

contains general external forces but also the forces at the feet acting on the
robot. They can be projected into the free directions by
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Qg =
∑
i

{(
JTo
JR

)T (
mg
mω̃g

)}
i

,

Qng =
∑
i

{(
JTF
JRM

)T (
F
M

)}
i

(8.42)

The Jacobians JTF ,JRM are those for the force and torque application points.

8.2.3.2 Gear Equations

Modeling Harmonic Drive Gears always includes many questions of modeling
bilateral constraints with friction, which represents a difficult problem. In the
following we shall consider two approaches, a more or less complete one and
a simplified one. The calculation of such gears require large computing times,
hence an adequate simplification makes sense.

We start with the complete model and take note of the fact, that the
gear equations of motion have to be integrated into the system equations.
According to Figure 8.6 each of the Harmonic Drive Gears possesses at least
two degrees of freedom , an input DOF q1 and an output DOF q2, which
corresponds to the joint degree of freedom. Thus we have to add for every
gear an additional degree of freedom. Having that in mind and considering
the gear equations of motion (8.25) these equations may be written for the
sliding case as

M q̈ = h+WGNλG +HG(λG + λG,0). (8.43)

The Jacobian matrix WGN projects the averaged normal forces λG onto the
degrees of freedom of the gear q = (q1 q2)T . The matrix HG includes the
friction coefficients for the determination of the friction forces and torques
from the averaged normal forces. For the stiction case we get a similar relation

M q̈ = h+WGNλG +WGTλT , (8.44)

with the same properties of the matrix WGT . For a moving walking machine
the gears change very quickly their direction of motion, which results in fre-
quent sliding/sticking changes and vice versa. Therefore it would be necessary
to switch rather often between the two equations of motion (8.43) and (8.44).
To avoid it, we arrange the matrices of these equations in such a form that
they can be combined into one equation:

M q̈ = h+WGNλG +HG(λG + λG,0) +WGTλT (8.45)

For the Harmonic Drives the wheels and pinions are coupled very tightly
and without backlash generating a bilateral constraint with friction. To deal
with these features Rossmann [226] subdivides the bilateral constraint into
two unilateral ones by splitting the corresponding contact forces into two
parts [137]
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λG = λ+
G − λ

−
G with λ+

G ≥ 0, λ−
G ≥ 0, λ+

G

T
λ−
G = 0. (8.46)

These relations possess a simple interpretation. They state, that either the
front face of the gear tooth has contact exhibiting the appropriate forces and
torques, then the back face has contact without forces and torques, or vice
versa. The product of the corresponding forces and torques has to be always
zero, which defines an exclusiveness requirement in the form of a complemen-
tarity. In our case the magnitudes λ+

G,λ
−
G are the torques in one of the tooth

sides, front or back flanks. These two constraints are accompanied by friction
torques λ+

T ,λ
−
T , which write

λ+
T = µd,H(λ+

G + λG,0)− λ+
T01, λ−

T = µd,H(λ−
G + λG,0)− λ−

T01. (8.47)

The magnitude µd,H is a friction coefficient, and λT01 is the friction reserve
(see Figure 3.4 on page 94). The matrices WGN , HG and WGT have to be
split also into these two unilateral constraints.

The idea of introducing an exclusiveness condition for the tooth pairings
in Harmonic Drives allows to construct a complementarity unequality in stan-
dard form. The details of the evaluation of this LCP may be found in [226],
they will not be presented here. The result writes λ−

G

κ+
T1

λT02

 =

=

E − 2(W+′
GT µ̄d,H +H+′

G ) W+′
GT 0

−2W+T
GNM

−1(W+′′
GT µ̄d,H +H+′′

G ) W+T
GNM

−1W+′′
GT E

4µ̄d,H(E −W+′
GT µ̄d,H −H

+′
G ) 2µ̄d,HW+′

GT −E 0


 λ+

G

λT01

κ+
T2

+

+

 −h′ − 2(W+′
GT µ̄d,H +H+′

G )λG,0
W+T

GNM
−1(h′′ + 2(W+′′

GT µ̄d,H) +H+′′
G )λG,0

2µ̄d,H(−h′ + 2(E −W+′
GT µ̄d,H)−H+′

GN )λG,0


 λ−

G

κ+
T1

λT02

 ≥0

 λ+
G

λT01

κ+
T2

 ≥ 0

 λ−
G

κ+
T1

λT02

 λ+
G

λT01

κ+
T2

 = 0 (8.48)

κ+
T1, κ

+
T2 are the tangential accelerations of the tooth pairings, which corre-

spond to the averaged sliding acceleration of the gears. The (’)-magnitudes
can be calculated by (as an example for h′)

h′ =M∗h,

M∗ =− [W+T
GNM

−1(W+
GN −WGT µ̄d,H +H+

G)]−1W+T
GNM

−1, (8.49)

and all the rest the same way. The (”)-magnitudes follow from

h′′ = h+ (W+
GN −W

+
GT µ̄d,H +H+

G)h′. (8.50)
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The complementary quantities of equation (8.48) are the transmitted torques
λ+
G,λ

−
G in positive and negative directions of the tooth pairings, the tangential

accelerations κ+
T1 and the friction reserves λT01 and the friction reserves λT02

together with the tangential accelerations κ+
T2. The solution of the Linear

Complementarity Problem (LCP), equations (8.48), gives us a possible set of
the unknown magnitudes for the gears. It regards transitions from sliding to
stiction and vice versa. The relevant force laws are set-valued.

As for all other modeling problems it makes sense to investigate possi-
bilities for simplifications. Simulations with the complete model as presented
above demonstrate, that the nonlinearities due to transitions from stick to slip
and vice versa do not influence much the overall system behaviour. The rea-
sons for that are threefold: Firstly, for Harmonic Drives the torques to initiate
such transitions are very small in comparison to the transmitted torques. Sec-
ondly, moving the walking machine along some reference trajectories requires
the motion of all joints and therefore of all gears. During such a motion we do
not have very frequent changes of the angular speed directions in the gears,
and moreover, if we have such changes, they do not appear at the same time
instant in several joints. Thirdly, joint control works with rather low time con-
stants and is designed very stiff; as a result some disturbances coming from
speed changes in the joints can be damped away by the control system.

One of the main sources of large computing times are the complementar-
ity conditions (8.48), which should be avoided. The above arguments allow
a simple approximation by smooth force laws in the contacts, because these
stick-slip events do not influence dynamics so much, and thus a smooth ap-
proximation is still an excellent approach. According to the equations (8.20)
to (8.22) we can express the friction torque by

TR = µ(TG,0 + TG) + dω + bω3. (8.51)

Generally, the term µ(TG,0 + TG) represents that part of the friction, which
depends on the speed direction, and which, in the case of stiction, becomes
set-valued. To avoid that, we choose the following set of friction coefficients

µ =µ0(
ω

ω0
) for − ω0 ≤ ω ≤ ω0,

µ = + µ0 for ω ≥ +ω0, µ = −µ0 for ω ≤ −ω0. (8.52)

The friction coefficient increases linearly up to a limiting speed ω0 and then
remains constant. This means a replacement of the vertical line of Coulomb’s
law by an inclined line. For this type of regularization we get some small errors
in the range |ω| ≤ ω0, and we cannot describe stick-slip phenomena. Practical
experiments with the walking machine JOHNNIE, though, have shown, that
this approximation does not influence the walking performance.

As a next step we model each of the motors and the gears with three
degrees of freedom, one for a motor and two for a gear. The walking machine
JOHNNIE has 17 joints and 6 DOF of the trunk. Altogether this sums up to
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ftotal = 17 × 3 + 6 = 57 degrees of freedom. But we are able to reduce that.
The motors and gears are coupled with given transmission ratios, which allow
a reduction of the degrees of freedom. For example, the coordinates qj,mot of
a motor, qj,get of a gear and qj of a joint with respect to the degree of freedom
j are coupled by the transmission ratio i in the following form:

qj = (qj qj,get qj,mot)T = (1 i i)T qj = Jjqj . (8.53)

Summarizing all joint Jacobians to a combined Jacobian J = (JT1 J
T
2 ... JTn )T

we are able to project the equations of motion onto the new minimal coordi-
nates by

M q̈ = h+Qe, JTMJ q̈r = JTh+ JTQe, (8.54)

from which we derive the equations of motion utilizing these new minimal
coordinates:

M∗q̈r =h∗ +Q∗
e ,

with M∗ = JTMJ , h∗ = JTh, Q∗
e = JTQe. (8.55)

These relations diminish the original number ftotal = 57 degrees of freedom
to the reduced number ftotal = 23, which has a significant effect on the com-
puting time.
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8.3 Walking Trajectories

8.3.1 The Problem

Every walking process requires trajectory planning including all details, the
system’s structure, the joints, the body, all interconnections and many crite-
ria. Obviously we could look at the biological systems and try to copy their
trajectories. This has been done with much success for the six-legged machine
MAX (see [202], [273], [54]) by a biologically oriented development. But it
cannot be done equally for biped systems, in spite of many investigations of
human walking.

Human beings and humanoid robots possess for reasons discussed before
(section 8.1.2) many structural similarities, but their specific body and ex-
tremity data are completely different. Human beings concentrate their mass
in the trunk, and their arms and legs possess relatively small masses. For walk-
ing machines it is the other way around. They have heavy arms and legs but a
lightweight trunk. The reason is clear: muscles as drive systems are much more
effective than motor-gear-combinations. Moreover, the human trunk contains
all internal components, whereas the walking machine trunk contains only the
computers [137].

The difference in design, in spite of all structural similarities, make a
1:1 tranfer of measured human walking trajectories impossible. The machine
would not be stable, it would not even walk. Therefore we have the task to
develop our own trajectories, as perfect as possible adapted to the specific
walking machine under consideration and with the requirement of many cri-
teria to be fulfilled. This leads to costly optimizations, which we shall consider
in the following.

For the optimization of walking machines we shall apply criteria like sta-
bility, as the most important criterion, and additionally aspects like energy
and velocities together with a large bunch of constraints. They have to refer to
the limits of the motors and the gears, the kinematical limits of the machine,
the limits of computer speeds and control performance, to name a few.

8.3.2 Trajectory Generation

8.3.2.1 Trajectory Coordinates

We have the choice of Cartesian world coordinates and the walking machine’s
joint coordinates, of work-space and of joint-space. And we need both. Addi-
tionaly we have to watch the requirement to evaluate during walking certain
transformations in real-time, from work-space into joint-space and vice versa.
For control purposes and with respcet to real-time requirements we choose for
JOHNNIE the following treatment.

The trajectories will be prescribed in world coordinates x and transformed
by real-time computing into joint coordinates q, where the two coordinate sets
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x,q have to be chosen in such a way, that the transformations are unique in
both directions. Thus the vector x includes the six trunk coordinates xO,
one pelvis degree of freedom qB , the arm degrees of freedom xA and the foot
degrees of freedom xF . This makes altogether

x = (xTO qB x
T
F x

T
A)T ∈ IR17. (8.56)

We first consider the six trunk coordinates, where the translations are el-
ementary, but the rotations need special treatment. The usual representation
of rotations by Euler and Cardan angles or by quaternions is not very conve-
nient due to certain control requirements. The control concept of JOHNNIE
anticipates the possibility, that not all degrees of freedom can be controlled.
Such a case appears, if the maximum torques being transmitted by the feet to
the machine, exceed their limits. Then controllability is lost, and we have to
define, which of the coordinates may deviate from the reference trajectory. For
example, this might be the inclination of the trunk. In addition to this situa-
tion we cannot assign to the angle coordinates of the classical representations
inertial coordinate axes.

For a description of the trunk of JOHNNIE we therefore develop an indi-
vidual angular coordinate system. Figure 8.10 illustrates these new definitions
[137]. The orientation of the coordinate system K (with primes) is defined by

Fig. 8.10: Definition of the Trunk Angular Coordinates [137]

the angles α, ϕ1 and ϕ2. The angle α describes a rotation around the z-axis
of the inertial system. It is the angle between the e1-axis and the e′1-axis pro-
jected onto the inertial x-y-plane. By the angles ϕ1 and ϕ2 spanned between
the e′1-, the e′2-axis and the z-axis we are able to define independently the
inclinations of the trunk in the forward and sidewards directions. This is a
very important issue. The angle ϕ3 is redundant. An additional advantage of
the above definitions consists in a measurement convenience, all three angles
ϕ1, ϕ2 and ϕ3 can be directly measured by the inclination sensor.

Of course we have to pay a price, namely in the form of a bit more costly
transformations. For a mapping from a body-fixed frame into an inertial sys-
tem we may write generally
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Ix =

a00 a10 a20

a01 a11 a21

a02 a12 a22


Kx =

aT0aT1
aT2

T
Kx (8.57)

With the angles α, ϕ1 and ϕ2 we can directly calculate the values of

a00 = sinϕ1 cosα a01 = sinϕ1 sinα a02 = cosϕ1

a12 = cosϕ2 (a22 = cosϕ3)

and for the rest of the unknown coefficients we have the conditions

aT0 a1 = 0 ∧ |a1| = 1 ∧ a2 = a0 × a1

These equations can be solved in an unambiguous way [137]. The Jacobian of
this rotation can be determined with the help of the velocities α̇, ϕ̇1 and ϕ̇2

and with the Cartesian angular velocity ω. We come out with

α̇ = (ω × Ie
′
0)
T nα
|nα|

with nα = Ie
′
0 × (Ie

′
0 × Ie1)

ϕ̇1 =(ω × Ie
′
1)
T nϕ1

|nϕ1 |
with nϕ1 = Ie

′
1 × (Ie

′
1 × Ie3)

ϕ̇2 =(ω × Ie
′
2)
T nϕ2

|nϕ2 |
with nϕ2 = Ie

′
2 × (Ie

′
2 × Ie3) (8.58)

The Jacobian for this special coordinate definition and its time derivation
results directly from the above relations. We get

q̇R = (α̇ ϕ̇1 ϕ̇2)T = J−1
R ω, J̇R = −JR J̇−1

R JR (8.59)

The stability and also the controllability of the walking machine depends
to a large extent on the torques transmitted from the feet to the machine. They

x1

x2 x3

x4

Fig. 8.11: Foot Design

are directly proportional to the lenght and width of a foot characterized by its
four corner points. The reference trajectory will be described by the inertial
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position of these four corner points, see Figure 8.11. The vector with respect
to inertial coordinates to the four corner points is defined as xK11...xK14 for
the right and xK21...xK24 for the left foot. The position of the complete foot
is given with the middle point of the four corners

xF,i =
1
4
(xKi1 + xKi2 + xKi3 + xKi4), i ∈ 1, 2. (8.60)

The orientation of the feet can be calculated by the relative position of the
corners to each other. We get

κi,1 =
zKi1 + zKi2 − zKi3 − zKi4
xKi1 + xKi2 − xKi3 − xKi4

,

κi,2 =
zKi1 − zKi2 + zKi3 − zKi4
xKi1 − xKi2 + xKi3 − xKi4

,

κi,3 =
yKi1 + yKi2 − yKi3 − yKi4
xKi1 + xKi2 − xKi3 − xKi4

, (8.61)

where xKij = (xKij , yKij , zKij)T are the corner coordinates. The magnitude
κi,1 describes the foot inclination forward/backwards (pitch), κi,2 is the in-
clination to the side (roll) and κi,3 the orientation around the vertical axis
(yaw).

8.3.2.2 Motion of the Center of Mass

For robots and walking machines we always have to regard two aspects with
respect to modeling. For simulation purposes usually applied for design and
verification we need a detailed model considering all influences like contact
events or temperature dependencies of the drives. Computing time is then
not so important. But for model-based control we need real-time models being
able to give at least the most important informations of the system’s dynamics
within very short time instants. In the last sections we have presented detailed
descriptions and a few simplification aspects. We shall continue this section
with simplified models, though complete models are of course available.

The approximate motion of the mass center will be described by a combina-
tion of the zero-moment-point model (ZMP) [267] and the inverted pendulum
model. Both models are very well known since long time, and they are applied
in nearly all modern walking machines considering the arguments just given
above. The ZMP model is nothing else but the application of the equivalence
principle of classical statics generating from force-couples a force alone. The
inverted pendulum model is a very popular example for advanced course ex-
ercises together with laboratory models. The relation with respect to walking
is nicely presented by some Japanese papers, for example [156], [78], [121].

For the zero moment point we get the simple relation (see Figure 8.12)

FZMP = F F , TZMP = T F + F F × rF,ZMP = 0. (8.62)
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FZMP
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F

Fig. 8.12: ZMP Forces and Torques

The index F denotes the point F, where we know the forces and torques at the
feet. The last equation can be solved for the unknown vector rF,ZMP to the
zero moment point. The condition, that this point has to be positioned within
the foot supporting area, provides us only with a static stability information,
which is sometimes helpful. In the following we shall discuss that a bit.

Human walking is characterized by two phases, not considering here the
phase without ground contact taking place only for running. The two phases
are the single- and the double-support phases. For the single-support phase we
have stance for one foot and swing for the other one. For the double-support
phase we have stance for both feet. During walking we have a periodic change
of single- and double-support phases.

The inverted pendulum model provides a simple model for a also simple
control design, which for small speeds might be a first approach. Figure 8.13
illustrates the model. The momentum equation for the total system writes

M ẍS = −G+ F ext, (8.63)

which includes the gravity forces G and some external forces F ext. The vector
xS represents the coordinates of the machine’s center of mass. As long as the
machine mass is constant, we get from equation (8.63) the correct motion of
the center of mass without simplifications. With respect to the moment of
momentum equations we are not able to reduce the machine’s overall moment
of inertia to a constant value. Therefore we take as a rough approximation

Jω̇S = T ext, (8.64)

which is a simplification, because on the one side the moments of inertia of the
machine are not constant, and on the other side the moment of momentum of
the machine might change even for a not moving trunk but with moving legs
or arms. Astonishingly enough, the rough approximation as introduced above
is quite nicely confirmed by experiments, and it is therefore used by many
research teams around the world. For JOHNNIE we apply that for real-time
computations, but not for simulations.
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Fig. 8.13: Inverted Pendulum Model

For the following trajectory consideration we assume, again approximately,
that we have an upright gait for T ext = 0. According to Figure 8.13 only forces
are acting in the zero-moment-point and no torques. From this we get also
only forces along the connecting line from the ZMP to the system center of
mass. With a prescribed vertical acceleration z̈S,ref of the center of mass the
horizontal accelerations can be calculated by

 ẍS
ÿS
z̈S

 =


(g + z̈S,ref)xS−xZMP

zS−zZMP

(g + z̈S,ref)yS−yZMP

zS−zZMP

z̈S,ref

 (8.65)

These equations can be solved for some prescribed vertical motion, for exam-
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Fig. 8.14: Motion of the Center of Mass and of the ZMP (see Figure 8.13)

ple one of the magnitudes zS,ref , żS,ref , z̈S,ref . Figure 8.14 depicts the lateral
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motion of the center of mass and the ZMP for a constant height of the center
of mass [137].

The single- and double-support phases are uniquely determined by the
trunk and the arm motion and by the movements of the feet. For the math-
ematical description of these movements we define certain reference points
of the trajectories, where the kinematics is prescibed, and we interpolate be-
tween these points by polynomials of fifth order to avoid jerk effects. Figure
8.15 depicts a typical foot trajectory. The foot detaches vertically from the
ground, and at the same time the heel is lifted a bit. Then we have a swing
phase, where the heel is rotated to meet the necessary stance position. After
that we have the stance phase. The details are adapted by the control system
during walking.

detach

swing

stance

Fig. 8.15: Foot Trajectory

It should be noted, however, that this simplified approach, though quite
successful for many machines, will eventually be replaced by more sophisti-
cated ones without these simplifications. The ideal solution would consist in
an automatic generation of trajectories coming out from an analysis of the
nonlinear equations of motion together with a stability investigation. Prob-
ably the gaits would be the fixed-point solutions of the complete set of the
nonlinear biped equations, but at the time being this is still a matter of on-
going research [44]. The problem with regard to such considerations is, that
we do not know very much about the criteria according to which walking is
governed in biological systems. But this situation might change in the years
to come.

8.3.2.3 Trajectory Optimization

Optimizations are a necessity for both, robotics and walking. With respect
to trajectories we not only have a big bunch of constraints, which are needed
to watch, but also a couple of criteria, which make sense. The matter has
already been discussed in the robot chapter, especially in section 7.3.3 on
page 476, where we consider combined trajectory and process optimization.
The optimization theory applied for this topic are not far away from those
for walking trajectories, as a matter of fact they have influenced very much
walking optimization, see [271], [219], [220], [211].
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As usual we start with the equations of motion, which give us the motion
of all joints, for JOHNNIE the motion trajectories of 17 joints. The necessary
optimization criteria are not very clear in the case of walking, but at least we
know from neurobiological investigations that stability has to be the number
one criterion [165]. In addition to that we may take into consideration criteria
like total energy consumption, equally distributed torques over all joints, an
averaged value of all torques, the knee angle or the amount of power consumed.
For a vector optimization problem they must be combined with a smaller
valuation than stability.

A crucial problem of any optimization consists always in computing time,
because one simulation of the system corresponds then only to one point
in the parameter space [179]. The problem can be reduced considerably by
evaluating the gradients of the criteria with respect to the parameters, if it is
really possible. In many cases it is not, but for walking machines it is, though
a little bit costly [137], [33].

The problems of optimizing walking trajectories are still a matter of ongo-
ing research. As a first step the authors of [137], [33] performed a trajectory
optimization not including the control system and the underactuated degrees
of freedom, but regarding the complete system’s equations. The result is also
of practical relevancy, because it contains informations of optimal trajectories
without leaving the allowed range of parameters, especially forces and torques.
These optimized trajectories have been implemented in JOHNNIE.

But there remain some open questions. For a next step such an optimiza-
tion should be performed for the complete system including control. First
trials indicate, that at the time being the computing time problems might
be too large. This is true also for an optimization including control and un-
deractuated degrees of freedom, for example feet degrees of freedom due to
visco-elastic material. But very likely all possibilities to achieve optimal tra-
jectories will be realized, especially for fast gaits.
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8.4 The Concept of JOHNNIE

8.4.1 Requirements

From a large project at the author’s former Institute concerning normal and
hemiparetic human walking it was easy to take for a first layout the quite
well-known data of human walking 2. These data as a matter of fact refer
more to mechanical properties like kinematics, masses, moments of inertia,
torques and forces and not so much on human walking control, sensors and
actuators. The requirements for the sensors come from the technical con-
trol concept, which is a combined position-force-control system. The state of
all joints must be known, the force/torque situation at each foot must be
measured, and an inertial reference must be given. Therefore, encoders and
tachometers, six-component-force-torque-sensors and an inertial platform are
needed. Quantities like friction, which are not measured, can be estimated by
observers. Altogether the most important requirements are as follows:

size 1.80 m
weight < 50 kg
max. speed 0.5 – 1.0 m/s
configuration humanlike
degrees of freedom

leg 6 DOF
foot (internal) 4 – 8 DOF

sensors encoders
force-torque-sensors
inertial platform

actuators Neodym-Bor-DC-Motors
Harmonic Drives Gears
Ball Screws

8.4.2 Mechanical Models

In the following we shall consider some more details concerning the hardware
selection. Figure 8.16 shows a sectional view of the final version of the hip joint.
The actuation for the yaw and roll axis are arranged coaxially with the joint
axis and are integrated in the aluminum structure. The yaw joint is inclined
15 degrees with respect to the pelvis. This leads to a better power distribution
among the four hip motors. The pitch joint is actuated with two motors via
a timing belt. The employed gear has a modified Circular Spline, which is
T-shaped in order to reduce weight. Further, an aluminum Wave Generator
with optimized shape is included. Its moment of inertia is 50% lower than
that of the standard series. The shank includes the PWM-amplifiers for the
knee joint actuation (PWM - pulse width modulation). The table on page 517
shows technical data of the joints.
2 Section 8.1 is based on the text of [202]
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yaw axis

PWM amplifier

roll axis

Harmonic Drive

pitch axis

thigh

motor/encoder

Fig. 8.16: Hip Joint Design [85]

The design of the knee joint corresponds to that of the hip pitch joint.
The actuation of the ankle joint is realized with two linear drives based on
ball screws (see Figure 8.4 on page 514). Two motors drive the ballscrews via
timing belt. A motion of the sliders in the same direction leads to a pitch
motion of the foot, the roll motion is realized by moving the sliders in reverse
direction.

The foot consists of three separate bodies (see Figure 8.7 on page 520).
The two lower foot plates are connected by a rotational joint about the foot
longitudinal axis ensuring that the ground contact situation is not overcon-
strained. The ground contact elements are rounded such that a smooth rolling
motion of the foot can be realized during touch down and lift off. The up-
per foot plate is connected to the lower plates by a damping element which
absorbes shocks and bridges the time gap between impact and the controller
response.

8.4.3 Sensors

The joint angles and joint angular velocities are measured by incremental
encoders (HP 5550 HDSL) that are attached to the motor shafts. They have
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500 lines such that an accuracy of 1/2000 of a revolution can be achieved
with the microcontroller hardware. In addition, a reference line is evaluated.
In order to obtain a reference position, light barriers are positioned in the work
range. Before operation, the robot has to perform an initialization where all
joints pass the light barriers. This position is used as the basis to find the next
reference line which is the reference position. As the Harmonic Drive gears
are very stiff, the error due to elastic gear deformation is small. The high
resolution allows for an exact control of the joint position at a short settling
time. The joint velocity is identified by numerical differentiation of the joint
position. To avoid damage of the robot, each joint is equipped with switches
that confine the minimum and maximum joint angle. When the workspace is
exceeded, the PWM signal for the corresponding joint is turned off.

For controlling the ground contact, especially tilting or slipping, a six-
component-force-torque-sensor has been developed [85]. Its design is based
on requirements resulting from simulations of the controlled jogging motion.
As commercial sensors meeting these requirements were not available, mainly
with respect to weight and size, an especially adapted sensor was realized
(Figure 8.17). Its performance with regard to the measurement range and to
measurement errors is excellent. The final version is based on a classical sensor
design with three deformation beams holding strain gauges. Thin membranes
make sure that defined stresses occur at the strain gauge positions. These
membranes decouple the force directions to a certain extent.
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Fig. 8.17: Force Sensor [85]
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The detailed layout of the sensor has been performed employing the
method of Finite Elements. Based on the simulated force-torque information,
calculations have been made in order to ensure that the maximum van Mises
stresses are below the durability stress of the sensor material. Strain gauges
are applied as half bridges on the deformation bars. The amplifier is included
in the sensor housing.

The control of the robot requires a precise information about the orien-
tation of the upper body in space. Since it cannot be determined from the
joint angles with sufficient accuracy, an inertial orientation sensor system is
included. The upper body motion is characterized by high linear accelerations
in vertical direction and high oscillations (2 Hz at a jogging speed of 5 km/h).
Therefore, the application of an inclination sensor leads to poor results due to
their poor dynamic properties. A set of three gyroscopes is used to compen-
sate their dynamic behaviour. As the integrated angular velocity information
of the gyros cannot be computed without drift, a sensor fusion method is
used to combine both sensor data from acceleration sensors and gyroscopes
to obtain the best performance. The sensor fusion methods often employed
for such systems are the drift estimation using a Kalman Filter or fusing the
information with a complementary filter.

8.4.4 Control Concept

Various control concepts for the complete machine and for local controllers
have been considered and tested for JOHNNIE [137]. We shall present here
only one of these configurations, the feedback linearization, inspite of the
fact that for fast walking this concept is too slow. The control scheme is a
three-layer-concept as shown in Figure 8.18. If the biped is in addition vision-
controlled we get a fourth layer deciding on the walking tasks and require-
ments. In Figure 8.18 the lowest layer includes a feedback linearization scheme
mainly applied to stabilize the machine and to assure a safe basis for the higher
layers. As the realization of a feedback linearization is rather sensitve with re-
spect to parameter uncertainties we need some observers to estimate friction,
gravity, position and orientation. It is one of the drawbacks of feedback lin-
earization resulting in relatively large computing times. Figure 8.19 illustrates
a bit more in detail the concept. Altogether 39 measurement signals enter the
control block, 27 signals for the joint status and 12 signals for forces and
torques at the feet. After being processed in the control loop the power sig-
nals for the joint actuators leave the control block. The complete processing
from measurements to the power signals takes about 4 ms, which is too long
for fast walking or jogging.

The second layer in Figure 8.18 concerns the process of trajectory gen-
eration for normal and fast walking and for jogging, where the control and
trajectory parameters are evaluated, the reference values are determined, and
where finally the feedback linearization will be activated. The computation of
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Fig. 8.18: Control Concept of JOHNNIE [137]

the reference trajectories is crucial for a stable motion of the robot. In particu-
lar all existing constraints have to be satisfied throughout the entire gait cycle.
Nevertheless the trajectories are not uniquely defined by these constraints. An
infinite number of trajectories is possible for a given walking speed, such that
the most suitable trajectory has to be determined by an optimization.

While an optimized trajectory leads to a very good system performance
when tracked exactly, it is not necessarily the best solution for a real walk-
ing machine. Highly optimized trajectories are computed as spline curves in
terms of the joint angles. It is very difficult to adapt these trajectories in
case of disturbances and to change the gait pattern in an unknown environ-
ment. A modification of the trajectories would require a huge data base or
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an online optimization of the trajectories. Presently both solutions work only
in simulations since they require extensive computational power and cannot
be used for a system operating in real time. Biological systems do not track
a given set of trajectories extremely exact, but adapt their motion to up-
coming disturbances and can compensate for a great part of sensor errors,
inaccurate tracking and disturbances. We therefore use a reduced model for
the computation of dynamically stable reference trajectories. The solution is
not completely exact, but it can be computed in real time and allows for an
adaptation of the trajectories during walking. This way it becomes possible
to compensate model inaccuracies as well as external disturbances.

Fig. 8.19: The Feedback Linearization Concept [137]

The highest layer in Figure 8.18 deals with the global walking coordination
including features like walking, jogging and standing, the last one requiring
certain control measures. The various phases of these features have to be
coordinated correctly and transfered to the next layer of trajectory generation.
A supervisory layer has been realized for vision control (Prof. G. Schmidt,
TU-Munich (see [140], [236], [235])).

Two additional aspects should be finally mentioned, the problem of con-
straints and the important properties of foot dynamics. One of the main dif-
ficulties in the control of dynamically walking robots result from constraints
that limit the applicability of conventional control concepts. Two groups of
constraints need to be considered. Firstly the workspaces of the joints, the
maximum rotor velocities and the joint torques are limited. These are typical
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constraints for industrial robots and can be satisfied by an adequate design
and an appropriate choice of the trajectories. However critical control prob-
lems result from the second group of constraints that describe the unilateral
contact between the feet and the ground. Depending on the normal force that
is transmitted from foot to the ground, the maximum transmissible torques
as well as the tangential forces are limited by the corresponding friction cone.
While practical experiments show that the robot usually does not start slip-
ping, the limits of the torques in the lateral and frontal direction lead to a
small margin of stability.

From human walking we know that foot dynamics is a crucial point for
any walking or running process [171]. Forces and torques at the feet contribute
significantly to the stability of the system. For example when the orientation
of the upper body deviates slightly from its reference, the foot torques are
increased to bring the orientation back to its reference value. Depending on
the time constants that were chosen for tracking of the orientation, the foot
torques can easily exceed their maximum limits. The feet would tilt even
though the robot is very close to its reference trajectory. Therefore a direct
measurement and control of the foot torques is inevitable when the motion of
the robot is based on an orientation sensor. For our robot it is particularly
easy to control the foot torques with a high bandwidth.The torques of the
feet depend only on the forces of the ball screw drives that actuate the ankle
joint. These are controlled by the same microcontroller that also reads in the
data of the six axes force sensor. The controller operates at a sampling rate of
0.4 ms. Steady state errors due to gear friction are compensated by a friction
observer. The control scheme has been verified in experiments.

8.4.5 Some Results

8.4.5.1 Simulations

JOHNNIE walks, but does not reach jogging velocities. We use multibody
simulations to test the performance of the controller and to optimize the me-
chanical design of the robot. Particular emphasis is put on the simulation of
the contact between foot and ground. The foot contacts consist of four cylin-
drical elements with which the foot can perform a rolling motion at touch
down and lift off. The contact between these elements and the ground is mod-
eled as a rigid body contact leading to a complementarity problem, which can
be solved by well-known standard algorithms. Another important issue is the
simulation of the friction of the Harmonic Drive gears. The friction is mod-
eled with a nonlinear characteristic, while the stick-slip transitions are also
implemented with LCPs (LCP - Linear Complementarity Problem). The sim-
ulations show that the controller is suitable to generate a stable gait pattern.
External disturbances can be handled effectively with the described strategy.
The simulation results are used to optimize the design. Figure 8.20 shows typ-
ical simulation results that were otained in an optimization of the geometric
arrangement of the hip joint.
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Fig. 8.20: Hip Joint Velocities and Torques for Jogging

8.4.5.2 Walking Experiments

Two types of experiments have been carried through, a large number of walk-
ing tests on a conveyor belt and some tests, where a certain amount of au-
tonomous walking was realized. The robot’s speed on the conveyor belt can
be adjusted manually by the operator.In addition the walking direction is
controled in such a way, that the machine remains centered on the belt even
for long term experiments. It has been found that the belt acceleration influ-
ences very little the walking stability allowing therefore a fast transition to
the maximum speed of the belt.The walking speed realized by the machine
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control as presented above is 2.4 km/h with a maximum step length of 60 cm.
A new biped being just now developed will exceed these values. Figure 8.21
illustrates a walking process on the conveyor belt.

Fig. 8.21: Walking JOHNNIE

The second test including autonomous walking has been prepared for the
Hannover Fair 2003 and has been presented there with the following scenario.
Within an area of 5 by 7 meters the robot starts in one corner, comes to an
obstacle and decides by himself to step over it. He comes then to a second
obstacle, which is too large for the robot, therefore he decides to go around.
JOHNNIE then walks along the external limits of the area meeting finally
some stairs. He decides to go upstairs to the conveyor belt, where he performs
some walking with large speed. The decision capabilities were achieved by a
vision system developed by Professor Günther Schmidt in Munich. The vision
results were combined with the walking possibilities of JOHNNIE to realize
the appropriate walking process. All decesions for avoiding obstacles and for
climbing the stairs were based on an external world model resulting from the
vision process. From this JOHNNIE could see, decide and walk without any
operator’s support. Figure 8.22 depicts the stair case walking.
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Fig. 8.22: JOHNNIE on Stairs



References

[1] Abraham, Ralph ; Marsden, Jerrold E.: Foundations of Mechanics. Westview
Press, 1978

[2] Alart, P. ; Curnier, A.: A mixed formulation for frictional contact problems
prone to Newton-like solution methods. In: Comp. Methods Appl. Mech. Engrg.
92 (1991), S. 353–375

[3] Angeles, Jorge: Fundamentals of Robotic Mechanical Systems. Springer Ver-
lag New York Inc., 1997

[4] Arikawa, Keisuke ; Hirose, Shigeo: Mechanical Design of Walking Machines.
In: in: Walking Machines, Phil. Trans. R. Soc. A, vol 365, no 1850 (eds. Pfeif-
fer, Inoue) (2007), S. 171–183

[5] Arnold, M.: Zur Theorie und zur numerischen Lösung von Anfangswertprob-
lemen für differential-algebraische Systeme von Höherem Index. Fortschrit-
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vis-à-vis la grille des Mathurins, a Paris, 1743
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[72] Frémond, Michel: Non-Smooth Thermomechanics. Springer Verlag Berlin,
Heidelberg, New York, 2002

[73] Förster, H.-J.: Automatische Fahrzeuggetriebe. Springer-Verlag, Berlin Hei-
delberg, 1991



References 551

[74] Fujii, T. ; Kurakawa, T. ; Kanehara, S.: A Study of Metal-Pushing V-Belt
Type CVT - Part 1: Relation between Transmitted Torque and Pulley Thrust.
In: Int. Congress and Exposition Detroit, SAE Technical Paper Series, Nr.
930666 (1993), S. 1–11

[75] Fujii, T. ; Takemasa, K. ; Kanehara, S.: A Study of Metal-Pushing V-
Belt Type CVT - Part 2: Compression Force between Metal Blocks and Ring
Tension. In: Int. Congress and Exposition Detroit, SAE Technical Paper Series,
Nr. 930667 (1993), S. 13–22

[76] Fujita, M.: Autonomous Behavior Control by Design and Emergence. In:
in: Walking Machines, Phil. Trans. R. Soc. A, vol 365, no 1850 (eds. Pfeiffer,
Inoue) (2007), S. 21–47

[77] Funk, Kilian: Simulation eindimensionaler Kontinua mit Unstetigkeiten.
Fortschrittberichte VDI, Reihe 18, Nr. 294, VDI-Verlag Düsseldorf, 2004

[78] Furusho, J. ; Masubuchi, M.: A Theoretically Motivated Reduced Order
Model for the Control of Dynamic Biped Locomotion. In: J. of Dynamic
Systems, Measurement, and Control, Trans. od ASME Vol. 109 (June 1987),
S. 155–163
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[188] Pfeiffer, Friedrich: Assembly processes with robotic systems. In: Robotics
and Autonomous Systems 19 (1996), S. 151–166

[189] Pfeiffer, Friedrich: Robots with Unilateral Constraints. In: Proc. of 5th
IFAC Symposium on Robot Control (SYROCO ’97), Nantes (1997), S. 539–
550



References 557

[190] Pfeiffer, Friedrich: On the mechatronics of an automatic gear transmission
system. In: Multibody dynamics 2005-ECCOMAS thematic conference, Madrid,
Spain (2005)

[191] Pfeiffer, Friedrich: CVT - A Large Application of Nonsmooth Mechanics.
In: ECCOMAS, Multibody Dynamics 2007, Milano (2007)

[192] Pfeiffer, Friedrich: Deregularization of a smooth system - example hy-
draulics. In: Nonlinear Dynamics 47 (2007), S. 219–233

[193] Pfeiffer, Friedrich: The TUM Walking Machines. In: in: Walking Machines,
Phil. Trans. R. Soc. A, vol 365, no 1850 (eds. Pfeiffer, Inoue) (2007), S. 109–
131

[194] Pfeiffer, Friedrich: Dynamics of a Ravigneaux Gear. In: Journal of Vibration
and Control, Sage Publications Ltd., 14(1-2) (2008), S. 181–196

[195] Pfeiffer, Friedrich ; Borchsenius, Fredrik: New Hydraulic System Mod-
elling. In: Journal of Vibration and Control 10 (2004), S. 1493–1515

[196] Pfeiffer, Friedrich ; Bremer, Hartmut ; Figueiredo, J.: Surface polishing
with flexible link manipulators. In: European Journal of Mechanics, A/Solids
Vol. 15, No.1 (1996), S. 137–153

[197] Pfeiffer, Friedrich (Hrsg.) ; Cruse, Holk (Hrsg.): Autonomes Laufen.
Springer Verlag, Heidelberg, New York, 2005

[198] Pfeiffer, Friedrich ; Foerg, Martin ; Ulbrich, Heinz: Numerical Aspects of
Non-Smooth Multibody Dynamics. In: Computer methods in applied mechanics
and engineering 195, Elsevier (2006), S. 6891–6908

[199] Pfeiffer, Friedrich ; Fritz, Peter ; Srnik, Jürgen: Nonlinear Vibrations of
Chains. In: Journal of Vibration and Control 3 (1997), S. 397–410

[200] Pfeiffer, Friedrich ; Glocker, Christoph: Multibody Dynamics with Unilat-
eral Contacts. John Wiley & Sons, INC., New York, 1996. – Within the Wiley
Series of Nonlinear Science (Ed. Ali Nayfeh)

[201] Pfeiffer, Friedrich ; Hösl, Andreas: Geräuschoptimale Auslegung von Kom-
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applied 24, 39
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rotational 28, 36
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acceleration level 93, 138
action-selection 505
active contact state 135
Agco/Fendt 257
agricultural work 257
AIST 505
AIST, Japan 412
ancillary equipment 361
annulus 220
arc of wrap 279, 294
art of neglects 114
ASIMO 505
atmospheric density 222
Augmented Lagrangian Method 98,

148, 325
automatic transmission 208, 213
automotive industry 187
axial drum bearing 269
axle, rear, front 259

backlash 242, 283, 329, 338, 370

base pitch 243
bearing

journal bearing 333, 350

roller bearing 333
Bellman 429

belt 275
Bernoulli

Johann 1

Bernoulli equation 193
Betti/Maxwell 302

biomimetics 508
bionics 508
biped

ankle joint 513
ball screw spindle 513

controllability 530
drive system 516
feet contact 519

feet torques 530
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foot roll 531
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generalized coordinates 511
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joint structure 511
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model-based control 531
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Block-Gauss-Seidel relaxation scheme
148

body
deformed 64, 308
elastic 114, 251, 289, 331
predecessor 121
rigid 114, 251, 289, 307, 331
rotationsl symmetry 35
undeformed 66

Boltzmann 3
Boltzmann’s axiom 53
Borg Warner chain 276
boundary layers 76
brake torque 222
branching problem 123
bulk modulus 191
bush chain 365

cable winch 205
camshaft 329, 377
canonical equations of Hamilton 111
cardan shaft 215, 262
Carnot 175
Cauchy Green tensor 49
Cauchy’ stress tensor 53
chain 120, 275

link 286
drive 288
guides 395
joint 370
links with bushings 369
links with pins 369
tensioners 369

chain of bodies 27
chain performance 314
chaos 330
Christoffel 34, 45, 421
closure 89
clutch

multiple disc clutch 245
wet 214
multiple 226, 229
one-way 214, 225, 229

coefficient
of damping 244
of restitution 71
of sliding friction 70, 92

of static friction 70, 92
collisions 68
combinatorial problem 133
combustion engine 216
complementarity 69
complementary pairs 143
complementary partner 147
component

composition 404
piston/cylinder 396

composition 16
multiple 16
successive 17

compressibility module 188
compression 68, 132, 159
computer application VIII
computing time 119
configuration

deformed 49
reference 49

conservative system 63
constrained phase space 427
constraint 4
constraint equations 14
constraint matrices 137
constraint vectors 137
constraints 3, 8, 404

acceleration level 322
active 194
bilateral VIII, 8, 85, 114, 405
concept 85
element/ring 324
forces 85
holonomic 9, 31, 85
hypersurfaces 86
kinematical 8
non-holonomic 9, 31, 85
normal force 70
passive 194
position level 322
redundant 88
rheonomic 9, 85
scleronomic 9, 85, 172
surface 101
tangential force 70
unilateral VIII, 8, 89, 114, 131, 405
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parameters 40
points 40
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active 3, 70
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configuration 388
constraint 70
continual 174
element/element 325
element/pulley 325
element/ring 324
event 326
force 134
laws 173
line of 349
link/guide 372, 384
link/sprocket 372
multiple 42, 90, 133
passive 3, 70
ratio 243
regularization 526
smooth approximation 526
spatial 42
sprocket/link 387
torque 303, 310
zone 68
zones 43

contour
body 37
convex 37
curvature 384
guide 371
planar 36
smooth 36
tooth 370

contour velocity 40
control concept 508
convex analysis 71, 95, 170
convex set 91
coordinate transformation 14
coordinate-free 15
coordinates 9

curvilinear 12, 31
generalied 11
generalized 12, 30, 86
inertial 12, 54
minimal 11
non-inertial 12
of surfaces 14, 33
orientation 9
orthogonal 12, 33
parameterized 31

parametric form 14, 421
path 32
position 9
selection 185

Coriolis 37
Coriolis equation 24
corner law 73, 89
Coulomb 71, 164
Coulomb friction 70
CPG, central pattern generator 509
crankshaft 216, 329
curvature 33, 301
curve

spatial 32
cut 6

position 6
cut principle 4, 6, 185
CVT, Continuous Variable Transmission

213, 275
CVT-belt gear 113

d’Alembert 1
damping 76

by oil 339
complete 77
linear 77
mechanical 76
nonlinear 81
penetrating 77
structural 339

damping matrix 77
Darboux 33
DCT, Dual Clutch Transmission 213
deadband 197
decomposition 93, 171
deformations 1

by impact 158
elastic 47, 65, 289
gradient 49
local 89
measure 49
normal 89
pulley 295
small 47
small elastic 124
tangential 89

deformed element 125
degrees of freedom 11
design concepts IX
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detachment-contact 40
Diesel engine 83, 258

10-cylinder 359
5-Cylinder 346
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differential gear 215
differential geometry 33
differential-algebraic-equations 14
direction

normal 71
tangential 71

discrete state equations 234
discretization 74
disengagement 215
displacements 1

virtual 11, 86, 101
distance

relative 44
distance function 97
distance vector 39
Dittrich 277
DME, digital engine electronics 216
downshifting 234
drift 138
drive flange 265
drive train 215, 227
driving resistance 215
dynamic programming 231, 429
dynamics VII

contact 3
geometric VII
longitudinal 229
nonlinear VIII

eccentricity 80
edge carrying 307
efficiency 316
EGS, gear control electronics 216
eiegenbehaviour 272
eigenform 271, 285
eigenfrequency 78, 271
elastic degrees of freedom 247
elastic model ring gear 246
elastic vibrations 47, 445
elasticity 47

linear 47, 114

electro-hydraulic converter 208
electronic transmission control system

210
elementary rotations 17
elliptic friction cone 291
encapsulation of components 253
encoder 176
end effector

forces and torques 434
Jacobians 416
orientation 415
position 415

energy
conservation 63
considerations 173
consumption 76
conversion 76
deformation 66
kinetic 62, 108
loss 63, 172
potential 66
total 63

engagement 215
engine 215
engine model 216
engine speed 216
engineering VII
equations of motion 117, 184, 250
equilibrium 103
Euler 1, 6, 277
Euler angles 17
Euler formula

explicit 146
implicit 146

Euler-Bernoulli beam 380
event-driven schemes 145
excitation

external 31
sources 334, 366

expansion 68, 132, 159
experiments IX, 176, 407, 497
Eytelwein 277

FEM 282, 302, 322
finite elements VIII
first fundamental form 34
fixed point equation 150
flanged joint 344
flexibility 124
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fluid

capacitance 188
compressibility 187
density 188
pressure 188
volume 188

fluid flow 76
annulus 402
bearings 80
gap 79
Hagen-Poiseuille 200
laminar 76, 200
lossless 194
one-dimensional 198
oscillatory 200
rates 192
slide way 79
turbulent 76

fluid mechanics 187
force 6

acceleration 335
active 7, 53, 100
applied 7, 56, 335
conservative 109
constraint 3, 7
contact 8, 291
damping forces 397
elastic 56
element 231
external 6, 7
field 62
friction forces 397
generalized 109
gravitational 382, 417
gyroscopic 335, 417
internal 6, 7
law, multi-valued 113
law, single-valued 113
laws 128
lost 3
non-conservative 109
nonlinear characteristic 330
passive 7, 100
pressure forces 397
set-valued 56, 131, 226
single-valued 56
smooth force law 522
surface 8

tensioner 383
volume 8
weight 8

forestry 257
Fourier 3, 125
frame

body-fixed 24
coordinates 15
inertial 23

free direction 14, 117
free fall tower 204
free strand 280, 318
free wheel 218
Frenet 33
friction 76

coefficients 165
cone 70, 96, 139
effects 76
frequency dependent 198
in pipe 198
in the joints 418
isotropic 141
local 89
reserve 70, 93, 143
rolling 215
sliding 132
static 70, 132
surplus 70

friction cone linearization 139
fuel efficiency 257
fuel injection pump 351
fun ride 204
functionality 2

Galerkin’s method 199
Galilei 1
Gamma distribution 341
gap 396

annular 400
by eccentricity 401
plane 398
pressure 399
variable cross section 400
variable length 400

gas pressure 369
Gauss 1, 34, 44
Gauss integral theorem 56
gear

helical 347
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inner planets 245
involute 348
meshes 261
outer planets 245
planet carrier 245
ring gear 245
ring gear coupling 247
shift operations 214
stage combinations 244
sun gear 245
train 242
wheel stages 113

gears 76
geometrical stiffness 50
geometry of motion 12
gradient 86
Grashof 277
gravitational potential 423
gripper

contact forces 478
contact torques 478
coordinates 478
insertion direction 482
joint torques 483
orientation constraints 486
oscillations 483
positioning errors 487
prescribed force 483
reference configuration 487
reference point 478

guides 369
gyroscopic matrix 77

Hamilton 1
hammering 330, 348, 360
Harmonic Drive 517
Harmonic Drive model 524
Heaviside function 243
helix angle 348
heredity 253
Hertz 183
homokinematical configuration 264
Honda 505
Hooke’s law 57, 67, 302
hoses 198
hydraulic

amplifier 196
components 190
control unit 209

degrees of freedom 207
lines 198
networks 201
safety brake 204
systems 187

hydrodynamic converter 217
hydromotor 258, 266
hydropump 258, 266
hydrostat 264
hydrostatic drive 257

IEEE
ICRA 412
IROS 412

ignition 346
impact 158

details 69
hydraulic 203
ideal 69
inelastic 69
intensity 481
models 74
normal direction 163, 390
phenomena 68
single 68
sliding/sliding 174
sliding/sticking 175
sticking/sliding 175
sticking/sticking 174
tangential direction 163
with friction 69, 181, 367

impeller 218
impulse level 160
impulsive motion 68
impulsive process 132
index set 90
indicator function 97
injection

pressure 346, 360
pump 329

input 6
integral matrices 252
interpolation 145
inversion

mass matrix 119

Jacobi 1
Jacobian 117, 185
Jenkins element 83
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JOHNNIE 506, 510, 536

ankle joint 537
constraints 541
control concept 539
encoders 536
experiments 543
feedback linearization 539
foot dynamics 542
ground contact elements 537
hip joint 536
knee joint 537
orientation sensor system 539
position-force control 536
simulation 542
tachometers 536
trajectory generation 539

junctions 190
compressible 191
incompressible 191

Kato 505
kinematics 12, 185

absolute 122
contact 36
forward kinematics 415
inverse problem 415
relative 3, 36, 122

kinetics 1
Kirchhoff 1
Kirchhoff’s nodal equation 189
KUKA company 411

Lagrange 1, 185
Lagrange multiplier 135, 332
Lagrange’s Central equation 110
Lagrange’s equations of first kind 105
Lagrange’s equations of second kind

107
Lagrangian 111
Laplace transform 77
leakage 395
leakage models 398
least constraints 104
least squares 104
line of action 129, 242
linear system dynamics 77
linearization 184

elastic components 381

kinematic 50
reference trajectory 443

LUK/PIV rocker pin chain 276, 282

machine dynamics 83
machines VII
machines and mechanisms 329
manipulation process 419
manufacturing 476
mass 5

center 12
constant 5
effective 442
elastic 5
positive 5
rigid 5

mass action matrix 150, 163, 203
mass matrix 77, 380
mass-element 47
material damping 76
MAX 506
Maxwell 282
measure

differential equations 170
atomic 171
continuous 170
discontinuous 171
Lebesgue 171
singular 171

measurements 177, 230, 297, 327, 407,
458

mechanic-hydraulic system 260
mechanical interaction 56
mechanics

classical 1
non-smooth VIII
real 1

mechanisms VII
mesh of teeth 129
mesh structure 241
misalignment 301
model

concept 173
discretized 74
elastic 47
mathematical 183
mechanical 2, 114, 183, 359
non-smooth 74
nonlinear oil model 333
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rigid 47
rigid body 75, 158
smooth 74

model-based optimal control 233
models IX
moment of momentum 4, 53
momentum 4, 53
momentum balance 58
Moreau VIII, 170
MORITZ 506
motion 1
motion planning 503
moving point 21
moving trihedron 35
mulching 264
multibody system VIII, 90
multibody theory 30

natural frequency
damped 78
undamped 78

network 190
Newton 1, 71, 159
Newton’s laws 54
Newton-Euler-equations 115, 186
nodes 190
nodes, hydraulic 406
non-smooth mechanics 71
non-smoothness 131
Nonlinear Dynamics 110
nonlinearities

kinematic 50
normal cone 96
normal spaces 87, 102
numerical aspects 115, 145
numerical implementation 452
numerical solution 149, 340

object oriented method 253
oil hydraulics 269
oil pressure 283
oil pump 347
oilwhip 370
optimal

control 452
index list 432
parameters 452
robotic manipulation process 479
solution 423

table 432
time-minimum trajectory 423

optimal control strategy 234
optimality principle 431
optimization 100, 149, 476

constraints 484
cost function derivatives 490
criteria 480
disturbances 482
functional efficient set 480
gripper impact sensitivity 480
gripper mating tolerance 482
maximal applicable mating force

481
nonlinear, nonconvex 489
results 494
sensitivity analysis 487
vector problem 493

order-(n)-algorithm 119, 337
orientation 13
orientation level 149
orifices 193
orthogonal point 278
orthogonal trihedron 32
out-of-plane effects 301
output 6
output shaft 222
output train 215, 222

Panagiotopoulos VIII
parameter excitation 243, 278, 334
parameter influences IX
parameter study 314
parameter-excited vibrations 241, 262
Parseval 125
passive separation state 135
path of motion 296
peg-in-hole

compliant mating parts 455
contour parameters 467
elastic O-ring 455
elastic ring deformation 457
feedbeck gains 454
mating models 454
normal constraint 465
parameterization peg 470
problem 451
rectangular peg 472, 486
rigid mating parts 464
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robot/workpiece interaction 454
round peg 469
tangential constraint 465

pendulum 10
penetration 161
performance function 234, 423
phase shift 245, 249
physics VII
piston 216, 395

spring-loaded 395
piston drum 265
pitch 280
pitch circle 367
pitch vector 370
pivoting algorithm 148
planar eigenmodes 254
plane case 36, 278
planetary gear systems 219
planetary set 220
planetary sets 214
plate assemblage 314
ploughing 264
point mapping 149
Poisson 71, 162, 165
Poisson’s ratio 67
polar decomposition theorem

rotational 49
stretching 49

polygon effect 278
polygon excitation 315
polygon frequency 279, 319, 367
polygonal pyramid 139
polytope 140
position 13
position level 149
potential 63, 109
potential energy 380
power converter 113
power train model 231
power transmission 6, 213
power transmission hydraulics 207
power, mechanical, hydraulic 258
power-to-weight ratio 507
predecessor body 27
predictive control 236
press fit 344
press fits 81
pressure angle 348
pressure drop 193

pressure jump 207
pressure losses 397
pressure wave phenomena 198
principle 100

d’Alembert 102
differential 100
Gauss 104
Hamilton 110
Jourdain 104, 123
minimal 100
virtual work 102

process
assembly process 451, 476
iterative 510
mating process 451
mating tolerance 487
mounting process 451

projections 14, 117
projective method 115
prox-algorithm 326
prox-function 98
proximal point 97
PTO, power take off 258
pulley 275

clamping force 298
deformation 302
driven 282
driving 282
elastic 285
elastic model 320
misalignment 316
pair of sheaves 320
primary 320
secondary 320
set 282
sheave 275, 301
subsystem 320
thrust ratio 316

pump wheel 218
pump-nozzle system 346
push belt 276

configuration 318
element 320
power transmission 318
ring package 320

push belt CVT 326

quantity of matter 6
quaternions 17
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R&D-problems 184
radial movements 296
radius of curvature 250
rattling 330
Ravigneaux gear 221
Rayleigh dissipation function 77
RCC, Remote Center of Compliance

451
recurrence relations 25, 122
recursion

backward 122
first forward 120
robotics 416
second forward 124

recursive algorithm 25, 119
refelections 14
regularization 293, 455
Reimers PIV 282
release mechanism 167
release unit 176
reluctance 5
resonance 78
reversible impulse 167
Reynolds equations 350
Reynolds number 398
Reynolds-Sommerfeld-theory 80
Riemann space 34
rigid body approach 89
Ritz approach 125, 247, 252
RITZ-approach 284, 379
Ritz-approach 439
road inclination 222
robotics 411

arm segment 453
contacts 442
control 444
control system 419
elastic joint 441, 453
elastic manipulator 437
elastic robot 434
gear model 417
gear stiffness and damping 476
gripper 434
gripper Jacobians 477
inverse problem 420
joint space 416
manipulation task 476
motor shafts 453
path coordinate 422

PD joint controllers 478
process dynamics 419
PUMA 560 453
ruled surfaces 434
spill-over 445
transmission ratio 418
tree-like structure 438
working space constraints 488

rocker pin 276
angled joint 304
chain - plane model 282
chain - spatial model 301
curvature pin ends 315
gap function 309
halves 304
inner contour 304
joint kinematics 305
offset 305
pairs 303
pulley contacts 307
rolling joint 304

roll resistance 222
roller chain 365
rolling disc 10
rotation 12, 64
rubber disc 180

screws 81
second fundamental form 34
self-stability 508
separation velocity 174
servovalve 196
shaft-pulley-system 284
shafts

elastic 223, 261
rigid 223, 261

shape functions 247, 282
shape memory alloys 509
shear modulus 67
sheave 276

fixed 282
movable 283

shift control 231
shift elements 215
shifting process 231
shock

running in 368
running out 368

Signorini 3
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Signorini’s law 89
simulation 230
simulation/experiment 270, 392, 434
singular value decomposition 202
sledge 10
slide ways 76
sliding 69
sliding angle 313
snap fastener

assembly 459
chamfer 459
hook 459
stiffness matrix 459
with beam 461
with plate 463

solid-fluid interactions 76
spatial case 42, 278
spatial rotations 88
spatial shape functions 199
spectral radius 149
split wheels 354
spring tension 194
sprocket 370

carrier 377
shaft 382
toothing 374
wheels 367

stage combinations 219
stage process 429
static equilibrium 291
statics 1
steel on steel 180
steep characteristics 187
stick insect 508
stick-slip 40
sticking 69
stiff differential equations 74
stiffness distribution 284
stiffness matrix 77, 380
stochastic process 342
Stokes theorem 63
stored impulses 165
strain tensor 49, 66
strands 368
stress tensor 66
stretch, right, left 49
Stribeck curve 137, 226
stroboscopic exposure 177
structures

mathematical 2
subdifferential 97
successor body 27
sun wheel 220
surface normal vector 56
surface unit vectors 42
swaying 242
switching elements 208
synchronous point 231, 235
Synge 2
system

ancillary 346
biological 503
body-fixed 22
coordinates 30
cut 368
dynamics 131
inertial 22
large 185
mechanical-hydraulic 403
oil-hydraulic 395

tangent spaces 87, 102
Taylor expansion 443
tensioner

dynamics 402
hydraulic 395
system 403

tensor components 34
test set-up 177
throttle 195
throwing machine 177
throwing machine control 177
tilt angle 284
time increments 234
time-discretization 146
time-stepping schemes 146, 326
timing

belts 365
chains 365
chains and belts 346
equipment 329
gear 359
gear wheels 346

toothing 242
elasticity 242
stiffness 243, 249
theory 243

torque
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incoming 276
outgoing 276

torque converter 215
torsion 33
tractor 257
trajectory 20

contact force 444
controllability 446
critical point 429
curvature control 446
elastic curvature 447
extremals 425
feedback control 445
feedforward control 445
planning 413
point 21
prescribed 20
reference 233
saddle point 427
sink 427
source 427
spatial 33
time-minimum solution 429
warp 447

transformation 59
chains 25
linear 16
matrix 16
triangle 15

transition points 293
translation 12, 64
transmission

ratio 275, 347
travel range selector 258
tree 120
tree-like structure 25
tripod joint 265
tube

incompressible flow 397
laminar flow 398
models 397
turbulent flow 398

turbine wheel 218

UML, Unified Modeling Languange
253

unilateral primitives 73, 93, 405
unit vector 12, 22, 130
unit-matrix 16

upshifting 234

valve train 352
valves

check valves 194, 395, 402
complex 193
elementary 193
multistage 196
one-stage 4-way 196

van Doorne 318
variation

bounded 170
Gauss 103
Jourdain 103

variational calculus 111
variational inequality 91
VARIO system 258
VDT push belt 276
VDT-Bosch 318
vector

binormal 32
deformation 49
displacement 49
normal 32, 40, 86, 102
surface 44
tangent 32, 40

vector chain 15
vector-matrix-notation 28
vehicle

mass 215
velocity 19

absolute 21, 55
angular 25
applied 38
generalized 30
profile 399
relative 22, 39, 41
rotational 36
virtual 11, 106

velocity level 149
Verein Deutscher Ingenieure 76
verification 254
verification of impacts 176
vis inertiae 6
VW R5 TDI 347
VW V10 TDI 359

walking 411, 503
dynamics 509
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machine 503
performance 507

walking machine
control 510
dynamics 510
gear equations 524
Harmonic Drive Gears 517
pulse width control 516
supporting polygon 510
system equations 523
trajectories 528
transmission ratio 515
zero moment point 510

wall roughness 398
wave process 158

Weingarten 34, 44
wild mouse 183
woodpecker

free flight phase 154
limit cycle 150
pole 153
sequence os events 151
sleeve 152
toy 150

work 62
virtual 101

Young’s modulus 57, 67
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